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Abstract

Many scientific computing algorithms barely provide sufficient data-parallelism to exploit the
ever-increasing hardware parallelism of today’s heterogeneous computing environments. The
challenge is to fully exploit the parallelization potential of such algorithms. To tackle this challenge,
diverse task-parallel programming technologies have been introduced that allow for the flexible
description of algorithms along task graphs. For algorithms with dense task graphs, however, task-
parallelism is still hard to exploit efficiently since it is programmatically complex to describe and
imposes high dependency resolution overheads on the execution model. This becomes especially
challenging on GPUs which are not designed for synchronization-heavy applications.
The research objective of this thesis is an execution model that enables fine-grained task

parallelism on GPUs. To reach this objective, the contributions of the thesis are five fold. Firstly,
it refines the stream interaction model behind Flynn’s Taxonomy as uniform foundation for
concurrency in architectures and programming models. Secondly, it analyzes the quantitative
trends in CPU and GPU architectures and examines their influence on programmingmodels. Thirdly,
it introduces an execution model that enables threading, efficient blocking synchronization and
queue-based task scheduling on GPUs. Fourthly, it ports the task-parallel programming library
Eventify to GPUs. And fifthly, it examines the performance and sustainability of this approach
with the task graph of a fast multipole method as use case. The results show that fine-grained
task parallelism improves execution time by an order of magnitude in comparison to classical
loop-based data parallelism.
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Chapter1
A new generation of software libraries

and algorithms are needed to

effectively use the high performance

computing environments in use today.

Jack Dongarra

Introduction

1.1 Motivation
Processors become fatter, not faster. For decades, each new transistor generation provided
smaller transistors that could switch faster than ever before. This enabled new processors to
operate at clock frequencies never seen before. In the past, this continuous increase in clock
frequencies was the main driver of compute performance growth. For software, this resulted in
the convenient effect of shorter execution times without any code changes.

Around 2005, however, the striving for higher clock frequencies approached several physical
limitations that led to excessively high power consumption and heat generation. Hence, the trend
of continuously increasing clock frequencies started to stagnate (see [56, p. 45]). This begs
the question, how compute performance growth can be sustained further. The answer to this
question are SMT, multi- and many-core architectures. Hence, hardware parallelism became and
continues to be the new driver of compute performance growth. To benefit from this performance
growth, software has to be build upon parallel programming models and languages. Software
developers have to determine the parallelization potential of applications and algorithms as well
as understand the pitfalls and bottlenecks of concurrency (see [98]).

Scientific software aims for strong scaling, not weak scaling. Scientific simulations have
become a vital research method in many fields such as climate modeling, materials science
and biochemistry. The problem size of scientific simulations is typically determined by physical
properties such as spatial resolution, number of particles or size of molecules. As soon as simulations
reach realistic system sizes, there is little scientific value in increasing problem sizes further.
Accordingly, we cannot employ weak scaling to exploit the increasing amount of hardware
parallelism. For this reason, scientific simulations typically aim at strong scaling (see [35]).

A few rare algorithms are inherently parallel and exhibit no or very few data-dependencies.
Thus, they provide sufficient data-parallelism that can be exploited via loop-based parallelism
with OpenMP [84] or OpenACC [83]. Most algorithms employed by scientific applications,
however, provide only a limited amount of data-parallelism. The challenge is to exploit the
full parallelization potential of such algorithms. To tackle this challenge, the concept of task-
parallelism was introduced. Task-parallelism allows for the flexible description of an algorithm
along task graphs, i.e. along work units and dependencies between these work units. Meanwhile,
task-parallelism is provided by several parallel programming technologies such as HPX [62],
Intel TBB [90] and Kokkos [39]. Consequentially, the concept became also part of OpenMP and
CUDA [78], which are the prevalent on-node programming models on current supercomputers.

For algorithms with overly many data-dependencies, however, task-parallelism is still hard to
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exploit efficiently. First, since algorithms with many data-dependencies require relatively fine-
grained tasks to provide sufficient parallelism. This, however, leads to complex task graphs that
are hard to describe with common task-parallel programming models. Second, since it imposes
high dependency resolution overheads on the execution model. Event-based task-parallelism
[49] was introduced to ease the description of complex task graphs and to enable low-overhead
dependency resolution.

Sustainable software requires a uniform code base, not architecture-dependent deriva-
tives. In addition to processors getting more parallel, the heterogeneity of compute nodes increases.
Current compute nodes exhibit multi- and many-core CPUs side by side with GPUs. However,
different processor types exhibit different hardware properties; CPUs and GPUs vary in latency,
throughput, memory hierarchy and the type of parallelism they provide. Since CPUs are supposed
to run an operating system and a highly diverse set of applications as efficiently as possible, they
consist of only a few but very sophisticated compute cores. GPUs, on the other hand, consist of
thousands but very light-weight cores to provide a huge amount of parallelism. To fully exploit the
performance of all processor architectures a compute node provides, software has to adapt to these
differences. Hardware and software vendors as well as open standard committees acknowledge this
fact by aiming at uniform programming models that enhance the programmability of a wide range
of applications on heterogeneous systems. Examples include, but are not limited to OpenCL [65],
Intel oneAPI [58], OpenMP and OpenACC.

Despite the unifying ambitions behind those models, scientific software rarely relies on only
one of them. Instead, it combines multiple parallel programming technologies to hand-tune
performance on each and every architecture from each and every vendor. This results in overly
complex code bases that are hard to maintain. In the worst case, diverging software derivatives
exist, each of which supports a different architecture. To provide a consistent user experience,
all versions should provide the same set of functional features. However, keeping those features
in sync is costly in two respects. First, it multiplies the implementation and maintenance efforts
since every feature has to be implemented for multiple architectures. Second, these efforts are
made at the charge of new functional features since time, staff and funds are limited. Accordingly,
scientists and software developers strive for sustainable scientific software that solves the 3P
challenge – the trade-off between performance, portability and programmability.

1.2 Research Objective
This work tackles the 3P challenge by contributing to a uniform programming model for event-
based task-parallelism on heterogeneous, massively parallel hardware. Research objective and
solution strategy are oriented towards the insights on sustainable software for science provided by
[35], and by the Exascale Software Study provided by [10]. Therefore, this work contributes to
closing the identified “gap between computer science research in areas such as code abstractions
[…] and high-level scientific application software”[35].

Concisely, the vision, research objective and research questions of this work are stated as follows:

BINOCULARS Vision A sustainable uniform programming model to enhance the scalability and execution
time of irregular algorithms on heterogeneous systems.

◎ Objective A sustainable execution model that enables task-parallelism for irregular algo-
rithms on GPUs.

Question-Circle Q1: What are the hardware architecture trends for parallelism on CPUs and GPUs?

Question-Circle Q2: What are the parallel programming model trends for CPUs and GPUs?

Question-Circle Q3: Can event-based task-parallelism in comparison to loop-based data-parallelism enhance
the scalability and execution time of the FMM on CPUs?

Question-Circle Q4: How can event-based task-parallelism be enabled on GPUs?
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Question-Circle Q5: Can event-based task-parallelism in comparison to loop-based data-parallelism enhance
the scalability and execution time of irregular algorithms on GPUs?

Subsequently, we introduce the terms sustainability, scalability and heterogeneous system as used
throughout this work. Furthermore, the FMM is motivated as demonstrator for algorithms with
dense data dependency graphs.

1.2.1 Heterogeneous System

We refer to a heterogeneous system as a compute node that exhibits any combination of x86-
compatible multi- and many-core CPUs as well as Nvidia’s GPUs. Due to their availability in
current HPC systems, this covers multi-core CPUs as Intel’s Xeon Scalable Processors, many-core
CPUs as AMD’s EPYC Rome and GPUs as Nvidia’s Tesla V100. The focus of this work is on on-node
parallelization in the sense of shared memory and GPU programming.

1.2.2 Sustainability

Scientific software requires sustainability to enable the adding of new features as the domain
science advances and the porting to new architectures as HPC systems evolve. This work refers to
sustainability as follows:

Definition 1.1. Sustainability A long-living software system is sustainable if it can be cost-efficiently
maintained and evolved over its entire life-cycle.[68]

Following [68] further, a software system is long-living if it must be operated for more than 15
years. This is typically true for scientific simulation software due to a relatively stable problem
set, large user communities and heavy performance optimization efforts. MD simulation codes
such as GROMACS [4] or LAMMPS [88] were first released in the 90s and meanwhile are in use
for over 25 years.

For scientific software in HPC, this work considers sustainability to cover programmability and
performance portability. In this context, we differentiate between two developer roles library
developers and application developers. Library developers design and implement abstractions for
parallel and heterogeneous hardware and provide these abstractions to application developers
via a high-level parallel programming model. Based thereon, application developers express the
parallelism behind their application algorithms independently of low-level hardware properties
such as core counts, NUMA properties or warp sizes. The developed uniform programming model
should not only enable the application developer to write sustainable software but should also
be sustainable itself. This ensures the adaptability of the uniform programming model to future
architectures and accordingly the sustainability of the application software.

1.2.3 Scalability

Adapting [69], the scalability of a parallel application on a parallel architecture is a measure of its
capacity to efficiently utilize an increasing number of parallel processing elements. Here, with
parallel processing elements being CPU-cores or streaming processor cores of a GPU. In this work,
scalability is defined as strong scaling efficiency, i.e. the problem size is kept constant while the
number of processing elements is increased. Based thereon, an application is considered to exhibit
optimal scalability if its speedup corresponds to the number of processing elements the application
is executed on. In this work, scalability and runtime are the underlying performance metrics to
evaluate performance portability.

1.2.4 Event-Based Task-Parallelism

Event-based task parallelism, as introduced by Haensel et al. [50], combines event-based program-
ming with the task-parallel algorithm model. The concept was developed to describe fine-grained
task-parallelism for algorithms with a high amount of data-dependencies in a convenient way and
resolve dependencies as efficiently as possible. In comparison to the classical top-down, recursive
task-spawning approach, event-based task parallelism allows for a bottom-up creation of tasks with
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user-defined granularities and priorities. Eventify [50] is a C++ implementation of this concept for
CPUs. This work extends the programming and execution model of Eventify to GPUs.

Event-based or event-driven programming is a programming paradigm that is used for interrupt
handling in operating systems, for synchronization in concurrent programming and as Observer
Pattern in the context of object-oriented design patterns (see [40]). The control and data flow of
an event-based program is determined by the (non-)occurrence of specific events. Eventify relies
on data events. Data events are a special type of events that reflect the progress of the operations
achieved on the data [50]. Section 5.3.4 elaborates on the event-based API of Eventify and its
task-parallel execution model.

1.2.5 Fast Multipole Method for Molecular Dynamics

MD is a simulation method for the simulation of the physical movement of molecules and atoms
in a system. The most time-consuming part of MD simulations is the computation of all pairwise
long-range interactions between N particles[61]. A naive computation of all pairwise interactions
would lead to a computational complexity of O(N2).
The FMM is a fast summation technique that reduces the computational complexity toO(N). The

FMM is based on a hierarchical space decomposition and therefore operates on a tree-based data
structure. In addition to the dependencies represented by the edges of the tree, the FMM exhibits
level-wise, horizontal data-dependencies between tree nodes. In order to generate sufficient
concurrency, this leads to a high amount of per-task dependencies in the task graph. Hence, the
FMM is used as demonstrator for irregular algorithms that exhibit dense task graphs.However, the
concept of event-based task-parallelism is directly transferable to further tree-based algorithms
with similar data dependency patterns such as Barnes-Hut tree codes and multi grid methods.

FMSolvr [1] is a C++-implementation of the FMM for CPUs that can be integrated into MD
codes like GROMACS as header-only library. It was developed within the scope of the SPPEXA
project GROMEX (GROMACS on the Exascale) [61]. The CPU parallelization of FMSolvr is based
on Eventify.

1.3 Solution Strategy
Figure 1.1 provides an overview of the solution strategy to reach the research objective and answer
the research questions Q1 to Q5. The definition of the research objective is followed by a problem
analysis that leads to a solution approach and its implementation. The subsequent evaluation
covers reference implementations for a demonstrator application and their performance analysis.

The problem analysis is separated into two interacting paths; the analysis of hardware properties
and the analysis of programming models.

First, we outline the classification of computer architectures with a focus on parallelization.
CPU and GPU architectures are described with a focus on similarities and differences between
both architectures. Subsequently, we conduct a comparative, quantitative analysis of hardware
architecture trends for CPUs and GPUs; this answers research question Q1.

Second, we describe data- and task-parallelism as parallel algorithm models. Based thereon, we
outline the application developer interfaces of OpenMP, OpenACC and CUDA, which are the most
widely used on-node parallel programming technologies on current HPC systems. In addition, we
provide an overview of OpenCL as parallel programming technology for heterogeneous systems. Its
platform model provides a uniform terminology for CPU and GPU architectures that is employed to
compare CPU and GPU features and serves as basis for the uniform architecture model introduced
in this work. This is followed by a qualitative analysis of parallel programming model trends with
a focus on unification efforts and task-parallelism; this provides insights on research question Q2.

The solution approach is based on the observed hardware properties and trends as well as the
observed programming model trends. This helps to extrapolate the direction of future hardware
and programming models and hence is supposed to develop a sustainable programming model.
Hardware trends are incorporated by the uniform architecture model, while programming model
trends are incorporated by the uniform execution model. The core part of this work extends the
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Figure 1.1: Solution strategy

event-based execution principle behind Eventify to GPUs. This includes the requirements and soft-
ware architecture analysis, the development of several GPU queuing schemes and synchronization
algorithms. The uniform architecture model and the uniform execution model are combined to
retrieve a parallel programming model that provides a uniform view on heterogeneous hardware
for application developers; this provides the answer to research question Q4.
The subsequent evaluation covers the following reference implementations of FMSolvr:

Chevron-right Loop-based data-parallel OpenMP version for CPUs

Chevron-right Loop-based data-parallel OpenACC version for GPUs

Chevron-right Event-based task-parallel Eventify version for CPUs

Chevron-right Event-based task-parallel Eventify version for GPUs

In a comparative performance analysis, research questions Q3 and Q5 are discussed.
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Chapter2
We are like dwarfs sitting on the

shoulders of giants.

Bernard of Chartres

Literature Review

The literature review is subdivided into an outline of parallel programming technologies that are
most widely used in HPC today, and an overview of related work.

2.1 State of the Art
OpenMP (Open Multi-Processing) is a shared memory programming API specification for C, C++
and Fortran. It provides several compiler directives, runtime library routines and environment
variables that enable the parallelization of application codes. Due to its convenient directive-based
API, it is the de-facto standard for shared memory programming in HPC. With OpenMP 4.0 (2013),
OpenMP started to support vectorization-based data-parallelism with the simd construct and
accelerators with the target construct.
OpenACC (Open Accelerators) is an API specification that supports the parallel programming of
heterogeneous systems in C, C++ and Fortran. It originated from the efforts to extend OpenMP
to accelerators but was finally released as separate standard in 2011. Similar to OpenMP, it
provides compiler directives, runtime library routines and environment variables that enable the
parallelization of application codes.
The most widely used GPU programming technology on current HPC systems is Nvidia’s CUDA.

This is due to the high availability of Nvidia GPUs in current TOP500[97] systems; 139 out of
500 systems exhibit Nvidia GPUs. Thus, the reference implementation of the execution model for
Eventify on GPUs is written in CUDA for reasons of compatibility and performance on current
HPC systems. Furthermore, this work analyzes the effect of latest Nvidia GPU features, such as
independent thread scheduling, on the adaption of task-parallelism to GPUs.

2.2 Related Work
2.2.1 Notions of Concurrency and Parallelism
First theoretical notions of concurrency and parallelism in programming can be found in the works
of Dijkstra and Hoare on mutual exclusion [34], the Dining Philosophers Problem [32] [54] and
Communicating Sequential Processes [54]. To the best of our knowledge, the earliest attempt to
clearly distinguish both terms is formulated by Dijkstra: “parallelism [refers to] rather identical
components, progressing ’in parallel’, i.e. in rather strict synchronism. The term ’concurrency’
only refers to the (possibility of) simultaneous activity” [33].
The subsequent definitions incorporate these ideas. Following [77, p. 288], “concurrency is a

property of a program (at design level) where two or more tasks can be in progress simultaneously”,
while “parallelism is a run-time property where two or more tasks are being executed simulta-
neously”. This notion is derived from [20, p. 266], defining concurrency as “[t]he capability
of having more than one computation in progress at the same time. These computations may

7



Chapter 2 Literature Review

be on separate cores or they may be sharing a single core by being swapped in and out by the
operating system at intervals.” Based thereon, [20, p. 3] conceives parallelism as a subset of
concurrency. The fundament for these ideas is the abstraction of concurrency provided in [17,
p. 18 ff.]. Even though these definitions are widely accepted [77, p. 288], they contain the
language-owed ambiguity of “in progress” and “being executed”.
Further, there are the definitions of parallelism and concurrency in the practical context of

programming languages such as Go: “[C]oncurrency is the composition of independently executing
processes, while parallelism is the simultaneous execution of (possibly related) computations.
Concurrency is about dealing with lots of things at once. Parallelism is about doing lots of things at
once.” [87]. This definition considers both, concurrency and parallelism, as execution properties
while [20, p. 3] considers concurrency as design time and parallelism as execution time property.
In addition to differentiating both terms based on their timing behaviors, it considers whether
processes are independent or related to each other. This work, however, conceives concurrency
and parallelism as conceptually separate from any (not timing related) process dependencies.
All of these definitions evolve around the concept of simultaineity. Simultainety is, in turn,

“closely bound up with [the concept] of spatial separation” [55, p. 233] since two simultaneous
actions physically cannot happen at the same location. This is also embraced by Flynn’s taxonomy
which classifies computer architectures based on process interactions that take place in space- or
time-multiplex [41, p.948].
This work also relies on simultaneity as the core concept to distinguish parallelism from con-
currency; see Definitions 3.2 and 3.4. The proposed definitions circumvent the language-owed
ambiguity of in progress and being executed. Further, they avoid implementation-specific terms
such as core, operating system and programme that would restrict their applicability to the highest
level of parallel programming models only.

2.2.2 Classification of Parallel Architectures and Programming Models
Computer architectures can be classified by means of different properties such as concurrent
processing capabilities, instruction level parallelism and memory organization. The Erlangen
Classification System [51] is a quantitative classification that considers parallelism at the lev-
els of program control units, ALUs and elementary logic circuits. Flynn’s taxonomy [41] is a
technology-independent classification of parallel computer architectures following their concurrent
processing capabilities. Duncan’s taxonomy [36] aims at a holistic view on parallel architectures
and programming paradigms. Being based on the hard- and software reality of the 1980s, it
introduces the classes Synchronous, MIMD and MIMD paradigm, each with subclasses for specific
architectures or programming paradigms1.
Similar to the objective of Duncan’s taxonomy, this work aims at a uniform taxonomy for parallel
soft- and hardware. Instead of introducing separate classes for both worlds, however, it aims to
describe concurrent processing capabilities on all levels of software and hardware based on the
same property, i.e. with the same classes of a taxonomy. Therefore, it revives the stream concept
behind Flynn’s taxonomy as a generalization that is abstract enough to describe concurrency
not only in computer architectures (as is common practice) but also in parallel programming
paradigms.

2.2.3 CPU-Managed Task-Parallelism on Heterogeneous Hardware
Task parallelism emerged as an alternative to tackle the limitations of loop-based data parallelism.
The main goals are the reduction of sequential regions, synchronization phases and load imbalances
by expressing an algorithm along its tasks and task dependencies, instead of artificially introduced
loop-patterns. A taxonomy of task-parallel programming technologies for HPC is introduced
by [105]. The taxonomy classifies task-parallel programming technologies based on four main

1As an example: [36, p. 6] explicitly introduces the subclasses SIMD and vector as part of synchronous to integrate
pipelined vector processors into the taxonomy since it considers them “difficult to accomodate” in Flynn’s taxonomy.
However, this is redundant since pipelined vector processors are already covered by Flynn’s taxonomy as time-multiplexing
SIMD machines [41, p. 954, ”The Pipelined Processor”].
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Table 2.1: Task-parallel programming technologies in HPC according to the classification by [105, Table 1].

Only categories, aspects and technologies that are relevant for this work are included. Technologies

marked with an “*” have been added for this work; values marked with “**” have been updated.

The communication model is either shared memory (“smem”) or global adress space (“gas”).

Marker “i” refers to implicit support through the technology, while marker “e” refers to explicit,

user-specified support. Possible supported graph structures are directed acyclic graphs (“dag”),

trees (“tree”) and arbitrary graphs (“graph”). Technological readiness is determined by means

of the technology readiness levels as defined by the European Commission for HORIZON2020

projects [24]; levels range from “1 - basic principles observed” to “9 - actual system proven in

operational environment”. The implementation type is either library (“lib”) or language extension

(“ext”).
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categories that describe architectural, task system, management and engineering properties. Each
category consists of multiple aspects. Table 2.1 provides an overview of the categories, aspects
and technologies relevant for the classification and distinction of this work.

A task-parallel programming technology is considered as related work if it is compatible with
scientific software written in C++. Furthermore, considered technologies must support heteroge-
neous systems as demanded by the research objective and allow for shared memory programming
consistent with the scope of this work. For reasons of compatibility with different application
codes and compilers, only library-based approaches are considered. Additionally, the language
extensions CUDA and OpenMP are examined since both are the de-facto standards for parallel
programming in HPC and used for reference implementations in this work. Task-parallel program-
ming technologies are described with a focus on their GPU capabilities. The following paragraphs
of this section extend the state of the art section provided in [50].

Originally, OpenMP supported loop-based data-parallelism on CPUs only. Hence, it was mainly
applied to applications that exhibit highly regular parallelism, such as matrix- or vector-oriented
computations. With increasing hardware parallelism and the advent of the first task-parallel
programming technologies, such as Cilk [19] and Chapel [22], this was perceived as limitation. In
OpenMP 3.0 (2008), the task and taskwait constructs were introduced to allow the definition
of tasks; OpenMP 4.0 (2013) added support for task dependencies. Due to considerable task
management overheads and programmability challenges, however, OpenMP’s loop-based approach
is still the most common parallelization pattern for scientific software.

CUDA supports task-parallelism by means of CUDA asynchronous task graphs. This allows for
the definition of coarse-grained tasks in form of CUDA kernels and the definition of dependencies
between these kernels.

9
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HPX is a parallel runtime system that provides a user-friendly API for task-parallel programming
on shared and distributed memory systems. With HPXCL [31], HPX also supports the asynchronous
execution of tasks on Nvidia GPUs. However, GPU tasks have to be explicitly defined by the user
in form of CUDA kernels. Kernel launch parameters such as grid size and thread block size also
have to be explicitly defined by the user. Since the optimal values of these parameters are not
necessarily independent from the GPU architecture, this may hurt performance portability.

Intel TBB is a C++-library that supports data and task-parallel programming on shared memory
systems; it is the successor of Cilk and Cilk Plus [86]. In Intel TBB task-parallelism is expressed
via the flow graphs interface that enables the description of arbitrary graphs, e.g. data-flow graphs
or dependency graphs. Parallelism in flow graphs is exploited by a task scheduler that relies on
split-join patterns. This introduces additional scheduling overhead and increases memory usage
since tasks are created even if they are not ready to execute. By means of asynchronous nodes flow
graphs can be used in combination with offloading to execute tasks in form of CUDA or OpenCL
kernels on GPUs. Similar to HPXCL, this requires the user to write explicit GPU code and define
kernel launch parameters.

Kokkos is a C++-library that provides a performance portable, user-friendly programming model
for parallel programming on CPUs and GPUs. It provides CUDA, HPX, OpenMP and Pthreads as
backend programming models. According to [37], Kokkos reaches 90% of the performance of
application-specific parallelization approaches. Due to its general applicability, Kokkos does not
take highly application-specific knowledge such as critical paths or customized task priorities into
account. Kokkos does not only support offloading of GPU-tasks, but also enables dynamic task
spawning on the GPU; see Section 2.2.4.

Legion is a data-centric programming model that enables the implementation of HPC applications
for distributed, heterogeneous systems. In contrast to Intel TBB, HPX, Kokkos, OpenMP and
Eventify, Legion does not require the application developers to explicitly express parallelism,
e.g. in form of task graphs. Instead, application developers describe data properties in form of
logical regions via a relational data model; based thereon, Legion implicitly extracts parallelism. Its
execution model relies on recursive task-spawning. In contrast to any other considered technology,
Legion furthermore requires the application developer to explicitly specify the mapping of logical
regions onto target hardware via mappers. Hence, Legion is abstraction-wise diametrical to other
task-parallel programming technologies.

2.2.4 GPU-Managed Task-Parallelism

OpenMP, Intel TBB, HPX and Legion rely on GPU tasks in the form of kernel functions that are
offloaded to the GPU for execution. Therefore, they rely on the CPU for the management of GPU
tasks. Launch parameters are configured on the CPU, dependencies are defined and resolved on the
CPU and finally tasks are enqueued for execution on the GPU. This offloading-based approach is
well-suited for task graphs with coarse-grained tasks and a small number of dependencies per task;
especially, since all considered approaches provide asynchronous tasks to overlap dependency
resolution and task execution. For task graphs with fine-grained tasks and a high number of
dependencies, however, kernel launch overheads and dependency resolution overheads prevail.
With a best case launch time of 5 µs for an empty kernel, this would allow for the execution of
200 empty tasks per millisecond. MD simulations, however, require 1000 to 10000 of compute
tasks to be executed in the same time to achieve reasonable simulation times.

To overcome the limitations of offloading, the PT concept is researched in different application
areas. In [73] PT are used to implement parallel programming primitives, [110] introduces a
PT-based FFT, and [8] presents PT-based ray tracing. Gupta et al. [48] are the first to introduce a
common definition of the PT paradigm. Furthermore, the authors identify four main use cases: load
balancing, producer-consumer schemes, global synchronization and CPU-GPU synchronization.
Load balancing, producer-consumer schemes and global synchronization are vital for GPU-managed
task-parallelism to allow dynamic task generation and management. On heterogeneous systems,
CPU-GPU synchronization is required to coordinate task scheduling between both processor types.

Tzeng et al. [108] are the first to describe PT-based task-parallelism for irregular workloads on
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GPUs. The authors introduce a worksharing scheme with distributed queues for Reyes rendering
as use case.Since Reyes rendering is based on a pipeline, each task is required to dynamically
generate at most one new task, namely the task for the next pipeline stage. However, the approach
does not support multiple, arbitrary dependencies between tasks.

Reference [107] is a follow-up work by the same authors and presents a task-parallel program-
ming model that allows for complex task dependencies. They introduce a general-purpose dynamic
scheduling approach that operates on a single, lock-based queue. Task dependencies are described
via a look-up table that holds each task’s dependencies to other tasks. For dependency resolution,
each task is provided with a dependency counter that describes its outstanding dependencies. As
soon as a task is finished, it decrements the dependency counters of its dependent tasks. If a task’s
dependency counter reaches zero, the task is enqueued for execution.

The dynamic scheduling approach is evaluated by applying it to the intra frame prediction in
H.264 encoding, and to N-queens backtracking with 15 ≤ N ≤ 18. The former exibits a task graph
with maximally four dependencies per task, while the latter exhibits at least 15 dependencies per
task due to N as branching factor. In comparison to a multi-threaded and vectorized CPU-encoder,
the task-parallel GPU implementation decreases runtime by a factor of 3.6. The task-parallel
N-queens backtracking, on the other hand, increases runtime on average by a factor of 1.7 in
comparison to a multi-threaded and vectorized CPU-backtracking. Hence, the dynamic scheduling
approach is well-suited for irregular work loads with sparse dependency graphs but introduces
considerable dependency resolution overheads for work loads with dense dependency graphs.

PT-based task-parallelism is also provided by Kokkos (see [38]). Kokkos differentiates between
sequential tasks TaskSingle and parallel tasks TaskTeam. With TaskSingle being executed by a single
thread of a GPU warp only, and TaskTeam being executed in a data-parallel manner by all threads
of a warp. Hence, performant code must be written warp-aware to avoid idling of the majority
of threads. Tasks are generated via dynamic task spawning. Similar to the approach provided
by [107], newly generated tasks are enqueued into a single, global task queue. Enqueueing and
dequeueing of tasks is done by a single, dedicated thread per warp.

Whippletree [96] is the only technology that provides fine-grained task-parallelism on GPUs that
is available open source. However, Whippletree does not support generic task graphs but only task
graphs with one in- and one out-dependency per task. Therefore, this work considered extending
Whippletree to support multiple dependencies per task as required by the FMM. However, this
resulted in race conditions on current GPU architectures due to a change in the forward progress
behaviour of latest GPU architectures.

Reference [29] provides a broad study on the performance portability of five mini applications,
written in five parallel programming models across twelve architectures. The findings reveal
that Kokkos provides the best performance portability for four out of five applications. However,
OpenMP provides the best performance portability for the miniFMM[2]; therefore, the event-based
approach considered in this work is compared against an OpenMP-based version of FMSolvr. The
study reveals further that today “no robust and efficient task-parallel programming model exists
for entirely on-GPU execution”[29]. Therefore, this work extends the event-based approach to
GPUs and analyzes its performance.

2.2.5 Parallel Fast Multipole Methods

Due to the wide application of the FMM in MD, plasma physics and astrophysics, its parallelization
is heavily researched on shared memory, distributed memory and heterogeneous systems. However,
a comparison of this broad range of FMM applications, especially regarding performance and
scalability, remains an open research question. This is due to the fact that diverse mathematical and
technical variants of the FMM operators exist, which lead to different accuracy and performance
behavior. For classification of the present work, we nevertheless provide a short outline on parallel
FMM implementations with a focus on task-parallelism and GPU-versions. This section extends
the state of the art section provided in [50].

Since OpenMP’s loop-level parallelism is only applied locally to specific loops or loop nests, it is
not aware of global algorithmic structures that may potentially provide more parallelism. Hence,
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it introduces unnecessary sequential regions and load imbalances. According to Amdahl’s Law,
the parallel speedup of an application is limited by its sequential part. Therefore, unnecessary
sequential regions are particularily critical when aiming at strong scaling. That such limitations
apply for the FMM is shown in [14],[100] and [5]. This work confirms these findings for FMSolvr
through the implementation and performance analysis of a loop-based OpenMP-parallelization.

ExaFMM [111] is an open source FMM-library for astrophysics that supports shared memory
systems via OpenMP, distributed memory systems via MPI as well as GPUs via CUDA. It aims at
scaling large particle simulations with billions of particles to exascale systems. For a simulation
with 108 particles the authors report a strong scaling efficiency of 93% on 2048 processes. This
result is highly promising for the FMM in particular, as well as hierarchical algorithms in general,
to reach excellent scalability on exascale systems. In [3] the task-parallel programming approaches
Cilk Plus, Intel TBB and OpenMP Tasks are applied to parallelize ExaFMM. The performance
analysis reveals that Intel TBB perfectly scales up to 64 cores on Intel’s Knights Landing Xeon Phi
for 108 particles. In [71] a data-driven CPU-implementation of ExaFMM with the runtime system
QUARK [71] is described. For particle ensembles with 107 particles the approach leads to linear
speed-up on 16 cores.

ScalFMM [7] is a parallel, C++-based FMM-library. It is a kernel independent FMM, while
FMSolvr is specialized on kernels with spherical harmonic expansions. Since this may have an
impact on the parallelization approach and its performance, this complicates a direct comparison
of both implementations. Similar to the research objective of this work, the main objectives of
ScalFMM’s software architecture are maintainability and understandability. A lot of research
about task-based and data-driven FMMs is based on ScalFMM. The authors devise the parallel
data-flow of the FMM for shared memory architectures in [7] and for heterogeneous systems in [6].
For the StarPU-based ScalFMM in [7] strong scaling with a parallel efficiency of 91% is reached
for a sufficiently large particle ensemble with 2 ⋅ 108 particles on CPUs. As follow-up work, [7]
extends the StarPU-based ScalFMM to GPUs by providing highly-tuned CUDA kernels for the two
most compute-intensive steps of the FMM. Furthermore, it provides a dynamic scheduling strategy
to distribute work between CPU cores and multiple GPUs; scheduling and dependency resolution
are done by the CPU only.

