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Abstract

In this thesis, we study the performance of the numerical implementation of quantum
annealing, as well as of physical quantum annealing systems from D-Wave Quantum
Systems Inc., for solving 2-Satisfiability (2-SAT) and other quadratic unconstrained binary
optimization (QUBO) problems.

For gauging the suitability of quantum annealing for solving these problems, we use
three main metrics: the probability of the algorithm to solve the problem, its ability
to find all the solutions to the problem if the problem has more than one solution, and
the scaling of the time to solution as a function of the problem size. In doing so, we
compare the performance of the numerically simulated ideal quantum annealing with its
actual physical realization. We find that the ideal, standard quantum annealing algorithm
can solve the sets of 2-SAT problems considered in this work, even if with a low success
probability for hard problems, and can sample the degenerate ground states of the 2-SAT
problems with multiple satisfying assignments in accordance with perturbation theory.
However, in the long annealing time limit, the ideal standard annealing algorithm leads
to a scaling of the time to solution that is worse compared to even the simple enumeration
of all the possible states. On the other hand, we find noise and temperature effects to
play an active role in the evolution of the state of the system on the D-Wave quantum
annealers. These systems can solve a majority of the studied problems with a relatively
large success probability, and the scaling of the time to solution, though still growing
exponentially in the system size, is significantly improved.

Next, by means of simulations, we introduce two modifications in the standard quan-
tum annealing algorithm, and gauge the performance of the modified algorithms. These
modifications are the addition of a trigger Hamiltonian to the standard quantum anneal-
ing Hamiltonian, or a change in the initial Hamiltonian of the annealing Hamiltonian. We
choose the trigger Hamiltonian to have either ferromagnetic or antiferromagnetic trans-
verse couplings, while the additional higher-order couplings added to the typically chosen
initial Hamiltonian are ferromagnetic. We find that these modifications can lead to sig-
nificant improvements in the performance of the annealing algorithm, even if the scaling
behavior is still exponential.





Zusammenfassung

In dieser Arbeit untersuchen wir die Leistung der numerischen Implementierung von
Quanten-Annealing sowie der physikalischen Quanten-Annealing-Systeme von D-Wave
Quantum Systems Inc. zur Lösung von 2-Satisfiability (2-SAT) und anderen quadratischen
uneingeschränkten binären Optimierungsproblemen (QUBO).

Um die Eignung von Quanten-Annealing für die Lösung dieser Probleme zu beurteilen,
verwenden wir drei Hauptmetriken: Die Wahrscheinlichkeit, dass der Algorithmus das
Problem löst, seine Fähigkeit, alle Lösungen für das Problem zu finden, falls es mehr als
eine Lösung gibt, und die Skalierung der Zeit bis zur Lösung in Abhängigkeit von der Prob-
lemgröße. Dabei vergleichen wir die Leistung des numerisch simulierten idealen Quanten-
Annealings mit seiner tatsächlichen physikalischen Umsetzung. Wir stellen fest, dass
der ideale Standard-Quanten-Annealing-Algorithmus die in dieser Arbeit betrachteten 2-
SAT-Problemsätze lösen kann, wenn auch mit einer geringen Erfolgswahrscheinlichkeit
für schwierige Probleme, und dass er Stichproben über die entarteten Grundzustände
der 2-SAT-Probleme mit mehreren erfüllenden Zuordnungen in Übereinstimmung mit der
Störungstheorie liefern kann. Allerdings führt der ideale Standard-Annealing-Algorithmus
im Grenzwert langer Zeiten zu einer schlechteren Skalierung der Zeit bis zur Lösung als
selbst die einfache Aufzählung aller möglichen Zustände. Andererseits stellen wir fest, dass
Rauschen und Temperatureffekte eine aktive Rolle bei der Entwicklung des Systemzus-
tands auf den D-Wave-Quanten-Annealern spielen. Diese Systeme können einen Großteil
der untersuchten Probleme mit einer relativ großen Erfolgswahrscheinlichkeit lösen, und
die Skalierung der Zeit bis zur Lösung ist, wenn auch stets exponentiell wachsend in der
Systemgröße deutlich verbessert.

Als Nächstes führen wir mit Hilfe von Simulationen zwei Modifikationen in den Standard-
Quanten-Annealing-Algorithmus ein und messen die Leistung der modifizierten Algorith-
men. Die Modifikationen sind das Hinzufügen eines Trigger-Hamiltonians zum Standard-
Quanten-Annealing-Hamiltonian oder die Änderung des Anfangs-Hamiltonians im
Annealing-Hamiltonian. Wir wählen den Trigger-Hamiltonian so, dass er entweder ferro-
magnetische oder antiferromagnetische transversale Kopplungen hat, während die zusät-
zlichen Kopplungen höherer Ordnung, die dem typischerweise gewählten
Anfangs-Hamiltonians hinzugefügt werden, ferromagnetisch sind. Wir stellen fest, dass
diese Modifikationen zu signifikanten Verbesserungen in der Leistung des Quanten-Annealing-
Algorithmus führen können, auch wenn das Skalierungsverhalten immer noch exponentiell
ist.
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1. Introduction

A quantum computer is a computing device that can exploit certain features of quantum
mechanics, like superposition and entanglement, which can help these systems solve some
particularly hard tasks believed to be challenging for classical computers. The underlying
idea is that making use of such properties, quantum computers can access a larger portion
of the computational space, the so-called Hilbert space, in a given time, which makes them
fundamentally different and more powerful than the present-day classical computers for
specific applications.

In this chapter, we provide an overview of quantum computing. We discuss the major
landmarks in quantum computing and the state of the art quantum computers, followed
by a review of the basic concepts of the two standard models for quantum computers. In
the subsequent sections, we discuss the adiabatic theorem and the Landau-Zener theory,
and define the sets of problems used in this work. In the last section, we explain the
motivation for this work.

1.1. A general overview

One of the first ideas for designing quantum computers which is believed to have led
to the conception of quantum computation, was proposed by Richard Feynman [Fey82].
He suggested that classical computers might not be sufficient to reproduce the behavior
of quantum systems as the computational resources required increase exponentially with
the number of interacting particles in the system. Thus, it was proposed that if special
computers based on the laws of quantum mechanics could be designed, they could be
better equipped to simulate such systems. Around the same time, Paul Benioff came
up with a quantum mechanical version of the Turing machine [Ben80]. Over the next
few years, such ideas led to the development of several quantum computing algorithms
which have a proven speed up over any existing classical algorithms. Some examples
of such algorithms are Deutsch-Jozsa algorithm [Deu85; DJ92], Bernstein–Vazirani algo-
rithm [BV97], Simon algorithm [Sim97], Grover’s search algorithm [Gro96; Gro97], and
Shor’s prime factorization algorithm [Sho99]. Further research and development in the
field led to a search for potential applications for quantum computing, and has resulted
in a list which has continued to vastly expand over the years [OML19; BGM21]. These
applications include finance, medicine, logistics, scheduling, machine learning, cryptogra-
phy, and many more [Tra+16; WE19; VK19; Sak20; DBM21; SBS18; Mav+18; Cor+22;
WKI12; AHY20; Moh+21; MHF21]. The availability of commercial quantum computers
has given a further boost to research in this direction [Wal+05; PAL14; Boi+14; Røn+14;
AL18b; Dev16; Mic+17; CWM21].

There are two standard approaches for building a quantum computer. The first and
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1. Introduction

more widely known model is that of the gate-based quantum computers, while the sec-
ond and a relatively recent model is the adiabatic model of quantum computing. The
gate-based quantum computer model is inspired from the gate-based model of a classical
computer, where sets of quantum gates are used to carry out any computation [NC10].
There are several companies, e.g., Google, IBM, Rigetti, IonQ, and eleQtron, that offer
gate-based quantum computers. However, the number of qubits in such devices remains
limited to about a hundred qubits. The underlying issues for the practical applicability
of quantum computers to real-world applications are decoherence of the qubits and gate
errors. Furthermore, sparse connectivity between the qubits also adversely affects the
performance of these devices. Although ion-trap quantum computers have an all to all
connectivity, the major drawback of this architecture is that it is difficult to initialize the
ions in their motional groundstates [NC10].

The second model for quantum computing is the adiabatic model of quantum com-
puting. Based on the idea of this model, special purpose quantum computers, the so-
called quantum annealers, have been devised for solving optimization problems which
have gained popularity over the past years. Quantum annealing is the quantum-inspired
version of simulated annealing [KGV83], where thermal fluctuations are replaced by quan-
tum fluctuations, with the aim of making use of quantum tunnelling in finding the energy
configuration with the minimum energy [ACd89; Fin+94; KN98]. It was initially thought
of as an optimization algorithm for solving optimization problems, with the hope that
it can outperform simulated annealing by facilitating the search for the state with the
minimum energy even when the state of the system gets trapped in a local minimum
with a high but narrow potential barrier, a case for which simulated annealing becomes
ineffective. Quantum annealing was viewed as an alternative route to quantum compu-
tation for the first time with its experimental realization in disordered magnets, where
it was proposed that the computational problem can be cast as a classical spin problem,
and can then be solved by the combination of thermal cooling and application of a trans-
verse field [Bro+99]. In the early 2000’s, this idea was formalized more, where it was
shown that although not necessarily beneficial, the adiabatic quantum evolution could
be well approximated by discrete unitary gates to accommodate this idea in the gate-
based paradigm of quantum computing [Far+00]. In [Far+01] it is suggested that this
continuous time evolution can in fact offer an alternative model for quantum computa-
tion. Although sometimes used interchangeably, there are some differences in the notion
of quantum annealing and adiabatic quantum computation. Unlike adiabatic quantum
computation, quantum annealing does not impose the strict condition of the evolution
being adiabatic [Dic+13; VL17]. These ideas form the basis of the present-day adia-
batic quantum computing, resulting in the development of quantum annealing systems
with more than 5000 qubits [MF20]. In contrast to the gate-based quantum computers,
quantum annealers require much less controls on a single-qubit level, and are relatively
more robust against decoherence. However, sparse connectivity between the qubits is an
obstacle for the performance of these systems.

While it has not been possible to demonstrate an indisputable speed-up of quantum
computers for solving any practically relevant problems so far, with emerging technological
advancements in their realization, it has become possible to implement more kinds of, as

2



1.2. Gate-based quantum computing

Figure 1.1.: Bloch sphere representation of quantum state ∣ψ⟩.
well as larger problems on these quantum computers. Using quantum annealing, it has
been possible to solve many industry-based optimization problems [Nev+09; Cla+19;
Fel+19; Mul+19; Ino+21; Yar+22].

1.2. Gate-based quantum computing

In this section, we discuss the essential concepts and notations related to gate-based
quantum computing [NC10]. We start by describing the fundamental unit of quantum
computing, the qubit, and then proceed to discuss a physical representation for it. Next,
we define the notations for a system consisting of multiple qubits, and lastly, we introduce
the basic gate operations for a quantum computer.

1.2.1. Single-qubit state

For classical (digital) computers, a bit is the smallest unit of data that a computer can
process and store, which is a binary variable that can assume values 0 or 1. Any computa-
tion on the digital computer then progresses by performing operations that transform the
string of bits {0, 1}n to another bit string {0, 1}m. Similarly, the basic unit of processing
for a quantum computer are quantum bits, or qubits. However, unlike the classical bits,
a qubit can exist in a superposition state of ∣0⟩ and ∣1⟩, i.e., the state of a qubit can be
expressed as ∣ψ⟩ ≙ a0 ∣0⟩ + a1 ∣1⟩ , (1.1)

where a0 and a1 are complex numbers, such that ∣a0∣2 + ∣a1∣2 ≙ 1, and ∣0⟩ and ∣1⟩ are the
basis vectors constituting the computational basis. However, a measurement of the state
of the qubit does not yield the complex coefficients a0 and a1 directly, but results in one
of the states ∣0⟩ or ∣1⟩. According to the quantum theory, the probability of obtaining
these states are ∣a0∣2 and ∣a1∣2, respectively.

3



1. Introduction

In the polar representation, the complex coefficients a0 and a1, given in Eq. (1.1), can
be written as a0 ≙ r0eiϕ0 and a1 ≙ r1eiϕ1 , and thus, the general state for a single-qubit

∣ψ⟩ ≙ r0e
iϕ0 ∣0⟩ + r1e

iϕ1 ∣1⟩ , (1.2)

is determined by the two amplitudes r0 and r1, and the two phases ϕ0 and ϕ1. According
to the quantum theory, multiplying a state ∣ψ⟩ by a global phase

e−iϕ0 ∣ψ⟩ ≙ r0 ∣0⟩ + r1e
i(ϕ1−ϕ1) ∣1⟩ , (1.3)

does not lead to any observable changes in the state ∣ψ⟩. Furthermore, since ∣a0∣2+∣a1∣2 ≙ 1,
we obtain ∣r0∣2 + ∣r1∣2 ≙ 1, and without loss of generality, we can assume r0 ≙ cos θ/2 and
r1 ≙ sin θ/2 for θ ∈ ∥0, π∥. Setting ϕ ≙ ϕ1 − ϕ2, a general state of a single-qubit can be
expressed as

∣ψ⟩ ≙ cos
θ

2
∣0⟩ + eiϕ sin

θ

2
∣1⟩ , (1.4)

where ϕ ∈ ∥0, 2π∥. Using this representation, with two independent variables, θ and ϕ

the state of a qubit can be represented on a sphere, known as the Bloch sphere, which is
shown in Fig. 1.1.

1.2.2. Qubit as a two-level system

Like the intrinsic spin of an electron, a qubit is also a two-level system. Thus, a natural
physical representation for a qubit can be a spin-1/2 particle. In this notation, the
convention is to represent the state ∣0⟩ as ∣↑⟩ (with spin value h̵/2) and the state ∣1⟩ as ∣↓⟩
(with a spin value −h̵/2). Thus, another valid representation for a qubit is the state

∣ψ⟩ ≙ a0 ∣↑⟩ + a1 ∣↓⟩ . (1.5)

The spin operator S ≙ 1/2σ acts on the Hilbert space spanned by the basis vectors ∣↑⟩
and ∣↓⟩, where we have set h̵ ≙ 1, σ ≙ (σx, σy, σz), and

σx
≙ (0 1

1 0
) , σy

≙ (0 −i

i 0
) , σz

≙ (1 0

0 −1
) , (1.6)

are the Pauli-matrices.
The expectation value of the Pauli-matrices, which represents the measurement outcome

of a physical observable, i.e., a Hermitian operator, is given as ⟨ψ∣σα∣ψ⟩, for α ≙ x, y, z.
Thus for the state given by Eq. (1.5), we have

⟨σx⟩ ≙ a0a
∗

1 + a∗0a1 ⟨σy⟩ ≙ a0a
∗

1 − a∗0a1, ⟨σz⟩ ≙ a0a
∗

0 − a1a
∗

1, (1.7)

where a∗
0
(a∗

1
) is the complex conjugate of a0(a1).

In a similar manner, there can be other valid representations for a qubit as long as it
is possible to sufficiently isolate the two unique states of a physical system. Furthermore,
from a practical point of view, it should be possible to control the transitions from one
of these two states to the other. One example of such a qubit are the superconducting
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1.2. Gate-based quantum computing

qubits which are designed using circuit elements like capacitors and inductors. However,
the energy difference between the successive energy levels of a system consisting of only
linear elements is constant, making it impossible to single out two energy levels. To
overcome this problem, a Josephson junction is added to the circuit, which introduces
anharmonicity in the Hamiltonian, thus giving a way to approximate the system as a
two-level system. Other possible types of qubits include trapped ion, quantum dots, and
topological qubits.

1.2.3. Multi-qubit state

So far we have focused on the state involving only one qubit. However, from a practical
point of view, such a system is not very useful for real-world applications. We therefore
consider a system of N qubits. The quantum state of such a system is defined by the
linear superposition of the product states of the N single-qubit states (constituting the
so-called computational basis), and is given by

∣ψ⟩ ≙ a0 ∣00...00⟩ + a1 ∣00...01⟩ + ... + a2N
−2 ∣11...10⟩ + a2N

−1 ∣11...11⟩ , (1.8)

where coefficients a0, ..., a2N
−1 are complex numbers which are renormalized such that

∑
2

N
−1

i=0 ∣ai∣2 ≙ 1 so that ⟨ψ∣ψ⟩ ≙ 1. Expressing the basis vectors in decimal representation
instead of binary, the state of the system can be equivalently written as

∣ψ⟩ ≙ a0 ∣0⟩ + a1 ∣1⟩ + ... + a2N
−2 ∣2N

− 2⟩ + a2N
−1 ∣2N

− 1⟩ . (1.9)

1.2.4. Basic operations for gate-based quantum computing

After having introduced the state representing the system consisting of multiple qubits,
we now focus on some of the basic gates that are commonly used in quantum computing.
The most fundamental single-qubit gates are the bit-flip X gate, bit- and phase-flip Y
gate, and the phase-flip Z gate. In matrix representation, they are equivalent to the
Pauli-matrices σx, σy, σz, respectively, given by Eq. (1.6). Their action on the qubit state∣ψ⟩ given by Eq. (1.1) is thus

X ∣ψ⟩ ≙ a0X ∣0⟩ + a1X ∣1⟩ ≙ a0 ∣1⟩ + a1 ∣0⟩ ,
Y ∣ψ⟩ ≙ a0Y ∣0⟩ + a1Y ∣1⟩ ≙ ia0 ∣1⟩ − ia1 ∣0⟩ ,
Z ∣ψ⟩ ≙ a0Z ∣0⟩ + a1Z ∣1⟩ ≙ a0 ∣0⟩ − a1 ∣1⟩ .

(1.10)

It can be readily verified that the X, Y, and Z gates are unitary, i.e., they conserve
the norm of the qubit state upon which they act. The effective action of any single-
qubit unitary quantum operation is to cause a rotation of the qubit state. The rotational
operator Rv(θ) causing the rotation of a state around a unit vector v by an angle θ is of
the form

Rv(θ) ≙ e−iθv⋅σ/2
≙ I cos

θ

2
− iv ⋅σ sin

θ

2
, (1.11)

where σ ≙ (σx, σy, σz) is given by the Pauli matrices of Eq. (1.6). Particularly important
rotation operators are the rotation gates Rx(θ), Ry(θ), and Rz(θ) around the x−, y−,
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and z−axes, respectively given by

Rx(θ) ≙ ( cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

) ,

Ry(θ) ≙ (cos θ
2
− sin θ

2

sin θ
2

cos θ
2

) ,

Rz(θ) ≙ (e−iθ/2 0

0 eiθ/2) .

(1.12)

Any unitary single-qubit operation can be constructed using a combination of rotation
gates with different angles and axes of rotation, together with a global phase shift on the
qubit [NC10].

In addition, commonly introduced single-qubit discrete gates in quantum computing
literature are the Hadamard gate

H ≙
1√
2
(1 1

1 −1
) , (1.13)

the phase gate

S ≙ (1 0

0 i
) , (1.14)

and the π/8 gate

T ≙ (1 0

0 exp(iπ/4)) . (1.15)

Another important discrete gate for quantum computation is the 2-qubit Controlled-
NOT or CNOT gate. This gate has two inputs, the control qubit and the target qubit,
and only in the case that the control qubit is in state ∣1⟩, the target qubit is flipped. In
the matrix notation, this gate is defined as

CNOT ≙

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
. (1.16)

Together with the Hadamard gate and the π/8 gate, the CNOT gate forms a set of discrete
universal gates for quantum computation [NC10].

1.3. Quantum annealing

We now shift our focus to quantum annealing. The basic idea of quantum annealing
is quite distinct from that of gate-based quantum computing. It is commonly used to
solve optimization problems for which an optimization problem is mapped to the Ising
Hamiltonian

HP ≙ −

N

∑

i=1

hz
i σz

i − ∑

⟨i,j⟩

Jz
i,jσ

z
i σz

j , (1.17)
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1.3. Quantum annealing

where hz
i is the applied field acting along the z- direction, Jz

i,j is the coupling between the
ith and jth spins, and ⟨i, j⟩ denotes the set of coupled spins.

The quantum annealing algorithm consists of starting in the ground state of an easy to
prepare initial Hamiltonian, HI , from where the system is slowly swept towards the final
Hamiltonian, HP , encoding the optimization problem that needs to be solved, by means
of an annealing parameter s, defined as s ≙ t/TA, where TA is the annealing time. The
instantaneous annealing Hamiltonian is typically of the form

H(s) ≙ A(s)HI +B(s)HP , (1.18)

where functions A(s) and B(s) control the annealing schedule, and are chosen such that
A(0)/B(0)≫ 1 and A(1)/B(1)≪ 1. For a major part of the simulations in this work, we
have chosen a linear scheme for annealing, i.e.,

H(s) ≙ (1 − s)HI + sHP . (1.19)

The transverse-field Hamiltonian, with the uniform superposition state as its ground
state, is one of the simplest choices for the initial Hamiltonian. In symbols

HI ≙ −

N

∑

i=1

hx
i σx

i , (1.20)

where hx
i is the magnetic field along the x-direction and typically, we have hx

i ≙ 1 for all i.
With these choices, the resulting Hamiltonian, referred to as the standard quantum an-
nealing Hamiltonian in this thesis, Eq. (1.18) is stoquastic, i.e., all its off-diagonal elements
are real and non-positive in the computational basis. This construction of Hamiltonian is
believed to be less powerful than the universal model for quantum computation. On the
other hand, with a non-stoquastic Hamiltonian the adiabatic model for quantum com-
putation has been shown to be polynomially equivalent to the conventional gate-based
model of quantum computing, and therefore, universal [Aha+07; BL08; Miz19].

Initializing the system in the ground state of the initial Hamiltonian and choosing the
annealing time to be sufficiently long, we can find the solution to the optimization problem
by solving the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
∣ψ(t)⟩ ≙H(t) ∣ψ(t)⟩ . (1.21)

This is guaranteed by the adiabatic theorem, which will be discussed next. The numerical
techniques to solve the TDSE are discussed in chapter 2.

1.3.1. The adiabatic theorem

The adiabatic theorem states that if the sweep from the initial Hamiltonian to the final
Hamiltonian is done slowly enough, the state of the system stays in the same eigenstate of
the instantaneous Hamiltonian as the eigenstate from which the algorithm starts [BF28;
Kat50]. This implies that if the annealing time is sufficiently long, and one starts in the
ground state of the initial Hamiltonian, the adiabatic theorem ensures that one obtains
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1. Introduction

the ground state of the problem Hamiltonian, which is the state encoding the solution to
the given optimization problem. Mathematically, this requires [Ami09],

TA ≫max
0≤s≤1

∣∣ ⟨1(s)∣ dH
ds
∣0(s)⟩ ∣∣

∆(s)2 , (1.22)

where TA is the annealing time, ∣0(s)⟩ and ∣1(s)⟩ are the ground state and the first excited
state of the instantaneous Hamiltonian, respectively, and ∆(s) represents the energy gap
between the two. For understanding the proof for the adiabatic theorem for a system with
a non-degenerate ground state, see Appendix A. The validity of the adiabatic theorem,
and hence that of the quantum annealing algorithm depends on the existence of an energy
gap between the ground state and the first excited state of the annealing Hamiltonian,
i.e., on the condition that there is no crossing between these energy levels. This is shown
to be the case in Appendix B.

1.3.2. The Landau-Zener theory

The Landau-Zener model, describing a spin-1/2 particle, also deals with systems evolving
under a time-dependent Hamiltonian [Lan32; Zen32; De +97]. In this section, we review
the Landau-Zener theory.

For a two-level system, under the action of a slowly reversing magnetic field (from −H0

to H0 in time T ) and a constant transverse-field, the time-dependent Hamiltonian is given
as

HLZ(t) ≙ −Γσx
− ctσz, (1.23)

where Γ sets the level-splitting between the two energy levels, c ≙ 2H0/T controls the
speed of the sweep of the magnetic field, such that H(t) ≙ ct, and t ranges from −T /2 to
T /2. For such a set-up, we can use the Landau-Zener formula to obtain an estimate for
the probability of the state of the system to stay in the ground state, if initialized in the
ground state. The probability for the system to change its state of magnetization from∣↓⟩ at large negative times to ∣↑⟩ at large positive times is given as [Lan32; Zen32]

p0 ≙ 1 − p1 ≙ 1 − e−πΓ
2/h̵c, (1.24)

where p1 ≙ exp(−πΓ2/c) is the probability of the system going through a non-adiabatic
transition and retaining ∣↓⟩ as the state of the system. For slow sweep of the magnetic
field, i.e., a small value of c, we obtain p0 ≈ 1.

Figure 1.2(a) shows the energy spectrum and the energy expectation values of a spin-
1/2 particle under an external magnetic field with H0 ≙ 100 for different times T , while
Fig. 1.2(b) shows the response of the magnetization of the system to the reversing magnetic
field for T ≙ 500, i.e., c ≙ 0.4. It can be seen that the step in the magnetization corresponds
to the position of the anticrossing in the energy spectrum.

The main quantity of interest, here and for the majority of this work, is the success
probability. In the case of simulations, it is calculated by determining the overlap of the
numerically obtained state by implementing the time evolution according to the TDSE,
with the known ground state of the problem.
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Figure 1.2.: (a) Energy spectrum and energy expectation values corresponding to differ-
ent times for a 2-level system under a slowly reversing magnetic field with
Γ ≙ 0.5 and H0 ≙ 100. The inset shows the point of anticrossing. (b) The
magnetization of the spin-1/2 particle with T ≙ 500.

The plot for the success probability obtained for the given system, with different sweep
times is shown in Fig. 1.3. Fitting function of type 1 − exp(aT ) yields a ≙ −0.004. Com-
paring with Eq. (1.24), one obtains a ≙ −πΓ2/c ≙ −0.004, which is the same as the fitting
exponential obtained in Fig. 1.3.

Both the quantum annealing Hamiltonian, and the Landau-Zener Hamiltonian are time-
dependent Hamiltonians that consist of non-commutating operators σx and σz terms.
However, the forms of the Hamiltonians are different. Moreover, in quantum annealing,
one usually deals with more complex systems than a 2-level system. However, the Landau-
Zener formula can still be used to obtain an estimate for the success probability in the long
annealing-time limit, where the evolution of the state of the system is almost adiabatic,
i.e., the evolution is adiabatic except in the vicinity of the anticrossing and the system
can be effectively approximated by a 2-level system in the vicinity of the anticrossing.

1.4. Problem sets

In this section, we discuss the sets of problems that will be considered in this work for
assessing the performance of quantum annealing. We focus also on the method for creating
these problems, some of their statistical properties, and their mapping to a form suitable
for quantum annealing for solving them.

Combinatorial optimization is a class of problems where the task is to find an optimal
assignment to the set of variables constituting the problem such that the corresponding
cost function is minimized for this assignment. For real-world combinatorial optimiza-
tion problems, the number of possible solutions increases exponentially with the size of
the problem. This makes these problems, in general, difficult to solve. As mentioned
previously, it is believed that quantum annealing, equipped with features like quantum
tunneling, can be more suitable for solving such problems compared to the classical algo-
rithms like simulated annealing.
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Figure 1.3.: Success probability p0 for different time of sweeps with H0 ≙ 100 and Γ ≙ 0.5.

For most parts of this thesis, we use sets of hard (to be qualified later) 2-satisfiability
(2-SAT) problems for benchmarking different variants of the quantum annealing algo-
rithm as well as D-Wave quantum annealers. Furthermore, we also use some sets of
problems derived from the 2-SAT problems and other randomly generated problems for
benchmarking purposes.

1.4.1. 2-SAT problems

We start with the definition of the SAT problems. A K-SAT problem is described by a
Boolean function F of N binary variables, consisting of a conjunction of M clauses, each
of which is a disjunction of K literals [JS94], i.e.,

F ≙ (L1,1 ∨L1,2) ∧ (L2,1 ∨L2,2) ∧ ... ∧ (LM,1 ∨LM,2), (1.25)

for K ≙ 2, where literal Lα,j can be a binary variable xi or its negation xi for i ≙ 1, 2, .., N ,
α ≙ 1, 2, ..., M , and j ≙ 1, 2. The SAT problem is considered satisfiable if there exists an
assignment for the binary variables that makes the Boolean function true.

The sets of 2-SAT problems used in this work, range from 6 ≤ N ≤ 20, with M ≙ N + 1,
as the satisfiability threshold (the number of clauses M for a given N at which the
SAT problems change from satisfiable to unsatisfiable in the mean) for a random 2-SAT
problem lies around M ≈ N [Neu14b].

1.4.1.1. Creation

In this work, we use two ensembles of sets of hard 2-SAT problems. The first is an
already existing set of problems with 6 ≤ N ≤ 18, where the sets with N < 10 consist of
100 problems each, while the sets with N ≥ 10 contain 1000 problems [Neu14a]. These
sets of problems were created by Markov chain Monte-Carlo partitioning the realization
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1.4. Problem sets

space of random K-SAT problems with respect to the degeneracy of the ground state
[Neu14a]. From the set of generated problems, those with a ground state degeneracy of
one were stored, so that the resulting set of problems is particularly hard to be solved using
simulated annealing. The brute-force search method used for determining the degeneracy
of the ground state of these problems, scales as O(2N), which limits the size of the
problems that could be created in this way.

In the present section, we discuss another method for creating the second set of 2-SAT
problems, with which we generate problem sets with ground state degeneracy of one, two
and four. Using this method, we create problem sets consisting of 100 problems each,
with the number of variables ranging from 6 ≤ N ≤ 20. The clauses of these problems are
made keeping in mind the following constraints.

• The two literals involved in each clause cannot correspond to the same variable.

• No clause can be repeated.

• All the variables are utilized at least in one of the clauses.

From the resulting sets of problems, we need to identify the unsatisfiable problem in-
stances. This is done by making use of the implication graph of the 2-SAT problems. Using
Kosaraju-Sharir’s algorithm [Sha81] we then identify the strongly connected components
in the implication graph, which are the sets of vertices reachable from one another. If we
find a variable and its negation to belong to the same strongly connected component, the
2-SAT problem does not have any satisfying assignments. Such problems are discarded
from the problem sets. The pseudo-code for the implementation of the Kosaraju-Sharir’s
algorithm for identifying the strongly connected components is given in Appendix C.

Using brute-force search, we find all the satisfying assignments for the remaining prob-
lems and select the ones with 1, 2, and 4 satisfying assignments.

For creating these problems, we made use of the workstations equipped with Intel Core
i7-8700 and 32 GB memory for the smaller problems (6 ≤ N ≤ 13), while for the larger
problems we used the supercomputer JUWELS of the Jülich Supercomputing Centre at
Forschungszentrum Jülich [Jül19].

1.4.1.2. Properties

We now discuss a few analytical properties of the new sets of 2-SAT problems obtained.
Using combinatorics, we find the average number of satisfying assignments µ to be

⟨µ⟩ ≙ (1 − 1

2K
)M

2N , (1.26)

where N is the number of variables involved in the problem, M is the number of clauses,
and K ≙ 2 for 2-SAT problems [EGS11]. It should be noted however, that this formula
holds when no constraints are placed on the way the clauses are created. In Fig. 1.4 we
compare the average ground state degeneracy of the obtained sets of 2-SAT problems
with this theoretical expectation as a function of N with M ≙ N + 1. Although in good
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Figure 1.4.: Average degeneracy of the ground state of the problem Hamiltonian for M ≙

N + 1 and 6 ≤ N ≤ 20.
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Figure 1.5.: Average degeneracy of the ground state of the problem Hamiltonian for N ≙ 16

and 16 ≤M ≤ 22.

agreement, the slight deviations of the average number of satisfying assignments obtained
from the created sets of problems from the theoretically predicted values can be explained
on the basis of the constraints imposed while generating the problems.

Next, keeping N fixed at 16, we can plot the average number of satisfying assignments
of the 2-SAT problems as a function of the number of clauses M ≙ N + a, with 0 ≤ a ≤ 6.
The resulting plot is shown in Fig. 1.5, where the deviations between the theoretical
formula and the experimentally obtained values become apparent.

Furthermore, we analyze the scaling of the degeneracy of the first excited state of the
sets of problems with 1, 2, and 4 satisfying assignments as a function of the number of
variables in the problem. The results are shown in Fig. 1.6. We note that for all the
three problem sets, the average degeneracy of the first excited state grows exponentially
as a function of N , with an exponent of 0.311. This suggests roughly a doubling of the
degeneracy of the first excited states with the addition of every two spins. This makes
the problems at hand difficult to be solved using simulated annealing.

1.4.1.3. Ising formulation

In order for quantum annealing to solve them, the 2-SAT problems need to be mapped
to a form that is suitable for the annealing algorithm. This is generally chosen to be the
Ising model, and the mapping can be achieved using
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H2SAT ≙

M

∑
α=1

h2SAT (ϵα,1xi∥α,1∥, ϵα,2xi∥α,2∥), (1.27)

where i∥α, j∥ represents the variable i involved as the jth term in the αth clause of the
cost function, ϵ = 1 (-1) if the variable used is xi(xi). This mapping transforms each
clause to a Hamiltonian function h2SAT [Neu14a; Neu14b]. The resulting problems have a
ground state degeneracy of one, two, or four and a highly degenerated first excited state.
The Hamiltonians obtained from mapping 2-SAT problems to the Ising model consist
of up to 2-local coupling terms, i.e., connectivity between the variables is sparse. This
sparse connectivity of these problems make them easy to be embedded in real devices
implementing quantum annealing.

An alternative representation for an optimization problem in order to be solved using
quantum annealing is as a quadratic unconstrained binary optimization (QUBO) problem.
A QUBO problem consists of a cost function C(x1, x2, .., xN) defined over binary variables
xi ≙ 0, 1,

C(x1, x2, ..., xN) ≙∑
i≤j

Qi,jxixj, (1.28)

where Q is the QUBO matrix. The task at hand is to find an assignment to the variables
xi that minimizes the cost function C(x1, x2, ..., xN).

There is an equivalence between the Ising and QUBO representation of a problem,
both defined over binary variables. Using xi ≙ 1 − σz

i /2, we can map an Ising problem to
a QUBO problem and vice-versa.

1.4.2. 2-SAT-derived problems

Using the sets of 2-SAT problems, it is possible to create new sets of problems that can
exploit different properties of a real quantum annealer, and can therefore, as a collection,
serve as useful benchmarks for quantum annealing. In this section, we discuss two problem
classes derived from the 2-SAT problems with the ground state degeneracy of one.
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1.4.2.1. Random-g problems

As discussed previously, employing quantum annealing for solving the 2-SAT problems
requires them to be mapped to the Ising model, but this mapping is not uniquely defined.
According to Eq. (1.27), each clause of the 2-SAT problems is mapped to a Hamiltonian
term, which then contributes uniformly to the problem Hamiltonian with a weight equal to
1. We derive a new set of problems by randomly choosing different weights gα ∈ (0.5, 1.5∥
for each clause of the 2-SAT problems, such that

H2SAT ≙

M

∑
α=1

gαh2SAT (ϵα,1si∥α,1∥, ϵα,2si∥α,2∥), (1.29)

in the hope that doing so can alter the difficulty of a given problem. For example,
increasing the contribution of a clause that is difficult to be satisfied could make a SAT
problem easier to be solved using quantum annealing (by altering the minimum energy
gap), without changing its ground state. Using an appropriate optimization ansatz, it
could then be possible to obtain values of gα that can make the problem easier to be
solved using quantum annealing.

