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Using a quantitative spatial model as a data-generating process, we explore how spatial 

frictions affect the measurement of quality of life. We find that under a canonical 

parameterization, mobility frictions—generated by idiosyncratic tastes and local ties—

dominate trade frictions— generated by trade costs and non-tradable services—as a source 

of measurement error in the Rosen-Roback framework. This non-classical measurement 

error leads to a downward bias in estimates of the urban quality-of-life premium. Our 

application to Germany reveals that accounting for spatial frictions results in larger quality-

of-life differences, different quality-of-life rankings, and an urban quality-of-life premium 

that exceeds the urban wage premium.

JEL Classification: J2, J3, R2, R3, R5

Keywords: housing, spatial frictions, rents, prices, productivity, quality of 
life, spatial equilibrium, wages

Corresponding author:
Gabriel M. Ahlfeldt
Humboldt University Berlin
Unter den Linden 6
10117 Berlin
Germany

E-mail: g.ahlfeldt@huberlin.de

* We thank Max von Mylius for implementing the ABRSQOL-toolkit in R and Python.



1 Introduction

More than 50% of the world’s population lives in cities. In developed countries, the share is
significantly higher. In developing countries, it is rapidly rising. Productivity advantages and
correspondingly higher wages have been identified as potential drivers of urbanization since
at least Marshall (1890). Indeed, there is abundant evidence confirming that productivity
in cities is higher, making them attractive places to work (Combes and Gobillon, 2015).1

Intuitively, cities may also be attractive places to live as they host urban amenities such as
ethnic restaurants, music venues, or art galleries. While there is a sizable economics literature
concerned with the measurement of quality of life (QoL) in the tradition of Rosen (1979) and
Roback (1982),2 there is, however, little evidence for a positive urban quality-of-life premium
(Albouy, 2011; Ahlfeldt and Pietrostefani, 2019).

Our methodological contribution is to revisit the literature on the measurement of QoL,
incorporating recent advances in quantitative spatial economics (Allen and Arkolakis, 2014;
Ahlfeldt et al., 2015; Zabek, 2024).3 Our central argument is that by accounting for spatial
frictions, quantitative spatial models provide a framework for the measurement of QoL that re-
duces non-classical measurement error. Employing a quantitative spatial model with canonical
building blocks as the data-generating process (DGP), we show in a Monte Carlo study that
the Rosen-Roback framework tends to understate QoL differences across cities. Measurement
error is correlated with city size, resulting in a downward bias in estimates of the urban QoL
premium. This may explain why the extant literature has failed to establish a positive urban
QoL premium. An application to Germany illustrates how our approach to measuring QoL
leads to greater variation in QoL across cities, affects the order of QoL rankings, and gives rise
to an urban QoL premium that exceeds the urban wage premium. As a tangible contribution
to the applied literature, we provide an accessible GitHub toolkit with parsimonious data re-
quirements that solves for a new QoL measure that accounts for trade-cost-induced variation
in tradable goods prices, input-price-induced variation in non-tradable services prices (trade
frictions) as well as imperfectly elastic local labour supply due to idiosyncratic tastes and local
ties (mobility frictions).4

Conceptually, the economics literature treats QoL as a location-specific shifter in a utility
function, akin to total factor productivity in a production function. Empirically, it is challeng-
ing to measure this utility shifter since it is impossible to observe all amenities that contribute
to the QoL a city offers. And even if they were observable, their contributions to the latent
variable would not be obvious. Therefore, the literature relies on spatial equilibrium models to
invert unobserved QoL from observed wages and living costs. In the canonical Roback (1982)

1See for example, Ciccone and Hall (1996); Combes et al. (2008); Glaeser and Maré (2001).
2Notable applications include Albouy et al. (2013); Albouy and Lue (2015); Albouy (2016); Albouy et al.

(2016); Blomquist et al. (1988); Gabriel and Rosenthal (2004); Rappaport (2009). Desmet and Rossi-Hansberg
(2013) develop a complementary approach that does not require rents.

3Notable contributions include Heblich et al. (2020); Monte et al. (2018); Redding (2016). See Redding and
Rossi-Hansberg (2017) for a review of recent advances.

4The toolkit is available at https://github.com/Ahlfeldt/ABRSQOL-toolkit and includes functions with
user-friendly syntax for MATLAB, Stata, R, and Python.
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version, the latter are approximated by housing costs as all other goods are assumed to be
freely tradable. Further assuming that workers are homogeneous and perfectly mobile, any
difference in QoL between two cities must be compensated for by differences in wages and
rents in the spatial equilibrium. Therefore, the inverse real wage represents a theory-consistent
measure of QoL. This frictionless spatial equilibrium framework has remained a workhorse tool
in urban economics for decades (Glaeser and Gottlieb, 2009).

More recently, the literature has moved on to incorporate mobility and trade frictions into
the spatial equilibrium framework. As discussed by Moretti (2011), idiosyncratic tastes for
locations imply a mobility friction since small changes in wages, rents, or amenity values will
no longer trigger oceans of workers to change their location. Extreme-value distributed taste
shocks have, since then, become an integral part of quantitative spatial models to generate
imperfectly elastic labour supply and housing demand at any location (Ahlfeldt et al., 2015;
Redding, 2016).5 The important implication for the measurement of QoL is that, unlike in
the Rosen-Roback framework, wages and rents can no longer be assumed to reflect labour
supply and housing demand conditions exclusively. A city—in the quantitative spatial model
and in reality—may offer high wages due to a productive tradable sector and low rents due to
a productive housing construction sector. Through the lens of the Rosen-Roback framework,
where labour supply and housing demand are perfectly elastic, the city’s productivity-induced
high real wage would be wrongly attributed to a low QoL. Since more productive cities grow
larger, this measurement error is negatively correlated with city size. Therefore, we expect the
absence of idiosyncratic tastes in the Rosen-Roback framework to lead to a downward bias in
estimates of the urban QoL premium.

Another reason the local labour supply is imperfectly elastic is that workers often have
strong local ties. Intuitively, they may choose to stay in their hometowns near family and
friends, even if it means forgoing opportunities to move to cities with higher wages or a better
QoL. The idea that spatial relocation is costly has a long tradition in the literature on the
economics of migration, going back at least to Sjaastad (1962).6 It is well-established that
workers require large wage or amenity premiums at potential migration destinations to leave
their hometowns (Bryan and Morten, 2019). Consequentially, local ties affect the spatial
equilibrium distribution of real wages within a suitably extended quantitative spatial model
(Zabek, 2024). By implication, the real wage no longer fully reflects a city’s QoL. A city—in
the quantitative spatial model and in reality—may offer low wages and high rents due to a
large number of workers who grew up in the city and are reluctant to give up their local ties.
Through the lens of the Rosen-Roback framework, the low real wage would be misinterpreted
as a high QoL that is universally appreciated, including by those who do not consider the city
their hometown. Since a larger city naturally has more workers considering it their hometown,
we expect the absence of local ties in the Rosen-Roback framework to lead to an upward bias
in estimates of the urban QoL premium.

5Other applications include Fajgelbaum et al. (2019); Heblich et al. (2020); Monte et al. (2018).
6Important recent contributions in this literature include Artuç et al. (2010); Desmet et al. (2018); Caliendo

et al. (2019); Kennan and Walker (2011).
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In a parallel movement, the quantitative spatial economics literature has adopted tools
from the international trade literature to generate a gravity structure of trade between regions
in a country (Allen et al., 2020; Head and Mayer, 2014). Love for variety in conjunction with
distance-dependent trade costs result in tradable goods prices that vary across cities (Allen and
Arkolakis, 2014; Redding and Rossi-Hansberg, 2017). Spatially variant tradable goods prices—
which are absent in the Rosen-Roback framework—matter for the measurement of QoL since
tradable goods are an important component of real living costs. A city—in the quantitative
spatial model and in reality—may offer low tradable goods prices due to great market access.
Through the lens of the Rosen-Roback framework, living costs and, consequentially, QoL would
appear greater than they are. Since the home-market effect leads to concentrations of large
cities in agglomerated regions, such as the coastal areas in the US or the Rhine-Ruhr area
in Germany, this measurement error is likely positively correlated with city size. Therefore,
we expect the absence of frictions in the exchange of tradable goods in the Rosen-Roback
framework to lead to an upward bias in the urban QoL premium.

Certain goods, such as restaurant visits or haircuts, are subject to prohibitive trade costs.
Diamond and Moretti (2021) show that such local services account for a significant fraction
of consumption expenditure and exhibit substantial variation in prices across space. Recent
quantitative spatial models feature a sector that produces such services using labour and floor
space as inputs (Caliendo and Parro, 2015; Caliendo et al., 2018a). Similar to the prices of
tradable goods, the prices of local services lead to a measurement error in inverse real wages
and hence in QoL in the Rosen-Roback framework. Since QoL is negatively capitalised in
wages and positively capitalised in land prices, the direction of the measurement error due to
the omission of local services in the Rosen-Roback framework is theoretically ambiguous.

While the intuition for the QoL measurement error in the Rosen-Roback framework is
strong, a quantification of the magnitude of the problem is still outstanding. In fact, given
that the expected biases arising from the omission of idiosyncratic tastes, local ties, trade
costs, and local services point in different directions, it is not even a priori clear whether
estimates of the urban QoL premium within the Rosen-Roback framework are biased upwards
or downwards. To fill this gap in the literature, we must inevitably take a stance on the true
values of QoL against which we wish to benchmark some estimates derived from the Rosen-
Roback framework. This is a non-trivial problem, given that QoL is a latent variable that
cannot be observed directly. To tackle this problem, we assume that the true DGP conforms to
a quantitative economic geography model with frictional trade as in Allen and Arkolakis (2014)
and Redding and Rossi-Hansberg (2017), augmented by a local services sector (Caliendo and
Parro, 2015), idiosyncratic worker tastes (Ahlfeldt et al., 2015), and local ties (Zabek, 2024).
We deliberately choose not to innovate in developing certain parts of the model but to combine
established building blocks routinely employed to account for spatial frictions. In other words,
we quantify the measurement error in older literature that abstracted from spatial frictions,
assuming that collective progress in the fields of economic geography and urban economics has
brought us closer to a realistic understanding of a world with spatial frictions. Of course, for
our analysis to be insightful, the reader must be willing to share this view.
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To stay reasonably close to the Rosen-Roback based QoL literature, our model is static.
The distribution of workers across hometowns, and hence the hometown population of each
city, is exogenous. However, conditional on accepting a utility cost associated with leaving their
hometown due to the loss of social ties, workers are free to choose where to live, as in Bryan and
Morten (2019). Spatial equilibrium requires that expected utility is equalized across all cities
and all goods (housing, tradable goods, local services) and factor (labour, land) markets clear.
Given the absence of closed-form solutions for the spatial general equilibrium, we quantify the
measurement error of the popular Rosen-Roback measure of QoL in a Monte Carlo setting.
The application of a quantitative general equilibrium spatial model as a DGP to benchmark
an established measurement procedure is novel. The closest analogue is the Monte Carlo study
in Adão et al. (2023), who employ the quantitative trade model by Fajgelbaum et al. (2020) as
the true DGP into which they inject measurement error to evaluate the performance of their
proposed specification tests.

For our purposes, the Monte Carlo setting provides the ideal testing ground to maximise
external validity. We generate 1,000 synthetic countries on a square featureless plain of about
the area of Germany, each of which contains 144 cities of equal area. For each city and coun-
try, we randomise city-specific housing productivity, labour productivity, QoL, and hometown
population shares (under the constraint that they sum to one). We also randomly choose
the country-specific parameters that govern the heterogeneity of idiosyncratic tastes and the
strength of local ties since these are arguably the parameters that are least consensual in the
literature. We solve the model separately for each synthetic country and use the model solu-
tions for city-specific wages and rents to compute the canonical Rosen-Roback measure of QoL,
which we then compare with the ’true’ value specified in the DGP to quantify the measurement
error.

Under our arguably canonical parameterization, the measurement error is large. For a
city that has a ’true’ relative advantage of 50% in terms of QoL over a reference city, the
Rosen-Roback measure understates this relative advantage by about 25%, on average. A de-
composition reveals that this measurement error is driven more by mobility frictions than by
trade frictions. The implication for the applied literature is that, in improving the measure-
ment of QoL, the priority should be to account for both types of mobility frictions. In fact,
our Monte Carlo experiments reveal that controlling for trade frictions without addressing mo-
bility frictions may actually increase measurement error. Moreover, since the directions of the
measurement error originating from the omission of idiosyncratic tastes and local ties point in
the opposite direction, measurement error may increase if only one of the two mobility frictions
is accounted for.

Another important lesson from our Monte Carlo experiments is the significant heterogeneity
in measurement error, both between and within artificial countries. In artificial countries
with less heterogeneity in idiosyncratic tastes and weaker local ties, the measurement error
is generally smaller because local labour supply is more elastic. This mitigates a key source
of measurement error in the Rosen-Roback framework, which stems from the assumption of
perfectly elastic labour supply and housing demand: labour demand and housing supply shocks
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that are capitalized into real wages are misattributed to the labour supply and housing demand
side. Since the measurement error remains substantial for all empirically plausible parameter
values, we consider it unlikely that there are many countries in the real world where the
measurement error is negligible.

We also find sizable heterogeneity in measurement error across artificial cities within ar-
tificial countries. Positive differences in fundamentals such as QoL, floor space productivity
and labour productivity, which lead to positive differences in the resident population, increase
the measurement error. In contrast, positive differences in hometown population reduce the
measurement error. The net effect over the plausible parameter space is a downward bias in
the urban QoL premium estimated from the Rosen-Roback framework. This suggests that one
reason why the existing literature hasn’t found a positive urban QoL premium may be related
to measurement error.

To illustrate the impact of accounting for spatial frictions in the measurement of QoL in
a real-world setting, we quantify our model for 141 German commuting zones. The spread
in the QoL measure inverted from our quantitative spatial model is somewhat larger than
that of the Rosen-Roback measure, but more importantly, there are significant changes in the
order of the ranking. Hamburg swaps places with Munich to become the city with the highest
QoL. Frankfurt climbs one place (to 4th), Düsseldorf seven places (to 5th). At the extreme,
Chemnitz climbs 62 places (to 39th), while Lörrach falls 49 places (to 86th). Only two cities do
not change their rank: Berlin (3rd) and Höxter (131st). The average absolute change in rank is
17. Our fully theory-consistent measure of QoL is somewhat data-intensive in that it requires
measures of hometown population, prices of tradable goods and local services, in addition
to the more readily available resident population and the conventional Rosen-Roback inputs
(wages and house prices). However, a crude data version of the measure, which approximates
hometown population with a 30-year residence population lag and abstracts from variations in
non-housing costs, still significantly reduces measurement error relative to the Rosen-Roback
measure.7 Thus, controlling for mobility frictions represents a relevant and easy-to-implement
improvement in the measurement of QoL, complementing recently proposed corrections for
commuting costs and taxes.(Albouy and Lue, 2015; Albouy, 2016).

Consistent with our Monte Carlo simulations, we find a much larger urban QoL premium
when spatial frictions are taken into account. A German city that is on average twice as large
offers a 22% higher QoL to the average resident (the marginal resident is indifferent). This
premium is almost twice as large as estimated in the Rosen-Roback framework (14%) and
about five times as large as the urban wage premium (4%). These estimates do not imply that
city size causes higher QoL, as the urban QoL premium is a descriptive concept. It is quite
possible that certain cities offer high QoL and therefore grow large because they are located
in places with natural amenities such as mountains, rivers or oceans. Whether city size has
a causal effect on QoL is a separate question, which arguably becomes more relevant in the
light of our findings. In any case, our results show that QoL is a more important determinant

7A refined version using model-derived tradable goods and local services prices (generated by our toolkit)
performs marginally better.

