
Energie & Umwelt / Energy & Environment
Band / Volume 650
ISBN 978-3-95806-796-7

Energie & Umwelt / Energy & Environment
Band / Volume 650
ISBN 978-3-95806-796-7

Assimilation of groundwater level and cosmic-ray  
neutron sensor soil moisture measurements into integrated 
terrestrial system models for better predictions
Fang Li

650

En
er

gi
e 

& 
Um

w
el

t
En

er
gy

 &
 E

nv
ir

on
m

en
t

A
ss

im
ila

tio
n 

of
 g

ro
un

dw
at

er
 a

nd
 s

oi
l m

oi
st

ur
e 

Fa
ng

 L
i



Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 650





Forschungszentrum Jülich GmbH
Institut für Bio- und Geowissenschaften (IBG)
Agrosphäre (IBG-3)

Assimilation of groundwater level and  
cosmic-ray neutron sensor soil moisture  
measurements into integrated terrestrial  
system models for better predictionst

Fang Li

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 650

ISSN 1866-1793    ISBN 978-3-95806-796-7



Bibliografische Information der Deutschen Nationalbibliothek. 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten 
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.:  +49 2461 61-5368
 Fax:  +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb
 
Umschlaggestaltung: Grafische Medien, Forschungszentrum Jülich GmbH

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2024

Schriften des Forschungszentrums Jülich
Reihe Energie & Umwelt / Energy & Environment, Band / Volume 650

D 82 (Diss. RWTH Aachen University, 2024)

ISSN 1866-1793  
ISBN 978-3-95806-796-7 

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,  
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://creativecommons.org/licenses/by/4.0/


 

i 

 

Contents 
Contents ...................................................................................................................................................................... i 

List of Figures ........................................................................................................................................................... iv 

List of Tables............................................................................................................................................................. xi 

List of Acronyms ..................................................................................................................................................... xv 

Abstract ...................................................................................................................................................................... 1 

Zusammenfassung...................................................................................................................................................... 3 

Chapter 1: Introduction .............................................................................................................................................. 5 

Chapter 2: Theory, methods and materials ............................................................................................................... 15 

2.1 Integrated terrestrial systems model TSMP .............................................................................................. 15 

2.1.1 Land surface model Community Land Model (CLM), version 3.5 .............................................. 15 

2.1.2 Subsurface hydrological model ParFlow ..................................................................................... 18 

2.1.3 Coupling interface OASIS-MCT ................................................................................................. 20 

2.2 Data assimilation ...................................................................................................................................... 20 

2.2.1 Ensemble Kalman Filter (EnKF) ................................................................................................. 20 

2.2.2 Localized Ensemble Kalman Filter (LEnKF) .............................................................................. 23 

2.2.3 TSMP-PDAF ............................................................................................................................... 24 

2.3 Study area and hydrological measurements .............................................................................................. 26 

Chapter 3: Water table depth assimilation in integrated terrestrial system models at the larger catchment scale ..... 29 

3.1 Introduction .............................................................................................................................................. 29 

3.2 Materials and methods .............................................................................................................................. 31 

3.2.1 Study area and data ...................................................................................................................... 31 

3.2.2 Model description (TSMP) .......................................................................................................... 35 

3.2.3 LEnKF methodology ................................................................................................................... 38 

3.2.4 Assimilation methodology ........................................................................................................... 41 

3.3 Experimental setup ................................................................................................................................... 42 

3.3.1 Ensemble generation and simulations .......................................................................................... 42 

3.3.2 Selection criteria for assimilated sites .......................................................................................... 44 

3.3.3 Evaluation of model performance ................................................................................................ 45 



 

ii 

 

3.4 Results and discussion .............................................................................................................................. 47 

3.4.1 Water table depth ......................................................................................................................... 47 

3.4.2 Soil moisture ................................................................................................................................ 53 

3.4.3 Discussion .................................................................................................................................... 55 

3.5 Conclusions .............................................................................................................................................. 57 

Chapter 4: Can a sparse network of cosmic ray neutron sensors improve soil moisture and evapotranspiration 

estimation at the larger catchment scale? ................................................................................................................. 58 

4.1 Introduction .............................................................................................................................................. 58 

4.2 Materials and methods .............................................................................................................................. 60 

4.2.1 Study area .................................................................................................................................... 60 

4.2.2 Terrestrial System Modeling Platform (TSMP) ........................................................................... 61 

4.2.3 Data ............................................................................................................................................. 63 

4.2.4 Data assimilation methodology.................................................................................................... 66 

4.3 Model and experiment setup .................................................................................................................... 69 

4.3.1 TSMP-PDAF setup ...................................................................................................................... 69 

4.3.2 Ensemble generation .................................................................................................................... 70 

4.3.3 Setup of the DA Experiments ...................................................................................................... 71 

4.3.4 Evaluation of model performance ................................................................................................ 72 

4.4 Results ...................................................................................................................................................... 74 

4.4.1 Soil moisture data assimilation general results ............................................................................ 74 

4.4.2 Jackknife simulations ................................................................................................................... 76 

4.4.3 Temporal evolution of parameter estimates and parameter verification ....................................... 78 

4.4.4 Evapotranspiration and discharge ................................................................................................ 81 

4.4.5 Discussion .................................................................................................................................... 85 

4.5 Conclusions .............................................................................................................................................. 89 

Appendix A .................................................................................................................................................... 90 

Chapter 5: A new approach for joint assimilation of cosmic-ray neutron soil moisture and groundwater level data 

into an integrated terrestrial model......................................................................................................................... 100 

5.1 Introduction ............................................................................................................................................ 100 



 

iii 

 

5.2 Materials and methods ............................................................................................................................ 104 

5.2.1 Study area .................................................................................................................................. 104 

5.2.2 Terrestrial System Modeling Platform (TSMP) ......................................................................... 105 

5.2.3 Model input data and measurements .......................................................................................... 107 

5.2.4 Data assimilation: localized EnKF ............................................................................................. 110 

5.3 Model and Experiment Setup ................................................................................................................. 113 

5.3.1 Ensemble generation .................................................................................................................. 113 

5.3.2 Setup of data assimilation experiments ...................................................................................... 115 

5.3.3 Evaluation of model performance .............................................................................................. 116 

5.4 Results .................................................................................................................................................... 117 

5.4.1 Univariate data assimilation of soil moisture ............................................................................. 117 

5.4.2 Univariate data assimilation of groundwater level ..................................................................... 119 

5.4.3 Multivariate data assimilation of groundwater level and soil moisture ...................................... 122 

5.4.4 Influence of Ks updates on simulations ...................................................................................... 129 

5.5 Discussions ............................................................................................................................................. 131 

5.5.1 Strengths and limitations of new multivariate data assimilation approach ................................ 131 

5.5.2 Uncertainties and potential improvement .................................................................................. 133 

5.6 Conclusions ............................................................................................................................................ 135 

Appendix B .................................................................................................................................................. 136 

Chapter 6: Summary and outlook .......................................................................................................................... 151 

Bibliography .......................................................................................................................................................... 159 

Acknowledgements ................................................................................................................................................ 171 

 



 

iv 

 

List of Figures 
Figure 2.1 Configuration of the CLM subgrid hierarchy, adapted from Oleson et al. (2004). 

Each grid cell is composed of multiple landunits, snow/soil columns, and Plant 

Functional Types (PFTs). The first subgrid level is the landunit, which can be glacier, 

wetland, vegetated, lake, or urban. The second subgrid level is the column, which can 

be soil or snow within a single landunit. The third subgrid level is the PFT level, 

where up to 4 of 15 possible PFTs that differ in physiology and structure can coexist 

on a single column. .................................................................................................. 16 

Figure 2.2 Topography of the Rur catchment (a) and locations of the hydrological stations (b), 

including groundwater wells, cosmic-ray neutron sensors, and eddy covariance 

stations. .................................................................................................................... 27 

Figure 3.1 Map of the Rur catchment and locations of the 13 cosmic-ray neutron sensors (CRNS) 

(black points) and groundwater measurement sites (red points) in the year 2018. The 

Rur catchment is situated in western Germany. ....................................................... 32 

Figure 3.2 Sand (a) and clay (b) content (%) for the Rur catchment derived from the BK50 soil 

map. ......................................................................................................................... 33 

Figure 3.3 Hydraulic conductivity of the aquifer material for the Rur catchment. ................. 33 

Figure 3.4 Illustration of the link between groundwater level observation and data to be 

assimilated (revised from Zhang et al. (2018)). The blue colour indicates the 

groundwater level at layer i-1. The red layers (from layer i to the bottom layer) are 

saturated and are incorporated as groundwater observations, and converted to 

pressure heads assuming hydrostatic conditions. .................................................... 41 

Figure 3.5 Spatial autocorrelation functions of measured and simulated (open loop) 

groundwater table depth for the year 2018 (a), the 26th of February 2018 (b), and the 

24th of September 2018 (c). Filled squares or circles indicate autocorrelation 

coefficients are significantly different from zero (p<0.05). When the number of 

comparison pairs was smaller than 1000, the number of comparison pairs is indicated 

next to the marker. ................................................................................................... 47 

Figure 3.6 The locations of the assimilated groundwater sites (dots) in the Rur catchment 

together with the average groundwater table depth (a); time series of root mean square 

error (RMSE) of water table depth at measurement locations for the year 2018 for the 

open loop and data assimilation runs (b); the histogram of the water table depth errors 



 

v 

 

at the measurement locations for the year 2018 from the open loop and data 

assimilation runs (10 km (c), 5 km (d), 2.5 km (e))................................................. 48 

Figure 3.7 Water table depth time series for 10 assimilation sites: observations (Obs, red), 

ensemble mean of open loop (OL, blue) and ensemble mean of data assimilation run 

with 10 km localization radius (DA, green) for the year 2018. ............................... 50 

Figure 3.8 Difference in average water table depth between data assimilation and open loop 

runs (data assimilation - open loop) for different localization radii (10 km (a), 5 km 

(b), 2.5 km (c)) on the 31st of December 2018 for the Rur catchment; and difference 

in standard deviation for data assimilation and open loop runs for different 

localization radii (10 km (d), 5 km (e), 2.5 km (f)) on the 31st of December 2018 for 

the Rur catchment. ................................................................................................... 51 

Figure 3.9 Time series of RMSE of groundwater table depth for the open loop (OL) and data 

assimilation (DA) runs (10 km (a, d, f), 5 km (b,e), 2.5 km (c) localization radius) at 

verification locations which were 0~2.5 km, 2.5~5 km and 5~10 km away from 

assimilated observations. ......................................................................................... 52 

Figure 3.10 Soil moisture time series from cosmic-ray neutron sensors (CRNS) (red), ensemble 

mean of open loop (OL, grey), and ensemble mean of data assimilation with 10 km 

assimilation radius (DA 10 km, blue) for the year 2018. ......................................... 54 

Figure 4.1 Map of the Rur catchment with the altitude above sea level and the locations of the 

cosmic-ray neutron sensors, eddy covariance stations and discharge station. The Rur 

catchment is situated in western Germany............................................................... 61 

Figure 4.2 Sand (a) and clay content (b) for the Rur catchment derived from the BK50 soil map.

 ................................................................................................................................. 64 

Figure 4.3 Hydraulic conductivity of the bedrock for the Rur catchment. .............................. 64 

Figure 4.4 Schematic overview of the assimilation of soil water content from CRNS with PDAF 

into TSMP (CLM-ParFlow). The flows represented by the red dashed line are outside 

TSMP-PDAF, including the weighting calculation and the comparison of CRNS soil 

moisture with the simulations. ................................................................................. 69 

Figure 4.5 Examples of the simulated soil moisture distribution over the Rur catchment on the 

22nd of July in 2016 and 2018. Subplots a) and d) are from the open loop, b) and e) 

are from data assimilation with state update, and c) and f) are from joint state-



 

vi 

 

parameter update simulations. ................................................................................. 76 

Figure 4.6 Temporal evolution of simulated soil moisture from the open loop mean (OL, blue) 

and jackknife simulation mean (DA, green), together with the observed soil moisture 

from the CRNS (red), for 2016 (a, b) and 2018 (c, d) at the CRNS sites. Simulated 

soil moisture was vertically weighted using the revised method by Schrön et al. 

(2017). ..................................................................................................................... 78 

Figure 4.7 Estimates of averaged saturated hydraulic conductivity (log10Ks) from data 

assimilation experiments with joint state-parameter updating during the periods of 

2016 and 2018 at CRNS locations. The input value of Ks is indicated at the first time 

step. .......................................................................................................................... 79 

Figure 4.8 Ensemble averaged log10Ks fields of the soil at 2 cm depth: (a) prior field; (b) DA 

with joint state-parameter updates at the end of 2016; (c) DA with joint state-

parameter updates at the end of 2018. The black asterisk is the location of the CRNS 

sites. ......................................................................................................................... 80 

Figure 4.9 Temporal evolution of simulated evapotranspiration from open loop (OL, blue), data 

assimilation (joint state-parameter updates, DA, green), and the observed 

evapotranspiration (red) at the sites Rollesbroich, Wüstebach, and Selhausen for the 

assimilation periods of 2016 (first row) and 2018 (second row). Monthly Leaf Area 

Index (LAI) for the plant functional types at the sites Rollesbroich (grassland), 

Wüstebach (needle leaf forest), and Selhausen (cropland), as well as the available 

daily LAI measurements from 2016 and 2018 (third row). ..................................... 83 

Figure 4.10 Annual evapotranspiration from open loop (a, c) and data assimilation runs (joint 

state-parameter updates) (b, d) over the Rur catchment during the assimilation periods.

 ................................................................................................................................. 84 

Figure 4.11 Temporal evolution of simulated discharge from the open loop mean (OL, blue 

circle) and joint state-parameter assimilation mean (DA, green circle), together with 

the observed discharge (black circle) for 2016 and 2018 at the Erkensruhr-Einruhr in 

situ station. The temporal evolution of simulated soil moisture from the open loop 

mean (OL, blue line) and joint state-parameter assimilation mean (DA, green line), 

together with the observations (red dot) for 2016 and 2018 at the Wüstebach site. 85 

Figure A.1 Temporal evolution of mean simulated soil moisture from the open loop (OL, blue), 

joint state-parameter estimation (DA, green), together with observed soil moisture 



 

vii 

 

from CRNS (red), for the year 2016 at the CRNS sites. Simulated soil moisture was 

vertically weighted using the revised method. ........................................................ 93 

Figure A.2 Temporal evolution of mean simulated soil moisture from the open loop (OL, blue), 

joint state-parameter estimation (DA, green), together with observed soil moisture 

from CRNS (red), for the year 2018 at the CRNS sites. Simulated soil moisture was 

vertically weighted using the revised method. ........................................................ 94 

Figure A.3 Soil moisture scatter plots for CRNS observations versus ensemble mean soil 

moisture from the open loop run (OL, blue) and ensemble mean soil moisture from 

joint state-parameter estimation (DA, red) for 2016. .............................................. 95 

Figure A.4 Soil moisture scatter plots for CRNS observations versus ensemble mean soil 

moisture from the open loop run (OL, blue) and ensemble mean soil moisture from 

joint state-parameter estimation (DA, red) for 2018. .............................................. 96 

Figure A.5 Temporal evolution of mean simulated soil moisture from the open loop run (OL, 

blue), jackknife simulations (DA, green), together with the observed soil moisture 

from CRNS (red) for the year 2016 at the CRNS sites. Simulated soil moisture was 

vertically weighted using the revised method. ........................................................ 97 

Figure A.6 Temporal evolution of mean simulated soil moisture from the open loop run (OL, 

blue), jackknife simulations (DA, green), together with the observed soil moisture 

from CRNS (red) for the year 2018 at the CRNS sites. Simulated soil moisture was 

vertically weighted using the revised method. ........................................................ 98 

Figure A.7 Examples of the spatial correlations of soil moisture between CRNS sites and other 

grid cells over the Rur catchment, for the open loop run. Subplots a) and d) are from 

Gevenich on the 29th of June in 2016 and 2018, b) and e) are from Heinsberg on the 

2nd of August in 2016 and 2018, and c) and f) are from Schönseiffen on the 28th of 

July in 2016 and 2018. The black asterisk is the location of the CRNS sites. ......... 99 

Figure 5.1 Topography of the Rur catchment (a) and locations of the hydrological stations (b), 

including groundwater wells, cosmic-ray neutron sensors, and eddy covariance 

stations. .................................................................................................................. 105 

Figure 5.2 Sand (a) and clay (b) content, hydraulic conductivity (c) of the bedrock for the Rur 

catchment. .............................................................................................................. 108 

Figure 5.3 Schematic overview of the assimilation of soil moisture from CRNS and 



 

viii 

 

groundwater (pressure head) with PDAF into TSMP (CLM-ParFlow). θf and θa are 

the forecasted and analyzed soil moisture in the unsaturated zone; hf and ha are the 

forecasted and analyzed pressure heads in the saturated zone. The observed pressure 

heads are derived from the measured groundwater levels. ..................................... 113 

Figure 5.4 Subplots (a) to (c) are the differences (SM_DA - OL) of annual SM (0-80 cm), ET, 

and GWL in 2018. Subplots (d) to (f) are the differences (SM_DA_PAR - OL) of 

annual SM (0-80 cm), ET, and GWL in 2018. The locations of the CRNS stations are 

indicated by the black pentagrams.......................................................................... 119 

Figure 5.5 Subplots (a) to (c) are the differences (GWL_DA - OL) of annual GWL, SM (0-80 

cm), and ET in 2018. Subplots (d) to (f) are the differences (GWL_DA_PAR - OL) 

of annual GWL, SM (0-80 cm), and ET in 2018. The locations of the assimilated 

groundwater sites are indicated by the black circles. ............................................ 122 

Figure 5.6 Average ubRMSE of GWL (at different distances from the assimilated groundwater 

sites) and SM for each univariate and multivariate assimilation experiment. The left 

axis corresponds to GWL and the right axis to SM. .............................................. 125 

Figure 5.7 Differences in annual GWL, SM, and ET between various multivariate DA 

experiments and OL run in 2018: (a, d, g) FC_DA_PAR; (b, e, h) WC_DA_PAR; (c, 

f, i) WC_DA_r_PAR. The red pentagrams and black circles indicate the locations of 

the CRNS stations and the assimilated groundwater sites, respectively. ............... 126 

Figure 5.8 Temporal evolution of SM at the CRNS station Kall and GWL at a groundwater site 

for OL and different DA experiments in 2018: (a, b) SM_DA and SM_DA_PAR; (c, 

d) GWL_DA and GWL_DA_PAR; (e, f) FC_DA and FC_DA_PAR; (g, h) WC_DA 

and WC_DA_PAR; (i, j) WC_DA_r and WC_DA_r_PAR. .................................. 128 

Figure B.1 Temporal evolution of simulated soil moisture from the OL (blue), SM_DA (green), 

and SM_DA_PAR (black) experiments, together with observed soil moisture from 

CRNS (Obs, red) for the year 2016 at the CRNS sites. Simulated soil moisture was 

vertically weighted. ............................................................................................... 139 

Figure B.2 Temporal evolution of simulated soil moisture from the OL (blue), SM_DA (green), 

and SM_DA_PAR (black) experiments, together with observed soil moisture from 

CRNS (Obs, red) for the year 2017 at the CRNS sites. Simulated soil moisture was 

vertically weighted. ............................................................................................... 140 

Figure B.3 Temporal evolution of simulated soil moisture from the OL (blue), SM_DA (green), 



 

ix 

 

and SM_DA_PAR (black) experiments, together with observed soil moisture from 

CRNS (Obs, red) for the year 2018 at the CRNS sites. Simulated soil moisture was 

vertically weighted. ............................................................................................... 141 

Figure B.4 Subplots (a) to (c) are the differences (SM_DA - OL) of annual SM (0-80 cm), ET, 

and GWL in 2016. Subplots (d) to (f) are the differences (SM_DA_PAR - OL) of 

annual SM (0-80 cm), ET, and GWL in 2016. The locations of the CRNS stations are 

indicated by the black pentagrams......................................................................... 142 

Figure B.5 Subplots (a) to (c) are the differences (SM_DA - OL) of annual SM (0-80 cm), ET, 

and GWL in 2017. Subplots (d) to (f) are the differences (SM_DA_PAR - OL) of 

annual SM (0-80 cm), ET, and GWL in 2017. The locations of the CRNS stations are 

indicated by the black pentagrams......................................................................... 143 

Figure B.6 Temporal evolution of simulated groundwater level from the OL (blue), GWL_DA 

(green), and GWL_DA_PAR (black) experiments, together with observed 

groundwater level (Obs, red) at the 12 selected assimilated groundwater sites in 2018.

 ............................................................................................................................... 144 

Figure B.7 Subplots (a) to (c) are the differences (GWL_DA - OL) of annual GWL, SM (0-80 

cm), and ET in 2016. Subplots (d) to (f) are the differences (GWL_DA_PAR - OL) 

of annual GWL, SM (0-80 cm), and ET in 2016. The locations of the assimilated 

groundwater sites are indicated by the black circles. ............................................ 145 

Figure B.8 Subplots (a) to (c) are the differences (GWL_DA - OL) of annual GWL, SM (0-80 

cm), and ET in 2017. Subplots (d) to (f) are the differences (GWL_DA_PAR - OL) 

of annual GWL, SM (0-80 cm), and ET in 2017. The locations of the assimilated 

groundwater sites are indicated by the black circles. ............................................ 146 

Figure B.9 The differences of annual GWL, SM and ET for OL and different DA experiments 

in 2016: FC_DA_PAR (a, d, g); WC_DA_PAR (b, e, h); WC_DA_r_PAR (c, f, i). 

The red pentagrams and black circles indicate the locations of the CRNS stations and 

the assimilated groundwater sites, respectively. .................................................... 147 

Figure B.10 The differences of annual GWL, SM and ET for OL and different DA experiments 

in 2017: FC_DA_PAR (a, d, g); WC_DA_PAR (b, e, h); WC_DA_r_PAR (c, f, i). 

The red pentagrams and black circles indicate the locations of the CRNS stations and 

the assimilated groundwater sites, respectively. .................................................... 148 

Figure B.11 Differences in ensemble averaged logKs between OL and different DA experiments 



 

x 

 

in 2016: (a) and (d) SM_DA_PAR; (b) and (e) GWL_DA_PAR; (c) and (f) 

WC_DA_r_PAR. The first row is from 2 cm depth, and the second row is from 10 m 

depth. The red pentagrams and black circles indicate the locations of CRNS stations 

and the assimilated groundwater sites, respectively. ............................................. 149 

Figure B.12 Differences in ensemble averaged logKs between OL and different DA experiments 

in 2017: (a) and (d) SM_DA_PAR; (b) and (e) GWL_DA_PAR; (c) and (f) 

WC_DA_r_PAR. The first row is from 2 cm depth, and the second row is from 10 m 

depth. The red pentagrams and black circles indicate the locations of CRNS stations 

and the assimilated groundwater sites, respectively. ............................................. 150 

 



 

xi 

 

List of Tables 
Table 2.1 CRNS sites used in this study, including key site characteristics. ........................... 27 

Table 3.1 CRNS sites with geographical information ............................................................. 34 

Table 3.2 The listed cross-correlations give the cross-correlations between the perturbations for 

the different atmospheric variables, following the order as indicated in the left column 

of the table. .............................................................................................................. 43 

Table 3.3 Perturbation of saturated hydraulic conductivities for different subsurface layers. . 44 

Table 3.4 The time averaged RMSE of the water table depth at the verification locations for the 

open loop (OL) and data assimilation (DA) runs (10 sites, 10 km, 5 km, 2.5 km 

localization radius). ................................................................................................. 52 

Table 3.5 Comparison metrics for the soil moisture from CRNS compared to open loop (OL) 

and data assimilation runs (DA10 and DA5 are for 10 km and 5 km localization radius, 

respectively) for the year 2018. ............................................................................... 53 

Table 4.1 CRNS sites used in this study, including key site characteristics. ........................... 65 

Table 4.2 The listed cross-correlations give the cross-correlations between the perturbations for 

the different atmospheric variables, following the order as indicated in the left column 

of the table. .............................................................................................................. 70 

Table 4.3 List of conducted simulation experiments: open loop (OL), data assimilation with 

state update (State) or joint state and parameter update (Joint), jackknife evaluation 

runs (Jackknife), and verification experiments in 2017 using the updated saturated 

hydraulic conductivity (Ks) from joint assimilation experiments of 2016 and 2018 

(Updated Ks from 2016 and Updated Ks from 2018). .............................................. 72 

Table 4.4 Error statistics for open loop (OL), data assimilation with state updates (State), joint 

state-parameter updates (Joint), and jackknife simulations with joint state-parameter 

updates (Jackknife) for the assimilation periods of 2016 and 2018. The indicators 

were averaged over all sites with CRNS soil moisture observations. Site-specific 

indicators are provided in Appendix Tables A.1 to A.4. .......................................... 75 

Table 4.5 Comparison of measured and simulated soil moisture for the year 2017 (evaluation 

period, no assimilation). The updated parameters used for verification were from the 

assimilation period (2016 and 2018). The error statistics were averaged over all 

CRNS sites............................................................................................................... 81 



 

xii 

 

Table 4.6 Comparison of measured and simulated evapotranspiration (monthly) and discharge 

(monthly) from open loop (OL) and data assimilation runs with joint state-parameter 

updates (DA) for two assimilation periods (2016 and 2018). ................................. 82 

Table A.1 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and data assimilation with joint state and parameter updating (DA) 

for the year 2016. ..................................................................................................... 90 

Table A.2 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and data assimilation with joint state and parameter updating (DA) 

for the year 2018. ..................................................................................................... 90 

Table A.3 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and jackknife simulations (DA) for the year 2016......................... 91 

Table A.4 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and jackknife simulations (DA) for the year 2018......................... 91 

Table A.5 Root mean square error (RMSE) for open loop (OL), data assimilation with state 

updates (State), joint state-parameter updates (Joint), and jackknife simulations with 

joint state-parameter updates (Jackknife) for the assimilation periods of 2016 and 

2018. The seasonal indicator was averaged over all sites with CRNS soil moisture 

observations. ............................................................................................................ 92 

Table A.6 Comparison of daily measured evapotranspiration and simulated evapotranspiration 

from open loop (OL), data assimilation with state updates (State), and joint state-

parameter updates (Joint) for two assimilation periods (2016 and 2018). ............... 92 

Table 5.1 CRNS sites used in this study, including key site characteristics. The mean air 

temperature and mean annual precipitation were obtained from the ECMWF climate 

reanalysis data product ERA5-Land (Muñoz Sabater, 2021), resulting in identical 

precipitation and air temperature values for some of the sites. ............................. 109 

Table 5.2 Statistics for the perturbed atmospheric variables, including cross correlations 

between the atmospheric variables in the last column. The order of the variables in 

the last column is as indicated in the left column of the table. ............................... 114 

Table 5.3 List of experiments conducted. GWL and SM denote groundwater level and soil 

moisture observations, respectively. h is pressure head, θ is soil moisture, and Ks is 

saturated hydraulic conductivity. The subscripts sat and unsat denote the saturated 



 

xiii 

 

and unsaturated zones, respectively. The experiments FC_DA and FC_DA_PAR used 

the same fully coupled method as Hung et al. (2022). ........................................... 115 

Table 5.4 Annual ubRMSE for estimated soil moisture (SM, cm3/cm3), evapotranspiration (ET, 

mm/day), and groundwater level (GWL, m) from 2016 to 2018 for OL, SM_DA, and 

SM_DA_PAR experiments. .................................................................................... 117 

Table 5.5 Annual ubRMSE for estimated groundwater level (GWL, m), soil moisture (SM, 

cm3/cm3), and evapotranspiration (ET, mm/day) from 2016 to 2018 for OL, 

GWL_DA, and GWL_DA_PAR experiments. Note: Distance 0 indicates the 

groundwater assimilation locations, and 0-0.5 km, 0.5-2.5 km, and 2.5-5 km indicate 

groundwater validation locations at different distances from the groundwater 

assimilation sites. ................................................................................................... 120 

Table 5.6 Annual ubRMSE for estimated groundwater level (GWL, m), soil moisture (SM, 

cm3/cm3), and evapotranspiration (ET, mm/day) from 2016 to 2018 for OL and 

multivariate assimilation experiments. Note: Distance 0 indicates the groundwater 

assimilation locations, and 0-0.5 km, 0.5-2.5 km, and 2.5-5 km indicate groundwater 

validation locations at different distances from the groundwater assimilation sites.

 ............................................................................................................................... 123 

Table 5.7 Averaged statistical metrics for the estimated groundwater level (GWL), soil moisture 

(SM), and evapotranspiration (ET) for all the validation experiments from 2016 to 

2018. Note: Distance 0 indicates the groundwater assimilation locations, and 0-0.5 

km, 0.5-2.5 km, and 2.5-5 km indicate groundwater validation locations at different 

distances from the groundwater assimilation sites. ............................................... 129 

Table B.1 RMSE and R for estimated SM and ET from 2016 to 2018 for OL and univariate data 

assimilation experiments. ...................................................................................... 136 

Table B.2 Annual RMSE for estimated GWL (m) from 2016 to 2018 for OL and univariate data 

assimilation experiments. ...................................................................................... 137 

Table B.3 Annual RMSE for estimated GWL (m) from 2016 to 2018 for OL and multivariate 

data assimilation experiments. Note: Distance 0 indicates the groundwater 

assimilation locations, and 0-0.5 km, 0.5-2.5 km, and 2.5-5 km indicate groundwater 

validation locations at different distances from the groundwater assimilation sites.

 ............................................................................................................................... 137 

Table B.4 RMSE and R for estimated SM and ET from 2016 to 2018 for OL and multivariate 



 

xiv 

 

data assimilation experiments. ............................................................................... 138 

 



 

xv 

 

List of Acronyms 

ANN Artificial neural networks 

BATS Biosphere-Atmosphere Transfer Scheme 

CATHY CATchment HYdrology 

CLM Community Land Model 

COSMIC COsmic-ray Soil Moisture Interaction Code 

COSMO Consortium for Small-Scale Modeling 

CRNS Cosmic-ray neutron sensors 

DA Data assimilation 

DEM Digital Elevation Model 

EC Eddy covariance 

EnKF Ensemble Kalman Filter 

En-Var Ensemble Variational 

ESDB European Soil Database 

ET Evapotranspiration 

ETKF Ensemble Transform Kalman filter 

FEFLOW Finite Element subsurface FLOW system 

GNSS Global Navigation Satellite System 

GRACE Gravity Recovery and Climate Experiment 



 

xvi 

 

GRACE-FO GRACE Follow-On 

GWL Groundwater Level 

Ks Saturated hydraulic conductivity 

LAI Leaf area index 

LEnKF Localized Ensemble Kalman Filter 

LiDAR Light Detection and Ranging 

LSM Land Surface Model 

InSAR Interferometric Synthetic Aperture Radar 

ISMON Irish Soil Moisture Observation Network 

MAE Mean absolute error 

MODLFOW Modular three-dimensional finite-difference groundwater flow model 

NSE Nash-Sutcliffe Model Efficiency 

NWP Numerical weather prediction 

OL Open loop 

OASIS-MCT Ocean Atmosphere Sea Ice Soil coupling Model Coupling Toolkit 

ParFlow Parallel Watershed Flow Model 

PDAF Parallel Data Assimilation Framework 

PFT Plant Function Type 

R Correlation coefficient 



 

xvii 

 

RMSE Root Mean Square Error 

RS Remote sensing 

RZSM Root zone soil moisture 

SIB Simple Biosphere Model 

SM Soil moisture 

SMAP Soil Moisture Active Passive 

SMOS Soil Moisture Ocean Salinity 

SNAP Sentinel Application Platform 

TERENO TERrestrial Environmental Observatories 

TSMP Terrestrial System Modeling Platform 

ubRMSD Unbiased root mean square difference 

UAV Unmanned aerial vehicle  

USGS United States Geological Survey 

WTD Water Table Depth 

  





 

1 

 

Abstract 
Groundwater and soil moisture (SM) play a crucial role in the hydrological cycle, and 

therefore the dynamics of these two variables need to be accurately quantified on spatial and 
temporal scales. In situ observation networks can provide direct and accurate information on 
groundwater level (GWL) and SM. However, observations from observation networks are not 
sufficient to fully represent the Earth’s hydrological system without the help of models. 
Integrated models such as the Terrestrial System Modelling Platform (TSMP) can simulate the 
hydrological system from the subsurface to the atmosphere and accurately capture the full 
terrestrial hydrological cycle. Current model estimates of GWL and SM are highly uncertain 
due to data limitations and model uncertainties. The main sources of uncertainty are related to 
atmospheric forcings, model structural errors, and uncertain parameterization. Data 
assimilation (DA) can merge numerical models with observations, resulting in a correction of 
hydrological states and fluxes and improved parameter estimates. 

 Different sources of uncertainty may lead to unsatisfactory simulations of groundwater 
hydrodynamics with hydrological models. The goal of first study is to investigate the impact of 
assimilating groundwater data into TSMP for improving hydrological modelling in a real-world 
case. Daily groundwater table depth (WTD) measurements from the year 2018 for the Rur 
catchment in Germany were assimilated by the Localized Ensemble Kalman Filter (LEnKF) 
into TSMP. The LEnKF is used with a localization radius so that the assimilated measurements 
only update model states in a limited radius around the measurements, in order to avoid 
unphysical updates related to spurious correlations. Due to the mismatch between groundwater 
measurements and the coarse model resolution (500 m), the measurements need careful 
screening before DA. Based on the spatial autocorrelation of the WTD deduced from the 
measurements, three different filter localization radii (2.5 km, 5 km and 10 km) were evaluated 
for assimilation. The bias in the simulated water table and the root mean square error (RMSE) 
are reduced after DA, compared with runs without DA (i.e., open loop (OL) runs). The best 
results at the assimilated locations are obtained for a localization radius of 10km, with an 81% 
reduction of RMSE at the measurement locations, and slightly smaller RMSE reductions for 
the 5 km and 2.5 km radius. The validation with independent WTD data showed the best results 
for a localization radius of 10 km, but groundwater table characterization could only be 
improved for sites less than 2.5 km from measurement locations. In case of a localization radius 
of 10km the RMSE-reduction was 30% for those nearby sites. Simulated soil moisture was 
validated against soil moisture measured by cosmic-ray neutron sensors (CRNS), but no RMSE 
reduction was observed for DA-runs compared to OL-run. However, in both cases, the 
correlation between measured and simulated soil moisture content was high (between 0.70 and 
0.89, except for the Wüstebach site). 

CRNS fill the gap between locally measured in situ SM and remotely sensed (RS) SM by 
providing accurate SM estimation at the field scale. This is promising for improving hydrologic 
model predictions, as CRNS can provide valuable information on SM in the root zone at the 
typical scale of a model grid cell. In a second study of this PhD-work, SM measurements from 
a network of 12 CRNS in the Rur catchment (Germany) were assimilated into TSMP to 
investigate its potential for improving SM, evapotranspiration (ET) and river discharge 
characterization and estimating soil hydraulic parameters at the larger catchment scale. DA 
experiments (with and without parameter estimation) were conducted in both a wet year (2016) 
and a dry year (2018) with the Ensemble Kalman Filter (EnKF), and later verified with an 
independent year (2017) without DA. The results show that SM characterization was 
significantly improved at measurement locations (with up to 60% RMSE reduction), and that 
joint state-parameter estimation improved SM simulation more than state estimation alone 
(more than 15% additional RMSE reduction). Jackknife experiments showed that SM at 
verification locations had lower and different improvements in the wet and dry years (an RMSE 
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reduction of 40% in 2016 and 16% in 2018). In addition, SM assimilation was found to improve 
ET characterization to a much lesser extent, with a 15% RMSE reduction of monthly ET in the 
wet year and 9% in the dry year. 

In a third study, we tested different approaches for joint DA of observed SM data from 
CRNS and GWL data into the TSMP model. DA experiments (with and without parameter 
estimation) were conducted with LEnKF for the Rur catchment in Germany for the years 2016-
2018, followed by cross-validation (if parameters were estimated) in independent years. 
Univariate SM assimilation reduced the RMSE of SM over the assimilation locations by more 
than 50%. Univariate GWL assimilation reduced the monthly RMSE of GWL at assimilation 
locations by 70%. Within 5 km of the assimilated sites, GWL estimation was still obviously 
improved, with RMSE reductions 2-50%. However, the univariate assimilation of GWL 
degraded the characterization of SM, and the univariate assimilation of SM also diminished the 
simulation of GWL. A new multivariate DA approach that assimilates GWL and SM separately 
is proposed. GWL data are assimilated and used to estimate the interface between the 
unsaturated and saturated zones, and update the states (and possibly parameters) of the saturated 
zone. SM measurements are assimilated to update states of the unsaturated zone. In addition, 
observation specific localization is proposed. With multivariate DA, at the assimilation 
locations the estimates of variables (GWL, SM, and ET) are close to those in univariate 
assimilation. However, there were more than 15% RMSE reductions for GWL at 2.5~5 km 
validation locations compared to univariate assimilation. In addition, only SM assimilation 
(univariate or multivariate) improves very slightly ET estimates, with an overall RMSE 
reduction of 3%. Parameter updating reduced the RMSE of variable estimates by up to 17% 
compared to updating states alone. 

This work was carried out for the Rur catchment (2354 km²), which has a well-established 
monitoring infrastructure and considerable regional diversity in climate, soil types, and land 
use. In contrast to previously reported small-domain tests, which were primarily conducted in 
synthetic experiments or oversimplified real-world cases, the assimilation of real-world data at 
the larger catchment scale faces additional complexities and challenges. The effectiveness of 
DA can be limited by the uneven distribution of monitoring stations, coarse model resolution, 
and model structure errors. This thesis, using EnKF and its variants, proposes specific strategies 
for the assimilation of GWL and SM (from CRNS) separately or jointly in the integrated 
terrestrial model TSMP. Overall, the results of this thesis provide insights for improving the 
characterization of multiple variables and parameters (GWL, SM, ET, and saturated hydraulic 
conductivity (Ks)) by DA. Possible promising approaches for future improvement of DA 
performance in coupled models are: (i) improving the accuracy of terrestrial system modeling, 
including the addition of an atmospheric model, the inclusion of more detailed agro-ecological 
processes into land surface models and increasing model resolution; (ii) attempting to assimilate 
data from more diverse sources such as RS, unmanned aerial vehicles (UAVs), and small 
satellites to address the sparse distribution of in situ observations; and (iii) exploring advanced 
DA algorithms, potentially EnKF variants or hybrid methods with machine learning (ML) 
integration, to address the issues and challenges of multivariate assimilation at large scales.  
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Zusammenfassung 
Grundwasser und Bodenfeuchte (SM) sind von entscheidender Bedeutung für den 

Wasserkreislauf. Daher muss die Dynamik dieser beiden Variablen auf räumlicher und zeitlicher 
Ebene genau quantifiziert werden. In situ-Monitoringnetze können direkte und genaue 
Informationen über den Grundwasserspiegel (GWL) und die Bodenfeuchte liefern, reichen jedoch 
nicht aus, um das hydrologische System der Erde vollständig zu erfassen. Dies ist nur möglich, 
indem auf Modelle zurückgegriffen wird. Integrierte Modelle wie die Terrestrial System Modelling 
Platform (TSMP) ermöglichen eine umfassende Simulation des hydrologischen Kreislaufs der Erde, 
welcher vom tiefen Untergrund bis zur oberen Atmosphäre reicht. Die aktuellen Modellschätzungen 
von GWL und SM sind jedoch aufgrund von Datenbeschränkungen und Modellfehlern mit 
erheblicher Unsicherheit behaftet. Die Hauptursachen für diese Unsicherheiten sind atmosphärische 
Einflüssen, strukturelle Modellfehler und ungenaue Parametrisierung. Durch Datenassimilation 
(DA) können numerische Modelle mit Beobachtungen kombiniert werden, was zu einer Korrektur 
der hydrologischen Zustände und Flüsse sowie zu verbesserten Parameterschätzungen führt. 

Unterschiedliche Unsicherheitsquellen können zu unbefriedigenden Simulationen der 
Grundwasserhydrodynamik mit hydrologischen Modellen führen. Ziel dieser Studie ist es, die 
Auswirkungen der Assimilierung von Grundwasserdaten in die TSMP zur Verbesserung der 
hydrologischen Modellierung in einem realen Fall zu untersuchen. Tägliche 
Grundwasserstandsmessungen (WTD) aus dem Jahr 2018 für das Einzugsgebiet der Rur in 
Deutschland wurden mit dem Localized Ensemble Kalman Filter (LEnKF) in die TSMP assimiliert. 
Der LEnKF wird mit einem Lokalisierungsradius verwendet. Das bedeutet, dass die assimilierten 
Messungen nur Modellzustände in einem begrenzten Radius um die Messungen aktualisieren, um 
unphysikalische Aktualisierungen im Zusammenhang mit unerwünschten Korrelationen zu 
vermeiden. Aufgrund der Diskrepanz zwischen den Grundwassermessungen und der groben 
Modellauflösung (500 m) müssen die Messungen vor der DA sorgfältig geprüft werden. Basierend 
auf der räumlichen Autokorrelation des WTD, die aus den Messungen abgeleitet wurde, wurden 
drei verschiedene Filter-Lokalisierungsradien (2,5 km, 5 km und 10 km) für die Assimilation 
evaluiert. Der Fehler des simulierten Grundwasserspiegels und die Wurzel der mittleren 
Fehlerquadratsumme (RMSE) sind nach der DA, im Vergleich zu Modellläufen ohne DA (bspw. 
Modellläufen mit offener Schleife (OL)), reduziert. Die besten Ergebnisse an den assimilierten 
Standorten werden mit einem Lokalisierungsradius von 10 km erzielt, wobei eine 81%ige 
Verringerung des RMSE an den Messstandorten festgestellt wird. Für die Lokalisierungsradien von 
5 km und 2,5 km fallen die RMSE-Reduzierungen etwas geringer aus. Die Validierung mit 
unabhängigen WTD-Daten zeigte die besten Ergebnisse für einen Lokalisierungsradius von 10 km, 
aber die Charakterisierung des Grundwasserspiegels konnte nur für Standorte verbessert werden, 
die weniger als 2,5 km von den Messstandorten entfernt sind. Bei einem Lokalisierungsradius von 
10 km betrug die RMSE-Reduzierung für die nahe gelegenen Standorte 30 %. Die Validierung der 
simulierten Bodenfeuchte erfolgte anhand der gemessenen Bodenfeuchte, welche mit kosmischen 
Neutronensensoren (CRNS) erfasst wurde. Eine Reduktion des RMSE für DA-Läufe im Vergleich 
zu OL-Läufen konnte jedoch nicht festgestellt werden. In beiden Fällen war die Korrelation 
zwischen gemessener und simulierter Bodenfeuchte jedoch hoch (zwischen 0,70 und 0,89, außer für 
den Standort Wüstebach). 