1.4.2.2. Multiple-copies problems

In our discussion, so far, the size of the considered problems has been limited to less than
20 variables. In the present section, we discuss a way of using the 2-SAT problems to create
problems with a much larger number of variables. We combine multiple-copies of 12- and
18-variable 2-SAT problems in a chain-like manner to obtain the so-called multiple-copies
problem. Different copies of the problems can additionally be connected to other copies
through a ferromagnetic or an anti-ferromagnetic bond between the neighbouring copies.
Furthermore, we explore two choices for the connecting variable between the copies: one
of the least-connected or the most-connected variables from the graph, and connect it to
the same variable of the neighboring copy. Since the ground state of the original 2-SAT
problems is known, the solution to the multiple-copies problems is a simple concatenation
of the solution to the original 2-SAT problem for the unconnected copies of the problem,
copies connected through a ferromagnetic bond or an antiferromagnetic bond as long as
the bond strength in the latter case is less than a certain threshold.

1.4.3. Fully-connected QUBO problems

All types of problems that have been considered so far have a sparse connectivity. Now,
we shift our focus to the creation of problems with an all-to-all connectivity between the
variables and problem sizes varying up to 200 variables. In this work, we consider two
classes of fully-connected QUBO problems, namely the random problems and the regular
problems [Meh+22b].

1.4.3.1. Random problems

These problem instances are constructed by randomly choosing h and J values in the
range ∥−1, 1∥. The problem instances generated in this way are unrelated to one another.
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Computing the ground state of these problems, or equivalently, the spin-glass problems,
has been shown to be NP-hard [Bar82].

1.4.3.2. Regular problems

For these problems we construct the first problem instance by choosing couplings between
qubits i and j such that Ji,j ≙ (i+ j)/(N −1)−1 for i, j ≙ 1, .., N . We find that the ground
state of a Hamiltonian described in such a way is given by (x1 ≙ 1, ..., xk ≙ 1, xk+1 ≙

0, . . . , xN ≙ 0), where k is the integer that minimizes

f(k) ≙ ∑
1≤i≤j≤k

Qi,j ≙
k(N − k)(N − 2k + 2)

N − 1
. (1.30)

For a given N , more problem instances are then created by randomly reshuffling the
indices i and j, which preserves the ground state energy and the ground state of the
problem (apart from a simple reshuffling). Problem instances created in this way have
the same problem graph except for the relabelling of the indices, and should be treated
as the same problem by the D-Wave annealers.

An alternate way of creating more problems using the first regular problem for a given
N is by using the spin-reversal transformation, where a spin i is randomly reversed, and hi

and Ji,j replaced by −hi and −Ji,j so that the ground state energy of the QUBO problem
remains unchanged.

1.4.3.3. Solving the fully-connected problems

In order to assess the performance of quantum annealing for solving the sets of fully-
connected problems, we first need to determine the ground state of the problems. For the
small QUBO problems (N ≤ 58), this is done by the means of a program called QUBO23
that enumerates all the 2N possible assignments of the binary variables x1, ...xN , and
returns the assignments that have the lowest, the second lowest, and the largest costs.
Although the ground states obtained from QUBO23 are the true ground states of the
problems, the number of arithmetic operations required to enumerate all the possible
states is proportional to N2N , which makes this approach infeasible for larger problems.

For determining the ground states of problems up to N ≤ 200 we use two heuristic
methods, namely qbsolv which is a heuristic solver offered by D-Wave, and the D-Wave
Advantage_4.1 Hybrid solver. These solvers require much less time for finding the solution
to the QUBO problem, however the ground state obtained from them cannot be proven
to be the true ground state. The solution obtained for the smaller QUBO problems
using QUBO23 is found to agree with that obtained from qbsolv and the D-Wave Hybrid
solver. Furthermore, for the larger problems, where QUBO23 can no longer be employed,
the ground states obtained with the two heuristic solvers match with one another for all
the problem instances of the two classes up to N ≤ 200.
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1. Introduction

1.5. Our focus

In this thesis, we study the performance of quantum annealing for solving optimization
problems. As we have seen from the previous sections, quantum annealing is based on the
principle of an adiabatic evolution starting from a certain initial state, which is chosen to
be the ground state of the initial Hamiltonian, to the ground state of the final Hamilto-
nian, which encodes the optimization problem to be solved. According to the adiabatic
theorem (Eq. (1.22)), the minimum energy gap between the ground state and the first
excited state of the instantaneous Hamiltonian is a crucial quantity for the performance of
quantum annealing. The smaller this gap, the longer will be the annealing time required
to ascertain an adiabatic evolution of the state of the system. However, many of the hard
optimization problems that are of practical interest, have minimum energy gaps that close
exponentially as the number of variables in the problem increase, which poses a challenge
to the performance of quantum annealing for solving such problems.

In this work, we assess the performance of the quantum annealing algorithm for mainly
solving 2-satisfiability problems. We numerically introduce some modifications to the
standard quantum annealing algorithm, and study their effects on the performance of
quantum annealing for solving the given problems. Furthermore, we benchmark the D-
Wave quantum annealers using various problems. Lastly, where applicable, we compare
the performance of the ideal quantum annealing algorithm implemented numerically, with
that of the D-Wave annealers.

This thesis has been organized as follows. We start by a brief revision of the numerical
ingredients required for performing the simulations in Chapter 2. In Chapter 3 we bench-
mark two D-Wave systems for solving 2-SAT and other sets of problems derived from
them and in Chapter 4 we discuss the performance of ideal quantum annealing and actual
quantum annealers in terms of a relevant measure of performance, appropriate for the
case of problems with more than one possible solution, namely the sampling probability
of all the solutions. In the same chapter, we also discuss the reverse annealing protocol
available in the D-Wave systems, and compare its performance with the simulations. We
then introduce an additional Hamiltonian term, namely the trigger Hamiltonian, to the
standard quantum annealing Hamiltonian, the results for which are presented in Chap-
ter 5. We study the effects of adding two kinds of trigger Hamiltonians - the ferromagnetic
and the antiferromagnetic trigger Hamiltonians, and compare their performance with the
standard quantum annealing Hamiltonian for solving 2-SAT problems. Chapter 6 cap-
tures the effects of introducing the two kinds of trigger Hamiltonians on the distributions
and scaling performance of various quantifiers of quantum annealing. In Chapter 7 we
study the effects of modifying the initial Hamiltonian in the standard quantum annealing
algorithm for solving the 2-SAT problems. Lastly, in Chapter 8 we present a summary
and conclusion of this work.
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2. Numerical methods

In this chapter, we provide the numerical ingredients that are essential for simulating
quantum systems on a digital computer, simulations which form the basis for the work
presented in this thesis. We start by discussing some general aspects for simulating such
systems, and then move on to the methods for implementing the evolution of a quantum
system, as well as for computing the energy spectrum of model Hamiltonians. We review
the Crank-Nicolson algorithm and the Suzuki-Trotter product formula algorithm for solv-
ing the time-dependent Schrödinger equation (Eq. (1.21)), and the Lanczos algorithm for
computing the energy spectrum of the Hamiltonian.

2.1. Essential operations

This section comprises some of the broad details that are commonly required for the
implementation of any quantum algorithm. We start with the discussion of some essential
operations that form the core of such simulations.

Any quantum mechanical operator acting on a state vector representing N qubits
(Eq. (1.8)) can be expressed as a linear combination of products of the Pauli-matrices
and the identity matrix which form the basis for a 2N ×2N operator. Thus, we can restrict
ourselves to determine the action of σα

j , where α ≙ x, y, z, acting on the jth qubit of the
state vector Eq. (1.8). For example, the action of the operator σ

y
2

on the N-qubit state
vector is given as

σ
y
2
∣ψ⟩ ≙ a0σ

y
2
∣00...00⟩ + a1σ

y
2
∣00...01⟩ + ... + a2N

−2σ
y
2
∣11...10⟩ + a2N

−1σ
y
2
∣11...11⟩

≙ ia0 ∣00..10⟩ + ia1 ∣00..11⟩ + ... − ia2N
−2 ∣11...00⟩ − ia2N

−1 ∣11...01⟩ , (2.1)

where we have made use of the state representation given by Eq. (1.8) for the ease of
understanding. It should also be noted that following the convention in computer science,
in this notation the first qubit corresponds to the least significant bit of the integer index
that runs from zero to 2N − 1. Even though the operator σα

j only acts on the jth qubit,
all the 2N coefficients need to be updated as a consequence.

2.1.1. Single-qubit operations

We will now discuss how the amplitudes of the state vector are updated under the action
of a single-qubit operator σα

j where α ≙ x, y, z. For this purpose, we write the N-qubit
state vector as

∣ψ⟩ ≙ a(00...00) ∣00...00⟩ + a(00...01) ∣00...01⟩ + a(11...10) ∣11...10⟩ + a(11...11) ∣11...11⟩ ,
(2.2)
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2. Numerical methods

where the coefficients ai from Eq. (1.8) are expressed in terms of the binary representation
of the corresponding index i. In addition, we define

∣ψ′⟩ ≙ σα
j ∣ψ⟩

≙ a′(00...00) ∣00...00⟩ + a′(00...01) ∣00...01⟩ + a′(11...10) ∣11...10⟩ + a′(11...11) ∣11...11⟩ .
(2.3)

As σz
j is a diagonal matrix in the computational basis, i.e., the computational basis is

spanned by the eigenvectors of σz, the action of σz
j is to simply invert the sign of the

coefficients for which jth bit is 1, i.e.,

a′(∗... ∗ 0 ∗ ...∗) ≙ a(∗... ∗ 0 ∗ ...∗)
a′(∗... ∗ 1 ∗ ...∗) ≙ −a(∗... ∗ 1 ∗ ...∗), (2.4)

where the asterisk signifies that the bits at the corresponding places remain unchanged.
Focusing next on the operator σx

j , we recall that this operator swaps bit 0 to 1, and
vice-versa, and hence

a′(∗... ∗ 0 ∗ ...∗) ≙ a(∗... ∗ 1 ∗ ...∗)
a′(∗... ∗ 1 ∗ ...∗) ≙ a(∗... ∗ 0 ∗ ...∗). (2.5)

This implies that under the action of σx
j , the coefficients corresponding to bits 0 and 1 at

position j get interchanged. Lastly, the effect of applying σ
y
j on the state vector combines

the effects of applying σx
j followed by σz

j on the state vector, apart from a global phase
of e−iπ/2, i.e., it swaps bit 0 to 1, and vice-versa, and reverses the sign of the coefficient if
the bit at the jth position is 1. Thus, we obtain

a′(∗... ∗ 0 ∗ ...∗) ≙ −ia(∗... ∗ 1 ∗ ...∗)
a′(∗... ∗ 1 ∗ ...∗) ≙ ia(∗... ∗ 0 ∗ ...∗). (2.6)

Following this approach all the single-qubit operations can be performed in place, i.e.,
without using another multi-qubit state vector of length 2N . With the three operators
discussed above, it is possible to construct the simulations for any quantum algorithm
requiring to compute the product H ∣ψ⟩ without having to store the corresponding Hamil-
tonian matrices whose size grows exponentially as 22N with the number of qubits.

2.1.2. Two-qubit operators

Next, we focus on the two-qubit operators. Although the two-qubit spin operators σα
j σα

k

can be written as product of the two single-qubit spin operators, this approach is not
very efficient when one needs to compute the two-qubit operators for many pairs of j and
k. In this case, one would either have to compute σα

k ∣ψ⟩ many times, or would have to
use extra memory in order to store σα

k ∣ψ⟩. Therefore, we briefly discuss the numerical
implementation of the two-qubit spin operators. As before, denoting ∣ψ⟩′′ ≙ σα

j σα
k ∣ψ⟩, for

α ≙ z only the sign of the coefficients with different bits at positions j and k are inverted,
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2.1. Essential operations

and thus we obtain

a′′(∗... ∗ 0 ∗ ... ∗ 0 ∗ ..∗) ≙ a(∗... ∗ 0 ∗ ... ∗ 0 ∗ ..∗)
a′′(∗... ∗ 0 ∗ ... ∗ 1 ∗ ..∗) ≙ −a(∗... ∗ 0 ∗ ... ∗ 1 ∗ ..∗)
a′′(∗... ∗ 1 ∗ ... ∗ 0 ∗ ..∗) ≙ −a(∗... ∗ 1 ∗ ... ∗ 0 ∗ ..∗)
a′′(∗... ∗ 1 ∗ ... ∗ 1 ∗ ..∗) ≙ a(∗... ∗ 1 ∗ ... ∗ 1 ∗ ..∗).

(2.7)

When α ≙ x, the coefficients with complementary values of the bits at positions j and k

get interchanged, i.e.,

a′′(∗... ∗ 0 ∗ ... ∗ 0 ∗ ..∗) ≙ a(∗... ∗ 1 ∗ ... ∗ 1 ∗ ..∗)
a′′(∗... ∗ 0 ∗ ... ∗ 1 ∗ ..∗) ≙ a(∗... ∗ 1 ∗ ... ∗ 0 ∗ ..∗)
a′′(∗... ∗ 1 ∗ ... ∗ 0 ∗ ..∗) ≙ a(∗... ∗ 0 ∗ ... ∗ 1 ∗ ..∗)
a′′(∗... ∗ 1 ∗ ... ∗ 1 ∗ ..∗) ≙ a(∗... ∗ 0 ∗ ... ∗ 0 ∗ ..∗).

(2.8)

As before, the α ≙ y two-qubit operator combines the phase flip and the bit flip operations,
so that we have

a′′(∗... ∗ 0 ∗ ... ∗ 0 ∗ ..∗) ≙ −a(∗... ∗ 1 ∗ ... ∗ 1 ∗ ..∗)
a′′(∗... ∗ 0 ∗ ... ∗ 1 ∗ ..∗) ≙ a(∗... ∗ 1 ∗ ... ∗ 0 ∗ ..∗)
a′′(∗... ∗ 1 ∗ ... ∗ 0 ∗ ..∗) ≙ a(∗... ∗ 0 ∗ ... ∗ 1 ∗ ..∗)

a′′(∗... ∗ 1 ∗ ... ∗ 1 ∗ ..∗) ≙ −a(∗... ∗ 0 ∗ ... ∗ 0 ∗ ..∗).
(2.9)

An alternative approach for implementing the two-qubit spin operators for α ≙ x, y is
by making use of the rotation operators Rv

j (θ) which transform σz
j to σα

j , so that we can
write

σα
j σα

k ∣ψ⟩ ≙ Rv
j (θ)Rv

k(θ)σz
j σz

k(Rv
j (θ))†(Rv

k(θ))† ∣ψ⟩ . (2.10)

It is straightforward to simulate the action of the two-qubit operator σz
j σz

k on the wave-
function as the update rules for the amplitudes of the new state do not depend on the am-
plitudes corresponding to the other basis vectors. We note that σx

j ≙ (Ry
j (π/2))†σz

j R
y
j (π/2)

and σ
y
j ≙ Rx

j (π/2)σz
j (Rx

j (π/2))†, where the rotation matrices are obtained using Eq. (1.12)
and read

Rx(π/2) ≙ eiπσx/2
≙

1√
2
(1 i

i 1
) , Ry(π/2) ≙ eiπσy/2

≙
1√
2
( 1 1

−1 1
) . (2.11)

The inverse rotations (Rx
j (π/2))† and (Ry

j (π/2))† are then obtained by determining Rx
j (−π/2)

and R
y
j (−π/2), respectively.

The update rules for computing the action of the rotation operators Rx
j (π/2) and

R
y
j (π/2) can be obtained using the matrix representations of these operators given by

Eq. (2.11). For example, for state ∣ψ⟩′ ≙ (Ry
j (π/2))† ∣ψ⟩, we have

a′(∗... ∗ 0 ∗ ...∗) ≙ 1√
2
∥a(∗... ∗ 0 ∗ ...∗) − a(∗... ∗ 1 ∗ ...∗)∥

a′(∗... ∗ 1 ∗ ...∗) ≙ 1√
2
∥a(∗... ∗ 0 ∗ ...∗) + a(∗... ∗ 1 ∗ ...∗)∥. (2.12)
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2. Numerical methods

2.2. Solving the TDSE

All the operators that have been discussed so far share the property of being unitary, and
therefore, they conserve the norm of the state vector. Since any nonsingular matrix can
be written as the matrix exponential of a Hermitian matrix, and unitary matrices are
nonsingular, any unitary matrix U can be expressed as U ≙ e−itH , where H is a Hermitian
matrix. The change in the state of a system as a consequence of the application of this
unitary operator physically corresponds to the time evolution of a quantum system under
a given Hamiltonian H. The time-dependent Schrödinger equation (TDSE) describes this
time evolution as

i
∂

∂t
∣ψ(t)⟩ ≙H(t) ∣ψ(t)⟩ , (2.13)

where we have set h̵ ≙ 1, and use dimensionless quantities in our simulations.

The formal solution of the TDSE is given by

∣ψ(t + t′)⟩ ≙ U(t + t′, t) ∣ψ(t)⟩ ≙ exp
+
( − i

t+t′

∫

t

H(u)du) ∣ψ(t)⟩ , (2.14)

where t′ denotes some interval of time, and the unitary time-ordered matrix exponential
U ≙ exp

+
( − i ∫

t+t′

t
H(u)du) is defined as

exp
+
( − i

t+t′

∫

t

H(u)du) ≙ 1 + (−i) t+t′

∫

t

du1H(u1) + (−i)2
t+t′

∫

t

du1

u1

∫

t

du2H(u1)H(u2)

+(−i)3 t+t′

∫

t

du1

u1

∫

t

du2

u2

∫

t

du3H(u1)H(u2)H(u3) + . . . .

(2.15)

Since truncating series Eq. (2.15) at some point would lead to a non-unitary approxi-
mation of the time evolution operator U(t+ t′, t), Eq. (2.15) is not useful for its numerical
implementation. Instead, approximating the time-dependent Hamiltonian as being piece-
wise constant, we divide the time interval t′ in m steps τj, such that ∑m

j=1 τj ≙ t′, and

the Hamiltonian relatively stays constant over the interval ∥tj, tj+1) where tj ≙ t+∑
j
k=1 τk.

Thus,
U(t + t′, t) ≙ U(tm, tm−1)U(tm−1, tm−2)...U(t1, t0), (2.16)

and we proceed by approximating each U(tj, tj−1) as

U(tj, tj−1) ≈ e−iτjH(tj−1+τj/2). (2.17)

One needs to compute the matrix exponentials given by Eq. (2.17) for solving the TDSE.
In case of time-independent Hamiltonians, we can write U(τ) ≙ exp(−iτH), where we
have assumed τj ≙ τ for all j in order to simplify the notation. The most straightforward
algorithm to solve the TDSE is the full diagonalization method, where the Hamiltonian
matrix H is created at every step of discretized time. We then need to determine the
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2.2. Solving the TDSE

unitary matrix V consisting of the eigenvectors of H and matrix λ consisting of the
real-valued eigenvalues. Since matrix H becomes a diagonal matrix when expressed in
its eigenbasis, i.e., V †HV ≙ λ, ≙ U(τ) ≙ e−iτH

≙ V e−iτλV †, the time evolution operator
can be computed by a simple matrix multiplication. However, for a D ×D matrix, the
memory and the CPU time of the standard diagonalization algorithms scale as D2 and
D3, respectively [Wil65; GV96; Par98]. Since the size of the Hamiltonian matrix grows as
2N × 2N with the number of spins N , the method becomes infeasible already for a rather
small number of spins due to the limited computational resources.

There are several algorithms that have been devised to alleviate this problem, for ex-
ample, the Crank-Nicolson algorithm, Chebyshev polynomial algorithm [TK84; DD03;
Wei+06], Lanczos iterative algorithm [Pav+11; SRS20], and Suzuki-Trotter product for-
mula algorithm [De 87]. In the following sections we discuss some of these algorithms for
constructing approximations to the exponential in Eq. (2.17).

At this point, we would like to mention that in this work, we restrict ourselves to
quantum systems that have discrete Hamiltonians that can be expressed in terms of the
Pauli operators. For a discussion of quantum Hamiltonians in real space, see appendix D.

2.2.1. Crank-Nicolson algorithm

The Crank-Nicolson method was devised for numerically solving heat equations [CN47],
but can also be employed for solving similar partial differential equations. In this section
we review the basics of the algorithm, and determine the bound on the error resulting
from approximating the time evolution operator.

We start from Eq. (2.14) and split the time step τ over which the wavefunction is
allowed to evolve in half, so that

∣ψ(t + τ)⟩ ≙ U(t + τ, t + τ/2)U(t + τ/2, t) ∣ψ(t)⟩ . (2.18)

Multiplying both sides by U−1(t + τ, t + τ/2), we obtain

U−1(t + τ, t + τ/2) ∣ψ(t + τ)⟩ ≙ U(t + τ/2, t) ∣ψ(t)⟩ , (2.19)

and since the time evolution operator is unitary,

U †(t + τ, t + τ/2) ∣ψ(t + τ)⟩ ≙ U(t + τ/2, t) ∣ψ(t)⟩ , (2.20)

where the formal definition of the time evolution operator is given by Eq. (2.15). Re-
stricting up to first-order accurate terms in τ gives

(1 + i

t+τ

∫

t+τ/2

du1H(u1)) ∣ψ(t + τ)⟩ ≙ (1 − i

t+τ/2

∫

t

du1H(u1)) ∣ψ(t)⟩ +O(τ 2). (2.21)

Specializing to the case of time-independent Hamiltonians, and only keeping terms up to
first order in τ , Eq. (2.20) becomes

(1 + iHτ/2) ∣ψ(t + τ)⟩ ≙ (1 − iHτ/2) ∣ψ(t)⟩ +O(τ 2). (2.22)
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2. Numerical methods

Thus, ∣ψ(t + τ)⟩ ≈ (1 + iHτ/2)−1(1 − iHτ/2) ∣ψ(t)⟩
≡ UCN(τ) ∣ψ(t)⟩ . (2.23)

Since H is Hermitian,

U
†
CN(τ) ≙ (1 + iHτ/2)(1 − iHτ/2)−1, (2.24)

and thus
U

†
CN(τ)UCN(τ) ≙ UCN(τ)U †

CN(τ) ≙ I, (2.25)

i.e., this approximation to the time evolution operator is unitary, implying that this
method is unconditionally stable.

Applying this method m times yields an approximation to the wavefunction evolving
for t′ ≙ mτ time. The error accumulated in m applications of the method is of the order
O(τ−2), as shown in Appendix E.

The Crank-Nicolson method is an implicit method because it requires the calculation
of the inverse of the matrix (1+ iHτ/2). Except for matrices with a very special structure
(e.g., tridiagonal see Appendix D), this feature renders this method inefficient (in general
the number of arithmetic operations scales as 26N).

2.2.2. Suzuki-Trotter product formula algorithm

The Suzuki-Trotter product formula algorithm is one of the most efficient and commonly
used algorithms for solving the TDSE [Tro59; Suz76; SMK77; Suz85; DD83; De 87;
Suz91]. Generally, the Hamiltonian matrix is a sparse matrix, and can be decomposed as

H ≙
K

∑

k=1

Hk, (2.26)

where Hk only consists of the local (i.e., one- and two-qubit) terms. Using the Trotter
formula, the evolution operator can be written as [Tro59; Suz76]

U(t + t′, t) ≙ e−it′H
≙ e−it′(H1+H2+...+HK) ≙ lim

m→∞
( K

∏

k=1

e−it′Hk/m)m

. (2.27)

As before, we define U(τ) ≙ exp(−iτHk), where τ ≙ t′/m, such that by applying U(τ)
m times one obtains U(t).

The first-order approximation to U(τ) can be constructed as [Suz76; Suz85; Suz91]

Ũ1(τ) ≙ e−iτH1 ....e−iτHK . (2.28)

The accumulated error from the implementation of the first-order approximation shows a
linear dependence on the time step τ (see Appendix E for the derivation).

This error bound can be made tighter (O(τ−2)), if we adopt instead the second order
approximant Ũ2(τ) for the time evolution operator U(τ). There are many choices for
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2.2. Solving the TDSE

defining Ũ2(τ), but here we choose the symmetrized product formula algorithm [DD83]
defined as

Ũ2(τ) ≙ Ũ
†
1
(−τ/2)Ũ1(τ/2) ≙ e−iτHK/2....e−iτH1/2eiτH1/2...e−iτHK/2. (2.29)

The derivation for the bound on the error involved in implementing the second order
approximant is given in Appendix E.

Practical implementation

Moving next to a practical point of view, the decomposition of the Hamiltonian matrix is
chosen in such a way that the K resulting matrices are diagonal or block-diagonal so that
it is possible to evaluate e−iτHk ∣ψ⟩ without constructing the full matrix and performing
only l-components updates, for a small integer l. Then, in the case of the D ×D diagonal
matrices Hk, the matrix exponentiation is straightforward, since

e−iτHk ≙ exp

⎛⎜⎜⎝−iτ
⎛⎜⎜⎝

λ
(0)
k

⋱

λ
(D−1)
k

⎞⎟⎟⎠
⎞⎟⎟⎠ ≙
⎛⎜⎜⎝

e−iτλ
(0)

k

⋱

e−iτλ
(D−1)

k

⎞⎟⎟⎠ , (2.30)

where λ
j
k with j ≙ 0, ..., D − 1 are the D eigenvalues of the diagonal matrix Hk. Thus,

for computing e−iτHk ∣ψ⟩ we simply need to multiply each coefficient aj of the state vector

∣ψ⟩ given by Eq. (1.8) with e−iτλ
(j)

k . For this choice to be efficient, the matrices have to be
chosen with care so that they are straightforward to diagonalize, or otherwise they can
lead to a tremendous increase in the computational resources.

For a block-diagonal matrix Hk with L blocks H
(l)
k′ , on the other hand, we get

e−iτHk ≙ exp

⎛⎜⎜⎝−iτ
⎛⎜⎜⎝

H
(0)
k′

⋱

H
(L−1)
k′

⎞⎟⎟⎠
⎞⎟⎟⎠ ≙
⎛⎜⎜⎝

e−iτH
(0)

k′

⋱

e−iτH
(L−1)

k′

⎞⎟⎟⎠ . (2.31)

Generally, the block-diagonal matrices Hk are chosen so that they have 4 × 4 or 2 × 2

blocks H
(l)
k′ . The latter can be expressed in the standard basis for the vector space of 2×2

matrices, that is the Pauli-matrices, i.e.,

H
(l)
k′ ≙ vxσx

+ vyσy
+ vzσz. (2.32)

Using the Euler formula, we can therefore write

e−iτH
(l)

k′ ≙ e−iτv⋅σ
≙ I cos(τv) − i

v ⋅σ

v
sin(τv), (2.33)

where v ≙ (vx, vy, vz)T , σ ≙ (σx, σy, σz)T , and v ≙
√

v2
x + v2

y + v2
z . The update rules for the

involved coefficients aj and ak of the state vector given by Eq. (1.8) then obtained using
Eq. (2.33) read

a′j ≙ ( cos(τv) − i sin(τv)vz

v
) aj − i sin(τv)vx − ivy

v
ak

a′k ≙ −i sin(τv)vx + ivy

v
aj + ( cos(τv) + i sin(τv)vz

v
) ak.

(2.34)
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Since the computational basis is the eigenbasis for σz operator, its contributions can
instead be included in the diagonal matrix, and use of Eq. (2.30) can be made to solve
for the matrix exponential. In this case, vz ≙ 0, and Eq. (2.34) becomes

a′j ≙ cos(τv) aj − i sin(τv)vx − ivy

v
ak

a′k ≙ −i sin(τv)vx + ivy

v
aj + cos(τv) ak.

(2.35)

We employ the second-order product formula algorithm for implementing the dynamics
of the system under the quantum annealing Hamiltonian. In our work, we decompose the
general time-dependent Hamiltonian

H(t) ≙ A(t) N

∑

i=1

hx
i σx

i +B(t) ∑
1=i<j=N

Jx
i,jσ

x
i σx

j +C(t) N

∑

i=1

h
y
i σ

y
i +D(t) ∑

1=i<j=N

J
y
i,jσ

y
i σ

y
j

+E(t) N

∑

i=1

hz
i σz

i + F (t) ∑
1=i<j=N

Jz
i,jσ

z
i σz

j ,

(2.36)

as
H(t) ≙Hsingle +Hxx +Hyy +Hzz, (2.37)

where Hsingle consists of only the single spin terms, i.e.,

Hsingle ≙ A(t) N

∑

i=1

hx
i σx

i +C(t) N

∑

i=1

h
y
i σ

y
i +E(t) N

∑

i=1

hz
i σz

i , (2.38)

while Hxx, Hyy and Hzz consist of x−x, y−y and z−z interaction terms, respectively. We use
Eq. (2.34) for solving the matrix exponential e−iτHsingle . For computing the contribution
of Hzz in the time evolution of the state, we employ Eq. (2.30), which reduces to a simple

multiplication of the coefficients aj of the state vector given by Eq. (1.8) by e−iτλ
(j)
z , where

λ
(j)
z are the eigenvalues of Hzz. For evaluating the exponentials e−iτHxx and e−iτHyy , we

first make use of the rotation matrices to transform the wavevector to the eigenbasis
of Hxx and Hyy, respectively. This can be achieved by using the products of rotation
matrices, Ry

≙ ∏
N
j=1 R

y
j (π/2) and (Rx)† ≙ ∏N

j=1(Rx
j (π/2))†, where matrices Rx

j (π/2) and
R

y
j (π/2) are given by Eq. (2.11). In this new basis, the action of the exponentials e−iτHxx

and e−iτHyy is straightforward to calculate, as was the case for computing the contribution
for the Hzz term. Using the inverse matrix rotations, (Ry)† ≙ ∏N

j=1(Ry
j (π/2))† and Rx

≙

∏
N
j=1 Rx

j (π/2) the resulting vector can be transformed back to the computational basis.
Thus, to summarize, we have

e−itHxx

≙ (Ry)† exp (it N

∑

i,j=1

Jx
i,jσ

z
i σz

j )Ry,

e−itHyy

≙ Rx exp (it N

∑

i,j=1

J
y
i,jσ

z
i σz

j )(Rx)†.
(2.39)

On a separate note, the Suzuki-Trotter product formula algorithm can also be used to
perform quantum simulations on quantum computers, which can naturally allow for more
efficient realizations of such system. A more detailed discussion of the same is given in
Appendix F.
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2.3. Lanczos algorithm for solving the spectrum

The Lanczos algorithm is an iterative method for finding approximations to the K (≤D)
lowest or highest eigenvalues and eigenvectors of a D×D Hermitian matrix [Wil65; GV96;
CW02; Pav+11]. The usefulness of this method depends on the number of required
eigenvalues and eigenvectors K, which should satisfy K ≪ D ≙ 2N for this method to
compete with exact diagonalization.

2.3.1. Repeated minimization in two-dimensional Krylov subspace

Consider a Hamiltonian H corresponding to a quantum system whose ground state we
wish to calculate. We start by creating an orthonormal basis spanned by two vectors ∣v0⟩
and ∣v1⟩, using an initial vector ∣ψ⟩, as follows. The first vector is created by normalizing
the initial wavevector, i.e.,

∣v0⟩ ≙ ∣ψ⟩√⟨ψ∣ψ⟩ , (2.40)

and the second by applying the Hamiltonian on ∣v0⟩ and orthogonalizing,

∣ṽ1⟩ ≙H ∣v0⟩ − ⟨v0∣H ∣v0⟩ ∣v0⟩ . (2.41)

Defining bn ≙

√⟨ṽn∣ṽn⟩, and an ≙ ⟨vn∣H ∣vn⟩, the normalized second basis vector becomes

∣v1⟩ ≙ ∣ṽ1⟩
b1

, (2.42)

and hence
H ∣v0⟩ ≙ b1 ∣v1⟩ + a0 ∣v0⟩ , (2.43)

and
b1 ≙ ⟨v1∣H ∣v0⟩ ≙ ⟨v0∣H ∣v1⟩ , (2.44)

where the last relation is motivated by the fact that bn are real numbers.
Now, using this orthonormal basis, we can write any normalized wavefunction as

∣v⟩ ≙ cos θ ∣v0⟩ + sin θ ∣v1⟩ , (2.45)

the energy expectation value of which is then given by

⟨v∣H ∣v⟩ ≙ a0 cos2(θ) + 2b1 cos(θ) sin(θ) + a1 sin2(θ). (2.46)

To find the wavefunction with the smallest energy in this subspace, given by the initial
vector ∣ψ⟩, Eq. (2.46) is differentiated with respect to θ and set to zero, and we thus
obtain,

−b1 tan2 θ + (a1 − a0) tan θ + b1 ≙ 0. (2.47)

Solving Eq. (2.47), we obtain the minimum energy wavefunction ∣ψ(2)⟩ in the space
spanned by vectors ∣v0⟩ and H ∣v0⟩, where

∣ψ(2)⟩ ≙ cos θmin ∣v0⟩ + sin θmin ∣v1⟩ . (2.48)
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This is equivalent to diagonalizing the matrix H ′ in the subspace spanned by vectors ∣ψ⟩
and H ∣ψ⟩, which is given as

H ′ ≙ (a0 b1

b1 a1

) . (2.49)

Starting the next iteration from ∣ψ(2)⟩, we can again find the wavefunction corresponding
to the minimum energy in the subspace spanned by ∣ψ(2)⟩ and H ∣ψ(2)⟩. Repeating this
procedure L times, starting from the vector ∣v0⟩, we can find the wavefunction that lies
in the L + 1-order Krylov subspace KL+1(H, ∣v0⟩) ≙ span(∣v0⟩, H ∣v0⟩, H2 ∣v0⟩, ..., HL ∣v0⟩),
and successively converges towards the ground state of the given Hamiltonian [Hou13].

2.3.2. Minimization in L-dimensional Krylov subspace

Instead of repeatedly minimizing the wavevector in two-dimensional subspace L times,
we can define a vector in the Krylov subspace KL+1(H, ∣v0⟩) and find a wavefunction that
minimizes the energy directly over this subspace, since more degrees of freedom will lead
to a faster convergence.

For constructing the orthonormal basis with the vectors from the Krylov space, we start
again by normalizing the initial vector ∣ψ⟩ as in Eq. (2.40), and orthogonalizing the second
vector obtained by applying the Hamiltonian on the first as in Eq. (2.41). The subsequent
vectors are created using H ∣vn⟩ and orthogonalizing to all the previous vectors, i.e.,

b2 ∣v2⟩ ≙ ∣ṽ2⟩ ≙H ∣v1⟩ − a1 ∣v1⟩ − b1 ∣v0⟩ , (2.50)

where an ≙ ⟨vn∣H ∣vn⟩ and bn ≙ ⟨ṽn∣ṽn⟩. Similarly,

b3 ∣v3⟩ ≙ ∣ṽ3⟩ ≙H ∣v2⟩ − a2 ∣v2⟩ − b2 ∣v1⟩ − ⟨v0∣H ∣v2⟩ ∣v0⟩ . (2.51)

However, from Eq. (2.43), we obtain ⟨v2∣H ∣v0⟩ ≙ 0 as ⟨v2∣v1⟩ ≙ ⟨v2∣v0⟩ ≙ 0 by construction,
and thus

b3 ∣v3⟩ ≙H ∣v2⟩ − a2 ∣v2⟩ − b2 ∣v1⟩ . (2.52)

Similarly, for the following basis vectors the contributions from the vectors other than the
previous two vanish, and we obtain

bn+1 ∣vn+1⟩ ≙H ∣vn⟩ − an ∣vn⟩ − bn ∣vn−1⟩ . (2.53)

In the Krylov subspace, the Hamiltonian matrix reads

H ′ ≙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b1 0 0 0 0

b1 a1 b2 0 ⋯ 0 0

0 b2 a2 b3 0 0

0 0 b3 a3 0 0

⋮ ⋱

0 0 0 0 aL−1 bL

0 0 0 0 bL aL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.54)

Diagonalizing this tridiagonal matrix yields a good approximation to the lowest K

eigenvalues of the Hamiltonian matrix, where K < L≪ 2N .
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Practical implementation

In the numerical implementation of the algorithm, a limited numerical precision makes the
Lanczos vector ∣vn⟩ to have a finite overlap with the previous vectors ∣vm⟩ where m ≤ n−2.
This loss of orthogonality of the Lanczos vectors presents itself as multiple copies of the
eigenvectors, which are unrelated to actual degeneracies of these eigenvectors for the given
Hamiltonian. To overcome this, we explicitly orthogonalize each Lanczos vector to all the
previously obtained Lanczos vectors, to account for limited numerical precision. In order
to do this, all the Lanczos vectors need to be stored.

