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Abstract

Pedestrian streams are ubiquitous, but very diverse. Classifying them is critical in prac-

tice for crowd management but also for the organization and validation of models. As

far as an empirical classification is concerned, a robust method is still lacking. But also

in terms of a theoretical description, a large number of models coexist with an ill-defined

range of applicability. In this thesis, these problems are addressed in two ways. First, by

studying crowds in their one-dimensional limit, namely Single-File motion, which allows

for a better understanding of conceptual problems in models. Second, by drawing inspi-

ration from fluid dynamics, where dimensionless numbers such as the Reynolds number

help to classify flows.

Single-File motion exhibits interesting collective effects, such as stop-and-go waves, which

are validation benchmarks for any agent-based modeling approach of traffic systems. We

investigate different classes of models by examining the influence of different parameters,

including time-gap, anticipation time, and reaction time - sometimes revealing surprising

connections between well-known modeling approaches.

Then the wide range of phenomena encountered in crowds is organized by introducing

two dimensionless numbers rooted in psychological and biomechanical considerations:

the Intrusion number based on the preservation of personal space and the Avoidance

number based on the anticipation of collisions. Using an extensive data set we show

that these two numbers delineate regimes in which different variables characterize the

crowd’s arrangement, namely, Euclidean distances at low Avoidance number and times-

to-collision at low Intrusion number. Based on these results, a fairly general perturbative

expansion of the individual pedestrian dynamics around the non-interacting state is

performed. Simulations confirm that this expansion performs well in its expected regime

of applicability. This is also relevant for the larger class of agent-based crowd models as

their equations of motion typically depend on variants of the Intrusion number or the

Avoidance number. Simulations show that the occurrence of the Intrusion number and

Avoidance number in these models limits their range of applicability to specific regimes

of crowd motion.
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Symbols

N number of agents

ri = (xi, yi) position of agent i m

vi velocity of agent i m/s

ai acceleration of agent i m/s2

vdes,i desired velocity of agent i m/s

edes,i = vdes,i/|vdes,i| desired orientation of agent i

vdes,i = |vdes,i| desired speed of agent i m/s

vmax maximum speed m/s

` diameter of disc-shaped agents m

`min minimal diameter of disc-shaped agents m

Ni neighbourhood of agent i

rij vector pointing from i to j m

rij = |rij | Euclidean distance between centers of i and j m

rsoc social distance m

Inij intrusion between i and j

Ini =
∑

j∈Ni Inij intrusion of i

In averaged Intrusion number

τij time-to-collision between i and j s

τi = minj 6=i τij minimal time-to-collision of i s

τ0 desired time-to-collision s

Avij = τ0/τij avoidance between i and j

Avi =
∑

j∈Ni Avij avoidance of i

Av averaged Avoidance number

Tij time-gap between i and j s

vi



Symbols vii

Ti = minj 6=i Tij minimal time-gap of i s

T desired time-gap s

Tij = T/Tij risk-of-following of i to j

Ti =
∑

j∈Ni Tij risk-of-following of i

T averaged Risk-of-Following number

vij = −drij/dt rate of approach between i and j m/s

τR reaction or relaxation time s

τA anticipation time s

δt (numerical) update time s

α, β, γ varying model parameters





Chapter 1

Introduction

Systems studied in physics range from the smallest time and length scales, e.g., the

dynamics of electrons within attoseconds, up to the largest structures observed in the

universe as in cosmology. While particle physics is concerned with individual particles,

condensed matter physics studies various unexpected behaviours that emerge from large

assemblies of atoms. This is just a glimpse of the variety of systems encountered within

the realms of physics. Despite their differences, traditionally, the common ground has

been that physics is associated with the study of the inanimate world. However, as of

now, physics of living systems has fully emerged as its own field of physics, alongside the

more traditional branches mentioned above [1].

An important contribution of physics to the study of biological systems has, for example,

been the reveal of the double-helix structure of the DNA in the 50s with the help of X-

ray diffraction [2]. However, new experimental methods allow, for instance, to track the

dynamics of single molecules in cells [3]. Novel methods, like these, helped to unveil the

dynamic, stochastic, and emergent nature typically present in biological systems [4]. Such

questions are addressed within the vivid field of active matter, which studies emergent

behaviour of large assemblies of self-propelled particles, i.e., systems inherently far away

from equilibrium [5]. Active matter includes systems across various length scales ranging

from microscopic, such as bacteria that consume ATP and use its energy to self-propel

to macroscopic such as birds which can form mesmerising flocks. Obviously, bacteria are

‘dump’ whereas large animals have a complex perceptional and self-regulating apparatus,

thus, the term smart active matter has been proposed to describe the latter [6]. Crowds

may be categorized as such.

Despite this, the study of pedestrians and crowds does not originate in biological systems

but features a quite different history and touches upon various disciplines. With regard

to the human locomotion, the bipedal gait, anatomical studies date back to the early

1
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19th century [7]. In biomechanics, human gait is still actively studied and, for example,

the analysis of human gait serves as a method to diagnose various diseases [8]. Within

sociology and psychology, crowds have been studied since the late 19th century [9],

often characterizing crowds as violent and without rationality. Later that view has

been corrected by emphasizing that cooperative and rational behaviour is present in

crowds [10]. Nonetheless, such connotations still persist, for instance, the term ‘panic’ is

widely used to describe crowd crushes - often incorrectly blaming the victims instead of

criticizing inadequate planning [11].

Such practical questions originate in safety engineering which has been most influential

for the emergence of the field, at least from the perspective of physics. Logistical issues

when organizing large-scale events must have been relevant for human societies for cen-

turies. One of the earliest reports on a crowd crush dates back to the mid 19th century,

where a fire in the theatre of Karlsruhe has claimed many victims due to limited and

blocked emergency exits [12]. Events as such have led to the development of safety reg-

ulations for buildings in Germany around that time. Even though rules of thumb must

have been used by safety engineers long before, the first systematic and quantitative

examination of the topic was only published in the 1970s [13]. While around that time

the first agent-based model for crowds has been proposed [14], it only sparked a larger

interest, particularly within the physics community, twenty years later with the proposal

of the Floor-Field model [15] and the Social-Force model [16]. The topic held relevance,

also in the public’s mind, due to tragic crowd crushes around the world [17]. This has

led to numerous quantitative investigations of crowds both experimentally in which the

positions of each pedestrian in a crowd is tracked and theoretically through the proposal

of new, mostly agent-based, models.

Thereby, the understanding of crowds has greatly improved allowing, for instance, to

put building regulations on a more solid empirical footing. Several collective phenomena

of self-organization have been identified and analyzed quantitatively, such as lane and

stripe formation [18, 19], rotors in crowds [20] or clogging at bottlenecks [21] often serving

as corner stones for the validation of agent-based models [22]. Similar models are also

employed commercially to ensure a safer planning and, recently, an ISO norm has been

published to regularize the use of such models [23].

Despite these advancements, a zoo of models co-exist [24–27] and the realm of applicabil-

ity of each is ill-defined. Often new models are defined in an ad-hoc way without proper

justification nor substantial improvements in their dynamics. But also empirically the

classification of crowds remains unsatisfactory. In my thesis, I will try to address these

problems in two ways. In the first chapter we will ‘zoom in’ and simplify the system by
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considering the one-dimensional limit of crowds, namely single-file motion. Then we will

‘zoom out’ and take the broad array of crowd phenomena into account.

When modelling human behaviour one is confronted with numerous, untraceable degrees

of freedom. This ‘curse of dimensionaility’ is typically handled by representing pedestri-

ans as disks moving in the 2d plane, neglecting, for instance, the bipedal gait or complex

cognitive processes. This is partly justified by focusing on the macroscopic and statistical

properties of the system instead of trying to capture the behaviour of individuals cor-

rectly. Despite these simplifications, the corresponding models are quite complicated, for

instance, not allowing for an analytical treatment. Therefore, we will begin by examining

single-file motion, where individuals move in a line without overtaking. This represents

a significant simplification of pedestrian dynamics, particularly in terms of theoretical

description, as it allows for the study of models in their one-dimensional limit.

This scenario bears resemblance to car traffic on a single-lane road, for which many

models have been proposed. We will adopt these approaches and pay attention to their

interconnections by scrutinizing the influence of different time-scales, namely time-gap,

anticipation time, and reaction time. These models can capture the essential properties

of single-file motion, the fundamental diagram and stop-and-go waves, reasonably well in

particular if noise included. Besides, in the one-dimensional limit conceptual problems

can be identified more readily than in complex two-dimensional scenarios. This will

allow us to point out problems in two other model classes, namely force-based models

and time-to-collision based models which are both popular approaches when modelling

pedestrian crowds. This will be examined in chapter 3.

However, as mentioned above, pedestrian dynamics encompass a broad spectrum of sce-

narios which are at least two-dimensional. Thus, before aiming at a theoretical descrip-

tion it is prudent to organize the multitude encountered here. Typically, the crowd’s

density is used to delineate different regimes, for instance the levels of service defined by

Fruin for crowds [28, 29]. Each level is marked by a dominant behavior: (un)avoidable

contact, necessity to change gait, possibility to turn around, etc. and it has been ar-

gued that as the density changes crowd dynamics should be controlled by distinct laws

[30]. However, the watersheds between the regimes are arbitrary. Even from a practical

standpoint, for safety assessments, crowds at similar densities may present contrasted

characters and risk profiles. Consider the difference between a densely packed, but static

audience in a concert hall and people vying for escape in an emergency evacuation [17].

Recently, yearning for a better classification of these scenarios, it was proposed to gauge

congestion on the basis of a dimensionless number related to the vorticity of the veloc-

ity field, instead of the density [31]. This quantity is practically relevant, notably for
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safety issues, but gives no insight into the determinants of pedestrian dynamics at the

microscale.

We will draw inspiration from fluid dynamics, where dimensionless numbers like the

Reynolds number help classify flows. Starting with psychological considerations of pedes-

trian behavior, we will introduce the dimensionless Intrusion and Avoidance numbers,

which quantify the intrusions into the pedestrians’ personal spaces and the imminency

of the collisions that they face, respectively. Their averages over the crowd define di-

mensionless parameters that delineate regimes of crowd flows intuitively and empirically.

These regimes are found to differ markedly with regard to their ’self-organized’ structure,

i.e., the variables that characterize the crowds’ arrangement. This empirical analysis is

carried out in chapter 4.

These distinct types of arrangements, depending on the regime, contribute to making the

delineation of regimes useful, especially from a modelling perspective. It will allow us to

perform a perturbative analysis of the agent-based dynamics around the non-interacting

situation. This will yield different models each tied closely to a specific regime of crowd

flows. In particular, we will verify that the corresponding models can and can only be

applied in the regime they have been derived for. While in chapter 5 the focus is put on

these perturbative models, the discussion has bearing on the broader category of agent-

based models: their equations of motion often hinge on variants of either the intrusion

variable or the avoidance variable and thereby limiting their range of applicability to the

associated regime; a detailed inspection of this broader model category is conducted in

chapter 6.

The dissertation can be divided into two parts that can be read separately, especially

chapter 3 on the one hand and chapters 4, 5, and 6 on the other hand. I strongly en-

courage the reader to read chapters 4, 5, and 6 one after the other, as I hope this will

give you the most complete picture. In particular, the buildup, starting from psycholog-

ical considerations that allow an empirical classification, which leads to the derivation of

agent-based models closely related to models known in the literature, is, in my opinion,

one of the main strengths of this manuscript. While the general background is described

in chapter 2 most methods are introduced within the text when actually needed.



Chapter 2

Theoretical Background

Before presenting the results of this dissertation, let us introduce some genral concepts

and findings in pedestrian dynamics. We will start by looking at a single pedestrian

and its properties related to perception, biomechanics, and psychology. Our main focus,

however, lies in assemblies of many pedestrians, i.e., crowds. Such a system of ‘interacting

particles’ endorses a description in the framework of statistical physics. However, unlike,

say, a system of interacting spins as in the Ising model, pedestrians are active, self-

propelling entities. Accordingly, crowds cannot reach thermodynamic equilibrium, which

is characteristic of systems studied in the field of active matter. After discussing some

general properties of active matter, we will introduce the basic quantitative measures

used to describe crowds, i.e., velocity, density, and flow. Furthermore, we will give a

short overview of the main (collective) phenomena encountered in crowds. Finally, we

will discuss some aspects of modelling pedestrian crowds.

2.1 The Pedestrian

A pedestrian is a human moving on foot in a publicly accessible area [32]. Even though

walking is an every day activity which literally happens ‘on the move’, it is a complex

process: Based on the perceptions of the sensory system, the central nervous system

(CNS) contracts or relaxes the muscles. Thereby, the CNS coordinates the limps in

order to initiate movement and to keep balance, cf. the simplified picture in Fig. 2.1.

In the sensory system, the proprioceptors are sensory receptors in muscles and joints

that provide information about body position and movement. The visual system is the

physiological basis to see, i.e., to detect and process light. The vestibular system (in the

inner ear), combined with the other senses, creates a sense of balance and orientation.