The idea of breaking the stages of the FMM into smaller tasks to improve load balancing is
furthermore applied and analyzed in [112], [14] and [7]. HPX-based implementations of the FMM
for CPUs are described in [112] and [64].

All considered works focus on the efficient computation of large, often inhomogeneous, particle
ensembles with millions of particles. This leads to particular challenges regarding memory footprint,
scheduling policies and communication patterns for the applied parallelization approaches. In
this context, the considered works show that task-parallelism with recursive task spawning is
efficient for compute-bound simulations on CPUs. The focus of this work, however, is on the
efficient computation of small, homogeneous particle ensembles. Hence, the overhead of the
applied parallelization approaches cannot be hidden through computational work, but must be
reduced to a minimum. On GPUs, this is especially hard to achieve since their architecture heavily
relies on latency hiding. This work analyzes whether event-based task-parallelism can help to
reach similar scalability results for small particle ensembles on CPUs and GPUs.

Full GPU-implementations of the FMM, i.e. implementations that compute near and far field on
the GPU, are rare. A full GPU-implementation of FMSolvr is provided by [66], and a full GPU-
implementation of the miniFMM is provided by [2]. Both implementations are based on CUDA
and execute all steps of the FMM on the GPU, instead of the most compute-intensive or inherently
data-parallel ones only. Even though OpenACC is widely used to parallelize scientific software,
there is no OpenACC-based implementation of the FMM up until now. This work introduces a
loop-based OpenACC implementation of FMSolvr for comparison against the event-based approach
on GPUs.

To the best of our knowledge, GPU-managed task-parallelism for the FMM was researched by
[2] only. The authors propose a Kokkos-based implementation of the miniFMM [2] and compare
it to a CUDA-based implementation. Based on runtime measurements for a simulation with 107

particles, the Kokkos-based implementation is 2.8× slower. Kokkos tasks require 200 registers per
thread, while each CUDA kernel requires only 80 registers per thread. Based thereon, the authors
12
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assume high register pressure as one reason for the performance difference. Further potential
bottlenecks are Kokko’s restriction to a single thread block per streaming multiprocessor and the
usage of a single, global queue.
Similarily to Kokkos, this work follows a PT-based approach. Instead of relying on recursive

task spawning, however, this work extends the programming and execution model of event-based
task-parallelism to GPUs.
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Chapter3
Concurrency is the next major

revolution in how we write software.

Herb Sutter

Concepts of Concurrency

This chapter introduces definitions for concurrency and parallelism and relates both terms with each
other. Further, it proposes the stream interaction model as common foundation for the description of
concurrency in software and hardware. Additionally, it outlines the general steps of parallelization.
This work combines these concepts to derive consistent, complementary and applicable definitions
of the particular components of parallel programming models in theory and practice. This allows
for the coherent description of commonalities, differences and dependencies between:

1. Models of different categories, e.g. to answer questions likeWhich parallel algorithm models does
the parallel programming model OpenACC support? (see Section 5.5.4) or Which requirements
must be fulfilled by an execution model to support loop-based algorithm models? (see Section
5.2).

2. Models of the same category, e.g. to answer questions like What do the SMT mechanism on
CPUs and the latency-hiding mechanism on GPUs have in common? (see Section 4.4.4) or What
is the qualitative difference between loop-based parallelism and vectorization-based parallelism?
(see Section 5.1).

This supports a mapping between high-level algorithmic and low-level architectural parallelism
that is consistent with the technical specifications of the applied programming models. In Chapter
4, it enables the description of CPU and GPU architectures in a similar way and allows to draw
analogies between both. The same holds true for the description of parallel programming models
in Chapter 5. Based thereon, it allows for the transfer of the task-parallel programming model
from CPUs to GPUs in Chapter 6.

To reach a common foundation for the definition of parallel computing models, this work relies
on the following two hypotheses:

1. Concurrency in algorithms and architectures can be expressed in the same manner by refining
the stream-based model behind Flynn’s Taxonomy.

2. Parallel programming models are based on the general steps of parallelization as described
in [27, p. 97] and [46, p. 85].

3.1 Parallelism and Concurrency
As outlined in Section 2.2.1, the definitions of the terms parallelism and concurrency typically
depend on the considered literature and application context. And, especially in practice, might
be defined rather informally and even be used interchangeably. This work, however, requires
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a clear distinction between those (and related) concepts. The subsequent paragraphs state the
assumptions about processes and systems that hold true for all proposed definitions.

A process is considered in the general sense of a sequential stream of operations that transforms
some input into some output. In the context of programming models this maps i.a. to operating
system processes, threads, MPI ranks, SIMD lanes or warp lanes. Other from that, no further
assumptions are made about process properties, i.e. it is neither specified whether two processes
are data dependent or independent, nor whether a process exhibits a finite or infinite execution
time. This is reasonable since processes with different sets of properties are considered throughout
this work, but the notion of execution orders is required to be the same for all of them.

A system consists of processes, execution units and schedulers. The execution order of processes
in a system is subject to the available execution units and the effective scheduler. Exemplary, a
system might be a single process with multiple kernel threads which is executed on a multicore
processor and subject to the scheduler of the operating system; or, a system might be a CUDA
kernel on a grid of CUDA threads which is executed on a GPU and subject to the thread engine
and warp schedulers.

This work considers consecutiveness, concurrency, interleaving and parallelism as properties of
the execution order of exactly two processes A and B (in contrast to a set with any number of
processes). This is reasonable since different processes within the same system, e.g. CPU and GPU
threads, might exhibit different execution orders with respect to each other. Nevertheless, the
provided definitions are straightforwardly applicable to systems with more than two processes by
considering all unordered pairs of processes in the system. As an example, consider the processes
X, Y and Z. X, Y and Z are said to be parallel if all permutations (i.e. XY, XZ, YZ) are parallel.

Based on these preliminaries, consecutiveness is defined as follows:

Definition 3.1. Consecutiveness. A scheduler guarantees consecutive execution of two processes A
and B iff the execution of B must not start before the termination of A, and vice versa.

Informally speaking, A and B are executed strictly one after another. Consecutiveness prohibits
the execution of multiple processes within overlapping time intervals. Concurrency, to the contrary,
allows for the execution of multiple processes within overlapping time intervals:

Definition 3.2. Concurrency. A scheduler permits concurrent execution of two processes A and B iff
the execution of B may start before the termination of A, and vice versa.

Informally speaking, two processes are concurrent if they are executed within overlapping time
intervals. This can be achieved via two mechanisms: interleaved execution or parallel execution.
Therefore, both mechanisms are conceived as special cases of concurrency, which is reflected by
their subsequent definitions.

Definition 3.3. Interleaving. A scheduler implements the interleaved execution of two concurrent
processes A and B iff A and B are executed alternatingly on the same execution unit.

Informally speaking, interleaving refers to multiple processes executing in turns on a single
execution unit. Therefore, interleaving can be considered as concurrency via time-multiplexing.

Definition 3.4. Parallelism. A scheduler implements the parallel execution of two concurrent processes
A and B iff A and B are executed simultaneously on different execution units.

Informally speaking, parallelism refers to multiple processes being executed at the same time,
which requires a dedicated execution unit per process. Consequentially, parallelism can be
considered as concurrency via space-multiplexing, which is also further considered in Section 4.1.

3.2 General Steps of Parallelization
In general, the parallelization of an algorithm can be subdivided into four coarse steps [27, p. 97]:
decomposition, assignment, orchestration and mapping.
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3.2.1 Decomposition

Decomposition is the division of an algorithm into smaller work units in order to induce concurrency.
The decomposition of an algorithm into work units depends on its data dependency graph.

Definition 3.5. Data Dependency Graph. A data dependency graph of an algorithm represents the
transformation of data elements in the course of this algorithm, with nodes representing data elements,
and edges representing operations.

For an example of a data dependency graph, please refer to Section 7.3.

Task Graphs

Decompositions can be expressed in form of task graphs that model the computational dependencies
between tasks. In general, a task is an arbitrarily defined unit of work [27, p. 96]. As defined by
Robert [92], a task graph is the partitioning of an algorithm into tasks, with nodes representing
tasks and edges representing dependencies. The decomposition of an algorithm into tasks is
restricted by its data dependency graph. However, the correspondence between an algorithm and
its task graph is not necessarily bijective; usually, multiple partitionings of an algorithm into tasks
exist. For one thing, because the algorithm itself or the employed data structures may be varied,
which leads to varying tasks and task dependencies. For another, because the definition of a task
depends on the required task granularity as well as the inherent parallelism of the task.

Regarding inherent parallelism, we distinguish between sequential and parallel tasks. A sequential
task is executed by a single instruction stream, while the work of a parallel task is executed
concurrently by multiple instruction streams.

Quantifying the notions of [89, p. 4] and [46, p. 89], the subsequent definition of granularity is
proposed:

Definition 3.6. Granularity. The granularity g is the relation between the number and size of tasks a
computation is decomposed into. It holds 1 ≤ g ≤ N, with N being the number of instructions of the
computation. A decomposition A is fine-grained in comparison to a decomposition B if its granularity is
higher. A decomposition A is coarse-grained in comparison to a decomposition B if its granularity is low.

A set of tasks is fine-grained if its tasks contain only a few instructions relative to the overall workload
[75, p. 14]. Analogously, a set of tasks is coarse-grained if its tasks contain many instructions relative
to the overall workload [75, p. 14]. Hence, a task can be as large as a function or as small as a
single instruction.

Being related to granularity, the degree of concurrency is a metric that quantifies the parallelization
potential of an algorithm. Slightly adapting the definition of the maximum degree of concurrency
provided by [46], the degree of concurrency is defined as follows:

Definition 3.7. Degree of Concurrency. “The […] number of tasks that can be executed simultane-
ously in a parallel program at any given time is known as its […] degree of concurrency.”[46, p. 89
f.]

In naturally parallel algorithms, such as vector additions, the maximum degree of concurrency
corresponds to the total number of possible tasks, i.e. a single task per scalar addition. Except
for this class of algorithms, however, the task graph of an algorithm contains computational
dependencies between the tasks. Therefore, the maximum degree of concurrency is typically less
than the total number of tasks. With increasing granularity (i.e. finer-grained decomposition),
the degree of concurrency increases since more tasks, which can be executed concurrently, are
generated. However, the degree of concurrency cannot be increased indefinitely since it is limited
by the amount of operations an algorithm consists of. Furthermore, the practically reasonable
degree of concurrency is not necessarily the maximum degree of concurrency since a higher degree
of concurrency also increases synchronization overheads. Hence, if the granularity is too high (i.e.
tasks are too small) the parallel efficiency is decreased.
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Decomposition Techniques

To generate task graphs that induce concurrency, several decomposition techniques are available.
Common decomposition techniques in scientific simulations are recursive decomposition, data
decomposition and functional decomposition. In order to parallelize an algorithm efficiently, the
decomposition technique must be chosen in alignment with the prevalent type of parallelism
that the algorithm exhibits, i.e. data parallelism, recursive parallelism, functional parallelism or task
parallelism, a mixture thereof. Further, decomposition techniques can be implemented via different
parallel algorithm models (see Section 5.1) that have to be chosen in alignment with the available
hardware architectures.

Recursive decomposition

Recursive decomposition is used to induce concurrency in algorithms that are based on a divide-and-
conquer strategy [46, p. 95], i.e. algorithms that exhibit recursive parallelism. This decomposition
technique recursively subdivides a problem into similar sub-problems that can be solved concur-
rently. Recursive decomposition is the decomposition technique behind recursive task spawning
as applied by diverse task-parallel programming technologies (see Section 2.2).

Data decomposition

Data decomposition is used to induce concurrency in algorithms that are based on large, regular
data sets [46, p. 97], i.e. algorithms that exhibit static data parallelism. By applying the data
decomposition technique, a data set is partitioned into chunks of data. From the resulting
data partitioning, a partitioning of computations into tasks is derived. Based thereon, data
decomposition describes the concurrent execution of identical operations on multiple data elements.
Typical examples include dense matrix multiplication, scalar multiplication and vector addition.
Data-parallelism can be applied via diverse parallel algorithm models such as loop-level par-
allelization and SIMD vectorization. In parallelism-wise more complex algorithms, the parallel
control pattern fork-and-join (see [72, p. 88]) can be applied to exploit data parallelism. For this
purpose, an algorithm is subdivided into data-parallel phases that are intermitted by synchroniza-
tion phases.

Functional decomposition

Functional decomposition is used to induce concurrency in algorithms that require the computation
of multiple, independent functions, i.e. algorithms that exhibit functional parallelism.

Task-Graph decomposition

If the efficient parallelization of an algorithm requires a combination of any of these approaches,
the algorithm is generally said to exhibit task parallelism. Lastly, any type of parallelism can
be expressed by means of task graphs, e.g. trivial data-parallelism and functional parallelism as
edgeless graphs, and recursive parallelism as tree.

3.2.2 Assignment
Assignment refers to the assignment of tasks to logical execution streams, e.g. threads, processes
or SIMD-lanes. In this step of parallelization, the goal is to distribute the workload between
execution streams as equally as possible. Equal workload distribution supports the reduction of
synchronization-induced idle times and hence improves parallel efficiency. To achieve this, load
balancing and scheduling approaches in terms of work sharing and work stealing are applied.
The interpretations of work sharing and work stealing as used in this work are derived from [18];
even though, this work originally refers to process scheduling instead of task scheduling. Here,
work sharing is a static load balancing method in which a load balancer assigns tasks to a specific
execution stream based on a static schedule. Work stealing, on the other hand, is a dynamic load
balancing method in which idle execution streams steal tasks from busy execution streams.

3.2.3 Orchestration
Orchestration is the fundamental concept behind process interaction. Orchestration enables
the coordination of data exchange between processes and hence is the basis for cooperation
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and communication. Cooperation refers to implicit data exchange via shared variables, while
communication refers to explicit data exchange via message passing.

3.2.4 Mapping

Mapping refers to the mapping of execution streams to execution units, i.e. processors or cores.
Which system component is responsible for mapping, depends on the applied programming model.
Mapping can either be done implicitly by the operating or runtime system via the process scheduler,
or be specified explicitly by the software developer or user via mechanisms like thread or process
pinning.

Dependent on the hardware architecture, mapping may influence the communication or memory
latency between execution streams. Hence, mapping schemes influence parallel efficiency. This
holds true for threads on different NUMA-nodes regarding CPU architectures as well as for thread
blocks on different SMs on GPU architectures.

3.3 Stream Interaction Model
The stream interaction model aims for the same concurrent processing capabilities (just on a
different level of the model hierarchy) to be explained with the same concept. This section
revives and extends the stream concept behind Flynn’s Taxonomy to classify concurrent systems
in general, and not only hardware architectures in particular. Originally, Flynn’s Taxonomy [42]
was introduced as a technology-independent classification of computer organizations based on
their concurrent processing capabilities. In order to quantify these capabilities, the so-called
stream concept was introduced in [42, p. 1902] and refined in [41, p. 948]. Following the latter
and adapting it to the terminology of this work, a stream can be considered as “a sequence of
items (instructions or data) as executed or operated on by a [processing unit]”. Based thereon,
[41, p.948] classifies computer organizations by the magnitude (either in space or time multiplex) of
interactions of their instruction and data streams. This definition immediately leads to the following
four classes of computer organizations:

Chevron-right Single-Instruction Stream, Single-Data Stream (SISD)

Chevron-right Single-Instruction Stream, Multiple-Data Stream (SIMD)

Chevron-right Multiple-Instruction Stream, Single-Data Stream (MISD)

Chevron-right Muliple-Instruction Stream, Multiple-Data Stream (MIMD)

Please note the term stream in all of these classes. In literature canon, this term is occasionally
omitted. This, however, is a source for confusion (cf. [99, p. 588], [89, p. 13]) since it neglects
the fact that a data stream is typically not a single data element but a sequence of multiple data
elements. This differentiation is vital for the powerfulness of Flynn’s Taxonomy and the subsequent
considerations.

Up until today, Flynn’s Taxonomy is the most widely used approach for the classification of
computer organizations regarding hardware concurrency. This work, however, aims to classify
concurrency in algorithms and architectures via the same taxonomy to enhance the alignment of
parallel software to hardware.

With minimal adaptations to and formalization of the stream definition and the classification
criterion, the abstractness of the stream model allows for both - the classification of architecture
models, and the classification of algorithm models. In order to adapt the definition of instruction
and data streams, an understanding of the relation between the terms instruction, data element,
operation and process is required. Generally, an operation is considered as an operator that is applied
to a (possibly empty) set of operands. Following this notion, an operation is here considered as a
container that consists of an instruction (the operator) and a set of data elements (the operands).
Based thereon and as stated in Section 3.1, a process is a sequence of operations. With this
understanding in mind, the following definitions are proposed:
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Table 3.1: Stream interaction schemes based on Flynn’s Taxonomy. For each stream interaction scheme

the number N of instruction streams, the number M of data streams and the resulting number

I = max(N,M) of stream interactions is provided.

Interaction Scheme N M I

SISD 1 1 1

SIMD 1 n n

MISD n 1 n

MIMD n n n

Definition 3.8. Instruction Stream. An instruction stream Il is a sequence of instructions i1, i2, … , ik.

Regarding architectural models, an instruction stream can accordingly be interpreted a sequence
of instructions that is executed by a processing unit. Regarding algorithm models, on the other
hand, an instruction stream can be seen as a sequence of instructions that is contained in subsequent
operations of a program.

Definition 3.9. Data Stream. A data stream Dl is a sequence of data elements d1, d2, … , dk.

Similarly, from the architectural perspective, a data stream is a sequence of data elements as
operated on by a processing unit. And, from the algorithmic perspective, a sequence of data
elements as contained in subsequent operations of a program.
It is vital to note that both definitions do not impose any restrictions on the origin of the data
elements or instructions in a stream. Therefore, a data stream must not necessarily consist of
independent data elements but can also consist of data elements that are derived from a data
element of the same stream through a previous instruction. The concept of derived streams was
en passant mentioned in the context of MISD architectures in [42, p. 1908] and partially specified
further in [41, p. 949]. For reasons of consistency, however, the concept of derived streams should
not only be applicable to MISD (for whose understanding it is vital, as outlined below) but to all
classes of the taxonomy. Further, it is the notion of derived streams that allows for output values
to be used as input values. Without the concept of derived streams, the stream interaction model
would exclude the modeling of concurrency in iterative programs since they rely on accumulation
variables whose output value is their successive input value.
Based on the multiplicity of interactions between instruction and data streams, the stream
interaction schemes provided in Table 3.1 are used for the classification of concurrent systems.
Each stream interaction scheme consists of a multiplicity of data streams and a multiplicity of
instruction streams, with multiplicities noted as single or multiple). The retrieved stream interaction
schemes correspond to Flynn’s classes of computer organizations since the generalization of
the stream concept does, as required, not change the number of possible multiplicity-stream
combinations. Here, the number of instruction streams is denoted as N, the number of data streams
is denoted as M and the resulting number of stream interactions is defined as I = max(N,M).
I = max(N,M) dissents Flynn’s original work that implicitly allows I > max(N,M) and others

that explicitly define I = N × M. For instance, a MIMD architecture is considered quantifiable by
“specifying […] the number of instruction streams per data stream, or vice versa.”[41, p. 949],
what implies that there could potentially be more than one instruction stream per data stream, i.e.
I > max(N,M). This assumption, however, prohibits the description of pairwise disjoint classes
and hence violates the orthogonality criterion of classes in a taxonomy. As a consequence, MIMD
would have to generally model the properties of SIMD and MISD in terms of expecting - potentially
every - instruction stream to operate on every data stream or vice versa. In this work, this would
especially complicate the separate description of SIMD-capabilities on MIMD-architectures as
required in Chapter 4.
Figure 3.1 shows the interaction matrix between N=M interaction and data streams for each

interaction scheme. For each interaction scheme the according interactions are highlighted. Non-
highlighted interactions do actually not exist in the according schemes and are just shown for
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(d) MIMD: The vector of diagonal elements corresponds to
a MIMD system.

Figure 3.1: Matrix of all possible interactions between N=M interaction and data streams. For each interac-

tion scheme an example set of interactions is highlighted. Non-highlighted interactions are just

shown for visual comparability between schemes.

comparability between schemes regarding interaction multiplicity and interaction types. SIMD
and MISD, for example, exhibit the same number of stream interactions. Qualitatively, however,
SIMD and MISD exhibit different interaction types. This is reflected by the interaction matrix in
which SIMD appears as a column vector and MISD appears as a row vector.
In a SISD scheme, there is only a single interaction. Namely, the interaction between instruction
stream I1 and data stream D1.
A SIMD scheme consists of n interactions. Namely, the interactions of a single instruction stream

I1 that operates on n different data streams D1,D2… ,Dn.
A MISD scheme consists of n interactions and is hence similar to a SIMD scheme regarding

interaction multiplicity. In contrast to SIMD, however, MISD covers the execution of n different
instruction streams I1, I2, … , In on a single data stream D1. Please note that this does by no means
imply that different instructions have to be executed in parallel on the same data element. Instead,
the instruction streams I1, I2, … , In operate on derived data elements of data stream D1. Meaning, I1
operates sequentially on the data elements d1, d2, … , dk resulting in d1′, d2′, … , dk′ and I2 operates
on the data elements d1′, d2′, … , dk′ resulting in d1′′, d2′′, … , dk′′. In literature, the concept of
derived streams is mostly omitted. This, however, leads to the conclusion that MISD architectures
are a theoretical construct that does not exist in practice (cf. [89, p. 13], [99, p. 587]). Based on
the above notion of derived data elements, however, MISD architectures do indeed exist. Please
see Section 4.1 for examples.
The MIMD interaction scheme consists of n interactions. Namely, the interactions between

n instruction streams I1, I2, … , In and n data streams D1,D2, … ,Dn, with each instruction stream
operating on exactly one data stream. Hence, the MIMD scheme corresponds to the diagonal
elements of the interaction matrix.
The stream interaction model is applied to classify parallel architecture models in Section 4.1
and parallel algorithm models in Section 5.1 since these are the lowest and highest levels of
abstraction within a parallel programming model.
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Chapter4
Now that Moore’s Law is delivering

less, it’s time for the architects and

software engineers to start delivering

more.

Steve Furber

Computer Architectures

This section outlines the classification of computer architectures based on the stream interaction
model introduced in Section 3.3. Further, it briefly describes the architectural properties of CPUs
and GPUs. Conclusive, it elaborates on the similarities and differences between both processor
types. These considerations serve as foundation for the uniform architectural model in Chapter
6.1.

4.1 Architecture Models
This section classifies computer architectures based on their concurrent processing capabilities
following the stream interaction model and hence in accordance with Flynn’s taxonomy. Here,
the theoretical number of concurrent stream interactions a hardware architecture supports is
considered. First, a mapping between the stream interaction model and the main components of
common computer architectures is derived.

Since architectures can be considered on different abstraction levels, concurrency also appears
on different abstraction levels:

Chevron-right Cluster Level (C): A cluster consists of compute nodes.

Chevron-right Node Level (N): A compute node consists of processors and accelerators.

Chevron-right Processor Level (P): A processor consists of compute cores, cache and memory.

PC … PC

DP
…

DP

FU
…

FU

=̂ Instruction Streams

=̂ Data Streams

=̂ Processing Elements

Figure 4.1: Mapping between the ISA level architecture model of a hypothetical processor (left) and the

terminology of the stream interaction model (right). To maintain an instruction stream, an

architecture requires at least a program counter. To maintain a data stream, it further requires

at least a data path, i.e. the set of input registers that store operands. In order to process the

interaction between an instruction and a data stream, it must at least exhibit a single functional

unit.

23



Chapter 4 Computer Architectures

Chevron-right Instruction Set Architecture Level (ISA): A core consists of control units, functional units
and registers, which are connected via data, address and control busses; these elements are
directly or indirectly controllable by the software developer via the instruction set.

Chevron-right Micro-architecture Level (MA): Functional units consist of logic circuits.

The stream interaction model can be applied on each particular level as can be seen from the
examples in Table 4.1. As can be seen from the level descriptions, the higher levels are based on
the lower levels. Hence, the overall concurrent processing capability of a computer system, i.e.
the number of stream interactions it supports, is the product of the numbers of stream interactions
each of its levels supports. As an example: imagine a cluster with 10 compute nodes. On the
cluster level, the cluster can execute 10 processes in parallel. If each compute node, however,
consists of 2 processors, the cluster can process 10 ⋅ 2 = 20 processes in parallel at the node level.
If further each processor covers 8 cores, the cluster can handle 10 ⋅ 2 ⋅ 8 = 160 processes at the
processor level.
Based on the considered abstraction levels, we have to identify the smallest functional elements of

hardware architectures that are required to maintain a) an instruction stream, b) a data stream and
c) a stream interaction in the sense of the stream interaction model. The subsequent considerations
to identify a), b) and c) refer to the ISA level, unless explicitly stated otherwise. As interface
between hardware and software, the ISA is the basis for higher level programming languages.
Therefore, it is the most suitable level for mapping hardware concurrency to software concurrency.
Figure 4.1 shows the ISA level architecture model of a hypothetical hardware architecture.

The model comprises only the common components of CPUs and GPUs that are relevant for the
mapping between the stream interaction model and those architecture features that are reflected
by the ISA, i.e. are implicitly or explicitly exposed to the software developer.
Each architecture exhibits a set of registers that stores the processing state of a program. This
includes an instruction register that holds the current instruction as well as a program counter
that holds the address to the next instruction. Following the notions of [99, p. 587] on Flynn’s
Taxonomy, the program counter is the smallest functional element of an architecture that is
required to maintain an instruction stream1. Thus, the number N of instruction streams in the
stream interaction model corresponds to the number of program counters.
Furthermore, an architecture consists of data registers and one or multiple functional units.

Each functional unit is connected to a number of data registers via a dedicated data path. A data
path is the connection to a set of input registers that contain the source operands for a single scalar
operation (either stand-alone or as part of a vector operation). Hence, a data path is considered
as the smallest functional element of an architecture that is required to maintain a data stream.
The number of data paths, in turn, corresponds to the number M of data streams in the stream
interaction model.
Here, a functional unit is considered as the logic circuit that processes a single scalar operation

(either stand-alone or as part of a vector operation). As functional units are the hardware
implementation of an instruction and are supplied with data via data paths, they are the physical
interaction points between instruction and data streams. Hence, a functional unit processes stream
interactions and accordingly corresponds to a processing element in terms of the stream interaction
model. Thus, the number F of functional units determines the number of stream interactions that
can take place in parallel.
In the context of architectures as physical instances of the stream interaction model, the time-
and space-multiplexing aspect of stream interactions should be revisited to consider when and
where interactions are processed.

1Following Flynn’s original work, instruction units [42, p. 1908] would correspond to instruction streams. However,
both terms are rather broad and may consist of components that exhibit concurrency themselves, e.g. a control unit may
feature an instruction pipeline, an out-of-order unit or even control multiple program counters (see warp scheduler of the
Nvidia V100 in Section 4.3). Due to these peculiarities, this work classifies concurrent processing capabilities for every
abstraction level separately.
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Table 4.1: Classification of architecture models following the stream interaction model.

Interaction

scheme
Multiplexing Model Example (Level)

N M I F

SISD n/a 1 1 1 1 Single-core CPU (P)

SIMD Space 1 n n n Array Processor (ISA)

Associative Processor (ISA)

CPU with vectorization (ISA)

Time 1 n n 1 Pipelined Vector Processor (ISA)

MISD Space n 1 n n Hard-wired rendering-pipeline (P)

FPGA (MA)

Pipelined Vector Processor (MA)

Instruction Pipelining (MA)

Time n 1 n 1 Intrinsic Multiprocessing (C)

MIMD Space n n n n Multi-core Processor (P)

Multi-processor node (N)

Multi-node cluster (C)

Superscalar execution (MA)

GPU with universal shaders (P)

Time n n 1 1 SMT (MA)

Time-multiplexing refers to stream interactions proceeding consecutively at the same functional
unit. Time-multiplexing can be used to enable the sharing of compute resources between multiple
processes. If single processes do not provide enough work load to use functional units to the full it
allows to increase the utilization of resources and hence increases overall throughput. While this
setup enables the interleaved (Definition 3.3) execution of processes, it does not support parallel
execution (Definition 3.4).

Space-multiplexing, on the other hand, refers to stream interactions proceeding in parallel at
different functional units. Space-multiplexing enables an architecture to execute multiple processes
in parallel and hence allows to decrease overall runtime. Figure 4.2 provides an overview of all
possible architecture schemes for time- and space-multiplexing.

Table 4.1 provides an overview of the architecture models behind each interaction scheme. For
each interaction scheme, it is considered whether interactions take place in a time-multiplexing
or in a space-multiplexing manner. Furthermore, the number N of instruction streams (program
counters), the number M of data streams (data paths) and the resulting number I of interactions
is provided in accordance with Table 3.1. Dependent on the multiplexing mode, the number
F of functional units is provided. For space-multiplexing, it corresponds to the number of I of
interactions. For time-multiplexing, it corresponds to 1 since all interactions are processed at the
same functional unit. For each interaction scheme, typical architecture examples are given.

Subsequent sections elaborate on the properties of the examples provided in Table 4.1. They
demonstrate that the stream interaction model can be applied to classify concurrent processing
capabilities on different architecture levels. Hence, the stream interaction model allows for the
same principle (just on a different level of the model hierarchy) to be explained with the same
concurrency concept.

4.1.1 SISD
The SISD architecture model describes the operating principle of sequential computer models
such as the von-Neumann or Harvard architecture. It covers a single functional unit that executes
instructions from a single instruction stream on the data elements of a single data stream. Since
there is only one stream interaction to process, there is no distinction between time- and space-
multiplexing. Regarding the core level, desktop computers - as single-core uniprocessor machines
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- were a classical example for SISD machines until the introduction of the first dual-core desktop
CPUs in 2005. More recent examples for SISD architectures are most of today’s microcontrollers and
single-core processors of small single-board computers, such as the Raspberry Pi Zero. While these
processors do not exhibit parallelism at the core level, they may still exhibit concurrent processing
capabilities at the ISA or MA level, e.g. in the form of instruction pipelining or superscalarity. This
is in accordance with [43, p. 692] that classifies single-core architectures as SISD and nevertheless
allows them to exhibit instruction level parallelism.

4.1.2 SIMD
The SIMD architecture model consists of several processing elements that each execute the same
instruction stream on multiple data streams concurrently. This includes array processors as
introduced by the Solomon project [93] (1962) and its successor ILLIAC IV [15] (1968), as well as
early pipelining-based vector processors such as the CRAY-1 [91] and the Connection Machines
[53]. Array processors are the archetype of space-multiplexing SIMD processors since they execute
a single instruction stream on multiple data elements at different functional units simultaneously
(see [41, p. 954]). As variation of the array processor, associative processors belong in this
category, too. In an associative processor, the functional units process an operation only, if a
general condition is satisfied for their data stream, otherwise, they stay idle. Vector processors, on
the other hand, are the archetype of time-multiplexing SIMD processors since they execute the
instructions of a single instruction stream on multiple data elements consecutively at the same
functional unit (see [41, p. 954]). Hence, in order for vector processors to reduce parallel runtime,
they have to provide some form of parallelism on the MA level (see Section 4.1.3).

4.1.3 MISD
The MISD architecture model consists of several functional units that each execute a different
instruction stream on the same (derived) data stream. From the space-multiplexing point of view,
MISD architectures can be considered as pipelines in which (derived) data elements are passed
from one functional unit to the next (see [46, p. 74]). Firstly, pipelining is the form of MA level
parallelism provided by Pipelined Vector Processors. Considering the MA level, they can hence
be considered as space-multiplexing MISD architectures. Secondly, this principle is reflected by
GPUs that exhibit a hard-wired rendering-pipeline in which data elements flow through multiple
stages: from the geometry shader to the vertex shader right through to the fragment shader and
the frame buffer. Thirdly, this principle can also be found in data-flow architectures such as
FPGAs, when considering a single path through a hardware-configured data flow graph (see [43, p.
695]). On such a path, a data stream flows from operator to operator. From the time-multiplexing
perspective, intrinsic multiprocessing (IMP) systems can be seen as MISD architectures (see [42, p.
1908]). An intrinsic multiprocessing system is a cluster of multiple sequence control units and
a number of time-shared execution units (see [13, p. 81]). IMP systems exploit the advantage
of independent processes to increase resource utilization. This is achieved by time-sharing data
paths and execution units that would be used only sporadically by a single process2.