5



of the high urbanization rate in Germany—and possibly elsewhere—than has previously been
recognized.

The remainder of the paper is structured as follows. Section 2 presents stylized evidence
that motivates our analyses. Section 3 outlines the model. Section 4 studies the error in the
Rosen-Roback-based measurement of QoL within a Monte Carlo setting. Section 5 provides
an application and Section 6 concludes by summarizing the implications for related literature
and future research.

2 Stylized facts

Taking Germany as a case in point, Figure 1 presents some stylized facts of the spatial economy
that highlight the role of QoL as an important determinant of local labour supply and motivate
our choice of building blocks for our model. In all panels, we compare local labour markets,
which are delineated on the basis of commuting patterns by Kosfeld and Werner (2012). For
simplicity, we refer to them as cities.

Panel (a) documents that a city’s hometown population—the number of workers who grew
up in the city, regardless of where they currently live—is a striking predictor of the city’s current
population. This is consistent with a large fraction of workers living in their hometowns and
suggests an important role for local ties in shaping location decisions as pointed out by Zabek
(2024) for the US.8 Nevertheless, some workers do leave their hometowns. The estimated slope
parameter in Panel a) is greater than one (at the 1% significance level), implying that workers
are more likely to move from small cities to large cities than vice versa. The most popular
explanation for this trend towards higher urbanization, developed in literature going back to
Marshall (1890), is that higher productivity leads to higher wages in larger cities, resulting in
the so-called urban wage premium. Panel (b) supports this view, as the largest cities, indeed,
tend to pay high wages. In relative terms, however, the cost of living in large cities is even
higher than wages, due to higher prices for housing and non-housing goods, as shown in panel
(c). Indeed, panel (d) shows that large cities are the most successful in attracting workers
from other hometowns while offering the lowest real wages. This striking feature of the data
suggests that the desire to satisfy the consumption of housing and non-housing goods is not
the primary driving force behind the increasing agglomeration of workers in large cities. The
obvious alternative explanation is QoL. If workers are willing to give up local ties to move to
large cities, only to receive lower real wages, large cities must offer high QoL in return. We
call this phenomenon the urban QoL premium.

While the intuition is straightforward, the correct measurement of QoL is challenging. The
typical approach in the literature rooted within the Rosen-Roback framework is to use the
vertical deviation from the linear fitted line in panel (b) as a relative measure of a city’s QoL.
Mostly, the simplifying assumption is made that non-housing goods are perfectly tradable and
that prices do not vary across space—perhaps because housing prices are easier to observe

8In our sample of workers who had started an apprenticeship since the early 1990s, this proportion was
about 72% in 2015.
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Figure 1: Stylized facts of the spatial economy

(a) Hometown vs. residence population (b) Nominal wage vs. living cost

(c) Housing vs. non-housing cost (d) Real wage vs. residence population surplus

Notes: Unit of observation are the 141 local labour markets (LLM) as defined by Kosfeld and Werner (2012). Employment
and nominal wages are from the Employment History (BeH) data set. Hometown refers to the LLM in which a person
started apprenticeship training. Regional wages are adjusted for skill composition using regressions of individual wages
against LLM and worker fixed effects (Abowd et al., 1999). We compute living costs as the geometric mean of goods
and services price levels from Weinand and Auer (2020) as well as housing prices from Ahlfeldt et al. (2023) using an
expenditure share on housing of 0.33 and equal shares for non-housing goods and services (Statistisches Bundesamt, 2020).
All values are observed in 2015. Subsection 5.1 provides a more detailed description of the underlying data. Marker size
is proportionate to total employment.

than non-housing prices. Given that housing and non-housing prices are correlated (see panel
c), relying on house prices as the sole source of variation in the cost of living will lead to
systematic measurement error. At a deeper conceptual level, another problem is that the
Rosen-Roback framework abstracts from idiosyncratic tastes for locations. As a city grows, it
becomes increasingly difficult to attract workers because the idiosyncratic utility of moving to
a city decreases for the marginal individual. Larger cities must offer higher QoL to compensate
for this lower idiosyncratic utility – a phenomenon that is not accounted for in the canonical
Rosen-Roback framework. At the same time, it would be premature to conclude that QoL
in large cities is necessarily higher than implied by the Rosen-Roback framework because, as
shown in panel (a), large cities can draw from larger pools of workers with local ties. Local ties,
which are also missing in the Rosen-Roback framework, potentially offset the low idiosyncratic
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utility draws for workers living in large cities, so that the direction of the bias of the urban
QoL premium estimated within the Rosen-Roback framework is theoretically ambiguous. These
observations lead us to develop a quantitative framework for measuring QoL that extends the
canonical Rosen-Roback framework by allowing for trade cost-induced variation in the prices
of tradable goods, input price-induced variation in the prices of non-tradable services (trade
frictions), and imperfectly elastic local labour supply due to heterogeneous tastes and local ties
(mobility frictions).

3 Model

We develop a spatial general equilibrium model with frictions in the trade of goods and the
mobility of workers. The economy consists of a set of cities i, j → J and is populated by
L̄ =

∑
m L̄b

m mobile workers who grew up in different hometowns m → J . We refer to the
measure of workers born in a location m as the hometown population, L̄b

m. Each city hosts
immobile owners of land, T̄i, and capital, Ki. There is no commuting between cities, so workers
live in the city where they work and vice versa.

3.1 Preferences

Worker ω from hometown m living in city i derives utility from the consumption of goods (Ciω)

and floor space (hiω) according to

Uimω =

(
Ciω

α

)α( hiω
1− α

)1−α

exp[aimω], (1)

where Ciω = (Qt
iω/β)

β(qniω/(1 − β))1−β summarizes the consumption of a CES-aggregate of
tradable differentiated varieties (superscript t), shipped from origin j to destination i, qtjiω,

Qt
iω =

⎡

⎣
∑

j∈J

(
qtjiω

)σ−1
σ

⎤

⎦

σ
σ−1

(2)

and a local non-traded homogeneous good (superscript n), qniω. The idiosyncratic amenity
component exp[aimω] = exp[aiω +1{m = i} · (ξ/γ)] is modeled as a stochastic preference shock
for each location i, that is shifted upwards if the residence corresponds to the hometown. In
particular, aiω is drawn from a type-I-extreme value (Gumbel) distribution:

Fi(a) = exp
(
−Ãi exp {− [γa+ Γ]}

)
with γ > 0, (3)

where Ãi ≡ (Ai)
γ represents the mean of the amenity shock and Γ is the Euler-Mascheroni

constant.9 In the following, we take the component Ai as a measure of local QoL and consider
9This implies that shocks are i.i.d across individuals and locations. This approach is established in the

literature and has been applied to describe productivity distributions, e.g., in Eaton and Kortum (2002), or
individual preferences, e.g., in Ahlfeldt et al. (2015).
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it as an exogenous utility shifter that captures the effects of (dis)amenities, as is common in
the literature on the estimation of local non-marketed goods (Roback, 1982; Blomquist et al.,
1988; Albouy, 2011). The composite parameter exp[(ξ/γ)] > 1 captures workers’ valuation of
local ties in their hometowns. The parameter γ controls the dispersion of individual amenity
shocks. Such amenity shocks to individual utility induce idiosyncrasy in tastes in tastes and
generate imperfectly elastic local labour supply, leading to imperfect spatial arbitrage (Moretti,
2011).10 Since all workers in a location make the same consumption choices, we will suppress
the subscript ω in the following whenever clarity permits.

3.2 Technology

Developers supply floor space under perfect competition according to a Cobb-Douglas pro-
duction function that combines capital with location-specific land, T̄i, as in Ahlfeldt et al.
(2015):

HS
i = ηi

(
T̄i

φ

)δ (
Ki

1− φ

)1−δ

. (4)

ηi denotes total factor productivity, capturing the role of regulatory (e.g. height restrictions)
and physical (e.g. a rugged surface) constraints (Saiz, 2010), and φ controls the relative im-
portance of both input factors. Floor space is used by workers for residential purposes and by
firms in the non-tradable goods sector as a production input.

Capital is mined by local capital owners at zero cost and supplied at an exogenous rate,
rKi , set by local municipalities.11 Both capital owners and landowners spend constant shares β
and 1− β of their incomes, rKi Ki and riT̄i, on tradables and non-tradables locally. We denote
as ri the endogenous price for one unit of land.12 Under the assumptions made, we obtain
imperfectly elastic floor space supply while ensuring that local expenditures are proportional
to the wage bill which helps with tractability. Our formulation nests the setup with one tradable
non-housing good and inelastic floor space supply in Monte et al. (2018) as a special case with
β = 1 and φ = 1.

Each location produces a unique tradable and differentiated variety (Armington, 1969)
using labour Lt

i as the only production input according to:13

qti = ϕiL
t
i. (5)

We also allow for endogenous labour productivity, ϕi = ϕ̄iL
ζ
i , which increases in local employ-

ment according to the agglomeration elasticity ζ.
10Such a setup yields similar predictions to a framework based on region-specific migration frictions (Desmet

et al., 2018).
11Intuitively, we can think of local capital as bricks and stones retrieved from local mines at a constant

marginal cost.
12Profit maximisation of developers pins down the value of the local capital input as rKi Ki = 1−δ

δ riT̄i.
13The setup with labour as the only factor of production follows Monte et al. (2018). Intuitively, tradable

goods are produced by manufacturing firms located close to the city margin. Since the agricultural land rent
varies little within a country, abstracting from floor space in the production of tradable goods comes with little
loss of generality.
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Production of the non-tradable good requires both labour and floor space based on the
following Cobb-Douglas structure:

qni = νni

(
ϕiLn

i

µ

)µ( Hn
i

1− µ

)1−µ

, (6)

where Ln
i is the labour demand for the production of non-tradables and νni is a region-sector-

specific productivity shifter. Hn
i denotes floor space input and the Cobb-Douglas parameter µ

governs the input shares of each factor.

3.3 Trade

Utility maximization provides optimal aggregate demand at location i for tradable and differ-
entiated goods from origin j, qtji = (ptji)

−σ(P t
i )

σ−1βEi, where ptji is the consumer price of a
variety produced in j and consumed in location i and Ei = αwiLi+ riT̄i+ rKi Ki captures total
non-housing expenditures in city i. For local non-traded services we get qni = (1 − β)Ei/pni ,
where pni denotes the price of services in i. Workers receive region-specific wages wi as com-
pensation, while P t

i = [
∑

j(p
t
ji)

1−σ]1/(1−σ) describes the price index of the final good dual to
Eq. (2). The optimal demand for housing by workers is Hr

i = (1 − α)wiLi/pHi with the price
for housing being pHi .

Trade in differentiated varieties is subject to bilateral iceberg trade costs such that τji > 1

units must be shipped from j for one unit to arrive at destination i. Perfect competition in
tradable and non-tradable sectors equates prices to marginal costs, so we get ptji = τjiwj/ϕj

and pni = νni (wi/ϕn
i )

µ(pHi )1−µ. Furthermore, the trade structure implies an expenditure share
of customers in i on differentiated varieties shipped from j as follows:

χji =
ptjiq

t
ji∑

k p
t
kiq

t
ki

=
(τjiwj/ϕj)

1−σ

∑
k (τkiwk/ϕk)

1−σ . (7)

3.4 Location choice

Under the distributional assumptions on the idiosyncratic utility component, we obtain the
probability that a worker from hometown m lives in location i:

λim =
(Aiwi/Pi)

γ · exp[1{m = i} · ξ]∑
j∈J (Ajwj/Pj)

γ · exp[1{m = j} · ξ] , (8)

where we have defined the aggregate consumer price index Pi ≡
(
P t
i

)αβ
(pni )

α(1−β)(pHi )1−α.
Summing over all hometown probabilities, we obtain the residential choice probability:

λi =
∑

m

λim =
(Aiwi/Pi)

γ

∑
j∈J (Ajwj/Pj)

γ

⎛

⎝
∑

m #=i

Ψb
mL̄b

m +Ψb
i · exp[ξ]L̄b

i

⎞

⎠ /L̄, (9)
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with Ψb
m =

(
1 + (exp[ξ]−1)(Amwm/Pm)γ∑

j∈J (Ajwj/Pj)
γ

)−1
< 1 the utility discount associated with having left

the hometown. The probability of residing in i increases in QoL and nominal wages and declines
in the aggregate consumer price index. Due to local ties, the residential choice probability also
depends on the distribution of the hometown population. For given hometown population, the
probability of living in i increases in ξ, owing to an increasing value of local ties, Ψb

i ·exp[ξ] > 1.
The number of workers residing in i is Li = λiL̄.14

The mobility of workers equalizes the expected utility in equilibrium, which is given by

W̄ = ln

⎡

⎣
∑

j∈J
(Ajwj/Pj)

γ · exp[1{m = j} · ξ]

⎤

⎦

1
γ

. (10)

3.5 General equilibrium

Land market and floor-space market clearing. On the land market, the constant ex-
penditure rule implies ri = φpHi HS

i /T̄i. Combining this equation with the profit-maximising
supply of floor-space, HS

i = η̃iT̄ir
1−δ
i /φ, and adjusted floor space productivity, η̃i ≡ ηi/(rKi )1−δ,

delivers the equilibrium relationship between land rents and floor-space prices:

ri =
(
η̃ip

H
i

) 1
δ . (11)

To derive the floor space market equilibrium, HS
i = HD

i , we start with the demand side.
Floor space is needed for residential purposes, Hr

i , and as an input for the production of non-
tradables, Hn

i , so HD
i = Hr

i + Hn
i . Using the fact that the return to floor-space input in

the production of non-tradables is a constant share 1 − µ of expenditure, we obtain Hn
i =

(1−β)(1−µ)[αwiLi+pHi HD
i ]/pHi , where the second term in brackets is total income of capital

owners and landowners. Demand for residential housing is given as Hr
i = (1 − α)wiLi/pHi as

introduced in Section 3.1. Replacing land rents in optimal housing supply according to Eq.
(11) delivers HS

i = η̃
1
δ T̄i(pHi )

1−δ
δ /φ. The market clearing price for floor space solves HS

i = HD
i

and is thus given by

pHi =

⎛

⎝ α̃φwiLi

η̃
1
δ
i T̄i

⎞

⎠
δ

, (12)

where α̃ ≡ (1/[1− (1− µ)(1− β)]− α) is a constant.

Tradable goods market clearing. Since tradable goods firms spend revenues from all re-
gions, weighted by expenditure shares, on labour input, we obtain:

wiL
t
i =

∑

j∈J

(τijwi/ϕi)
1−σ

∑
k (τkjwk/ϕk)

1−σ β (α+ α̃)wjLj , (13)

14Note that if the utility gain from living in one’s hometown is negligible (e.g. exp(ξ) → 1), there is no
discount associated with living elsewhere, such that

(∑
m #=i Ψ

b
kL

b
m +

(
Ψb

i · exp[ξ]
)
L̄b

i

)
→ L̄.
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where we used the equilibrium conditions on the markets for floor space, land and capital.

Local services market clearing. Since local services firms spend the share µ of local revenues
on labour input, we obtain:

wiL
n
i = µ(1− β) (α+ α̃)wiLi (14)

Local labour resource constraint. All workers in city i must work either in the tradable
goods or the local services sector:

Li = Lt
i + Ln

i (15)

National labour market clearing. Total employment in i must equate to labour supply.

