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Abstract

The essential role of magnetic materials in information technology and the corresponding energy
consumption of data storage centers is crucially underestimated in modern society. Saving energy
resources is the societal challenge of the 21% century. One of the leading scientific objectives is
finding ways to reduce energy consumption and make resource usage more efficient. This thesis
aims to shed light on possible contributions of materials science simulations towards a green IT
transformation by providing workflows and best-practice guidelines for high-throughput materials
screening tasks. An instance of such a screening task is the search for magnetic materials for the
next generation of storage and data processing devices. However, as the simulation process itself is
time-consuming, this thesis explores not only the material phase space but also the application op-
portunities for data science and machine learning (ML) in the material’s property prediction process.
As a prime example of a complex magnetic material property, which is a limiting quantity when it
comes to methodological applicability, the critical temperature T, of existing magnetic simulation
data of Heusler alloys will be predicted using ML models. The capability and limitations of these
models will be analyzed and discussed. It is shown that it is possible to extract physical relations
and knowledge from trained ML models without any prior knowledge of the underlying physics and
system mechanics. Whether a Heusler compound has a 7, high enough to be relevant for an appli-
cation in magnetic data storage and processing devices could be predicted with over 90 % accuracy
using lightweight ML model algorithms on typical materials science data set sizes. Beyond that, the
phenomenon of near half-metallicity in Heusler compounds was examined, including the successful
ML-based prediction of compounds displaying this property which were not known to be nearly half-
metallic before (L2, Co,Hfin, XA Mn,TaGe, and L2, Co,ScSn). This particular study used existing
first-principles data of full and inverse Heusler compound’s spin-polarized density of states, in order
to screen publicly available structural and magnetic ab initio data for compounds exhibiting near
half-metallic properties. The relations learned by the underlying ML models are discussed and com-
pared to a known physical model. It was determined that ML models have the capability to extend
and complement known physical models and relations when applied to existing (and potentially im-
perfect) data. Finally, large-scale high-throughput ultrathin film simulations of 3d transition metal
layers on face-centered cubic noble metal substrates were performed to understand the magnetic
properties of these magnetic multilayer films, which are predicted to represent well-suited host
platforms for room temperature stable Skyrmions and hence are considered candidate materials
for spintronics-based storage and data processing device applications. Tailored to high-throughput
ab initio workflows, a scalable method—that increased the overall convergence rate from 64.8 %
to 94.3 % and exhibited the potential to save up to 17 % of the computational time required, as
well as to reduce the number of needed ab initio relaxation steps to relax a multilayer film system
by up to 29 % in this systematic study, while being flexible enough also to be applicable to future
use cases—using the integration of batch learning into high-throughput workflows, was developed.
The use, restrictions, implementation, starting conditions, and benefits of ML-based techniques and
explainable artificial intelligence are discussed in depth in this thesis.




Kurzzusammenfassung

Die wesentliche Rolle magnetischer Materialien in der Informationstechnologie und der damit ver-
bundene Energieverbrauch von Datenspeicherzentren wird in der modernen Gesellschaft entschei-
dend unterschatzt. Die Einsparung von Energieressourcen ist die Herausforderung des 21. Jahrhun-
derts und eines der wichtigsten wissenschaftlichen Ziele ist es, Wege zu finden, den Energiever-
brauch zu reduzieren und die Ressourcennutzung effizienter zu gestalten. Diese Arbeit zeigt mog-
liche Beitrage materialwissenschaftlicher Simulationen zu einer griinen IT-Transformation auf und
stellt Arbeitsablaufe fiir Material-Screening-Aufgaben mit hohem Durchsatz vor wie z.B. die Suche
nach magnetischen Materialien fiir die nachste Generation von Speicher- und Datenverarbeitungs-
geraten. Da solche Simulationen jedoch rechenzeitintensiv sind, untersucht diese Arbeit auch die
Anwendungsmdglichkeiten fiir Data Science und maschinelles Lernen (ML) bei der Vorhersage von
Materialeigenschaften. Als Paradebeispiel fiir eine komplexe magnetische Materialeigenschaft, die
eine limitierende GroRe fur die methodische Anwendbarkeit darstellt, wird die kritische Tempera-
tur T, aus vorhandenen magnetischen Simulationsdaten von Heusler-Legierungen mit Hilfe von ML-
Modellen vorhergesagt, um im Anschluss die Moglichkeiten und Grenzen dieser Modelle zu analysie-
ren und diskutieren. Es wird gezeigt, dass es méglich ist, physikalische Zusammenhange und Erkennt-
nisse aus trainierten ML-Modellen zu extrahieren, ohne dass Vorkenntnisse der zugrunde liegenden
Physik des Systems erforderlich sind. So war es moglich vorherzusagen, ob eine Heusler-Verbindung
ein T, hat, das hoch genug ist, um fiir eine Anwendung in magnetischen Speichergeraten relevant
zu sein. Im prasentierten Beispiel war dies mit einer Genauigkeit von tiber 90 % mdglich. Dariiber
hinaus wurde auch das Phanomen der Halbmetallizitat in Heusler-Verbindungen untersucht, ein-
schlieBlich der erfolgreichen ML-basierten Vorhersage von Materialien, die diese Eigenschaft an-
nahernd aufweisen und von denen bisher nicht bekannt war, dass sie nahezu halbmetallisch sind
(L2 Co,HfIn, XA Mn,TaGe und L2, Co,ScSn). In dieser Arbeit wurden vorhandene ab initio-Daten
von spinpolarisierten L2, und XA Heusler-Zustandsdichten verwendet, um Strukturen i.V.m. deren
magnetischen Dichtefunktionaltheorie (DFT) Daten nach Verbindungen mit halbmetallischen Eigen-
schaften zu durchsuchen. Die von den ML-Modellen gelernten Relationen werden diskutiert und
mit einem bekannten physikalischen Modell verglichen. Es wurde festgestellt, dass ML-Modelle in
der Lage sind, bekannte physikalische Modelle zu erweitern und zu ergédnzen, wenn sie auf vorhan-
dene (und ggf. unvollkommene) Daten angewendet werden. SchlieBlich wurden Simulationen von
ultradiinnen Schichten aus 3d-Ubergangsmetallen auf fcc-Edelmetallsubstraten durchgefiihrt, um
die magnetischen Eigenschaften dieser Mehrschichtfilme zu verstehen, die als gut geeignete Platt-
formen fir raumtemperaturstabile Skyrmionen vorhergesagt wurden und daher als Kandidatenma-
terialien fiir Spintronik-basierte Speicheranwendungen gelten. In dieser Arbeit wurde eine auf sol-
che DFT Studien mit hohem Durchsatz zugeschnittene, skalierbare Methode entwickelt, die nicht
nur die Gesamtkonvergenzrate von 64.8 % auf 94.3 % verbesserte, sondern auch das Potenzial zeig-
te, bis zu 17 % der benétigten Rechenzeit einzusparen sowie die Anzahl der benétigten ab initio-
Relaxationsschritte zur Relaxation solcher Filmsysteme um bis zu 29 % zu reduzieren, wihrend sie
flexibel genug ist, um auch fiir zukiinftige Anwendungsfalle nutzbar zu sein—unter Verwendung der
Integration von Batch-Learning in ab initio-Workflows. Der Einsatz, die Einschrankungen, die Imple-
mentierung, die Ausgangsbedingungen und die Vorteile von ML-basierten Techniken und erklarbarer
kiinstlicher Intelligenz werden in dieser Arbeit eingehend diskutiert.
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Chapter

Introduction

The communication technology sector, which includes numerous data centers across the globe, is
projected to account for over half of the world’s total energy consumption by 2030. This develop-
ment could also lead to a significant increase in greenhouse gas emissions, potentially contributing
up to 23 % of the global total. It is projected that this trend will continue. Hence, the necessity for
more efficient data-related technologies is obvious. [1]

Possible solutions for this technological transition process include the development of novel
data storage, transmission, and processing devices. Spin transport electronics (spintronics) based
devices that incorporate concepts like neuromorphic computing, reservoir computing, and racetrack
memory represent candidates for the in-demand application in future data utilization architectures.
Unconventional computing approaches have the potential to develop into low-power alternatives
to today’s computing, data processing, and data storage technologies. [2-8]

The aforementioned concepts are closely related to a magnetic phenomenon known as Skyrm-
ions. A Skyrmion is a quasi-particle characterized by a 2-dimensional topological magnetic texture.
The fact that Skyrmions can be manipulated (created, deleted, etc.) enables us to use them as in-
formation transmitters. In an experiment, Skyrmion-based neuromorphic computing was able to
achieve nearly the same accuracies on a recognition task as software-based trained machine learn-
ing (ML) algorithms. [4] One of the present challenges is the search for materials that exhibit special
magnetic properties, making them suitable host materials and enabling the emergence of Skyrmions
at device operating temperatures.

This thesis aims to provide structured workflows using high-throughput first-principles simu-
lations and applying ML and data science methods that can be used in materials screening processes
which are dedicated to determining and predicting promising material candidates with potential ap-
plication in the field of e.g. future magnetic storage and data processing devices. This is possible
as, given a particular application, the sought-after material properties are known by the technical
requirements beforehand. [3] In the context of high-throughput first-principles studies, it is clear
that the systematic electronic structure study of entire material classes using density-functional the-
ory (DFT) represents a computationally intensive endeavor. Such investigations can easily consume
millions of core hours. Beyond the computational time requirements, data management has rep-
resented an issue that prevented the large-scale success of systematic ab initio high-throughput
studies. The development of the Automated Interactive Infrastructure and Database for Computa-
tional Science (AiiDA) framework [9, 10] and DFT code-specific plugins [11] simplifies research data
handling and management.
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Beyond the complications inherent to high-throughput projects, there are also DFT-related
peculiarities to address when conducting large-scale electronic structure simulations. This includes
finding appropriate convergence parameters for the class of material being examined. Hence, be-
fore an actual systematic high-throughput study is conducted, various test calculations need to be
performed in order to determine those convergence parameters representing a reasonable trade-
off between methodological accuracy and computational efficiency.

Another issue of high-throughput ab initio investigations is the fact that a DFT calculation
can fail to reach self-consistency. This is especially true if the inputs (structure, initial magnetic
moments, etc.) of the calculation setup have been chosen insufficiently. In DFT-based studies dedi-
cated to individual structures it is possible to hand-tune the inputs. Of course, this is not feasible in
a high-throughput setting. It is necessary, for large-scale studies, to automatize the generation of
appropriate input parameters. The established approach to tackle the problem of input parameter
optimization is trial-and-error-based. Unsurprisingly, this approach is neither systematic nor effi-
cient regarding the computing time associated with such a guess for the input parameters. In this
thesis, it was investigated whether this approach not only increased the overall success rate of the
high-throughput study conducted during this thesis, but the optimized inputs also caused the sub-
sequent DFT calculations to require fewer computational resources. The data used to train the ML
models used for the prediction of the input parameters stems from the already converged results of
the study itself. This usage of data beyond an analysis at the end of the large-scale electronic struc-
ture study is still relatively uncommon when it comes to high-throughput DFT investigations. Com-
bining ML and data analytics methods with ab initio data has the capability to accelerate advances
and knowledge discovery in the field of materials science and solid-state physics. [12] Consolidation
of these methodologies is the approach that can be found in each results section of this thesis.

ML and data science is a broad and continuously growing field. Hence, it is impossible to
cover the related topics in their entirety in this thesis. Section 2.5 will discuss the embedding and
application of ML and data science techniques and methods used in or related to this project and the
scientific benefit added by combining ab initio simulation data with methods from these emerging
fields.

Beyond high-throughput applications, this thesis demonstrates that ML can complement first-
principles methods by enabling fast and efficient materials screening for Heusler compounds with
an application-relevant magnetic critical temperature even before an ab initio calculation was per-
formed. Usually, determining the critical temperature requires a two-step process combining a DFT
and a subsequent Monte Carlo (MC) computation. Additionally, in a second project, it was possible
to utilize full and inverse Heusler DOS data collected by collaborators to screen publicly available
databases containing DFT results for half-metallic properties in the aforementioned compounds.
This screening revealed three compounds for which the property of near half-metallicity was previ-
ously unknown. Both Heusler-related projects highlight how ML techniques can assist in screening
for compounds with complex magnetic properties required to fulfill technological demands, even
on relatively small (a few hundred data points) but typical materials science data sets.

Using dedicated game-theory-based methods, it is possible to explain the prediction of an ML
model and hence gain insights about hidden mechanisms and relations contained in the data and
even extract physical insight from a trained model. This method is part of the continuously growing
Explainable Artificial Intelligence (XAl) field. The capability to retrieve relations and correlations
of physical quantities from trained ML models in the context of magnetic materials science data is
investigated in this thesis. [13]

1 Introduction




The underlying magnetic phenomena and the relevant material properties related to the phe-
nomena will be discussed in-depth in section 2.3. The methodical requirements that were necessary
to achieve the results described in this thesis range from the field of theoretical solid-state physics
to applied data science techniques. Used frameworks, theoretical foundations of DFT, as well as the
detailed orientation of what materials design and materials screening is and which challenges this
process imposes will be introduced in the sections 2.1, 2.2, and 2.4.

During this thesis, three practical application cases have been examined. These cases are:

1. Predictive analysis of the Curie-Temperature (7.) of magnetic Heusler alloys using data from
the existing Jilich-Heusler-magnetic-database [14] (JuHemd). (Section 3.1)

2. Prediction of half-metallicity of Heusler alloys based on density of states (DOS) data as an
application of ML-assisted materials screening. (Section 3.2)

3. Simulation setup, computation, analysis of results, and predictive analysis of 2-dimensional
transition metal film systems on face-centered cubic (fcc) noble metal substrates and imple-
mentation of the DFT-integrated ML method. (Section 3.3)

All mentioned application cases follow essentially different approaches. However, each is a prime
example of the applicability and versatility of ML techniques in materials design challenges, ranging
from ML-assisted ab initio calculations and workflows to predictive materials and property discovery.
At the same time, some materials design tasks can be mainly carried out by ML models (see e.g.
[15]); other instances allow ML to assist ab initio methods in e.g. finding better initial starting points
or filtering compounds, prior to a high-throughput study being conducted, for relevance. Hence,
scientists can use ML to complement existing methods, which allows us to profit from the synergistic
effects of both methods.
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This section is designed to give the reader an overview of the applied methods and the ter-
minology used during this thesis. It is clear that most readers do not have a background in data sci-
ence/data analytics and at the same time have extensive knowledge about theoretical condensed
matter physics, ab initio simulations, and magnetic phenomenons. As it is impossible to cover the
individual scientific disciplines in their entirety in a single thesis, a brief introductory section is dedi-
cated to each field. Formulas in this thesis are given in Hartree atomic units.

2.1 Data Driven Materials Design Process

Many modern technological devices (such as e.g. solid-state drives) rely heavily on components
specifically engineered to fulfill a very special purpose. Examples of such devices include resistors,
transistors, rechargeable batteries, sensors (including optical sensors), light-emitting diodes, and
many more. For some of these components to be constructed operational, there are sought-after
materials that have very specific properties such as e.g. superconductivity, semi-conductivity, mag-
netic stability, low electrical resistance or half-metallicity. Famous examples of in-demand materials
are e.g. rare-earth metals, silicon, or conducting metals such as gold and copper.

It is a long way from a technical need for a material exhibiting a particular property to e.g.
the final manufactured novel electrical component or device. Data acquired using first-principles
simulations can assist in some cases in finding suitable materials for a given application.

2.1.1 Design Goal

At the beginning of the materials design process, there is a need for a material that meets special re-
quirements in terms of the material’s properties or the material’s behavior in certain environmental
conditions like e.g. high temperatures or external magnetic fields. These requirements are typically
application-driven and highly specific to the use case from which they arise.

This thesis aims to provide workflows and methods that can be used to search for materials
that meet the requirements of novel magnetic storage devices as for e.g. the racetrack memory. A
physically intuitive requirement for a novel magnetic storage device is that the intrinsic magnetism in
the storage material needs to be stable, at least at room temperature conditions. If this was not the
case, the storage would require permanent cooling or the information stored on the memory mate-
rial would get erased, which contradicts the purpose of a storage device. This requirement can be
interpreted as a need for a material-specific magnetic quantity, which is the critical temperature. A
detailed discussion of the interpretation of this quantity can be found in section 2.3.1. However, tak-
ing the room temperature as a requirement for the critical temperature would be too short-sighted.
Actually, temperatures in computers, data centers, server rooms, etc. are typically elevated com-
pared to the typical room temperature. Also, given that a loss of stored information would signifi-
cantly impact the material’s applicability, the requirement should include a buffer zone. The size of
this additional buffer zone should be determined by the following considerations:

1. The stored information needs to be stored in a magnetic state which has a robust stability
against altering or decay even over time

2 Methods




2. The accuracy of theoretical predictions of the critical temperature is limited, hence these in-
accuracies should be included in the buffer zone i.e. ab initio methods are known to underes-
timate [16, 17] the critical temperature

3. While the critical temperature needs to be high enough, the buffer zone should not be chosen
too large, as this can cause materials with potential application to be overlooked

4. Modeling on top of data with e.g. ML modeling can introduce additional errors on top of
systematic errors already contained in the data

Taking into account these reasons and starting from room temperature of about 290 K a require-
ment for a critical temperature of about 400 — 500 K can be expressed for the use case of a novel
reliable magnetic storage material which does not require external permanent cooling, including
the discussed buffer zone. [18]

Generally speaking, more specific requirements emerge for more dedicated devices as e.g.
the mentioned racetrack memory. More general requirements could include:

o A certain electric conductivity type

e Presence of Dzyaloshinskii-Moriya interaction [19, 20]
e Certain magnetic moment

e Certain magnetic ordering

e Magnetocrystalline anisotropy below/above a certain threshold [21, 22]

2.1.2 Data Requirements

As the name already suggests, in the data-driven materials design process, data plays an essential
role. However, it is clear that the mere fact that data is accumulated during a research project is not
enough to justify the label “Data-Driven”, but rather the continual use of data that has been accumu-
lated to gain additional insights and subsequently accelerate materials discovery which includes the
utilization of data-based modeling opportunities stemming from the field of ML. The data-driven
scientific approach has been called the “fourth scientific paradigm” [23, 24] besides experiments,
classical laws (mathematical expressions), and simulations. This additional paradigm relies heavily
on research data analysis and pattern discovery. This also mandates that researchers validate the
different paradigms against each other on a regular basis. [25]

However, upholding established scientific standards and double-checking scientific results
with different approaches also implies that we think about the data itself and our requirements in
terms of conventions on how to ensure data quality and the critical use of data. This thought process
gives rise to the following requirements:

Data Consistency

Data consistency represents the issue of comparability of different data points inside a single data
set. Data inconsistencies can arise from simulation data if e.g. different data points were computed
using different methods, approximations, code versions, or boundary conditions. Data inconsisten-
cies also might arise after the data collection from defective data transmission and incorrect data
processing. [26]

2.1 Data Driven Materials Design Process
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Data uniqueness addresses the fact that data can sometimes contain duplicates. Duplicates in a data
set can be wanted (e.g. when observations are counted and a certain event occurred multiple times)
or unwanted. Suppose there are unwanted duplicates in the data set. In that case, removing them
before any modeling is done is desirable, as they can reduce the performance of the modeling itself.
However, while true duplicates are easy to remove, this can be more difficult for near duplicates
depending on the nature of the data set. [26, 27]

Data Coverage

Data coverage addresses the issue of how much of the whole phase space the given data covers.
Typically, data coverage is an issue for small data sets in a much larger context of possible other data
points. Coverage can hinder us from drawing generalizable conclusions from data sets when our
coverage is not representative enough for the whole phase space. [26]

Data Accuracy

Data accuracy raises the question, “Are the individual data points correct?”. The answer to this
question requires a comparison to some type of other external source or reference. It is obvious
that data accuracy represents an issue for experimental data due to the error that arises inherently
from the measurements. Despite that, data accuracy is also important when examining simulation
data, even though the errors encountered in a simulation environment are more systematic as they
naturally arise from approximations that are applied within the corresponding simulation method.
Such systematic errors can emerge from something as simple as the discretization of a problem.
However, considerations should be made before collecting the data if the chosen computational
method is suitable to generate accurate data and information in the given research context. [26]

Source Trustworthiness

In any case, in which the data used for a research project is not collected and used in one place,
the integrity has to be questioned, and the trustworthiness of the source has to be evaluated and
discussed. It is imperative not to use data for research projects that might have been altered or
manipulated. [26]

Modeling Prerequisites

Besides assuring data quality and integrity, we need to consider the data’s predictive value. This s es-
pecially crucial when choosing descriptors from our data set to model a target quantity. There are dif-
ferent ways to explore the predictive capabilities of descriptors in relation to the target quantities be-
forehand, such as e.g. the statistical correlation and the ML-based predictive power score. [28, 29]
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Additionally, features should not only be selected based on their capability to predict the tar-
get quantity, but also according to their availability. Assessing the added value that originates from
predicting the target quantity using a given set of features is essential for an impact and meaningful
research project.

2.2 Density-Functional Theory!

The investigation of materials in the materials design process requires tackling many-electron sys-
tems. Commonly this is done by setting up the Schrédinger equation as in equation (2.1). [31]

H|W) = E ) (2.1)

Solving the Schrédinger equation leads to the state ) of the investigated system. Solving this
equation analytically is impossible, even for a single helium atom with only two electrons i.e. three
particles, without applying any approximations or restrictions. Hence, solving the Schrédinger equa-
tion for elemental He imposes challenges similar to the classical three-body problem. However, the
dimension of the problem to solve with the quantum mechanical Schrédinger equation for N parti-
cles, assuming each particle can be described by k& independent numbers—which might include spin,
position, etc.—is given by k" at a single point. Grid discretization of the problemonan x n x n
3-dimensional grid leads to a computational task with the dimension of (n3)kN for the many-body
system’s state. This example illustrates that solving the Schrédinger equation analytically is com-
putationally extremely expensive for a real-world problem. Hence, different approximations and
approaches are used to reduce the computational effort in investigating quantum mechanical many-
body systems. [32] The established approach to electronic structure computations is DFT. DFT de-
scribes many-body systems by their electron density. This reduces the degrees of freedom from at
least three spatial degrees of freedom per electron—which is required to set up the corresponding
wave function—to three spatial degrees of freedom in total. Hence, the electronic charge density
is described as a function of the spatial coordinates n(r). [33] Including the spin as an additional
degree of freedom to describe magnetic quantum mechanical systems adds another dependent vari-
able to each individual electron. The achieved shrinkage in degrees of freedom reduces the required
memory to compute the many-body problem to a controllable size in comparison to computing the
wave function directly. The possibility to describe a many-body system using the corresponding
electronic charge density originates from the Hohenberg-Kohn (HK) theorem. [32, 34]

2.2.1 Hohenberg-Kohn Theorem

The quantum mechanical many-body Hamiltonian H contains contributions of the kinetic energy
of the many-body systems atom cores and electrons and the acting Coulomb interaction potential.
The different contributions to the Hamiltonian are summarized in equation (2.2). By convention,
in the following equations, capital letters as e.g. R and M denote the corresponding atom core’s
positions and masses, while the spatial positions of the electrons are denoted by the vectors r. The
corresponding indices distinguish the different atom cores and electrons.

B The content of the sections 2.2 to 2.2.3 is based on a corresponding part from my master’s thesis and has been
edited from this original version to match the scope of this thesis. [30]

2.2 Density-Functional Theory
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Assuming fixed nuclei reduces the core-core interaction as well as the kinetic energy contribution
to a constant energy E ;. The electron-core Coulomb interaction part can be written as a potential
depending on the electron positions using the same assumptions. This is summarized as a sum of
‘ext (1) Vg (7;) contributions in equation (2.3). Generally, the term V., (r;) summarizes all contributions

which act on the electron system besides the electrons themselves.
2
=X e+ e () + 29

Rewriting the electronic Hamiltonian in the way presented in equation (2.3) by assuming fixed atom

Born-  core positions, is also known as the Born-Oppenheimer approximation. [35] However, the external

Oppenheimer  potential might also be spin-dependent when including other external potentials, such as an external
Approximation magnetic field.

The Schrédinger equation (see equation (2.1)) allows us to compute the ground-state wave
function ¥,,. Knowing the ground-state wave function—which represents the probabilistic distribu-
tion of the electrons in the many-body system in the ground state—the electronic ground-state
charge density n, (r) can be derived. The HK theorem states that a unique external potential

Vy () can be found given exclusively the ground-state density. This potential again allows the
computation of the ground-state using the Schrédinger equation. The previously outlined relations
and dependencies are visualized in Figure 2.1. [34]

no(r)

N

Uy(r) 4——— V.,

Schrodinger Eq. ex

¢(7)

Figure 2.1: Schematic depiction of the HK theorem and the corresponding dependencies. The electronic
ground-state density is calculated from the ground-state wave function. The HK theorem'’s
consequence is that a potential exists that determines the ground-state wave function is la-
beled accordingly. This potential is unique up to a constant shift. This depiction was adapted
from [30].

The first part of the HK theorem is given by theorem 1.

Theorem 1. “For any system of interacting particles in an external potential V. (r), the potential,
Vext (1) is determined uniquely, except for a constant, by the ground-state particle density ny(r).”
Theorem taken from [36].
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Hence, according to the HK theorem, the ground-state density determines all properties of
the many-body system as the ground-state density fully determines the Hamiltonian besides a con-
stant this also holds for excited states. [36] This is, of course, also true for the energy of the many-
body system, as the second part of the HK theorem states. This second part is included as theorem 2.

Theorem 2. “A universal functional for the energy Eyy [n (7)] in terms of the density n(r) can be
defined, valid for any external potential V. (r). For any particular V., (r), the exact ground-state
energy of the system is the global minimum value of this functional [while keeping the number of
interacting particles constant [34]], and the density n(r) that minimizes the functional is the exact
ground-state density n,(r).” Theorem taken from [36].

Therefore, knowing that the energy functional Eyy [n(r)] determines the exact ground-state
energy as well as the exact ground-state density, this energy functional can be defined as a sum of
multiple functionals as shown in equation (2.4).

B [n(r)] = Figc [n(n)] + [ Ve (rinir) d¥r + By 24

The functional Fyi [n(7)] in equation (2.4) contains the electron-electron interactions as well as
the electronic kinetic energy contributions as shown in equation (2.5).

Fyg [n(r)] = (@ [n(r)] | T + V. [¢ [n(r))) (2.5)

The functional Eyi [n(r)] is commonly called the HK energy functional. [36]

As the proof of the HK theorem is well documented in the literature (see e.g. [36-38]) and goes
beyond the scope of this thesis, it is not provided here. The HK theorem is not limited to non-
magnetic and non-spin-polarized systems. However, in practice, the charge density is represented
by individual spin contributions. In the case of collinear magnetic setups, the individual electronic
densities for the spin-up (1) and spin-down ({) combine to a total density as shown in equation (2.6).

n(r) =n(r,1) + n(r,|) (2.6)

By defining the electronic charge density in this way, only collinear magnetic configurations along a
single magnetic axis are allowed. This restriction can be lifted as discussed in [30, 39]. Furthermore,
this additional spin degree of freedom and e.g. potential external magnetic fields can be included
by defining the magnetization density as shown in equation (2.7).

m(r) =n(r,1) —n(r,]) (2.7)

Including the magnetization density into the energy functional, one obtains the functional from
equation (2.8).

g [n(r), m(r)] = By [n(r)] + / Be(rm(r) dr® (2.8)

Assuming that an external magnetic field does act on the spins but not on the orbital motion of the
electrons, it is possible to prove the HK theorem also for this functional. The additional expression
of the contribution originating from the external magnetic field is very similar to the external po-
tential and particle density contribution. Hence, the proof of the HK theorem in the presence of an
external magnetic field is analogous to the regular case and can, therefore, be extended to magnetic
systems. [37] However, the HK theorem states that an external potential V_, () which determines
the ground-state of the quantum mechanical many-body system exists but not how to obtain it for
practical calculations.

2.2 Density-Functional Theory
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2.2.2 Kohn-Sham System

Approximations in many-body problems in physics often depend on the properties of the individual
problem. The Kohn-Sham (KS) approach does not rely on any system-specific properties. Kohn and
Sham first assumed that the exact ground-state density of an arbitrary system can be represented as
the ground-state density of an auxiliary system of the non-interacting particles. The auxiliary system
is represented by a Hamiltonian, which contains only kinetic operator contributions and an effective
local potential V¢ [n(r)] (r) but no interaction terms. Hence, the Hamiltonian of the auxiliary sys-
tem is given by equation (2.9).

1
H, = —§V2 + ‘/eff(r) (29)

aux

The effective potential V¢ [n(r)] (r) contains the external potential V_,(7) from equation (2.3),
the exchange-correlation (XC) potential, and the Hartree potential contribution. In the auxiliary sys-
tem of IV independent electrons, the states are occupied according to the Pauli exclusion principle.
The particle density of the corresponding system is given by equation (2.10) while v,(7) denotes
the single electron states wave functions. [40]

n(r) =" ()] (2.10)

Summarizing the KS auxiliary system contributions, one obtains the KS energy functional from equa-
tion (2.11) for the many-body system. This functional expresses the density-dependent energy func-
tional of the many-body system based on the KS auxiliary system. [40]

Eys[n(r)] =T, [n(r)] + / Ve (F)n(r) dr
+ EHart [n(r)] + Exc[n(r)] + EN (2-11)

The kinetic energy operator of the non-interacting electron system as a result of this simplifies to the
expression in equation (2.12) which also includes the density-based representation of the Hartree
energy contribution from equation (2.11).

1 X f 1 () . .
Ts = 5;/‘V1/)1(7’)‘2 ddr EHart[n(T)] = 5// n|(,’:.r)_w£,1:|) ddr ddr (212)

The E., . term from equation (2.11) contains the complex many-body contributions of exchange and
correlation and is—in practice—subject to approximations as it is not analytically known. Kohn and
Sham defined an effective Hamiltonian as included in equation (2.13).

Algs = —3 V2 + Vige In(r)] (r) (2.13)

For this Hamiltonian, the effective KS potential V¢ [n(7)] () consists of multiple contributions, de-
pending on both the charge density n(r) and explicitly on the vector r, as shown in equation (2.14),
while equation (2.15) represents the explicit contribution of the Hartree potential.

6EHart[n(T)] 6Exc[n(r)}

Vege[n(r)](1) = Vo (1) + on(r) + on(r)

(2.14)

2 Methods




_ 0By [n(r)] :/ n(r’) A3 (2.15)

V: =
Hart [TL(T)] 5n(7‘) ‘,’, o 7,/|
The resulting effective Hamiltonian can be used to solve the Schrédinger-like equations (2.16) which
are called KS equations and represent single particle equations. [40]

(Hgs — €)1 (r) =0 (2.16)

The solution to this eigenvalue problem in principle determines all properties of the many-body sys-
tem. In addition to the connection between external potential and ground state established by the
HK theorem, the KS approach links the real-world many-body system to the auxiliary system of in-
dependent electrons. This additional connection is depicted in Figure 2.2.