4.1.4 MIMD
In a MIMD architecture model, each processing element executes a different instruction stream on
a different data stream. From the space-multiplexing perspective, a cluster with multiple nodes,
a node with multiple processors as well as a processor with multiple cores are typical examples
for MIMD architectures since all of these architectures allow for the execution of multiple stream
interactions in parallel. SMT can be considered as time-multiplexed MIMD on the ISA level. While
the states (program counter, instruction register, stack) of multiple hardware threads can be
managed in parallel, their stream interactions are processed consecutively since hardware threads
time-share specific functional units.

2An often mentioned example of MISD architectures is the space shuttle primary computer system [95]. Examining
this system in more detail, however, it becomes apparent that it fulfills the requirements for a MIMD architecture. Indeed,
it does not execute multiple instruction streams on the same (derived) data stream, but execute different instances of the
same instruction stream on different instances of the same data stream; i.e. it handles multiple independent (but redundant)
pairs of instruction and data streams.
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Figure 4.2: Space- and time-multiplexing versions of the SISD, SIMD, MISD and MIMD architectures.
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Figure 4.3: Block diagram of a multi-core CPU based on the Intel Xeon Processor Scalable Family. A multi-core

CPU consists of multiple compute cores. Each core consists of two hardware threads that share

an L1 instruction cache, an L1 data cache and a combined L2 cache. All cores share a combined

L3 cache and memory. Cores (yellow) provide the control unit for fetching and dispatching

instructions for execution by the hardware threads.

4.2 CPU Architecture
This section provides a short high-level introduction to CPU architectures. Regarding multi-core
CPUs, this work follows the terminology of Intel as used in the Intel Architectures Software
Developer’s Manual [57].

Figure 4.3 provides the schematic view of a typical multi-core CPU such as Intel’s Xeon Gold
6148 (Skylake) processor that is applied for the performance analysis in Section 8. It consists
of several compute cores, a shared memory and a shared L3 data and instruction cache. Each
compute core consists of multiple logical cores, so-called hardware threads. The CPU in Figure
4.3 provides two hardware threads per core, i.e. it exhibits 2-way SMT. All hardware threads of a
compute core share a combined L2 cache, an L1 instruction cache and an L1 data cache.

4.3 GPU Architecture
Regarding GPU hardware, this work follows the terminology of Nvidia as used in architecture white
papers and the CUDA documentation [78]. Nevertheless, the introduced models and concepts are
developed to be effortlessly transferable to GPU architectures by AMD and Intel via OpenCL or
SYCL. For mappings between the terminologies used by different platforms and vendors please
refer to Table A.1.

Figure 4.4 shows the block diagram of a GPU architecture based on the Nvidia data center GPUs
which are used for the performance analysis; see [82] for K40 (Kepler), [80] for P100 (Pascal)
and [81] for V100 (Volta). Since these microarchitectures are qualitatively broadly similar, Figure
4.4 provides a schematic view for all of them.

A GPU architecture consists of several execution units referred to as SMs, a shared L2 cache,
multiple DRAM stacks, a thread engine as well as a host interface. All SMs are connected to a
shared L2 cache in which data loaded from DRAM is implicitly cached. DRAM itself is in turn
connected to an interface for communication with the host CPU. Groups of instruction streams are
scheduled onto SMs by means of a thread engine.

Figure 4.7b shows the architecture of an SM based on the Volta microarchitecture. A Volta-SM
consists of an L1 instruction cache, a configurable L1 data cache/shared memory and four equal
processing blocks (PBs). In contrast, a Pascal-SM consists of an L1 instruction cache, a dedicated
L1 data cache, a dedicated shared memory and two equal PBs. A Kepler-SM, in turn, exhibits
an L1 instruction cache, a configurable L1 data cache/shared memory like Volta and two equal
processing blocks like Pascal. Additionally, Kepler provides a dedicated read-only data cache.
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Figure 4.4: Block diagram of a GPU architecture based on Nvidia Tesla V100 [81]. A GPU consists of a grid

of streaming multiprocessors. These streaming multiprocessors have shared access to several

memory modules and an L2 instruction and data cache. Each streaming multiprocessor consists

of a configurable L1 cache/shared memory and, dependent on the architecture, two or four PBs.

From a software developer’s point of view, the memory modules and the L2 cache (all blue blocks)

form a unit called global memory, while the L1 cache/shared memory modules (green blocks) can

be used as software-managed caches referred to as shared memory. Streaming multiprocessors

(yellow) provide the compute and scheduling hardware for the execution of thread blocks. Other

parts (white blocks) are not exposed to the programmer.

For Volta, each PB consists of an L0 instruction cache, a warp scheduler, a dispatch unit as well
as a register file and diverse functional units such as INT32 ALUs, FP32/64 ALUs, SFUs and tensor
cores. We refer to the latter as Stream Processors (SPs); commonly, SPs are also referred to as
CUDA Cores or shading units. In contrast, Kepler and Pascal exhibit two dispatch units per PB or,
to be more precise, per warp scheduler.

29



Chapter 4 Computer Architectures

L1 Instruction Cache

Processing Block

L0 Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

FP64

FP64
…

FP64

INT

INT
…

INT

FP32

FP32
…

FP32

LD/

ST

LD/

ST

LD/

ST
SFU

Tensor

Cores

Processing Block

L0 Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

FP64

FP64
…

FP64

INT

INT
…

INT

FP32

FP32
…

FP32

LD/

ST

LD/

ST

LD/

ST
SFU

Tensor

Cores

Processing Block

L0 Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

FP64

FP64
…

FP64

INT

INT
…

INT

FP32

FP32
…

FP32

LD/

ST

LD/

ST

LD/

ST
SFU

Tensor

Cores

Processing Block

L0 Instruction Cache

Warp Scheduler

Dispatch Unit

Register File

FP64

FP64
…

FP64

INT

INT
…

INT

FP32

FP32
…

FP32

LD/

ST

LD/

ST

LD/

ST
SFU

Tensor

Cores

L1 Data Cache/ Shared Memory

Figure 4.5: Block diagram of a streaming multiprocessor based on the Nvidia Tesla V100 Streaming Multi-

processor[81]. A streaming multiprocessor consists of a configurable L1 cache/Shared memory

and, dependent on the specific architecture, two or four PBs . Each PB covers an L0 instruction

cache, a warp scheduler and a dispatch unit for obtaining, scheduling and mapping instructions.

Furthermore, each PB covers a register file as well as diverse execution units. These comprise

single/double precision ALUs (FP32/64; also known as CUDA cores), integer ALUs (INT), special

function units, load/store units and tensor cores.

4.4 CPU vs. GPU Architecture
This section outlines the optimization goals behind CPU and GPU architectures. Further, the
influence of these optimization goals on concurrent processing capabilities is outlined for the
following criteria:

Chevron-right SIMD capabilities

Chevron-right MISD capabilities
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Table 4.2: Comparison of size, theoretical peak performance and compute density of a CPU and a GPU

architecture.

Property CPU GPU

Chip AMD EPYC 7702 AMD MI100

Die Size [mm2] 592 750

Cores 64 128

Base Clock [GHz] 2.0 1.0
IPC 16 (2× AVX2 FMA) 64 (32× FMA SPs)
FP64 Peak Performance [GFLOPS] 2048 8192

Compute Density [GFLOPS/mm2] 3.46 10.9

Chevron-right MIMD capabilities

4.4.1 Optimization Goals
CPU and GPU architectures are designed towards different optimization goals. CPU architectures
are latency-driven; they are designed to minimize instruction and memory latencies. GPU architec-
tures, in contrast, are throughput-driven; they are designed to maximize instruction and memory
throughput.
Each CPU core consists of multiple features that help a single operation stream to be executed as
fast as possible. This covers sophisticated control logic such as OOO units and branch predictors
as well as large low-latency caches. Accordingly, chip space is invested into few, sophisticated
cores instead of many, simpler cores.
On GPU architectures, in contrast, chip space is invested into many, simpler cores instead of

few, sophisticated ones. Therefore, GPUs do not exhibit OOO units or branch predictors. Instead,
they exhibit a global control unit (Nvidia GigaThread Engine or AMD Command Processor) that is
shared between all of those cores, in addition to basic control logic that is shared by multiple
functional units (see Figure 4.7b). This allows GPUs to exhibit a multitude of functional units and
hence a multitude of hardware concurrency in comparison to CPUs.
Figure 4.63 shows the die shots of an AMD EPYC 7702 CPU CCD (Zen 2) with 8 cores and
an AMD MI100 GPU (Arcturus) with 8 arrays à 16 compute units. The figure illustrates that
the relative amount of chip space occupied by compute logic on GPUs is larger than on CPUs.
As exemplified for MI100 and EPYC 7702 in Table 4.2, the GPU can execute three times more
FLOPS per square millimeter than a CPU. Please note that this comparison is only valid since both
processors are fabricated with the same process size; here, the 7nm MOSFET process of TSMC for
both chips.
These different architectural optimization goals are further reflected by a difference in clock

speeds. As outlined in Figure 4.7a, GPUs have in general a lower clock speed than CPUs. Consid-
ering the processor chips in Table 4.3, the clock speed of CPUs is on average 3 times higher than
the clock speed of GPUs.

4.4.2 SIMD Capabilities
CPUs and GPUs both cover space-multiplexed SIMD mechanisms. CPUs support SIMD in terms
of SSE and AVX units for vectorization. Typically, GPUs are considered as SIMD architectures
since they execute instructions on multiple lanes of a warp in lockstep. Examining this further,
lanes in a warp diverge at conditional statements by masking lanes dependent on the execution

3Credit for the underlying high-resolution die shots goes to [44] for the CPU and [101] for the GPU. Due to the
different distribution of compute logic on CPUs and GPUs, comparing core/compute unit die shots only is not sufficient.
Therefore, this work annotates the underlying CCD die shot by combining the annotations provided by AMD in a core die
shot of the Zen 2 architecture [104] with a die shot of one CCD of an EPYC 7702 CPU[44]. Please note that the latter
consists of 8 such CCDs, exhibiting 64 cores overall. This does, however, not distort the ratio between compute and control
logic, which is relevant for a fair comparison to the GPU architecture. For the GPU die shot, it combines the details of the
compute unit die shot [12] and the full-chip die shot [11].
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Figure 4.6: Comparison of a CPU die shot (left) and a GPU die shot (right). The CPU die shot belongs to an

AMD EPYC 7702 CPU CCD. The CCD consists of 8 Zen 2 cores (transparent white) and 4 L3 cache

slices. The compute logic (blue) on each core includes all FP/SIMD units and the ALU. The full

64-core AMD EPYC 7702 CPU consists of 8 such CCDs. The GPU die shot belongs to an AMD

MI100, which consists of 8 arrays (transparent white) à 16 compute units, i.e. the vertical slices

of an array. The compute logic (blue) on each array includes all FP/SIMD units and ALUs.

path they take. Therefore, GPUs can be considered as a variation of associative array processors.
Current Nvidia GPUs (Volta and onward), however, support independent thread scheduling, which
introduces a dedicated program counter per warp lane and mitigates the negative impacts of strict
lockstepping, such as performance-costly branch divergence and warp-synchronous deadlocks.

4.4.3 MISD Capabilities

CPUs and GPUs are both scalar processors in the sense that both provide instruction pipelining,
which corresponds to space-multiplexed MISD at the MA level. On multicore CPUs, each core
exhibits a control unit that implements a pipelined fetch-decode-execute cycle on the MA level. On
GPUs, each SM exhibits multiple warp schedulers and dispatch units that implement instruction
pipelining on whole warps. More important, regarding MISD capabilities on GPUs, however, are
the deep execution pipelines.

4.4.4 MIMD Capabilities

Current CPUs and GPUs both exhibit forms of space-multiplexed MIMD. On a multi-core CPU,
multiple threads can run independently in parallel on different cores, and flexibly communicate
and synchronize with each other via shared memory. Due to this, thread- and SPMD-based
parallelization are the prevalent parallel algorithm model on CPUs. On a GPU, multiple thread
blocks can run independently in parallel on different PBs since each PB covers a dedicated warp
scheduler and dispatch unit. However, synchronization between threads from different thread
blocks is either impossible (for AMD GPUs or pre-Pascal Nvidia GPUs) or considered costly. So
far, this prevents irregular applications that do not exhibit sufficient SIMD data-parallelism from
running efficiently on GPUs.

Furthermore, CPUs and GPUs both exhibit forms of time-multiplexed MIMD. Multi-core CPUs in
terms of SMT and GPUs in terms of interleaved multithreading. Both mechanisms have in common
that the execution contexts of multiple operation streams are kept in registers to allow for fast
context switching. This enables the control units or the warp scheduler to issue an instruction from
a different ready-to-execute operation stream in every cycle. Therefore, both mechanisms lead to
interleaved execution of operation streams and reduce data dependency stalls on the execution
pipelines (see Section 4.4.3). On CPUs, this is typically implemented for two or maximally four
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hardware threads per core. On GPUs, in contrast, this is done for 16 up to 32 resident warps per
PB or accordingly 64 resident warps per SM.

4.5 Quantitative Architecture Trends
The content of the subsequent subsections is closely based on a previously published work [74].
Based on the concurrent processing capabilities of both architectures, this work derives a mapping
between CPU and GPU features that allows for a quantitative comparison of both architectures
over time. This mapping equates:

Chevron-right each SIMD lane and each FPU on a CPU with an SP on a GPU, and refers to both as Processing
Element (PE);

Chevron-right a core on a CPU with an SM on a GPU, and refers to both as Compute Unit (CU).

4.5.1 Methods
To quantify architectural trends over the years, this work compares high-end CPUs and GPUs from
Intel, Nvidia and AMD since the beginning of the dual-core era int 2005 and the advent of the
first GPGPUs in 2006. Table 4.3 lists the specific processors and microarchitectures that are used
as data basis for the analyzes in the subsequent sections. The data basis is retrieved from the GPU
Specs Database [103] and the CPU Specs Database [102]. The time points that serve as basis for
the charts correspond to release dates.
A CPU chip is only included in the data basis if it was used in Intel server CPUs that target

the HPC market. Hence, architectural properties are retrieved from Intel’s product specifications
for the Intel Xeon Processors and Intel Xeon Scalable Processors [59]. Following the UAM, the
number of compute units #CUs corresponds to the number of cores. This does not include SMT
since multiple SMT-threads share a SIMD unit and therefore do not operate in parallel, but only in
an interleaving manner. The number of processing elements #PEs corresponds to the number of
SIMD-lanes on an entire CPU. It is derived from the FP32 SIMD width and the overall number of
SIMD units.
A GPU chip is only included in the data basis if it is used in dedicated HPC GPUs, i.e. if it is
part of the Nvidia Data Center (former Tesla) series or AMD Radeon Instinct (former FirePro
S) series. For each microarchitecture, the chip with the highest #CUs is considered. However,
dual-GPU designs are excluded from this approach since they do not reflect technical progress
in the fabrication process and are rather comparable to dual-socket CPU systems, which are also
excluded from the data basis. Therefore, the provided #CUs and #PEs refers to GPU chips, instead
of specific GPU models. The number of compute units #CUs for all GPU chips is retrieved from the
GPU Specs Database [6] and corresponds to its parameter SM Count. The number of processing
elements #PEs per CU is determined from the ratio of the parameters Shading Units and SM Count.
Hence, this can be considered as the size of a CU.
For both processor types, stated clock frequencies refer to base frequencies instead of turbo
frequencies. This allows for a fair comparison between current hardware that supports a turbo
frequency, and past hardware that does not. Further, it eliminates the influence of core utilization
and SIMD usage on the clock frequency.

4.5.2 Clock Frequency Trend
With the beginning of the 21st century, clock frequencies started to stagnate due to their thermal
design power. The latter rendered the continuation of the ever-increasing clock frequency trend
of earlier decades impossible. Figure 4.7a shows the development of base clock frequencies of
CPUs and GPUs subsequent to this period. Since around 2005, CPU clock frequencies stagnate
between 2.3 to 3.1 GHz.
In principle, GPU clock frequencies follow a similar trend just with an offset in time and the
maximal base clock frequency. Subsequent to the introduction of dedicated general purpose
computing GPUs in 2006, GPU clock frequencies steadily increased. Around 2016, however, GPU
clock frequencies began to stagnate at 1.0 to 1.2 GHz due to thermal design power, too.
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Table 4.3: Considered GPU and CPU Chips

ID Year Nvidia GPU Chips AMD GPU Chips Intel CPU Chips

0 2005 Pentium D840 (Smithfield)

1 2006 G80 (Tesla)

2 2010 GF100 (Fermi) X7560 (Nehalem)

3 2011 E7-8870 (Westmere)

4 2012 Tahiti (GCN 1) E5-2687W (Sandy Bridge)

5 2013 GK180 (Kepler) Hawaii (GCN 2)

6 2014 E7-8890 v2 (Ivy Bridge)

7 2015 GM200 (Maxwell) Fiji (GCN 3) E7-8890 v3 (Haswell)

8 2016 GP100 (Pascal) Ellesmere (GCN 4) E5-2699A v4 (Broadwell)

9 2017 GV100 (Volta) 8180M (Skylake)

10 2018 Vega 20 (GCN 5.1)

11 2020 GA100 (Ampere) Arcturus (CDNA 1) 8380HL (Cooper Lake)

12 2021 8380 (Ice Lake)

13 2022 Aldebaran (CDNA 2)

4.5.3 Compute Unit Trend
To enable further growth in hardware performance despite the stagnation of clock frequencies,
hardware vendors increased the number of CUs per processor. This trend can be seen in 4.7b
that shows the development of the number of CUs (#CUs) per processor between 2005 and 2022.
In this period, #CUs per CPU or GPU increased regardless of vendors. For CPUs, #CUs doubled
roughly every four years, which led to a twenty fold increase overall.
Considering Nvidia GPUs, #CUs was constant till 2014. In the subsequent two years, #CUs more

than quadrupled from 15 to 60 CUs per GPU. In roughly the same period, AMD introduced its first
GPGPU chip (Tahiti) with 32 CUs and doubled this number to 64. Having a similar number of
CUs at the start of 2016, Nvidia continued the increase in CUs.
AMD, however, decreased the number of CUs with the introduction of its GCN 4 micorarchi-

tecture, which is compatible with GCN 3 but aims at higher clock frequencies by using a smaller
fabrication process size. In fact, this is a data selection artifact that hides the fact that AMD
continued to produce GCN 3 based GPUs with 64 CUs, i.e. continuing the trend of an increase in
#CUs just as Nvidia. Hence, all vendors heavily expanded the MIMD capabilities of their CPUs
and GPUs between 2005 and 2022.

4.5.4 Processing Element Trend
Figure 4.7c depicts the size of CUs between 2005 and 2022. The size of a CU corresponds to the
ratio of the number of processing elements #PEs per CU. Hence, this ratio can be considered as
the amount of hardware parallelism a CU provides.
On a CPU, #PEs per CU resembles the SIMD width. Hence, the chart shows that the SIMD width

is step wise increasing. This reflects the successive introduction of SSE, SSE2 (Sandy Bridge), AVX
(Haswell) and AVX2 (Skylake). Further, the steps in the trend reflect Intel’s tick-tock production
model, with the tick being a new fabrication process, and the tock being a new microarchitecture.
For AMD GPUs, the CU size is constant over time. For Nvidia GPUs, however, the CU size

increases between 2006 and 2013. Comparing Figures 4.7c and 4.7b, this increase overlaps with a
stagnation in the amount of CU per GPU. Hence, both vendors increased the overall amount of
concurrent processing capabilities, but with two different approaches. Finally, the Maxwell and
Pascal architectures introduced a trend reversal that led to a decrease in CU size and a leveling at
64 #PEs/CU; remarkably, at the same size as AMD CUs.
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Figure 4.7: Development of CPU and GPU architecture properties over time.
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Chapter5
Redesigning your application to run

multithreaded on a multicore

machine is a little like learning to

swim by jumping into the deep end.

Herb Sutter

Parallel Programming Models

In this work, a parallel programming model is considered as a set of abstractions (instructions,
functions, directives, runtimes) that enable the development and execution of concurrent software.

As stated in Section 3.2, the parallelization of an algorithm can be subdivided into four coarse
steps: decomposition, assignment, orchestration and mapping. Based thereon, a parallel program-
ming model should provide front-end abstractions or back-end mechanisms or both for all of these
theoretical steps. Considering the technical specifications of the parallel programming models
CUDA, OpenACC and OpenMP, the following commonalities can be derived.

First, each parallel programming model supports one or several partitioning models that allow
for the decomposition of an algorithm into work units and the assignment of these work units to
processes. Second, it consists of an execution model that describes a set of processes and determines
orchestration capabilities between these processes. Third, it provides an architectural model and a
memory model that serve as the foundation of the execution model and describes the mapping of
processes and interactions to hardware resources.

5.1 Classification
This section classifies parallel programming models based on the architectures and partitioning
models they support. Regarding supported architectures, this work considers:

Chevron-right CPU-only programming models (see Eventify in Section 5.3)

Chevron-right GPU-only programming models (see CUDA in Section 5.4)

Chevron-right Heterogeneous programming models with:

Caret-right Compiletime heterogeneity (see OpenACC in Section 5.5): enables execution of uniform
parallel code sections either on CPU or GPU, with the architecture being selectable at
compile time.

Caret-right Runtime heterogeneity (see OpenMP in Section 5.2): enables execution of architecture-
dependent parallel code sections on CPUs and GPUs simultaneously.

Partitioning models describe the decomposition of an algorithm into tasks and the assignment of
these tasks to processes or threads. Hence, partitioning models are on the one hand related to the
type of concurrency that algorithms exhibit, and on the other hand to the specific parallelization
techniques that the underlying execution and architectural models support. Firstly, this allows for
a clear distinction between parallelization approaches that can be applied to implement diverse
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Table 5.1: Classification of partitioning models based on the stream interaction model.

Interaction Scheme Partitioning Model Example (Programming model)

SIMD
Vectorization-based SIMD intrinsics (C++)

Warp-based Warp-aware data access (CUDA)

MISD
Data-Flow-based Data flow modelling (VHDL)

Pipeline-based Software pipelining (CUDA)

MIMD

Thread-based:

• Loop-based Parallel loops (OpenMP)

• Task-graph-based Task dependencies (OpenMP)

SPMD-based Multiprocessing (MPI)

types of data- and task-parallelism. And secondly, it allows for a mapping between partitioning
models and architecture models.
Table 5.1 provides an overview of partitioning models classified by means of the stream in-
teraction model. The concurrent processing capabilities of a partitioning model with stream
interaction scheme X correspond to an architecture model that (on any of its levels) supports the
same stream interaction scheme X and vice versa. Similar to the considerations on architecture
models, partitioning models are not mutually exclusive and can be combined, e.g. multiprocessing
and multi-threading can be combined with vectorization.

5.2 OpenMP
This section briefly covers the architecture, memory and execution model behind OpenMP. Based
thereon, it describes the algorithm models OpenMP supports as well as the OpenMP C++ directives
and environment variables applied in this work.

5.2.1 Architecture Model
OpenMP is a parallel programming model for heterogeneous hardware. It supports CPU and GPU
architectures from different vendors [84, p.], which can jointly be used during the execution of a
single OpenMP program. Therefore, OpenMP differentiates between host and target devices. The
host device is the CPU on which the execution of the OpenMP program begins. Target device,
on the other hand, is a relative term; it refers to a device that another device (typically, the host
device) offloads work to.

5.2.2 Memory Model
OpenMP provides a shared-memory model with relaxed consistency and support for offloading.
Due to the latter, the API provides directives to transfer data between host and device memory.
OpenMP differentiates between private and shared variables. Private variables can be accessed

by a single thread only. Shared variables, in contrast, can be accessed by all threads of the team.
The access type of a variable can either be implicitly defined by its scope or explicitly specified
via an OpenMP data-sharing clause.

5.2.3 Execution Model
Each OpenMP program is executed as an OpenMP process, that is, a set of OpenMP threads and
OpenMP address spaces that can potentially be located on multiple, different target devices. The
execution model behind such a process is based on fork-join parallelism [84, p. 22]. Therefore,
each OpenMP process consists initially of a single, sequential thread that runs on the host device.
This initial thread spawns additional threads once it encounters a parallel, target or teams
construct. If the OpenMP implementation supports nested parallelism, these threads may also
spawn further threads.
The parallel construct (see Listing 5.1, Line 1) creates a team of threads that execute a parallel
region [84, p. 92] concurrently. The work encompassed by the parallel region is distributed
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Listing 5.1: OpenMP for construct within parallel region

1 #pragma omp parallel [clause[ [,] clause] ... ]

2 #pragma omp for [clause[ [,] clause] ... ]

3 loop-nest

Listing 5.2: Combined OpenMP construct parallel for

1 #pragma omp parallel for [clause[ [,] clause] ... ]

2 loop-nest

between these threads via work sharing constructs such as partitioned for-loops or independent
sections.

The teams construct, however, creates a set of teams and the initial thread in each team executes
the region [84, p. 100]. Since the initial thread of each team can spawn further threads, the
teams construct allows for hierarchical parallelism as provided by GPU architectures. Therefore,
the teams construct is only applicable within a target region.

The target construct enables offloading work and data to an accelerator. The target construct
spawns an initial thread on the target device [84, p. 22] and this thread executes the target region;
commonly, by spawning further threads via parallel or teams.

5.2.4 Partitioning Models

In OpenMP, algorithm models are expressed via work sharing constructs that allow the distri-
bution of work between multiple threads. OpenMP supports vectorization-based parallelization
via the simd construct, loop-based parallelization via the for construct and task-graph-based
parallelization via the task construct in combination with the depend clause.

Here, only loop-based parallelization as applied within the OpenMP version of FMSolvr in
Section 7.4.1 is outlined further. In order to parallelize a for-loop with OpenMP, the for-loop and
the OpenMP for construct must be contained in a parallel region. This can either be achieved
by nesting a for-construct within a parallel construct as shown in Listing 5.1 or by using a
combined construct as shown in Listing 5.2. The for construct then subdivides the iteration space
into chunks, which are distributed to all t threads of the parallel region for execution.

Since distribution and size of those chunks may have a severe impact on performance, they
can be specified through the schedule clause via schedule(type, chunk_size). While type
determines the applied scheduling policy, chunk_size determines the number of iterations per
chunk. If no chunk_size is specified, the iteration space is divided into at most t chunks that are
approximately equal in size [84, p. 129].

The schedule-type static indicates that chunks are distributed to threads following a static
round-robin policy, which is especially advantageous if chunks contain equal amounts of compute
load. The schedule-type dynamic denotes that threads request chunks from a work pool dynami-
cally, which improves load balancing if chunks contain different amounts of compute load. The
schedule-type runtime indicates that the scheduling type is chosen via the environment variable
OMP_SCHEDULE at runtime.

5.3 Eventify
Eventify is a low-overhead, task-parallel programming library that targets strong scaling and
performance portability of applications with many, tiny, dependent tasks [50]. Its source code is
published at www.fmsolvr.org under the open source license LGPL v2.1.

5.3.1 Architecture Model

So far, Eventify supports CPU architectures only. This work contributes to the extension of Eventify
to GPUs.
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Figure 5.1: UML activity diagram of Eventify’s task execution engine for a single thread, as depicted in [75].

5.3.2 Memory Model

Since Eventify relies on std::threads, it expects applications to adhere to the memory model
of C++11 [25, p. 6f] or above. Further, it provides a NUMA layer that enhances data locality by
reusing static work distribution functionalities for thread pinning, i.e. threads that operate on the
same data, should be located on the same NUMA node.

5.3.3 Execution Model

The execution model of Eventify is based on tasks that are executed by C++’s std::threads. Each
thread owns a task queue and all threads follow the same task execution routine as shown in
Figure 5.1.

At startup, a set of initial tasks is statically assigned to each thread. By definition, initial tasks
do not exhibit any incoming dependencies, which allows for Eventify’s bottom-up task creation.

The load balancing approach of Eventify combines three techniques, namely static work assign-
ment, work sharing and work stealing. During execution, each thread first checks its own queue for
a task. If the queue contains a task, it is executed and its dependencies are resolved. Otherwise,
the thread follows a work stealing approach and checks other queues for work. If it finds a task,
the task is executed and its dependencies are resolved. If the dependency resolution generates
new tasks that are ready-to-execute, the thread follows a work sharing approach; based on the
static work distribution scheme, it inserts the new tasks into the respective task queues. Following
this approach, only tasks that are ready to execute enter a task queue.

5.3.4 Partitioning Models

Eventify enables software developers to specify parallelism in form of event-based task parallelism.
In Eventify, a task consists of a processor object and a data object. Hence, the execution of a task
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Listing 5.3: Eventify syntax for task definition

1 template <typename... Args>

2 struct CTask : public AbstractProcessor<CTask, Args...>

3 {

4 typedef AbstractProcessor<CTask, Args...> Base;

5 using Base::AbstractProcessor;

6 template <typename DataType>

7 void run_computation(DataId data_id)

8 {

9 compute_CTask(data_id, this->data_structure);

10 }

11 };

Listing 5.4: Syntax for Configuration of the Static Event Dispatcher

1 using EventDispatcher =

2 EventListenerContainer<

3 EventListener<DataEventAlpha, Handler<Create_ATask>>,

4 EventListener<DataEventAlpha, Handler<Create_BTask>>,

5 EventListener<DataEventBeta, Handler<Create_CTask>>,

6 EventListener<DataEventGamma, Handler<Create_CTask>>,

7 //...

8 >;

is the execution of a processor object on a specific data object. Instead of defining and declaring
each and every task and its dependencies separately, tasks are described in form of task types that
specify the dependency pattern and compute operation for a group of tasks. Dependency patterns
are defined upon user-defined data structures (which are anyway part of any sequential software)
via event listeners that are used to configure a static event dispatcher. The compute operation
is specified as part of the processor object. Overall, this leads to a “convenient way to describe
recurring task dependency patterns in large task graphs” [50].
To parallelize a sequential application with Eventify, a software developer has to provide:

Chevron-right Processor definitions: Task-type specific processors are defined via inheritance from the
AbstractProcessor class and implementation of its run_computation() function by call-
ing a user-defined compute function. As an example, Listing 5.3 shows the definition of a
task of type CTask.

Chevron-right Event dispatcher definition: The event dispatcher defines dependencies between task types.
It consists of event listeners that statically define dependencies between data events and
event handlers at compile-time (see Listing 5.4). As soon as a specific data event is triggered,
its event handler is called to initiate the creation and enqueueing of the respective task. The
connection between an event source, e.g. the computation of a specific data element, and
the triggered event is established by calling the dispatch() method of the event dispatcher
(see Listing 5.5).

Chevron-right Multi queue definition: In Eventify, each thread owns a multi queue to store its tasks. As
the name implies, a multi queue consists of multiple sub-queues; one for each task type. With
the multi queue definition, the user determines the prioritization of task types. Listing 5.6
and corresponding Figure 5.2 show a configuration in which tasks of type ATask are of higher
priority then tasks of type BTask and CTask, i.e. task types are ordered with decreasing
priority.
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Listing 5.5: Eventify syntax for dependency resolution via dispatch call

1 compute_CTask(DataId data_id, DS& data_structure)

2 {

3 // Compute a data element alpha

4 data_structure[data_id].alpha = ... ;

5 // Resolve dependencies

6 EventDispatcher::dispatch<DataEventAlpha>(data_id);

7 // Event dispatcher calls respective event handlers Create_ATask and Create_BTask

8 }

Listing 5.6: Syntax for Configuration of the Multi Queue

1 using multi_queue =

2 MultiQueue<ATask, BTask, CTask>;

TaskType

ATask

BTask

CTask

Other

MultiQueue
BaseTask

Figure 5.2: Configuration of Eventify’s multi queue.