Li = λiL̄ (16)

Given the model primitives, a general equilibrium of the economy is referenced by a vector
of the endogenous objects V = {Ln

i , L
t
i, p

H
i , pni , P

t
i , ri, wi} and a scalar W̄ which are jointly

determined by Eqs. (11)–(16) and the definition of the aggregate consumer price index. We
solve for V using a conventional numerical fixed-point algorithm described in Appendix A.2.
For given primitives and structural parameters as well as values of V, there is a recursive
structure that solves for all other endogenous objects. While the gravity trade structure in our
model could theoretically lead to multiple equilibria, it is well understood that the equilibrium
is unique under plausible parameterizations (Allen and Arkolakis, 2014; Allen et al., 2024).
Indeed, the solutions returned by our solution algorithm are insensitive to the chosen starting
values under the parameterizations chosen in Sections 4 and 5.

4 Monte Carlo study

To understand the measurement error arising from the absence of spatial frictions in the Rosen-
Roback framework, we assume that the true DGP corresponds to the quantitative spatial model
outlined in Section 3. As there is no closed-form solution to the model, we proceed with a Monte
Carlo study. We solve the model for randomised values of its primitives, including QoL, as
well as selected parameters, and generate the Rosen-Roback measure based on the resulting
equilibrium wages and rents. The measurement error is defined as the relative difference
between the Rosen-Roback measure and the ’true’ QoL in the DGP. We calculate the bias in
the estimated urban QoL premium by comparing how the Rosen-Roback and ’true’ measures
of QoL increase in the equilibrium city population.

4.1 Setting

For our Monte Carlo study, we generate 1,000 artificial countries within a stylized geography
of a square with a side length of 500 km. We overlay this square with 12×12 equally sized grid
cells corresponding to J = 144 artificial cities.15 We compute all bilateral distances between

15The side length and number of grid cells are chosen to approximate the actual geographic area and number
of cities (local labour markets) of Germany, as described in more detail in Section 5.
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the geographic centroids of the grid cells and parameterize trade costs as τij = (exp[−ι ∗
ln distij ])

1
1−σ , using ι = −1 and σ = 5 as conventional in the trade literature (Head and

Mayer, 2014).16 Using bilateral distances, we compute a measure of market potential Mi =∑
j∈J(1/distij) as an (inverse) measure of remoteness.
For all 1, 000 × J = 144, 000 artificial cities, we first randomly draw the hometown pop-

ulation L̄b
m, which we take as exogenous. The consensus in the literature is that city sizes

follow Zipf’s Law and can be modelled by log-normal distributions (Eeckhout, 2004). There-
fore, we draw a city’s log hometown population from a normal distribution with a mean of
0 and a standard deviation of 0.85, which delivers a rank-size coefficient close to one. We
normalize the hometown population so that

∑
m L̄b

m = L̄. Similarly, we draw fundamentals
{lnAi, ln ϕ̄i, ln η̃i} in logs from normal distributions with mean zero and a standard deviation of
0.25 which ensures that equilibrium residence population, Li, also approximates Zipf’s Law.17

We normalize these fundamentals as well as hometown population and market potential by
the values of a numéraire location.

For each of the 1,000 artificial countries, we draw values of the parameters governing the
heterogeneity of idiosyncratic tastes, γ, and the valuation of local ties, ξ, from uniform distri-
butions in the limits [1.1; 10] and [0, 10] respectively. Empirical estimates of the taste hetero-
geneity parameter range from 2-3 for larger spatial units such as counties and states (Monte
et al., 2018; Fajgelbaum et al., 2019) to higher values of up to γ = 7 for smaller units such as
housing blocks (Ahlfeldt et al., 2015; Heblich et al., 2020). Less is known about the workers’
valuation of local ties. Our reference point is a value of ξ = 5, which ensures that, on average,
about 50% of workers live in their hometown, as documented by Zabek (2024) for the US.

We set the expenditure share on non-housing goods to α = 0.7 (Combes et al., 2019), the
share of expenditure on tradable goods at total non-housing expenditure to β = 0.5 (Caliendo
et al., 2018b), the housing supply elasticity to φ = 0.3 (Baum-Snow and Han, 2024), and the
share of labour in the production of local services to µ = 0.8 (Greenwood et al., 1997). For
the agglomeration elasticity, we use ζ = 0.02 as a typical value found by studies controlling for
unobserved worker heterogeneity (Combes and Gobillon, 2015).

Under this parameterization, we solve the model 1,000 times to obtain values of the equi-
librium vector V for each artificial country (see Appendix A.2 for details). We end up with an
artificial world of 144,000 cities in 1,000 countries, for which we observe prices and quantities
of all goods and factors, so that we can easily compute the canonical Rosen-Roback measure
of QoL, as well as more refined measures that account for selected spatial frictions.

16As they are not our main parameters of interest, we normalize the sector-specific production shifter in the
non-tradable sector, νn

i , to unity for all locations in our Monte Carlo study. Table A2 provides an overview of
selected parameters and definitions.

17We truncate the normal distributions by 0.65 from below and above to avoid generating cities with implau-
sibly large or small populations. All the main results are insensitive to the truncation.
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4.2 Measurement error in quality of life

To understand the measurement error in the canonical Rosen-Roback measure, it is instructive
to reformulate Eq. (9) and express all model elements x in ratios relative to a numéraire
location j, such that x̂ ≡ xi/xj ∀ i → J . This delivers the relative QoL in the most general
version of our model as

Â =
(P̂ t)αβ(p̂n)α(1−β)(p̂H)1−α

ŵ

(
L̂/L̂

) 1
γ
, (17)

where we define Li ≡ (exp[ξ]− 1)Ψb
i L̄

b
i +

∑
m∈J Ψ

b
mL̄b

m.
Notice that Eq. (17) nests QoL as in the canonical Rosen-Roback case that abstracts from

trade costs (τij → 1 and, hence, P̂ t → 1), local services (β → 1), idiosyncratic tastes (γ → ∞)
and local ties (γ → ∞ and/or ξ → 0):18

ÂRR =

(
p̂H

)1−α

ŵ
. (18)

Relating Eq. (18) to Eq. (17) and taking logs delivers the QoL measurement error within the
Rosen-Roback framework as well as the contributions of each of the four spatial frictions:

E ≡ ln
ÂRR

Â
= − αβ ln P̂ t

︸ ︷︷ ︸
trade costs

− α(1− β) ln p̂n︸ ︷︷ ︸
local services

− (1/γ) ln L̂︸ ︷︷ ︸
idiosyncratic tastes

+ (1/γ) ln L̂︸ ︷︷ ︸
local ties

(19)

4.2.1 Determinants of the measurement error

In Figure 2 we scatter the measurement error defined in Eq. (19) against various forcing
variables in our Monte Carlo experiments. In each panel, each point represents an artificial
city in one of the artificial countries. A common feature to all panels is that QoL differences
(relative to the numéraire location) are generally underestimated within the Rosen-Roback
framework. For positive QoL differences in the DGP marked by red dots (ln Â > 0.25), the
error is negative for the most part. The error is mostly positive for negative differences (blue
dots for ln Â < −0.25), which also implies that the magnitude of the relative QoL difference
is underestimated. One explanation is that for imperfectly mobile workers, differences in QoL
must be larger than the inverse real wage differentials alone would suggest, since a high-QoL
city, in attracting more workers, must compensate the marginal worker for lower idiosyncratic
utility and foregone local ties to other places.

The role of mobility frictions is substantiated by panels (a) and (b), which plot the mea-
surement error against the values of the country-specific structural parameters {γ, ξ}. Panel
(a) reveals that the measurement error converges asymptotically to zero as workers’ tastes
become more homogeneous and local labour supply becomes more elastic, i.e. at higher values

18We refer to the baseline case in Roback (1982) without non-tradable goods and also allow for δ < 1, which
implies an elastic supply of land. As can easily be seen below, this assumption does not affect our results.
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Figure 2: Measurement error in the full model

(a) (Inverse) idiosyncratic tastes (γ) (b) Valuation local ties (ξ)

(c) Quality of life (ln Â) (d) Adjusted housing productivity (ln ˆ̃η)

(e) Fundamental labour productivity (ln ˆ̄ϕ) (f) Hometown population (ln ˆ̄Lb)

Notes: Measurement error is defined as E = (1/γ)(lnLb − ln L̂) − αβ ln P̂ t − α(1 − β) ln p̂n. We run N = 1, 000 Monte
Carlo simulations for a synthetic economy with J = 144 local labour markets.

of γ. Formally, the third and fourth terms in Eq. (19) approach zero as γ → ∞. Intuitively,
compensating differentials in real wages to offset idiosyncratic taste shocks become less impor-
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tant when workers care less about the particularities of individual cities. Local ties also become
less important because their utility value, exp(ξ/γ), is a decreasing function of γ. For a related
reason, we observe in panel (b) that the magnitude of the measurement error is smaller when
local ties are weaker at given values of γ, i.e. at lower values of ξ. Formally, the fourth term
in Eq. (19) approaches zero as ξ → 0. Intuitively, compensating differentials in real wages to
offset local ties become less important when workers are less attached to their hometowns.

Turning to the city-specific fundamentals, panel (c) shows that the (magnitude of the)
measurement error increases in the (magnitude of the) relative QoL differences. Intuitively
and all else equal, a city with a high QoL is more attractive and grows larger. In a world
with mobility frictions, growing cities attract marginal workers with lower idiosyncratic utility
and an increasing share of workers with local ties in other hometowns. An increasingly larger
city-specific QoL must compensate for these declining worker-specific utility components to
keep the marginal worker indifferent. Therefore the measurement error in the Rosen-Roback
QoL measure—which abstracts from idiosyncratic tastes and local ties—is larger for high QoL
cities that grow larger.

Panels (d) and (e) illustrate how variation in the other fundamentals adds to the problem.
Panel (d) reveals that the (magnitude of the) measurement error increases in the (magnitude
of the) relative adjusted differences in housing productivity. Intuitively, higher floor space
productivity and lower interest rates on capital are floor space supply shifters that, given a
downward sloping housing demand, reduce floor space prices for reasons unrelated to housing
demand. However, in the Rosen-Roback framework, lower rents due to higher floor space supply
are misattributed to floor space demand (and labour supply), as housing demand (and labour
supply) is assumed to be perfectly elastic. Likewise, panel (e) reveals that the (magnitude
of the) measurement error increases in the (magnitude of the) relative fundamental labour
productivity differences. Intuitively, fundamental labour productivity is a labour demand
shifter which, given an upward-sloping labour supply, raises wages for reasons unrelated to
labour supply. However, in the Rosen-Roback framework, higher wages due to higher labour
productivity are misattributed to labour supply, which is assumed to be perfectly elastic.

Naturally, cities with relative advantages in QoL, housing productivity, and fundamental
labour productivity grow larger, ceteris paribus. The common implication of panels (c) to (e)
is that measurement error increases in the resident population. As shown in panel (f), the
effect of a relatively larger hometown population is the opposite. To develop intuition, it is
useful to recall that, holding the hometown population constant, a large residence population
implies a marginal worker deriving a lower idiosyncratic utility. This decrease in worker-specific
utility must be compensated for by a higher city-specific QoL in order to keep the marginal
worker indifferent. This is the intuition behind the third term in Eq. (19). Of course, a larger
residence population can also arise when a city has a larger hometown population, as more
workers are likely to stay to maintain local ties. These worker-specific local ties compensate
for a low idiosyncratic utility, and hence there is less need for the city to offer a high QoL to
keep the marginal worker indifferent. Therefore, the effect of the hometown population, which
enters via L̂, points in the opposite direction to the residence population, L̂, in Eq. (19). The
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Table 1: Heterogeneity in measurement error

Frictions controlled: (1) (2) (3) (4) (5)
Trade Costs !
Local services !
Local ties !
Idiosyncratic tastes !

Measurement error: Intercept -0.288 -0.305 -0.300 -0.169 -0.090

Parameters and regional fundamentals:

(Inverse) taste heterogeneity: γ-3 0.026 0.023 0.023 0.015 0.018
Strength of local ties: ξ-5 -0.017 -0.015 -0.015 0.015 -0.037
Market access: lnM̂ -0.087 -0.156 -0.048 -0.053 -0.004
Quality of life: ln(Â/1.5) -0.711 -0.754 -0.741 -0.427 -0.212
Relative floor-space productivity : ln ˆ̃η -0.189 -0.205 -0.270 -0.105 0.014
Relative worker productivity: ln ˆ̄ϕ -0.547 -0.611 -0.591 -0.309 -0.130
Relative hometown population: ln L̂b 0.073 0.062 0.065 -0.132 0.223

Interaction effects:

lnM̂ ∗ (γ − 3) 0.010 0.007 0.009 0.008 0.005
ln(Â/1.5) ∗ (γ − 3) 0.065 0.056 0.058 0.039 0.042
ln η̂ ∗ (γ − 3) 0.022 0.019 0.020 0.019 0.009
ln ˆ̄ϕ ∗ (γ − 3) 0.054 0.047 0.048 0.033 0.033
ln L̂b ∗ (γ − 3) -0.005 -0.004 -0.004 0.025 -0.031
lnM̂ ∗ (ξ − 5) -0.006 -0.004 -0.006 0.006 -0.013
ln(Â/1.5) ∗ (ξ − 5) -0.042 -0.036 -0.038 0.039 -0.091
ln η̂ ∗ (ξ − 5) -0.015 -0.013 -0.014 0.011 -0.031
ln ˆ̄ϕ ∗ (ξ − 5) -0.036 -0.031 -0.032 0.034 -0.078
ln L̂b ∗ (ξ − 5) 0.018 0.016 0.017 -0.022 0.045

Observations 144,000 144,000 144,000 144,000 144,000
Adjusted R2 0.977 0.985 0.984 0.783 0.807

Notes: Each column represents a different measurement error for a location with 50% higher quality of life than the numéraire location, so
Â = 1.5. In column (1), we ignore all spatial frictions; in column (2), we control for trade costs; in column (3), we control for differences
in non-tradable service prices; in column (4) we control for local ties and in column (5) we control for migration frictions. All explanatory
variables are expressed relative to a numéraire location. The mobility friction parameter γ and local ties valuation ξ are re-scaled to have a
zero value at γ = 3 and ξ = 5, respectively, so we can interpret the intercept as the measurement error for otherwise identical locations. Given
the high number of Monte Carlo iterations, all coefficients are highly significant at all common levels so we do not report standard errors for
the sake of brevity.

important implication for the correct measurement of QoL is that accounting for idiosyncratic
tastes without accounting for local ties, and vice versa, may increase rather than decrease
measurement error.

In Figure 2, we have focused on the intuition behind the third and fourth terms in Eq.
(19), as there is an intuitive connection between residence and hometown population and the
randomized primitives of the model (the forcing variables in the Monte Carlo simulations).
The link between the prices of tradable goods and local services that enter Eq. (19) and the
primitives of the model is less direct since goods and services prices depend on input prices,
which are endogenous objects in our general equilibrium model. In any case, the correlation
between the measurement error, E , and tradable goods prices, P̂ t, and local services prices, p̂n

is weaker than those reported in Figure 2, suggesting that trade frictions are less consequential
for the correct measurement of QoL than mobility frictions (see Appendix B.2).
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4.2.2 Multivariate analysis of measurement error

One overarching takeaway of Figure 2 is that the measurement error in the Rosen-Roback
QoL measure cannot be summarized by a single number. It depends on the fundamentals of
an artificial city as well as the heterogeneity of idiosyncratic tastes and the strength of local
ties in an artificial country. In fact, it must depend on the interactions. At higher values
of γ and lower values of ξ, idiosyncratic utility and local ties—from which the Rosen-Roback
framework abstract—become less relevant. Since labour supply and housing demand become
more elastic, labour demand and housing supply shocks that confound the interpretation of
real wage differences as compensating differentials become less consequential.