CRNS schließen die Lücke zwischen lokal gemessenem In situ-SM und fernerkundetem SM, 
indem sie eine genaue SM-Schätzung auf der Feldskala liefern. Dies ist vielversprechend für die 
Verbesserung von hydrologischen Modellvorhersagen, da CRNS wertvolle Informationen über den 
SM in der Wurzelzone auf der typischen Skala einer Modellgitterzelle liefern können. In einer 
zweiten Studie im Rahmen dieser Doktorarbeit wurden SM-Messungen aus einem Netz von 12 
CRNS im Einzugsgebiet der Rur (Deutschland) in die TSMP integriert, um dessen Potenzial zur 
Verbesserung der Charakterisierung von SM, Evapotranspiration (ET) und Flussabfluss sowie zur 
Schätzung bodenhydraulischer Parameter auf der größeren Einzugsgebietsskala zu untersuchen. 
DA-Experimente (mit und ohne Parameterschätzung) wurden sowohl in einem feuchten Jahr (2016) 
als auch in einem trockenen Jahr (2018) mit dem Ensemble Kalman Filter (EnKF) durchgeführt und 
später mit einem durchschnittlichen Jahr (2017) ohne DA validiert. Die Ergebnisse zeigen, dass die 
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SM-Charakterisierung an Messstandorten signifikant verbessert wurde (mit einer Verringerung des 
RMSE um bis zu 60 %) und dass die gemeinsame Schätzung der Zustandsparameter die SM-
Simulation stärker verbesserte als die Zustandsschätzung allein (mehr als 15 % zusätzliche RMSE-
Reduzierung). Jackknife-Experimente zeigten, dass SM an Validierungsstandorten geringere und 
unterschiedliche Verbesserungen in nassen und trockenen Jahren aufwies (eine RMSE-Reduzierung 
von 40 % im Jahr 2016 und 16 % im Jahr 2018). Darüber hinaus wurde festgestellt, dass die SM-
Assimilation die ET-Charakterisierung in einem viel geringeren Ausmaß verbessert, mit einer 
RMSE-Reduzierung der monatlichen ET um 15 % in einem feuchten Jahr und um 9 % in einem 
trockenen Jahr. 

In einer dritten Studie wurden verschiedene Ansätze für die gemeinsame DA von beobachteten 
SM-Daten aus CRNS und GWL-Daten in das TSMP-Modell getestet. DA-Experimente (mit und 
ohne Parameterschätzung) wurden mit dem LEnKF für das Rur-Einzugsgebiet in Deutschland für 
die Jahre 2016-2018 durchgeführt, gefolgt von einer Kreuzvalidierung (bei Parameterschätzung) in 
unabhängigen Jahren. Die univariate SM-Assimilation reduzierte den RMSE von SM an den 
Assimilationsstandorten um mehr als 50 %. Die univariate GWL-Assimilation reduzierte den 
monatlichen RMSE der GWL an den Assimilationsstandorten um 70 %. Im Umkreis von 5 km um 
die assimilierten Standorte wurde die GWL-Schätzung mit einer Verringerung des RMSE um 2-50 % 
deutlich verbessert. Allerdings verschlechterte die univariate Assimilation von GWL die 
Charakterisierung von SM, und die univariate Assimilation von SM verschlechterte die Simulation 
von GWL. Ein neuer multivariater DA-Ansatz wird vorgeschlagen, bei dem GWL und SM getrennt 
assimiliert werden. GWL-Daten werden assimiliert und genutzt, um die Grenzfläche zwischen der 
ungesättigten und der gesättigten Zone zu schätzen und die Zustände (und möglicherweise 
Parameter) der gesättigten Zone zu aktualisieren. SM-Messungen werden assimiliert, um die 
Zustände der ungesättigten Zone zu aktualisieren. Zusätzlich wird eine beobachtungsspezifische 
Lokalisierung vorgeschlagen. Mit der multivariaten DA liegen die Schätzungen der Variablen (GWL, 
SM und ET) an den Assimilationsorten nahe an denen der univariaten Assimilation. An 
Validierungsorten in einem Umkreis von 2,5-5 km konnte jedoch im Vergleich zur univariaten 
Assimilation eine Verringerung des RMSE für GWL um mehr als 15 % erzielt werden. Darüber 
hinaus verbessert nur die SM-Assimilation (univariat oder multivariat) die ET-Schätzungen 
geringfügig, mit einer RMSE-Reduzierung von insgesamt 3 %. Die Parameteraktualisierung 
reduzierte den RMSE der Variablenschätzungen um bis zu 17 % im Vergleich zur alleinigen 
Zustandsaktualisierung. 

Diese Arbeit wurde für das Einzugsgebiet der Rur (2354 km²) durchgeführt, das über eine gut 
etablierte Monitoring-Infrastruktur und eine beträchtliche regionale Vielfalt in Bezug auf Klima, 
Bodenarten und Landnutzung verfügt. Im Gegensatz zu bisherigen Untersuchungen in kleineren 
Domänen, die hauptsächlich in synthetischen Experimenten oder vereinfachten realen Fällen 
durchgeführt wurden, steht die Assimilation von realen Daten auf der Ebene eines größeren 
Einzugsgebiets vor zusätzlichen Komplexitäten und Herausforderungen. Die Effektivität der DA 
kann durch die ungleichmäßige Verteilung von Messstationen, die grobe Modellauflösung und 
Modellstrukturfehler eingeschränkt werden. In dieser Arbeit werden spezifische Strategien für die 
Assimilation von GWL und SM (aus CRNS) unter Verwendung von EnKF und seinen Varianten 
getrennt oder gemeinsam in das integrierte terrestrische Modell TSMP vorgeschlagen. Insgesamt 
liefern die Ergebnisse dieser Arbeit Erkenntnisse zur Verbesserung der Charakterisierung mehrerer 
Variablen und Parameter (GWL, SM, ET und Ks) durch DA. Mögliche vielversprechende Ansätze 
für eine zukünftige Verbesserung der DA-Leistung in gekoppelten Modellen sind: (i) Verbesserung 
der Genauigkeit der Modellierung des terrestrischen Systems, einschließlich der Hinzufügung eines 
atmosphärischen Modells, der Einbeziehung detaillierterer agrarökologischer Prozesse in 
Landoberflächenmodelle und der Erhöhung der Modellauflösung; (ii) der Versuch, Daten aus 
vielfältigeren Quellen wie Fernerkundung (RS), unbemannten Luftfahrzeugen (UAVs) und 
Kleinsatelliten zu assimilieren, um der spärlichen Verteilung von In situ-Beobachtungen 
entgegenzuwirken; und (iii) die Erforschung fortschrittlicher DA-Algorithmen, möglicherweise 
EnKF-Varianten oder hybride Methoden mit Integration von maschinellem Lernen (ML), um die 
Probleme und Herausforderungen der multivariaten Assimilation in großen Maßstäben anzugehen.  
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Chapter 1: Introduction 
Groundwater is an important source of fresh water for human life and agricultural and 

industrial production. Changes in groundwater storage can have significant impacts on 

agricultural irrigation supplies, industrial production costs and infrastructure security, water 

quality, and the biodiversity of groundwater-dependent ecosystems. Therefore, a good 

knowledge of hydrological conditions such as groundwater levels is essential for socio-

economic development, including water resource management and environmental protection. 

GWL or WTD are an important hydrological variable that can range from 0 m in wetlands to 

hundreds of meters in arid regions. Shallow groundwater is critical in terrestrial ecosystems 

because it interacts with the unsaturated zone and can directly provide water for transpiration 

and soil evaporation. Changes in groundwater levels and soil moisture directly affect the 

availability of groundwater resources, plant growth, land-atmosphere interactions, surface 

runoff and groundwater recharge processes, linkages between surface water bodies, 

groundwater systems, and terrestrial ecosystems, and energy balance, and understanding their 

variations can help in assessing water resources and predicting droughts or floods. Therefore, 

accurate information on the spatiotemporal variability of groundwater levels and soil moisture 

content is essential for a better understanding of hydrological processes and water and energy 

cycles in terrestrial systems (Vereecken et al., 2022).  

Groundwater level measurements provide an accurate assessment of local groundwater 

dynamics, derived either from direct measurements of water table depth or indirect 

measurements of water pressure converted to GWL data (Freeze and Cherry, 1979). Traditional 

instruments and electronic survey techniques enable point-scale GWL measurements, utilizing 

tools such as steel tapes, electronic measuring tapes, piezometers, digital water level recorders, 

pressure transducers, and data loggers (Masood et al., 2022). Manual methods like the steel tape 

(Peralta et al., 1983) and electronic measuring tapes (Chevalking et al., 2008) employ a water 

level indicator to assess GWL, while piezometers measure GWL by detecting hydraulic head 

(Yin et al., 2017; Sattari et al., 2018). The frequency of monitoring GWL with different 

instruments varies greatly. Automated instruments, including digital water level recorders and 

pressure transducers connected to data loggers, continuously record water depth, facilitating 

frequent monitoring at daily or shorter intervals (Husain et al., 1998; Kalbus et al., 2006). 

However, despite their advantages, in situ GWL measurements are expensive and time-

consuming, especially during the installation phase, which requires drilling a well or piezometer, 

limiting the feasibility of monitoring large areas. Consequently, the number of measurements 

available in a given area is often sparse, and the spatial representativeness of in situ GWL data 
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can be constrained by hydrogeological heterogeneity. To complement point-scale 

measurements, geophysical techniques and RS have emerged as valuable tools for large-scale 

monitoring of groundwater changes. Geophysical methods, such as electrical resistivity 

(Garcia-Menendez et al., 2018), seismic techniques (Rosid and Kepic, 2005), and gravity 

measurements (Sabri et al., 2020), provide indirect approaches (non-invasive) for regional-scale 

groundwater level monitoring by detecting variations in subsurface properties (resistivity, 

seismic wave velocity, and density) but often require complex modeling or integration with 

borehole data for accurate groundwater estimates (Masood et al., 2022). Available RS 

techniques for groundwater monitoring encompass gravity-based measurements, surface 

deformation analysis, radar altimetry, and LiDAR (Adams et al., 2022). Gravity-based 

approaches, such as the Gravity Recovery and Climate Experiment (GRACE) and GRACE 

Follow-On (GRACE-FO), detect groundwater storage changes by measuring mass variations, 

offering global-scale data with limited spatial resolution (300 km) and potential processing 

errors (Richey et al., 2015; Landerer et al., 2020). Surface deformation analysis techniques, 

including Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite 

System (GNSS), along with radar altimetry and LiDAR, detect high-precision surface 

deformations such as subsidence or uplift over large areas to indirectly estimate changes in 

groundwater storage (Abdalati et al., 2010; Hwang et al., 2016). However, the effectiveness of 

these methods often depends on supplementary geological data and they are susceptible to 

interference from terrain and vegetation (Chen et al., 2017; Smith and Majumdar, 2020; White 

et al., 2022). While these technologies provide broad coverage and rapid data collection, 

challenges remain, including addressing spatial heterogeneity, integrating different datasets, 

and downscaling coarse-resolution RS data for local groundwater monitoring. Therefore, RS 

technologies cannot fully substitute in situ methods for groundwater level monitoring, and 

achieving comprehensive groundwater monitoring at regional or global scales remains a 

challenge (Condon et al., 2021). 

SM can be estimated at different scales using various techniques and approaches; it can be 

measured directly in situ or estimated indirectly from RS observations. The resolution of RS-

derived products is often coarse both spatially and temporally, and the data are subject to various 

errors, especially in areas with dense vegetation cover (Bauer-Marschallinger et al., 2019; Kim 

et al., 2020). In addition, RS products only provide SM for the upper surface soil layer. In 

contrast, in situ measurements can provide more accurate data for deeper soil layers, but only 

at the point scale. To bridge the gap between in situ measurements and RS products, the CRNS 

has been introduced as a new technique to monitor SM (Zreda et al., 2008). The CRNS 

measurement is promising because it can provide non-invasive and real-time SM at the field 
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scale. The CRNS detects epithermal neutrons produced by cosmic radiation, which can be used 

to measure SM because the detected neutron count rate is inversely correlated with the amount 

of hydrogen in the soil (Zreda et al., 2008). The CRNS probe measures integral SM centered 

on the detector, with the measurement range inversely related to soil water content (Zreda et al., 

2008; Köhli et al., 2015). The footprint of the CRNS can extend to an area of up to 18 hectares 

with a measurement depth of up to 80 centimeters, corresponding to the upper root zone (Zreda 

et al., 2008; Bogena et al., 2015; Köhli et al., 2015). Hence, the spatial extent of CRNS is the 

desired application scale of land-surface processes, as it corresponds to the desired grid cell size 

of a high-resolution land surface model (Crow et al., 2012; Ajami et al., 2014). In addition, over 

a wide range of land uses and climatic conditions, the CRNS has demonstrated excellent 

reliability (Bogena et al., 2013; Heidbüchel et al., 2016; Vather et al., 2020). Over the past 

decade, the continuous development of CRNS technology has promoted its application in 

hydrological modeling (Schattan et al., 2020; Dimitrova-Petrova et al., 2021), land surface 

modeling (Han et al., 2015; Roland Baatz et al., 2017), satellite product validation (Montzka et 

al., 2017; Zhao et al., 2021), ecohydrological (e.g., snow, precipitation, and vegetation) 

monitoring (Schattan et al., 2017; Jakobi et al., 2018; Bogena et al., 2020), and agricultural 

management (Han et al., 2016; Li et al., 2019). Because of the advantages offered by CRNS, 

CRNS networks with multiple stationary sensors have been established in several countries, 

including Europe (Bogena et al., 2022), the United Kingdom (Evans et al., 2016), Australia 

(Hawdon et al., 2014), and the United States (Zreda et al., 2012). These distributed CRNS 

networks are intended to support environmental monitoring at larger scales, which can also 

benefit diverse hydrological applications. 

However, measuring GWL and SM over large areas is uneconomical and impractical. 

Considering the limited data availability, the most common method to estimate GWL and SM 

is to use physical models to simulate these variables, validate the simulation results with 

measured data, evaluate the effectiveness of the model, and finally use the hydrological 

information from the model for extensive regions as well as for future prediction. In this work, 

we mainly focus on the two key variables in hydrological modeling: GWL for the saturated 

zone and SM for the unsaturated zone. 

Groundwater modeling is a way to study the dynamics of groundwater systems and predict 

the spatial and temporal distribution of groundwater levels (de Marsily, 1986; Baalousha, 2008). 

The most important step in the groundwater numerical modeling process is the 

conceptualization of the groundwater model (Bear and Verruijt, 1987; Anderson et al., 2015). 

It provides a basic understanding of the groundwater system and also describes the 
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characterization of hydrogeology (Bear and Verruijt, 1987; Enemark et al., 2019; El-Rawy et 

al., 2022). Then, through a set of mathematical equations with initial and boundary conditions, 

groundwater models can represent the conceptual understanding of the groundwater system 

(Kumar, 2004). Early numerical groundwater flow models were based on simplified two-

dimensional flow equations and idealized geological conditions (Darcy, 1856; V., 1965; Bear, 

1975). Later, with the development of groundwater models based on three-dimensional 

equations (Hubbert and Rubey, 1959), groundwater systems can be more accurately described 

and represented, such as the United States Geological Survey (USGS) MODLFOW (Modular 

three-dimensional finite-difference groundwater flow model) (McDonald and Harbaugh, 1988), 

CATHY (Catchment Hydrology) model (Paniconi and Wood, 1993; Paniconi and Mario, 1994), 

ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001), and FEFLOW (Finite 

Element subsurface FLOW system) (Diersch, 2014). 

Land surface models (LSMs) provide an effective approach to simulating SM in terrestrial 

systems. They are numerical models designed to solve the coupled fluxes of water, energy, and 

carbon between the land surface and atmosphere (Fisher and Koven, 2020). LSMs were 

originally developed as parts of atmospheric and climate models to investigate the influence of 

the land surface on meteorological processes (Fisher and Koven, 2020). Early models 

introduced the concept of integrating soil and vegetation to represent energy and water 

exchanges between the land surface and the atmosphere (Blyth et al., 2021), such as the 

Biosphere-Atmosphere Transfer Scheme (BATS) and the Simple Biosphere Model (SIB). Over 

time, LSMs have evolved, and numerous processes affecting the terrestrial system have been 

added to LSMs (Fisher and Koven, 2020). Different LSMs have different parameterizations for 

modeling land surface processes, and the focus of each model differs, with some focusing more 

on the water cycle and others focusing more on land use and carbon (Blyth et al., 2021). Some 

processes have also evolved from simple representations to more complex processes. For 

example, representations of soil hydrology in LSMs have evolved from a simple “bucket” 

representation (Manabe, 1969) to the 1D Richards equation (Bonan, 1996; Cox et al., 1999) to 

3D variably saturated flow models (Bisht & Riley, 2019). Some studies have suggested the need 

to improve the representation of hydrologic processes in LSMs to better simulate atmosphere-

land surface interactions (Blyth et al., 2021). Coupling hydrologic models and LSMs can 

improve the representation of hydrologic processes in the soil-vegetation-atmosphere 

continuum.  

In most LSMs, the dynamic interactions between root zone soil moisture (RZSM) and 

shallow groundwater are either neglected or simplified (Chen and Hu, 2004; Kollet and 
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Maxwell, 2008). This results in a poor understanding of the influence of groundwater on the 

land surface and atmospheric processes. However, groundwater plays a critical role in both the 

water and energy cycles of the terrestrial system (Condon et al., 2021). Shallow groundwater 

affects root zone SM, and surface runoff is more likely to occur when the groundwater table is 

shallow (Zhang, 2018). As a result, shallow groundwater also indirectly affects 

evapotranspiration. Therefore, quantifying the temporal dynamics of groundwater levels across 

spatial and temporal scales and investigating the effects of its variability on other hydrological 

variables is of high interest.  

Considering that groundwater flow models can simulate subsurface water fluxes, attempts 

have been made to integrate a groundwater model and a LSM in recent years (Maxwell and 

Miller, 2005; Rihani et al., 2010; Sulis et al., 2010; Bizhanimanzar et al., 2019). The coupled 

model allows consideration of the dynamic interactions between groundwater, surface water, 

and land surface processes, leading to improved simulation accuracy and, consequently, more 

accurate predictions (Kollet and Maxwell, 2008; Rihani et al., 2010; Shrestha et al., 2014; 

Keune et al., 2016; Sridhar et al., 2018; Zhao et al., 2021). Yeh and Eltahir (2005) integrated a 

lumped unconfined aquifer model with a LSM, and the results of the model showed that 

simulated hydrologic variables (soil saturation and WTD) and fluxes (evaporation, runoff, and 

groundwater recharge) were in good agreement with observations. Graham and Butts (2005) 

developed the integrated hydrological model MIKE-SHE, which allows each hydrological 

process to be represented at different spatial and temporal scales and levels of complexity. 

Maxwell and Miller (2005) coupled a LSM (Common Land Model) and a variably saturated 

groundwater model (ParFlow) as a single column model and showed that the SM and 

groundwater table depths simulated by the model were consistent with observations. In addition, 

comparisons of hydrologic variables between the uncoupled and coupled models showed the 

need for improved representation of groundwater in LSMs.  

Shrestha et al. (2014) developed the TSMP model, which can simulate hydrological and 

biogeophysical processes in terrestrial systems from the atmosphere to the land surface and 

subsurface in a fully coupled fashion. Surface water-groundwater interactions are also 

considered by the model. To understand the effects of temporal and spatial variations of GWL 

on terrestrial ecosystems and the interactions between groundwater and root zone SM, 

integrated models such as TSMP are well suited to physically simulate the groundwater-soil-

vegetation-atmosphere system. The applicability of this model has been demonstrated in many 

studies (e.g., Shrestha et al., 2015; Keune et al., 2016; Shrestha et al., 2018; Furusho-Percot et 

al., 2019; Zhao et al., 2021; Naz et al., 2023). 
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However, LSMs or hydrologic models tend to have many parameters, including parameters 

that are difficult to know, such as large scale information on soil hydraulic properties and 

aquifer properties (Vereecken et al., 1990; Wen et al., 2002; Vereecken et al., 2008). In addition, 

coupled models generally have more model parameters than stand-alone models. These 

parameters contribute to model uncertainty and affect its accuracy. Modeling uncertainties can 

also arise from model forcings, model structure, and initial conditions (Freeze, 1975; Roland 

Baatz et al., 2017). To quantify and reduce uncertainties in model predictions, DA can be used 

to correct model predictions with observations and improve the accuracy of simulations (De 

Lannoy et al., 2014). Furthermore, DA incorporates all sources of uncertainty and can provide 

uncertainty estimations for parameters. The most widely used DA technique in hydrology is the 

EnKF (Evensen, 1994; 2003). As a sequential filtering algorithm, the state probability density 

is propagated forward using an ensemble of model realizations taking into account information 

from measurements (McLaughlin, 2002). EnKF has been shown to be effective for solving 

nonlinear hydrological problems with many unknowns (Camporese et al., 2009b; Schöniger et 

al., 2012). In addition, EnKF can combine state and parameter estimation using an augmented 

state vector approach (Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008), 

which is beneficial for characterizing and optimizing model parameters and can provide better 

model predictions (Brandhorst et al., 2017). The not-too-large ensemble size and the efficient 

parallel computation allow EnKF to run at a relatively low computational cost (Hendricks 

Franssen and Kinzelbach, 2008; Yin et al., 2015; Kurtz et al., 2016). This advantage has led to 

the widespread use of EnKF, which can be combined with different types of models and 

observations. 

Several studies assimilated hydraulic head data into groundwater flow models to estimate 

hydraulic head and hydraulic conductivity. However, due to a scarcity of real groundwater 

observations, GWL (or hydraulic head) assimilation studies were mainly conducted with 

synthetic data. Chen and Zhang (2006) assimilated synthetic pressure head data into transient 

flow models, demonstrating the ability of EnKF to estimate hydraulic conductivity fields. 

Hendricks Franssen and Kinzelbach (2008) conducted synthetic studies using a two-

dimensional transient groundwater flow model to explore effective ways to reduce the filter 

inbreeding problem when using the EnKF for parameter estimation. Tong et al. (2011) 

employed LEnKF in a two-dimensional synthetic transient groundwater flow model and found 

that EnKF with localization can solve the problem of filter divergence and capture the 

heterogeneous hydraulic conductivity field reliably with higher efficiency and a smaller 

ensemble size than EnKF. Panzeri et al. (2013, 2014) proposed EnKF variants (direct solution 

of nonlocal (integrodifferential) stochastic ensemble moment equations or direct computation 
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of stochastic ensemble moment equations governing the space-time evolution of ensemble 

means and covariances of hydraulic heads and fluxes) for two-dimensional transient 

groundwater flow models to address issues arising in groundwater DA, including heavy 

computation and filter inbreeding, and the validity of this approach was verified in a field 

application (Panzeri et al., 2015). The previous experiments demonstrated that EnKF provides 

an efficient approach to obtaining satisfactory estimations of hydraulic head and hydraulic 

conductivity fields with groundwater head data (Chen and Zhang, 2006; Hendricks Franssen et 

al., 2011; Kurtz et al., 2012). 

SM assimilation has been shown in many studies to be an effective way to estimate SM 

dynamics (e.g., Reichle et al., 2002; De Lannoy et al., 2007; Reichle et al., 2008; Brocca et al., 

2010; Montzka et al., 2011; Hain et al., 2012; Han et al., 2014; Dong et al., 2016; Zhou et al., 

2020). The simulated SM data can either be in situ measurements (Jiang et al., 2021; Fu et al., 

2023) or RS retrievals, such as Soil Moisture Active Passive (SMAP) (Reichle et al., 2017; 

Liming He et al., 2021; Seo et al., 2021) and Soil Moisture Ocean Salinity (SMOS) (De Lannoy 

and Reichle, 2016; Lievens et al., 2016; Román-Cascón et al., 2017). For SM assimilation from 

CRNS, some studies with LSMs demonstrated the effectiveness of DA in improving SM 

simulations. The COsmic-ray Soil Moisture Interaction Code (COSMIC) model developed by 

Shuttleworth et al. (2013) allows a quick and easy conversion of neutron counts (from CRNS 

observations) to SM values. COSMIC has been used as an observation operator in several 

studies to assimilate neutron counts into LSMs to improve SM prediction (Shuttleworth et al., 

2013; Rosolem et al., 2014; Han et al., 2015; Han et al., 2016; Roland Baatz et al., 2017; Patil 

et al., 2021). For example, in a study by Roland Baatz et al. (2017), assimilation of SM from a 

CRNS network was found to improve catchment-scale SM modeling, and joint state and 

parameter estimation was found to outperform state estimation alone. Several other studies have 

also shown that joint state parameter updating has a positive effect on state estimation when 

assimilating SM in land surface models (Pauwels et al., 2009; Shi et al., 2014; Han et al., 2015; 

Shi et al., 2015; Zhang et al., 2017). 

However, the majority of DA studies focused on a single compartment of the terrestrial 

system, either the land surface or the subsurface, and often the assimilation was performed in 

synthetic experiments or oversimplified real-world cases. With the advent of coupled models, 

multivariate assimilation of different data types in coupled models has also been investigated. 

The understanding of various measured data can be greatly improved by using multivariate 

assimilation in integrated hydrological models (Zhang et al., 2016). Several studies have 

reported the application of multivariate assimilation in integrated hydrological models. 
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Camporese et al. (2009a) assimilated synthetic observations of pressure head and streamflow 

into the coupled surface-subsurface model CATHY (CATchment HYdrology) with EnKF, and 

the results showed that streamflow prediction can be improved by assimilating pressure head 

and streamflow, either individually or simultaneously. Botto et al. (2018) assimilated pressure 

head, SM, and subsurface outflow with EnKF into the CATHY model on an artificial hillslope. 

Their results demonstrate the efficiency of EnKF in correcting states and parameters even with 

strong nonlinearities, but they also showed that multisource data assimilation can lead to the 

degradation of model predictions for other variables. Kurtz et al. (2014) assimilated hydraulic 

head and groundwater temperature data into the coupled subsurface flow and heat transport 

model SPRING to update uncertain subsurface hydraulic parameters (i.e., hydraulic 

conductivities and leakage coefficients) and found that joint assimilation of the two 

observations with updating of uncertain hydraulic parameters provided the best characterization 

of model states and hydraulic properties. Shi et al. (2014) performed synthetic multivariate data 

assimilation to estimate multiple parameters in a coupled physically based land surface 

hydrologic model (Flux-PIHM) with EnKF. The observations included discharge, water table 

depth, SM, land surface temperature, sensible and latent heat fluxes, and transpiration. The 

results showed the great potential of EnKF to estimate hydrological model parameters using 

multivariate observations. The capability of EnKF was further confirmed at a field site with 

multivariate measurements (Shi et al., 2015). Zhang et al. (2016) jointly assimilated SM and 

groundwater head measurements into the integrated hydrological model MIKE-SHE with the 

ensemble transform Kalman filter (ETKF), and the results showed that DA can improve the 

model performance. They also showed the need to use localization (distance and variable) when 

assimilating both groundwater head and SM. Zhang et al. (2016) subtracted the average 

difference between observations and model simulations from the original data when comparing 

in situ head measurements with predictions.  

Some assimilation experiments have also been reported for the integrated model TSMP. 

Zhang et al. (2018) compared five data assimilation methods for assimilating GWL data via 

EnKF to improve root zone SM estimation with TSMP over a synthetic domain (4 soil grid 

cells). The synthetic experiments showed that the joint assimilation of GWL and SM gave the 

best result for predicting root zone SM. Hung et al. (2022) investigated the assimilation of SM 

and GWL in TSMP by constructing a virtual reality that mimicked the Neckar catchment. The 

DA experiments showed clear improvements in SM or GWL characterization when assimilating 

the corresponding observations, and the benefits of DA were observed in the vicinity of the 

measurement locations. The joint assimilation of SM and GWL gave a better estimation of the 

model states when using the weakly coupled scheme (only saturated subsurface states are 
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updated) than the fully coupled scenario (all subsurface states are updated).  

Although many DA platforms and applications have been reported, to the best of our 

knowledge, assimilation experiments with CRNS soil moisture data have only been conducted 

with land surface models. The published studies on SM and groundwater assimilation reported 

mainly tests on small domains in synthetic experiments or oversimplified real-world cases. 

There is still a lack of studies with integrated land surface-subsurface models to investigate the 

assimilation of SM measurements from CRNS and real groundwater data at a larger catchment 

scale. Therefore, this is still an emerging research topic. To explore the information provided 

by both groundwater measurements and SM data through DA, integrated models such as TSMP 

that can account for the interactions between root zone SM and groundwater are promising. The 

DA framework TSMP-PDAF was used to perform the DA experiments in this work. 

The objectives of this PhD work are to: 

(1) investigate whether the assimilation of groundwater data into the integrated model 

TSMP at the larger catchment scale for a real-world case is able to provide better GWL 

characterization than the model run without DA, and identify the main limitations and 

complications of groundwater assimilation in practice. This is a novel contribution, as the 

assimilation of real groundwater measurements in integrated land-surface-subsurface models at 

a larger catchment scale has not been done before.  

(2) investigate the effectiveness of a CRNS network to estimate SM with the integrated 

model TSMP under different hydrological conditions and whether the assimilation of CRNS 

soil moisture data can also improve ET estimates. This work is also innovative because it is the 

first time that SM from a CRNS network is assimilated into an integrated land surface-

subsurface model at the large catchment scale. 

(3) formulate an improved methodology for joint assimilation of GWL and SM from 

CRNS in TSMP under real-world conditions, investigating the differences between assimilating 

groundwater data and SM observations separately and jointly, and exploring the interactions 

between root zone SM, GWL and other hydrological processes (e.g., ET). 

Chapter 2 provides a brief overview of the TSMP integrated model and the PDAF data 

assimilation system used in this work. In addition, this chapter presents a basic introduction to 

the DA methods of EnKF and LEnKF, as well as the study area and its hydrological 

measurements.  

In Chapter 3, GWL assimilation in the integrated terrestrial system model TSMP for a real-
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world case is demonstrated and analyzed. 

 In Chapter 4, SM measurements from a network of 12 CRNS in the Rur catchment were 

assimilated into TSMP to investigate its potential for improving SM and ET characterization 

and estimation of soil hydraulic parameters at the larger catchment scale.  

In Chapter 5, a new multivariate assimilation approach is proposed for the joint 

assimilation of groundwater and SM in integrated terrestrial system models. The univariate and 

multivariate DA experiments (with and without parameter estimation) were conducted with 

LEnKF for the years 2016-2018. 

Finally, Chapter 6 provides discussions, conclusions, and an outlook for future research. 
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Chapter 2: Theory, methods and materials 
2.1 Integrated terrestrial systems model TSMP 

The TSMP model is a fully integrated biogeophysical terrestrial system model that can 

simulate the transport processes of water and energy between the atmosphere, land surface, and 

subsurface in a physically based representation (Gasper et al., 2014; Shrestha et al., 2014). The 

TSMP includes three models that are already well established: an atmospheric model 

(Consortium for Small Scale Modeling, COSMO) (Baldauf et al., 2011), a land surface model 

(Community Land Model (CLM, version 3.5)) (Oleson et al., 2004; Oleson et al., 2008) from 

the National Center for Atmospheric Research, and the 3D variably saturated groundwater flow 

model ParFlow (Kollet and Maxwell, 2006) for the subsurface. These three models are two-

way coupled by the Ocean Atmosphere Sea Ice Soil coupling Model Coupling Toolkit (OASIS-

MCT, version 3) (Valcke, 2013). The OASIS-MCT coupler is used to exchange variables and 

fluxes between the different sub-models. The TSMP modeling platform can be run with 

different combinations of component models, such as a fully coupled configuration (COSMO-

CLM-ParFlow), partially coupled configurations (COSMO-CLM or CLM-ParFlow), or a 

single model (COSMO/CLM/ParFlow). In this Ph.D. work, the partially coupled configuration 

with the land surface model CLM and the subsurface model ParFlow is used. 

 

2.1.1 Land surface model Community Land Model (CLM), version 3.5 

The land surface model CLM simulates the biophysical processes in the terrestrial system, 

including solar and longwave radiation interactions with the vegetation canopy and soil, 

momentum and turbulent fluxes from the canopy and soil, canopy hydrology (e.g., interception 

processes), soil hydrology, and stomatal physiology and photosynthesis (Oleson et al., 2007). 

The mass and energy balance components in CLM include soil evaporation, evaporation from 

intercepted water, plant transpiration, infiltration of water in the soil, sensible and ground heat 

fluxes, and freeze-thaw processes (Oleson et al., 2004; Oleson et al., 2008).  

A nested subgrid hierarchy is used to represent the spatial heterogeneity of the land surface 

in CLM (Oleson et al., 2008). Each grid cell is divided into different types of land units (glacier, 

lake, wetland, urban, and vegetated), where each land unit can have a different number of 

snow/soil columns (see Fig. 2.1). In CLM, the soil column and snow column are discretized 

into 10 and 5 vertical layers, respectively (Oleson et al., 2004; Oleson et al., 2008). In addition, 

each column can have multiple Plant Functional Types (PFTs) (Bonan et al., 2002; Oleson et 

al., 2008). Each PFT is characterized by distinct plant physiological parameters that should 
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capture the biogeophysical and biogeochemical differences between the different vegetation 

types (Oleson et al., 2004; Oleson et al., 2008). 

 

 

Figure 2.1 Configuration of the CLM subgrid hierarchy, adapted from Oleson et al. (2004). 

Each grid cell is composed of multiple landunits, snow/soil columns, and Plant Functional 

Types (PFTs). The first subgrid level is the landunit, which can be glacier, wetland, vegetated, 

lake, or urban. The second subgrid level is the column, which can be soil or snow within a 

single landunit. The third subgrid level is the PFT level, where up to 4 of 15 possible PFTs that 

differ in physiology and structure can coexist on a single column. 

 

The primary function of the CLM in the TSMP is to calculate evapotranspiration from the 

soil and vegetation. The CLM calculates evaporation and transpiration, considering both 

vegetated and non-vegetated surfaces (Oleson et al., 2007). For the non-vegetated surface (bare 

soil), the evaporation Eg [M/L2/T] from the ground is calculated as follows: 

 

𝐸𝐸𝑔𝑔 =  −𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎�𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎−𝑞𝑞g�
𝛾𝛾𝑎𝑎𝑎𝑎

                      (2.1) 

 

where 𝜌𝜌atm [M/L3] is the air density, qatm [M/M] is the atmospheric specific humidity, qg 

[M/M] is the soil surface specific humidity, and 𝛾𝛾aw [T/L] is the aerodynamic resistance to water 

Grid cell 

Glacier Vegetated Wetland Lake Urban 

Land units 

C1 
Columns 

PFT1 PFT2 PFT3 PFT4 

PFTs 
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vapor transfer. qg is proportional to the saturation specific humidity: 

 

 𝑞𝑞g =  𝛼𝛼𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇g                         (2.2) 

 

and qTg 
sat  [M/M] is the saturated specific humidity given the ground surface temperature Tg 

[Q]. The factor α [-] is a combined value for soil and snow: 

   

𝛼𝛼 =  𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠,1(1 − 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠                   (2.3) 

 

where fsno [-] is the fraction of snow coverage, αsoi,1 [-] refers to the surface soil layer and 

is a function of the surface soil layer water matrix potential ψ1[L]: 

 

𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠,1 = 𝑒𝑒𝑒𝑒𝑒𝑒 � 𝜓𝜓1𝑔𝑔 
1×103𝑅𝑅𝑎𝑎𝑤𝑤𝑇𝑇g

�                        (2.4) 

 

where Rwv [L2/T2/Q] is the gas constant for water vapor, 𝑔𝑔 [L/T2] is the gravitational 

acceleration, and ψ1 [L] is calculated as: 

 

𝜓𝜓1 =  𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠,1𝑠𝑠1
−𝐵𝐵1 and 𝜓𝜓1 ≥  −1 ×  108                (2.5) 

 

where ψsat,1 [L] is the saturated matric potential for the surface soil layer, B1 [-] is the Clapp 

and Hornberger parameter (Clapp and Hornberger, 1978), and s1[-] is the wetness of the top 

soil layer with respect to saturation: 

 

𝑠𝑠1  =  1
∆𝑧𝑧1𝜃𝜃𝑠𝑠𝑎𝑎𝑎𝑎,1

�𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙,1

𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙
+ 𝑤𝑤𝑙𝑙𝑖𝑖𝑖𝑖,1

𝜌𝜌𝑙𝑙𝑖𝑖𝑖𝑖
� and 0.01 ≤ 𝑠𝑠1 ≤ 1.0          (2.6) 
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where Δz1 [L] is the thickness of the top soil layer, 𝜃𝜃sat,1 [L3/L3] is the saturated soil 

moisture of the top soil layer (i.e., porosity), wliq,1 [M/L2] and wice,1 [M/L2] are the mass of liquid 

water and ice of the top soil layer, 𝜌𝜌liq [M/L3] and 𝜌𝜌ice [M/L3] are the density of liquid water and 

ice. 

For the vegetated surface, the evapotranspiration flux 𝐸𝐸 [M/L2/T] includes the water vapor 

flux from the vegetation 𝐸𝐸v and the ground 𝐸𝐸g:  

 

𝐸𝐸 =  𝐸𝐸𝑣𝑣 +  𝐸𝐸g                          (2.7) 

 

𝐸𝐸𝑣𝑣 =  −  
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎�𝑞𝑞𝑠𝑠−𝑞𝑞𝑠𝑠𝑎𝑎𝑎𝑎

𝑇𝑇𝑤𝑤 �

𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑙𝑙
                      (2.8) 

 

𝐸𝐸g =  −  𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎�𝑞𝑞𝑠𝑠−𝑞𝑞g�
𝑟𝑟𝑎𝑎𝑎𝑎′

                        (2.9) 

 

where q𝑇𝑇v 
sat  [M/M] is the saturated specific humidity at vegetation temperature Tv [Q], r′ 

aw 

[T/L] is the aerodynamic resistance to water vapor transfer between the ground and canopy air, 

rtotal [T/L] is the aerodynamic resistance to water vapor transfer from the canopy to the canopy 

air, and qs [M/M] is the canopy specific humidity: 

 

𝑞𝑞𝑠𝑠 =  𝑐𝑐𝑎𝑎𝑎𝑎𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎+ 𝑐𝑐g 
𝑎𝑎𝑞𝑞g+ 𝑐𝑐𝑤𝑤𝑎𝑎𝑞𝑞𝑠𝑠𝑎𝑎𝑎𝑎

𝑇𝑇𝑤𝑤  
𝑐𝑐𝑎𝑎𝑎𝑎+ 𝑐𝑐g 

𝑎𝑎+ 𝑐𝑐𝑤𝑤𝑎𝑎  
                    (2.10) 

 

where cw 
a  [L/T], cw 

g  [L/T] and cw 
v  [L/T] are water vapor conductances from the canopy air 

to the atmosphere, the leaf to the canopy air, and the ground to the canopy air, respectively. 

 

2.1.2 Subsurface hydrological model ParFlow 

ParFlow is used to simulate surface runoff and groundwater flow in TSMP. The soil 

hydrologic processes of the CLM are replaced by ParFlow in the TSMP (Ashby and Falgout, 
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1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006; Maxwell, 2013). ParFlow is 

improved from the parallel three-dimensional variably saturated subsurface flow code ParFlow 

with a two-dimensional overland flow simulator (Ashby and Falgout, 1996; Kollet and Maxwell, 

2006). ParFlow solves the kinematic wave equation (Lighthill and Whitham, 1955) for overland 

flow and the 3D Richards equation (Richards, 1931) for groundwater flow in the unsaturated 

and saturated zones using the Newton-Krylov nonlinear solver (Jones and Woodward, 2001).  