The depicted approach is an exact way to tackle the many-body Hamiltonian, besides the neces-
sary approximation of the XC potential. Different approximations for the XC potential include local-
density approximation (LDA), generalized gradient approximation (GGA), and hybrid functional-based
methods. With the KS approach, it is possible to compute the many-body particle density self-
consistently using the non-interacting particle system with the effective KS potential V. [36]

KS

/\ /\

 Veu(?) Yimny —— Ve [n(r)] (7)

Figure 2.2: Schematic depiction of the KS approach to many-body systems. Compared to Figure 2.1,
there is an additional auxiliary system (right) that is connected to the many-body system (left)
via the KS approach, which links the many-body ground state density to a non-interacting elec-
tron gas system with the same electronic density. The external potential from Figure 2.1 has
been substituted by the density-dependent effective KS potential in the KS approach. This
figure was adapted from [30].

KS and Spin DFT

Using two-component Pauli wave functions, the spin as an additional degree of freedom—enabling
the computation of magnetic systems—can be included a shown in equation (2.17).

U, T("")
(r)= K (2.17)
,(r) @mw
Given this representation the particle density and the magnetization density are redefined as in the

equations with the number (2.18) which are generalizations of the expressions in the equations (2.6)
and (2.7).

N 9 N
ﬂ:ZWMH mm:Zwmwm> (2.18)

In this case o denotes the vector of Pauli spin matrices given by the expressions in equation (2.19).
T
.1 0 1 0 —i 1 0
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Including external magnetic fields, the more general spin-dependent KS Hamiltonian shown in equa-
tion (2.20) as well as the corresponding single particle equations result analogously for magnetic
many-body systems. The following depiction of magnetism within DFT restricts to the description
of non-collinear magnetism.

Hig = —%Vz + Vere [n(r)] (1) + ppo, - Begg [n(r)] (r)  (Hgg — €;,5)%; (1) =0 (2.20)

Analogous to the KS effective potential, the effective magnetic field B, (7) and the corre-

sponding XC field contribution are given by the expression in the equation number 2.21.

6E [n(r), m(r)]

Begs [n(r)] (1) = By ()] () + Bey(r) By [n(r)] (r) = —————+

om(r)

In the absence of external magnetic fields, the XC field is the only spin-dependent contribution to

the effective KS Hamiltonian. The previously introduced formalism allows a calculation of electronic

particle densities given certain spin directions (e.g. spin-up or spin-down density) similar to as they
have been used in equation (2.6) as shown in equation (2.22). [39]

(2.21)

(2.22)

2.2.3 Full-Potential Linearized Augmented Plane-Wave Method

Different methodologies have been developed from the theoretical foundations introduced in the
previous sections. While some of them include e.g. precomputed pseudopotentials and plane-wave
(PW) basis sets to model the system’s potential, there is a more dedicated method that uses the full
physical potential and a different augmented basis set close the atoms center positions. This method
is called the Full-Potential Linearized Augmented Plane-Wave Method (FLAPW) method, which it-
self is based on the linearized augmented plane-wave (LAPW) method [41, 42] but combines the
augmented basis set with the full physical potential to model the Hamiltonian. The mentioned aug-
mented basis set describes an atomic-like modeled orbital basis set for each atom in the system. A
spatial decomposition into muffin-tin spheres, representing the region around the individual atom
positions, and the interstitial region, representing the space between the muffin-tin spheres, is per-
formed. Within the muffin-tin spheres, a basis set that consists of atomic-like orbitals is used to
construct the wave function, while in the interstitial region, a plane-wave basis is used. Outside
these atomic orbitals—which are called muffin-tin spheres—there is an interstitial region, which
itself is modeled using a plane-wave basis set. The core application of the FLAPW method is the
electronic structure computation of solid crystal structures. Periodic boundary conditions of the
lattice in the real space in solid crystals allow a mapping to the Brillouin zone (BZ) in the reciprocal
space of the Bloch vectors k in which the wave function is expanded. [43] Besides the Bloch vectors,
wave functions in crystals typically depend on the band index and spin component. The band index
denotes that a wave function can be assigned to a certain energy band of the crystal. [44, 45]

LAPW Basis

Applying an augmented plane-wave basis set divides the space into atomic muffin-tin spheres and
interstitial regions. This spatial subdivision used in the FLAPW method is depicted in Figure 2.3. An
additional spatial region needs to be considered in the case of thin-film systems. For film systems, a
vacuum region is added outside the overall film thickness. [46]
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The spatial decomposition allows the computing of local and non-local potential expressions
in the different regions. This avoids the necessity to approximate the potential close to the atomic
nuclei using pseudo-potentials close to the nuclei. [44]

Figure 2.3: Spatial subdivision of a crystal lattice using an augmented plane-wave basis. Each circle de-
picts the muffin-tin sphere of an individual atom in the crystal structure. The area not con-
tained in a circle is called the interstitial area.

The wave function W,w,(r) expansion is given by the expression in equation (2.23).

w7 (r) = Z c,ff;’%’k(r) (2.23)
|G+R|< K yax

Dependencies of the wave function include the Bloch vector k, the spatial position where the wave
function is evaluated r, the spin component o as well as the band index v. equation (2.23) also in-
cludes the expansion coefficients c,f;," as well as the cutoff parameter K, which determines the
size of the basis set based on which the wave function is constructed. For a given Bloch vector k the
wave function is constructed using the basis vectors, which correspond to all reciprocal lattice vec-
tors G which fulfill the condition |G +- k| < K|, The expression ¢Z , () denotes the LAPW basis
functions consisting of both the plane-wave part and the augmented contributions. The individual
contributions to the LAPW basis functions are shown in equation (2.24).

—L_ilktG)r interstitial region
Cell
ar(r) = G,k Gk - L (2.24)
‘pG?k( ) ZZ (af;w’ uffg(rﬂ) + bl“m_ﬁ uﬁg(ru)) Yy (r,) muffin-tin g
m
The coefficients a*%* and b are used in the LAPW basis set to enforce the continuity of the

Im,o lm,o

basis functions and their corresponding derivative at the system’s muffin-tin boundaries for both
spin components. The volume of the unit cell 2., is included as a normalization factor for the
interstitial plane-wave basis used within the FLAPW method. The spherical harmonics Y},,, in the
basis set inside the muffin-tin sphere match the spherical contribution of the physical potential. Also,
the radial contribution emerging from the radial solutions of the Schrédinger equation uf‘(ru) is
part of the basis within the muffin-tin spheres. The radial contribution and the spherical harmonics
dependency on the position T, within the muffin-tin sphere 1 emerges from the spatial localization
of the spheres. The appearance of both the normalized radial function uf‘(ru) and the matching
energy derivative uf(rﬂ) is the reason for the linearity of the eigenvalue problem within the FLAPW
method.
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fhax ! )
The sum ), abbreviates the summation Zz Y e Where Ih. represents a cutoff

parameter which can be set for atoms of the same type prior to a calculation within the FLAPW
method. [44] To examine films surrounded by vacuum regions, it is possible to extend the LAPW
basis by additional basis functions for this distinct region. However, while during this thesis, different
concepts of the FLAPW method and implementations of the FLEUR code are used, the detailed
discussion of these concepts is not the goal of this thesis. Details on the theory of thin films and the
vacuum region within the FLAPW method can be found in e.g. [39, 46]. Also, details on the theory
of spin-orbit coupling (SOC) within the FLAPW method can be found in e.g. [47].

Eigenvalue Problem in the FLAPW Method

As the LAPW basis set does not form an orthogonal basis set, the eigenvalue problem introduced in
equation (2.16) transforms to an eigenvalue problem which contains an overlap matrix. The wave
function corresponding to the—now spin-dependent—eigenvalue GZ,k used in the FLAPW method
is given by a sum of basis functions, as shown in equation (2.25).

[y k) = Z Ck 2 9% &) (2.25)

|G+R|<Kpax

From the basis representation in equation (2.25) the Schrédinger equation can be written as equa-
tion (2.26).

a |'¢’g,k> = Z Ck v TH |4PG k) =€ vk Z (’k v “PG &) (2.26)

|G+E|<Kmax |G+E|<Kmax

Multiplying equation (2.26) on the left side with one of the basis functions <¢”G, k\ one ends up with
equation (2.27).

Z Ck: v <99Gf k! H l9G k) = €0k Z Ck e k|¥’G k) (2.27)
|GHEI<K o |G+E|<K pyax

The expression (goac, k|992‘7k> on the right side of the equation represents the overlap integral and
can be written as the overlap matrix S. This notation results in the eigenvalue problem, as in equa-
tion (2.28).

(H—e¢,S) e, =0 (2.28)

In this case ¢;],, represents the coefficient vector which contains the expansion coefficients of the
wave function V|/L/)g,,,> for all G which are included using the corresponding cutoff condition. As the
basis set has individual spatial contributions for the interstitial region and the muffin-tin spheres,
this is also the case for the Hamiltonian. The separation of the Hamiltonian is possible due to the
locality of the potential contribution. Details on this spatial separation can be found in [39, 44].

During this project, the FLEUR [48, 49] ab initio code developed in Jilich—based on the
FLAPW method—has been used in combination with the AiiDA framework [9, 10] which is used
to apply the previously described method on the scale of high-throughput studies and hence en-
ables large systematic materials screening studies. To use FLEUR within the AiiDA framework, both
the corresponding plugin [11] and the Materials Science Tools package [50] are required.
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2.2.4 Magnetism within the FLAPW Method

As magnetism is an essential material property in the context of materials discovery for spintronics,
a brief overview is given on how magnetic moments and states are evaluated in magnetic collinear
FLAPW calculations. It should be mentioned that the computational effort required when moving
from a non-magnetic to a magnetic DFT calculation—assuming nothing else in the computational
setup changes—is doubled. [44]

Magnetic Moment

Computing the magnetic moment of an individual atom in FLAPW is closely linked to the represen-
tation of atoms by muffin-tin spheres. Using the magnetization density given by equation (2.7), the
magnetic moment of an individual atom m,, is calculated by evaluating the integral over the space
occupied by the corresponding muffin-tin sphere. Hence, the N,, atoms system total magnetic
moment is given by equation (2.29).

S Na¢ . Na¢
My, = / m(r) d®r + Z m, = m(r) d®r + Z m(r)d®r  (2.29)
Interstitial p=1 Interstitial n=1 MT p

However, the term “total magnetic moment” within this thesis refers to the summation of local
atomic moments my,, as shown on the right of equation (2.29), if not stated otherwise explicitly.
The expression My, on the left of equation (2.29) is referred to as total cell moment with regard
to the unit cell volume {2, and includes the interstitial contribution to the magnetic moment.

Magnetic Ordering

With the ability to calculate the magnetic moment of individual atoms using DFT, the possibility
to classify different magnetic states by their ordering arises. Regarding collinear magnetism, four
different categories can be clearly distinguished for atoms in crystal lattices:

1. Non-magnetic: Vanishing total magnetization, but all individual magnetic moments are van-
ishing.
2. Ferromagnetic (FM): All atomic magnetic moments in a lattice have the sign.

3. Ferrimagnetic: The total magnetization is not vanishing, and there are different signs for
atomic magnetic moments present.

4. Anti-ferromagnetic (AFM): The total magnetization is vanishing, while individual atoms have
non-zero magnetic moments.

The different classes of magnetic ordering are illustrated in Figure 2.4. There exist other classes of
magnetic ordering for non-collinear magnetic calculations such as e.g. spin-spirals. Such configura-
tions are examined in research dedicated particularly to these phenomenons with—most often—
hand-tuned calculation setups. Moreover, examining spin-spirals and related phenomenons re-
quires a non-collinear treatment of magnetism, which increases the computational cost associated
with such calculations. However, the high-throughput study presented within this thesis is restricted
to collinear magnetic configurations.

2.2 Density-Functional Theory

Doubled
Computational
Effort

Total Magnetic
Moment

Spin-Spirals

17



18

L A
R T N L
R A
R [ N L
R N A
T T O T Y N S
R T T B S S B A T N
O L L L
L bttt
N
byt !
L T
ol e !
T
byt !
T
ot !
L T
I

Figure 2.4: lllustration of different classes of magnetic ordering in the case of collinear magnetism. The
order in the figure is. FM (Top left), Ferrimagnetic (Top right), AFM (Lower left), and Non-
magnetic (Lower right). The length of an arrow indicates the magnitude of a magnetic mo-
ment, while the arrow’s orientation denotes the sign.
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2.2.5 Self-Consistent Field Loop

The effective KS single particle equations are solved iteratively—as the exact charge density of a sys-
tem is typically unknown, and hence the charge density describing the system'’s properties appropri-
ately needs to be determined iteratively using an initially constructed starting density—until a given
convergence criteria concerning the electronic ground state density n,(r) is reached. Typically, it is
enforced that the distance between the input and output charge densities within an iteration should
be below a given threshold, as shown in equation (2.30). [51] The £P norm included in equation
(2.30) is defined as in [52].

<B (2.30)

1 1/ 1y
[9) ’ nOut( - nIn )l
Cell

£2(R¢en)

Typical values for the charge distance cutoff parameter /3 range from 10~ “;e to 1073 H‘j de-
pending on the required accuracy and the scale of the target quantity WhICh is desired, W|th ag
denoting the Bohr radius. For instance, the magnetocrystalline anisotropy, which often is in the or-
der of 10 uHa per unit cell, will require a much stronger convergence criterion than the molecular
binding energy, which can be around the scale of 1 eV per binding. In principle, this discrepancy
of energy scales translates to the required convergence criterion. A schematic self-consistent field
(SCF) loop is depicted in Figure 2.5.

Setup Initial Mixing no (r) with ‘ No

Charge Density nmft(r) Previously Computed Densities ‘

Construct Effective Solve Kohn-Sham Construct Charge
Kohn-Sham Potential Single Particle Equations Density n'/*(r)

Charge
Density Converged?

Systems Electronic
Ground State Density

Figure 2.5: Depiction of a typical SCF loop in an ab initio calculation from the initial starting density to
the converged electronic ground state density. Figure inspired by [36].

There are different mixing schemes (e.g. straight linear and Broyden [53] to mention a few)
used with the FLAPW method which have all their own advantages and drawbacks which makes
them subject to change depending on the nature and difficulties of the computed system. Within
the FLEUR code, an implementation of a Kerker [51, 54] preconditioner is available. Deciding on the
mixing scheme is not the only choice at the beginning of an SCF loop. Also, cutoff parameters like the
mentioned K, and /.. from section 2.2.3 are set at this stage. Of course, an ab initio calculation
also requires an input structure to be provided. Based on the given structure, the reciprocal lattice
of k points can be reduced based on existing lattice symmetries.

Typically, at the end of a successful ab initio calculation, not only the computed electronic
ground state density is stored, but the acquired density is also used to compute system properties
and provide them as additional calculation output.
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Structural Relaxation Loop in DFT

Performing a structural relaxation using DFT embeds the previously discussed SCF loop in a relaxation
procedure, which again represents an iterative process as with each successful SCF calculation a set
of forces acting in the system on each atom is generated. These forces F; , —while i represents the
atom occupying site ¢ in the lattice and a denotes the axis of the force—are then used to:

1. Determine if the structure is relaxed using a force threshold and the condition given by the
expression in equation (2.31).

2. Shift the atom position occupying site ¢ according to the force vector F;.

|1) < FThres (231)

ew __ 1Prev
Fi,a Fi,a

maxg; o <|

The definition from equation (2.31) uses the p-norm definition from equation (2.58). A scheme that
shows how the SCF loop is embedded into the relaxation procedure is shown in Figure 2.6.

No

No

Structure,
Magnetism,
Energy, ...

Initial
Structure
Guess

Converged
Structure?

Converged
SCF?

Relaxation }—){ SCF Loop }—»

Figure 2.6: Schematic depiction of the relaxation procedure in FLAPW including the embedded SCF pro-
cedures starting from an initial structure guess and yielding an ab initio relaxed structure as
result of the workflow, besides other DFT typical outputs like e.g. magnetic moments and
properties, total energy and the possibility to determine electronic band structure and the
DOS. Figure adapted from [55].

Commonly, for force relaxations—being a non-linear optimization problem—there are exist-
ing implementations of a BFGS scheme to improve the relaxations’ convergence. [56-59] However,
for convergence stability reasons, BFGS is not activated by default but rather used as soon as the
force is reasonably low after an SCF loop. Typically, until this point is reached, a linear scheme is
applied.

2.2.6 Korringa-Kohn-Rostoker Method

The Korringa-Kohn-Rostoker (KKR) method [60, 61] is an approach to DFT based on Green'’s functions
(GF). Instead of diagonalizing a Hamiltonian, the Green’s function is found directly from the Kohn-
Sham Hamiltonian, employing multiple scattering theory. Within the KKR method, the full-potential
expansion around the atomic centers is typically used, which takes the full geometry of the crystal
structure into account, rather than using the concept of muffin-tin spheres as spacial separation. A
versatile open-source implementation of the KKR method is the JUKKR code. [62] The JuKKR code
is also linked to the AiiDA framework [9, 10] using the AiiDA-KKR [63] plugin and hence enables the
method’s application on a high-throughput scale.

2 Methods




The Green'’s function formulation of the KKR method has the advantage of an extensive range
of possible applications. [64] Non-standard features that are often more cumbersome to obtain in
wave function-based methods include:

o Disordered systems with, e.g. impurities and defects

Transport properties as e.g. spin and anomalous Hall conductivities

Magnetic response functions as e.g. spin-susceptibility in linear response

Pair interaction parameters

Magnetocrystalline anisotropy

The pair interaction parameters .J;;, computed using the KKR method, are closely related to mag-
netic properties of the system as they map the electronic structure onto the classical Heisenberg
Hamiltonian as shown in equation (2.33). The J;; are also called exchange coupling parameters, as
they couple two spins to each other in the Heisenberg model Hamiltonian. Exchange coupling pa-
rameters are computed using the local force theorem [65, 66]. In equation (2.32) the calculation of
the exchange coupling tensor j%a’ is shown. This expression results from scattering theory and was
derived using linear response theory and not even assuming a collinear magnetic moment. [66-69]

Br
TJaao! 1 o o’
Jg* = ——Tm / Tr (AVPG, AV G, ) dE (2.32)

— 00

In equation (2.32) E denotes the Fermi energy, i.e. the energy at which the energetically highest
occupied state of a material is existent—at the temperature ' = 0 K. Furthermore, the GF G, _, ;
represents the propagation between the two sites 7 and j in the lattice, and AV,* denotes the po-
tential change caused by an infinitesimal rotation of magnetic moment at site 7 to the axis o while
a is given by the e, e, and e, unit vectors. [68, 69] The exchange coupling tensor allows us to
directly compute the pairwise exchange coupling parameter .J;; from the trace of the exchange cou-
pling tensor. Besides the exchange coupling constant, it is possible to acquire the elements of the
Dzyaloshinskii-Moriya vector based on this approach. [69]

2.3 Selected Magnetic Material Properties & Phenomenons

There are many magnetic phenomenons known in modern-day solid-state physics (e.g. spin-spirals,
Skyrmions, and superconductivity, to name a few). In fact, in magnetism, phase changes of materials
can be observed, where a material’s magnetic configuration changes from one magnetic state to
another. [70] While some observed magnetic effects are only observable in very special conditions,
others shape materials such that their properties emerge through magnetic effects (as in the case
of e.g. half-metallicity). [71-77] This section serves as an introduction to effects that are either
observed or predicted during the course of this thesis or otherwise related to applications.
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2.3.1 Critical Temperature

A given material’s stable magnetic state can be subject to change as external parameters of the
material’s environment change. This can include magnetic phase changes from e.g. FM to non-
magnetic states. If the phase change can be associated with changing the material’s temperature,
then the temperature at which this phase change spontaneously occurs is called critical temperature.
In the special case of FM and AFM materials, which exhibit vanishing net magnetization given a
temperature rise, this critical temperature is also called Curie or Néel temperature, respectively. For
an FM system, this essentially means that after the critical temperature has been exceeded, the
net magnetic moment—which was present before—has vanished. Above the critical temperature,
the magnetic ordering in a solid crystal structure is lost. The difference between the two states is
exemplary shown in Figure 2.7.
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Figure 2.7: Exemplary visualization of an FM 2D Ising model [78] below (left) and above (right) the critical
temperature. The pair exchange parameters have been chosen Ji]- > 0 to enforce ferromag-
netism as initial ordering.

As shown in the classical Heisenberg model Hamiltonian, which can be used to describe mag-
netic configurations, from equation (2.33), the pair exchange coupling constant is directly related
to the Hamiltonian of the system. Also, the uniaxial anisotropy (KCryS) of the crystal lattice can be
found in equation (2.33) which is responsible for e.g. the magnetocrystalline anisotropy energy as
K,y leads to an alignment of the spins within the lattice to be preferred to align the easy axis .
€ denotes the unit vector in the direction of the easy axis « at lattice site i. [79]

i = —% S i (erveg) = Ko Y (eas)” (2.33)

ij i

The Hamiltonian from equation (2.33) is also called the classical Heisenberg Hamiltonian in the ab-
sence of an external magnetic field. [80] Mapping from the quantum mechanical DFT electronic
structure to the classical Heisenberg Hamiltonian is a multiscale approach that allows the descrip-
tion of the magnetic order on a length scale, which would be infeasible with first-principles meth-
ods alone. This multi-step process and the required or acquired data in each step are depicted in
Figure 2.8. It is important to mention that the ab initio simulation is approximately just as computa-
tionally expensive as the MC algorithm.
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The accuracy of the determined T, using this method is rather accurate, as sources report
errors compared to experimental values of about 10 % to 15 %. [81, 82] The two simulation steps
required to determine T, are briefly described in the following.

D T D
Structure Ab Initio KKR-GF kel Monte Carlo
. Ground State " .
Data Calculation Magnetism Simulation

Step 1: DFT Step 2: MC

Figure 2.8: Schematic depiction of the steps in the ab initio-based determination of the critical temper-
ature. Cylinders depiction of input and output data of the different steps.

Simulation Step 1: Ab Initio KKR Calculation for the Exchange Coupling Constants

Given a crystal structure—which also might include impurities and other structural disorders—a
KKR calculation can be set up and performed until self-consistency is reached, as it was previously
described in section 2.2.5. This gives access to major system properties such as the ground state
magnetic moments and configuration, as well as the exchange coupling tensor j%a' for all lattice
sites ¢ and j and the spin directions « and o’. Only the diagonal elements are required from the
exchange coupling tensor to compute the pair exchange coupling constants J;; as equation (2.34)

relates the tensor to the exchange coupling parameters using its trace along the spin axes. [68]
Tr (Jg*)
ij
Jij = —3 (2.34)

Simulation Step 2: Monte Carlo

Using the DFT-originated J;; parameters and structure, it is possible to compute the classical en-
ergy difference AFE of a given lattice between two different states using a model similar to the
3-dimensional Ising lattice. For the MC-based approach, an initial spin setup of the lattice is ran-
domly chosen. From there, a randomly selected spin gets flipped based on a probabilistic method.
The acceptance probability P (i — j) of a flipped state j compared to the original state 7 is given by
the expression from equation (2.35). [83-85]

P(i—j) = {1 L, 2B (2.35)

e 8T AE>0

While AE is the energy of the new state subtracted by the Energy of the previous spin state as given
in equation (2.36). Hence, a new state is always accepted if it reduces the system’s energy given by
the model Hamiltonian. But if the overall energy increases, the probability is given by a function
dependent on the temperature and AE. [84]

AE = E; — E; (2.36)

The amount of how many iterations of spin-flips are necessary vary depending on the inspected sys-
tem. However, the literature suggests about 10° to 10° flips per spin to find an equilibrium and then
use about 10% more steps for the averaging process. [86] For the computed system, it is necessary
to average over the performed steps to acquire the expressions shown in equation (2.37). [84]
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1 & 2 1 & 2
a= v Z o; b= v Z o; (2.37)
v MC v MC
Magnetic  In equation (2.37) the variable V' denotes the volume of the lattice and o, denotes the net spin of

Susceptibility  the atom occupying the i*? site in our model system. Using this notation, the magnetic susceptibility
is given by equation (2.38). [84]

a—0b
kgT
From equation (2.38) it is obvious that it is not enough to do the MC simulation once. It needs to be
Magnetic  done for every temperature step to determine the magnetic susceptibility with reasonable accuracy
Susceptibility  for the given system. This temperature sampling gives sufficient resolution to search for the peak of
Peak  the magnetic susceptibility, as this peak marks the critical temperature 7,. [86]

x(T)=V (2.38)

Sources of Errors

Sources of errors in the determination of 7, can include but are not limited to:
e DFT-based error as XC functional is an approximation. [82]
e Use of classical Heisenberg model. [82]
e The J are assumed to be constant under temperature change. [82]
e Assumption of collinear spins in the Ising lattice.

Beyond these systematic error sources, additional numerical convergence issues of both the KKR-GF
ab initio calculation and the MC simulation can introduce additional errors.

2.3.2 Half-Metallicity

Density of States  Given the presence of a magnetic material, it is possible that the 1-spin part of a DOS is exceeding
the Fermi energy E while the |-spin lies below the Fermi level. Hence, one of both spins is con-
ducting while the other is not. In the following, this phenomenon and the resulting applications are

Fermi Level discussed.

Density of States

The DOS is a concept closely related to a material’s conductivity properties and is deeply rooted in
Number of  electronic structure theory. The DOS p(F) represents a number of states at a certain energy range
States per Unit jnside a single unit cell’s volume £2,, and is defined using the delta distribution &(x) [87] in an
Energy integral over the BZ as in equation (2.39) while €2 (k) denotes the state’s energy of the crystal for

every state with spin o. [36]

QO‘*“ Z / §(E k)) dk? (2.39)
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The DOS can be computed from ab initio calculations as each band’s energy for every spin and k are
determined within DFT. By construction, the number of states below the Fermi level matches the
number of electrons N in the unit cell, as shown in equation (2.40). [88]

Ep

/ p(E)dE =N, (2.40)

—00

The relation from equation (2.40) is intuitively clear, as in the ground state all states below the Fermi
energy F . are occupied by electrons. Besides the total DOS, the method of projected density of
states (PDOS) exists, which projects the DOS on e.g. atomic orbitals or the interstitial to learn which
atom, spatial region, or orbital contributes to the DOS at the different energy levels. This way, one
can not only learn about the system’s physical properties, but using PDOS, it is possible to understand
where they originate from. Projecting the DOS on the interstitial can give an insight into which
degree of localization the electrons in the compound exhibit, as electrons in the interstitial tend to
be delocalized. Thus, classifying materials based on their conductivity properties is possible using
the DOS, which is discussed in the following.

Conductivity Classification

Given the DOS of a compound, it is possible to classify the conductivity in the material. This can be
done as the DOS contains information about the so-called valence and conduction bands. Valence
bands of a material are states entirely located below the Fermi level, while conduction bands are
located above. However, both band types can overlap; this concludes the fact that there exists no
band gap (AEg,,,4) which is the case for e.g. metals. A band gap is defined as a range of energy
values around the Fermi level where the DOS is zero; hence, no states exist within that gap.

Knowing the band gap between the valence and conduction band—in the non-magnetic
case—conductivity can be classified into conductors, semiconductors, and insulators. Conductors
do not have any band gap as both of the bands overlap. Semiconductors generally behave like insu-
lators at very low temperatures, but thermal excitations can cause electrons to occupy conduction
band states and hence give rise to conducting properties. Hence, semiconductors have a band gap
around the Fermi level, but it must not be as large as the band gap of insulators, which typically do
not exhibit any conductivity. Examples of all three conductivity types are shown in Figure 2.9. How-
ever, including magnetism and examining the DOS for both spin states individually, it is possible to
find a band gap in one spin channel and states (i.e. a non-zero DOS) in the other spin state of the
DOS. Such materials are called half-metals. Half metals can either be semiconducting or insulating in
the non-conducting spin channel, depending on the band gap. Ideal half metals that are completely
spin-polarized are considered important to spintronics as they are able to utilize the capabilities of
spintronic devices entirely. [89]
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Figure 2.9: Exemplary DOS for one conductor (Ag top left), one semiconductor (Si top right) and one
insulator (NaCl lower) obtained from FLAPW calculations. The black curves show the corre-
sponding DOS, while the blue curve shows the PDOS, which originates from the states in the
interstitial of the muffin-tin spheres. The dotted line represents the Fermi level. The upper
half of each DOS plot shows the 1-spin contribution. The lower half shows the |-spin contri-
bution as indicated by the arrows on top of each plot and the negative sign on the number
of states per eV on the x-axis on the right.
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2.3.3 Requirements for Skyrmions

One technological concept within spintronics is the racetrack memory. This particular application,
amongst others, builds on the magnetic phenomenon of magnetic domains. An example of such a
magnetic domain is the particle-like Skyrmion. To understand the emergence of Skyrmions, it is nec-
essary to include an antisymmetric exchange term into the simple model Hamiltonian from equation
(2.33) and define the Dzyaloshinskii-Moriya vector D, ; as shown in equation (2.41) by using the def-
inition of the exchange coupling tensor from equation (2 32). The introduction of the Dzyaloshinskii-
Moriya vector is necessary as the Hamiltonian from equation (2.33) does not explain the stabilization
of Skyrmions and the Dzyaloshinskii-Moriya interaction, which emerges from the spin-orbit interac-
tion of the electrons, is needed to describe the phenomenon of stable Skyrmions. [68]

(B
D. == JEE—JE (2.41)

%)
TTY Tyx

Using the definition of the Dzyaloshinskii-Moriya vector from equation (2.41) the more general
model Hamiltonian from equation (2.42) can be defined. [69]

A= 0 (ee)) KoY (ens) YDy (axe) o)
¥ ?

Model Hamiltonian’s like the expression from equation (2.42) are used to model phenomenons like
spin-spirals and Skyrmions. It is also obvious that D, acts as a driving force that favors a non-
collinear spin configuration rather than a collinear alignment, which is suggested by the exchange
coupling constants and the uniaxial anisotropy. Both effects together and their interplay as com-
peting interactions are the underlying reason for the emergence of magnetic phenomenons like
Skyrmions and spin-spirals. However, in any case, a stable magnetic configuration in the carrier ma-
terial to host such effects is required. Hence, the critical temperature also is directly relevant to the
existence of spin transport properties.

In the special case of 2-dimensional systems, one consequence of the Mermin-Wagner theo-
rem [90] is that there are no long-range magnetic orders and subsequently no magnetic phase tran-
sitions present for the isotropic Heisenberg model at finite temperatures. The stabilization, in this
case, is prevented by thermal fluctuations. [90] This concludes that Skyrmions cannot be stabilized
in a system based on such a model Hamiltonian. Consequently the interplay of the Dzyaloshinskii-
Moriya interaction and the magnetocrystalline anisotropy energy play a crucial role in stabilizing
Skyrmions in thin film systems.
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2.4 Automated Interactive Infrastructure and Database for
Computational Science

The AiiDA framework [9, 10] is an open-source package that serves as a code base and infrastructure
enforcing common standards for different materials science-related code plugins, including parsers,
workflows, and data handling tools. The framework ensures data provenance and provides high-
performance computing (HPC) plugins and interfaces that enable to run e.g. complex multi-layered
ab initio-based workflows on a high-throughput scale. AiiDA stores operations and data node—
including inputs and results—belonging to a workflow as a directed acyclic graph, which allows the
reconstruction of the entire workflow even if the calculation was performed by someone else and
were published in a database. Initializing and running an AiiDA workflow and a corresponding AiiDA
code plugin is done using a high-level Python-based interface which can be executed e.g. inside a
Jupyter Notebook. [9, 10, 91] The framework was developed following the pillars:

e Automation
e Data

e Environment
e Sharing

These pillars are also referred to as the ADES model. [91] More details about the framework—
including information specific to the AiiDA-FLEUR plugin [11]—are discussed in the following sec-
tion.