Although the Hamiltonian matrix is generally sparse, and thus the product H ∣vn⟩ can
be calculated efficiently, the storage of such a large matrix can be entirely avoided by de-
composing the Hamiltonian H such that the action of the components of this decomposed
Hamiltonian on the vector ∣vn⟩ can be easily calculated. In this work, we use the Lanczos
algorithm to determine the energy spectrum of the Hamiltonian, which is an essential tool
for analyzing the mechanisms involved during the evolution of the system. Furthermore,
as seen from the adiabatic equation Eq. (1.22), the minimum energy gap between the
ground state and the first excited state of the annealing Hamiltonian is crucial for the
performance of quantum annealing.

For implementing the Lanczos algorithm, we decompose the Hamiltonian as H ≙

H ′x + H ′y + H ′z, where H ′α ≙ ∑
N
i=1 hα

i σα
i + ∑

N
i<j=1 Jα

i,jσ
α
i σα

j , for α ≙ x, y, z. The action of

H ′z on a Lanczos vector ∣vn⟩ ≙ ∑2
N
−1

i=0 ai ∣i⟩ is straightforward to compute, since ∣i⟩ forms
the computational basis, which is also the eigenbasis of σz

i . For calculating H ′x ∣vn⟩
and H ′y ∣vn⟩ we again make use of the rotation matrices, as discussed above, by writ-
ing σx

i ≙ (Ry
i (π/2))†σz

i R
y
i (π/2) and σ

y
i ≙ Rx

i (π/2)σz
i (Rx

i (π/2))†. This approach is also
adopted for calculating the Hamiltonian matrix and state vector products for computing
the energy expectation value for the instantaneous state ∣ψ⟩ which is given as ⟨ψ∣H ∣ψ⟩.
Combined with the spectrum of the Hamiltonian, the energy expectation values can help
to visualize the evolution of the state of the system under a time-dependent Hamiltonian.
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D-Wave systems

To date, the largest available commercial analog quantum computers are the quantum
annealers offered by D-Wave Quantum Systems Inc., with their latest system providing
access to more than 5000 qubits [MF20]. The hardware of a quantum processing unit
(QPU) consists of an array of tunable coupled rf-superconducting quantum-interference
device (rf-SQUID) qubits [Har+10]. Each qubit and the coupler of the D-Wave QPU
can be controlled by the means of separate digital-to-analog-converters (DACs) [Joh+10;
Bun+14a]. However, despite many improvements in the design and connectivity of the D-
Wave quantum annealers over the years, these annealers are far from being ideal systems.
The two main sources of imperfection in these systems are temperature and noise effects.
While the former bolsters non-adiabatic evolution of the state of the system, the latter can
result in an infidelity in the problem representation. In other words, instead of solving
the specified Ising-type problem Hamiltonian with given problem parameters h and J

according to Eq. (1.17), the QPU solves a slightly different problem, namely

H ′P ≙ −
N

∑

i=1

(hz
i + δhz

i )σz
i − ∑

⟨i,j⟩

(Jz
i,j + δJz

i,j)σz
i σz

j , (3.1)

where δhz
i and δJz

i,j are the respective errors in the parameters hz
i and Jz

i,j. If qubit i

is connected to qubit j, which is further connected to qubit k, as per the graph of the
problem Hamiltonian, then the values of δhz

i and δJz
i,j depend on fields hz

i hz
j , and hz

k

and couplings Jz
i,j and Jz

j,k. Such factors can vastly affect the performance of the D-Wave
systems for solving optimization problems [Ami15; Wil+20].

In 2020, the company inaugurated its new generation of quantum annealers, namely D-
Wave Advantage (DWAdv). The new system consists of more than 5000 qubits, and offers
a new qubit topology, the Pegasus topology with a 15-way qubit connectivity. Compared
to its predecessor, the Chimera topology on DW_2000Q_6 (DW2000Q), each qubit is
connected to nine additional qubits in the Pegasus topology.

In this chapter, we study the performance of the DW2000Q and DWAdv systems for
solving various optimization problems. We start by describing how the D-Wave systems
are employed to solve the chosen sets of problems. Subsequently, we discuss the results
obtained from the two systems. In addition, we also compare the performances of the two
systems for certain optimization problems.
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3. Assessing the performance of the D-Wave systems

3.1. Solving optimization problems using D-Wave

systems

In this section, we first discuss how the optimization problems that need to be solved
using the D-Wave quantum annealers are mapped on to the system. Next, we review
some of the features and controls offered by the D-Wave systems that can vastly affect
the performance of these systems for solving these problems.

In order to solve an optimization problem using the D-Wave systems, it needs to be
specified through the linear and quadratic coefficients of a binary quadratic model (BQM)
[D-W]. For the D-Wave QPU, the two processable types of BQMs are the Ising problem
(Eq. (1.17)) and QUBO problem (Eq. (1.28)). A QUBO problem submitted to the D-Wave
annealer is internally converted to an Ising problem such that hi ∈ ∥−4, 4∥ and Ji,j ∈ ∥−1, 1∥
upon rescaling by a constant factor if the mapped values lie outside this range, with the
help of the auto_scaling feature available in the system.

3.1.1. Embedding of the problem Hamiltonian

Solving an Ising problem using a D-Wave annealer requires the graph corresponding to the
problem Hamiltonian to be mapped on to the working graph of the annealer. However,
it is often the case that the problem graph is not a subgraph of the qubit topology
of the device, and hence cannot be directly embedded on to the device. In order to
solve such a problem, two or more physical qubits need to be grouped together using a
ferromagnetic bond with a relatively large Ji,j coupling between them to avoid breaking of
the thus formed logical qubits. The strength of this bond can be controlled using the chain
strength parameter. It should however be noted that for large values of chain strength,
the hi and Ji,j values defining the problem are rescaled by a constant so that all values lie
within the allowed range for the QPU. Any problem submitted to the D-Wave systems is
heuristically mapped to the QPU topology by the D-Wave sampler, in a process known
as minor-embedding.

It can nevertheless happen that the chain of physical qubits representing a logical qubit
breaks during the annealing process such that in the end, not all the physical qubits
corresponding to a logical qubit are in the same state. This is an undesirable effect. The
final state of the logical qubit is determined by majority voting in such a case. It is rather
straightforward to see that with a higher connectivity of the qubits, more problems can
be directly embedded, i.e., without having to group the physical qubits. Figure 3.1 shows
the Chimera and Pegasus qubit topolgies available on DW2000Q and DWAdv systems,
respectively. Not only does the DWAdv system contain approximately 3000 more qubits,
each qubit in the Pegasus topology is connected to 15 other qubits, in contrast to a
connectivity of 6 in the Chimera topology [Bun+14b; MF20]. Since the Pegasus topology
is an extension of the Chimera topology, the latter can be natively embedded in the
Pegasus topology. It is therefore interesting to see how the differences in these qubit
topologies affect the performance of the two systems.

Although D-Wave’s Ocean software offers tools to automatically generate an embedding
for a given problem onto the qubit topology of the system, it need not yield the best
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(a) (b)

Figure 3.1.: Schematic of qubit topology (a) Chimera on DW2000Q system, and (b) Pe-
gasus on DWAdv.

possible embedding in terms of the number of physical qubits used. However, optionally
using the embedding feature available on these systems, it is possible to specify a chosen
embedding for the problem, which can have a vast effect on the solution quality.

3.1.2. D-Wave controls

The D-Wave system software offers many parameters to control how the problem is run on
the system and their choice can have a great impact on its performance. In this section,
we discuss some of these features relevant to this work.

• Annealing time: It sets the duration for which the anneal is performed. The an-
nealing time for the D-Wave systems is in the range of microseconds.

• Number of reads: This parameter sets the number of output samples required from
the D-Wave system. Since the maximum duration for which a problem is allowed
to run on the D-Wave quantum annealer is fixed, the maximum number of reads
allowed also depends on the chosen annealing time.

• Chain strength: As described previously, the chain strength parameter controls the
strength of the ferromagnetic coupling between the physical qubits comprising a
logical qubit. This parameter also has a significant impact on the quality of the
solution obtained from the D-Wave systems, and in order to obtain good results for
a given problem, the optimal value of this parameter needs to be determined.

• Annealing schedule: This feature defines the time-dependent functions A(s) and
B(s) that control the annealing scheme (see Eq. (1.18)). In the present work, we
employ the default annealing scheme offered by the system.

• Reverse annealing: The standard quantum annealing schedule makes the system
start in the ground state of the initial Hamiltonian by enforcing A(0) ≪ B(0).
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However, with the help of the reverse annealing feature, it is possible to start the
annealing algorithm at s ≙ 1 in a chosen classical state, anneal back to some reversal
distance sr, and then to resume the standard forward annealing from that point with
or without the inclusion of a wait time at sr.

3.2. Results

In section 1.4.2, we defined the sets of problems derived from the 2-SAT problems with
unique satisfying assignments, as well as two classes of fully-connected problems that are
suitable for benchmarking the D-Wave quantum annealers. We now proceed to discuss
the results obtained for solving these problems using the D-Wave systems. Using the beta
version of the Advantage topology, DWAdv_beta, we benchmark the D-Wave systems
using 2-SAT problems, the set of problems derived from them, as well as problems from
two classes of fully-connected QUBO problems. The latter consist of random and regular
class problems. Moreover, using these problem classes, we gauge the hardness of the fully-
connected problems by studying the scaling behavior of their success probability using
a newer generation of the Advantage systems, DWAdv5.1. More specifically, we study
the correlation of this scaling behavior with the hardness estimates obtained using the
Hamming distance distribution of the low-lying excited states with respect to the ground
state, using the smaller problems from the sets. These scaling results are also compared
to the corresponding values obtained for a set of newly constructed 2-SAT problems with
up to 20 variables.

In this chapter, we use the success probability, defined as the ratio of the samples cor-
responding to the ground state energy to the total number of samples, as the performance
metric.

3.2.1. Benchmarking the D-Wave systems

In this section, we assess the efficiency of the D-Wave systems for solving the set of 18-
variable 2-SAT problems, the random-g problems, the multiple-copies problems, as well
as instances of fully-connected random and regular problems. The goal here is to study
different aspects of these systems using various kinds of problems.

3.2.1.1. 18-variable 2-SAT problems

We start the assessment of the performance of the D-Wave annealers for solving the set of
18-variable 2-SAT problems consisting of 1000 problems. Using these problems, we wish
to benchmark the two D-Wave systems, namely, the DW2000Q and the DWAdv, and
compare their performance with each other. We choose the annealing time to be 20 µs.
In Fig. 3.2(a), we show a scatter plot of the success probabilities pDW Adv obtained using
DWAdv against the success probabilities pDW 2000Q obtained with DW2000Q. We observe
that DWAdv performs better than DW2000Q for solving a majority of the problems,
especially for the problems that have small success probabilities on the DW2000Q. On the
other hand, the performance of the two systems is comparable when solving problems with
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Figure 3.2.: Success probability obtained with DWAdv against the one obtained with
DW2000Q for (a) all the problems in the set of 18-variable 2-SAT problems
(1000 problems), and for (b) problems with a direct mapping on DW2000Q
(476 problems).

relatively large success probabilities, concentrated in the upper right corner of Fig. 3.2(a).
To delve deeper into this aspect, we compare how the problems are embedded on the two
systems. While only 476 of the 1000 problems belonging to the set could find a direct
mapping on the working graph of the DW2000Q system, 923 problems could be directly
embedded on the DWAdv system. This can be attributed to a higher connectivity of the
qubits in DWAdv. The effect of the embedding of the problem on the success probability
can be more clearly seen from Fig. 3.2(b), which shows a scatter plot of the resulting
success probabilities from the two systems for the problems having a direct embedding on
DW2000Q. Although the success probability from DWAdv is still larger for a majority of
the problems, it is not by as large an extent as in Fig. 3.2(a). This means that the largest
improvement in the success probability on the DWAdv is obtained for the problems which
could not find a direct embedding on DW2000Q. It can thus be concluded, that the higher
connectivity of the qubits on DWAdv is advantageous for its performance, especially for
the cases where the problem graphs could not be directly embedded on DW2000Q. This
is an expected result since the chain of physical qubits representing a logical qubit is
susceptible to breaking, thereby worsening the solution quality. Furthermore, for the
problems with a direct embedding on both the D-Wave systems, we find DW2000Q to
be performing slightly better for the problems with a relatively large success probability
(points located on the upper right corner of Fig. 3.2(b)).

3.2.1.2. Random-g problems

Next, we move on to the results of the random-g problems. We choose two instances of
18-variable 2-SAT problems, such that for the standard choice of gα ≙ 1, one of them has
a large minimum energy gap between the ground state and the first excited state (found
using Lanczos algorithm), while the other has a small gap. We refer to the former as
the "first case" and to latter as the "second case". For both the problems, we create 100
new instances of 2-SAT problems, by randomly choosing the weights gα with which every
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Figure 3.3.: Success probability obtained with DWAdv against the one obtained with
DW2000Q for 100 random-g problems created from an 18-variable 2-SAT
problems with a minimum energy gap between the ground state and the first
excited state (a) that is large (first case) and (b) that is small (second case).

clause constituting the 2-SAT problems contributes to the problem Hamiltonian, where
gα ∈ ∥0.5, 1.5∥. Employing both D-Wave systems for solving the two sets of random-g prob-
lems allows for a comparison between their performances for hard and easy optimization
problems. We choose the default annealing time of 20 µs.

Firstly, we note from Fig. 3.3, that despite of randomly choosing the weights for each
clause, a majority of the problem instances created have a similar hardness as the original
problem with uniform gα ≙ 1. We observe from Fig. 3.3(a) that for the first case, DW2000Q
performs better for a majority of the instances compared to DWAdv, although the success
probability for all these problem instances is larger than 0.1 on both the systems. We also
find that all the problem instances corresponding to this case could be directly embedded
in both DW2000Q and DWAdv. One of the possible reasons behind a decreased success
probability on DWAdv could be an increase in the noise due to the presence of more
number of unused couplers on DWAdv. On the other hand, for the second case shown in
Fig. 3.3(b), the success probability is less than 0.1 for a majority of the instances on both
the systems. In this case, DWAdv is found to be performing much better for a majority
of the instances. We note that none of the instances of the second case could find a direct
mapping on DW2000Q. Thus, the higher connectivity of qubits in DWAdv, and a small
success probability of these problems on DW2000Q due to their inability to be directly
embedded on the system result in a large enhancement in the success probability using
DWAdv.

From the results of this section, we see that if there is a possibility to select the values
of g using some variational ansatz so that the minimum energy gap between the ground
state and the first excited state of the annealing Hamiltonian, or equivalently the success
probability is maximized, this could vastly improve the performance of quantum annealing
for solving these problems.
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Figure 3.4.: Frequency distribution of the number of copies solved using DWAdv for the
12-variable multiple-copy problem and TA ≙ 20 µs, with (a) no connectivity
between the neighboring copies, (b) neighboring copies connected through the
least-connected variable, and (c) neighboring copies connected through the
most-connected variable. Binomial(N, p) is the binomial distribution func-
tion used for fitting in (a), and BS in (b) and (c) represents different bond
strengths between the connecting variables of neighboring copies.

3.2.1.3. Multiple-copies problems

Now, we focus on the second set of problems derived from the 2-SAT problems, i.e.,
the multiple-copies problems, in an attempt to benchmark the ability of DWAdv for
solving problems with a large number of variables. In this section, we show the results for
two instances of multiple-copies problem, the first comprising 50 and 100 copies of a 12-
variable 2-SAT problem (comprising 600 and 1200 variables, respectively) with a relatively
large minimum energy gap, and the second comprising 50 copies of an 18-variable 2-SAT
problem (comprising 900 variables) with a relatively small minimum energy gap. The
different copies of the problem can then be chosen to remain unconnected, or connected
through a variable using parameter BS which characterizes the strength of this bond. We
set the annealing time to 20 µs, and the number of samples to 10000.

Since for the original 12-variable problem considered here, the minimum energy gap
is large compared to that of the 18-variable problem, this problem is relatively easy to
solve using quantum annealing. As shown in Fig. 3.4(a), for this case, it is possible
to solve all of the 50 and 100 copies of the problem submitted to the D-Wave system.
As the different copies of the problems are independent of one another, the frequency
distribution of the number of simultaneous solutions obtained should ideally follow the
binomial distribution Binomial(N, p, k) ≙ NCkpk(1 − p)N−k, where N is the number of
copies, NCk ≙ N !/(k!(N −k)!), p is the average success probability calculated as the ratio
of the number of copies that could be solved to the total number of copies submitted,
and k ≙ 0, 1, ..., N . The agreement between the results obtained from the DWAdv system
and Binomial(N, p) shows that the qubits encoding the different copies can indeed work
independently.

Next, Figs. 3.4(b) and (c) show the results for the frequency distribution of the num-
ber of copies solved for different values of bond strengths (BS) with the least-connected
variable and the most-connected variable as the connecting variable, respectively. In both
these cases we consider 100 copies of the problem. For legibility, results corresponding to
some values of the bond strengths have been omitted. For this case, we observe similar
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trends in both figures. Adding a ferromagnetic bond between the copies of the problem
increases the probability of all the 100 copies of the problems being solved simultaneously.
We also observe that upon increasing the strength of the ferromagnetic bond till BS ≙ −1,
the peak of the corresponding curve becomes larger and shifts rightwards, i.e., the proba-
bility of a larger number of copies being solved increases with increasing the ferromagnetic
bond strength. On increasing the bond strength further (not shown here), the curve shifts
leftwards. One of the possible reasons for this observation could be the restriction on the
allowed range for h and J values on the device, in accordance with which the problem
parameters have to be rescaled when the bond strength decreases beyond -1.

On the other hand, adding an antiferromagnetic bond between the copies results in a
decrease in the probability of solving a larger number of copies of the problem, and this
probability decreases with increasing the strength of the bond. To provide an estimate, in
the case where the bond between the multiple-copies is added through the least-connected
variable, the curve corresponding to the antiferromagnetic bond with strength BS ≙ 0.9

peaks around 50.
In contrast to the 12-variable problem, the success probability for the original 18-

variable problem is small. We embed 10, 20, 30, 40, and 50 unconnected copies of the
problem on the system, and in no case it can solve all the copies simultaneously, as can be
seen in Fig. 3.5(a). This is also found to be the case when adding ferromagnetic or anti-
ferromagnetic bonds between the different copies of the problems. In contrast, the D-Wave
Hybrid solver can find the ground state of the multi-copy problem, i.e., simultaneously
solve all the copies of the problem. Additionally, with DWAdv it is possible to solve
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Figure 3.5.: Frequency distribution of the number of copies solved using DWAdv for the
18-variable multiple-copy problem and TA ≙ 20 µs, with (a) no connectivity
between the neighboring copies , (b) neighboring copies connected through
the last variable, and (c) neighboring copies connected through the most-
connected variable (c). Binomial(N, p) is the binomial distribution func-
tion used for fitting in (a), and BS in (b) and (c) represents different bond
strengths between the connecting variables of neighboring copies.

a larger number of copies simultaneously for certain values of bond strengths and the
choice of the connecting variable. As for the 12-variable problems, upon choosing the
least-connected variable from the problem graph as the connecting variable between the
neighbouring copies, as shown in Fig. 3.5(b), the largest number of simultaneously solved
copies of the problem increases with increasing strength of the ferromagnetic bond till
BS ≙ −1. However, the addition of an antiferromagnetic bond causes the curves to shift
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leftwards.
On the other hand, we observe a more systematic rightward shift in the peaks for the

number of simultaneously solved copies of the problem with the increasing strength of the
anti-ferromagnetic couplings through the most-connected variable in the problem graph
shown in Fig. 3.5(c). In this case, other than for BS ≙ −0.01, a ferromagnetic bond leads
to a decrease in the probability of simultaneously solving a large number of the copies.
One of the possible reasons for this observation could be that for an antiferromagnetic
bond, when the system fails to yield the ground state for one copy of the problem, it does
not enforce other copies to remain unsolved, unlike a ferromagnetic bond. This makes
these problems more difficult to be solved using a ferromagnetic bond, which enforces
that either the system finds the ground state for all the copies simultaneously or for none
of them. Since the original problem in this case is difficult to solve (has a smaller gap
compared to most of the other problems in the set), in this case an antiferromagnetic
bond is more beneficial for the success probability.

3.2.1.4. Fully-connected QUBO problems

We now move to the set of fully-connected problems, which we use to benchmark the
performance of DWAdv for solving problems with large connectivity. Using two problem
instances each for 50-variable random class problems, and 80− and 100−variable regular
class problems, we study the effects of choosing different values for parameters like the
annealing time and the chain strength on the success probability. For each problem in-
stance, we run 10 trials for solving the fully-connected problem using the DWAdv system,
for annealing times 20, 100, and 1000 µs with the value of the chain strength varying from
1 to 10. The regular problem instances used to this end are created using the reshuffling
of the indices (see section 1.4.2 for details on the construction of the problems).

At this point, it should be noted that the problem set with N ≙ 50 differs from the
other two problem sets with N ≙ 80 and N ≙ 100, and belong to a harder class of random
problems. We discuss this in more detail in the next section. However, the effects of
varying the annealing controls are noted to be similar for both these classes. Another point
worth mentioning is that since the graph of different instances of the regular problems are
essentially the same for a fixed N , they effectively correspond to just different embeddings
of the problem.

Figure 3.6 shows the success rate of the fully-connected problems as a function of the
chain strength for annealing times TA ≙ 20, 100, 1000 µs, averaged over ten runs on the
system. As a first observation, we note a large variance in the values of the success rate,
which is a consequence of the differences in the automatically generated embeddings of
the problems by the D-Wave system during the different runs of the problem, as well
as the noise and temperature effects present in the system. We find that as expected,
the maximum success rate corresponds to the longest annealing time, however it is also
observed that the value of the chain strength plays a decisive role in determining the
performance. It can also be noted, that for a fixed annealing time, the maximum success
rate for the problems corresponds to a larger value of chain strength as the size of the
problem increases from N ≙ 80 to N ≙ 100. One of the reasons for this observation could be
the increasing need of longer chains of physical qubits in the system for embedding larger
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Figure 3.6.: Average success probability as a function of the chain strength for two in-
stances of the fully-connected ((a), (b)) 50-variable random problem, ((c),
(d)) 80-variable regular problem, and ((e), (f)) 100-variable regular problem
averaged over 10 runs for annealing times 20, 100, and 1000 µs.
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problems and to avoid breaking of the chain during the annealing process larger values of
chain strengths are required. Thus, the success probabilities can differ significantly when
choosing different values of the annealing parameters.

3.2.2. Hardness of the QUBO problems

In this section, we examine the hardness of three classes of QUBO problems, namely, the
2-SAT problems, the fully-connected random problems, and the fully-connected regular
problems, from the perspective of solving these problems by the D-Wave quantum annealer
DWAdv. Specifically, we correlate the scaling performance of the D-Wave systems for
solving the three classes of problems with the Hamming distance distributions of the
low-lying excited states of representative 20-variable problems with respect to the ground
state for the three classes [Meh+22b]. The regular problems used for this purpose are
constructed using the spin-reversal transformation (see section 1.4.2).

3.2.2.1. Hamming distance analysis
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Figure 3.7.: Hamming distances of the low lying excited states from the ground state
averaged over 100 instances of 20-variable (a) 2-SAT problems and (b) fully-
connected random problems, and (c) a 20-variable fully-connected regular
problem.

Figure 3.7(a) shows the normalized Hamming distance distribution of the degenerate
first excited states, averaged over 100, 20-variable 2-SAT problems. All these states are
four units of energy away from the ground state. The average Hamming distance of the
first excited states of these problems is 11.07 with a standard deviation of 3.60, while
the distribution peaks at a Hamming distance of 12.00. This implies, that using, say,
simulated annealing, if one obtains one of these first excited states, one would need to do
about 11 exact spin-flips, on average, to obtain the ground state. This suggests that such
problems are hard to be solved using simulated annealing, which has shown to be the
case in [Neu14a; Neu14b]. However, this hardness of the 2-SAT problem is related to its
QUBO formulation. When represented in the implicative normal form, there exist classical
algorithms by which the 2-SAT problems can be solved in polynomial time utilizing some
special features of these problems. On the other hand, algorithms like simulated annealing
and quantum annealing do not exploit such features for solving the 2-SAT problems.

The normalized Hamming distance distribution of the lowest 4000 excited states, av-
eraged over 100 instances of 20-variable random problems, shown in Fig. 3.7(b), is very

39



3. Assessing the performance of the D-Wave systems

different compared to that for the 2-SAT problems. These energy levels can be up to sev-
enteen units of energy higher than the ground state. In this case, the average Hamming
distance between the lowest excited energy states is 8.33, the standard deviation is 4.16,
and the peak of the distribution lies at a Hamming distance of 5.00. This suggests that
these problems should be relatively easy to solve using simulated annealing.

For the regular problems, all the problem instances corresponding to a given N have the
same problem graph, and hence it suffices to look at the Hamming distance distribution
of the lowest 4000 energy levels for one N ≙ 20 problem instance. This is shown in
Fig. 3.7(c). In this case the energy of these levels can be up to twenty-four units of energy
higher than the ground state. The distribution in this case is quite distinct compared to
the previous two distributions, and the peak in this case lies at a Hamming distance of
4.00. We can therefore expect that out of the three classes of problems considered here,
the regular problems are the easiest to solve using simulated annealing.

3.2.2.2. Scaling analysis
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Figure 3.8.: Scaling of mean success probability as a function of problem size for (a) 2-
SAT problems, (b) fully-connected random problems, and (c) fully-connected
regular problems.

Next, we turn to the performance of the D-Wave Advantage_system5.1 quantum an-
nealer for solving these problems. For the 10 problem instances corresponding to each
N for the random and regular problems, we run 10 annealing trials using the default
annealing time TA ≙ 20 µs, and let the D-Wave’s ocean software automatically select the
embedding and the chain strength values. In Fig. 3.8, we show the scaling of the average
success probability of all the three classes of problems as a function of the problem size.
As the first observation, we note that the average success probability decreases monoton-
ically with an increase in the number of variables, for all the three classes. Since the size
of the 2-SAT problems is limited to 20 variables during the creation of these problems,
this is also the maximum size of the 2-SAT problems solved using DWAdv. On the other
hand, random and regular problem classes consist of problems with up to 200 variables.
For problems of the random class, the D-Wave annealer can find the solution for problem
sizes up to N ≙ 100 only (Fig. 3.8(b)). It should be noted that none of the 90-variable
random problems could be solved in even 20 trials of annealing performed in this case,
and only in one trial did we find the solution to one of the 100-variable problem instances.
In the case of the regular problems however, it is possible go up to problems with N ≙ 170
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before the problems become unsolvable by DWAdv. We may expect that choosing longer
annealing times should lead to an increase in the success probability of these problems,
hence making the larger problems solvable. Furthermore, as the size of the problems
increases, embedding the QUBO problems onto the qubit topology of the D-Wave system
becomes successively difficult. For example, for the 170-variable regular problems, 3964
physical qubits are required, and the software needs to make many attempts before it
finally finds an embedding of the problem on to the QPU.
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Figure 3.9.: Scaling of the chain length as a function of N for (a) random problems and
(b) regular problems.

Focusing now on the scaling aspect, we note the average success probability to be
exponentially decreasing as the problem size increases for all the three classes of problems.
As even a simple brute-force search for the ground state scales with an exponent of 0.693

with N , i.e., exponentially as a linear power of N , we use exponential functions of the
form a exp(−bN) to fit to the average success probability. We then use the exponent thus
obtained for large N as a measure of the hardness of the problem class. We find the
scaling exponents to be the smallest for the regular problems and largest for the 2-SAT
problems, which correlates well with the results from the Hamming distance analysis for
the three problem classes. Furthermore, in all the three cases, we see a crossover in the
scaling of the success probability as N increases. However, this crossover in the scaling
is not observed for the average chain length scaling shown in Fig. 3.9, which continues to
grow linearly as the size of the problem increases. Therefore, we regard the scaling for the
larger N to lie closer to the true asymptotic scaling behavior of the success probability.

3.3. Summary

In this chapter, we employed the D-Wave systems DW2000Q and DWAdv for solving
different optimization problems, made a comparison between the performances of these
systems, and compared the hardness of three classes of QUBO problems using DWAdv
with each other as well as their numerical estimates, i.e., the Hamming distance analysis
for small problem instances from these classes.

We found that there were significant differences in the performances of the two D-Wave
systems. It was observed that for the problems that had small success probabilities on
DW2000Q, the DWAdv system performed better than the DW2000Q system for a majority
of the problems, while for the easier problems the performances of the two systems were
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comparable. Some of the reasons behind such observations are an increased connectivity
of the qubits in the Pegasus topology on the DWAdv system, which results in shorter
chains of physical qubits representing a logical qubit of the problem. Conducting a more
detailed study to understand the other reasons for such observations can be one of the
future tasks.

Next, using the multiple-copies of the 2-SAT problems that effectively consist of up to
1200 variables, we found that the frequency distribution of the number of simultaneously
obtained copies of the problem follows the binomial distribution. This implies that the
different parts of the DWAdv system embedding different copies of the problem are able to
work independently of each other if the different copies of the problem are not connected.
For the multiple-copies problem made up from the 12-variable 2-SAT problems it was
possible to obtain the ground state of the problem, even when the different copies were
unconnected. On the other hand, for the multiple-copies problem comprising of the
hard 18-variable 2-SAT instance, the quantum annealer could not find the solution to the
combined problem, irrespective of whether or not different copies are connected. However,
for certain values of bonds between the different copies, the number of copies that could
be simultaneously solved could increase.

Our results also indicated that the probability of finding the solution to a given problem
depends strongly on the values of the parameters like the annealing time and relative chain
strength. At this point, it is worth mentioning that despite of the annealing times being
sufficiently long, the evolution of the state of the system is not guaranteed to be adiabatic,
as will be discussed in detail in chapter 6.

Lastly, using two classes of fully-connected QUBO problems and a set of 2-SAT prob-
lems, the scaling complexity of these problems obtained using the D-Wave annealer was
found to be well correlated with the estimates of their hardness from the Hamming dis-
tance distribution of the low-lying excited states with respect to the ground state of the
smaller problem instances of these classes.
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In the previous chapter, we studied the performance of the D-Wave systems for solving
2-SAT problems, and other problems derived from them. We also utilized these systems
to solve fully-connected QUBO problems, with the focus on the success probability as a
measure of the effectiveness of the approach for solving these problems. Another impor-
tant aspect, relevant in case of problems with more than one possible solution, is that of
sampling of all the solutions of a given optimization problem. More specifically, the focus
here is to assess the ability of quantum annealing to yield all the degenerate ground states
of the problem Hamiltonian in a fair manner, i.e., with comparable sampling probabilities.

In this chapter, we explore this aspect of quantum annealing, using both simulations
and the D-Wave quantum annealers. Furthermore, we make use of the reverse annealing
feature available in the D-Wave systems to gauge its efficacy in fairly sampling all the
solutions of the given problems. The main idea of the reverse annealing protocol is to
start in one of the low-lying eigenstates of the classical Hamiltonian at s ≙ 1, and anneal
backwards till a point sr, referred to as the reversal distance, by increasing the strength
of the transverse field. After an optional waiting time TW at sr, the system is again
swept towards s ≙ 1, in the hope of finding a state with lower energy than the state
in which the protocol started, or to sample more number of ground states if starting
from one of the ground states [PVA11; Cha17; Kin+18; OA18; VK19; Mar+19; ONL18;
Yam+19]. In order to compare the performance of a real quantum annealer with an ideal
implementation of the reverse annealing algorithm, we also perform the simulations of
the same. For this analysis, we use the new set of 2-SAT problems with four satisfying
assignments (see section 1.4.1.1).

In the following sections, we discuss the sampling results using the standard forward
quantum annealing as well as reverse annealing. Using the sets of 2-SAT problems with
ground state degeneracy of four, we use both simulations and the D-Wave quantum an-
nealers to study the fairness of quantum annealing in sampling all the ground states. We
first discuss the results obtained using the standard forward quantum annealing protocol
and then move to discussing the scope of reverse annealing in fairly sampling the ground
states.

4.1. Forward annealing

The standard quantum annealing protocol, as also implemented by a D-Wave quantum
annealer, starts from the uniform superposition state which slowly tends towards a classi-
cal state while, ideally, staying in the ground state of the instantaneous Hamiltonian at all
times. This process is implemented by choosing a scheme with a decreasing (increasing)
A(s) (B(s)) in the Hamiltonian Eq. (1.18). In this section, we study the efficiency of the
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Figure 4.1.: Average total success probability of the 2-SAT problem sets with ground state
degeneracy of four and 6 ≤ N ≤ 20 obtained from the numerical simulation
for TA ≙ 10, 100, 1000.

standard quantum annealing Hamiltonian in fairly sampling the degenerate ground states
of the problem Hamiltonian using simulations and the D-Wave’s Advantage_system5.1
(DWAdv).

4.1.1. Simulation results

We start by focusing on the numerically obtained results. We use annealing times TA ≙

10, 100, and 1000 for finding the probability of obtaining the four degenerate ground states
of the problem Hamiltonian for problem sets with 6 ≤ N ≤ 20, where each set contains
100 different problems.

As the first observation, we note from Fig. 4.1 that shows the average success probability
of the 100 problems of each set as a function of the problem size for a given annealing time
that the average total success probability, which is the average of the sum of the sampling
probabilities of the four degenerate ground states of the problem Hamiltonian, decreases as
the size of the problem increases. This can be explained as follows. In Section 6.2.1, we will
see that the minimum energy gap between the ground state and the first excited state of
the annealing Hamiltonian corresponding to the 2-SAT problems with a unique satisfying
assignment closes exponentially with increasing size of the problems. We expect that
the minimum energy gaps in the case of problem Hamiltonians with degenerate ground
states also shows a similar scaling behavior. The Landau-Zener theorem then suggests
that the success probability should also decrease with an increasing size of the system, if
the annealing time is kept fixed. Furthermore, while the average total success probability
decreases rapidly for TA ≙ 10 as the size of the problems increases, for the given sets of
problems, the average success probability corresponding to TA ≙ 1000 stays reasonably
large even for the problem set with N ≙ 20.
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Figure 4.2.: Energy spectrum of a 14-variable problem Hamiltonian labelled as problem
"230" with four degenerate ground states.