Event Sources Data Events Event Handlers

compute_CTask()

compute_ATask()

compute_BTask()

DataEventAlpha

DataEventBeta

DataEventGamma

Create_ATask

Create_BTask

Create_CTask

triggers

triggers

triggers

calls

calls

calls

calls

Figure 5.3: Concept and configuration of Eventify’s static event dispatcher. The internal connections (blue) of

the static event dispatcher are configured at compile time. This example configuration corresponds

to Listing 5.4.

5.4 CUDA
CUDA is a parallel programming model that enables general-purpose computations on Nvidia
GPUs. CUDA supports C, C++ and Fortran by means of language extensions and built-in variables.
It consists of the CUDA Runtime API and the CUDA Driver API, with the architecture, memory and
execution models behind both being the same. This section provides an overview on the concepts
of the CUDA Runtime API for C++ that are relevant for this work.

5.4.1 Architecture Model
From a software developer’s point of view, many of the architectural details provided in Section
4.3 are hidden by the architecture model in Figure 5.4. The architecture model consists of a host
CPU that drives one or multiple Nvidia GPUs. The global memory module abstracts the HBM2
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Figure 5.4: The CUDA architecture model consists of a host CPU and one or multiple Nvidia GPUs. The

depicted GPU architecture model is an abstraction of the detailed GPU architecture provided in

Figure 4.4.

modules and the L2 data and instruction cache (see Figure 4.4). In the architecture model, a GPU
consists further of multiple SMs. Each SM covers a shared memory module that can explicitly
be used as software-managed cache, but does not expose the L1 data cache (see Figure 4.4) to
the software developer. Further, each SM consists of multiple execution units. Neither SMs nor
execution units are explicitly exposed to the software developer, i.e. it is not possible to pin specific
threads to specific hardware resources. Instead, the execution model abstracts hardware resources
via logical threads and thread blocks.

5.4.2 Memory Model
To start with, CUDA assumes a physical separation between device and host memory space.
Therefore, the CUDA runtime provides memory management functions that enable the host-driven
allocation and deallocation of device memory as well as data transfer between both memory
spaces. With the Kepler architecture, the concept of unified memory was introduced to provide a
single, common address space that is accessible from host and device without extensive manual
data management. Starting with the Pascal architecture, unified memory supports automatic page
migration between device and host memory space in case of a page fault.
CUDA exhibits a hierarchical memory model in which threads have access to multiple memory

regions. Each thread has access to a private local memory region; local memory cannot be explicitly
addressed via the CUDA Runtime API. Each thread block has access to a shared memory region
that is visible to all threads of the block. Allocation of shared memory is configured in the course
of the kernel configuration and initialized within kernel scope via the __shared prefix. Further,
all threads in the grid have access to global memory.

5.4.3 Execution Model
From a macroscopic view, a CUDA program consists of a host program and kernel functions. The
host program is a sequential or multi-threaded program that runs on the host CPU. It defines the
execution context and controls the execution of kernel functions on (potentially multiple) GPUs.
Kernel functions describe parallel computations for execution on GPUs and are written in CUDA
C++. CUDA C++ is a C++-dialect that allows the definition of functions that are called once but
executed in parallel by multiple GPU threads:

Definition 5.1. Kernel Function. A kernel function is an implicitly parallel subroutine that
executes under the CUDA execution and memory model.[78]

Kernel functions are prefixed with the execution space specifier __global__ and can be called
from host and device context.
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Further, a CUDA program consists of __host__ functions that can be called from host code only
and __device__ functions that can be called from kernel functions only. Functions prefixed with
both decorators are callable from both, host and device code.
CUDA’s execution model supports hierarchical parallelism and therefore differentiates between
threads, thread blocks and grids as units of execution:

Definition 5.2. Thread. A thread is an instruction stream that executes a kernel function.[78]

Definition 5.3. Thread Block. A thread block is a group of threads which execute the same
kernel function on a single streaming multiprocessor.[78]

Definition 5.4. Grid. A grid is a group of thread blocks that execute the same kernel function.

Following from the CUDA memory model, all threads of a thread block have access to shared
data located in the shared memory of the SM. However, thread blocks cannot access the data
located in shared memory of other thread blocks.
Following from the architecture model, SMs provide the compute and scheduling hardware for
the execution of thread blocks. The number and configuration of threads and thread blocks in
the grid are determined by the software developer within the limits of hardware resources such
as shared memory and registers. However, the mapping of thread blocks onto SMs cannot be
explicitly configured by the developer. The mapping of thread blocks onto SMs is determined by
the GigaThread Engine. All threads of a thread block are mapped to the same SM and reside on
this SM for their total execution time. Multiple thread blocks can reside on one SM. The number
of threads per thread block and the number of thread blocks per SM depends on the number of
hardware resources a kernel function uses and the number of hardware resources an SM provides.
The maximum number of threads per thread block and the maximum number of thread blocks per
SM depends on the compute capability of the GPU and can be found in Table 8.2 for all GPUs
considered in this work.
For execution, thread blocks are subdivided into warps as schedulable units. Each warp consists
of Ws threads or lanes, where Ws is typically 32. Each thread block of size Dblock is partitioned
into ceil(Dblock/Ws) warps, with the first warp containing thread t0 being followed by consecutive,
increasing thread IDs [78, p. 104]. Warps are scheduled for execution by means of warp schedulers.
Specific scheduling strategies are architecture-dependent and are outlined in Section 5.6.

5.4.4 Partitioning Models
Considering the execution of kernel code, CUDA implements the SIMT model. SIMT combines
thread-based programming in terms of MIMD with warp-based programming in terms of the
SIMD model. Typically, the SIMT model is used to express data-parallelism in the form of kernel
functions that are executed on a grid of threads. It is more flexible then vectorization-based models
since it allows for branching and barely requires the programmer to express parallelism explicitly.
Threads are ordered within blocks and grids and made available in the API via a 3-dimensional
indexing scheme. The CUDA runtime API provides the built-in variables blockDim.{x,y,z} to
retrieve the number of threads in a block along the x-, y- and z-dimension. In the same manner, it
provides the gridDim.{x,y,z} variables to retrieve the number of thread blocks in a grid along the
x-, y- and z-dimension. The built-in variables threadIdx.{x,y,z} return the thread index of the
calling thread in the specified dimension. In the same manner, the variables blockIdx.{x,y,z}
return the block index of the calling thread in the specified dimension. Figure 5.5 depicts this
principle for a 2-dimensional grid. To configure the execution context of a kernel function
by means of this indexing scheme, a kernel function is called as compute_kernel<<<gridDim,
blockDim>>>(...).
For GPUs with compute capability ≥ 3.5 (Kepler or newer), CUDA further supports dynamic
parallelism, which allows calling kernel functions from the device context.
CUDA further supports task-parallelism with kernel-level granularity in form of ATGs. ATGs
allow for the expression of dependencies between kernel functions and the automatic derivation
of a concurrent execution order.
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Figure 5.5: CUDA indexing scheme for a 2-dimensional grid. The left grid represents the indexing scheme of

blocks in the grid. The blue colored tile represents a single thread block. The right grid represents

the indexing scheme of threads in a block. The dark blue tile corresponds to a single thread.

5.5 OpenACC
OpenACC is an offloading-based parallel programming model that combines the ideas behind
OpenMP and CUDA. It can be applied to C, C++ and Fortran programs by means of directives,
functions and environment variables. This section provides an overview on the concepts of
OpenACC along with its architecture, memory and execution model. Based thereon, the algorithm
models OpenACC supports are described.

5.5.1 Architecture Model
OpenACC differentiates between host and accelerator devices. It supports x86- and Power-
compatible CPUs as hosts and devices, as well as GPUs from AMD and Nvidia as accelerators[83,
p. 137]. In contrast to OpenMP, however, CPUs and GPUs cannot be used flexibly together during
the execution of a single OpenACC program in the sense of executing some regions on the host,
and offloading other regions to an accelerator. Instead, OpenACC differentiates between host-only
and host+accelerator programs. The former refers to an OpenACC program that is compiled to
execute parallel regions on the multi-core host (-ta=host), while the latter is compiled to execute
parallel regions on the accelerator device (-ta={gpu_arch}).

5.5.2 Memory Model
OpenACC supports heterogeneous systems with the following physical relations between host and
accelerator memory: discrete host and accelerator memories, shared host and accelerator memory
as well as discrete and shared memories [83, p. 34]. This work considers the first system setup only
since it is the most common scenario in typical HPC systems and is further the most generic one,
i.e. if an OpenACC program operates correctly on a machine with physically separated memories it
will operate correctly on a machine with shared memory (under the assumption of similar memory
coherence and consistency models).
OpenACC incorporates the physical separation between host and accelerator memory mainly via

implicit, compiler-managed data transfers, which aims to free software developers from providing
all of the boilerplate memory management code that low-level GPU programming models demand.
This does, however, not hold for more complex, pointer- and reference-based data structures as
commonly used in object oriented software. For such cases, OpenACC provides the data enter

and data exit directives for the manual creation of deep copies. This work applies the following
clauses to the data directive:
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Listing 5.7: Structure of an OpenACC Directive

1 #pragma acc directive-name [clause-list]

Chevron-right create(vars): Allocates memory for vars on the accelerator.

Chevron-right delete(vars): Deallocates memory for vars on the accelerator.

Chevron-right copyin(vars): If vars are not present on the accelerator, the clause allocates device
memory and copies vars from the host to the device when entering a region that requires
vars[83, p. 48].

5.5.3 Execution Model
For host-only programs, the execution model behind OpenACC is similar to the thread-based
execution model of OpenMP. Indeed, OpenACC can be seen as a precursor of future OpenMP
features. For host+accelerator programs, the execution model behind OpenACC is akin to the
kernel-based execution model of CUDA and OpenCL, and even makes use of their runtimes. In
either scenario, the execution is orchestrated by a host thread. What varies between all of these
models, is the terminology and API to access the execution model as outlined in Section 5.5.4.
Since OpenACC targets heterogeneous accelerators, it supports hierarchical parallelism. For this
purpose, OpenACC introduces the parallelism levels vector, worker and gang. vector models
SIMD parallelism, while worker models fine-grained parallelism and gang models coarse-grained
parallelism [83, p. 10]. Please note that OpenACC does not specify how these levels of parallelism
map to actual hardware architectures since an architecture does not necessarily exhibit all levels
of parallelism. Therefore, references provide diverse views on mappings between OpenACC and
other programmings models such as CUDA (cf. [79], [85]).

5.5.4 Partitioning Models
For host-only programs, OpenACC relies on the execution of parallel regions in terms of work
sharing loops. For host+accelerator programs, OpenACC generates kernel code automatically
following directive-based compiler hints, instead of expecting software developers to write explicit
kernel functions. Hence, OpenACC syntax allows for the generic expression of data-parallelism for
both program types. In contrast to OpenMP and CUDA, however, OpenACC does not provide any
directives that allow for the explicit expression of task parallelism.
The general syntax of an OpenACC directive is shown in Listing 5.7[83, p. 25]. To define a
parallel region, OpenACC provides the directives kernels and parallel.
When the kernels directive is applied to a structured block, the structured block is automatically
split into a sequence of compute kernels, which is then scheduled for execution on the device.
According to [83, p. 31], each loop nest in the block will typically be transformed into a separate
kernel. Since this approach requires the compiler to auto-detect loop dependencies, it might lead
to the overcautious parallelization of inner loops only, which hurts performance.
By means of the parallel directive, a structured block is executed in parallel on the current
device [83, p. 28]. The level of parallelism to apply can be specified by means of the vector,
worker and gang clauses, and the according sizes with the vector_length, num_workers and
num_gangs clauses. This work uses the parallel directive in combination with the loop clause,
which is similar to the combined OpenMP construct described in Section 5.2.4. Listing 5.8 shows
the architecture-independent parallelization of a loop with OpenACC. Please note that, in contrast
to the combined parallel for construct of OpenMP, this construct must be applied to each loop
of a loop nest separately or in combination with the collapse clause. This might further require
the use of loop seq on inner loops, which declares a loop as non-parallelizable to the compiler.
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Listing 5.8: Combined OpenACC construct parallel loop

1 #pragma acc parallel loop [clause-list]

2 for loop

5.6 Programming Model Trends
This section outlines how the hardware architecture trends and properties observed in Chapter 4
are reflected by the latest features of parallel programming models. The focus of this section is to
analyze how these features contribute to the effectiveness of task parallelism in heterogeneous
systems and in particular on GPUs.

5.6.1 Enhancing Flexibility

The trend of stagnating CU sizes on CPUs and GPUs accounts for the limited amount of inherent
SIMD-style data-parallelism in many HPC applications. In fact, many HPC applications exhibit
irregular work loads and complex parallelization potentials that require more flexible ways of
expressing concurrency. Therefore, increasing the size of CUs would not be effective to achieve
further scaling. Instead, a general increase of the number of CUs per processor can be observed.
This leads to an increase in the number of independently executable execution streams and hence
to an increase in the MIMD capabilities of CPUs and GPUs.

Considering the origin of GPGPU programming in graphics processing, which is the paragon of
data-parallelism, GPGPUs were designed for heavily data-parallel applications. Multicore CPUs, on
the other hand, do not only provide data-parallelism through SIMD vectorization but also support
MIMD parallelism via multi-threading, which is the basis for task-parallelism. The observed trends,
however, indicate a gradual convergence of both architectures and accordingly pave the way for a
more uniform and flexible description of concurrency in heterogeneous systems.

On GPUs, the increase in MIMD capabilities enhances the number of compute kernels that can
be executed simultaneously, e.g. via CUDA streams, without any programming model changes.
However, the increase in MIMD capabilities also inspires diverse qualitatively new features in GPU
programming models that allow to express less regular work loads by means of task parallelism.
These features are briefly outlined in the following subsections.

Dynamic Parallelism

In 2012, CUDA 5.0 introduced dynamic parallelism for Kepler and newer architectures (compute
capability ≥ 3.5). Dynamic parallelism enables a kernel function to spawn a grid of threads
without yielding control to the CPU. This reduces the necessity of device-host synchronizations and
enables recursive task-parallelism on GPUs. By allowing a kernel function to spawn child kernels
the latter facilitates the expression of concurrency in algorithms that exhibit nested parallelism or
make use of hierarchical data structures.

Cooperative Groups

In 2017, CUDA 9.0 introduced the cooperative groups concept for Kepler and newer architectures
(compute capability ≥ 3.5). The concept allows to define groups of threads in a grid beyond
classical thread blocks. This enables finer grained control of synchronizations within thread blocks
and between thread blocks. Both mechanisms are of particular interest for task parallelism on
GPUs since they allow for the implementation of producer-consumer schemes. In addition to the
basic cooperative groups concept supported by Kepler, Pascal enables grid-wide synchronization
without yielding control to the host CPU. Volta goes yet a step further and allows to group threads
at sub-warp level. In task-parallel applications, this can be employed to fine tune task granularity.

Asynchronous Task Graphs

With the introduction of ATGs in CUDA 10.0 in 2018, CUDA started to support task-parallelism
explicitly. ATG enables task-parallelism with kernel-level granularity since it allows for the
expression of dependencies between kernel functions in the host code. This enables the description
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of a static task graph that allows for the automatic derivation of a concurrent execution order.
Hence, it frees software developers from defining complex synchronization patterns via CUDA
streams and events manually.

Scheduling

GPU execution models do not usually provide any formal forward progress guarantees. However,
they are empirically observed to exhibit warp-synchronicity and non-preemptive thread block schedul-
ing which both hinder forward progress. Warp-synchronicity means that threads are grouped
together in schedulable units, with all threads of a schedulable unit sharing a single instruction
counter and accordingly executing in lock-step. This effect may lead to warp-synchronous dead-
locks if threads in the same warp compete for a mutex since not all lanes of the warp can acquire
the mutex simultaneously. Since deadlock-free algorithms require some execution stream (here,
any lane of the warp) to make progress, deadlock-free algorithms are not guaranteed to terminate
on GPUs. Non-preemptive thread block scheduling, in turn, means that oversubscription leads to
thread blocks not being executed till other thread blocks are terminated. Since starvation-free
algorithms require every execution stream (here, thread block) to make progress, starvation-free
algorithms are not guaranteed to terminate on GPUs.
The issue of warp-synchronicity is resolved with the introduction of ITS with the Volta architec-
ture in 2018. Since ITS, each lane has got a dedicated program counter and call stack to retain
its state of execution. This allows threads of the same warp to compete for a mutex without
risking a deadlock. Hence, it enables the implementation of deadlock-free algorithms on GPUs. In
contrast to the warp-synchronous scheduling model, this allows for fine-grained synchronization
and concurrency between threads of the same warp. In fact, ITS is the basis for cooperative groups
at sub-warp level.
In order for an architecture to support starvation-free algorithms, however, the scheduler must

ensure that every thread in the grid – and not only threads in resident warps, can make progress
independent of the progress of other threads. This, however, requires a scheduler to be preemptive.
Whether or not the thread block scheduler of the CUDA runtime is preemptive is subject to
scientific debate. [94] states that the scheduler is non-preemptive and therefore cannot provide
general forward progress guarantees. Nvidia, however, claims in [81] that GPUs with Volta or
newer microarchitectures support starvation-free algorithms. The CUDA programming guide,
however, does not provide any relative forward progress guarantees for threads from different
warps. Since the absence of non-preemptive scheduling only hinders starvation-freedom in the
case of oversubscription, this work relies on grid sizes that are no larger than the amount of
hardware resources.

5.6.2 Enhancing Uniformity
In addition to the outlined means to express concurrency more flexibly, the convergence of CPUs
and GPUs is further underpinned by concepts to unify the programmability of both architecture.
Firstly, uniform programmability is enhanced by the introduction of unified address space concepts,
such as CUDA’s unified memory, that hide the physical separation between host and device memory.
Secondly, uniform programmability is further enhanced by the conformation of CUDA to C++, e.g.
with the introduction of libcu++ and the adoption of the C++ memory model.

5.6.3 Conclusion
Considering the fact that the described quantitative hardware trends are observed for AMD
and Nvidia GPUs alike, OpenCL introduced similar concepts. For instance, OpenCL and CUDA
both support dynamic parallelism, and OpenCL’s shared virtual memory is similar to CUDA’s
unified memory. However, OpenCL and non-Nvidia GPUs do not yet support independent thread
scheduling, grid-wide synchronization and starvation-free forward progress guarantees due to
missing hardware requirements; the same holds true for OpenACC and OpenMP. Since these
features are expected to enable the effectiveness of task-parallel programming approaches on
GPUs, the implementations introduced in this work are written in CUDA.
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Chapter6
Synchronization is bad, but if you

must …

Olivier Giroux

Event-based Task Parallelism on GPUs

The objective of this chapter is to extend the concept of event-based task parallelism to GPUs. The
key properties of event-based task parallelism as implemented by CPU-Eventify are scalability and
sustainability, as empirically evaluated in [50] and [76]. Hence, GPU-Eventify aims similarly at
scalability and sustainability.

For scalability the task engine of CPU-Eventify relies on three main concepts:

Chevron-right Work sharing and work stealing via a dedicated priority queue per thread.

Chevron-right Ready-to-execute tasks via event-driven dependency resolution and task generation

Chevron-right Dependency patterns that follow user-defined data structures and task types.

In terms of sustainability, these concepts and their implementation could ideally directly be
ported to GPUs. However, this is technically not feasible since the execution model behind them
relies on MIMD threading and the availability of synchronization mechanisms, both of which are
only available to a limited extent in the SIMD-dominated execution model of GPUs. Therefore, this
chapter introduces a uniform architecture model and derives a GPU execution model that serves
as a basis to implement event-based task parallelism on GPUs. This is a step towards software
sustainability since it lays the foundation for the reuse of task-parallel CPU code on GPUs, and
removes the necessity to force irregularly parallel applications into data-parallel structures and
thereby risk losing parallelization potential.

6.1 Uniform Architecture Model
In this section, a Uniform Architecture Model (UAM) is derived from the comparison of CPU
and GPU architectures in Chapter 4. The content of this section is closely based on a previously
published work [74].

Terminology-wise, the presented UAM borrows from the platform model of OpenCL since this
allows to describe an abstract architectural model that exhibits hierarchical concurrency. In the
OpenCL platform model [65, p. 18] each compute device is subdivided into CUs, which are
further subdivided into PEs. The mapping of CUs and PEs to actual hardware components is
not determined by the OpenCL standard but specified by the software developer dependent on
the actual hardware and parallelization scheme. This work derives such a mapping from the
comparison of the architectural properties of CPUs and GPUs on the ISA level. The mapping
considers components on the ISA level only since these are controllable by the software developer.

Following from the MIMD capabilities of CPUs and GPUs, the UAM equates a core on a CPU
with an SM on a GPU. Hence, the UAM refers to CPU cores and SMs equally as CUs.
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Figure 6.1: Mapping of CPU features and GPU features to components of the UAM on different architecture

levels.

Following from the SIMD capabilities of both processor types, the UAM equates a SIMD lane
on a CPU with an SP on a GPU. Therefore, the UAM denotes both components as PE, which is
consistent with the stream interaction model and the OpenCL platform model. A CPU core exhibits
SIMD units that execute an operation on multiple data elements simultaneously. For comparability
of CPU and GPU architectures, we consider only single-precision floating point (FP32) SIMD
operations in terms of MUL-, ADD- and FMA-units. Based thereon, each FPU and each SIMD-lane are
referred to as a single PE. Regarding GPUs, we refer to each SP as a single PE.

Figure 6.1 shows the UAM by depicting the mapping between CPU and GPU features. Dependent
on the scheduling strategy (see Section 5.6.1) that a GPU architecture supports, this principle
does either lead to SIMD or MIMD concurrency. If SPs are operated in lockstep, this is similar to
the SIMD parallelism as observable for CPU SIMD units. If, however, the scheduler supports ITS,
this leads effectively to MIMD concurrency. Please note that this does not necessarily lead to an
improvement in performance but enables the feasibility of starvation-free algorithms on GPUs.

6.2 Uniform Execution Model

The objective of the UEM is to bridge the gap between CPU and GPU execution models as foundation
to approach fine-grained task parallelism on GPUs with the same concepts as on CPUs. To reach
this objective, the UEM must emulate the concurrent processing capabilities of CPUs on GPUs
based on the features that GPU programming models support. For this purpose, we adduce the
comparison of CPU and GPU programming models as outlined in Chapter 5.

As outlined in 5.4.4, the SIMT programming model of GPUs supports both, SIMD and MIMD
concurrency. While SIMD concurrency is naturally supported and aligns well with the architecture,
MIMD concurrency on GPUs is less flexible and efficient than on CPUs. Hence, the UEM cannot
treat each GPU thread the same as a fully independent CPU thread. This poses two challenges.
Firstly, from a programming model perspective, threads are implicitly retired at kernel completion
instead of executing the next kernel. This resembles a classical fork-join threading approach and
hence impedes the efficiency of fine-grained parallelism. Secondly, the SIMT execution model
of GPUs does not generally guarantee forward progress. Therefore, blocking algorithms – as
employed by CPU Eventify – are currently considered inefficient and can even restrict liveness on
GPUs.

This work addresses the first challenge by employing a persistent threads approach, and the
second by suggesting appropriate mutual exclusion mechanisms.
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6.2.1 Persistent Threads
This work employs the persistent threads paradigm on the GPU-side to emulate the behavior of CPU
threads.

Definition 6.1. Persistent Threads. Persistent threads are a GPU programming paradigm that launches
a kernel with a grid size that corresponds to the maximal number of threads that can be active on a GPU
simultaneously. Each thread in this grid executes a loop and is called a persistent thread.

This is different from the classical GPU programming approach that maximizes the number
of resident (instead of active) threads to leverage latency hiding and increase throughput. In
fact, the persistent threads paradigm bypasses the hardware scheduler and instead employs a
software-based load balancing approach [48].
Especially in the context of tasking on GPUs, the PT paradigm is typically used in conjunction

with megakernels [96] [108]. A megakernel is a single, large kernel function that contains all
code that an application executes on a GPU. While this approach in fact is closest to the threading
model on CPUs, it is considered inefficient [70]. Firstly, since it increases the risk of control flow
divergence which in turn decreases performance due to the SIMT execution model. And secondly,
it increases register usage which decreases the number of resident warps and accordingly decreases
the latency-hiding capabilities of the GPU. Instead of employing a single megakernel to execute
all tasks, this work employs a hybrid approach and proposes the usage of one kernel per task type.

6.2.2 Thread Safety
This section introduces lock-based mutual exclusion mechanisms that can be used to ensure thread
safety on GPUs. Firstly, a spin-lock implementation for GPUs in CUDA is described, and its
guarantees regarding mutual exclusion and liveness are examined. Secondly, the libcu++ -based
lock implementations provided by the freestanding library [45] are stated to employ them for a
comparative performance analysis in Section 8.4.2.

Eventify GPU Lock

Classical CAS-based spin-locks are proven to be correct and deadlock free under the following
assumptions [52]:

1. Sequential consistency to ensure that “two memory accesses by the same thread, even to
separate variables, take effect in program order”[52, p. 143];

2. Memory coherence to ensure that concurrent threads observe the same state of the lock;

3. Forward progress guarantees to ensure that a thread that holds a lock eventually releases
it.

Subsequently, the validity of these assumptions on GPUs is assessed.

Sequential consistency

According to [78, p. 132], CUDA is based on a weakly-ordered memory model, i.e. it does not
provide sequential consistency. Regarding atomic functions the documentation further explicitly
states that [78, p. 152], “[a]tomic functions do not act as memory fences and do not imply […]
ordering constraints for memory operations”. Without sequential consistency, however, data-
independent instructions could be reordered. Since acquiring the lock and executing an operation
within the critical section are data-independent, a thread might enter the critical section before
having acquired the lock. Following from this, CAS-based spin-locks on GPUs must use memory
fences to enforce sequential consistency. This specification-based argumentation supports the
empirical findings in [9] that observe the occurrence of race conditions for PTX-based spin-locks
without memory fences.
Since PTX is the ISA behind CUDA, the CUDA-based spin-lock proposed in Listing 6.1 is de-
rived from the PTX-based spin-lock presented in [9]. The lock makes use of CUDA’s __thread-
fence()[78, pp. 132]. This memory fence ensures that:
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Chevron-right for the calling thread, all reads from memory before the fence are ordered before all reads
from memory after the fence, and

Chevron-right for any thread in the grid, no writes to memory after the fence are observed as occurring
before any write to memory before the fence.

For these ordering guarantees to hold, threads must access values in memory and not in cache or
registers [78, p. 133], which leads us to the consideration of memory coherence on GPUs.

Memory Coherence

Memory coherence is required to ensure that threads do not read stale values of the lock state.
In comparison to CPU architectures, GPU architectures do not implement a cache protocol and
hence do not guarantee memory coherence. However, memory coherence can be enforced via the
volatile type qualifier, or by the consistent use of atomic loads and stores. The GPU lock shown
in Listing 6.1 relies on the latter since classical spin-locks in any case require the use of atomic
operations.

Forward Progress Guarantees

As outlined in Section 5.6.1, GPUs do not generally provide forward progress guarantees due to
a not necessarily preemptive scheduler and warp-synchronicity. The first limitation to forward
progress cannot be lifted by the lock implementation itself but only at execution model level. The
second limitation, on the other hand, can either be lifted at the architecture level via ITS, via
warp-primitives as outlined in [63], or by the synchronization algorithm as outlined in this work.
The PT-based execution model circumvents the question of whether or not the scheduler is
preemptive by spawning only as many threads as can be executed simultaneously. This ensures
that only active threads can ever hold the lock and therefore guarantees forward progress at the
warp-level.
Regarding warp-synchronicity, a case differentiation between GPU architectures with compute

capability < 7.0 and ≥ 7.0 is required. The latter support ITS, which prevents warp-synchronous
deadlocks at the architecture level and therefore guarantees forward progress also at sub-warp
level.
On GPUs that do not support ITS, however, forward progress must be ensured at the programming

model level. This work bypasses warp-synchronous deadlocks by requiring threads competing for
a lock to belong to different warps. In contrast to locking mechanisms that rely on warp-primitives
to avoid warp-synchronous deadlocks, this might limit the use cases in which the lock can be used
but in return ensures portability.

CAS-based Spin-Lock in CUDA

Based on the considerations on consistency, coherence and progress, this work proposes the CUDA-
based spin-lock in Listing 6.1 as solution to mutual exclusion on GPUs. The lock is implemented as
a class Mutex that consists of a private counter variable mutex and the public methods lock() and
unlock(). If mutex == 0, the mutex is unlocked. If mutex == 1, the mutex is locked. Initially,
the mutex is unlocked.
In order to acquire the mutex by calling lock(), all threads follow the same busy-wait approach:

check whether the mutex is unlocked; if it is unlocked, set it to locked; otherwise, repeat. Checking
and updating the state of the counter variable is implemented atomically by CUDA’s atomic-
CAS(...). Firstly, this ensures that threads do not update the state of the mutex concurrently.
And secondly, it ensures that threads do not read stale lock states due to incoherent memory. To
ensure that the lock is acquired before any instruction within the critical section is executed, a
memory fence is called directly after the CAS instruction.
If a thread holds the lock and calls unlock(), atomicExch(...) is called to free the lock by
setting mutex = 0. This is preceded by another memory fence to guarantee that the lock is only
released after the all operations within the critical section are completed.
Following from the preceding considerations on consistency, coherence and progress, this
approach unconditionally guarantees mutual exclusion on all CUDA-capable GPUs. Liveness is
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Listing 6.1: GPU Spin-Lock

1 class Mutex

2 {

3 public:

4 __inline__ __device__ void lock()

5 {

6 while (atomicCAS(&mutex, 0, 1) != 0);

7

8 __threadfence();

9 };

10

11 __inline__ __device__ void unlock()

12 {

13 __threadfence();

14 atomicExch(&mutex, 0);

15 };

16

17 private:

18 int mutex = 0;

19 };

examined under the assumption of a PT-based execution model that naturally guarantees warp-
level forward progress since all threads in the grid are executed in parallel. 1 Hence, only sub-warp
progress conditions are considered further to examine liveness. GPU architectures with compute
capability ≥ 7.0 guarantee sub-warp forward progress. Hence, the proposed locking mechanism
guarantees liveness on these architectures. On GPU architectures with compute capability < 7.0,
however, liveness is only guaranteed if threads in the same warp do not compete for the same
lock.

GPU Locks of Library freestanding

The freestanding[45] library implements a subset of the C++ STL. It is the predecessor of CUDA’s
C++ STL libcu++ but meanwhile relies on the functionalities of libcu++ itself. Based thereon,
freestanding provides implementations of diverse locking mechanisms. Since libcu++ adheres to
the C++ memory model, these locking mechanisms rely on the properties of C++ atomics which
are remarkably different from classical CUDA atomics. The main difference is that C++ atomics
implicitly contain a memory barrier, and that this memory barrier can be configured to adhere
to a specific memory consistency model. freestanding provides the following mutual exclusion
mechanisms:

Chevron-right Spin lock

Chevron-right Semaphore lock

Chevron-right Ticket lock

This work uses these locking mechanisms for a comparative performance analysis with the proposed
Eventify GPU lock.

6.3 Eventify Execution Model on GPUs
This section outlines how the UEM is used to port Eventify’s core concept – work sharing queues
– to GPUs. Firstly, this section illustrates the conceptual differences between queue-based task
scheduling on CPUs and GPUs. Secondly, the underlying queue data structure implementation is
described. Thirdly, a taxonomy to describe hierarchical queueing schemes in a comparable way is
introduced. And finally, the developed queueing schemes are presented.

1In theory, the guarantee for parallel execution of all persistent threads strictly follows from Definition 6.1. In practice,
however, it requires adherence to kernel configuration limitations at runtime, i.e. there must not be more threads in the
grid than can be active at the same instant such that no oversubscription of actual hardware resources takes place.
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Figure 6.2: Queue based on a fixed-size array that is operated as ring buffer. New elements are inserted into

the queue via enqueue(e) at tail, while elements are deleted from the queue via dequeue(n)

at head. Read access to an element at position head + i of the queue is granted via front(i).