2.4.1 Framework

The AiiDA framework allows developers to build up on the existing code base and classes while
providing the infrastructure for workflows and data management. In the AiiDA context, workflows
are Python programs that perform one or more computation steps, using their input to acquire the
desired output for which the workflow is designed. This includes quantities that require multiple
layers or steps of ab initio calculations to determine them. This is the case for e.g. the relaxation of
a crystal structure.

The data provided as input to the workflows and retrieved as output along with metadata
regarding the calculations (e.g. on which machine and using which code version the workflow was
executed) is stored in nodes, which all have a unique identifier. The framework provides classes to
handle data (As e.g. structure data, user-specified inputs, calculations parameters, and retrieved
outputs) efficiently. This assists the setup of new—potentially more advanced—workflows, as the
infrastructure is versatile and reusable. Hence, existing workflows can also be incorporated into
more advanced workflows in a layered computation procedure. This concept finds full utilization
as the most basic workflow implemented in AiiDA-FLEUR is the standard SCF workflow, which is
performed as part of basically every other workflow at some point.

To interact with the AiiDA framework, the FLEUR code [48] requires the AiiDA-FLEUR [11, 92,
93] plugin and the corresponding parser [50] which parses the FLEUR input and output files into
Python readable dictionaries. [92]
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Also included in the AiiDA-FLEUR plugin are analysis and visualization tools for e.g. band struc-
tures, density of states, or the graph representing a workflow in AiiDA-FLEUR with all the individual
steps performed during the execution of the workflow. [92]

2.4.2 Workflows

Workflows available in AiiDA-FLEUR [11] which are relevant to the results presented in the results
section include the following functionalities:

e SCFrun

e Equation of States (EOS)

¢ Inpgen execution

e Set up a magnetic film structure
e Relaxation

Other workflows computing spin-spirals, the Dzyaloshinskii-Moriya interaction and the magnetocrys-
talline anisotropy energy exist. Furthermore, the inputs required by each workflow vary, and even
within a single workflow, multiple options exist for providing the necessary input to the workflow
defined in the code. This is discussed in detail in the documentation of the AiiDA-FLEUR plugin. [11]
it is possible to adapt existing workflows depending on the requirements. This can be necessary if:

1. There is additional output required which is not retrieved by the used workflow. (Could also
require parser changes)

2. The input type options do not match the available input data despite the existing input data
being sufficient to set up the calculations input.

3. It is desired to change an input parameter—which AiiDA-FLEUR currently determines in a
workflow—manually.

4. A step in the workflow can be skipped (e.g. as it is already available to the user starting the
workflow), but this optional functionality is missing.

In general, the adaptation of a workflow can be required as soon as additional functionality is needed.
If required, entirely new workflows can also be set up to provide functionality beyond the outputs of
existing workflows. Of course, creating an entirely new workflow can be a time-consuming endeavor.
It might be an overkill to set up a corresponding workflow for only a few calculations. Of course, a
potential high-throughput application mandates the setup of automation using a dedicated work-
flow. Hence, it should be considered if the workflow is used frequently enough to justify the time
and effort of creating a new workflow. During this thesis, high-throughput FLAPW calculations have
been performed. The workflow used mainly in this study is discussed in the following.

Create-Magnetic-Film-Workflow
The AiiDA-FLEUR [11] plugin contains a dedicated workflow to set up symmetric and non-symmetric

layered films. The possible input combinations for this workflow and the outputs are shown in Fig-
ure 2.10. [11, 92]
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Figure 2.10: Flowchart of different inputs which can be used to acquire the relaxation results, which
consist of the relaxed film structure and the magnetic configuration. Cylinders represent
the input and output data of the workflow.

The film relaxation workflow can be used in combination with the EOS workflow—and hence
requires the EOS workflow’s input parameters in this case—and also takes data-based distance
guesses.

Within AiiDA-FLEUR [11], there exists a routine that computes initial lattice constant guesses,
based on data stored in the database of the Materials Project [94], and stores them in a Python
dictionary for future use. Passing the routine for the initial guesses, a list of elements and subse-
quently all possible element pair combinations are determined and—using the Materials Project
Application Programming Interface (API)—a request for all bond lengths stored in the database for
each elemental pair combination is sent, one after the other. At the end of a single API request, the
bond lengths obtained are averaged, and the average is then stored for this element combination
before the next request is sent. Hence, in the dictionary output of the routine, each combination
of elements X and Y have a mean bond length stored with them XY __ which can be used as a

Guess

data-based initial guess for the starting point of the EOS and relaxation workflows. [11, 55, 92]

The Create-Magnetic-Film workflow in AiiDA-FLEUR [11] can work with either the outputs of
an EOS workflow or perform the EOS computation at the beginning of the film relaxation workflow.
An EOS workflow computes the bulk lattice constant of the film substrate layers. An initial guess
of the lattice constant a2**5“? taken from the Materials Project [94] distance guesses dictionary is

Guess

then subsequently scaled as shown in equation (2.43). [55]
a, = (0.9025 + 0.005n) aZ1bSub (2.43)

While restricting n to fulfill 0 < n < 39. This results in a discrete sampling of scaled lattice constants
ranging from 90 % to about 110 % in relation to the initial lattice constant guess. However, perform-
ing the EOS evaluation for every workflow started is unnecessary. The requirement to perform the
EOS evaluation vanishes once each substrate’s EOS has been evaluated.
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As—using the discretization discussed for equation (2.43) —with each EOS evaluation, 40 indi-
vidual SCF calculations are performed, and the corresponding total energy E,, of the bulk substrate
system is evaluated every time the workflow is executed. From this point on, it is possible to recycle
previously performed EOS computations (See Figure 2.10 second input option from above) when
submitting a film relaxation workflow. The film substrate will be set up using the substrate lattice
constant a,,, which minimizes E,. However, suppose the supposed minimum determined by the
workflow is located at the smallest or largest scaled lattice constant. In that case, it is possible that
this scaling indeed does not represent a minimum of the total energy but rather the lowest energy
within the given interval. If so, the sampling scale should be reevaluated and adjusted to deter-
mine a suitable lattice constant for the subsequent calculations. The input parameters for the EOS
workflow specify e.g. the sampling and scaling of the initial lattice constant guess. [55, 92]

All steps of the AiiDA-FLEUR [11] film relaxation workflow are shown in Figure 2.11.

No
CreateMagneticWC
Converged Converged
SCF? Relax?

Structure
( (EOS) >—>< Film Setup >—>< Relaxation >—><SCF Calcu\aﬁon>—> and
Magnetisi

Figure 2.11: Flowchart of the individual steps which are performed after starting the film relaxation work
chain. As the EOS step’s necessity depends on the fact that the previous EOS output of the
chosen substrate is available, the step is put in brackets as it might not be required. The re-
laxation workflow from Figure 2.6 is fully incorporated into the AiiDA-FLEUR film relaxation
workflow. The cylinder shape represents the output resulting from the AiiDA-FLEUR work-
flow. Depiction adapted from [55].

Unfortunately, not every film relaxation succeeds. Hence, in practice, after cutoff parame-
ters for e.g. number of SCF iterations or relaxation steps are reached, the workflow will be stopped,
and the relaxation will be marked as unsuccessful. However, AiiDA-FLEUR [11] autonomously tries
to fix some common problems that arise during relaxations by e.g. restarting individual failed SCF
calculations or adjusting the film structure or the muffin-tin setup. [11, 92] The film setup follows a
structured procedure. First, after the EOS results are available, the layered film with a total number
of ny,, layersis completely set up using the substrate lattice constant from the EOS results and the
substrate element. This first step is shown on the left half of Figure 2.12. [11, 92] In the second step,
the user-specified layers are replaced with the magnetic layers, either on a single or on both sides of
the substrate. The interlayer distances (ILDs) between two neighboring layers are computed based
on the initial lattice constant guesses acquired from the Materials Project [94] bond length data. It
is established practice to scale the ILDs that lie in between the outermost magnetic layers and their
neighbors—with a number slightly smaller than one—as experience shows that they tend to com-
press towards the film center. For the high-throughput calculations performed during this thesis, a
factor of 0.95 has been used, however, also lower values are possible. [92] No further adjustments
to the film are performed before the relaxation procedure. [11, 92] Which layers undergo a relax-
ation (and in which direction) is subject to user input. A common choice is to relax the magnetic
layers only (and maybe the substrate interface layer) while exclusively relaxing the z-direction to
maintain the substrate-governed lattice. [92]
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Figure 2.12: Depiction of the individual steps in the structural setup procedure. The initial film setup
on the left uses only the substrate lattice constant and the substrate element. The second
step is depicted on the right, where a user-specified number of layers is replaced with the
elements specified for the magnetic layer. The interface layer can either belong to the sub-
strate or the magnetic layers defined by the user-provided structural setup specifications.
For visualization simplicity, the magnetic layers are colored in the same color, and a non-
symmetric film has been depicted. However, different elements can occupy each magnetic
layer, and symmetric films can be constructed this way. When writing this thesis, the work-
flow can set up films based on fcc and body-centered cubic substrate lattices.

2.4.3 Data Management

Research data management is becoming an increasingly urgent and crucial topic. Often, research
Scientific Data  data is stored on local machines (data silos) only accessible to a few researchers or even a single
Silos jndividual—while others might not even be aware of the data’s existence. Publicly funded research
has to ensure that research results and corresponding data are examined, stored, and accessible to
as many people as possible so the accumulated data can be reused as often as possible in different
contexts to generate as much scientific value as possible from this data. [95, 96] To achieve this,
the FAIR principles [95] have been developed and established in the scientific community, which
focuses on designing software and data architectures in a way that sustainable data management
Sustainable Data  js ensured. FAIR [95] denotes the four underlying principles, which are displayed in Figure 2.13.
Management  Qpvijously, there are similarities between the ADES model mentioned in the introductory part of
section 2.4 and the FAIR principles. Hence, it is no surprise the AiiDA framework enables compliance
FAIR and ADES  of data management with both ADES and FAIR. [9, 10, 93] For example, the AiiDA framework labels
each data node with a unique identifier (UUID) as well as each process with a process identifier
(PID) and references related nodes using these identifiers. Furthermore, the locally stored AiiDA
database is Structured Query Language (SQL) based, and data nodes can e.g. be user-described with
labels and descriptions. AiiDA also allows exporting and importing entire databases or segments as
compressed files. However, AiiDA also saves input and output calculations files in a structured file
repository. [93, 97]
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This ensures that data can be shared, reused and does not remain in a data silo with the
potential risk that the data’s existence will be forgotten and hence, the data can neither contribute
towards further scientific advances nor can be used as training data for future materials screening

or materials design studies. [95]

Data is labeled uniquely and persistent using

B Data and metadata are accessible using

¢ Accessible ) available standardized communication

I Data and metadata use a publicly avail-

Interoperable B able way of representing knowledge and

reference to related data and metadata.

Data and metadata fulfill established community
_— T standards, while maintaining data provenance
<\Reﬂw and are released with detailed description
under an indicated license for further usage.

Figure 2.13: Depiction of the FAIR principles. The content of this figure is based on [95].

2.4.4 General Workflow—Materials Science Data for Predictive Analysis Using
Machine Learning

Tackling a materials discovery or materials screening task is a multistep process, ranging from a pos-

sible technical application to specific predictions of either material properties or candidate materials

related to the application case. A typical workflow for predictive materials discovery and screening
challenges is shown in Figure 2.14.

Technical | _| Material Property Data
Application Requirements Requirements

(Ab Initio) Data Analysis
™| simulations & Modeling g

Model Predictive
Evaluation Modeling

Figure 2.14: Possible workflow from a technical requirement for a material exhibiting distinguished prop-
erties to predictive modeling.

This workflow also incorporates the previously discussed design goals and data requirements
steps, as well as the ab initio simulations. Starting from a technical application, an arising need for a
material having specific properties sets the goal of the materials design tasks even before any data
has been collected using computational simulations. In the particular case of this thesis, the compu-
tational step is carried out using first-principles (ab initio) calculations. Generally, ab initio methods
are the method of choice for specific technical requirements like e.g. magnetic and conductivity
properties. However, while in general and interdisciplinary contexts a very similar methodology is
established and quite commonly found (e.g. in drug design [98]) using other simulation methods it
is an emerging methodology in the context of the growing field of high-throughput DFT studies. [92,
93, 99] In the context of these studies, ML models and techniques play a key role due to their ca-
pability to use the generated data to get additional insights and applications that can range beyond
the knowledge that can be acquired by analyzing the data.
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Also, beyond high-throughput applications, ML models are used in the materials science com-
munity to address numerous challenges which include—but are not limited to—superconductivity
[100, 101], entropy changes [102], materials synthesis [103], band gap predictions [101] and topo-
logical states [101]. Besides the use of ML, the methodology of data mining has led to knowledge
discovery based on material science data. The discovery of material properties from data can also
lead to new application fields beyond the initial research objective. A famous example of such a
discovery represents the initial examination of polytetrafluoroethylene as a refrigerant, which then
became renowned for the material’s inherent anti-adhesive properties. [104, 105] Compared to
publications that include the use of ML models in the field of materials science and materials de-
sign, approaches and publications that interpret and explain the models and use XAl techniques are
not commonly found in the domain yet. [106] Summing up, it is worth mentioning that, despite
the rising popularity of ML methodologies within the scientific community, ML methods are typi-
cally not part of the physics curriculum, which is why—in the following—an overview is given over
techniques and methodologies which are relevant or related to the application cases discussed in
section 3.

2.5 Machine Learning and Data Science

ML-based methods are a rapidly growing field that influences many research areas and disciplines.
Hence, there exists a plurality of definitions for terms that have been used to this point in this thesis.
In the following, common definitions are included to establish a common understanding of what is
meant by which term.

Definition 1. Data science refers to the methodology and interdisciplinary academic field that is
dedicated to systematically extracting and hence gaining knowledge from data. Data science is con-
nected to the field of data analytics, statistics, and the field of ML. [107]

Definition 2. Machine Learning (ML) is a research area that employs algorithms to derive models
from data in order to reproduce the laws underlying the relation between data and the information
contained in the data. [108, 109] Applications of ML models are not exclusive to a single scientific
area but rather diverse. [98, 99, 109] ML is considered a subbranch of the more general area of
artificial intelligence (Al). [109]

Defining Al itself is a much more peculiar task, as the definition raises philosophical ques-
tions on the nature of intelligence. [110] The question of what intelligence actually is when dealing
with computing machines solving tasks human-like goes back to the Turing test. [111] Generally ac-
cepted is that Al applications aim to achieve the same—or even outperform—problem-solving and
decision-making capabilities of humans. This typically includes that these capabilities improve with
experience. [112, 113]

2.5.1 Machine Learning

Within ML, a plurality of models and methods exist to tackle different tasks, such as regression,
classification, clustering, and dimensionality reduction. Short descriptions of each of the mentioned
model tasks are included in Figure 2.15. The applications outlined in this thesis focus on regression
and classification tasks, which align with the goal of predictive materials modeling and screening
materials. [114]
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Figure 2.15: Depiction of different ML tasks with short descriptions of each task’s objective. The depen-
dent variable is also called the target quantity or predicted quantity. Independent variables
are often called features or descriptors as they act as individual features of a data point
describing the data point and hence determining the dependent variable for the model.
Typically, for regression tasks, the dependent variable is continuous. [115-117]

Naturally, as the focus lies on regression and classification, the ML methods used during the
course of this thesis represent applications of supervised learning. However, clustering and dimen-
sionality reduction are common tasks for unsupervised learning. For overview, the input and out-
put constellations for supervised learning and for semi-supervised and unsupervised learning ap-
proaches are shown in Fig 2.16. [117, 118]

Reinforcement learning is based on a training process that involves a repeated trial-and-error
procedure performed based on actions (e.g. decisions) performed by the model. When a model’s
trial is successful, the model receives a reward, based on some type of reward function, as denoted
in Figure 2.16 by the dashed arrow. Using a reward, the model will—in the long run, after multiple
cycles of trial-and-error—make decisions that maximize the reward function. [119] In the case of
supervised learning, a metric is used in order to calculate an error that numerically expresses the
difference between the original—ground truth—labeling and the model’s label prediction. The goal
of supervised learning is to minimize a chosen loss function. A loss function £ incorporates a metric
M which measures the error of the model’s prediction, in comparison to the known ground-truth
labels, and potentially a so-called regularization term, depending on the used model. By conven-
tion, loss functions are defined in a way that a larger value of £ corresponds to a worse model
performance. Hence, the ML training process—which is an optimization problem of the model’s
parameters—always is given as a minimization task. Hence, the model parameters are optimized
so that they minimize the loss function on the training set. Different metrics that can be used in
loss functions and their properties are discussed in the following section about metrics. In general,
loss functions depend on the model’s prediction as well as the true labels, but can also depend on
model parameters and parameters that are related to a potential regularization term. The reward
function, which is used in reinforcement learning, is conceptually the opposite to the loss function,
as higher values of the reward function correspond to a better model performance. One class of
models within ML are artificial neural networks (ANNs). ANNs are known to perform well on un-
structured non-tabular data like e.g. images, audio sequences, e-mails, and videos. [120-123]

2.5 Machine Learning and Data Science

Focus on
Regression and
Classification

Supervised
Learning

Loss Function

ANNs

35



Applicability of
ANNs

36

Supervised Learning Unsupervised Learning Reinforcement Learning

Features States &
without labels Actions

Features

Training Inputs with labels

Predictions
Model Outputs for labels

Figure 2.16: Schematic depiction of supervised, unsupervised, and reinforcement learning with the cor-
responding training inputs and model outputs. The term labels refers to entries for the
dependent variable. The bent arrow denotes the error that results from the model’s predic-
tion in combination with the fact that the ground truth values for the labels are known from
the training data set. The dashed bent arrow denotes the reward a reinforcement learning
model receives, based on a particular action.

However, when it comes to structured tabular data, ANNs are typically outperformed in terms
of performance and required computational time during model training by tree-based ensemble
models. [124-128] Within the family of ANN models, there exists a number of categories like
e.g. graph neural-networks, generative adversarial networks (GANs), convolutional neural networks
(CNNs), deep learning models, autoencoders, and foundation models like for example large language
models (LLMs). [129-131] Structuring the discussed relations within the area of Al, a possible visu-
alization as shown in Figure 2.17 can be compiled.

{ LLMs, CNNs, GANs, etc. ‘

{ Artificial Neural Networks ‘

Machine Learning

Figure 2.17: Depiction of the field of Al related to ML and neural network models. Each upper category
is a subclass of the field depicted in the category below. The field of Al forms the foundation
for all other ML techniques but also includes other topics and fields like e.g. robotics which
are beyond the scope of this thesis.
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Mathematical Interpretation of a Model

Consider a task where a single feature vector x, is k-dimensional. Hence, the task has a number of k&
features. For a data set of NV data points, there exist corresponding labels y, V i € [1, N]. Defining
a function that performs a mapping as shown in equation (2.44) can be defined. This function is
called predictor or estimator and corresponds to the model that maps the feature space onto the
label space. [132]

f:RF SR (2.44)

In fact, the label space is likely much smaller than R in application cases, especially for classification
tasks.

Model Choice and Hyperparameter Optimization

Besides the dependent variables, many models depend on a set of hyperparameters @. Hence, the
predictor fg(x) will not only depend on the provided feature vector but also on a model-specific
hyperparameter vector. The hyperparameters are not a result of the learning process but rather are
required as input to the model before the beginning of the training process. [133] An example of a
typical hyperparameter would be the number of estimators combined within an ensemble model,
which are introduced in section 2.5.2.

The parameters that are trained during the learning process are model-specific. For example,
in a simple linear regression predictor f(x)—for a single feature x—defined by equation (2.45), the
learned parameters are a and b.

flx)=ax+0b (2.45)

Due to the underlying simplicity, the classical linear regression does not have any hyperparameters.
Hence, the hyperparameter optimization step shown in Figure 2.18 can be skipped for this particular
model. From Figure 2.18 it also becomes apparent that the initial choice of features already influ-
ences the training process as well as the hyperparameter selection in general. Additionally, when
many features are available for a given task, a dimensionality-reducing feature selection is often per-
formed. It is important not to perform feature selection and learning on the same data set, as this
might lead to an additional feature selection bias. [134]

To determine hyperparameters, different strategies are common. The simplest method—
often referred to as the holdout method [135]—splits the available data into a training set and a
test set prior to model training. The test set is used after training the model using the training data
and different combinations of hyperparameters to compare the performance of different models.
However, this precludes any evaluation of the choice of hyperparameters with out-of-sample (OOS)
data, as the test data was involved in the process of determining the hyperparameters. Hence, it re-
mains unclear if the chosen hyperparameters are performing well on the test data set or generalize
well to other data sets. It is a better practice to use separate sets of data for the training process,
the model, the hyperparameter choice process, and the final evaluation to estimate the generaliza-
tion error. The process of transitioning from the holdout method to further splitting of the data is
depicted schematically in Figure 2.19. However, using a single dedicated validation set is only the
simplest—but also computationally fast—way to introduce a validation step. A more sophisticated
approach is to use the technique of cross-validation (CV).
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Before splitting the data, it can be useful to randomize the entire data set to avoid certain
clusters being overly dominant in either set. Extreme clustering in the data set can be detrimental
to the model’s performance and generalization abilities, as this can—in extreme cases—lead to cases
where the model has not learned a specific relation that might not be found in the test data but in
the training data due to clustering. Such a case can easily be imagined, looking at the fact that the
structural formula of the examined compound sorts some databases in materials science. This way,
the model would likely never encounter e.g. the Element Zn at a certain site in the compound if
one chose the last 20 % of the data set to be the test data set. Hence, some kind of randomization
has to be performed before splitting the data, which can either mean drawing the validation and
test set randomly from the entire data beforehand or randomizing the entire data set before the
data-splitting procedure.

Labeled Data

- ML Algorithm
w frey(@) Selected Features
Validation f(-)om () | Hyperparameter Optimization Separation of Training & Validation Set

i Validation Set Test Set

“ Evaluation | | | |

Figure 2.18: Depiction of the different stages

Test Set

Training Set

Figure 2.19: Depiction of data splitting using

and data usage in ML model op-
timization procedures. @g is
chosen using a validation set. The
holdout method would merge
the hyperparameter optimization

the holdout method (top row) as
well as an additional validation
set (further splitting in the lower
row), where the available data is
split into training, validation and

and evaluation steps. Figure in-
spired by [133].

test set.

In Figure 2.18 the notation f;g,(z) denotes the ML model, which is trained using the fea-
tures and labels from the training data set for a set of hyperparameter vectors {@} while f@Opt (x)
denotes the model with the best-found hyperparameter vector @, from the set of hyperparam-
eter vectors {@}. There are different methods to search for appropriate hyperparameters in the
space of all possible combinations, which include grid search, random search [136], and Bayesian
optimization (BO) [137] based methods. However, while grid search samples the whole provided
hyperparameter space of combinations for choices of individual hyperparameters and hence will
always find the best-performing set of hyperparameters out of all combinations, simply sampling
all possible combinations is not an efficient approach. Random search algorithms, which sample
all possible combinations of hyperparameters a given number of times randomly, are known to be
more compute-time efficient than grid search approaches. [136] BO-based methods can improve
the computational efficiency in hyperparameter search even further than random search algorithms.
Using Gaussian processes, BO methods for hyperparameter optimization probabilistically estimate
the error when sampling the hyperparameter space. The next point chosen to be sampled by the
optimization algorithm will be the point in the hyperparameter space, with the largest probabilistic
uncertainty. Hence, the phase space of possible hyperparameters—with each additional sample—is
sampled systematically in regions where the algorithm has the least information about the perfor-
mance of the sample point’s associated hyperparameter combination in relation to other points.
This procedure is known to be scalable to large dimensions of hyperparameter vectors. [138, 139]
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Hence, depending on the dimensionality of the hyperparameter optimization problem as well as
the data size, random search as well as BO can be used to increase the computational efficiency in
finding adequate model parameters.

Bias-Variance Decomposition

Consider the data labels Y, . on which the model f@Opt (z) was trained. Let us assume that
they may contain some random noise, but that they follow the true mapping fr,..(2). Any in-
dividual label y; in Y7, is linked to fr,,.(x) by equation (2.46). Then, the error that arises by
approximating fr,.,.(x) with the model feo,, () using an arbitrary loss function £(Y,,Y5), can
be expressed as in equation (2.47). The loss function must be symmetric, such that the relation
L(Y,,Ys) = £(Yg,Y,) is fulfilled. [140, 141] In the loss function, Y, and Y} each represent
a label vector of all labels from the according data set acquired by two different mappings A and
B. In the following, it is assumed that one of both mappings represents the true mapping (i.e. the
ground truth) of the data, and the other mapping is a model attempting to model the true mapping
based on the data.

Yi o = fre(®;) + Noise (2.46)

E [5 (freue (@), f@Opt(w)ﬂ - (2.47)

E _£ (fTruc(m)’ arg min ([E [f@opt(m) - /L] >>:|

m

I

)

E[f(z)] denotes the expected value of an arbitrary function f(z). The very first term on
the right side of equation (2.47) represents the noise coming with the actual mapping fr,,()-
This error of the true data labels themselves is considered the irreducible error, as it is inherent
to the examined data, and no model prediction can systematically exceed the accuracy of the data
on which it has been trained on. The middle term on the right side of equation (2.47) represents
the squared bias between the true mapping fr,..(x) and the model function f@Opt(a:). The bias
between these two mappings can be intuitively understood as the expectation value’s deviation
between both mappings. Of course, since the goal is that the model should be close to the actual
underlying mapping, it is desirable for the bias to be small. The last term can be interpreted as
the variance arising from the model’s prediction error. This error is not only model-dependent but
also is caused by the fact that only a finite amount of training data is available. [140, 141] The
interplay between bias and variance terms visible in this particular decomposition is often called
bias-variance trade-off, as typically, to decrease the bias, it requires a more complex model. At the
same time, a more complex model also requires more training data to decrease the model’s variance
to the level before the complexity was increased. [142] A low-bias and low-variance model would
be considered ideal. Low-bias and high-variance situations are commonly referred to as overfitting,
while high-bias and low-variance constellations are typically described as underfitting. Empirically,
the bias and variance of a model can be determined using in-sample Y7, and OOS Y, ,, predictions.
The OOS predictions can be acquired using e.g. the test set that has not been used in the model
training and hyperparameter selection process.
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Given a loss function, £(Y,, Y5) bias and variance are approximately given by the expres-
sions in the equations (2.48) and (2.49). [141]

'5(1,1117 YTrue) + ’C(YOutv YTrue)
2

'C(YOut? YTrue) — '5(111117 YTrue)
2

(2.48)

Bias ~

(2.49)

Variance ~

The loss function £(Y( ¢, Yrrue) does not only appear in the bias and variance terms in the equa-
tions (2.48) and (2.49), but also represents an estimate for the generalization error, as it evaluates
the model performance on unseen data. Hence, large values for the variance correlate with a large
generalization error, which indicates that the model is too complex, given the amount of used train-
ing data. In order to increase the generalization capabilities—while simultaneously reducing poten-
tial overfitting—of a model, the model complexity reduction is an option. This can be achieved by
either changing the model type entirely to a less complex one or by applying regularization. [142]
A depiction of the influence of bias and variance when training a model to hit a target in the center
and with a small spread in the hits is shown in Figure 2.20.

Decreasing bias

Decreasing variance

(c) (d)

Figure 2.20: Depiction of the effect of the bias and variance contribution to the result of the task of
hitting a target multiple times in the center. In subfigure (d), it can be seen that despite low
bias and low variance, a certain level of noise remains, which is why not all hits are perfectly
centered even in this case.

Regularization

Regularization can be done explicitly by modifying the loss function of an ML model optimization
process by including a regularization term R( f), which depends on the model function itself, as in
equation (2.50), or implicitly by reducing the model complexity differently. For instance, in a decision
tree model, the depth of a tree would be reduced; for an ANN model, the depth and width of the
network architecture would be reduced. [141, 143]
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£\(Y, Y5, R(f) = £(Y,, Yp) + AR(f) (2.50)

Here, X is a hyperparameter, which is used to increase or decrease the regularization effect. The
loss function could include a generalized regularization term for linear models, as in equation (2.51).
This term is defined using the p-norm definition from equation (2.58).

~

LAYy, Y, a) = L(Y,, Yp) + Alal], (2.51)

The vector a—in the case of a linear model—is the k-dimensional vector containing the slopes for
the modeled k-dimensional feature space. This leads to lower slopes for regularized linear mod-
els like e.g. the Least Absolute Shrinkage and Selection Operator (LASSO) [144] and Ridge [145]
regression, as larger slopes result in an increased loss function value. This behavior can even be
used to select features based on the linear model’s slopes, as less impactful features can be strongly
suppressed compared to others using this technique. [141, 143, 146] However, when it comes to val-
idation and evaluation, all available methods rely on metrics to measure the model’s performance,
given the model’s predicted labels and the corresponding true labels. Metrics which play a key role
in this thesis are introduced in the following.

Metrics for Regression Tasks

There are various metrics M available for use in regression task loss functions. Commonly used
metrics include the mean absolute error (MAE), as shown in equation (2.52), the mean squared
error (MSE), as shown in equation (2.53), and the coefficient of determination R? (equation (2.54)).
In fact, due to its differentiability and simplicity, the MSE is used within most model’s loss functions.
However, as the MSE is sensitive to outliers, there might be instances where it is not the best choice.
The word “mean” in the names of both the MAE and the MSE refers to the fact that the error sums
are divided by the number of computed errors for the IV labels in each of the label vectors Y, and
Y. [147-149]

Y,-Y, —Y3l3
MMAE(Y, V) = % (2.52) MMSE(Y, V) = % (2.53)

R2 _ HYTruc - YPrcdH%

M (YTrue7 YPred) ! ||YTrue —-E [YTrue} H% (254)
Each metric has different advantages and drawbacks, which is the reason different metrics are used
for disparate challenges. Especially for the use of loss functions, the differentiability of the chosen
metric is advantageous for the implementation of the optimization problem, as the minimums of
convex differentiable functions are straightforward to compute. The advantages and disadvantages
that come with each metric are compared in detail in the Tables 2.1, 2.2, and 2.3 and are part of
the process to decide which metric should be chosen for a given problem. As the coefficient of
determination from equation (2.54) is not symmetric, the dependencies on the true data labels
Y7, and the model predictions Yp,.q of the R2 metric are displayed explicitly.