To quantify the measurement error, E , in light of this heterogeneity, we regress E against
the artificial country-specific values of the parameters governing the dispersion of idiosyncratic
tastes, γ, and the strength of local ties, ξ, the artificial city-country-specific fundamentals
{Â, ˆ̃η, ˆ̄ϕ}, hometown population, ˆ̄Lb, and the artificial city-specific market access measure, M̂,
which summarizes relative advantages due to trade gravity, as well as the interaction of γ and
ξ with {Â, ˆ̃η, ˆ̄ϕ,M, ˆ̄Lb}. For a more intuitive interpretation of the constant, we transform the
regressors as follows: For the relative QoL measure, we use ln(Â/1.5); for idiosyncratic taste
heterogeneity, we use γ − 3; for the strength of local ties, we use ξ − 5; for all other regressors,
we simply take the log. The constant then summarizes the average measurement error for an
artificial city that has a 50% higher QoL than the numéraire city, is identical to the numéraire
city in all other respects, and is located in an artificial country where γ = 3—arguably the
consensus value in the literature (Redding, 2016)—and ξ = 5, which ensures a typical share of
about 50% of workers living in their hometowns (Zabek, 2024).

We report the results of the regression analysis in Column (1) of Table 1. Given the high
R2, a large number of observations, and the strong economic rationale for the relevance of the
covariates, it is no surprise that all estimated regression coefficients are statistically significant
at the 1% level. Hence, we omit standard errors for a more compact presentation. For the
reference artificial city (with a relative QoL advantage of 50%) in the reference artificial country
(γ = 3, ξ = 5), we find that the Rosen-Roback framework underestimates the true QoL Â by
25% (= exp[−0.288] − 1). In keeping with expectations, the magnitude of the measurement
error is smaller when there is less idiosyncratic taste heterogeneity. For the measurement error
to become zero for our reference city, we would require an increase in γ by 11 units. This
implies a dispersion parameter in the range of γ = 14, which is well outside the typical range
of estimates in the literature. Likewise, the magnitude of the measurement error is smaller
when local ties are weaker. However, even at the theoretical lower bound of ξ = 0 (a reduction
by five units), the measurement error remains sizable at -18.4%. Hence, it seems unlikely that
there are many countries in the real world where measurement error is negligible.

The measurement error increases in positive relative differences in market access, QoL,
floor space productivity, and exogenous labour productivity. In keeping with Figure 2, relative
differences in QoL and fundamental labour productivity are particularly consequential. For
example, the measurement error increases to -43.5% when a city has a relative QoL advantage
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of 100% instead of 50% over the numéraire city. Maintaining a relative QoL advantage of 50%
and adding a 50% advantage in terms of relative labour or housing productivity, increases the
bias to -40% or -30.5%, respectively.19 We require an increase in γ by approximately 10 to
bring the marginal effects of these covariates close to zero, which is well outside the range
of estimates in the literature. Reducing ξ to zero reduces these marginal effects by about
one-third.

In further keeping with Figure 2, the effect of positive differences in the hometown popu-
lation points in the opposite direction. For a city with a relative QoL advantage of 50% over
the numéraire city, the measurement error will be approximately zero only if the hometown
population is about 50 times the one of the numéraire location. In this case, the Rosen-Roback
measure would be accidentally correct, as the measurement error from the fourth term in Eq.
(19) would offset the error originating from the other terms. More generally, this counter-
weight implies that it is crucial to take local ties into account when considering the effects
of idiosyncratic tastes in measuring QoL, otherwise there is an inherent risk of turning an
underestimation of QoL differences into an overestimation.

4.2.3 Relative importance of trade and mobility frictions

Having established that the measurement error in the Rosen-Roback QoL measure is sizable
and highly heterogeneous, we now turn to quantifying the relative importance of spatial fric-
tions. To this end, we compute three adjusted measurement errors of the form E − X , where
X corresponds to one of the terms highlighted in Eq. (19). We use these adjusted errors as de-
pendent variables in regressions that are otherwise identical to Table 1, Column (1) throughout
Columns (2)-(5). The constants can be interpreted as the measurement error for the reference
city (with a relative QoL advantage over the numéraire location of 50% in a country with γ = 3

and ξ = 5) that prevails when we control for the respective friction.
As mentioned in the context of Figure 2, simple scatter plots suggest that the correlations

between E and the trade-friction-related variables {P̂ t, p̂n} are weaker than those with the
mobility-friction-related variables {L̂, ˆ̄Lb}. Table 1 substantiates this impression. In Column
(4), the magnitude of the measurement error for the reference location is reduced by 37.8%
relative to Column (1) (to 15.6 pp) once local ties are accounted for. In Column (5), the
reduction even amounts to 65.6% (to 8.6 pp) when idiosyncratic tastes are accounted for
instead. In contrast, the magnitude of the measurement error for the reference location hardly
changes when we account for variation in tradable goods (Column 1) and local services (Column
2) prices. In fact, measurement error even slightly increases. By implication, leaving frictional
trade unaccounted for causes upward measurement error in the Rosen-Roback QoL measure.
The reason is that judging from the Rosen-Roback measure, a high QoL city appears less
affordable than it is since tradable and non-tradable goods prices are relatively lower in high-
QoL cities. Intuitively, a city with a greater QoL, ceteris paribus, has a lower wage due

19We calculate the change in measurement error when assuming regions’ primitives differ by a further 50%
according to (1.5coef − 1) ∗ exp (−0.288).
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to enhanced labour supply. A lower wage maps into a lower price of local services for which
labour is the most important input. The logic extends to tradable goods prices since households
also consume differentiated varieties from local producers. The implication is that accounting
for trade frictions improves the measurement of QoL only if mobility frictions are already
accounted for. Perhaps counterintuitively, using a refined cost-of-living index that accounts for
variations in prices of tradable goods and local services within the Rosen-Roback framework
might actually increase measurement error.

As a final piece of evidence to inform the priorities when improving the measurement of
QoL, we present the results of a Shapley decomposition of the variance of the measurement
error across all artificial cities and countries. We obtain the following relative contributions
of the four terms on the right-hand side of Eq. (19): tradable goods, 10.14%; local services,
4.45%; idiosyncratic tastes, 18.80%; and local ties, 66.61%. As expected given the evidence
reviewed so far, mobility frictions are more important than trade frictions. However, the
impact of the latter, especially that of tradable goods, is not negligible. Reconciling the results
of the Shapley decomposition with those reported in Table 1, we conclude that trade frictions
may have a sizable impact on the measurement error for individual cities but less so on the
systematic error for cities with similar QoL. This is because QoL is less correlated with market
access than city size, which endogenously responds to QoL.

For the interested reader, we provide a sensitivity analysis in which we separately increase
or decrease the values of parameters {α,β, µ,σ, φ, ι} by 25% in Appendix Section B.3 to better
reflect the range of parameter estimates from the literature. All conclusions presented above
are qualitatively and quantitatively insensitive to these changes. Quantitatively, changes in
the value of σ and α (for floor-space productivity) are most consequential. Yet, even for the
alternate values of σ and α, the measurement error for the reference city remains within a close
range of 23.4-26% (vs. 25% in the baseline).

4.3 Urban quality of life premium

The results in Table 1 imply that the measurement error, E , is correlated with city size since
it is correlated with various fundamentals that determine city size. Consequentially, we expect
biased estimates of the urban QoL premium within the Rosen-Roback framework, though the
direction of the bias is theoretically ambiguous.

To quantify this bias, we follow the literature and define the urban QoL premium as the
elasticity of QoL with respect to city size (Ahlfeldt and Pietrostefani, 2019; Albouy, 2011).
We know from Eq. (9) that in the DGP, we can parameterise city size as L̂(Â, ˆ̃η, ˆ̄ϕ,M̂, ˆ̄Lb) =

cÂγ exp
(
ε(ˆ̃η, ˆ̄ϕ,M̂, ˆ̄Lb)

)
, where c is a constant and ε(ˆ̃η, ˆ̄ϕ,M̂, ˆ̄Lb) is a residual term that cap-

tures that city size also depends on the other structural fundamentals {ˆ̃η, ˆ̄ϕ,M̂, ˆ̄Lb}. Following
the literature, we can estimate the urban QoL premium using the following OLS specification:

ln Â = c̃+ ρ ln L̂+

[
−1

γ
ε

]
, (20)

20



where c̃ ≡ − 1
γ ln c and the term in brackets constitutes the regression residual. Notice that

we do not expect the estimated urban QoL premium, ρ̂, to correspond to 1
γ as implied by Eq.

(9) since L̂ and ε are necessarily correlated given their dependence on similar fundamentals.
Therefore, the estimated urban QoL premium is purely descriptive and simply summarises how
QoL differs between cities of different sizes; it does not measure the causal effect of city size on
QoL. The Rosen-Roback framework, however, does not even recover this descriptive statistic
correctly. Using Eq. (19) in Eq. (20), we obtain:

ln ÂRR = c̃+ ρRR ln L̂+

[
E − 1

γ
ε

]
. (21)

Theoretically, OLS estimation of Eq. (21)—which corresponds to the standard approach in
the literature—will deliver an estimate ρ̂RR )= ρ̂ if E(L̂′E) )= 0. Since we control the DGP,
it is straightforward to compute the estimation bias B = ρ̂RR − ρ̂ from the estimates of two
separate OLS regressions of ln Â and ln ÂRR against ln L̂ within our artificial data set.

We expect B )= 0 since, according to Eq. (19), several components of E are correlated with
L̂. First, there is a mechanical correlation with L̂ (third term). Second, as discussed earlier,
we expect the prices of tradable goods and local services prices to be correlated with city size
(first two terms). Third, L̂, which captures local ties, is normally correlated with the resident
population, L̂, since the hometown population, ˆ̄Lb, is correlated with both L̂ (see Eq. (9)) and
L̂ (see Eq. (17)).

Since the contribution of {P̂ t, p̂n} to E is modest, as shown in Section 4.2, the bias, B,
will depend strongly on the strength of the correlation between L̂ and L̂. This correlation is
governed by ξ, which determines the strength of local ties. If ξ = 0, there is no correlation
between L̂ and L̂, since L̂ collapses to unity. The mechanical correlation between E and L̂ then
implies an underestimation of the urban QoL premium within the Rosen-Roback framework.
However, given the opposite signs of the third and fourth terms in Eq. (17), the negative bias
can turn into a positive bias if ξ is sufficiently large (since the correlation between L̂ and L̂

will be positive).
Intuitively, a city with a larger residence population, given hometown population and real

wage, must compensate the marginal worker for a lower idiosyncratic utility through a QoL
that is larger than measured by the Rosen-Roback framework (where idiosyncratic tastes are
missing). This leads to a downward bias of the urban QoL premium in the Rosen-Roback
framework. However, if the hometown population is sufficiently large, local ties will ensure
that, for a given real wage, the city will retain a large residence population even if QoL is lower
than measured by the Rosen-Roback framework (where local ties are also missing). This can
lead to an upward bias of the urban QoL premium in the Rosen-Roback framework. Therefore,
we expect the strength of local ties (governed by ξ) to quantitatively and qualitatively determine
the bias in the estimated urban QoL premium.

From separate estimations of Eqs. (20) and (21) for each artificial country, we obtain an
artificial country-specific measure of the bias in the Rosen-Roback estimate of the urban QoL
premium, B. Each estimate is represented by a point in Figure 3. We plot B as a function of
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Figure 3: Bias in urban quality of life premium

Notes: The bias in the urban QoL premium is defined as B = ρRR − ρ where ρ̂RR and ρ̂ as estimated from artificial-
country-specific regressions of the Rosen-Roback QoL measure and the true (within our DGP) QoL measure against
residence population (in logs).

the artificial country-specific idiosyncratic taste heterogeneity parameter, γ, differentiating by
the strength of local ties governed by ξ. As expected, the bias approaches zero as the value of
γ increases, and the largest contributors to E in Eq. (19) are reduced (terms three and four).
At the consensus value of γ = 3, we observe large heterogeneity in the bias across artificial
countries ranging from about -0.3 to +0.25. This is a large range, given that costs and benefits
associated with urbanization generally scale in city size at elasticities close to zero (Ahlfeldt
and Pietrostefani, 2019).

For ξ < 6, the Rosen-Roback framework consistently underestimates the urban QoL pre-
mium, such that B < 0. Yet, for very strong local ties, e.g. ξ > 8, we may obtain an
overestimation bias. Such values, however, are much larger than our estimate of ξ = 5.6 from
the real-world data set used in Sections 2 and 5 (see Appendix C.2). Moreover, we consider our
estimate to be an upper bound in international comparison since the share of the hometown
population in the resident population, at 0.7, is much higher than the typical value of 0.5
(Zabek, 2024). We therefore consider it likely that Rosen-Roback-based estimates of the urban
QoL premium suffer from an underestimation bias in most countries, which may explain why
the literature has struggled to find positive urban QoL premiums (Ahlfeldt and Pietrostefani,
2019; Albouy, 2011, 2016).

In defining priorities for improving the estimation of the QoL premium, it is worth recalling
that mobility frictions dominate trade frictions as a source of measurement error in QoL (see
Section 4.2.2). Indeed, controlling for selected contributors to the bias in the estimated urban
QoL premium, as defined in Eq. (19) confirms that this insight carries through to the bias in the
urban QoL premium. Thus, accounting for mobility frictions is more important than accounting
for trade frictions to reduce estimation bias. When addressing mobility frictions, however, it
is important to account for idiosyncratic tastes and local ties simultaneously, otherwise, there
is a risk that the bias may actually increase in absolute terms (see Appendix B.4 for details).
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5 Application

We now quantify the model in a real-world setting to illustrate the impact of spatial frictions on
the measurement of QoL. Using Germany as a case in point, we compute three QoL measures:
a measure that corresponds to the conventions in the Rosen-Roback literature, ÂRR; a measure
that is fully consistent with our model, Â, and a crude-data version of our preferred measure,
ÂCD, which may be more widely applicable due to parsimonious data requirements. We discuss
our data and the quantification of the model in Section 5.1 before comparing the resulting QoL
and implied urban QoL premiums in Sections 5.2 and 5.3.

5.1 Data and quantification

As an empirical counterpart to the cities indexed by i in the model, we choose 141 German
labour market regions defined by Kosfeld and Werner (2012) based on commuting data. For
simplicity, we refer to these regions as cities when presenting our results. The centre of a
labour market region is the municipality with the largest number of workers. We provide a
brief discussion of the dataset we collect for these units below and refer to Appendix C.1 for
further details.

We use the Integrated Employment Biographies (IEB) from Germany’s Institute for Em-
ployment Research to obtain employment at the workplace and wages in 2015. The data cover
the universe of 16-65 year old regular employees with social security insurance in Germany.
We restrict the sample to workers who have completed vocational training (about 65% of all
workers), as this allows us to code their hometown as the city where they received their voca-
tional qualification. This choice is motivated by the observation that most workers in Germany
receive vocational training in the cities where they completed their schooling.20 We further
restrict the sample to workers who have completed their vocational training after 1990 to
avoid selection due to missing information on vocational training completed in East Germany.
To address top-coding, we apply a procedure to impute censored wages based on Card et al.
(2013). We aggregate daily imputed wages into annual wages and regress these, after taking
logs, against individual fixed effects and region-year fixed effects, recovering the latter as a
sorting-adjusted region-year wage index (Glaeser and Maré, 2001; Combes et al., 2008).

To construct the aggregate consumer price index, we rely on information about floor-space
prices and local prices for tradable and non-tradable goods. We take 2015 floor-space prices
from Ahlfeldt et al. (2023) who provide a property price index for the 141 Geman local labour
market regions based on asking prices from immobilienscout24.de – Germany’s largest online
platform. This index controls for property characteristics and commuting, in line with Combes
et al. (2019). Regional tradable goods and local services prices for 2015 are based on county-

20Empirical evidence for this observation is provided by Hoffmann and Wicht (2023), who use microdata
from the National Educational Panel Survey (NEPS) to examine the extent of spatial mobility among school
leavers who continue on to apprenticeships. According to their results, about 78% of the 2011-2017 school
leaver cohorts start apprenticeship training in a company located in the same labour market region where they
completed their schooling, while 22% start training in a different region.
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level price indices from Weinand and Auer (2020). We aggregate their values to local labour
market regions using employment weights.