In ParFlow, the three-dimensional Richards’ equation can be written as follows (Maxwell, 

2013): 

 

𝑆𝑆𝑠𝑠𝑆𝑆𝑤𝑤
𝜕𝜕ℎ
𝜕𝜕𝑠𝑠

+ 𝛷𝛷 𝜕𝜕𝑆𝑆𝑎𝑎(ℎ)
𝜕𝜕𝑠𝑠

= ∇ ∙ 𝒒𝒒 + 𝑞𝑞𝑟𝑟(𝑒𝑒, 𝑧𝑧),                   (2.11) 

 

and  

 

𝒒𝒒 = 𝛷𝛷𝑆𝑆𝑤𝑤(ℎ)𝒗𝒗 = −𝐾𝐾𝑠𝑠(𝑒𝑒)𝑘𝑘𝑟𝑟(ℎ)∇(ℎ + 𝑧𝑧),                 (2.12) 

 

where Ss is the specific storage [L-1]; Sw is the relative saturation; h is the pressure head 

[L]; t is time [T]; Φ is the porosity; q is the specific volumetric (Darcy) flux [LT-1]; qr is a 

general source/sink term representing transpiration, wells, and other fluxes [LT-1]; x is the length 

along the x-axis specified as horizontal direction [L]; z is the elevation along the z-axis specified 

as upward to be positive [L]; v is the subsurface flow velocity [LT-1]; Ks(x) is the saturated 

hydraulic conductivity tensor [LT-1]; kr is the relative permeability.  

Input soil hydraulic parameters for ParFlow include saturated hydraulic conductivity, 

porosity, and Mualem-van Genuchten parameters (van Genuchten, 1980; Kollet and Maxwell, 

2008). The van Genuchten formulation (van Genuchten, 1980) is used to estimate the pressure 

head from SM data: 

 

𝛹𝛹 = −
�� 𝜃𝜃𝑠𝑠−𝜃𝜃𝑟𝑟
𝜃𝜃(𝛹𝛹)−𝜃𝜃𝑟𝑟

�
1
𝑎𝑎−1�

1
𝑛𝑛

𝛼𝛼
,                          (2.13) 
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where Ψ is the subsurface pressure head [L]; θs is the porosity; θr is the residual soil 

moisture content; α is a measure of the first moment of the pore size density function [L-1]; n is 

an inverse measure of the second moment of the pore size density function; and m=1-1/n.  

In addition, a terrain-following grid transformation with variable vertical discretization has 

been implemented in ParFlow by Maxwell (2013), which can solve groundwater problems with 

high topographic gradients. Furthermore, ParFlow has been developed for parallel computing 

systems and has been shown in many studies to be effective in solving large-scale problems at 

high resolution in highly heterogeneous media and under variably saturated conditions (Jones 

and Woodward, 2001; Kollet and Maxwell, 2006; 2008; Maxwell, 2013). 

 

2.1.3 Coupling interface OASIS-MCT 

The OASIS-MCT coupler is used to control the exchange of fluxes and state variables 

between the three component models in TSMP (Valcke, 2013; Shrestha et al., 2014). In addition, 

OASIS-MCT uses time integration/averaging and spatial interpolation operations to keep scales 

constant when fluxes are at different spatial and temporal scales (Sulis et al., 2015). The 

exchange of data between the atmosphere and the land surface is ignored because only the CLM 

and ParFlow models were used in this work, and the atmospheric model was replaced by the 

reanalysis forcing data. CLM provides ParFlow with the upper boundary condition, which is 

net infiltration or exfiltration. Net infiltration includes precipitation, interception, total 

evaporation, and total transpiration (Kurtz et al., 2016; Zhang et al., 2018). In turn, ParFlow 

provides the calculated pressure and saturation values of the top ten subsurface layers to CLM.  

 

2.2 Data assimilation 

2.2.1 Ensemble Kalman Filter (EnKF) 

The Ensemble Kalman Filter, a sequential filtering algorithm, can assimilate the 

measurement data and update the model states based on the optimal combination of the 

ensemble of model predictions and the measurements (Evensen, 1994; 2003). EnKF is a widely 

used DA technique and has been shown to be effective for nonlinear systems and high-

dimensional problems (Camporese et al., 2009b; Schöniger et al., 2012).  

Data assimilation consists of two primary steps: the forecast step and the analysis step. In 

the forecast step, the state estimate is based only on past data, whereas in the analysis step, 

information from current measurements and from a prior short-term forecast (based on past 
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data) is used to produce a current state estimate, and the probability density of the state is 

propagated forward (McLaughlin, 2002). This estimate is then used to initialize the next short-

term forecast, which is then used in the next analysis, and so on (Hunt et al., 2007). The EnKF 

alternates sequentially between model forecast and filter analysis steps (also called filter 

updating), either state updates alone or joint state parameter updates. 

The efficiency of the filter depends on the accurate determination of the forecast error 

covariance from the ensemble, and the sources of forecast errors are mainly uncertain initial 

conditions, forcing data, model parameters, and model equations (Turner et al., 2008). To 

achieve the ideal assimilation effect, the ensemble generation should ensure that errors from 

different sources are taken into account.  

For each ensemble member j at time step i, the state vector xj,i in the forecast step is updated 

by the model predictions and is given by:  

 

𝐱𝐱𝑗𝑗,𝑠𝑠 = ℳ�𝐱𝐱𝑗𝑗,𝑠𝑠−1,𝐪𝐪𝑗𝑗,𝑠𝑠,𝐩𝐩𝑗𝑗,𝑠𝑠�                     (2.14) 

 

where j is the ensemble member, xj,i is the model forecast state vector at time step i 

(pressure head or soil moisture in this work), M is the model (TSMP in this work), xj,i-1 is the 

earlier model state vector at time step i-1, qj,i is the vector with (perturbed) model forcings, and 

pj,i is the model perturbation vector with parameters. Model forecasts are updated according to: 

 

 𝐱𝐱𝑗𝑗,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 + 𝐊𝐊𝑠𝑠�𝐲𝐲𝑗𝑗,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑗𝑗,𝑠𝑠
𝑓𝑓 �                  (2.15) 

 

where yj,i is the vector of (perturbed) observations (size is m), and the superscripts a and f 

refer to the updated state vector (the analysis) and the model-predicted state vector, respectively. 

The observation operator Hi is used to map the model forecasts into the observation space, 

which is assumed to be linear, and Ki denotes the Kalman gain, which is calculated as: 

 

𝐊𝐊𝑠𝑠 = 𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇�𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠�
−1                   (2.16) 
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where Ri is the measurement error covariance matrix defined based on the expected 

measurement error of the assimilated data. Pi
 is the model covariance matrix computed from 

the forecasted ensemble of model simulations at time step i according to: 

 

                     𝐏𝐏𝑠𝑠 =
∑ �𝐱𝐱𝑗𝑗,𝑙𝑙

𝑓𝑓 −𝐱𝐱�𝑓𝑓��𝐱𝐱𝑗𝑗,𝑙𝑙
𝑓𝑓 −𝐱𝐱�𝑓𝑓�

𝑇𝑇𝑁𝑁
𝑗𝑗=1

𝑁𝑁−1
                      (2.17) 

  

where 𝐱𝐱�𝑓𝑓 is a vector of ensemble means for the model states at time step i. N is the number 

of ensemble members. 

The updated states are then finally given by: 

 

    𝐱𝐱𝑗𝑗,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 + 𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇�𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠�
−1�𝐲𝐲𝑗𝑗,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 �            (2.18) 

 

The augmented state vector approach of Hendricks Franssen et al. (2008) is used to update 

both states (ψ) and parameters (Y) jointly.  

 

𝐱𝐱𝑗𝑗,𝑠𝑠
𝑓𝑓 =  �𝛙𝛙𝑗𝑗,𝑙𝑙

𝐘𝐘𝑗𝑗,𝑙𝑙
�                           (2.19) 

 

The dimension of the augmented state vector x for realization j is expanded to 2n (where 

all model grid cell sizes are n). Furthermore, the covariance matrix (2n × n), Kalman gain (2n 

× m), and mapping operator (m × 2n) are all adjusted to include the unknown parameters. There 

are now two blocks of these vectors and matrices: 

 

𝐏𝐏 = �
𝐏𝐏ψψ
𝐏𝐏ψY

�   

    𝐊𝐊 = �
𝐊𝐊ψψ
𝐊𝐊ψY

�                            (2.20) 
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𝐇𝐇 = �
𝐇𝐇ψ
𝐇𝐇Y

�  

 

where the subscript ψ denotes the component related to the states, the subscript Y 

represents the component associated with the parameters, the subscript ψψ indicates evaluations 

(e.g., covariances) between two states at two locations, and the subscript ψY signifies 

evaluations between one state at a location and one parameter at a location. 

The iterative application of the EnKF analysis may lead to filter inbreeding, i.e., 

underestimation of the ensemble covariance, due to the limited ensemble size in practical 

applications (Hendricks Franssen and Kinzelbach, 2008). Therefore, a damping factor (α) can 

be used during the analysis step to reduce the modification of the forecast with the Kalman gain 

and to limit the intensity of the perturbation of the states (pressure head) or parameters (log10 

Ks) (Gebler et al., 2019; Hung et al., 2022). This leads to the subsequent updating equation for 

joint estimation of both state and parameter:  

 

𝐱𝐱𝑗𝑗,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 + 𝛂𝛂𝑇𝑇𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇�𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠�
−1�𝐲𝐲𝑗𝑗,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 �              (2.21) 

 

where αT is a vector of damping factors, which can have values between 0 and 1, for 

updating states or parameters. 

  

2.2.2 Localized Ensemble Kalman Filter (LEnKF) 

The effectiveness of DA with EnKF is often compromised by inaccuracies in the estimated 

model error covariances and the presence of spurious correlations between spatially distant grid 

cells (Houtekamer and Mitchell, 1998; Houtekamer and Mitchell, 2001). Houtekamer and 

Mitchell (1998) proposed a localization approach to restrict the filter update to the vicinity of 

the observation locations to avoid filter divergence caused by spurious correlations. Therefore, 

in this study, LEnKF, a variant of the sequential DA algorithm EnKF, is also used. Based on the 

localization of error covariances proposed by Houtekamer and Mitchell (2001), in the 

evaluation of the Kalman gain in Equation 2.16, Pi is replaced by ρ∘Pi, where ρ∘Pi represents 

the Schur product of the correlation matrix ρ and the covariance matrix Pi, where ρ is a 

correlation matrix containing the correlations between the grid cells (which are set to zero for 
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grid cell combinations that are separated beyond a certain threshold). Matrices ρ and Pi have 

the same dimensions, so that the LEnKF analysis scheme can be expressed as:  

 

𝐱𝐱𝑗𝑗,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 + �𝜌𝜌1°𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇��𝜌𝜌2°�𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇� + 𝐑𝐑𝑠𝑠�
−1�𝐲𝐲𝑗𝑗,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 �,       (2.22) 

 

Here ρ is determined using a piecewise fifth-order function, as given by Gaspari and Cohn 

(1999). The correlation ω between a grid point and an observation, i.e., an element in ρ, can be 

approximated as (Hu et al., 2012):  

 

𝜔𝜔(𝑙𝑙, 𝑒𝑒) =

⎩
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   (2.23) 

 

where l is the defined localization radius and e is the Euclidean distance between an 

analyzed grid point and an observation location. The correlation ω is distance-dependent and 

varies between 1 at observation locations and 0 at distances greater than twice the influence 

radius l.  

 

2.2.3 TSMP-PDAF 

The TSMP-PDAF framework was developed by Kurtz et al. (2016), which couples the 

TSMP integrated model with the Parallel Data Assimilation Framework (PDAF) (Nerger et al., 

2005). By developing a parallel DA system, PDAF facilitates the implementation of parallel 

assimilation systems with numerical models for more efficient DA. In this framework, a fully 

parallel modular environment is provided to perform DA for the partially or fully coupled model 

components. Technical details on the coupling of PDAF to TSMP can be found in Kurtz et al. 

(2016). The current version of TSMP-PDAF allows assimilation of SM (in situ or RS), pressure 

measurements (river stage or groundwater levels), and water storage, either separately or jointly. 

States can be updated separately or jointly with parameters, and the estimated hydraulic 

parameters can be saturated hydraulic conductivity, porosity, Mulaem-van Genuchten 

parameters, and Manning’s roughness coefficient. 
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The TSMP-PDAF framework has been applied to assimilate different hydrologic variables 

(SM or groundwater) at different scales (e.g., hillslope, catchment, and continental scales) 

(Kurtz et al., 2016; D. Baatz et al., 2017; Zhang et al., 2018; Gebler et al., 2019; Naz et al., 

2019; Naz et al., 2020; Hung et al., 2022; Brandhorst and Neuweiler, 2023). Kurtz et al. (2016) 

assimilated SM into the TSMP model (CLM-ParFlow) in a virtual catchment, and the effects 

of DA were demonstrated in the simple synthetic DA, and the model states and parameters were 

corrected to the reference values. Their experiments also showed that the TSMP-PDAF 

framework can run efficiently with parallel computations and large problem sizes, and thus 

holds promise for simulating and predicting states and fluxes of the terrestrial system over large 

spatial scales at high resolution. D. Baatz et al. (2017) proposed a catchment tomography 

approach and assimilated stream water level observations into TSMP (ParFlow stand-alone)-

PDAF in a synthetic catchment. The successful estimation of the spatial distribution of 

Manning’s coefficient in their experiments proved the effectiveness of the joint state parameter 

estimation in the TSMP-PDAF framework. Zhang et al. (2018) found that the joint assimilation 

of GWL and SM data has great potential to improve the SM characterization of the root zone, 

and the assimilation was performed via TSMP (CLM-ParFlow)-PDAF in synthetic experiments 

with only four grid cells. Naz et al. (2019) used the TSMP-PDAF framework to assimilate the 

satellite SM into the stand-alone CLM 3.5 model over Europe. The results of their assimilation 

experiment showed an overall improvement in SM and runoff, demonstrating the potential of 

assimilating remotely sensed SM to improve continental-scale SM and runoff simulations at 

high resolution. Gebler et al. (2019) assimilated SM data into TSMP in a synthetic test case and 

concluded that EnKF can significantly improve SM characterization. However, they also found 

that DA experiments yielded relatively poor performance for the real-world case of 

Rollesbroich, a small catchment in the Eifel mountains in western Germany. They argue that 

the different performance for the real-world case and the synthetic case may be related to model 

structure errors. Hung et al. (2022) assimilated SM and GWL at the large catchment scale in a 

synthetic study that mimicked the Neckar catchment in Southwestern Germany with the TSMP 

(CLM-ParFlow)-PDAF model. In their experiments, SM and pressure were updated together 

or separately, and hydraulic conductivity was updated together with the states in some 

experiments. For the SM update, the CRNS data were vertically weighted according to the 

scheme from Franz et al. (2012). The synthetic experiment showed that the assimilation of SM 

and GWL was able to correct the predictions of SM and GWL towards the reference values. 

Joint state parameter updating performed better than updating states alone, although the 

improvement was local and limited. Brandhorst and Neuweiler (2023) investigated the effect 

of parameter updates on SM estimation with a synthetic three-dimensional hydrologic hillslope 
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model. The results showed that the best SM estimates were obtained by performing a joint 

update of porosity, van Genuchten parameters, and (optionally) saturated hydraulic conductivity. 

Previous studies have investigated the assimilation of SM and GWL measurements with 

TSMP (CLM-ParFlow)-PDAF and demonstrated the effectiveness and reliability of the 

assimilation system in this framework. However, they mainly focused on synthetic experiments, 

small catchments, stand-alone models, or greatly simplified the representation of spatial 

heterogeneity in the real catchment. In this work, we assimilated SM from a network of 12 

CRNS sites and real groundwater measurements into the integrated model TSMP using the DA 

methods EnKF and LEnKF. 

 

2.3 Study area and hydrological measurements 

The study area for the assimilation experiments conducted for this dissertation is the Rur 

catchment (see Fig. 2.2). With a total area of 2354 km2, it is mainly located in western Germany, 

with smaller parts in Belgium and the Netherlands. The Rur catchment was chosen as the study 

domain because of its spatial variability in climate, altitude, land use, soil properties, and 

geology. More importantly, the Rur catchment is part of the TERENO (TERrestrial 

Environmental Observatories, https://www.tereno.net/) observing platform and is equipped 

with high-density monitoring infrastructure, including CRNS soil moisture and GWL 

measurement networks, eddy covariance stations, and river discharge stations (Bogena et al., 

2018). Therefore, the extensive observations can provide valuable information for DA in 

integrated terrestrial models. The elevation of the terrain in the Rur catchment generally 

decreases from 690 to 15 m a.s.l. from the south to the north, so that the river flows from the 

south to the north. Corresponding to the topography from north to south, mean annual air 

temperature decreases from 10 to 7 °C, annual precipitation increases from 650 to 1300 mm, 

and annual potential ET decreases from 850 to 450 mm (Montzka et al., 2008; Bogena et al., 

2018). The main types of land use are arable agriculture in the north (mainly maize and wheat) 

and grassland, and coniferous and deciduous forests in the south (Waldhoff and Lussem, 2015; 

Roland Baatz et al., 2017). Other important land uses include open-cast lignite quarries and 

urban areas (Shukla et al., 2023). The permeability of the upper unconfined aquifer and the 

groundwater recharge in the southern low-mountain range are relatively low due to the 

prevailing consolidated bedrock, while they are relatively high in the northern lowland region 

due to the presence of unconsolidated bedrock (Bogena et al., 2018). 
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Figure 2.2 Topography of the Rur catchment (a) and locations of the hydrological stations (b), 

including groundwater wells, cosmic-ray neutron sensors, and eddy covariance stations. 

 

In the Rur catchment, the CRNS network consists of 13 relatively evenly distributed 

cosmic ray neutron stations (Table 2.1), covering the relevant land use types and allowing 

temporal dynamic monitoring of field-scale SM over the entire Rur catchment (Baatz et al., 

2014; Bogena et al., 2018; Bogena et al., 2022). Either a CRS-1000 or CRS-2000/B cosmic-ray 

neutron probe (Hydroinnova LLC) is used in the CRNS (Bogena et al., 2018). The raw 

measured neutron intensity detected by the CRNS probe must be corrected and can then be 

converted to SM values (Bogena et al., 2013; R. Baatz et al., 2015; Bogena et al., 2022). The 

near-real-time SM data provided by CRNS are well suited for catchment-scale DA and 

hydrological modeling verification. 

 

Table 2.1 CRNS sites used in this study, including key site characteristics.  

Name 
Latitude 

(degr) 

Longitude 

(degr) 

Altitude 

(m) 

Mean annual 

precipitation (mm y-1) 

Mean air 

temperature 

(℃) 

Land use 

Merzenhausen 50.93 6.30 91 718 10.3 crop 

Rollesbroich1 50.62 6.30 515 1018 7 grassland 
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Rollesbroich2 50.62 6.31 506 1018 7 grassland 

Gevenich 50.99 6.32 107 718 10.3 crop 

Ruraue 50.86 6.43 100 718 10.3 grassland 

Wildenrath 51.13 6.17 72 722 10.3 needleleaf 

Wüstebach 50.51 6.33 605 1401 7 spruce 

Heinsberg 51.04 6.10 58 722 10.3 crop 

Kall 50.50 6.53 505 857 8 grassland 

Selhausen 50.87 6.45 101 718 10.3 crop 

Schöneseiffen 50.52 6.38 611 870 7 grassland 

Kleinhau 50.72 6.37 374 614 9 grassland 

Aachen 50.80 6.03 232 865 10.3 crop 

 

There are hundreds of groundwater wells in the Rur catchment that are used to monitor 

groundwater levels, with the number of observation wells varying slightly from year to year. 

The observation frequency also varies for each well and can be on a daily, weekly, or monthly 

basis. Groundwater wells are mainly concentrated in the northern part of the catchment, and 

there are many sites distributed along the river. The measured groundwater data can be accessed 

via the monitoring network Geoportal NRW (www.geoportal.nrw).  

Three eddy covariance (EC) stations (Rollesbroich, Wüstebach, and Selhausen) in the Rur 

catchment continuously monitor evapotranspiration. The EC measurements were performed 

with a sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, USA) to measure the 3D 

wind components, an open-path gas analyzer (Li7500, LI-COR Inc., Lincoln, USA) to 

determine H2O and CO2 concentrations in the air, and an air temperature and humidity sensor 

(HMP45C, Vaisala Inc., Helsinki, Finland). The EC data require conversion and uncertainty 

estimation before being used for model verification (Mauder et al., 2013). 

  

http://www.geoportal.nrw/
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Chapter 3: Water table depth assimilation in integrated terrestrial 
system models at the larger catchment scale 
 

*adapted from: Li, F., Kurtz, W., Hung, C. P., Vereecken, H., and Hendricks Franssen, H.-J.: 

Water table depth assimilation in integrated terrestrial system models at the larger catchment 

scale, Frontiers in Water, 5, 10.3389/frwa.2023.1150999, 2023. 

 

3.1 Introduction 

As a widespread and highly used resource, groundwater provides globally 50% of the 

drinking water, with higher values for inhabitants of dry regions, and 2.5 billion people depend 

entirely on groundwater resources for their basic daily water needs (UNWWAP, 2015). Either 

groundwater level or water table depth is a significant variable related to groundwater and can 

vary between 0 m in wetland areas to depth of hundreds of meters from the land surface in arid 

regions. Shallow groundwater is crucial in terrestrial ecosystems as it strongly influences the 

soil water content in the root zone and thus exerts an important control on water and energy 

fluxes between the subsurface, land surface, and the atmosphere (Koster et al., 2004; Vereecken 

et al., 2016). To understand the influence of temporal and spatial variations of groundwater 

level on terrestrial ecosystems, models like the integrated TSMP model (Shrestha et al., 2014) 

are used, which can model the groundwater-soil-vegetation-atmosphere system in a physical 

manner.  

However, the accuracy of modeling is often affected by uncertain model forcings, 

parameters, and initial conditions (Freeze, 1975; D. Baatz et al., 2017). Especially for 

groundwater systems, the extreme spatial heterogeneity of hydraulic parameters is challenging 

(de Marsily, 1986). To quantify and reduce the uncertainties of model predictions, DA can be 

used to correct model predictions with observations and improve the estimation of hydrological 

variables (Reichle et al., 2002; Reichle et al., 2008). One of the most commonly used DA 

algorithms is the EnKF (Evensen, 1994; 2003). EnKF uses a Monte Carlo approach to forecast 

model error statistics (Evensen, 1994). DA with EnKF is often affected by a poor quality of the 

estimated model error covariances and spurious correlations between grid cells which are 

separated far in space. Therefore, the LEnKF approach (Houtekamer and Mitchell, 2001) is 

used in this study, which can improve the effectiveness of the EnKF analysis (Hu et al., 2012).  

Past studies have proven the effectiveness of DA in improving real-time hydrological 

modeling and forecasting (e.g. Han et al., 2014; Zhang et al., 2018; Yu et al., 2020), and some 
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studies investigated the assimilation of groundwater data with hydrological models. Camporese 

et al. (2009b) assimilated both pressure head and SM data with the EnKF, and the results 

showed that assimilation of either pressure head or soil moisture can improve the 

characterization of subsurface states in the vicinity of the measurement locations. Camporese 

et al. (2009a) assimilated synthetic observations of pressure head and streamflow for a v-tilted 

catchment, and the results suggested that streamflow prediction can be improved by 

assimilation of pressure head and streamflow, either individually or simultaneously. Kurtz et al. 

(2014) assimilated jointly piezometric heads and groundwater temperatures with EnKF to 

update uncertain hydraulic subsurface parameters (i.e., hydraulic conductivities and leakage 

coefficients) for an area near the river Limmat in Switzerland, and found that the joint 

assimilation of the two kinds of data with updating of uncertain hydraulic parameters gives the 

best characterization. Zhang et al. (2016) ssimilated soil moisture and groundwater head 

measurements with the MIKE SHE hydrological model for catchments of different 

complexities and using different assimilation settings (observation types, ensemble sizes, and 

localization schemes) and found that the ensemble transform Kalman filter (ETKF) method 

improved the model performance compared to the OL run. But the average difference between 

observations and model simulations was subtracted from the original data when comparing in-

situ head measurements with predictions. The proposed scheme by Zhang et al. (2016) with 

both distance localization and variable localization was shown to be more robust than only 

using one localization scheme and provided better results. However, these experiments on 

groundwater assimilation have only been conducted by hydrological models in synthetic 

experiments or over-simplified real-world cases. No studies demonstrated the potential of 

assimilating real groundwater observations into integrated terrestrial system models to improve 

groundwater estimates at the regional scale. This is therefore still an emerging research topic. 

The integrated model TSMP, which is composed of an atmospheric, land surface, and 

subsurface model, was used in this work, in combination with the Parallel Data Assimilation 

Framework (PDAF) (Nerger et al., 2005; Kurtz et al., 2016). TSMP has been applied in a series 

of studies (e.g., Shrestha et al., 2015; Keune et al., 2016; Furusho-Percot et al., 2019). The 

combination of PDAF and TSMP has been used for the assimilation of different hydrological 

variables (e.g., SM and groundwater) at different scales (e.g., hillslope, catchment, and 

continental scale) (Kurtz et al., 2016; Zhang et al., 2018; Gebler et al., 2019; Naz et al., 2019; 

Naz et al., 2020; Hung et al., 2022). Zhang et al. (2018) demonstrated in synthetic experiments 

with only four grid cells that the joint assimilation of GWL and SM data has great potential to 

improve root zone SM characterization. Hung et al. (2022) assimilated groundwater levels at 

the large catchment scale in a synthetic study that mimicked the Neckar catchment, and the 
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results showed that GWL assimilation can lead to a large scale improved characterization of 

groundwater levels, also between groundwater wells, but the impact of GWL assimilation on 

other compartments of the terrestrial system was limited, except for the deep vadose zone. 

However, there is still a lack of studies with integrated land surface-subsurface models to 

investigate assimilation of real groundwater measurements at the larger catchment scale. The 

objective of this study was to investigate whether assimilating groundwater data into the 

integrated terrestrial systems model TSMP at the larger catchment scale for a real-world case is 

able to achieve a better characterization of groundwater levels (and other terrestrial system 

states and fluxes) than an OL run and identify the main limitations and complications in practice. 

Furthermore, SM measured by cosmic-ray neutron sensors was used to verify the model 

simulation accuracy and evaluate whether assimilating WTD data can improve SM 

characterization. This is a novel contribution, as the assimilation of groundwater measurements 

in integrated land surface-subsurface models at the larger catchment scale with real data has not 

been carried out before. 

 

3.2 Materials and methods 

3.2.1 Study area and data 

The simulation domain is the Rur catchment (2354 km2) which is situated in western 

Germany and includes a small part of Belgium and the Netherlands. The Digital Elevation 

Model (DEM) for the area was acquired from SRTM 90m Version 4 (Jarvis et al., 2008) and is 

shown in Fig 3.1. The altitude ranges from 15m to 690 m a.s.l., decreasing from south to north, 

and the Rur river flows from the Eifel hills in the south to the northern flat terrain. From the 

northern to the southern part of the catchment, long-term average annual precipitation ranges 

from 650mm to 1300mm, mean annual air temperature decreases from 10 to 7°C and mean 

annual potential evapotranspiration varies between 850mm and 450mm (Montzka et al., 2008; 

Bogena et al., 2018). The land use types were taken from the CRC/TR32 Database (Waldhoff 

and Lussem, 2015) and are mainly agriculture (corn, sugarbeet and wheat in the north), 

grassland, and coniferous and deciduous forest (southern mountainous areas).  
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Figure 3.1 Map of the Rur catchment and locations of the 13 cosmic-ray neutron sensors (CRNS) 

(black points) and groundwater measurement sites (red points) in the year 2018. The Rur 

catchment is situated in western Germany.  

 

The high-resolution (1:50,000) regional soil map BK50 (Geologischer Dienst NRW, 2009) 

(see Fig 3.2) and European Soil Database (ESDB) (Pano, 2006) were used to obtain the soil 

characteristics and to calculate the soil hydraulic properties. Bulk density was obtained from 

ESDB.  
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Figure 3.2 Sand (a) and clay (b) content (%) for the Rur catchment derived from the BK50 

soil map. 

 

Based on the thickness of the BK50 soil layers, we treat the layers below the soil layers as 

aquifer layers. The upper aquifer hydraulic conductivity (see Fig 3.3) was obtained from the 

Information System Hydrogeological Map of North Rhine-Westphalia with a resolution of 

1:100,000 (https://www.opengeodata.nrw.de/produkte/ geologie/geologie/HK/ISHK100/). The 

permeability of the aquifer is based on different classes of rock types.  

 

 

Figure 3.3 Hydraulic conductivity of the aquifer material for the Rur catchment. 

 

https://www.opengeodata.nrw.de/produkte/%20geologie/geologie/HK/ISHK100/
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The high-resolution reanalysis dataset COSMO-REA6 developed with the numerical 

weather prediction (NWP) model COSMO (Baldauf et al., 2011) is used as atmospheric forcing 

in this work (Bollmeyer et al., 2015; Wahl et al., 2017). Currently, the reanalysis covers the 

period 1995-2019 at a high spatial resolution of 0.055° (6 km) and is continuously extended by 

the German Weather Service (Deutscher Wetterdienst; DWD). The forcing data include 

precipitation, air temperature, air pressure, wind velocity, specific humidity, incoming 

shortwave radiation, and incoming longwave radiation.  

The measured WTD data from the monitoring network Geoportal NRW 

(www.geoportal.nrw) were used for assimilation and some as independent verification data for 

the model simulations. For the year 2018, there were 865 sites located in shallow and deep 

aquifers of the Rur catchment that monitored the WTD (see Fig 3.1), and most measurement 

sites are distributed along the river. The observation frequency varies for each site, and can be 

daily, weekly, or monthly. In 2018, there were 575 sites with WTD between 0 and 20 m. We 

only used the sites with WTD between 0 and 20 m to be sure that only measurements from the 

upper aquifer were included for assimilation or verification, as our model only considered the 

upper 20 m. 

CRNS is a precise method to measure SM at the field scale (Zreda et al., 2008; Baatz et 

al., 2014; Köhli et al., 2015). The Rur catchment CRNS network comprises 13 CRNS stations 

(see Table 3.1) (CRS1000, HydroInnova LLC, 2009) (Roland Baatz et al., 2017; Bogena et al., 

2022) and these observation sites are relatively evenly distributed over the study area (see Fig 

3.1). CRNS measures the fast neutron intensity, and the measured number of neutron counts 

shows an inverse correlation with SM content. Fast neutrons originate from the collisions of 

secondary cosmic particles from outer space with terrestrial atoms. Fast neutrons are moderated 

most effectively by hydrogen, since the mass of the neutron is similar to the mass of a nucleus 

of the hydrogen atom. Thus, the corresponding fast neutron intensity measured by CRNS 

strongly depends on the amount of hydrogen within the CRNS footprint, allowing for a 

continuous non-invasive SM estimate at the field scale (Roland Baatz et al., 2017). The 

horizontal footprint of this measurement matches the 500 m horizontal model resolution quite 

well. It can measure SM until 83 cm depth under very dry conditions, and to 15 cm depth under 

very wet soil conditions (Köhli et al., 2015; Schrön et al., 2017). 

 

Table 3.1 CRNS sites with geographical information 

http://www.cosmo-model.org/
http://www.geoportal.nrw/
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Name Latitude Longitude 
Altitude 

(m a.s.l.) 

Mean annual 

precipitation (mm y-1) 

Mean air 

temperature 

(℃) 

Land Use 

Merzenhausen 50.930 6.297 91 718 10.3 crop 

Rollesbroich1 50.622 6.304 515 1018 7 grassland 

Rollesbroich2 50.624 6.305 506 1018 7 grassland 

Gevenich 50.989 6.324 107 718 10.3 crop 

Ruraue 50.862 6.427 100 718 10.3 grassland 

Wildenrath 51.133 6.169 72 722 10.3 needleleaf 

Wuestebach 50.505 6.331 605 1401 7 spruce 

Heinsberg 51.041 6.104 58 722 10.3 grassland, crop 

Kall 50.501 6.526 505 857 8 grassland 

Selhausen 50.866 6.447 101 718 10.3 crop 

Schoeneseiffen 50.515 6.376 611 870 7 grassland 

Kleinhau 50.722 6.372 374 614 9 grassland 

Aachen 50.799 6.025 232 865 10.3 crop 

 

3.2.2 Model description (TSMP) 

The coupled terrestrial system model used consists of three compartments integrated under 

the framework TSMP, the 3D variably saturated groundwater flow model ParFlow for the 

subsurface (Kollet and Maxwell, 2006), the land surface model CLM version 3.5 (Community 

Land Model) from the National Center for Atmospheric Research (Oleson et al., 2004; Oleson 

et al., 2008), and the numerical weather prediction model COSMO (Consortium for Small Scale 

Modelling) (Baldauf et al., 2011). These three models are two-way coupled by the Ocean 

Atmosphere Sea Ice Soil coupling Model Coupling Toolkit (OASIS-MCT, version 3) (Valcke, 

2013). The integrated modeling platform TSMP can run with different combinations of the 

component models (Shrestha et al., 2014). In this study, CLM-ParFlow was used without 

COSMO. 

 

3.2.2.1 Land surface model CLM  

The biophysical processes simulated by CLM3.5 include solar and longwave radiation 

interactions with vegetation canopy and soil, momentum and turbulent fluxes from canopy and 

soil, canopy hydrology (e.g., interception processes), soil hydrology, and stomatal physiology 

and photosynthesis (Oleson et al., 2007). The mass and energy balance solved by CLM include 

soil evaporation, evaporation from intercepted water, transpiration from plants, infiltration of 

water in the soil, sensible and ground heat fluxes, and freeze-thaw processes (Oleson et al., 

2004; Oleson et al., 2008).  
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The nested subgrid hierarchy is used to represent spatial land surface heterogeneity 

(Oleson et al., 2008). Each grid cell is divided into a variety of land units (glacier, lake, wetland, 

urban, and vegetated), where each land unit can have a different number of snow/soil columns, 

and each column can have multiple plant functional types (PFTs) (Bonan et al., 2002; Oleson 

et al., 2008). In CLM, the soil column and snow column are discretized into 10 and 5 vertical 

layers, respectively (Oleson et al., 2004; Oleson et al., 2008). Each PFT is characterized by 

distinct plant physiological parameters, which could capture the biogeophysical and 

biogeochemical differences between the different vegetation types (Oleson et al., 2004; Oleson 

et al., 2008).  

 

3.2.2.2 Subsurface hydrological model ParFlow 

In TSMP, the soil hydrology of CLM is substituted by the soil hydrology of ParFlow 

(Kollet and Maxwell, 2008) and also surface runoff and groundwater flow are calculated by 

ParFlow. ParFlow is a three-dimensional variably saturated groundwater flow model improved 

with a two-dimensional overland flow simulator (Ashby and Falgout, 1996; Kollet and Maxwell, 

2006). It combines the kinematic wave equation (Lighthill and Whitham, 1955) and the 3D 

Richards’ equation (Richards, 1931) to describe the dynamic coupling of surface-subsurface 

flow under overland flow boundary conditions (Kollet and Maxwell, 2006). In ParFlow, the 

three-dimensional Richards’ equation can be written as follows (Maxwell, 2013): 

 

𝑆𝑆𝑠𝑠𝑆𝑆𝑤𝑤
𝜕𝜕ℎ
𝜕𝜕𝑠𝑠

+ 𝛷𝛷 𝜕𝜕𝑆𝑆𝑎𝑎(ℎ)
𝜕𝜕𝑠𝑠

= ∇ ∙ 𝒒𝒒 + 𝑞𝑞𝑟𝑟(𝑒𝑒, 𝑧𝑧),               (3.1) 

 

and  

 

𝒒𝒒 = 𝛷𝛷𝑆𝑆𝑤𝑤(ℎ)𝒗𝒗 = −𝐾𝐾𝑠𝑠(𝑒𝑒)𝑘𝑘𝑟𝑟(ℎ)∇(ℎ + 𝑧𝑧),             (3.2) 

 

where Ss is the specific storage [L-1]; Sw is the relative saturation; h is the pressure-head 

[L]; t is time [T]; Φ is the porosity; q is the specific volumetric (Darcy) flux [LT-1]; qr is a 

general source/sink term that represents transpiration, wells, and other fluxes [LT-1]; x is the 

length along the x-axis specified as horizontal direction [L]; z is the elevation along the z-axis 
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specified as upward to be positive [L]; v is the subsurface flow velocity [LT-1]; Ks(x) is the 

saturated hydraulic conductivity tensor [LT-1]; kr is the relative permeability.  

ParFlow requires input soil hydraulic parameters like saturated hydraulic conductivity, 

porosity, and Mualem-van Genuchten parameters (van Genuchten, 1980; Kollet and Maxwell, 

2008). For our study, saturated hydraulic conductivities of soil layers were calculated from sand, 

silt and clay contents and bulk density using the software rosettav3 H3, which is based on an 

artificial neural network analysis coupled with a bootstrap resampling method (Schaap et al., 

2001; Zhang and Schaap, 2017). To keep hydraulic consistency between CLM and ParFlow, 

porosity (θs) for both models is calculated on the basis of the sand fraction via the following 

pedotransfer function in CLM (Oleson et al., 2004):  

 

𝜃𝜃𝑠𝑠 = 0.489− 0.00126(sand%),                  (3.3) 

 

The van Genuchten formulation (van Genuchten, 1980) is employed to evaluate the 

pressure head from soil moisture data: 

 

𝛹𝛹 = −
�� 𝜃𝜃𝑠𝑠−𝜃𝜃𝑟𝑟
𝜃𝜃(𝛹𝛹)−𝜃𝜃𝑟𝑟

�
1
𝑎𝑎−1�

1
𝑛𝑛

𝛼𝛼
,                        (3.4) 

 

where Ψ is subsurface pressure head [L]; θs is porosity; θr is residual soil moisture content; 

α is a measure of the first moment of the pore size density function [L-1]; n is an inverse measure 

of the second moment of the pore size density function; and m=1-1/n.  

The Newton Krylov solution technique is applied in ParFlow and acts as a nonlinear solver 

(Jones and Woodward, 2001). The coupled partial differential equations for subsurface flow 

and surface water flow are solved by the Newton-Krylov method with multigrid 

preconditioning, which is good at handling subsurface flow problems at large-scales in highly 

heterogeneous media and under variably saturated conditions (Kollet and Maxwell, 2006; 2008; 

Maxwell, 2013). A prominent advantage of ParFlow is that it was designed for parallel 

computer systems, so that it can efficiently compute large-scale problems at high resolution, 

which has been demonstrated in many studies (Jones and Woodward, 2001; Kollet and Maxwell, 
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2006; 2008). 

 

3.2.2.3 Coupling interface OASIS-MCT 

The external coupler OASIS-MCT (Valcke, 2013) is used to couple CLM and ParFlow, 

and control the exchange of fluxes between the different component models (Shrestha et al., 

2014). When the fluxes correspond to different spatial and temporal scales, OASIS-MCT uses 

time integration/averaging and spatial interpolation operators to keep the scales consistent 

(Sulis et al., 2015). In TSMP, ParFlow provides CLM with the upper 10 subsurface layers’ 

pressure and saturation, and in turn, CLM provides ParFlow with the upper boundary condition, 

which is net infiltration or exfiltration. The net infiltration includes precipitation, interception, 

total evaporation, and total transpiration (Zhang et al., 2018). 

 

3.2.3 LEnKF methodology 

DA consists of a forecast and an analysis step. For the forecast step, the state estimation is 

only based on past data (McLaughlin, 2002). For the analysis step, the information from current 

measurements and from a prior short-term forecast (which is based on past data) is used to 

produce a current state estimate. Then, the estimate will be used to initialize the next short-term 

forecast, which is subsequently used in the next analysis, and so on (Hunt et al., 2007). The 

EnKF sequentially performs a model forecast and a filter analysis. The efficiency of the filter 

relies on the accurate determination of the forecast error covariance from the ensemble, and the 

main sources of forecast errors are initial conditions, forcing data, model parameters, and model 

equations (Turner et al., 2008). Perturbation approaches can take these error sources for the 

ensemble generation into account.  

For each ensemble member j at time step i, the state vector xj,i in the forecast step is 

updated by model predictions and is given by:  

 

𝐱𝐱𝑗𝑗,𝑠𝑠 = ℳ�𝐱𝐱𝑗𝑗,𝑠𝑠−1,𝐪𝐪𝑗𝑗,𝑠𝑠,𝐩𝐩𝑗𝑗,𝑠𝑠�,                         (3.5) 

 

where j is the ensemble member, xj,i is the model forecast state vector at time step i 

(pressure head in our study), M is the model TSMP, xj,i-1 is the earlier model analysis with state 
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vector at time step i-1, qj,i is the vector with (perturbed) model forcings (perturbed forcings are 

precipitation, incoming shortwave radiation, incoming longwave radiation, and air temperature 

in this study) and pj,i denotes the model perturbation vector with parameters (porosity and 

saturated hydraulic conductivity in this study). In summary, in this work, the ensemble of model 

realizations is generated by different initial conditions, forcings, and parameters. Model 

forecasts are updated according to: 

 

 𝐱𝐱𝑗𝑗,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 + 𝐊𝐊𝑠𝑠�𝐲𝐲𝑗𝑗,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑗𝑗,𝑠𝑠
𝑓𝑓 �,                       (3.6) 

 

where yj,i is the vector with (perturbed) observations, and the superscripts a and f refer to 

the updated state vector (the analysis) and the model predicted state vector, respectively. The 

observation operator Hi is used to map model forecasts into the observation space, which is 

here assumed to be linear, and Ki denotes the Kalman gain that is calculated as: 

 

𝐊𝐊𝑠𝑠 = 𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇�𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠�
−1,                     (3.7) 

 

where Ri is the measurement error covariance matrix, and Pi
 is the model covariance 

matrix, which is calculated from the forecasted ensemble of model simulations at time step i 

according to: 

 

                     𝐏𝐏𝑠𝑠 =
∑ �𝐱𝐱𝑗𝑗,𝑙𝑙

𝑓𝑓 −𝐱𝐱�𝑓𝑓��𝐱𝐱𝑗𝑗,𝑙𝑙
𝑓𝑓 −𝐱𝐱�𝑓𝑓�

𝑇𝑇𝑁𝑁
𝑗𝑗=1

𝑁𝑁−1
,                      (3.8) 

  

where 𝐱𝐱�𝑓𝑓 is a vector with ensemble mean values for the model states at time step i. N is 

the number of ensemble members. 