2.5 Machine Learning and Data Science

Feature Selection

Mean Squared
Error

41



Advantages of the MAE

Drawbacks of the MAE

e Due to the fact that the MAE is calcu-
lated using a p-norm with p = 1, the
MAE has the same unit as the predicted
quantity.

o All errors are weighted linearly based
on their size. Hence, average perfor-
mance will be better.

e Despite being linear in the scaling, de-
viations in either direction are treated
equally due to the absolute value being
taken.

o Asall errors are weighted linearly, there

is no inherent suppression for outliers.
Hence, outliers with large deviations
have a larger impact.

e Non-differentiable expression, which

makes optimization more difficult to im-
plement.

Table 2.1: Advantages and disadvantages of the MAE.

Advantages of the MSE

Drawbacks of the MSE

e Qutliers are suppressed, as the squared
deviation is part of the loss function.

o Differentiable expression, which makes
optimization easier.

e Large individual outliers can strongly al-

ter the scale of the error, which can lead
to a model that is overruled by another
despite a good performance apart from
the individual outliers.

e Given in squared units of the target

quantity.

Table 2.2: Advantages and disadvantages of the MSE.

Advantages of R?

Drawbacks of R?

e R? s scale-independent, which makes
it easy to interpret. The closer to 1 the
value of R?, the better.

e The coefficient of determination quan-
tifies how well the target quantity is de-
termined by the features using the ex-
amined model.

o The scale and unit of the target variable

are completely omitted, which gives no
insight into how large an actual error
could be.

e The coefficient of determination is not

defined for single-sample applications.

Table 2.3: Advantages and disadvantages of the coefficient of determination.

42 2 Methods




Metrics for Classification Tasks

For binary classification tasks, many metrics could be used to determine the goal of an optimization,
depending on the target. The model’s predicted labels are compared to the actual labels to deter-
mine the metrics. Based on this comparison, the number of correct predictions for both classes—
one is assumed to be a positive class p and the other one assumed to be the negative class n—is
given by the number of true positives Tp and true negatives T),. Subsequently, assuming the model
is imperfect and misclassifies labels, the number of false negatives, meaning the model assigned a
data point to the negative class n while the positive class p would have been correct, is denoted by
F,,. The number of false positives, meaning the model assigned a data point to the positive class p,
while the negative class n would have been correct, is denoted by F,,. While in some cases only the
accuracy (%) is of relevance, in other applications it can be important to avoid false
negatives or false positives. Common metrics are shown in Table 2.4 using a schematic confusion

matrix.

Ground Truth
True Label True Label
Positive Negative
Prediction Label True positive False positive Precision
" T F T,
Positive P P T
(Correct) (Incorrect) ptEp
Predictions e False negative | True negative Negative
Pred|ct|orT Label F T Predictive Value
Negative " " T,
(Incorrect) (Correct) T 4T
Recall Specificity Rate
T, T,
T,+F, T, +F,

Table 2.4: Confusion matrix incorporating different ratios which could be used as metrics for a binary
classification problem.

Not only the optimization goal should be considered but also the nature of the data set. Class
imbalances can greatly impact a metric's meaningfulness and need to be considered before an op-
timization goal is set. Beyond the metrics shown in Table 2.4 and the accuracy, the F1 score should
be mentioned. The F1 score can be interpreted as the harmonic mean between precision and recall
and is given by equation (2.55). The F1 score is especially useful for data that exhibits a strong class
imbalance, i.e. where one class is much more populated than the other. [150]

2T,

MFl(Tp',vaFn) =

=L (2.55)
T, + F, + F,

For the accuracy, recall, and F1 scores it should be mentioned that these scores do not follow the
loss function convention that a larger score corresponds to worse model performance. Hence, to
fulfill this convention, these metrics require to be multiplied with a factor —1.
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Beyond the confusion matrix scores, also the categorical cross-entropy is commonly used as a
loss function for classification tasks. In the binary case (y; € {0, 1}), the cross-entropy loss function
would be given by equation (2.56).

LCE (yTrue7pPred) = (256)

N
_ Z (y;Frue log <pfred> + (1 _ y;frue) log (1 _ pfred>)
=

3

In equation (2.56), pf""d denotes the probability with which the model predicted the class 1 for the
i*™® label vector entry. This means if the used model would estimate a high chance that the label
1 is correct for the i*" label, the probability will be close to 1. However, if the underlying model
estimates the label is likely 0, the probability would be close to 0. This way, cross-entropy penalizes
wrong labels and increments the loss if the model is very certain about a wrong prediction. This
probabilistic approach to loss estimation is well suited for such models, which estimate the predic-
tion’s probability—and hence provide a measure of confidence—as they are naturally probabilistic
by construction. Cross-entropy could even be used as a loss function for models that are not in-
herently probabilistic, as it is possible to estimate the corresponding probabilities in several cases.
[151-155] Furthermore, cross-entropy can be generalized to non-binary classification problems.

cv

Using a single validation set, as illustrated in Figure 2.19 already detaches the training process from
the hyperparameter optimization procedure. However, a consequence of a single validation set is
that a large proportion of the data is involved in the parameter training, but a much smaller portion
is involved in the hyperparameter selection. To use a larger fraction of data for hyperparameter
optimization without reducing the amount of training data used for model parameter training, k-
fold CV is used. Like in the holdout method, a dedicated test set is first separated from the whole
data and not used in the training and hyperparameter selection steps. The training and validation
set is split into £ similarly sized data sets in the following step. Now, using the £ data sets, the model
will be trained on all data except for one set, as this particular set is used for validation afterward i.e.
to calculate a validation score based on the predictions for the validation set features and a chosen
metric. This pattern is repeated until each data set has been used for validation. This results in &
score results, calculated using the metric M. To determine the overall performance for a choice of
hyperparameters, all the calculated scores, which resulted based on the chosen hyperparameters,
have to be averaged to an overall CV score. This procedure is depicted simplified in Figure 2.21. [156]

Hence, the validation procedure using a single fixed validation set is fully incorporated into
the CV scheme. This scheme can be performed to the extent of the leave-one-out cross validation,
where the validation set size is exactly one data point. However, this is also a computationally very
expensive procedure, especially for large data sets. In fact, depending on how many combinations
of hyperparameters are subject to the validation process, this can be a computationally expensive
procedure even without the use of a leave-one-out CV. There is no general rule on how many CV
folds should be performed. Some sources suggest fold sizes ranging from 3 to 10 folds depending
on the given problem, the computational time a single model training process takes, and the amount
of available data. [157, 158]
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Figure 2.21: Schematic depiction of a CV that is used to determine hyperparameters, using multiple val-
idation data sets and averaging over all evaluations afterward.
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After the hyperparameter selection procedure has finished, the data that has been used for
training and hyperparameter selection processes can be used to retrain the entire model for a fi-
nal evaluation on the test set using the determined hyperparameters. Beyond retraining, after the
hyperparameter optimization and evaluating the CV performance of a model, it is possible to use
the test set for a final evaluation of unseen data and afterward retrain the model using the chosen
hyperparameters with the complete data set. However, while this is favorable for small data sets as
additional training data has the capabilities to reduce the generalization error [159] of the model,
and while it is likely—assuming proper data randomization—that retraining the chosen model will
increase the model’s performance in the predictive modeling application, it has to be kept in mind
that the retrained model is in principle not validated and evaluated in this case. Some authors also
suggest using only training and validation sets in combination with CV for ML applications with only
comparatively small amounts of data available. [159] However, this way, the CV score is the only
indicator of how the model would perform on unseen data, as the CV procedure has been involved
in the hyperparameter optimization process, the CV score obtained from the validation step cannot
be viewed as unbiased as a test score would be. On the other hand, it could also be argued that
after performing the CV, an additional test set, in principle, only adds another evaluation fold to
the CV procedure, but without training on the test in the remaining CV folds. From two of the ap-
plications, in the results section of this thesis, it can be seen that models that are retrained on the
entire available data after CV-based hyperparameter selection and testing can indeed be success-
fully applied to materials science applications. However, the predictions of such retrained models
should always be treated with care, even though the full data retraining procedure for finalizing
an ML model before it is deployed in production for predictive modeling is standard procedure in
industry applications. [160]

2.5.2 Model Types

ML methods feature a plurality of models that can be used to tackle diverse academic and industry
challenges. The zoo of ML models contained in the open-source Python scikit-learn library alone
features more than 100 estimators. [114] Combining this knowledge with the famous “no free lunch”
theorem, which essentially includes the consequence that it is impossible to know beforehand which
model will fit a given data set best, this concludes that to find the best possible estimator for a given
problem it would be required to test and evaluate all estimators. It is clear this is an exhaustive
task to complete. Hence, the goal of ML is not to find the best imaginable model but to find an
estimator that represents the relations of the underlying data up to a standard that ensures the
intended application purpose can be fulfilled with the desired confidence. [161]
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Often, at the beginning of a study, various models are trained on a given data set to evaluate

their individual performance. This practice is sometimes referred to as the “shotgun approach”,

Shotgun  which translates to the procedure of trying various models on the data to determine which models
Approach  are performing well and then proceeding with the knowledge obtained from this approach.

Parametric & ML models can be classified as parametric or non-parametric models. The difference be-
Non-Parametric  tween these classes is that parametric models assume that the underlying true mapping follows a
probability distribution, which is defined by a finite and fixed number of distribution parameters. In
contrast to parametric models, non-parametric models only assume the smoothness of the underly-
ing true mapping. [162, 163] A visual representation of a selection of models is given in Figure 2.22.
In the following, a selection of model types is briefly introduced, which are of relevance to the results

acquired during this thesis.
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Figure 2.22: Overview over various ML models, including a rough classification of the models in para-
metric and non-parametric, as well as linear and non-linear in the parametric case. As non-
parametric models do not assume an underlying parametric true mapping of the fitted data,
they cannot be classified as linear or non-linear mapping models.

Linear Models

Linear models are characterized by the fact that they assume a linear relationship between the data
features and the corresponding labels. In a regression task with a single regressand, the general
formula that unifies linear models and links the feature vector x to the target quantity y is given by
equation (2.57).

y=x-a+b (2.57)
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In equation (2.57) b denotes the constant intercept and the vector a contains the slopes
corresponding to the individual features. Both the intercept and the slope vector are fitted in the
loss function minimization process. Let us recall the regularized loss function from equation (2.51),
where the regularization term contains the slope vector a. If we choose to use the p-norm as defined
in equation (2.58) for an n-dimensional feature vector x, the loss function for the ridge regression
for the choice (p = 2) and, likewise, the loss function for the LASSO regression for the choice (p = 1)
can be retrieved. [144, 145]

|||, == (Z Imilp) (2.58)
i=1

The elastic net regression’s loss function can be acquired summing the regularization terms p = 1
and p = 2 from ridge regression and LASSO regression together into the loss function, each with an
individual scaling term for the regularization strength, A, and \,, respectively. [164]

Decision Tree Based Models

Decision trees use nodes in a graph to split the data based on a criterion assigned to each node that
is not a terminal node to determine a non-parametric decision-based model to tackle classification
and regression tasks. Each decision made on a node involves a feature and aims to split the data.
This splitting subsequently leads to a spatial separation of the feature space into terminal regions,
which correspond to the individual terminal nodes. Starting from a root node which contains all data
provided to the model, decision trees use a greedy algorithm [165] to determine the locally optimal
feature and threshold combination to split and distribute the data to child nodes. Hence, all future
decisions depend on previous node decisions, as no backtracking is performed, which includes that
there is no guarantee that a globally optimal split is determined during the modeling procedure. An
example of a simple tree, including different decision thresholds and features, is given in Figure 2.23.
A simple implementation of this greedy algorithm approach would be to iterate over every feature
and all possible decision thresholds, which are located in between all neighboring values of an indi-
vidual feature. However, to determine the locally optimal split criterion in this algorithm, some kind
of metric is required to compare the split performance. For the purpose of evaluating splits, the
information gain AH is defined in equation (2.59) for each non-terminal node m. [114, 166-168]

AH, =H,, — L > H, (2.59)

i
™m ieC(m)

H,, inthe classification case denotes the information theory based entropy [155] for the data D(m)
assigned to the node m. In the regression case, the variance for the data on node m, §2,,, denotes the
number of data points assigned to node m, while C'(m) denotes the set of all child nodes of node m.
In a classification task, H, is closely related to the cross-entropy loss function from equation (2.56).
The entropy and variance expressions for an individual node, respectively, are given in equation
(2.60), with Dij denoting the probability of a data point of class j occurring in node . For unseen
data—outside the training process—this quantity is given based on the class occurrences of the
training set. [114, 167]

) eg 2
HiCIaSS _ Zpij log(pi]-) H7R g _ Z (y — [y]) (2.60)
j yeD(i)
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Figure 2.23: Exemplary depiction of a simple decision tree for a regression task to predict the redness
of given colors based on some arbitrary features. This illustrates the splitting at each non-
terminal node and grouping within terminal nodes, as well as the feature space separation
using the splitting conditions. The groups forming at terminal nodes show similarities in their
properties. This is a result of the attempt to split the data in a way that the information gain
from each splitting is as large as possible.

The sum over the respective node’s loss functions over the whole tree T gives the loss of the entire
tree. [114] However, during training, the entire tree loss at once is not optimized, but the informa-
tion gain of each node splitting is maximized. Intuitively, a negative information gain implies that
additional data splitting does not provide additional predictive power on the training set. [114, 167]
Hence, a node becomes a terminal node when either:

e The information gain of all possible splittings is negative.

e Anode only contains a single class (classification) or a single numerical value (regression). (So-
called pure nodes)

e An additional splitting of the data at the current node would lead to the tree exceeding the
maximum tree depth hyperparameter.

Setting the maximum depth of a tree is intentionally used to avoid overfitting of the training data
set. So-called decision stumps—decision tree models with only a single decision performed—are
commonly used as weak learners [169, 170] in some boosting and bootstrap aggregation methods.
Boosting and bootstrap aggregation methods belong to the ensemble model methods, which are
discussed in the following section. [171, 172] It is worthwhile to note that the decision tree model
does not always manage to end up with all terminal nodes as pure nodes when regularization is
applied, for instance, by limiting the tree depth. In these cases, the prediction for unseen data
follows the majority vote (classification) or the mean (regression) of all the training labels in the
terminal node that the unseen data point ended up in.

Ensemble Models

Ensemble models do not rely on a single underlying model but combine multiple models to in-
crease the overall predictive power and performance. This section briefly introduces the ensem-
ble methods of stacking, bootstrap aggregation, and boosting. In stacking models, multiple models
combined—even such based on completely different methods—feed their predictions into a meta
learner, which combines the predictions of the first learning layer to determine the actual prediction
based on the provided features. Typically, stacking models perform as well as the best estimator in
the first learning layer but are capable of exceeding the predictive power of the best estimator. [114,
173, 174] The scheme that is underlying a stacking model is shown in Figure 2.24.
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Figure 2.24: Schematic depiction of the training process of a stacking model. The first learning layer does
not limit the NV models to a single model type. The predictions of the individual estimators
from the first learning layer are collected and used as a feature vector to make the final
prediction of the stacking model using the meta-learner of the second learning layer. The
depicted model architecture can be used for both regression and classification tasks. Cylin-
ders depict data being used at different points of the stacking model’s architecture.
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Bootstrap aggregation (bagging) methods involve the distribution of random subsets of the
training data onto NV individual estimators of the same kind, collecting their predictions and aggre-
gating them together. Aggregation, in this case, means that the IV estimators’ predictions are either
averaged (regression) or determined by a majority vote (classification). This is also the procedure
of an unseen feature vector that would be predicted by the bootstrap aggregation estimator. [175]
Random subsets with regard to the training set means that a random subset of the training data
is used to train each estimator, which is part of the bagging model. If the estimators are decision
trees, then this fact ensures that the base estimator decision trees do not all share the same archi-
tecture and decision thresholds. [176] Often, decision tree models are used as base estimators in
bootstrap aggregation models. A depiction of the training process using multiple tree estimators T},
and randomized training data subsets X is shown in Figure 2.25.

As already mentioned, decision tree models use a greedy algorithm to determine the locally
optimal split of a node. This can lead to very similar trees with only slight deviations in the used
training subset. To avoid this, the random forest model uses a specified number of decision trees
which are not only trained on a random subset of the training data, but it also randomly determines
which features are taken into account for each split of tree nodes. This random component aims to
decrease the variance. The implementation of the random forest model in the popular scikit-learn
package, however, does not perform a simple majority vote in the classification case but performs
an averaging of the probabilistic classification output for each base estimator. [114, 177] Beyond
the random forest model, the extremely randomized trees (extra trees) model is included within
the scikit-learn package. In the extra trees model, not only the feature sampling for the splitting is
performed randomly, but also the determination of the decision thresholds is randomized. A set of
random thresholds is generated, out of which the best one is then selected. This leads to additional
randomization and eventually to an expected additional decrease in variance, but in consequence,
a slight increase in bias. As the computation of the decision boundaries is omitted, the model’s
computational efficiency is also slightly increased in comparison to random forest models. [114, 178]
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Figure 2.25: Depiction of the training process for a bootstrap aggregation modeling, using decision tree
base estimators. It can be seen that from training on different subsets of training data points
X, different base estimators T; emerge. Combining the predictions of all base estimators
by majority vote or averaging allows the bootstrap aggregation model to make predictions
using all N base estimators on unseen data. Cylinders depict both model input and predic-
tion data.

Beyond stacking and bagging, a commonly used ensemble method is boosting. Unlike stack-
ing and bagging, where the base estimators are predicting a quantity independent of the predictions
of other base estimators, boosting involves base estimators correcting the errors of other estima-
tors. This requires that the model predictions are computed not in parallel, but rather in serial. The
idea behind boosting is that each model makes a prediction and also computes some kind of weight
for each training data point. This weight is increased if the underlying base estimator fails to predict
the individual data point correctly or decreased if the prediction of the estimator is accurate. This
causes weak learners to focus on learning the properties of more difficult data points, as they get
falsely predicted more often. Essentially, the weights serve as an incentive for the model’s base esti-
mators to correct the predictions of data points that previous estimators failed to accurately predict.
This implements the concept of self-correction for each subsequent tree. [114, 170, 179] A depic-
tion of the model training process and corresponding architecture is given in Figure 2.26. In order to
compile a prediction, in boosting the predictions of all models and the weights which resulted from
the individual base estimators weaknesses are combined to a weighted overall prediction.
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Figure 2.26: Depiction of a boosting estimator training process using N weak tree-based estimators 7.
The wavy line passing from the previously evaluated tree T;,_; to each subsequent tree T, de-
notes the information transfer from the neighboring weak estimators about the predictive
weaknesses of the predecessing tree T; ;. Using the passed information about the weak-
nesses of the previous models, the learning objective of the latter trees can be adjusted
accordingly to predict more difficult data points correctly. Cylinders depict data being used
at different points of the boosting model’s architecture.

The weight that a base estimator receives in the final prediction depends on the estimator’s
performance in comparison to the other base estimators. Hence, the use of weights has two advan-
tages:

e The model’s base estimators are required to determine a way to predict difficult data points
as the corresponding weight increases. [180]

o The weighted process of prediction assigns more importance for the overall result to accurate
base estimators. [180]

Both bagging and boosting aim to decrease the variance of their predictions. But it has been estab-
lished that boosting outperforms bagging when it comes to decreasing the variance. [181] There
are different algorithms and implementations of boosting ensemble models available. An example
of a boosting algorithm is Adaptive Boosting (AdaBoost) [182]. In AdaBoost, the weights for data
points are initialized uniformly and automatically adjusted for each set-up base estimator. A later
iteration in the history of boosting methods is represented by the gradient-boosted decision trees
(gradient boosting) method. This method, introduced in the following section, extends the boosting
method beyond the computation of the weights to the optimization of a continuous and convex loss
function. Whereas AdaBoost relies on a specific, exponential loss function, gradient boosting does
not rely on a majority vote or average to predict unseen data but on an additive procedure. [180]
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Gradient Boosting

While gradient boosting represents a boosting algorithm, there are subtle differences when com-
pared to earlier implementations of boosting like AdaBoost. Some of them include:

o Gradient boosting is not limited to tree stumps as base estimators, but typically uses deeper
trees, i.e. decision trees with more than a single decision node.

¢ Individual base estimators are also multiplied by a weight and a learning rate a before they
are compiled into the overall model result. However, the weight is chosen by an optimization
step for all base tree estimators except the first estimator (Typically referred to as estimator
m = 0). In gradient boosting this m'" base-estimator’s weight is denoted as f3,, and does not
directly indicate each base estimators predictive capabilities, as in e.g. AdaBoost.

o All base estimators—except the first one—do not actually learn to predict the target quan-
tity from the training set, but rather learn to predict a pseudo-residual that results from all
previous predictions compared to the actual label of the individual data point in the training
data.

e Inorderto optimize the model, gradient descent [183] is used, which requires the loss function
to be convex and differentiable. [184]

The overall model prediction at base estimator m is given by the expression in equation (2.61) and
depends on the prediction of the previous base estimator m — 1, as well as the residual prediction of
model m for the data point ¢, which is denoted as r,,,,. The residual approach can be used for both
regression and classification problems. In the classification task, the pseudo-residuals are actually
the residuals of the probabilities, determined by the model, for data points x;, to lie within a given

class, compared to its true class. [185]

-f"L(mi) = f'mfl (wz) + aﬁneri (261)

Hence, the prediction of base estimator tree m’ of the boosting model is given by equation (2.62).
Therefore, the ensemble prediction is based on the initial guess from the single-node estimation at
m = 0 and then adds the predicted residuals from each base estimator scaled by the learning rate
« and the corresponding estimator’s weight. This way, the initial guess is iteratively corrected by
each base estimator one after another. [185]

m’

Jor () = fol2e;) + Z BT i (2.62)
m=1

Using equation (2.62) the prediction of the overall model can be determined by setting m’ = N.
However, at this point, it is unclear how the . are acquired. In order to understand where the
residuals come from, a loss function has to be defined. The loss function typically used in regres-
sion during gradient boosting is the MSE, similar as shown in equation (2.53). Computing the loss
function—using the convention that a single data point is denoted via (x;, y;) with i € [1, Np,]
within the training set—at base tree estimator m’ the equation (2.63) emerges. For classification
tasks, the cross-entropy loss from equation (2.56) is commonly used. Again, the loss function of the
entire boosting model can be acquired setting m’ = N. [185]

1 Npag 1 Npag
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In equation (2.63) the relation shown in equation (2.64) has been used.

NDELt
yglrled = Z fomr (@) €5 (2.64)
i=1

In this representation e; denotes the unit vector with which the label vector ¢ can be decomposed.
Generally, the pseudo-residuals used for training the m'™ base estimator are given by the derivative
in equation (2.65).

mi (265)
0f @) ya)=foso;

The idea behind the expression in equation (2.65) becomes clear as the MSE-based loss function is
inserted to evaluate this expression. This is done in equation (2.66).

1 9 (Z/i - f(wy))2
S 2.66
T Np S (@) (266

fl@)=fp1(x);
2
NDat

(yi - fm71(931:))

Hence, the residuals which are used to train the m'® base estimator are given by the true training

labels and the predictions of the previous models f,,_; (x;) only, which makes the pseudo-residuals
simple to compute. However, the applicability of equation (2.65) is not restricted to the MSE-based
loss function. The training data for the m'* estimator is represented by the tuples (= Wi €
[17 2., NDat}'

In an additional step, the tree weight is determined using an optimization step, as given in
equation (2.67) for each base estimator tree. [185]

is T'mi

NDat

B,, = argmin Z L (Y Frner(x) + Bron;) (2.67)
B .

i=1

Hence, the weight 3, is not originating from the performance evaluation of a given tree, as were
the weights in AdaBoost, but is chosen such that the loss function containing the previously com-
puted pseudo-residuals is minimized with regard to the weight. Summing this up, gradient descent
provides the direction in which the value of the previous prediction needs to be corrected. However,
as the pseudo-residuals are scaled by the general learning rate and by the base estimator weights in
the overall estimation, a plurality of trees has to be used in order to approach the true value of the
target quantity asymptotically. This leads to the mentioned scheme, where each tree corrects the
errors of the previous base estimator tree by iteratively optimizing the loss function using gradient
descent. In fact, an overly large learning rate can lead to an overshooting prediction instead of an
asymptotic approach of the predicted value towards the true label’s value. This is intuitively clear
as gradient descent provides the correct direction, the corresponding pseudo-residual needs to be
corrected towards, but not the exact scale. The scale of r,,,; obtained in the process depends on the
scaling of the used loss function .£, which is not absolute but relative. Also, the learning rate can act
as a form of regularization to prevent overfitting since it has been found that models using learning
rates o < 0.1 are more capable of generalization than such with higher learning rates. [179]
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As the estimator f;(x) is given by a single tree node without any decision learned, this first
estimator is basically a constant value. The nature of this value is loss function dependent, as the
constant initial estimation is given by the expression in equation (2.68). [185]

Npat
Jo(x) = argmin Z L(y;, k) (2.68)

i=1

This concludes that, for the MSE-based loss function, the initial prediction is given in equation (2.69).

Npat 1 Npat
fo(x) = argmin Z (y;, k) = N a8 min Z (y; — k)? (2.69)
r i=1 Dat r i=1

Minimizing the latter expression with regard to x in equation (2.69) leads to the expression in equa-
tion (2.70) that is essentially the mean of all training labels y;,.

1 Npag
K= Ui (2.70)
NDat ;

Hence, in the case of £ being given by the MSE, & is given by the average of the label vector. The
same reasoning holds true for the output of a node within a base estimator with multiple data points
assigned during the training. In this case, the predicted value of the individual node is the average
of the assigned data points, as this minimizes the MSE loss function.

Beyond gradient-boosted trees, the implementation of extreme gradient boosting (XGBoost),
among others, introduces additional hyperparameters that allow further tuning of the model, as
well as tweaks that improve computational efficiency. This more advanced implementation is briefly
introduced in the following section.

Extreme Gradient Boosting

The XGBoost [125] method adds two regularization terms to the loss function of each base tree es-
timator similarly to equation (2.50) by including a term that encourages tree pruning (7,,, denoting
the number of terminal tree nodes in the m'™ tree) and the squared norm of the vector w,, that con-
tains all tree node outputs associated with the m!" tree. The regularization used by XGBoost in that
sense is very similar to the regularization introduced by [186]. The modified XGBoost loss function
LXGB can be expressed using the gradient-boosted trees loss function £SB from equation (2.63)
and combining the loss function with the regularization terms as shown in equation (2.71). [125]

Nrrees

’CXGB (yTrue7 Ypred> f) = £GB (yTrue7 yPred) + Z R(fm) (271)

m=1
. A 9
with R(fm) = ’YTTIL + 5ern||2
However, in order to optimize the tree base estimators sequentially, the loss function for individual

trees has to be used, which is given in equation (2.72). Again, the relation from equation (2.64) has
been used here. [125]
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Hence, the computation of the loss function of the base estimator m essentially is the task of com-
puting the average of all data label losses after the prediction of the m'" tree and determining the
tree-specific regularization term. Here, T, denotes the number of terminal nodes in tree m. Both
A and +y are regularization constants. However, rewriting f,, (x,) using equation (2.62) and expand-
ing the resulting expression in f,,,(x;) using a second order Taylor expansion [187] results in the

expression as given in equation (2.72). [125, 188]

L‘ﬁGB (yTrue“ Ypreds fm) ~ (272)
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In the representation given in equation (2.72) for the m*" tree, both derivatives are evaluated with
regard to the tree m — 1 which makes them a constant for the optimization of the m'" tree. Hence,
the derivative-originated constant factors are rewritten as 9!, ; and 90¢,_,. Also, the zeroth order
loss function is a constant in this representation and can, therefore, be omitted for the optimiza-
tion objective. Therefore, the considered loss function of the m'™ base estimator tree reads as in
equation (2.73). [125]

+% (f'm(wi))

’CEfLGB (yTrue7 Ypreds f'm) ~ (273)
1 NDat 1 9
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at =1

Using the earlier notation of D(!) denoting the data subset assigned to the tree node [ in the given
m'! base estimator and the node score w,,,; is technically equivalent to the value of £, (z;) when
x; € D(I) as the base estimator’s prediction for an individual data point solely depends on the cor-
responding terminal node score the data point ends up in, the previous expression can be simplified
as done in equation (2.74). [125]

£$7(1GB (yTrue7 Ypred> fm) ~ (2'74)
1 & 1
N, Z Wi Z (ain—l) + iwgnl Z (aa:nfl) + NDat/\ + ’yjjm
Dat j=1 z,€D(l) x,€D(l)

Now optimizing the loss function from equation (2.74) with regard to the individual node score, this
concludes that the optimized scores are given by equation (2.75). However, this assumes that the

tree structure, including the number of terminal nodes T, remains unchanged. [125]
> (95,1)
;eD(l
g = =P (2.75)
Z (88:n71) + >\
x,;eD(l)
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Within the previous expression, it has been used that A is a scaling regularization term which is
now combined as A = NpagA. In order to acquire equation (2.75), the derivative 5= was set
to zero and solved for w,,,;. Hence, the optimization requires the second derlvatlve |n sz to be
positive in order for the solution to indeed present as a minimum. This is true, as the loss function
is required to be convex and differentiable. Using the squared error loss function, the optimized
scores as contained in equation (2.76) emerge.

o > (Y = frna(x1))
_ 216{1@716[1(1)} (2.76)
At X2

x;eD(l)

ml

In order to interpret the expression from equation (2.76), one can look at the numerator and denom-
inator separately. The numerator is proportional to the sum of the residuals acquired using the loss
function in the terminal node [. The denominator is proportional to the number of data points—
and hence also the number of residuals—in the given terminal node /. It is only accompanied by
some constant regularization parameter, which effectively lowers the terminal tree node scores as
a measure of regularization to prevent overfitting.

Now, using equation (2.75) and inserting the optimized node scores in equation (2.74) leads—
after simplification—to the expression shown in equation (2.77).

2

1 T,, ( ZD([ anL 1)

LXCP (Ytrue Ypreds ) ~ —5 S +4T (2.77)
) (Tuc Pred QZZ (882 )+)\

m—1
@, ED(Z)

This approximation used as loss function allows us to compute the information gain of a split in the
case of a binary split. Assuming a parent node P is split by a decision into two child nodes C; and
C,, the information gain of the chosen split is given by equation (2.78). [125]

2 2 2
1 ( %C 821_1) < ;C ) ajn_l) ( ZDP‘ ajﬂ_l)
A=t z,€D(Cy) n z,€D(Cy) . z,€D(P) —v (2.78)
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The expression from equation (2.78) can easily be acquired by projecting the loss from equation
(2.74) on a single node and taking the difference. As both child node losses are subtracted from
the loss of the parent node, and each node considered for itself has 7' = 1, only  remains beside
the first and second loss function derivative-dependent terms. Hence, the regularization parameter
v is crucial to the decision if a split is performed or avoided for the underlying base estimator, as
increasing v leads to a depressed information gain, and a negative value for the information gain
would result in a split option being rejected.

2 Methods




Besides the discussed loss function properties and the larger degree of regularizability com-
pared to gradient boosting, the implementation of XGBoost [125] has some more benefits to offer,
which are not discussed here in detail. Those include:

e XGBoost has built-in handling for sparse input, which is already taking effect during the split-
finding.

e XGBoost is not limited to using an exact greedy algorithm but is also capable of using an ap-
proximation.

e XGBoost is highly parallelized regarding split finding in the training process.