To complete the quantification of the model-consistent QoL measure according to Eq. (17),
we set the expenditure share of housing to 1− α = 0.33 (Statistisches Bundesamt, 2020), the
expenditure share for tradable goods to β = 0.34 (based on own estimation) and the preference
heterogeneity parameter to γ = 3 (Krebs and Pflüger, 2023). Since we are not aware of an
extant estimate of the value of local ties in Germany, we estimate ξ using a log-linearised version
of Eq. (8). To this end, we regress the log of the bilateral residence-birthplace population,
Lim = λimL̄, against the dummy denoting hometown-residence bilaterals, 1{m = i}, residence
fixed effects that absorb all other objects in the numerator, and hometown fixed effects, which
absorb multilateral resistance in the denominator. The coefficient on the dummy delivers
ξ = 5.6 (see Appendix C.2 for details). This estimate is somewhat larger than the value of
ξ = 5 calibrated in Section 4, which is consistent with the workers in our sample, at 70%,
having an unusually high probability of residing in their hometown (Zabek, 2024, documents
a probability of 50% for the US).21

Our theory-consistent QoL measure, Â, is admittedly somewhat data-demanding. For one
thing, our microdata enables the computation of a hometown population measure, at least for
a subset of the total population. In other contexts, however, researchers may not be able to
observe the distribution of hometown population for workers currently observed in the labour
market. For another, we observe prices of tradable goods and local services, but regional non-
housing prices are not available for many countries and periods. Therefore, we also construct
a variant of our QoL measure that requires only crude data, ÂCD. For one thing, we set the
prices of tradable goods and local services to uniform values, which, according to the results
of our Monte Carlo simulations in Section 4, should introduce limited error. For another, we
use a standard population measure from the census as a proxy for the residence population
and the 30-year lag of the resident population as a proxy for the hometown population since
most workers currently active in the labour market grew up where their parents lived when
they were young.22 In another variant, largely relegated to the appendix, we exploit the fact
that the structure of our model allows the construction of theory-consistent price indices using
more accessible variables such as regional wages, sectoral employment and bilateral trade costs
(see Appendix A.3).

5.2 Quality of life measures

We use the data described in Section 5.1 to compute our measure of QoL, Â, for German cities
according to Eq. (17). Since there is no analytical solution for Â, we use a numerical solution

21For postcodes, Büchel et al. (2020) find a lower effect of return migration on migration probabilities in their
conditional logit model, which suggests that local ties are weaker when measured on the neighbourhood scale.

22We use regional population data from the years 2015 and 1985, respectively. The data are provided by the
Federal Office for Building and Regional Planning at the county level, which we aggregate to the level of the
141 labour market regions that are used in the empirical analysis.
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algorithm described in Appendix A.1.2.23 We refer interested readers to our GitHub toolkit,
which provides a convenient way to replicate our measure in other contexts.24

We map this novel QoL index in the left panel of Figure 4. In the right panel, we show
how this measure deviates from the canonical Rosen-Roback measure, ÂRR, defined in Eq.
(18). A striking feature of Figure 4, which reinforces the descriptive evidence from Section
2, is that the largest cities (Berlin, Hamburg, Munich) offer the highest QoL. Second tier
cities such as Frankfurt, Cologne or Düsseldorf also offer high QoL. It is worth noting that
these large cities also appear as high QoL cities in the canonical Rosen-Roback measure (see
Appendix C.3 for a map). However, as shown in the right-hand panel of Figure 4, the Rosen-
Roback measure understates QoL in large cities compared to our preferred QoL measure. The
differences between the two measures extend beyond the largest cities, suggesting that there is
considerable scope for our new measure to influence QoL rankings.

We illustrate how our new measure changes the QoL ranking in Table 2, focusing on the
five cities with the highest and the five cities with the lowest values in our preferred QoL
measure. Columns (1) and (2) summarize the QoL ranking based on the quantitative spatial
model (defined in Eq. (17), referred to as QSM, best data). Columns (3) and (4) show the
corresponding QoL ranking for the Rosen-Roback case, which does not control for differences
in residence population, hometown population, and prices of non-housing goods (defined in
Eq. (18)). To ease the comparison, Column (5) computes the relative difference between the
Rosen-Roback and the QSM measures. The next three Columns (7)-(9) replicate Columns (3)-
(5) for the crude-data version of our measure, which uses the deep lag of residence population
as a proxy for hometown population and abstracts from differences in non-housing prices.

Confirming the visual impression from Figure 4, the range of the QoL measure based on
the QSM is about 13% larger than that of the Rosen-Roback measure. For all five top ranking
QoL cities, we obtain higher QoL values (relative to the numéraire city of Kiel) using the
quantitative spatial model. Similarly, the measure derived from the quantitative spatial model
is smaller for all five bottom ranking cities. Thus, the real-world example summarized in Table
2 confirms one of the main findings of our Monte Carlo experiments in Section 4, which is that
the Rosen-Roback framework tends to understate relative QoL differences.

Since there is sizable heterogeneity in the relative differences between the two QoL measures
(see Column (5)), the ranking changes. When the QoL is inferred from the quantitative spatial
model instead of the Rosen-Roback framework, Hamburg overtakes Munich to become the
city with the highest QoL. Frankfurt climbs one rank (from 5th to 4th), and Düsseldorf even
climbs seven ranks (from 12th to 5th). Similar ordinal effects are observed at the bottom of
the ranking: Freyung-Grafenau drops by 11 ranks, Vulkaneifel even by 33 ranks, and Stendal
climbs by two.

23Our solutions are insensitive to starting values under the chosen parameterization. This is consistent
with the existence of a unique mapping from observed outcomes to fundamental amenity value (conceptually
equivalent to QoL) in the absence of spatial spillovers, as shown by Allen and Arkolakis (2014), as long as the
congestion force is large enough.

24The toolkit is available at https://github.com/Ahlfeldt/ABRSQOL-toolkit and includes functions with
user-friendly syntax for MATLAB, Stata, R, and Python.
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Figure 4: Quality of life in Germany

(a) Quantitative spatial model (QSM) (b) Rosen-Roback vs. QSM

Notes: Both maps illustrate ln(Â). Panel (a) is based on the quantitative spatial model (QSM); panel (b) shows the ratio
of RR over QSM .

The left panel of Figure 5 illustrates that there is substantial ordinal error in Rosen-Roback-
based QoL rankings across the entire distribution. In fact, besides Berlin (ranked 3rd), only
Würzburg (ranked 25th) and Celle (ranked 122nd) maintain the same rank in both rankings.
There are extreme cases of measurement error; for example, Chemnitz climbs 64 ranks (to 40th),
whereas Lörrach and Waldshut fall by 50 ranks (to 88th and 107th, respectively). On average,
the absolute difference between the QoL ranks derived from the Rosen-Roback framework
and our quantitative spatial model is 17. The right panel of Figure 5 illustrates how the
measurement error in our crude-data version of our preferred measure is substantially lower
than in the Rosen-Roback measure. On average, the absolute difference between the QoL
ranks derived from the Rosen-Roback framework and our quantitative spatial model is about
10 (about two-thirds of the Rosen-Roback measure). Hence, our crude-data variant of our QoL
measure represents a potentially useful alternative to the Rosen-Roback measure in sparse-data
environments.

The data set used in this exemplary application is usually rich in that we observe wages,
employment (at residence and hometown), and house prices in a panel setting. However,
we only observe one cross-section of tradable goods prices and local services prices. The
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Table 2: Quality of life rankings

QSM, best data Rosen-Roback QSM, crude data

Rank Â Rank ÂRR (4)/(2) Rank ÂCD (7)/(2)
(1) (2) (3) (4) (5) (6) (7) (8)

Hamburg 1 2.081 2 1.737 0.834 2 1.648 0.792
München 2 2.033 1 1.963 0.965 3 1.644 0.809
Berlin 3 1.851 3 1.678 0.907 1 1.758 0.950
Frankfurt am Main 4 1.696 5 1.520 0.896 4 1.441 0.850
Düsseldorf 5 1.566 12 1.335 0.853 5 1.392 0.889
... ... ... ... ... ... ... ... ...

Freyung-Grafenau 137 0.538 126 0.688 1.278 139 0.547 1.017
Kronach 138 0.526 132 0.651 1.237 140 0.538 1.021
Stendal 139 0.522 141 0.575 1.101 130 0.617 1.183
Vulkaneifel 140 0.519 107 0.773 1.488 141 0.525 1.010
Uelzen 141 0.510 137 0.637 1.248 138 0.548 1.073

Standard deviation 0.276 0.253 0.223

Notes: The table shows measures of relative QoL for the labour market regions with the 5 highest and
the 5 lowest values according to the full specification in Eq. (17) (QSM). The numéraire location is Kiel.
Columns (1) and (2) report QoL estimates and the corresponding ranks based on Eq. (17). Columns
(3) and (4) report QoL estimates and the corresponding ranks based on Eq. (18). Columns (6) and (7)
report QoL estimates and the corresponding ranks based on Eq. (17) using census population as a proxy
for residence population, the 30-year lag of residence population as a proxy for hometown population and
uniform prices for non-housing goods.

structure of our model, however, allows us to predict prices of tradable goods and local services
as discussed in Appendix A.3. Reassuringly, we find that a QoL measure that uses model-
generated prices of tradable goods and local services instead of observed prices closely resembles
our preferred QoL measure in 2015. Computing this measure for 2007 and 2019 reveals a great
degree of persistence within the top-10 cities in the QoL ranking, but significant changes
outside. In particular, cities that were historically dependent on heavy industry or coal mining
have seen their relative quality of life decline in recent decades. As non-housing prices are often
unavailable for small spatial units, the model’s ability to predict non-housing price indices may
prove useful beyond our specific application.

5.3 Urban quality of life premium

Figure 4 and Table 2 reveal that, for the largest cities in Germany, the Rosen-Roback framework
generates lower QoL-values than the quantitative spatial model. This suggests a downward bias
in the estimated urban QoL premium derived from the Rosen-Roback framework, consistent
with theoretical expectations discussed in Section 4.3. To quantify the downward bias for
Germany, we estimate Eqs. (20) and (21) and report the results in Figure 6a. As already
suggested by Figure 4, we find a well-defined positive correlation between QoL and city size
for both measures. However, the urban QoL premium is much larger when estimated from the
quantitative spatial model. The city size elasticity of the QoL measure from the quantitative
spatial model is 0.29. This implies that ceteris paribus, a German city with twice the residence
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Figure 5: Comparison of QoL rankings

(a) Rosen-Roback (ARR) (b) QSM, crude data (ACD)

Notes: QSM ranking is the ranking based on QoL measure derived from the quantitative spatial model, Â. Rosen-Roback
ranking is the same derived from the Rosen-Roback QoL measure, ÂRR. QSM, crude data is the ranking based on the
QoL measure derived from the quantitative spatial model using the 30-year lag of residence population as a proxy for
hometown population and uniform prices for non-housing goods.

population offers a 20.29 − 1 = 22% higher QoL. At 20.18 − 1 = 13%, this premium is almost
halved when derived from the Rosen-Roback framework. If we are willing to believe that
the quantitative spatial model is a plausible approximation of the true DGP in Germany,
the downward bias in the Rosen-Roback framework is large at 40%. Of course, it is quite
conceivable that the urban QoL premium is smaller in other countries, such as the US, where
Rosen-Roback estimates do not suggest a positive urban QoL premium (Albouy, 2011). At
the same time, the relatively large downward bias found for Germany may suggest that more
countries may have a positive urban QoL premium than is generally assumed (as already
suggested by the Monte Carlo simulations in section 4).

To put the estimated urban QoL premium into perspective, Figure 6b provides analogous
estimates of the urban wage premium. A large literature has documented higher wages in
cities, and Germany is no exception. The average wage increases in city size at an elasticity of
about 0.06. When skill heterogeneity is controlled for through individual worker fixed effects,
the estimate halves. 25 These estimates are within the typical range found in the literature
(Combes and Gobillon, 2015). Strikingly, even the lower bound estimate of the urban QoL
premium derived from the Rosen-Roback framework exceeds the upper bound estimate of the
urban wage premium unadjusted for the skill composition of the workforce.

It is worth recalling that the urban QoL premium and the urban wage premium are de-
25Conditional on worker fixed effects, the urban wage premium is identified from the change in wages that

workers experience when they move to cities of different sizes (Combes et al., 2008).
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Figure 6: Urban quality-of-life premium vs. urban wage premium

(a) Urban quality of life premium (b) Urban wage premium

Notes: QSM is the QoL measure derived from the quantitative spatial model, Â. Rosen-Roback is the same derived
from the Rosen-Roback QoL measure, ÂRR. Adjusted worker wages are from regressions of log wages against worker and
region-fixed effects, where the latter are recovered as a regional wage index adjusted for sorting.

scriptive concepts. They summarize the benefits workers derive from being located in large
cities in Germany. Whether higher wages and QoL arise from favourable fundamentals that
attract workers or genuinely city-size-related agglomeration economies is a separate question.
Regardless of the underlying mechanisms, however, Figure 6 suggests that in Germany, high
QoL is an even more important reason for workers to locate in large cities than high wages.26

This is a striking result given that, since Marshall (1890), the literature has mostly focused on
productivity as the main reason why workers concentrate in cities.

6 Conclusions

We show that by abstracting from spatial frictions, estimates of QoL derived from the Rosen-
Roback framework suffer from a downward measurement error that increases in city size. This
result reconciles a growing literature that has emphasized the consumption benefits that cities
offer (Glaeser et al., 2001; Diamond, 2016) with a classical literature on the measurement of
QoL that has found limited evidence for an urban QoL premium (Roback, 1982; Albouy, 2011).
We document a positive QoL premium for Germany and argue that it may extend to many
other countries once spatial frictions are accounted for. Indeed, QoL may be just as important
an agglomeration force driving urbanization as productivity.

Our results have important implications that extend beyond the QoL literature. Since the
pioneering work of Roback (1982), the neoclassical spatial equilibrium framework has been the
workhorse tool for the valuation of amenities (Glaeser and Gottlieb, 2009; Greenstone, 2017).27

26Note that in our quantitative spatial model, a one per cent increase in QoL has the same effect on indirect
utility as a one per cent increase in wages.

27Typical examples include clean air (Chay and Greenstone, 2005), safety (Linden and Rockoff, 2008), or
public schools (Cellini et al., 2010).
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To this end, the literature correlates differences in real living costs—often approximated by
differences in house prices—with differences in amenities to recover their shadow prices. The
role of the shadow price is to map a difference in amenity endowment between two cities into
a difference in worker utility. The downward bias in the variance of QoL in the Rosen-Roback
framework, therefore, suggests a downward bias in the estimated shadow price derived from
the Rosen-Rosen framework, especially in the largest locations. Quantifying the magnitude of
this bias is an important avenue for further research.