The estimation of the covariances with a limited ensemble is affected by strong sampling 

fluctuations, and the estimated covariances might be affected by spurious correlations 

(Houtekamer and Mitchell, 1998; Houtekamer and Mitchell, 2001). Houtekamer and Mitchell 

(1998) suggested a localization approach to remove spurious correlations to avoid filter 
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divergence, limiting the updates to the surroundings of observations. Based on the localization 

of the error covariances proposed by Houtekamer and Mitchell (2001), in the evaluation of the 

Kalman gain in equation 3.7, Pi is replaced by ρ∘Pi, ρ∘Pi represents the Schur product of the 

correlation matrix ρ and covariance matrix Pi, where ρ is a correlation matrix containing 

correlations between the grid cells (which are set to zero for grid cell combinations that are 

separated beyond a certain threshold). And the ρ and Pi should have the same dimensions, so 

the LEnKF analysis scheme can be expressed as:  

 

𝐱𝐱𝑗𝑗,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 + �𝜌𝜌1°𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇��𝜌𝜌2°�𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇� + 𝐑𝐑𝑠𝑠�
−1�𝐲𝐲𝑗𝑗,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑗𝑗,𝑠𝑠

𝑓𝑓 �,          (3.9) 

 

Here ρ is determined by using a fifth-order piecewise function, as given by Gaspari and 

Cohn (1999). The correlation ω between a grid point and an observation, i.e., an element in ρ, 

can be approximated as (Hu et al., 2012): 

 

𝜔𝜔(𝑙𝑙, 𝑒𝑒) =

⎩
⎪
⎨
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(3.10) 

 

where l is the defined localization radius and e is the Euclidean distance between an 

analyzed grid point and an observation location. The correlations ω are distance-dependent and 

vary between 1 at observation locations and 0 at distances greater than twice the influence 

radius l. Only the observations located within the localization radius from an analyzed grid 

point can contribute to the analysis for this grid point (Hu et al., 2012). The cutoff radius can 

filter out small and noisy correlations associated with remote observations (Houtekamer and 

Mitchell, 2001). A larger radius may contain more spurious correlation, resulting in less 

effective assimilation. In contrast, a radius that is too small limits the influence of observations 

too much to update neighboring grid cells. Therefore, determining an appropriate assimilation 

localization radius is crucial. 
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3.2.4 Assimilation methodology 

To be able to assimilate WTD measurements into TSMP, WTD data need to be transferred 

into pressure accordingly (see Fig. 3.4). At locations with WTD measurements, the pressure 

head in the saturated zone is calculated from the measured WTD assuming a hydrostatic 

pressure distribution, according to Zhang et al. (2018):  

 

                         𝛹𝛹𝑠𝑠 = 𝐷𝐷𝑠𝑠 −  𝑊𝑊𝑇𝑇𝐷𝐷obs,                        (3.11) 

 

Where Ψi is the pressure head at the ith soil layer [L], Di is the depth from land surface to 

the ith soil layer [L], and WTDobs is the observed WTD [L]. 

 

 

Figure 3.4 Illustration of the link between groundwater level observation and data to be 

assimilated (revised from Zhang et al. (2018)). The blue colour indicates the groundwater level 

at layer i-1. The red layers (from layer i to the bottom layer) are saturated and are incorporated 

as groundwater observations, and converted to pressure heads assuming hydrostatic conditions. 

 

In our study, in order to ensure stability and avoid the occurrence of anomalous pressure 

values in the unsaturated zone related to updating pressure in the DA step, a weakly coupled 

approach was followed, which implies that only pressure in saturated layers is updated during 
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assimilation. Hung et al. (2022) found that the weakly coupled approach outperformed the fully 

coupled approach for assimilating WTD measurements in TSMP. In the OL run, the vertical 

division between the unsaturated and saturated zones will differ among ensemble members. But 

as stated in Zhang et al. (2018), every grid cell should be updated consistently in DA, so the 

definition of the state vector should be the same for all ensemble members. The saturated and 

unsaturated zones are defined by the deepest WTD among the ensemble members, following 

Zhang et al. (2018). In the analysis step, only the pressure head values for the defined saturated 

zone will be directly updated via LEnKF. 

 

3.3 Experimental setup 

3.3.1 Ensemble generation and simulations 

The simulation domain was discretized with a horizontal spatial resolution of 500 m. The 

study domain has a vertical extension of 20 m, which is discretized into 20 soil and aquifer 

layers with variable thicknesses. The thicknesses of the 10 uppermost layers increase 

exponentially with depth and extend to a total of 3 m. The deeper ten subsurface layers have 

thicknesses of 1 m (three layers) or 2 m (seven layers). 

It is expected that the assimilation performance improves with increasing ensemble size 

(number of realizations), as found, for example, in studies with groundwater flow models (Chen 

and Zhang, 2006). An increasing ensemble size also implies higher computational costs. 

Hendricks Franssen and Kinzelbach (2008) indicated that 100 realizations should be sufficient 

for real-time groundwater flow modeling problems with state updating only. For combining 

state and parameter estimation, the ensemble size needs to be larger. As a compromise between 

accuracy and available compute time and data storage, we established an ensemble with 128 

members for WTD assimilation in this work.  

Meteorological forcings, hydraulic conductivities, and porosity were perturbed to generate 

the ensemble. Four atmospheric variables were perturbed: precipitation, incoming shortwave 

radiation, incoming longwave radiation, and air temperature. The meteorological forcings were 

perturbed without spatial correlation, while temporal correlations were induced by a first-order 

autoregressive model (Reichle et al., 2010; Han et al., 2015). Since the four meteorological 

variables are correlated, random values were drawn from a multivariate normal distribution. 

The statistics of the perturbed atmospheric variables are summarized in Table 3.2. The temporal 

correlations and standard deviations of the perturbations were chosen based on previous 

catchment-scale and regional-scale DA experiments (Reichle et al., 2010; Han et al., 2013; Han 
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et al., 2015; Roland Baatz et al., 2017). 

 

Table 3.2 The listed cross-correlations give the cross-correlations between the perturbations for 

the different atmospheric variables, following the order as indicated in the left column of the 

table. 

Variables Noise Standard deviation Time correlation scale Cross correlation 

Precipitation Multiplicative 0.3 24 h [ 1.0, -0.8, 0.5, 0.0,  

-0.8, 1.0, -0.5, 0.4, 

0.5, -0.5, 1.0, 0.4,  

0.0, 0.4, 0.4, 1.0] 

Shortwave radiation Multiplicative 0.2 24 h 

Longwave radiation Additive 20 W m-2 24 h 

Air temperature Additive 1 K 24 h 

 

Precipitation and shortwave radiation were multiplied by lognormally distributed noise 

(Han et al., 2013). A direct back transformation would induce a bias (resulting typically in a 

larger mean precipitation and larger mean incoming shortwave radiation), and therefore a 

correction is applied (Yamamoto, 2007): 

 

𝑍𝑍𝑗𝑗,𝑠𝑠
∗ = 𝐾𝐾 × 𝑍𝑍𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒�𝑒𝑒𝑗𝑗,𝑠𝑠� = 𝑍𝑍𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒�𝑒𝑒𝑗𝑗,𝑙𝑙�

∑ ∑ 𝑍𝑍𝑁𝑁
𝑛𝑛=1 𝑛𝑛

365
𝑎𝑎=1 𝑒𝑒𝑒𝑒𝑒𝑒�𝑒𝑒𝑛𝑛,𝑎𝑎� (𝑁𝑁×365� )

 ,           (3.12) 

 

Where Z* 
j,i is the bias corrected perturbed variable of ensemble member j at day i, Zi is the 

original variable at day i, K is the corrective factor, and xj,i is the random perturbation of 

ensemble member j at day i from the multivariate normal distribution. N is the number of 

ensemble members (128 in this study). 

Not only atmospheric forcings, but also hydraulic conductivity was perturbed in this study 

as the uncertainty of this parameter is in general large with an important effect on the 

groundwater flow prediction. We use different Ks data for the upper soil layers and lower aquifer 

layers. Hence, the Ks values of the soil and aquifer layers were perturbed separately (Table 3.3). 

The Ks values for soil layers were perturbed by perturbing the sand and clay contents first, and 

then applying the Rosetta pedotransfer functions (Schaap et al., 2001; Zhang and Schaap, 2017) 

to obtain the perturbed Ks. Sand and clay content were perturbed by calculating a field of 

spatially correlated perturbation values with geostatistical simulation and mean zero. A 

spherical variogram model was used, with nugget 0, sill of 50%2, and range 25km. In order to 
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avoid unphysical values for the soil textures, the sum of the sand and clay content were 

constrained between 0% and 100%. The Ks of the bottom aquifer layers were perturbed for each 

hydrogeological unit by taking a value from a univariate uniform distribution with values 

between -0.5 and -0.5 and adding this to the mean Ks of the unit (log10(m/s)). The porosity for 

the upper soil layers was determined according to Eq. 3.3 and on the basis of the perturbed sand 

contents, while for the bottom aquifer layers, the constant value of 0.15 was used, without 

perturbation. 

 

Table 3.3 Perturbation of saturated hydraulic conductivities for different subsurface layers. 

Layers Texture classes Perturbation Generation 

Soil layers  

Sand content Simple kriging (sill=50%2, range=25 km, 

and nugget=0) 
Rosettav3 (Zhang and 

Schaap, 2017) 
Clay content 

Silt content 100- sand(%)-clay(%) 

Aquifer layers   Hydraulic conductivity (in log10(m/s) unit) was perturbated by uniform distribution (-0.5, 0.5) 

 

It is known from previous studies that the spin-up for the model TSMP significantly 

influences the simulated WTD. The 100 year spin-up for 128 ensemble members departed from 

a WTD of 0 m, and was forced by 30-year average recharge values (derived from gridded data 

of precipitation and actual evapotranspiration provided by the German Weather Service) as an 

upper boundary condition. Next, an exit spin-up was done by running CLM-ParFlow for 

additional 10 years, using meteorological forcings from the year 2017 for all ten years. The 

conditions at the end of the spin-up were used to initialize the DA experiments for the year 2018. 

The model time step is set to hourly.  

 

3.3.2 Selection criteria for assimilated sites 

There is a spatial mismatch between the point-scale groundwater measurements and the 

TSMP grid cell size of 500 m. In order to compare the measured WTD data with the model 

simulated values, each groundwater observation site was assigned to the nearest grid cell center. 

It is therefore common to have several measurement sites located in the same grid cell. We kept 

the groundwater measurement site which had the median value of all measurement sites in the 

grid cell for the year 2018, while the rest of the measurement sites were excluded from 

assimilation.  
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In addition, due to the relatively coarse model resolution, some measurement sites were 

located in model river grid cells. If all soil layers for each ensemble member in a grid cell were 

saturated for the complete year, the grid cell was considered to be a river grid cell. The river 

grid cells were eliminated from the analysis as groundwater measurements are not informative 

for the pressure values in river grid cells. Grid cells directly next to rivers were also excluded 

from the DA procedure, as these grid cells were also saturated most of the time and sometimes 

became part of the river. In this study, within the localization radius, we assimilated only 

observations from one site, with measurement values that are median values considering all 

sites in the localization radius. 

In our study, the impact of the localization radius on the assimilation results was 

investigated, and three different localization radii were considered for assimilating groundwater 

measurements: 10 km, 5 km and 2.5 km. According to the assimilation site selection criteria, 

three different localization radii resulted in 10 groundwater sites being selected for each of the 

DA experiments. Also, we used the groundwater data from unassimilated locations to 

investigate whether the localized assimilation could also improve the groundwater estimation 

at locations without assimilating data.  

 

3.3.3 Evaluation of model performance 

The root mean square error (RMSE) and bias (BIAS) were calculated to evaluate the 

performance of the WTD assimilation. The RMSE of WTD at each time step is calculated as: 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸𝑠𝑠 = �∑ �𝑊𝑊𝑇𝑇𝑊𝑊𝑛𝑛,𝑙𝑙
𝑠𝑠𝑙𝑙𝑎𝑎−𝑊𝑊𝑇𝑇𝑊𝑊𝑛𝑛,𝑙𝑙

𝑡𝑡𝑜𝑜𝑠𝑠�
2𝑀𝑀

𝑛𝑛=1

𝑀𝑀
,                       (3.13) 

 

where M is the total number of observation sites, WTD sim 
n,i is the ensemble average 

groundwater table depth of the grid cell where the observation site is located at the time step i 

(either from an OL run or a DA run), and WTDobs 
n,i  is the observed WTD at the nth site and time 

step i.  

The bias is also specified to quantify systematic differences between simulated and 

measured WTD: 
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𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝑠𝑠,𝑠𝑠 =  𝑊𝑊𝑇𝑇𝐷𝐷𝑠𝑠,𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 −𝑊𝑊𝑇𝑇𝐷𝐷𝑠𝑠,𝑠𝑠

𝑠𝑠𝑜𝑜𝑠𝑠,                         (3.14) 

 

In addition, simulation results were also compared with measured SM content by CRNS. 

We follow the approach by Schrön et al. (2017), where weighted SM content from the 

simulations was compared with CRNS measurements. The indicators, including BIAS, 

correlation coefficient (R), RMSE and unbiased root mean square difference (ubRMSD), are 

used to evaluate simulated SM compared with the CRNS measurements. For each CRNS site, 

the above indicators were calculated individually and aggregated over time.  

 

𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆 =  ∑ �𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠�/𝑇𝑇𝑇𝑇
𝑠𝑠=1 ,                      (3.15) 

 

𝑅𝑅 =  
∑ �𝜃𝜃𝑙𝑙

𝑡𝑡𝑜𝑜𝑠𝑠−𝜃𝜃𝑡𝑡𝑜𝑜𝑠𝑠���������𝜃𝜃𝑙𝑙
𝑠𝑠𝑙𝑙𝑎𝑎−𝜃𝜃𝑠𝑠𝑠𝑠𝑎𝑎��������𝑇𝑇

𝑙𝑙=1

�∑ �𝜃𝜃𝑙𝑙
𝑡𝑡𝑜𝑜𝑠𝑠−𝜃𝜃𝑡𝑡𝑜𝑜𝑠𝑠��������

2
∑ �𝜃𝜃𝑙𝑙

𝑠𝑠𝑙𝑙𝑎𝑎−𝜃𝜃𝑠𝑠𝑠𝑠𝑎𝑎��������𝑇𝑇
𝑙𝑙=1

2𝑇𝑇
𝑙𝑙=1

,                 (3.16) 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∑ �𝜃𝜃𝑙𝑙
𝑠𝑠𝑙𝑙𝑎𝑎−𝜃𝜃𝑙𝑙

𝑡𝑡𝑜𝑜𝑠𝑠�
2𝑇𝑇

𝑙𝑙=1
𝑇𝑇

,                         (3.17) 

 

𝑢𝑢𝑢𝑢𝑅𝑅𝑅𝑅𝑆𝑆𝐷𝐷 = �∑ ��𝜃𝜃𝑙𝑙
𝑡𝑡𝑜𝑜𝑠𝑠−𝜃𝜃𝑡𝑡𝑜𝑜𝑠𝑠��������−�𝜃𝜃𝑙𝑙

𝑠𝑠𝑙𝑙𝑎𝑎−𝜃𝜃𝑠𝑠𝑠𝑠𝑎𝑎���������
2

𝑇𝑇
𝑙𝑙=1

𝑇𝑇−1
,             (3.18) 

 

where T is the total number of time steps, θ sim 
i is the simulated (either from an OL run or a 

DA run) ensemble average SM content at the time step i, and θ obs 
i is the observed SM by CRNS 

at the time step i. The overbars in equations 3.16 and 3.18 indicate the temporal mean over the 

entire time period. 
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3.4 Results and discussion 

3.4.1 Water table depth 

3.4.1.1 Spatial autocorrelation analysis 

For localized assimilation, the selection of the appropriate radius of localization is 

important. The localization radius should not be too small in order not to neglect positive 

correlations, and it should not be too long so that areas with spurious correlations are excluded. 

Therefore, we calculated the spatial autocorrelation of groundwater level measurements and 

simulated groundwater tables in the OL run (see Fig 3.5) to identify the appropriate radius. The 

spatial autocorrelations for different distance classes (0-0.5 km, 0.5-2.5 km, 2.5-5 km, 5-10 km, 

10-20 km, 20-30 km, 30-40 km, 40-50 km, 50-60 km and 60-70 km) were determined. The 

spatial correlation functions for the measured and WTD are quite close, implying that the model 

represents quite well the spatial correlation of the real groundwater levels in the Rur catchment. 

The largest differences are found for shorter distances, where the model autocorrelation is 

higher than the measured autocorrelation.  

 

 

Figure 3.5 Spatial autocorrelation functions of measured and simulated (open loop) 
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groundwater table depth for the year 2018 (a), the 26th of February 2018 (b), and the 24th of 

September 2018 (c). Filled squares or circles indicate autocorrelation coefficients are 

significantly different from zero (p<0.05). When the number of comparison pairs was smaller 

than 1000, the number of comparison pairs is indicated next to the marker.   

 

3.4.1.2 Different localization radius assimilation strategies 

Based on the spatial autocorrelation analysis, the localization radius could be up to 10 km. 

We tested 10 km, 5 km and 2.5 km as localization radii, including 10 groundwater measurement 

sites for the assimilation.   

For all scenarios, the RMSEs of WTD after 1 year of assimilation were lower than those 

of OL at the measurement locations (see Fig 3.6). The histogram of WTD errors at measurement 

locations also illustrates the improved WTD characterization after DA, compared with the OL. 

It can also be observed that the OL results on average in WTD values were larger than the 

measured ones, implying that the simulated WTDs were deeper than the measured ones. DA 

resulted in a reduction of the bias, and the peak of the histogram is closer to zero than OL. Thus, 

in all cases, LEnKF strongly reduced the bias and RMSE of WTD, compared to the scenario 

without assimilation of groundwater data, and the simulation improvement is best when using 

10 km or 5 km localization radius, and slightly worse for 2.5 km radius.  

 

 

Figure 3.6 The locations of the assimilated groundwater sites (dots) in the Rur catchment 
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together with the average groundwater table depth (a); time series of root mean square error 

(RMSE) of water table depth at measurement locations for the year 2018 for the open loop and 

data assimilation runs (b); the histogram of the water table depth errors at the measurement 

locations for the year 2018 from the open loop and data assimilation runs (10 km (c), 5 km (d), 

2.5 km (e)). 

 

Since the groundwater assimilation results for the three radii were similar at the 

assimilation sites, and the best results were obtained for the 10 km radius, only the simulated 

WTD from the 10 km localization radius DA run is shown in Fig 3.7, and compared with the 

WTD from the OL run and the measurements. The changes in groundwater levels during 

assimilation show that once assimilation starts, the WTD gets closer to the measurements. 
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Figure 3.7 Water table depth time series for 10 assimilation sites: observations (Obs, red), 

ensemble mean of open loop (OL, blue) and ensemble mean of data assimilation run with 10 

km localization radius (DA, green) for the year 2018. 

 

The impact of the DA is similar for the different localization radii, with the same regions 

affected by increases or decreases in WTD (see in Fig 3.8). The main difference is that for a 

larger localization radius, the area updated by assimilation is larger, with a stronger reduction 

of ensemble standard deviations. However, for some areas, the ensemble standard deviation 
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was larger for the DA run than for the OL run. This occurred when the measurements deviated 

strongly from the ensemble of OL runs. With DA, some ensemble members became closer to 

the observations, but others were not, resulting in an increase in the ensemble dispersion.  

 

 

Figure 3.8 Difference in average water table depth between data assimilation and open loop 

runs (data assimilation - open loop) for different localization radii (10 km (a), 5 km (b), 2.5 km 

(c)) on the 31st of December 2018 for the Rur catchment; and difference in standard deviation 

for data assimilation and open loop runs for different localization radii (10 km (d), 5 km (e), 

2.5 km (f)) on the 31st of December 2018 for the Rur catchment. 

 

3.4.1.3 Data assimilation verification 

To explore the impact of the assimilation of WTD measurements, we also evaluated the 

WTD characterization at verification locations (555 sites in total) which were not included in 

the assimilation, for the three different localization radii. We only show results for verification 

locations within the localization radius and only if enough measurement data were available for 

assimilation at a given time step (see Fig 3.9). Table 3.4 shows the RMSE for the OL and DA 

simulations, averaged for the period of one year. At verification locations, the RMSE of the 

WTD also decreased, especially closer to the assimilation location, with verification locations 

separated less than 2.5 km from assimilation locations. DA could improve the groundwater 
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simulation around measurement locations, which is consistent with the results by Hung et al. 

(2022).  

 

 

Figure 3.9 Time series of RMSE of groundwater table depth for the open loop (OL) and data 

assimilation (DA) runs (10 km (a, d, f), 5 km (b,e), 2.5 km (c) localization radius) at verification 

locations which were 0~2.5 km, 2.5~5 km and 5~10 km away from assimilated observations. 

 

Table 3.4 The time averaged RMSE of the water table depth at the verification locations for the 

open loop (OL) and data assimilation (DA) runs (10 sites, 10 km, 5 km, 2.5 km localization 

radius). 

Experiment 
Horizontal distance 0-2.5 km Horizontal distance 2.5-5 km Horizontal distance 5-10 km 

OL DA OL DA OL DA 
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DA (10 km) 6.03 4.22 5.52 6.01 5.12 5.16 

DA (5 km) 6.03 4.31 5.52 6.05 / / 

DA (2.5 km) 6.03 4.26 / / / / 

 

3.4.2 Soil moisture 

The impact of WTD assimilation was also evaluated with in situ SM measurements from 

CRNS networks. Simulated SM in OL and DA runs (for 10 km and 5 km localization radius) 

was compared with CRNS measurements. The OL results indicate that simulated SM contents 

have similar temporal variations as measured SM contents (see Fig 3.10). Assimilation of WTD 

measurements did not result in an obvious improvement for SM estimation (see Table 3.5). 

Hung et al. (2022) also found that assimilating groundwater table data only slightly improved 

SM characterization with RMSE reductions between 1% and 6%, and the improvements were 

limited to a relatively small area around observation locations. This is related to the fact that 

SM is only indirectly updated by the propagation of the pressure below the groundwater table. 

Therefore, when the groundwater table is deep, the impact of WTD assimilation on the upper 

SM is small. 

 

Table 3.5 Comparison metrics for the soil moisture from CRNS compared to open loop (OL) 

and data assimilation runs (DA10 and DA5 are for 10 km and 5 km localization radius, 

respectively) for the year 2018. 

Site 
BIAS (cm3/cm3) R RMSE (cm3/cm3) ubRMSD (cm3/cm3) 

OL DA10 DA5 OL DA10 DA5 OL DA10 DA5 OL DA10 DA5 

Merzenhausen -0.04  -0.04  -0.04  0.74  0.74  0.74  0.06  0.06  0.06  0.05  0.05  0.05  

Rollesbroich1 0.05  0.07  0.07  0.89  0.88  0.88  0.06  0.08  0.08  0.04  0.04  0.04  

Rollesbroich2 0.05  0.07  0.07  0.87  0.85  0.85  0.06  0.08  0.08  0.05  0.05  0.05  

Gevenich -0.02  -0.02  -0.02  0.76  0.76  0.76  0.06  0.06  0.06  0.06  0.06  0.06  

Ruraue -0.04  -0.04  -0.04  0.76  0.75  0.75  0.07  0.07  0.07  0.06  0.06  0.06  

Wildenrath -0.04  -0.04  -0.04  0.76  0.76  0.76  0.05  0.05  0.05  0.04  0.04  0.04  

Wuestebach -0.13  -0.12  -0.13  0.53  0.54  0.53  0.13  0.13  0.13  0.06  0.06  0.06  

Heinsberg -0.03  -0.03  -0.03  0.79  0.79  0.79  0.06  0.06  0.06  0.05  0.05  0.05  

Kall 0.02  -0.00  -0.00  0.82  0.77  0.77  0.05  0.05  0.05  0.05  0.06  0.06  

Selhausen -0.06  -0.06  -0.06  0.70  0.69  0.70  0.09  0.08  0.09  0.07  0.07  0.07  

Schoeneseiffen -0.08  -0.04  -0.08  0.81  0.72  0.81  0.09  0.07  0.09  0.05  0.06  0.05  

Kleinau -0.03  0.00  -0.03  0.81  0.71  0.81  0.06  0.06  0.06  0.05  0.07  0.05  

Aachen -0.14  -0.14  -0.14  0.80  0.80  0.80  0.14  0.14  0.14  0.05  0.05  0.05  

Average -0.04  -0.03  -0.04  0.77  0.75  0.77  0.08  0.08  0.08  0.05  0.06  0.05  

 



 

54 

 

 

Figure 3.10 Soil moisture time series from cosmic-ray neutron sensors (CRNS) (red), ensemble 

mean of open loop (OL, grey), and ensemble mean of data assimilation with 10 km assimilation 

radius (DA 10 km, blue) for the year 2018. 
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3.4.3 Discussion 

In all DA experiments, the estimation of the WTD improved, and also close to observation 

sites an improved groundwater characterization was found. This shows that for real-world cases, 

the localized EnKF could merge the integrated model TSMP with data to more accurately 

simulate the groundwater table.  

There are some caveats regarding the use of in situ groundwater observations to do 

assimilation and validate model estimates. Since the spatial representativeness of model and 

measurements are different, it is non-trivial to assimilate the in situ groundwater measurements 

into the integrated model and to evaluate the coarse resolution model results against in situ 

measurements. In our study, the model has a grid resolution of 500 m, while the groundwater 

measurements are obtained from points. Many observation sites were located in the same grid 

cell and were not included in the assimilation in this work. In future work, these measurements 

should be assimilated by modifying the measurement operator. However, this will not resolve 

all issues regarding scale mismatches. As the coarser model resolution flattens the topography, 

and therefore the gradients for surface and subsurface water flow, a systematic bias in the 

simulated groundwater table can be expected and is also observed in this study. In theory, for 

data assimilation, we should not have systematic differences between simulated and measured 

values, and prior bias correction would be a strategy to consider. In practice, we normally have 

to deal with systematic biases in data assimilation and if the ensemble spread is large enough, 

the model states can still be corrected towards the measurements. Removing the systematic bias 

in simulated groundwater levels with TSMP is not trivial as it depends on the model resolution. 

An extensive effort is needed to remove the systematic bias, which is a research question in 

itself and beyond the scope of this study. We argue that in the future better results can be 

obtained if a higher model resolution of 100 m instead of 500 m is used so that groundwater 

bodies related to narrow valleys can be better represented. 

In addition, the model TSMP in this study only considers a vertical depth up to 20 m, and 

only one upper unconfined aquifer is better modelled. However, the real situation is much more 

complicated, as typically multiple unconfined and confined aquifer layers exist. As our model 

only models the 20 m subsurface, measurements relating to deeper aquifers were also excluded. 

In future work, an extension of the vertical depth could provide more realistic simulations, but 

for this, it would be important to have more detailed 3D geological information. 

The spatial autocorrelation analysis indicates that groundwater levels were correlated for 
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separation distances up to 10 km. However, groundwater level characterization was only 

improved in a smaller area for locations separated by less than 2.5 km from measurement sites. 

Hung et al. (2022) used a dense observation network in a synthetic experiment that closely 

mimicked the Neckar catchment of southwestern Germany, and proved that GWL assimilation 

could improve GWL estimation between the measurement locations. They found that the 

improvement of the GWL simulation decreased with increasing horizontal distance, and 

improvements in GWL simulations could extend to 8 km away from the observations for a 

localization radius of 12 km. Our results illustrate that for a real-world application, the 

improvement is more limited, which will be related to model structural errors like inadequate 

grid resolution and missing information on pumping activities.  

Theoretically, only grid cells within the localization radius can be updated in the analysis 

step (Houtekamer and Mitchell, 2001). However, as the assimilation proceeds over time, 

updates around measurement locations can laterally propagate through the working of the 

physical equations, and this effect could be particularly strong in the saturated zone given the 

importance of lateral flow in the saturated zone. In the assimilation experiments with 10 km 

and 5 km localization radius, there were no obvious improvements in the characterizations of 

SM content by TSMP. Though the groundwater bias was corrected after assimilation, SM does 

not change significantly with the change in deep groundwater tables. Also, Hung et al. (2022) 

discovered topography variations and lateral groundwater flow greatly influence groundwater 

levels, making soil moisture data probably less informative for groundwater levels, which also 

supports the findings of this study. Hung et al. (2022) found a slight improvement for SM 

characterization related to GWL assimilation, which was not found in this study. The worse 

performance in this real-world study might be related to model structural errors, as Hung et al. 

(2022) simulated a catchment of similar complexity, but in a synthetic version that mimicked 

that catchment. A further reason might be the limited number of groundwater assimilation and 

SM validation sites used in this study. We assimilated only GWL data, but SM was not measured 

at the same locations, and SM verification locations were separated from the groundwater 

monitoring sites. 

Improved results can be expected for more ensemble members and/or a higher spatial 

resolution, which was not feasible in this work, as only one single DA experiment with 128 

ensemble members required 73,728 core hours (the spin-up not included) and 1.75 TB of 

computer storage for one year of simulation at a daily timescale.  

Furthermore, although updating saturated hydraulic conductivities in Hung et al. (2022) 

only marginally improved the simulation of subsurface states, compared with only state 



 

57 

 

updating, we will explore in future work the role of this important parameter in groundwater 

modelling. This should be evaluated for simulations at higher spatial resolution and larger 

ensemble sizes.  

 

3.5 Conclusions 

The localized Ensemble Kalman Filter was used to assimilate GWL measurements into 

the integrated terrestrial system model TSMP for the ~2000 km2 Rur catchment. This is the first 

application of the assimilation of observed WTD data into the integrated land surface-

subsurface model TSMP for a real-world case. Earlier work focused on a synthetic case, 

mimicking the Neckar catchment in southwest Germany. For the Rur catchment, 128 ensemble 

members were generated by perturbing four atmospheric forcing variables, saturated hydraulic 

conductivities and porosity. The perturbed ensemble was used as input in the TSMP-PDAF data 

assimilation framework and assimilation experiments were done for different localization radii 

(10 km, 5 km and 2.5 km). The performance of WTD assimilation was assessed by comparing 

results from OL and DA experiments, and using groundwater observations and SM 

measurements from cosmic ray neutron sensors as verification data. The main findings are: 

1. The WTD simulated by the integrated model TSMP could be improved by localized 

EnKF, with more than 75% RMSE reduction at the assimilated locations for 3 different 

localization radii. The positive impact of assimilation is limited to the vicinity of the assimilated 

locations. The localized WTD assimilation is greatly affected by the unevenly distributed 

groundwater observations.  

2. Simulated SM generally reproduced the observed temporal fluctuations of soil water 

content, but SM characterization was not improved after WTD assimilation. This can be related 

to the fact that only the saturated zone was directly updated via assimilation (and the unsaturated 

zone only indirectly), and the presence of model structural errors like a relatively coarse grid 

resolution of 500 m and missing information on groundwater pumping activities, for example. 

3. Systematic differences between simulated and measured WTD might be related to the 

too coarse model resolution and model structural errors. Future work should focus on DA with 

integrated land surface-subsurface models at a higher spatial resolution and with more ensemble 

members, which would allow parameter estimation. In addition, the measurement operator 

needs to be considered for multiple GWL observations in a grid cell.  
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Chapter 4: Can a sparse network of cosmic ray neutron sensors 
improve soil moisture and evapotranspiration estimation at the larger 
catchment scale?  
 

*adapted from: Li, F., Bogena, H. R., Bayat, B., Kurtz, W., and Hendricks Franssen, H.-J.: Can 

a sparse network of cosmic ray neutron sensors improve soil moisture and evapotranspiration 

estimation at the larger catchment scale? Water Resources Research, 10.1029/2023WR035056, 

2023. 

 

4.1 Introduction 

Soil moisture has a significant influence on water and energy fluxes between the 

subsurface, land surface, and the atmosphere (Chen and Hu, 2004). Accurate information on 

the spatio-temporal variability of SM is crucial to better understand the role of SM in terrestrial 

systems (Vereecken et al., 2022). SM can be estimated at various scales, indirectly with RS 

observations and directly by in situ measurements using electromagnetic techniques being the 

most commonly used methods. The resolution of RS-derived products is often coarse, spatially 

or temporally, and the data are subjected to various errors, especially in areas with dense 

vegetation coverage (Bauer-Marschallinger et al., 2019; Kim et al., 2020). On the other hand, 

in situ measurements are point-scale measurements and, therefore, do not provide area coverage 

(Hailong He et al., 2021). 

Over the last decade, the CRNS has been introduced as an alternative method, providing 

real-time SM estimation and bridging the gap between in situ measurements and RS products. 

The CRNS footprint covers up to 18 ha with a measurement depth of up to 80 cm (Zreda et al., 

2008; Bogena et al., 2015; Köhli et al., 2015). The continuous development of CRNS 

technology has enabled SM monitoring under a variety of climatic conditions, which has 

promoted its application in hydrological modeling (Roland Baatz et al., 2017), satellite product 

validation (Zhao et al., 2021), extreme weather event (drought and flood risk) assessment 

(Bogena et al., 2022), ecohydrological (e.g., snow, precipitation, and vegetation) monitoring 

(Bogena et al., 2020), and agricultural management (Li et al., 2019). The advantages of CRNS 

have made it increasingly attractive, and large-scale CRNS networks have been established in 

Europe, the USA, Australia, and India for large-scale SM monitoring with high temporal 

resolution, which can also benefit the multifaceted hydrological applications mentioned above. 

However, it is neither economical nor feasible to measure area-wide SM over large areas 
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using CRNS. Therefore, it is important to establish a scientific and economical observation 

network that can cover all major land use types and climatic zones in the study area while 

ensuring that the sensor coverage is representative of SM patterns across the region. Then 

hydrological or land surface models can be combined with observations to effectively monitor 

SM at larger scales, including unobserved locations, and validate the model’s performance. 

Nevertheless, modeling accuracy is often limited by uncertainties arising mainly from 

model forcings, parameters, and initial conditions (Freeze, 1975; Roland Baatz et al., 2017). 

DA is a technique to combine different information sources to update or correct the model 

predictions and improve the simulations (De Lannoy et al., 2014). The Ensemble Kalman filter 

(Evensen, 1994; 2003), a sequential filtering algorithm, is the most widely used DA technique 

and has been proven effective for nonlinear systems and high-dimensional problems 

(Camporese et al., 2009b; Schöniger et al., 2012). The process of DA can be summarized in two 

steps: a forecast step and an analysis step. For the forecast step, the state estimation is only 

based on past data, while for the analysis step, the probability density of the state is propagated 

forward, considering the information from current measurements (McLaughlin, 2002). 

Shuttleworth et al. (2013) developed the forward COsmic-ray Soil Moisture Interaction 

Code (COSMIC) model to enable rapid conversion of neutron counts to SM values. Since then, 

COSMIC has been used as an observation operator in several studies for assimilating neutron 

counts into land surface models to improve SM prediction (Shuttleworth et al., 2013; Rosolem 

et al., 2014; Han et al., 2015; Han et al., 2016; Roland Baatz et al., 2017; Patil et al., 2021). For 

example, Roland Baatz et al. (2017) found that catchment-scale SM prediction can be improved 

by assimilating SM from a CRNS network and that joint estimation of state and parameters 

performs better than state estimation alone. To date, however, such assimilation experiments 

with CRNS data have been conducted only with land surface models that do not adequately 

describe lateral water movement and groundwater-land surface interactions (Kollet and 

Maxwell, 2008). Zhao et al. (2021) compared the CRNS data with simulated SM using both the 

land surface model Community Land Model (CLM, version 3.5) and a coupled land surface-

subsurface model (CLM-ParFlow). They found that the coupled model simulations showed less 

bias and reproduced better SM dynamics than the CLM stand-alone, demonstrating the 

importance of considering lateral subsurface flow in subsurface hydrological simulations. 

Therefore, there is still strong interest in applying DA with coupled land surface-subsurface 

models to exploit the full potential of CRNS data. 

In this work, the integrated Terrestrial System Modelling Platform (Shrestha et al., 2014; 

Kurtz et al., 2016) is used, which is a coupled atmosphere-land surface-subsurface model with 
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the Parallel Data Assimilation Framework (PDAF). The integrated model TSMP has been 

utilized in a number of studies (Shrestha et al., 2015; Keune et al., 2016; Shrestha et al., 2018b; 

Furusho-Percot et al., 2019). Previous studies investigating the assimilation of SM 

measurements with TSMP-PDAF focused on synthetic experiments, small catchments, or 

greatly simplified the representation of spatial heterogeneity in the real catchment (Zhang et al., 

2018; Gebler et al., 2019; Hung et al., 2022). Recently, Hung et al. (2022) adopted the 

conventional vertical weighting calculation of CRNS data from Franz et al. (2012) for the 

assimilation of SM data in a virtual reality experiment with TSMP and discovered that DA 

improved the vertical SM profile characterization and SM estimation for the surrounding grid 

cells. 

In this study, SM from a distributed network of 12 CRNS in the Rur catchment was 

assimilated into TSMP to investigate whether the sensor density is sufficient to represent the 

SM for the whole catchment. So far, to the best of our knowledge, this is the first study to 

assimilate SM from such a high-density CRNS monitoring network into the integrated model. 

Our work, for the first time, explores the information content of CRNS observations through 

fully coupled TSMP and DA techniques. It unlocks the full potential of CRNS to characterize 

the SM and ET across a relatively large catchment. The main objectives of this study are to 

investigate: (i) how effective a CRNS network can be in improving SM characterization with 

fully integrated terrestrial models such as TSMP at the catchment scale; (ii) whether the 

assimilation of CRNS soil moisture data can result in better prediction of ET and discharge; and 

(iii) how DA performance can vary between years with different hydrological conditions (wet 

versus dry). 

  

4.2 Materials and methods 

4.2.1 Study area 

The Rur catchment covers an area of 2354 km2 and is located in western Germany, 

including small portions of Belgium and the Netherlands. Fig 4.1 shows the Digital Elevation 

Model (DEM) for the Rur catchment obtained from SRTM 90m Version 4 (Jarvis et al., 2008). 

The Rur River flows from the Eifel low-mountain range in the south with a maximum altitude 

of 690 m a.s.l. to the northern lowlands with a minimum altitude of 15 m a.s.l. The land use 

types in the Rur catchment are arable agriculture in the north (mainly maize and wheat) and 

grassland, coniferous and deciduous forests in the south (Waldhoff and Lussem, 2015; Roland 

Baatz et al., 2017). From the northern to the southern part of the catchment, long-term average 
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annual precipitation ranges from 650 to 1300 mm, the mean annual air temperature decreases 

from 10 to 7°C, and the mean annual potential evapotranspiration ranges from 450 to 850mm 

(Montzka et al., 2008; Bogena et al., 2018). The mean river discharge in the upper catchment 

(controlled by the in situ station Erkensruhr-Einruhr (see Fig 4.1)) was about 0.26 m3/s from 

2013 to 2022. 

 

 

Figure 4.1 Map of the Rur catchment with the altitude above sea level and the locations of the 

cosmic-ray neutron sensors, eddy covariance stations and discharge station. The Rur catchment 

is situated in western Germany. 

 

4.2.2 Terrestrial System Modeling Platform (TSMP)  

TSMP is a modular coupled biogeophysical terrestrial systems model consisting of 

atmospheric, surface, and subsurface models (Shrestha et al., 2014). The three component 

models that make up TSMP are the numerical weather prediction model COSMO (Consortium 
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for Small Scale Modelling) (Baldauf et al., 2011), the Community Land Model CLM 3.5 

(Oleson et al., 2004; Oleson et al., 2008) from the National Center for Atmospheric Research, 

and the 3D variably saturated groundwater flow model ParFlow (Kollet and Maxwell, 2006) 

for the subsurface. These three models are two-way coupled by the Ocean Atmosphere Sea Ice 

Soil coupling Model Coupling Toolkit (OASIS-MCT, version 3) (Valcke, 2013). The OASIS-

MCT coupler is included in the model platform and is used for the exchange of variables and 

fluxes between different sub-models. In this work, only the land surface model CLM 3.5 and 

the subsurface model ParFlow were used. 

The biophysical processes simulated by the land surface model CLM 3.5 include energy 

and water exchange between the land and atmosphere, snow accumulation and melting, energy 

and water transport in the soil, and stomatal physiology and photosynthesis (Oleson et al., 2004; 

Oleson et al., 2008). Spatial land surface heterogeneity is represented by the nested subgrid 

hierarchy in CLM (Oleson et al., 2008). Each grid cell is divided into different types of land 

units (glacier, lake, wetland, urban, and vegetated), and each land unit in the grid cell can have 

a different number of snow/soil columns, and each column can have multiple plant functional 

types (PFTs) with different plant physiological parameters (Bonan et al., 2002; Oleson et al., 

2008), for example, leaf area index (LAI). The input LAI used in this study was taken from 

previous studies, in which the study area included the Rur domain (Sulis et al., 2015; Sulis et 

al., 2018). The primary function of the CLM in the TSMP is to calculate evapotranspiration 

from the ground and vegetation. See Appendix A for details on the computing of 

evapotranspiration by CLM. 