5



Theoretical Background 6

Figure 2.1: Simplified diagram of the human postural control loop used to stabilize
body posture and to coordinate body movement. Figure taken from [34].

The information of the sensory system is processed and interpreted by the CNS, which

includes the brain. This allows to represent the external state (our enviroment) and

an internal state (position of limbs but also, for instance, the desire to go somewhere).

According to the external and internal state, the CNS generates motor commands which

are send to the muscular system. These commands are executed by contracting and

relaxing the relavant muscles which results in movement of the corresponding limbs. This

coordination gives rise to the human to locomotion (e.g., walking) that is facilitated by

friction between the feet and the ground. Through evolution and learning this control

loop can reach a great level of precision, as exemplified by professional long-jumpers who,

at high speeds, strike the take-off boards at the precision of centimetres [33].

2.2 The Crowd

This work is occupied with the description of crowds which are simply defined as an ag-

gregation of pedestrians [32]. From the perspective of physics, a crowd can be described

as an interacting many particle system. It consists of elementary entities, the pedes-

trians, which interact with each other. The way the crowd flows, with all its collective

phenomena, emerges from these interactions. Thus, it is natural to apply ideas and con-

cepts from statistical physics to study crowds. However, in contrast to classical problems

in statistical physics we are dealing with entities that posess the ability to move on their

own, i.e., to self-propel. The ability to self-propel is constitutive, not only for crowds,

but also for various systems which are described as active matter. Apart from crowds,
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active matter includes assemblies of bacteria, nanomotors, or microswimmers but also

flocks of birds or schools of fish [35].

For some systems out of equilibrium an equilibrium steady-state exists and, after some

thermalization period, the system will reach it. If the system is sufficiently close to

its equilibrium state, it can be described using linear response theory. The equilibrium

steady-state itself fulfills detailled balance, time-reversal symmetry, and the probabilities

of its configurations are given by the Gibbsian form. All of these properties are broken in

truely non-equilibrium systems. These systems may only reach a non-equilibrium steady-

state, which is characterized by a non-zero flux. One can further distuingish between

active systems and systems in which energy is injected through the boundaries. In the

latter, a current is maintained by an external drive, such as an electrical wire carrying an

electrical current or charged colloids driven by an external field. Active systems, on the

other hand, are persistently out of equilibrium because the elementary entities locally

consume energy. This entails that no global symmetry is enforced by an external field,

but the agents move individually according to their preferred motion [36].

In practice, the description of crowds by means of statistical physics supposes that most

of the complex properties of the individual pedestrians, which we have indicated in

Section 2.1, can be neglected - as long as one is only interested in the statistical and

‘macroscopic’ properties of the system. This typically implies that pedestrians are rep-

resented as disks, occupying a certain area, that navigate in the 2d plane. This is also

reflected in the empirical data, which usually consists of 2d trajectory data, obtained by

tracking the heads of people. Of course, at certain instances more realistic representa-

tions may be needed such as elliptical body shapes, which allow to take shoulder rotation

into consideration. Accordingly, the shoulder movement has recently been tracked in ex-

periments [37]. Apart from that, actual mechanical interactions become relevant in very

dense crowds. Here, other experimental methods such as pressure sensors or ‘X-Sense’

suits give detailled information about the contact forces and the complete body posture

of pedestrians, respectively. This allows, for instance, to investigate the propagation of

pushes [38] or stepping strategies in dense crowds [39]. Let us, however, start by sum-

marizing the well established findings in pedestrian dynamics, starting with the basic

quantitative measures employed to describe crowds.

2.2.1 Density, Velocity and Flow

The three most important quantities to measure in crowds are density, velocity and flow.

While the velocity is straightforward to define and to calculate, there are several ways to
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define a density in crowds. Regarding the flow, there are some subtleties in its calculation

which we will briefly discuss below.

In general terms, the density is given by the number of people N located in an area A,

i.e.,

ρ =
N

A
. (2.1)

This defines a global density, taking as the area, for example, the experimental site and

counting the people inside this area.

The definition in Eq. (2.1) is however not well suited to describe a local density, as there

is no strict separation of scales between the entity and the assembly. This problem is

usually circumvented by either a Voronoi tesselation [40], where the inverse of the area

corresponds to the local density, or by using Gaussian Kernels for each pedestrian. For

details with regard to the exact definition or implementation refer to [41].

The flow J states how many people cross a fixed location of a facility per time. Typically

it is defined as a scalar quantity by only considering the flow perpendicular to a line [42].

It can be calculated simply by counting the number of people that pass, for example,

through a line in a corridor, and dividing by the measurement time T , i.e.,

J =
N

T
. (2.2)

It is also directly related to the time ∆tii+1 between two consecutive people i and i+ 1

crossing that line, in particular J = 1/〈∆t〉. To obtain a quantity independent of the

length of the line b, a specific flow is defined as

JS =
J

b
, (2.3)

which gives the number of pedestrians per unit time and length that passes the corre-

sponding cross section. The specific flow can also be calculated via the Hydrodynamic

relation, i.e.,

JS = ρv, (2.4)

where v is the average speed of the pedestrians.1 Note that, the average speed in Eq. (2.4)

is typically calculated as an average over space, whereas Eq. (2.2) involves an average

over time. Thus, the influence of fast pedestrians is underestimated in the former which

can lead to considerable differences between the two methods [42].
1In the case of single-file motion, typically a line density is defined by dividing the number of agents

N that are located on a specific line-segment by the length L of this segment. In the case of a line
density ρ, the hydrodynamic relation yields the flow J per unit time instead of the specific flow.
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The relation of how the mean speed changes with density is called the fundamental

diagram. Through the hydrodynamic relation Eq. (2.4), there exist three different repre-

sentations of the fundamental diagram, namely JS(ρ), v(ρ), and JS(v). Loosely speaken,

the fundamental diagram can be described as follows: at small densities, there are few

interactions and everyone moves with their desired velocity, the system is in a free-flow

state and the flow increases lineraly with the density. At some density the maximum flow

is reached (the capacity). Beyond that critical density, mean velocity and flow decrease

with increasing density. The system is in a congested state.

As the fundamental diagram is a central quantity for planning and designing pedestrian

facilities, many studies have been focused on determining its exact shape. Despite this,

certain essential questions are still not agreed on, i.e., at which density the capacity

is reached, how large is the capacity, and at which density will the flow go to zero

[42]. These differences can partly be traced back to several factors, for instance between

different cultures or different levels of motivation [43–45]. Furthermore, the exact method

to calculate the fundamental diagram, especially regarding the definition of the flow,

can have a large influence on the fundamental diagram [29, 46]. We will discuss the

fundamental diagram of single-file motion again in chapter 3.

2.2.2 Self-Organization in Crowds

In crowds, several collective effects and self-organization phenomena have been observed.

These ‘macroscopic’ effects, on the level of the crowd, arise through the ‘microscopic’

interactions between the individual pedestrians. Consequently, these phenomena are

well suited to validate agent-based models. In the following, I will try to provide a

concise overview of the main phenomena and its properties. For a detailled description

and quantitative results refer to the corresponding references.

Lane and Stripe Formation In bidirectional flows, i.e., if two crowds move through

the same facility in opposite directions, multiple unidirectional lanes will typically emerge.

An exemplaric snapshot is depicted in the left of Fig. 2.2. Through the formation of lanes

the number of interactions is reduced and a more comfortable flow is achieved. Depend-

ing on multiple factors, like boundary conditions and density, the system can form few,

thick, and stable lanes or multiple, thin, and rather short-living lanes. Multiple studies

investigated lane formation experimentally [18, 47, 48] and theoretically [15, 19, 49].

The formation of lanes in two-component active flows has been observed in various con-

texts, for instance in mixtures of oppositely charged colloids driven by an external field

[50]. Lanes seems to emerge from many different kinds of interactions and, accordingly,
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Figure 2.2: On the left, a snapshot of bidirectional flow where four lanes have formed
[18]. The color of the hats indicates the direction of motion (i.e., red from left to right

and yellow from right to left). On the right, cross flow with two stripes [52].

most pedestrian models can replicate its basic features. At high densities, however, many

models end up in grid-locks [49, 51]. This has not been observed in experiments yet which

investigated bidirectional flows up to densities of 3.5/m2 [52]. To avoid the formation

of grid-locks in models, the importance of anticipation has been emphasized [49]. Ex-

perimentally it was also shown that (mutual) anticipation leads to a faster formation of

lanes [18].

A related phenomenon is the formation of stripes that occur, for example, if two crowds

intersect each other at a crossing [19]. See Fig. 2.2 on the right for an exemplaric

snapshot.

Bottleneck: Jamming, Clogging and Oscillations Apart from crowd flows through

corridors (uni- or bidirectional) and crossings (multidirectional), bottlenecks are essential

to understand the crowds’ motion. Especially for practical purposes such as evacuations

of large (high-rise) buildings. The term bottleneck is defined as a physical obstacle that

has a lower capacity than the sorrounding enviroment [32], for instance a narrowing of a

corridor (e.g., doors) or stairs.

As long as the inflow is less than the capacity of the bottleneck, the system remains in a

free-flow state, where the inflow equals the flow through the bottleneck. However, if the

inflow surpasses the capacity of the bottleneck, it leads to an accumulation of individuals

in front of the bottleneck, resulting in congestion or jamming. At such instances, the

density decreases within and behind the bottleneck compared to the density in front of

it, as illustrated in Fig. 2.3 (right) and discussed in [53].

In the congested regime, especially when the crowd is highly motivated to get through the

bottleneck, the pedestrians’ bodies can form structures that obstruct the flow (clogging).

These structures, if viewed from above, typically resemble semi-circular, self-stabilizing
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Figure 2.3: On the left, a snapshot of a crowd forming a counter-clockwise vortex,
taken from [20]. The colored tails show the last 2s of the trajectory. On the right, a
short living clog at a bottleneck where a force chain is indicated by the black line [61].

shapes, so-called arches as indicated by the black line in Fig. 2.3 (right). Clogging and

the formation of arches has not only been investigated for pedestrians (cf. [54, 55]) but

also for sheeps [56] and granular systems [57]. While for crowds clogs are only short-

living, in granular systems arches can permanently block the flow. In such cases, adding

vibrations to the system can prevent the formation of permanent clogs [58]. Similarly for

pedestrian models, the formation of unrealistic permanent clogs is a frequent problem

which can be solved by adding noise [59].

Related to the formation of clogs, simulations suggested that as the crowd tries to pass a

bottleneck faster (e.g. due to a higher urgency to exit), the evacuation time increases [60].

While this faster-is-slower effect has been verfied empirically under some experimental

conditions [21], the contrary (a ‘faster-is-faster ’ effect) has been observed in other studies

[61].

Other collective effects observed at bottlenecks are the Zipper-Effect, related to the linear

dependency of the bottleneck’s capacity on its width [25]. Furthermore, if two crowds

approach the bottleneck from both sides these will spontaneously organize such that the

two crowds pass through the bottleneck in oscillations, where at each turn a handful of

people passes the bottleneck [25].

Density Waves Crowds at high density can exhibit density fluctuations which are

quasiperiodic in space and time. These have been observed in real crowds, e.g., on the

Jamarat Bridge in Makkah [62] but also experimentally for single-file motion, e.g., [46].

In single-file motion, these density waves consist of a high density part, in which people

have a speed close to zero, and another region of lower density in which people are still

able to move, so called stop-and-go waves. Interestingly, these have some similarities and

differences with regard to the formation of traffic jams in vehicular traffic, which we will

discuss in more detail in chapter 3. The related phenomenon of phase separation has
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been observed in various systems, for example band-formation by charged colloids [50]

or in flocking models [63].

Fluctuations in density also occur in critical and dangerous situations as it has been

reported for the tragic crowd crush at the Love Parade in Duisburg [64]. In regions of

increased density, people can be lifted and loose their contact to the ground. At the

same time, the pressure on the chest increases which can cause people to faint. As soon

as the density decreases, this can induce falling. These ‘holes’, where people have fallen

onto the ground, pull in people from the sorrounding area as the pressure from that side

is reduced [64].

Rotors Another collective phenomenon in crowds is the spontanuous formation of cir-

cular motion if there is no desired direction [20] with an exemplaric snapshot shown in

Fig. 2.3 (left). Similar phenomena of vortex formation have been observed is other active

systems, such as confined bacteria [65] or the milling of fish [66]. For crowds these vor-

tices show a characteristic counter-clockwise rotation. The reason behind this ‘symmetry

breaking’ is yet unknown [67].

2.2.3 Modelling of Crowds

At many instances it is not possible, due to ethical or financial reasons, to perform

experiments. For instance, when planning large-scale buildings like a stadium, one might

want to investigate the influence of certain elements on the overall evacuation time. Such

hypothetical scenarios can be tested with models. Apart from practical questions like

these, models are crucial to understand crowds, especially from a physics perspective.

For instance, with help of a minimal model one might be able to identify the mechanisms

that are essential to explain the core-features of certain collective phenomena.