6.3.1 Comparison of CPU and GPU Queueing Principles
Just as CPU-Eventify, GPU-Eventify relies on queues to store tasks that are ready to execute.
However, there are major differences in the data structure design and application that stem from
the architecture-driven differences in the GPU execution model.

Firstly, GPU-queues hold tasks of a single type only; in contrast to CPU-queues they are accord-
ingly not multi-queues. This is due to the fact that each PT kernel executes tasks of a single type
only, which alleviates the performance loss that would be induced by a megakernel approach.

Secondly, a GPU-queue is owned by a group of threads, meaning that multiple threads consume
tasks from the same queue. This is reasonable since GPU-threads are executed within schedulable
units, e.g., warps or half-warps. Even if a GPU architecture provides ITS, threads should not be
considered to execute fully independent for reasons of performance.

These differences hold true for all queueing schemes introduced in Sections 6.3.4ff.

6.3.2 Data Structure
Figure 6.2 illustrates the base queue and its terminology as used throughout this work. All
described task queues rely on a statically allocated array of size N that is operated as a ring buffer;
this approach is based on [26, p. 234]. head is a pointer that points to the first element of the
queue, while tail is a pointer that points to the next free location, i.e., the address directly after
the current last element in the queue. Initially, head and tail point to index 0 of the array. The
queue provides the modifying operations enqueue(e) and dequeue(n):

Chevron-right enqueue(e) inserts element e at position tail into the queue and sets tail = (tail+1) mod N.

Chevron-right dequeue(n) deletes n elements at positions head, head+1, ⋯ , head+ (n−1) from the queue
and sets head = (head + n) mod N

Furthermore, it provides the non-modifying queries front(i) and size():

Chevron-right front(i) returns a reference to the element at position head + i of the queue.

Chevron-right size() returns the number of elements in the queue.

For reasons of performance, the queue implementation does not safe-guard against overflowing.
If the queue is full, i.e. if tail overtakes head, the element at tail will be overwritten by enqueue(e)
with e.

6.3.3 Taxonomy
We propose a taxonomy for the classification of task queues that serves as a uniform basis for the
subsequent description of queueing schemes.

Properties

The taxonomy covers the following properties:

Memory Location describes where the queue resides. Considering the memory hierarchy of
GPUs as exposed by the programming model, a task queue can be located either in shared memory
or global memory.
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Memory Allocation describes through which mechanism the memory for the queue is acquired.
This may be done via static, dynamic or custom allocation.

Read/Enqueue/Dequeue Synchronization states which thread safety mechanism is applied
to guard read/enqueue/dequeue access to the queue. If no thread safety mechanism is required,
the value of this property is none. If synchronization is implicitly achieved through the algorithmic
access pattern, the value of this property is lock-less. If synchronization is explicitly achieved
through a mechanism for mutual exclusion, the value of this property is mutex. The latter may
be supplemented by a specific mechanism such as spin-lock, semaphore or ticket mutex. Further
values, e.g., lock-free or wait-free, are possible but not considered in this work since they are already
vigorously examined elsewhere [63] [21] [106].

The Read/Enqueue/Dequeue Access Scope describes which entities of parallel execution
are allowed to read elements from, enqueue elements to or dequeue elements from the queue,
respectively. In the context of the GPU programming model these entities may be all or specific
threads of a block, or all or specific threads of the whole grid.

Read/Enqueue/Dequeue Access Parallelism states the entities of parallel execution from a
determined access scope that are allowed to access the queue for reading, enqueueing or dequeueing
in parallel.

The read/enqueue/dequeue synchronization, access scope and access parallelism are each
provided as tuple (r, e, d).

Notation

In order to describe task queueing along the UEM in a consistent manner, the following notation
is introduced (as derived from Section 5.4):

Chevron-right Dgrid, the total number of thread blocks in grid G, i.e. the grid dimension,

Chevron-right Dblock, the total number of threads per thread block in grid G, i.e. the block dimension,

Chevron-right Nthread, the total number of threads in grid G with Nthread = Dgrid ⋅ Dblock,

Chevron-right tli , a thread with local thread ID i,

Chevron-right t
g
i , a thread with global thread ID i,

Chevron-right Bi, a thread block with block index i as Dblock-tupel (tl0, … , tlDblock−1) of its threads,

Chevron-right mi, the master thread of the thread block Bi,

Chevron-right G, a grid as Nthread-tuple (tg0, … , tgNthread−1) of its threads,

Chevron-right M, all master threads of a grid as Dgrid-tupel (m0, … ,mDgrid−1),

Chevron-right m, a single, arbitrary master thread, m ∈ M.

For conciseness, all symbols are defined relative to a single grid G. Where necessary, the
executed kernel function k is added as index to G to distinguish different grids, e.g. GcomputeA and
GcomputeB.

This notation allows to address threads, thread blocks and master threads in a one-dimensional
grid G. In fact, all introduced concepts rely on one-dimensional index spaces only due to the PT
approach. Following the CUDA programming model, local thread IDs are accordingly coextensive
with their local thread index and global thread IDs are coextensive with their global thread index.

6.3.4 Queueing Schemes
The subsequently introduced queueing schemes are described by specifying the properties described
in Section 6.3.3 for each type of queue in a queueing scheme; in addition, the quantity of queues
is provided for each queue type.
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Figure 6.3: Block diagram of the task queueing scheme with a single MPMC queue.

Single MPMC Queue (SQ)

The most basic task queueing scheme considered in this work consists of a single MPMC-queue as
shown in Figure 6.3. In combination with the queue usage scenario in Listing 6.2, this results in
the characteristics provided in Table 6.1.

As can be seen from Figure 6.3, the queue is located in global memory. This way, it is accessible
to all threads of the grid G. Memory is allocated statically since the queue is based on a fixed-size
array.

All threads of the grid G are allowed to access the queue via non-modifying queries, while only
master threads M are allowed to modify the queue with dequeue() and enqueue() operations.
This leads to an access scope of (G,M,M).
Even though all threads of the grid G are allowed to read from the queue, only threads of the
same block Bi are allowed to read from the queue in parallel. For parallel reading, each thread
of block Bi calls front(k) at its thread index k. Thus, each thread reads a single task from the
queue. enqueue() and dequeue operations, however, are executed sequentially by the master
thread mi of block Bi. This leads to an access parallelism of (Bi,mi,mi) as shown in Table 6.1.
The characterization as MPMC-queue is based on the fact that multiple master threads produce

tasks by enqueueing them to the queue and that multiplemaster threads consume tasks by dequeuing
them from the queue; it does not acknowledge the parallel execution of tasks by threads of the
same thread block. Hence, the name reflects modifying operations on the queue (as it would for
CPU queues) but does not reflect the execution concurrency of tasks on thread block level.

Applied synchronization mechanisms can be derived from Listing 6.2. Modifying operations are
protected by a mutex since all thread block masters access the queue concurrently. Non-modifying
queries are also protected by a mutex to avoid inconsistent query results, even though these would
not invalidate the queue itself. Only threads of the same block Bi read from the queue in parallel.
The mutex for this operation is acquired by the master thread mi of Bi. Hence, only master threads
compete for the mutex. First, this allows for the warp-synchronous deadlock-free use of the mutex
implementation provided in Listing 6.1. Second, it reduces lock contention by a factor of Dblock
since only one thread per thread block competes for the mutex.

The implementation of this task-pool-based approach serves as a proof-of-concept that the
Eventify-like management of fine-grained tasks is possible on GPUs. However, the approach suffers
from a synchronization bottleneck that hurts performance. The mutex is applied to protect a
rather long critical section (Lines 6 to 13 in Listing 6.2) covering task execution and dependency
resolution instead of the modifying queue operations only. This enables intra-block parallelism
since it allows all threads of a block to read and execute tasks from the queue in parallel. However,
it impedes inter-block parallelism since at each point in time only one thread block executes tasks,
while all other blocks are waiting to acquire the global mutex. To resolve this synchronization
bottleneck, we propose the subsequently introduced queuing scheme with multiple shared queues.
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Table 6.1: Task queueing scheme with a single, shared MPMC-queue.

MPMC Queue

Quantity 1

Memory Location global memory

Memory Allocation static

(r,e,d) Access Scope (G,M,M)
(r,e,d) Access Parallelism (Bi,mi,mi)
(r,e,d) Synchronization (mutex, mutex, mutex)

Listing 6.2: Kernel for Access to Single Shared Queue

1 produce_and_consume<T>()

2 {

3 while(!finished())

4 {

5 block_master:

6 mutex.lock();

7 syncthreads();

8 block:

9 queue<T>.front(threadIdx.x).execute();

10 syncthreads();

11 block_master:

12 solveDependencies();

13 mutex.unlock();

14 syncthreads();

15 }

16 }

Multiple MPSC Queues (MQ)

With the multiple MPSC queueing scheme, we aim to reduce lock contention and enable inter-
block parallelism. As shown in Figure 6.4, the scheme employs one task queue per thread block.
In combination with the queue usage scenario in Listing 6.3, this results in the characteristics
provided in Table 6.2.

As can be seen from Figure 6.4, all Dgrid MPSC queues are located in global memory. This is
required since thread blocks do not only require access to their own queue, but also to other
queues for reasons of load balancing. Similarly to the single MPMC queue, memory for each queue
is allocated statically since the queues are based on a fixed-size array each.

The characterization of each queue as MPSC-queue is based on the fact that multiple master
threads produce tasks by enqueueing them to a queue Qi but only a single master thread, namely
mi of block Bi, consumes tasks by dequeuing them from Qi.

Each thread block Bi owns a queue Qi. Each thread block Bi consumes tasks from Qi only; it does
not consume tasks from any other queue and no other block consumes tasks from Qi. Hence, read
access to Qi is required by the threads of Bi only. Enqueue access, on the other hand, is granted to
all master threads M of the grid for work sharing. Dequeueing is done by the master thread mi of
Bi only. This leads to an access scope of (Bi,M,mi).
Since the intra-block parallelism from the single MPMC approach should be preserved, all
threads of Bi can read and consequently execute tasks from Qi in parallel. Considering a single
queue Qi, enqueueing sequentializes since only one master thread m can enqueue a task to Qi at
each point in time due to mutex protection. Considering a single queue, there is also no dequeuing
parallelism since a master thread mi dequeues tasks from its own queue only. This leads to an
access parallelism of (Bi,m,mi). Hence, this scheme does not provide more per-queue access
parallelism than the MPMC approach with an access parallelism of (Bi,mi,mi). Nevertheless, the
overall amount of access parallelism is increased due to the splitting of the single MPMC into Dgrid
block-owned queues. In comparison to the SQ scheme this allows all blocks of the grid to execute
tasks in parallel, which increases inter-block parallelism by a factor of Dgrid. As can be seen in
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Figure 6.4: Block diagram of the queueing approach with multiple MPSC queues.

Table 6.2: Task queueing scheme with multiple MPSC queues

MPSC Queue

Quantity Dgrid
Memory Location global memory

Memory Allocation static

(r,e,d) Access Scope (Bi,M,mi)
(r,e,d) Access Parallelism (Bi,m,mi)
(r,e,d) Synchronization (lock-less, mutex, lock-less)

Listing 6.3: Kernel for Access to Multiple Shared Queues

1 produce_and_consume<T>()

2 {

3 while(!finished())

4 {

5 block:

6 shared_queues<T>[blockIdx.x].front(threadIdx.x).execute();

7 syncthreads();

8 block_master:

9 mutex[blockIdx.x].lock();

10 solveDependencies();

11 mutex[blockIdx.x].unlock();

12 syncthreads();

13 }

14 }

Listing 6.3 this also reduces the size of the critical section (Lines 9 to 11) in comparison to the
critical section in the SQ scenario. In contrast to SQ, it covers the resolution of task dependencies
only.

The tasks of a queue are consumed by threads of the same thread block only, with each thread
accessing a distinct task based on its local thread ID tli . Therefore, read access is granted lock-less.
Hence, the read access in Line 6 of Listing 6.3 is not protected by a mutex. Enqueue access, on the
other hand, is protected by a mutex since multiple master threads can enqueue tasks concurrently.
Dequeue access is granted lock-less since only the master thread is allowed to dequeue tasks.
Under the assumption of load balance, this reduces the overall contention in the system by a factor
of Dgrid since contention is distributed to Dgrid queue mutexes.

Multiple Hierarchical Queues (MHQ)

The MHQ scheme extends the MQ scheme by a second level of block-owned queues that are fully
private to each thread block, i.e. tasks of these queues can be read, enqueued and dequeued by
threads of this block only. Therefore, the scheme consists of two queues per thread block; one
MPSC queue as described by Table 6.2 and one SPSC queue as described by Table 6.3. Figure 6.5
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Figure 6.5: Block diagram of the queueing approach with multiple, hierarchical queues.

Table 6.3: SPSC queue of task queueing scheme with multiple, hierarchical queues.

SPSC Queue

Quantity Dgrid
Memory Location global memory

Memory Allocation static

(r,e,d) Access Scope (Bi,mi,mi)
(r,e,d) Access Parallelism (Bi,mi,mi)
(r,e,d) Synchronization (lock-less, lock-less, lock-less)

provides an overview of this queueing scheme and Listing 6.4 shows the corresponding access
algorithm.
Regarding queue properties, this section focuses on the description of the private SPSC queues

since the MPSC queues are adopted from the MQ scheme. The MHQ scheme consists of Dgrid MPSC
queues and Dgrid SPSC queues, all of which are statically allocated and located in global memory.

Based thereon, each thread block Bi consumes tasks from its private queue Q
p
i and its shared queue

Qsi . For reading and dequeuing, both queues are accordingly only accessed by the threads of Bi.
Regarding enqueue access, however, the private queue Q

p
i varies from the shared queue Q

s
i . Only

the master thread mi of Bi can enqueue tasks to Q
p
i , while all master threads M can enqueue tasks

to the shared queue Qsi . Accordingly, the (r,e,d) access scope of the private queue is (Bi,mi,mi).
Due to the limited access scope and parallelism of the SPSC queue, all queue operations can be
performed lockless. Hence, the (r, e, d) synchronization is described as (lock-less,lock-less,lock-
less).
The purpose of the second level SPSC queues is twofold. Firstly, they are used for the management

of initial tasks, which makes them comparable to the back-fill queues employed by CPU-Eventify.
Secondly, they are used by the master thread of the owning block to enqueue tasks for its threads
directly. This reduces contention on their MPSC counterparts since the master thread does not
compete with other master threads to access its own queue. The extent to which contention is
reduced through this principle depends on the static task partitioning of the application algorithm.
In the best case scenario, in which a task and all its successors are executed by the same thread
block, this prevents contention fully. In the worst case scenario, in which none of a tasks successors
is executed by the same thread block, contention is equally as high as in the MQ scheme.
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Listing 6.4: Kernel for Access to Multiple Hierarchical Queues

1 produce_and_consume<T>()

2 {

3 while(!finished())

4 {

5 block:

6 if(private_queue<T>.size() > threadIdx.x)

7 private_queue<T>.front(threadIdx.x).execute();

8 else if(shared_queues<T>[blockIdx.x].size() > threadIdx.x-private_queue<T>.size())

9 shared_queues<T>[blockIdx.x].front(threadIdx.x).execute();

10 syncthreads();

11 block_master:

12 mutex[blockIdx.x].lock();

13 solveDependencies();

14 mutex[blockIdx.x].unlock();

15 syncthreads();

16 }

17 }

6.4 Implementation
This section briefly outlines the implementation of Eventify on GPUs. It provides an overview of
the software architecture and outlines the general workflow. For the exact implementation, please
refer to https://code.fmsolvr.fz-juelich.de/ATML-SE/eventify-GPU.

6.4.1 Software Architecture
Eventify for GPUs is based on the core concepts of Eventify for CPUs. For reasons of sustainability,
this work aims to adjust the smallest number of classes as possible with only the minimal code
changes that are required to port the functionality to CUDA. This involves:

Chevron-right Finding substitutes for STL functions and data structures either by considering thrust
(std::pair → thrust::pair) and libcu++ or by reimplementing a reduced version that at least
matches the requirements of Eventify (e.g. std::vector → gtl::vector, std::tupel →
gtl::tupel, std::forward → gtl::forward),

Chevron-right Circumventing C++ language features that are not yet supported by CUDA, such as constructor
inheritance via using,

Chevron-right Adding __host__ and __device__ decorators, and

Chevron-right Reimplementing functionality that does not fit the execution model of GPUs, especially,
substituting Eventify’s multi-queue by the queueing schemes outlined in Section 6.3.4.

This procedure is applied to classes that are vital for the execution of fine-grained tasks only.
Classes that are concerned with the implementation of Eventify’s dependency pattern DSL are
beyond the scope of this work.
Figure 6.6 shows the UML diagram of GPU Eventify.

6.4.2 Workflow
Algorithm 1 outlines the workflow of Eventify on GPUs. Functions highlighted in blue are executed
on the GPU.
The workflow commences by reading in the user-defined block and grid dimensions. Since these
are highly dependent on the application, they cannot be automatically determined by Eventify.
Afterwards, InitData is instantiated and transferred to the GPU. Next, the create_global_ob-
jects kernel is called to initialize InitData and the dependency counters in a user-defined
DependencyStructure. The latter corresponds to the idea of dependency patterns as outlined in
Section 5.3 and is the prototypical substitute of the DSL on GPUs. Since each produce_and_con-
sume kernel allows for the execution of one task type only at a time, a user-defined number of
CUDA streams is defined to allow for overlapping. Finally, the print_result kernel is called to
output the results.
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Figure 6.6: UML class diagram of the software architecture of Eventify on GPUs.

Algorithm 1 Workflow of Eventify

1: Read in user defined kernel configuration Dblock and Dgrid
2: Instantiate InitData on the host and create device pointer

3: Allocate device-side memory for members of InitData

4: Transfer InitData from host to device

5: cudaDeviceSynchronize()

6: Call create_global_objects to initialize InitData and DependencyStructure

7: cudaDeviceSynchronize()

8: Create CUDA streams for concurrent kernel execution asynchronously

9: Launch produce_and_consume kernels for event-based task execution

10: cudaDeviceSynchronize()

11: Launch print_result kernel

12: cudaDeviceSynchronize()
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Chapter7
We can solve [the software crisis in

parallel computing], but only if we

work from the algorithm down to the

hardware — not the traditional

hardware first mentality.

Tim Mattson

Use Case: Fast Multipole Method

This chapter provides a short overview of the N-body problem of electrostatics and how it can
be solved with the FMM. It introduces FMSolvr, a C++-implementation of the FMM for molecular
dynamics, and its software architecture. Based thereon, we introduce a data-parallel OpenMP-
version of FMSolvr for CPUs, a data-parallel OpenACC-version for GPUs as well as task-parallel
Eventify-versions for CPUs and GPUs. We examine the influence of these parallelization approaches
on the software architecture of FMSolvr.

7.1 N-Body Problem of Electrostatics
In biochemistry and materials science MD simulations are used to analyze the evolution of particle
ensembles over time. According to [61], the most expensive part of MD simulations is the
computation of pairwise long-range interactions such as Coulomb interactions.
Derived from the definition of the numerical N-body problem provided in [47], we refer to the

N-body problem of electrostatics as the determination of all pairwise forces (or potentials) for a fixed
configuration of N particles that interact electrostatically. Following [16], the N-body problem of
electrostatics requires the evaluation of the Coulomb potential

𝛷(xj) =
N

∑
i=1
i≠j

qi
rij

, (7.1)

as well as the electrostatic field

E(xj) =
N

∑
i=1
i≠j

qi
xj − xi

r3ij
, (7.2)

and the Coulomb force

F(xj) = qj

N

∑
i=1
i≠j

qi
xj − xi

r3ij
, (7.3)

acting on each particle j. The location of particle j is denoted as xj, while rij corresponds to the
Euclidean distance between xi and xj. The charge of particle j is denoted as qj.
MD simulations are used to determine trajectories for all particles in the system. Therefore, each

time step of the simulation covers the computation of the Coulomb potential 𝛷(xj), electrostatic
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field E(xj) and Coulomb force F(xj) for each particle in the system. Hence, the direct computation
of all pairwise interactions via a classical Coulomb solver results in double sums and accordingly
a computational complexity of O(N2). Since realistic systems contain millions of particles, this
direct approach is not feasible. Therefore, more efficient methods, such as the FMM[47] and PME
[28], have been developed.

7.2 Sequential Fast Multipole Method
The FMM is a hierarchical fast summation method for the evaluation of Coulomb interactions in
MD simulations. It computes the Coulomb force Fj acting on each particle j, the electrostatic field
Ej and the Coulomb potential 𝛷j in each time step of the simulation. From the Coulomb force Fj
the particle’s position in the next time step is computed. The FMM reduces the computational
complexity of classical Coulomb solvers from O(N2) to O(N) by use of multipole expansions for
the computation of long-range interactions.

7.2.1 Input Parameters
The input data set to set up the FMM tree consists of location x and charge q of each particle in
the system as well as multipole order p, maximal tree depth dmax and well-separateness criterion
ws as parameters. The multipole order p, the maximal tree depth dmax and the well-separateness
criterion ws influence the time to solution and the precision of the results.

7.2.2 Hierarchical Space Decomposition
The FMM starts out with a hierarchical space decomposition of the simulation space to group
particles. This is done by recursively bisecting the simulation box in each of its dimensions. For a
1D simulation space this yields a binary tree, for a 2D simulation space a quad-tree, and for a 3D
simulation space an octree. The developing tree structure is referred to as FMM tree, and consists
of dmax + 1 levels d = 0, … , dmax. Subsequently, the relations between the boxes of the FMM tree
are introduced referring to [16] as:

Chevron-right Parent-child relation: A box bp is parent box of box bc if bp and bc are directly connected
when moving towards the root of the tree.

Chevron-right Near neighbor: Two boxes are near neighbors if they are at the same refinement level d
and share a boundary point; a box is a near neighbor of itself.

Chevron-right Interaction set: The interaction set of a box bc is the set consisting of the children of the
near neighbors of bc’s parent box bp which are well separated from bc.

Chevron-right Well separateness: Two boxes are said to be well separated if they are at the same refinement
level d and are not near neighbors. Only well separated boxes interact in the far-field via
multipoles.

7.2.3 Workflow
The sequential workflow of the FMM referring to [60] is stated in Algorithm 2; blue steps compute
the near field interactions, green steps compute the far field interactions. A direct solver that
follows Equations 7.1, 7.2 and 7.3 is used to evaluate the pair-wise near field interactions between
particles and the particles in their near neighborhood. Multipole and local Taylor-like expansions
are used to approximate the far field interactions between distant clusters of particles.
The workflow is described from a data structural and data dependency perspective since the
actual FMM operations, such as multipole and Taylor expansion shifts and translations, are not
relevant in the scope of this work. Therefore, these operations are not considered further but
handled as black boxes. This is reasonable since the efficient implementation of FMM operators is
architecture dependent and would therefore distort the analysis of the performance and scaling
behavior of the proposed task-parallel programming approach. Please refer to [75] for a high-level
introduction to the FMM operations, or to [60] for a deeper understanding of the operators, their
derivation, complexity and error-control.
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Algorithm 2 Fast Multipole Method

Input: Location x and charge q of each particle in the system

Output: Electrostatic field E, Coulomb force F and Coulomb potential 𝛷 for each particle
Set up FMM tree:

Group particles by means of hierarchical space decomposition

Particle to Multipole (P2M):

Expansion of particles in each box on the lowest level dmax of the FMM tree into multipole moments 𝜔
relative to the center of their box.

Multipole to Multipole (M2M):

Accumulative upwards-shift of the multipole moments 𝜔 to the centers of the parent boxes.
Multipole to Local (M2L):

Translation of the multipole moments 𝜔 of the boxes covered by the interaction set of box bi into a local
moment 𝜇 for bi.
Local to Local (L2L):

Accumulative downwards-shift of the local moments 𝜇 to the centers of their child boxes.
Local to Particle (L2P):

Translation of the local moment 𝜇 of each box bi on the lowest level dmax to each particle xi of this box.
Particle to Particle (P2P):

Evaluation of the interactions between the particles contained by the near neighbors of a box bi for each

box on the lowest level dmax via a classical ws range-limited Coulomb solver.

7.2.4 Assumptions

The input data set, parameters, boundary conditions, operator complexity and implementation
have a vital impact on the runtime and accuracy of an FMM implementation. Therefore, this
section discusses which properties are relevant for performance and scaling in the context of
tasking, which of them are kept constant, or are abstracted to ensure comparability. For the
remainder of this work, the following assumptions hold true:

Chevron-right Simulation space: if not explicitly stated otherwise, a three-dimensional simulation space
is used for theoretical considerations and performance measurements alike since it is the
most commonly used dimensionality in MD simulations.

Chevron-right Boundary conditions: periodic boundary conditions are applied throughout to exclude
edge cases.

Chevron-right FMM tree depth: dmax is varied to vary the task graph size.

Chevron-right Well separateness: ws = 1 applies constantly because it reduces the number of direct
interactions to a minimum and resembles the most common use case for the FMM [60, p.
28].

Chevron-right Operators: all operator-related properties are disregarded since each multipole and Taylor
expansion is substituted by a scalar addition to model minimal computational load so that
bottlenecks in the tasking approach (rather then the algorithmic optimizations of the FMM)
can be identified.

7.3 Parallel Fast Multipole Method

As outlined in Section 3.2.1, the degree of concurrency of an algorithm depends on its data
dependency graph. Therefore, this work introduces the data dependency graph of the FMM
to estimate the theoretical parallelization potential of task-parallelism in comparison to data-
parallelism.
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7.3.1 Data Dependency Graph
Figure 7.1 shows the data dependency graph of the FMM with periodic boundary conditions for a
one-dimensional simulation space1. The base structure of the data dependency graph is a binary
FMM tree. For clarity, the tree is plotted on a radial map, with its root node in the centre, and
inner nodes and leaf nodes arranged on concentric circles. Each node in the graph represents a
box in the FMM tree, with the node color representing different data types, e.g. a box with either
particles, multipoles 𝜔 or local moments 𝜇. Each directed edge (u, v) represents an FMM operation
with the data elements of box bu as input, and the data elements of box bv as output.
The data dependency graph represents data dependencies between boxes, which represents the

finest level of granularity that is considered in this work since particle granularity would lead to
the data dependency graph being dependent on the input data set. Therefore, in 3D the FMM
operations are defined as follows:

Chevron-right P2M: operates on a single box on the lowest level by expanding all particles in the box into
a multipole.

Chevron-right M2M: translates the multipole moments 𝜔 of eight child boxes into a multipole at the center
of the parent box.

Chevron-right M2L: executes an M2L operation for all boxes in its interaction list.

Chevron-right L2L: translates the local moment 𝜇 of a parent box into local moments at the centers of its
eight child boxes.

Chevron-right L2P: shifts the local moment mu of a box to all the particles in the according box.

Chevron-right P2P: computes the near field interactions for all particles in a box with respect to its well
separated neighbors.

The data dependency graph is composed of six structures, one per pass of the FMM. Following
the critical paths through the graph, the subsequent structures are evident:

Chevron-right a P2P edge between each particle-type node and its near neighbors,

Chevron-right a P2M edge from each particle-type node to each 𝜔-type leaf node,

Chevron-right an in-tree2 of M2M dependencies connecting 𝜔-type nodes along the parent-child relation,

Chevron-right level-wise M2L dependencies from the nodes in the M2M tree to the nodes in the L2L tree
following the interaction set,

Chevron-right an out-tree of L2L dependencies connecting 𝜇-type nodes along the parent-child relation,

Chevron-right an L2P edge from each 𝜇-type leaf node to each particle-type node.

Next, the theoretical degree of concurrency is determined for a data-parallel FMM in comparison
to a task-parallel FMM with different levels of granularity.

1Please note that the one-dimensional simulation space has only been chosen since the high density of data dependency
graphs for higher dimensional simulation spaces is not reasonably visualizable.

2In graph theory, in-tree denotes a rooted tree in which all edges are directed towards the root, and out-tree denotes a
rooted tree in which all edges are directed away from the root.
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Figure 7.1: FMM data dependency graph for a 1D simulation space.

7.3.2 Data-Parallel FMM
The classical loop-based data-parallel approach adheres to the sequential workflow of the FMM
but processes each pass via a fork-join model. Therefore, even data independent passes cannot
overlap and the degree of concurrency is limited by the degree of concurrency in each pass. If a
pass operates on multiple levels, then the maximal degree of concurrency is reached on the lowest
(and therefore widest) level that the pass operates on.
In general, the degree of concurrency in full trees decreases with branching factor b per level

when traversing the tree bottom-up, i.e. lower levels in the tree exhibit more parallelism than
higher levels. Hence, the level-wise degree of concurrency can be modeled as a geometric series

dmax−1
∑
i=0

bi . (7.4)

For the FMM in three dimensions b = 8 holds.
For P2M, this results in 8dmax loop iterations, one per box on the lowest level, that can be executed
simultaneously. This holds similarly for P2P and L2P.
Due to the in-tree structure of M2M, only M2M operations on the same level can be executed

simultaneously. This results in 8dmax−1 as degree of concurrency since level dmax − 1 is the lowest
level on which M2M operates. This holds similarly for L2L due to its out-tree structure.
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In contrast to M2M and L2L, M2L does not exhibit inter-level dependencies since it only operates
horizontally in the tree. The fork-join approach for the data-parallel FMM further guarantees that
M2M is completed on all levels before M2L commences execution. Due to these preconditions, all
M2L operations in the tree can be executed simultaneously, which leads to a maximal degree of

concurrency
dmax
∑
i=0
8i.

7.3.3 Task-Parallel FMM
Following from Algorithm 2, six task types can be derived, namely P2M, M2M, M2L, L2L, L2P and
P2P. However, dependent on the chosen task granularity, different task graphs can be derived
from the data dependency graph.
Pass granularity as the most coarse granularity is reached when each pass is considered as a

single sequential task. Hence, a task graph with pass granularity consists of exactly six tasks. While
P2M, M2M, M2L, L2L, L2P must be executed in order, only P2P can be executed simultaneously.
With respect to pass-size tasks, the maximal degree of concurrency in this scenario is 1(Far Field)+
1(Near Field) = 2.
Level granularity leads to medium granularity and is achieved when all operations of the same
type that are located on the same level are considered as a single sequential task. In addition
to the overlapping of passes as supported by pass granularity, this also allows for overlapping
within passes, e.g. the overlapping of the M2L task on level dmax with the M2L task on level
dmax − 1 under the assumption that M2M on level dmax− 1 is already completed. The latter can be
guaranteed since the number of M2L operations on level dmax is 8

dmax and the number of all M2M

operations is only
dmax−1

∑
i=0
8i. An M2L operation further consists of 189 ⋅O(p3) operations, while an

M2M operation consists of 8 ⋅O(p3) operations only. Hence, the number of M2L operations on the
lowest level is strictly larger than the number of all M2M operations. Under the assumption of
comparable prefactors for M2M and M2L, this implies that the compute time of all M2M operations
can be fully hidden by M2L from the lowest level only. Concluding, this leads to a maximal degree
of concurrency of 1(P2P)+ 1(M2M)+ 1(M2L) = 3.
Box granularity is the finest granularity considered in this work, since it is the finest level of

granularity leading to a static task graph. Box granularity allows for the degree of concurrency of
data parallelism, in addition to the overlapping of tasks from different levels and passes as enabled
by level granularity. Following from the fact that P2P on level dmax, M2M on level dmax − 1 and
M2L on level dmax can be executed simultaneously, the maximal degree of concurrency at any
point in time in terms of FMM operations is 8dmax + 8dmax−1 + 8dmax = 2 ⋅ 8dmax + 8dmax−1, which is
strictly larger than the maximal degree of concurrency of a data-parallel FMM.
Algorithmically, FMM task graphs that exhibit even finer levels of granularity are conceiv-
able. For instance, a task graph with operator granularity would correspond to an edge-vertex
transformation of the data dependency graph in Figure 7.1 with additional edges for each direct
particle-to-particle interaction. However, the latter are dependent on the input data set and
therefore are not representable by the static data flow dispatcher behind Eventify. Independent
from this work, active research is undertaken to enable a hybrid approach for the representation
of static and dynamic dependencies in Eventify to allow for even finer granularity in the future.