In the coupled model TSMP, the hydrological processes of the CLM are replaced by 

ParFlow (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006; 

Maxwell, 2013). ParFlow solves the 3D Richards equation (Richards, 1931) for groundwater 

flow in the unsaturated and saturated zones and the kinematic wave equation (Lighthill and 

Whitham, 1955) for overland flow. The coupled partial differential equations for subsurface 

flow and surface water flow are solved by the Newton-Krylov nonlinear solver (Jones and 

Woodward, 2001). Moreover, ParFlow was created for parallel computing systems and can 

effectively solve large-scale problems at high resolution, which has been proven in numerous 

studies (Jones and Woodward, 2001; Kollet and Maxwell, 2006; 2008; Hung et al., 2022). In 

addition, ParFlow employs a terrain-following grid transformation with variable vertical 

discretization, which can resolve groundwater problems with high topographic gradients and 

reduce the computation time (Maxwell, 2013). 

The coupler OASIS-MCT controls the exchange of fluxes and state variables between 
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CLM and ParFlow, ensuring that the spatial and temporal scales of the fluxes exchanged by the 

different components remain consistent (Valcke, 2013; Shrestha et al., 2014). In the coupled 

model TSMP, ParFlow provides the pressure and saturation of the upper ten subsurface layers 

to CLM, while in turn, CLM provides the upper boundary conditions, i.e., net infiltration or 

exfiltration, to ParFlow. The net infiltration includes precipitation, interception, total 

evaporation, and total transpiration (Zhang et al., 2018). More comprehensive information 

about the implementation of the coupler in TSMP and its operation is presented by Kurtz et al. 

(2016). 

 

4.2.3 Data  

4.2.3.1 Atmospheric forcing 

The high-resolution atmospheric reanalysis dataset COSMO-REA6 (0.055° (6 km)) is 

used as forcing data for the land surface model CLM (Bollmeyer et al., 2015; Wahl et al., 2017). 

The reanalysis dataset was developed by the German Meteorological Service (Deutscher 

Wetterdienst; DWD) based on the numerical weather prediction (NWP) model COSMO 

(Baldauf et al., 2011), covering the period 1995-2020, and is continuously being extended. 

Forcing data include precipitation, air temperature, air pressure, wind velocity, specific 

humidity, incoming shortwave radiation, and incoming longwave radiation. In addition, to 

maintain consistency with the atmospheric forcings, daily air pressure and air humidity from 

COSMO-REA6 were used to calculate the weighting of SM based on the revised approach from 

Schrön et al. (2017). The coupled model CLM-ParFlow of the Rur domain has a horizontal 

spatial resolution of 500 m for the land surface and a total depth of 100 m for the subsurface. 

 

4.2.3.2 Soil data 

The high-resolution regional soil map BK50 (Geologischer Dienst NRW, 2009) at a scale 

of 1:50,000 (https://www.opengeodata.nrw.de/produkte/geologie/boden/BK/ ISBK50/; last 

access: 7 July 2023) and the European Soil Database (ESDB) (Pano, 2006) were utilized to 

obtain the soil texture and compute its hydrological parameters. Sand and clay contents (see 

Fig 4.2) were derived from BK50, and bulk density was obtained from ESDB. 

 

http://www.cosmo-model.org/
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Figure 4.2 Sand (a) and clay content (b) for the Rur catchment derived from the BK50 soil map. 

 

The aquifer permeability for the layers below the soil layers was taken from the 100 m 

resolution regional hydraulic conductivity (Ks) map (Fig 4.3) from the North Rhine-Westphalia 

Geological Survey database. 

 

Figure 4.3 Hydraulic conductivity of the bedrock for the Rur catchment. 
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4.2.3.3 CRNS and flux data 

The CRNS detects epithermal neutrons produced by cosmic radiation, which can be used 

to measure SM because the detected neutron count rate is inversely correlated with the amount 

of hydrogen in the soil (Zreda et al., 2008). The CRNS soil moisture data were obtained from 

the “Dataset of COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture 

Sensors” (Bogena et al., 2022). The raw neutron count data were measured by the CRNS 

stations and then transformed into SM values with harmonized correction and processing by 

Bogena et al. (2022). There are 13 CRNS stations (Andreasen et al., 2017; Roland Baatz et al., 

2017; Bogena et al., 2022) relatively evenly distributed over the domain (Fig 4.1), and detailed 

information is presented in Table 4.1 for all sites. In this work, the SM measured by CRNS is 

used for DA and as independent verification data for jackknife simulations. The CRNS stations 

Rollesbroich1 and Rollesbroich2 are regarded as one site since they are too close and located 

in the same model grid cell, and the average values for the two sites were used in this study. 

This is, therefore, equivalent to having 12 CRNS sites for final assimilation. 

The observed flux data of three eddy covariance (EC) stations (Rollesbroich, Wüstebach, 

and Selhausen) and discharge data of the Erkensruhr-Einruhr in situ station from TERENO 

(TERrestrial ENvironmental Observatories; https://www.tereno.net/; last access: 7 July 2023) 

were used to verify the evapotranspiration and discharge simulations. The runoff station in the 

upstream catchment was chosen for validation because the downstream catchment is highly 

influenced by water management activities (e.g., water reservoirs, wastewater treatment plant 

discharges, opencast lignite mining) (Bogena et al., 2005b). EC measurements have been taken 

with a sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, USA) to measure the 3D 

wind components, an open-path gas analyzer (Li7500, LI-COR Inc., Lincoln, USA) to 

determine the H2O and CO2 concentrations in the air, and an air temperature and humidity 

sensor (HMP45C, Vaisala Inc., Helsinki, Finland). Conversions to fluxes, including uncertainty 

information, are based on Mauder et al. (2013). The daily EC data were gap-filled by grass 

reference evapotranspiration calculated from the FAO Penman-Monteith equation (Allan et al., 

1998). The non-closure of the energy balance of the EC data was not corrected. For further 

information on EC measurements and processing, the reader is referred to Bogena et al. (2018). 

 

Table 4.1 CRNS sites used in this study, including key site characteristics.  
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Name 
Latitude 

(℃) 

Longitude 

(℃) 

Altitude 

(m) 

Mean annual 

precipitation 

(mm y-1) 

Mean air 

temperature 

(℃) 

Landuse 

Merzenhausen 50.930 6.297 91 718 10.3 crop 

Rollesbroich1 50.622 6.304 515 1018 7 grassland 

Rollesbroich2 50.624 6.305 506 1018 7 grassland 

Gevenich 50.989 6.324 107 718 10.3 crop 

Ruraue 50.862 6.427 100 718 10.3 grassland 

Wildenrath 51.133 6.169 72 722 10.3 needleleaf 

Wüstebach 50.505 6.331 605 1401 7  spruce 

Heinsberg 51.041 6.104 58 722 10.3 crop 

Kall 50.501 6.526 505 857 8 grassland 

Selhausen 50.866 6.447 101 718 10.3 crop 

Schönseiffen 50.515 6.376 611 870 7 grassland 

Kleinhau 50.722 6.372 374 614 9 grassland 

Aachen 50.799 6.025 232 865 10.3 crop 

 

4.2.4 Data assimilation methodology 

The EnKF was used in this work to assimilate SM measured by CRNS into the coupled 

model TSMP. The EnKF sequentially alternates model prediction and filter updating steps (also 

called filter analysis), either state updates alone or joint state-parameter updates. The 

effectiveness of the filter depends on the accurate determination of the forecast error covariance 

from the ensemble, and the sources of forecast errors are mainly uncertain initial conditions, 

forcing data, and model equations (Turner et al., 2008). To ensure that errors from various 

sources are taken into consideration to improve assimilation results, perturbation is used to 

create an ensemble that takes into account the different error sources. In this work, the ensemble 

of model realizations takes into account the uncertainty of model forcings (including 

precipitation, incoming shortwave radiation, incoming longwave radiation, and air temperature), 

parameters (including saturated hydraulic conductivity and porosity), and initial conditions 

(from spin-up). 

For each ensemble member i at time step t, the SM state vector xi,t is updated by the model 

prediction. The forecast step is given by:  

 

𝐱𝐱𝑠𝑠,𝑠𝑠 = 𝑓𝑓�𝐱𝐱𝑠𝑠−1,𝑠𝑠,𝐪𝐪𝑠𝑠,𝑠𝑠,𝐩𝐩𝑠𝑠,𝑠𝑠�                         (4.1) 
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where i is the ensemble member, xt, i is the model forecast state vector at time step t, f is 

the model TSMP, xt−1, i is the earlier model analysis state vector at time step t−1, qt, i is the vector 

with (perturbed) model forcings and pt, i denotes the model perturbation vector with parameters. 

Model forecasts are updated according to: 

 

 𝐱𝐱𝑠𝑠,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑠𝑠,𝑠𝑠

𝑓𝑓 + 𝐊𝐊𝑠𝑠�𝐲𝐲𝑠𝑠,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑠𝑠,𝑠𝑠
𝑓𝑓 �                       (4.2) 

 

where yt, i is the vector with (perturbed) observations, and the superscripts a and f refer to 

the updated state vector (the analysis) and the model predicted state vector, respectively. The 

observation operator Ht is used to map model forecasts into the observation space, which is 

assumed to be linear, and Kt denotes the Kalman gain that is calculated as: 

 

𝐊𝐊𝑠𝑠 = 𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇(𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠)−1                     (4.3) 

 

where Pt
 is the model covariance matrix, which is calculated from the forecasted ensemble 

of model simulations at time step t according to: 

 

𝐏𝐏𝑠𝑠 =
∑ �𝐱𝐱𝑎𝑎,𝑙𝑙

𝑓𝑓 −𝐱𝐱�𝑓𝑓��𝐱𝐱𝑎𝑎,𝑙𝑙
𝑓𝑓 −𝐱𝐱�𝑓𝑓�

𝑇𝑇𝑁𝑁
𝑙𝑙=1

𝑁𝑁−1
                         (4.4) 

 

where 𝐱𝐱�𝑓𝑓 is a vector with ensemble mean values for the model states at time step t. Rt is 

the measurement error covariance matrix, which is defined based on the expected measurement 

error of the CRNS soil moisture data (0.03 cm3/cm3). N is the number of ensemble members. 

The updated states are then finally given by: 

 

𝐱𝐱𝑠𝑠,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑠𝑠,𝑠𝑠

𝑓𝑓 + 𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇(𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠)−1�𝐲𝐲𝑠𝑠,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑠𝑠,𝑠𝑠
𝑓𝑓 �                 (4.5) 

 

In this work, the EnKF is also used to update the most sensitive parameter (saturated 
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hydraulic conductivities) in ParFlow. The other parameters were not updated because 

Brandhorst and Neuweiler (2023) found that updating multiple parameters for the unsaturated 

zone is prone to causing numerical instabilities, even in synthetic studies. The augmented state 

vector for updating both states and parameters is then extended and defined as follows: 

 

𝐱𝐱𝑠𝑠,𝑠𝑠
𝑓𝑓 =  �𝛙𝛙𝑎𝑎,𝑙𝑙

𝐘𝐘𝑎𝑎,𝑙𝑙
�                              (4.6) 

 

where x is the augmented state vector, including pressure heads (ψ) (m) and the logarithm 

of hydraulic conductivities (Y = log10Ks (m/s)). 

A damping factor (α) is used when both states and parameters are updated, so as to reduce 

filter inbreeding (Hendricks Franssen and Kinzelbach, 2008; Hung et al., 2022). Filter 

inbreeding refers to the underestimation of the ensemble variance that occurs after the EnKF 

analysis is applied repeatedly, which happens when the ensemble size is small (Hendricks 

Franssen and Kinzelbach, 2008). The damping factor could reduce the modification of the 

forecast with the Kalman gain and limit the intensity of the perturbation of the parameter 

(log10Ks) (Gebler et al., 2019). This results in the following updating equation for the joint state-

parameter estimation: 

 

𝐱𝐱𝑠𝑠,𝑠𝑠
𝑠𝑠 = 𝐱𝐱𝑠𝑠,𝑠𝑠

𝑓𝑓 + 𝛂𝛂𝑇𝑇𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠
𝑇𝑇(𝐇𝐇𝑠𝑠𝐏𝐏𝑠𝑠𝐇𝐇𝑠𝑠

𝑇𝑇 + 𝐑𝐑𝑠𝑠)−1�𝐲𝐲𝑠𝑠,𝑠𝑠 − 𝐇𝐇𝑠𝑠𝐱𝐱𝑠𝑠,𝑠𝑠
𝑓𝑓 �              (4.7) 

 

where αT is a vector with damping factors, of which 1 is for updating states and values 

between 0 and 1 are for updating parameters. 

The DA updates states (and possibly also parameters) at all grid cells via the calculated 

model covariances, which give the covariances between all grid cells. Thus, during the analysis 

step, the states or parameters of the unassimilated locations are also updated, and the update is 

influenced by the correlation with the states or parameters of the assimilated locations. 
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4.3 Model and experiment setup 

4.3.1 TSMP-PDAF setup 

The operation mode of TSMP-PDAF, when applied with the assimilation of CRNS soil 

moisture, is schematically illustrated in Fig 4.4. Before assimilation, the measurement depth 

needs to be determined. In order to determine a reasonable penetration depth for the CRNS 

observations for the corresponding model grid (500 m), a mean value for three distances to the 

CRNS station (2, 25 and 85 m) was calculated based on the revised method of Schrön et al. 

(2017). This calculation is necessary because the penetration depth depends on the distance to 

the CRNS station. And then the CRNS soil moisture observation is specified by PDAF for the 

soil layers until the measurement depth. 

The states and parameters of each TSMP realization run are collected by PDAF after a 

predefined assimilation interval (Gebler et al., 2019). By assimilating SM observations, either 

model states or both model states and parameters are updated and passed back to the TSMP 

realizations, and then the updated states and parameters are used in the next prediction step, 

which is subsequently used in the next analysis, and so on. After the update has been made, the 

average weighted SM from the simulations is compared with the observed SM from CRNS.  

We took the soil layers above 80 cm into account when calculating the weights to be 

assigned to the different soil layers for their contribution to the CRNS measurement signal. We 

calculated the weights for 1 mm thick soil layers and integrated the values to calculate the 

normalized weights for each model soil layer. Readers are referred to Schrön et al. (2017) for a 

more detailed description of weighting calculations. 

 

 

Figure 4.4 Schematic overview of the assimilation of soil water content from CRNS with PDAF 
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into TSMP (CLM-ParFlow). The flows represented by the red dashed line are outside TSMP-

PDAF, including the weighting calculation and the comparison of CRNS soil moisture with the 

simulations.  

 

4.3.2 Ensemble generation 

The soil moisture DA experiments employ the EnKF with a total of 128 ensemble 

members. Each ensemble member was perturbed, with perturbations for meteorological 

forcings (precipitation, incoming shortwave radiation, longwave radiation, and air temperature), 

hydraulic conductivity, and porosity to account for uncertainties. The perturbed values were 

drawn from a multivariate normal distribution, considering the temporal correlation of the four 

meteorological variables, which were induced by a first-order autoregressive model (Reichle et 

al., 2010; Han et al., 2015). Table 4.2 summarizes the atmospheric forcing perturbations. The 

temporal correlations and standard deviations of the perturbations were assigned on the basis 

of earlier catchment-scale and regional-scale DA studies (Reichle et al., 2010; Han et al., 2013; 

Han et al., 2015; Roland Baatz et al., 2017). To ensure mass and energy balance, the perturbed 

precipitation and shortwave radiation are multiplied by the corrected lognormally distributed 

noises (Yamamoto, 2007; Han et al., 2013). 

  

Table 4.2 The listed cross-correlations give the cross-correlations between the perturbations for 

the different atmospheric variables, following the order as indicated in the left column of the 

table. 

Variables Noise Standard deviation Time correlation scale Cross correlation 

Precipitation Multiplicative 0.3 24 h [ 1.0, -0.8, 0.5, 0.0,  

-0.8, 1.0, -0.5, 0.4, 

0.5, -0.5, 1.0, 0.4,  

0.0, 0.4, 0.4, 1.0] 

Shortwave radiation Multiplicative 0.2 24 h 

Longwave radiation Additive 20 W m-2 24 h 

Air temperature Additive 1 K 24 h 

 

The vertical profile of the model has a vertical extension of 100 m and is discretized into 

25 layers with varying thicknesses. The upper ten layers extend to 3 m, which coincides with 

the CLM soil layers, and the lower layers are treated as aquifer layers. The Ks and porosity of 

the soil and bedrock layers were perturbed separately.  

For the soil layers, soil texture (sand and clay contents) was perturbed by geostatistical 
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simulation. A spherical variogram model was adopted to generate a spatially correlated random 

field with zero mean, variance 50%2 and correlation length of 12.5 km, and the generated 

perturbation field was added to the original soil texture as derived from the soil map. The sand 

and clay contents were perturbed separately. The percentages for sand and clay were limited to 

a range between 0% and 100% to prevent unphysical values for soil texture. The final silt 

contents were calculated from the perturbed sand and clay contents. Subsequently, the Rosetta 

pedotransfer functions (Schaap et al., 2001; Zhang and Schaap, 2017) were employed to 

calculate the perturbed Ks and porosity based on the perturbed soil texture.  

For the bedrock layers, the original Ks values are from the hydrogeological map (Fig 4.3). 

For each ensemble member, the log10Ks of all the bedrock layers were perturbed by additive 

random values (same values for each ensemble member) from a univariate uniform distribution 

with values between -0.5 and 0.5. The porosity for the lower bedrock layers was set to a constant 

value of 0.15. 

 

4.3.3 Setup of the DA Experiments 

After generating the ensemble, spin-up simulations for the ensemble members were 

performed in order to achieve a dynamic groundwater equilibrium. The multi-year average 

water table depth derived by Bogena et al. (2005b) was used as the initial condition, and the 

30-year average recharge values (derived from gridded German Meteorological Service data on 

precipitation and actual evapotranspiration) were used as the upper boundary condition for the 

ParFlow model. The spin-up simulations for ParFlow were conducted for 100 years. Next, the 

final conditions from ParFlow’s spin-up were used to continue the spin-up for TSMP, including 

both CLM and ParFlow. This was done for a period of 5 years, using atmospheric forcings from 

the year 2015 (for the DA experiments in the wet year 2016) or the year 2017 (for the DA 

experiments in the dry year 2018) as input.  

The CRNS soil moisture data were assimilated into the model TSMP by PDAF. In the DA 

experiments, the states were updated daily by DA, and saturated hydraulic conductivity was 

updated every three days. Those are the optimal updating frequencies found after conducting 

different assimilation experiments. When jointly updating states and parameters, a damping 

factor of 0.1 was employed to limit the intensity of the hydraulic conductivity perturbation 

(Hung et al., 2022) and reduce the possibility of filter inbreeding (Hendricks Franssen and 

Kinzelbach, 2008). The river grid cells were masked during assimilation analysis to avoid 

instabilities. The year 2017 is used as an independent evaluation period for the DA experiments 
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of 2016 and 2018. For the year 2017, the ensemble model ran with the updated parameters from 

2016 and 2018, but without assimilation.  

In addition to the DA experiments, jackknife simulations were also carried out to assess 

the effect of the CRNS assimilation on SM simulation at unassimilated locations in the model 

domain. When performing a jackknife simulation, 11 sites were used for assimilation (jointly 

updating states and parameters with a damping factor of 0.1), and the remaining one site was 

used for evaluation, so there were 12 jackknife experiments for each assimilation year (2016 

and 2018). Table 4.3 lists all the experiments conducted. 

 

Table 4.3 List of conducted simulation experiments: open loop (OL), data assimilation with 

state update (State) or joint state and parameter update (Joint), jackknife evaluation runs 

(Jackknife), and verification experiments in 2017 using the updated saturated hydraulic 

conductivity (Ks) from joint assimilation experiments of 2016 and 2018 (Updated Ks from 2016 

and Updated Ks from 2018). 

Year Experiment Update state Update parameter 

2016 

OL - - 

State + - 

Joint + + 

Jackknife + + 

2018 

OL - - 

State + - 

Joint + + 

Jackknife + + 

2017 

OL - - 

Updated Ks from 2016 - - 

Updated Ks from 2018 - - 

 

4.3.4 Evaluation of model performance 

The simulated SM results were evaluated with the following statistical metrics: bias 

(BIAS), mean absolute error (MAE), correlation coefficient (R), RMSE, and unbiased root 

mean square difference (ubRMSD): 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆 =  ∑ �𝑆𝑆𝑅𝑅𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑆𝑆𝑅𝑅𝑠𝑠

𝑠𝑠𝑜𝑜𝑠𝑠�𝑠𝑠
𝑠𝑠=1                        (4.8) 
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𝑅𝑅𝐵𝐵𝐸𝐸 =  ∑ ��𝑆𝑆𝑀𝑀𝑎𝑎
𝑠𝑠𝑙𝑙𝑎𝑎−𝑆𝑆𝑀𝑀𝑎𝑎

𝑡𝑡𝑜𝑜𝑠𝑠��𝑛𝑛
𝑎𝑎=1

𝑠𝑠
                          (4.9) 

 

𝑅𝑅 =  
∑ �𝑆𝑆𝑀𝑀𝑎𝑎

𝑡𝑡𝑜𝑜𝑠𝑠−𝑆𝑆𝑀𝑀𝑡𝑡𝑜𝑜𝑠𝑠�����������𝑆𝑆𝑀𝑀𝑎𝑎
𝑠𝑠𝑙𝑙𝑎𝑎−𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠𝑎𝑎����������𝑛𝑛

𝑎𝑎=1

�∑ �𝑆𝑆𝑀𝑀𝑎𝑎
𝑡𝑡𝑜𝑜𝑠𝑠−𝑆𝑆𝑀𝑀𝑡𝑡𝑜𝑜𝑠𝑠����������

2
∑ �𝑆𝑆𝑀𝑀𝑎𝑎

𝑠𝑠𝑙𝑙𝑎𝑎−𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠𝑎𝑎����������𝑛𝑛
𝑎𝑎=1

2𝑛𝑛
𝑎𝑎=1

                 (4.10) 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∑ �𝑆𝑆𝑀𝑀𝑎𝑎
𝑠𝑠𝑙𝑙𝑎𝑎−𝑆𝑆𝑀𝑀𝑎𝑎

𝑡𝑡𝑜𝑜𝑠𝑠�
2𝑛𝑛

𝑎𝑎=1
𝑠𝑠

                         (4.11) 

 

𝑢𝑢𝑢𝑢𝑅𝑅𝑅𝑅𝑆𝑆𝐷𝐷 = �∑ ��𝑆𝑆𝑀𝑀𝑎𝑎
𝑡𝑡𝑜𝑜𝑠𝑠−𝑆𝑆𝑀𝑀𝑡𝑡𝑜𝑜𝑠𝑠����������−�𝑆𝑆𝑀𝑀𝑎𝑎

𝑠𝑠𝑙𝑙𝑎𝑎−𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠𝑎𝑎�����������
2

𝑛𝑛
𝑎𝑎=1

𝑠𝑠−1
             (4.12) 

 

where n is the total number of time steps, SM sim 
t the simulated ensemble average soil 

moisture content at the time step t (either from an OL or DA run), and SM obs 
t the observed soil 

moisture by CRNS at the time step t. The overbar in equations 10, 12 and 13 indicates the 

temporal mean over the study period. 

The above performance measures were also used to evaluate the effect of CRNS soil 

moisture assimilation on evapotranspiration and discharge characteristics simply by replacing 

SM with evapotranspiration and discharge in the equations. 

The Nash-Sutcliffe efficiency (NSE) index was also used to evaluate the simulations of 

discharge. The NSE was calculated according: 

 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 −  ∑ �𝑄𝑄𝑎𝑎
𝑠𝑠𝑙𝑙𝑎𝑎−𝑄𝑄𝑠𝑠𝑠𝑠𝑎𝑎��������

2𝑛𝑛
𝑎𝑎=1

∑ �𝑄𝑄𝑎𝑎
𝑡𝑡𝑜𝑜𝑠𝑠−𝑄𝑄𝑡𝑡𝑜𝑜𝑠𝑠��������

2𝑛𝑛
𝑎𝑎=1

                   (4.13) 

 

where Q sim 
t is the simulated ensemble average discharge at the time step t (either from an 

open loop (OL) or DA run), and Q obs 
t is the observed discharge at the time step t. The NSE range 

is between -∞ and 1. The closer to 1, the more accurate the model is. 
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4.4 Results  

4.4.1 Soil moisture data assimilation general results 

Table 4.4 summarizes the performance in terms of error statistics for OL and different DA 

experiments (state updates alone and joint state-parameter updates) for 2016 and 2018. For all 

the DA experiments, both for the wet year 2016 and the dry year 2018, and both for state 

updating alone and joint state-parameter updating, BIAS, MAE, RMSE, and ubRMSD were 

lower than for the OL run, and R was higher than for the OL run, indicating that simulated soil 

moisture was closer to the measurements after assimilation. Joint state-parameter estimation 

gave better results than state estimation alone, both in 2016 and 2018. The RMSE of SM 

decreased by 42.9% (2016) and 36.2% (2018) for state updating only, while for joint state-

parameter updates, decreases were 59.7% (2016) and 52.2% (2018). The best assimilation 

results resulted in similar soil moisture RMSE values for 2016 and 2018, namely 0.031 and 

0.033 cm3/cm3, respectively. The DA results for two different years illustrate that the effect of 

CRNS assimilation at the assimilated locations is consistent. 

Fig A.1 and A.2 show the temporal courses of CRNS measured SM, and simulated SM 

from OL and joint state-parameter estimation in 2016 and 2018 at all the CRNS locations. The 

figures clearly show that simulated SM for all CRNS sites is closer to measurements after 

assimilation. The error statistics for all CRNS sites can be found in Tables A.1 and A.2. The 

RMSE is less than 0.035 cm3/cm3 for most sites (except Wüstebach in 2016, and Rollesbroich 

and Aachen in 2018), which is within the acceptable range.  

For Wüstebach, the RMSE was 0.059 cm3/cm3 in 2016, which is still much larger than the 

measurement error. The scatter plot for Wüstebach in Fig A.3 indicates that modelled SM 

updates reach an upper plafond, which is defined by the maximum possible porosity in the 

model, which is determined by the soil texture and pedotransfer function. However, the 

remarkably high porosity of the forest soil is due to the very high content of organic material in 

the topsoil, so the real porosity of Wüstebach cannot be represented in the model by the soil 

texture alone (Strebel et al., 2022). Therefore, the upper porosity limit inhibits further 

improvement of SM characterization. For Rollesbroich, the RMSE was 0.048 cm3/cm3 in 2018, 

and the poor performance is also limited by the porosity, as can be seen in the scatter plot. As 

for Aachen, the RMSE was 0.038 cm3/cm3 in 2018, and SM simulation might have been 

negatively impacted by irrigation, which was not accounted for in the model (land use is crop 

and 2018 was a dry year). 
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Table 4.4 Error statistics for open loop (OL), data assimilation with state updates (State), joint 

state-parameter updates (Joint), and jackknife simulations with joint state-parameter updates 

(Jackknife) for the assimilation periods of 2016 and 2018. The indicators were averaged over 

all sites with CRNS soil moisture observations. Site-specific indicators are provided in 

Appendix Tables A.1 to A.4. 

Year Simulation 
BIAS 

(cm3/cm3) 

MAE  

(cm3/cm3) 
R 

RMSE 

(cm3/cm3) 

ubRMSD 

(cm3/cm3) 

2016 

OL -0.051 0.062 0.795 0.077 0.058 

State -0.024 0.034 0.918 0.044 0.037 

Joint -0.004 0.023 0.942 0.031 0.031 

Jackknife -0.012 0.036 0.879 0.046 0.045 

       

2018 

OL 0.005 0.054 0.739 0.069 0.069 

State -0.008 0.032 0.895 0.044 0.043 

Joint 0.001 0.024 0.944 0.033 0.033 

Jackknife 0.008 0.046 0.816 0.058 0.058 

 

To better understand the effect of the DA during different hydrological conditions, the 

RMSEs of the SM were also calculated over different seasons (see Appendix Table A.5). For 

DA experiments (both 2016 and 2018), the seasonal SM simulations were obviously improved 

after assimilation, and joint state-parameter estimation resulted in better performance compared 

to state update alone. The reduction in RMSE showed small differences across the four seasons 

in both 2016 and 2018, all ranging from 50% to 60%, suggesting the robustness of DA 

performance at assimilation locations under different hydrological conditions. 

Examples of SM spatial distributions (vertically averaged) for the OL and joint state-

parameter estimation runs are shown in Fig 4.5. The simulated SM for the whole catchment is 

corrected by DA for both state updates alone and joint state and parameter updates. However, 

the difference between state assimilation and joint assimilation is small, indicating that 

parameter update influence is limited. For 2016, a comparison between simulated values from 

OL and measurements at the CRNS sites revealed that the OL simulation was too dry. Data 

assimilation corrected the simulations, and in some too dry parts of the catchment, such as grid 

cells near the river, soil water content increased by assimilation. On the contrary, in 2018, the 

OL overestimated SM content, and the DA corrected SM toward lower values. 
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Figure 4.5 Examples of the simulated soil moisture distribution over the Rur catchment on the 

22nd of July in 2016 and 2018. Subplots a) and d) are from the open loop, b) and e) are from 

data assimilation with state update, and c) and f) are from joint state-parameter update 

simulations. 

 

4.4.2 Jackknife simulations 

In order to investigate whether the limited CRNS stations could improve the simulated SM 

at locations beyond the CRNS stations over the Rur catchment, 12 jackknife simulations were 

performed for each year (2016 and 2018). The EnKF may enhance the spatial accuracy of the 

simulated SM, given the spatial correlation of atmospheric forcings, soil hydraulic parameters, 

and SM. The overall error statistics of 12 jackknife simulations for 2016 and 2018 are shown 

in Table 4.3. Overall, the jackknife runs reduced MAE, RMSE, and ubRMSD, and increased R 

compared to OL, demonstrating that the SM simulation at verification locations also improved. 

On average, the RMSE of the 12 jackknife runs for 2016 was 0.046 cm3/cm3, which is much 

lower than the RMSE for the OL run (0.077 cm3/cm3) and only a bit higher than when only the 

state was updated. For the year 2018, the jackknife simulations resulted in a smaller RMSE 
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reduction at the verification locations, with an average RMSE of 0.058 cm3/cm3 (0.069 cm3/cm3 

for the OL run). 

For jackknife runs, the seasonal SM simulations showed quite different performances (see 

Appendix Table A.5), and the extent of RMSE reduction was positively correlated with the 

average measured SM; the higher the SM content, the larger the RMSE reduction. Therefore, 

the best performance occurred during the winter, when SM was at its maximum for the whole 

year (47.7% and 34.3% RMSE reduction for 2016 and 2018, respectively). The worst 

performance was found for dry soil water conditions, e.g., 32.3% RMSE reduction in autumn 

2016. In 2018, the extreme dry conditions in the summer even led the RMSE to increase by 

8.8%. 

For each CRNS site, the jackknife simulation performed differently in 2016 and 2018. 

More detailed site statistics can be found in Tables A.3 and A.4. For 2016, all jackknife 

simulations resulted in an improved RMSE at the verification locations compared to the OL 

run. Assimilation could reduce RMSE by 70% at sites with a high RMSE in the OL run, such 

as Aachen (see Fig 4.6). In 2018, the RMSE for Aachen decreased by 36%, but RMSE 

reductions were smaller at other sites (for Gevenich, Heinsberg, and Schönseiffen, the RMSE 

even increased after assimilation). For Heinsberg, the RMSE for the DA-run in 2018 is higher 

(0.057 cm3/cm3) than for the OL-run (0.044 cm3/cm3), while the RMSE value decreased by 35% 

in 2016 (see Fig 4.6). Fig A.7 shows the spatial correlation of SM from OL between the CRNS 

locations (Gevenich, Heinsberg, and Schönseiffen) and other grid cells in the catchment on a 

specific day in the summer. The figure indicates that the spatial correlation around the CRNS 

locations was weaker in 2018 (dry) compared to 2016 (wet), which resulted in less accurate 

jackknife simulations in 2018 compared to 2016.  
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Figure 4.6 Temporal evolution of simulated soil moisture from the open loop mean (OL, blue) 

and jackknife simulation mean (DA, green), together with the observed soil moisture from the 

CRNS (red), for 2016 (a, b) and 2018 (c, d) at the CRNS sites. Simulated soil moisture was 

vertically weighted using the revised method by Schrön et al. (2017). 

 

4.4.3 Temporal evolution of parameter estimates and parameter verification 

The temporal evolution of Ks estimates during the assimilation period (2016 and 2018) for 

the CRNS sites is shown in Fig 4.7. Once the assimilation began, the parameters varied 

considerably within short time intervals. For most sites, the updated Ks started to stabilize after 

about 100 days of assimilation. Compared to the initial input Ks, most sites showed a decreasing 

trend during assimilation, while only Rollesbroich in 2016 showed a slightly increasing trend. 

The changing values for Ks estimates for Merzenhausen, Gevenich, Ruraue, Heinsberg, 

Selhausen, and Kleinhau were remarkably consistent for the two distinct assimilation years.  

The years 2016 and 2018 resulted in very similar parameter sites, with differences smaller 

than 0.10 log10 (m/s) units at the end of the assimilation period for more than half of the sites 
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(Fig 4.7). Some sites like Gevenich and Kall showed only slight variations from the prior values, 

with Ks changes less than 0.20 log10 (m/s) units, while for Ruraue and Wüstebach Ks changed 

more than 0.45 log10 (m/s) units. Among all sites, Wildenrath has the largest absolute variation, 

with Ks varying more than 10-5 m/s, while Kall showed very small variations, with absolute Ks 

changes less than 5*10-7 m/s. Temporally unstable and inconsistent parameter estimates imply 

that there may be multiple or seasonal optimal parameter values, so the fluctuations in Ks may 

be related to variations in atmospheric forcings. Some instability in the updated parameters 

could also be related to the compensation for other errors, e.g., errors in the inputs (from 

atmospheric forcings or soil hydraulic parameters) and model structural errors. 

 

 

 

Figure 4.7 Estimates of averaged saturated hydraulic conductivity (log10Ks) from data 

assimilation experiments with joint state-parameter updating during the periods of 2016 and 

2018 at CRNS locations. The input value of Ks is indicated at the first time step. 

  

Fig 4.8 depicts the prior and updated spatial ensemble mean of logKs at 2 cm depth (similar 

pattern for depths up to 80 cm), both for the years 2016 and 2018. Assimilation had a noticeable 

impact on Ks, particularly around the assimilated CRNS measurement locations, resulting in a 
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decrease in its overall value. The logKs changes for the simulation year 2016 were more 

noticeable than for 2018. The reason for the larger logKs updates in 2016 could be that the 

simulated SM content by the OL was lower than the observed values. 2018 was a particularly 

dry year, so the SM condition in 2018 was closer to that of OL than in 2016, resulting in a larger 

update of the logKs in 2016 than in 2018. Grids with larger distances to the CRNS sites show 

smaller logKs updates because of the weak correlations with the SM observations. Additionally, 

there are some grid cells with increased logKs after DA, suggesting that horizontal water 

redistribution, e.g., due to lateral groundwater flow or surface runoff, resulted in different logKs 

changes than at the CRNS sites. 

 

 

Figure 4.8 Ensemble averaged log10Ks fields of the soil at 2 cm depth: (a) prior field; (b) DA 

with joint state-parameter updates at the end of 2016; (c) DA with joint state-parameter updates 

at the end of 2018. The black asterisk is the location of the CRNS sites. 

  

Simulations were made for the verification year 2017, using as input updated hydraulic 

parameters from either 2016 or 2018. For the verification year, reduced BIAS, MAE, RMSE, 

and ubRMSD, and a small increase in R compared to OL were found (see Table 4.5). Using the 

updated Ks from the 2016 simulation as input to the simulation for the year 2017 gave simulated 

SM contents that were closer to observations than when the updated Ks from the 2018 

simulation were used as input. The updated parameter’s verification for the year 2018 was less 

successful than for the year 2016, which may be due to the hydrological conditions during 2016 

(average CRNS soil moisture 0.31 cm3/cm3) being more similar to 2017 (0.29 cm3/cm3), as 

2018 (0.26 cm3/cm3) was a dry year. 
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Table 4.5 Comparison of measured and simulated soil moisture for the year 2017 (evaluation 

period, no assimilation). The updated parameters used for verification were from the 

assimilation period (2016 and 2018). The error statistics were averaged over all CRNS sites. 

Simulation 
BIAS 

(cm3/cm3) 

MAE 

(cm3/cm3) 
R 

RMSE 

(cm3/cm3) 

ubRMSD 

(cm3/cm3) 

OL -0.019 0.051 0.733 0.066 0.063 

Updated Ks from 2016 -0.007 0.047 0.769 0.060 0.059 

Updated Ks from 2018 -0.012 0.049 0.760 0.061 0.060 

 

4.4.4 Evapotranspiration and discharge 

The effect of soil moisture DA on ET modeling was also investigated. We used observed 

ET data from three EC stations for comparison with simulated values in order to examine the 

impact of CRNS soil moisture assimilation on ET simulations. Results of the DA experiments 

showed that SM states were significantly altered, and ET was also somewhat impacted by the 

different assimilation scenarios, depending on the simulation year (see Table A.6). Moreover, 

the joint state-parameter assimilation resulted in a better ET prediction than SM state updating 

alone. 

The statistical performance measures BIAS, MAE, R, RMSE, and ubRMSD, comparing 

simulated ET (by OL and joint state-parameter updates) and EC data, are provided in Table 4.6. 

These statistical measures were computed on a monthly basis, as the parameter LAI in the CLM 

model is provided on a monthly scale. The joint state-parameter updates with CRNS soil 

moisture assimilation showed lower BIAS, MAE, and RMSE values than OL, except for 

Rollesbroich in 2018, demonstrating that ET simulation improved if SM simulation was 

improved by DA. However, the relative improvement in the characterization of ET is far smaller 

than for SM. The high correlation coefficients (larger than 0.95) for Rollesbroich and 

Wüstebach, either for OL or DA, indicate a good fit between simulated and measured ET, 

mainly because of the reproduction of the yearly cycle. For Selhausen, the correlation is lower 

(less than 0.85), which might be related to different crops being cultivated for the years 2016 

and 2018 (winter barley in 2016 and winter wheat in 2018). CLM uses the same parameters for 

these crops, and for example, the harvest date is not well represented by the model. For 

Rollesbroich, the ET simulation in 2018 was worse after DA (compared to OL) because the 

overestimated SM in the OL run was corrected towards lower values, reducing ET, which 

further exacerbated the ET underestimation. 
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Table 4.6 Comparison of measured and simulated evapotranspiration (monthly) and discharge 

(monthly) from open loop (OL) and data assimilation runs with joint state-parameter updates 

(DA) for two assimilation periods (2016 and 2018).  

Year Site 

BIAS 

(mm/month) 

MAE 

 (mm/month) 
R 

RMSE 

 (mm/month) 

ubRMSD 

 (mm/month) 

OL DA OL DA OL DA OL DA OL DA 

2016 

Rollesbroich -10.17  -8.02  10.31  8.75  0.98  0.97  12.97  10.79  8.05  7.22  

Wüstebach -17.93  -16.05  17.93  16.36  0.99  0.99  21.48  19.41  11.82  10.91  

Selhausen -14.11  -7.27  15.77  12.37  0.87  0.85  18.53  14.63  12.02  12.69  

            

2018 

Rollesbroich -12.77  -14.26  13.68  15.22  0.97  0.97  18.05  19.86  12.76  13.83  

Wüstebach -11.46  -10.50  13.36  12.33  0.96  0.95  17.24  16.25  12.88  12.40  

Selhausen -8.14  -3.87  16.33  14.02  0.80  0.81  20.66  18.73  18.99  18.32  

            

Year Site 

BIAS  

(m3/s) 

MAE 

(m3/s) 
R 

RMSE 

(m3/s) 
NSE 

OL DA OL DA OL DA OL DA OL DA 

2016 
Erkensruhr-

Einruhr 
-0.23  -0.23  0.32  0.31  0.85  0.86  0.48  0.46  0.62  0.64  

2018 
Erkensruhr-

Einruhr 
-0.15  -0.16  0.27  0.27  0.90  0.86  0.41  0.41  0.67  0.69  

 

Fig 4.9 shows the monthly temporal ET variations for the OL run and the joint state-

parameter experiment, compared to the EC data. The simulated ET tends to be closer to the 

observed values after SM assimilation, and the larger changes in ET simulation are observed 

during drier conditions, specifically in the summer, which is consistent with the results by Hung 

et al. (2022). For example, for Rollesbroich (2016) and Wüstebach (2018), the largest 

reductions in RMSE for ET occur in the summer, with 11.5% and 5.4%, respectively. However, 

for Wüstebach (2016), RMSE decreased most in the autumn, with 9.5%. For Selhausen, the 

largest RMSE reduction in ET occurred in the spring, for both 2016 and 2018, with reductions 

of 27.8% and 22.2%, respectively. In the winter, ET simulations hardly improved for 

Rollesbroich and Wüstebach. ET is limited by available energy under conditions of high SM, 

so SM changes have a minimal impact on ET. Therefore, the overall ET improvement for the 

entire year is limited. 
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Figure 4.9 Temporal evolution of simulated evapotranspiration from open loop (OL, blue), data 

assimilation (joint state-parameter updates, DA, green), and the observed evapotranspiration 

(red) at the sites Rollesbroich, Wüstebach, and Selhausen for the assimilation periods of 2016 

(first row) and 2018 (second row). Monthly Leaf Area Index (LAI) for the plant functional types 

at the sites Rollesbroich (grassland), Wüstebach (needle leaf forest), and Selhausen (cropland), 

as well as the available daily LAI measurements from 2016 and 2018 (third row). 