For a vast majority of the cases where the chosen annealing time is sufficient for even an
almost-adiabatic evolution of the state of the system (which mostly holds for TA ≙ 100 and
1000), we find that the sampling probabilities of the four ground states are approximately
equal, i.e., the sampling is fair. An example of such a 14-variable problem is given in
Tab. 4.1 labelled as problem "1". While this observation also holds for the annealing time
TA ≙ 10 for the smaller sets of the problems studied, as the size of the problems increases
the total success probability of the problems belonging to these sets decreases. From what
will become more apparent in Chapter 5, the annealing time TA ≙ 10 is not long enough
to ensure an adiabatic evolution of the state of the system. Furthermore, in Fig. 4.2, we
show the energy spectrum of a 14-variable problem belonging to this set. As also observed
for many other problems from the set of problems being studied (data not shown), we see
in Fig. 4.2 that the anticrossings between one energy level and the next are aligned in an
increasing order of the annealing parameter s, in a cascade like manner. These two factors
combined can lead to a large deviation of the state of the system from the instantaneous
ground state, resulting in a small success probability for a majority of the problems for
TA ≙ 10. However, it can happen that owing to certain non-adiabatic mechanisms the total
success probability of finding the ground state of the problem Hamiltonian is large despite
of the small annealing time chosen (see Section 5.1.3), but the sampling probability of the
four degenerate ground states might remain unequal.

For a few other cases, however, even with the long annealing times TA ≙ 100 and
1000 where the evolution of the state of the system remains almost adiabatic, we observe
unequal sampling probabilities of the four ground states. An example of such a 14-variable
problem is the problem labelled as problem "3" given in Tab. 4.1. For an annealing time
TA ≙ 1000, the sampling probabilities of the four ground states of this 2-SAT problem are
obtained to be 0.139, 0.361, 0.361, and 0.139.

In a yet more extreme case of unfair sampling we observe a few problems for which
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Table 4.1.: Three instances of 2-SAT problems: Problem "1" with almost fair sampling,
Problem "3" with unequal sampling probabilities of the four ground states,
and Problem "230" with zero sampling probability of one of the ground states.
Each row of the table represents a clause of the corresponding 2-SAT problem
consisting of two literals, where each literal can be a binary variable xi or its
negation xi.

Problem:"1" Problem:"3" Problem:"230"
x13 x14 x8 x10 x10 x13

x11 x13 x7 x14 x8 x13

x10 x12 x6 x11 x7 x14

x6 x8 x4 x11 x6 x14

x6 x11 x3 x5 x5 x12

x4 x6 x2 x14 x4 x8

x4 x10 x1 x11 x2 x9

x2 x14 x1 x4 x2 x12

x1 x5 x2 x12 x1 x11

x1 x9 x3 x6 x1 x3

x3 x5 x4 x14 x2 x8

x4 x14 x6 x11 x3 x12

x4 x9 x7 x10 x4 x9

x6 x10 x8 x13 x6 x11

x7 x13 x8 x9 x12 x13

Table 4.2.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of the

problem "230", corresponding to different annealing times TA, for the standard
quantum annealing Hamiltonian.

State TA = 10 TA = 100 TA = 1000∣ψ1
0
⟩ 0.1233 0.4427 0.4986∣ψ2

0
⟩ 0.0742 0.2605 0.2507∣ψ3

0
⟩ 0.0648 0.0131 9.56×10−10

∣ψ4
0
⟩ 0.0589 0.2214 0.2506

Total 0.3212 0.9377 0.9909
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even with a long annealing time like TA ≙ 1000, the sampling probability of one of the
four ground states is totally suppressed. One such problem instance has been given in
Tab. 4.1 labelled as problem "230". In this case we find the sampling probabilities of the
degenerate ground states to be 0.499, 0.251, 9.56 × 10−10, and 0.251 for TA ≙ 1000. The
energy spectrum for problem "230" is shown in Fig. 4.2. The sampling probabilities of the
four ground states for other annealing times are shown in Tab. 4.2.

4.1.2. D-Wave results

Next, we inspect the performance of DWAdv for fairly sampling the ground states of
the degenerate problem Hamiltonians. We choose an annealing time of 4 µs, and as for
the simulations, find the sampling probabilities of all the ground states of the degenerate
problem sets at hand. In Fig. 4.3, we show the average total success probability of the
problem sets corresponding to 10 ≤ N ≤ 20 for the chosen annealing time. It is evident from
the figure that the average success probability is comparable to the simulation results with
annealing time TA ≙ 1000, despite of choosing a much longer annealing time on DWAdv
(TA ≙ 1000 in simulations is approximately equivalent to 50 ns in the D-Wave energy
scale). This is indicative of the presence of noise and temperature effects in the D-Wave
system.
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Figure 4.3.: Average total success probability of the 2-SAT problem sets with gorund state
degeneracy of four with 10 ≤ N ≤ 20 obtained from DWAdv for TA ≙ 4µs.

In this case we find a more fair sampling of the four ground states compared to the
numerical results, even for cases like problem "3" and "230" for which the simulation with
TA ≙ 1000 resulted in unequal sampling probabilities of the ground states. For the 14-
variable problem "230", which had close to zero sampling probability of the third ground
state in case of simulation with TA ≙ 1000, DWAdv results in sampling probabilities of
0.2470, 0.3124, 0.1552, and 0.2765, respectively. It should also be noted that the annealing
time TA ≙ 4 µs is much longer compared to the simulation time TA ≙ 1000.
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4.1.3. Perturbation theory

The observations noted from the simulation results regarding the sampling probabilities,
at least in the long annealing time limit, can be understood using perturbation theory.
More specifically, for sufficiently long annealing times, the sampling behavior of the ideal
quantum annealing algorithm can be explained on the basis of the instantaneous ground
state of the Hamiltonian in the vicinity of s ≙ 1, which can be approximated using pertur-
bation theory. In this section, we consider three examples of 14-variable 2-SAT problems
with four satisfying assignments, which have been given in Tab. 4.1 and have different
sampling probabilities, and use perturbation theory to understand the sampling results
[MNK09; Kön+19].

In the limit s ≈ 1, the instantaneous Hamiltonian can be approximated as the problem
Hamiltonian HP with a small perturbation V (the initial Hamiltonian) added to it. When
the annealing time is sufficiently long for the state of the system to follow the ground
state of the instantaneous Hamiltonian, the ground state of this perturbed Hamiltonian
around s ≈ 1 can be used to obtain an estimate for the sampling probabilities of the
ground states of the problem Hamiltonian. However, since the degenerate subspace of
such Hamiltonians is essentially equivalent to the identity operator in any energy basis
(after factoring out the common energy eigenvalue), the choice for the basis vectors for
the degenerate subspace of the Hamiltonian becomes arbitrary. Employing perturbation
theory for obtaining an estimate for the ground state of such Hamiltonians around s ≙ 1

requires choosing a basis suitable for obtaining the first- and second-order corrections in
energy and the wavevector. To keep the degenerate perturbation theory going, this basis
should be the basis that diagonalizes the initial Hamiltonian in the degenerate subspace.
As the perturbation matrix we have Vi,j ≙ ⟨ψi

0
∣HI ∣ψj

0
⟩, where HI is the initial Hamiltonian

and ∣ψi
0
⟩ for i ≙ 1, 2, 3, 4 are the four degenerate ground states of the problem Hamiltonian

in the computational basis. If the lowest energy eigenvalue of the perturbation matrix
V is non-degenerate, the addition of the perturbation lifts the degeneracy in the ground
energy of the problem Hamiltonian. This can be shown to be the case using Appendix B.
The sampling probabilities of the four ground states of the problem Hamiltonian are then
given by ∣ai∣2, where ∣ν1⟩ ≙ ∑4

i=1 ai ∣ψi
0
⟩ is the eigenvector of the perturbation matrix with

the smallest eigenvalue and the index i corresponds to the different ground states of the
problem Hamiltonian.

We start with problem labelled as problem "1", observed to have an almost fair sampling
of the four ground states, i.e., the ground states sampling probabilities are obtained to
be 0.250, 0.249, 0.251, and 0.250 from the numerical simulations for TA ≙ 1000. The
four ground states for problem "1" are ∣ψ1

0
⟩ ≙ ∣10101010000000⟩, ∣ψ2

0
⟩ ≙ ∣10101011000000⟩,∣ψ3

0
⟩ ≙ ∣10101010000100⟩, and∣ψ4

0
⟩ ≙ ∣10101011000100⟩. The first-order perturbation matrix for this problem is thus

given as

V ≙

⎛⎜⎜⎜⎝
0 −1 −1 0

−1 0 0 −1

−1 0 0 −1

0 −1 −1 0

⎞⎟⎟⎟⎠
. (4.1)

The ground state of this perturbation matrix is ∣ν1⟩ ≙ (0.5, 0.5, 0.5, 0.5). Thus, for this
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case we can expect uniform sampling probabilities of the four ground states in the long
annealing time limit according to the first-order perturbation theory.

As the second example, we choose the 14-variable problem labelled as problem "3" and
given in Tab. 4.1, for which the sampling probabilities of the four ground states are 0.139,
0.361, 0.361, and 0.139 for TA ≙ 1000. The four ground states of this problem Hamiltonian
are ∣ψ1

0
⟩ ≙ ∣00100000000000⟩, ∣ψ2

0
⟩ ≙ ∣00000100000000⟩, ∣ψ3

0
⟩ ≙ ∣00100100000000⟩, and ∣ψ4

0
⟩ ≙∣00001100000000⟩. The first-order perturbation matrix in this case is

V ≙

⎛⎜⎜⎜⎝
0 0 −1 0

0 0 −1 −1

−1 −1 0 0

0 −1 0 0

⎞⎟⎟⎟⎠
, (4.2)

and the lowest eigenvector of V is given as ∣ν1⟩ ≙ (0.372, 0.601, 0.601, 0.372) . Thus, the
probability to obtain ground state ∣ψi

0
⟩, where i ≙ 1, 2, 3, 4 given by ∣ai∣2, are obtained

to be 0.138, 0.362, 0.362, and 0.138, respectively. These values are in close agreement
with the sampling probabilities obtained numerically for this problem with annealing time
TA ≙ 1000.

Lastly, we look at the more extreme case of unfair sampling, i.e., we consider problem
"230" where the sampling probability of the third ground state was found to be totally
suppressed even for TA ≙ 1000. The four ground states of this problem Hamiltonian are∣ψ1

0
⟩ ≙ ∣11110100100101⟩, ∣ψ2

0
⟩ ≙ ∣11110100110101⟩, ∣ψ3

0
⟩ ≙ ∣10100101000111⟩, and ∣ψ4

0
⟩ ≙∣11110100100111⟩. The perturbation matrix for this problem is thus

V ≙

⎛⎜⎜⎜⎝
0 −1 0 −1

−1 0 0 0

0 0 0 0

−1 0 0 0

⎞⎟⎟⎟⎠
. (4.3)

From Eq. (4.3), we can clearly see that the third ground state of the Hamiltonian is
completely decoupled from the rest of the three ground states. The eigenvector of the
first-order perturbation matrix with the smallest eigenvalue is ∣ν1⟩ ≙ 1/2(√2, 1, 0, 1). This
implies that the sampling probability of the ground state ∣ψ3

0
⟩ can be expected to be

zero, which was indeed the result of the simulations corresponding to TA ≙ 1000 (see
Tab. 4.2). Such a suppression of the ground state is not observed for TA ≙ 10, where
the sampling probabilities of the degenerate ground states are comparable and the total
success probability is much smaller. This is, as explained previously, due to the fact that
the annealing time TA ≙ 10 is too short for preventing the state of the system from leaking
out of the ground-state subspace following the cascade of anticrossings. Furthermore, in
the presence of noise and temperature effects, as in the case of the D-Wave annealers, the
evolution of the state of the system need not be adiabatic, in spite of long annealing times,
and thus higher energy levels can still be involved. These energy levels might then have
a finite overlap also with the ground state ∣ψ3

0
⟩ which is expected to have a suppressed

sampling probability according to the ground state of the perturbed Hamiltonian. This is
indeed observed in the sampling behavior from DWAdv, where the sampling probabilities
of the four ground states are almost fair for problem "230" and other such problems in the
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set. Thus, put differently, beyond the adiabatic limit, one is not guaranteed to witness
a suppression of any of the ground states that one would expect based on perturbation
theory.

4.2. Reverse annealing

Having discussed the performance of the standard forward quantum annealing protocol in
sampling the ground states of degenerate problem Hamiltonians, we now turn to analyzing
the same using reverse annealing. The reverse annealing feature in the D-Wave annealers is
accompanied by many annealing controls. In order to compare the sampling performances
of the D-Wave systems and the simulations, we implement similar choices of controls in our
simulations. These include the forward and reverse annealing times, the reversal distance,
inclusion of the waiting time, and the choice of the initial state. In the following, we discuss
the impact of these choices one by one, starting first with the simulation results, and then
moving to those obtained using DWAdv. For this analysis we use the 14-variable problem
"230" discussed in the previous section, whose third ground state is theoretically expected
to have a sampling probability of zero in the long annealing time limit.

4.2.1. Simulation results

In this section, we focus on the simulation results for the sampling of the four degenerate
ground states of the problem Hamiltonian for different choices of the annealing controls.
We choose one of the ground states of the problem Hamiltonian as the initial state of the
algorithm. From the view point of obtaining a better solution, it is not useful to start
the reverse annealing algorithm in the ground state of the problem Hamiltonian, as the
protocol cannot yield any lower classical state in the end. However, this is a valid choice
for studying the sampling behavior of the ground states.

Varying the annealing time

We start with studying the effects of various annealing times on the sampling probabilities
of the four ground states obtained using the simulations. For this, we choose equal reverse
and forward annealing times, no waiting time, a reversal distance sr ≙ 0.7, and initialize
the system in the first ground state. Similar in spirit to our discussion above, choosing
large values like sr ≙ 0.7 for the reversal distances is also not a good choice for reverse
annealing to yield a better solution, as starting from one of the low-lying excited states,
the reverse annealing protocol can only be useful if the system is allowed to reach a
reversal distance comparable to the s value corresponding to the relevant anticrossing(s)
so that lower energy levels become accessible. However, from the sampling point of view,
such a choice can be considered as a valid choice.

Table 4.3 shows the resulting probabilities of the four ground states of the considered
degenerate problem Hamiltonian corresponding to different annealing times from which
a couple of observations follow. We note that the total success probability, which is
simply the sum of the sampling probabilities of the four ground states, is close to 1 for all
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Table 4.3.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of

the problem "230", corresponding to different annealing times TA, where the
reverse annealing time is chosen to be same as the forward annealing time.
The initial state is chosen to be ∣ψ1

0
⟩, the reversal distance is sr ≙ 0.7, and no

waiting times are added.
State TA = 10 TA = 50 TA = 90 TA = 100 TA = 500 TA = 1000∣ψ1

0
⟩ 0.1891 0.4348 0.9011 0.0296 0.7374 0.2614∣ψ2

0
⟩ 0.4053 0.2822 0.0495 0.4051 0.1313 0.3693∣ψ3

0
⟩ 1.47×10−4 2.73×10−5 2.87×10−6 4.92×10−6 2.83×10−7 3.21×10−8

∣ψ4
0
⟩ 0.4031 0.2829 0.0493 0.4852 0.1313 0.3692

Total 0.9976 0.9990 1.000 1.0000 1.0000 1.000

the annealing times, and increases as the annealing time increases. This is an expected
behavior, as according to the Landau-Zener theory, upon increasing the annealing time,
the probability of the amplitude to get transferred from the ground state (in this case the
ground subspace) to the higher excited level (in this case the fourth excited state) should
decrease. This results in an increase in the total success probability.

Next, we observe that as the annealing time increases from TA ≙ 10 to TA ≙ 1000, the
sampling probability of the first ground state, i.e., the state from which the algorithm
starts, fluctuates, and gets distributed over the second and fourth ground state of the
problem Hamiltonian. This can be understood as follows. In terms of the new basis chosen
for the degenerate subspace of the problem Hamiltonian, as described in section 4.1.3, the
first ground state is given as

∣ψ1

0⟩ ≙ 1√
2
∣ν1⟩ − 1√

2
∣ν4⟩ , (4.4)

where ∣ν1⟩ ≙ 1/2(√2, 1, 0, 1) and ∣ν4⟩ ≙ 1/2(−√2, 1, 0, 1) are the eigenvectors corresponding
to the smallest and the largest eigenvalues of the perturbation matrix, respectively. Let
us assume that at the end of the annealing process, the final state of the system, restricted
to the subspace of the ground state is

∣ψ⟩ ≙ R1e
iϕ1 ∣ν1⟩ +R2e

iϕ2 ∣ν2⟩ +R3e
iϕ3 ∣ν3⟩ +R4e

iϕ4 ∣ν4⟩ , (4.5)

where Ri is the real part of the complex amplitude of the final state, ϕi is the acquired
phase, and i ≙ 1, 2, 3, 4. However, taking into account the overlap of the system state
during the annealing process with the lowest four instantaneous energy states of the
Hamiltonian, shown in Fig. 4.4, we observe that in terms of the instantaneous energy
eigenbasis, the amplitudes present in the first and the fourth states remain nearly constant
during the annealing process. This suggests that the chosen annealing time is sufficiently
long for a nearly adiabatic evolution. Thus, we can approximate the final state at the end
of the annealing protocol as

∣ψ⟩ ≙ 1√
2

eiϕ1 ∣ν1⟩ + 1√
2

eiϕ4 ∣ν4⟩ . (4.6)
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Figure 4.4.: Instantaneous overlap of the state of the system with the four lowest energy
eigenstates of the Hamiltonian for sr ≙ 0.7 and TA ≙ 100 during the reverse
annealing phase (s changes from 1 to sr) followed by the annealing phase (s
changes from sr to 1).

Since the four eigenvectors ∣νi⟩ are mutually orthogonal, the individually acquired phases
ϕi are physically irrelevant if the sampling probabilities are measured in the eigenbasis of
the perturbation Hamiltonian. However, as the computational basis is generally chosen
to be the measurement basis, and the ground states ∣ψi

0
⟩ of the problem Hamiltonian have

finite overlaps with the ∣νi⟩’s, we have

⟨ψi
0∣ψ⟩ ≙ R1e

iϕ1 ⟨ψi
0∣ν1⟩ +R4e

iϕ4 ⟨ψi
0∣ν4⟩ . (4.7)

Thus, when the sampling probabilities are measured in the computational basis, i.e.,∣ψi
0
⟩, the individual phases ϕi lead to interference, and in turn to fluctuations in the

sampling probabilities of the ground states of the problem Hamiltonian. As the third
ground state of the problem Hamiltonian does not have any overlap with ∣ν1⟩ or ∣ν4⟩,
the sampling probability of this state remains fairly low at the end of the anneal, and
decreases systematically with increasing the annealing time.

Varying the reversal distance

We now study the sampling probabilities of the ground states of the problem Hamiltonian
as a function of different reversal distances. We fix the annealing time to TA ≙ 1000, do
not add any waiting times, start with the first ground state, and vary the reversal distance
such that 0.4 ≤ sr ≤ 0.8. The resulting sampling probabilities of the four ground states
are shown in Tab. 4.4. We observe that the total success probability, which is the sum of
the sampling probabilities of the four ground states, decreases as the value of the reversal
distance is decreased, except for sr ≙ 0.4. This decrease can be explained on the basis of
the energy spectrum of this problem Hamiltonian, given in Fig. 4.2. For this problem, the
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Table 4.4.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of the

problem "230", corresponding to different reversal distances sr, with annealing
time TA ≙ 1000, ∣ψ1

0
⟩ as the initial state, and without any waiting time.

State sr = 0.4 sr = 0.5 sr = 0.6 sr = 0.7 sr = 0.8∣ψ1
0
⟩ 0.0703 0.4507 0.8310 0.2614 0.6147∣ψ2

0
⟩ 0.2874 0.0513 0.0566 0.3693 0.1926∣ψ3

0
⟩ 0.0012 0.0010 1.84×10−6 3.21×10−8 8.66×10−10

∣ψ4
0
⟩ 0.2739 0.0789 0.0579 0.3692 0.1926

Total 0.6396 0.5820 0.9454 1.0000 1.0000

anticrossing between the instantaneous fourth excited state and fifth excited state occurs
around sr ≙ 0.62, while that between the instantaneous ground state and the first excited
state occurs around s ≙ 0.42. Lowering the reversal distance to these values promotes the
transfer of the amplitude present within the ground subspace to leak out of the ground
subspace. This results in an overall decrease in the total success probability.

From Tab. 4.4, we also see that the sampling probability of the first ground state of
the problem Hamiltonian is not 1, while those of the second and the fourth ground states
are non-zero. This can once again be explained on the basis of interference between the
complex amplitudes when the instantaneous energy eigenbasis is chosen to express the
state of the system, since ∣νi⟩ have finite overlaps with ∣ψi

0
⟩ for i ≙ 1, 2, 3, 4. To understand

the underlying dynamics in more detail, we look at the instantaneous overlaps of the state
of the system with the ten lowest energy eigenstates of the Hamiltonian for sr ≙ 0.6 and
sr ≙ 0.4, and TA ≙ 100.
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Figure 4.5.: Instantaneous overlap of the state of the system with the four lowest energy
eigenstates of the Hamiltonian for sr ≙ 0.6 and TA ≙ 100.

Starting first with the overlap of the state vector with the instantaneous low-lying states
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of the Hamiltonian for sr ≙ 0.6 (see Fig. 4.5), we observe that in this case, the amplitude
present in the first state (∣ν1⟩) stays approximately the same throughout the annealing
process, except for small fluctuations. On the other hand, almost all of the amplitude
present in the fourth state shifts to the fifth state at the anticrossing between them that
occurs around s ≙ 0.62 (see the corresponding energy spectrum in Fig. 4.2). Some of
the amplitude present in the fifth state then gets transferred to the sixth state at the
anticrossing between the sixth and fifth energy states around s ≙ 0.6, all of which returns
to the fifth state as the forward part of the protocol starts at sr ≙ 0.6. Upon reaching
s ≙ 0.62 most of the amplitude in the fifth state returns to the fourth state, though some
of it still stays in the fifth state. From this point on, the amplitude present in the fourth
state remains more or less constant.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1.00 0.88 0.76 0.64 0.52 0.40 0.52 0.64 0.76 0.88 1.00

O
v
e

rl
a

p

s

State:1
State:2
State:3
State:4
State:5
State:6
State:7
State:8
State:9

State:10

Figure 4.6.: Instantaneous overlap of the state of the system with the four lowest energy
eigenstates of the Hamiltonian for sr ≙ 0.4 and TA ≙ 100.

Moving on next to the instantaneous overlap corresponding to sr ≙ 0.4, shown in
Fig. 4.6, we can immediately observe the involvement of the higher energy levels in this
case. It can be noted that while the amplitude present in the first state still stays com-
parable to the initial amplitude at the end of the annealing algorithm, the amplitude
present in the fourth state is significantly smaller at the end. We observe that the am-
plitude present in the fourth state goes up to the tenth state, following the intermediate
states sequentially at the respective anticrossings (see Fig. 4.2 for the corresponding en-
ergy spectrum), from where most of the amplitude is lost to the higher excited states.
The remaining amplitude returns to the fourth state following the same trajectory in
the forward part of the anneal. Additionally, some of the amplitude present in the first
state is shifted to the second state around the point of anticrossing between these two
levels, which occurs around s ≙ 0.42, but returns to the first state in the forward part
of the annealing protocol. Another feature of interest observed in all the cases shown in
Tab. 4.4 is that the sampling probability of the third ground state stays the smallest for
all values of reversal distances. However, this probability increases as the value of the
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reversal distance is decreased. This is an expected behavior, since for small enough s

values, the third state can also be accessed via the other three lowest lying states through
the relevant anticrossings.

Varying the waiting time

Keeping the annealing time fixed at TA ≙ 100, and the reversal distance fixed at sr ≙ 0.7,
we next investigate how the sampling probabilities of the ground states change with
different waiting times. As before, we start with the first ground state as the initial state.
The waiting time is varied from 0 to 40. With the chosen values of the annealing time
and the reversal distance, the total success probability remains close to 1. In Fig. 4.7,
we show the resulting sampling probabilities of the first and the third ground states.
As the first observation, we note that on varying the waiting time TW , the sampling
probabilities of both the ground states oscillate. The reason behind this oscillation is
that different components of the wavefunction (expressed in the instantaneous energy
eigenbasis) acquire different phases, which depend on the duration of the wait. This
results in different initial states for the forward part of the algorithm, which then lead
to different sampling probabilities in the end. Secondly, from Fig. 4.7(b), we observe
that although the sampling probability of the third ground state is also oscillating, the
probability itself is of the order O(10−6).
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Figure 4.7.: Success probability of (a) the ground state ∣ψ1
0
⟩ and (b) ∣ψ3

0
⟩ as a function of

different waiting times.

A different choice for the initial state

Lastly, we discuss the effects of starting with a different ground state, namely the third
ground state, whose sampling probability was found to be suppressed in the simulation
for forward annealing for long annealing times. We vary the annealing time while setting
sr ≙ 0.7 and do not include any waiting times. The resulting sampling probabilities are
given in Tab. 4.5. As before, for this setting, the total success probability remains close to
1. The main difference in this case, compared to the case where the system is initialized in
the first ground state is that even for relatively smaller annealing times, e.g., TA ≙ 10, most

55



4. Fair sampling

Table 4.5.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of

the problem "230", corresponding to different annealing times TA, where the
reverse annealing time is chosen to be same as the forward annealing time.
The initial state is chosen to be ∣ψ3

0
⟩, the reversal distance is sr ≙ 0.7, and no

waiting times are added.
State TA = 10 TA = 100 TA = 1000∣ψ1

0
⟩ 1.47×10−4 4.92×10−6 3.21×10−8

∣ψ2
0
⟩ 3.07×10−4 3.71×10−3 1.97×10−5

∣ψ3
0
⟩ 0.9963 0.9928 0.9996∣ψ4

0
⟩ 4.28×10−4 3.41×10−3 1.72×10−5

Total 0.9968 1.0000 1.0000

of the amplitude comes back to the state in which the algorithm starts, i.e., ∣ψ3
0
⟩, and thus

the sampling probabilities of the other ground states remain fairly low. This is because for
this problem the third ground state, or equivalently, the second excited state is decoupled
from the rest of the four lowest lying instantaneous eigenstates according to perturbation
theory. As per Eq. (4.3), the initial Hamiltonian cannot drive transitions between the
second excited states, and the other three lowest lying energy states. Furthermore, as
expected, with increasing annealing time, the sampling probability of the third ground
state is found to increase.

4.2.2. D-Wave results

Having discussed the performance of the ideal reverse annealing algorithm in the context
of fairly sampling the ground states of degenerate problem Hamiltonians, we now turn
to do the same using DWAdv. In doing so, we study the impact of the above-mentioned
controls offered with the reverse annealing feature on the D-Wave systems one by one.
It should however be emphasized here that the energy scale on the D-Wave annealers is
very different from that in simulations, and the annealing time of 1000 in simulations
roughly corresponds to 50 ns in the D-Wave systems. Another point of difference is that
the D-Wave systems do not follow a linear annealing schedule, unlike the one chosen for
the simulations.

Varying the annealing time

As in the case of simulations, we start with varying the annealing time, while keeping
the reversal distance fixed at sr ≙ 0.7 and without adding any waiting time. Once again,
we choose the first ground state as the initial state. The obtained sampling probabilities
are shown in Tab. 4.6. Firstly, we note that for the chosen parameters, the total success
probability remains very close to 1. Secondly, in this case, we find the sampling probability
of the third ground state, i.e., the energy eigenstate that is decoupled from the other
lowest four eigenstates at s ≈ 1 as per Eq. (4.3), to be zero for all the considered annealing
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Table 4.6.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of the

problem "230" obtained using DWAdv, corresponding to different annealing
times TA, where the reverse annealing time is chosen to be same as the forward
annealing time. The initial state is chosen to be ∣ψ1

0
⟩, the reversal distance is

sr ≙ 0.7, and no waiting times are added.

State TA = 0.5µs TA = 4µs TA = 10µs TA = 50µs TA = 100µs TA = 200µs∣ψ1
0
⟩ 0.9991 0.9873 0.9805 0.6709 0.7380 0.5405∣ψ2

0
⟩ 0.0006 0.0063 0.0091 0.1470 0.1075 0.2490∣ψ3

0
⟩ 0 0 0 0 0 0∣ψ4

0
⟩ 0.0003 0.0064 0.0099 0.0830 0.1545 0.2105

Total 1.0000 1.0000 0.9995 0.9009 1.0000 1.0000

times. This suggests that just as for the simulation results with long annealing times,
the initial Hamiltonian HI cannot transfer amplitude from the other three of the four
lowest instantaneous eigenstates to the second excited state in the D-Wave annealer too.
However, it is seen that the sampling probability of the first ground state fluctuates as
the annealing time increases, and gets distributed over the other two ground states, i.e.,∣ψ2

0
⟩ and ∣ψ4

0
⟩. Although on much longer annealing time scales, such a behavior is similar

to that observed from the simulation results, and may be attributed to the interference
between the phases acquired in the different components of the final state, when expressed
in the eigenbasis of the perturbation matrix. In our results for the sampling probabilities
using forward annealing, we observed that the D-Wave systems are not ideal, and noise
and temperature effects also facilitate the exchange of amplitudes within the low-lying
energy states of the annealing Hamiltonian, thereby affecting the sampling probabilities
in case of forward annealing. However, in this case, since the sampling probability of the
third ground state is found to be zero, this suggests that in this regime, the noise and
temperature effects do not play as significant a role as in the case of forward annealing.

Varying the reversal distance

Moving on to the effects that different reversal distances might have on the sampling
probabilities, we vary the reversal distances between sr ≙ 0.8 to sr ≙ 0.3, while keeping the
annealing time TA ≙ 20 µs fixed and choosing the first ground state to be the initial state,
without adding any waiting times. Table 4.7 shows the obtained sampling probabilities.
It is observed that the sampling probabilities of ∣ψ2

0
⟩, ∣ψ3

0
⟩, and ∣ψ4

0
⟩ are non-zero. This

can again be explained on the basis of the phases acquired by the different components
of the final state and/or the noise and temperature effects which cause an exchange
of amplitudes between the low-lying energy eigenstates of the Hamiltonian. While the
sampling probability of the third ground state remains the smallest as compared to the
other three ground states for all the values of sr, this value increases as the value of the
reversal distance is lowered. This can be understood on the basis of the anticrossing
between instantaneous ground state and the first excited state (see Fig. 4.2). As in the
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Table 4.7.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of

the problem "230" obtained using DWAdv, corresponding to different reversal
distances sr, with annealing time TA ≙ 20µs, ∣ψ1

0
⟩ as the initial state, and

without any waiting time.
State sr = 0.3 sr = 0.4 sr = 0.5 sr = 0.6 sr = 0.7 sr = 0.8∣ψ1

0
⟩ 0.2173 0.4080 0.3412 0.3120 0.9287 1.0000∣ψ2

0
⟩ 0.2468 0.3235 0.4269 0.4075 0.0401 0∣ψ3

0
⟩ 0.1725 0.0065 0.0005 0 0 0∣ψ4

0
⟩ 0.2665 0.2556 0.2279 0.2751 0.0295 0

Total 0.9031 0.9936 0.9965 0.9946 0.9983 1.0000

case of the simulations, in the case of the D-Wave system also we observe that some of the
amplitude from the state vector can leak out to higher excited states when one reaches s

values close to those corresponding to the cascade of anticrossings. This can also render
the second excited state accessible, which is otherwise decoupled from three of the of the
lowest four instantaneous eigenvectors of the annealing Hamiltonian in the limit s ≈ 1

according to perturbation theory.

Varying the waiting time

Next, we focus on the effects of choosing different waiting times TW on the sampling
probabilities. For this we fix TA ≙ 4 µs, sr ≙ 0.7, and start with the first ground state as
the initial state. The obtained sampling probabilities are shown in Tab. 4.8. Although
for short waiting times, we obtain the first ground state as the most probable state, as
the waiting time increases the sampling probability of the ∣ψ1

0
⟩ decreases, albeit with

some fluctuations. This can be explained on the basis of accumulation of different phases
in the components corresponding to the instantaneous energy states, and the noise and
temperature effects present in the system. On the other hand, though the sampling
probability of ∣ψ1

0
⟩ is found to be oscillating, the sampling probability of the third ground

state stays exactly zero.

Table 4.8.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of

the problem "230" obtained using DWAdv, corresponding to different waiting
times TW , with TA ≙ 4µs. The initial state is chosen to be ∣ψ1

0
⟩, and the reversal

distance is sr ≙ 0.7.

State TW = 5µs TW = 10µs TW = 20µs TW = 50µs TW = 100µs TW = 500µs TW = 1000µs∣ψ1
0
⟩ 0.7904 0.6894 0.4114 0.3161 0.1480 0.2490 0.1888∣ψ2

0
⟩ 0.0968 0.1674 0.3092 0.2558 0.1479 0.4410 0.1988∣ψ3

0
⟩ 0 0 0 0 0.0066 0.0010 0.0112∣ψ4

0
⟩ 0.1102 0.1403 0.2617 0.4271 0.1304 0.2210 0.2250

Total 0.9974 0.9971 0.9922 0.9990 0.4329 0.9120 0.6238
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4.2. Reverse annealing

On a side remark, we note that except for annealing times TW ≙ 100 µs and TW ≙

1000 µs, the total success probability stays close to 1, which is expected for the cho-
sen annealing time and the reversal distance. Since the total success probability should
ideally be independent of the waiting time, the values obtained for these two annealing
times appears to be an anomaly. As the DWAdv system has been replaced by Advan-
tage_system5.3 in the mean time, we rerun the 14-variable problem labelled as "230" on
this solver. The resulting sampling probabilities are given in Tab. 4.9. Not only do the
results obtained from the rerun of the problem have a larger total success probability
for TA ≙ 100, 1000 µs, but the total success probability is obtained to be one for all the
waiting times now, while the sampling probability of the third ground state is exactly zero
for all waiting times, suggesting that the new system has certain improvements compared
to the previous version of DWAdv.

Table 4.9.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of the

problem "230" obtained using Advantage_system5.3, corresponding to differ-
ent waiting times TW , with TA ≙ 4µs. The initial state is chosen to be ∣ψ1

0
⟩,

and the reversal distance is sr ≙ 0.7.

State TW = 5µs TW = 10µs TW = 20µs TW = 50µs TW = 100µs TW = 500µs TW = 1000µs∣ψ1
0
⟩ 0.7621 0.5577 0.5225 0.3152 0.4205 0.4680 0.4050∣ψ2

0
⟩ 0.0994 0.2148 0.2026 0.4306 0.2990 0.3000 0.3262∣ψ3

0
⟩ 0 0 0 0 0 0 0∣ψ4

0
⟩ 0.1385 0.2275 0.2749 0.2542 0.2805 0.2320 0.2688

Total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

A different choice for the initial state

Lastly, we focus on the sampling performance of the reverse annealing feature of the D-
Wave system when the system is initialized in a state different from first the ground state.
As for the simulations, we choose the third ground state for this purpose, and look at
the success probabilities of the four ground states for different annealing times, reversal
distances, and waiting times.

We start by discussing the effects of varying the annealing times on the sampling prob-
abilities of the ground states. These results are not shown explicitly. In this case, we note
that for various annealing times chosen (ranging from 4 to 500 µs) and sr ≙ 0.7, ∣ψ3

0
⟩ is

sampled with a probability larger than 0.9, except for TA ≙ 500 µs, where the sampling
probability is 0.7945. The sampling probability of the other ground states is found to be
zero. This is in contrast to the system being initialized in the first ground state, where the
sampling probability of the other ground states, except for the third ground state, was ob-
served to be non-zero. Such a result suggests that the sampling behavior from DWAdv is
consistent with the perturbation matrix Eq. (4.3), according to which the second excited
state of the instantaneous Hamiltonian at s ≈ 1 does not have any overlap with the other
lowest four eigenstates. Similar results (not shown) are obtained upon adding different
waiting times (with TA ≙ 4 µs and sr ≙ 0.7). Changing the reversal distance while keeping

59



4. Fair sampling

all the other parameters fixed results in a similar sampling behavior as noted when the
system is initialized in ∣ψ1

0
⟩ (see Tab. 4.10).