A model might be rather abstract, for instance a network where each node represents a

certain area within a facility. The nodes are connected with links that feature a certain

(empirically measured) capacity [68]. On the other hand, agent-based models refer to

each individual seperately and assign them fairly complex and possibly heterogeneous

behaviours. To get a handle on the variety of models, several classifications have been

proposed. Let us discuss two of these classificaction schemes below.

The first important classification distinguishes different time-scales of pedestrian be-

haviour, which are shown in Fig. 2.4 and have been introduced by [69, 70]. On the

longest relevant time-scale, i.e., the strategic level, pedestrians choose certain activities

that they want to perform, e.g., going shopping to a number of stores. At the tactical
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Figure 2.4: The three different levels of modelling pedestrian dynamics, following
[69, 70]. Figure taken from [25]

Figure 2.5: Classification of pedestrian models following [29]. The green and the red
‘path’ indicates two types of models which are most frequently encountered. Figure

taken from [25].

level, these activities would be scheduled and a certain route is chosen, for instance, based

on the current level of crowding. The shortest time-scale is described by the operational

level, at which the actual walking dynamics is determined, e.g., avoiding an approaching

person by stepping to the side. While some models exist for the tactical level, such as

those describing route choice behavior, the strategic level is almost exclusively treated

as an external input to models. Most models aim at describing the operational level.

At the operational level, models can be further classified according to the scheme de-

picted in Fig. 2.5 which is based on [29]. In macrocopic models, the crowd is treated

as a continuum by utilising continuity equations and conservation laws, cf. [71, 72]. In

contrast to this, most models are microscopic (agent-based) models that refer to each

agent individually.

Within microscopic models, one can further distinguish between discrete and continuous

models. In the former, space, time, and the variables that characterize the internal state
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of each agent are integers. In the latter they are real numbers and the corresponding

model is typically formulated in terms of differential equations. Some models are mixed,

for instance, the optimal steps model [73] is continuous in space but discrete in time,

taking as a time step the actual steps people take.

One can further distinguish between stochastic and deterministic models. In the latter

the state of the systems is determined by the dynamics and the initial conditions at

any time. In the former stochastic elements add uncertainties to the system. This

stochasticity might be added as probabilities in the decisions that agents take, reflecting

our imperfect knowledge of such complex processes. On the other hand, it can also be

included as a (white or correlated) noise which is added to the variables of state for each

agent.

Finally, it is distinguished between velocity-based, accelaration-based (or force-based), and

decision-based models. In velocity-based and accelaration-based models, the agents are

treated as particles subjected interactions with the external enviroment, e.g., repulsions

from neighboring agents, which determine their velocity or acceleration, respectively.

Acceleration-based models are typically described by second-order differential equations

often using analogies with Newtonian mechanics (‘forces’). Velocity-based models, on the

other hand, are described by first-order differential equations. In decision-based models

the focus is put on the decision processes of the agents by assigning specific rules to each

of them.

Not all combinations of the different factors are equally likely. So much so that two

typical types of microscopic models are highlighted in Fig. 2.5. On the one hand, there are

Cellular Automata models which are discrete, stochastic, and decision based (indicated

by red). A typical model out of that class is the floor-field model [15], in which the

space is divided into discrete cells. Each pedestrian occupies one of these cells and their

decisions are modelled by transition probabilities to one of the neighboring cells. On the

other hand, as indicated in green in Fig. 2.5, there are continuous, deterministic, and

accelaration-based models, as represented by the Social-Force model [60]. In these kind

of models, pedestrians are particles subjected to different ‘forces’ which are superimposed

onto each other. The most important factors are a ‘driving force’ and a repulsive ‘social

force’. For more detailed information refer to the reviews of pedestrian models and the

references therein [24–27, 74]. Throughout this dissertation, specifically in chapters 3

and 6, we will disucss numerous models that have been proposed to describe crowds.

Thereby we will limit ourselves to microscopic models that are continuous in space and

typically continuous in time as well.

An important aspect with regard to modeling is, of course, how to assess the realism of

these models, i.e., their validation. Answering this question can be tricky when modeling
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human behaviour. While in traditional theories in physics quantitative agreement is

decisive, here the somewhat vague notion of ‘similarity’ is considered, which always

shows some context dependency [75].

The validation of pedestrian models helds practical relevance in the context of commer-

cial software which is employed to test potentially dangerous situations. To this end, a

guideline has been proposed which consists of mostly qualitative test-cases which models

need to pass [76]. Similarly, an ISO norm has been published which puts more emphasis

on quantitative aspects [23]. In a scientific context, the occurence of the collective phe-

nomena and the fundamental diagram are essential to assess the realism of a model [25].

This can be done in a qualitative fashion (e.g., ‘the model reproduces lane-formation’),

semi-quantitative, for instance, by comparing the flow-density relationship, or by defin-

ing a measure that quantifies the similarity [77, 78]. Often models are not proposed to

describe pedestrian dynamics in every conceivable situation but in order to understand

a certain ‘target-phenomenon’. Accordingly, the corresponding models are only checked

to reproduce the key features of the specific phenomenon. We will discuss some aspects

(and frequent problems) with regard to the validation of pedestrian models in chapter 6.



Chapter 3

Single-File Motion

Human behavior within crowds is generally complex, leading to different collective phe-

nomena. Several key principles of the individual behavior are widely agreed on. Pedes-

trians naturally occupy a certain volume or area, actively pursuing their objectives while

maintaining a safe distance to others. Moreover, pedestrians anticipate changes in their

environment and base their decisions on this [79].

The way these principles are conceptualized, however, differ notably between the plethora

of agent-based models that have been suggested to describe pedestrian dynamics [25, 26,

80]. Crowds may be described in terms of (social) forces [16], cellular automata [15] or

by an optimal velocity which is chosen according to the surroundings [81].

Our aim is to organize the zoo of models for pedestrian dynamics systematically. Fo-

cusing solely on models continuous in time and space, we have classified them into three

categories based primarily on the variables that characterize the interactions between

pedestrians. These categories are Force-based models, Optimal Velocity models, and

Velocity Obstacles which are associated with Euclidean spacings, time-gap, and time-to-

collision, respectively.

Before delving into the wide array of phenomena observed in crowds, we will begin by

examining single-file motion, where individuals move in a line without overtaking. This

represents a significant simplification of pedestrian dynamics, particularly in terms of

theoretical description, as it allows for the study of models in their one-dimensional

limit. Moreover, the interaction is primarily restricted to the nearest neighbor in front,

and route choice behavior, relevant in many crowd scenarios, being fully negligible. Con-

sequently, this scenario bears resemblance to car traffic on a single-lane road, enabling

the application of ideas from models for vehicular traffic. These simplifications facilitate

16
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the identification of conceptual problems more readily than in complex two-dimensional

scenarios.

Another important reason for focusing on single-file motion is that many experiments

have been conducted and the essential properties of pedestrian single-file motion are

relatively well understood. This allows a much more straightforward comparison between

models and experiments.

We will commence with a concise overview of the primary findings concerning pedestrian

single-file motion, particularly focusing on the emergence of stop-and-go waves and the

fundamental diagram. The starting point of our theoretical investigation will be the

popular class of force-based models. These models, however, not only grapple with con-

ceptual issues associated with the analogy to Newtonian forces, but also have difficulties

in accurately replicating key features of single-file motion.

Therefore, we will introduce models rooted in vehicular traffic, known as car-following

models, which have a long history and include quite different models. Our focus will be

on Optimal Velocity models, wherein we demonstrate their derivation from a first prin-

ciple based on the time-gap. Introducing more nuanced behaviors such as finite reaction

time and anticipation will spawn a whole family of models, revealing interconnections

between established models. Through stability and scaling analysis, alongside numeri-

cal simulations, we will illustrate that this class of models can reasonably capture the

essential characteristics of single-file pedestrian motion.

Lastly, we will delve into Velocity Obstacle models, where the time-to-collision, which

quantifies the temporal ‘distance’ to an anticipated collision, governs interactions between

agents. Despite the proven accuracy of TTC in describing crowds in certain scenarios

[82], we find that in the context of single-file motion, the TTC falls short in capturing

its primary features.

This chapter is based on findings that have been published in [83, 84].

3.1 Empirical Findings

Let us quickly recapitulate the main empirical findings regarding single-file motion. For

a more extensive review on the different concepts and the numerous experiments that

have been conducted refer to the corresponding citations.
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Figure 3.1: Left: Stop-and-go waves in trajectories from a single-file experiment
with N = 70 pedestrians (figure taken from [46]); Right: Trajectories showing phase
separation into a jam and a free-flow phase (from simulations of the VDR model [93]).

3.1.1 Stop-and-Go Waves, Phantom Jams, and Phase Separation

The term stop-and-go waves was introduced in the late 1970s [85] to describe vehicular

traffic in a tunnel. Extensive research on stop-and-go waves in traffic flow has been

conducted for decades [86–88], with comprehensive reviews available [29, 89, 90].

The phenomenon refers to a wave, moving in the opposite direction of the agents’ motion,

with a characteristic velocity. These waves consist of two regions, a stop-part in which the

agents have a small velocity and a go-part in which they move with a larger velocity, cf.

Fig. 3.1 (left) for an exemplary snapshot of pedestrian trajectories. The region featuring

a small (or zero) velocity is, in vehicular traffic, typically called a jam or a phantom jam.

The latter term emphasizes that the jam did not arise due to any kind of bottleneck, in

which case the front of the jam would not move upstream but would remain fixed at the

bottleneck. Such phantom jams have been observed in vehicular, bicycle, and pedestrian

pedestrian traffic [87, 91, 92]. The related concept of phase separation emphasizes the

coexistence of two qualitatively different states which are separated in space. The jam

itself which consists of stopped vehicles and another region in which the vehicles are able

to move, cf. Fig. 3.1 (right).

Stop-and-go waves are collective phenomenona that arise from self-organization: While

at small density the pedestrians or vehicles self-organize into a homogeneous free-flow

state, at larger densities inhomogeneities occur and the system self-organizes into stop-

and-go traffic. Since all agents (usually) try to avoid jams, their occurrence is remarkable

already and indicates complex, non-linear behavior. Apart from that the occurance of
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Figure 3.2: The fundamental diagram for a large collection of Single-File experiments
in its two typical representations, v(ρ) (left) and J(ρ) (right). Fundamental diagrams
using local or global density are here depicted in one diagram. Both figures are taken

from [95].

traffic jams is, of course, of practical relevance since it has a negative impact on safety,

economy and comfort in transportation networks.

For vehicular traffic, the situation is relatively well understood (see e.g. [29, 89] and

references therein): stop-and-go traffic features a clear phase-separation into a region of

standing vehicles and a region in which the cars hardly interact and move with speeds

close to their desired speed. Remarkebly, a characteristic speed of the jam exists. This

behaviour is related to metastable states at intermediate densities where free-flow states

can be stable for a long time but eventually break down due to fluctuations. This leads

to a significant reduction in the flow (capacity drop), and the free-flow state can only be

reached again by reducing the density (hysteresis) [94].

Surprisingly this seems to be quite different for pedestrian dynamics [46]. In particular,

metastable states have yet not been observed. The system also separates into two phases

but the differences between these are much more weakly pronounced: it features regions

with speeds close to zero as well as another region in which pedestrians have larger

velocities. However, in contrast to vehicular traffic, even in the moving ‘phase’ the

interactions are strong, the corresponding speeds are small, and depend on the density

[46].

3.1.2 Fundamental Diagram

Apart from the occurrence of stop-and-go waves, the most important relation for single-

file motion (and traffic in general) is the fundamental diagram, whether it be for practical

purposes of engineering or for the validation of traffic models [42].



Single-File Motion 20

The fundamental diagram describes the relation between mean speed (or flow) and den-

sity. Both typical representations are shown in Fig. 3.2 for a collection of experiments on

single-file motion from [95]. On the left, a typical 1/ρ shape is evident, whereas on the

right a triangular shape can be seen. For small densities, the flow increases linearly with

density, i.e., the ‘free-flow’ branch, which is followed by a peak denoting the maximum

flow (the capacity) at a critical density. Until the maximum, interactions between pedes-

trians are scarce. For larger densities, the flow decreases with density as pedestrians slow

down due to the interactions. The system is in a ‘congested’ state and, eventually, stop-

and-go waves arise. This applies not only to pedestrian traffic, but also to bicycle and

vehicle traffic [91]. Note that several factors influence the exact shape of the fundamental

diagram. We have discussed some of these factors in chapter 2.

3.2 Force-Based Models

How are these empirical results reproduced in mathematical models of crowds? A natural

starting point to try to answer this question is by studying force-based models. These

are, with regard to models continuous in space and time, the most popular models for

crowd motion (see e.g. the reviews [25, 26, 80] and references therein). The social-force

model (SFM) [16] describes the movement of pedestrians by means of repulsive forces

that decay exponentially with distance. These repulsive interactions are superimposed

with other factors, most importantly, with a driving force that represents the desire to

move. Note that, conceptually, the social-force model is predated by the model of Hirai

and Tarui [14] which uses algebraic forces instead of exponentials.