As shown by Fajgelbaum and Gaubert (2020), accounting for spatial differences in QoL is
crucial for deriving optimal spatial policies.28 In spatial equilibrium, high-QoL regions have
lower real wages. Since the marginal value of real consumption is higher, fiscal transfers to
regions with higher QoL should be welfare enhancing under realistic parameterizations and
all else equal. A key finding of our analysis is that the canonical Rosen-Roback framework
understates QoL in large cities. By implication, spatial policies derived within the Rosen-
Roback framework may lead to the underprovision of public goods in large cities, leading to
misallocation. Quantifying the welfare cost of sub-optimal spatial policies that may arise from
the mismeasurement of QoL represents another avenue for future research.
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A Model

This appendix adds to Section 3 in the main paper, which introduces our quantitative spatial
model. We discuss how to quantify the model to rationalize observed data in Section A.1. In
Section A.2, we outline the numerical procedure used to solve for the equilibrium values within
the model conditional on given primitives. This procedure is, in particular, employed in our
Monte Carlo simulation study as described in section 4.

A.1 Quantifying the model

In this appendix, we outline how to quantify our model from Section 3 to rationalize observed
data and solve for the primitives of the model (Ai, η̃i, ϕ̄i, νni ).

Quantifying the general equilibrium model requires data on employment by location and
sector (Ln

i , L
t
i), regional wage data (wi) and local price levels that vary by expenditure category

(pHi , pni , P
t
i ). Furthermore, one requires data on the hometowns of all employed workers (L̄b

m)
and the area of all locations (T̄i) as well as their bilateral distances (distij). Apart from these
data, we also require values for all structural parameters {α,β, γ, φ, ζ, ι, µ,σ, ξ}.

In a nutshell, the quantification consists of three steps. First, we settle on parameter values
for {α, γ, φ, ζ, ι, µ,σ, ξ}. Second, we infer the value for β that is implicitly determined by ob-
served data conditional on set parameter values. Third, we invert the structural fundamentals
given the full set of parameter values {α,β, γ, φ, ζ, ι, µ,σ, ξ} and observed data.

Table A1: Parameter values for model quantification (Germany as a case in point)

Parameter Description Approach Source

Preferences

1− α = 0.3 Housing share in consumption Set Combes et al. (2019)
γ = 3 Labour supply elasticity Set Krebs and Pflüger (2023)

β = 0.34 Tradable goods share Est. Inferred from data
ξ = 5.6 Hometown valuation Est. Own estimation

Production

φ = 0.3 Share of land in production Set Baum-Snow and Han (2024)
ι = 1 Distance elasticity Set Head and Mayer (2014)
σ = 5 Regional varieties substitution Set Head and Mayer (2014)
µ = 0.8 Labour share in production Set Greenwood et al. (1997)
ζ = 0.02 Productivity spillovers Set Combes and Gobillon (2015)
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A.1.1 Structural parameters

Table A1 provides an overview of our parameter value choices. All parameter values are set to
established values in the literature or estimated from data with one exception. The tradable
goods share in consumption of non-housing goods, β, is implicitly determined by the observed
values of endogenous variables {wi, Ln

i } and the set parameter value for µ. We solve for the
consumption share of non-tradables, 1 − β, that rationalizes aggregate goods-market-clearing
in the sector for non-tradable services, Eq. (14):

1− β =

∑
i∈J wiLn

i

(1− µ)
∑

i∈J wiLn
i + µ

∑
i∈J wiLi

.

We estimate the value for the hometown values parameter ξ using a moment condition that
directly follows from our model (see Appendix C.2 for details). For all other parameters, we
use canonical parameter values from the literature.

A.1.2 Inverting quality of life

In this Appendix, we discuss how our structural model can be used to invert quality of life
in the presence of spatial frictions. As highlighted in Eq. (17), relative QoL Â is perfectly
identified up to a normalization (or numéraire location) and given by:

Â =
(P̂ t)αβ(p̂n)α(1−β)(p̂H)1−α

ŵ

(
L̂/L̂

) 1
γ
,

In Algorithm 1, we use pseudo-code to outline how a dataset with observed endogenous
variables, {Li, L̄b

i , p
H
i , pni , P

t
i , wi}, the exogenous variable, L̄b

i , and the structural parameters
{α,β, γ, ξ} can be used to identify QoL under mobility (local ties, idiosyncratic tastes) and
trade frictions (variation in tradable goods and non-tradable service prices).

Allen and Arkolakis (2014) show that in the absence of spatial spillovers (in productivity
and amenity), there is a unique mapping from the data to the primitives of the model for given
values of structural parameters as long as the congestion force (here arising from inelastically
supplied land) dominates the agglomeration force (here arising from love for variety and positive
trade costs). The practical implication of this property is that our QoL solver is invariant to
starting values. To substantiate this insight in the context of our model (which does not feature
spatial spillovers in productivity of or amenity), we draw N=1000 different starting values for
Ai from a uniform distribution in the bounds (0.5; 1.5) and invert the relative quality of life
for each of these starting guesses of the solver. Reassuringly, in each of these simulations, we
invert exactly the same level of relative QoL, such that we conclude that the observed data
uniquely maps into the model fundamentals.

For the interested user, we provide an accessible toolkit that implements the pseudo-code
of Algorithm 1 as a MATLAB function, a Stata ado programme, as well as R and Python
packages. The toolkit is available at https://github.com/Ahlfeldt/ABRSQOL-toolkit.
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Algorithm 1: Numerical solution algorithm to invert QoL
1 Start with values for variables {Li, L̄b

i , p
H
i , pni , P

t
i , wi} and structural parameters

{α,β, γ, ξ}
2 Normalise employment and birth-place population data, such that

L̄ =
∑

i∈J Li =
∑

i∈J L̄
b
i

3 Calculate relative values of all variables with respect to a numéraire location (e.g. in
”hat-algebra”): V̂ = {L̂, ˆ̄Lb, p̂H , p̂n, P̂ t, ŵ}

4 Solve for the aggregate consumer price index Pi ≡
(
P t
i

)αβ
(pni )

α(1−β)(pHi )1−α.
5 Set convergence parameter κ → (0, 1)

6 Set precision rule to govern deviation between guesses and model solution.
7 Set count = 1
8 Guess values of Ai and normalise relative to numéraire location
9 while count < maxiter do

10 Solve for Ψb
i by using its definition below Eq. (9), such that

Ψb
i =

(
1 + (exp[ξ]−1)(Aiwi/Pi)

γ
∑

j∈J (Ajwj/Pj)
γ

)−1

11 Solve for Li by using its definition below Eq. (17), such that
Li ≡ (exp[ξ]− 1)Ψb

i L̄
b
i +

∑
m∈J Ψ

b
mL̄b

m

12 Solve for L̂.
13 Solve for relative QoL, Ânew, by using Eq. (17).

14 Check deviation between guesses and model solution

target = round(abs(Ânew − Â), precision)

15 if target == 0 then
16 break;

17 else
18 Update initial guesses or updated values of Â:

Âup = Aup = κ · Ânew + (1− κ) · Â

Use updated values and re-iterate

Ai = Â = Âup

Result: Equilibrium values of Â

A.1.3 Solving for worker and floor-space productivities

We solve for adjusted floor space productivities using the market clearing condition on the
market for floor space, Eq. (12):

η̃i =
1

pHi

(
α̃φwiLi

T̄i

)δ

,
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Relative worker productivities are identified—up to a normalization—from goods market
clearing in the market for tradable goods, Eq. (13). In doing so, we first calibrate the bilateral
trade cost matrix to follow the trade literature (Head and Mayer, 2014): we compute all
bilateral distances between the geographic centroids of the regions while parameterising trade
costs as τij = (exp[−ι ∗ ln distij ])

1
1−σ dj , where we set {ι = −1,σ = 5} and introduce dj as

a destination-specific component of trade costs. This component captures regional attributes
that affect trade costs to all other regions, such as direct access to the highway network, a
natural harbour, or an airport, and allows the model to exactly match observed tradable goods
prices.

In Algorithm 2, we use pseudo-code to outline how a dataset with the endogenous variables
{Li, Lt

i, P
t
i , wi}, the structural parameters {α,β, ζ, ι, µ,σ} and bilateral distances can be used

to identify worker productivities—up to a normalization—as well as the trade-cost shifter.
Lastly, we use data on wages (wi), floor space prices (pHi ), price levels in the non-tradable

sector (pni ) and previously inverted productivities (ϕ̂) to identify the relative productivity
shifters that are specific to the service sector:

ν̂n =
p̂n

(ŵ/ϕ̂)µ(p̂H)1−µ
.
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Algorithm 2: Numerical solution algorithm to invert worker productivities
1 Start with values for variables {Li, Lt

i, P
t
i , wi} and structural parameters

{α,β, ζ, ι, µ,σ}
2 Calculate relative tradables prices and wages {P̂ t, ŵ}
3 Set convergence parameter κ → (0, 1)

4 Set precision rule to govern deviation between guesses and model solution.
5 Set count = 1
6 Set iter = 1
7 Guess values of dj
8 while count < maxiter do
9 Calculate τij = (exp[−ι ∗ ln distij ])

1
1−σ ∗ dj

10 while iter < maxiter do
11 Guess values of ϕi

12 Calculate right-hand side of Eq. (13), rhsi

13 Check deviation between rhsi and wiLt
i

target = round(abs(rhsi − wiL
t
i, precision)

14 if target == 0 then
15 break;

16 else
17 Update initial guesses or updated values of ϕi:

ϕup
i = ϕi/[rhsi/(wiL

t
i)]

Use updated values and re-iterate

ϕi = κϕup
i + (1− κ)ϕi

18 Calculate model-consistent price levels for tradable goods:

P̂ t,model = [
∑

i

τij(ŵ/ϕ̂)
1−σ]1/(1−σ)

19 Check deviation between P̂ t and P t,model
j

target = round(abs(P̂ t − P̂ t,model, precision)

20 if target == 0 then
21 break;

22 else
23 Update initial guesses or updated values of dj :

dj = P̂ t/P̂ t,model

24 Calculate ˆ̄ϕ = ϕ̂L̂−ζ

Result: Equilibrium values of {dj , ˆ̄ϕ}
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A.2 Solving the model

Within quantitative spatial models, there are typically no analytical solutions for the spatial
equilibrium, and our model is no exception. Still, there is a unique mapping from the model’s
primitives to the equilibrium vector V = {Ln

i , L
t
i, wi, ri, pHi ,Pi} which we exploit in a standard

fixed-point numerical solver that converges rapidly. As discussed in the main paper, we calcu-
late all bilateral distances between all grid points, distij , and then parameterize trade costs as
τij = (exp[−ι ∗ ln distij ])

1
1−σ . Further, we normalize the sector-specific production shifter for

non-tradable services, νni , to unity in all locations.
Algorithm 3 then provides pseudo-code to outline how identified model fundamentals

{Ai, L̄b
i , T̄i, η̃i, ϕ̄i, τij} and the structural parameters {α,β, γ, φ, ζ, µ, ξ,σ} can be combined to

solve for the equilibrium vector V.
In the absence of spatial spillovers (in productivity and amenity), there is generally a unique

solution in a quantitative spatial model if the congestion force (here arising from inelastically
supplied land) dominates the agglomeration force (here arising from love for variety and posi-
tive trade costs) under the chosen parameterization (Allen and Arkolakis, 2014; Redding and
Rossi-Hansberg, 2017) The practical implication of this property is that our equilibrium solver
is insensitive to starting values. To substantiate this insight in the context of our model, we
perform an additional Monte Carlo simulation where we show that randomization of the start-
ing values to the solving Algorithm 3 still yields the same equilibrium vector V. In particular,
we draw N = 1000 random starting vectors for the vectors {Li, wi} from a uniform distribution
in the bounds {0.5; 1.5}, but normalize the guesses for employment by a common factor such
that they sum to L̄ in the aggregate. We then solve for the equilibrium vector V for each of the
randomized sets of starting values. Reassuringly, in each of the N simulations, we solve for the
same spatial equilibrium, which we take as an indication that the spatial equilibria for which
we solve in the Monte Carlo study of Section 4 are unique (at the very least for empirically
relevant parametrizations).
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Algorithm 3: Numerical solution algorithm
1 Given values for primitives {Ai, L̄b

i , T̄i, η̃i, ϕ̄i, τij} and structural parameters
{α,β, γ, φ, ζ, µ, ξ,σ} define set of endogenous variables V = {Ln

i , L
t
i, wi, ri, pHi ,Pi}

2 Set convergence parameter κ → (0, 1)

3 Set precision rule to govern deviation between guesses and model solution.
4 Set maximum number of iterations to maxiter
5 Set count = 1
6 Guess values of wi and Li

7 while count < maxiter do
8 Solve for Ln

i by using Eq. (14).
9 Solve for Lt

i by using the labour resource constraint, Eq. (15).
10 Solve for pHi by using Eq. (12).
11 Solve for ri by using Eq. (11).
12 Solve for the aggregate consumer price index

Pi ≡
(
[
∑

j(τjiwj/ϕj)1−σ]1/(1−σ)
)αβ

(wi/ϕi)µ(pHi )1−µ)α(1−β)(pHi )1−α, where we
have used the expressions for prices of tradable goods, ptji = τjiwj/ϕj , the
CES-price index P t

i = [
∑

j(p
t
ji)

1−σ]1/(1−σ), and non-tradable goods,
pni = (wi/ϕi)µ(pHi )1−µ in the aggregate consumer price index
Pi ≡

(
P t
i

)αβ
(pni )

α(1−β)(pHi )1−α.

13 Then compute new values of initial (or updated) guesses:
14 Compute wnew

i by using Eq. (13). Normalise mean wages to unity, e.g. by
wnew
i = wnew

i /mean(wnew
i )

15 Compute λi and derive value for Lnew
i using Eq. (16).

16 Check deviation between guesses and model solution

target1 = round(abs(wi − wnew
i ), precision)

target2 = round(abs(Li − Lnew
i ), precision)

17 if target1 == 0 & target2 == 0 then
18 break;

19 else
20 Update initial guesses or updated values of wi and Li:

wup
i = κwi + (1− κ)wnew

i

Lup
i = κLi + (1− κ)Lnew

i

Use updated values and re-iterate

wi = wup
i

Li = Lup
i

21 Compute other endogenous variables (e.g. quantities) as needed.
Result: Equilibrium values of V
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A.3 Using the model to predict non-housing price indices

From Eq. (17) it is evident that measuring QoL while accounting for trade frictions requires
measures of tradable goods and local services prices. If no such price index is at hand, we
can use the structure of the model to solve for a non-housing price index from employment
and wage data. Intuitively, we set the structural fundamentals, {νni , dj}, which rationalize
observed tradable goods and local services prices in the quantification described in Section
A.1, to uniform one. Otherwise, we follow the same steps to invert worker productivity, which
is then used to predict tradable goods and local services prices.

We invert worker productivities using the tradable goods market condition in Eq. (13) using
the same values for parameters {α,β, ζ, ι, µ,σ} as in Section A.1, and a simplified version of
Algorithm 2. Since we do not require model-predicted tradable goods prices, P t,model to match
values in data, P t, the outer loop becomes redundant so that we iterate over guessed values of
worker productivity ϕ in the inner loop, holding the destination-specific trade cost component
constant at dj = 1. Consequentially, the data requirements for this procedure, compared to
Section A.1, drop to observed values of endogenous variables as well as a bilateral distance
matrix.

With worker productivity at hand, the model-consistent tradable goods price index can be
computed as

P̂ t =

[∑
i∈J (τijwi/ϕi)

1−σ

∑
i∈J (τikwi/ϕi)

1−σ

] 1
1−σ

,

with τij = (exp[−ι ∗ ln distij ])
1

1−σ . Similarly, given the assumption of uniform productivity in
local services, pn = 1, it is straightforward to compute the local services price index as

p̂n = (ŵ/ϕ̂)µ(p̂H)1−µ.

B Monte Carlo study

This appendix complements the Monte Carlos analysis in Section 4.

B.1 Parameter choices

Table A2 provides an overview of the parameter value choices in the Monte Carlo study.
Additionally, we recap how the model fundamentals are determined.