7.4 FMSolvr
FMSolvr is an open source C++-implementation of the FMM for MD on CPUs. The sequential
version of FMSolvr is the starting point for the data-parallel CPU and GPU implementations
presented in this work. The Eventify-based version is the starting point for the task-parallel GPU
version. The source code of FMSolvr can be found at http://code.fmsolvr.org/.
Please note that the implementation of FMSolvr on GPUs is not a full-fledged FMM but only
models the task graph of the FMM to allow for a meaningful evaluation and optimization of the
overhead induced by Eventify on GPUs. This is a worst case scenario for tasking frameworks
since it is entirely driven by dependency resolution and task queueing and cannot use the trivially
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parallelizable computations in the near field to hide bottlenecks in the far field. From hereon,
the task graph implementation of FMSolvr with minimal workload is referred to as miniFMSolvr.
All presented versions of miniFMSolvr can be found at https://code.fmsolvr.fz-juelich.
de/ATML-SE/eventify-GPU. The correctness of miniFMSolvr is ensured by testing it against the
statically known number of dependencies resolved per task as outlined in 7.3.3.

The UML class diagram provided in Figure 7.2 depicts the schematic software architecture
of FMSolvr. It covers classes and functions which are relevant for this work to describe the
parallelization schemes applied to FMSolvr in an object-oriented way. Even though it conveys the
architectural design, it does not necessarily preserve the exact naming of classes and functions nor
contain each and every component of them for reasons of clarity and visualization.

In addition to the member functions and the collection of free functions in FMMPasses, the
subsequent compute kernel functions are defined as:

Chevron-right kernel_P2M(Particle& particle, Multipole& omega)

Chevron-right kernel_M2M(Multipole& child, Multipole& parent, Scratch& s)

Chevron-right kernel_M2L(Multipole& omega, Local& mu, Scratch& s)

Chevron-right kernel_L2L(Local& parent, Local& child, Scratch& s)

Chevron-right kernel_L2P(Particle& particle, Local& mu)

Chevron-right kernel_P2P(Box& target, Box& source)

For FMSolvr, each kernel function follows exactly its specification as outlined in Algorithm 2. For
miniFMSolvr, however, only the dependency structure is considered. Therefore, the execution of
the FMM operators is substituted with an accumulation operation to follow and count algorithmic
dependencies.

7.4.1 Data-Parallel Implementations
OpenMP-FMSolvr for CPUs

This section provides an overview of a data-parallel, loop-based parallelization of FMSolvr with
OpenMP for CPUs. OpenMP-FMSolvr supports O(p3) as well as O(p4) operators for the kernel
functions of M2M, M2L and L2L. For conciseness, the parallelization scheme of each FMM-pass
is described in C++-like, object-oriented pseudo-code. The pseudo-code preserves the semantic
loop-structure only, meaning that the implementation of this loop-structure can be syntactically
different. As an example, the loop on Line 9 in pseudo-code Listing 7.1 appears in the source
code of FMSolvr as triply-nested loop and is accordingly equipped with an OpenMP collapse
clause. Since such implementation details do not influence the exploitation of the algorithmic
parallelization potential, they are not considered further.

Listing 7.1 shows the parallelization of pass P2M with OpenMP. The outermost loop iterates
over all 8dmax boxes on the lowest level dmax of the tree. By means of OpenMP’s parallel work
sharing loop this outermost loop is subdivided into chunks, which are distributed to all t threads
of the team for parallel execution. Size and distribution of those chunks are specified through
the schedule clause. The schedule-type runtime indicates that the scheduling type is chosen
via the environment variable OMP_SCHEDULE at runtime. This allows to flexibly interchange
scheduling policies to adapt to specific input data sets or efficiently perform comparative runtime
measurements. If the scheduling policy static is applied, each thread executes at most one chunk,
with each chunk covering approximately 8dmax/t iterations.
As can be seen in Listing 7.2, pass M2M operates on all levels of the FMM-tree following a

bottom-up scheme. Since the M2M operations on different levels are not fully independent of each
other, the outermost loop cannot be parallelized via a parallel work sharing loop. Instead, each
level is considered per se and the M2M-kernel is applied to its boxes in parallel. This level-wise
parallelization scheme introduces an inherent synchronization bottleneck by relying on the implicit
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≪free functions≫
FMMPasses

+ pass_P2M(FMMHandle& handle)

+ pass_M2M(FMMHandle& handle)

+ pass_M2L(FMMHandle& handle)

+ pass_L2L(FMMHandle& handle)

+ pass_L2P(FMMHandle& handle)

+ pass_P2P(FMMHandle& handle)

FMMHandle

– d: unsigned int

– p: unsigned int

– ws: unsigned int

– trees: TreeHandle*

+ FMMHandle()

+ ~FMMHandle()

InteractionHandle

+ reduce()

TreeHandle

– omega_tree: Tree<MultipoleT>*

– mu_tree: Tree<LocalT>*

+ TreeHandle()

+ ~TreeHandle()

Tree

– elements: ValueT**

+ Tree()

+ ~Tree()

ValueT

Box

ParticleHandle

SimulationBox

ABC

P2PTypeTileBase

Reducer

Figure 7.2: UML class diagram of FMSolvr. Violet signifies that a component required changes for both

parallelization approaches, OpenMP and OpenACC. Red signifies that a component required

changes for parallelization with OpenACC, but not for parallelization with OpenMP. Light red

implies that components were removed and their functionality transferred to other components

due to the restraint of dynamic memory allocation in OpenACC parallel sections.

barrier at the end of the parallel construct. Due to this, the amount of parallel work is reduced by
a factor 1/8 for each iteration of the outermost loop. For d = 0 this results in full sequentialization.
In contrast to the parallelization of P2M, we do not apply a combined parallel work sharing

loop but a parallel construct (Line 6) followed by a separate work sharing loop construct (Line 9).
This allows for the thread-private allocation and reuse of scratch memory (Line 8) as used in the
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Listing 7.1: OpenMP-Version of Pass P2M

1 void pass_P2M(FMMHandle& handle)

2 {

3 Tree& tree = handle.tree();

4 unsigned int d = handle.d();

5 #pragma omp parallel for schedule(runtime)

6 for (box : tree.boxes_on_level(d))

7 {

8 for (particle : box.particles())

9 {

10 kernel_P2M(particle, box.omega());

11 }

12 }

13 }

Listing 7.2: OpenMP-Version of Pass M2M

1 void pass_M2M(FMMHandle& handle)

2 {

3 Tree& tree = handle.tree();

4 for (level : tree.levels_from_leaves())

5 {

6 #pragma omp parallel

7 {

8 scratch_type scratch(p);

9 #pragma omp for schedule(runtime)

10 for (box : level.boxes())

11 {

12 for (child : box.children())

13 {

14 kernel_M2M(child.omega(), box.omega(), scratch);

15 }

16 }

17 }

18 }

19 }

sequential version to improve memory efficiency.

Listing 7.3 covers the loop-based OpenMP-parallelization of pass M2L. The parallelization
scheme of M2L is similar to the parallelization scheme of M2M; the outermost loop iterates over
levels sequentially and the M2L-kernel is applied to all 8d boxes on a level d in parallel. This is
possible since the sequential implementation follows a target-centric approach. In contrast to a
source-centric approach, this avoids the concurrent accumulation of local moments and hence the
necessity of critical sections. Since the M2L operations on different levels are fully independent of
each other, the outermost loop of M2L provides further parallelization potential. However, this is
not exploited here since it does not provide a sustainable solution to the fundamental tree-induced
synchronization bottlenecks of passes M2M and M2L.

Listing 7.4 shows the OpenMP-parallelization of pass L2L. Parallelization-wise, pass L2L is the
counterpart to pass M2M. Hence, it operates on all levels of the FMM-tree following a top-down
scheme. Due to the parent-child relation L2L operations are not fully independent of each other.
Therefore, the outermost loop, which iterates over levels, cannot be parallelized with a parallel
work sharing loop. Instead, the L2L-kernel is applied to all boxes of a level in parallel via a parallel
construct (Line 6) and a separate worksharing loop (Line 9).

Pass L2P operates on the lowest level dmax only. Accordingly, its parallelization scheme follows
the parallelization of pass P2M. As can be seen in Listing 7.5, a parallel worksharing-loop is applied
to the outermost loop. Hence, each thread executes a chunk of boxes, while chunks are processed
by multiple threads in parallel.

Listing 7.6 shows the OpenMP-parallelization of pass P2P. Similar to P2M and L2P, P2P operates
only on the lowest level dmax of the tree. Therefore, a parallel worksharing-loop is applied, which
subdivides the outermost loop into chunks of boxes that are processed by multiple threads in
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Listing 7.3: OpenMP-Version of Pass M2L

1 void pass_M2L(FMMHandle& handle)

2 {

3 Tree& tree = handle.tree();

4 for (level : tree.levels())

5 {

6 #pragma omp parallel

7 {

8 scratch_type scratch(p);

9 #pragma omp for schedule(runtime)

10 for (box : level.boxes())

11 {

12 for (i : box.interaction_set())

13 {

14 kernel_M2L(i.omega(), box.mu(), scratch);

15 }

16 }

17 }

18 }

19 }

Listing 7.4: OpenMP-Version of Pass L2L

1 void pass_L2L(FMMHandle & handle)

2 {

3 Tree& tree = handle.tree();

4 for (level : tree.levels_from_root())

5 {

6 #pragma omp parallel

7 {

8 scratch_type scratch(p);

9 #pragma omp for schedule(runtime)

10 for (parent : level.boxes())

11 {

12 for (child : parent.children())

13 {

14 L2L(parent.mu(), child.mu(), scratch);

15 }

16 }

17 }

18 }

19 }

Listing 7.5: OpenMP-Version of Pass L2P

1 void pass_L2P(FMMHandle& handle)

2 {

3 Tree& tree = handle.tree();

4 OutputHandle& output = handle.output_handle();

5 unsigned int d = handle.d();

6 #pragma omp parallel for schedule(runtime)

7 for (box : tree.boxes_on_level(d))

8 {

9 for (particle : box.particles())

10 {

11 kernel_L2P(particle, box.mu(), output);

12 }

13 }

14 }

parallel.

As can be seen from Figure 7.2, the OpenMP-parallelization of FMSolvr is minimal-invasive as it
only affects the compute functions in FMMPasses.

OpenACC-miniFMSolvr for GPUs

The parallelization scheme of OpenACC-miniFMSolvr corresponds to the parallelization approach
of OpenMP-FMSolvr. Since OpenACC allows to take the hierarchical parallelism of GPUs into
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Listing 7.6: OpenMP-Version of Pass P2P

1 void pass_P2P(FMMHandle& handle)

2 {

3 Tree& tree = handle.tree();

4 OutputHandle& output = handle.output_handle();

5 #pragma omp parallel

6 {

7 #pragma omp for schedule(runtime)

8 for (target : tree.boxes_on_level(d_max))

9 {

10 for (source : target.near_neighbors())

11 {

12 kernel_P2P(target, source);

13 }

14 }

15 }

16 }

Listing 7.7: OpenACC-Version of Pass P2M

1 void pass_P2M(FMMTree& tree)

2 {

3 #pragma acc parallel loop gang worker vector num_workers(block_dim) vector_length(1) num_gangs(

grid_dim)

4 for (box : tree.boxes_on_level(d_max))

5 {

6 #pragma acc loop seq

7 for (particle : box.particles())

8 {

9 kernel_P2M(particle, box.omega());

10 }

11 }

12 }

Listing 7.8: OpenACC-Version of Pass M2M

1 void pass_M2M(FMMTree& tree)

2 {

3 for (level : tree.levels_bottom_up())

4 {

5 #pragma acc parallel loop gang worker vector num_workers(block_dim) vector_length(1) num_gangs(

grid_dim)

6 for (box : level.boxes())

7 {

8 #pragma acc loop seq

9 for (child : box.children())

10 {

11 kernel_M2M(child.omega(), box.omega());

12 }

13 }

14 }

15 }

account, the type of loop parallelism can be specified by providing worker, vector and gang
dimensions. Worker and gang dimension are specified at runtime in order to facilitate the search
for the optimal kernel configuration. The vector dimension is statically set to 1 since this allows
OpenACC to comprise warps of the worker threads flexibly. Listings 7.7 to 7.12 outline all passes
of miniFMSolvr as parallelized with OpenACC loops.

7.4.2 Task-Parallel Implementation

The fine-grained task-parallel implementation of miniFMSolvr on GPUs uses Eventify. Figure 7.3
shows the integration of Eventify in miniFMSolvr based on the software architecture described in
Section 6.4.1. From the user perspective, the integration involves the subsequent steps that follow
from the software architecture and the workflow of Eventify as outlined in Section 6.4.2:
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Listing 7.9: OpenACC-Version of Pass M2L

1 void pass_M2L(FMMTree& tree)

2 {

3 for (level : tree.levels())

4 {

5 #pragma acc parallel loop gang worker vector num_workers(block_dim) vector_length(1) num_gangs(

grid_dim)

6 for (box : level.boxes())

7 {

8 #pragma acc loop seq

9 for (i : box.interaction_set())

10 {

11 kernel_M2L(i.omega(), box.mu());

12 }

13 }

14 }

15 }

Listing 7.10: OpenACC-Version of Pass L2L

1 void pass_L2L(FMMTree & tree)

2 {

3 for (level : tree.levels_top_down())

4 {

5 #pragma acc parallel loop gang worker vector num_workers(block_dim) vector_length(1) num_gangs(

grid_dim)

6 for (parent : level.boxes())

7 {

8 #pragma acc loop seq

9 for (child : parent.children())

10 {

11 L2L(parent.mu(), child.mu(), scratch);

12 }

13 }

14 }

15 }

Listing 7.11: OpenACC-Version of Pass L2P

1 void pass_L2P(FMMTree& tree)

2 {

3 #pragma acc parallel loop gang worker vector num_workers(block_dim) vector_length(1) num_gangs(

grid_dim)

4 for (box : tree.boxes_on_level(d_max))

5 {

6 #pragma acc loop seq

7 for (particle : box.particles())

8 {

9 kernel_L2P(particle, box.mu());

10 }

11 }

12 }

Chevron-right Definition of two CUDA streams; one for the near field pass, and another for the in-order
execution of all far field passes.

Chevron-right Reimplementation of the Tree data structure for GPUs based on gtl::vector.

Chevron-right Definition of AbstractProcessor, Task type and queue structures for all six task types of
the FMM.

Chevron-right Equipping InitData with a pointer to a Tree for compute data, and a pointer to a Tree for
dependency counters. The latter substitutes the placeholder class DependencyStructure of
Eventify.

Chevron-right Definition of function template specializations for get_queue(), get_mutex(), init_queue(),
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Listing 7.12: OpenACC-Version of Pass P2P

1 void pass_P2P(FMMTree& tree)

2 {

3 #pragma acc parallel loop gang worker vector num_workers(block_dim) vector_length(1) num_gangs(

grid_dim)

4 for (target : tree.boxes_on_level(d_max))

5 {

6 #pragma acc loop seq

7 for (source : target.near_neighbors())

8 {

9 kernel_P2P(target, source);

10 }

11 }

12

13 }

≪free functions≫
FMM task functions

+ p2m(Tree& dep_tree, Tree& comp_tree)

+ m2m(Tree& dep_tree, Tree& comp_tree)

+ m2l(Tree& dep_tree, Tree& comp_tree)

+ l2l(Tree& dep_tree, Tree& comp_tree)

+ l2p(Tree& dep_tree, Tree& comp_tree)

+ p2p(Tree& dep_tree, Tree& comp_tree)

Tree

– elements: ValueT**

+ Tree()

+ ~Tree()

ValueT

Processor

+ run_computation()

InitData

+ int num_thread_blocks
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Figure 7.3: UML class diagram of the integration of miniFMSolvr and Eventify.

production_finished() and resolve_dependencies() for each task type.
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Evaluation

The objective of this chapter is to evaluate the performance and sustainability of fine-grained
task-parallelism in comparison to data-parallelism on CPUs and GPUs. The chapter commences
by determining quantitative metrics for performance. Afterwards, the methodology to conduct
measurements of these metrics is outlined. Based thereon, the measurement results for all parallel
implementations of FMSolvr are presented, analyzed and evaluated against each other. Conclusive,
threats against validity of this work are outlined.

8.1 Metrics
The focus of this work is on the comparison of different parallel programming approaches. Hence,
it requires metrics that do not only quantify the behavior of a single program but allow for the
comparison of multiple programs.

8.1.1 Scalability
In this work, scalability is defined as follows:

Definition 8.1. Scalability. The scalability of a parallel algorithm on a parallel architecture is a
measure of its capacity to efficiently utilize an increasing number of [processing elements] [69].

In order to measure scalability, the “capacity to efficiently utilize an increasing number of
processing elements” must be quantified. To quantify this capacity, runtime is used as underlying
performance metric since it is the main concern of scientific simulations.

Definition 8.2. Runtime. The runtime rA of a program A is the absolute amount of time it takes to
execute A.

rmin denotes the minimal runtime of a parallel program, while trmin denotes the number of threads
for which this minimal runtime is reached.
To evaluate runtime under an increasing number of processing elements, two properties of a
parallel program can be analyzed: strong scaling and weak scaling. Strong scaling describes the
efficiency of a parallel application under a constant problem size and an increasing number of
processing elements, while weak scaling describes the efficiency of a parallel application under a
problem size that is direct proportional to the number of processing elements. This work considers
strong scaling only since the problem size of scientific simulations is typically determined by
physical properties, and there is little scientific value in increasing problem sizes beyond the size of
realistic systems. Therefore, it is not sufficient to target weak scaling in order to utilize increasing
hardware parallelism. This work employs the efficiency [89] of a parallel program to quantify
strong scaling.
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Definition 8.3. Efficiency. The efficiency of a parallel program is defined as

E = Ts
t ⋅ Tt

, (8.1)

where Ts denotes the runtime of the best sequential implementation and Tt the runtime of the parallel
implementation on t threads.

Based on these considerations, an application exhibits optimal scalability if its speedup corre-
sponds to the number of processing elements it is executed on, i.e. if E = 1 assuming the absence
of super-linear speedup.

With relative efficiency, this work describes the scaling on GPUs relative to the grid size for a
fixed block size to take hierarchical parallelism into account. This allows to analyze which block
size provides the best scalability.

This work is not only concerned with the performance behavior of a single implementation
but with a comparison of different implementations. To quantify the performance change an
implementation provides relative to another implementation, the runtime ratio (derived from the
performance improvement metric introduced in [75]) is applied.

Definition 8.4. Runtime Ratio. The runtime ratio RA,B of an implementation A in comparison to a

baseline implementation B is the ratio
rB
rA
.

Based thereon, the arithmetically averaged runtime ratio R is defined. R averages the runtime
change over all numbers of threads t for which RA,B has been determined. Further, there is a
maximal runtime ratio Rmax. Since the best runtime is not necessarily reached for the same number
of threads in implementation A and implementation B, the effective runtime ratio Reff is defined.
It denotes the practical relevant runtime change, i.e. the ratio between the minimal runtime of the
baseline B and the minimal runtime of implementation A.

8.1.2 Sustainability

In order for a parallel programming approach to be considered sustainable, this work requires the
approach to provide good programmability and enhance portability of applications. Programma-
bility is qualitatively assessed based on the software architectures outlined in Section 7.4. While
quantitative metrics such as the relative number of modified classes could be considered they
neglect the complexity of the involved changes and their effects on maintainability. Portability is
in this case trivially to evaluate since it only determines whether an application or programming
model support multiple hardware architectures.

8.2 Methodology
This section outlines the methodology to obtain measurement results for the performance and
sustainability evaluation. For reproducibility, please find the source code for all parallel versions
of FMSolvr and miniFMSolvr along with compilation and execution scripts at https://code.
fmsolvr.fz-juelich.de/ATML-SE/eventify-GPU.

8.2.1 Hardware

Table 8.1 outlines the properties of the compute node used for all measurements on CPUs. The
node consists of 4 Intel Xeon E7-4830 v4 (Broadwell) CPUs with 14 cores and 2-way SMT each.
Hence, it exhibits 56 (non-SMT) cores overall.

Table 8.2 outlines the properties of the Nvidia GPU used for all measurements on GPUs. The
Tesla V100 was selected for two reasons. Firstly, it provides a high SM count and hence allows for
an extensive scalability analysis. And secondly, it supports ITS and hence enables an evaluation of
the influence of ITS on the performance of fine-grained tasking.
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Table 8.1: Device properties of the CPU node used for the performance analysis.

Property Broadwell Node

Processor Intel Xeon E7-4830 v4

Sockets 4

Cores per socket 14

SMT threads per core 2

Clock frequency (Turbo Boost disabled) 2.00 GHz

L1d/L1i Cache 1.8 MiB

L2 Cache 14 MiB

L3 Cache 140 MiB

Table 8.2: Device properties of the GPU used for the performance analysis.

Property Tesla V100

SM count 80

Max threads per SM 2048

Max threads per block 1024

Warp size 32

Global memory 16 GB

L2 cache size 6 MB

Shared memory per SM 96 KB

Shared memory per block 48 KB

Registers per SM 65536

Registers per block 65536

Listing 8.1: Flags to build executable fmsolvr_eventify

1 -std=c++11 -O3 -march=native -W -Wall -pthread -lnuma

Listing 8.2: Flags to build executable fmsolvr_omp

1 -std=c++11 -O3 -march=native -W -Wall -fopenmp

8.2.2 CPU Runtime Measurements
All CPU runtime measurements are performed on the compute node described in Table 8.1.
In order to compile Eventify-FMSolvr for CPUs, the g++ compiler (version 10.2.1) is used with
the flags shown in Listing 8.1.
For OpenMP-FMSolvr for CPUs, g++ is used with the following flags outlined in Listing 8.2.
Time measurements are performed via std::chrono::high_resolution_clock. Each exe-
cution of the program covers the workflow of FMSolvr for a single time-step of the simulation
excluding instantiation and memory allocation of data structures. The latter would only be done
once in a realistic simulation with multiple time steps and hence is irrelevant in terms of runtime.
To ensure stable measurements, each run is repeated 1000 times for dmax = 3, 100 times for
dmax = 4 and 10 times for dmax = 5 and dmax = 6.
Intel’s Turbo Boost technology is disabled for all measurements. This is necessary since Turbo
Boost leads to varying clock frequencies depending on the workload and number of cores used.
Hence, it can distort scaling plots due to the clock frequency being automatically increased for
the single-thread implementation employing one core only. According to [23], Turbo Boost leads
on average to a 6% reduction in runtime for computationally-intensive programs by accelerating
sequential phases.
Since Eventify provides built-in NUMA-awareness, the thread affinity policy OMP_PLACES=cores
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Listing 8.3: Flags to build executable miniFMSolvr_OpenACC

1 pgc++ -O4 -std=c++11 -Mlist -acc -Minfo=accel -ta=tesla:cc70,managed -DNDEBUG -DUSE_UPPER -I./include -I

./tables -I./helpers fmmtest.cpp -o miniFMSolvr_OpenACC

Listing 8.4: Flags to build executables miniFMSolvr_Eventify

1 nvcc -arch=compute_70 -std=c++11 -rdc=true -Xcompiler -Wall -O3 main.cu -o miniFMSolvr_Eventify

OMP_PROC_BIND=close is employed for the OpenMP measurements to reduce the influence of
NUMA on OpenMP, too.

8.2.3 GPU Runtime Measurements

The runtime measurements for OpenACC-miniFMSolvr and Eventify-miniFMSolvr on GPUs are
performed on the Nvidia V100 GPU described in Table 8.1.

For the compilation of OpenACC-miniFMSolvr for GPUs, the pgc++ compiler (version 20.7-0) is
used as shown in Listing 8.3.

For the compilation of Eventify-miniFMSolvr for GPUs, the nvcc compiler (version 11.5) is used
with the flags provided in Listing 8.4.

Time measurements are performed via std::chrono::high_resolution_clock in the very
same way as on the CPU. Each execution of the program covers the workflow of miniFMSolvr
for a single time-step of the simulation excluding instantiation and memory allocation of data
structures. Since preliminary experiments showed that the runtime measurements on the GPU are
stable, each run is repeated 10 times only.

8.3 Performance Analysis on CPUs: Data-Parallelism vs.

Task-Parallelism
This section provides an initial performance analysis of FMSolvr on CPUs to evaluate whether the
theoretical performance gains of task parallelism as anticipated in Section 7.3 can be realized in
practice. For this purpose, Figure 8.1 shows the runtime, parallel efficiency and runtime ratio of
data-parallel OpenMP-FMSolvr in comparison with task-parallel Eventify-FMSolvr. The light blue
backgrounds represent the four sockets of the Broadwell machine described in Table 8.1 in order
to illustrate NUMA effects.

The sequential runtime of OpenMP-FMSolvr is 1.01 s, while the sequential runtime of Eventify-
FMSolvr is 1.29 s. Hence, the execution of Eventify-FMSolvr with t = 1 takes 28 % longer than
the execution of OpenMP-FMSolvr. This is expected since Eventify introduces task management
overheads due to fine-grained synchronization, dependency resolution and task queueing times.
When executed on a single thread, however, this does not amortize since tasks are executed
sequentially anyhow. OpenMP parallel for on the other hand does not introduce any overheads
for sequential execution. Due to this, OpenMP-FMSolvr serves as best sequential implementation
to compute parallel efficiency for both implementations. Therefore, the initial efficiency of
Eventify-FMSolvr is 22 % lower than the efficiency of OpenMP-FMSolvr.

Considering parallel execution, the runtime ratio plot shows that the overheads introduced
by Eventify amortize for t = 5. From this point on, Eventify-FMSolvr consistently provides a
lower runtime and higher parallel efficiency than OpenMP-FMSolvr. For t ≤ 28 the runtime
of Eventify-FMSolvr exhibits the same slope as the ideal runtime with an overhead of 33% on
average.

As can be seen from the runtime plot, the runtime of OpenMP-FMSolvr increases considerably
for t > 14, which is exactly the first NUMA-border. Minor runtime increases are also apparent
from t = 28 to t = 29, and from t = 42 to t = 43, which are also NUMA borders. These effects
occur even though OpenMP’s close core pinning strategy is applied to prevent the operating
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system scheduler from moving threads and associated data between cores, which reduces data
transfers between NUMA nodes. In contrast to OpenMP, Eventify provides automatic thread
pinning and customized NUMA-aware memory allocation and load balancing strategies to alleviate
NUMA-induced performance bottlenecks even further. A detailed analysis of NUMA effects in
FMSolvr and their resolution via Eventify can be found in [75].

The highest runtime improvement of Eventify over OpenMP amounts to Rmax = 6 and is reached
for tRmax = 56 threads. This is, however, not the effective performance improvement in practice
since OpenMP-FMSolvr’s best runtime is reached for t = 14 instead of t = 56. The lowest runtime
of Eventify-FMSolvr amounts to 0.05s and is reached for 56 threads. The lowest runtime for
OpenMP-FMSolvr is 0.16s and is reached for 14 threads. Hence, Eventify-FMSolvr is Reff = 3.2
times faster than OpenMP-FMSolvr.

There are three main reasons why Eventify-FMSolvr scales better and reaches better execution
times than OpenMP-FMSolvr for an increasing number of threads. First, Eventify-FMSolvr exhibits
a higher degree of concurrency due to task overlapping as theoretically derived in Section 7.3.
Second, Eventify provides a work stealing approach which accounts for load imbalances. And
third, Eventify alleviates the NUMA-effects as evident at the NUMA-borders in Figure 8.1.

8.4 Performance Analysis on GPUs: Data-Parallelism vs.

Task-Parallelism

This section evaluates the performance of OpenACC-miniFMSolvr and Eventify-miniFMSolvr on
GPUs to evaluate whether the theoretical performance gains of task-parallelism as anticipated in
Section 7.3 can be realized in practice.

8.4.1 OpenACC

Figure 8.2 shows the runtime and parallel efficiency of data-parallel OpenACC-miniFMSolvr on
GPUs. Runtime and efficiency have been determined for grid sizes Dgrid = 1,2,4,6, … ,160. The
maximum configurable grid size is 160 since this is the maximum grid size without leading to a
CUDA out of memory error for the MHQ approach. For each grid size, eight different thread block
sizes Dblock = 1,2,4,8,16,32,64,128 have been considered.
The sequential runtime of OpenACC-miniFMSolvr is 2.7s. For Dblock = 1, the runtime decreases

with increasing grid size, and the lowest runtime rmin = 0.261s is reached with 152 thread blocks.
Hence, by increasing the grid size only, runtime can be improved by a factor of 10.3. Since runtime
barely decreases for Dgrid > 32, this accounts to a parallel efficiency of 7% only. This is similar to
the efficiency behavior of data-parallel FMSolvr on CPUs for t > 28 as evident in Figure 8.1.
Figure 8.2 shows further that the runtime also decreases by increasing the number of threads

per block. For grid size Dgrid = 1, the runtime decreases with a factor of 1.63 to 1.1 for increasing
block sizes from Dblock = 1, … ,128. The optimal runtime for Dgrid = 1 is reached for Dblock = 128,
which corresponds to a parallel efficiency of 8%. Hence, the scaling behavior of OpenACC-FMSolvr
is the same independent of the fact whether grid size or block size is increased. This is expected
since OpenACC-FMSolvr, similarly to OpenMP-FMSolvr, cannot (trivially) exploit the hierarchical
parallelism that the GPU provides due to inner loop dependencies as outlined in Section 7.4.1.

There are two options to alleviate this bottleneck. A combined approach of threading and
vectorization as outlined for FMSolvr in [67] could be chosen. Alternatively, fine-grained task
parallelism could be used to allow all lanes of a warp to execute different tasks simultaneously.
This work explores the latter since it aims for a general approach to exploit hierarchical parallelism
in irregular algorithms, and not specifically for a highly optimized FMM implementation.

8.4.2 Eventify

In this section, the performance and sustainability of Eventify-miniFMSolvr on GPUs are evaluated
with a focus on the comparison with OpenACC-miniFMSolvr.
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Figure 8.1: Runtime, efficiency and runtime ratio of data-parallel OpenMP-FMSolvr in comparison with

Eventify-FMSolvr for tree depth dmax = 5 and multipole order p = 4 with 100000 particles on a
CPU.
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Figure 8.2: Runtime and efficiency of data-parallel OpenACC-miniFMSolvr on a GPU for tree depth dmax = 5.

GPU Locks

The locking mechanism is a key factor for the efficiency of tasking frameworks. Therefore, a
performance analysis of different mutex implementations under high contention is conducted
separately to determine which mechanism to apply for all subsequent measurements with Eventify-
miniFMSolvr. Figure 8.3 shows the runtime of Eventify-miniFMSolvr for passes M2M, M2L and
L2L for dmax = 6 with the mutex implementations of Eventify and libcu++ as described in Section
6.2.2. It is evident, that the Eventify mutex leads to the best runtime independent of the chosen
kernel configuration. Hence, all further runtime measurements are based on the Eventify mutex.

SQ: Single Multi-Producer Multi-Consumer Queue

Figure 8.4 shows the runtime and relative efficiency of Eventify-miniFMSolvr on GPUs with a
single multi-producer multi-consumer queue as introduced in Section 6.3.4.

The sequential runtime of SQ-Eventify-miniFMSolvr is 6.5s. For a constant grid size, the runtime
decreases when the block size is increased. For a constant block size, the runtime increases with
increasing grid size. While the latter might appear surprising at first, this behavior reflects exactly
the limited access parallelism and large critical section of the SQ scheme. Since only the thread
block master has write access to the global queue, all write accesses to the queue serialize and
hence no MIMD inter-block parallelism can be achieved. Due to contention, the runtime does
not stay constant but even increases when more thread blocks are used. Following this rationale,
SQ-Eventify-miniFMSolvr reaches its best runtime rmin = 3.1s for Dgrid = 1 and Dblock = 128,
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Figure 8.3: Runtime of Eventify-miniFMSolvr for passes M2M, M2L and L2L for dmax = 6 with different mutex
implementations on a GPU.

which is an order of magnitude above the best runtime of OpenACC-miniFMSolvr.