Table 4.10.: Sampling probabilities of the degenerate ground states ∣ψi
0
⟩, i ≙ 1, 2, 3, 4, of

the problem "230" obtained using DWAdv, corresponding to different reversal
distances sr, with annealing time TA ≙ 20µs and ∣ψ3

0
⟩ as the initial state, and

without any waiting time.
State sr = 0.3 sr = 0.4 sr = 0.5 sr = 0.6 sr = 0.7 sr = 0.8∣ψ1

0
⟩ 0.2642 0.1109 0.0165 0 0 0∣ψ2

0
⟩ 0.2267 0.1033 0.0357 0.0001 0 0∣ψ3

0
⟩ 0.1086 0.4304 0.8473 0.9329 0.9953 1.0000∣ψ4

0
⟩ 0.3603 0.1682 0.0231 0.0002 0 0

Total 0.9598 0.8128 0.9226 0.9332 0.9953 1.0000

4.3. Summary

Although the success probability of finding the correct solution is the main metric used for
gauging the performance of approaches like quantum annealing for solving optimization
problems, there are a few other performance measures that become relevant in specific
contexts. One such measure is the efficiency of quantum annealing in yielding all the
solutions to an optimization problem with more than one possible solution, which was
the focus of this chapter. To this end, we studied two annealing protocols using both
simulations as well as the D-Wave quantum annealer Advantage_system5.1 (DWAdv).
The first protocol used was the standard quantum annealing protocol, in which the system
starts in a uniform superposition state and slowly approaches a classical state, which
should ideally be the solution to the encoded optimization problem. The other protocol
was the reverse annealing protocol, as implemented by D-Wave, wherein the system starts
in a low-energy classical state, and anneals backwards up to a certain reversal distance,
by increasing the strength of the transverse field, which is then lowered to return to a
classical state again. This was done in the hope of finding more than one degenerate
ground state of the problem Hamiltonian.

For the purpose of this study, we used a set of newly constructed 2-SAT problems with
four satisfying assignments, with the number of variables in the problems varying from
6 ≤ N ≤ 20. Using simulations and DWAdv, we then studied the sampling probabilities of
four ground states of all the problem Hamiltonians for different annealing times.

While for a majority of the problems we found the simulations for the standard quantum
annealing algorithm to sample the ground states with approximately equal probabilities,
for a few problems the sampling probability of one of the ground states was found to be
totally suppressed, even for long annealing times. This could be justified on the basis
of perturbation theory and we focused on such problems for understanding how the two
protocols sample the ground states for different choices of annealing parameters. Such a
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4.3. Summary

suppression was not observed if the chosen annealing time was short, in which case the
total success probability (the sum of the sampling probabilities of the four ground states)
was found to be small. This could be explained on the basis of the energy spectrum of the
annealing Hamiltonian. Furthermore, using the reverse annealing protocol, we did find a
suppression in the sampling probability of the ground state theoretically predicted to have
a zero sampling probability. The sampling behavior in this case depended significantly
on the choice of the parameters like the annealing time, reversal distance, inclusion of a
waiting time at the point of reversal, and the initial state, and could be uniform for a few
choices of these parameters.

Employing the DWAdv system, a similar analysis for gauging the sampling behavior
was performed. In the case of standard quantum annealing, however, we did not witness
any suppression in the sampling probability of any ground state, and the four ground
states were sampled with an almost equal probability of 0.25. This made apparent that
the D-Wave systems are not ideal quantum annealers, and noise and temperature effects
play a significant role in their performance. On the other hand, for the reverse annealing
protocol the results were in better agreement with the theoretical predictions based on
the ideal system, i.e., we could observe a suppression in the sampling probability of a
ground state, although as for the simulations, the annealing controls played a major role
in deciding the sampling behavior. We therefore concluded that in the regime of large
reversal distances like sr ≙ 0.7, the noise and temperature effects play a less significant
role in the D-Wave system.
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5. Adding the trigger Hamiltonian

So far, we have only considered annealing Hamiltonians and annealing features that could
be implemented on real quantum annealers, like the ones from D-Wave Inc. In this chap-
ter we expand the scope of the discussion beyond such Hamiltonians using simulations.
The focus of this chapter is therefore on the performance of the ideal annealing algo-
rithm, i.e., annealing in the absence of temperature and noise effects. We start with the
quantum annealing Hamiltonian that consists of the standard initial Hamiltonian, i.e.,
the uniform transverse Hamiltonian given by Eq. (1.20), and the final problem Hamilto-
nian that encodes the optimization problem that needs to be solved, and choose a linear
annealing scheme. In addition to the set of 2-SAT problems, we use sets of nonstoquastic
problems constructed using the 2-SAT problems for benchmarking the quantum annealing
algorithm.

There are numerous studies indicating that introducing modifications to the standard
algorithm for quantum annealing can have considerable effects on its performance. These
include exploring different choices for the initial Hamiltonian, modifying the annealing
path, inclusion of nonstoquastic terms in the annealing Hamiltonian, and manipulating
the anneal path for each qubit individually [FGG02; Far+09; MNK09; SN12a; SN12b;
Cro+14; SN15; ZZS16; NT17; Hor+17; ÖJV18; Alb19; Hsu+19; Kön+19; TYN20; Cha20;
Meh+21]. The effects of these modifications depend also on the optimization problem at
hand.

In this chapter, we focus on the performance of the quantum annealing Hamiltonian
with the introduction of an additional term, called the trigger Hamiltonian, to the stan-
dard quantum annealing Hamiltonian given by Eq. (1.19), for solving the given sets of
2-SAT and nonstoquastic problems. The trigger Hamiltonian is chosen to consist of trans-
verse couplings, which vanish at the beginning and the end of the annealing process. This
ensures that one can still start in the easy-to-prepare ground state of the initial Hamil-
tonian, and obtain the solution to the given problem at the end of the algorithm. We
choose a linear scheme for the initial and the final Hamiltonians, such that,

H(t) ≙ (1 − s)HI + s(1 − s)HT + sHP , (5.1)

where HT ≙ −g∑Jx
i,jσ

x
i σx

j , and parameter g controls the strength of the trigger Hamilto-
nian. In this work, we only consider trigger Hamiltonians of the ferromagnetic (J ≙ 1) and
antiferromagnetic (J ≙ −1) kind [Hor+17], and leave the study of other types for future
research.

As discussed in section 1.3, nonstoquastic Hamiltonians can have positive and/or imag-
inary off-diagonal elements when represented in the computational basis. Such Hamil-
tonians cannot be efficiently simulated using quantum Monte Carlo methods due to the
sign problem [Loh+90; TW05; GH20]. There are various studies suggesting that the
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5. Adding the trigger Hamiltonian

inclusion of a nonstoquastic term in the quantum annealing Hamiltonian can be benefi-
cial for its performance [SN12a; Hor+17; NT17; SJN17; Alb19; Cro+20; Lyk+21]. The
addition of the antiferromagnetic trigger Hamiltonian makes the annealing Hamiltonian
nonstoquastic, and it is therefore interesting to study its effect on the performance of
quantum annealing. We also utilize quantum annealing for solving nonstoquastic prob-
lem Hamiltonians, by extending the set of problem Hamiltonians corresponding to the
2-SAT problems, by adding couplings along the y− direction, with strength 0.5, according
to the graph of the 2-SAT problem Hamiltonian, i.e.,

HP ≙ −∑

i

hi
zσi

z
−∑

i,j

(Jz
i,jσi

zσj
z
+

1

2
σi

yσj
y). (5.2)

In the following subsections, we discuss the effects of adding the two types of trigger
Hamiltonians, with three choices of the strength parameter, namely, g ≙ 0.5, 1.0, 2.0, on
the performance of quantum annealing in terms of the minimum energy gap between the
ground state and the first excited state of the annealing Hamiltonian (determined using the
Lanczos algorithm), and the final success probability corresponding to different annealing
times (making use of the Suzuki-Trotter product formula algorithm). In addition, by
investigating a few individual cases, we identify some of the non-adiabatic mechanisms
that can be advantageous for the performance of quantum annealing.

We choose three sets of 2-SAT and nonstoquastic problems, with problem sizes N ≙ 8, 12

and 18. As we observe similar results for the three problem sets, we only show the ensemble
results for the N ≙ 18 sets, while the results from N ≙ 12 sets are shown as examples for
some special cases.

In this chapter, we showcase the results obtained from implementing the standard quan-
tum annealing Hamiltonian, as well as the annealing Hamiltonians with the ferromagnetic
and the antiferromagnetic trigger Hamiltonians, for solving the sets of 2-SAT and nonsto-
quastic problems. We start by discussing the results for the 18-variable 2-SAT problems,
and then focus on the results for the nonstoquastic problems.

5.1. 2-SAT problems

In the following subsections, we discuss the performance of the three variants of the
quantum annealing algorithm introduced above, one by one.

5.1.1. Standard Hamiltonian

We start with the analysis of the performance of the standard quantum annealing Hamil-
tonian, given by Eq. (1.19) for solving the 2-SAT problems. First, we determine the
minimum energy gap ∆O between the ground state and the first excited state of the an-
nealing Hamiltonian, for all the 2-SAT problems. Then, we perform the simulations for
the dynamics of the quantum annealing algorithm for all the problems, using annealing
times TA ≙ 10, 100, 1000 and 10000. Since the ground state of these problems is already
known, the success probability pO is then obtained by computing the overlap of the final
state resulting from the algorithm with the known ground state of the problem.
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5.1. 2-SAT problems

As explained in section 1.3.2, if the annealing time chosen is sufficiently long for the
evolution to be almost adiabatic, Eq. (1.24) can give an estimate of the success probability
in terms of the minimum energy gap between the relevant energy levels. Following the
same argument, if the success probability can show a Landau-Zener like dependence on the
minimum energy gap between the ground state and the first excited state, the evolution of
the state during the annealing process can be taken to be roughly adiabatic. To investigate
these aspects, in Fig. 5.1 we show the scatter plot of the success probability pO, against
the minimum energy gap ∆O. Fixing the parameter b obtained from fitting the function
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Figure 5.1.: Success probability pO versus minimum energy gap ∆O for 18-variable 2-SAT
problems for various annealing times TA, for the standard quantum annealing
Hamiltonian given by Eq. (1.19).

p ≙ 1 − exp(−a∆b) to the data corresponding TA ≙ 10000, we reduce the parameter a by
a factor of 10 and 100 for the fits for the data corresponding to TA ≙ 1000 and TA ≙ 100,
respectively. The resulting curves match well with the data, and the exponent b is found
to be 2.19. This makes the form of the fitting function similar to the Landau-Zener
formula Eq. (1.24), for which b ≙ 2, and parameter a is related to the inverse of the
speed of sweep. The formula therefore predicts an increase in the success probability as
the annealing time increases, which can also be observed from Fig. 5.1. Although the
Landau-Zener formula is derived for a two-level system, it seems that its predictions also
hold for more complicated systems if the chosen annealing times are sufficiently long, i.e.,
in the limit where the system can be approximated by a two-level system. However, in this
case, the parameter b can deviate slightly from 2, as is true for the 18-variable problems
considered here. For short annealing times, on the other hand, the success probability
need not follow the Landau-Zener formula, and hence, we observe a significant scattering
in the data corresponding to TA ≙ 10 in Fig. 5.1. A fit for the data corresponding to
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5. Adding the trigger Hamiltonian

TA ≙ 10 has been omitted for this reason. As shall become clear from section 5.1.3, for
the annealing time TA ≙ 10, the non-adiabatic mechanism of fast annealing can enhance
the success probability despite of a small minimum energy gap.

Furthermore, it can be noted from Fig. 5.1 that even for an annealing time TA ≙ 10000,
the success probability for the problems with small minimum energy gaps (present in the
tail of the fitting functions) is on the order of O(10−3). Although these problem sizes are
rather small, i.e., N ≤ 18, these problems are hard to solve using the standard quantum
annealing Hamiltonian.

5.1.2. Hamiltonian with the ferromagnetic trigger Hamiltonian

Next, we analyze the effects of adding the ferromagnetic trigger Hamiltonian to the stan-
dard quantum annealing Hamiltonian given by Eq. (1.19) in terms of the minimum energy
gap and the success probability of the annealing Hamiltonian.
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Figure 5.2.: Minimum energy gap ∆F for 18-variable 2-SAT problems after adding the
ferromagnetic trigger Hamiltonian to the standard quantum annealing Hamil-
tonian Eq.(1.19) versus minimum energy gap ∆O without adding the trigger
Hamiltonian, for various trigger strengths g.

As noted from the adiabatic theorem (Eq. (1.22)), the minimum energy gap between
the ground state and the first excited state of the annealing Hamiltonian is crucial for the
performance of the annealing algorithm. We therefore start by observing how the inclusion
of the ferromagnetic trigger Hamiltonian affects the minimum energy gaps. We find that
the number of anticrossings between the ground state and the first excited state does not
change upon adding the ferromagnetic trigger Hamiltonian, but the position of the anti-
crossings shifts towards larger values of s. Figure 5.2 shows a scatter plot of the minimum
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5.1. 2-SAT problems

energy gaps ∆F upon adding the ferromagnetic trigger Hamiltonian (Eq. (5.1)), against
the minimum energy gaps ∆O from the standard annealing Hamiltonian (Eq. (1.19)), for
the problem set with N ≙ 18 and g ≙ 0.5, 1.0, 2.0. In this case, we observe an enlargement
of the minimum energy gaps for all the problems belonging to the set, and for all the
chosen g values. Furthermore, we observe that the enlargement of the minimum energy
gaps increases as the strength of the trigger Hamiltonian increases.
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Figure 5.3.: Success probability pF versus the minimum energy gap ∆F for the 18-variable
2-SAT problems upon adding the ferromagnetic trigger Hamiltonian to the
Hamiltonian Eq. (1.19) for trigger strengths (a) g ≙ 0.5, (b) g ≙ 1.0 and (c)
g ≙ 2.0.

In Fig. 5.3, we show scatter plots of the success probability pF obtained upon adding
the ferromagnetic trigger Hamiltonian to the annealing Hamiltonian given by Eq. (1.19),
against the resulting minimum energy gap ∆F for g ≙ 0.5, 1.0, 2.0. We observe a successive
increase in the success probability with increasing annealing time, as well as increasing
strength of the trigger Hamiltonian. Such a behavior follows from the Landau-Zener
theory, where for a given minimum energy gap the success probability increases with
increasing annealing time, and for a given annealing time, an increase in the minimum
energy gap (in this case, a consequence of increasing the trigger strength) also leads to an
increase in the success probability. Furthermore, as in the previous section, the Landau-
Zener kind of curves are found to fit the data well, with parameter b ranging between
the values of 2.20 and 2.34. Although there is some scattering of the data points at the
tail for TA ≙ 10, its extent is much smaller compared to that obtained with the standard
annealing Hamiltonian (Fig. 5.1).

Next, in order to understand the extent to which adding the ferromagnetic trigger
Hamiltonian can enhance the success probability, in Fig. 5.4 we show the distribution of
the relative success probability, defined as the ratio of the success probability obtained
upon adding the trigger Hamiltonian with a certain strength to that obtained from the
standard quantum annealing Hamiltonian, for g ≙ 0.5, 1.0, 2.0 and TA ≙ 10, 100, 1000.
From the figure it can be clearly seen that the success probabilities resulting from the
quantum annealing Hamiltonian with the ferromagnetic trigger (Eq. (5.1)) are larger than
the success probabilities obtained from the standard quantum annealing Hamiltonian
(Eq. (1.19)), i.e., pF /pO

> 1, for all g and TA, except for 17 problems with g ≙ 0.5 and
TA ≙ 10. The latter observation can be explained on the basis of the flat tail observed
in Fig. 5.1 for TA ≙ 10 due to the non-adiabatic mechanism of fast annealing (discussed
in Section 5.1.3) for the standard quantum annealing Hamiltonian (Eq. (1.19)), which
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5. Adding the trigger Hamiltonian

Figure 5.4.: Distribution for the relative success probability pF /pO upon adding the fer-
romagnetic trigger Hamiltonian to the Hamiltonian Eq. (1.19) with trig-
ger strengths (a) g=0.5, (b) g=1.0 and (c) g =2.0 for annealing times
TA ≙ 10, 100, 1000.

results in a relatively large pO. We also note that the relative success probability is at
least of the order O(102) for long annealing times TA ≙ 100 and 1000 for the three values
of g studied. Another observation that follows from the figure is that upon increasing
the strength of the trigger Hamiltonian, the number of problems with a large relative
success probability increases systematically for all values of TA. This can be attributed to
the systematic increase in the minimum energy gap as the strength of the ferromagnetic
trigger Hamiltonian increases (see Fig. 5.2). Furthermore, it can be noted that although
the distributions of pF /pO corresponding to TA ≙ 100 and TA ≙ 1000 are similar in the
case where the trigger is added with a strength g ≙ 0.5, as the trigger strength increases,
the maximum value of the relative success probability corresponds to TA ≙ 100 and not
TA ≙ 1000. This can be explained on the basis of Fig. 5.1 from where it is evident that
for a majority of the problems the success probability pO is the smallest for TA ≙ 100 (on
the order of O(10−6) in the worst case), while upon adding the ferromagnetic trigger (see
Fig. 5.3) the success probability pF is significantly enlarged (on the order of O(10−1) in
the worst case). As the annealing time increases from TA ≙ 100 to 1000, pO improves
significantly but there is no margin for that large improvement in pF . Thus, for the
ferromagnetic trigger Hamiltonian, we obtain the largest value of the relative success
probability for g ≙ 2.0 and TA ≙ 100 (almost O(106)).
5.1.3. Hamiltonian with the antiferromagnetic trigger Hamiltonian

In addition to altering the minimum energy gaps between the ground state and the first
excited state of the annealing Hamiltonians, the addition of the antiferromagnetic trigger
Hamiltonian to the standard quantum annealing Hamiltonian (Eq. (1.19)) can vastly affect
the energy spectrum of the annealing Hamiltonian in other ways. The most prominent
of these changes is the increase in the number of anticrossings between the ground state
and the first excited state of the annealing Hamiltonian. As can be seen from Tab. 5.1,
a majority of the problems have more than one anticrossing with the addition of the
antiferromagnetic trigger. Furthermore, the number of problems with a larger number
of anticrossings between the lowest two energy levels increases as the strength of the
trigger is increased, such that for g ≙ 2.0, a maximum number of problems have four such
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Table 5.1.: Number of 18-variable 2-SAT problems with different numbers of anticrossings,
NA, after adding the antiferromagnetic trigger Hamiltonian with strengths g,
to the Hamiltonian Eq. (1.19). The whole set consists of 1000 problems.

NA g = 0.5 g = 1.0 g = 2.0

1 796 37 0
2 204 394 24
3 0 468 182
4 0 99 424
5 0 2 290
6 0 0 68
7 0 0 12

anticrossings, while the maximum number of anticrossings is seven. The addition of the
antiferromagnetic trigger Hamiltonian can also lead to a stretching of the anticrossing
(such that the lowest two states stay in close vicinity for a more extended range of the
annealing parameter s), and a leftward shift in the position of the anticrossings, i.e., to
a smaller value of s. Thus the inclusion of the antiferromagnetic trigger Hamiltonian
can affect the performance of the quantum annealing algorithm in various ways, which
depends greatly on the problem itself. In the present section, we study the effects of adding
the antiferromagnetic trigger on the performance of the quantum annealing algorithm by
conducting a similar analysis as with the ferromagnetic trigger Hamiltonian, and inspect
a few individual cases to identify some non-adiabatic mechanisms accompanied with the
addition of the former.

Table 5.2.: Number of 18-variable 2-SAT problems with increased success probabilities
after adding the antiferromagnetic trigger with strengths g, to the Hamiltonian
Eq. (1.19). The whole set consists of 1000 problems.

g TA = 10 TA = 100 TA = 1000

0.5 732 10 3
1.0 627 798 992
2.0 41 754 844

Starting with the analysis of the minimum energy gap, we note that the inclusion of
the antiferromagnetic trigger Hamiltonian can either increase or decrease the minimum
energy gap between the ground state and the first excited state, in comparison to that of
the standard quantum annealing Hamiltonian. For the set of 1000 2-SAT problems with
N ≙ 18, only 4 out of the 1000 problems are found to have a larger minimum energy gap
compared to that of the standard quantum annealing Hamiltonian for g ≙ 0.5, but this
number increases to 565 and 792 for g ≙ 1.0 and g ≙ 2.0, respectively. While this trend
of increasing number of cases with an enlarged minimum energy gap as a consequence of
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5. Adding the trigger Hamiltonian

adding the antiferromagnetic trigger Hamiltonian with higher strength is also present for
the problem set with N ≙ 12, only a small fraction of problems have a larger minimum
energy gap for g ≙ 2.0 (202 problems out of the set of 1000 problems).

Figure 5.5.: Distribution for the relative success probability pA/pO upon adding the anti-
ferromagnetic trigger Hamiltonian to the Hamiltonian Eq. (1.19) with trigger
strengths (a) g=0.5, (b) g=1.0 and (c) g =2.0 for TA ≙ 10, 100, 1000.
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Figure 5.6.: Success probability pA versus the minimum energy gap ∆A for the 18-variable
2-SAT problems upon adding the antiferromagnetic trigger Hamiltonian to
the Hamiltonian Eq. (1.19) for trigger strengths (a) g ≙ 0.5, (b) g ≙ 1.0 and
(c) g ≙ 2.0.

Like the minimum energy gaps, the success probability obtained from the annealing
Hamiltonian upon adding the antiferromagnetic trigger Hamiltonian can also be smaller
or larger than that obtained using the standard quantum annealing Hamiltonian, as shown
in Tab. 5.2. For understanding the extent of the increase or decrease in the success
probability, Fig. 5.5 shows the distribution of the relative success probability pA/pO when
the antiferromagnetic trigger Hamiltonian with g ≙ 0.5, 1.0, 2.0 is added and TA is chosen
to be 10,100, or 1000. A couple of observations follow from this figure. We note that for the
case where the antiferromagnetic trigger Hamiltonian is added with strength g ≙ 0.5, not
only a majority of the problems have a significantly larger success probability for TA ≙ 10,
but also the relative success probability is larger (O(103)) compared to that for TA ≙ 100

and 1000. It can also be seen that for this case the smallest relative success probability
is of the order O(10−8) and corresponds to TA ≙ 1000. These observations are somewhat
counter-intuitive and can be explained on the basis of the non-adiabatic mechanisms
(discussed below) which play a significant role in the dynamics when the antiferromagnetic
trigger Hamiltonian is added to the annealing Hamiltonian (Eq. (1.19)). Next, we observe
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5.1. 2-SAT problems

that as the strength of the antiferromagnetic trigger Hamiltonian increases to g ≙ 1.0 and
g ≙ 2.0, the distribution of pA/pO changes considerably. While for g ≙ 1.0 the spread of the
relative success probabilities is similar for all the annealing times, for g ≙ 2.0 the values
for the relative success probability is larger for TA ≙ 100 and 1000 compared to that for
TA ≙ 10. This is related to the increase in the minimum energy gaps as the strength of the
antiferromagnetic trigger increases. The largest value of the relative success probability
is found to be of the order O(104) for g ≙ 2.0 and TA ≙ 100 and 1000.

Coming now to the success probability versus minimum energy gap plots, shown in
Fig. 5.6, we observe a much more significant scattering in the data as compared to that for
the standard annealing Hamiltonian as the strength of the trigger Hamiltonian increases.
This can be explained on the basis of an increase in the number of anticrossings between
the ground state and the first excited state as the strength of the trigger Hamiltonian
increases. It can also be noted, that the distribution of the data points corresponding to
TA ≙ 10 and g ≙ 0.5 is rather flat. Since for g ≙ 0.5, the minimum energy gap is reduced
for almost all the problems of the set, the annealing time TA ≙ 10 is too short for the
system to follow the Landau-Zener formula. Such a behavior of the success probability
is similar to the one where noise is present in the system, or when the system is coupled
to a heat bath, and the transitions from the ground state to the higher states can occur
at points other than those corresponding to the s value of the anticrossings. As the
annealing time increases, the success probability follows the Landau-Zener formula more
closely. Furthermore, as the minimum energy gaps increase with increasing strength of
the trigger Hamiltonian, the flatness in the distribution of the data points corresponding
to TA ≙ 10 decreases.

The flatness in the distribution of the success probabilities for TA ≙ 10 and g ≙ 0.5

suggests that despite of a small value of the minimum energy gap between the ground
state and the first excited state, the resulting success probability is large. Moreover,
there is a decrease in the success probability as the annealing time increases. Both these
observations are incompatible with the implications of the Landau-Zener formula. To
give plausible explanations for such observations, we look at some of the 12-variable
problems, and identify three non-adiabatic mechanisms that are noted to be beneficial for
the resulting success probability.

• Fast annealing: Although according to the Landau-Zener formula, long annealing
times are required for high success probabilities, in some cases, a short annealing
time can prove to be more advantageous than a longer intermediate value of anneal-
ing time. An example of one such problem is shown in Fig. 5.7 for g ≙ 0.5. In this
case, with an annealing time TA ≙ 100, the state of the system follows the instan-
taneous ground state closely till the point of anticrossing between the ground state
and the first excited state. Upon reaching the anticrossing, however, the state of the
system shifts most of its amplitude to the first excited state. As a consequence, the
final state at the end of the annealing process has a small overlap with the ground
state of the problem Hamiltonian, therefore resulting in a small success probability.

On the other hand, for a too short annealing time TA ≙ 10, the system state already
deviates from the ground state before reaching the anticrossing. In this case, some
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Figure 5.7.: Energy spectrum of the lowest lying states for a 12-variable problem showing
fast annealing in the case that g ≙ 0.5. The solid lines represent the energy
spectrum of the lowest lying states of the problem while the markers represent
the average energy of the instantaneous state of the system for TA ≙ 10 and
100.

of the amplitude shifted to the first excited state returns to the ground state at the
anticrossing, thereby increasing the final success probability. In some other cases it
is found that even if the energy of the final state with TA ≙ 10 is larger than that
compared to TA ≙ 100, the resulting success probability can still be higher for the
former. This is because in these cases the state of the system closely follows the first
excited state after the anticrossing for TA ≙ 100, which has a negligible overlap with
the ground state, while the combination of higher excited states that the system
ends in with TA ≙ 10 can coincidentally have a larger overlap with the ground state.
Such an observation is also noted in [Cro+14].

• Even number of comparably small anticrossings: Another possible non-adiabatic
mechanism observed to be beneficial for the success probability is the presence of
an even number of comparably small anticrossings between the ground state and
the first excited state of the annealing Hamiltonian, as shown in Fig. 5.8(a) for a
12-variable problem corresponding to g ≙ 2.0 with two anticrossings (s ≙ 0.165 and
s ≙ 0.248) (indicated by the two dotted circles in the figure). For the given set
of 2-SAT problems, such a combination of comparably small and even number of
anticrossings is found to be rather rare, and we find at most two such anticrossings.
From Fig. 5.8(b) for the overlap of the state of the system with the instantaneous
ground state, first excited state, and the second excited state of the Hamiltonian,
we can see that the amplitude from the system state is transferred from the ground
state to the first excited state at the first anticrossing. Upon reaching the second
anticrossing at s ≙ 0.248, most of this amplitude returns to the ground state. This
increases the overlap of the final state with the ground state.
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Figure 5.8.: (a) Energy spectrum of the lowest lying states represented by solid lines (the
dotted circles indicate the positions of the two anticrossings between the
ground state and the first excited state) and (b) the overlap of the state
of the system with the instantaneous low energy states for TA=100 for a 12-
variable 2-SAT problem with two comparably small anticrossings and g=2.0.

Such an evolution of the state of the system is similar to the one employed in [SNK12]
for solving glued-tree problems [Chi+03]. An "almost" adiabatic evolution of the
state of the system is suggested in this work, which makes use of the symmetry and
gap structure of the spectrum to design a schedule that transits the state of the
system from the ground state to the first excited state at the first anticrossing, and
then from the first excited state to the ground state at the second anticrossing, to
offer a (sub)exponential quantum speedup [AL18a].
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Figure 5.9.: (a) Energy spectrum of the lowest lying states represented by solid lines (the
dotted ellipse indicates the stretching of the anticrossing between the ground
state and the first excited state) and (b) the overlap of the state of the system
with the instantaneous low energy states for TA=100 for a 12-variable 2-SAT
problem with a stretched anticrossing at g ≙ 2.0.

• Stretching of the anticrossing: In some cases, it is also observed that adding the an-
tiferromagnetic trigger Hamiltonian, as is the case for the problem shown in Fig. 5.9
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5. Adding the trigger Hamiltonian

for g ≙ 2.0, alters the shape of the anticrossing such that it appears stretched (as
indicated by the dotted ellipse in panel (a) of the figure). In this case, it is ob-
served that the lowest two energy states stay in close proximity for a more extended
range of s. According to the adiabatic theorem (Eq. (1.22)), the minimum anneal-
ing time required to ascertain an adiabatic evolution also depends on the rate of
change of the Hamiltonian with respect to the annealing parameter. Adding the
antiferromagnetic trigger Hamiltonian can alter this rate, and can therefore affect
the final success probability. Moreover, the proximity of the ground state and the
first excited state can also induce oscillations in the amplitude of the state of the
system between the two levels, which can, coincidentally, lead to a higher success
probability at the end of the annealing process.

5.2. Nonstoquastic problem Hamiltonians

For the sets of problems obtained using Eq. (5.2), we perform quantum annealing us-
ing the standard quantum annealing Hamiltonian (Eq. (1.19)), as well as the annealing
Hamiltonians with ferromagnetic and antiferromagnetic trigger Hamiltonians (Eq. (5.1)).

Starting with the analysis of the minimum energy gaps using the standard quantum
annealing Hamiltonian for solving the set of nonstoquastic problems, we observe that
unlike the set of 2-SAT problems, in this case the number of anticrossings between the
ground state and the first excited state is not necessarily 1. In the set of 1000 18-
variable nonstoquastic problems, 353 problems are found to have two anticrossings, while
19 problems have three anticrossings. Another feature of difference observed in comparison
to the 2-SAT problems is that the minimum energy gaps in case of the nonstoquastic
problem are of O(10) smaller.
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Figure 5.10.: Success probability po versus minimum energy gap ∆O for 18-variable non-
stoquastic problems for various annealing times TA for the standard quantum
annealing Hamiltonian given by Eq. (1.19).
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From Fig. 5.10 showing the scatter plot of the success probability obtained using the
standard quantum annealing Hamiltonian (Eq. (1.19)) against the corresponding min-
imum energy gaps, we observe that the system still largely exhibits the Landau-Zener
behavior for annealing times TA ≙ 100 and TA ≙ 1000. However, due to an increase in
the number of the anticrossings between the ground state and the first excited state, and
a decrease in the value of the minimum energy gaps, which in turn makes the annealing
time TA ≙ 10 too short, giving way to the non-adiabatic mechanism of fast annealing,
we observe more scattering of the data points in comparison to Fig. 5.1 for the problem
Hamiltonian corresponding to the 2-SAT problems.

Unlike the case for the 2-SAT problems, the effects of including the ferromagnetic trigger
Hamiltonian, are not as straightforward for the nonstoquastic problem Hamiltonians. In
this case, the addition of the ferromagnetic trigger Hamiltonian is accompanied by an
enlargement of the minimum energy gap between the ground state and the first excited
state for a majority, but not all of the problems of the set. We find that the number of such
cases increases with increasing the strength of the trigger Hamiltonian, and out of a set
of 1000 18-variable problems, 656, 713, and 837 problems, have a larger minimum energy
gaps compared to the standard quantum annealing Hamiltonian (Eq. (1.19)) for g ≙ 0.5,
1.0, and 2.0, respectively. Furthermore, adding the ferromagnetic trigger Hamiltonian
also decreases the number of anticrossings between the ground state and the first excited
state of the annealing Hamiltonian. For the set of nonstoquastic problem Hamiltonians
considered here, only 98, 23, and 5 problems out of the 18-variable problem set have two
anticrossings upon adding the ferromagnetic trigger Hamiltonian with g ≙ 0.5, g ≙ 1.0,
and g ≙ 2.0, respectively.

Table 5.3.: Number of 18-variable nonstoquastic problems with increased success proba-
bilities after adding the ferromagnetic trigger Hamiltonian with strengths g to
the Hamiltonian Eq. (1.19). The set consists of 1000 problems.

g TA = 10 TA = 100 TA = 1000

0.5 722 596 592
1.0 851 678 647
2.0 928 815 763

Moving next to a comparison between the success probabilities from the annealing
Hamiltonian with the ferromagnetic trigger Hamiltonian and the standard quantum an-
nealing Hamiltonian for solving the set of 18-variable nonstoquastic problems, Tab. 5.3
shows the number of problems with an enhanced success probability for different strengths
of the trigger Hamiltonian and annealing times. We note, that a majority of problems
have a larger success probability upon adding the ferromagnetic trigger Hamiltonian for
all values of TA and g. However, for a given trigger strength, the number of problems with
an enhanced success probability decreases with increasing annealing time, although the
values of both success probabilities are close to one. This observation is incompatible with
the Landau-Zener formula, and to understand the reasons for it, we focus on the energy
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spectra and overlap of the state of the system of a 12-variable nonstoquastic problem with
the lowest three instantaneous energy states (see Fig. 5.11).
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Figure 5.11.: (a), (c), (e) Energy of the lowest lying states and overlap of the ground state
with the lowest three energy states for standard quantum annealing and (b),
(d), (f) after adding a ferromagnetic trigger with g=2.0 for a 12-variable non-
stoquastic problem. The solid lines in panels (a) and (b) represent the lowest
lying states while the points in panels (a) and (b) represent the average en-
ergy of the instantaneous state of the system for TA=10, 100. The overlap
is calculated for (c), (d) TA=10 and (e), (f) TA=100.

As for the example shown in Fig. 5.11(b), the addition of the ferromagnetic trigger
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5.2. Nonstoquastic problem Hamiltonians

Hamiltonian with g ≙ 2.0 leads to a change in the shape of the anticrossing between
the ground state and the first excited state for many problems of the 18-variable set.
According to the adiabatic theorem (Eq. (1.22)), the annealing time required to ascertain
an adiabatic evolution depends, additionally, on the rate of change of the Hamiltonian
with respect to the annealing parameter.

Considering first TA ≙ 10, from Fig. 5.11(c) we observe that for the standard quantum
annealing Hamiltonian, the state of the system deviates from the ground state before the
anticrossing between the lowest two energy levels, from where most of its amplitude is
transferred to the higher energy levels. On the other hand, for the quantum annealing
Hamiltonian with the ferromagnetic trigger Hamiltonian (see Fig. 5.11(d)), the amplitude
from the state of the system is shifted to the first excited state only at the anticrossing,
owing to a larger gap between the lowest two energy levels. Coincidentally, in this case,
the final state at the end of the annealing with the ferromagnetic trigger Hamiltonian has
a marginally larger overlap with the ground state of the problem Hamiltonian.

The annealing time TA ≙ 100, on the other hand, is long enough for the state of the
system to follow the instantaneous ground state up till the anticrossing for the standard
quantum annealing Hamiltonian (see Fig. 5.11(e)). The amplitude of the system state
transferred to the first excited state at the anticrossing, in this case, is smaller than that for
the annealing Hamiltonian with the ferromagnetic trigger Hamiltonian due to the shape
of the anticrossing in the latter. This explains the reason for a decrease in the number
of problems with enhanced success probabilities upon adding the trigger Hamiltonian as
the annealing time increases.