 

The annual ET for 2016 and 2018 across the whole Rur catchment for OL and joint state-

parameter updating are presented in Fig 4.10. Since the ET changes were minimal in the 

assimilation experiments, only results for joint state-parameter updating are shown. For the OL 

simulation, the ET in 2018 was greater than in 2016, mainly due to the significantly higher 

temperature and higher incoming shortwave radiation in 2018, and in spite of the drier 

conditions. DA did not much affect simulated ET in the southern part of the catchment, where 

ET was generally energy limited. In contrast, simulated ET in the northern part of the catchment 

with generally less precipitation was affected by DA, with ET increases of more than 50 mm 

yr-1 for many grid cells in 2016, whereas ET was modified less by DA in 2018. This is related 
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to the larger update of soil hydraulic parameters in 2016 compared to 2018. 

 

 

Figure 4.10 Annual evapotranspiration from open loop (a, c) and data assimilation runs (joint 

state-parameter updates) (b, d) over the Rur catchment during the assimilation periods. 

 

Fig 4.11 compares the simulated river discharge from the OL and DA experiments to the 

discharge from the in situ station Erkensruhr-Einruhr (indicated in Fig 4.1). This sub-catchment 

was hardly affected by water management operations, so it was selected. For comparison 

purposes, the SM data of the CRNS station in Wüstebach are also shown since it is located in 
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the catchment area of the Erkensruhr-Einruhr station. For the sake of simplicity, only the results 

of the joint state-parameter update are shown, as the results for the other experiments are very 

similar. The coupled model performance for discharge simulation is satisfactory, as the NSEs 

of 2016 and 2018 were 0.62 and 0.64, respectively. The simulated discharge could capture the 

daily variations, including discharge peaks (see Fig 4.11). DA only slightly improves monthly 

discharge estimation compared to the OL (see Table 4.6), with an increase in NSE of about 0.02 

for both 2016 and 2018, even though SM in Wüstebach was significantly improved by DA. 

 

 

Figure 4.11 Temporal evolution of simulated discharge from the open loop mean (OL, blue 

circle) and joint state-parameter assimilation mean (DA, green circle), together with the 

observed discharge (black circle) for 2016 and 2018 at the Erkensruhr-Einruhr in situ station. 

The temporal evolution of simulated soil moisture from the open loop mean (OL, blue line) and 

joint state-parameter assimilation mean (DA, green line), together with the observations (red 

dot) for 2016 and 2018 at the Wüstebach site. 

 

4.4.5 Discussion 

This study demonstrated that the assimilation of CRNS soil moisture data is beneficial and 

improves the integrated terrestrial system model simulations of SM over a real catchment, both 

for a wet and dry year. In addition, the jackknife simulations demonstrate the potential of the 

CRNS network to improve modelled SM at the catchment scale, but it performs differently in 

a wet and dry year. The improvement in the dry year is relatively small, due to the weaker 

spatial correlations in the dry year 2018, compared to the wet year 2016. The same perturbation 

methods were used for the two years and the spatial correlation length utilized for soil hydraulic 
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parameter perturbations ensured that each site used for validation was within the correlation 

length of the assimilated sites. However, the SM spatial correlation fluctuated under various 

soil hydrological conditions and was shown to be weakened under drought conditions. As a 

result, the drought in the summer of 2018 led to the worst validation performance of the 

seasonal SM simulation. The overall results from the jackknife experiments also indicate that 

the RMSE is much less reduced at the verification locations than at the assimilation locations. 

It is very likely that a denser CRNS network may improve SM characterization, for 

example, related to better parameter estimates and compensate for variations in performance 

across years. To further investigate how dense an optimal measurement network of CRNS 

should be, one possible approach could involve conducting a synthetic study that tests varying 

numbers and locations of CRNS stations based on the model results established in this study. 

In addition, some denser CRNS observation networks are gradually being established, such as 

the new Irish Soil Moisture Observation Network (ISMON) (Finkele et al., 2022) and some 

field campaigns in which a large number of CRNS were operated together to explore the 

potential of a dense stationary CRNS network to monitor spatio-temporal SM dynamics at the 

catchment scale. For instance, a dense network of 24 CRNS was established in an area of only 

1 km2 in the pre-alpine Rott headwater catchment in Southern Germany (Fersch et al., 2020) 

and a network of 15 CRNS covering an area of 0.39 km2 in the Wüstebach headwater catchment 

in Western Germany (Heistermann et al., 2022). In our study, we show the potential high-

density CRNS networks have to correct for errors introduced by imperfect input data and spatial 

correlations, thus reducing the uncertainties in SM prediction. The establishment of the above-

mentioned CRNS observation networks offers the opportunity to further investigate how the 

density of sensors influences SM assimilation. 

Joint state-parameter estimating improved SM simulations, especially at measurement 

locations, but much less at verification locations. Hydraulic conductivity was only modified 

slightly and locally during joint state-parameter updating, and as a result, SM characterization 

only improved slightly. Better results could be achieved with a larger ensemble size. Here, DA 

experiments were performed with 128 ensemble members, but this ensemble size might still be 

too small. Hendricks Franssen and Kinzelbach (2008) suggested that 200-500 realizations are 

needed to achieve successful joint state-parameter estimation with groundwater hydrological 

models. A larger ensemble size, however, was not feasible in this work, given the needed 

compute time for a run with the high-resolution integrated model. 

DA reduced differences between simulated and measured SM contents significantly, but 

the benefit of DA was not clear for the modelling of ET, and the findings are in line with the 
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synthetic study by Hung et al. (2022) with the TSMP-PDAF model. Similar findings were made 

by Ridler et al. (2014), who found that SM assimilation had little influence on flux estimation. 

Uncertain parameters and model structural errors are also possible reasons for the limited 

improvement in ET simulations after SM assimilation. 

It is important to note that more studies have reported the underestimation of 

evapotranspiration (or latent heat flux) by CLM (Shrestha et al., 2014; Boas et al., 2021). The 

ET mismatch in our simulations was largely related to a systematic underestimation of ET (bias), 

which seems partly related to underestimated LAI values. The input LAI used in this study was 

taken from previous studies (Sulis et al., 2015; Sulis et al., 2018), but was found to be smaller 

than the measured LAI values at EC sites (see Fig 4.9). Notice that the measured LAI is on a 

daily basis, while the LAI in the model is defined on a monthly basis, but the systematic 

underestimation of the LAI in the model can nevertheless be observed. 

The performance of the ET simulation is also affected by the use of a uniform set of 

parameters for crops, neglecting the fact that different crops in the region can have very 

different properties (e.g., LAI and stem area index). Sulis et al. (2015) incorporated crop-

specific parameters in CLM 3.5 simulations, which resulted in improved simulations of land-

atmosphere exchange fluxes compared to simulations using the generic crop type. Similarly, a 

more recent study by Boas et al. (2021) found that utilizing crop-specific parameters in the 

newer version 5.0 of CLM improved the representation of crop growth cycles and led to more 

accurate simulations of energy fluxes. The model CLM 5 shows a better characterization of ET 

than CLM 3.5 (Shrestha et al., 2018a), but it is not yet coupled to ParFlow, which is the reason 

why we did not use it in this work. In addition, other factors influence ET, like vegetation 

rooting depth and further vegetation characteristics (Li et al., 2020). The uncertainty of those 

parameters was not considered in this work, but in order to improve ET simulation in DA studies, 

their uncertainty should be considered in the future. Finally, mismatches between modelled and 

measured ET are probably also related to errors in the input of atmospheric forcings like 

incident radiation. A fully coupled atmosphere-land surface-subsurface model integrated into 

the DA framework may further improve the characterization of ET. 

Therefore, it can be concluded that assimilating only SM is insufficient to significantly 

improve the simulation of ET and that parameter biases and model errors are more important 

for the ET simulation. Better results may be achieved by assimilating additional types of 

measurements, like LAI, and estimating further parameters, like vegetation parameters.  

River discharge was used to investigate the effects of SM assimilation on lateral fluxes, 
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with slight improvements in discharge estimates. Our finding is consistent with previous 

synthetic SM assimilation experiments at the hillslope or larger catchment scale using the 

integrated model TSMP (Gebler et al., 2019; Hung et al., 2022). The limited improvement in 

discharge characterization may be attributed to the limited spread of discharge and to the fact 

that only the soil hydraulic parameter Ks was updated without large changes in the parameter 

values. On the other hand, the limited improvement might also be partly related to model 

structural errors (e.g., underrepresentation of preferential flows and representation of drainage) 

(Gebler et al., 2019). Furthermore, Baroni et al. (2017) found that river discharge in large 

catchments is only sensitive to the perturbation of long spatial structures and is not affected by 

small-scale soil variabilities. Therefore, with only SM and parameter Ks being updated in the 

integrated model, an improvement in the performance of discharge estimation is challenging. 

Possible improvements could be achieved by considering the uncertainties in other parameters. 

For instance, D. Baatz et al. (2017) found that the estimated Manning's roughness coefficients 

could improve the discharge simulation with TSMP in synthetic 2D experiments. 

In this study, we did not directly assimilate the CRNS neutron intensity observations but 

used SM products derived from the CRNS observations. Next, it is planned to assimilate 

neutron count intensity directly with the COSMIC operator (Shuttleworth et al., 2013). In 

addition, although we used a 500 m resolution, which is already fine relative to the RS data, 

500 m is still coarse compared to the footprint of CRNS data. Therefore, a higher resolution 

will be used in the future to include the calculation of the horizontal weighting of the CRNS 

observations. 

Our study demonstrates the potential of a CRNS observational network to enhance SM 

estimation as well as other hydrological variables (evapotranspiration and discharge) at a larger 

catchment scale, suggesting promising prospects for the application of CRNS compared to 

traditional SM sensors or RS datasets. The footprint of CRNS covers areas with a diameter of 

300-600 m and a depth of 15-70 cm, which is much larger than the measurement volume of 

conventional SM measurement methods such as point-type SM sensors. RS data can provide 

spatially continuous SM information, but typically only for the top soil (0-5 cm). Therefore, the 

SM data from CRNS better represent the scale of model grids and thus can provide more 

accurate parameters for hydrological models to simulate hydrological processes such as 

infiltration, evapotranspiration, and runoff. We have also shown that the assimilation of SM 

from CRNS can improve SM estimates in the vicinity as well as at distant locations from CRNS 

stations. This indicates that even a low number of CRNS can provide useful information for 

DA. For instance, Patil et al. (2021) demonstrated that assimilating SM from four CRNS 
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improved SM simulation in a 655 km2 catchment. This suggests that the use of CRNS instead 

of point sensors could reduce the number of measuring stations, which in turn may reduce 

installation and maintenance costs. 

 

4.5 Conclusions 

SM measurements from 12 CRNS distributed over the Rur catchment (~2400 km2) were 

assimilated into TSMP with EnKF. This is the first application of the assimilation of observed 

SM data from CRNS into an integrated land surface-subsurface model for a real-world case. To 

this end, 128 ensemble members were generated by considering uncertain atmospheric forcings 

and subsurface hydraulic parameters. DA experiments were conducted for a wet year (2016) 

and a dry one (2018), with state-only updates and joint updates of state and parameters. SM 

observations from CRNS, evapotranspiration from eddy covariance stations, and discharge 

from an in situ station were used as validation data to assess the impact of SM assimilation on 

SM and flux simulation. EnKF assimilation of SM from CRNS improves SM estimation at 

measurement sites strongly in both dry and wet years, with up to 60% RMSE reductions. Joint 

state-parameter estimation results in a slightly better SM simulation than state estimation alone, 

with an RMSE reduction of more than 15% compared to state estimation alone. Jackknife 

experiments show limited improvement in SM characterization at independent verification 

locations, and the verification performance is affected by hydrological conditions, showing 

worse performance in dry episodes, indicating that the measurement network (~1 site per 

200 km2) is not dense enough. SM assimilation improved ET and discharge characterization to 

a much lesser degree than SM, indicating limited sensitivities of ET and discharge towards SM. 

The DA experiments show that improving the characterization of states (spatially and 

temporally) in the integrated surface-subsurface model TSMP by assimilating SM from a 

distributed CRNS network at the catchment scale is challenging but also promising. Compared 

to RS and traditional point SM measurements, CRNS could provide larger-scale in situ SM data 

with high temporal resolution and deeper penetration depth. In combination with DA, a limited 

number of sensors makes it feasible to continuously and stably determine SM dynamics from 

the field to the catchment scale. Better SM information is important for improving our 

understanding of the processes in terrestrial water cycles and reducing the large uncertainties 

of hydrological fluxes during modeling. Large-scale networks of CRNS already exist in the 

USA, Europe, Australia and India, but the density of sensors is still not sufficient to completely 

represent SM patterns at the continental scale. As sensors become more affordable, higher 

observational coverage will become possible, enabling the acquisition of long-term SM datasets 
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to monitor climate change and support predictions. 

To improve the characterization of the states and parameters of integrated land surface-

subsurface simulation at large scales, in addition to assimilating SM from a denser CRNS 

measurement network, future work should focus on multivariate assimilation (e.g., joint 

assimilation with vegetation related data) and the estimation of further soil hydraulic and 

vegetation parameters with integrated terrestrial system models at a higher spatial resolution. 

 

Appendix A 
Table A.1 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and data assimilation with joint state and parameter updating (DA) for the year 

2016. 

Site 

BIAS 

(cm3/cm3) 

MAE  

(cm3/cm3) 
R 

RMSE 

(cm3/cm3) 

ubRMSD 

(cm3/cm3) 

OL DA OL DA OL DA OL DA OL DA 

Merzenhausen -0.036  0.001  0.041  0.022  0.870  0.902  0.048  0.029  0.032  0.028  

Rollesbroich -0.010  -0.009  0.036  0.026  0.854  0.957  0.044  0.032  0.043  0.030  

Gevenich -0.050  0.016  0.055  0.023  0.879  0.949  0.063  0.030  0.038  0.025  

Ruraue -0.074  -0.019  0.075  0.025  0.779  0.936  0.084  0.030  0.041  0.023  

Wildenrath -0.012  -0.003  0.024  0.015  0.856  0.902  0.030  0.021  0.028  0.021  

Wüstebach -0.083  -0.033  0.084  0.042  0.731  0.797  0.097  0.059  0.051  0.049  

Heinsberg -0.064  0.003  0.065  0.017  0.854  0.928  0.072  0.023  0.033  0.023  

Kall 0.014  0.000  0.031  0.020  0.886  0.946  0.037  0.024  0.034  0.024  

Selhausen -0.120  -0.011  0.121  0.026  0.852  0.906  0.127  0.035  0.040  0.033  

Schönseiffen -0.050  0.008  0.057  0.022  0.843  0.930  0.067  0.027  0.045  0.025  

Kleinau 0.002  -0.005  0.027  0.023  0.915  0.947  0.035  0.028  0.034  0.028  

Aachen -0.126  -0.009  0.126  0.022  0.883  0.920  0.130  0.030  0.034  0.028  

 

Table A.2 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and data assimilation with joint state and parameter updating (DA) for the year 

2018. 

Site 

BIAS 

(cm3/cm3) 

MAE  

(cm3/cm3) 
R 

RMSE 

(cm3/cm3) 

ubRMSD 

(cm3/cm3) 

OL DA OL DA OL DA OL DA OL DA 

Merzenhausen 0.025  0.000  0.042  0.023  0.786  0.937  0.056  0.030  0.050  0.030  

Rollesbroich 0.045  0.019  0.060  0.039  0.794  0.874  0.072  0.048  0.055  0.044  
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Gevenich 0.003  0.004  0.043  0.026  0.785  0.929  0.053  0.034  0.053  0.034  

Ruraue -0.015  -0.015  0.056  0.024  0.711  0.957  0.066  0.030  0.064  0.026  

Wildenrath 0.021  0.001  0.028  0.014  0.892  0.943  0.035  0.021  0.028  0.021  

Wüstebach -0.017  -0.014  0.049  0.024  0.702  0.886  0.062  0.033  0.060  0.030  

Heinsberg 0.007  0.005  0.037  0.017  0.833  0.959  0.044  0.024  0.044  0.024  

Kall 0.072  0.014  0.073  0.024  0.812  0.926  0.086  0.034  0.047  0.031  

Selhausen -0.031  0.006  0.051  0.025  0.780  0.939  0.064  0.031  0.056  0.031  

Schönseiffen 0.015  0.007  0.036  0.023  0.908  0.950  0.045  0.028  0.043  0.028  

Kleinau 0.061  0.005  0.062  0.025  0.875  0.953  0.076  0.032  0.046  0.032  

Aachen -0.113  -0.018  0.115  0.028  0.810  0.917  0.123  0.038  0.049  0.033  

 

Table A.3 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and jackknife simulations (DA) for the year 2016. 

Site 

BIAS 

(cm3/cm3) 

MAE  

(cm3/cm3) 
R 

RMSE 

(cm3/cm3) 

ubRMSD 

(cm3/cm3) 

OL DA OL DA OL DA OL DA OL DA 

Merzenhausen -0.036  -0.022  0.041  0.031  0.870  0.846  0.048  0.039  0.032  0.032  

Rollesbroich -0.010  -0.017  0.036  0.030  0.854  0.912  0.044  0.038  0.043  0.034  

Gevenich -0.050  -0.022  0.055  0.037  0.879  0.889  0.063  0.046  0.038  0.040  

Ruraue -0.074  -0.039  0.075  0.042  0.779  0.936  0.084  0.047  0.041  0.026  

Wildenrath -0.012  -0.015  0.024  0.023  0.856  0.891  0.030  0.029  0.028  0.025  

Wüstebach -0.083  -0.076  0.084  0.076  0.731  0.859  0.097  0.085  0.051  0.039  

Heinsberg -0.064  0.033  0.065  0.038  0.854  0.839  0.072  0.047  0.033  0.033  

Kall 0.014  0.004  0.031  0.028  0.886  0.874  0.037  0.036  0.034  0.035  

Selhausen -0.120  -0.015  0.121  0.039  0.852  0.832  0.127  0.050  0.040  0.047  

Schönseiffen -0.050  0.033  0.057  0.040  0.843  0.901  0.067  0.047  0.045  0.033  

Kleinau 0.002  -0.005  0.027  0.026  0.915  0.909  0.035  0.034  0.034  0.033  

Aachen -0.126  -0.002  0.126  0.030  0.883  0.848  0.130  0.039  0.034  0.039  

 

Table A.4 Comparison of CRNS soil moisture measurements and simulated soil moisture from 

open loop (OL) and jackknife simulations (DA) for the year 2018. 

Site 

BIAS 

(cm3/cm3) 

MAE  

(cm3/cm3) 
R 

RMSE 

(cm3/cm3) 

ubRMSD 

(cm3/cm3) 

OL DA OL DA OL DA OL DA OL DA 

Merzenhausen 0.025  0.041  0.042  0.043  0.786  0.904  0.056  0.054  0.050  0.035  

Rollesbroich 0.045  0.019  0.060  0.040  0.794  0.873  0.072  0.048  0.055  0.044  

Gevenich 0.003  0.019  0.043  0.052  0.785  0.773  0.053  0.063  0.053  0.060  

Ruraue -0.015  -0.041  0.056  0.045  0.711  0.919  0.066  0.055  0.064  0.036  

Wildenrath 0.021  0.007  0.028  0.027  0.892  0.835  0.035  0.034  0.028  0.034  

Wüstebach -0.017  -0.044  0.049  0.048  0.702  0.853  0.062  0.058  0.060  0.038  
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Heinsberg 0.007  0.029  0.037  0.045  0.833  0.818  0.044  0.057  0.044  0.049  

Kall 0.072  0.048  0.073  0.056  0.812  0.812  0.086  0.068  0.047  0.047  

Selhausen -0.031  0.038  0.051  0.043  0.780  0.888  0.064  0.056  0.056  0.041  

Schönseiffen 0.015  0.017  0.036  0.038  0.908  0.868  0.045  0.048  0.043  0.045  

Kleinau 0.061  0.027  0.062  0.051  0.875  0.770  0.076  0.068  0.046  0.062  

Aachen -0.113  -0.061  0.115  0.063  0.810  0.831  0.123  0.079  0.049  0.051  

 

Table A.5 Root mean square error (RMSE) for open loop (OL), data assimilation with state 

updates (State), joint state-parameter updates (Joint), and jackknife simulations with joint state-

parameter updates (Jackknife) for the assimilation periods of 2016 and 2018. The seasonal 

indicator was averaged over all sites with CRNS soil moisture observations.  

Year Season 

Mean observed soil 

moisture 

(cm3/cm3) 

RMSE (cm3/cm3) 

OL State Joint Jackknife 

2016 

Spring 0.32 0.078 0.043 0.032 0.045 

Summer 0.31 0.075 0.043 0.030 0.047 

Autumn 0.25 0.070 0.039 0.030 0.048 

Winter 0.36 0.087 0.052 0.035 0.045 

       

2018 

Spring 0.31 0.076 0.046 0.037 0.062 

Summer 0.18 0.067 0.041 0.033 0.073 

Autumn 0.22 0.066 0.047 0.029 0.046 

Winter 0.33 0.065 0.042 0.031 0.043 

 

Table A.6 Comparison of daily measured evapotranspiration and simulated evapotranspiration 

from open loop (OL), data assimilation with state updates (State), and joint state-parameter 

updates (Joint) for two assimilation periods (2016 and 2018).   

Site Year Simulation 
BIAS 

(mm/day) 

MAE 

(mm/day) 
R 

RMSE 

(mm/day) 

ubRMSD 

(mm/day) 

 

Rollesbroich 

2016 

OL -0.334 0.464 0.896 0.612 0.513 

State -0.318 0.444 0.902 0.582 0.487 

Joint -0.264 0.428 0.897 0.559 0.493 

2018 

OL -0.420 0.547 0.900 0.747 0.618 

State -0.426 0.553 0.900 0.753 0.621 

Joint -0.469 0.593 0.880 0.816 0.668 

        

 

Wüstebach 

2016 

OL -0.590 0.707 0.821 0.914 0.698 

State -0.553 0.675 0.826 0.876 0.679 

Joint -0.528 0.663 0.824 0.860 0.679 

2018 OL -0.377 0.619 0.773 0.849 0.760 
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State -0.377 0.610 0.769 0.844 0.755 

Joint -0.345 0.601 0.775 0.825 0.750 

        

 

Selhausen 

2016 

OL -0.464 0.643 0.724 0.843 0.704 

State -0.278 0.585 0.719 0.768 0.716 

Joint -0.239 0.568 0.723 0.753 0.714 

2018 

OL -0.268 0.629 0.710 0.871 0.829 

State -0.183 0.612 0.713 0.842 0.822 

Joint -0.127 0.585 0.731 0.811 0.801 

 

 

Figure A.1 Temporal evolution of mean simulated soil moisture from the open loop (OL, blue), 

joint state-parameter estimation (DA, green), together with observed soil moisture from CRNS 

(red), for the year 2016 at the CRNS sites. Simulated soil moisture was vertically weighted 

using the revised method. 
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Figure A.2 Temporal evolution of mean simulated soil moisture from the open loop (OL, blue), 

joint state-parameter estimation (DA, green), together with observed soil moisture from CRNS 

(red), for the year 2018 at the CRNS sites. Simulated soil moisture was vertically weighted 

using the revised method. 
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Figure A.3 Soil moisture scatter plots for CRNS observations versus ensemble mean soil 

moisture from the open loop run (OL, blue) and ensemble mean soil moisture from joint state-

parameter estimation (DA, red) for 2016. 
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Figure A.4 Soil moisture scatter plots for CRNS observations versus ensemble mean soil 

moisture from the open loop run (OL, blue) and ensemble mean soil moisture from joint state-

parameter estimation (DA, red) for 2018. 
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Figure A.5 Temporal evolution of mean simulated soil moisture from the open loop run (OL, 

blue), jackknife simulations (DA, green), together with the observed soil moisture from CRNS 

(red) for the year 2016 at the CRNS sites. Simulated soil moisture was vertically weighted using 

the revised method. 
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Figure A.6 Temporal evolution of mean simulated soil moisture from the open loop run (OL, 

blue), jackknife simulations (DA, green), together with the observed soil moisture from CRNS 

(red) for the year 2018 at the CRNS sites. Simulated soil moisture was vertically weighted using 

the revised method. 
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Figure A.7 Examples of the spatial correlations of soil moisture between CRNS sites and other 

grid cells over the Rur catchment, for the open loop run. Subplots a) and d) are from Gevenich 

on the 29th of June in 2016 and 2018, b) and e) are from Heinsberg on the 2nd of August in 2016 

and 2018, and c) and f) are from Schönseiffen on the 28th of July in 2016 and 2018. The black 

asterisk is the location of the CRNS sites. 
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Chapter 5: A new approach for joint assimilation of cosmic-ray 
neutron soil moisture and groundwater level data into an integrated 
terrestrial model 
 

*adapted from: Li, F., Bogena, H. R., Keller, J., Bayat, B., Raj R., and Hendricks Franssen, H.-

J.: A new approach for joint assimilation of cosmic-ray neutron soil moisture and groundwater 

level data into an integrated terrestrial model, submitted to Journal of Hydrology. 

 

5.1 Introduction 
Groundwater level (GWL) and root zone soil moisture (RZSM) are two crucial variables 

in hydrological and land surface modeling (Zhang et al., 2016). Shallow groundwater can have 

a significant impact on SM through water exchange between the aquifer and the unsaturated 

zone and also impact ET (Chen and Hu, 2004). Therefore, accurate information on the spatio-

temporal variability of GWL and RZSM is important for a detailed understanding of 

hydrological processes in terrestrial systems and a better estimate of the water and energy fluxes 

from the subsurface to the land surface and the atmosphere (Vereecken et al., 2022). 

Nevertheless, many land surface models do not explicitly consider the impact of groundwater 

dynamics on land surface processes (Kollet and Maxwell, 2008). Integrated models like the 

TSMP (Shrestha et al., 2014), which simulate the groundwater-soil-vegetation-atmosphere 

system, are particularly suitable for exploring the impacts of spatio-temporal variations of GWL 

on terrestrial ecosystems. The capabilities of this model for simulating atmosphere-land-

subsurface interactions and surface water-groundwater dynamics have been demonstrated in 

many studies (Shrestha et al., 2015; Keune et al., 2016; Shrestha et al., 2018; Furusho-Percot 

et al., 2019; Zhao et al., 2021; Naz et al., 2023). 

However, such highly complex coupled models often involve a large number of parameters, 

which often contribute to model uncertainties and affect prediction accuracy. Particularly in 

groundwater systems, the simplifications and assumptions that have to be used in the model 

parameterization process introduce significant uncertainties in the model due to the strong 

spatial heterogeneity of the hydraulic parameters and the limited availability of direct 

measurements (de Marsily, 1986). Furthermore, modeling uncertainties may emerge from 

various sources, including model forcings, model structural components, and initial conditions 

(Freeze, 1975; D. Baatz et al., 2017). To mitigate uncertainties in model states and parameters, 

DA can be employed, leveraging measurements to refine and correct model simulations (De 
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Lannoy et al., 2014). The EnKF (Evensen, 1994; Evensen, 2003), a sequential filtering 

algorithm, is one of the most widely used DA techniques. It has been shown to successfully 

handle high-dimensional nonlinear hydrological and land surface simulation problems 

(Camporese et al., 2009a; Schöniger et al., 2012). Previous research has proven the 

effectiveness of EnKF in improving SM forecasts for stand-alone land surface models (De 

Lannoy et al., 2007; Yin et al., 2015; De Lannoy and Reichle, 2016; Naz et al., 2019) or GWL 

estimation for groundwater models (Chen and Zhang, 2006; Hendricks Franssen and 

Kinzelbach, 2008). 

SM can be assessed or measured across different scales using a variety of techniques, and 

various SM data types have been used for assimilation into land surface models, including in-

situ measurements (Fu et al., 2023; Strebel et al., 2024) and remote sensing (RS) data products, 

such as Soil Moisture Active Passive (SMAP) (Reichle et al., 2017; He et al., 2021) and Soil 

Moisture Ocean Salinity (SMOS) (De Lannoy and Reichle, 2016; Lievens et al., 2016). Despite 

important advances in these previous studies, there is still a lack of high-quality SM data that 

can be assimilated into models as in-situ SM observations are often very small-scale and 

therefore not representative of larger areas (Nicolai‐Shaw et al., 2015). In addition, in-situ data 

often have temporal gaps, making it difficult to accurately capture the spatiotemporal SM 

characteristics, which affects DA and the quality of model predictions. Although RS provides 

global SM information, either the spatial or temporal resolution is often coarse, and the spatial 

mismatch between coarse-resolution RS data and high-resolution models can lead to significant 

data assimilation challenges (Sahoo et al., 2013; Naz et al., 2019). In addition, only information 

for the upper few cm is provided, and the measurement is affected by larger bias and uncertainty 

than in situ measurements. Therefore, this study explores an alternative source of SM 

information that can more accurately measure SM. CRNS (Zreda et al., 2008), a new technology 

for monitoring SM that bridges the gap between in-situ measurements and RS products, has 

gained broader acceptance and usage (Bogena et al., 2022). CRNS can provide non-invasive 

and real-time SM at the field scale, with a footprint of up to 18 hectares and a penetration depth 

of up to 80 cm (Zreda et al., 2008; Bogena et al., 2015; Köhli et al., 2015). It provides SM data 

at deeper soil depths with less error than RS products while covering a larger footprint than in-

situ measurements. Therefore, it is well suited for DA in land surface models to improve SM 

estimation (Shuttleworth et al., 2013; Rosolem et al., 2014; Han et al., 2015; Han et al., 2016; 

Roland Baatz et al., 2017; Patil et al., 2021). 

Groundwater table depth is commonly measured in-situ in observation wells. However, 

studies on the assimilation of groundwater table depth (or hydraulic head) were mainly 
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conducted using synthetic data. Chen and Zhang (2006) assimilated the synthetic pressure head 

data into transient flow models and demonstrated the ability of EnKF to estimate hydraulic 

conductivity fields. Hendricks Franssen and Kinzelbach (2008) conducted synthetic studies 

using a 2D transient groundwater flow model to explore effective ways to reduce the filter 

inbreeding problem when using EnKF for parameter estimation. Tong et al. (2011) employed 

LEnKF in a 2D synthetic transient groundwater flow model and found that EnKF with 

localization can solve the problem of filter divergence and capture the heterogeneous hydraulic 

conductivity field reliably with higher efficiency and a smaller ensemble size than EnKF. 

Panzeri et al. (2013, 2014) proposed EnKF variants (direct solution of nonlocal 

(integrodifferential) stochastic ensemble moment equations or direct computation of stochastic 

ensemble moment equations governing the space-time evolution of ensemble means and 

covariances of hydraulic heads and fluxes) for 2D transient groundwater flow models to address 

issues arising in groundwater DA, including heavy computation and filter inbreeding, and the 

validity of these approaches was validated in a field application (Panzeri et al., 2015). The above 

groundwater assimilation studies show that EnKF can handle high-dimensional nonlinear 

relationships related to groundwater systems and is suitable for groundwater assimilation. 

However, even when using synthetic groundwater data, EnKF requires tuning including for 

example localization to address filter divergence and inbreeding issues. For more complex real-

world cases, the assimilation of groundwater observations may be more challenging, and the 

EnKF algorithm needs to be adapted to address specific challenges to improve the accuracy of 

the data assimilation and to achieve optimal simulation results. 

Most DA studies focused only on one compartment of the terrestrial system, e.g., the land 

surface, and assimilated only one variable into the models. However, in natural systems, the 

components of the water cycle, such as groundwater and SM, are closely linked. Therefore, 

efforts should be made to improve the simulation of all interrelated variables in the model by 

means of assimilating multiple variables. Consequently, a number of recent studies have 

initiated the implementation of multivariate DA in coupled models, such as the joint 

assimilation of groundwater and SM. The use of multivariate DA techniques in integrated 

models can potentially better exploit the value of different measurements, enhance terrestrial 

model predictions, and improve the estimation of model parameters (Zhang et al., 2016). 

Camporese et al. (2009b) assimilated synthetic pressure head and SM data into the coupled 

surface water-groundwater model CATHY (CATchment HYdrology) for a small catchment 

(4.64 km2), and the results showed that assimilation of either pressure head or SM can improve 

the characterization of subsurface states in the vicinity of the measurement locations. Botto et 

al. (2018) employed the model CATHY to investigate the assimilation of multi-source data 
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(pressure head, SM, and subsurface outflow) from an artificial hillslope. Their results 

demonstrated the efficiency of EnKF to correct states and parameters under conditions of strong 

nonlinearity but also showed that multisource DA may lead to the degradation of model 

predictions for other variables. Shi et al. (2014, 2015) employed EnKF to assimilate 

multivariate hydrological observations, either from synthetic experiments or a real-world case 

(a small catchment of 0.08 km2), into a coupled physically-based land surface hydrologic model 

(Flux-PIHM) to identify the observations critical for parameter estimation. The integrated 

hydrological model MIKE-SHE was also applied to assimilate groundwater head and SM, and 

the importance of localization (distance and variable localization) was demonstrated (Zhang et 

al., 2016). However, the DA experiments in Zhang et al. (2016) were conducted either using 

synthetic data or the real observations were processed (i.e., the average difference between 

observations and model simulations was subtracted from the original data). Furthermore, in 

MIKE-SHE, the unsaturated flow is still only calculated in one dimension. 

The coupled model TSMP, in combination with the Parallel Data Assimilation Framework 

(PDAF) (Nerger et al., 2005), has also been used to assimilate synthetic or real SM or GWL 

data at different scales (e.g., hillslope and catchment scale). Kurtz et al. (2016) showed the 

promise of this DA framework for simulating and estimating uncertainties in predicted states 

and fluxes of the terrestrial system by using synthetic SM observations to jointly update soil 

water content and saturated hydraulic conductivity in TSMP-PDAF using EnKF. Since then, 

with TSMP-PDAF, Gebler et al. (2019) assimilated in-situ SM at the hillslope scale and Li et 

al. (2023a) assimilated CRNS soil moisture at the larger catchment scale, both of which 

significantly improved SM simulations. Brandhorst and Neuweiler (2023) investigated the 

influence of updating different soil hydraulic parameters on the accuracy of SM estimation in a 

three-dimensional heterogeneous hillslope model using TSMP-PDAF, and the synthetic studies 

showed that the best estimates were obtained when porosity and van Genuchten parameters, as 

well as saturated conductivity coefficients (optionally), were jointly updated. In terms of GWL 

assimilation, Li et al. (2023b) attempted to assimilate real GWL data at the catchment scale 

with LEnKF in TSMP-PDAF and showed a considerable improvement in GWL estimation. 

However, the established works on the assimilation of both SM and GWL into TSMP were only 

conducted in synthetic experiments (Zhang et al., 2018; Hung et al., 2022). Zhang et al. (2018) 

concluded in a synthetic experiment with only four soil columns that the assimilation of both 

pressure and SM gave the best estimate of RZSM. Hung et al. (2022) assimilated GWL and SM 

observations in a much more complex synthetic study with a fully 3D heterogeneous subsurface 

mimicking southwestern Germany. However, they found that the weakly coupled DA strategy, 

in which only saturated subsurface states were updated, performed better than the fully coupled 
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DA suggested by Zhang et al. (2018). These examples show that there is still a need to 

investigate the benefits of jointly assimilating real GWL and SM observations into integrated 

land surface-subsurface models at the catchment scale.  

Considering the additional challenges that may be encountered in performing the joint 

assimilation of GWL and SM into a coupled land surface-subsurface model (i.e., TSMP) in a 

real-world case (Rur catchment, Germany), a new multivariate DA approach is proposed. The 

main objective of the current study is to investigate: (i) the potential of joint assimilation of 

GWL and SM data in a coupled land surface-subsurface model with the newly proposed 

multivariate DA approach for the Rur catchment; (ii) how the DA performance may differ 

across various multivariate DA approaches; (iii) and the advantages of the new multivariate DA 

approach on the prediction of GWL, SM, and ET compared to univariate DA strategies. To our 

knowledge, this is the first time that both real GWL and CRNS soil moisture observations from 

in-situ networks are assimilated into the integrated terrestrial model TSMP at the catchment 

scale. 

 

5.2 Materials and methods 
5.2.1 Study area 

The Rur catchment, with an area of 2354 km2, is situated mostly in western Germany, with 

smaller parts in Belgium and the Netherlands. The Rur river flows from south to north as the 

altitude gradually decreases from 690 m in the south to 15 m a.s.l. in the north (Fig 5.1). The 

main land uses in the Rur catchment are arable agriculture in the northern lowlands (mainly 

maize and wheat) and grasslands, and coniferous and deciduous forests in the southern 

mountainous regions (Waldhoff and Lussem, 2015; Roland Baatz et al., 2017). Other important 

land uses include open-cast lignite quarries and urban areas (Shukla et al., 2023). 

Corresponding to the topography from north to south, the mean annual air temperature 

decreases from 10 to 7 °C, the annual precipitation increases from 650 to 1300 mm, and the 

annual potential ET decreases from 850 to 450 mm (Montzka et al., 2008; Bogena et al., 2018). 

The permeability of the upper unconfined aquifer and groundwater recharge in the southern 

low-mountain range are relatively low due to the prevailing consolidated bedrock, while they 

are relatively high in the northern lowland region due to the presence of unconsolidated bedrock 

(Bogena et al., 2018). 
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Figure 5.1 Topography of the Rur catchment (a) and locations of the hydrological stations (b), 

including groundwater wells, cosmic-ray neutron sensors, and eddy covariance stations. 

 

5.2.2 Terrestrial System Modeling Platform (TSMP)  

The TSMP model is a fully integrated biogeophysical terrestrial system model designed to 

simulate the transport processes of water and energy among the atmosphere, land surface, and 

subsurface (Shrestha et al., 2014). TSMP comprises an atmospheric model (Consortium for 

Small Scale Modelling, COSMO) (Baldauf et al., 2011), a land surface model (Community 

Land Model (CLM, version 3.5)) (Oleson et al., 2004; Oleson et al., 2008) from the National 

Center for Atmospheric Research, and the 3D variably saturated groundwater flow model 

ParFlow (Kollet and Maxwell, 2006) for the subsurface. These three models are two-way 

coupled by the Ocean Atmosphere Sea Ice Soil - Model Coupling Toolkit (OASIS-MCT, 

version 3) (Valcke, 2013). In TSMP, the coupler OASIS-MCT is employed to exchange 

variables and fluxes between the sub-models. TSMP offers the flexibility to operate diverse 

combinations of component models. It can be set up in a fully coupled configuration (COSMO-

CLM-ParFlow), partly coupled configurations (COSMO-CLM or CLM-ParFlow), or stand-

alone model components (COSMO, CLM, or ParFlow). In this work, only the land surface 

model CLM 3.5 and the subsurface model ParFlow were activated. 
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The land surface model CLM simulates the biophysical processes within the terrestrial 

system, including energy and water exchange between the land and atmosphere, snow 

accumulation and melting, water and energy transport in the soil, and stomatal physiology and 

photosynthesis (Oleson et al., 2004; Oleson et al., 2008). In CLM, the representation of spatial 

land surface heterogeneity utilizes a nested subgrid hierarchy (Oleson et al., 2008). Each grid 

cell is subdivided into various land units, including glacier, lake, wetland, urban, and vegetated 

areas (Oleson et al., 2004; Oleson et al., 2008). Notably, each land unit may contain a different 

number of snow/soil columns. Within each column, multiple PFTs with different plant 

physiological parameters can be defined, which could capture the biogeophysical and 

biogeochemical differences between different vegetation types (Oleson et al., 2004; Oleson et 

al., 2008). The main purpose of CLM within TSMP is to account for water and heat fluxes to 

estimate ET from both ground and vegetation, as well as snow accumulation and melting. 

In TSMP, ParFlow replaced CLM to simulate the soil hydrological processes and model 

the surface runoff and groundwater flow (Ashby and Falgout, 1996; Jones and Woodward, 2001; 

Kollet and Maxwell, 2006; Maxwell, 2013). ParFlow evolved from the parallel 3D variably 

saturated subsurface flow code ParFlow with a 2D overland flow simulator (Ashby and Falgout, 

1996; Kollet and Maxwell, 2006). ParFlow uses the Newton-Krylov nonlinear solver (Jones 

and Woodward, 2001) to solve the coupled partial differential equations for groundwater flow 

and surface water flow, including the kinematic wave equation (Lighthill and Whitham, 1955) 

for overland flow and the 3D Richards equation (Richards, 1931) for groundwater flow in the 

unsaturated and saturated zones. In addition, ParFlow was developed specifically for parallel 

computing systems, so it can effectively solve highly heterogeneous large-scale problems at 

high resolution. 

Coupler OASIS-MCT controls the exchange of state variables and fluxes between 

different model components, utilizing temporal integration/averaging and spatial interpolation 

operations to ensure that the spatial and temporal scales of fluxes exchanged by different 

components are consistent (Valcke, 2013; Shrestha et al., 2014). In this work, only flux 

exchanges between the land surface and the subsurface were considered. The upper boundary 

condition for ParFlow is supplied by CLM and is represented as net infiltration or exfiltration, 

taking into account precipitation, interception, total evaporation, and total transpiration (Kurtz 

et al., 2016; Zhang et al., 2018). In turn, ParFlow provides CLM with calculated pressure and 

saturation values for the upper ten subsurface layers. More detailed information regarding the 

implementation of the coupler in CLM-ParFlow can be found in Kollet and Maxwell (2008). 
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5.2.3 Model input data and measurements 

5.2.3.1 Atmospheric forcing 

TSMP was forced by the high-resolution atmospheric reanalysis dataset COSMO-REA6 

(0.055° [6 km], hourly) (Bollmeyer et al., 2015; Wahl et al., 2017) provided by the German 

Meteorological Service (Deutscher Wetterdienst; DWD). The numerical weather prediction 

(NWP) model COSMO (Baldauf et al., 2011) was used to generate this reanalysis dataset. 