The appeal of these models lies in their resemblance to classical mechanics. Pedestrians

are treated as individual particles, subject to interactions characterized by diverse forces,

encompassing both physical and ‘social’ elements. These different factors are summed

over and result in an acceleration for each individual pedestrian. The social force, in

particular, represents an individual’s desire to maintain personal space and a preference

for avoiding proximity to others. The flexibility in the design of force-based models, owing

to these characteristics, has resulted in the formulation of various analytical expressions

for these forces.

For a more detailed description, refer to [84] and the references therein.

3.2.1 Conceptual Problems

The force-based approach described above has some conceptual issues that remain incom-

pletely addressed. Notably, concerns such as unrealistic motion, including oscillations,



Single-File Motion 21

violations of the exclusion principle (e.g., agents overlapping and ‘tunneling’ through

others, resulting in a reordering of agents in single-file motion), and acceleration leading

to velocities exceeding the desired velocity, were underscored in [96, 97]. Moreover, pos-

sibly correlated with these issues, it has been observed that achieving realistic motion

often requires assigning physically unrealistic values to certain model parameters [98].

It should be emphasized that these effects do not arise from numerical challenges [99],

such as in the discretization of the system of differential equations describing motion,

but rather stem from fundamental conceptual issues.

Another issue arises from the observation that social forces typically do not adhere to

Newton’s Third Law, where action equals reaction. This poses fundamental questions,

particularly concerning the distinction between force and mass, which relies on the Third

Law in classical mechanics. Additionally, the principle of the superposition of forces, as-

serting that the action of different forces on a body is determined by the vector sum of

contributions, proves invalid in numerous scenarios encountered in pedestrian dynam-

ics [100]. This deviation often results in numerical challenges, manifesting as unreal-

istically high forces and total forces pointing in incorrect directions. For instance, in

single-file motion, combining the driving force with an asymmetric repulsion can induce

unrealistic backward motion.

Some challenges observed in force-based models can be ascribed to excessive inertia

effects, leading the model to exhibit damped oscillations rather than the intended over-

damped behavior [101–103]. In practical applications, the pedestrian’s mass is commonly

employed as the mass parameter, resulting in substantial inertia. To mitigate this, a

smaller ‘effective’ mass could be introduced in simulations of second-order models, ne-

cessitating the determination of the mass as a parameter through calibration.

Disregarding inertia effects simplifies the dynamic equation for the damped harmonic

oscillator, transforming it into a first-order differential equation. This insight has sparked

interest in the exploration of first-order, or velocity-based, models for pedestrian motion.

This approach is sensible considering that pedestrians can abruptly stop and turn, a

behavior achievable only when inertia effects are minimal.

However, disregarding inertia also leads to the fact that the homogeneous configura-

tion will remain stable across all densities and the model can not describe stop-and-go

dynamics [27] which, however, is an important factor of model validation in single-file

pedestrian models. Even though the original SFM features instabilities and consequently

a breakdown of the homogeneous solution. These do not resemble the observed proper-

ties of stop-and-go dynamics in pedestrian crowds which are, for example, much better

captured in models featuring coloured noise [102, 104, 105].
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So far we have discussed some fundamental problems of the force based models related

to the analogy to actual Newtonian forces in physics. Thereby, we have focused mainly

on problems of local stability and oscillations as well as global stability in terms of stop-

and-go dynamics. (How) does the social-force model reproduce the slowing down at

increasing density, i.e. the fundamental diagram?

Let us start by noting that a purely distance-based repulsive interaction does not lead to

a slowing down in general: imagine pedestrian i right in the middle of two other pedes-

trians. He or she will feel an equally strong repulsion of both in opposite direction. Due

to the superposition of ‘forces’ these cancel out and allow a movement with the desired

speed. Thus, to reproduce the fundamental diagram in such a model, an anisotropic

interaction is needed [106]. For example, it is argued that due to the limited perception

an interaction is only present to the agent in front. Consequently, the desire to keep a

distance to the person in front mitigates the desire to move and the agents slow down.

For the social-force model, however, the resulting fundamental diagram is unrealistic [30]

and cf. Appendix A. Additionally, even though studies on proxemics indicate that the

personal space shows some degree of asymmetry, i.e. a larger extension in front than in

the rear, such a strong asymmetry is not supported empirically [107].

Another way to explain the fundamental diagram in such a model was introduced in

[108], where closer attention was payed to the details of volume exclusion. Generically,

pedestrians are represented by disks with constant radius. Observations have, however,

shown that the space requirement of pedestrians is not constant, but depends on the

walking speed since the step length increases with increasing speed. This introduces

a velocity dependent size ` = `(v), which allows the pedestrians ‘to make themselves

smaller’ by slowing down. This offers an alternative explanation of the fundamental

diagram and matches experimental results reasonably well, cf. [108].

Let us recapitulate, the class of Social Force models seem to suffer from inherent (concep-

tual) problems and can neither describe stop-and-go waves nor the fundamental diagram

reasonably well. In the following we will therefore study a different class of models that

originates in vehicular traffic. Interestingly, even though inertia effects are much more

relevant here than for pedestrian dynamics, several models that neglect inertia have been

developed. Given the preceding arguments, it appears worthwhile to investigate in more

detail their suitability for pedestrian dynamics, perhaps after some modifications.



Single-File Motion 23

3.3 Following Models based on the Time-Gap

The idea of ‘car-following’ models discussed in this section originates not in pedestrian dy-

namics but in vehicular traffic where the first analyses of single-file, or rather single-lane,

traffic date back to the 1950s [109]. Since then numerous models have been proposed. For

readers interested in a historical overview refer to [84]. We will start by organizing the

existing zoo of models by defining three categories of car-following models. Subsequently,

we will focus on one of these model classes, so called ‘Optimal Velocity’ models.

These can be derived from a simple first principle, based on the assumption that agents

pay attention mainly to the time distance instead of Euclidean distances which gave rise

to the force like interactions discussed in the previous section. Specifically, we will assume

that people pay attention to the time-gap, which denotes the time one would need, given

the current speed, to reach the rear of the vehicle in front. The time-gap accounts for

the fact that the Euclidean safety distance depends on the speeds. Accordingly, a rule

of thumb to estimate the safety distance on highways is based on the time-gap: the two

second rule.1 In particular, the driver should always make sure that the time-gap to

the preceding vehicle is larger than two seconds. Starting from there, we will introduce

other time scales such as reaction and anticipation time which will allow us to reveal

some interesting interrelations between different models.

We will investigate how these affect the stability properties, related to the occurrence of

stop-and-go waves. Furthermore, we will discuss the influence of noise which gives rise

to an alternative mechanism to reproduce stop-and-go dynamics. Finally we will pay

attention to the fundamental diagram of these models and the variables that characterize

it.

3.3.1 Categorizing Following Models

As mentioned above many different types of following models exist. In the following we

try to subdivide these models into different classes which then will help us to understand

the relations between the models better. Without loss of generality we consider here

only interactions with the nearest neighbor in front. The general case of interactions

with more than one predecessor is discussed in [110].

Since we focus on single-file motion, we assume a one-dimensional space with N agents of

size `. We denote their positions, velocities and accelerations by xi, vi = ẋi and ai = ẍi,

respectively (Fig. 3.3). The distance between two agents i and j is ∆xij = xj − xi, i.e.
defined as the distance between the centers. The agents are sorted in ascending order

1See for example https://en.wikipedia.org/wiki/Two-second_rule.

https://en.wikipedia.org/wiki/Two-second_rule
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in the direction of motion, i.e. agent i + 1 is the predecessor of agent i. Most of the

time it is sufficient to consider the predecessor i only, therefore ∆xi denotes the distance

between the centres of i and i + 1. In single-file motion this order will be preserved as

overtaking is not possible. In the following, we will omit the time-dependencies of the

dependent variables if no delays are present, i.e., if they are evaluated at the same time.

i− 1 i i+ 1 i+ 2

∆xivi−1

xi−1
`

x

Figure 3.3: Illustration of an one-dimensional chain of self-driven particles.

Generically, all following models then have the form

ẍi = A(∆xi, ẋi, ẋi+1), (3.1)

for 2nd order models [111] or

ẋi = V (∆xi, ẋi+1), (3.2)

for 1st order models. The functions A and V are model-dependent.

For all models, there exists at least one equilibrium solution where the agents are evenly

distributed in the system (i.e. ∆xi = xeq) and move with the same speed vi = veq.

Equilibrium speed veq and equilibrium spacing xeq are determined by the conditions

A(xeq, veq, veq) = 0, (3.3)

and

V (xeq, veq) = veq , (3.4)

respectively. While for Stimulus-Response Models this equilibrium solution is not unique,

Optimal Velocity (OV) models explicitly include a function F such that the equilibrium

solution is (xeq, F (xeq)). In some cases, to which we refer as Implicit Optimal Velocity

models, this function exists implicitly, but may be non-analytical. This categorization is

sketched in Fig. 3.4.

In OV models, the existence of the described optimal velocity function F (s) directly

gives rise to the fundamental diagram (i.e. flow-density or speed-density relation) of the

equilibrium solution. This will be discussed in section 3.3.5.
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Stimulus Response

No unique eq. solution

Pipes [112],
Chandler [113],
Gazis [114]

Optimal Velocity

Explicit Function F :
(xeq, F (xeq)) eq. solution

Optimal Velocity
Model [115],
FVDM [116]

Implicit
Optimal Velocity

F exists implicitely,
e.g. non-analytical

Gipps [117],
Intelligent Driver

Model [118]

Figure 3.4: The proposed categorization of car-following models (top row) with pop-
ular examples of each category (bottom row) and typical mathematical properties of

the underlying dynamical equations (middle row).

3.3.2 Generalized Optimal Velocity Models

The classification of Optimal Velocity models in Section 3.3.1 is based on mathematical

properties. It does not involve detailed behavioural assumptions about the agents and can

include a broad variety of models. New models are often defined by adding ad-hoc terms

to existing models. Frequently these additional terms only have a small quantitative

effect without changing the overall behavior. The following considerations might lead to

a deeper understanding of this observation.

In this section, we try to show how and under which assumptions a class of Optimal

Velocity models can be derived from a behavioural first principle, namely that agents keep

a certain time-gap to their neighbors [91]. By attributing human properties to the agents,

i.e., adding anticipation and a finite reaction time, several well-known Optimal Velocity

models are introduced and related to each other. We will see that different timescales

will become relevant here. These timescales have been introduced previously to capture

certain aspects of pedestrian motion, in particular the desired time-gap, reaction or

relaxation time, and anticipation time.

In force-based models the relaxation time τR, or, more precisely, the speed-relaxation

time, is usually implemented by a driving force (vdes − vi)/τR where vdes is the desired

velocity. Neglecting other forces, this leads to an exponential relaxation of the walking

speed to the desired velocity. As pointed out in [119], in a 2d scenario the same relaxation

time also controls the dynamics of evasive motion when encountering obstacles or other

pedestrians. The fact that the timescales for these different types of motion are identical

can lead to problems. In OV models, the inverse relaxation time 1/τR is interpreted as

a sensitivity to deviations of the actual velocity from the optimal velocity [115]. The

difference between reaction, update and adaptation time has been analyzed in [120] for
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vehicular traffic. For pedestrian motion the time-gap is used in the Collision Free Speed

model [81], where the desired time-gap can be used to model the motivation in a crowd

[121].

3.3.2.1 Time-Gap and Optimal Velocity Models

The typical time-gap (in one-dimension) between agents i and j is

Tij =


∆xij − `

vi
for vi > 0

∞ else,
(3.5)

where we assume that i is behind j such that xi < xj . It denotes the time until agent i

would collide with agent j, if j suddenly stops and i keeps moving at a constant speed.

Therefore, it can also be viewed as a time-to-collision.

In order to define a minimal model, we assume a behavioral first-principle. In particular,

the agents want to move as fast as possible while keeping a time-gap greater or equal

than the desired time-gap T to all other agents. This can be written as:

Agents choose their velocity vi such that Tij ≥ T for all j 6= i while at the same

time maximizing vi.

Note that, the agents can always fulfill this constraint by stopping, i.e., choosing vi = 0.

More formally, the model can be written as

vi = max

{
v ∈ R

∣∣∣∆xij − `
v

≥ T for∀j 6= i

}
, (3.6)

where the domain of v might be restricted by a minimal or maximal speed. The model

defined by Eq. (3.6) in principle includes interactions with all other agents. However,

by definition, the ordering is preserved in single-file motion, i.e., xi+1(t) > xi(t) which

entails that the smallest time-gap in front is the one to the predecessor. Here we leave

aside the frequent problem of tunneling, which leads to a destruction of this order and

can give rise to numerical problems and artifacts. In the back, a finite time-gap is only

obtained for negative speeds. Negative speeds can only occur if the distance between two

agents falls below ` which can happen due to specific initial conditions or instabilities.