These properties make XGBoost well suited for the use on extensive data sets. [125] Also, the initial
estimation—as occurring in gradient boosting—is not determined by a minimization but is accessible
as input to the model while training. However, if no input is provided, the value of 0.5 is a hard-coded
default as an initial estimation for both classification and regression.

2.5.3 Gaining Physical Knowledge from Trained Models

ML models—especially ensemble models—typically learn from provided data and afterward predict
unseen data as a black-box function and, therefore, are hard to interpret and explain. However,
many applications mandate that decisions can not be made based on a black-box function; instead,
they have to be explainable, especially for use cases where people’s lives are affected by a model’s
prediction such as credit and insurance decisions based on ML modeled risk assessment. [189-
191] As institutions may be held liable for decisions based on ML models, it is essential that the
reasoning behind a model’s decision is understood within the institution and also is explainable to
those affected by the model output. Hence, the field of XAl emerged alongside ML models. This goes
to the extent that some models already come with model-specific explainer routines. For instance,
the decision tree models in scikit-learn come with the ability to plot the decision tree, including
decisions, as well as the ability to visualize the feature space separation of a given decision tree’s
decisions. [114] For other models, like LASSO, the modeling coefficients (slopes) can be interpreted
as a measure of the importance of individual features. However, while these are feasible options
for these specific models, a model-agnostic approach backed by a rigorous mathematical theory
underlying the approach is desirable. Luckily, the SHAP package fulfills both conditions and is publicly
available as open-source code [128]. In the following sections, a brief introduction to the underlying
theory of coalition game theory, Shapley values, and the package’s capabilities is given. [13, 128]
However, whenever ML models are interpreted, it is crucial to be aware of confirmation bias [192]
and not only look for results that support the own hypothesis but also for evidence that has the
potential to validate another hypothesis or hints on the fact that the model has not indeed learned
relations in the data but rather overfitted artifacts (e.g. noise) that are contained within the data.

Explainable Al in Natural Sciences

Beyond applications in society and liabilities emerging from the use of ML models, explainability is
crucial in understanding underlying mechanisms. Beyond the fact that ML models provide black-box
predictions, to add value to the disciplines of natural sciences, predictions have to have a reasoning
behind them and need to be understood to contribute towards the accumulation of knowledge.
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In natural sciences, discovering a particular underlying pattern is generally worth more than
an individual prediction obtained by a black-box model. While there exist applications where it is
acceptable to have a black-box model and use the obtained predictions, this is not the case for the
natural sciences, as a rule.

XAl methods can be used after a model has been trained on a data set to potentially discover
complex and previously unknown relations—that could otherwise be overlooked. The application
of the scientific methods does, of course, not stop at the point where an XAl-based approach has
found a relation between quantities based on a trained model. Still, XAl can provide the incentive for
a further investigation into that specific relation. In that sense, XAl should be seen as an additional
tool for scientists to discover knowledge, relations, and reasoning in data. [193, 194]

Coalition Game Theory

Introducing coalition game theory begins by defining the elements of a coalitional game V with a
transferable payoff, as done in definition 3.

Definition 3. “A coalitional game with transferable payoff consists of the following elements:
1. A finite set of N players, the so-called coalition.

2. A function v that associates with every nonempty subset of players S of the set N a real num-
ber v(S) (the payoff value achieved by the player set S).”

This definition is taken from [195].

In the sense of definition 3, the function v(.S) represents a payoff that is achieved by the set
of S players in a collective effort. However, the effort put into achieving this payoff—due to their
common actions—may differ for each individual in the group. Depending on the subset .S chosen
from the coalition, there might be individuals who—when working together—add disproportional
more value to the group than they would have cumulatively added as individuals in the subset S.
There might also be individuals who do not contribute any value to the task. This is where Shapley
values come into play, as Shapley values attempt to determine a fair split of the total payoff given by
the function v(.5), based on the average marginal contribution of each player in all possible subsets
S of player coalitions. [195] However, there is the requirement to define what a fair split is exactly.
The definition of a fair split suggested by Shapley values is based on axioms and given in definition 4.
Definition 4 is taken analogously from [196].

Definition 4. Let be ¢, (v) the split that player i gets and v the overall payoff in a game V, then a fair
split fulfills:

1. Vv e Vitholds Y ¢, = v(N)
ieN

2. Vv € VA Vi € N which fulfill v(S U {i}) — v(S) = 0¥.S C N it holds ¢, (v) = 0
3. Yu,w € VA Vi € N itholds p;(v+ w) = ¢;(v) + p;(w)
4. Yo e VAVi € N AVv € Ritholds ;(vv) = v, (v)

5. Vv € VA Vi, j € N that are symmetric in v, it holds that o, (v) = ¢;(v)
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These axioms include that a player who did not add to the value acquired in the game V does
not get rewarded afterward. Also, the axioms fulfill the intuition that equally contributing players
get equal rewards, as well as that consistency is ensured by the fact that all players’ splits add up
to the total payoff v(IV). Shapley values determine the split based on the previously mentioned
axioms and are introduced in the next section.

Shapley Values

The Shapley values can be determined using definition 5, which was taken analogously from [197].

Definition 5. The marginal contribution of an individual player i € N for a game VY with v € V being
the payoff value is given by equation (2.79).
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The interpretation of Shapley values is that the values represent the marginal added value (i.e. the
marginal contribution) to the game of the player i in the coalition of players for all possible subsets
S C N including player i, averaged over the number of players and the number of all coalitions
without the player i. [195]

Beyond the contribution of the individual player 4, it is possible to describe the effect on the
interaction of player ¢ with an additional player j using the Shapley interaction index as shown in
equation (2.80). [128, 198]

‘Pz‘j(Nv v) = (2.80)
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The interaction indices are related to the Shapley values as shown in equation (2.81). [128]

@i (N, v) = (N, v) — Z ©i;(N,v) (2.81)
J#i

This also includes that summing a Shapley interaction index of two players i and j over one of both
players results in the Shapley value for the other player. This is very similar to the construction of
the Shapley values , of individual players, which add up to the total payoff value.

After this small dive into coalitional game theory, it remains to discuss how Shapley values
should contribute to ML models’ explainability. If the individual players are interpreted as single fea-
tures, and the set IV contains all features of a data set an ML model has been trained on, then the
ML model can be related to the payoff value function v(.S). While this relation is true in principle,
there is more to it than simply replacing the payoff value function with the model, as discussed in
the following section. In fact, the SHAP software package is capable of computing Shapley values
with low-grade polynomial time for tree-based models using knowledge about the structure of the
underlying decision tree models. This is useful, as going through all possible combinations of fea-
tures can be computationally extremely expensive for large feature sets and actually presents as an
NP-hard problem. [199]
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However, in principle, SHAP can be used model-agnostic but with dedicated implementations
for certain models, including tree-based models, linear models, and DNN models. [128]

SHAP Software Package

As included in the name of the SHAP package (Shapley additive explanations), Shapley values are
used to explain ML models additively. The meaning of this additive property can be understood by
looking at equation (2.82). For this equation, may f(x) be the model to be explained, x a feature
vector, and X the set of all features. [128, 200]

f@) =E[f(@)]+ ) ¢:(f(z),x) (2.82)

ieX

In equation (2.82) the function ¢, denotes the SHAP value attributed to the feature i. The SHAP
values are based on the concept of Shapley values but denote the conditional expectation function
corresponding to the model f(x). [200] Hence, SHAP values give a measure of the contribution
of each feature to the shift of each prediction of the model relative to the expectation value. All
the shifts combined then result in the overall prediction. In fact, SHAP has built-in visualization
routines that allow the user to use SHAP values for both local (single data-point) [201] and global
understanding of the model’s prediction. Additionally, interactions of features can also be visualized
in order to understand model predictions. When using SHAP, it is important to understand that SHAP
does not detect causation between features and target quantity but rather explains which features
gave rise to the model’s prediction to which degree. This is intuitively clear, as the trained model is
not identical to the underlying real-world distribution of the target variable.

SHAP is also capable of approximating SHAP values when the exact computation procedure
is not feasible. However, this approximation assumes that features are independent of each other.
This translates to the interpretation that for all features, the Shapley interaction indices would be
zero everywhere except on the diagonal. This is, however, unlikely for a model that is trained on
real-world data with more than a single feature. [200]

Another consideration before applying XAl techniques in general regards the model’s accu-
racy. In fact, while linear regression models appear to be easily interpretable, a simple linear model
might not capture the underlying relations contained in the training data enough to lead to a mean-
ingful interpretation. This actually relates to the bias-variance trade-off, as low bias models tend to
be more explainable. [128, 202]

2.5.4 Availability of Data

In many cases, when dealing with materials screening applications, the data used for a research
project is often not (or not entirely) available at the beginning of the study. Usually, the data is either
acquired during the project or becomes available sequentially over time. There are different ways to
deal with these particular circumstances. The simplest and most obvious procedure is to retrain the
used model occasionally as the data set is updated. However, this approach is far from systematic.
Another approach would be online learning. [203] In online learning, ML models continue to learn
as data becomes sequentially available. This is also known as incremental learning, as the models
are not retrained on the entire data set but on the additional data that became available. [204]
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However, as it was feasible to retrain the acquired models entirely, including the additionally
acquired data, for the course of this doctoral project, it was not necessary to implement incremen-
tal learning. Hence, the method of choice in the cases where data became available sequentially
during this project was the batch learning method, which will be introduced in the following section.
However, if the data characteristics are not expected to change rapidly compared to the training set,
the flexibility and adaptive capabilities an online learning algorithm provides are not required.

Batch Learning

In batch learning—opposite to online learning—additional data that becomes available posterior to
the training process of an ML model, the model is not trained incrementally on the additionally avail-
able data only but retrained on the entire available training data set. This implicates an increased
computational cost for the retraining process than in an online learning scheme. However, depend-
ing on the use case, this is outweighed by the fact that after retraining the model on the updated
data, an evaluation of the retrained model is performed, intended to serve as an accuracy-ensuring
measure. It further allows for tracking the model’s predictive power as the amount of training data
increases. For online learning approaches with ANNSs, it is known that a phenomenon called “catas-
trophic interference” [205] can occur, where a model forgets a previously learned relation when
learning incrementally. This can lead to a significant increase in prediction errors. A scientific appli-
cation requires continuous monitoring of a model’s performance, which is easier to maintain in the
batch learning approach. The schematic workflow of batch learning is shown in Figure 2.27. [206]
Batch learning can also be used as an iterative procedure that is performed as the necessity arises
from an additionally acquired amount of data. The paradigms, which indicate when a model should
be retrained, vary. Possible strategies can include a certain time since the last retraining step, the
number of newly accumulated data points, and milestones in the research projects. The most ex-
treme case would be if each additional data point acquired immediately triggers the model to be
retrained on the entire data, including the new data point. Automatized model training and eval-
uation cycles can be implemented using Machine Learning Operations (MLOps) [207] techniques,
which aim to deploy ML models and predictions in an automated, continuous fashion. Using auto-
mated training and evaluation pipelines allows real-time tracking of resulting predictions and the
predictive performance with each change to the model or the acquired data. Continuous tracking
allows for more informed decisions regarding using the trained models. For example, a continuously
monitored test performance can indicate whether the retrained model’s performance is indeed in-
creased compared to the previous model. It can thus indicate whether switching to a retrained
model is advised. [206, 207]

Missing Data

Besides the constraint of more data becoming available at a later stage during a research project, it
can also happen that features of individual data points or labels are missing in a given data set. If
it is possible to obtain the correct (or at least meaningful by e.g. interpolation [208, 209]) entries
for the missing values, this is, of course, preferred. However, as this is not always possible, it can be
necessary to employ sparsity aware ML algorithms (like e.g. XGBoost [125]) if it is likely that possible
applications of the model will require the model algorithm to deal with missing values. [210]
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Figure 2.27: Schematic depiction of a batch learning workflow, which includes a trained model and addi-
tional data which is intended to be used as an addition to the existing training data. Typically,
until the retrained model has been evaluated and validated, the predictions of the previous
model are used. Cylinders depict the different reservoirs of data.
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In the following sections, three different applications of the previously discussed methods
within the field of materials science are presented. These studies represent the results gathered
during this thesis and are related to different physical phenomena and systems. Each section can
be considered as a project representing different use cases of data analytics and ML in the field of
computational materials science.
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3.1 Predicting Critical Temperatures for Materials Screening

The critical temperature, introduced in section 2.3.1, is a complex quantity to predict as the quantity
depends on material-specific properties, including e.g. structure, chemical composition, magnetic
state, magnetic moments, and interatomic interactions. However, the critical temperature is rele-
vant to industrial applications due to the fact that in the transition from a temperature above the
critical temperature to above, a phase change from a magnetic (e.g. FM, AFM, spin-spiral, etc.) to a
non-magnetic state occurs in the material. The critical temperature is closely related to the concept
of magnetic stability, as the magnetic ordering is lost below this temperature. [211] Heusler alloys
[212, 213] are known for multiple interesting properties including, but not limited to e.g. super-
conductivity [214], half-metallicity [215, 216], permanent magnets free of rare-earth metals [217],
thermoelectricity [218], high-temperature magnets [14] and piezoelectricity [219]. Heusler alloys
are known to have applications as magnetic shape memory [220] and tuneable topological insula-
tors [221]. The combination of magnetic stability (i.e. reasonably high critical temperature) and
half-metallicity in a single compound gives rise to applications in the field of spintronics for this
compound, as this would allow spin-polarized charge currents, so-called spin-currents [222, 223],
to occur and potentially be stable at operating conditions. This is inherently relevant for applica-
tions such as spintronics-based storage devices. [224-226] Hence, this combination is particularly
interesting. This thesis’s first results section discusses the key properties of magnetic Heusler alloys
with high critical temperatures. The occurrence of half-metallicity in Heusler alloys is discussed in
section 3.2.

In the material science community, efforts were made to predict the curie temperature for
more general material classes than Heusler alloys. [227, 228] While these studies use ML to predict a
special case of the critical temperature, the Curie temperature, they are also very different from the
results presented in the following. The aforementioned studies used a few thousand data points of
experimental results while simultaneously restricting the field of interest to FM materials. However,
typical challenges in materials science simulations include the sparsity of data, as acquiring data can
be expensive. This also holds for the critical temperature, as described in section 2.3.1, due to the
necessity to perform both the ab initio computation of a compound and the MC simulation. There
has been an earlier study [12] which used a regression based on experimental results in conjunction
with DFT to predict compounds with large critical temperatures. However, this work focuses on
Heusler alloys consisting only of transition metals. Also, existing work on feature importance for
critical temperature estimation is restricted to subgroups of magnetic Heusler alloys like e.g. to
alloys containing only transition metals and rare-earth elements. [229, 230]

The results presented in the following should be seen as a small-scale example of how to use
existing ab initio results in combination with ML methodologies using typical materials simulation
data set sizes (A few hundred data points), which include many features, in order to:

e Approach predictive modeling tasks with high-throughput materials screening applications in
mind.

e Reuse existing data purposefully beyond a simple analysis.

Discussing the applicability of a materials screening approach on small data sets, with and
without ab initio-originated results present.

Explain model predictions and potential patterns discovered in the data using state-of-the-art
XAl methods.
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The results presented in this chapter are partly published in [231]. The data [232] processed from
the original data set [14] and most of the code [233], which was written to obtain and visualize the
results discussed in the following, are publicly available.

3.1.1 Heusler Alloys

Heusler alloys represent a subgroup of the extensive phase space in materials sciences. This sub-
group exhibits a large amount of structural homogeneity. This homogeneity allows a complete
structural description of an individual ordered alloy using very few quantities as the lattice constant,
the component elements, and the symmetry group of the alloy. However, disordered Heusler com-
pounds exist beyond that, which can occur due to e.g. present impurities, vacancies, and atomic
displacements in the corresponding alloy structure. [234, 235] Compared to their ordered counter-
parts, disordered alloys can exhibit different material properties. [236] This concludes that disor-
dered Heusler structures and properties that emerge due to the structural disorder are of interest
to the scientific community. In fact, the occurrence of structural disorders in real-world compounds
depends on multiple factors. Such include the growth conditions of the material and the differ-
ence between the free energy of the ordered and the disordered structures. The latter represents
a competing effect of the free energies and is also influenced by the compound’s elemental compo-
sition, which explains why there are configurations for which either the ordered or the disordered
structures are energetically favored. Beyond that, temperature-dependent order-disorder phase
transformations are known. [237] Temperatures for which a structural phase transition is observed
indicate that the energetically lowest structures are different below and above this particular tem-
perature.

Given some transition metals X and Y and an element Z from the main groups 13 to 15 from
the periodic table, ordered Heusler alloys (sometimes referred to as full Heusler alloys or L2, phase)
follow the molecular formula X,YZ. [212, 213] For an inverse Heusler alloy (XA phase), the molecular
formulais the same, but Xis taken from the main groups 13to 15 and Z and Y each denote a transition
metal element. In the case of a structural half Heusler (C1, phase), the elements are chosen as in
the L2, phase, but the molecular formula is given by XYZ. [238] Beyond that, modern solid state
physics also recognized quaternary Heusler alloys given by the molecular formula X’ XYZ, while the
elements are chosen from the periodic table similarly as in the 1.2, phase case, but X" is also chosen
from the transition metals. An overview of the discussed structure types is given in Figure 3.1.

There are different types of quaternary Heusler structures known—typically denoted as Y
phase. These types can be characterized by the order in which the constituting elements are aligned
on the conventional unit cell diagonal. [240, 241] Figure 3.1 also illustrates how the knowledge of
the constituents, the lattice constant, and the structure type completely define the crystal structure.
This structural homogeneity restricts the phase space of possible Heusler-like materials, which sim-
plifies the feature space, compared to general 3-dimensional solid crystals, when it comes to mod-
eling and predicting quantities. This allows for accurate predictions based on only a fraction of the
required data, which would be necessary to achieve similar accuracies on the feature space of the
entire materials science chemical and structural landscape. However, including disordered Heusler
alloys already starts to lift the constraint imposed by the structural homogeneity due to the num-
ber of possible disorders and disordered structures. Often, disordered Heusler structures are also
characterizable by phases.
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(a) Structure of a full (L2,) Heusler alloy. (b) Structure of an inverse (XA) Heusler alloy.
This structural depiction is based on Cu,MnAl. This structural depiction is based on Hg,CuTi.

(c) Structure of a half (C1,) Heusler alloy. (d) Structure of a quaternary Heusler alloy.
This structural depiction is based on MnNiSb. This structural depiction is based on CoFeTiGe.

Figure 3.1: Depiction of different Heusler alloy structures. The color code used for the atoms in the
individual depictions is X'XYZ. The depictions were created using the VESTA software. [239]
The structure data of the mentioned compounds was taken from the Materials Project. [94]

For example, the A2 phase is known, in which the X and Y or the X and Z sites are intermixed
in comparison to the L2, phase. Another disordered phase is given by the B2 phase, where the sites
Y and Z are occupied randomly by atoms that would be located in these sites given the ordered L2,
phase. [242] Also, binary Heusler alloys are known, which consist of only two elements. For binary
Heusler compounds, the molecular formula concerning the L2 sites is given by X,XZ and referred
to as D0;. [243]

3.1.2 The Database

The JuHemd [14] is a database of Heusler alloy’s critical temperatures. It contains published experi-
mental results and such originating from ab initio KKR-GF calculations combined with an MC-based
simulation approach—as discussed in section 2.3.1—based on the crystal structures from the ex-
perimental publications. [14] Alongside the critical temperatures, structural information like the
symmetry group, elemental composition, and lattice constant are stored in the database. Also, the
theoretical magnetic moments of the individual atoms, which result from the first-principles calcula-
tions, are included. Counting ordered and disordered Heusler structures, half Heusler alloys, inverse
Heusler compounds, and quaternary Heusler formations, the database contains 776 unique crystal
structures.
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The counts of the structural phases’ characterization for the compounds contained within
the JuHemd is shown in Figure 3.2. The total contains 61 different symmetry group configurations
of ordered, disordered, and fractionally disordered configurations included in the JuHemd. The frac-
tionally disordered configurations represent 17 individual structures and symmetry groups.

300

250

£ 200
5
o
|9
©

2 150
S
s
(%]

100

50

0

L2, B2 Y XA Cl, A2 D03 Other

Figure 3.2: Overview of proportions of the structural phases contained in the JuHemd. The phases con-
tained in the JuHemd include ordered structures (L2, XA, Y and D03) as well as disordered
structures (mainly A2 and B2). It can be seen that the regular and ordered Heusler phase L2,
is the most prevalent in the database. In cases of fractional disorders, which only represent
a minority in the JuHemd, these phases are counted as “other” together with unlabeled sym-
metry groups and special minority cases like e.g. the noncentrosymmetric group R3m and
the structure groups B1 (NaCl structure) and B32 (NaTi structure).

The data stored in the database is not exclusively given in numeric values, but the database
also contains string and character data type entries for each compound, which describe and classify
the structure of each alloy. Additional metadata like e.g. a label assigned to an alloy based on the
chemical composition, where the published experimental results can be found, and when the re-
sults were published are stored within the JuHemd. To ensure that all potentially relevant features
of a given structure are extracted from the data, some of the metadata needed to be processed as
well to include additional features in the subsequent modeling and analysis steps. It is worth men-
tioning that the reported experimental structure results may vary for identical structures. This may
be the case when the published lattice constant of a given alloy slightly deviates from an identical
previously reported structure due to measurement inaccuracies. Hence also the computed critical
temperature differs based on the deviations of the structural setup. Only the most recently reported
structure and the corresponding computation were considered in such cases. As the theoretical crit-
ical temperature is computed in a layered process in which first the Heusler structure—based on the
empirically reported structure—is calculated using a KKR-GF DFT calculation, which also computes
the pairwise exchange coupling parameters for each alloy. The exchange parameter can then be
used to calculate the critical temperature further using the mentioned MC approach. This two-step
process is shown in Figure 2.8.
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The ab initio results in JuHemd have been computed using both an LDA-based [244] XC func-
tional as well as GGA-based [245] calculations. As a result there are two theoretical predictions for
the critical temperature contained in the JuHemd for many compounds. As some systems are easier
to compute with either of both functionals, computations can be successful for one functional but
fail for the other. This explains why there are not the same number of theoretical results in the
JuHemd for both functionals. As the quality of experimental critical temperature results is hard to
determine and varies drastically from publication to publication—primarily for reasons of purity of
the measured compound—the following analysis and discussion are based on the theoretical pre-
dictions for the critical-temperatures only.

3.1.3 Data Wrangling

The JuHemd contains many entries for each compound data point. Some entries are given as simple
numeric values (e.g. lattice constant, ab initio computed total energy, and the critical temperature
itself). Other entries are given as more complex data types which are encoding information, some
of them such that different properties or quantities have been consolidated (e.g. symmetry group,
system magnetic structure factors, and the system sites).

The heterogeneity and complexity of the stored data made extensive preprocessing necessary
prior to any further usage of the data. During this preprocessing step, additional material descriptors
have been constructed using the available information. Since disordered Heusler alloys are included
in the JuHemd, constructing certain features is more complex than if only ordered structures had
been included. For these disordered alloy systems, the site-specific fraction of occupying elements
in the compound is a quantity that influences many descriptors that could be constructed. For ex-
ample, the total magnetic moment is computed by taking the moments of the individual atoms from
the KKR-GF calculation and multiplying the moment with the fraction of the atom’s occurrence on
each site. This is simple for regularly ordered Heusler alloys and inverse Heusler structures. How-
ever, extra handling is required for half Heusler C1, phases, quaternary Heusler alloys, and also
for disordered Heusler-like structures. This affects e.g. the total magnetic moments, the absolute
magnetic moments, and the constructed atom densities. The aforementioned densities include the
constructed density of FM atoms (Fe, Ni, and Cobalt) within the compounds. Using the fraction of
an individual element in the compound as a descriptor allows us to figure out later which elements
on the Heusler sites have an increasing or a decreasing impact on the model’s prediction for each of
the compound’s critical temperatures. The concept of SHAP values, as introduced in section 2.5.3,
is used to conduct this discussion. As an ML model bases the prediction on the relations learned
by the data it was trained on, this allows us to understand both the prediction and discover the
relations represented by the training data.

Furthermore, incomplete data points were removed during the data processing step. Unfor-
tunately, the JuHemd contains multiple instances of missing data, e.g. if the initial first-principles
calculation does not converge and hence does not yield magnetic properties, then only the structure
and the collected experimental data might be contained in the JuHemd. [14] An approach to handle
missing data would be to interpolate missing features during preprocessing. However, given the
severity of features that were abundant in these cases (e.g. the fractions of atoms in the compound,
magnetic moments), an interpolation was not possible with reasonable accuracy without additional
information.
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Furthermore, supplement atomistic descriptors from the literature and the corresponding
compound totals—weighted by the atomic fraction of occupation—have been added during the
preprocessing step. By including the totals, no assumptions are made beforehand if it is physically
reasonable to sum e.g. the atomic numbers or not, but leave it to the feature importance, impact
analysis and the used model to determine if a given feature has predictive value or not. An overview
of features, including a short description for each feature, directly obtained from the JuHemd with-
out extensive processing, constructed descriptors, and additionally included atomistic quantities
with their corresponding totals is given in Table 3.1. The index 7 denotes a site in the set of inequiv-
alent [246] sites contained in the alloy structure. The summation over the lattice sites 7 included in
Table 3.1 denotes the summation over all inequivalent alloy sites. For the magnetic moments, the
index [ refers to the position of occurrence of the element the magnetic moment originates from
in the molecular formula of the alloy. Hence, for e.g. the L2; and XA phases [ € {1,2,3} but
for phases, like e.g. the quaternary Y configuration, with four unique elements contributing to the
structure [ € {1,2,3,4}.

By looking at Table 3.1, it is clear that considering all descriptors will introduce many features
to the ML models. While some descriptors will likely be highly correlated with each other, the num-
ber of features used here already suggests an approach using an ML model that can either shrink the
coefficients of less relevant features (e.g. such as LASSO) or determine the most impactful features
with regard to the prediction (like e.g. tree-based models). It is commonly known as “one-in-ten-
rule” [247] that—in order to avoid overfitting and the learning of spurious relations, i.e. such that
are not causally related, within the data—there should not be more than one feature included for
every 10 data points in the training set. While this rule is considered a best practice, it is not inher-
ently true for all models, as e.g. the LASSO [144] is used to perform a selection of essential features
[248] and hence, can handle more features than indicated by the “one-in-ten-rule”. However, this
has to be kept in mind, as other measures capable of reducing the potential overfitting might be
needed in this case. In Table 3.2, the features in the processed Heusler data set are grouped by their
origin, either directly extracted from the JuHemd, constructed out of JuHemd information, or added
by external libraries [249] based on the constituting atoms contained in the compound. Table 3.2
shows that the total number of descriptors adds up to 119, which are available to a model to predict
the target quantity, the critical temperature.

At the beginning of this PhD project, only 162 compounds (state on 8t" of December 2020)
representing exclusively ordered structures were already computed at that time. The amount of
data that was collected and ultimately published increased over time. With each iteration of the data
set, the data processing, the ML modeling, and the interpretation of the model predictions using XAl
were refined. Using the published version of the JuHemd [14], the original number of structures of
776 reduces to 387 post-processing for which the LDA XC [244] functional has been used in the ab
initio computation process. 408 structures are extracted post-processing, computed using a GGA
XC [245] functional. These 408 structures only include magnetic compounds from JuHemd with a
critical temperature greater than zero.
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Label

Description

lattice_constant
resval

etotal (Ry)

formula

Ferromagnetic Density

Rare earth Density

Symmetry Code

Individual Magnetic Moments

Absolute Magnetic Moments

Total magnetic moment
Sum of absolute magnetic moments

Magnetic State

Stochiometry
Density by Atomic Number

Atomic Number

Number of Neutrons

Nominal Mass

Number of Electrons

Exact Mass

Atomic Radius

Number of Valence Electrons

Covalence Radius
Period
Electronegativity
Van der Waals Radius
Electron Affinity

Lattice constant of the Heusler

T value in Kelvin

Total energy of the compound E-.

Chemical formula of the compound

Fractional density of FM

elements (Fe, Ni, Co) in the Compound

Fraction of rare earth components

in the Compound

An integer encoding the compound’s symmetry
group by occurrence in the sorted array of all
unique symmetry groups in the JuHemd
Individual magnetic moments m, of all
constituent atoms, ordered by their occurrence [
in the compound’s molecular formula

Individual absolute magnetic moments |m;| of all
constituent atoms, ordered by their occurrence [
in the compound’s molecular formula
M=>"m

1
Mypps = Xl: Iy

Four digit integer encoding the magnetic state
(FM, ferrimagnetic, AFM,

and spin-spiral)

Five digit integer encoding the
stochiometry of the compound

Fractional density of each atomic number is
encoded by an individual descriptor

Atomic number of the constituents Z;
Number of neutrons of the constituents
Nominal mass of the constituents atoms
Number of electrons of the constituents
Exact mass of the constituents atoms
Atomic radii of the constituents atoms
Number of valence electrons of the
constituents atoms eV?!

Covalence radius of the constituents atoms

Period number in the PSE of the constituents atoms

Electronegativity of the constituents atoms (%)

Van der Waals radius of the constituents atoms 7Y%

Electron affinity of the constituents atoms E{*

Table 3.1: List of entries in the processed data set by their label, including a short description. This table

is adapted from [231].
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Directly extracted Features

Constructed Features

Atomic Features

1ad:tice_constantJr
resvall

etotal (Ry)!
formulaf

Magnetic Statel

Symmetry Code’

Density by Atomic Number't
Ferromagnetic DensityJr
Rare earth DensityJr

Total magnetic moment !
Stoichiometry'

Individual Magnetic Moments’
Absolute Magnetic Moments’
Sum of absolute

magnetic moments!

Atomic Number’
Number of Neutrons®
Nominal Mass?

Number of Electronst
Exact Masst

Electron Affinity*
Atomic Radiust
Electronegativity¢
Covalence Radiust

Period?

Number of Valence
Electrons?

Van der Waals
Radius*

t One descriptor per compound

* Five descriptors per compound (Including the compound total)
t 31 elemental densities per compound and a single density for unoccupied sites
" Four descriptors per compound

I target quantity T,

Table 3.2: Grouping of the descriptor labels by the way they were obtained. For those acquired directly
from the JuHemd (left column), the label from JuHemd has been used. Each descriptor is
accompanied by the corresponding number of individual entries, per compound, which are
added to the processed data set. Cumulated, the processed data set contains 119 individual

features.
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It was necessary to define a cutoff to distinguish which compounds are considered magnetic.
This definition had to include a plurality of possible magnetic configurations, like e.g. FM and AFM.
Hence, it was necessary to define this cutoff independent of the net magnetization within the unit
cell, as the net magnetization of ideal AFM structures is vanishing. In this application, a compound
is considered magnetic if it fulfills equation (3.1). Using the sum of the absolute moments over all
atomic occupants, ¢ ensures that neither AFM states are missed and compounds containing only
a single magnetic site occupant are included. However, both criteria, the magnetic cutoff and the
exclusion of compounds with a critical temperature of zero, can easily be changed in the data pro-
cessing script [233] to ensure that these criteria can be adapted to different research needs in the
future.