Forcing data for TSMP include precipitation, air temperature, air pressure, wind velocity, 

specific humidity, incoming shortwave radiation, and incoming longwave radiation. 

 

5.2.3.2 Land surface and subsurface data 

The digital elevation model (DEM) for the Rur catchment was obtained from SRTM 90m 

version 4 (Jarvis et al., 2008), as shown in Fig 5.1. Land cover information was derived from 

Sentinel-2 satellite data (Drusch et al., 2012) and then aggregated and transferred to the CLM-

prescribed PFTs using the approach developed by Montzka et al. (2021). Monthly LAI values 

for each year (2016-2018) were computed for individual PFTs using LAI maps retrieved from 

Sentinel-2 satellite observations (Drusch et al., 2012). A retrieval algorithm was employed 

using the Sentinel-2 Level 2 Prototype Processor (SL2P: Weiss and Baret, 2020) embedded in 

the freely available Sentinel Application Platform (SNAP). SL2P implements backpropagation 

artificial neural networks (ANN) trained with a global range of inputs (LAI and other 

biophysical characteristics) and simulated canopy reflectance from the optical radiative transfer 

model PROSAIL (Verhoef and Bach, 2007; Jacquemoud et al., 2009; Bayat et al., 2018). To 

retrieve the LAI at each pixel of Sentinel-2, the trained ANN was provided with the top of 

canopy reflectance from Sentinel-2, along with the sun and view geometry obtained from the 

satellite orbit characteristics and swath. 

The sand and clay contents of the soil (see Fig 5.2) were taken from the high-resolution 

regional soil map BK50 at a scale of 1:50,000 (Geologischer Dienst NRW, 2009), and the bulk 

density was obtained from the European Soil Database (ESDB) (Pano, 2006). The soil textures 

and bulk densities were used to calculate soil hydraulic parameters using the Rosetta 

pedotransfer functions (Schaap et al., 2001; Zhang and Schaap, 2017). The digital 

hydrogeological map HK100 of North Rhine-Westphalia at a scale of 1:100,000 (Geologischer 

Dienst NRW, 2011) was used to parameterize the hydraulic conductivity (Ks) of the bedrock 

(Fig 5.2). 

http://www.cosmo-model.org/
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Figure 5.2 Sand (a) and clay (b) content, hydraulic conductivity (c) of the bedrock for the Rur 

catchment. 

 

5.2.3.3 Soil Moisture, Groundwater Level and Evapotranspiration Measurements 

The SM data assimilated in this study were obtained from a network of CRNS stations in 

the Rur Hydrological Observatory of the TERrestrial Environmental Observatories (TERENO) 

initiative (Bogena et al., 2018). For this study, we used readily processed CRNS soil moisture 

data from the COSMOS-Europe initiative (Bogena et al., 2022) and selected 13 CRNS stations 

across the Rur catchment (see Table 5.1). Due to their close proximity, the CRNS stations 

Rollesbroich1 and Rollesbroich2 were treated as a single site in this work, and the average SM 

was used. As a result, 12 CRNS stations were used for DA. 

In addition, GWL observations from the monitoring network Geoportal NRW 

(www.geoportal.nrw; last accessed on August 26, 2024) were used in this study for DA and 

independent validation. Due to the intricate nature of the deep confined aquifer, which exhibits 

minimal interaction with RZSM, our assimilation approach focuses solely on the upper 

unconfined aquifer. Our screening process specifically targeted groundwater sites in the upper 

aquifer, with measurement depths ranging from 0 to 20 meters and a minimum monthly data 

frequency. A total of 616 sites were identified between 2016 and 2018 (Fig 5.1). Due to the 500 

m coarse horizontal resolution and the concentration of groundwater monitoring sites along the 

river, numerous sites are situated within the same model grid cell or within river grid cells. 

Therefore, it is necessary to screen the data before proceeding with assimilation. In cases where 

multiple sites are situated within the same grid cell, the groundwater site with the median GWL 

value was selected for DA. Moreover, grid cells containing sites within or directly adjacent to 

http://www.geoportal.nrw/
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the river were excluded from the DA experiments. This decision was made because these grid 

cells are permanently saturated in these areas of the model domain due to topography-related 

flow concentration, which led to strong discrepancies with groundwater observations. 

Ultimately, only 78 sites were retained for DA of GWL, while the other 465 sites were used for 

GWL independent validation. 

The ET simulations were validated using flux data from three EC stations (Rollesbroich, 

Wüstebach, and Selhausen) obtained from TERENO (https://www.tereno.net/; last accessed on 

August 26, 2023). EC measurements consist of a sonic anemometer (CSAT3, Campbell 

Scientific Inc., Logan, USA) to measure the 3D wind components, an open-path gas analyzer 

(Li7500, LI-COR Inc., Lincoln, USA) to determine the H2O and CO2 concentrations in the air, 

and an air temperature and humidity sensor (HMP45C, Vaisala Inc., Helsinki, Finland). The 

post-processing of flux data, including EC conversions and uncertainty estimation, followed 

the methodology in Mauder et al. (2013). The missing data in daily EC measurements were 

gap-filled by grass reference ET computed via the FAO Penman-Monteith approach (Allan et 

al., 1998). No corrections were made to address the energy balance non-closure in the EC data. 

More details on EC measurement and processing can be found in Bogena et al. (2018). 

 

Table 5.1 CRNS sites used in this study, including key site characteristics. The mean air 

temperature and mean annual precipitation were obtained from the ECMWF climate reanalysis 

data product ERA5-Land (Muñoz Sabater, 2021), resulting in identical precipitation and air 

temperature values for some of the sites. 

Name 
Latitude 

(degr) 

Longitude 

(degr) 

Altitude 

(m) 

Mean annual 

precipitation 

(mm y-1) 

Mean air 

temperature 

(℃) 

Land use 

Merzenhausen 50.93 6.30 91 718 10.3 crop 

Rollesbroich1 50.62 6.30 515 1018 7 grassland 

Rollesbroich2 50.62 6.31 506 1018 7 grassland 

Gevenich 50.99 6.32 107 718 10.3 crop 

Ruraue 50.86 6.43 100 718 10.3 grassland 

Wildenrath 51.13 6.17 72 722 10.3 needleleaf 

Wüstebach 50.51 6.33 605 1401 7 spruce 

Heinsberg 51.04 6.10 58 722 10.3 crop 

Kall 50.50 6.53 505 857 8 grassland 

Selhausen 50.87 6.45 101 718 10.3 crop 

Schöneseiffen 50.52 6.38 611 870 7 grassland 

Kleinhau 50.72 6.37 374 614 9 grassland 

Aachen 50.80 6.03 232 865 10.3 crop 

https://www.tereno.net/
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5.2.4 Data assimilation: localized EnKF 

DA consists of two steps: the forecast step and the analysis step (McLaughlin, 2002). 

During the forecast step, the state estimation relies solely on past information. In the subsequent 

analysis step, the states and/or parameters are estimated using the information from current 

measurements and the prior forecast, and the probability density of the states is propagated 

forward (McLaughlin, 2002). In this fashion, the forecast step (model prediction) and analysis 

step (filter application) are sequentially alternated during DA. 

The augmented state vector approach described in Hendricks Franssen et al. (2011) is used 

for multivariate DA and also for joint state and parameter updating. The model states for the 

fully coupled DA applied in this work are piezometric heads (h) and soil moisture (θ). Also, the 

parameter uncertainty of hydraulic conductivities (Ks) can be considered. The state-parameter 

vector in the EnKF is formulated as follows: 

 

𝛙𝛙 =  �
𝐱𝐱

𝑙𝑙𝑙𝑙𝑔𝑔10(𝐾𝐾𝑠𝑠)� =  �
ℎ
𝜃𝜃

𝑙𝑙𝑙𝑙𝑔𝑔10(𝐾𝐾𝑠𝑠)
�                   (5.1) 

 

To update states and parameters, measurements of piezometric heads (on the basis of 

groundwater table depths) and SM are used, which are combined in the measurement vector. 

The updating equation for ψ is calculated for each ensemble member j (j=1, …., N) 

(Evensen, 2003). In this work, ensemble members are generated by taking into account 

uncertainties in the atmospheric forcings and parameters (including Ks and porosity). The 

updating equation for an ensemble member is given by: 

 

𝝍𝝍𝑗𝑗
𝑠𝑠 =  𝝍𝝍𝑗𝑗

𝑓𝑓 +  𝛼𝛼𝐊𝐊�𝑦𝑦�𝑗𝑗 − 𝐇𝐇𝜓𝜓𝑗𝑗
𝑓𝑓�                       (5.2) 

 

where ψf 
j and ψa 

j are the forecasted and updated state-parameter vectors of the jth realization, 

yj is the perturbed measurement vector of piezometric heads (and SM), and K is the Kalman 

gain. α is a damping factor for the state (piezometric heads) or parameter update that takes 

values between 0 and 1. The damping factor (α) is used to reduce the modification of the 
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forecast with the Kalman gain and limit the intensity of the perturbation of the state (pressure 

head) or parameter (log10 Ks) (Gebler et al., 2019; Hung et al., 2022). This is needed because 

filter inbreeding may occur if the EnKF analysis is applied repeatedly in combination with a 

limited ensemble size, and this is related to the underestimation of the ensemble covariance 

(Hendricks Franssen and Kinzelbach, 2008).  

 The Kalman gain is given by: 

 

𝐊𝐊 = 𝐏𝐏𝐇𝐇𝑇𝑇(𝐇𝐇𝐏𝐏𝐇𝐇𝑇𝑇 + 𝐑𝐑)−1                         (5.3) 

 

The H is the observation operator that connects the observation and state vectors. P is the 

model covariance matrix of model states and uncertain parameters, and R is the measurement 

error covariance matrix. The accuracy of the filter is determined by the model covariance matrix 

P, calculated from the ensemble (Turner et al., 2008). 

The estimation of the covariances with a limited ensemble size is affected by spurious 

correlations between spatially distant grid cells. Therefore, in this study, the LEnKF proposed 

by Houtekamer and Mitchell (1998) is adopted to use distance-dependent localization to limit 

the influence of observation points to a certain radius only (Hamill et al., 2001). PHT is replaced 

by ρ∘PHT in Eq 5.3, and ρ∘PHT is the Schur product of the correlation matrix ρ and covariance 

matrix PHT, where ρ is a correlation matrix containing correlations between the grid cells and 

calculated by a fifth-order piecewise function, as given by Gaspari and Cohn (1999). 

The correlation ω between a grid point and an observation, i.e., an element in ρ, can be 

approximated as:  
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where l is the defined localization radius and e is the Euclidean distance between an 

analyzed grid point and an observation location. The correlations ω are distance-dependent and 

vary between 1 at observation locations and 0 at distances greater than twice the influence 



 

112 

 

radius l. 

In this work, the assimilated SM data were from the CRNS. Since the penetration depth of 

CRNS depends on SM, before assimilation, the measurement depth of CRNS observations was 

calculated using the method suggested by Schrön et al. (2017). Subsequently, PDAF specifies 

CRNS soil moisture observations for the soil layers until the measurement depth (see Fig 5.3). 

The observed data are used to update the simulated SM of those soil layers within the 

measurement depth. After the final assimilation, the average weighted SM from the simulations 

is compared with the SM data from CRNS to evaluate model performance. A more 

comprehensive description of the weighted SM calculations can be found in Schrön et al. (2017). 

For SM, the localization radii range (100 km) is larger than the domain size. Therefore, even 

though localization is applied, SM is updated throughout the whole domain. However, the 

localized correlations still lead to smaller updates further away from the observations, according 

to the fifth-order polynomial from Eq 5.4. The SM was updated on a daily basis, and the SM 

measurement error was 0.03 cm3/cm3. 

For groundwater assimilation in TSMP-PDAF (see Fig 5.3), GWL data need to be 

converted to pressure heads in the layers of the saturated zone, assuming a hydrostatic pressure 

distribution (Zhang et al., 2018). The delineation between the saturated and unsaturated zones 

is determined by the deepest groundwater table depth across all ensemble members, as 

suggested in Zhang et al. (2018). For groundwater assimilation, a horizontal localization radius 

of 5 km determined by the spatial correlations of GWL was used. The pressure head was 

updated weekly, considering the slow dynamics of GWL. The groundwater measurement error 

was set to 0.05 m. 

In the fully coupled DA approach with TSMP, all subsurface states are updated when 

assimilating GWL and/or SM (Zhang et al., 2018). Follow-up work with a large-scale CLM-

ParFlow model including realistic 3D subsurface heterogeneity showed that when GWL only 

updated the state of the saturated zone, it outperformed fully coupled DA (Hung et al., 2022).  

In this study, a new strategy called the weakly coupled approach was introduced in the 

multivariate DA of GWL and SM data to make the updates more stable. In the new approach, 

only the states corresponding to the saturated grid cells are updated with piezometric head 

measurements, whereas the states corresponding to the unsaturated zone (SM) are updated with 

SM observations. In the new multivariate DA strategy, the assimilation of GWL and SM 

employed the same assimilation parameters that were used in their respective univariate 

assimilations, including the localization radius and update frequency. Moreover, the parameter 
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Ks was updated weekly with a constant damping factor of 0.1. In addition, during assimilation, 

the saturated river grid cells were masked from the update to avoid numerical instabilities. 

 

 

Figure 5.3 Schematic overview of the assimilation of soil moisture from CRNS and 

groundwater (pressure head) with PDAF into TSMP (CLM-ParFlow). θf and θa are the 

forecasted and analyzed soil moisture in the unsaturated zone; hf and ha are the forecasted and 

analyzed pressure heads in the saturated zone. The observed pressure heads are derived from 

the measured groundwater levels. 

 

5.3 Model and Experiment Setup 
5.3.1 Ensemble generation 

To account for input uncertainties, the model CLM-ParFlow was perturbed with respect to 

model forcings and soil hydraulic parameters (hydraulic conductivity and porosity) to generate 

an ensemble of 128 members. Table 5.2 summarizes the statistics for atmospheric forcing 

perturbations. Four atmospheric forcing variables, including precipitation, shortwave radiation, 

longwave radiation, and air temperature, were perturbed, assuming a multivariate normal 

distribution and considering the temporal correlations of the atmospheric variables. The 

temporal correlations were induced by a first-order autoregressive model (Reichle et al., 2010; 

Han et al., 2015). The temporal correlations and standard deviations of the perturbations were 

determined based on prior DA experiments conducted at the regional scale (Reichle et al., 2010; 

Han et al., 2013; Han et al., 2015; Roland Baatz et al., 2017; Li et al., 2023a). Additionally, the 
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perturbed precipitation and shortwave radiation were multiplied by the corrected lognormally 

distributed noises to achieve mass and energy balance (Yamamoto, 2007). 

 

Table 5.2 Statistics for the perturbed atmospheric variables, including cross correlations 

between the atmospheric variables in the last column. The order of the variables in the last 

column is as indicated in the left column of the table. 

Variables Noise Standard deviation Time correlation scale Cross correlation 

Precipitation Multiplicative 0.3 24 h [ 1.0, -0.8, 0.5, 0.0,  

-0.8, 1.0, -0.5, 0.4, 

0.5, -0.5, 1.0, 0.4,  

0.0, 0.4, 0.4, 1.0] 

Shortwave radiation Multiplicative 0.2 24 h 

Longwave radiation Additive 20 W m-2 24 h 

Air temperature Additive 1 K 24 h 

 

The Rur domain in the model TSMP has a 500 m horizontal spatial resolution and consists 

of 25 layers with a total depth of 100 m, whereby the vertical resolution of the layers decreases 

with increasing depth. The topmost 10 layers extend to a depth of 3 meters and align with CLM 

soil layers to ensure that consistency is maintained. In contrast, the lower layers are considered 

to be bedrock. Separate perturbations were made to the Ks and porosity of the soil and bedrock 

layers. 

The soil hydraulic properties of the Mualem-Van Genuchten model were estimated by 

Rosetta pedotransfer functions (Schaap et al., 2001; Zhang and Schaap, 2017). First, the spatial 

distributions of sand and clay contents were perturbed separately by geostatistical simulation. 

Perturbations were simulated by spatially correlated random fields with zero mean, variance 

50%2, and correlation length of 12.5 km, using a spherical variogram model. To avoid any 

unrealistic soil texture values, the sand and clay percentages were constrained within a range 

of 0% to 100%. The spatially distributed silt contents were derived based on the sand and clay 

contents. Secondly, the spatially distributed Ks and porosity were then calculated by applying 

the Rosetta pedotransfer function to the perturbed soil textures for each ensemble member. 

For the underlying bedrock layers, the original Ks values were adopted from a spatially 

heterogeneous hydrogeological map (Fig 5.2). These log10Ks were for each ensemble member 

perturbed by sampling from a univariate uniform distribution with values between -0.5 and 0.5 

and then adding this perturbation to the original Ks values. The additive perturbation of log10Ks 

was spatially uniform. The porosity of the lower bedrock layers was fixed at a spatially constant 

value of 0.15. 
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5.3.2 Setup of data assimilation experiments 

The spin-up of the model was conducted for each ensemble member to achieve a dynamic 

hydrologic equilibrium for each realization. The spin-up consists of two steps. Firstly, ParFlow 

was run for 100 years, initialized with the multi-year average water table depth from Bogena et 

al. (2005), and repeatedly forced with 30-year average recharge values (derived from gridded 

German Meteorological Service data on precipitation and actual ET). Secondly, the equilibrium 

conditions obtained from ParFlow's spin-up were employed to initiate the spin-up for CLM-

ParFlow, forced by the atmospheric forcings of 2015 and run repeatedly for 10 years. After the 

warm-up period, DA experiments were conducted for three years (1st of January 2016 until 31st 

of December 2018) to assimilate GWL and SM. In this work, GWL measurements from 78 sites 

and SM measurements from 12 CRNS stations were assimilated by the localized EnKF. 

Eleven different DA experiments (Table 5.3) were carried out to investigate the 

assimilation performance. The abbreviation PAR indicates that parameters are updated together 

with model states. In addition to the DA experiments, parameter validation experiments were 

also conducted, i.e., using the updated Ks from the DA experiments as input parameters for the 

other independent years to perform OL and compare the results of the new parameters with the 

original ones. For example, the updated Ks from 2016 were validated in 2017 and 2018. 

 

Table 5.3 List of experiments conducted. GWL and SM denote groundwater level and soil 

moisture observations, respectively. h is pressure head, θ is soil moisture, and Ks is saturated 

hydraulic conductivity. The subscripts sat and unsat denote the saturated and unsaturated zones, 

respectively. The experiments FC_DA and FC_DA_PAR used the same fully coupled method 

as Hung et al. (2022). 

Experiments (abbrev.) Observations State vector GWL and SM local radius 

OL - - - 

SM_DA SM θ - 

SM_DA_PAR SM θ, log Ks - 

GWL_DA GWL hsat - 

GWL_DA_PAR GWL hsat, log Ks - 

FC_DA GWL, SM θ, h Same 

FC_DA_PAR GWL, SM θ, h, log Ks Same 

WC_DA GWL, SM θunsat, hsat Same 

WC_DA_PAR GWL, SM θunsat, hsat, log Ks Same 

WC_DA_r GWL, SM θunsat, hsat Different 
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WC_DA_r_PAR GWL, SM θunsat, hsat, log Ks Different 

 

5.3.3 Evaluation of model performance 

The performance of the OL and various DA scenarios was assessed by comparing the 

simulations with daily observations of GWL, SM, and ET. The evaluation utilized root mean 

square error (RMSE), unbiased root mean square error (ubRMSE), and correlation coefficient 

(R) as metrics. The RMSE at time step t is calculated as: 
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,                      (5.5) 

 

The ubRMSE at time step t is calculated as: 
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The R is calculated as: 
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where y sim 
t is the ensemble average of the simulated variable (GWL, SM, or ET) at time 

step t (from either an OL or a DA run), and y obs 
t is the corresponding observed value at time step 

t. Nobs is the total number of observations or validations at time step t, and n is the total number 

of time steps. 
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5.4 Results 
5.4.1 Univariate data assimilation of soil moisture  

Table 5.4 shows the variations in the ubRMSE of SM, ET, and GWL in the OL and 

univariate assimilation experiments of SM. Table B.1 provides additional details on RMSE and 

R for SM and ET. Assimilating SM data from CRNS stations alone led to significant 

improvements in SM forecasts at observation locations for the period from 2016 to 2018 (see 

Figs B.1-B.3). The reductions in ubRMSE and RMSE for SM in the SM_DA experiment were 

substantial, with decreases of over 45% and 50%, respectively. And the joint state parameter 

estimation performed better than the state update alone. The SM from the DA runs showed 

improved correlations, with R values ranging from 0.85 to 0.90, compared to R values between 

0.61 and 0.63 for the OL (Table B.1). However, the assimilation of SM data only slightly 

enhanced the ET simulation in RMSE, resulting in less than a 3% reduction compared to the 

OL. On the other hand, the GWL estimates deteriorate when only SM is assimilated. The 

ubRMSE of the GWL was increased from 7.23 m (OL) to 7.51 m (SM_DA). For SM 

assimilation, the parameter update had little impact on the simulations of the GWL. 

 

Table 5.4 Annual ubRMSE for estimated soil moisture (SM, cm3/cm3), evapotranspiration (ET, 

mm/day), and groundwater level (GWL, m) from 2016 to 2018 for OL, SM_DA, and 

SM_DA_PAR experiments. 

Year Variable 
Experiments 

OL SM_DA SM_DA_PAR 

2016 

SM 

0.08 0.05 0.05 

2017 0.09 0.04 0.04 

2018 0.09 0.05 0.04 

2016-2018 0.09 0.05 0.04 

2016 

ET 

0.63 0.65 0.64 

2017 0.66 0.66 0.66 

2018 0.68 0.70 0.70 

2016-2018 0.66 0.67 0.66 

2016 

GWL 

7.30 6.87 6.79 

2017 7.24 8.31 7.74 

2018 7.16 7.34 7.06 

2016-2018 7.23 7.51 7.20 

 

Fig 5.4 shows the differences in SM, ET, and GWL between the OL run and the DA runs 

(SM_DA or SM_DA_PAR) for the Rur catchment in 2018 (results for 2016 and 2017 are 
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provided in Figs B.4 and B.5). For the univariate assimilation of SM, significant spatial changes 

in SM were observed across the catchment after assimilation, becoming wetter in the north and 

drier in the south. This pattern can be attributed to climatic differences between the regions. 

The northern catchment, characterized by lower precipitation and higher temperatures, 

experiences greater moisture stress, leading DA to increase SM to reflect improved water 

availability. In contrast, the southern catchment, with higher precipitation and lower 

temperatures, already has relatively abundant SM, resulting in a reduction in SM after 

assimilation to better align with observed conditions. In 2018, the difference in the spatial 

variation of annual SM between the SM_DA and SM_DA_PAR experiments was not obvious. 

Nevertheless, for the years 2016 and 2017, the parameters exhibited a more prominent influence 

on the characterization of SM. This could be related to the hydrological conditions prevalent in 

those specific years. In particular, for the wet year 2016, the spatial correlation of SM was 

stronger when the soil was moist, thereby amplifying the role of parameter updates (Li et al., 

2023a).  

The spatial pattern of ET differences is similar to that of SM, indicating that SM 

assimilation has a direct influence on ET. For example, in the southern part of the catchment, 

both SM_DA and SM_DA_PAR experiments resulted in decreased ET compared to the OL run, 

which was associated with a decrease in SM. Likewise, in the northern part, ET increased due 

to the increase in SM after assimilation. However, the effect of SM assimilation on ET in the 

south was small, i.e., ET changes were mostly less than 50 mm yr-1, because ET in the south 

was generally energy limited. In the northern part of the Rur catchment, where precipitation 

was generally low, the ET simulation was more strongly influenced by assimilation. For 

example, an increase in SM due to assimilation resulted in an increase in ET of more than 100 

mm per year. 

Spatial changes in GWL were also observed in some parts of the catchment. Since the 

TSMP is a fully integrated model, the univariate assimilation of the SM also has an effect on 

the GWL. In addition, because the assimilation radius for the SM covers the entire catchment 

and the TSMP also accounts for lateral groundwater flow, GWL changes do not occur only in 

the vicinity of the CRNS sites. The variations in GWL were somewhat similar to the spatial 

variations in SM but not as consistent as for ET.  
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Figure 5.4 Subplots (a) to (c) are the differences (SM_DA - OL) of annual SM (0-80 cm), ET, 

and GWL in 2018. Subplots (d) to (f) are the differences (SM_DA_PAR - OL) of annual SM 

(0-80 cm), ET, and GWL in 2018. The locations of the CRNS stations are indicated by the black 

pentagrams. 

 

5.4.2 Univariate data assimilation of groundwater level  

Table 5.5 summarizes the GWL, SM, and ET simulation results over the different years 

for the GWL_DA and GWL_DA_PAR experiments. The ubRMSE of GWL were calculated at 

the assimilation locations (distance zero) and also for the validation locations as a function of 

the distance to the assimilation sites (i.e., 0-0.5 km, 0.5-2.5 km, and 2.5-5 km), showing similar 

trends. The RMSE for GWL is shown in Table B.2. When GWL was assimilated, this resulted 

mainly in simulated GWL changes at the groundwater monitoring locations (see Fig B.6, where 

12 groundwater monitoring wells are shown). The GWL simulations at the assimilated locations 

in the GWL_DA experiment were significantly improved, with the annual ubRMSE reduced 

from 7.23 m to 2.90 m. Furthermore, the ubRMSE of GWL was reduced to 2.04 m with the 
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joint state parameter estimation (GWL_DA_PAR), and the ubRMSE reduction of GWL was 

then 70%. Near groundwater assimilation locations, GWL characterization was also improved, 

with the benefits diminishing further away from the measurement locations. Joint state 

parameter updating (GWL_DA_PAR) always gave better results than state updating alone 

(GWL_DA). From 0-0.5 km, the ubRMSE of the GWL for the GWL_DA_PAR run was 

reduced from 6.96 m to 3.78 m, a 46% ubRMSE reduction. For separation distances greater 

than 0.5 km, the ubRMSE of the GWL from the GWL_DA_PAR experiment was still reduced 

by more than 10% compared to the OL run.  

However, when only GWL was assimilated, there was no improvement in the SM estimate. 

The SM ubRMSEs for the GWL_DA (0.09 cm3/cm3) and GWL_DA_PAR (0.11 cm3/cm3) 

experiments were similar or higher than the ubRMSE in the OL run (0.09 cm3/cm3). This lack 

of improvement in SM estimates also extended to ET, as the univariate GWL assimilation did 

not enhance the SM simulation. Consequently, the ET simulation showed no significant positive 

effects, with minimal variation in its ubRMSE, RMSE, and R values, as detailed in Table B.1. 

 

Table 5.5 Annual ubRMSE for estimated groundwater level (GWL, m), soil moisture (SM, 

cm3/cm3), and evapotranspiration (ET, mm/day) from 2016 to 2018 for OL, GWL_DA, and 

GWL_DA_PAR experiments. Note: Distance 0 indicates the groundwater assimilation 

locations, and 0-0.5 km, 0.5-2.5 km, and 2.5-5 km indicate groundwater validation locations at 

different distances from the groundwater assimilation sites. 

Year Variable Distance 
Experiments 

OL GWL _DA GWL _DA_PAR 

2016 

GWL 

0 

7.30  3.39  2.03  

2017 7.24  2.78  2.05  

2018 7.16  2.52  2.04  

2016-2018 7.23  2.90  2.04  

2016 

0-0.5 km 

7.23  6.54  3.70  

2017 6.95  4.46  4.02  

2018 6.69  3.89  3.62  

2016-2018 6.96  4.97  3.78  

2016 

0.5-2.5 km 

5.32  5.84  4.60  

2017 5.26  4.88  4.82  

2018 5.09  4.70  4.63  

2016-2018 5.22  5.14  4.68  

2016 

2.5-5 km 

6.37  6.36  5.12  

2017 6.31  5.50  4.99  

2018 6.03  5.29  5.16  

2016-2018 6.24  5.72  5.09  
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2016 

SM - 

0.08  0.10  0.10  

2017 0.09  0.09  0.11  

2018 0.09  0.10  0.11  

2016-2018 0.09  0.09  0.11  

2016 

ET - 

0.63  0.63  0.63  

2017 0.66  0.66  0.66  

2018 0.68  0.68  0.68  

2016-2018 0.66  0.66  0.66  

 

Fig 5.5 presents the annual differences in GWL, SM, and ET between the GWL 

assimilation experiments and the OL run for the Rur catchment in 2018. Corresponding results 

for 2016 and 2017 are available in Figs B.7 and B.8. Since a local radius of 5 km was applied 

for groundwater assimilation, significant GWL changes were primarily observed in the vicinity 

of the groundwater assimilation sites. In the mountainous southern part of the Rur catchment, 

where groundwater monitoring sites are sparse, no notable GWL changes were detected. While 

the spatial differences in GWL between GWL_DA and GWL_DA_PAR experiments were 

generally minor, certain areas of the catchment (in the middle) exhibited more pronounced 

GWL changes after assimilation due to the parameter update. 

Assimilation of GWL also affects the estimated SM near the groundwater assimilation 

sites, with increases and decreases in SM corresponding to changes in GWL. However, since 

most of the CRNS sites were far from the assimilated groundwater sites, the simulated SM for 

most of the CRNS sites remained largely unaltered. In addition, the difference between 

GWL_DA and GWL_DA_PAR experiments was minimal for the estimation of annual SM. The 

impact on ET simulations was confined to areas near the groundwater assimilation sites, due to 

the limited localization radius used in the groundwater assimilation. The spatial patterns of SM 

and ET changes were also similar, reflecting the direct relationship between ET and SM changes. 
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Figure 5.5 Subplots (a) to (c) are the differences (GWL_DA - OL) of annual GWL, SM (0-80 

cm), and ET in 2018. Subplots (d) to (f) are the differences (GWL_DA_PAR - OL) of annual 

GWL, SM (0-80 cm), and ET in 2018. The locations of the assimilated groundwater sites are 

indicated by the black circles. 

 

5.4.3 Multivariate data assimilation of groundwater level and soil moisture 

Table 5.6 presents the ubRMSE for GWL, SM, and ET across various multivariate DA 

experiments conducted over different years. The RMSE for GWL is shown in Table A.3. 

Averaged over the period from 2016 to 2018, WC_DA_PAR achieved the most accurate GWL 

estimations at the assimilation locations, with a ubRMSE reduction of 72% (from 7.23 m to 

2.05 m). This performance is comparable to that of the univariate GWL assimilation 

(GWL_DA_PAR), which yielded a ubRMSE of 2.04 m. At the validation locations between 0 

and 0.5 km, the joint assimilation of GWL and SM was less effective in estimating GWL than 

the univariate GWL assimilation. However, the difference was not statistically significant. 

Additionally, the WC_DA_r_PAR experiment showed the lowest ubRMSE (4.56 m) for GWL 
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at distances 0.5 to 2.5 km from assimilation locations (among all univariate and multivariate 

DA experiments), while the FC_DA_PAR experiment yielded the smallest ubRMSE (4.91 m) 

for distances between 2.5 and 5 km from assimilation locations. 

The characterization of SM in multivariate DA experiments showed notable improvement, 

with WC_DA_PAR achieving the largest reduction in ubRMSE (50%). The corresponding 

RMSE and R for SM and ET are detailed in Table B.4. However, the statistical metrics of SM 

in multivariate assimilation experiments (FC_DA or FC_DA_PAR) were not superior to those 

in the univariate assimilation experiments (SM_DA or SM_DA_PAR). This indicates that 

incorporating additional groundwater level data does not enhance SM estimation in the fully 

coupled model. While the multivariate assimilation experiments resulted in a slight 

improvement in ET simulations, with an approximate reduction in RMSE of 3%, this 

improvement was not reflected in the ubRMSE. Moreover, the inclusion or exclusion of 

parameter updates did not significantly impact the ET simulations in the multivariate 

assimilation experiments. 

 

Table 5.6 Annual ubRMSE for estimated groundwater level (GWL, m), soil moisture (SM, 

cm3/cm3), and evapotranspiration (ET, mm/day) from 2016 to 2018 for OL and multivariate 

assimilation experiments. Note: Distance 0 indicates the groundwater assimilation locations, 

and 0-0.5 km, 0.5-2.5 km, and 2.5-5 km indicate groundwater validation locations at different 

distances from the groundwater assimilation sites. 

Year Variable Distance 
Experiments 

OL FC_DA FC_DA_PAR WC_DA WC_DA_PAR WC_DA_r WC_DA_r_PAR 

2016 

GWL 

0 

7.30  3.24  2.96  3.14  2.13  3.24  2.37  

2017 7.24  4.06  2.88  2.93  1.98  3.01  2.04  

2018 7.16  3.44  3.06  3.33  2.03  2.57  2.11  

2016-2018 7.23  3.58  2.97  3.13  2.05  2.94  2.17  

2016 

0-0.5 km 

7.23  4.64  4.43  4.16  4.23  4.41  4.52  

2017 6.95  3.96  3.69  3.94  4.60  4.27  3.49  

2018 6.69  3.25  3.54  3.93  3.62  3.96  3.61  

2016-2018 6.96  3.95  3.89  4.01  4.15  4.21  3.87  

2016 

0.5-2.5 km 

5.32  5.57  4.72  4.73  7.56  4.73  4.67  

2017 5.26  4.75  4.78  4.65  4.73  4.61  4.48  

2018 5.09  4.34  4.46  4.66  4.79  4.61  4.52  

2016-2018 5.22  4.89  4.65  4.68  5.70  4.65  4.56  

2016 

2.5-5 km 

6.37  5.65  5.03  5.27  8.24  7.54  5.61  

2017 6.31  5.23  5.02  5.38  5.52  7.01  7.81  

2018 6.03  4.89  4.68  5.30  5.18  5.68  5.10  

2016-2018 6.24  5.26  4.91  5.32  6.31  6.74  6.17  
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2016 

SM - 

0.08  0.05  0.05  0.06  0.04  0.06  0.04  

2017 0.09  0.06  0.06  0.05  0.04  0.05  0.04  

2018 0.09  0.08  0.05  0.07  0.04  0.05  0.04  

2016-2018 0.09  0.06  0.05  0.06  0.04  0.05  0.04  

2016 

ET - 

0.63  0.63  0.64  0.63  0.63  0.64  0.64  

2017 0.66  0.66  0.66  0.66  0.66  0.66  0.66  

2018 0.68  0.70  0.70  0.70  0.70  0.70  0.70  

2016-2018 0.66  0.66  0.67  0.66  0.66  0.66  0.66  

 

For a better comparison, the ubRMSE scores for the univariate and multivariate 

assimilation experiments are illustrated in Fig 5.6. The fully coupled model (FC_DA and 

FC_DA_PAR) demonstrated improved performance in estimating GWL and SM compared to 

the OL run. However, these results were less accurate than those achieved through univariate 

assimilation of GWL or SM for their respective variables. In contrast, the weakly coupled model 

(WC_DA and WC_DA_PAR) provided more accurate estimates of GWL and SM than the fully 

coupled model. As shown in Fig 5.6, the WC_DA_r and WC_DA_r_PAR experiments yielded 

overall better results for GWL and SM at the assimilated locations compared to other 

multivariate assimilation experiments. However, when validating GWL at distances of 2.5 to 5 

km from the assimilation sites, the results were slightly less accurate than those from the fully 

coupled model. The slight decrease in accuracy is likely due to the larger assimilation radius 

employed for SM, which exerted a more pronounced influence on the GWL estimates. As a 

comparison, the SM-only assimilation demonstrated that updating SM alone resulted in a less 

precise estimation of GWL. 
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Figure 5.6 Average ubRMSE of GWL (at different distances from the assimilated groundwater 

sites) and SM for each univariate and multivariate assimilation experiment. The left axis 

corresponds to GWL and the right axis to SM. 

 

Fig 5.7 presents the variations in annual GWL, SM, and ET across different multivariate 

assimilation experiments compared to the OL run for the Rur catchment in 2018. Given that the 

results from jointly updating states and parameters closely mirror those from updating states 

alone, only the former is displayed. Corresponding graphs for the years 2016 and 2017 are 

available in Figs B.9 and B.10. In the WC_DA_PAR experiment, the alterations observed in 

the GWL estimates closely resemble those observed in the GWL univariate assimilation 

experiments. This similarity arises from the identical groundwater updating strategy, which 

involves updating the pressure head within the saturated zone only. Notably, GWL changes also 

occurred in regions of the catchment without groundwater assimilation sites. These changes are 

attributed to the influence of SM updates in the multivariate assimilation experiments, 

specifically for FC_DA_PAR and WC_DA_r_PAR. 

The spatial SM pattern observed in the WC_DA_r_PAR experiment closely resembled that 

of the univariate SM assimilation, as both employed the same assimilation radius for SM 

updates. However, due to the smaller localization radius (5 km) used in the FC_DA_PAR and 
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WC_DA_PAR experiments, SM alterations were mainly concentrated near the CRNS sites. It 

is noteworthy that differences in annual SM changes were also observed in the vicinity of 

groundwater sites located in the northern part of the catchment. This indicates that GWL 

impacted the estimation of SM when GWL and SM were assimilated jointly. With respect to 

ET, the spatial variation is consistent with SM, as ET is directly affected by SM. Additionally, 

in the multivariate assimilation experiments, the SM of some locations near the groundwater 

assimilation sites was also modified by GWL updates. This led to ET changes that may differ 

from those in the univariate SM assimilation. 

 

 

Figure 5.7 Differences in annual GWL, SM, and ET between various multivariate DA 

experiments and OL run in 2018: (a, d, g) FC_DA_PAR; (b, e, h) WC_DA_PAR; (c, f, i) 

WC_DA_r_PAR. The red pentagrams and black circles indicate the locations of the CRNS 
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stations and the assimilated groundwater sites, respectively. 

 

 To provide a more detailed comparison between univariate and multivariate assimilation, 

Fig 5.8 depicts the temporal evolution of SM and GWL at a CRNS station and a groundwater 

site across all DA experiments. The time series of predicted SM in the GWL_DA and 

GWL_DA_PAR experiments are very similar to OL, indicating minimal impact of GWL 

information on SM prediction in these cases. Similarly, univariate SM assimilation alone does 

not change the GWL much. When GWL is assimilated, the simulations of GWL become 

progressively closer to the measurements over time. Among the multivariate assimilation 

experiments, the fully coupled models (FC_DA and FC_DA_PAR) exhibit the largest 

discrepancies between the simulated and observed GWL and SM values. Overall, simulated 

GWL and SM differ not much between the DA experiments involving joint state and parameter 

updates and those with state updates alone. 
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Figure 5.8 Temporal evolution of SM at the CRNS station Kall and GWL at a groundwater site 

for OL and different DA experiments in 2018: (a, b) SM_DA and SM_DA_PAR; (c, d) 

GWL_DA and GWL_DA_PAR; (e, f) FC_DA and FC_DA_PAR; (g, h) WC_DA and 

WC_DA_PAR; (i, j) WC_DA_r and WC_DA_r_PAR. 
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5.4.4 Influence of Ks updates on simulations 

In general, the performance of including parameter updates is superior to that of including 

only state updates in all DA experiments. To further investigate the effectiveness of the 

estimated parameters, these parameters were applied to OL experiments for independent years 

and compared with the simulations using the prior (not updated) parameter values. Table 5.7 

summarizes the performance statistics, including RMSE, ubRMSE, and R for different 

variables (GWL, SM, and ET) during the parameter evaluation period. The updated Ks from the 

SM_DA_PAR experiment improved the estimation of SM, as indicated by enhancements across 

all evaluation metrics. For instance, the ubRMSE for SM in the OL validation runs decreased 

from 0.09 cm3/cm3 (prior Ks) to 0.08 cm3/cm3 (updated Ks from SM_DA_PAR). However, the 

updated Ks did not lead to improvement in GWL estimates, nor was there a notable enhancement 

in ET characteristics. 

When the OL runs for the other independent years were performed using the updated Ks 

from the GWL_DA_PAR experiments, the overall RMSE and ubRMSE of GWL were slightly 

reduced (less than 2%) compared to using the prior Ks. Furthermore, the simulation of GWL at 

unassimilated locations improved with the updated Ks. Specifically, at distances of 2.5 to 5 km 

from the assimilated sites, the simulated GWL showed nearly 4% improvement, with the 

ubRMSE decreasing from 6.24 m to 6.01 m. However, there was no obvious positive effect on 

the SM and ET simulations with the updated Ks from the GWL_DA_PAR experiment. 

The updated Ks from the WC_DA_r_PAR experiment did not enhance GWL simulations 

at the assimilation locations during the validation periods in the OL run. However, compared to 

GWL_DA_PAR, the updated Ks from the WC_DA_r_PAR experiment demonstrated superior 

performance in GWL estimation at non-assimilated locations. Specifically, the ubRMSE of 

GWL was reduced by more than 4% at distances of 0~0.5 km and 2.5~5 km from the assimilated 

sites. Additionally, the updated Ks contributed to improved SM simulations, with the ubRMSE 

of SM decreasing from 0.09 cm³/cm³ (using prior Ks) to 0.08 cm³/cm³ in the WC_DA_r_PAR 

experiment. Despite these improvements, the updated Ks from the WC_DA_r_PAR experiment 

did not significantly influence ET characterization. 

 

Table 5.7 Averaged statistical metrics for the estimated groundwater level (GWL), soil moisture 

(SM), and evapotranspiration (ET) for all the validation experiments from 2016 to 2018. Note: 

Distance 0 indicates the groundwater assimilation locations, and 0-0.5 km, 0.5-2.5 km, and 2.5-

5 km indicate groundwater validation locations at different distances from the groundwater 
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assimilation sites. 