Lastly, the success probability pF versus the minimum energy gaps ∆F for the quantum
annealing Hamiltonian with the ferromagnetic trigger for different TA and g are shown in
Fig. 5.12. Compared to the problem Hamiltonians corresponding to the 2-SAT problems
(Fig. 5.3), the scatter plots for the nonstoquastic problems show much more scattering in
the data, which can be attributed to an increase in the number of anticrossings between
the ground state and the first excited state in the latter.
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Figure 5.12.: Success probability pF versus minimum energy gap ∆F for the 18-variable
nonstoquastic problems after adding the ferromagnetic trigger Hamiltonian
to Hamiltonian Eq. (1.19) with strengths (a) g=0.5, (b) g=1.0, (c) and g=2.0
and for various annealing times TA. The lines are fits to the data.

As the final case, we discuss the effects of adding the antiferromagnetic trigger Hamil-
tonian with different strengths to the annealing Hamiltonian for solving the nonstoquastic
problem Hamiltonians. These effects are quite similar as those observed for the case of

77



5. Adding the trigger Hamiltonian

the 2-SAT problems. The inclusion of the antiferromagnetic trigger Hamiltonian can ei-
ther increase or decrease the minimum energy gap between the lowest two energy levels,
although for the set of nonstoquastic problems a majority of the problems have a smaller
gap as a result of adding the antiferromagnetic trigger. We observe that out of the 1000
problems belonging to the 18-variable set, 406, 442, and 367 problems have an enlarged
minimum energy gap for g ≙ 0.5, g ≙ 1.0, and g ≙ 2.0, respectively. Furthermore, we also
note an increase in the number of the anticrossings between the ground state and the first
excited state as the strength of the annealing parameter increases (see Tab. 5.4).

Table 5.4.: Number of 18-variable nonstoquastic problems with different number of an-
ticrossings, NA, after adding the antiferromagnetic trigger Hamiltonian with
strengths g, to the Hamiltonian Eq. (1.19). The set consists of 1000 problems.

NA g = 0.5 g = 1.0 g = 2.0

1 276 18 0
2 597 306 25
3 121 494 166
4 6 171 407
5 0 11 310
6 0 0 86
7 0 0 6
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Figure 5.13.: Success probability pA versus minimum energy gap ∆A for the 18-variable
nonstoquastic problems after adding the antiferromagnetic trigger Hamilto-
nian to Hamiltonian Eq. (1.19) with strengths (a) g=0.5, (b) g=1.0, and (c)
g=2.0 and for various annealing times TA. The lines are fits to the data.

Due to this increase, the success probability versus the minimum energy gap plots for
the annealing Hamiltonian with the antiferromagnetic trigger for different annealing times
and trigger strengths, given in Fig. 5.13, shows a larger deviation of the data points from
the Landau-Zener behavior.
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5.3. Summary

In this chapter, the focus was on expanding the scope of the quantum annealing Hamil-
tonians by adding an additional term to the standard quantum annealing Hamiltonian,
namely, the trigger Hamiltonian. The trigger Hamiltonian was chosen such that it van-
ishes at the beginning and end of the annealing process. Furthermore, we employed two
kinds of trigger Hamiltonians, one with ferromagnetic transverse couplings, and the other
with antiferromagnetic transverse. The strength of these couplings was controlled using
the strength parameter g ≙ 0.5, 1, 2, and their graph was chosen to have the same couplings
as in the problem Hamiltonian.

We found that compared to the standard quantum annealing Hamiltonian, the mini-
mum energy gaps between the ground state and the first excited state of the annealing
Hamiltonian are enlarged by the addition of the ferromagnetic trigger Hamiltonian, for a
majority of the problems. This enlargement was observed to increase with increasing the
strength of the trigger Hamiltonian, which led to an enhancement in the resulting success
probability for a majority of the 2-SAT and nonstoquastic problems studied.

On the other hand, the addition of the antiferromagnetic trigger Hamiltonian to the
standard quantum annealing Hamiltonian can affect the energy spectrum vastly. It can
lead to an increase in the number of anticrossings between the ground state and the first
excited state, or change in the shape of the anticrossing. Adding the antiferromagnetic
trigger Hamiltonian could either increase or decrease the minimum energy gap between
the ground state and first excited state. Furthermore, the inclusion of the antiferromag-
netic trigger Hamiltonian can induce non-adiabatic mechanisms which could prove to be
beneficial for the success probability of the quantum annealing process. Such mecha-
nisms include fast annealing, or the presence of an even number of comparably small
anticrossings.

Thus, we found that the addition of the ferromagnetic trigger Hamiltonian improved
the performance of quantum annealing in a systematic manner by enlarging the minimum
energy gaps of the annealing Hamiltonian more for larger values of the trigger strength
in all the cases of the 2-SAT problems studied. We also found that the improvement in
the success probability (pF /pO) was of the order O(102) for a majority of the problems
with g ≙ 1.0, 2.0 and TA ≙ 100 and 1000, while the largest relative success probability was
close to O(106). Though the enhancement in the success probability was not observed
to be as probable for the annealing Hamiltonian with the antiferromagnetic trigger for
the 2-SAT problems, the largest relative success probability was still O(104). It is worth
mentioning that the conclusions drawn here are different from those in [Hor+17] where
the antiferromagnetic trigger Hamiltonian was found to deliver the largest improvement in
the relative success probability for solving spin-glass problems with up to 17 variables. We
found that the underlying mechanisms resulting in an improvement were very different for
the quantum annealing Hamiltonian with the antiferromagnetic trigger since they mostly
relied on a non-adiabatic evolution of the state of the system. Thus, both kinds of trigger
Hamiltonians considered in this work were found to be useful for solving 2-SAT problems
under different circumstances as they are beneficial in different regimes.
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6. Scaling and distribution of

quantifiers of quantum annealing

As quantum annealing was originally developed as an optimization algorithm, there has
been an active interest in gauging its efficiency for solving various optimization prob-
lems, ever since its conception [Bro+99; San+02; MST04; ST08; SN12a; SNK12; Sus+18;
AL18a; Hsu+19; Hau+20; CL21]. To this end, numerous investigations have been con-
ducted in the hopes of finding a speedup of quantum annealing over the existing classical
algorithms [SN12a; Røn+14; AL18b]. An active direction of research has also been the
study of the scaling behavior of quantum annealing as a function of the size of the problem
for different optimization problems [Boi+14; Røn+14; Kin+15; Hen+15; Neu14b; AL18b;
Wil+21; Kön+21; Meh+22a].

In this chapter, we study the distributions of the minimum energy gap between the
ground state and the first excited state of the annealing Hamiltonian, and the success
probability of quantum annealing for solving the sets of 2-SAT problems, corresponding
to different problem sizes. Subsequently, we focus on the scaling complexity of quan-
tum annealing, where we study the scaling of minimum energy gaps, and TTS99 (time to
solution), which is the run-time required to obtain the ground state of the problem Hamil-
tonian, at least once, with 99% certainty in multiple runs of the annealing algorithm. We
use both simulations and the D-Wave quantum annealers for solving these problems, and
compare their performances.

In order to examine the effects of introducing modifications to the standard quantum
annealing Hamiltonian on its performance, we also study the distributions and/or the
scaling of the three quantifiers listed above upon the addition of the trigger Hamiltonian to
the annealing Hamiltonian using simulations. For this, we use both the ferromagnetic and
the antiferromagnetic trigger Hamiltonians described in the previous chapter (Chapter 5)
with strength g ≙ 1.

6.1. Analysis criteria

For analyzing the distributions and determining the scaling complexity, we again make
use of the hard 2-SAT problems, with the number of variables N varying from 6 to 18.
The problem sets with N ≤ 9 have 100 problems each, while the larger sets have 1000
problems. However, we note that in every set, some problems have exactly the same
connectivity graph and biases, although different labels for the involved variables. Such
redundant problems are removed from every set. The resulting sets have more than 70
problems each for N ≤ 9, and more than 900 problems for 10 ≤ N ≤ 18 except for the sets
with N ≙ 15 and 18, which have 557 and 789 problems, respectively.
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As in the previous chapter, we use the Lanczos algorithm to determine the minimum
energy gaps, and the second-order Suzuki-Trotter product formula algorithm to implement
the dynamics of quantum annealing. In addition to this, we use two generations of
quantum annealers, DW_2000Q_6 (DW2000Q) and Advantage_system1.1 (DWAdv) for
solving the 2-SAT problems.

In the following subsections, we briefly discuss the three observables considered in this
work for assessing the complexity of the quantum annealing algorithm for solving the
given 2-SAT problems.

6.1.1. Minimum energy gap

According to the Landau-Zener formula (Eq.( 1.24)), the minimum energy gap between the
ground state and the first excited state of the annealing Hamiltonian is a crucial factor for
determining the success probability of the quantum annealing algorithm. Here, we study
the distribution of the minimum energy gaps for sets of 2-SAT problems corresponding to
fixed sizes, as well as the scaling of the minimum energy gaps as a function of the system
size. The distribution functions used as fits for the minimum energy gap distributions are
given in Appendix G.

For determining the scaling complexity of the minimum energy gaps as a function of
the size of the system, we calculate and plot the deciles of the minimum energy gaps
for the standard quantum annealing Hamiltonian, as well as for the Hamiltonian with
ferromagnetic and antiferromagnetic trigger Hamiltonians, all as a function of the problem
size. The scaling is then obtained by fitting appropriate functions to these deciles.

For sufficiently long annealing times, where the Landau-Zener theory holds (Eq. (1.24)),
the scaling behavior of the minimum energy gaps can be employed to obtain an estimate of
the scaling behavior of the annealing time required for an adiabatic evolution of the state
of the system. Defining, the correlation length ξ ≙ 1/∆min, according to the Landau-Zener
theory

TA ∝ ξ2, (6.1)

which suggests that if the correlation length increases exponentially, the annealing time
required to ascertain an adiabatic evolution of the state of the system also grows expo-
nentially, with an exponent twice as large.

6.1.2. Success probability

The next observable is the dynamic quantifier of quantum annealing, the success proba-
bility, which is the probability of obtaining the ground state of the problem Hamiltonian.
It is determined by calculating the overlap of the final state obtained at the end of the
annealing process with the known ground state of the problem Hamiltonian. We study
the distribution of the success probability for problem sets with fixed size, using both
simulations and the D-Wave systems DW2000Q and DWAdv. While DW2000Q uses the
Chimera qubit topology, the more recent DWAdv uses the more connected Pegasus topol-
ogy. Since in the Pegasus topology, each qubit has a connectivity degree of 15, while
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for the Chimera topology it is 6, a majority of the problems from each set could be di-
rectly embedded in DWAdv, whereas, approximately, only half of them could find a direct
embedding on DW2000Q.

For the simulations of the dynamics of quantum annealing, we choose the annealing
times TA ≙ 10, 100, 1000, and use the Hamiltonian Eq. (1.19) and Eq. (5.1) with ferromag-
netic and antiferromagnetic trigger Hamiltonian with g ≙ 1. As seen in Chapter 5, for the
set of problems with N ≙ 18, the annealing time TA ≙ 1000 is sufficiently long to ensure an
almost adiabatic evolution of the state of the system for a majority of the problems. On
the contrary, the annealing time TA ≙ 10 is generally too small for the success probability
to follow the Landau-Zener formula, and the non-adiabatic mechanisms (see section 5.1.3)
are dominant in this regime. It is therefore interesting to see how the non-adiabatic mech-
anisms affect the success probability. Lastly, TA ≙ 100 is the intermediate time between
the two regimes, which can be sufficiently long for the easy problems of the set but for
the hard problems, i.e., the problems with a small minimum energy gap, the state of the
system can still evolve non-adiabatically. Using the D-Wave energy scale, the annealing
times TA ≙ 10, 100, 1000 roughly correspond to annealing times 0.5 ns, 5 ns, and 50 ns,
respectively. However, on the D-Wave systems, we use much longer annealing times, TA

= 4, 20, 100 µs.
To plot the success probability distributions, we map the raw success probabilities p

obtained from the simulations and the D-Wave systems such that the average mapped
success probability of the whole set is 1/2, i.e., ⟨Psucc⟩ ≙ 1/2, where

Psucc ≙ 1 − (1 − p)R, (6.2)

and R is the number of repetitions (or equivalently, a scaling factor for the annealing time),
determined using the whole set of problems, that shifts the average success probability of
the set to 0.5.

In the long annealing time limit, it is possible to find a mapping between the minimum
energy gap and the success probability using the Landau-Zener formula (Eq. (1.24)).
Since,

p ≙ 1 − e−γ∆
2

min , (6.3)

where γ controls the speed of sweep, which is in turn controlled by the annealing time,
and therefore,

∆min ≙ γ−1/2{− ln(1 − p)}1/2. (6.4)

The Jacobian ∣∣∂∆min/∂p∣∣ is given by

∣∣∂∆min/∂p∣∣ ≙ 1

2
γ−1

1

∆min

eγ∆
2

min . (6.5)

Hence, the distribution of the success probability can be determined up to the normaliza-
tion constant C−1 if the probability distribution function for the minimum energy gaps
PDF (∆min) is known [Neu14b], since

PDF (p)dp ≙ C−1 PDF (∆min) γ−1
1

∆min

eγ∆
2

min dp. (6.6)
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For example, for a minimum energy gaps distribution following the Weibull distribution
function with k ≙ 2 (Eq. (G.2)), i.e.,

PDF (∆min) ≙ a(∆min

b
) e−(

∆min
b
)2 , (6.7)

with parameter b and normalization constant a, substituting PDF (∆min) in Eq. (6.6),
and setting the parameter γ ≙ 1/b2, we obtain PDF (Psucc)dPsucc ≙ ab/C dPsucc, a flat
distribution.

Similarly, it is possible to obtain unimodal or bimodal distributions for the success
probability distribution PDF (Psuccess) if one tunes the annealing time by means of γ to
the point where ⟨Psucc⟩ ≙ 1/2, depending on the distribution functions that the minimum
energy gaps follow.

6.1.3. Time to solution

Another metric considered for gauging the performance of the quantum annealing algo-
rithm for solving an optimization problem is the time to solution (TTS), which is defined
as the run-time required to obtain the ground state of the problem Hamiltonian at least
once in multiple repeated runs of the algorithm with a certain probability. Mathemati-
cally,

TTS ≙
ln(1 − Ptarget)

ln(1 − p) TA, (6.8)

where PT arget is the probability for which the correct solution is obtained at least once,
and p is the success probability obtained with a given TA. For what follows, we fix
Ptarget ≙ 0.99, and label the corresponding run-time as TTS99.

To evaluate the performance of quantum annealing using this metric, we plot deciles
for TTS99 as a function of the system size, for the success probabilities obtained from
the simulations and the two D-Wave systems. The scaling of TTS99 is then obtained
by fitting appropriate functions to the resulting deciles. To allow for a fair comparison
between the scaling behaviors obtained from the simulations and the D-Wave systems,
we omit the problems for which the D-Wave software could not find a direct embedding
on the system.

When the annealing time is sufficiently long to allow for an adiabatic evolution of the
state of the system, the scaling behavior of TTS99 is expected to be similar to that of the
theoretical estimate of the run-time (Eq. (6.1)) obtained using the scaling of the minimum
energy gaps. However, this need not be the case for short annealing times, where various
non-adiabatic mechanisms play a significant role in determining the success probability
and its scaling, and which are not taken in to account by the Landau-Zener formula.
Thus, a comparison between the scaling behavior of TTS99 and the theoretical run-time
can provide an insight into the adiabaticity of the evolution.
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6.2. Numerical results

After having discussed the three quantifiers to be used here for assessing the performance
of quantum annealing for solving sets of hard 2-SAT problems, we move on to discuss the
numerically obtained results first.

6.2.1. Minimum energy gaps

We start with the analysis of the static quantifier, the minimum energy gap, for the
three quantum annealing Hamiltonians given by Eq. (1.19) and Eq. (5.1) with ferromag-
netic and antiferromagnetic trigger Hamiltonians. We focus on the minimum energy gap
distributions obtained from the simulations.
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Figure 6.1.: Median-normalized minimum energy gap distributions PDF (x)dx for the
standard quantum annealing Hamiltonian given by Eq. (1.19), for sets with
(a) N ≙ 16, (b) N ≙ 17, and (c) N ≙ 18, where x ≙ ∆/∆m and ∆m is the
median minimum energy gap of the set.

Figure 6.1 shows the median-normalized minimum energy gap distribution for the stan-
dard quantum annealing Hamiltonian given by Eq. (1.19) for sets of problems with N ≙ 16,
17, and 18. The Fréchet functions given in Appendix (Eq. (G.1)) match the obtained dis-
tributions. It is also observed that the parameter k in the fit approaches 1 as the size of
the problems increases.

One of the main consequences of adding the ferromagnetic trigger Hamiltonian to the
annealing Hamiltonian (Eq. (5.1)) is the enlargement of the minimum energy gaps for
all the problems of the set, as has been discussed in section 5.1.2. Similar observations
have also been reported in [Hor+17]. Therefore, the median-normalized minimum energy
gap distribution for the annealing Hamiltonian with the ferromagnetic trigger Hamilto-
nian, shown in Fig. 6.2, is significantly different from that for the standard annealing
Hamiltonian (Fig. 6.1), and appears more like a normal distribution.

The fits to the distribution in this case are obtained by using translated-Weibull func-
tions to the median-normalized distribution for the correlation length ξ ≙ 1/∆min. The
extent of translation in this case, i.e., µ according to Eq. (G.3), represents the increase
in the minimum energy gaps as a result of adding the ferromagnetic trigger Hamiltonian.
Fixing parameters µ, b, and k obtained from the fits for the correlation length, we fit
the transformed-translated-Weibull function (Eq. (G.4)) to the median-normalized mini-
mum energy gap distribution via a parameter a. The obtained fits match the form of the
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Figure 6.2.: Median-normalized minimum energy gap distributions PDF (x)dx for the an-
nealing Hamiltonian given by Eq. (5.1) with the ferromagnetic trigger Hamil-
tonian, for sets with (a) N ≙ 16 (A ≙ 6.9×104, µ ≙ 0.20, B ≙ 0.82), (b) N ≙ 17

(A ≙ 2.5 × 104, µ ≙ 0.10, B ≙ 0.93), and (c) N ≙ 18 (A ≙ 3410.0, µ ≙ 0.10,
B ≙ 0.94), where x ≙ ∆/∆m and ∆m is the median minimum energy gap of
the set.

distributions well.
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Figure 6.3.: Median-normalized minimum energy gap distributions PDF (x)dx for the
annealing Hamiltonian given by Eq. (5.1) with the antiferromagnetic trigger
Hamiltonian, for sets with (a) N ≙ 16, (b) N ≙ 17, and (c) N ≙ 18, where
x ≙∆/∆m and ∆m is the median minimum energy gap of the set.

The median-normalized minimum energy gap distribution for the annealing Hamilto-
nian with the antiferromagnetic trigger Hamiltonian (Eq. (5.1)), shown in Fig. 6.3, follows
exponentially decaying functions, which are equivalent to the Weibull function with k ≙ 1

(Eq. (G.2)).
Thus, we obtain three distinct minimum-energy-gap distributions for the annealing

Hamiltonians considered in this work, and therefore, we may anticipate to find differences
in the corresponding success probability distributions.

The second important aspect of the minimum energy gaps in the context of the perfor-
mance of quantum annealing is their scaling as a function of the problem size. Figure 6.4
shows the odd deciles for the minimum energy gaps for the three annealing Hamiltonians
considered in this work, as a function of the number of variables in the problem, with
6 ≤ N ≤ 18.

For all three Hamiltonians, we find the minimum energy gaps to be scaling exponentially
with the size of the problem. We therefore fit the exponential functions of the form
∆min ≙ De−r∆N to the deciles for N ≥ 15 for the Hamiltonian Eq. (1.19) and Eq. (5.1)
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Figure 6.4.: Deciles for the minimum energy gaps for the annealing Hamiltonians given
by (a) Eq. (1.19), (b) Eq. (5.1) with the ferromagnetic trigger Hamiltonian,
and (c) Eq. (5.1) with the antiferromagnetic trigger Hamiltonian.

with the ferromagnetic trigger Hamiltonian, and for N ≥ 12 for the Hamiltonian Eq. (5.1)
with the antiferromagnetic trigger Hamiltonian. For the standard quantum annealing
Hamiltonian, we find the median minimum energy gap (given by the fifth decile D5) to
be scaling with an exponent r∆ ≙ 0.541. According to Eq. (6.1), the run-time required to
ascertain an adiabatic evolution of the state of the system for the given set of problems
should also increase exponentially with an exponent rT R ≙ 2r∆, i.e., rT R ≙ 1.082, where
TA ≙DerT RN is the theoretical run-time. This scaling behavior is worse compared to even
the scaling of the brute-force search of the ground state of the problem Hamiltonian, which
scales as 2N (corresponding to a scaling exponent of 0.693). On the other hand, although
these problems have been designed to be difficult to be solved using simulated annealing,
and the resulting scaling for the run-time is exponential in the size of the problems, the
scaling exponent rSA is much smaller (rSA ≙ 0.34). Thus, the standard quantum annealing
Hamiltonian given by Eq. (1.19) is unsuitable for solving the given set of problems.

The addition of the trigger Hamiltonians, on the other hand, improves the scaling of the
minimum energy gaps significantly, especially for the ferromagnetic trigger Hamiltonian.
In this case, the median minimum energy gap scales with an exponent r∆ ≙ 0.230, and
thus the theoretical run-time for ensuring an adiabatic evolution of the state of the system
grows with a scaling exponent of rT R ≙ 0.460, which is not only better compared to
the scaling exponent of the theoretical run-time for the standard quantum annealing
Hamiltonian (Eq. (1.19)), but also better compared to the scaling of the brute-force search
of the ground state. Similarly, for the annealing Hamiltonian given by Eq. (5.1) with the
antiferromagnetic trigger Hamiltonian, r∆ ≙ 0.316, and therefore rT R ≙ 0.632, which is
smaller than the scaling exponent of the run-time for the standard quantum annealing
Hamiltonian, as well as than that for the brute-force search.

6.2.2. Success probability

Focusing next on the dynamic quantifier, i.e., the success probability, Fig. 6.5 shows the
mapped success probability distribution (using Eq. (6.2)) obtained from the standard
quantum annealing Hamiltonian (Eq. (1.19)) for TA ≙ 10, 100, 1000 and problem sets
corresponding to N ≙ 17 and N ≙ 18. We observe that for both problem sets, the mapped
success probability distributions for all the three annealing times is bimodal. Bimodality
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of the success probability distribution has also been noted in previous work [Boi+14],
using simulated quantum annealing and the D-Wave One system for solving spin glass
problems.
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Figure 6.5.: Success probability distributions using the standard quantum annealing
Hamiltonian given by Eq. (1.19) for (a), (b), (c) N ≙ 17, and (d), (e), (f)
N ≙ 18 for (a), (d) TA ≙ 10, (b), (e) TA ≙ 100, and (c), (f) TA ≙ 1000.

Adding the ferromagnetic trigger Hamiltonian to the standard quantum annealing
Hamiltonian, however, yields quite distinct results for the success probability distribution.
As shown in Fig. 6.6, in this case the distribution is unimodal, which on the contrary, is
also the case if one uses simulated annealing for solving spin glass problems, see [Boi+14].

Lastly, in Fig. 6.7, we show the mapped success probability distribution obtained from
the annealing Hamiltonian given by Eq. (5.1) with the antiferromagnetic trigger Hamil-
tonian for TA ≙ 10, 100, 1000, corresponding to problem sets N ≙ 17 and N ≙ 18. We
observe two kinds of distributions in this case. The first is the constant distribution
observed for the short annealing time TA ≙ 10, while the other is the bimodal distri-
bution obtained for longer annealing times TA ≙ 100 and 1000. Although, as shown in
section 6.1.2, it is possible to theoretically obtain a constant success probability distri-
bution for certain distributions of the minimum energy gap, the case at hand is not one
such instance, the reason being that the annealing time TA ≙ 10 is not sufficient for the
system to be approximated as a two-level system and the Landau-Zener formula cannot
be employed. Moreover, the addition of the antiferromagnetic trigger Hamiltonian to the
standard annealing Hamiltonian changes the energy spectrum in ways that bolster certain
non-adiabatic mechanisms to favor the success probability (section 5.1.3). This has also
been observed in [Cro+14; Hor+17]. Thus, we obtain three distinct success probability
distributions, unimodal, bimodal and constant.
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Figure 6.6.: Success probability distributions using the quantum annealing Hamiltonian
given by Eq. (5.1) with the ferromagnetic trigger Hamiltonian for (a), (b), (c)
N ≙ 17, and (d), (e), (f) N ≙ 18 for (a), (d) TA ≙ 10, (b), (e) TA ≙ 100, and
(c), (f) TA ≙ 1000.
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Figure 6.7.: Success probability distributions using the quantum annealing Hamiltonian
given by Eq. (5.1) with the antiferromagnetic trigger Hamiltonian for (a), (b),
(c) N ≙ 17, and (d), (e), (f) N ≙ 18 for (a), (d) TA ≙ 10, (b), (e) TA ≙ 100, and
(c), (f) TA ≙ 1000.
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Figure 6.8.: Deciles for TTS99 for the annealing Hamiltonian given by Eq. (1.19) for (a)
TA ≙ 10, (b) TA ≙ 100, and (c) TA ≙ 1000.

6.2.3. TTS99

In this section, we discuss the results for the third quantifier for the simulations of quantum
annealing, which is TTS99. Starting with the scaling of TTS99 obtained using the success
probabilities for the standard quantum annealing Hamiltonian (Eq. (1.19)), from Fig. 6.8
we observe an exponential scaling of all the deciles as a function of the system size for
the three annealing times, as expected from the scaling of the minimum energy gap for
this case. Furthermore, the median TTS99 scales with an exponent of rT T S99 ≙ 1.170 and
rT T S99 ≙ 1.205 for TA ≙ 100 and TA ≙ 1000, respectively, where TTS99 ≙DerT T S99N . These
exponents deviate slightly from the theoretical scaling exponent rT R ≙ 1.082 predicted
using the scaling of the minimum energy gaps. This is due to the difference between
the exponent b for the minimum energy gap obtained (see Section 5.1.1) by plotting
the success probability as a function of the minimum energy gap (see Fig. 5.1) and the
value of two obtained from the Landau-Zener formula. Upon using the exponent b ≙ 2.19

obtained in Section 5.1.1, we obtain rT R ≙ 1.18, which is closer to the exponents rT T S99 for
TA ≙ 100, 1000. However, in case of TA ≙ 10, we find rT T S99 ≙ 0.530 which is significantly
smaller to rT R, and also smaller than the scaling exponent for the brute-force search.
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Figure 6.9.: Deciles for TTS99 for the annealing Hamiltonian given by Eq. (5.1) with the
ferromagnetic trigger Hamiltonian for (a) TA ≙ 10, (b) TA ≙ 100, and (c)
TA ≙ 1000.

A similar trend is also observed for the annealing Hamiltonian given by Eq. (5.1) with
the ferromagnetic trigger Hamiltonian (shown in Fig. 6.9) where median TTS99 scales
with rT T S99 ≙ 0.373 for TA ≙ 10, and the antiferromagnetic trigger Hamiltonian (shown in
Fig. 6.10) where median TTS99 scales with rT T S99 ≙ 0.277 for TA ≙ 10. This behavior can
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be explained on the basis of the non-adiabatic mechanisms which are dominant for short
annealing times such as TA ≙ 10, and can favor the success probability and hence the
scaling of TTS99. Since the addition of the antiferromagnetic trigger results in changing
the energy spectra of the annealing Hamiltonian in ways that facilitate a non-adiabatic
evolution of the state of the system, for a short annealing time, the resulting scaling
exponent is the smallest when the antiferromagnetic trigger is added to the Hamiltonian
Eq. (5.1). On the other hand, for long annealing times, where the evolution of the system
state is mostly adiabatic, the addition of the ferromagnetic trigger yields the smallest
scaling exponent of rT T S99 ≙ 0.478. Thus, we observe significant improvements in the
scaling behavior of the quantum annealing algorithm with the inclusion of the trigger
Hamiltonian for the given set of hard 2-SAT problems.
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Figure 6.10.: Deciles for TTS99 for the annealing Hamiltonian given by Eq. (5.1) with the
antiferromagnetic trigger Hamiltonian for (a) TA ≙ 10, (b) TA ≙ 100, and (c)
TA ≙ 1000.

6.3. D-Wave results

In this section, we perform a similar analysis as the one above with data obtained by using
two different D-Wave systems, and compare the results with those obtained by numerical
experiments.

6.3.1. Success probability

We begin with the distributions for the success probability obtained using the D-Wave
annealers DW2000Q and DWAdv for solving sets of problems with N ≙ 17 and N ≙ 18

for annealing times TA=4, 20, 100 µs. As in the case of the simulations, the raw success
probabilities are mapped such that ⟨Psucc⟩ ≙ 1/2 using Eq. (6.2). Figure 6.11 shows
the mapped success probability distribution obtained with the DW2000Q annealer. We
observe that like the success probability distributions obtained numerically using the
standard quantum annealing Hamiltonian given by Eq. (1.19), the distributions obtained
using DW2000Q are also bimodal for the three annealing times chosen.

The success probability distributions obtained with the DWAdv system, shown in
Fig. 6.12, are significantly different. Just like the constant success probability distri-
bution obtained numerically using the quantum annealing Hamiltonian given by Eq. (5.1)
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Figure 6.11.: Success probability distributions obtained using a DW2000Q system for (a),
(b), (c) N ≙ 17, and (d), (e), (f) N ≙ 18 for (a), (d) TA=4 µs, (b), (e)
TA=20 µs, and (c), (f) TA=100 µs.

with the antiferromagnetic trigger Hamiltonian for TA ≙ 10, and the unimodal success
probability distribution obtained using the ferromagnetic trigger Hamiltonian, the result-
ing success probabilities obtained with DWAdv are constant and unimodal. However,
it should be noted that the D-Wave systems can only implement the standard quantum
annealing Hamiltonian given by Eq. (1.19). The different success probability distributions
in this case are an indicator of imperfections in the systems and hint towards the presence
of noise and temperature effects. Nevertheless, as for the simulations, we obtain the three
distinct success probability distributions using the D-Wave systems as well.

6.3.2. TTS99

In this section, we discuss the scaling behavior of TTS99 calculated using the success
probabilities resulting from the D-Wave systems DW2000Q and DWAdv. Figure 6.13
shows the odd deciles for TTS99 obtained from DW2000Q for sets of problems with
10 ≤ N ≤ 18. Recall that problems which did not allow for a direct mapping on the
D-Wave system have been omitted.

As in the case of our numerical experiments, we find an exponentially increasing TTS99

as the size of the system grows. However, despite the much longer annealing times com-
pared to those used in the simulations, the scaling exponent in this case is significantly
smaller than the exponent rT R estimated theoretically from the scaling of the minimum
energy gaps of the given problems, as well as from the numerically obtained values of
rT T S99 for the standard quantum annealing Hamiltonian for long annealing times. Using
DW2000Q for TA=4, 20, 100 µs, the median TTS99 scales with exponents 0.674, 0.511,
and 0.546, respectively, which is comparable to the scaling exponent of the median TTS99

for the simulations of the standard quantum annealing Hamiltonian for TA ≙ 10, i.e., in the
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Figure 6.12.: Success probability distributions obtained using DWAdv system for (a), (b),
(c) N ≙ 17, and (d), (e), (f) N ≙ 18 for (a), (d) TA=4 µs, (b), (e) TA=20 µs,
and (c), (f) TA=100 µs.

regime where the non-adiabatic mechanisms are dominant and can prove to be favorable
for the success probability. Such a behavior is also suggestive of noise and temperature
effects being dominant in the system.
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Figure 6.13.: Deciles for TTS99 obtained using DW2000Q for (a) TA=4 µs, (b) TA=20 µs,
and (c) TA=100 µs.

The scaling exponents of TTS99 obtained from DWAdv, as shown in Fig. 6.14, are even
smaller than those obtained from DW2000Q. In this case, the median TTS99 scales with
an exponent of 0.393, 0.325, and 0.302 for TA = 4, 20, 100 µs, respectively. Such scaling
exponents are numerically obtained for short annealing times, e.g., TA ≙ 10 for the an-
nealing Hamiltonian given by Eq. (5.1) with the ferromagnetic and the antiferromagnetic
trigger Hamiltonian. Not only are these values better than the theoretical estimate of the
scaling exponent rT R for the annealing time required to keep the evolution of the state
of the system adiabatic, but also significantly better than the scaling of the brute-force
search of the ground state. Furthermore, for long annealing times TA = 20, 100 µs, the
scaling exponent is also slightly better than that for simulated annealing for solving these
sets of problems.
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Figure 6.14.: Deciles for TTS99 obtained using DWAdv for (a) TA=4 µs, (b) TA=20 µs,
and (c) TA=100 µs.

6.4. Summary

In this chapter, we assessed the suitability of the standard quantum annealing Hamilto-
nian, as well as the annealing Hamiltonians with the addition of the ferromagnetic and
the antiferromagnetic trigger Hamiltonian, for solving sets of hard 2-SAT problems. We
analyzed the performance of quantum annealing with the help of three metrics: the min-
imum energy gap between the ground state and the first excited state of the annealing
Hamiltonian, the success probability of the algorithm, and the time to solution.

We found three different kinds of distributions for the minimum energy gaps, each cor-
responding to one of the three annealing Hamiltonians considered in this work. While
the median-normalized minimum energy gap distribution for the standard quantum an-
nealing Hamiltonian given by Eq. (1.19) followed the Fréchet functions, the transformed-
translated-Weibull functions and the exponentially-decaying functions fit well to the dis-
tributions corresponding to the annealing Hamiltonian given by Eq. (5.1) with the fer-
romagnetic and the antiferromagnetic trigger Hamiltonian, respectively. In the long an-
nealing time regime, one could use the Landau-Zener formula to map the distributions of
the minimum energy gaps to the success probability distributions. From the simulations,
we obtained three distinct distributions for the success probability, namely, unimodal,
bimodal, and constant distributions. Interestingly, we also obtained these three distribu-
tions for the success probability using the D-Wave annealers DW2000Q and DWAdv for
solving the set of 2-SAT problems.

We found an exponential scaling of the minimum energy gaps and the run-time TTS99

with the size of the problem, for all the annealing times considered in this work, and
using both simulations and the D-Wave systems. For sufficiently long annealing times,
we found an agreement between the numerically obtained scaling exponents of TTS99

and the theoretically predicted scaling of the annealing time required to ascertain an adi-
abatic evolution of the state of the system as the size of the problems grows (based on the
scaling exponent of the minimum energy gaps) for all the three annealing Hamiltonians
considered. This led to a rather poor scaling of the TTS99 for the standard quantum
annealing Hamiltonian (Eq. (1.19)) compared not only with the scaling of the run-time
using simulated annealing (rSA ≙ 0.34), but also compared to that for a brute-force search
of the ground state. However, for short annealing times like TA ≙ 10, the scaling expo-
nent showed great improvements, as in this limit non-adiabatic mechanisms such as fast
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annealing became dominant and can help enhance the success probability.
Although still exponential, the scaling of the minimum energy gaps, and hence TTS99,

was greatly improved with the addition of both the trigger Hamiltonians compared to
that of the standard quantum annealing Hamiltonian. Furthermore, we obtained smaller
scaling exponents also compared to the scaling of the brute-force search for the ground
state for both types of the trigger Hamiltonians and all the annealing times considered.
In addition, in some cases, we found a better scaling behavior than that of simulated
annealing. Since the addition of the antiferromagnetic trigger Hamiltonian facilitates
the non-adiabatic mechanisms, this choice for the annealing Hamiltonian could result
in a much better scaling in the short annealing time limit. On the other hand, the
improvement in the case of adding the ferromagnetic trigger Hamiltonian was mainly due
to an enlargement of the minimum energy gaps, and therefore for long annealing times
resulted in the best scaling of TTS99.