Eventify-miniFMSolvr and OpenACC-miniFMSolvr reach their best runtime for the exact same
kernel configuration. While OpenACC-miniFMSolvr, however, can exploit the loop parallelism
in all passes without introducing any parallelization overhead, Eventify-miniFMSolvr introduces
considerable overheads due to task generation, locking, task queueing and dependency resolution.

Considering the relative efficiency plot, it becomes apparent that Eventify and OpenACC lead to
considerably different scaling behavior. OpenACC-miniFMSolvr exhibits its best scalability for
Dblock = 1, while the scalability of Eventify-miniFMSolvr is equivalent for all tested block sizes.
Qualitatively, all efficiency curves of Eventify-miniFMSolvr correspond to the worst case efficiency
of OpenACC-miniFMSolvr as reached for Dblock = 128.
Concluding, a naive implementation of task-parallelism on GPUs does not yield any performance
gains. On CPUs, in contrast, task-parallelism does reduce the runtime in comparison to a data-
parallel implementation. Hence, the performance bottleneck on GPUs has to be identified. The
major difference between Eventify on CPUs and GPUs is the queueing approach. While each CPU
thread draws tasks from its private queue, all GPU thread blocks draw tasks from a single shared
queue. To alleviate this performance bottleneck, two queueing schemes with multiple task queues
have been developed and are evaluated subsequently.

MQ: Multiple MPSC Queues

Figure 8.5 shows the runtime and relative efficiency of Eventify-miniFMSolvr on GPUs with
multiple multi-producer multi-consumer queues as introduced in Section 6.3.4.

The sequential runtime of MQ-Eventify-miniFMSolvr is 6.5s, which corresponds exactly to
the runtime of SQ-Eventify-miniFMSolvr. This is expected since the number of queues in MQ
corresponds to the number of thread blocks Dblock; for Dblock = 1, MQ and SQ exhibit accordingly
the same number of queues. Since only one master thread exists, there is no contention and all
tasks are simply generated and executed sequentially in both implementations.

Qualitatively, the runtime behavior with respect to block sizes is similar for SQ and MQ as well.
For a constant grid size, the runtime decreases when the block size is increased. This shows that
MQ does indeed preserve the SIMD intra-block parallelism provided by SQ.

The runtime behavior with respect to grid size, however, varies considerably between both
implementations. For a constant block size, the runtime decreases with increasing grid size. This
shows that MQ-Eventify-miniFMSolvr fulfills the objective of achieving inter-block parallelism.

Similar to SQ, all relative efficiency curves of MQ are coextensive. Hence, the qualitative scaling
behavior of SQ is preserved. Quantitatively, however, the scalability of MQ is 60% higher than
the scalability of SQ and OpenACC.

Concluding, MQ-Eventify-miniFMSolvr reaches its best runtime rmin = 0.021 for Dblock = 128
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Figure 8.4: Runtime and relative efficiency of miniFMSolvr on a GPU parallelized with Eventify and SQ

scheduling for tree depth dmax = 5.

and Dgrid = 160. Hence, MQ-Eventify-miniFMSolvr outperforms OpenACC-miniFMSolvr by a
factor of 12.4.

MHQ: Multiple Hierarchical Queues

Figure 8.4 shows the runtime and the relative efficiency of Eventify-miniFMSolvr on GPUs with
hierarchical queues as introduced in Section 6.3.4.

The sequential runtime of MHQ amounts to rmin = 6.5s, which matches the runtime of SQ and
MQ. This is unexpected, since MHQ maintains two queues instead of one queue per thread. The
larger overhead should lead to an increase in runtime for sufficiently small grid sizes since the
overhead cannot amortize by reducing contention on the shared queues. Reconsidering the MHQ
implementation, it becomes apparent that the shared queue is initialized but never used in the
sequential case since tasks are always assigned to the private queue. In addition, the onetime
queue construction overhead is negligible in comparison to task generation and execution.

The runtime behavior of MHQ-Eventify-miniFMSolvr with respect to block size and grid size
corresponds to the runtime behavior of MQ-Eventify-miniFMSolvr. This is due MHQ preserving
the SIMD intra-block and the MIMD inter-block parallelism of MQ. MHQ reaches its best runtime
rmin = 0.021s for Dblock = 128 and Dgrid = 160, which corresponds exactly to the minimal runtime
of MQ. Hence, the additional queue management overhead does not amortize for miniFMSolvr
despite the fact that it reduces the number of mutex-protected queue accesses. This is surprising,
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Figure 8.5: Runtime and relative efficiency of miniFMSolvr on a GPU parallelized with Eventify and MQ

scheduling for tree depth dmax = 5.

since blocking algorithms like MQ have so far been considered inefficient on GPUs. Concluding,
the comparative performance analysis shows that efficient blocking algorithms are possible on
current GPUs.

8.4.3 Sustainability

As evident from the UML diagrams of FMSolvr in Figure 7.2, GPU-based parallelization approaches
require more and profound changes within classes, and even modifications of the software architec-
ture itself. This holds true independently of the fact whether a data- or task-parallel programming
model is applied. There are two main reasons for this. Firstly, the additional memory management
required due to the separation of host and device memory. And secondly, that GPU programming
models in general do not support the full range of C++ features and the STL. Due to these complex-
ities, the programmability of GPU programming models is poorer than the programmability of
CPUs, and they worsen code maintainability. Considering portability, GPU programming models
nevertheless enhance the sustainability of software since they open up an additional platform to
run on. By porting Eventify to GPUs, this work accordingly contributes to the wider vision of
enabling fine-grained task-parallelism on heterogeneous hardware.

Applications that employ directive-based data-parallel approaches like OpenMP and OpenACC
are harder to debug and optimize since implementation details are opaque. For applications
that exhibit regular data-parallelism and exhibit flat class hierarchies, however, they enable high
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Figure 8.6: Runtime and relative efficiency of miniFMSolvr on a GPU parallelized with Eventify and MHQ

scheduling for tree depth dmax = 5.

software development efficiency.

Approaches that force software developers to explicitly describe task-parallelism pose an entirely
different type of challenge since they require a deep understanding of the algorithmic data
dependencies to identify and leverage loop-overarching fine-grained parallelism. If the data
dependency graph of an application and its parallelization potential are known in detail, using
fine-grained task-parallelism is nevertheless worth the higher development effort since it can lead
to performance gains in the order of a magnitude.

8.5 Threats to Validity
The main threat to validity of this work is that it delivers a prototypical implementation of FMSolvr
for GPUs only. While it allows for the processing of the complete FMM task graph it does not
contain the execution of the actual FMM operations since CUDA does not yet support all of the C++
functionalities required for this. In the course of this work prototypical implementations of many
C++ features required by FMSolvr and Eventify, such as std::sort, std::forward, std::vector,
std::complex, were developed and can be found at https://code.fmsolvr.fz-juelich.de/
ATML-SE/eventify-GPU. However, these are not optimized for performance and hence would
prevent a meaningful evaluation of the effects of task-parallelism on GPUs. In fact, the optimization
of these features goes beyond the scope of this work since they are application dependent and will
in the foreseeable future be provided by vendor libraries or heterogeneous programming models
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such as libcu++, SYCL or even be included in the C++ standard itself. The main issue with the
prototypicality of the GPU implementations is that the runtimes achieved on CPUs and GPUs are
not comparable since they do not execute the same workload. However, this does not limit the
conclusions of this work since its objective is not a performance comparison between different
architectures but between different parallel programming paradigms.
Another threat to validity is that the evaluation only considers a comparison against data-parallel

programming technologies but not against other task-parallel programming technologies. This is
due to the scarcity of technologies that support fine-grained task-parallelism on GPUs. Whippletree
[96] is the only technology that provides fine-grained task-parallelism on GPUs that is available
open source. However, Whippletree does not support generic task graphs but only task graphs
with one in- and one out-dependency per task.
The build-in NUMA-aware thread pinning and memory allocation of Eventify on CPUs might not
be fair to compare against an OpenMP implementation which only supports thread pinning but
not NUMA-aware allocation as remedy for NUMA-induced performance loss. This is secondary,
however, since Eventify outperforms OpenMP on a single NUMA node already. Hence, the
conclusion that task parallelism can outperform data-parallelism still holds.
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9.1 Summary
This section summarizes the findings by answering the research questions stated in Section 1.2.

9.1.1 Hardware Architecture Trends

Question-Circle Research Question 1What are the hardware architecture trends for parallelism on CPUs and GPUs?
Hand-Point-Right To answer this question, Chapter 3 outlines the stream interaction model to derive concurrent
processing capabilities as main comparison criterion for the architectural features of CPUs and GPUs.
In Chapter 4, both processor types are then compared by means of their hardware design goals,
SIMD, MISD and MIMD capabilities. Finally, the clock frequency, number of compute units and
size of compute units is investigated for the years 2005 to 2022. Concluding, the data analysis
reveals a trend towards the convergence of CPU and GPU architectures.

9.1.2 Parallel Programming Model Trends

Question-Circle Research Question 2 What are the parallel programming model trends for CPUs and GPUs? Hand-Point-Right
To answer this question, Chapter 5 examines the layers of parallel programming models based
on the general steps of parallelization. Next, it applies the stream interaction model to describe
the partitioning models of Eventify, OpenMP, OpenACC and CUDA. Based thereon, it identifies
two major areas of interest for the sustainable implementation of task-parallelism: flexibility and
uniformity. Considering flexibility, dynamic parallelism, cooperative groups, asynchronous task graphs
and independent thread scheduling are the forerunners of MIMD concurrency on GPUs. Considering
uniformity, unified address space concepts and the conformation of GPU programming models to
C++ are the key trends to enable a uniform code path for CPUs and GPUs.

9.1.3 Task-Parallelism vs. Data-Parallelism on CPUs

Question-Circle Research Question 3 Can event-based task-parallelism in comparison to loop-based data-parallelism
enhance the scalability and execution time of the FMM on CPUs? Hand-Point-Right Yes, event-based task-parallelism
can enhance the runtime and scalability of the FMM on CPUs. Section 8.3 shows that fine-grained
task-parallelism improves the execution time of the FMM-implementation FMSolvr by a factor
of 3.2 in comparison to classical loop-based data parallelism. Further, scalability is improved by
30%.

9.1.4 Event-Based Task-Parallelism on GPUs

Question-Circle Research Question 4 How can event-based task-parallelism be enabled on GPUs? Hand-Point-Right Event-based
task-parallelism is a strategy to enable the execution of fine-grained tasks. Chapter 6 introduces the
foundation for event-based task-parallelism on GPUs – the development of an execution model that
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enables threading as flexible as on CPUs. Since fine-grained task-parallelism requires a multitude
of dependency resolutions, the focus of the performance optimization strategies is on mutual
exclusion and queue-based scheduling concepts.

9.1.5 Task-Parallelism vs. Data-Parallelism on GPUs

Question-Circle Research Question 5 Can event-based task-parallelism in comparison to loop-based data-parallelism
enhance the scalability and execution time of irregular algorithms on GPUs? Hand-Point-Right Yes, event-based task-
parallelism can enhance the runtime and scalability of concurrent applications on GPUs. Section 8.4
shows that fine-grained task-parallelism can improve the execution time of concurrent applications
by an order of magnitude in comparison to classical loop-based data-parallelism on GPUs. For
miniFMSolvr, the runtime is improved by a factor of 12, and scalability is improved by 60%.

9.2 Future Work
This section outlines ideas for future research in several areas related to the contributions of this
work.

9.2.1 Stream Interaction Model

Further research should examine the soundness of the stream interaction model for non-Von-
Neumann architectures like dataflow machines, reduction machines or even quantum computers
and neural processors. Under the assumption that the idea of interacting data and instruction
streams is transferable to these architectures, the stream interaction model could be applied to
develop parallel programming models for unconventional computing. These programming models
would enable software developers to focus on concurrency instead of the peculiarities of newly
emerging hardware architectures.

9.2.2 Eventify

This section considers the future development of Eventify from three different directions. Firstly,
the extension of Eventify itself. Secondly, the usage of Eventify to integrate task-parallelism in
further applications. And thirdly, the comparison of Eventify against other parallel programming
paradigms.

Extension of Eventify

The ongoing development of Eventify should include the merging of CPU- and GPU-Eventify. This
involves multiple aspects.

Firstly, the template meta programming based DSL that enables the specification of dependencies
between task types should be extended to GPUs to free users from initializing individual task
dependency counters.

Secondly, CUDA kernel calls and decorators should be hidden from the user via wrapper functions
to enable a uniform programming interface. This would also prepare the ground for a potential
port of GPU Eventify to non-Nvidia GPUs with OpenCL or SYCL, without requiring users to change
their application code.

Thirdly, as soon as the STL functions and classes required by Eventify (e.g. std::vector,
std::complex, std::sort) become available on GPUs in libcu++ or the C++ standard, they
should replace their prototypical pendants as implemented by the GTL. Based thereon, a full-fledged
version of FMSolvr can be implemented on GPUs.

Fourthly, simultaneous task scheduling and execution on CPUs and GPUs could be implemented.
For a start, this could be reached at task type level by executing independent task types on both
processors. This approach could further be extended to multi-GPU systems by employing CUDA
streams to overlap kernel execution in a similar manner as outlined in Section 6.4.2.

Fifthly, further work should include the inter-node parallelization of Eventify. For CPUs, a
first prototypical implementation is described in [49], and [109] outlines theoretical notions on
optimal communication algorithms in this context.
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Application to Further Use Cases

Future research should include the parallelization of further applications with Eventify to analyze
its practical usability. Ongoing work in this direction is the use of Eventify to parallelize SMILEI
[30], a C++-based Particle-In-Cell code.
Regarding further use cases, the application of Eventify to algorithms that exhibit different
kinds of task parallelism is also of academic interest. So far, Eventify has only been applied to
algorithms that exhibit a limited set of task types and static task graphs. Apart from this, it would
be valuable to examine the effectiveness and efficiency of Eventify in algorithms that exhibit
dynamic, recursive task parallelism, e.g. as provided by backtracking-based algorithms. To analyze
the effects of the MHQ policy further, algorithms that exhibit load imbalances between producer
and consumer threads should be considered.

Comparison against Further Concurrent Programming Models

While this work evaluates event-based task-parallelism against classical data-parallelism via
established parallel programming models such as OpenMP and OpenACC, further research should
undertake a comparison against other task-parallel programming approaches on CPUs and GPUs.
As outlined in Section 2.2.3, HPX, Kokkos and Whippletree are especially promising candidates
for a comparative study of performance and programmability.
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Theses

1 The stream interaction model provides a uniform classification of concurrency in architectures

and programming models.

2 MISD architectures exist in practice and correspond to pipelining when taking the concept

of derived streams into account.

3 There is a trend towards the convergence of CPU and GPU architectures.

4 GPU architectures and programming models increasingly provide features to support irregular

parallelism.

5 Queue-based work sharing approaches enable efficient task parallelism on GPUs.

6 Efficient spinlock-based mutual exclusion is feasible on GPUs.

7 Task parallelism is required to fully utilize the theoretical degree of concurrency of the fast

multipole method.

8 Event-based task parallelism can outperform loop-based data-parallelism by an order of

magnitude.
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AppendixA

GPU Terminology Mapping

Table A.1: Terminology mapping between the architectural models of CUDA and OpenCL.

CUDA OpenCL

Host Host

Device Device

Streaming Multiprocessor SIMD Unit

Streaming Processor/Cuda Core Processing Element

Table A.2: Execution Model Terminology

Nvidia/CUDA AMD/OpenCL Description

Thread Workitem Single execution stream

Warp Wavefront

Schedulable unit that consists of

an architecture-dependent

number of threads

Lane Lane Threads in a warp

Thread block Workgroup

One-, two- or three-dimensional

group of threads that execute

together

Grid NDRange
One-, two- or three-dimensional

organization of thread blocks

Kernel Kernel
C-like function that is executed by

N different threads in parallel

Table A.3: Memory Model Terminology

Nvidia/CUDA Term AMD/OpenCL Term

Local Private

Shared Local

Constant Constant

Global Global
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AppendixB

Evaluation of Additional Task Graph Sizes
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Figure B.1: miniFMSolvr on GPUs parallelized with OpenACC for tree depth dmax = 3 and dmax = 4.
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Figure B.2: miniFMSolvr on GPUs parallelized with Eventify and SQ scheduling for tree depth dmax = 3 and
dmax = 4.
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Figure B.3: miniFMSolvr on GPUs parallelized with Eventify and MQ scheduling for tree depth dmax = 3 and
dmax = 4.
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Figure B.4: miniFMSolvr on GPUs parallelized with Eventify and MHQ scheduling for tree depth dmax = 3
and dmax = 4.

101





Bibliography

[1] url: http://www.fmsolvr.org/.

[2] url: https://github.com/UoB-HPC/minifmm.

[3] Abduljabbar, M., Al Farhan, M., Yokota, R., and Keyes, D. “Performance Evaluation of
Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore
Architecture.” In: Euro-Par 2017: Parallel Processing. Ed. by Rivera, F. F., Pena, T. F.,
and Cabaleiro, J. C. Cham: Springer International Publishing, 2017, pp. 553–564. isbn:
978-3-319-64203-1.

[4] Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E.
“GROMACS: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers.” In: SoftwareX 1-2 (2015), pp. 19–25. issn: 2352-7110.
doi: https://doi.org/10.1016/j.softx.2015.06.001. url: http://www.
sciencedirect.com/science/article/pii/S2352711015000059.

[5] Agullo, E., Aumage, O., Bramas, B., Coulaud, O., and Pitoiset, S. “Bridging the Gap
Between OpenMP and Task-Based Runtime Systems for the Fast Multipole Method.” In:
IEEE Transactions on Parallel and Distributed Systems 28.10 (Oct. 2017), pp. 2794–2807.
issn: 2161-9883. doi: 10.1109/TPDS.2017.2697857.

[6] Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. “Task-
based FMM for Heterogeneous Architectures.” In: Concurr. Comput. : Pract. Exper. 28.9
(June 2016), pp. 2608–2629. issn: 1532-0626. doi: 10.1002/cpe.3723. url: https:
//doi.org/10.1002/cpe.3723.

[7] Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. “Task-
Based FMM for Multicore Architectures.” In: SIAM Journal on Scientific Computing 36.1
(2014), pp. C66–C93. doi: 10.1137/130915662. eprint: https://doi.org/10.1137/
130915662. url: https://doi.org/10.1137/130915662.

[8] Aila, T. and Laine, S. “Understanding the Efficiency of Ray Traversal on GPUs.” In: Proceed-
ings of the Conference on High Performance Graphics 2009. HPG ’09. New Orleans, Louisiana:
Association for Computing Machinery, 2009, pp. 145–149. isbn: 9781605586038. doi:
10.1145/1572769.1572792. url: https://doi.org/10.1145/1572769.1572792.

[9] Alglave, J., Batty, M., Donaldson, A. F., Gopalakrishnan, G., Ketema, J., Poetzl, D., Sorensen,
T., and Wickerson, J. “GPU Concurrency: Weak Behaviours and Programming Assump-
tions.” In: SIGPLAN Not. 50.4 (Mar. 2015), pp. 577–591. issn: 0362-1340. url: https:
//doi.org/10.1145/2775054.2694391.

[10] Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elnohazy, E., Hall, M.,
Harrison, R., Harrod, W., Hill, K., …, and Sterling, T. “Exascale Software Study: Software
Challenges in Extreme Scale Systems.” In: DARPA IPTO, Air Force Research Labs, Tech. Rep
(2009). Ed. by Sarkar, V.

[11] AMD Community. Arcturus/MI100 high level die shot annotations. 2020. url: https :
/ / forums . anandtech . com / threads / amd - cdna - compute - gpu - architecture .

2577853/.

[12] AMD Community. Compute Array comparison between Arcturus/CDNA/MI100 and
Vega10/GCN5/MI25. 2016. url: https : / / on - demand . gputechconf . com / gtc /
2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-

1530-1-QA.pdf.

103

http://www.fmsolvr.org/
https://github.com/UoB-HPC/minifmm
https://doi.org/https://doi.org/10.1016/j.softx.2015.06.001
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
https://doi.org/10.1109/TPDS.2017.2697857
https://doi.org/10.1002/cpe.3723
https://doi.org/10.1002/cpe.3723
https://doi.org/10.1002/cpe.3723
https://doi.org/10.1137/130915662
https://doi.org/10.1137/130915662
https://doi.org/10.1137/130915662
https://doi.org/10.1137/130915662
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/2775054.2694391
https://doi.org/10.1145/2775054.2694391
https://forums.anandtech.com/threads/amd-cdna-compute-gpu-architecture.2577853/
https://forums.anandtech.com/threads/amd-cdna-compute-gpu-architecture.2577853/
https://forums.anandtech.com/threads/amd-cdna-compute-gpu-architecture.2577853/
https://on-demand.gputechconf.com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-1530-1-QA.pdf
https://on-demand.gputechconf.com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-1530-1-QA.pdf
https://on-demand.gputechconf.com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-1530-1-QA.pdf


Bi bli o gr a p h y

[ 1 3 ] A s c h e n b r e n n er, R. A., Fl y n n, M. J., a n d R o bi n s o n, G. A. “I ntri n si c M ulti pr o c e s si n g. ” I n:
Pr o c e e di n gs of t h e A pril 1 8- 2 0, 1 9 6 7, S pri n g J oi nt C o m p ut er C o nf er e n c e . A FI P S ’ 6 7 ( S pri n g).
Atl a nti c Cit y, N e w J er s e y: A s s o ci ati o n f or C o m p uti n g M a c hi n e r y, 1 9 6 7, p p. 8 1 – 8 6. i s b n:
9 7 8 1 4 5 0 3 7 8 9 5 6. d oi: 1 0 . 1 1 4 5 / 1 4 6 5 4 8 2 . 1 4 6 5 4 9 5 . u r l: h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 /

1 4 6 5 4 8 2 . 1 4 6 5 4 9 5 .

[ 1 4 ] At ki n s o n, P. a n d M cI nt o s h- S mit h, S. “ O n t h e P erf or m a n c e of P ar all el T a s ki n g R u nti m e s
f o r a n I rr e g ul ar F a st M ulti p ol e M et h o d A p pli c ati o n. ” I n: S c ali n g O p e n M P f or E x as c al e
P erf or m a n c e a n d P ort a bilit y . E d. b y S u pi n s ki, B. R. d e, Oli vi er, S. L., T er b o v e n, C., C h a p m a n,
B. M., a n d M üll er, M. S. C h a m: S pri n g er I nt er n ati o n al P u bli s hi n g, 2 0 1 7, p p. 9 2 – 1 0 6. i s b n:
9 7 8- 3- 3 1 9- 6 5 5 7 8- 9.

[ 1 5 ] B ar n e s, G. H., Br o w n, R. M., K at o, M., K u c k, D., Sl ot ni c k, D., a n d St o k e s, R. A. “ T h e I L LI A C
I V C o m p ut e r. ” I n: I E E E Tr a ns a cti o ns o n C o m p ut ers C- 1 7 ( 1 9 6 8), p p. 7 4 6 – 7 5 7.

[ 1 6 ] B e at s o n, R. a n d Gr e e n g ar d, L. “ A s h ort c o ur s e o n f a st m ulti p ol e m et h o d s. ” I n: W a v el ets,
m ultil e v el m et h o ds a n d elli pti c P D Es 1 ( 1 9 9 7), p p. 1 – 3 7.

[ 1 7 ] B e n- Ari, M. Pri n ci pl es of C o n c urr e nt Pr o gr a m mi n g . Pr e nti c e- H all I nt er n ati o n al, 1 9 8 2. i s b n:
0- 1 3- 7 0 1 0 7 8- 8.

[ 1 8 ] Bl u m of e, R. a n d L ei s er s o n, C. “ S c h e d uli n g m ultit hr e a d e d c o m p ut ati o n s b y w or k st e ali n g. ”
I n: Pr o c e e di n gs 3 5t h A n n u al S y m p osi u m o n F o u n d ati o ns of C o m p ut er S ci e n c e . 1 9 9 4, p p. 3 5 6 –
3 6 8. d oi: 1 0 . 1 1 0 9 / S F C S . 1 9 9 4 . 3 6 5 6 8 0 .

[ 1 9 ] Bl u m of e, R. D., J o er g, C. F., K u s z m a ul, B. C., L ei s er s o n, C. E., R a n d all, K. H., a n d Z h o u, Y.
“ Cil k: A n E ffi ci e nt M ultit hr e a d e d R u nti m e S y st e m. ” I n: SI G P L A N N ot. 3 0. 8 ( A u g. 1 9 9 5),
p p. 2 0 7 – 2 1 6. i s s n: 0 3 6 2- 1 3 4 0. d oi: 1 0 . 1 1 4 5 / 2 0 9 9 3 7 . 2 0 9 9 5 8 . u r l: h t t p s : / / d o i . o r g /

1 0 . 1 1 4 5 / 2 0 9 9 3 7 . 2 0 9 9 5 8 .

[ 2 0 ] Br e s h e ar s, C. T h e Art of C o n c urr e n c y: A T hr e a d M o n k e y’s G ui d e t o Writi n g P ar all el A p pli c ati o ns .
O’ R eill y M e di a, I n c., 2 0 0 9. i s b n: 0 5 9 6 5 2 1 5 3 7.

[ 2 1 ] C e d er m a n, D., C h att erj e e, B., a n d T si g a s, P. “ U n d er st a n di n g t h e P erf or m a n c e of C o n c urr e nt
D at a St r u ct ur e s o n Gr a p hi c s Pr o c e s s or s. ” I n: E ur o- P ar 2 0 1 2 P ar all el Pr o c essi n g . E d. b y
K a kl a m a ni s, C., P a p at h e o d or o u, T., a n d S pir a ki s, P. G. B erli n, H ei d el b er g: S pri n g er B e rli n
H ei d el b e r g, 2 0 1 2, p p. 8 8 3 – 8 9 4. i s b n: 9 7 8- 3- 6 4 2- 3 2 8 2 0- 6.

[ 2 2 ] C h a m b e rl ai n, B. L. “ C h a p el ( Cr a y I n c. H P C S L a n g u a g e). ” I n: E n c y cl o p e di a of P ar all el
C o m p uti n g . E d. b y P a d u a, D. B o st o n, M A: S pri n g er U S, 2 0 1 1, p p. 2 4 9 – 2 5 6. i s b n: 9 7 8- 0-
3 8 7- 0 9 7 6 6- 4. d oi: 1 0 . 1 0 0 7 / 9 7 8 - 0 - 3 8 7 - 0 9 7 6 6 - 4 _ 5 4 . u r l: h t t p s : / / d o i . o r g / 1 0 .

1 0 0 7 / 9 7 8 - 0 - 3 8 7 - 0 9 7 6 6 - 4 _ 5 4 .

[ 2 3 ] C h a rl e s, J., J a s si, P., A n a nt h, N. S., S a d at, A., a n d F e d or o v a, A. “ E v al u ati o n of t h e I n-
t el ® C or e ™ i 7 T u r b o B o o st f e at ur e. ” I n: 2 0 0 9 I E E E I nt er n ati o n al S y m p osi u m o n W or kl o a d
C h ar a ct eri z ati o n (II S W C ) . 2 0 0 9, p p. 1 8 8 – 1 9 7. d oi: 1 0 . 1 1 0 9 / I I S W C . 2 0 0 9 . 5 3 0 6 7 8 2 .

[ 2 4 ] C o m mi s si o n, E. H O RI Z O N 2 0 2 0 – W O R K P R O G R A M M E 2 0 1 4- 2 0 1 5, T e c h n ol o g y r e a di n ess
l e v els ( T R L ). h t t p s : / / e c . e u r o p a . e u / r e s e a r c h / p a r t i c i p a n t s / d a t a / r e f / h 2 0 2 0 / w p /

2 0 1 4 _ 2 0 1 5 / a n n e x e s / h 2 0 2 0 - w p 1 4 1 5 - a n n e x - g - t r l _ e n . p d f . 2 0 1 4.

[ 2 5 ] c o m mitt e e, I. C. W or ki n g Dr aft, St a n d ar d f or Pr o gr a m mi n g L a n g u a g e C + +, N 4 1 4 0 . 2 0 1 4.
u r l: h t t p s : / / g i t h u b . c o m / c p l u s p l u s / d r a f t / b l o b / m a i n / p a p e r s / n 4 1 4 0 . p d f .

[ 2 6 ] C or m e n, T. H., L ei s er s o n, C. E., Ri v e st, R. L., a n d St ei n, C. I ntr o d u cti o n t o Al g orit h ms, T hir d
E diti o n . 3 r d. T h e MI T Pr e s s, 2 0 0 9. i s b n: 0 2 6 2 0 3 3 8 4 4.

[ 2 7 ] C ull e r, D., Si n g h, J. P., a n d G u pt a, A. P ar all el C o m p ut er Ar c hit e ct ur e: A H ar d w ar e / S oft-
w ar e A p pr o a c h . S a n Fr a n ci s c o, C A, U S A: M or g a n K a uf m a n n P u bli s h er s I n c., 1 9 9 8. i s b n:
9 7 8 0 0 8 0 5 7 3 0 7 6.

[ 2 8 ] D a r d e n, T., Y or k, D., a n d P e d er s e n, L. “ P arti cl e m e s h E w al d: A n N �l o g( N) m et h o d f or
E w al d s u m s i n l ar g e s y st e m s. ” I n: T h e J o ur n al of C h e mi c al P h ysi cs 9 8. 1 2 ( 1 9 9 3), p p. 1 0 0 8 9 –
1 0 0 9 2. d oi: 1 0 . 1 0 6 3 / 1 . 4 6 4 3 9 7 . u r l: h t t p s : / / d o i . o r g / 1 0 . 1 0 6 3 / 1 . 4 6 4 3 9 7 .

1 0 4

https://doi.org/10.1145/1465482.1465495
https://doi.org/10.1145/1465482.1465495
https://doi.org/10.1145/1465482.1465495
https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/209937.209958
https://doi.org/10.1007/978-0-387-09766-4_54
https://doi.org/10.1007/978-0-387-09766-4_54
https://doi.org/10.1007/978-0-387-09766-4_54
https://doi.org/10.1109/IISWC.2009.5306782
 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415- annex-g-trl_en.pdf
 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415- annex-g-trl_en.pdf
https://github.com/cplusplus/draft/blob/main/papers/n4140.pdf
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397


Bibliography

[29] Deakin, T., McIntosh-Smith, S., Price, J., Poenaru, A., Atkinson, P., Popa, C., and Salmon, J.
“Performance Portability across Diverse Computer Architectures.” In: 2019 IEEE/ACM
International Workshop on Performance, Portability and Productivity in HPC (P3HPC). 2019,
pp. 1–13. doi: 10.1109/P3HPC49587.2019.00006.

[30] Derouillat, J., Beck, A., Pérez, F., Vinci, T., Chiaramello, M., Grassi, A., Flé, M., Bouchard, G.,
Plotnikov, I., Aunai, N., Dargent, J., Riconda, C., and Grech, M. “Smilei : A collaborative,
open-source, multi-purpose particle-in-cell code for plasma simulation.” In: Computer
Physics Communications 222 (Jan. 2018), pp. 351–373. doi: 10.1016/j.cpc.2017.09.
024. url: https://doi.org/10.1016%2Fj.cpc.2017.09.024.

[31] Diehl, P., Seshadri, M., Heller, T., and Kaiser, H. “Integration of CUDA Processing within
the C++ library for parallelism and concurrency (HPX).” In: CoRR abs/1810.11482
(2018). arXiv: 1810.11482. url: http://arxiv.org/abs/1810.11482.

[32] Dijkstra, E. W. EWD-1000. url: https://www.cs.utexas.edu/users/EWD/ewd10xx/
EWD1000.PDF.