Z\mﬂ >0.1pup (3.1)
1

The ML-based analysis and model evaluation results vary slightly for the data sets based on
the two different XC functionals regarding model performance. However, more training data for ML
models is generally preferred, as more training data potentially increases the model performance
and generalizability as a larger data amount is reducing the chances of overfitting to occur. [247,
250, 251] Therefore, the results that were computed using the GGA XC functional during the ab
initio KKR-GF computation are discussed in the following.

The processed compound’s data collection has been made publicly available [232] in the cu-
rated material’s science database Materials Cloud. [252] The key differences of this publication
compared to the JuHemd include the following:

e The data has been cleaned, in the sense that incomplete data points have been removed.

e Constructed descriptors have been included, which were deduced from JuHemd but not di-
rectly available from the original database.

e Every feature contains a numeric value for every compound, except for the molecular formula.
e The stored data is displayed as more human-readable in rows and columns.

e As the publication only contains theoretical predictions of the critical temperature, the meta-
data from the empirical publications was not included.

However, the described data cleaning process also creates some artifacts. The construction
of descriptors is performed before incomplete data points are removed. This is due to the fact
that in order to construct the descriptors for each alloy, the processing script iterates sequentially
over all compounds in the JuHemd, as the individual structures are also stored sequentially in the
database. Therefore, all features are collected for a particular compound before going to the fol-
lowing compound. If a descriptor is unavailable for a structure, the data point will temporarily be
stored as incomplete. All incompletely stored structures are removed at the end of the processing
after collecting all available descriptors for each compound. Hence, some elements contained in the
original JuHemd have no occurrence in the cleaned data. Therefore, elemental fractional densities
are present for these atomic numbers included in the processed data, which have a sample variance
of zero through the entire data set—which at the current version of the JuHemd affects 11 atomic
densities. If the JuHemd is extended in the future, these densities could turn into a meaningful
descriptor and should be included in the processed data set.
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As the data processing script is published [233], it would be easy to execute the corresponding
script for an updated JuHemd—assuming JuHemd maintains the current structure and retains the
existing keywords. Also, a structure ruled out due to incomplete data but completed in the JuHemd
in a future version would be included automatically.

Before the ML training process began, as the last step of processing the JuHemd data before
compiling the processed results, the zero variance features were removed as they are meaningless
to the model—as well as the underlying physics—and only would cost additional computing power
in the training process without adding any value to the model performance.

After the previously discussed processing steps, the distribution of critical temperatures match-
ing the compounds which have a full descriptor set is shown in Figure 3.3.
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Figure 3.3: Post-processing distribution of critical temperatures in the GGA data extracted from the
JuHemd. This depiction of the critical temperature distribution has been generated using
the GGA data set. However, the LDA distribution looks very similar, as can be seen in ap-
pendix A. This figure is adapted from [231].

From Figure 3.3, it can be seen that a large proportion of the critical temperatures contained
in the processed data is located below 400 K, which means that a significant amount of compounds
is located below the temperature range in which a real-world application would be considered as
briefly discussed in section 2.1.1. For increasing temperatures, the trend shown in the histogram
in Figure 3.3 is that higher critical temperatures are less likely when a random compound from the
data set is chosen. Ultimately, when crossing the 1100 K mark, only very few critical temperatures
lie above that. In fact, there is a single compound with a critical temperature located above 1500 K
in the processed data set. A gap larger than 200 K exists between the compounds with the highest
critical temperature. It is easy to see that it is unlikely that a model can learn to predict this par-
ticular data point due to the fact that the data point’s critical temperature is located far from the
critical temperatures of the remaining data. If randomly assigned to a test set, the highest critical
temperature would represent a prediction that is entirely OOS.
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Due to these arguments, the data point corresponding to the critical temperature located
Outlier Removal  above 1500 K is removed as an outlier prior to the training process. However, this data point is
located in the data publication [232] as it might be relevant for analysis methodologies and applica-

tions that differ from the prediction of critical temperatures using ML.

The distribution of atoms that constitute the compounds contained in the processed data per
site is shown in Figure 3.4.
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Figure 3.4: Distribution of atomic numbers in the compounds extracted from the JuHemd database, with
color-coded lattice site positions, post-processing and after outlier removal. This depiction
of the atomic number distribution has been generated using the GGA data set. However, the
LDA distribution looks very similar, as can be seen in appendix A.

From Fig 3.4 it is obvious that a large proportion of the compounds contained in the database
contains 3d transition metal elements. The fact that 3d transition metals have a high prevalence is
not random. As the critical temperature is an inherently magnetic property, the elemental selection

Strong Transition  of the JuHemd is biased towards magnetic elements. Hence, it is expected that the 3d transition
M§t3| metal group, which contains the classical FM elements iron, cobalt, and nickel as constituents, con-
Representation b te to a significant proportion of the observed magnetic properties in Heusler-like compounds.
It is also known that manganese plays an important role in the critical temperature for ordered and
disordered Heusler alloy, which is the reason why in Figure 3.4 manganese is a constituent of many

compounds in the data set. [253-255]

After the data has been processed, the next step is to use the acquired processed data to
model the critical temperatures for high-throughput applications using lightweight ML algorithms,
as discussed in the following.
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3.1.4 Machine Learning Modeling

An ML modeling process requires multiple steps in the context of a research study. These steps
typically include:

o Defining a modeling goal and choosing an appropriate metric according to the selected goal
o Preparing the data to be compatible with the modeling goal and potential models
e Select models and subsequently select hyperparameters

e Evaluation of the model predictions on data which has neither been used for training nor
hyperparameter selection

In this section the previously discussed steps of the ML modeling process are discussed with respect
to the data acquired from the JuHemd. Potential additional steps include e.g. retraining the selected
model with the chosen hyperparameters on the entirety of the available data post evaluation, per-
forming predictive modeling, discussion of remarkable model predictions (Correct or incorrect), and
analysis of the properties learned by the model by using XAl.

ML Prerequisites

There are a few ML-specific prerequisites necessary before the actual modeling is started. As a first
step, the order of compounds is randomized to avoid any clustering of compounds in the training,
validation, or test set. A random seed has been set at the beginning of each program file for ev-
ery step that includes data randomization in this thesis. [233] This allows for the reproducibility
of results without waiving the advantages of randomization in data randomization. In this section,
the models that involve randomization, inherently in their architecture, are given a fixed seed. This
section of the results gathered within this thesis is the sole section that strongly involves models
that rely heavily on randomization, such as the random forest and the extra trees models. Hence,
specifying a randomization seed for the models was not necessary within the other result sections.

As mentioned, the data will be split into training, validation, and test data sets. The individual
data sets’ ratios generally depend on the overall data amount of the given modeling task. Generally,
larger data sets are fine with smaller ratios for validation and test data, as even the small ratio still
includes several data points, allowing for a reasonable average score to be computed based on its
size. [256] However, the opposite is true for small data sets. [158] It has established that a good
choice for small data sets like the one examined in this study is to use 60 % of the data for training
and 20 % each for validation and testing. This is easily achievable with the CV methods by holding
back 20 % of the data for testing and choosing to perform a 4-fold CV on the remaining data to
find suitable hyperparameters. After the splitting has been completed, the features of all data sets
are scaled according to equation (3.2) using the mean 1™ and standard deviation /" of the
training set for all individual features j and data points 7. While it is not strictly necessary to scale the
data for all ML models, it is known for some models to improve their predictive capabilities. [257]
Hence, the data which the models are trained on are given by the matrix constructed by e using
the unscaled features z;.

_ ,,Train
PO Ak (3.2)
i o Train '

J
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After outlier removal and splitting of the data, the distribution of the critical temperature for both
the complete and the test data set is shown in Figure 3.5. One can see that, given the sizes of the
test data set, the range of the critical temperature in the complete data set is reasonably sampled
by the chosen test set. At this point, the data itself is prepared for the ML training process.
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Figure 3.5: Post-processing distribution of critical temperature in the GGA data after outlier removal,
including the distribution of the test set. This figure is adapted from [231].

Defining Modeling Goals

The task of choosing a modeling goal boils down to the intended application of the trained model. In
this particular case, this study aimed to gauge the capabilities of ML algorithms to predict a complex
magnetic quantity like the critical temperature on typical materials science data set sizes. However,
with a materials screening application in mind, in principle, a classification would be enough if the
critical temperature lies in the range where a technical application is reasonably possible. However,
aregression study is necessary for materials design tasks, for which a specific value range of a certain
quantity is required. Knowing this, it is reasonable to explore both approaches on this data set and
compare the regression and classification performances by assigning a class to the regression mod-
els predictions on the test set. These classifications, derived from regression models, are referred to
as indirect classification models within this thesis. While this is not commonly done, it can be seen as
an additional sanity check for both modeling applications to see if both approaches yield similar pre-
dictive capabilities. This is especially interesting as determining the theoretical critical temperature
is given by a layered process, as seen in Figure 2.8. This leads to the intuitive question of whether
both layers (DFT and MC) can be replaced by an ML approach, which also includes the question of
whether the data available only from atomic and structural descriptors (As the DFT-originated de-
scriptors such as e.g. magnetic moments, magnetic states, and total energy are not available if the
DFT step is not performed this reduces the set of descriptors to a total of 107 features compared
to all the features listed in Table 3.2) is sufficient to predict a magnetic property such as the critical
temperature using ML models.
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However, besides replacing both steps, it would be imaginable only to replace the MC step
with ML-based methods and include the DFT-originated features. Also, the latter approach would
be favorable as the MC step consumes the same order of magnitude of computing time [253] asthe ~ With and
ab initio calculation. The different levels of invoking ML models into the modeling process of the = Without DFT
critical temperature are shown in Figure 3.6. Results
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KKR-GF Calculation

Magnetic
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KKR-GF Calculation ML Model

Single Step
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Figure 3.6: Schematic depiction of the layered T}, determination with different ML integration levels with
increasing incorporation of ML models and modeling complexity from top to bottom. Cylin-
ders depict where different data is collected during the multi-stage process. This figure is
adapted from [231].

Considering both the layered process required to determine the critical temperature and the
fact that both classification and regression approaches are examined, this leads to 4 cases to be
examined and evaluated for their practical applicability. The examined combinations are shown in
Figure 3.7.

ML Modeling Integration

MC - ML DFT + MC - ML
. Regression on Regression on
Regression
Full Feature Set Reduced Feature Set
e e Classification on Classification on
Classification
Full Feature Set Reduced Feature Set

Figure 3.7: Depiction of combinations of modeling tasks to evaluate, which arise in this study from the
combination of either modeling a classification or a regression task and replacing either the
MC step with an ML model or both the ab initio and the MC step with a single ML model.
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However, still the choice has to be made, by which metric a model and the corresponding
hyperparameters should be chosen as well as how predictions on the test set should be evaluated.
It is not the goal of this study to optimize both hyperparameters and models to a great extent but
rather to explore the capabilities of ML models on a rather typical materials science data set and
a common materials screening task. There is only a small selection of hyperparameters included
per model, which allows us to restrict the selection process of the hyperparameters to a basic grid
search.

As already discussed in section 2.5.1, different metrics for classification and regression are
available. Given the discussed modeling goal for the regression task, the metric used in this study
to select the best estimator and hyperparameters using the 4-fold CV procedure is the coefficient
of determination (R2) from equation (2.54). The coefficient of determination has been chosen as
employed metric as R? reflects how well the features reflect the change of the target quantity with
the given model. Hence, technically, the R? metric should obtain the most meaningful model, in
the physical sense, even though the particular model obtained does not necessarily have a lower
prediction error than another model. However, the dimensionless R? value is accompanied by the
MAE to determine how large a typical error for model predictions on unseen data would be. For
the model training and optimization, the MSE was used due to its convexity and differentiability, as
discussed in section 2.5.1 and 2.5.2.

The classes should be defined before choosing the appropriate metric for the classification
evaluation and model selection. As already discussed in section 2.1.1 and also mentioned in the
literature [258], an experimentally measured critical temperature of 400 K includes a decent buffer
zone compared to room temperature for technical applications. Hence, also considering potential
deviations by the ab initio + MC approach and additional errors introduced by the ML modeling
on top of the theoretical 7, data, which might be present compared to the experimental critical
temperatures, the threshold for critical temperatures to be labeled as “High 7, “ was chosen to be
above 473.15 K which corresponds to 200 K above 0° C and hence is located around 180 K above
room temperature which constitutes a buffer zone. A compound with a critical temperature below
the previously introduced threshold is classified as “Low T.“ Of course, this choice of threshold
represents a trade-off between including as many compounds that might be suitable for application
as possible and excluding those, for which the model would overestimate the modeled critical tem-
perature, while the actual experimental critical temperature does not allow an application within
operating temperature conditions.

Having the classes for the classification task defined allows us to make a well-founded choice
of metric. A few things have to be considered for this choice as discussed in section 2.5.1 and Ta-
ble 2.4, these include:

e From Figure 3.5 it can be seen that the classes, given the discussed threshold, are slightly
unbalanced, which means that the data considered is unequally distributed.

e Precision is essential, as a low precision would include false positives, leading to materials
being flagged as “High T_,“ while they are “Low T_.“ compounds. As the “High T_“ classified
compounds in a materials screening application would be subject to further examination, this
would constitute a waste of resources on the false positive classifications.

e Recall is also essential, as a low recall would include the occurrence of false negatives in the
predictions. This translates to a significant amount of compounds with a potential application
due to their “High T,“ being missed in a materials screening application.
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Hence, the F1 score was chosen, as the F1 score represents the harmonic mean of precision
and recall; this metric is well suited to meet both discussed requirements. Beyond that, the F1 score
is known to work well with unbalanced data. Alongside the test F1 score, the accuracy, precision,
and recall include additional dimensions to interpret the model’s performances.

Regression

To select a model that could be used to predict the value of the critical temperature in a high-
throughput materials screening setting, a plurality of models should be evaluated—following the
mentioned shotgun approach—in order to determine an appropriate model type which is match-
ing the data complexity, for the regression task, on this particular data set. An overview of the
models evaluated on both the complete and the reduced data set, which does not contain ab initio-
originated descriptors and hence skips both modeling steps for the critical temperature, as depicted
in Figure 3.6, is given by the models listed in Table 3.3.

Linear Non-linear Ensemble

LASSO K-Nearest Neighbors Random Forest Regression
LASSOLars Decision Tree Regression Extra Trees Regression

Linear Regression Gradient Boosting Regression

XGBoost Regression

Table 3.3: Overview of the models evaluated for the regression task using the training data on the pro-
cessed JuHemd data set. The models are grouped by their categorization as either linear, non-
linear, or ensemble predictors. As the K-Nearest Neighbors model and the LASSOLars model,
which combines the discussed LASSO model with the least angle regression (Lars), were both
not discussed in section 2.5.2, details on the model architectures and the underlying theory
can be found in [259-262] and [42, 144] respectively.

For all models listed in Table 3.3, except for XGBoost [125], the open source scikit-learn [114]
implementation has been used. This also holds for the models used in the later discussed classifica-
tion task as seen e.g. Table 3.6.

Using the 4-fold CV procedure and evaluating on 20% of the randomly selected test set—as
previously discussed—the CV and metrics results obtained from the different models including the
DFT-based features are shown in Table 3.4.

From Table 3.4 it can be deduced that the ensemble regression models outperform both
the linear and the non-linear models. Naturally, ensemble models also represent a group of non-
linear estimators; however, as ensemble models compile their overall predictions out of a plurality
of model predictions, they are often considered a distinct subclass of non-linear predictors. [263]
The insight that ensemble models are well suited for this task is not surprising, as ensemble models
are known to handle tabular data well. [124, 127] However, while it is not surprising, it could not
have been assumed beforehand that ensemble models are capable of predicting a complex magnetic
property like the critical temperature on such a small data set and with the large structural phase
space of ordered and disordered Heusler type alloys with a reasonable error, using the discussed
features.
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CV-Score | Train R? | Test R? | Train MAE [K] | Test MAE [K]
LASSO 0.66 0.78 0.66 101.78 121.61
LASSOLars 0.67 0.78 0.66 101.65 121.53
Linear Regression << 0 0.83 << 0 88.4 >> 1000
K-Nearest Neighbors | 0.49 0.65 0.57 125.69 131.6
Decision Tree 0.55 1 0.64 0 123.35
Random Forest 0.73 0.97 0.81 34.86 93.35
Extra Trees 0.77 1 0.85 0.0 81.87
Gradient
Boosted Trees 0.77 1 0.84 0.0 82.14
XGBoost 0.69 1 0.79 0.2 93.43

Table 3.4: Regression CV and test evaluation results on the complete descriptor set, including descrip-
tors acquired by the ab initio computation such as magnetic moments, magnetic state, and
the total energy of the system determined using the KKR code JUuKKR [62]. The models are
grouped similarly to the order in Table 3.3 into linear, non-linear, and ensemble predictors.
All values are rounded to the second digit after the decimal to avoid the impression that they
are meaningful, as the scores over the validation and test sets represent an average over less
than a hundred compounds. This digit convention is also used in the Table 3.5, 3.7, and 3.8.

As discussed in section 2.3.1, the DFT + MC-based calculation procedure error compared to
experimental values ranges typically around 10 % to 15 %. Considering the lowest MAE on the test
set (~ 84 K) of the models in Table 3.4, it is clear that the ML-originated error will have a larger
deviation to experimental values for most of the compounds as this additional modeling layer adds
another source of errors. However, this error can be further decreased with more training data
available. Using the first iteration of the JuHemd, available for training, only including 162 ordered
compounds, the best achieved R? in CV at that time was about 0.25. This demonstrates the power
of ML models to scale their predictive power, modeling capabilities, and accuracy with additionally
acquired data and also explains the improved (For all models except the linear models) test score
compared to the CV-score, as in the CV procedure—for each CV fold—only 60 % of the available
data was used for training but, to determine the test score 80 % of the data was used for training
the model which was chosen after a coarse hyperparameter optimization. The fact that the linear
models did not profit from the additional training data could be attributed to their limited learn-
ing capabilities and the non-linear relations determining the critical temperature. A discussion of
the non-linearity of this particular modeling task is included in section 3.1.5. While the improved
R? could also be a result of a particularly easy-to-predict test set—compared to the individual val-
idation sets in the CV process—this is unlikely as the data has been randomized before splitting it
additionally, other random splits have been observed, during this study, with comparable perfor-
mances. However, interpreting the R2-score on the validation and test set, it is remarkable that
77 % or respectively 85 % of the change of the critical temperature’s variance can be linked to the
included descriptors. This concludes that at least 15 % of the critical temperatures’ variance is not
sufficiently described using the available features. In this context, it is important to mention that
this result is dependent on the overall data quality. Therefore, parts of the critical temperatures’
unexplained variance could be caused by insufficient convergence parameters in either the DFT or
the MC calculation step.
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Table 3.4 displays a significant amount of overfitting—low bias and high variance—for all mod-
els except the K-Nearest Neighbors model. This can be intuitively understood, as the K-Nearest
Neighbors model determines a set of closest points within the training data to a point the model
should predict. Hence, the typical prediction of the K-Nearest Neighbors model represents an av-
erage of “close” data points from the training set. A consequence is that the model’s prediction
accuracy is highly dependent on the density of data points within the training set regarding the pre-
diction region. This, on the one hand, limits the model’s learning capabilities, as the model links
data points by their similarity rather than relating individual features to the target quantity. Still,
on the other hand, this particular model architecture reduces the likelihood of overfitting as the av-
eraging over multiple “close” data points prevents the learning of e.g. spurious correlations within
the training data. The training R? is increased—by model construction—compared to the test R? as
the data points, which shall be predicted to determine the training R2-score, is, of course, included
in the training set and hence contributes the correct T, value to the average.

The regularized linear models exhibit a significantly decreased amount of overfitting com-
pared to the tree-based models. Given the number of features in this data set, it is important to ap-
ply feature selection or regularization to extract only the meaningful descriptors rather than letting
every feature contribute to the prediction. This lack of feature selection and regularization explains
the simple linear regression’s poor CV and test performance. Every descriptor is fitted within this
model, regardless of the individual feature’s predictive power. Hence, the model’s performance on
unseen data is poor. In direct contrast, the LASSO model, which shrinks the modeling coefficient,
depending on the regularization parameter, of inferior (Compared to other features within the data
set) features to 0, shows far better generalization capabilities. Both regularized linear models exhibit
some degree of overfitting. Still, due to the limited model complexity, the overfitting—but also the
CV and test performance—is decreased compared to the tree-based models. The overfitting of the
tree-based models could be decreased by an extended hyperparameter search, which would include
reducing the tree sizes (pruning) or increasing regularization parameters in the case of the ensemble
models. Generally, increasing the amount of training data would also assist in reducing the degree
of overfitting.

Summing up, ensemble models perform best in predicting the critical temperature value. The
corresponding prediction errors are reasonable on unseen data. It can be concluded that—given the
reduced computational time consumption compared to the computationally intensive DFT + MC
approach—ensemble models such as the extra trees regression model and the gradient boosted
trees regression model could indeed be used—especially with more training data—to predict the
value of a complex quantity such as e.g. the magnetic critical temperature. It is worth mentioning
that both steps, the DFT and the MC calculation, can take several hours, running highly parallelized
on one or more supercomputer nodes, each, while the ML training, hyperparameter optimization,
evaluation, and prediction on this particular data set can be done on a laptop within a few hours.

In Figure 3.8, the test predictions and relative residuals of the extra trees model are shown,
compared to the DFT + MC-based theoretical value of the critical temperatures. While metrics such
as the coefficient of determination and the MAE quantify a model’s performance, it is crucial to ex-
amine the predictions of a model carefully and hence gain an understanding of potential systematic
deviations. An example of such deviations in a model’s prediction can be seen when comparing the
prediction of the extra trees model to the LASSO model’s predictions, shown in Figure 3.9.

3.1 Predicting Critical Temperatures for Materials Screening

Overfitting

K-Nearest
Neighbors

Linear Models

Runtime
Comparison

Systematic
Deviations

81



82

1000

800

600

400

Predicted 7. in Kelvin

200

0

8
[
T:I o 6
~ 4 ‘>

og.“ 2 &0
0 e .h';ww“;" ﬂe-a!‘o-"-“ g0
250 500 750 1000 0 200 400 600 800 1000
Test T, in Kelvin Test T, in Kelvin

Figure 3.8: On the left: Depiction of the extra trees regression model predictions, compared to the DFT

+ MC determined critical temperatures including the distributions for both axes quantities
(blue marginal histograms and lines, while the lines represent the smoothed distributions),
the mean value (red dashed line in marginal distributions), and the standard deviation around
the mean (red colored area in the marginal distributions). In this comparison, the red line
marks the “ideal” prediction, where the predicted value matches the test label. The blue
line represents a linear regression fitted to the blue data points, representing the compari-
son between model prediction and test label. The blue envelope around the linear regression
denotes a 95 % confidence interval, which was determined using an approach based on boot-
strapping. [264] On the right: Depiction of the relative residuals of the extra trees regression
model’s predictions over the range of all test labels. The dotted red line corresponds to a
LOESS [265, 266], and the corresponding blue envelope represents a point-wise computed
95 % confidence interval. These depictions are similar to [231].
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From Figure 3.8, it can be seen that there are two considerable outliers existing on the lower
end of the T, range. While the deviation would not be substantial in absolute values, the outlier
is significant in this relative depiction. Furthermore, the slope of the blue line fitted to compare
predicted labels to the true critical temperature labels is slightly lower than the ideal prediction
line in red. Overall, the extra trees regression model appears to model the critical temperature
appropriately. However, the model has a slight tendency to overestimate small values of the critical
temperature—which is supported by the fact that the slope of the line fitted to the predictions is
smaller than the slope of the ideal red line and the majority of relative residuals as well the locally
estimated scatter plot smoothing (LOESS) fit on the right of Figure 3.8 are positive for smaller test
T, values. This overestimation is also what caused the mentioned outliers. However, starting from
approximately 200 K, the LOESS fit appears to remain close to the value of zero. This indicates
that large asymmetric errors—which would appear in the smoothed relative residuals—in either
direction seem to be absent for this model. While this is true for the extra trees regression model,
this does not hold for less complex models, such as the LASSO model, as seen in Figure 3.9.
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Figure 3.9: On the left: Depiction of the LASSO model predictions, compared to the DFT + MC approach,
analogous to the left of Figure 3.8. On the right: Depiction of the relative residuals of the
LASSO model’s predictions over the range of the entirety of test labels, including the depiction
of a LOESS fit, analogous to the right of Figure 3.8. The left depiction is similar to [231].

For the LASSO model, it can be seen from the slope of the blue fitted line in Figure 3.9 that
the model is not able to model the nuances of the critical temperature comparably to the extra trees
regression model. Also, the distribution of the predicted values is much more narrow and, hence,
more centered around the mean value. Therefore, extremely high and low critical temperature
values are predicted less accurately. From the relative residuals plot on the right of Figure 3.9, it can
be seen—in comparison to Figure 3.8—that the outliers at the low end of the T, range exhibit an
even more significant deviation from the actual labels. Also, the LOESS fit of the LASSO residuals
approaches the value of zero slower, exceeds it afterward again, and then continues to decrease
below zero. The sign change of the LOESS fit is located around the mean of the predictions, which
is clear evidence that a majority of values below the average prediction are overestimated, and a
majority of the values above the mean prediction are underestimated. This is another hint, besides
the metrics, that the LASSO model fails to model the critical temperature appropriately.

3.1 Predicting Critical Temperatures for Materials Screening

Symmetric Errors
Above 200 K

LASSO
Predictions for
High & Low T,
Values

83



Kernel Density
Estimation

84

While both depictions of Figure 3.8 and Figure 3.9 are excellent for determining systematic
issues within the individual model’s predictions for different segments of the critical temperature
range, a more macroscopic impression of the predictive performance is gained by examining the
residuals (or relative residuals) distribution. The kernel density estimation [267, 268] of the relative
residual distribution for both models is shown in Figure 3.10. The kernel density estimation is used
to smoothen the distribution, as the low number of data points within the test set is insufficient to
shape a histogram similar to the probability density function of the residuals. Using a smoothing
Gaussian kernel, an estimation of the probability density function can be acquired using the kernel
density estimation.
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Figure 3.10: Kernel density estimations of the relative residuals of the extra trees regression (left) and
the LASSO (right) model.

From Figure 3.10 the previously discussed shortcomings of the LASSO model at the task of
predicting the critical temperature on this data set, compared to a more complex ensemble model,
become even more apparent as the distribution’s main peak of the LASSO residuals is broader and
more asymmetric towards an overall overestimation of the predictions. Also, the outliers, visible
as bumps beside the main peak, are located further from the main peak, as indicated by the pre-
vious residual plot. For the extra trees regression model, the distribution of the relative residuals
is nearly symmetric at the main peak. A completely symmetric residual distribution would indicate
the absence of systematic deviations of the predicting model.

Beyond the models trained on the entire set of descriptors, the same models were trained on
the reduced descriptor set, which excluded all ab initio obtained features. The results of the training
and evaluation are listed in Table 3.5.
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CV-Score | Train R? | Test R? | Train MAE [K] | Test MAE [K]
LASSO 0.31 0.58 0.63 142.29 129.92
LASSOLars 0.31 0.54 0.59 150.17 129.92
Linear Regression << 0 0.62 << 0 132.23 >> 1000
K-Nearest Neighbors | 0.35 0.5 0.53 157.09 144.51
Decision Tree 0.3 1 0.5 0 127.62
Random Forest 0.56 0.95 0.75 45.3 95.33
Extra Trees 0.53 1 0.74 0.0 100.02
Gradient 0.57 0.94 072 | 5207 94.52
Boosted Trees
XGBoost 0.55 0.93 0.69 57.78 100.11

Table 3.5: Regression CV and test evaluation results on the reduced descriptor set, excluding descriptors
acquired by the ab initio computation as magnetic moments, magnetic state, and the total
energy of the system. The models are grouped similarly to the order in Table 3.3 into linear,
non-linear, and ensemble predictors.

From Table 3.5, it is apparent that, again, ensemble models are performing best even on the
reduced set of features. However, from the CV-scores, it can be seen that the excluded features,
compared to the evaluation shown in Table 3.4, were essential to the modeling task, as the CV-
scores dropped significantly. This also translates to the scores for the test set and the corresponding
errors. This unanimous drop in the model’s performance results from the fact that the magnetic
quantities, which are closest related to the magnetic critical temperature, were taken out of the
feature set. Hence, the models training on this reduced data set had the same modeling task but less
information about the physical system. The models have to rely on structural and atomic properties
with magnetic information excluded. This increased modeling complexity transfers to the evaluated
model performances. The lowest MAE from Table 3.5 is about 15.5 % higher than compared to the
lowest MAE from Table 3.4. An additional observation that can be derived from Table 3.5 is that the
training scores of the majority of the ensemble models have decreased. Combined with the overall
decrease in CV and test scores, it is safe to say that the modeling task indeed became unanimously
harder for all models, even on the training set. This underlines the importance of the magnetic
properties to the critical temperature modeling. Again, the increase in scores comparing CV and
test scores can be explained by the fact that the test scores are evaluated on models trained using
a more extensive training database.

As in the previous, a detailed look is taken at the model performing particularly well given the
metrics from Table 3.5. In this case, this is the gradient boosting regression model. In Figure 3.11
the predictions, relative residuals, and the kernel density estimation of the probability distribution
density of the relative residuals of the gradient boosting regression model, trained on the reduced
feature set, for the test set are shown.
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On the upper left: Depiction of the gradient boosting regression model’s predictions, com-
pared to the DFT + MC approach, analogous to the left of Figure 3.8. The model was trained
under the exclusion of the DFT-originated features. On the upper right: Depiction of the
relative residuals of the gradient boosting regression model’s predictions over the range of
the entirety of test labels, including the depiction of a LOESS fit, analogous to the right of Fig-
ure 3.8. On the lower: Distribution of relative residuals of the gradient boosting regression
model’s predictions, which was smoothened using a Gaussian kernel density estimation.



Various conclusions can be drawn from the depictions in Fig 3.11. First, comparing the predic-
tion to the ab initio + MC-originated critical temperatures on the top left of Figure 3.11 shows that
large outliers are present at both ends of the critical temperature range. This translates to the rela-
tive residual depiction, where a significant outlier in the small temperature region and one outlier
at the high end of the critical temperature in the residual plot can be seen. The outlier on the higher
end has an absolute residual value of about 800 K. Also, comparing the dashed red average line
on the marginal of the comparison depiction, it can be seen that the prediction’s average is lower
than the test range’s average. Hence, a systematic underestimation is present, which translates to
the relative residual depiction. From the kernel density estimation of the probability distribution
function of the relative residuals, it can be seen that the main peak is nearly symmetric with a single
significant outlier, representing the outlier from the lower end of the temperature range. The slope
of the blue line fitted to the prediction comparison to the test set is lower than e.g. the correspond-
ing fitted line from the extra trees regression model, which still had DFT-originated features present.
However, as also indicated by the asymmetric envelope, the certainty of the linear regression is infe-
rior to the corresponding line fit to the extra trees regression predictions in Figure 3.8. The significant
outlier on the high end of the critical temperature range also causes this uncertainty. Furthermore,
the LOESS fit remains below zero, starting at about 300 K. This again indicates a systematic under-
estimation. It could also be concluded that in the upper half of the critical temperature range, the
prediction errors seem to be more significant in the direction of a lower temperature. Compared to
the kernel density estimation of the relative residuals of the extra trees regression model from Fig-
ure 3.10, the kernel density estimation of the relative residuals of the gradient boosting regression
model trained on the reduced feature set, the main peak of the distribution in Figure 3.11 is broader,
which is no surprise as the gradient boosting regression models performance metrics, quantifying
the predictive power and accuracy, already indicate the decreased predictive capabilities compared
to the extra trees regression trained on all available features including the magnetic properties.