Variable Distance Metrics Ks from SM_DA_PAR Ks from GWL_DA_PAR Ks from WC_DA_r_PAR 

GWL 

0 

RMSE (m) 7.90  

7.16  7.32  

0-0.5 km 6.92  6.84  

0.5-2.5 km 6.54  6.50  

2.5-5 km 6.98  6.95  

0 

ubRMSE (m) 7.27  

7.09  7.23  

0-0.5 km 6.71  6.63  

0.5-2.5 km 5.21  5.17  

2.5-5 km 6.01  5.97  

SM - 

RMSE (cm3/cm3) 0.09  0.10  0.09  

ubRMSE (cm3/cm3) 0.08  0.09  0.08  

R 0.67  0.60  0.68  

ET - 

RMSE (mm/day) 0.75  0.76  0.75  

ubRMSE (mm/day) 0.66  0.66  0.66  

R 0.83  0.84  0.83  

 

Fig 5.9 depicts the changes in the spatial ensemble means of logKs at 2 cm and 10 m depth 

for different experiments (SM_DA_PAR, GWL_DA_PAR, and WC_DA_r_PAR) compared to 

the OL run. Results are shown for the year 2018 (results for 2016 and 2017 are provided in Figs 

B.11 and B.12). The spatial patterns of updates in Ks for these three years were similar. In the 

SM_DA_PAR experiment, Ks changed not only in the root zone but also indirectly in the 

saturated zone at 10 m. These alterations in Ks could potentially influence the GWL estimate. 

For the GWL_DA_PAR experiment, state updates were confined to the saturated zone, resulting 

in significant changes in Ks within the saturated zone at assimilated locations. The unsaturated 

zone showed no noticeable effect from these updates. 

In the WC_DA_r_PAR experiment, SM and GWL variables were assimilated 

independently. Consequently, the changes in Ks in the unsaturated zone were expected to 

resemble those observed in the SM_DA_PAR run, while changes in the saturated zone would 

be following those in the GWL_DA_PAR run. The results demonstrate that the spatial patterns 

of Ks updates in these zones are indeed similar to those seen in the respective univariate 

assimilation experiments. However, since the updates for GWL and SM in the multivariate 

assimilation are interrelated, the updated Ks values reflect more complex interactions than a 

simple superposition of the updates from the two univariate assimilation experiments. This led 

to more pronounced variations in Ks across different subsurface depths in certain areas of the 

study region. 
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Figure 5.9 Differences in ensemble averaged logKs between OL and different DA experiments 

in 2018: (a) and (d) SM_DA_PAR; (b) and (e) GWL_DA_PAR; (c) and (f) WC_DA_r_PAR. 

The first row is from 2 cm depth, and the second row is from 10 m depth. The red pentagrams 

and black circles indicate the locations of CRNS stations and the assimilated groundwater sites, 

respectively. 

 

5.5 Discussions 
5.5.1 Strengths and limitations of new multivariate data assimilation approach 

This study demonstrates a new multivariate assimilation approach that improves the 

estimates of both GWL and SM. In contrast, univariate assimilation, which focuses solely on 

either SM or GWL, tends to improve the estimation of the targeted variable but often degrades 

the accuracy of the non-assimilated variable. This degradation may be attributed to unrealistic 

inter- and cross-variable correlations introduced during the assimilation process. It may also be 

related to the use of real in-situ measurements. CRNS and groundwater sites are scattered 

throughout the catchment. Thus, the assimilation of a single variable (e.g., GWL) makes it 

difficult to improve the estimation of variables (e.g., SM) from other distant grid points. 

Hung et al. (2022) already concluded for a complex synthetic case for a region in 

southwestern Germany that updating only saturated subsurface states outperforms fully coupled 
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DA in GWL estimation, in contrast to earlier experiments with highly simplified synthetic 

setups (Zhang et al., 2018). However, the GWL and SM synthetic data for the assimilated sites 

in Hung et al. (2022) lie within the same grid. This study was conducted for a real catchment 

where most of the groundwater and CRNS soil moisture monitoring sites are not located on the 

same grid, providing a more realistic representation of the distribution of soil moisture and 

groundwater level observation locations. Our study shows that the newly proposed multivariate 

assimilation approach performs better in state prediction than the fully coupled DA method 

used by Hung et al. (2022). The advantage of the new approach is the use of independent 

updates during the multivariate assimilation. This method enables the saturated zone pressure 

to be updated using GWL measurements, while the unsaturated zone SM is updated using 

CRNS SM measurements. Moreover, using different localization radii for GWL and SM 

assimilation can better capture their respective spatial characteristics, reduce the negative 

impact of distant errors on assimilation, and ensure more accurate state updates, thereby 

improving the performance of joint assimilation. In addition, asynchronous assimilation allows 

the use of different update frequencies for various variables. For example, soil moisture can be 

updated daily to capture its more rapid variations, while groundwater, which typically changes 

more slowly, can be updated weekly. By assimilating data asynchronously, the timescales of 

both fast-changing and slow-changing process can be more appropriately considered in the 

coupled models. As a result, the predictions of multiple variables can be corrected in a coupled 

model using different data sources, minimizing the risk of confounding factors and reducing 

the impact of spurious correlations. Therefore, our study highlights applying DA across 

terrestrial compartments in integrated models when dealing with real-world cases. 

The advantage of the new approach is the use of independent updates during the 

multivariate assimilation. This method enables the saturated zone pressure to be updated using 

GWL measurements, while the unsaturated zone SM is updated using CRNS SM measurements. 

As a result, the predictions of multiple variables can be corrected in a coupled model using 

different data sources, minimizing the risk of confounding factors and reducing the impact of 

spurious correlations. 

The multivariate DA experiments were conducted over three years (2016-2018) under 

varying hydrological conditions. While some year-to-year variations were observed, the results 

remained robust and consistent across the study period. The new multivariate assimilation 

method demonstrated improved predictions of multiple variables within the integrated 

terrestrial system. However, it is important to note that the ubRMSE of GWL at certain distances 

(2.5~5 km) was larger in the multivariate assimilation experiments compared to the univariate 
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GWL assimilation runs (6.17 m vs. 5.09 m). Thus, while multivariate assimilation incorporates 

additional types of measurements compared to univariate assimilation, it does not always 

provide additional benefits.  

These results are also consistent with the study on an artificial hillslope by Botto et al. 

(2018), in which the CATHY model was used. This study showed that the assimilation of 

additional variables may lead to a degradation of model predictions for other variables. Their 

results indicated that the poor quality of pressure head measurements limited the performance 

of the filter. However, in the study by Zhang et al. (2016), the poor model predictions of the 

joint GWL and SM assimilation were likely caused by unrealistic cross-variable correlations 

due to limited ensemble sizes. The reasons for the limited benefits of multivariate assimilation 

(compared to univariate assimilation) may therefore differ from model to model. 

In addition to the assimilation variables, the related variable ET in the integrated model 

was also evaluated. However, the results indicated that the GWL assimilation did not improve 

the estimation of ET. The difficulty is related to the limited improvement in SM characterization. 

In areas where the GWL is relatively deep, the near-surface SM and ET are less influenced by 

GWL assimilation. In this study, only the assimilation of SM observations into integrated 

models yielded some improvement in ET estimates, but to a limited extent. The multivariate 

DA experiments did not further improve ET simulations but retained the same degree of positive 

effect on ET as the univariate assimilation of SM. 

 

5.5.2 Uncertainties and potential improvement 

This study introduces innovative approaches for the implementation of multivariate 

assimilation within integrated hydrological models. However, there are still uncertainties that 

need to be addressed in future studies. The coarse spatial discretization of the model is 

considered as one of the sources of uncertainty. Coarser model resolution tends to flatten the 

topography, thus reducing the gradients of surface and groundwater flow, and is expected to 

introduce a systematic bias in the simulated GWL. In the future, higher model resolutions (e.g., 

100 m) could be tested to better represent groundwater bodies associated with narrow valleys, 

thus eliminating the bias due to coarser model resolution. Moreover, potential biases in the 

observed data are not considered in this study. In practical applications, various methods can 

be used to assimilate observations with consistent biases, such as rescaling observations or 

subtracting long-term averages from observations (Hain et al., 2012; Pauwels et al., 2013; 

Zhang et al., 2016; Pauwels et al., 2020). 
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Additionally, structural errors within the model can pose additional challenges for DA 

when using real data. In this study, GWL is assimilated under the assumption of hydrostatic 

conditions, but the reality is much more complex. Multiple aquifers may be present, stacked on 

top of each other, and separated by aquitards. In addition, aquifers can be separated horizontally 

by fault lines, and these disruptions can affect the continuity of aquifers, potentially influencing 

water flow and distribution. Furthermore, aquifers can be strongly affected by artificial water 

extraction. This is particularly the case in the Rur catchment, where water management to keep 

open-cast lignite mines free of water has a major impact on hydrogeology (Bogena et al., 2018). 

These problems can be mitigated by GWL assimilation, which can help calibrate the model, 

adjust parameters to match observed data, and improve the predictive capabilities of the model 

to better represent the complexities of multiple aquifers, water withdrawals on aquifer systems, 

and mining activities. 

The SM data assimilated in this study were derived from the CRNS observations. 

Therefore, the quality of DA depends on the accuracy of the CRNS calibration and also on the 

depth weighting function applied (i.e., Schrön et al., 2017). A more direct way is to assimilate 

the CRNS neutron intensity with the COSMIC operator (Shuttleworth et al., 2013), which is 

currently being implemented in TSMP-PDAF and will be available for future DA studies. 

The EnKF was specifically developed to deal with nonlinear models and is therefore 

attractive for predictions with integrated terrestrial system models, but it has already 

encountered limitations in applications to single terrestrial compartments. In this study, 

univariate assimilation of GWL or SM resulted in a deterioration in the simulation accuracy of 

other variables. The nonlinear relationship between GWL (pressure head) and SM increases the 

complexity of the model-data fusion problem, and therefore multivariate assimilation may lead 

to significant trade-offs that further limit filter performance (Brandhorst et al., 2017; Botto et 

al., 2018). In this work, separate DA analyses were applied to the interrelated hydrologic 

processes to improve GWL and SM predictions together. As more RS and terrestrial field data 

become available at lower cost, these data sources can be used for DA. However, determining 

the most appropriate data types for assimilation and examining the trade-offs that may arise 

when assimilating different variables in a multivariate assimilation framework remain critical 

challenges for future research. Multivariate assimilation may potentially be improved in several 

ways, including the use of variants of EnKF, hybrid approaches of EnKF and other filters, or 

bias-aware filters. 

The ultimate goal of multivariate assimilation is to correct the estimates of not only the 

states but also the relevant parameters. In this work, only the most sensitive parameter of the 
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subsurface groundwater model, Ks, was updated, and independent validation results with the 

updated Ks also show improved estimates of GWL or SM. Although it is theoretically possible 

to estimate more parameters, Brandhorst and Neuweiler et al. (2023) found numerical 

convergence problems in synthetic studies when assimilating SM to update multiple soil 

hydraulic parameters. Therefore, it is more difficult to update all van Genuchten parameters for 

real-world cases. The synthetic study by Shi et al. (2015) also showed that as the number of soil 

hydraulic parameters increases, it becomes increasingly difficult to estimate different 

parameters simultaneously with EnKF. However, they found that it is helpful to assimilate more 

types of data to improve the estimates of soil hydraulic parameters. In the future, multivariate 

assimilation using multi-source data should be considered to update relevant parameters in 

coupled land surface-subsurface models to improve the accuracy of model predictions. 

This study was conducted in the Rur catchment, which benefits from a dense and precise 

in-situ measurement network for CRNS and groundwater level stations. The availability of such 

comprehensive datasets provides a distinctive opportunity to validate the novel multivariate 

assimilation method at the catchment scale. To the best of our knowledge, no other catchment 

provides a similarly comprehensive combination of well-established monitoring infrastructure. 

To broaden the applicability of our method, future studies should explore the use of more 

accessible datasets, e.g., remote sensing data such as groundwater storage variations from 

GRACE/GRACE-FO (Li et al., 2024) or soil moisture from SMAP. 

 

5.6 Conclusions 
In this study, different methods were tested to assimilate GWL and SM observations from 

a dense observation network into the integrated land surface-subsurface model TSMP for the 

Rur catchment in Germany. The advantages and disadvantages of using these observations 

individually or in joint DA approaches were analyzed. Furthermore, a new multivariate data 

assimilation approach is proposed, in which the weakly coupled assimilation of GWL and SM 

with the LEnKF is performed separately so that the update becomes more stable. Groundwater 

observations are assimilated to update the position of the unsaturated-saturated zone interface 

and the saturated zone states (and possibly parameters). SM observations are assimilated to 

update the unsaturated zone states (and possibly parameters). For this study, 128 ensemble 

members were generated by perturbing atmospheric forcings and subsurface hydraulic 

parameters, and DA experiments were conducted for the years 2016-2018. In addition to GWL 

and SM observations, ET data from eddy covariance stations were used to evaluate the 

influence of univariate or multivariate DA on the estimates of GWL, SM, and ET.  
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The various DA experiments resulted in different levels of improvement in model 

predictions, with results varying across different years. In general, the univariate assimilation 

experiments were more successful in characterizing the variable for which measurements were 

assimilated. For example, SM assimilation resulted in 50% ubRMSE reductions in SM at the 

observation sites. In the case of GWL assimilation, the GWL ubRMSE was reduced by 70% at 

the observation sites, by almost 50% at a distance of 500 m, and by about 20% at 5 km. However, 

the univariate assimilation of GWL degraded the prediction accuracy of SM, and the univariate 

assimilation of SM also diminished the estimation of GWL. 

Joint assimilation of GWL and SM using the original method of the fully coupled model 

does not provide additional benefits over univariate assimilation but rather is much less 

effective. Nevertheless, the newly proposed multivariate assimilation approach effectively 

combines the advantages of the different univariate assimilation schemes. As a result, the 

accuracy of the assimilated variables in the multivariate assimilation is comparable to that 

achieved through univariate assimilation. Overall, it can be concluded that the joint assimilation 

of GWL and SM using the new approach has an advantage over univariate assimilation. In 

addition, the characterization of ET only could be improved when SM is assimilated for 

univariate or multivariate assimilation.  

This study demonstrates the potential of joint assimilation of SM and GWL observations 

from CRNS and groundwater monitoring networks to improve hydrological modeling of 

terrestrial systems with process-based integrated model systems. Future work should 

concentrate on multivariate DA with more data types from diverse sources (e.g., RS data and 

terrestrial observations) to improve the estimation of multiple terrestrial compartments at higher 

spatial resolutions. This involves exploring the interactions between different variables in 

integrated models during multivariate assimilation and developing more effective DA strategies 

to avoid degradation of non-assimilated variables.  

  

Appendix B 
Table B.1 RMSE and R for estimated SM and ET from 2016 to 2018 for OL and univariate data 

assimilation experiments.  

Year Variable OL SM_DA SM_DA_PAR GWL _DA GWL _DA_PAR 

2016 
SM 

(RMSE, 

cm3/cm3) 

0.11  0.06  0.05  0.12  0.12  

2017 0.10  0.05  0.04  0.10  0.11  

2018 0.09  0.05  0.04  0.10  0.11  

2016-2018 0.10  0.05  0.05  0.10  0.11  
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2016 

SM (R) 

0.62  0.85  0.85  0.50  0.47  

2017 0.63  0.88  0.88  0.58  0.43  

2018 0.61  0.89  0.90  0.56  0.46  

2016-2018 0.62  0.87  0.88  0.55  0.46  

2016 
ET 

(RMSE, 

mm/day) 

0.76  0.72  0.71  0.76  0.76  

2017 0.79  0.77  0.77  0.79  0.79  

2018 0.73  0.75  0.75  0.73  0.73  

2016-2018 0.76  0.74  0.74  0.76  0.76  

2016 

ET (R) 

0.82  0.80  0.81  0.82  0.82  

2017 0.86  0.86  0.86  0.86  0.86  

2018 0.83  0.82  0.82  0.83  0.83  

2016-2018 0.84  0.83  0.83  0.84  0.84  

 

Table B.2 Annual RMSE for estimated GWL (m) from 2016 to 2018 for OL and univariate data 

assimilation experiments. 

Year Distance OL GWL _DA GWL _DA_PAR SM_DA SM_DA_PAR 

2016 

0 

7.30  3.40  2.04  

7.39  7.92  
2017 7.24  2.77  2.05  

2018 7.24  2.50  2.05  

2016-2018 7.26  2.89  2.05  

2016 

0-0.5 km 

7.27  6.51  3.66  

8.43  7.96  
2017 6.98  4.43  3.87  

2018 6.77  3.83  3.56  

2016-2018 7.01  4.92  3.70  

2016 

0.5-2.5 km 

6.49  6.49  5.55  

7.84  7.69  
2017 6.45  5.84  5.69  

2018 6.31  5.52  5.52  

2016-2018 6.42  5.95  5.59  

2016 

2.5-5 km 

7.12  6.89  5.92  

7.89  7.86  
2017 7.10  6.29  5.82  

2018 6.92  6.05  5.89  

2016-2018 7.05  6.41  5.88  

 

Table B.3 Annual RMSE for estimated GWL (m) from 2016 to 2018 for OL and multivariate 

data assimilation experiments. Note: Distance 0 indicates the groundwater assimilation 

locations, and 0-0.5 km, 0.5-2.5 km, and 2.5-5 km indicate groundwater validation locations at 

different distances from the groundwater assimilation sites. 

Year Distance OL FC_DA FC_DA_PAR WC_DA WC_DA_PAR WC_DA_r WC_DA_r_PAR 

2016 

0 

7.30  3.36  3.27  3.17  2.17  3.25  2.38  

2017 7.24  4.29  3.19  2.93  1.98  3.02  2.05  

2018 7.24  3.64  3.32  3.38  2.03  2.62  2.15  
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2016-2018 7.26  3.76  3.26  3.16  2.06  2.96  2.19  

2016 

0-0.5 km 

7.27  4.73  4.55  4.11  4.24  4.40  4.52  

2017 6.98  4.00  3.71  3.92  4.60  4.25  3.46  

2018 6.77  3.15  3.70  3.85  3.56  3.93  3.58  

2016-2018 7.01  3.96  3.98  3.96  4.13  4.19  3.85  

2016 

0.5-2.5 

km 

6.49  6.53  6.01  5.66  8.00  5.82  5.65  

2017 6.45  5.84  5.74  5.55  5.68  5.72  5.58  

2018 6.31  5.44  5.75  5.53  5.60  5.72  5.55  

2016-2018 6.42  5.93  5.83  5.58  6.43  5.75  5.59  

2016 

2.5-5 km 

7.12  6.55  6.18  6.09  8.54  7.92  6.20  

2017 7.10  6.03  5.91  5.99  6.18  7.46  8.17  

2018 6.92  5.77  5.92  6.01  5.92  6.37  5.91  

2016-2018 7.05  6.12  6.00  6.03  6.88  7.25  6.76  

 

Table B.4 RMSE and R for estimated SM and ET from 2016 to 2018 for OL and multivariate 

data assimilation experiments. 

Year Variable OL FC_DA FC_DA_PAR WC_DA WC_DA_PAR WC_DA_r WC_DA_r_PAR 

2016 

SM  

(RMSE, cm3/cm3) 

0.11  0.05  0.05  0.07  0.05  0.06  0.05  

2017 0.10  0.07  0.06  0.05  0.04  0.05  0.04  

2018 0.09  0.08  0.05  0.07  0.04  0.05  0.04  

2016-2018 0.10  0.07  0.05  0.06  0.04  0.05  0.05  

2016 

SM 

(R) 

0.62  0.85  0.87  0.75  0.90  0.74  0.88  

2017 0.63  0.74  0.81  0.85  0.89  0.86  0.88  

2018 0.61  0.69  0.85  0.71  0.92  0.88  0.89  

2016-2018 0.62  0.76  0.84  0.77  0.90  0.83  0.88  

2016 

ET  

(RMSE, mm/day) 

0.76  0.71  0.71  0.71  0.71  0.71  0.71  

2017 0.79  0.77  0.77  0.77  0.77  0.77  0.77  

2018 0.73  0.75  0.75  0.75  0.75  0.75  0.75  

2016-2018 0.76  0.74  0.75  0.74  0.74  0.74  0.74  

2016 

ET  

(R) 

0.82  0.81  0.81  0.81  0.81  0.81  0.81  

2017 0.86  0.86  0.86  0.86  0.86  0.86  0.86  

2018 0.83  0.82  0.82  0.82  0.82  0.82  0.82  

2016-2018 0.84  0.83  0.83  0.83  0.83  0.83  0.83  
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Figure B.1 Temporal evolution of simulated soil moisture from the OL (blue), SM_DA (green), 

and SM_DA_PAR (black) experiments, together with observed soil moisture from CRNS (Obs, 

red) for the year 2016 at the CRNS sites. Simulated soil moisture was vertically weighted. 
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Figure B.2 Temporal evolution of simulated soil moisture from the OL (blue), SM_DA (green), 

and SM_DA_PAR (black) experiments, together with observed soil moisture from CRNS (Obs, 

red) for the year 2017 at the CRNS sites. Simulated soil moisture was vertically weighted. 
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Figure B.3 Temporal evolution of simulated soil moisture from the OL (blue), SM_DA (green), 

and SM_DA_PAR (black) experiments, together with observed soil moisture from CRNS (Obs, 

red) for the year 2018 at the CRNS sites. Simulated soil moisture was vertically weighted. 
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Figure B.4 Subplots (a) to (c) are the differences (SM_DA - OL) of annual SM (0-80 cm), ET, 

and GWL in 2016. Subplots (d) to (f) are the differences (SM_DA_PAR - OL) of annual SM 

(0-80 cm), ET, and GWL in 2016. The locations of the CRNS stations are indicated by the black 

pentagrams. 
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Figure B.5 Subplots (a) to (c) are the differences (SM_DA - OL) of annual SM (0-80 cm), ET, 

and GWL in 2017. Subplots (d) to (f) are the differences (SM_DA_PAR - OL) of annual SM 

(0-80 cm), ET, and GWL in 2017. The locations of the CRNS stations are indicated by the black 

pentagrams. 
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Figure B.6 Temporal evolution of simulated groundwater level from the OL (blue), GWL_DA 

(green), and GWL_DA_PAR (black) experiments, together with observed groundwater level 

(Obs, red) at the 12 selected assimilated groundwater sites in 2018.  
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Figure B.7 Subplots (a) to (c) are the differences (GWL_DA - OL) of annual GWL, SM (0-80 

cm), and ET in 2016. Subplots (d) to (f) are the differences (GWL_DA_PAR - OL) of annual 

GWL, SM (0-80 cm), and ET in 2016. The locations of the assimilated groundwater sites are 

indicated by the black circles. 
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Figure B.8 Subplots (a) to (c) are the differences (GWL_DA - OL) of annual GWL, SM (0-80 

cm), and ET in 2017. Subplots (d) to (f) are the differences (GWL_DA_PAR - OL) of annual 

GWL, SM (0-80 cm), and ET in 2017. The locations of the assimilated groundwater sites are 

indicated by the black circles. 
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Figure B.9 The differences of annual GWL, SM and ET for OL and different DA experiments 

in 2016: FC_DA_PAR (a, d, g); WC_DA_PAR (b, e, h); WC_DA_r_PAR (c, f, i). The red 

pentagrams and black circles indicate the locations of the CRNS stations and the assimilated 

groundwater sites, respectively. 
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Figure B.10 The differences of annual GWL, SM and ET for OL and different DA experiments 

in 2017: FC_DA_PAR (a, d, g); WC_DA_PAR (b, e, h); WC_DA_r_PAR (c, f, i). The red 

pentagrams and black circles indicate the locations of the CRNS stations and the assimilated 

groundwater sites, respectively. 
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Figure B.11 Differences in ensemble averaged logKs between OL and different DA experiments 

in 2016: (a) and (d) SM_DA_PAR; (b) and (e) GWL_DA_PAR; (c) and (f) WC_DA_r_PAR. 

The first row is from 2 cm depth, and the second row is from 10 m depth. The red pentagrams 

and black circles indicate the locations of CRNS stations and the assimilated groundwater sites, 

respectively. 
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Figure B.12 Differences in ensemble averaged logKs between OL and different DA experiments 

in 2017: (a) and (d) SM_DA_PAR; (b) and (e) GWL_DA_PAR; (c) and (f) WC_DA_r_PAR. 

The first row is from 2 cm depth, and the second row is from 10 m depth. The red pentagrams 

and black circles indicate the locations of CRNS stations and the assimilated groundwater sites, 

respectively. 
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Chapter 6: Summary and outlook 
GWL and RZSM are fundamental components of hydrologic modeling and play key roles 

in both terrestrial water cycling and broader hydrologic processes. Accurate information on the 

spatial and temporal variability of GWL and SM in the root zone is essential for a 

comprehensive understanding of water movement and distribution. This PhD work builds on 

previous simplified synthetic experiments using the TSMP model for assimilation and 

continues to use EnKF and its variants to improve the characterization of GWL and SM in a 

real-world case. The research is carried out for the Rur catchment, situated mainly in western 

Germany, which covers an area of more than 2000 km2. This region shows strong spatial 

variations in climatic conditions, soil types, and land use. In addition, the catchment has a well-

established monitoring infrastructure, including a network of groundwater wells, CRNS 

stations, eddy covariance stations, and discharge stations. The rich data set provides valuable 

information for DA with integrated models. The measurement data can be used as assimilation 

data to correct model predictions and as validation data to evaluate the effectiveness of the 

assimilation. A central goal of this PhD work is to assimilate GWL and CRNS SM data into the 

coupled land surface and subsurface model CLM-ParFlow at the large catchment scale to 

investigate the potential of limited measurements from observation networks to improve the 

characterization of hydrological variables like SM, GWL, and ET over the entire catchment. 

In the first study, real groundwater data were assimilated into the TSMP model via LEnKF 

for the Rur catchment. The LEnKF is used with a localization radius to avoid unphysical 

updates associated with spurious correlations. The localization radius was determined by the 

spatial autocorrelations of the GWL derived from the measurements and the OL run. The DA 

experiments show that the GWL simulation in the TSMP model can be improved by localized 

EnKF at the catchment scale. However, the positive impact of assimilation on GWL is limited 

to the vicinity of the groundwater-assimilated locations. In addition to the fact that a localized 

EnKF approach was used, the unevenly distributed groundwater observations in the real-world 

case may be the main reason for the limited improvement. The simulated SM was validated by 

the CRNS measurements and showed that the simulated SM at the CRNS locations was not 

much influenced by the GWL assimilation. This relatively low sensitivity is most likely 

attributed to the quite restrictive localization of groundwater data, i.e., CRNS sites were outside 

the localization radius of the GWL measurements. In addition, for individual CRNS sites close 

to the assimilated groundwater sites, the effects of GWL assimilation on the SM simulations 

were also not significant, which is related to the fact that the SM in the unsaturated zone is only 

indirectly updated during the assimilation process. This type of weakly coupled DA approach 
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was used to ensure stability and to avoid the occurrence of anomalous pressure values in the 

unsaturated zone related to pressure updating during the analysis step. 

In the second study, SM data from a distributed network of 12 CRNS in the Rur catchment 

were assimilated into the TSMP model via EnKF. The DA results showed that a significant 

improvement in the SM characteristics at the measurement locations can be achieved by 

assimilating the SM data from CRNS. In addition, the jackknife simulations demonstrated the 

potential of the CRNS network to improve modeled SM at unassimilated locations throughout 

the model domain. However, its performance varied between wet and dry years. The 

improvement during the dry year was less pronounced compared to the wet year. It was related 

to the fluctuating spatial correlations of SM under different hydrological conditions and was 

shown to be weakened under drought conditions. This suggests that the CRNS monitoring 

network (~1 site per 200 km2) is not dense enough to effectively cover the Rur catchment. In 

addition, evaluations of ET and discharge from observational data showed that CRNS 

assimilation has the potential to improve flux estimates in the integrated terrestrial model, but 

to a lesser extent, indicating limited sensitivity of ET and discharge to SM. Joint state parameter 

estimation improved the modeling of hydrologic variables more effectively than state 

estimation alone, demonstrating the necessity and importance of parameter estimation. This 

study demonstrates the potential of a CRNS observational network to improve the estimation 

of hydrological variables and parameters at a larger catchment scale and suggests promising 

prospects for the application of CRNS. Given the findings that the CRNS monitoring network 

was not dense enough to effectively cover the whole catchment, it is suggested that the density 

of CRNS stations be increased to reduce the spacing between monitoring sites, thereby 

improving spatial coverage and the accuracy of hydrological simulations. In addition, a higher 

model resolution should be used in the future, as the 500 m resolution is still coarse compared 

to the footprint of the CRNS measurement. Spatial weighting should also be considered during 

the assimilation process to compare simulated SM and SM measured by the CRNS probe to 

account for vertical (and possible also horizontal) spatial heterogeneity in the SM distribution. 

This can maximize the influence of the data on the model state estimation to improve the 

accuracy and representativeness of the assimilated data, leading to more robust model 

predictions. 

In the third study, GWL and SM were assimilated into the TSMP model in the Rur 

catchment using the newly proposed multivariate assimilation method. Univariate assimilation 

was also performed separately for GWL and SM for comparison. The results showed that the 

univariate assimilation of GWL or SM only improves the predictions of the assimilated variable 
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but might even deteriorate the simulation of the other variables (SM or GWL), which may be 

related to unrealistic cross-variable correlations, small ensemble sizes, time-lagged responses 

in the system, and model structural errors. Therefore, there is a need to explore the interactions 

between different variables in the integrated model of the assimilation process and to propose 

better DA strategies to avoid the degradation of other variables. By employing cross-correlation 

analysis, time-series regression, wavelet analysis, or other techniques, the time-lagged 

correlations and dependencies between variables can be identified, which is helpful to handle 

the time-dependent relationships between variables during assimilation. Inverse modeling (e.g., 

Iterative Ensemble Smoother) provides a viable way to mitigate the risk of degrading 

simulations of other variables as it also considers explicit temporal correlations, potentially 

improving overall model performance. However, it is important to recognize that there are 

challenges to this approach, such as the need to thoroughly consider various factors, ensuring 

an adequate ensemble size to accurately capture the complexity of the system, and managing 

the expensive computational costs associated with iterative processes, especially for large-scale 

models. Overall, while the Iterative Ensemble Smoother is a promising approach for improving 

predictions and accounting for time-lagged responses, it is essential to consider both its benefits 

and challenges when designing an effective assimilation framework. The negative effect may 

also be related to the use of real in situ measurements. CRNS and groundwater sites are 

scattered throughout the catchment. Thus, the assimilation of a single variable (e.g., GWL) 

makes it difficult to improve the estimation of variables (e.g., SM) which are evaluated at other 

distant grid points. However, the estimates of GWL and SM can be significantly and 

simultaneously improved using the new multivariate DA approach. The advantage of the new 

approach is the use of separate updates during the multivariate assimilation, allowing the 

saturated zone pressure update based on GWL measurements and the unsaturated zone SM 

update based on SM measurements. As a result, the predictions of multiple variables can be 

corrected sequentially in a coupled model using different data sources, minimizing the risk of 

confounding factors and reducing the impact of spurious correlations. Furthermore, the 

characterization of ET can only be improved by assimilating SM, whether through univariate 

assimilation or multivariate assimilation, reflecting the direct effects of SM on ET. The low 

sensitivity of the GWL assimilation to ET simulation is primarily due to the fact that 

groundwater effects on ET are generally indirect and slow. In addition, joint state and parameter 

estimation consistently yielded better results than updating the state alone, and the updated 

parameters outperformed the original parameters in validation. Thus, the benefits of parameter 

estimation were double-confirmed. Overall, the combined assimilation of GWL and SM 

showed superior performance compared to the separate assimilation of GWL or SM in the 
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integrated model. Therefore, this study also illustrates the feasibility of integrating a novel 

CRNS soil moisture observation network with a traditional groundwater monitoring network to 

improve the modeling of an integrated system. 

The overall results of this thesis show that the use of DA to improve the simulation of 

important variables such as SM and GWL within integrated models is a promising approach. 

However, it is important to recognize that the effectiveness of DA is limited by the complexity 

of the real-world catchment. Examples are: (i) Groundwater wells were mostly clustered in the 

northern flat plains and rarely in the southern mountains. The uneven distribution of monitoring 

stations resulted in an improvement of the GWL simulation only in certain areas within the 

catchment rather than over the entire region. In addition, the uneven distribution of the different 

types of monitoring stations makes it difficult to verify the actual simulation impact on other 

variables in the model. For example, when the CRNS station is not within the localization radius 

of the assimilated groundwater site, it is difficult to clarify the interactions related to 

assimilation. (ii) The horizontal spatial resolution used for the coupled model in the study area 

is set at 500 m, taking into account several factors, including the resolution of atmospheric 

forcing (6 km) and soil texture (1:50,000), as well as the computational costs associated with 

performing integrated model ensemble runs on supercomputers and the significant amount of 

computer storage required. However, the model resolution of 500 m is still too coarse for the 

Rur catchment to represent small valleys and hill slopes. The coarse resolution limits the 

representation of topographic features and cannot accurately capture gravity-driven lateral flow 

processes. Downscaling the input data (atmospheric forcing and subsurface hydraulic 

parameters) to a higher resolution can mitigate the problem of the model being too coarse. 

However, it is important to note that this may introduce some approximation errors. (iii) The 

existence of multiple and complex aquifers and artificial water extraction has a significant 

impact on groundwater flow and groundwater levels, which is not accounted for in the model. 

By incorporating detailed geological information, such as permeability, we can better 

characterize aquifers and understand their behavior. However, it is essential to recognize that 

geological models are highly uncertain due to the inherent heterogeneity and complexity of 

subsurface formations. Furthermore, the performance of the integrated model in combination 

with DA in practical applications is affected by model structural errors and multiple uncertain 

parameters, which affect, for example, the simulation of ET. Inaccurate LAI parameters are 

likely a contributing factor to the systematic underestimation of ET in this study. The omission 

of irrigation in the model and the use of simplified crop parameters can also affect the accuracy 

of evapotranspiration simulations. 
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For further studies of DA in combination with integrated models, the following possible 

aspects can be considered to improve the reliability and accuracy of the assimilation: 

(i) The coupled model could be extended to the entire hydrological terrestrial system by 

adding the atmospheric model component. Atmospheric models provide higher spatial and 

temporal resolution compared to reanalysis data, allowing a more detailed representation of 

atmospheric processes. The finer resolution allows better characterization of local atmospheric 

dynamics, which can significantly influence hydrological processes. When integrated with 

atmospheric models, the coupled model can capture complex interactions between the 

atmosphere and the land surface, including feedback mechanisms such as land-atmosphere 

coupling and the impact of land surface properties on atmospheric conditions. In contrast, 

reanalysis data can only provide the boundary conditions for the land surface without 

interacting with it. In this way, the exchange of energy and water between different components 

of the Earth system cannot be fully accounted for, leading to less accurate predictions of 

hydrological variables. Integrating an atmospheric model with hydrologic modeling allows for 

a more comprehensive representation of atmospheric processes and their interactions with the 

land surface and subsurface. For example, it is possible to use the atmospheric module already 

included in the TSMP platform. Extending the parameterization of the land surface model to 

include different vegetation types and crops allows for more detailed consideration of agro-

ecosystem processes. Version 5.0 of the CLM can be used instead of version 3.5 in the TSMP 

model. The new version 5.0 provides a more nuanced description of vegetation characteristics 

and dynamics, which helps to simulate land-atmosphere interactions more accurately. An 

updated version of the TSMP model, version 2.0, will include CLM 5.0, and this new modeling 

platform is in the testing phase and soon will be available for broader use. The mismatch of 

spatio-temporal scales between different processes should be carefully addressed. The new 

model platform should be applied at different scales (i.e., global, regional, and catchment scales) 

to test the validity and suitability of the model for various fields and scales. 

(ii) Due to the scarce in situ hydrological observations, especially in remote regions, more 

diverse types of observations should be considered for DA. The data to be assimilated can be 

collected at different scales and from different sources, like RS products. For SM, the Soil 

Moisture Active Passive (SMAP, 9 km) mission (Entekhabi et al., 2010) and the European 

Radar Observatory Sentinel-1 (1 km) (Torres et al., 2012; Bauer-Marschallinger et al., 2019; 

Balenzano et al., 2021) provide global high-resolution SM datasets that closely match the scale 

of catchments. These two datasets are well suited for DA in integrated models. When it comes 

to LAI, most existing products use MODIS and AVHRR satellite data to produce LAI using 
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different approaches and methodologies (Fang et al., 2019; Bayat et al., 2021), such as 

GLOBMAP V1 (500 m) (Liu et al., 2012) and MOD15A2H (500 m) (Myneni et al., 2015). 

With the Sentinel-2 Level 2 Prototype Processor (SL2P: Weiss and Baret, 2020) embedded in 

the Sentinel Application Platform (SNAP), the LAI product can be derived at 20 m resolution, 

offering new potential for monitoring plant characteristics at fine spatial resolution and allowing 

more accurate parameterization of vegetation in terrestrial models. In addition, a new 

generation of measurements from UAVs and small satellites can overcome the disadvantages 

of traditional sensing techniques and provide data with higher spatial and temporal resolution 

at local and catchment scales. Recently, ultralight Light Detection and Ranging (LiDAR) 

systems have been able to be mounted on UAVs, offering affordability for measuring various 

variables such as vegetation density, canopy height, and LAI (You et al., 2017; ten Harkel et al., 

2019; Bates et al., 2021). UAVs can obtain observations at fine spatial scales and with frequent 

temporal resolution, allowing for localized measurements within specific regions or catchments. 

These localized observations can complement existing RS data and ground-based 

measurements, providing additional constraints for model assimilation and improving the 

representation of small-scale processes. In addition to directly updating state observations, other 

related variables or parameters (e.g., hydraulic and vegetation related parameters) can be 

updated to improve model estimates. It is important to note that the assimilation of new 

observations requires the development of new suitable observation operators and the 

assignment of appropriate uncertainties to different types of measurements. In multivariate 

assimilation, it is important to reconcile spatial and temporal scale discrepancies between 

different types of observations, as well as scale discrepancies between observations and model 

simulations. For example, different update frequencies can be used for different variables based 

on observed data to overcome inconsistent temporal resolution, and interpolation and weighting 

calculations can be used to compensate for discrepancies in spatial scale. The assimilation of 

multivariate and multi-source observations is expected to further improve the estimation of 

model states and parameters and increase the accuracy of integrated model predictions. 

(iii) Explore advanced DA algorithms for solving multivariate DA problems. Based on our 

study, it is still suggested to consider the EnKF with localization. By incorporating localization, 

we can focus the assimilation process on relevant variables within spatial areas, thus reducing 

computational costs and improving the accuracy of the estimates. Although the assignment of 

different localization radii for different variables proposed in this study alleviates the impact of 

spurious cross-correlations among different variables, correlations might also change in time 

and could be taken into account via temporally variable localization radii. Furthermore, because 

multi-source DA involves the integration of information from multiple sources (e.g., satellite 
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observations and ground-based measurements), there are trade-offs in deciding how to 

effectively combine these different sources of information to improve the overall quality of the 

assimilated data. Sensitivity analysis or optimization techniques can be used to quantify the 

relative importance of different data sources, and the desired balance can be achieved between 

the various assimilated data sets. Hybrid approaches to DA with EnKF and other filters, such 

as Ensemble Variational (En-Var) DA, could also be beneficial for multivariate assimilation 

(Bannister, 2017; Pinnington et al., 2020). En-Var combines the strengths of EnKF and 

variational approaches by using ensemble-based background error covariance estimation within 

the variational framework. This approach provides the flexibility to handle different types of 

observations and model uncertainties and promises to effectively address the challenges of 

multivariate assimilation in a modeling framework while maintaining computational efficiency. 

Filter performance could also be improved through ensemble generation, parameter tuning, and 

inflation. In addition, DA can be integrated with new data analytics, such as ML, to address the 

existing challenges of large-scale DA. ML algorithms can learn complex patterns and 

relationships between input variables and model outputs. Therefore, ML techniques can be used 

to replace certain processes of the forward model, especially those that are computationally 

expensive or poorly understood. Integrating the hydrologic model with ML can improve the 

model's ability to describe hydrologic processes and provide better predictions for various 

hydrologic variables. In addition, the integration of ML with Bayesian techniques can serve as 

the analysis process in DA. For example, in DA, the observation operator is used to map model 

forecasts to the observation space, which is usually assumed to be linear but often exhibits 

nonlinear behavior. ML techniques can provide non-linear relationships for the observation 

operator, thereby enhancing Bayesian techniques with a more accurate representation of these 

relationships and leading to better assimilation results. In addition, using Bayesian techniques 

alone to estimate parameters may require manual adjustments to better calibrate the parameters 

if the model is very complex or the parameter space is very large. In such cases, determining 

the optimal parameter settings may require specialized knowledge and experience. On the 

contrary, ML optimization methods are usually adaptive, allowing automatic parameter 

adjustments, thus reducing the need for manual tuning. Therefore, ML techniques can replace 

the parameter- updating part of Bayesian techniques. More flexible calibration of model 

parameters can lead to better model performance and significantly reduce computational 

complexity and cost. The integration of ML with DA in integrated models offers a promising 

approach for advancing our understanding of complex environmental systems and improving 

the reliability of model predictions. However, it is important to note that ML does not 

necessarily replace the entire DA process or forward model. Instead, ML techniques 
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complement the inadequacies of hydrological models and DA methods. Experimentation and 

validation on real data are crucial to identifying the most effective strategies for a particular 

modeling system. The ability to simultaneously improve all relevant state and parameter 

estimates in the system is the ultimate goal. 
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