B.2 Measurement error

Figure A1 complements Figure 2 in the main paper by correlating the measurement error in
the Rosen-Roback QoL measure, E , against additional variables. As in Figure 2, each dot cor-
responds to one artificial city in the synthetic data set generated in Section 4. In panel (a), we
consider market access, M, as a covariate. Our market access measure solely depends on ge-
ography, which is exogenous and held constant across all Monte Carlo experiments. Therefore,
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Table A2: Parameter values

Parameter Description Approach Source

Preferences

1− α = 0.3 Housing share in consumption Set Combes et al. (2019)
β = 0.5 Tradable goods share Set Caliendo et al. (2018)

Production

φ = 0.3 Share of land in production Set Baum-Snow and Han (2024)
ι = 1 Distance elasticity Set Head and Mayer (2014)
σ = 5 Regional varieties substitution Set Head and Mayer (2014)
µ = 0.8 Labour share in production Set. Greenwood et al. (1997)
ζ = 0.02 Productivity spillovers Set. Combes and Gobillon (2015)

Regional fundamentals

L̄ = J Number of workers Set
Ti = 1 Land Area Set
distij Geographical Distance Set

τij Trade cost Set τij = (exp[−ι ∗ ln distij ])
1

1−σ

Mi Market access measure Set
∑

j∈J(Yj/distij)

lnLb Log Birth Place Population Sim. ∼ N (0, 0.85)

lnAi Log Quality of life Sim. ∼ N (0, 0.25)

ln ηi Floor space productivity Sim. ∼ N (0, 0.25)

ln ϕ̄i Worker productivity Sim. ∼ N (0, 0.25)

γ Labour supply elasticity Sim. ∼ U(1.1; 10)

ξ Value of Birth Place Location Sim. ∼ U(0; 10)
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Figure A1: Measurement error: Other outcomes

(a) Market access (b) Tradable goods prices

(c) Local services prices (d) Residence/hometown population

Notes: Measurement error is defined as E = (1/γ)(lnLb − ln L̂)−αβ ln P̂ t −α(1− β) ln p̂n. All covariates are in logs. We
run N = 1, 000 Monte Carlo simulations for a synthetic economy with J = 144 local labour markets.

it varies between artificial cities, but not between countries. Ceteris paribus, we expect it to
be negatively correlated with tradable goods prices. Yet, we find no correlation between mar-
ket access and measurement error. We do find a weakly positive correlation between tradable
goods prices and measurement error in panel (b). However, within groups of similar relative
QoL values, the correlation is negative. We observe the same pattern for local service prices in
panel (c). Descriptively, we do not find strong evidence that trade frictions significantly shape
measurement error in the Rosen-Roback QoL measure.

In panel (d), we examine another endogenous outcome: the ratio of residence population
to hometown population. We find a pronounced negative correlation between this ratio and
the measurement error, which reinforces the patterns observed in the correlations with fun-
damentals in panels (a) to (c) of Figure 2. The underestimation of relative QoL differences
within the Rosen-Roback framework is particularly pronounced in cities that, due to positive
fundamentals, attract a large residence population relative to the hometown population.
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B.3 Sensitivity analysis

In Table A3 we analyse how sensitive our regression results are to the parameter choices by
decreasing (increasing) each by 25% and repeating our Monte Carlo study. For sake of brevity,
we only display the marginal effects of the main variables for the full measurement error E .

In Table A4 we replicate Table 1 from the main paper for 1, 000 countries whose stylized
geography more closely resembles the one from the USA. In particular, we set J = 400 and
consider rectangular countries with side length 2750 (km). We draw all fundamentals from the
same distributions and use the same parametrisation as in the main paper.

B.4 Urban quality-of-life premium

This section complements Section 4.3 in the main paper. In Figure 3, we correlate the bias
in the Rosen-Roback estimate of the urban QoL premium with the synthetic country-specific
value of the taste dispersion parameter γ, distinguished by the strength of local ties (governed
by ξ).

In Figure A2, we quantify the impact of controlling for selected frictions on the bias in the
estimated urban QoL premium. To compute the bias, we now use adjusted QoL measures,
ln ÂRR − X when estimating Eq. (21), where X corresponds to one of the terms highlighted
in Eq. (19). For ease of interpretation, we focus only on the empirically relevant cases where
ξ < 6 and the total bias is consistently negative.

Conditional on controlling for local ties, the remaining measurement error causing the bias
in the urban QoL premium is primarily driven by the omitted control for idiosyncratic tastes.
Consequentially, the urban QoL premium is underestimated for the most part. Likewise, con-
trolling for idiosyncratic tastes, the omission of the control for local ties typically results in a
sizable overestimation of the urban QoL premium. Echoing Table 1, controlling for trade fric-
tions without addressing mobility frictions has mostly quantitatively small effects. Moreover,
it does not necessarily reduce the bias in the urban QoL premium unless mobility frictions
are already accounted for. The important takeaway for the applied literature is that to avoid
biased estimates of the urban QoL premium, accounting for mobility frictions is more impor-
tant than accounting for trade frictions. When addressing mobility frictions, it is important
to account for idiosyncratic tastes and local ties simultaneously, otherwise, there is a risk that
the bias, in absolute terms, actually increases.
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Table A3: Sensitivity analysis

(1) (2) (3) (4)

φ1 = 0.75 ∗ φ φ2 = 1.25 ∗ φ β1 = 0.75 ∗ β β2 = 1.25 ∗ β

Measurement bias: Intercept -0.284 -0.286 -0.285 -0.296
(Inverse) taste heterogeneity: γ-3 0.026 0.025 0.027 0.030
Strength of local ties: ξ-5 -0.015 -0.016 -0.016 -0.016
Market access: Mi -0.081 -0.075 -0.090 -0.100
Quality of life: ln(Â/1.5) -0.705 -0.704 -0.712 -0.719
Relative floor-space productivity : ln η̂ -0.316 -0.220 -0.177 -0.197
Relative worker productivity: ln ˆ̄ϕ -0.502 -0.541 -0.546 -0.540
Relative hometown population: ln L̂b 0.092 0.072 0.081 0.075

µ1 = 0.75 ∗ µ µ2 = 1.25 ∗ µ σ1 = 0.75 ∗ σ σ2 = 1.25 ∗ σ

Measurement bias: Intercept -0.287 -0.301 -0.266 -0.281
(Inverse) taste heterogeneity: γ-3 0.019 0.022 0.029 0.030
Strength of local ties: ξ-5 -0.014 -0.013 -0.021 -0.015
Market access: Mi -0.085 -0.080 -0.103 -0.098
Quality of life: ln(Â/1.5) -0.729 -0.736 -0.671 -0.696
Relative floor-space productivity : ln η̂ -0.165 -0.179 -0.167 -0.192
Relative worker productivity: ln ˆ̄ϕ -0.583 -0.579 -0.469 -0.518
Relative hometown population: ln L̂b 0.073 0.068 0.095 0.073

δ1 = 0.75 ∗ δ δ2 = 1.25 ∗ δ ι1 = 0.75 ∗ ι ι2 = 1.25 ∗ ι

Measurement bias: Intercept -0.291 -0.293 -0.286 -0.294
(Inverse) taste heterogeneity: γ-3 0.026 0.026 0.026 0.027
Strength of local ties: ξ-5 -0.017 -0.017 -0.021 -0.016
Market access: Mi -0.099 -0.086 -0.135 -0.105
Quality of life: ln(Â/1.5) -0.725 -0.718 -0.695 -0.714
Relative floor-space productivity : ln η̂ -0.189 -0.170 -0.172 -0.206
Relative worker productivity: ln ˆ̄ϕ -0.570 -0.550 -0.514 -0.541
Relative hometown population: ln L̂b 0.069 0.072 0.089 0.070

Notes: Each column represents the measurement error of the full model for a location with 50% higher
quality of life than the numéraire location (so Â = 1.5) and when a structural parameters is decreased
(increased) by 25%. All explanatory variables are expressed relative to a numéraire location. The mobility
friction parameter γ and local ties valuation ξ are re-scaled to have a zero value at γ = 3 and ξ = 5,
respectively, so we can interpret the intercept as the measurement error for otherwise identical locations.
Given the high number of Monte Carlo iterations, all coefficients are highly significant at all common levels
so we do not report standard errors for the sake of brevity.We use the same explanatory variables as in
Table 1 of the main paper.

C Application

This appendix complements the application of our approach to the measurement of QoL in
Germany in Section 4.
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Table A4: Determinants of the measurement bias - Large country

Frictions controlled: (1) (2) (3) (4) (5)
Trade Costs !
Local services !
Local ties !
Idiosyncratic tastes !

Measurement error: Intercept -0.277 -0.300 -0.289 -0.196 -0.048

Parameters and regional fundamentals:

(Inverse) taste heterogeneity: γ-3 0.026 0.022 0.024 0.018 0.015
Strength of local ties: ξ-5 -0.014 -0.012 -0.013 0.012 -0.030
Market access: lnM̂ -0.077 -0.144 -0.041 -0.052 0.005
Quality of life: ln(Â/1.5) -0.688 -0.743 -0.717 -0.465 -0.140
Relative floor-space productivity : ln η̂ -0.177 -0.198 -0.258 -0.128 0.054
Relative worker productivity: ln ˆ̄ϕ -0.529 -0.609 -0.570 -0.361 -0.048
Relative hometown population: ln L̂b 0.055 0.046 0.050 -0.118 0.188

Interaction effects:

lnM̂ ∗ (γ − 3) 0.008 0.005 0.008 0.006 0.005
ln(Â/1.5) ∗ (γ − 3) 0.065 0.054 0.059 0.041 0.041
ln η̂ ∗ (γ − 3) 0.022 0.019 0.020 0.023 0.005
ln ˆ̄ϕ ∗ (γ − 3) 0.054 0.045 0.049 0.041 0.028
ln L̂b ∗ (γ − 3) -0.004 -0.003 -0.003 0.023 -0.027
lnM̂ ∗ (ξ − 5) -0.005 -0.004 -0.005 0.005 -0.011
ln(Â/1.5) ∗ (ξ − 5) -0.036 -0.030 -0.033 0.034 -0.080
ln η̂ ∗ (ξ − 5) -0.012 -0.010 -0.011 0.010 -0.026
ln ˆ̄ϕ ∗ (ξ − 5) -0.028 -0.024 -0.026 0.029 -0.065
ln L̂b ∗ (ξ − 5) 0.016 0.013 0.015 -0.022 0.043

Observations 400,000 400,000 144,000 144,000 144,000
Adjusted R2 0.973 0.984 0.980 0.770 0.774

Notes: Each column represents a different measurement error for a location with 50% higher quality of life than the numéraire
location, so Â = 1.5. In column (1), we ignore all spatial frictions; in column (2), we control for trade costs; in column (3), we
control for differences in non-tradable service prices and in column (4) we control for migration frictions. All explanatory variables
are expressed relative to a numéraire location. The mobility friction parameter γ is re-scaled to have a zero value at γ = 3, so
we can interpret the intercept as the measurement error for otherwise identical locations. Given the high number of Monte Carlo
iterations, all coefficients are highly significant at all common levels so we do not report standard errors for the sake of brevity.
We truncate the normal distributions by 0.65 from below and above to avoid generating cities with implausibly large or small
populations. All the main results insensitive to the truncation.

C.1 Data sources

This appendix complements Section 5.1 in the main paper. For our application, we require
four sets of data compiled for consistent spatial units: Employment, wages, floor space prices,
and non-housing prices.

Spatial unit. According to Kosfeld and Werner (2012), the delineation of German labour
market areas is based on combining one or more administrative regions at the county level
to create self-contained labour markets. The boundaries of local labour markets are defined
such that commuting within labour market regions is relatively large compared to commuting
between regions (subject to an upper limit on commuting time of 45-60 minutes).
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Figure A2: Bias in urban QoL premium: Controlling for selected migration frictions. For ease
of interpretation we focus only the empirically relevant cases where ξ < 6, and drop all other
Monte Carlo scenarios for this figure.

Population. Our measures of population – residence population and hometown population
– are derived from individual-level social security data that are contained in the Integrated
Employment Biographies (IEB). This data set covers daily information on the labour market
biographies of the universe of employees in Germany (except for civil servants and the self-
employed). To prepare the data set for our empirical analysis, we proceed in the following
way. First, we retain information on all workers who are employed subject to social security
contributions at any point between 1993 and 2019. Within a given year, we restrict the sample
to individuals who are employed on 30 June of that year and select the employment spell
that contains this reference date. If a person has multiple employment spells that contain the
reference data, we sequentially apply the following criteria to determine which spell to keep: a)
the longest employment spell, b) the employment spell with the highest wage and c) a random
employment spell. Second, we address the fact that wages in the IEB data are censored and
perform an imputation procedure that is based on Card et al. (2013) and described in further
detail in Stüber et al. (2023). Third, we retain those workers whose highest skill level is a
completed apprenticeship, who started their training in the year 1993 or later and who were
between 15 and 25 years old at that time. The choice of this group is motivated by the
possibility to use the region of a person’s training firm, which is observed in the IEB data, as
a proxy for a person’s hometown, which is not observed. Since reliable data on East Germany
is only available from 1993, using earlier apprenticeship cohorts is not feasible. This procedure
yields a total of 5.8 million individuals, who are employed in 2015 and for whom the region
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of their training firm is observed. To assess robustness of our findings, we further restrict the
sample by only including individuals with German nationality as the former are more likely to
have grown up in Germany as opposed to foreigners who might have come to Germany shortly
before starting apprenticeship training and for whom the region of the training firm would
therefore not be a suitable measure of their hometown. This restriction is potentially relevant
as the years 2015 and 2016 saw a large number of refugee migrants arrive in Germany (e.g., Hayo
and Roth, 2024). Applying this restriction reduces sample size to 5.6 million workers in the
year 2015. Residence population is defined as the (contemporaneous) number of employees
in a local labour market, Li. For most analyses, this quantity refers to the year 2015. For
the specific sample that we use for the empirical analysis, the average residence population
across the 141 labour market regions stands at 41,114. Values range from about 4,000 in
the labour market region Vulkaneifel to approximately 250,000 in Hamburg. Hometown
population is defined as the number of employees who started their apprenticeship training
in the same region, Lm. Since every individual in the data set is assigned a residence region
and a hometown region, the mean value of both measures across labour market regions is
identical. Moreover, regions that are large in the present also tend to have had a relatively
large number of apprenticeship trainees, leading to a positive correlation between residence
population and hometown population. We argue that the region in which a person started her
apprenticeship training represents a good proxy for her hometown because empirical evidence
suggests that a large share of individuals start apprenticeship training in the region in which
they also completed schooling (Hoffmann and Wicht, 2023).

Census population. To construct the crude-data QoL version, we replace measures of the
residence and the hometown population, which are based on the IEB, with publicly available
total population measures. Specifically, we use a labour market’s population size in 2015 as a
a measure of residence population and its population size in 1985 as a measure of hometown
population. Both population variables are based on data from the Federal Institute for Research
on Building, Urban Affairs and Spatial Development (BBSR) that were initially provided at
the county level and which we aggregate to the level of the 141 labour market regions.

Tradable sector. We assign individuals to the (non-)tradable sector based on the 2-digit
sector they are employed in. For this purpose, we employ the classification of 2-digit sectors as
tradable or non-tradable from Gregory et al. (2021). About 43% of individuals are employed
in the tradable sector.