In these cases an interaction with the person behind would arise from Eq. (3.6) which

has been investigated in [122]. We will neglect these specific cases here.2

2Additionally speeds are often capped between 0 and vmax which prohibits these special cases. Apart
from that, due to the limited human perception, the interaction between pedestrians is often restricted
to those in front.
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This means that Eq. (3.6) simplifies to an Optimal Velocity model which only includes

an interaction with the nearest neighbor in front, i.e.

vi =
∆xi − `

T
. (OV, 1st)

This minimal model is the original first-order Optimal Velocity model introduced by

Reuschel [109] and Pipes [112] with a linear OV function.

3.3.2.2 Reaction and Anticipation Time

An important constraint in human traffic is the reaction time, by which human reactions

to a change in the environment are delayed. A finite reaction time can be included by

adding τR as a delay to the corresponding quantities, i.e., evaluating them at a later

time. The corresponding delayed first-order model of Eq. (OV, 1st) reads

vi(t+ τR) =
∆xi(t)− `

T
, (OV, del)

which is a delay differential equation. Second-order models can be obtained by employing

a Taylor expansion for small τR as

vi(t+ τR) ' vi(t) + τR · ai(t), (3.7)

where ai = v̇i. Applying Eq. (3.7) to Eq. (OV, del), results in

ai =
1

τR

(
∆xi − `

T
− vi

)
, (OV, 2nd)

the second-order OV model [115]. The Taylor expansion in Eq. (3.7) considerably sim-

plifies the model Eq. (OV, del). This linearisation can have consequences on the stability

properties of the models which will be discussed in Section 3.3.3.

In order to allow a higher and more comfortable flow, and to account for the reaction time,

humans anticipate (possible) changes of the current situation. The time-gap Eq. (3.5)

can be interpreted as anticipating a worst case scenario, i.e. that the preceding agent

suddenly stops. Another typical anticipation strategy is to assume that the preceding

agent keeps on moving with a constant velocity. At the level of a time distance this

gives rise to the time-to-collision which will be discussed below. In our case, a forecast

of future positions based on the relative velocity can be implemented as

∆xi(t+ τA) ' ∆xi(t) + τA ·∆vi(t), (3.8)
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where τA is the anticipation time. Adding ∆xi(t+τA) as a forecast, i.e., as true knowledge

of the future positions, to Eq. (OV, del) changes its delay simply to τR − τA. This is an
example where the introduction of an additional parameter does not lead to changes in

the fundamental behavior of a model.

Even though Eq. (3.8) and Eq. (3.7) are very similar, their natural interpretation is

different. In particular the former is an assumption about the behaviour of the agents,

whereas the latter is an approximation to obtain a simpler model.

If anticipation is added as in Eq. (3.8) to the model Eq. (OV, 1st), one obtains

vi =
∆xi − `
T + τA

+ vi+1 ·
τA

T + τA
, (ANT, 1st)

which is a specific version of the time-to-collision model proposed in [83]. A reaction

time τR can be included as

vi(t+ τR) =
∆xi(t)− `
T + τA

+ vi+1(t) · τA
T + τA

. (ANT, del)

Employing Eq. (3.7) yields

ai =
1

τR

(
∆xi − `
T + τA

+ vi+1 ·
τA

T + τA
− vi

)
. (ANT, 2nd)

Anticipation can also be included in Eq. (OV, del), i.e.

vi(t+ τR) =
∆xi(t)− `

T
+ ∆vi(t) ·

τA
T
. (FVDM, del)

Together with Eq. (3.7) this leads to

ai =
1

τR

(
∆xi − `

T
+ ∆vi ·

τA
T
− vi

)
, (FVDM, 2nd)

the well-known Full-Velocity-Difference model [116]. In the models (ANT, del) and

(ANT, 2nd) anticipation is added before a finite reaction time, while in (FVDM, del)

and (FVDM, 2nd) we first added a finite reaction time and then anticipation. This boils

down to the question if agents know their own velocity without a delay (as in the former)

or with a delay (as in the latter).

3.3.2.3 Summary of Model Relations

The connections of the proposed models by the various time-scales is summarized in Fig. 3.5.

The derivation of Optimal Velocity models from the time-gap leads to a loss of gener-

ality: In the typical formulation, the optimal velocity function F (·) is not specified but
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1st-Order:

1st-Order,
delayed:

2nd-Order:

ANT, 1st

ANT, del

ANT, 2nd

OV, 1st

OV, del

OV, 2nd

FVDM, del

FVDM, 2nd

τR

τA
Add forecast

τRAdd delay

≈Linearize

τA

≈ ≈

τA

τA = 0

τA = 0

Figure 3.5: Chart of the generalized Optimal Velocity models.

only constrained by few assumptions [123]. From another perspective, however, it is

more general: the Ansatz Eq. (3.6), is neither restricted to a specific time ‘distance’, an

one-dimensional setting nor to circular shapes. If the time-gap in Eq. (3.5) is formulated

in two dimensions, the collision-free speed model [81] follows directly from the same

assumptions.

The time-scales introduced above, namely, the time-gap, the desired time-gap, the reac-

tion time, and the anticipation time, have helped to uncover relations between various

models. In order to further understand their meaning and effects, these models are in-

vestigated regarding their stability properties in Section 3.3.3 and the effect of noise in

Section 3.3.4.

Before studying the models in greater detail, let us discuss a relation to another, quite

different class of models which we can uncover through the way we defined the Optimal

Velocity models above. In particular, they are equivalent to models based on Velocity

Obstacles. These are usually defined in two dimensions and were introduced for motion

planning of robots in complex environments [124] and used to model pedestrian motion

as well [125, 126].

3.3.2.4 Relation to Velocity Obstacles

While we are mostly concerned with describing and understanding the empirical findings

of crowd or vehicular motion with the help of mathematical models, our investigation

touches on the development of automated vehicles. Here, the growth of perturbations,

which eventually leads to a jam, is still present in current commercial automated vehicles

[127]. Improved regulations, that take stability properties known from Car-Following

models into account, can prevent the occurrence of stop-and-go waves, even if only a

small fraction of vehicles is automated [128]. Automated autonomous vehicles can be



Single-File Motion 30

considered as a one-dimensional limit of the more general, at least two dimensional,

problem of motion planning of autonomous robots in which the concept of Velocity

Obstacles originates. Their main objective is to provide a collision-free path to reach the

goal.

However, practical problems such as noise, delays or inertia are, apart from sensing errors

[129], hardly studied yet. Even though, the concept has been applied to actual robots

[130] problems of instabilities have been reported [131]. Analytical results for Velocity

Obstacles are not known to the author, apart from [132], where only two agents are

considered. The resemblance to Optimal Velocity models may deepen our understanding

of Velocity Obstacles. Especially, the effect of various influences has been studied exten-

sively in the field of car-following models as well as powerful methods such as stability

analysis have been used in the field for a long time.

Typically Velocity Obstacles are not based on time-gaps but instead on the time-to-

collision. This will be discussed in section 3.4 where we will see that this leads to

inherent problems in the case of single-file motion. Let us now repeat the derivation of

optimal velocity models performed in section 3.3.2 but this time as Velocity Obstacle

models.

Optimal Velocity or Velocity Obstacle: Velocity Obstacles are based on a reason-

ing in velocity space. In particular, the velocity space of each agents is restricted by

potential collisions with obstacles and other agents. The agents choose a velocity, which

lies outside of these Velocity Obstacles, according to an optimization goal.

Consider the set of velocities that do not fulfill Tij ≥ T , i.e.

V OTij = {v| (∆xij − `) /v < T}. (3.9)

This is, apart from exchanging the time-to-collision with the time-gap, equivalent to the

definition of Velocity Obstacles [124]. The parameter T is here usually referred to as the

horizon time above which potential collisions are not taken into consideration. We will

however continue calling it the desired time-gap.

The union of the velocity obstacles reads

V OTi =
⋃
j 6=i

V OTij . (3.10)
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This set includes all velocities that do not fulfill Tij ≥ T for ∀j. Let us now define a set

of reachable velocities as

RVi = {v|v ∈ [vmin, vmax]}. (3.11)

where also more complex constraints might be implemented such as physical acceleration

constraints.

We can now define the reachable avoidance velocities as the difference between the reach-

able velocities and the union of the Velocity Obstacles

RAVi = RVi 	 V OTi . (3.12)

Combined with an optimization goal, a model can now be defined as

vi = max
v∈RAVi

(v), (3.13)

where we assumed continuous time. Alternatively one might define it with a finite

update time δt. If we assume positive speeds and an ordered chain, as above, Eq. (3.13)

is equivalent to the first-order Optimal Velocity model specified in (OV, 1st).

As earlier we might include a reaction time τR in Eq. (3.9) which yields

V OTij(t+ τR) = {v| (∆xij(t)− `) /v ≥ T} (3.14)

This resembles the delayed first-order Optimal Velocity model (OV, del). Employing

the approximation in Eq. (3.7), leaves the Velocity Obstacles Eq. (3.9) unchanged and a

second-order model is obtained as

ai =
maxv∈RAVi(v)− vi

τR
, (3.15)

i.e. we recover (OV, 2nd).

In accordance with Eq. (3.8), anticipation might be added as

V OTij = {v| (∆xij + τA(vj − v)− `) /v ≥ T}, (3.16)

which leads to the first-order anticipation model (ANT, 1st). Adding a delay yields

(ANT, del), to which approximation Eq. (3.7) can be applied to obtain the corresponding

second-order model (ANT, 2nd).

On the other hand, including anticipation in Eq. (3.14) yields

V OTij(t+ τR) = {v| (∆xij + τA∆vij − `) /v ≥ T}, (3.17)
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i.e. the delayed Full-Velocity-Difference model (FVDM, del). If, again, Eq. (3.7) is

employed, a Velocity Obstacle formulation of the Full-Velocity-Difference model (FVDM,

2nd) is obtained. We can fully recover the class of Generalized Optimal Velocity models

by only referring to the Velocity Obstacle framework.

Note that, a large difference between the two model classes is the role of the update time

δt. Optimal Velocity models are defined as mathematical models in continuous time,

i.e., in terms of differential equations. The update time is only introduced in order to

numerically solve the equations of motion. The results need to be independent of it. In

our case, a simple first-order Euler-scheme with δt = 0.01s (δt = 0.001s for the delayed

models) proved to ensure this independence.

Models based on Velocity Obstacles are, on the other hand, typically defined with an

explicit time-step, i.e., δt ∼ 0.1s. Thus, the dynamics are, in general, not independent

of the discretization and the update time δt has to be treated as a model parameter.

3.3.3 Stability Analysis

Let us now investigate the stability properties of the proposed models. Here, two different

types of stability are known in the literature of car-following models: platoon stability

and string stability [123]. Platoon stability is also called local stability because it refers

to the growth of a perturbation at a fixed car. String stability is also referred to as global

stability which describes the perturbation as it moves upstream from car to car. On the

level of an individual car, one can further derive conditions whether perturbations are

overdamped [86].

These types of stability give rise to different ‘regimes of stability’ which are shown in

Fig. 3.6, where the y-axis shows the velocity and the x-axis shows the time. A string

of N = 10 agents is shown each with a different color, the orange car is the leader and

the blue car is the last car. All of the cars initially move with the same velocity veq and

the same spacing to the preceding vehicle ∆xeq. Now, due to some perturbation, the

leader suddenly decelerates and then accelerates back to the equilibrium speed. This is

the setting we will study in this chapter.

To begin with, for all cases in Fig. 3.6, the perturbation declines at a fixed car, i.e. the

conditions for platoon stability are fulfilled. This is a very weak form of stability that

should be fulfilled in every traffic model [123]. Conditions for overdamping are only

fulfilled in (a), where the agents decelerate due to the perturbation and then accelerate

to reach the equilibrium speed. In contrast to this, in (b) and (c), they overshoot this

equilibrium speed which leads to oscillations at an individual car. Finally, in (c), the
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(a) Overdamped (b) Oscillating (c) String Unstable

Figure 3.6: Numerical solutions of a string of 10 agents for the Full-Velocity-Difference
model (FVDM, 2nd). All strings are platoon stable, i.e. perturbations decline at an
individual agent. While in (a) and (b) the perturbation is declining upstream, the
agents ‘overshoot’ only in (b). In (c) The perturbation grows when moving upstream.

The system is not string stable.

system is string unstable as the perturbation grows as it propagates from car to car

whereas in the other two cases it declines, accordingly the system is string stable in (a)

and (b).

We will start by looking at platoon stability, which can be analyzed by studying a single

agent only. This will allow us to draw a close analogy with the harmonic oscillator and

to gain insight in the physical meaning of the different parameters. For overdamping, we

will discover some problems in its definition and finally, we will investigate string stability

and the occurrence of stop-and-go dynamics.

Let us note that, all first-order models without any delay are platoon stable, overdamped,

and string stable. This means any kind of oscillation or instability can only occur as soon

as a finite reaction time is included. Therefore we will only study models that include

τR either as a delay or as a relaxation time in the following.

3.3.3.1 Platoon Stability

To investigate platoon stability, it is sufficient to analyze the differential equation of a

single agent. If the real part of the solutions of the corresponding characteristic equation

are negative, the model is platoon stable.