[33] Dijkstra, E. W. EWD476. url: https : / / www . cs . utexas . edu / users / EWD /

transcriptions/EWD04xx/EWD476.html.

[34] Dijkstra, E. W. “Solution of a Problem in Concurrent Programming Control.” In: (1965).

[35] Dubey, A., Brandt, S. R., Brower, R. C., Giles, M., Hovland, P. D., Lamb, D. Q., Löffler, F.,
Norris, B., O’Shea, B. W., Rebbi, C., Snir, M., and Thakur, R. “Software Abstractions and
Methodologies for HPC Simulation Codes on Future Architectures.” In: Journal of Open
Research Software (2013). url: http://doi.org/10.5334/jors.aw.

[36] Duncan, R. “A Survey of Parallel Computer Architectures.” In: Computer 23.2 (Feb. 1990),
pp. 5–16. issn: 0018-9162.

[37] Edwards, H. C. and Trott, C. R. “Kokkos: Enabling Performance Portability Across Manycore
Architectures.” In: 2013 Extreme Scaling Workshop (xsw 2013). Aug. 2013, pp. 18–24. doi:
10.1109/XSW.2013.7.

[38] Edwards, H. C., Olivier, S. L., Mackey, G. E., Kim, K., Wolf, M., Stelle, G. W., Berry, J. W.,
and Rajamanickam, S. Hierarchical Task-Data Parallelismusing Kokkos and Qthreads. Tech.
rep. Sandia Report SAND2016-9613, Sandia National Laboratories, Dec. 2016.

[39] Edwards, H. C., Trott, C. R., and Sunderland, D. “Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns.” In: Journal of Parallel and
Distributed Computing 74.12 (2014). Domain-Specific Languages and High-Level Frame-
works for High-Performance Computing, pp. 3202–3216. issn: 0743-7315. doi: https:
//doi.org/10.1016/j.jpdc.2014.07.003. url: http://www.sciencedirect.com/
science/article/pii/S0743731514001257.

[40] Faison, T. Event-Based Programming: Taking Events to the Limit. 1st. USA: Apress, 2011. isbn:
1430243260.

[41] Flynn, M. J. “Some Computer Organizations and Their Effectiveness.” In: IEEE Transactions
on Computers C-21.9 (1972), pp. 948–960.

[42] Flynn, M. “Very high-speed computing systems.” In: Proceedings of the IEEE 54.12 (1966),
pp. 1901–1909. doi: 10.1109/PROC.1966.5273.

[43] Flynn, M. “Flynn’s Taxonomy.” In: Encyclopedia of Parallel Computing. Ed. by Padua, D.
Boston, MA: Springer US, 2011, pp. 689–697. isbn: 978-0-387-09766-4. doi: 10.1007/
978-0-387-09766-4_2.

[44] Fritzchens Fritz. AMD Epyc 7702 ES. 2019. url: https://en.wikichip.org/wiki/File:
AMD_Zen_2_CCD.jpg.

[45] Giroux, Olivier and Gelado, Isaac and Taylor, Paul. A freestanding Standard C++ library
for GPU programs. 2019. url: https://github.com/ogiroux/freestanding.

105

https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1016/j.cpc.2017.09.024
https://doi.org/10.1016/j.cpc.2017.09.024
https://doi.org/10.1016%2Fj.cpc.2017.09.024
https://arxiv.org/abs/1810.11482
http://arxiv.org/abs/1810.11482
https://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
https://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD476.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD476.html
http://doi.org/10.5334/jors.aw
https://doi.org/10.1109/XSW.2013.7
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.1109/PROC.1966.5273
https://doi.org/10.1007/978-0-387-09766-4_2
https://doi.org/10.1007/978-0-387-09766-4_2
https://en.wikichip.org/wiki/File:AMD_Zen_2_CCD.jpg
https://en.wikichip.org/wiki/File:AMD_Zen_2_CCD.jpg
https://github.com/ogiroux/freestanding


Bibliography

[46] Grama, A., Karypis, G., Kumar, V., and Gupta, A. Introduction to Parallel Computing. Second
Edition. Addison-Wesley, 2003. isbn: 9780201648652.

[47] Greengard, L. “The Numerical Solution of the N‐Body Problem.” In: Computers in Physics
4.2 (1990), pp. 142–152. doi: 10.1063/1.4822898. eprint: https://aip.scitation.
org/doi/pdf/10.1063/1.4822898. url: https://aip.scitation.org/doi/abs/10.
1063/1.4822898.

[48] Gupta, K., Stuart, J. A., and Owens, J. D. “A study of Persistent Threads style GPU
programming for GPGPU workloads.” In: 2012 Innovative Parallel Computing (InPar). 2012,
pp. 1–14. doi: 10.1109/InPar.2012.6339596.

[49] Haensel, D. “A C++ based MPI-enabled Tasking Framework to Efficiently Parallelize Fast
Multipole Methods for Molecular Dynamics.” PhD thesis. 2018.

[50] Haensel, D., Morgenstern, L., Beckmann, A., Kabadshow, I., and Dachsel, H. “Eventify:
Event-Based Task Parallelism for Strong Scaling.” In: Proceedings of the Platform for Advanced
Scientific Computing Conference. PASC ’20. Geneva, Switzerland: Association for Computing
Machinery, 2020. isbn: 9781450379939. doi: 10.1145/3394277.3401858. url: https:
//doi.org/10.1145/3394277.3401858.

[51] Händler, W. “On Classification Schemes for Computer Systems in the Post-Von-Neumann-
Era.” In: GI-4.Jahrestagung: Berlin, 9.–12. Oktober 1974. Ed. by Siefkes, D. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1975, pp. 439–452. isbn: 978-3-662-40087-6. doi: 10.1007/
978-3-662-40087-6_39.

[52] Herlihy, M. and Shavit, N. The Art of Multiprocessor Programming, Revised Reprint. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012. isbn: 9780123973375.

[53] Hillis, W. D. The Connection Machine. 1981. url: https://apps.dtic.mil/dtic/tr/
fulltext/u2/a107463.pdf.

[54] Hoare, C. A. R. “Communicating Sequential Processes.” In: Commun. ACM 21.8 (Aug.
1978), pp. 666–677. issn: 0001-0782. doi: 10.1145/359576.359585.

[55] Hoare, C. A. R. “Towards a Theory of Parallel Programming.” In: Operating Systems Tech-
niques, Proceedings of a Seminar at Queen’s University (1971).

[56] IEEE. International Roadmap for Devices and Systems - Executive Summary. 2020.

[57] Intel. Intel Architectures Software Developer’s Manual. June 2021.

[58] Intel. oneAPI Specification. 2020. url: https://spec.oneapi.com/versions/1.0-rev-
3/oneAPI-spec.pdf.

[59] Intel®. Product Specifications: Intel® Xeon® Processors. Accessed June 10, 2022. url:
https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595.

[60] Kabadshow, I. “Periodic Boundary Conditions and the Error-Controlled Fast Multipole
Method.” PhD thesis. 2012.

[61] Kabadshow, I., Dachsel, H., Kutzner, C., and Ullmann, T. GROMEX – Unified Long-range
Electrostatics and Flexible Ionization. http://www.mpibpc.mpg.de/15304826/inSiDE_
autumn2013.pdf. 2013 (accessed April 27, 2017).

[62] Kaiser, H., Diehl, P., Lemoine, A. S., Lelbach, B. A., Amini, P., Berge, A., Biddiscombe, J.,
Brandt, S. R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkhahan, A., Reverdell, A.,
Shirzad, S., Simberg, M., Wagle, B., Wei, W., and Zhang, T. “HPX - The C++ Standard
Library for Parallelism and Concurrency.” In: Journal of Open Source Software 5.53 (2020),
p. 2352. doi: 10.21105/joss.02352. url: https://doi.org/10.21105/joss.02352.

106

https://doi.org/10.1063/1.4822898
https://aip.scitation.org/doi/pdf/10.1063/1.4822898
https://aip.scitation.org/doi/pdf/10.1063/1.4822898
https://aip.scitation.org/doi/abs/10.1063/1.4822898
https://aip.scitation.org/doi/abs/10.1063/1.4822898
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1145/3394277.3401858
https://doi.org/10.1145/3394277.3401858
https://doi.org/10.1145/3394277.3401858
https://doi.org/10.1007/978-3-662-40087-6_39
https://doi.org/10.1007/978-3-662-40087-6_39
https://apps.dtic.mil/dtic/tr/fulltext/u2/a107463.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a107463.pdf
https://doi.org/10.1145/359576.359585
https://spec.oneapi.com/versions/1.0-rev-3/oneAPI-spec.pdf
https://spec.oneapi.com/versions/1.0-rev-3/oneAPI-spec.pdf
https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595
http://www.mpibpc.mpg.de/15304826/inSiDE_autumn2013.pdf
http://www.mpibpc.mpg.de/15304826/inSiDE_autumn2013.pdf
https://doi.org/10.21105/joss.02352
https://doi.org/10.21105/joss.02352


Bibliography

[63] Kerbl, B., Kenzel, M., Mueller, J. H., Schmalstieg, D., and Steinberger, M. “The Broker
Queue: A Fast, Linearizable FIFO Queue for Fine-Granular Work Distribution on the GPU.”
In: Proceedings of the 2018 International Conference on Supercomputing. ICS ’18. Beijing,
China: Association for Computing Machinery, 2018, pp. 76–85. isbn: 9781450357838. doi:
10.1145/3205289.3205291. url: https://doi.org/10.1145/3205289.3205291.

[64] Khatami, Z., Kaiser, H., Grubel, P., Serio, A., and Ramanujam, J. “A Massively Parallel
Distributed N-body Application Implemented with HPX.” In: Proceedings of the 7th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems. ScalA ’16. Salt Lake City,
Utah: IEEE Press, 2016, pp. 57–64. isbn: 978-1-5090-5222-6. doi: 10.1109/ScalA.2016.
12. url: https://doi.org/10.1109/ScalA.2016.12.

[65] Khronos® OpenCL Working Group. The OpenCL™ Specification v3.0.6. 2020. url: https:
//www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf.

[66] Kohnke, B., Kutzner, C., Beckmann, A., Lube, G., Kabadshow, I., Dachsel, H., and Grub-
müller, H. “A CUDA fast multipole method with highly efficient M2L far field evalua-
tion.” In: The International Journal of High Performance Computing Applications 35.1 (2021),
pp. 97–117. doi: 10.1177/1094342020964857. eprint: https://doi.org/10.1177/
1094342020964857. url: https://doi.org/10.1177/1094342020964857.

[67] Kohnke, B., Ullmann, T. R., Beckmann, A., Kabadshow, I., Haensel, D., Morgenstern, L.,
Dobrev, P., Groenhof, G., Kutzner, C., Hess, B., Dachsel, H., and Grubmüller, H. “GROMEX:
A Scalable and Versatile Fast Multipole Method for Biomolecular Simulation.” In: Software
for Exascale Computing - SPPEXA 2016-2019. Ed. by Bungartz, H.-J., Reiz, S., Uekermann,
B., Neumann, P., and Nagel, W. E. Cham: Springer International Publishing, 2020, pp. 517–
543. isbn: 978-3-030-47956-5.

[68] Koziolek, H. “Sustainability Evaluation of Software Architectures: A Systematic Review.” In:
Proceedings of the Joint ACM SIGSOFT Conference. 2011. doi: 10.1145/2000259.2000263.

[69] Kumar, V. P. and Gupta, A. “Analyzing Scalability of Parallel Algorithms and Architectures.”
In: J. Parallel Distributed Comput. 22 (1994), pp. 379–391.

[70] Laine, S., Karras, T., and Aila, T. “Megakernels Considered Harmful: Wavefront Path
Tracing on GPUs.” In: Proceedings of the 5th High-Performance Graphics Conference. HPG
’13. Anaheim, California: Association for Computing Machinery, 2013, pp. 137–143. isbn:
9781450321358. doi: 10.1145/2492045.2492060. url: https://doi.org/10.1145/
2492045.2492060.

[71] Ltaief, H. and Yokota, R. “Data-Driven Execution of Fast Multipole Methods.” In: CoRR
abs/1203.0889 (2012). arXiv: 1203.0889. url: http://arxiv.org/abs/1203.0889.

[72] McCool, M., Reinders, J., and Robison, A. Structured Parallel Programming: Patterns for
Efficient Computation. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.
isbn: 9780123914439.

[73] Merrill, D. and Grimshaw, A. Parallel scan for stream architectures. Tech. rep. Technical
Report CS2009-14, Department of Computer Science, University of Virginia, Dec. 2009.

[74] Morgenstern Laura an Kabadshow, I. and Werner, M. “Unparalleled Parallelism? CPU &
GPU Architecture Trends and Their Implications for HPC Software.” In: Tagungsband des
FG-BS Frühjahrstreffens 2021 (2021).

[75] Morgenstern, L. A NUMA-Aware Task-Based Load-Balancing Scheme for the Fast Multipole
Method. Master Thesis, TU Chemnitz, 2017. doi: 10.13140/RG.2.2.35575.93603.

[76] Morgenstern, L., Haensel, D., Beckmann, A., and Kabadshow, I. “NUMA-Awareness as a
Plug-In for an Eventify-Based Fast Multipole Method.” In: Computational Science – ICCS
2020. Ed. by Krzhizhanovskaya, V. V., Závodszky, G., Lees, M. H., Dongarra, J. J., Sloot,
P. M. A., Brissos, S., and Teixeira, J. Cham: Springer International Publishing, 2020,
pp. 428–441. isbn: 978-3-030-50436-6.

107

https://doi.org/10.1145/3205289.3205291
https://doi.org/10.1145/3205289.3205291
https://doi.org/10.1109/ScalA.2016.12
https://doi.org/10.1109/ScalA.2016.12
https://doi.org/10.1109/ScalA.2016.12
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://doi.org/10.1177/1094342020964857
https://doi.org/10.1177/1094342020964857
https://doi.org/10.1177/1094342020964857
https://doi.org/10.1177/1094342020964857
https://doi.org/10.1145/2000259.2000263
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/2492045.2492060
https://arxiv.org/abs/1203.0889
http://arxiv.org/abs/1203.0889
https://doi.org/10.13140/RG.2.2.35575.93603


Bibliography

[77] Navarro, C. A., Hitschfeld-Kahler, N., and Mateu, L. “A Survey on Parallel Computing and
its Applications in Data-Parallel Problems Using GPU Architectures.” In: Communications in
Computational Physics 15.2 (2014), pp. 285–329. doi: 10.4208/cicp.110113.010813a.

[78] Nvidia. CUDA C++ Programming Guide. 2020. url: https://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming_Guide.pdf.

[79] Nvidia. Introduction to OpenACC. 2016. url: https : / / on - demand . gputechconf .
com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-

20161102-1530-1-QA.pdf.

[80] Nvidia. “NVIDIA Tesla P100.” In: (2016).

[81] Nvidia. “NVIDIA TESLA V100 GPU ARCHITECTURE.” In: (2017).

[82] Nvidia. “NVIDIA’s Next Generation CUDA Compute Architecture: Kepler TM GK110/210.”
In: (2014).

[83] OpenACC.org. The OpenACC Application Programming Interface Version 3.1. 2020.
url: https : / / www . openacc . org / sites / default / files / inline - images /
Specification/OpenACC-3.1-final.pdf.

[84] OpenMP Architecture Review Board. OpenMP Application Program Interface Version
5.1. 2020. url: https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-1.pdf.

[85] Otten, M., Gong, J., Mametjanov, A., Vose, A., Levesque, J., Fischer, P., and Min, M. “An
MPI/OpenACC implementation of a high-order electromagnetics solver with GPUDirect
communication.” In: The International Journal of High Performance Computing Applications
30.3 (2016), pp. 320–334. doi: 10.1177/1094342015626584. url: https://doi.org/
10.1177/1094342015626584.

[86] “Cilk Plus.” In: Encyclopedia of Parallel Computing. Ed. by Padua, D. Boston, MA: Springer US,
2011, pp. 288–288. isbn: 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_2339.
url: https://doi.org/10.1007/978-0-387-09766-4_2339.

[87] Pike, R. Concurrency is Not Parallelism. 2012. url: https://go.dev/talks/2012/waza.
slide#8.

[88] Plimpton, S. “Fast Parallel Algorithms for Short-Range Molecular Dynamics.” In: Journal
of Computational Physics 117.1 (1995), pp. 1–19. issn: 0021-9991. doi: 10.1006/jcph.
1995.1039.

[89] Rauber, T. and Rünger, G. Parallel Programming for Multicore and Cluster Systems. Second
Edition. Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-37800-3. doi: 10.
1007/978-3-642-37801-0.

[90] Reinders, J. Intel threading building blocks - outfitting C++ for multi-core processor parallelism.
O’Reilly, 2007. isbn: 978-0-596-51480-8.

[91] Research, C. Cray-1 Computer Systems Hardware Reference Manual. 1976. url: http:
//bitsavers.trailing-edge.com/pdf/cray/CRAY-1/HR-0004F_CRAY-1_Computer_

Systems_Hardware_Reference_Manual_May82.pdf.

[92] Robert, Y. “Task Graph Scheduling.” In: Encyclopedia of Parallel Computing (2011). Ed. by
Padua, D.

[93] Slotnick, D. L., Borck, W. C., and McReynolds, R. C. “The SOLOMON Computer.” In:
Proceedings of the December 4-6, 1962, Fall Joint Computer Conference. AFIPS ’62 (Fall).
Philadelphia, Pennsylvania: Association for Computing Machinery, 1962, pp. 97–107.
isbn: 9781450378796. doi: 10.1145/1461518.1461528.

108

https://doi.org/10.4208/cicp.110113.010813a
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://on-demand.gputechconf.com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-1530-1-QA.pdf
https://on-demand.gputechconf.com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-1530-1-QA.pdf
https://on-demand.gputechconf.com/gtc/2016/webinar/openacc-course/Introduction-to-OpenACC-Course-20161102-1530-1-QA.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1177/1094342015626584
https://doi.org/10.1177/1094342015626584
https://doi.org/10.1177/1094342015626584
https://doi.org/10.1007/978-0-387-09766-4_2339
https://doi.org/10.1007/978-0-387-09766-4_2339
https://go.dev/talks/2012/waza.slide#8
https://go.dev/talks/2012/waza.slide#8
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1007/978-3-642-37801-0
https://doi.org/10.1007/978-3-642-37801-0
http://bitsavers.trailing-edge.com/pdf/cray/CRAY-1/HR-0004F_CRAY-1_Computer_Systems_Hardware_Reference_Manual_May82.pdf
http://bitsavers.trailing-edge.com/pdf/cray/CRAY-1/HR-0004F_CRAY-1_Computer_Systems_Hardware_Reference_Manual_May82.pdf
http://bitsavers.trailing-edge.com/pdf/cray/CRAY-1/HR-0004F_CRAY-1_Computer_Systems_Hardware_Reference_Manual_May82.pdf
https://doi.org/10.1145/1461518.1461528


Bibliography

[94] Sorensen, T., Salvador, L. F., Raval, H., Evrard, H., Wickerson, J., Martonosi, M., and
Donaldson, A. F. “Specifying and Testing GPU Workgroup Progress Models.” In: Proc. ACM
Program. Lang. 5.OOPSLA (Oct. 2021). doi: 10.1145/3485508. url: https://doi.org/
10.1145/3485508.

[95] Spector, A. and Gifford, D. “The Space Shuttle Primary Computer System.” In: Communica-
tions of the ACM (1984).

[96] Steinberger, M., Kenzel, M., Boechat, P., Kerbl, B., Dokter, M., and Schmalstieg, D. “Whip-
pletree: Task-Based Scheduling of Dynamic Workloads on the GPU.” In: ACM Trans. Graph.
33.6 (Nov. 2014). issn: 0730-0301. doi: 10.1145/2661229.2661250. url: https:
//doi.org/10.1145/2661229.2661250.

[97] Strohmeier, E., Dongarra, J., Simon, H., and Meuer, M. TOP500 List. https://top500.
org/lists/top500/list/2020/11/. Nov. 2020.

[98] Sutter, H. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software.”
In: Dr. Dobb’s journal 30.3 (2005), pp. 202–210.

[99] Tanenbaum, A. S. Structured Computer Organization. Upper Saddle River, NJ 07458: Pearson
Prentice Hall, 2005. isbn: 0-13-148521-0.

[100] Taura, K., Nakashima, J., Yokota, R., and Maruyama, N. “A Task Parallel Implementation of
Fast Multipole Methods.” In: 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis. Nov. 2012, pp. 617–625. doi: 10.1109/SC.Companion.2012.86.

[101] TechPowerUp. AMD Arcturus. 2020. url: https://www.techpowerup.com/gpu-specs/
amd-arcturus.g927#gallery-2.

[102] TechPowerUp. CPU Specs Database. Accessed June 10, 2022. url: https : / / www .
techpowerup.com/cpu-specs/.

[103] TechPowerUp. GPU Specs Database. Accessed June 10, 2022. url: https : / / www .
techpowerup.com/gpu-specs/.

[104] Teja Singh. International Solid-State Circuits Conference. 2020. url: https://forums.
anandtech.com/threads/amds-efforts-involved-in-moving-to-tsmcs-n7-

advantages-for-going-with-chiplets-warning-many-images.2577325/.

[105] Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X., Hasanov, K., Gschwandtner,
P., Lemarinier, P., Markidis, S., Jordan, H., Fahringer, T., Katrinis, K., Laure, E., and
Nikolopoulos, D. S. “A Taxonomy of Task-Based Parallel Programming Technologies for
High-Performance Computing.” In: J. Supercomput. 74.4 (Apr. 2018), pp. 1422–1434. issn:
0920-8542. doi: 10.1007/s11227-018-2238-4. url: https://doi.org/10.1007/
s11227-018-2238-4.

[106] Troendle, D., Ta, T., and Jang, B. “A Specialized Concurrent Queue for Scheduling Irreg-
ular Workloads on GPUs.” In: Proceedings of the 48th International Conference on Parallel
Processing. ICPP 2019. Kyoto, Japan: Association for Computing Machinery, 2019. isbn:
9781450362955. doi: 10.1145/3337821.3337837. url: https://doi.org/10.1145/
3337821.3337837.

[107] Tzeng, S., Lloyd, B., and Owens, J. D. “A GPU Task-Parallel Model with Dependency
Resolution.” In: Computer 45.8 (2012), pp. 34–41. doi: 10.1109/MC.2012.255.

[108] Tzeng, S., Patney, A., and Owens, J. D. “Task Management for Irregular-Parallel Workloads
on the GPU.” In: Proceedings of the Conference on High Performance Graphics. HPG ’10.
Saarbrucken, Germany: Eurographics Association, 2010, pp. 29–37.

[109] Werner, T., Kabadshow, I., and Werner, M. “Systematic Literature Review of Data Exchange
Strategies for Range-limited Particle Interactions.” In: Proceedings of the 12th International
Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume
1: SIMULTECH, INSTICC. SciTePress, 2022, pp. 218–225. isbn: 978-989-758-578-4. doi:
10.5220/0011144400003274.

109

https://doi.org/10.1145/3485508
https://doi.org/10.1145/3485508
https://doi.org/10.1145/3485508
https://doi.org/10.1145/2661229.2661250
https://doi.org/10.1145/2661229.2661250
https://doi.org/10.1145/2661229.2661250
https://top500.org/lists/top500/list/2020/11/
https://top500.org/lists/top500/list/2020/11/
https://doi.org/10.1109/SC.Companion.2012.86
https://www.techpowerup.com/gpu-specs/amd-arcturus.g927#gallery-2
https://www.techpowerup.com/gpu-specs/amd-arcturus.g927#gallery-2
https://www.techpowerup.com/cpu-specs/
https://www.techpowerup.com/cpu-specs/
https://www.techpowerup.com/gpu-specs/
https://www.techpowerup.com/gpu-specs/
https://forums.anandtech.com/threads/amds-efforts-involved-in-moving-to-tsmcs-n7-advantages-for-going-with-chiplets-warning-many-images.2577325/
https://forums.anandtech.com/threads/amds-efforts-involved-in-moving-to-tsmcs-n7-advantages-for-going-with-chiplets-warning-many-images.2577325/
https://forums.anandtech.com/threads/amds-efforts-involved-in-moving-to-tsmcs-n7-advantages-for-going-with-chiplets-warning-many-images.2577325/
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1145/3337821.3337837
https://doi.org/10.1145/3337821.3337837
https://doi.org/10.1145/3337821.3337837
https://doi.org/10.1109/MC.2012.255
https://doi.org/10.5220/0011144400003274


Bibliography

[110] Xiao, S. and Feng, W. “Inter-block GPU communication via fast barrier synchronization.”
In: 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS). 2010,
pp. 1–12. doi: 10.1109/IPDPS.2010.5470477.

[111] Yokota, R. and Barba, L. A. “A tuned and scalable fast multipole method as a preeminent
algorithm for exascale systems.” In: The International Journal of High Performance Com-
puting Applications 26.4 (2012), pp. 337–346. doi: 10.1177/1094342011429952. eprint:
https://doi.org/10.1177/1094342011429952. url: https://doi.org/10.1177/
1094342011429952.

[112] Zhang, B. “Asynchronous Task Scheduling of the Fast Multipole Method Using Various
Runtime Systems.” In: Proceedings of the 2014 Fourth Workshop on Data-Flow Execution
Models for Extreme Scale Computing. DFM ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 9–16. isbn: 978-1-4799-8095-6. doi: 10.1109/DFM.2014.14. url:
https://doi.org/10.1109/DFM.2014.14.

110

https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1177/1094342011429952
https://doi.org/10.1177/1094342011429952
https://doi.org/10.1177/1094342011429952
https://doi.org/10.1177/1094342011429952
https://doi.org/10.1109/DFM.2014.14
https://doi.org/10.1109/DFM.2014.14


Schriften des Forschungszentrums Jülich 
IAS Series 
 

 
Band / Volume 50 
Utilizing Inertial Sensors as an Extension of a Camera Tracking 
System for Gathering Movement Data in Dense Crowds 
J. Schumann (2022), xii, 155 pp 
ISBN: 978-3-95806-624-3 
 
Band / Volume 51 
Final report of the DeepRain project 
Abschlußbericht des DeepRain Projektes 
(2022), ca. 70 pp 
ISBN: 978-3-95806-675-5 
 
Band / Volume 52 
JSC Guest Student Programme Proceedings 2021 
I. Kabadshow (Ed.) (2023), ii, 82 pp 
ISBN: 978-3-95806-684-7 
 
Band / Volume 53 
Applications of variational methods for quantum computers 
M. S. Jattana (2023), vii, 160 pp 
ISBN: 978-3-95806-700-4 
 
Band / Volume 54 
Crowd Management at Train Stations in Case of  
Large-Scale Emergency Events 
A. L. Braun (2023), vii, 120 pp 
ISBN: 978-3-95806-706-6 
 
Band / Volume 55 
Gradient-Free Optimization of Artificial and Biological Networks  
using Learning to Learn 
A. Yeğenoğlu (2023), II, 136 pp 
ISBN: 978-3-95806-719-6 
 
Band / Volume 56 
Real-time simulations of transmon systems with 
time-dependent Hamiltonian models 
H. A. Lagemann (2023), iii, 166, XXX pp 
ISBN: 978-3-95806-720-2 
 
Band / Volume 57 
Plasma Breakdown and Runaway Modelling in ITER-scale Tokamaks 
J. Chew (2023), xv, 172 pp 
ISBN: 978-3-95806-730-1 
 
 
 



Schriften des Forschungszentrums Jülich 
IAS Series 
 

 
Band / Volume 58 
Space Usage and Waiting Pedestrians at Train Station Platforms 
M. Küpper (2023), ix, 95 pp 
ISBN: 978-3-95806-733-2 
 
Band / Volume 59 
Quantum annealing and its variants: Application to quadratic  
unconstrained binary optimization 
V. Mehta (2024), iii, 152 pp 
ISBN: 978-3-95806-755-4 
 
Band / Volume 60 
Elements for modeling pedestrian movement 
from theory to application and back 
M. Chraibi (2024), vi, 279 pp 
ISBN: 978-3-95806-757-8 
 
Band / Volume 61 
Artificial Intelligence Framework for Video Analytics: 
Detecting Pushing in Crowds 
A. Alia (2024), xviii, 151 pp 
ISBN: 978-3-95806-763-9 
 
Band / Volume 62 
The Relationship between Pedestrian Density,  Walking Speed  
and Psychological Stress:  
Examining Physiological Arousal in Crowded Situations 
M. Beermann (2024), xi, 117 pp 
ISBN: 978-3-95806-764-6 
 
Band / Volume 63 
Eventify Meets Heterogeneity:  
Enabling Fine-Grained Task-Parallelism on GPUs 
L. Morgenstern (2024), xv, 110 pp 
ISBN: 978-3-95806-765-3 
 
 
 
 
 
Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 





IAS Series
Band / Volume 63
ISBN 978-3-95806-765-3


	Introduction
	Motivation
	Research Objective
	Heterogeneous System
	Sustainability
	Scalability
	Event-Based Task-Parallelism
	Fast Multipole Method for Molecular Dynamics

	Solution Strategy 

	Literature Review
	State of the Art
	Related Work
	Notions of Concurrency and Parallelism
	Classification of Parallel Architectures and Programming Models
	CPU-Managed Task-Parallelism on Heterogeneous Hardware
	GPU-Managed Task-Parallelism
	Parallel Fast Multipole Methods


	Concepts of Concurrency
	Parallelism and Concurrency
	General Steps of Parallelization
	Decomposition
	Assignment
	Orchestration
	Mapping

	Stream Interaction Model

	Computer Architectures
	Architecture Models
	SISD
	SIMD
	MISD
	MIMD

	CPU Architecture
	GPU Architecture
	CPU vs. GPU Architecture
	Optimization Goals
	SIMD Capabilities
	MISD Capabilities
	MIMD Capabilities

	Quantitative Architecture Trends
	Methods
	Clock Frequency Trend
	Compute Unit Trend
	Processing Element Trend


	Parallel Programming Models
	Classification
	OpenMP
	Architecture Model
	Memory Model
	Execution Model
	Partitioning Models

	Eventify
	Architecture Model
	Memory Model
	Execution Model
	Partitioning Models

	CUDA
	Architecture Model
	Memory Model
	Execution Model
	Partitioning Models

	OpenACC
	Architecture Model
	Memory Model
	Execution Model
	Partitioning Models

	Programming Model Trends
	Enhancing Flexibility
	Enhancing Uniformity
	Conclusion


	Event-based Task Parallelism on GPUs
	Uniform Architecture Model 
	Uniform Execution Model
	Persistent Threads
	Thread Safety

	Eventify Execution Model on GPUs
	Comparison of CPU and GPU Queueing Principles
	Data Structure
	Taxonomy
	Queueing Schemes

	Implementation
	Software Architecture
	Workflow


	Use Case: Fast Multipole Method
	N-Body Problem of Electrostatics
	Sequential Fast Multipole Method
	Input Parameters
	Hierarchical Space Decomposition
	Workflow
	Assumptions

	Parallel Fast Multipole Method
	Data Dependency Graph
	Data-Parallel FMM
	Task-Parallel FMM

	FMSolvr
	Data-Parallel Implementations 
	Task-Parallel Implementation


	Evaluation
	Metrics
	Scalability
	Sustainability

	Methodology
	Hardware
	CPU Runtime Measurements
	GPU Runtime Measurements

	Performance Analysis on CPUs: Data-Parallelism vs. Task-Parallelism
	Performance Analysis on GPUs: Data-Parallelism vs. Task-Parallelism
	OpenACC
	Eventify
	Sustainability

	Threats to Validity

	Conclusion
	Summary
	Hardware Architecture Trends
	Parallel Programming Model Trends
	Task-Parallelism vs. Data-Parallelism on CPUs
	Event-Based Task-Parallelism on GPUs
	Task-Parallelism vs. Data-Parallelism on GPUs

	Future Work
	Stream Interaction Model
	Eventify


	Theses
	GPU Terminology Mapping
	Evaluation of Additional Task Graph Sizes
	Bibliography
	Leere Seite
	Leere Seite
	Leere Seite