Productivity. We use information from the universe of workers who are observed as em-
ployed subject to social security (including apprentices) on June 30 to estimate the region-
specific productivity, which maps into the wage. In line with the standard approach in the
agglomeration literature (Combes and Gobillon, 2015), we assume that worker productivity
ϕi(ω) is a multiplicative function of a region-specific component ϕi and an individual com-
ponent ρi(ω). Following the conventions in labour economics (Abowd et al., 1999), we define
ρi(ω) = exp(ρ̄(ω)SL

i (ω)z
LfL

i (ω)) as a function of unobserved time-invariant individual pro-
ductivity ρ̄(ω), observable worker characteristics SL

i (ω) (dummies for whether a worker is in
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an apprenticeship or works part-time, with zL being the marginal effects) and a stochastic
residual term fL

i (ω). This yields the following estimation equation for individual wages:

lnwi(ω) = ρ̄(ω) + SL
i (ω)z

L + ϕ̃i + fL
i (ω). (22)

In estimating Eq. (22), we remove all observations of individuals who never change their
place of employment. We recover ϕ̃i as a log index of region-specific productivity, which we
re-scale such that the averages match the group-specific log annual earnings in the raw wage
data.

C.2 Estimation

This section compliments Section 5.1 in the main paper by showing additional detail on the
estimation of the parameter governing the strength of local ties, ξ.

To estimate ξ, we start from Eq. (9), multiply by L̄ and take logs. This delivers the
regression specification:

lnLim = ξ1{m = j}+Ri +Hm + νim, (23)

where 1{m = j} is a dummy that indicates when the residence is equal to the hometown, Ri ≡
γ ln (Aiwi/Pi) denotes residence fixed effects, Hm ≡ ln

(∑
j∈J (Ajwj/Pj)

γ · exp[1{m = j} · ξ]
)

denotes hometown fixed effects, and νim is the regression residual that accounts for measure-
ment error.

A standard problem arising when estimating log-linearized gravity equations is many bi-
laterals do not have positive values. In Table A5, we address this problem by applying the
conventional ln(y + 1) transformation to the dependent variable in Columns (2) and (5) and
using a PPML estimator in Columns (3) and (6). The PPML estimator yields an estimate
of ξ of about 5.6 – regardless of whether the full sample is used or the sample of German
nationals. By contrast, using the sample of non-zero bilateral population cells or applying the
log-transformation yields an estimate of slightly above 7.

C.3 Rosen-Roback quality of life

Figure A3 compares our preferred QoL measure, A, to the canonical Rosen-Roback measure,
ARR.

One insight from Figure 4 is that, qualitatively, the two measures based on the quantitative
spatial model and the Rosen-Roback framework exhibit a similar spatial pattern. The largest
cities Berlin, Hamburg, and Munich are among the places with the greatest QoL, but the
similarities extend beyond these cities. Quantitatively, however, the differences are striking.
Interpreted through the lens of the quantitative spatial model, there is much more variation in
QoL than when the inference is based on the Rosen-Roback framework. As argued in Section
4, this is the expected result when QoL and city size are positively correlated.
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Table A5: Estimation of ξ

(1) (2) (3) (4) (5) (6)
Full sample German nationals

OLS OLS PPML OLS OLS PPML
Same region (1{m = j}) 7.2243*** 7.1358*** 5.5885*** 7.2123*** 7.1232*** 5.5830***

(0.0793) (0.0749) (0.0350) (0.0796) (0.0753) (0.0346)
Residence fixed effects Yes Yes Yes Yes Yes Yes
Hometown fixed effects Yes Yes Yes Yes Yes Yes
Sample Non-zero All All Non-zero All All
Observations 18742 19881 19881 18724 19881 19881
R2 .59 .622 .589 .621

Notes: Unit of observation is residence-hometown population. The dependent variable is the log of residence-hometown population
Lim = λimL̄. Robust standard errors. The non-zero sample are bilaterals with positive residence-hometown population. In
Columns (2) and (5), the dependent variable is transformed to ln(y + 1). Columns (1)-(3) use the full sample, while Columns
(4)-(6) are restricted to German nationals. Robust standard errors in parenthesis; * p < 0.1, ** p < 0.05, *** p < 0.01

C.4 Predicted non-housing price index

We observe the prices of tradable goods and local services in 2015, but not before or after.
However, to gain insight into how quality of life has changed over time, we can use the model
to predict prices of tradable goods and services, as discussed in Appendix A.3. With predicted
prices for 2007 (the earliest house prices from Ahlfeldt et al. (2022)) and 2019 (the most recent
IAB data), we can calculate how relative QoL has changed over a period of more than 20 years.

The first insight from Table A6 is that, taking 2015 as a case in point, the QoL measure
using our predicted prices (PP) is a good approximation of our preferred QoL measure (QSM).
This is reassuring, as it suggests that the long-term change in relative QoL revealed by the
measures using predicted prices is informative. At the top of the distribution, we observe a
striking degree of persistence in the QoL ranking. Within the top-5, only Berlin moved up one
place. The only other changes within the top-10 are Münster (up 2 places) and Hanover (up
5 places). Outside the top-10, the changes are more significant. Among the cities that have
lost the most are many of Germany’s former industrial heartlands, such as Chemnitz, Gera,
Hagen and Bochum, which have struggled with economic transition, deindustrialisation and
demographic decline. Many of these cities were historically dependent on heavy industry or
coal mining, making them particularly vulnerable to structural change.

Table A6: Quality of life in 2015 and 2019

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Hamburg 1 2.08 1 1.91 1.76 1.85 0
München 2 2.03 2 1.89 1.79 1.90 0
Berlin 3 1.85 3 1.70 1.49 1.72 1
Frankfurt am Main 4 1.70 4 1.58 1.66 1.60 -1

Continued on next page

50



Table A6 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Düsseldorf 5 1.57 5 1.44 1.48 1.46 0
Köln 6 1.52 6 1.39 1.41 1.40 0
Stuttgart 7 1.49 7 1.39 1.38 1.39 0
Münster 8 1.30 8 1.25 1.23 1.30 2
Nürnberg 9 1.29 11 1.23 1.23 1.21 0
Hannover 10 1.29 12 1.21 1.21 1.25 5
Dresden 11 1.27 10 1.24 1.28 1.15 -9
Leipzig 12 1.22 15 1.16 1.23 1.16 -6
Regensburg 13 1.22 9 1.24 1.22 1.22 2
Karlsruhe 14 1.19 17 1.16 1.20 1.15 -1
Mainz 15 1.18 13 1.19 1.22 1.13 -7
Bremen 16 1.18 21 1.12 1.06 1.15 19
Essen 17 1.16 37 1.02 1.17 1.00 -27
Erlangen 18 1.13 14 1.19 1.13 1.13 2
Ingolstadt 19 1.12 18 1.15 1.15 1.14 2
Ulm 20 1.12 20 1.12 1.08 1.09 5
Freiburg 21 1.11 16 1.16 1.15 1.17 7
Traunstein 22 1.11 19 1.13 1.11 1.19 13
Saarbrücken 23 1.10 32 1.06 1.02 0.86 -27
Heidelberg 24 1.10 24 1.09 1.17 1.10 -6
Würzburg 25 1.09 27 1.08 1.09 1.10 5
Landshut 26 1.09 22 1.12 1.12 1.13 1
Dortmund 27 1.09 41 1.00 1.10 0.98 -22
Aachen 28 1.08 35 1.04 1.05 0.96 -12
Bonn 29 1.08 29 1.07 1.11 1.07 -3
Böblingen 30 1.07 25 1.09 1.13 1.10 -5
Augsburg 31 1.07 30 1.07 1.10 1.16 14
Ravensburg 32 1.07 33 1.04 1.06 1.07 5
Bielefeld 33 1.06 39 1.01 1.06 1.02 0
Koblenz 34 1.06 38 1.02 1.06 1.05 6
Soest 35 1.06 34 1.04 1.02 1.00 6
Ludwigshafen 36 1.06 40 1.00 1.09 1.01 -9
Erfurt 37 1.05 36 1.03 1.16 1.01 -21
Rostock 38 1.03 23 1.09 1.09 1.07 0
Heilbronn 39 1.03 45 0.99 1.04 1.04 8
Chemnitz 40 1.02 58 0.94 1.17 0.86 -58
Oldenburg 41 1.01 31 1.06 0.98 1.06 27
Kiel 42 1.00 42 1.00 1.00 1.00 11
Kassel 43 0.99 49 0.98 0.98 0.99 15
Fulda 44 0.99 44 1.00 1.00 1.03 22
Braunschweig 45 0.98 50 0.98 1.02 1.01 9
Gießen 46 0.98 54 0.95 0.98 0.96 6
Reutlingen 47 0.97 47 0.98 1.01 1.02 12
Ortenaukreis 48 0.96 46 0.98 0.97 0.98 11
Konstanz 49 0.96 28 1.07 1.08 1.13 12

Continued on next page
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Table A6 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Bamberg 50 0.95 43 1.00 1.04 0.99 0
Darmstadt 51 0.94 53 0.96 1.05 0.95 -17
Kempten 52 0.94 51 0.97 0.95 0.99 24
Weilheim-Schongau 53 0.94 26 1.08 1.08 1.10 6
Osnabrück 54 0.94 56 0.95 0.95 0.94 11
Hagen 55 0.93 76 0.87 1.02 0.82 -40
Bochum 56 0.93 77 0.86 1.01 0.83 -32
Magdeburg 57 0.92 67 0.90 1.06 0.89 -30
Wolfsburg 58 0.92 61 0.93 1.01 0.90 -17
Borken 59 0.92 63 0.92 0.91 0.92 21
Trier 60 0.92 52 0.96 1.00 0.95 -4
Lübeck 61 0.91 60 0.93 0.97 0.98 15
Bautzen 62 0.91 68 0.90 0.94 0.71 -41
Heidenheim 63 0.91 69 0.90 0.94 0.92 11
Aschaffenburg 64 0.90 59 0.94 1.00 0.95 0
Schwerin 65 0.89 66 0.91 1.01 0.89 -17
Bayreuth 66 0.89 55 0.95 0.95 0.97 15
Jena 67 0.89 48 0.98 1.04 0.96 -12
Flensburg 68 0.88 65 0.91 0.88 0.91 29
Passau 69 0.88 57 0.94 0.92 0.98 31
Rottweil 70 0.88 74 0.88 0.93 0.92 13
Coburg 71 0.88 64 0.92 0.97 0.86 -9
Emsland 72 0.88 75 0.87 0.88 0.85 16
Halle 73 0.88 79 0.85 1.00 0.83 -27
Minden 74 0.87 84 0.83 0.93 0.84 0
Schweinfurt 75 0.86 73 0.88 0.91 0.93 23
Deggendorf 76 0.86 62 0.93 0.91 0.99 39
Altötting 77 0.85 72 0.88 0.93 0.93 16
Vechta 78 0.85 71 0.88 0.85 0.91 39
Göttingen 79 0.85 83 0.83 0.92 0.79 -7
Wuppertal 80 0.83 102 0.77 0.93 0.76 -23
Südvorpommern 81 0.83 70 0.89 0.95 0.84 -11
Hof 82 0.81 92 0.80 0.94 0.81 -13
Amberg 83 0.81 87 0.82 0.89 0.82 7
Nordvorpommern 84 0.80 80 0.84 0.96 0.89 -4
Landau 85 0.79 81 0.84 0.87 0.87 25
Siegen 86 0.78 97 0.79 0.85 0.76 8
Ansbach 87 0.78 86 0.82 0.89 0.73 -19
Lörrach 88 0.78 78 0.86 0.87 0.85 21
Pforzheim 89 0.78 93 0.80 0.89 0.83 8
Teltow-Fläming 90 0.78 85 0.83 0.98 0.79 -35
Memmingen 91 0.78 82 0.84 0.88 0.87 22
Olpe 92 0.78 104 0.77 0.86 0.78 4
Kaiserslautern 93 0.77 88 0.81 0.87 0.78 2
Emden 94 0.77 106 0.77 0.86 0.80 13

Continued on next page
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Table A6 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Dessau-Roßlau 95 0.76 107 0.76 0.93 0.76 -24
Suhl 96 0.76 94 0.80 0.89 0.73 -16
Kleve 97 0.76 91 0.80 0.85 0.77 6
Schwäbisch Hall 98 0.76 101 0.78 0.84 0.81 25
Eisenach 99 0.75 90 0.80 0.97 0.72 -48
Göppingen 100 0.75 89 0.81 0.91 0.84 7
Potsdam-Mittelmark 101 0.75 99 0.78 0.86 0.78 9
Oberhavel 102 0.74 96 0.79 0.95 0.80 -17
Donau-Ries 103 0.74 95 0.80 0.83 0.77 15
Bad Kreuznach 104 0.74 98 0.79 0.84 0.79 17
Pirmasens 105 0.72 112 0.74 0.87 0.73 -10
Limburg-Weilburg 106 0.72 111 0.74 0.86 0.75 -4
Waldshut 107 0.71 103 0.77 0.75 0.73 13
Bremerhaven 108 0.71 114 0.73 0.75 0.75 18
Saalfeld-Rudolstadt 109 0.71 105 0.77 0.93 0.72 -31
Gera 110 0.71 113 0.73 0.92 0.65 -44
Stade 111 0.71 109 0.76 0.78 0.77 21
Cham 112 0.70 108 0.76 0.83 0.79 23
Märkisch-Oderland 113 0.70 100 0.78 0.85 0.76 4
Wilhelmshaven 114 0.69 110 0.75 0.78 0.72 8
Goslar 115 0.69 121 0.69 0.88 0.68 -27
Mecklenburgische Seenplatte 116 0.68 116 0.71 0.84 0.70 -3
Cottbus 117 0.66 117 0.71 0.85 0.68 -12
Nordhausen 118 0.66 115 0.71 0.79 0.70 -1
Elbe-Elster 119 0.65 123 0.68 0.84 0.66 -14
Havelland 120 0.64 122 0.69 0.73 0.63 -2
Frankfurt (Oder) 121 0.63 130 0.65 0.81 0.68 -6
Celle 122 0.63 124 0.67 0.70 0.68 8
Waldeck-Frankenberg 123 0.63 128 0.65 0.72 0.66 4
Uckermark 124 0.63 118 0.70 0.79 0.62 -13
Zollernalbkreis 125 0.62 129 0.65 0.73 0.70 11
Hameln 126 0.62 127 0.65 0.73 0.63 -4
Unstrut-Hainich 127 0.62 119 0.69 0.74 0.61 -10
Ostprignitz-Ruppin 128 0.62 120 0.69 0.75 0.64 -4
Sigmaringen 129 0.60 125 0.66 0.67 0.67 12
Weißenburg-Gunzenhausen 130 0.59 126 0.66 0.77 0.62 -12
Dithmarschen 131 0.58 132 0.65 0.67 0.70 21
Bitburg 132 0.58 131 0.65 0.70 0.60 -3
Höxter 133 0.57 133 0.62 0.69 0.58 -4
Lüchow-Dannenberg 134 0.55 137 0.61 0.72 0.59 -8
Prignitz 135 0.54 134 0.61 0.66 0.52 -4
Altenkirchen 136 0.54 139 0.58 0.65 0.62 5
Freyung-Grafenau 137 0.54 135 0.61 0.61 0.68 22
Kronach 138 0.53 138 0.59 0.68 0.56 -4
Stendal 139 0.52 141 0.57 0.70 0.53 -9

Continued on next page
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Table A6 continued from previous page

QSM 2015 PP 2015 PP value Rank
City Rank Value Rank Value 2007 2019 change

Vulkaneifel 140 0.52 136 0.61 0.59 0.54 2
Uelzen 141 0.51 140 0.57 0.64 0.62 8

Notes: Change in rank is computed from 2007 to 2019. Positive numbers reflect an improvement
in QoL.
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Figure A3: Quality of life in Germany

(a) Quantitative spatial model (b) Rosen-Roback

Notes: Both maps illustrate ln(Â). Panel (a) is based on the quantitative spatial model (QSM); panel (b) shows QoL
based on the canonical Rosen-Roback case (RR).
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