The second-order models (OV, 2nd), (ANT, 2nd), and (FVDM, 2nd) then correspond to

the harmonic oscillator, cf. Appendix B,

ẍ = − k
m
x− γ

m
ẋ. (3.18)
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Let us match the time-scales, T , τA, and τR, introduced in our models with the physical

parameters of the harmonic oscillator.

The reaction time τR corresponds to the mass m. A larger mass leads to an increased

inertia which corresponds the resistance of a physical object against a change in its

velocity. In (OV, 2nd) and (FVDM, 2nd), the desired time-gap T can be identified with

the inverse of the stiffness k.3 According to Hooke’s law, k determines the force exerted

by a spring if it is displaced from its equilibrium position. Thus, the desired time-gap

T determines how fast gaps are closed between the agents. In crowds it has been used

to model differences in motivation e.g. in [51, 121]. The dampening factor γ is constant

and equals one in (OV, 2nd) and (ANT, 2nd). In (FVDM, 2nd), a second term is added,

i.e. γ = (1 + τA/T ). Damping leads to a dissipation of energy and, hence, to damped

motion. Accordingly, all second-order models are platoon stable for all parameter values

The first-order delayed models can be written as

ẋ(t+ τR) = −kx(t)− γẋ(t), (3.19)

with k > 0, γ = 0 for (OV, del) and (ANT, del), and k, γ > 0 for (FVDM, del). In the

first case, Eq. (3.19) simplifies to a linear, first-order delayed differential equation. The

stability conditions are well-known and read

T >
2

π
τR − τA, (3.20)

for (ANT, del) and (OV, del) with τA = 0.

In the second case, for (FVDM, del), Eq. (3.19) is a neutral delayed differential equation

(NDDE) which is much more difficult to solve. Employing the results from [133] yields

τR < cos−1
(
−τA
T

)√
T 2 − τ2

A and T > τA, (3.21)

which can not be solved for T explicitly. A sufficient condition can, however, be obtained

as

T >

√(
2τR
π

)2

+ τ2
A. (3.22)

All conditions for platoon stability are plotted in Fig. 3.7 on the left.

By employing the approximation Eq. (3.7) we have changed delayed first-order models to

second-order models. This leads to a different meaning of the reaction time τR. Namely,

a delay of the reaction to a change is transformed into a resistance against a change.

Only in the former case it can lead to platoon instabilities.
3It has the slightly different form (T + τA)

−1 in (ANT, 2nd).
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3.3.3.2 Overdamping

Let us now study the overdamping of the local oscillations as it is shown in the differ-

ence between Fig. 3.6 (a) and Fig. 3.6 (b). Note that damped oscillations around the

equilibrium position are a frequent problem in models for crowds [27, 96].

Typically, overdamping means that all roots of the characteristic equation are real and

negative. As we are still concerned with local stability, for the second-order models, we

can again refer to the harmonic oscillator. Accordingly the conditions read as

τR <
T + τA

4
, (3.23)

for (ANT, 2nd) and

τR <
(T + τA)2

4T
, (3.24)

for (FVDM, 2nd). The conditions for (OV, 2nd) can be obtained by setting τA = 0.

The idea of overdamping has been applied to delayed models as well [86, 134] and the

corresponding conditions for the (ANT, del) model reads

T ≥ e · τR + τA, (3.25)

where again the condition for (OV, del) is obtained by setting τA = 0.

However, the reasoning behind this is more intricate. Delayed differential equations have

infinitely many (complex) eigenvalues. This means that there are imaginary solutions

of the characteristic equation even if Eq. (3.25) is fulfilled. However, there is one real

eigenvalue that is much larger than all realparts of the other, imaginary, eigenvalues.

Consequently, even though the solution could show oscillations for some initial conditions,

numerical solutions show a simple exponential decay which is conspicuous of overdamped

behavior. Note that the condition in Eq. (3.25) determines the parameter values at which

the largest eigenvalue becomes purely real, which means qualitatively there is a sharp

transition from oscillatory to overdamped behaviour.

The situation is different for the neutral delayed differential equation in Eq. (3.19) which

corresponds to (FVDM, del). The equation always has a real root [135]. By solving

the characteristic equation numerically, using [136], we can see that as T increases, the

real eigenvalue gets larger and the real parts of the imaginary eigenvalues decline. Con-

sequently, the system continuously changes from oscillatory to overdamped behaviour.

However, we can not define a clear point as there is no sharp transition as in the other

models.
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(a) Platoon Stability (b) Overdamped

Figure 3.7: The platoon stability conditions for the delayed models (a) and the condi-
tions for overdamping (b) of the Generalized Optimal Velocity models. For parameter
values in the area below the corresponding curve the model becomes platoon unstable

or non-overdamped respectively.

In practice we just define overdamping in (FVDM, del) as overshooting the equilibrium

position and solve the equation numerically.4 The results are shown, together with the

conditions for the other models, in Fig. 3.7 (b).

Apart from simple first-order models, all models show oscillatory behavior for some

parameter values. The conditions for these are, of course, much more restrictive than

for platoon stability as overdamping includes platoon stability. Even though we found

that only the delayed models showed platoon instabilities, second-order models seem to

be more prone to oscillations.

3.3.3.3 String Stability

To investigate string stability we will analyze a semi-infinite chain agents. In particular,

we will use periodic boundary conditions in which the N agents are placed on a ring of

length L where the predecessor of the last agent is the first agent. Due to the closed

boundaries, a perturbation can not leave the system. Linear stability analysis is then

used to determine under which conditions a perturbation grows or declines while it moves

downstream. Specifically, whether the homogeneous configuration characterized by the

equilibrium spacing and velocity is linearly stable. In the following, we will employ

the very general results from [137] to obtain the stability conditions. These conditions,

however, do not apply to (FVDM, del) for which we study the linear stability.
4The initial conditions are fixed as xL = 0, vL = 0 for the leader, and x = 1, v = 0 for the follower.
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Let us start with the second-order model (OV, 2nd) and its delayed counterpart (OV,

del). These have the same stability-condition, i.e.

T > 2τR. (3.26)

An instability is created by adding a reaction time. Whether it is added as a delay or a

‘resistance’, does not influence the stability.

The model (ANT, del) and its second-order companion (ANT, 2nd) yield

T > 2τR −
τA

1 + τA/T
, (3.27)

where the critical value of the desired time-gap monotonically decreases with a larger

anticipation time and approaches the limit T > τR for τA → ∞. In particular, a larger

anticipation time always increases stability but can not account for an reaction time

larger than the desired time-gap. Similarly for (FVDM, 2nd), which is stable for

T > 2(τR − τA), (3.28)

a larger anticipation time increases the critical value of τR for which instabilities would

arise.

The stability condition of the corresponding delayed model (FVDM, del) could not be

obtained in an analytical form. In contrast to the other models, multiple wavelength

determine the string-stability. Therefore, there is little hope to find an analytic condition.

However, the exact stability condition can be visualized and is shown, together with

the conditions of the other models in Fig. 3.8. See the appendix C for details of the

calculation.

All criteria for string stability are depicted in Fig. 3.8. The delayed models exhibit equiv-

alent string stability conditions to their second-order counterparts, with the exception

of (FVDM, del) and (FVDM, 2nd). Initially, these conditions align for small values of

τA/τR. However, unlike the second-order model where critical parameter values change

linearly, the delayed model displays a non-linear, potentially non-analytical behavior.

In all models excluding (FVDM, del), an increase in anticipation time τA enables com-

pensation for larger reaction times τR without inducing instabilities. Within these mod-

els, the dominant unstable mode corresponds to the one with the longest wavelength,

resulting in (spatially) large inhomogeneities resembling traffic jams, as illustrated in

Fig. 3.9 (left). Contrastingly, for (FVDM, del), there exists an ‘optimal’ ratio τA/τR
where critical parameter values reach a minimum. Interestingly, during this minimum,
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(c)String Stability

Figure 3.8: Conditions for string stability for the generalized Optimal Velocity models.
For parameter values located in the area below the corresponding curve the model

becomes string unstable.

Figure 3.9: Trajectories of the numerical solution of (FVDM, del). On the left,
τA/τR is small and the most unstable mode corresponds to the one having the largest
wavelength. For large τA/τR, on the other hand, there are many very fast oscillations

(right).

the dominant unstable mode shifts from the largest wavelength to much smaller wave-

lengths, giving rise to oscillations, as depicted in Fig. 3.9 (right).

Summary In Table 3.1 we have summarized all stability conditions for all models

discussed in this section. There are some clear trends: reaction time destabilizes the

traffic locally and globally, anticipation time, and a larger desired time-gap, on the other

hand has a stabilizing effect. For the anticipation time, if the agents know their own

velocity with a delay only, i.e. in the case of (FVDM, del), there exists an optimum

and anticipation can give rise to inhomogeneities with a short wave-length. This is not
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empirically observed but could be of interest in the case of practical issues, e.g. the

development of automated vehicles.

Model Platoon Stability Overdamped String Stability

OV, 1st

ANT, 1st

OV, del T > 2
π τR T ≥ e · τR T > 2τR

ANT, del T > 2
π τR − τA T ≥ e · τR − τA T > 2τR − τA

1+τA/T

FVDM, del T >
√

(2/πτR)2 + τ2
A cf. Fig. 3.7, (b) cf. Fig. 3.8

OV, 2nd T > 4τR T > 2τR
ANT, 2nd T > 4τR − τA T > 2τR − τA

1+τA/T

FVDM, 2nd T ≷ 2(±
√
τ2
R − τRτA + τR)− τA T > 2 (τR − τA)

Table 3.1: Summary of the stability conditions of the generalized Optimal Velocity models. The
checkmark denotes that the corresponding stability is always fulfilled.

It has been argued that vehicular traffic is shaped by the ration T/τR, which gauges

whether agents keep (time) distances large enough to compensate for their reaction time

[138]. From our study it becomes apparent that the ratio between τA/τR has to be

considered as well. Apart from this, the way different factors are incorporated into the

models has a strong influence on the different stability conditions.

Finally, we observe that for most models overdamping includes string stability, which

means that it is difficult to avoid local oscillations while reproducing stop-and-go dy-

namics. In some models, however, e.g. (FVDM, 2nd), a regime exists in which the model

is overdamped and shows stop-and-go behaviour. These regimes are promising candi-

dates to reproduce features of real traffic. Note that, in this regime, overshooting is still

observed in the numerical simulations. Overshooting of the equilibrium position seems

to be a necessary condition in these models to reproduce stop-and-go dynamics.

Generally, stop-and-go waves occur in these models through the same mechanism: the

homogeneous solution is deterministically unstable. A small perturbation leads to the

breakdown and eventually to stop-and-go waves. Lets us now investigate a different

mechanism by including noise in our models.

3.3.4 Noise Induced Stop-and-Go Waves

Noise is a random disturbance capable of altering the dynamics of a system. Typically, it

is used in models to describe numerous unaccounted and maybe unknown factors which

nonetheless remain relevant. Usually, noise is added as white noise, characterized by

a time-independent random component following a Gaussian distribution. While noise
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is often viewed as an undesirable interference, it can yield beneficial effects, such as

preventing the system from becoming frozen in a particular state (gridlock).

Noise has to be distinguished from intrinsic stochasticity, as seen in cellular automata

models, where stochasticity is frequently integral to the dynamics, capturing uncertain-

ties in decision-making processes. Consequently, deterministic limits of cellular automata

models often exhibit unrealistic behaviors.

In the ensuing discussion, we will explore the impact of both white and colored noise

when introduced into the simplest Optimal Velocity model (OV, 1st). Subsequently,

we will examine how noise affects other models discussed in this section, revealing an

alternative mechanism for replicating stop-and-go behavior, distinct from the concept of

string stability discussed earlier.

White Noise Models

In continuous time, white noise is included in a model using independent Wiener pro-

cesses, with the increment Wi. The (OV, 1st) model including an additive white noise

in the speed reads

dxi(t) =
∆xi − `

T
dt+ σdWi(t), (3.29)

with σ the noise volatility. As the noise is centered, it does not impact the linear stability

of the system [139, 140].

The white noise has little influence on the overall dynamics of the system as evidenced by

the absence of stop-and-go waves, a fact corroborated, for instance, by the autocorrelation

of the headway [101]. This observation remains consistent across other first-order models

that do not inhibit a time-delay [102].

Colored Noise Models

White noise exhibits no correlation over time and possesses a constant frequency power

spectrum. In contrast, colored noise is correlated over time with power spectra that

can either increase (as seen in blue or violet noise) or decrease (for instance, in pink

or Brownian noise). Empirical analyses of pedestrian speed time-series demonstrate a

power spectrum that roughly follows a 1/f2 proportionality across a significant frequency

range [141, 142].