Lastly, compared to the simulation results, the scaling exponents for TTS99 obtained
using the two D-Wave systems were significantly smaller, especially for the new generation
DWAdv of the annealers. Moreover, in some cases, the scaling behavior was better than
that for simulated annealing. However, since the D-Wave systems only implement the
standard quantum annealing Hamiltonian, the deviations from the simulations results,
despite of much longer annealing times on the D-Wave systems, were indicative of the
presence of noise and temperature effects in the system. It should however be reempha-
sized that the D-Wave systems do not implement the linear annealing scheme adopted in
the simulation work.
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Quantum annealing is believed to possess certain features that can give it an edge in
solving combinatorial optimization problems over simulated annealing. One of the main
reasons behind this conjecture is that in the case of simulated annealing, while searching
for the configuration with the lowest energy from the energy landscape of the problem
Hamiltonian, the state of the system can get trapped in a local minimum if the potential
barrier becomes too high. On the other hand, quantum annealing, making use of quantum
tunnelling, can cause the state of the system to tunnel through such a barrier to continue
the search for the global minimum. This tunnelling is facilitated by the addition of a
non-commuting initial Hamiltonian, generally the 1-local uniform transverse field, to the
Ising Hamiltonian encoding the optimization problem.

Previous studies have indicated that in case of degenerate problem Hamiltonians, in-
cluding higher-order coupling terms to the initial Hamiltonian can help in sampling all the
ground states (i.e., yield all the solutions to the encoded optimization problem) [MNK09;
Kön+19]. In this chapter we assess the effects of such initial Hamiltonians on the over-
all performance of the quantum annealing Hamiltonian for solving 2-SAT problems with
unique satisfying assignments.

To this end, we first discuss the types of initial Hamiltonians considered for this work,
and then proceed to study their effects on the minimum energy gaps between the ground
state and the first excited state of the annealing Hamiltonian, and the success probability
of the quantum annealing algorithm. We also analyze the scaling behavior of the minimum
energy gap and the time to solution (TTS99) as a consequence of adding higher-order
couplings to the standard initial Hamiltonian.

7.1. Choices for the initial Hamiltonian

In this section, we discuss the choices for the initial Hamiltonian considered in this work.
To the standard 1-local uniform transverse field Hamiltonian, used as the initial Hamil-
tonian by the D-Wave systems, we add up to 3-local transverse field coupling terms. As
in the case of the trigger Hamiltonians (Chapter 5), these couplings can be chosen to
be of either ferromagnetic or antiferromagnetic type. While the inclusion of the ferro-
magnetic x-couplings in the initial Hamiltonian retains the uniform superposition state
as the ground state of the initial Hamiltonian, the antiferromagnetic x-couplings in the
initial Hamiltonian can result in a degenerated ground state. Moreover, determining the
ground state of the initial Hamiltonian is not as straightforward in case that the initial
Hamiltonian consists antiferromagnetic couplings, making it an unsuitable choice for the
quantum annealing algorithm. For concreteness, we fix the strength of all the additional
2-local x-couplings to 1, while that for the 3-local couplings to 0.5.
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Furthermore, we observe that other than the type of the higher-order x-couplings, the
geometry in which they are added to the initial Hamiltonian also plays an important role
in determining the performance of the resulting quantum annealing Hamiltonian. For this
work, we consider the following three geometries and their combinations.

• Graph: In this geometry, the higher-order couplings are added according to the
graph of the problem Hamiltonian. For the additional 2-local terms, it is straight-
forward to identify all the 2-local z-couplings from the problem Hamiltonian, as
they are explicitly written in the Ising form of the problem. On the other hand,
for adding the 3-local x-couplings according to the problem graph, we determine
all possible 3-variable connections from the graph edges, and then add the 3-local
x-couplings between them. We label the initial Hamiltonian with additional 2-local
terms added in the graph geometry as “2x-graph". However, for the 3-local terms,
we have an option of including or excluding the 2-local terms. This results in the
initial Hamiltonian “3x-graph" consisting of 3-local terms and 2-local terms, both
added according to the problem graph, and the initial Hamiltonian “3x-graph-w/o-
2x" without the 2-local terms.

• Chain: For this choice, the higher-order couplings are added to the standard initial
Hamiltonian, in a chain-like manner, independently of the problem graph, such that
each variable occurs at most twice in the additional 2-local or 3-local terms. For
example, for a 5-variable problem, the additional 2-local terms in the driver Hamilto-
nian are σx

1
σx

2
, σx

2
σx

3
, σx

3
σx

4
, and σx

4
σx

5
while for an 8-variable problem, the additional

3-local terms following the chain geometry are σx
1
σx

2
σx

3
, σx

3
σx

4
σx

5
and σx

5
σx

6
σx

7
. The

resulting initial Hamiltonian with the addition of the 2-local x-couplings will be
referred to as the “2x-chain" initial Hamiltonian. While adding the 3-local terms
to the initial Hamiltonian in a chain-like manner, two questions become relevant
regarding the addition of the 2-local terms, namely, whether or not to include them
and which geometry to choose for them in case they are added. Out of all the possi-
ble choices, we consider the initial Hamiltonians “3x-chain" with 3-local x-couplings
added in the chain geometry and the 2-local terms according to the problem graph,
and “3x-chain-w/o-2x" with 3-local x-couplings in the chain geometry, and without
the 2-local terms.

• Ring: In this case, the additional 3-local couplings are independent of the problem
Hamiltonian, and are added in ring-like manner, such that each variable of the
problem contributes three 3-local terms to the initial Hamiltonian, except for the
first, second, and the last variable which occur only twice. In this work, we choose
this geometry for the additional 3-local terms, while choosing the 2-local x-couplings
in accordance with the problem graph. The resulting Hamiltonian is labelled as “3x-
ring" initial Hamiltonian.
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7.2. Results

We focus now on gauging the performance of the quantum annealing algorithm with
different initial Hamiltonians for solving the set of 1000 12-variable 2-SAT problems.
In order to do so, we study first the minimum energy gaps between the ground state
and the first excited state of the annealing Hamiltonian, and subsequently investigate the
resulting success probabilities corresponding to different annealing times. We also analyze
the scaling of the minimum energy gap and the time to solution (TTS99) for 9 sets of
2-SAT problems with the size of the problems ranging from 10-variable to 18-variable
problems.

7.2.1. Minimum energy gaps

As established in section 1.3, according to the adiabatic theorem (Eq. (1.22)), the min-
imum energy gap between the ground state and the first excited state of the annealing
Hamiltonian plays a crucial role in determining the performance of the quantum anneal-
ing algorithm. This subsection focuses on the effects that different choices for the initial
Hamiltonian have on the minimum energy gap. In Fig. 7.1, we show the scatter plots
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Figure 7.1.: Minimum energy gaps for the quantum annealing algorithm with different
initial Hamiltonians, ∆D, against the minimum energy gap using the standard
initial Hamiltonian, ∆O.

for the minimum energy gaps ∆D obtained upon adding the additional couplings to the
standard initial Hamiltonian, against the minimum energy gaps ∆O obtained using the
standard initial Hamiltonian. For more legibility, we have separated the results for the
different initial Hamiltonians in two plots, while keeping the results for the annealing
Hamiltonian with the 3x-graph initial Hamiltonian in both the plots to allow for an easy
comparison.

As the first observation, we note that as a consequence of including higher-order cou-
pling terms in the initial Hamiltonian, the resulting annealing Hamiltonian has a larger
minimum energy gap between the lowest two energy levels, for a majority of the problems
belonging to the set, for all choices of the initial Hamiltonians. Quantitatively, for all
the choices of the initial Hamiltonians considered, at least 850 problems out of the 1000
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problems in the set have an enlarged minimum energy gap compared to the standard
quantum annealing Hamiltonian.

Next, we note from Fig. 7.1, that for all the choices of the initial Hamiltonian where
either the 2-local or the 3-local couplings are added according to the problem graph
(namely, 2x-graph, 3x-chain and 3x-ring, 3x-graph-w/o-2x and 3x-graph), all the problems
of the set have an enlarged minimum energy gap compared to that for the standard
quantum annealing Hamiltonian. On the other hand, although the other choices mostly
result in an enlargement of the minimum energy gaps compared to those for the standard
quantum annealing Hamiltonian, 41 and 150 problems of the set are found to have reduced
minimum energy gaps for 2x-chain and 3x-chain-w/o-2x initial Hamiltonians, respectively.

Moreover, we observe that adding the 3-local couplings to the 2x-graph initial Hamil-
tonian in the chain or the ring geometry leads to a decrease in the minimum energy gap
for a majority of the problems compared to the minimum energy gaps with the 2x-graph
initial Hamiltonian. Only 180 problems using the 3x-chain initial Hamiltonian, and none
of the problems upon choosing the 3x-ring initial Hamiltonian have a larger minimum en-
ergy gap compared to the gaps obtained with 2x-graph initial Hamiltonian. However, for
941 problems of the set, the minimum energy gap for the annealing Hamiltonian with the
3x-graph-w/o-2x initial Hamiltonian is larger compared to that with the 2x-graph initial
Hamiltonian. Lastly, we observe that the largest increase in the minimum energy gaps
is accompanied with choosing 3x-graph initial Hamiltonian for the quantum annealing
algorithm. This suggests that adding the 2-local and 3-local coupling terms according to
the problem graph is more favourable than in the cases where the higher-order couplings
are independent of the problem Hamiltonian.

7.2.2. Success probability

Having discussed how the addition of different higher-order coupling terms to the standard
initial Hamiltonian affects the minimum energy gaps between the lowest two energy levels
of the annealing Hamiltonian, in this section, we discuss their effects on the success
probability of the quantum annealing algorithm, i.e., the probability of the algorithm to
find the ground state of the problem Hamiltonian. Figure 7.2 shows the scatter plots
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Figure 7.2.: Success probability pD upon using different initial Hamiltonians against the
success probability pO using the standard initial Hamiltonian for quantum
annealing, (a) TA ≙ 10, (b) TA ≙ 100, and (c) TA ≙ 1000.

of the success probabilities pD obtained using the quantum annealing Hamiltonian with
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the additional 2-local and 3-local couplings, against the success probabilities pO obtained
from the quantum annealing Hamiltonian with the standard 1-local initial Hamiltonian,
for annealing times TA ≙ 10, 100, 1000. The results corresponding to initial Hamiltonians
3x-ring and 3x-graph-w/o-2x are similar to that for 3x-chain initial Hamiltonian, and have
been omitted from the plot for an improved readability of the results.

We find that for all the annealing times considered and the chosen initial Hamiltonians,
with the exception of the initial Hamiltonians 2x-chain and 3x-chain-w/o-2x, the resulting
pD is larger than pO for almost all the problems of the set. This can be explained on the
basis of the enlargement of the minimum energy gaps of the majority of the problems
in the set for all, but 2x-chain and 3x-chain-w/o-2x initial Hamiltonians. This again is
indicative of the fact that including additional couplings in the initial Hamiltonian accord-
ing to the graph of the problem Hamiltonian is beneficial also for the success probability
of the algorithm. Moreover, for annealing time TA ≙ 1000, the success probabilities cor-
responding to initial Hamiltonians 2x-graph, 3x-chain, and 3x-graph are close to 1 for
almost all the problems in the set.

Table 7.1.: Number of problems with a larger success probability upon including different
3-local terms to the initial Hamiltonian compared to the success probability
using 2x-graph initial Hamiltonian, for different annealing times TA.

TA 3x-chain-w/o-2x 3x-chain 3x-ring 3x-graph-w/o-2x 3x-graph
10 4 60 0 245 510
100 12 92 0 341 654
1000 2 298 685 216 3
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Figure 7.3.: Comparison of the transition probability 1−p obtained using the initial Hamil-
tonian (a) 3x-ring and (b) 3x-graph, with the 2x-graph initial Hamiltonian,
as a function the annealing time.

Although the success probabilities pD are fairly large for all the chosen initial Hamiltoni-
ans, and they increase with increasing annealing time, comparing the success probabilities
resulting from the quantum annealing algorithm with initial Hamiltonians having 3-local
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x-couplings, to that with the 2x-graph initial Hamiltonian, we note from Tab. 7.1 that the
success probabilities follow a similar trend as the minimum energy gaps for initial Hamilto-
nians 3x-chain-w/o-2x and 3x-chain. Both these choices for the initial Hamiltonian result
in a decrease in the minimum energy gap compared to the 2x-graph initial Hamiltonian,
and hence the success probability compared to the 2x-graph initial Hamiltonian for a ma-
jority of the problems in the set. However, there are a few counter-intuitive observations.
Although compared to the 2x-graph initial Hamiltonian, the initial Hamiltonian 3x-ring
leads to a decrease in the minimum energy gaps for all the problems belonging to the
set, 685 problems have a marginally larger success probability for the latter if TA ≙ 1000.
Another observation is that despite of a majority of the cases having a significantly larger
minimum energy gap when the 3-local couplings are added according to the problem
graph, only 3 problems have larger success probabilities for TA ≙ 1000 using the 3x-graph
initial Hamiltonian compared to those obtained using the 2x-graph initial Hamiltonian.

A closer look at the success probabilities shown in Fig. 7.2(c) reveals that the success
probabilities using these two initial Hamiltonians are actually comparable and close to
1. Although from a practical point of view, such marginal differences in the success
probability are somewhat irrelevant, from a theoretical perspective, it is interesting to
look for the mechanisms that lead to such differences. In order to understand the reasons
for the change in the statistics of the problems with a larger success probability using the
3x-ring and 3x-graph initial Hamiltonians compared to the 2x-graph initial Hamiltonian
upon increasing the annealing time, we choose a problem from the set which has a smaller
success probability using the 3x-ring initial Hamiltonian compared to that using the 2x-
graph initial Hamiltonian for TA ≙ 10, but not for TA ≙ 1000, and study the behavior
of the transition probability, 1 − p, as a function of the annealing time. The resulting
plot is shown in Fig. 7.3(a). Additionally, we select a problem instance that has a larger
success probability using the 3x-graph initial Hamiltonian compared to the 2x-graph initial
Hamiltonian for annealing time TA ≙ 10, but not for TA ≙ 1000, and perform a similar
analysis. The plot for the transition probability as a function of the annealing time for
this problem is shown in Fig. 7.3(b). From both the plots, we observe an exponential
dependence of the transition probability on the annealing time for the initial part of the
annealing-time scan , which then changes to a polynomial-like dependence, for all the three
involved initial Hamiltonians. This transition is related to a shift from the dominance of
a Landau-Zener like evolution, where the transition probability is exponentially related to
the annealing time (see Eq. (1.24)), to a more adiabatic evolution for which the transition
probability is of the order O(T −2

A ) for long annealing times (see Appendix A). It is this
shift in the behavior of the transition probability as a function of the annealing time
that results in a cross-over in the statistics of the success probabilities of the initial
Hamiltonians 3x-ring and 3x-graph with respect to the 2x-graph initial Hamiltonian.
Since this shift in the behavior of the transition probability with the annealing time is not
directly related to the minimum energy gaps between the lowest two energy states of the
annealing Hamiltonian, the observations from Tab. 7.1 cannot be explained on the basis
of comparing the minimum energy gaps between annealing Hamiltonians supplemented
by various initial Hamiltonians.
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7.2.3. Scaling

Having studied the effects of introducing additional couplings in the initial Hamiltonian
on the minimum energy gap and the resulting success probability for different annealing
times, we now investigate its scaling aspect. Since adding the 2-local terms according to
the graph of the problem Hamiltonian appears to be the most promising choice for the
initial Hamiltonian in terms of the success probability, we investigate the scaling of the
minimum energy gap and the runtime for different annealing times for this choice.

10
-1

10
0

 10  11  12  13  14  15  16  17  18

M
in

im
u

m
 e

n
e

rg
y
 g

a
p

N

D1
D3
D5
D7
D9

10.1 e
-0.238 N

8.8 e
-0.220 N

8.3 e
-0.208 N

7.3 e
-0.194 N

5.9 e
-0.170 N

Figure 7.4.: Deciles for the scaling of the minimum energy gap between the ground state
and the first excited state of the quantum annealing Hamiltonian with the
2x-graph initial Hamiltonian.

We start with the scaling of the minimum energy gap as function of the problem size.
Shown in Fig. 7.4 are the deciles for the minimum energy gap for the quantum anneal-
ing Hamiltonian with the 2x-graph initial Hamiltonian. The problems having a smaller
minimum energy gap than the first decile represent the hardest problems of the set, while
those having larger minimum energy gap than the ninth decile represent the easiest prob-
lems. It can be observed that in comparison to the scaling of the minimum energy gap
without the additional couplings in the initial Hamiltonian (see Fig.6.4(a)), the scaling
upon adding the 2-local couplings according to the problem graph is significantly im-
proved. While for the former, the median minimum energy gap, given by the fifth decile,
scales exponentially with an exponent of 0.541 (see Fig.6.4(a)), the scaling exponent of
the median minimum energy gap in the latter case is 0.208. Moreover, the spread of the
deciles upon adding the extra coupling terms is much smaller than the case where they
are excluded.

According to Eq. (6.1), for long annealing times, where the system can be approximated
as a two-level system, the scaling of TTS99 should also exhibit a similar improvement.
Thus, the median runtime required to keep the evolution of the state adiabatic during
the annealing process, should scale exponentially as well, with a scaling constant of 0.416.
This value is indeed comparable to the scaling of TTS99, which is the runtime required to

103



7. Modifying the initial Hamiltonian

obtain the correct ground state of the problem Hamiltonian at least once with a certainty
of 99% in multiple repeated runs of the algorithm, obtained from the simulations of the
dynamics of quantum annealing for long annealing times, as shown in Fig. 7.5. For
TA ≙ 100 and 1000, the scaling constant for the median TTS99 is comparable to the
theoretical prediction, with scaling exponents of 0.428 and 0.445, respectively. However,
for the short annealing time TA ≙ 10, where certain non-adiabatic mechanisms can further
play a role in improving the success probability, the scaling constant is significantly smaller
and is 0.287. Thus, the scaling constants for TTS99 are not only better compared to the
annealing algorithm using 1-local initial Hamiltonian, but also better compared to the
scaling of the brute-force search method. Lastly, we note that for longer annealing times
the scaling of the median TTS99 is slightly better upon introducing additional terms in
the initial Hamiltonian compared to that using the quantum annealing algorithm with a
trigger Hamiltonian of both ferromagnetic and antiferromagnetic type. On the other hand
for short annealing times like TA ≙ 10 where the non-adiabatic mechanisms are prominent,
the algorithm using antiferromagnetic trigger Hamiltonian for annealing exhibits a better
scaling.
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Figure 7.5.: Deciles for the scaling of TTS99 for the quantum annealing Hamiltonian with
2x-graph initial Hamiltonian for (a) TA ≙ 10, (b) TA ≙ 100, and (c) TA ≙ 1000.

7.3. Summary

In this chapter, we added higher-order coupling terms to the standard initial Hamiltonian
(consisting of 1-local transverse field) used for quantum annealing, and studied its effects
on the values and scaling of certain quantities like the minimum energy gap, success
probability, and the time to solution TTS99. In designing the new initial Hamiltonians,
we made a choice regarding the order of the locality of the extra couplings as well as
the geometry in which these terms were added. These results were then compared to
the standard choice of initial Hamiltonian. We considered up to 3-local terms transverse
coupling terms, which could then be added in a chain-like geometry, ring-like geometry,
or according to the graph of the problem Hamiltonian.

We found that the addition of the extra couplings was accompanied with an enlargement
of the minimum energy gaps for a majority of the cases, especially if either the 2-local
or 3-local terms were added according to the problem graph. The largest enhancement
was thus witnessed for ’3x-graph’ initial Hamiltonian, where both the 2-local and 3-local
terms are added according to the problem graph.
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According to the Landau-Zener formula, an enlargement of the minimum energy gaps
should lead to an increase in the success probability. This improvement in the success
probability was indeed observed for all the problems belonging to the 12-variable 2-SAT
problem set being considered for the three annealing times TA ≙ 10, 100, 1000 considered
here, except for two choices of initial Hamiltonians. These were the initial Hamiltonians
where only 2-local or only 3-local couplings were added in a chain geometry. These were
also the choices for the initial Hamiltonian that could lead to a reduction in the minimum
energy gap. Although the largest enhancement in the minimum energy gaps corresponded
to the 3x-graph initial Hamiltonian, the most reasonable choice for the initial Hamiltonian,
in our opinion, would be the 2x-graph initial Hamiltonian, which with its 2-local terms can
be implemented relatively easily on the hardware and yielded larger success probabilities
compared to even the 3x-graph initial Hamiltonian.

Similar observations were also noted from the scaling analysis conducted using the initial
Hamiltonian that delivered the maximum improvement in the success probability, i.e., the
2x-graph initial Hamiltonian. As in the case of including the trigger Hamiltonian in the
standard quantum annealing Hamiltonian, the addition of 2-local couplings to the initial
Hamiltonian according to the problem graph led to a better scaling of the minimum energy
gaps compared to the standard choice of initial Hamiltonian. Furthermore, the scaling
exponent of the median minimum energy gaps in this case was also slightly better than
that obtained for the quantum annealing Hamiltonian with the ferromagnetic trigger.
As a consequence, the scaling of the median TTS99 was also slightly better than the
one obtained with the ferromagnetic trigger Hamiltonian, and hence significantly better
compared also to the standard quantum annealing Hamiltonian, in the long annealing
time limit. However, for short annealing times, the annealing Hamiltonian with the
antiferromagnetic trigger Hamiltonian led to better scaling of the TTS99.
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Quantum annealing is a metaheuristic for solving combinatorial optimization problems,
which is inspired by simulated annealing, but where thermal fluctuations are replaced by
quantum fluctuations. Quantum annealers are special-purpose quantum computers based
on this idea, that specialize at the task of solving optimization problems.

Over the years, adiabatic quantum computing, which is closely related to quantum
annealing, has gained the status of being another paradigm of quantum computing, the
gate-based model of quantum computing being the other. Moreover, adiabatic quantum
computing has been shown to be equivalent to the universal gate-based model of quantum
computing.

The availability of commercial quantum annealers offered by D-Wave Quantum Systems
Inc. has given an impetus to numerous research work for assessing the suitability of such
systems for solving optimization problems. Furthermore, these quantum annealers being
the largest quantum computers commercially available till date, have made it possible
to implement various real-life and industry-based applications on such systems, in the
hopes of finding a speedup of quantum annealing over the existing classical optimization
algorithms.

In this work, we studied the performance of quantum annealing for solving several
optimization problems by means of various criteria. These criteria included the probability
of quantum annealing to solve the given problem, the fairness of annealing to yield all
the possible solutions of a problem in case that the problem has more than one solution,
as well as the scaling and distribution of some of the performance metrics for quantum
annealing. In doing so, we performed, wherever possible, a comparative study of the
performance of the ideal implementation of the annealing algorithm by making use of
simulations, with the real quantum annealers from D-Wave. For benchmarking purposes,
we mainly used sets of hard 2-SAT problems.

As a summary of this work, we discuss here the main findings of this study, addressing
the above-mentioned criteria.

We start with one of the most important aspects of an optimization algorithm, that
is its capability to solve the given problems. We found that for the chosen sets of hard
2-SAT problems up to 20 variables, the simulations for quantum annealing could solve all
the problems belonging to the set, even if the resulting success probability was negligible
(e.g., O(10−6)) for the hard problems of the set. Moreover, it was observed that the
success probability increased with increasing the annealing time, given that one is not in
the regime of fast annealing, where the success probability could coincidentally have a
large value despite of a short annealing time. However, the simulations for the quantum
annealing algorithm were constrained by the number of variables in the problem, as well
as the annealing times chosen. On the other hand, the D-Wave systems operate with
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much longer annealing times compared to those that can be simulated with a reasonable
amount of computational resources. Since the size of the 2-SAT problems considered here
is much smaller than the number of qubits available on the D-Wave annealers, most of
these problems, as well as other problems derived from them were solvable using these
annealers, although the resulting success probability was found to be low for the harder
problems. The value of the success probability was noted to depend on the embedding
of the problem graph onto the working graph of the annealers, as well as on the different
annealing parameters offered such as the annealing time and chain strength between the
physical qubits representing a logical qubit. To utilize a larger number of the available
qubits, we used the so-called multiple-copies problem instances, which were created by
joining copies of a given 12- or 18-variable 2-SAT problem. We found that for the instances
consisting of 10-50 copies of a hard 18-variables 2-SAT problem, the D-Wave system could
not yield the ground state of the whole problem, irrespective of the fact whether these
copies were connected or unconnected to each other. Since the 2-SAT problems are
sparsely connected, we also used sets of two kinds of QUBO problems with all-to-all
connectivity and up to 200 variables, in order to use a larger number of the available
couplers. With the Advantage_system5.1, it was not possible to obtain the solutions of
the random QUBO problems (which have randomly chosen magnetization and couplings
in the interval ∥−1, 1∥) consisting of more than 80 variables, except for one instance of a
100-variable problem. For the other set of QUBO problems, namely, the regular problems
for which the values of the magnetization and couplings were determined using a specific
formula, the D-Wave system could solve problems up to 170 variables.

While for most practical problems, the most relevant quantifier for assessing the perfor-
mance of quantum annealing is the probability of solving the problem, for problems that
have more than one possible solution, another quantity of interest is the ability of the
algorithm to sample all the solutions of the problem with a comparable sampling proba-
bility. For this purpose, we used a set of 2-SAT problems with four satisfying solutions
and 6 ≤ N ≤ 20 variables. Using our simulations, we found that for a majority of the
problems, quantum annealing could yield the four ground states of the problems with a
uniform success probability if the annealing time was sufficiently long. However, in some
cases, we found the sampling probabilities to be unequal even if the chosen annealing
time was long enough for an almost adiabatic evolution of the state of the system. In yet
more extreme cases, we also observed a total suppression of one of the ground states of
the problem Hamiltonian. If the annealing times were long, such observations could be
justified based on the ground state of the Hamiltonian towards the end of the annealing
process, i.e., near s ≙ 1, obtained using perturbation theory. On the contrary, the sampling
probabilities of the ground states of such degenerate problems obtained from D-Wave’s
Advantage_system5.1 did not show such a behavior, and the sampling probabilities of
the four ground states were approximately equal. Despite of much longer annealing times
used on the D-Wave systems (20 µs compared to approximately 50 ns used in simula-
tions), the sampling results were not in agreement with the simulation results, as well as
with the theoretical predictions, suggesting that such observations confirmed the presence
of imperfections like noise and temperature effects in the quantum annealers.

Next, while posing the same question of fair sampling of the solutions of problems with
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more than a unique solution, we explored the efficiency of the reverse annealing protocol
for the same. Reverse annealing is based on the motivation that starting from one of the
low-energy classical states of the problem Hamiltonian, it could be possible to reach a state
with lower energy or sample a larger number of ground states by annealing backwards
(that is by increasing the strength of the transverse Hamiltonian) up to a certain reversal
distance, and then continuing normally as in the case of standard quantum annealing.
For this purpose, we implemented the reverse annealing algorithm with similar annealing
parameters as offered by the D-Wave systems for the reverse annealing protocol, and used
as a test for a 14-variable 2-SAT problem that was predicted to have a zero sampling
probability for one of the four ground states. The reverse annealing protocol for the D-
Wave system specifies various controls such as the reverse and forward annealing times,
the reversal distance, waiting times, if at all included, and the initial state, all of which
were probed in the context of sampling the ground states of the problem Hamiltonians.
The numerical results indicated that the sampling probability of the ground state that
was predicted to be totally suppressed according to perturbation theory, stayed fairly low
for almost all the choices for the annealing parameters, if the algorithm did not start in
the suppressed state. Furthermore, this sampling probability was found to fluctuate with
the annealing times, and with varying the reversal distance, due to the accumulation of
different phases in the final components of the wavefunction. For large values of rever-
sal distance, the results obtained from the D-Wave system were in agreement with the
simulation results, that is the sampling probability of the ground state predicted to be
suppressed, was indeed found to be zero in this case for other choices of the annealing
parameters. This suggests, that in the regime before the value of s corresponding to
the anticrossing, the noise and temperature effects do not play a very significant role.
However, lowering the value of the reversal distance leads to a more even sampling of the
four ground states, as was also found to be the case for the standard quantum annealing
protocol.

One of the most pertinent measures for deciding the suitability of an algorithm for
solving a problem is the scaling of its performance metrics as a function of the size of the
problem. The simulation of the quantum annealing algorithm suggested an exponential
scaling of the minimum energy gap between the ground state and the first excited state of
the annealing Hamiltonian. Furthermore, we found that the median TTS99 (the run-time
required to obtain the solution of the problem at once in multiple runs of the algorithm
with a certainty of 0.99) increases exponentially with the size of the problems with an
exponent of 1.205 for an annealing time TA ≙ 1000. These scaling results were in agree-
ment with the theoretical predictions for TTS99 based on the scaling of the minimum
energy gaps between the ground state and the first excited state of these problems, in
turn confirming that the minimum energy gap is a crucial quantity for determining the
performance of the quantum annealing algorithm. These results indicated that in the long
annealing time limit, the ideal quantum annealing performed even worse than a simple
brute-force search of the ground state of the problem Hamiltonian which scaled exponen-
tially but with an exponent of 0.693. For the short annealing time TA ≙ 10, however, the
scaling exponent for the median TTS99 was 0.530 which was significantly better than the
exponent in the adiabatic case, and slightly better than that for the brute-force search.
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The reason behind such an improvement was the non-adiabatic mechanism of fast anneal-
ing where the state of the system deviates from the instantaneous ground state before the
anticrossing to the next energy level, owing to the short annealing time. Upon reaching
the anticrossing, some of the amplitude transferred to the higher energy states can return
to the ground state, thus increasing the success probability. However, the scaling results
from the D-Wave systems DW_2000Q and Advantage_system1.1 were quite distinct from
the numerical results. Although still exponential, the scaling exponents for the median
TTS99 for the former was 0.511, while for the latter was 0.377 for TA ≙ 20 µs. Although
the exponent from the DW_2000Q system was comparable to that obtained from the
simulations for a short annealing time, the annealing times used on the D-Wave systems
were significantly longer. For such time scales, the scaling of the TTS99 should have
matched with the simulations and the theoretical estimates obtained from the scaling of
the minimum energy gaps, had the D-Wave annealers been ideal systems. This deviation
from the expected behavior once again made apparent the fact that the D-Wave systems
are prone to noise and temperature effects.

We also used the D-Wave systems to determine the scaling complexity of the two
classes of fully-connected QUBO problems, with problem sizes varying from 10 to 200.
For this range of problem sizes, it was not feasible to determine the scaling of the ideal
quantum annealing algorithm using simulations. We found the scaling of the mean success
probability to be exponential for both the classes. However, the scaling exponents for these
problems were 0.163 for the random problems, and 0.090 for the regular problems. For
a comparison, the average success probability for the given 2-SAT problems scales with
an exponent of 0.269 as a function of the system size. Thus, it was concluded that the
performance of quantum annealing depended on the problems at hand, with the 2-SAT
problems being the hardest and the regular problems being the easiest. These findings
were found to correlate well with the estimates of hardness obtained from the Hamming
distance analysis performed for the smaller problem instances of each class.

Since the ideal quantum annealing algorithm was found to perform rather poorly for the
given set of hard 2-SAT problems, not only compared to the known classical algorithms
but even a simple enumeration of all possible solutions, we studied the performance of the
quantum annealing algorithm upon introducing two modifications to it by means of simu-
lations. The first was to introduce an additional term in the standard quantum annealing
algorithm, namely, the trigger Hamiltonian, which comprises of transverse couplings. This
Hamiltonian vanishes at the beginning and end of the annealing process in order to pre-
serve the respective ground states at these points. This trigger could further be of two
types ferromagnetic and antiferromagnetic, and its strength could be controlled using a
strength parameter. It was found that the addition of the ferromagnetic trigger Hamilto-
nian led to an enlargement of the minimum energy gap between the ground state and the
first excited state of the annealing Hamiltonian for all the problems. This improved the
scaling of the minimum energy gaps between the ground state and the first excited state
of the problems significantly, thereby improving the scaling of the success probability in
the adiabatic limit. In this case, the scaling exponent for the median TTS99 was found to
be 0.478 for TA ≙ 1000, which is significantly smaller than that for the standard algorithm
(1.205 for TA ≙ 1000). On the other hand, while the addition of the antiferromagnetic
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trigger Hamiltonian could either enlarge or reduce the minimum energy gap, it was noted
that its inclusion could vastly alter the energy spectrum of the annealing Hamiltonian in
ways that could facilitate certain non-adiabatic mechanisms. These included fast anneal-
ing, occurrence of an even number of comparably small anticrossings between the lowest
two energy levels, or a change in the shape of the anticrossing. While the addition of this
type of the trigger Hamiltonian improved the scaling of the minimum energy gap, and
therefore the scaling exponent of the median TTS99 was smaller than the standard algo-
rithm (0.619 for TA ≙ 1000), the largest improvement in this case was noted for TA ≙ 10,
the regime where the non-adiabatic mechanisms play a prominent role. The scaling ex-
ponent of the median TTS99 in this case was found to be 0.277, which was smaller than
that for simulated annealing.

Lastly, we studied the effects of including higher-order couplings to the standard initial
Hamiltonian chosen for the quantum annealing algorithm. We introduced up to 3-local
terms to the initial Hamiltonian, and studied its effect on the values and/or scaling of
the minimum energy gap between the ground state and the first excited state of the
annealing Hamiltonian, the resulting success probabilities for different annealing times,
and TTS99. Unlike the case for the trigger Hamiltonian, the higher-order couplings in
the initial Hamiltonian were chosen to be of the ferromagnetic kind in order to ensure
that the initial ground state is non-degenerate. Other than the order of these coupling
terms, we also studied the effect of varying the geometries in which these extra couplings
were added. It was observed that while all kinds of resulting initial Hamiltonian led to an
increase in the minimum energy gap for a majority of the cases, the largest improvements
were accompanied with the initial Hamiltonian consisting of 2-local and 3-local coupling
terms added according to the same graph as that of the problem Hamiltonian. Similar
observations were also noted for the success probability. For this reason, we chose the
initial Hamiltonian with 2-local couplings according to the problem graph for studying
the scaling of the TTS99 for the given set of problems. In this case, the scaling exponent
of the median TTS99 was found to be slightly better than that obtained for the standard
quantum annealing Hamiltonian with the ferromagnetic trigger for long annealing times
TA ≙ 100, 1000.
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A. Proof of the adiabatic theorem

In this section, we present a proof for the adiabatic theorem, assuming that the system
is initialised in the ground state of the initial Hamiltonian and that the instantaneous
ground state of the Hamiltonian during the evolution is non-degenerate [Chi17]. For a
more general treatment see [Teu03; JRS07].