Considering that the performance of the models, which were trained without the magnetic
descriptors, is considerably decreased and even significant outliers like those seen with the 800 K
residual can occur, this approach is probably not well suited for an accurate materials screening
approach. Hence, if the materials screening procedure should not depend on the DFT-originated
features, transforming the problem into a classification task and, therefore, simplifying the modeling
task might represent a suitable approach to enable a materials screening application that does not
rely on the output of DFT calculations.

Classification

Moving to a classification task reduces the modeling complexity by construction, as the goal is not
anymore to predict a certain value but rather classify the critical temperature into high and low,
which corresponds to “potentially relevant” for applications requiring stable magnetism at operating
temperatures and “likely not relevant” for such applications. The models used for the classification
task are listed in Table 3.6.
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Linear Non-linear Ensemble Indirect

Logistic Regression  K-Nearest Neighbors Random Forest Extra Trees Classification
Classification Classification LASSO
Decision Tree Extra Trees
Classification Classification

Gradient Boosting
Classification
XGBoost Classification

Table 3.6: Overview of the models evaluated for the classification task using the training data on the
processed JuHemd data set. The models are grouped by their categorization as either linear,
non-linear, ensemble or indirect estimator. As the linear Logistic Regression model for classifi-
cation was not discussed in section 2.5.2, details on the model architecture and the underlying
theory can be found in [269, 270].

The group of “Indirect” classification models shown in Table 3.6 represent the previously
trained regression models, for which their predictions were classified according to the previously
mentioned classification thresholds. While it is unusual to use regression models and turn them

Indirect Models  into classification models by simply labeling the predictions with a class based on a threshold, this
provides the opportunity to compare regression and classification models. This is useful as scores
for classification models are naturally elevated compared to regression models due to the more re-
stricted label space. Hence, the scores of the indirect models serve in assisting the reader to justify
the quality of the classification models.

The evaluation results of the classification models trained on the entire set of descriptors,
including the DFT-originated features, are shown in Table 3.7.

CV-Score | Train F1 | Test F1 | Test Accuracy | Test Precision | Test Recall
‘ Logistic Regression 0.82 0.91 0.86 0.89 0.85 0.88
K-Nearest Neighbors | 0.66 0.85 0.88 0.91 1 0.78
Decision Tree 0.71 1 0.84 0.88 0.87 0.81
Random Forest 0.84 1 0.89 0.91 0.88 0.91
Extra Trees 0.82 1 0.91 0.93 0.91 0.91
Gradient Boosting 0.83 1 0.84 0.87 0.8 0.88
XGBoost 0.84 1 0.86 0.89 0.87 0.84
Indirect Extra Trees n/a. 1 0.88 0.9 0.88 0.88
Indirect LASSO n/a. 0.86 0.81 0.85 0.81 0.81

Table 3.7: Classification CV and test evaluation results of models trained on the complete descriptor set,
including descriptors acquired by the ab initio computation. The models are grouped into
linear, non-linear, ensemble, and indirect classification models.
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From Table 3.7, a few observations are apparent. It can be seen that the linear logistic regres-
sion model exhibits a similar performance as the much more complex ensemble models. Addition-
ally, comparing the train and test performances, it is apparent that the logistic regression model,
while reaching similar performance scores as the ensemble models, exhibits less overfitting than
the ensemble models. The K-Nearest Neighbors classification model, while not achieving a great
CV-score, displays the least degree of overfitting and increased performance compared to the re-
gression task. For the K-Nearest Neighbors model, it is apparent that the additional 20 % training
data, which were used before computing the test scores, had a significant impact on the model’s
predictive capabilities. Overall, the performance scores have improved compared to the regression
task, which reflects that the classification task poses a simpler task than the regression task. As the
indirect models were trained on the regression task, the model selection and validation used the
R2-based 4-fold CV-score; the CV-score has not been included in Table 3.7 as well as Table 3.8, as
the score is based on a different metric and is hence not comparable to the other score contained in
the corresponding tables. It can also be seen from Table 3.7 that the indirect classification models
perform similarly to the direct classification models of similar model type, i.e. the linear logistic re-
gression model and the ensemble models. In Figure 3.12, both the logistic regression model’s and
the extra trees classification model’s confusion matrices of the test set predictions are shown.
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Figure 3.12: Confusion matrix of the predictions on the test set acquired from the logistic regression
(left) and the extra trees (right) classification models trained on the entire set of features,
including such resulting from the ab initio computation step of the critical temperature 7.

From the confusion matrices in Figure 3.12 it becomes apparent, as already suggested from
the metrics displayed in Table 3.7, that the ensemble model manages to lower the number of false
classifications by a factor of one-third compared to the logistic regression classification model. While
the metrics provide an abstract understanding of the model’s performances, the confusion matri-
ces clearly depict the strong predictive capabilities of the classification models on this particular task.
Only three out of 32 high T, compounds were falsely classified as structures with low critical temper-
ature on unseen data. In a materials screening setting, this would translate to a high 7, compounds
rate, which would be overlooked by the classification model of below 10 %. However, to screen a
compound, the DFT calculation would still be necessary in this approach. Training the models on
the DFT independent feature set and evaluating their performance using the discussed metrics and
methods leads to the results shown in Table 3.8.
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CV-Score | Train F1 | Test F1 | Test Accuracy | Test Precision | Test Recall
Logistic Regression 0.68 0.75 0.75 0.79 0.7 0.81
K-Nearest Neighbors | 0.6 0.8 0.88 0.91 1 0.78
Decision Tree 0.63 1 0.78 0.82 0.73 0.84
Random Forest 0.74 1 0.85 0.88 0.82 0.88
Extra Trees 0.74 1 0.84 0.87 0.8 0.88
Gradient Boosting 0.74 0.97 0.9 0.93 0.93 0.88
XGBoost 0.76 0.96 0.87 0.89 0.83 0.91
Indirect Extra Trees n/a. 1 0.92 0.94 0.94 0.91
Indirect LASSO n/a. 0.75 0.84 0.88 0.84 0.84

Table 3.8: Classification CV and test evaluation results of models trained on the reduced descriptor set,
excluding descriptors acquired by the ab initio computation. The models are grouped into
linear, non-linear, ensemble, and indirect classification models.

As can be seen from Table 3.8, the CV-scores of all trained classification models dropped
unanimously. While this is expected, as the modeling complexity is increased with the magnetic
descriptors withheld from the models, it is interesting to observe that the performance drop on
the unseen test set is less significant. Furthermore, observing that the logistic regression model

Increased  is neither under nor overfit is an additional indicator that the modeling complexity has increased
MOde“_ﬂg compared to the modeling task where magnetic information was included in the set of descriptors.
Complexity  stij| the ensemble models outperform other examined models. This also holds for the indirect extra
trees classification model, for which the test score outperforms every other test score in Table 3.8.

Hence, the confusion matrices of the XGBoost classification model and the indirect extra trees clas-

sification model obtained by predicting the test set data using each model are shown in Figure 3.13.
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Figure 3.13: Confusion matrix of the predictions on the test set acquired from the XGBoost (left) and
the indirect extra trees (right) classification models trained on the reduced set of features,
excluding such resulting from the ab initio computation step of the critical temperature T.,.
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Examining Figure 3.13 it is obvious that the XGBoost classification model displayed on the left,
while having the same amount of false negative classifications as the extra trees classification trained
on the entire feature set, the XGBoost classification model suggests a larger number of false positives
on the test set. Surprisingly, the indirect classification model built on the extra trees regression
model trained on the reduced feature set, displayed on the right side of Figure 3.13 is outperforming
every other examined classification model trained on the reduced feature set and even outperforms
the direct extra trees classification model’s test performance included on the right of Figure 3.12,
which was trained on the entire feature set available. The fact that the indirect classification model
outperforms the other classification models is likely a coincidence rather than something that occurs
regularly. However, this concludes that also without performing the ab initio calculations, a materials
screening process would be possible and beneficial, as e.g. the indirect extra trees classification
model maintains the false negative classification rate of below 10 % even in the absence of the
DFT-originated features. This allows for large-scale and computationally very inexpensive materials
screening applications. This demonstrates the capabilities of ML models within materials science to
add value to the scientific community based on existing scientific data.

3.1.5 Explainable Artificial Intelligence

While obtaining accurate predictions and quantifying model performances is important for applica-
tion cases, the discussed metrics do not allow for an insight on why an individual data point has been
predicted to a certain value or class. However, this insight can be acquired using XAl methods such
as SHAP values discussed in section 2.5.3. In the following, plots of SHAP values, which provide an
overview of the impact of individual features on the model’s predictions, are discussed. These de-
pictions are referred to as SHAP summary plots. While this discussion could be conducted for both
regression as well as classification tasks, the discussion in this section is restricted to selected regres-
sion models. However, the discussion of the SHAP values corresponding to the classification models
would be analogous. In this section, the discussion is also restricted to the nine features with the
largest sum of impact magnitudes for each model due to the large feature space in both the entire
and the restricted feature set. To generate the SHAP values depictions, the model is passed to the
SHAP package’s [128] explainer routine, and the marginal feature contribution to the overall model
prediction, away from the base value (the average model prediction), is determined for data points
which were part of the training data set. In this case, using the entire training data set to generate
the feature-importance depictions was feasible. The SHAP values for each of the nine features with
the largest sum of impact magnitudes are shown for the extra trees regression model trained on
the entire feature set (as included in Table 3.4) are shown in Figure 3.14. For each SHAP summary
plot, a selection of features, which is indicated to be remarkably impactful to the model’s prediction
by the depiction of the features SHAP values, is depicted separately. This approach represents an
example of data-driven science and analysis.

From Figure 3.14, it can be seen that all of the nine most impactful features except for one (the
electronegativity of the atom at the inequivalent lattice site two which is denoted by x()) represent
magnetic properties of the compound. However, also the interplay of atomic electronegativities in
Heusler alloys is known to affect the magnetic properties of the compound [271, 272], which explains
the occurrence of an atomic electronegativity in the SHAP summary plot from Figure 3.14. Four of
the features displayed in the SHAP summary plot represent DFT-originated features, namely My,
|mq|, M, and m,. Apparently, the magnetism of the element in the first position in the molecular
formula is more important to the model’s prediction than the moments at the other positions. This is
expected for all L2, compounds, representing the majority in the data set, as this element occupies
half of the alloy’s structural lattice sites.
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Figure 3.14: SHAP values for the nine features with the largest accumulated magnitude of impact on the
prediction from the prediction base values of the extra trees regression model trained on
the full set of features. SHAP summary plots like this one relate feature values (color) to the
feature impact on the prediction (SHAP value). The layered coloring serves the purpose of
visualizing the number of data points in the region of SHAP values (width of color). The color
itself indicates the feature value relative to the mean feature value. This fFigure is adapted
from [231].

This impact on the model’s prediction emerging from this element appears in both the ab-
solute and the actual value of the magnetic moment, including the sign. Hence, for many of the
structures in the database, the magnetic moment arising from the element in the first position in
the molecular formula determines a large proportion of the overall magnetic moment. For all quan-
tities, except the density of ferromagnetic constituents, an increasing SHAP value of the feature
seems to correlate with an increasing feature value. However, this proportionality is less clearly dis-
played for the magnetic state, which is expected as the magnetic state descriptor is represented by
an integer encoding the magnetic state type and manifestation degree. The magnetic state consists
of digits ordered like e.g. FAS. While each letter represents the manifestation degree of either
an FM (F), an AFM (A), or spin-spiral (S) state extracted from the JuHemd, the values of each digit
reach from 0 to 9. A state code of 000 hence represents a non-classifiable magnetic state according
to the JuHemd. Hence, it is clear that large numbers for the state encoding correlate to stable FM
states, which are beneficial to a larger critical temperature, which is indicated by the present red
area at the magnetic state feature on the right. From Figure 3.14, it is apparent that the sum of
absolute magnetic moments and the total moment within a compound are considered impactful to
the prediction outcome by the extra trees regression model. Hence, both quantities are shown in
Figure 3.15. Additionally, both the magnetic moment and the absolute magnetic moment of the
element on the first position in the molecular formula of the compound are shown in Figure 3.16.

From Figure 3.15, it can be seen that a decent amount of compounds exhibit relatively large
critical temperatures but, at the same time, a vanishing compound’s magnetic moment, however,
not a vanishing sum of absolute moments. This is an indication of strong AFM configurations.
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Figure 3.15: Depiction of the unsplit, but processed GGA compound’s total moments in comparison
to the theoretical, critical temperature of the compound (left) and the sum of absolute
magnetic moments of the compound compared to the corresponding critical temperature
(right). The marginal distributions, averages (dashed red line), and standard deviation in-
tervals (red colored area) are added for the reader’s convenience. Right figure is adapted
from [231].

However, when the sum of absolute moments is examined, it becomes clear that increasing
values My, . correlate with larger critical temperatures. More precisely, large critical temperatures
do not occur for compounds with small sums of absolute magnetic moments. At the same time, a
large M ,,,, does not conclude that the corresponding compound has a high value of T,. This caused
the lower right triangle shape constituted by the data points on the right of Figure 3.15. This relation
can be expressed as in equation (3.3), using a constant C, and is an example of the mentioned non-
linearity of the task to model the critical temperature. [231] In this sense, the absolute magnetic
moment is acting as an upper boundary for the critical temperature.

T, < CMy,, (3.3)

From Figure 3.16, it can be seen that a significant number of atomic magnetic moments at the first
molecular formula position are located close to zero or even exactly zero. However, examining the
depictions, it can be seen that there is no clear relation between this particular magnetic moment
and the critical temperature. While a larger moment generally correlates with a larger critical tem-
perature, the relation between both quantities follows no simple, e.g. linear relation. Beyond that,
the depictions in Figure 3.16 reveal properties of the magnetic moment, specific to the moment
of the first element X of the compound’s molecular formula, emerging from the processing of the
JuHemd. Considering the theoretical upper moment limit for d magnetism is situated at 5 ;15 and
the upper limit for f magnetism is located at 7 115, the moments appear too large. However, it is
essential to keep in mind that for e.g. both the L2, and XA phase of the corresponding magnetic mo-
ment originating from the atom constituent X actually contain two lattice site’s magnetic moments.
A more extreme case represents the binary alloy Cr;Al with a theoretical GGA critical temperature
of 1216 K. In this case, the magnetic moment at the first molecular formula position is combined
out of six individual moments of this AFM alloy, as the AFM structure was computed using a larger
unit cell.
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Figure 3.16: Depiction of the unsplitted, but processed GGA magnetic moments emerging from the ele-
ment on the first position in the molecular formula in comparison to the theoretical, criti-
cal temperature of the compound (left) and the corresponding absolute magnetic moment
compared to the critical temperature (right) of the alloy. The marginal distributions, aver-
ages (dashed red line), and standard deviation intervals (red colored area) are added for the
reader’s convenience.

Despite that the magnetic moments are only determined per unique constituting element
and not per site and unique constituting element occupying the site, which would accumulate to a
significant number of descriptors when disordered compounds are considered, represents an over-
simplification of the site’s occupations, the ML models can relate this simplified quantity to the
critical temperature.

The SHAP values corresponding to a selection of the most impactful features on the gradi-
ent boosting model’s regression, which was trained without the DFT-originated descriptors, are dis-
played in Figure 3.17. From Figure 3.17 it can be seen that only two features are directly associated
with magnetic compounds, namely the fractional cobalt density and the fractional density of FM
atoms (i.e. Fe, Co, and Ni) in the compound. From the SHAP summary plot, it can be told that
very large fractional densities of FM atoms within a compound strongly contribute to the gradient-
boosted trees regression model, predicting a large critical temperature for that particular compound.
However, low and average values of the FM density seem to have a lowering impact on the critical
temperature prediction. In contrast to the FM density, the impact attributed to the cobalt density
is more clear, as very low amounts of cobalt (i.e. absence of cobalt) within a compound cause the
model to predict a reduced critical temperature, while larger values of the fractional cobalt den-
sity appear to have an increasing effect on the T, prediction. The individual densities of the FM
constituents and the combined FM density, in relation to the critical temperature, are depicted in
Figure 3.18. Both the cobalt and the FM density were also among the nine features that were shown
in the SHAP summary plot obtained by the model, which has been trained on all features, including
such based on ab initio results.
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Figure 3.17: SHAP values for the nine features with the largest accumulated magnitude of impact on the
prediction from the prediction base values of the gradient boosted trees regression model
trained on the reduced set of descriptors, excluding the DFT-originated magnetic features.

From Figure 3.17, it can be seen that the total (summation of atomic) electronegativity has
a significant impact on the model’s prediction. While this is not surprising, as already previously
discussed, the electronegativity is indeed related to the magnetic properties of a Heusler alloy; in-
terestingly, a large sum of total electronegativities appears to be related to lower predictions of the
critical temperature. However, it is important to mention that a sum of electronegativities indeed
does not represent a measurable physical quantity but implies properties of the individual alloy’s
constituents. Furthermore, it is observable that the total number of valence electrons within the
Heusler compound exhibits a significant impact on the model’s T, prediction. However, it is well-
known for Heusler alloys that the number of valence electrons is relevant to a plurality of material
properties, including magnetic phenomena. [273, 274] The relation between the total number of va-
lence electrons and the critical temperature is shown in Figure 3.19. From the previous observations,
itis safe to say that in the case of the model, which was trained under the exclusion of DFT-originated
features, other quantities, which are closely related to the DFT-originated magnetic properties ap-
peared in the SHAP summary plot as those features were excluded. Hence, these quantities seem
to provide the model information, which the model did not need to rely on when the DFT-originated
features were available. It is noteworthy that the model successfully identifies a correlation between
some features and the critical temperature. For these features, this is consistent with the existing
physical understanding. While it is intuitively clear that the symmetry code and, hence, the structure
of the compound affects the magnetic properties, the interpretation of the symmetry code’s impact
in this plot is arbitrary, as the symmetry’s encoding here represents an integer which is assigned
to the compound, based on the order of occurrence of the compounds corresponding symmetry
group in a list of symmetry groups uniquely occurring within JuHemd. Hence, the SHAP summary
plot shows no apparent relation to this particular feature. Unsurprisingly, the SHAP values indicate
that the atomic number of the first site Z; has an impact on the critical temperature’s prediction. It
seems that lower values for the first site’s atomic number might be beneficial to a higher magnetic
critical temperature.
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Inspecting Figure 3.4, it is clear that lower relative feature values for the atomic number on
site one correspond to atoms in the range of 3d transition metals, which are known to exhibit mag-
netic properties. Examining Figure 3.18, one can see that there are trends of proportionality be-
tween the critical temperature and the corresponding density visible for the iron density as well as
the FM density. However, neither for cobalt nor nickel this trend could be observed. The propor-
tionality is very clear for the FM density. This observation validates the order provided in the SHAP
summary plot in Figure 3.17. From this SHAP summary plot, it can also be seen that especially low
densities of cobalt are—on average—contributing to a prediction of a lower critical temperature,
which is in line with the relation of the cobalt density with the critical temperature due to the very
populated lower T, region in the depiction for low cobalt fractions.
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Figure 3.19: Relation between the total number of valence electrons of the compound to the critical tem-
perature on the whole GGA data set. The marginal distributions, averages (dashed red line),
and standard deviation intervals (red colored area) are added for the reader’s convenience.

While there is no simple trend visible in the depiction of the total number of valence electrons
of a compound in comparison to the corresponding critical temperature, the discretely clustered
data points seem first to increase and then lower in the average critical temperature for increasing
valence electron numbers. This average T, peaks at about 29 valence electrons within the com-
pound. It is understandable that a model considers this relation when concluding a prediction. The
fact that this relation is indeed non-linear is already visible from the corresponding SHAP value dis-
tribution shown in Figure 3.17.
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Figure 3.18: Relation between the compound’s fractional densities of FM (i.e. Fe, Ni, and Co) atoms,

cobalt, nickel, and iron to the critical temperature of the whole GGA data set. The subfigures
(a), (b), and (c) are adapted from [231].
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3.2 Half-Metallicity in L2, and XA Heusler Alloys

Similar to the critical temperature, half-metallicity as a property of magnetic materials is the result
of complex physical interactions and an interplay (like e.g. hybridization of orbitals) within the mate-
rial related to e.g. elemental composition, electron configuration, and structural disorder. [75, 275]
Materials that are conducting in a spin state (by convention the spin-up state is denoted as 1) but at
the same time do not conduct in the other spin state (spin-down is denoted |)—i.e. the materials
have a gap in the DOS of the minority spin—have applications in concepts of spintronics, in partic-
ular for spin-injection devices. [276] These concepts include e.g. the concept of magnetic random
access memory (MRAM), which— in contrast to semiconductor-based dynamic RAM—represents a
non-volatile memory technology, which is already applied in special use cases. Due to the reduced
consumption of power, the further development of the MRAM technology—which allows an appli-
cation beyond the established areas—would be desirable to reduce the power consumption of IT
systems. [277]

In the particular case of the ordered Heusler alloys phases L2, and XA, the known Slater-
Pauling behavior is able to identify half-metallic compounds based on their elemental composition
and magnetic configuration. [75, 278] While the Slater-Pauling behavior is extremely helpful when
screening for half-metallic compounds, the relations formulated by [75] rely on the fact that the total
magnetic moment of a half-metallic alloy has an integer value. However, as ab initio calculations
include approximations, there is an error margin for the magnetic moment present even when using
the Slater-Pauling behavior for materials screening. This section demonstrates the application of
ML methods for predictive modeling in this particular materials screening application, including an
analysis of the predictions compared to the Slater-Pauling behavior and the use of the SHAP package
to explain the relations learned by the used model.

3.2.1 Data

The data used for training, validation, and testing, which contains spin-polarization fractions at the
Fermi energy for different L2, and XA Heusler compounds, was collected by collaborators from the
University of Alabama and published by the time of writing this thesis. [216] The fractions have
been determined using DOS computations obtained using the plane-wave pseudopotential code
QUANTUM ESPRESSO. [279-281]

Over time, two different iterations of the mentioned data were available for the presented
discussion. The number of individual data points per phase and both phases combined of the dif-
ferent data set versions are shown in Table 3.9. From Table 3.9, it can be seen that in both data
set iterations, the amount of data points is balanced for both L2, and XA phases. The polarization
fractions at the Fermi energy contained in the data set are depicted in Figure 3.20.

Data Version L2, Compounds XA Compounds Combined

1 98 98 196
2 179 165 344

Table 3.9: Overview of data set sizes per phase at both iterations of the data set.
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Figure 3.20: Distribution of the spin-polarization at the Fermi level within the data set. Each vertical bar
indicates a 10 % range starting from zero polarization on the left. The different colored bars
show the distribution for L2, and XA separately.

From Figure 3.20, it is evident that the lower spin-polarization fractions at the Fermi energy
are dominant within this data set. Using the presented data as a training database for a materials
screening application, which can be translated to an ML classification task, which uses structural and
magnetic data to classify compounds for half-metallicity as an inherent property.

Structural Magnetic
Labelt M
Phase? my,
Lattice Constant  mx,

My

PX¥Z,* M =3"m,
i
1.2, or XA

Table 3.10: Overview of features stored alongside the spin-polarization at the Fermi level within the
database.

Using the descriptors from Table 3.10, during this study, a set of features has been con-
structed, which is shown in Table 3.11. The descriptors constructed, using the features from Ta-
ble 3.10, accumulate to a total of 15 features. With this number, the training data is well within the
one-in-ten rule. Also, it is apparent from Table 3.10, that the magnetic moment of the main group
element within the Heusler alloy was missing in the initial database. While the magnetic moments
consider the respective elements, the magnetic moment might not have a significant size or impact
on the model prediction. However, this should not be assumed beforehand and, therefore, was
examined in the XAl analysis and model evaluation process instead of simply omitting the feature
entirely. Hence, as m, was not directly contained in the database, the value was determined using
the formula (3.4).

my=M—mx —mx —my (3.4)
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Structural Magnetic  Electronic

Zx My, evxal
Zy my, ey?!
Z, my eVZal
Phase’ my eyal
Lattice Constant M

MAbs i

t One Hot Encoded (L2, = 1 & XA = 0)
F M, = Z m;|

Table 3.11: Overview of descriptors derived from those included in the data base.

Using the spin-polarized DOS p_.(E) acquired using ab initio calculations, the spin-polarization frac-
tion at the Fermi energy Pg(E}) is determined using the expression from equation (3.5).

pT(EF) - pl(EF)

3.5
p(Ep) +p (ER) (33

Ps(Ep) =
From Figure 3.21 it can be seen that only six different elements occupy the Z site in the L2, Heusler
structure within the training data. On the other hand, the X and Y structure sites are occupied by
various 3d and a few 4d and 5d (only on the X site) transition metals. Of course, since half-metallicity
represents a magnetic phenomenon, the strong involvement of 3d transition metals is expected.
This description also applies to the atomic number distribution of the lattice sites for the inverse
Heusler XA phase, as shown in Figure 3.22.
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Figure 3.21: Atomic number distribution for the L2, phase structures within the training database, col-
ored to depict the occupation of different structural sites.

3 Results




However, when moving to the materials screening using compounds different from the train-
ing database, one should be aware that, the less similar a predicted compound is compared to com-
pounds from the training database, the more OOS this particular prediction will be. It is clear that
in an ML-assisted materials screening application, some degree of OOS prediction is unavoidable to
discover new materials. Still, this should be kept in mind when judging a model’s predictions. A way
to quantify the individual OOS prediction degree would be to count the number of elements in the
screened compound, which are known from the training data at the corresponding sites. If all ele-
ments on the individual compound sites were in the training set at some point, then the prediction
would not be OOS. However, if the training data does not contain any elements of the compound at
these specific sites—however, possibly on other sites—the prediction would be called entirely OOS.
Generally, one would expect a higher predictive performance for screened compounds that are less
00sS.
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Figure 3.22: Atomic number distribution for the XA Heusler phase structures within the training
database, colored to depict the occupation of different structural sites.
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3.2.2 Modeling Goal

It has already been clarified that this particular study aims to screen materials ab initio data of or-
dered full and inverse Heusler alloys for half-metallic properties. However, to approach this task
using ML modeling, the problem must be translated into a classification task. Given the value of
Pg(ER) is continuous, it is necessary to define a threshold that separates the compounds from the
training database into “high” grade spin-polarized and “low” grade spin-polarized. When defining
this particular threshold, a few factors have to be considered:

e As seen in Figure 3.21 and Figure 3.22, the higher spin-polarization range is less represented
in the data set, which might lead to larger error margins when predicting highly spin-polarized
compounds

o At the same time, setting a threshold too high would also cause the training database to shrink
in this particular polarization region

o A false negative error has to be weighted worse than a false positive, as missing a compound
prevents further scientific examination, while a posterior validation using ab initio calculations
of a false positive is able to rule out false positives easily

Considering the previously mentioned arguments, the interval for low-grade spin-polarization at the
Fermi level was set to be [0,0.6) while the complement high-grade interval was set to be [0.6, 1].
While a spin-polarization fraction of 60 % at the Fermi level is quite far from actual half-metallic
behavior, this ensures that fewer compounds get overlooked in the screening application and the
training base for the higher region—within the larger data set size—still represents about 34 % of
the training data. For the same reasons the threshold has been chosen, it was decided that the
recall would be used to select and tune an appropriate model alongside a 4-fold CV procedure and
20 % of the original data set size as test data. After selection, tuning, and evaluation, the model
is retrained on the entire available data to improve the data variety and size the model has been
trained on before applying it to screen for (near) half-metallic alloys. Before the data splitting, the
data has been randomized to avoid clustering. Also, a scaling, as shown in equation (3.2), has been
performed for the data, which has been used for model training and evaluation but has also been
applied to the screening data.

As mentioned, half-metallicity in Heusler L2, and XA phases can, in principle, be determined
using the known Slater-Pauling behavior. This behavior implied that a half-metallic alloy would lie
on either of the lines represented by equation (3.6). [75, 278] There exist similar rules for other
materials classes such as the Heusler phases C1, and Y. [282]

eval — 28
My, =eXs, —24 Mgy =4 eyl —24 (3.6)
e%‘“ﬂt — 18

The physical reasoning behind these lines is that the total number of valence electrons within the
compound is indeed an integer value. However, if also the total magnetic moment M is an in-
teger value, both majority and minority band numbers must therefore be integers. This fact can
be related to d orbital hybridization between the transition metal constituents hence—in the L2,
phase—forming a total of 12 | states below the Fermi level, which results in the rule for the L2,
phase in equation (3.6). A similar reasoning holds for the XA phase but is well documented in the
literature. [282]
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It could be argued that if the Slater-Pauling behavior is known, using different materials
screening approaches is unnecessary as one could apply the rules deducted from equation (3.6).
However, there is no guarantee that the reasoning behind the Slater-Pauling behavior is the ex-
clusive origin of half-metallicity in Heusler alloys. In fact, there are examples known, such as L2,
Mn,CuGe, which violate this rule with an integer total magnetic moment as it has 29 valence elec-
trons while exhibiting half-metallicity at the same time. [283]

The computation result of magnetic moments by ab initio methods can be impacted by the ap-
plied DFT method, chosen XC functionals, and used convergence parameters. For some compounds, Necessity for
these computational differences can lead to a deviation of the total magnetic moment from a value ~ Screening
that would otherwise be an integer value. Hence, this particular compound would be missed by ~ Methods Beyond
simply applying the relation from equation (3.6). Also, the presence of spin-orbit interaction affects zlater’Pau“ng
the spin-polarization of the DOS and, subsequently, the half-metallicity of a compound. [284] Com- urve
bining these reasons, it is clear that other methods besides the Slater-Pauling behavior are needed
to effectively screen Heusler compounds data, computed with ab initio methods, to discover half-
metallic materials and complement existing methods. In Figure 3.23, the lines from equation (3.6)
as well as the screened L2, and XA Heusler ab initio data obtained from the Materials Project [94]
database are shown. For this depiction, a deviation of the total magnetic moment of 0.05 5 from
an integer value is in line with margins chosen by other works as e.g. by [75].
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Figure 3.23: Depiction of Slater-Pauling behavior on the screened data from the Materials Project. [94]
The markers meeting the criterion (red lines) from equation (3.6) are highlighted in green.
The marginal distributions on top of the depictions show the distribution of the compounds
meeting the Slater-Pauling behavior.