The stochastic model introduced in [142] is equivalent to the (OV, 1st) model with a

correlated truncated Brownian noise εn(t) described by an Ornstein-Uhlenbeck process,
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Figure 3.10: Numerical trajectories of N = 50 agents on a ring of length 25m. Left:
deterministic instability, i.e. the (FVDM, 2nd) in the string-unstable regime where a
minimal and a maximal velocity is included. Right: noise-induced stop-and-go waves
for the (OV, 1st) model with a correlated truncated Brownian noise. Note that this is

equivalent to the (FVDM, 2nd) with a white noise and τR = τA.

i.e., as

ẋi(t) =
∆xi − `

T
+ εi(t),

dεi(t) = −1

τ
εi(t)dt+ σdWi(t) ,

(3.30)

where the Wi(t) are Wiener processes. The (positive) parameters σ and τ related to the

noise can be interpreted as volatility and noise relaxation time, respectively.

In accordance with the condition specified in Table 3.1, the deterministic model is always

stable. As the noise is additive, centred, and independent of the vehicle states it is also

linearly stochastically stable [139]. Nonetheless it features stop-and-go behaviour as

evidenced from the resulting trajectories in Fig. 3.10 (right) or the autocorrelation of the

speeds [141].

The stop-and-go waves caused by noise contrast significantly with the stop-and-go waves

resulting from the instabilities explored earlier. Illustrative snapshots of trajectories

showcasing deterministic (on the left) and noise-induced (on the right) stop-and-go waves

are depicted in Fig. 3.10. Specifically, the deterministic mechanism resembles vehicular

traffic, featuring a clear phase separation, while the noise-induced mechanism bears closer

resemblance to pedestrian dynamics, with a less pronounced phase separation.

The mechanism described here differs fundamentally from the traditional deterministic

instability encountered in traffic models, where stop-and-go behaviour is caused by an

instability of the homogeneous solution. This homogeneous solution breaks down due
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Figure 3.11: Illustrative scheme for the modelling of stop-and-go dynamics. Left:
phase transition in the periodic solution. Right: noise-induced stop-and-go behaviour.

Figure taken from [141].

to a small perturbation, as schematically illustrated in Fig. 3.11 (left). Here, on the

other hand, the system is permanently perturbed by the noise which results in a steady

state in which stop-and-go dynamics are present, cf. Fig. 3.11 (right). The stop-and-go

dynamics are reflected in variance-covariance and autocorrelation characteristics of the

system [140, 142].

This mechanism to reproduce stop-and-go behaviour is not unique for this specific model

but seems to be quite generic [102]. Specifically, the noisy first-order model in Eq. (3.30)

is equivalent to the (FVDM, 2nd) model with a white noise and τ = τR = τA [102].

Simulation show that a white noise can trigger stop-and-go waves in all delayed or second-

order models discussed in Section 3.3.2.

3.3.5 The Fundamental Diagram: Scaling Analysis of the OV Model

Let us shift our focus from discussions on stability and stop-and-go dynamics to in-

vestigate the fundamental diagram, particularly of the (OV, 1st) model without any

noise. Through a scaling analysis, we aim to illustrate that the models’ parameters can

be condensed into a single parameter, which determines its dynamics. Consequently,

we identify a solitary parameter that shapes the fundamental diagram. This elucidates

the scaling behavior observed empirically among the fundamental diagrams of vehicular,

bicycle, and pedestrian traffic.

It is worth noting that the homogeneous solution of (OV, 1st) remains stable at all

times. Consequently, there is no need for numerical analysis; instead, we can derive the

analytical fundamental diagram directly from the equations of motion. Remarkably, all

models described in sec. 3.3.2 share this same homogeneous solution. Hence, the analysis

conducted here applies equally to the homogeneous solutions of these models. While

instabilities may lead to variations in the fundamental diagram, simulations suggest that

such deviations are not substantial.
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Let us recall the definition of the (OV, 1st) model

vi = min

(
vmax,

∆xi − `
T

)
, (3.31)

where we have included a maximal velocity vmax.

Now, our objective is to transform this equation to dimensionless variables. This can

be formally accomplished by expressing the dependent variables as vi = vi/vc and

∆xi = ∆xi/xc, where the variables with the overline represent the non-dimensionalized

dependent velocity and distance and the variables vc and xc represent the typical length

and velocity scales. Upon inserting these non-dimensional coordinates into Eq. (3.31),

we arrive at the non-dimensional Optimal Velocity model

vi = min

(
vmax

vc
,

∆xixc − `
T

· 1

vc

)
. (3.32)

Let us now select suitable values for the scales vc and xc, which requires careful consider-

ation [143]. Typically, these are chosen as the maximum value, ensuring the dependent

variable lies within the range [0, 1]. Therefore, a natural choice is vc = vmax, as it confines

the non-dimensional velocity to vi ∈ [0, 1].

The decision for a suitable length scale is more ambiguous. Instead of constraining the

non-dimensional distance, we opt to limit the non-dimensional density ρ ∼ 1/∆x by

setting xc = `. This choice restricts the rescaled density to one, given that the minimal

center-to-center distance is ∆x = `. Consequently, this establishes a typical time-scale

of vmax/`, representing the minimum time an agent needs to traverse its own length.5

If we insert this into Eq. (3.32) we obtain

vi = min [1, (∆xi − 1)π1] , (3.33)

where π1 = `/(Tvmax). Remarkably, we have successfully reduced the number of param-

eters from three - `, T , and vmax - to a single parameter π1. Exploring the parameter

space numerically becomes more straightforward as it involves solving the system for val-

ues of π1 rather than for a three-dimensional parameter space. Changing the parameters

while fixing π1 corresponds to a mere rescaling of time and space: the actual dependent

variables can then be calculated by a simple multiplication, i.e. (xi, vi) = (xixc, vivc).

In addition to considerations of numerical efficiency, it is noteworthy that a singular

parameter governs the qualitative behavior in the model. To illustrate this point, let us
5We could have alternatively chosen a typical time scale, where the desired time-gap T is a natural

choice. This leads to another meaningful length scale xc = tc · vc = vmax · T , representing the maximal
interaction length.
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ρ

v(ρ)

1

(1 + 1/π1)−1 1
0
0

ρ

J(ρ)

(1 + 1/π1)−1

(1 + 1/π1)−1

1
0
0

Figure 3.12: The non-dimensional fundamental diagram of the simple Optimal Ve-
locity model in the typical representations.

examine the non-dimensional fundamental diagram. Since the homogeneous solution of

Eq. (3.31) is always linearly stable, the fundamental diagram can easily be obtained as

v (ρ) = min [1, (1/ρ− 1)π1] and J (ρ) = min [ρ, (1− ρ)π1] , (3.34)

where we inserted ρ = 1/∆xi wihch always holds for the homogeneous solution. Both

representations are depicted in Fig. 3.12. The empirically observed shape of the funda-

mental diagram (sec. 3.1.2), i.e. a 1/ρ for the mean velocity and a triangular shape for

the flow, is recovered.

It is worth noting that when π1 = 1, the fundamental diagram J (ρ) is symmetric and the

capacity equals 1/2. This corresponds to the solution of a quite different model, namely

the Totally Asymmetric Simple Exclusion Process (TASEP) with a hopping probability

p = 1 and a parallel updated scheme [29]. Accordingly the rules and parameters of the

TASEP would translate to vmax = ` = T = 1. If on the other hand π1 is increased the

capacity grows and is reached at smaller densities. This is typically observed in vehicular,

pedestrian, and bycicle traffic.

Beyond that, in [91], it is empirically shown that the fundamental diagram of vehicular,

pedestrian, and bicycle traffic shows good agreement if density and velocity are scaled

with the same parameters as above. Assuming a constant value of T across these various

types of human traffic, the empirically derived values for ` and vmax in [91] result in the

very same value of π1. Specifically, we obtain π1,Bicycle = 0.31s/T , π1,Pedestrian = 0.31s/T ,

and π1,Vehicular = 0.32s/T . Thus, the theoretical analysis performed here aligns well with

the empirical scaling which has been reported in [91].

With help of the dimensional analysis we showed that the computational complexity of

investigating the parameter space of the model can be reduced significantely. Further-

more, we have found that the shape of the fundamental diagram is determined by one
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single parameter which gives a possible explanation of the empirically observed scaling

between different types of human traffic. This is another argument in favour of the

time-gap as one essential mechanism behind the fundamental diagram in uni-directional

settings.

It could be fruitful to employ scaling analysis to more complex models of human traffic

as well. For example, if we analyse the second-order OV model we obtain, in addition to

π1, a second parameter π2 = τR/T which determines the stability of the homogeneous

solution in this model.

3.3.6 Summary

In this section, we have extensively researched Optimal Velocity (OV) models, which

stand out from other following models due to their possession of a unique homogeneous

solution. Beginning with a straightforward behavioral heuristic rooted in the time-gap,

we derived the simplest (OV, 1st) model. Incorporating finite reaction time and antici-

pation led to the development of the generalized OV model framework, shedding light on

the relationships among various well-known Optimal Velocity models. This perspective

also facilitated our comprehension of the parallels between Optimal Velocity models and

Velocity Obstacles.

We delved into the local and global stability properties of these models, that can give

rise to stop-and-go waves as well as undesirable local oscillations. These conditions

were already known, with the exception of the (FVDM, del) model, characterized by

a neutral delayed differential equation (NDDE). Here, we successfully visualized the

exact condition for string stability, which is likely to be non-analytic. Unlike other

models, it exhibited a different type of global instability, induced by large anticipation

times giving rise to inhomogeneities characterized by a short wave length. In all other

models, the string instability gives rise to inhomogeneities that resemble stop-and-go

waves. Additionally, certain models exhibit parameter regimes in which local oscillations

are overdamped yet stop-and-go behaviour persisted.

However, reproducing stop-and-go traffic is not limited to deterministic instabilities

alone. Introducing white or correlated noise induces oscillatory behavior, capturing the

weakly pronounced phase separation in pedestrian single-file motion much better than

the deterministic instability does. Linear stability analysis provides robust conditions for

deterministic models’ ability to describe stop-and-go wave phenomena but is limited in

the context of stochastic models where methods are needed that examine oscillations in

variance-covariance and auto-correlation characteristics. Stochastic models present new

avenues for modeling and nonlinear analysis paradigms for single-file agent dynamics.
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Despite their differences, all models exhibit essentially the same fundamental diagram,

with the time-gap being central to their formulation, resulting in the expected trian-

gular shape of J(ρ). Furthermore, scaling analysis indicates a scaling relation between

pedestrian, bicycle, and vehicular traffic, aligning with empirical observations.

In contrast to force-based or spatial distance-based approaches discussed earlier, models

based on the time-gap can reasonably capture the basic features of pedestrian single-file

motion. The similarity between Velocity Obstacles and Optimal Velocity models found

here suggests another category of models: time-to-collision-based following models, as

Velocity Obstacles typically rely on this temporal distance rather than the time-gap.

This avenue will be explored in the subsequent section.

3.4 Following Models based on the Time-to-Collision

The argument has been made that crowds are more effectively characterized by time-to-

collision (TTC) than distances [82]. The TTC integrates spatial distances with (relative)

velocities to measure the ‘distance’ to a collision, making it a promising parameter in

pedestrian models [82, 144–146]. However, none of the previous models has been applied

to single-file motion. Therefore, let us explore how the TTC can be utilized to define a

following model for single-file motion.

To achieve this, we will start by defining the time-to-collision and highlighting some

distinctions from the time-gap introduced in the previous section. Subsequently, em-

ploying the same heuristic as before - where agents adjust their velocity to maintain a

safe time ‘distance’ from others - we will define TTC-based Optimal Velocity models.

These models are an one-dimensional limit of Velocity Obstacle models.

Applying these models to the single-file scenario will reveal fundamental problems en-

countered in these models. This exploration will enable us to gain a deeper understanding

of issues related to diverging times-to-collision and unrealistically high flows even at high

density, as briefly mentioned in [51].

This section is based on results published in [83].

3.4.1 Definition of Time-to-Collision

Consider two pedestrians, denoted as i and j, represented by disks with a diameter ` as

depicted in Fig. 3.13. A collision between them will occur if there exists a time tC ∈ [t,∞)
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vi
vj

i

ri = (xi, yi)

j

rj = (xj , yj)

`

Figure 3.13: Schematic illustration of two colliding pedestrians. The position vectors
ri and rj point to the centers of the disks.

such that rij(tC) = `. The time-to-collision τ between i and j at time t is defined as:

τij (t) ≡ tC − t. (3.35)

If no such time tC exists, the TTC τij is considered infinite. In cases where multiple

times tC exist, the minimum among them determines the time-to-collision.

Since the future evolution is unknown, the TTC is calculated by assuming constant ve-

locities for both pedestrians i and j. Conversely, for the time-gap, it is assumed that

pedestrian i maintains a constant velocity while pedestrian j suddenly stops. Mathe-

matically, these approximations correspond to different Taylor expansions and could be

extended to higher orders. From a behavioral standpoint, these represent two distinct

anticipation strategies. While the time-gap represents a ‘worst-case’ anticipation, the

TTC extrapolates where the current situation will lead in the future. In the ensuing

discussion, we will focus on the TTC, based on the assumption of constant velocities,

and apply it to one-dimensional single-file motion.

Let us again consider a one-dimensional chain of N pedestrians on a ring of length L.