We start with the TDSE, which is given by

i
∂

∂t
∣ψ(t)⟩ ≙H(t) ∣ψ(t)⟩ , (A.1)

and replace the time t by a dimensionless variable s ≙ t/TA, where TA is the total annealing
time, so that Eq. (A.1) becomes

i
∂

∂s
∣ψ(s)⟩ ≙ TAH(s) ∣ψ(s)⟩ . (A.2)

In terms of the unitary time evolution operator U(s) satisfying

iU̇(s) ≙ TAH(s)U(s), (A.3)

we have ∣ψ(s)⟩ ≙ U(s) ∣ψ(0)⟩ . (A.4)

We initialize the system in the ground state ∣ϕ(0)⟩ of the initial Hamiltonian H(0),
such that

H(0) ∣ϕ(0)⟩ ≙ E(0) ∣ϕ(0)⟩ , (A.5)

where E(0) is the ground state energy of the initial Hamiltonian.
We wish to compare the evolution of the initial state according to the TDSE (Eq. (A.1))

with the ideal adiabatic evolution where ∣ψ(0)⟩ ≙ ∣ϕ(0)⟩ evolves into ∣ϕ(s)⟩ which is the
ground state of the instantaneous Hamiltonian H(s), meaning that

H(s) ∣ϕ(s)⟩ ≙ E(s) ∣ϕ(s)⟩ . (A.6)

To this end, we define a new Hamiltonian by

Ha(s) ≙ TAH(s) + i∥Ṗ (s), P (s)∥, (A.7)

where
P (s) ≙ ∣ϕ(s)⟩ ⟨ϕ(s)∣ , (A.8)

is the projection operator onto the ground state of the instantaneous Hamiltonian H(s)
and Ṗ (s) ≙ ∂P (s)/∂s.
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Noting that ∥H, P ∥ ≙ 0 and using Eq. (A.7) we find

∥Ha, P ∥ ≙ TA∥H, P ∥ + i∥∥Ṗ , P ∥, P ∥ ≙ i∥ṖP − 2PṖP + PṖ ∥. (A.9)

Since P 2
≙ P , differentiating both sides we obtain

Ṗ ≙ ṖP + PṖ . (A.10)

Multiplying both sides of Eq. (A.10) by P yields

PṖP ≙ 0. (A.11)

Upon substituting Eq. (A.10) in Eq. (A.9), we obtain

iṖ ≙ i( ∂

∂s
∣ϕ⟩) ⟨ϕ∣ + i ∣ϕ⟩ ∂

∂s
⟨ϕ∣ ≙ ∥Ha, P ∥. (A.12)

In terms of the unitary time evolution operator Ua(s) satisfying

iU̇a(s) ≙Ha(s)Ua(s), (A.13)

it follows immediately from Eq. (A.12) that

P (s) ≙ Ua(s)P (0)U †
a(s). (A.14)

Therefore, the above construction guarantees that the time evolution of the initial state
under Ha(s) obtained by solving

i
∂

∂s
∣ψ(s)⟩ ≙Ha(s) ∣ψ(s)⟩ , (A.15)

results in the state ∣ψ(s)⟩ ≙ eiθ(s) ∣ϕ(s)⟩ with some irrelevant time-dependent phase θ(s).
Therefore, the time evolution Eq. (A.15) solves the instantaneous eigenvalue problem
Eq. (A.6) or, in other words, the time evolution starting from the ground state is tran-
sitionless. Thus, we may say that Eq. (A.7) defines the Hamiltonian that generates the
exact adiabatic evolution.

Next, we derive a few relations that will be required to construct a proof of the adiabatic
theorem, under the assumption that the ground state of the instantaneous Hamiltonian
is non-degenerate for all values of 0 ≤ s ≤ 1.

We focus on finding a bound on the transition probability, defined as the probability
of the amplitude present in the initial state (the ground state of the initial Hamiltonian)
to get transferred to other eigenstates, for a system evolving according to the TDSE
[JRS07]. Defining the projection operator Q(s) as the projection of the wavefunction to
the whole eigenspace of the instantaneous Hamiltonian excluding its ground state, i.e.,
Q(s) ≙ 1−P (s), the transition probability is given as ∣∣Q(s)U(s)P (0) ∣ψ(0)⟩ ∣∣2. Note that
from Eq. (A.14) it follows that Q(s) ≙ Ua(s)Q(0)U †

a(s). Therefore, we have

∣∣Q(s)U(s)P (0) ∣ψ(0)⟩ ∣∣2 ≙ ∣∣Ua(s)Q(0)Ω(s)P (0) ∣ψ(0)⟩ ∣∣2 ≤ ∣∣Q(0)Ω(s)P (0)∣∣2, (A.16)
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A. Proof of the adiabatic theorem

where we have defined Ω(s) ≙ U
†
a(s)U(s).

To find an upper bound on ∣∣Q(0)Ω(1)P (0)∣∣, we first note that

Ω̇(s) ≙ iU †
a(s)(Ha − TAH)U(s) ≙ −U †

a(s)∥Ṗ (s), P (s)∥U(s) , (A.17)

such that upon integrating the latter we have

Ω(1) ≙ 1 −

1

∫

0

U †
a(s)∥Ṗ (s), P (s)∥U(s)ds . (A.18)

Second we define the operator,
F ≙ RṖP + PṖR, (A.19)

and the resolvent, R

R ≙
1

H −E
, (A.20)

where E is the ground state energy of the instantaneous Hamiltonian, and therefore a
pole of the resolvent R. Here and in the following, in order to make the notation more
compact, we omit the explicit s dependence wherever it is clear from context. Using F

and R, we can express the commutator ∥H, F ∥ as

∥H, F ∥ ≙HRṖP +HPṖR −RṖPH − PṖRH

≙ (1 +ER)ṖP +EPṖR −ERṖP − PṖ (1 +ER) ≙ ∥Ṗ , P ∥, (A.21)

where we have made use of the fact that (H −E)R ≙ 1 i.e., HR ≙ 1+ER, PH ≙ EP , and
that R and H commute. Defining

F̃ ≙ U †FU, (A.22)

so that

˙̃F ≙ U̇ †FU +U †ḞU +U †FU̇ ≙ iTAHU †FU +U †ḞU − iU †FTAHU

≙ iTAU †∥H, F ∥U +U †ḞU, (A.23)

where we have used Eq. (A.3), and thus,

U †∥Ṗ , P ∥U ≙ U †∥H, F ∥U ≙ 1

iTA

( ˙̃F −U †ḞU). (A.24)

Substituting Eq. (A.24) in Eq. (A.18), and integrating the first term by parts, we obtain

Ω(1) ≙ 1 +
i

TA

1

∫

0

U †
aU( ˙̃F −U †ḞU)ds ≙ 1 +

i

TA

⎛
⎝U †

aUF̃ ∣1
0

−

1

∫

0

( d

ds
(U †

aU)F̃ +U †
aḞU)ds

⎞
⎠

≙ 1 +
i

TA

⎛
⎝U †

aUF̃ ∣1
0

−

1

∫

0

(U †
aḞU −U †

a∥Ṗ , P ∥UF̃)ds
⎞
⎠ , (A.25)

where we have computed the derivative of U
†
aU as in Eq. (A.17).
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Returning to the quantity of interest given in Eq. (A.16), and using Eq. (A.25), we have

Q(0)Ω(1)P (0) ≙ i

TA

(Q(0)U †
aUF̃ ∣1

0

P (0)
−

1

∫

0

(Q(0)U †
aḞUP (0) −Q(0)U †

a∥Ṗ , P ∥UF̃P (0))ds), (A.26)

where the first term vanishes as operators Q(0) and P (0) are complementary to each
other. Since, Q(0)U †

a ≙ U
†
aQ, Eq. (A.26) becomes

Q(0)Ω(1)P (0) ≙ i

TA

(Q(0)U †
aUF̃ ∣1

0

P (0) − 1

∫

0

(U †
aQḞUP (0) −U †

aQ∥Ṗ , P ∥UF̃P (0))ds).
(A.27)

Appealing to the triangle inequality, we have

TA∣∣Q(0)Ω(1)P (0)∣∣ ≤ ∣∣F (0)∣∣ + ∣∣F (1)∣∣ +
1

∫

0

(∣∣QḞ ∣∣ + ∣∣QṖPF ∣∣ + ∣∣QPṖF ∣∣)ds. (A.28)

Since operators Q and P are complementary to each other, the last term in Eq. (A.28)
vanishes, and we obtain

TA∣∣Q(0)ΩP (0)∣∣ ≤ ∣∣F (0)∣∣ + ∣∣F (1)∣∣ + 1

∫

0

(∣∣QḞ ∣∣ + ∣∣QṖPF ∣∣)ds

≤ ∣∣F (0)∣∣ + ∣∣F (1)∣∣ + 1

∫

0

(∣∣QḞ ∣∣ + ∣∣Ṗ ∣∣ ⋅ ∣∣F ∣∣). (A.29)

We now consider the terms in Eq. (A.29) one by one. Using the definition of F from
Eq. (A.19), and noting that ṖP ≙ (1 − P )Ṗ ≙ QṖ

∣∣F ∣∣ ≤ 2∣∣RṖP ∣∣ ≙ 2∣∣RQṖ ∣∣ ≤ 2∣∣RQ∣∣ ⋅ ∣∣Ṗ ∣∣⋅ (A.30)

Since the projector Q projects any wavefunction to the eigenspace barring the ground
state, ∣∣RQ∣∣ ≤ 1/∆, where ∆ is the energy gap between the ground state and the first
excited state of the instantaneous Hamiltonian,

∣∣F ∣∣ ≤ ∣∣Ṗ ∣∣
∆

. (A.31)

Moving on to the next term in Eq. (A.29), differentiating F given by Eq. (A.19) we
have ∣∣QḞ ∣∣ ≙ ∣∣QṘṖP +QRP̈P +QRṖ 2

+QṖ 2R +QPP̈R +QPṖR∣∣
≙ ∣∣QṘṖP +QRP̈P +QRṖ 2

+QṖ 2R∣∣, (A.32)
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A. Proof of the adiabatic theorem

where the last two terms in the first step vanish as projectors Q and P are complementary.
Using (H −E)R ≙ 1, we find Ṙ ≙ −RḢR, we obtain

∣∣QḞ ∣∣ ≤ ∣∣QRḢRQṖ ∣∣ + ∣∣QRP̈ ∣∣ + ∣∣QRṖ 2∣∣ + ∣∣QṖ 2R∣∣. (A.33)

Let us now consider each term in Eq. (A.33) separately, we have

∣∣QRḢRQṖ ∣∣ ≤ ∣∣QR∣∣ ⋅ ∣∣Ḣ ∣∣ ⋅ ∣∣RQ∣∣ ⋅ ∣∣Ṗ ∣∣ ≤ ∣∣Ḣ ∣∣ ⋅ ∣∣Ṗ ∣∣
∆2

, (A.34)

∣∣QRP̈P ∣∣ ≙ ∣∣QR(Q + P )P̈P ∣∣ ≤ ∣∣QR∣∣ ⋅ ∣∣QP̈P ∣∣ ≤ ∣∣QR∣∣ ⋅ ∣∣QP̈P ∣∣ ≤ ∣∣QP̈P ∣∣
∆

, (A.35)

where the term ∣∣QRPP̈P ∣∣ vanished because of Q and P being complementary,

∣∣QRṖ 2∣∣ ≤ ∣∣QR∣∣ ⋅ ∣∣Ṗ 2∣∣ ≤ ∣∣Ṗ 2∣∣
∆

, (A.36)

and

∣∣QṖ 2R∣∣ ≙ ∣∣QṖ (P +Q)ṖR∣∣ ≙ ∣∣QṖP ṖR +QṖQR∣∣ ≤ ∣∣QṖ 2QR∣∣ ≤ ∣∣Ṗ 2∣∣
∆

, (A.37)

where we have used the relations QṖQ ≙ 0 and PṖ ≙ ṖQ. Substituting these bounds in
Eq. (A.29), we get

TA∣∣Q(0)ΩP (0)∣∣ ≤ 2
∣∣Ṗ (0)∣∣
∆(0) + 2

∣∣Ṗ (1)∣∣
∆(1) +

1

∫

0

(4 ∣∣Ṗ ∣∣2
∆
+
∣∣QP̈P ∣∣

∆
+
∣∣Ḣ ∣∣ ⋅ ∣∣Ṗ ∣∣

∆2
)ds. (A.38)

Using lemma 8 from [JRS07], we can express ∣∣Ṗ ∣∣ and ∣∣P̈ ∣∣ in terms of H, such that

∣∣Ṗ ∣∣ ≤ ∣∣Ḣ ∣∣
∆

, (A.39)

and

∣∣QP̈P ∣∣ ≤ ∣∣Ḧ ∣∣
∆
+ 4
∣∣Ḣ ∣∣2
∆2

, (A.40)

and therefore,

TA∣∣Q(0)Ω(1)P (0)∣∣ ≤ 2
∣∣Ḣ(0)∣∣
∆2(0) + 2

∣∣Ḣ(1)∣∣
∆2(1) +

1

∫

0

(9 ∣∣Ḣ ∣∣2
∆3
+
∣∣Ḧ ∣∣
∆2
)ds. (A.41)

It should however be noted here that the bound derived in this manner, is not the
optimal bound (see [JRS07] for a tighter bound), but serves to provide a reference. Thus,
from Eq. (A.41) we observe that if we choose TA such that

TA ≥
1

ϵ
(2 ∣∣Ḣ(0)∣∣

∆2(0) + 2
∣∣Ḣ(1)∣∣
∆2(1) +

1

∫

0

(9 ∣∣Ḣ ∣∣2
∆3
+
∣∣Ḧ ∣∣
∆2
)ds), (A.42)
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where ϵ is an arbitrarily small and positive real number, then,

∣∣Q(0)Ω(1)P (0)∣∣ ≤ ϵ. (A.43)

Returning to the quantity of interest, i.e., the transition probability, we find

∣∣Q(s)U(s)P (0) ∣ψ(0)⟩ ∣∣2 ≤ ∣∣Q(0)Ω(1)P (0)∣∣2
≤

1

T 2

A

⎛
⎝2
∣∣Ḣ(0)∣∣
∆2(0) + 2

∣∣Ḣ(1)∣∣
∆2(1) +

1

∫

0

(9 ∣∣Ḣ ∣∣2
∆3
+
∣∣Ḧ ∣∣
∆2
)ds
⎞
⎠

2

, (A.44)

which suggests that the transition probability decreases polynomially as the annealing
time increases, more specifically as O(T −2

A ), in agreement with earlier less rigorous quali-
tative estimates [SO05; MN08].

Numerical illustration

After having derived a bound on the transition probability, we now go on to perform a
numerical study of the dependence of the transition probability on the annealing time. To
this end, we choose an instance of a 12-variable 2-SAT problem, and plot the transition
probability, given as 1 − p, where p is the success probability, for annealing times varying
between 10 to 105.
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Figure A.1.: Scaling of transition probability 1 − p as a function of annealing time

From Fig. A.1, we note two distinct behaviors of the transition probability as a function
of the annealing time. While the transition probability decreases exponentially as the
annealing time increases initially, for larger values of the annealing time the transition
probability decreases polynomially showing the O(T −2

A ) dependence. The latter result is
in agreement with the upper bound derived in Eq. (A.44), indicating that for sufficiently
long annealing times the system evolves adiabatically. The exponential part of the scan,
on the other hand, is a signature of the Landau-Zener model, where the transition between
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A. Proof of the adiabatic theorem

the relevant energy levels occurs around the anticrossing between them (see Section 1.3.2).
Thus, this result suggests that for these values of the annealing times already, the system
can be approximated by a two-level system consisting of the the ground state and the
first excited state. Similar observations have also been noted in [SO05; MN08].

It is worth to mention that from a practical point of view, the strict adiabatic regime of
annealing, i.e., the regime where the transition probability shows a O(T −2

A ) dependence
on the annealing time, is not of much relevance. For most practical applications, a much
shorter annealing time, for example the regime for which 1 − p ≈ 10−4 suffices to yield
useful results.
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B. Uniqueness of the ground state of

the annealing Hamiltonian

As has been previously established, the minimum energy gap between the relevant energy
levels, e.g., the ground state and the first excited state of the annealing Hamiltonian, is
a pivotal quantity for the success of the quantum annealing algorithm. This approach is
based on the mathematical model of the adiabatic theorem, which mandates the existence
of such a minimum energy gap between these levels. However, it is not straightforward
to argue in favor of the existence of such a gap. In this section, we provide a discussion,
based on [Rus02], to motivate that under the suitable conditions, the ground state of the
annealing Hamiltonian can be expected to be unique.

We start with the initial Hamiltonian, HI , defined to be

HI ≙ −

N

∑

i=1

hx
i σx

i , (B.1)

where generally the hx
i are uniformly chosen to be 1. For this section however, we choose

a more general initial Hamiltonian, where the hx
i can be different, but are all positive.

In this case, it is straightforward to argue that the ground state of this Hamiltonian is
unique and corresponds to the uniform superposition state, given by

∣ψ⟩ ≙ ∣+⟩
1
∣+⟩

2
.... ∣+⟩N , (B.2)

where

∣+⟩i ≙ ∣0⟩i + ∣1⟩i√
2

. (B.3)

Another way to confirm the uniqueness of the ground state of the initial Hamiltonian
Eq. (B.1) is by considering the operator

F ≙ e−HI ≙ exp( N

∑

i=1

hx
i σx

i ) ≙ F0 ⊗ F1 ⊗ ....⊗ FN−1, (B.4)

where

Fi ≙ exp(hx
i σx

i ) ≙ 1

2
(1 1

1 −1
)(ehix 0

0 e−hix
)(1 1

1 −1
) ≙ (cosh hx

i sinh hx
i

sinh hx
i cosh hx

i

) . (B.5)

Since for positive hx
i , the matrix elements of Fi are strictly positive, their tensor product

in turn makes the operator F strictly positive. Then, according to the Perron-Frobenius
theorem, the largest eigenvalue of F should be unique [P07; Fro12]. Since all the hx

i
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B. Uniqueness of the ground state of the annealing Hamiltonian

are positive, the largest eigenvalue of F corresponds to the uniform superposition state
(Eq. (B.2)), and thus the Perron-Frobenius theorem also implies that the ground state of
the initial Hamiltonian is unique.

We now move on to the annealing Hamiltonian with a linear annealing schedule

H(s) ≙ (1 − s)HI + sHP , (B.6)

where s is the annealing parameter and HP is the problem Hamiltonian. Using the Lie-
Trotter formula, we have

e−H
≙ lim

m→∞
(e− s

m
HP e−

1−s
m

HI)m. (B.7)

Since HP is diagonal in the computational basis, the effect of exp(−sHP /m) is to
multiply each row of exp(−(1 − s)HI/m) by a positive number exp(−sλi/m), where λi

are the eigenvalues of HP . Thus the product exp(−sHP /m) exp(−(1 − s)HI/m), and
therefore, exp(−H) has non-negative elements.Using the Perron-Frobenius theorem again
suggests that the largest eigenvalue of exp(−H), and thus the ground state of the annealing
Hamiltonian is unique for 0 ≤ s < 1. This argument breaks down at s ≙ 1 since exp(−(1 −
s)HI/m) ≙ I, which has zero as the off-diagonal elements. Moreover, the ground state of
the problem Hamiltonian can be degenerate. In this case, the energy gap between the
ground state and the first excited state tends to zero as s→ 1.
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C. Pseudo-code for the

Kosaraju-Sharir’s algorithm

As discussed in section 1.4.1.1, the Kosaraju-Sharir’s algorithm can be used for identifying
the strongly-connected components of a 2-SAT problem, which can in turn help in checking
whether the given 2-SAT problem is satisfiable, in polynomial time.

Given the implication graph (graph) of the 2-SAT problem and its transpose (graph_transpose),
the Kosaraju-Sharir’s algorithm can be implemented as follows [Kog+22].

def dfs1(i, used, order):

used[i] = True

for u in graph[i]:

if not used[u]:

dfs1(u, used, order)

order.append(i)

def dfs2(v, j, comp):

comp[v] = j

for u in graph_transpose[v]:

if comp[u] == -1:

dfs2(u, j, comp)

def solve_2sat():

order = []

used = [False] * 2 * n

comp = [-1] * 2 * n

assignment = [0] * n

j = 0

for i in range(2 * n):

if not used[i]:

dfs1(i, used, order)

for i in range(2 * n):

v = order[2*n - i - 1]

if comp[v] == -1:

dfs2(v, j, comp)

j += 1
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C. Pseudo-code for the Kosaraju-Sharir’s algorithm

for i in range(0, 2 * n, 2):

if comp[i] == comp[i + 1]:

return False

else:

# //2 discards fraction part

assignment[i // 2] = 1 if comp[i] > comp[i + 1] else 0

assignments.append(assignment)

return True
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D. Discretizing a quantum

Hamiltonian in continuous space

In the main text of the thesis, we have only considered problems represented by finite-
dimensional matrices that can be expressed in terms of the Pauli operators. However
the general Hamiltonian of a quantum system need not be of this form, and can have
continuous degrees of freedom. In this appendix, we discuss how to solve the TDSE
(Eq. (1.21)) numerically for quantum systems with Hamiltonians defined over the real
space.

A Hamiltonian for a quantum system in real space can be written as

H ≙ −
h̵2

2m
∇

2
+ V (r, t). (D.1)

Restricting to the 1-D case, and setting h̵ ≙m ≙ 1, this Hamiltonian becomes

H ≙ −
1

2

∂2

∂x2
+ V (x, t). (D.2)

For the numerical implementation, we need to discretize the Hamiltonian Eq. (D.2) by
using a finite differencing scheme. For simplicity, we restrict ourselves to a regular spaced
grid in the range xmin ≤ x ≤ xmax, and divide this interval in Nx equal spaced sub-intervals,
such that

∆ ≙
xmax − xmin

Nx − 1
, (D.3)

and x ≙ xmin + j∆, where j ≙ 0, 1, ..., Nx − 1. We define the wavefunction at time t, ∣ψ(t)⟩
as

∣ψ(t)⟩ ≙
⎛⎜⎜⎜⎝

ψ(x1, t)
ψ(x2, t)
⋮

ψ(Nx − 1, t)
⎞⎟⎟⎟⎠

. (D.4)

Then, the second-order derivative of the wave function can be approximated as

∂2

∂x2
ψ(x, t) ≈ ψ(x +∆, t) − 2ψ(x, t) +ψ(x −∆, t)

∆2
, (D.5)

where x ≙ xmin + j∆, and thus V (x, t) ≙ V (xmin + j∆, t) ≡ Vj. At each point of time, the
instantaneous Hamiltonian is a tridiagonal matrix of the form

H(t) ≙∆−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +∆2V0 −1/2 0 0 0

−1/2 1 +∆2V1 −1/2 0 ⋯ 0

0 −1/2 1 +∆2V2 0 0

⋮ ⋱

0 ⋯ 0 1 +∆2VNx−2 −1/2
0 0 −1/2 1 +∆2VNx−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.6)
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D. Discretizing a quantum Hamiltonian in continuous space

Thus, the TDSE becomes

i
∂

∂t
∣ψ(t)⟩ ≙∆−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +∆2V0 −1/2 0 0

−1/2 1 +∆2V1 −1/2
0 −1/2 1 +∆2V2

⋱ 0

1 +∆2VNx−2 −1/2
0 0 −1/2 1 +∆2VNx−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣ψ(t)⟩

(D.7)
As will become clear from Section 2.2, for a small time step τ , the solution to Eq. (D.7)
can be approximated as ∣ψ(t + τ)⟩ ≈ e−iτH(t+τ/2) ∣ψ(t)⟩ . (D.8)

There are various ways in which Eq. (D.8) can be solved. Adopting the Suzuki-Trotter
product formula algorithm (see Section 2.2.2) for computing approximations to this ex-
ponential, by decomposing the Hamiltonian in suitable Hamiltonian terms could be one
of the convenient choices for this. Using this approach, it is possible to implement the
TDSE without having to discretize the time derivative, and use the formal solution given
by Eq. (D.8).
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E. Error bounds

In this appendix, we derive the bounds on the error that results from approximating the
time evolution using, for example, the Crank-Nicolson algorithm and the Suzuki-Trotter
product formula algorithm discussed in chapter 2. These proofs are based on [De 87].

E.1. Crank-Nicolson algorithm

We start by computing the error involved in employing the Crank-Nicolson method for
implementing the time evolution of the state of a quantum mechanical system. Put
differently, we wish to calculate ∣∣U(τ)−UCN(τ)∣∣ ≙ ∣∣e−iτH −(1+ iHτ/2)−1(1− iHτ/2)∣∣ (see
Eq. (2.23)). For this, we define

F (τ) ≙ 1 −U(τ)−1UCN(τ)
≙ 1 − eiτH(1 + iHτ

2
)−1(1 − iHτ

2
). (E.1)

Differentiating Eq. (E.1) with respect to τ gives

∂F (τ)
∂τ

≙ −
iH3τ 2

4
eiτH(1 + iHτ

2
)−2

. (E.2)

Noting that F (0) ≙ 0, integration of Eq. (E.2) over τ yields,

F (τ) ≙ −iH3

4

τ

∫

0

dλλ2eiλH(1 + iHλ

2
)−2

. (E.3)

Multiplying by e−iτH on both sides, we obtain

∣∣e−iτH
− (1 + iHτ/2)−1(1 − iHτ/2)∣∣ ≤ 1

4

τ

∫

0

dλλ2∣∣H3ei(λ−τ)H(1 + iHλ

2
)−2∣∣, (E.4)

where ∣∣.∣∣ denotes the norm of the involved quantity. Since ∣∣ei(λ−τ)H ∣∣ ≙ 1 and ||(1 +
iλH/2)−1∣∣ ≤ 1,

∣∣U(τ) − (+iHτ/2)−1(1 − iHτ/2)∣∣ ≤ ∣∣H3∣∣τ 3

12
. (E.5)

Since for matrices X and Y we have ∣∣Xm − Y m∣∣ ≤ ∑m−1

n=0 ∣∣X − Y ∣∣∣∣X ∣∣n∣∣Y ∣∣m−n−1, in case
of unitary matrices X and Y , ∣∣Xm − Y m∣∣ ≤ m∣∣X − Y ∣∣. Thus, the accumulated error for
m applications of the method reads

∣∣U(τ)m −UCN(τ)m∣∣ ≤m
∣∣H3∣∣τ 3

12
≙

t∣∣H ∣∣3τ 2

12
. (E.6)
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E.2. Suzuki-Trotter product formula algorithm

Next, following the proof in [De 87], we compute the bounds on the error involved in
approximating the time evolution operator using the first- and the second-order product
formula algorithm.

E.2.1. First-order approximation

Assuming the Hamiltonian to be independent of time, we obtain a measure for ∣∣e−iτH −

∏
K
k=1 e−iτHk ∣∣. Considering first the case where the Hamiltonian is expressed as a sum of

two matrices, we define the operator F (λ) ≙ 1 − eλAeλBe−λ(A+B), where A ≙ −iH1 and
B ≙ −iH2. Differentiating F (λ) with respect to λ, we obtain

∂F

∂λ
≙ eλA∥eλB, A∥e−λ(A+B). (E.7)

Furthermore, we have

∥A, eλB∥ ≙ λ

∫

0

dµ e(λ−µ)B∥A, B∥eµB
≙

λ

∫

0

dµ eµB∥A, B∥e(λ−µ)B, (E.8)

and thus
∂F

∂λ
≙ −

λ

∫

0

dµ eλAeµB∥A, B∥e(λ−µ)Be−λ(A+B). (E.9)

As F (0) ≙ 0, integrating Eq. (E.9) results in

F (τ) ≙ − τ

∫

0

dλ

λ

∫

0

dµ eλAeµB∥A, B∥e(λ−µ)Be−λ(A+B). (E.10)

Therefore,

eτ(A+B)
− eτAeτB

≙ −

τ

∫

0

dλ

λ

∫

0

dµ eλAeµB∥A, B∥e(λ−µ)Be(τ−λ)(A+B). (E.11)

Substituting the definitions of A and B gives

∣∣eτ(A+B)
− eτAeτB ∣∣ ≤ τ 2

2
∣∣∥A, B∥∥∣∣, (E.12)

and similarly for the general case where H ≙ ∑
K
k=1 Hk,

∣∣U(τ) − Ũ1(τ)∣∣ ≙ ∣∣e−iτH
−

K

∏

k=1

e−iτHk ∣∣ ≤ τ 2

2
∑

1≤k<k′≤K

∣∣∥Hk, Hk′∥∣∣. (E.13)

Thus, the error involved in m applications of the first-order approximation to the time
evolution operator gives

∣∣U(τ)m − Ũ1(τ)m∣∣ ≤ τt

2
∑

1≤k<k′≤K

∣∣∥Hk, Hk′∥∣∣. (E.14)
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E.2.2. Second-order approximation

Moving now to the second-order approximation, we once again assume the case where the
Hamiltonian is expressed as a sum of two matrices A and B introduced in the previous
section.

As before, we define F (λ) ≙ 1 − eλA/2eλBeλA/2e−λ(A+B), the derivative of which with
respect to λ yields

∂F

∂λ
≙ eλA/2eλBG(λ)eλA/2e−λ(A+B), (E.15)

where

G(λ) ≙ 1

2
e−λB∥eλB, A∥ + ∥eλA/2, B∥e−λA/2. (E.16)

Making use of Eq. (E.8), we obtain

G(λ) ≙ −1

2

λ

∫

0

dµ e(µ−λ)B∥A, B∥e(λ−µ)B
−

1

2

λ

∫

0

dµ e(λ−µ)A/2∥B, A∥e(µ−λ)A/2. (E.17)

Substituting Eq. (E.17) in Eq. (E.15) and integrating while noting F (0) ≙ 0, we find

F (τ) ≙ −1

2

τ

∫

0

dλ

λ

∫

0

dµ eλA/2(eµB∥A, B∥e(λ−µ)BeλA/2
+ eλBe(λ−µ)A/2∥B, A∥eµA/2)e−λ(A+B),

(E.18)
and thus,

∣∣e−iτH
− e−iτH1/2e−iτH2e−iτH1/2∣∣ ≤ τ 2

4
(∣∣∥H1, H2∥∣∣ + ∣∣∥H2, H1∥∣∣) ≙ c1τ

2, (E.19)

where c1 ≙ ∣∣∥H1, H2∥∣∣/2. However, for a small τ , the O(τ 0) terms in the integrand vanish
in Eq. (E.18) (using Taylor expansion of the involved exponents), and hence it is possible
to obtain an even tighter bound by doubly differentiating Eq. (E.16) with respect to λ to
obtain

∂G

∂λ
≙

1

2
(e−λB∥B, A∥eλB

+ eλA/2∥A, B∥e−λA/2), (E.20)

and
∂2G

∂λ2
≙

1

2
e−λB∥B, ∥A, B∥∥eλB

+
1

4
eλA/2∥A, ∥A, B∥∥e−λA/2. (E.21)

Since G(0) ≙ ∂G/∂λ∣λ=0 ≙ 0, doubly integrating Eq. (E.21) gives

G(λ) ≙ λ

∫

0

dµ

µ

∫

0

dν (1
2

e−νB∥B, ∥A, B∥∥eνB
+

1

4
eνA/2∥A, ∥A, B∥∥e−νA/2). (E.22)

Substituting Eq. (E.22) in Eq. (E.15) yields

F (τ) ≙ 1

4

τ

∫

0

dλ

λ

∫

0

dµ

µ

∫

0

dν (e−νB∥2B, ∥A, B∥∥eνB
+ eνA/2∥A, ∥A, B∥∥e−νA/2), (E.23)
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and therefore, ∣∣e−iτH
− e−iτH1/2e−iτH2e−iτH1/2∣∣ ≤ c2τ

3, (E.24)

where c2 ≙ (∣∣∥2H2, ∥H1, H2∥∥∣∣ + ∣∣∥H1, ∥H1, H2∥∥∣∣)/24.
Generalizing to the case of the decomposition in K parts, we have

∣∣e−iτH
−

K

∏

k=1

e−iτHk ∣∣ ≤ c3τ
3, (E.25)

for some constant c3. Therefore, the accumulated error involved for a total of m applica-
tions becomes ∣∣U(τ)m − Ũ2(τ)m∣∣ ≤mc3τ

3
≙ c3τ

2t. (E.26)
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F. Quantum simulation

As was discussed in Chapter 1, it has been conjectured that quantum systems cannot be
simulated efficiently on classical computers [Fey82]. However, the ability of performing
such quantum simulations can offer valuable insights in the understanding of various
physical phenomena like superconductivity, magnetism, and many more [NC10]. In the
present section, we discuss how the Suzuki-Trotter product formula algorithm can be
employed for studying the evolution of a quantum system on a quantum computer.

The dynamics of a quantum system is governed by the TDSE, the solution to which
could be approximated by the exponentials of the form exp(−iτH(t + τ/2)) for a system
evolving from time t to t + τ . The Hamiltonian matrix H can then be decomposed in to
Hamiltonian matrices Hk consisting of only local terms (see Eq. (2.26)). At this point, the
second-order Suzuki-Trotter product formula algorithm (see Eq. (2.29)) can be used for
carrying out the evolution on a quantum computer as follows. We start with the general
Hamiltonian given by Eq. (2.36) and decompose it as

H(t) ≙Hx +Hy +Hz +Hxx +Hyy +Hzz, (F.1)

where Hα ≙ A(t)∑N
i=0 hα

i σα
i for α ≙ x, y, z, and Hxx, Hyy, and Hzz are defined as before.

Using the gate-based model of quantum computing, it is straightforward to implement
exp(iτHα) using the rotation gates given by Eq. (1.12) for α ≙ x, y, z. We therefore move
to the contributions from the Hamiltonian terms with higher-order coupling terms, and
start with implementation of the exp(−iτHzz). This operation can be carried out using
the CNOT gate and an ancillary qubit initialized in the state ∣0⟩ as shown in Fig. F.1
[NC10].

∣0⟩ RZ(2τJz
ij)

Figure F.1.: Quantum circuit for implementing exp(−iτJz
ijσ

z
i σz

j ) on a quantum computer.

For the contributions arising from the Hxx and Hyy terms, we can start by applying
rotation gates Ry(π/2) and (Rx(π/2))†, respectively, on all the input qubits, and then
proceeding in the same manner as for the Hzz term. The resulting state can then be
transformed back to the computational basis by applying the inverse rotations (Ry(π/2))†
and Rx(π/2), on all the input qubits.

It is straightforward to see that using this approach it is possible to implement quantum
Hamiltonians with higher-order couplings. However, this procedure requires the use of
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F. Quantum simulation

RZ(2τJz
ij)

Figure F.2.: An alternative quantum circuit for implementing exp(−iτJz
ijσ

z
i σz

j ) on a quan-
tum computer.

an ancillary qubit. An alternative circuit for simulating exp(−iτHzz), without using an
ancillary qubit is shown in Fig. F.2. As before, the contributions from the Hxx and Hyy

terms can be implemented using the rotation gates.
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G. Distributions

In this appendix, we provide the distributions that have been used in chapter 6 to fit the
minimum energy gap ∆min or the correlation length defined as ξ ≙ 1/∆min .

The first is the Fréchet distribution given by

Fk(x) ≙ a( b

x
)k+1

e−(
b
x
)k , (G.1)

for constants a, b, and k.
Next, we move to the Weibull-distribution, defined as

Wk(x) ≙ a(x

b
)k−1

e−(
x
b
)k . (G.2)

Introducing a translation µ in the Weibull distribution leads to the translated-Weibull
distribution given by

Wk(x) ≙ a(x − µ

b
)k−1

e−(
x−µ

b
)k . (G.3)

Lastly, we define the transformed-translated distribution W̃k(y) for the variable y ≙ 1/x,
where x follows the translated-Weibull distribution, ∣∣∂x/∂y∣∣ ≙ 1/y2 is the Jacobian of the
transformation, and

W̃k(y) ≙ a(1 − µy)−2(1 − µy

by
)k+1

e
−( 1−µy

by
)k

. (G.4)
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