What cannot be seen directly from the scatter plots in Figure 3.23, but from the marginal 27 Compounds
distribution on top of the visualizations, is that 24 1.2, and three XA compounds are situated exactly in Screening

on the green cross markers, indicating that those compounds meet the relation from equation (3.6) Pata Fulfilling
- . . Slater-Pauling
and hence will display half-metallic properties. Behavior
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At the beginning of this study, a selection of models very similar to those examined in section
3.1 have been tested on the training database, and from this selection of models, the XGBoost [125]
model has been chosen as the best fit for this particular classification problem. The hyperparameter
optimization was performed using a grid search algorithm and was later replaced by a BO hyperpa-
rameter search algorithm. [285] Furthermore, in the last model iteration, which has been used for
the XAl-based analysis of the model’s predictions, the 4-fold CV process has been replaced by a strat-
ified 4-fold CV approach in which the balance of classes is maintained within each validation set. It
is known that stratified CV procedures can lead to improved model performances when imbalanced
data is used for ML model training. [286, 287]

The following section outlines the workflow for the screening process, including details on
how the screening data was obtained from the Materials Project [94] database, processed, filtered,
and screened.

3.2.3 Screening Workflow

After the model selection and training—of the selected model—on the data, which was subse-
quently published in [216], the materials screening workflow first required the obtainment of suit-
able data, which in this case is ab initio magnetic and structure data from the Materials Project [94],
for the screening itself. The Heusler phase L2, belongs to the space group Fm3m, while the XA
phase belongs to the space group F43m. It is possible to filter the database for space groups using
the Materials Project API. However, not all compounds listed in the database under these particular
space groups fulfill the definition of Heusler alloys discussed in section 3.1.1. Besides compounds
that do not fall into the typical definition of a Heusler alloy, there are also compounds contained
in the database, which simultaneously are part of the training database. While the main goal of
this study is the examination of half-metallicity in full and inverse Heusler alloys, on the side also
transition metal Heusler type alloys, which were predicted by multiple model versions used in this
study to have a highly spin-polarized DOS at the Fermi energy, have been examined, for which a
brief discussion is included in a later section. An overview of the data set sizes, regarding the space
groups initially as well as after the removal of both, compounds that appear in the training database
and compounds which do not fall into the classical definition of Heusler alloys as by section 3.1.1 is
given by Table 3.12.

Set Size for Set Size for

P ing St = —
rocessing >tage Space Group Fm3m  Space Group F43m

Full Space 4394 200
Group Size

Removed Training 4375 19
Compounds

Applied Criteria for 428 54

Heusler Composition

Table 3.12: Overview of screening data set sizes obtained from the Materials Project [94] before any
removal of structures, after removal of structures which appeared in the training database,
and after removing structures which do not fulfill the typical definition of Heusler alloys.
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From the obtained structural data, the compilation of a screening database is straightforward.
The data obtained from the Materials Project [94] includes the individual atomic magnetic moments,
the atom types on the different sites, the volume of the cubic unit cell, and the corresponding space
group. From these quantities, it is possible to construct the descriptors shown in Table 3.11, which
were used to train the model. In principle, the Materials Project [94] database also contains DOS
information for many compounds. However, together with collaborators from the University of Al-
abama [281], it was determined that the DOS data from this database is insufficient to screen for
half-metallic compounds as e.g. Fe,CrSi has a DOS [288, 289] which resolves both spin states, dis-
playing metallic characteristics, in the database but is known to be half-metallic by e.g. [290]. This
example also serves as a reminder to consider the quality of the examined data, as also discussed
in section 2.1.2. While the data included in the Materials Project database [94] is computed mainly
using the PW-based code VASP [291], it should be kept in mind that the computations available
there are performed in a high-throughput fashion, which concludes the necessity to question if the
data quality provided in such databases is sufficient for the intended use case. In this case, it was
concluded that the DOS data is not sufficient for the intended screening application. However, com-
puting a high-quality DOS is a much more challenging endeavor than performing an SCF ab initio
calculation and thereby computing the magnetic moments based on ICSD [292] structures. There-
fore, the chosen modeling approach is appropriate in this case because the magnetic data from the
training database was also computed using a PW-based method.

An overview of the screened compounds regarding the atomic numbers occupying each struc-
tural site is shown in Figure 3.24 for the L2, Heusler phase and in Figure 3.25 for the XA inverse
Heusler phase.
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Figure 3.24: Atomic number distribution for the L2; phase structures in the screened structure’s
database obtained from the Materials Project [94], colored to depict the elemental occu-
pation of different structural sites.

From Figure 3.24, it can be seen that the 4d and 5d region for the X and Y sites are much
more populated than in the training set distribution from Figure 3.21. Also, compared to the training
database, there are not five different elements occupying the Z site but rather 13 different elements.
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The immediate consequence of both of these observations is that there will be a decent amount of
predictions that this screening data will be OOS to some degree. However, as can be seen in Fig-
ure 3.25, this is not the case to this extent for the XA inverse Heusler phase, which can be attributed
to the comparably lower number of structures available from the screened database for this phase.
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Figure 3.25: Atomic number distribution for the XA inverse Heusler phase structures in the screened
structure’s database obtained from the Materials Project [94], colored to depict the ele-
mental occupation of different structural sites.

The code written and used during this study for interfacing with the Materials Project API,
data processing, model training, model evaluation, prediction, and structured processing/filtering
of the predictions has been published. [293]

3.2.4 Model Predictions

In the following, the predictions of the different model iterations and their differences are presented.
Subsequently, using the last trained model, an analysis of the model’s predictions on the test set
data is outlined. This assists in understanding which features were relevant to the model for the
classification of each individual compound.

Prediction Analysis

The data set, provided and collected by collaborators [281], was extended during the course of this
study. Even before the data set was published [216], exploratory data analysis, experimentation
with different models, and predictions were performed. This led to multiple model iterations and
multiple batches of predictions based on the screening data set. At the beginning of this study, it
was experimented with a three-class approach, separating the compounds in classes of vanishing
Pg,0 < Pg < 0.6,and Pg > 0.6.
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While this approach gives more distinct insights into the degree of DOS polarization at the
Fermi level, this approach was both harder to interpret using XAl methods and had decreased test
performance compared to a two-class model when it comes to finding compounds with high DOS
spin-polarization at the Fermi level in a screening application. Hence, the three-class approach was
swapped for a binary classification task. An overview of the different model iterations and what is
distinct to them compared to the previous XGBoost model is given in Table 3.13.

Model Difference to Previous Version Test Test Test  Class Size
Iteration Recall Accuracy Size Pg>60%
1 Initial Model Trained on 196 Data Points 50% 75 % 40 12

Extended Training Data Base to 344 Data Points

Included My, as a Feature 60%  86% 6 15

2

Added Numbers of Valence Electrons as Features
3 Used BO for Hyperparameter Optimization 66% 86% 69 5

Included m, as a Feature

[y [0y,
Moved to stratified 4-fold CV 57% 8% 69 4

Table 3.13: Overview of different model iterations which were used during this study and the character-
istics which differ compared to the previous iteration. All score values have been rounded to
the second decimal point.

The 4" model iteration introduced in Table 3.13 was exclusively used for the XAl analysis
of the relation the model has learned. Of course, in principle, the predictive process could have
been repeated with arbitrary many versions of (potentially improved) models. However, the infor-
mation gain per predictive iteration would be minimal at some point due to the cumulative number
of predictions already made in the previous model iterations. This was also the case here, which
is why this last model iteration was only included in this thesis for the XAl discussion. However,
while it is intuitive that a weakly magnetic element at the Z site is contributing little to the overall
half-metallicity of the compound, it would introduce an omitted variable bias not to include this
magnetic compound property based on this intuition, which is why it was in the feature importance
analysis. As m ; was not included initially in the training data, this particular feature was not added
earlier. While the test performance is comparable across all models, the 4" model represents the
least biased model regarding the human-made decision on which features to include. The last model
iteration and the previous data splitting were initialized using a fixed random seed—for increased
reproducibility—hence, the test set’s size and performance changed slightly compared to the other
models.

The following presents the predictions of the different model iterations on the screening data
set. For each prediction of a compound with high spin-polarization of the DOS at the Fermi energy, a
literature search has been conducted. The subsequently collected results of this search are included
in the Tables 3.14, 3.15, and 3.16. They are accompanied by an indication of which model iterations
predicted this particular compound to have P > 60 % and the degree to which this particular
prediction is OOS. If the table entry related to the literature search is labeled with “No Source” this
means that at the time of writing this thesis, no literature stating ab initio-based conclusions about
the half-metallicity of this particular compound has been found during the search. The OOS column
in each table quantifies how many elements within the individual compound are occurring on the
specific sites in the training data.
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“No” in this sense means that all elements were occurring in the training data at the correspond-
ing sites. “Slightly” means all elements but a single element were occurring in the training data at
the corresponding sites. “Considerably” means that only a single element of the compound was
known at that particular site. “Entirely” means that not a single element in the given compound
was included in the training set at the specific sites.

Whenever published ab initio results were found that characterize the compound as half-
metallic, nearly half-metallic, or the particular compound was reported with an explicit value for
Pg, which is situated above the classification threshold, the compound was not examined further.
If sources were found, the type of ab initio methods used in the found source is also included in
the tables. However, if sources suggested other conductivity properties or no sources were found
in a literature search, then a FLAPW electronic structure calculation was performed to decide if the
model’s predictions were correct. This FLAPW validation will be discussed after the predictions of
the individual model iterations are presented.

Also, suppose a compound was found to be half-metallic by the Slater-Pauling behavior shown
inFigure 3.23. Inthat case, an “SP” in the literature columns indicates this in the tables. Of course, an
unknown number of false negatives are involved with the prediction of highly spin-polarized DOS at
the Fermi level. However, validating all the predictions—including the predicted low spin-polarized
compounds is not feasible with the number of structures given. This is partly due to the computing
time requirements associated with the electronic structure calculations. The predictions for the 1°t
model iteration are shown in Table 3.14. Compounds are ordered alphabetically in the following
tables. Each table includes the compounds first predicted to have a highly spin-polarized DOS at the
Fermi energy by the corresponding model iteration. Besides that, the information whether a later
model also predicted the model to be at the higher range of Py is included in an additional column;
this way, multiple appearances of compounds are avoided.

Compound Symmetry Literature Conductivity Model Version 0OO0S
Co,Feln L2, HM by FLAPW [294] 1&2 Slightly
Co,Hfin L2, No Source 1 Considerably
Co,MnsSi L2, HM by FLAPW [295] 1&2&3 Slightly
Mn,CoGe XA HM by FLAPW [296] and SP 1 &2 &3 No
Mn,CuGe XA No Source 1&3 Slightly
Mn,RuSi XA HM by PW [297] 1&3 Slightly
Rh,FeSn L2, No Source 1&3 Slightly
Ru,FeGe L2, Metallic but Polarized [298] 1&2&3 Slightly
Ru,FeSi L2, No Source 1&2 Slightly
Ti,MnSn XA HM by PW-PAW [299] 1&2&3 Slightly

Table 3.14: Predictions of the 1%t model iteration. Green cells mark for which compounds, either the
literature search or the Slater-Pauling behavior, validated the model’s prediction of a DOS
spin-polarization at the Fermi level of at least 60 %. Grey cells are validated later using a
FLAPW electronic structure calculation. PAW is short for projector augmented wave method.
HM in this table and the following tables is short for half-metallic.

From Table 3.14, it can be seen that at least half of the compounds, for which the 1°t model
predicted a highly spin-polarized DOS around the Fermi level, are actually half-metallic. The predic-
tions of the 2" model iteration, which did not already appear in Table 3.14 are shown in Table 3.15.
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Compound Symmetry Literature Conductivity Model Version 00S
Co,CrSb L2, HM by PW [300] 2&3 Considerably
Co,HfAl L2, HM by FLAPW [301] 2&3 Slightly
Co,HfGa L2, HM by FLAPW [301] 2 Slightly
Co,Mnsb L2, HM by FLAPW [302] 2&3 Slightly
Co,5cGe L2, Pg = 60 % by FLAPW + U [303] 2 No

Co,ZrGa L2, Nearly HM by FLAPW [304] 2 No

Fe,CrSb L2, HM by FLAPW [305] and SP 2&3 Considerably
Fe,MnP L2, HM by FLAPW [306] and SP 2&3 Slightly
Fe,TaGe L2, HM by FLAPW [307] 2 Slightly
Fe,TiAs L2, HM by PW [308] 2 Slightly
Fe,TiGa L2, Nearly HM by PW [308] 2&3 No

Fe,Tiln L2, Nearly HM by PW [308] 2&3 Slightly
Fe,TiSh L2, HM by PW [308] 2 Slightly
Ir,FeGa L2, No Source 2 Slightly

Ir, TcTl L2, No Source 2 Entirely
Mn,CoSb XA HM by FLAPW [299] and SP 2&3 Slightly
Mn,TaGe L2, No Source 2&3 Slightly
Mn,VGe L2, HM by ASW [309] 2 No

Mn,WAI L2, No Source 2&3 Slightly
Mn,WGa L2, HM by DFT [278] 2 Slightly
Ni,MnSn L2, Metallic by FLAPW [304] 3 No

Rh,FeGa L2, Py = 79 % by PW-PAW [310] 2 Slightly
Rh,Feln L2, Nearly HM by PW-PAW [310] 2 Considerably
Rh,MnSi L2, No Source, known by SP 2 Slightly
Rh,MnSn L2, No Source, known by SP 2&3 Considerably
Ti,CoAl XA HM by PW [311] 2&3 No

Ti,CoGa XA HM by FLAPW [312] 2&3 No

Ti,CoGe XA HM by PW-PAW [299] 2&3 No

Ti,Coln XA HM by FPLO [313] 2&3 Slightly
Ti,CoSi XA HM by FLAPW [314] 2&3 No

Ti,CuAl XA Nearly HM by FPLO [315] 2 No

Ti,FeGa XA HM by FLAPW [299] 2&3 No

Ti,NiAl XA HM by FLAPW [299] 2 No

Ti,NiGa XA HM by FLAPW [299] 2 No

Ti,Niln XA HM by FPLO[313] 2 Slightly
Ti,ZnAl XA No Source 2 Slightly

Table 3.15: Predictions of the 2" model iteration, which did not occur in the previous model’s predic-
tions. Green cells mark for which compounds, either the literature search or the Slater-
Pauling behavior, validated the model’s prediction of a DOS spin-polarization at the Fermi
level of at least 6.0 %. Grey cells are validated later using a FLAPW electronic structure cal-
culation. ASW is short for the Augmented Spherical Wave method. FPLO is short for the
full-potential local-orbital method.
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From Table 3.15, it can be seen that 30 compounds are already known to exhibit half-metallic
behavior, while for five compounds, no sources were found at the time of writing. For only one
compound, it was found that it exhibits metallic properties, which will be investigated using the
FLAPW method later. The predictions of compounds with highly spin-polarized DOS at the Fermi
level, which first appeared in the 3" model iteration, are shown in Table 3.16.

Compound Symmetry Literature Conductivity 00S

Co,CrGa L2, HM by LMTO [316] Slightly
Co,CrSi L2, HM by PW [317] and SP Slightly
Co,HfSn L2, HM by FLAPW [318] Slightly
Co,NbSn L2, Metallic by PW-PAW [304] No
Co,ScSn L2, No Source Slightly
Fe,CoGa L2 HM by LCAO [319] No
Fe,CoGe L2, Metallic by PW [320] No
Fe,CoSi L2, HM by FLAPW [296] No
Fe,CrGa L2, HM by PW [321] Slightly
Fe,CrSi L2, HM by FLAPW [290] Slightly
Fe,MnSi L2, HM by PW-PAW [322] No
Mn,CuSb XA No Source Slightly
Ti,Coln L2, HM by FPLO [323] Slightly
Ti,Colr L2, No Source Slightly

Table 3.16: Predictions of the 34 model iteration, which did not occur in previous model predictions.
Green cells mark for which compounds, either the literature search or the Slater-Pauling
behavior, validated the model’s prediction of a DOS spin-polarization at the Fermi level of
at least 60 %. Grey cells are validated later using a FLAPW electronic structure calculation.
LMTO is short for the linear muffin-tin orbital method. LCAO is short for the linear combina-
tion of atomic orbitals method.

From Table 3.16, it can be derived that nine compounds were correctly predicted to be highly
spin-polarized by comparison with published work. For three compounds, sources are lacking, and
those will be examined deeper together with the remaining two compounds, which are reported by
sources to have metallic properties.

Combining the compounds associated with the cells for which the literature columns have
been marked gray leads to the selection of compounds collected in Table 3.17. For these compounds,
either no sources have been found at the time of writing, or they were reported as not having at least
a 60 % spin-polarized DOS at the Fermi energy. Subsequently, the corresponding DOS polarizations
at the Fermi level were computed using the FLAPW method-based code FLEUR.

The values of Pg have been computed using the DOS values corresponding to the energy
value on or the first value above the Fermi energy itself. This choice is necessary as the Fermi energy
is not always an element of the computed discrete energy scale. From the DOS, computed using
FLEUR! the spin-polarization at the Fermi level has been calculated using equation (3.5).

1 The computations presented in this section of the results were performed using the FLEUR git commit hash

e9d2b5ad19c1e89fe0f6b820b76700cd18663cf9 compiled and executed on the supercomputer JURECA-DC.
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All of the presented validation calculations have been published within a separate AiiDA
database in [324]. All the calculation and convergence parameters used to compute the DOS data
necessary to compile the following results have been left as the FLEUR suggested defaults. How-
ever, it was chosen that the SCF calculation is performed on a grid of 30 x 30 x 30 k-points and the
DOS would be determined on a grid of 50 x 50 x 50 k-points using the GGA-based Perdew-Burke-
Ernzerhof (PBE) [325] XC functional. The Gaussian smearing used to calculate the DOS, which was
subsequently used to compute Py, was setto o = % Ha. For all the presented calculations, spin-
orbit interaction has been considered within the FLAPW calculation. Due to the consideration of
spin-orbit interaction, no perfect half-metal will appear during the computation—with perfect 100 %
spin-polarization of the DOS at the Fermi energy. This is because spin-orbit interaction causes the
spin not to be a good quantum number [326] anymore. Therefore, spin-orbit interaction will cause
states to be induced within the half-metallic gap as a result of states above and below the gap being
coupled. This results in a lowered spin polarization—at the Fermi level—compared to a calculation
that neglects this particular interaction. [89] Beyond that, the smearing discretization can introduce
an additional error regarding the computation of the spin-polarization of the DOS at the Fermi level.
Hence, in the following discussion, which included the FLAPW validation results, if Py > 75 % the
corresponding compound is referred to as nearly half-metallic, while for Pg > 90 % the compound
is exhibiting factual half-metallic properties and is hence referred to as half-metal.

From Table 3.17 it can be seen that three regular L2, Heusler compounds (Co,HfIn, Co,ScSn,
and Mn,TaGe) have been found to be nearly half-metallic in ab initio (FLAPW) simulations, which
was—after no literature regarding the near half-metallicity of these compounds has been found at
the time of writing—prior unknown. Furthermore, the transition metal alloys Co,VZn and Co,NbZn
display practically half-metal behavior. The correct prediction of the factual half-metallic transition
metal elements is remarkable, as the data set did not contain Heusler alloys entirely composed of 3d
transition metal elements. Therefore, this successful prediction represents a clear OOS prediction.
The corresponding DOS is shown in the following as Co,VZn represents the compound with the most
significant FLAPW-validated DOS spin-polarization at the Fermi level. This depicted DOS serves as
an exemplary successfully predicted factual half—metal, using the presented ML-based materials
screening approach. All other compounds from Table 3.17 do not fulfill either the set criterion to
classify as true positive classification, near half-metallic or even half-metallic, even though, with
56 % DOS spin-polarization at the Fermi level, four compounds are close to the set classification
threshold of 60 %.

The not converging FLAPW calculation in the case of Mn,WAI has been investigated. The
reason the DFT calculation did not finish is likely due to a faulty input structure. Using the FLEUR
input generator, the individual atoms got muffin-tin radii assigned by geometrical consideration us-
ing the unit cell. Here, the Mn muffin-tin sphere turns out to be far too large compared to the W
sphere, which leads to the conclusion that the entire structural setup is probably corrupted due to
an incorrect input structure.

Summarizing the results, it is easy to see that from the predictions highlighted in the previous
tables, 49 materials were correctly predicted to have spin-polarization of the DOS at the Fermi level
of above 60 %, many of which are half-metallic, by which half-metallicity was known for 7 materi-
als by applying the Slater-Pauling behavior alone. For 12 compounds, it could be determined that
they were predicted to have spin-polarized DOS to the same degree but were, in fact, false positive
predictions. This corresponds to a precision of approximately 80 %, not considering the case of
Mn,WAI.
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FLAPW

Compound  Symmetry Prediction Validation Hit/Miss (Color) Mod'el

Class . Novelty of nearly HM  Version

Spin Pol. Py

Classical Heusler Alloys
Co,Hfln L2, Pg > 60 % 83 % Yes 1
Co,NbSn L2 Py > 60 % 19 % No 3
Co,5¢Sn L2, Pg > 60 % 76 % Yes 3
Fe,CoGe L2, Pg > 60 % 43 % No 3
Ir,FeGa L2, Py >60% 56 % No 2
Ir,TcTl L2, Pg > 60 % 0% No 2
Mn,CuGe XA Py >60% 38 % No 3
Mn,CuSb XA Pg > 60 % 29 % No 3
Mn,TaGe L2 Py > 60% 83 % Yes 2&3
Mn,WAI L2, Py >60% DNF 2&3
Ni,MnSn L2, Pg > 60 % 10 % No 1
Rh,FeSn L2, Py >60% 36 % No 1
Ru,FeGe L2, Py >60% 58 % No 18&2&3
Ru,FeSi L2, Pg > 60 % 56 % No 2
Ti,Colr L2, Py > 60 % 56 % No 3
Ti,ZnAl XA Pg > 60 % 0% No 3

Transition Metal Heusler Alloys

Co,NbZn L2, Pg > 60 % 89 % Known HM by PW [12] 2 &3
Co,VZn L2, Pg > 60 % 93 % Known HM by PW [12] 2 &3

Table 3.17: Combined predictions of the different model iterations for Pg > 60 % compounds from the
Tables 3.14, 3.15, and 3.16. Also including two transition metal Heusler-like alloys predicted
to have a highly spin-polarized DOS at the Fermi energy by multiple models. However, those
are, in principle, OOS predictions. DNF is short for the circumstance that the FLAPW calcula-
tion did not finish for some reason. Hence, as sources for Mn,WAI were not available at the
time of writing, no decision can be made whether the prediction was right or wrong.

In the following, the DOS of the factual half-metallic 3d transition metal L2, alloy Co,VZn
is shown in Figure 3.26. To generate this particular DOS depiction, the smearing was decreased to
o =107 Ha.

Even though L2, Co,VZn does not achieve a perfect half-metallic Pq value of 1, it is evident
that this compound practically represents a half-metal in the presented FLAPW examination, de-
spite being predicted to be metallic by other sources. Additionally, in the experiment, additional
effects can cause a material not to represent a perfect half-metal, even if simulations suggest this
particular property. Such effects include e.g. phonon scattering effects, potential fluctuations, and
temperature effects, which cause states to shift into the minority spin gap of the DOS. As seen in
the caption of Figure 3.26, Co,VZn displays a total magnetic moment of 1.07 5 which is situated
above the integer value of 1 5.
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Hence, the magnetic moment deviates from an integer value slightly above the additional
error margin of 0.05 pug. As mentioned earlier, the margin was introduced when the data set was
screened for compounds exhibiting Slater-Pauling behavior. This observation highlights the impor-
tance of complementary methods in materials screening processes and applications. The very small
DOS in the minority spin channel at the Fermi level visible in Figure 3.26 just below E';. might appear
a bit larger in the experiment due to effects such as e.g. phonon scattering or thermal excitation.
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Figure 3.26: Spin resolved DOS of L2, Co,VZn, generated using the FLAPW code FLEUR. The total DOS,
the interstitial DOS, and the projected atomic DOS contributions are shown. The structure
on which this DOS computation is based was obtained from [327], where the compound
is described as a metallic ferrimagnet with a total magnetic moment of 1.07 5. The very
small DOS in the minority spin channel is clearly visible at the Fermi level.

Explainable Artificial Intelligence Analysis

After discussing the predictions of the different model iterations, understanding the impacting fea-
tures behind the model’s predictions is the next logical step. An overview of all features used in the
training of the 4 model iteration and their corresponding impacts on the model’s prediction on the
training database is given by the SHAP summary plot in Figure 3.27.
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Figure 3.27: SHAP summary plot including all features used to train the 4" model iteration in descend-

ing order concerning the largest accumulated magnitude of impact on the prediction per
feature. Each impact for every feature on a single prediction of the training data is shown.
Negative SHAP values indicate that the feature’s impact contributes to a predicted “low”
DOS spin-polarization at the Fermi level. In contrast, positive SHAP values indicate a feature
impact towards predicting a “high” Pg. Compared to the summary plot from Figure 3.14,
the individual points have not been smoothened to a distribution-like depiction.
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From Figure 3.27, it can be seen that a couple of features have a comparable impact magni-
tude. More precise, it appears that, besides the most impactful feature, which is the sum of abso-
lute magnetic moments M, ., the features can be grouped by impact magnitude into the following
groups, in decreasing order:

1. mx, and the lattice constant ay,;

val val
2. e, M, my, myand exl,

3. Zy, Zz, Phase, my_and ey
al
4. ez and Zy

The features within these subgroups represent a mix of magnetic, structural, and elemental compo-
sition-specific properties. While the magnetic descriptors appear as the most impactful, it cannot
be concluded that either one of the other feature types is less significant. However, an observation
from the development, as this project progressed, is that the atomic numbers went lower in the
order of the SHAP summary plots, as the valence electron numbers were introduced to the model,
compared to earlier model iterations. Of course, a specific atomic number corresponds to a single
number of valence electrons. However, this relation is not fulfilled the other way around. Hence,
the information gain, which the atomic numbers provided to the model to constitute the overall
prediction, seems to be decreased compared to the previous versions. This could conclude that the
half-metallicity classification depends more on the number of valence electrons associated with an
atom at a given site than the exact element situated at this given site. This observation would be in
line with the known Slater-Pauling behavior. It is no surprise to see from Figure 3.27 that low values
of the sum of absolute magnetic moments have an impact that drives the prediction towards the
“low” spin-polarization class. Of course, the lowest number this feature can take is 0.

As half-metallicity is an inherently magnetic phenomenon, it is intuitively clear that the van-
ishing sum of absolute magnetic moments constitutes the absence of half-metallicity. A similar rea-
soning can be applied to the SHAP values distribution for the magnetic moment my, . Of course, X
being a representative of the transition metal group, a low my can be associated with a weak mag-
netism in the whole compound. However, the observation that my, has a significantly decreased
impact on the model’s prediction, compared to the impact of the magnetic moment my ,can be ex-
plained by a convention present in the training database—and hence also enforced in the screening
data set—which defines the axis of the magnetic moment m y as the reference axis. However, it
is worth mentioning that the relation between feature value and SHAP value is inverted for m y, as
can be seen in Figure 3.27. The impact of the structural lattice constant on the classification cannot
be clearly understood by the depiction in the SHAP summary plot. Furthermore, an increasing num-
ber of valence electrons associated with site X impacts the model’s prediction towards the “high”
spin-polarization class. The large magnitude of impact can easily be understood, as the X site con-
stitutes the majority of valence electrons towards the system’s total number of valence electrons.
However, this relation is less clear for the total number of valence electrons. The magnetic moment
associated with the Z site typically ranges between —0.25 ;5 and 0.75 p 5, while most of the mo-
ments are close to 0 y¢;, and exhibits an impact on the model’s prediction, which shifts the prediction
towards a “low” spin-polarized state as m ; increases. For Zx, mx_, ey?! and e! the relation, that
increasing feature values, causes the model to predict the “low” spin-polarization class, also holds.
The phase as binary variable slightly favors a “high” class prediction for XA alloys, while the impact
on the model prediction favors a “low” polarization prediction for L2, compounds.
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In Figure 3.28 depictions showing the relations between the features M, m x , lattice con-
stant, and e‘ﬁlt and the corresponding obtained SHAP values are shown in detail. These depictions
allow a more thorough explanation than the rather macroscopic summary plot.
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Figure 3.28: Overview of selected features (explicitly: My,,.. mx , lattice constant, and total number of
valence electrons) and their relation to the corresponding SHAP values.

From Figure 3.28a the physical intuition expressed before, that vanishing sums of absolute
magnetic moments benefit a classification as a compound with a “low” spin-polarization of the DOS
at the Fermi level. Increasing values of M, . cause an increasing SHAP value until a value of about
My = 1 pp from which the SHAP value continues to decrease. Observing this pattern can be
compared to the proportionality observed in Figure 3.27 for m . An increasing overall magnetic
moment, contributed to by m 4, possibly causes a shift in the DOS, which prevents half-metallicity
from arising. Examining Figure 3.28b for the magnetic moment my, the SHAP value increases with
increasing moment until about myx, =2pug and then begins to decline again. It can be seen that
my  has a similar relation to the corresponding SHAP values as M, for small values of features.
This is a consequence of the convention applied, that the axis of My, is chosen as the reference axis
for the compound and hence, by definition, non-negative.
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For the lattice constant, as seenin Figure 3.28c, there is a complex relation between the lattice
constant and the impact on the model’s prediction. Very low lattice constants favor a highly spin-
polarized DOS at the Fermi level. Beyond that, in the middle range, a few predictions are impacted
towards the “high” spin-polarization by the lattice constant, while for many compound predictions,
the impact is nearly neutral. There is the range at both the lower and the higher end, where the
lattice constant contributes towards predicting a low spin-polarized DOS at the Fermi energy. Ob-
servations from Figure 3.28d could include that for a total number of 18 and 19 valence electron
in the compound’s unit cell, the prediction is shifted for all the data points with these total valence
electron numbers towards a highly spin-polarized DOS. Furthermore, an increase in the SHAP val-
ues can be observed starting from a total number of valence electrons of 27 up to 31. These values
include the values for the total number of valence electrons of 18 and 28, which are known from
the Slater-Pauling behavior of inverse Heusler alloys. However, the value of 24, which is established
from the Slater-Pauling behavior for both L2, and XA phases, is not clearly visible in this depiction.
Examining the total magnetic moment of the compound’s unit cells and the resulting SHAP values
from Figure 3.29, it can be concluded that for the integer magnetic moments —1 pg, 1 g, 2 g,
3 g and 4 15 the SHAP value spikes to some extent, which indicates the prediction to be impacted
towards a highly spin-polarized DOS at the Fermi energy for these particular compounds, based on
the total magnetic moment’s integer value. This is another indication of the known Slater-Pauling
behavior. However, starting from a magnetic moment of 5 p g, the prediction impact of the total
magnetic moment changes to shift towards a low spin-polarization, which is in line with the obser-
vations from the features M, and m, impacts.

1.00 1 ;
- | 1
: 0.75 i b
5 050 T
Q i IR A
= 0251 y N PR
,\66 P! ..o?. ...‘". '::
= 0001 R R Fo
n, Y . ALEA | A AR A
B IR e b
T 0251+ 4 BE;
—0.50 1 * e
—0.75 1 e
3-2-10 1 2 3 45 6 7 8 9
M in pup

Figure 3.29: Depiction of the relation between the total magnetic moment M and the corresponding
SHAP value.
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