Denote xi as the pedestrian positions and vi as their velocities, sorted in ascending order

in the direction of motion, where pedestrian i+ 1 is the predecessor of i. Under the

assumption of constant velocities, the time-to-collision τij is given by

τij =


∆xij − `
vi − vj

for (vi − vj) · (∆xij − `) > 0,

∞ else.
(3.36)

Here, ∆xij = xj − xi represents the spatial distance between the centers. While it may

be helpful to think of the time-to-collision as a temporal distance, it should be noted

that it does not adhere to the properties of a metric. The TTC is symmetric, but it

neither satisfies the identity of indiscernibles nor the triangle inequality.
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3.4.2 Definition of the Model and Inherent Problems

Now we can define a TTC-based Optimal Velocity model, applying the same behavioral

assumption as in Section 3.3.2, i.e.

Agents choose their velocity vi such that τij ≥ τ0 for all j 6= i while at the same

time maximizing vi.

where we have introduced a desired TTC τ0.

If we assume that the interaction is restricted to the agent in front6, a first-order model

is straightforwadly defined as

vi = vi+1 +
∆xi − `
τ0

. (3.37)

When considering a homogeneous population of N agents on a ring of length L, the

model is generically inconsistent as the velocities of all agents would diverge. The only

solution with a finite velocity requires N · ` = L. In which case, only trivial solutions

with

∆xi = ` and vi = c ≥ 0 (3.38)

exist. This can be understood intuitively from the definition of the model: Since, ac-

cording to Eq. (3.37), every agent wants to move faster or equally fast as his or her

predecessor. Therefore, the only way to achieve a finite velocity in the solution is when

all agents move at the same speed and maintain zero headway between them.

Of course, to circumvent this problem, a maximal velocity vmax can be added to Eq. (3.37)

as

vi = min

(
vmax, vi+1 +

∆xi − `
τ0

)
. (3.39)

In this model, a solution exists for all densities in which all agents move with vmax, i.e.

∆xi ≥ ` and vi = vmax. (3.40)

A second-order model with a reaction time τR can be defined as

ai =
1

τR

(
vi+1 +

∆xi − `
τ0

− vi
)
, (3.41)

6Note that this assumption does not naturally arises from the first-principle as it did for the time-gap.
This is related to (a) the symmetry of the TTC, therefore one can not neglect the interaction to the
person in the back without any further assumptions and (b) the next nearest neighbor in front (or back)
might have a smaller TTC than the nearest neighbor. For the Time-Gap this is not the case.
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which looks similar to the (FVDM, 2nd) model [116]. However, in that model the velocity

relaxes to (∆xi − `) /T to which ∆v is added. Contrastingly, in Eq. (3.41), the velocity

relaxes to vi+1 + (∆xi − `) /τ0. Accordingly, the only homogeneous solutions are the

solutions of the first-order model (3.37) described above.

Summary We have used the TTC to define an Optimal Velocity model to which a

reaction time can be added. The model is however generically inconsistent for periodic

boundaries and a homogeneous crowd. The corresponding analytical solutions can easily

be obtained but the solution space, i.e. Eq. (3.38) and Eq. (3.40), is very restricted. These

inconsistencies can be solved by including a maximal velocity. However, the model then

exhibits a mean velocity vmax at all densities. This is of course completely unrealistic

and does not align with the fundamental diagram. Models based solely on the TTC can

thus be dismissed for describing single-file motion.

This issue is closely tied to the fact that relative velocities between pedestrians in single-

file motion are inherently small, often approaching zero, particularly within a model.

Consequently, according to (3.36), the TTC between the pedestrians is mostly infinite.

As a result, in the model, interactions between agents are scarce, allowing them to move

freely at their desired velocities. This suggests that pedestrians do not (heavily) rely on

the time-to-collision in the context of single-file motion.

3.5 Conclusion

In this chapter, we have explored three distinct model categories for pedestrian single-

file motion: force-based models based on Euclidean spacings as well as following models

based on either the time-gap or the TTC, respectively. Let us summarize the key findings

for each category.

In force-based models, pedestrians interact via distance-dependent repulsive ‘forces’ su-

perimposed with a driving term. These models vary between the type of decay in the

interaction (exponential or algebraic) and whether inertia or relaxation time is accounted

for (first or second-order). In addition to conceptual problems that arise from the analogy

with Newtonian forces, force-based models often exhibit undesired oscillations, struggle

to capture stop-and-go dynamics accurately, and fail to replicate the fundamental dia-

gram without additional adjustments.

Subsequently, we introduced following models that originate in the description of vehic-

ular traffic. Among these, we focused on Optimal Velocity models derived from a first

principle based on the time-gap, a temporal ‘distance’ reflecting worst-case anticipation.
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Incorporating factors like finite reaction time has spawned a range of models, as well as

revealing connections between well-known models. These Optimal Velocity models pro-

vide a reasonable depiction of single-file motion, particularly regarding the fundamental

diagram and stop-and-go dynamics, especially when noise is considered here.

Lastly, we explored the relationship between Optimal Velocity models and Velocity

Obstacles to formulate time-to-collision based following models. However, despite the

promise of using time-to-collision in other scenarios, its application to single-file motion

leads to fundamental issues.

To summarize, our understanding of single-file motion is well-established both through

experimental observation and theoretical analysis, for the latter largely facilitated by the

concept of the time-gap. However, pedestrian dynamics encompass a broad spectrum

of scenarios, including uni- and bidirectional flows [147], cross flows [52], and bottle-

neck evacuations [61]. These scenarios give rise to various collective behaviors such as

clogging [148], lane or stripe formation [19], and vortex formation [20], studied through

experiments and theoretically through (agent-based) models. Notably, unlike single-file

motion, these scenarios typically require consideration of at least two spatial dimensions.

Although the Generalized Optimal Velocity models offer a straightforward formulation

in two dimensions, primarily through a 2D definition of the time-gap [81], the worst-case

anticipation is only represented realistically, assuming a clear predecessor. Another draw

back is that these models do not distinguish between maximal and desired velocities.

Thus they are not applicable in situations if the agents have no (strong) desire to move,

e.g., during waiting. More importantly, in two dimensions, interactions between pedes-

trians encompass a wide range of behaviors, including personal space intrusions [107],

anticipative avoidance [149], and mechanical interactions in dense crowds [38, 39]. Ad-

dressing these complexities raises questions about the fundamental differences between

these interactions, as well as how to effectively integrate them with one another.

Before delving into a detailed theoretical analysis, it is prudent to organize the multi-

tude of crowd scenarios. We will start by considering the microscopic determinants of

pedestrian behavior, related to psychology and biomechanics, to define two dimension-

less numbers. Employing these we categorize the diverse scenarios encountered in crowds

leveraging extensive datasets, predominantly openly available. This categorization will

shed light on different self-organized structures within crowds, serving as the basis for a

more comprehensive theoretical framework in the subsequent chapter.



Chapter 4

Classification of Crowds with

dimensionless Numbers

The idea of classifying pedestrian crowds traces back to Fruin [28], who introduced the

notion of level of service in pedestrian dynamics. The level of service is used to assess the

comfort of pedestrian facilities. The classification primarily hinges on density as a defin-

ing criterion, with each level associated with particular behaviors such as (un)avoidable

contact, necessity to change gait or possibility to turn around. It has been contended

that as density varies, crowd dynamics should be governed by distinct principles [30].

However, the boundaries between the classes appear to be rather arbitrary. Addition-

ally, density alone is an insufficient classifier. This becomes apparent from a practical

standpoint, for safety assessments, where crowds at similar densities show contrasted

dynamics as well as risk profiles. For instance, consider the difference between a densely

packed, but static audience in a concert hall and people vying for escape in an emergency

evacuation [17].

Recognizing this limitation, alternative classifiers have been proposed. Recently, it has

been suggested that a dimensionless number related to the vorticity of the velocity field

better distinguishes between such scenarios [31]. Although this quantity is valuable for

safety assessments, it is not based on microscopic determinants of pedestrian dynamics.

This would, however, be highly desirable as it links the individual behaviour with flow

regimes at the crowd’s scale. This would allow to gain insights into the realm of appli-

cability of the large zoo of models that have been proposed for pedestrian and crowd

dynamics.

Our approach draws inspiration from hydrodynamics, where dimensionless numbers play

a crucial role in characterizing fluid flows (e.g., the Reynolds number). In a similar spirit,

we introduce two dimensionless numbers for crowd motion. Specifically, we argue that

51
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Figure 4.1: Schematic illustration of the meaning of the dimensionless Intrusion (Inij)
and Avoidance (Avij) variables between agent i, dressed in blue, and agent j, in green

or pink.

in common scenarios pedestrian dynamics are dominated by two variables, rendering

the ideas of preservation of personal space (proxemics) and anticipation of collisions.

Their averages over the crowd define two dimensionless numbers that delineate distinct

regimes of crowd flow intuitively and empirically using an extensive dataset of pedestrian

trajectories. The nature of the structural arrangement of the crowd is found to differ

markedly between these regimes.

This chapter is an extended discussion of the ideas and results published in [150], its

supplemental material, and [151].

4.1 Intrusion and Avoidance

Psychological studies on proxemics showed that people shun too close contacts with

other (unrelated) people [152, 153]. The personal space is defined as “the area indi-

viduals maintain around themselves into which others cannot intrude without arousing

discomfort” [152]. While the preferred interpersonal distances will vary between coun-

tries, cultures, and, of course, the relation to the other person [154], the will to preserve

some interpersonal distance to others is virtually universal and, thus, naturally impacts

the arrangement of crowds. To capture these effects in a quantitative fashion and to

avoid ambiguities in the definition of a local density, we introduce a variable Inij for the
intrusion between two pedestrians i and j, viz.,

Inij =

(
rsoc − `min

rij − `min

)2

, (4.1)

where rij is the centre-to-centre distance of pedestrians i and j. It quantifies the areal

encroachment of other agents j on the personal space of agent i. As illustrated in
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Fig. 4.1 (left), Inij decays with the distance between two pedestrians; it vanishes for

isolated pedestrians, but diverges when people come into physical contact. For simplicity,

we assume that both agents and their personal space are circular (with diameter `min =

0.2m and radius rsoc = 0.8m, respectively), i.e. effects of anisotropy are neglected. As

several agents j may surround agent i, the latter experiences an intrusion

Ini =
∑
j∈Ni

Inij , (4.2)

where the sum in Eq. (4.2) has been taken to run over the set Ni of all close neighbours

j of i, here defined by rij 6 3 rsoc. That the intrusions of diverse neighbors should be

additive makes sense for physical contacts (superposition of mechanical forces), but also

for proxemic behavior [155, 156].

While this variable gives a sense of the level of crowding, it does not provide a compre-

hensive reflection of psychological experience (feeling of congestion) in the midst of the

crowd [31, 157]. In addition, it does not fully control the individual dynamics: imagine

two pedestrians running towards each other, even though Inij → 0, as they may still be

separated by several meters, they will not behave as if they were isolated. Instead they

will anticipate an impending collision and accordingly deviate from their path to avoid

the other person. This behaviour is well captured by the anticipated time-to-collision

(TTC) τij , defined as the time until i and j would collide if they keep their current veloc-

ities. The TTC and some of its properties have already been introduced in section 3.4.

Notably, humans can identify the most imminent collision between multiple objects and

estimate TTCs [158] via purely optical quantities, specifically it is given by the optical

angle divided by its derivative [159]. Experiments showed that humans use the TTC

to decide ‘when’ to avoid an approaching pedestrian [149]. We quantify the risk of an

imminent collision between two agents i and j with the avoidance variable

Avij =
τ0

τij
, (4.3)

where τij is the anticipated time-to-collision (TTC) and τ0 = 3 s denotes the timescale

above which potential collisions are hardly dreaded. We set Avij = 0 if no collision is

expected. Importantly, as sketched in Fig. 4.1 (right), the avoidance variable between

two pedestrians might be large even if the intrusion between them is strictly zero, and

conversely it may be vanishing even if the personal space is strongly violated. In contrast

to Eq. (4.2), we assume that each agent is mostly concerned with only the most imminent

risk of collision, so that in the definition of the agent-centred variable

Avi =
∑
j∈N ′i

Avij , (4.4)
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Figure 4.2: Classification of pedestrian crowds by the dimensionless numbers In and
Av. (A) Schematic diagram drawn according to the intuition and illustrated with
exemplary snapshots. (B) Empirical diagram obtained from the extensive pedestrian
dataset. Each datapoint corresponds to one experimental run or observational sequence.
The experimental data from SingleFile and CrossFlow were split into a sparse and a

dense dataset.

we restrict the set N ′i to the agent j with the shortest τij . Indeed, for collision avoidance,

it has been ascertained that participants immersed in a virtual crowd tend to fixate a par-

ticular agent with a high risk of collision just before performing an avoidance maneuver

around this person [160].

4.2 Delineation of Crowd Regimes

The intrusion and avoidance variables offer the potential for a finer delineation of pedes-

trian streams compared to conventional density-based levels of service. To achieve this,

the foregoing agent-centered variables are averaged across the N(t) agents observed in

the crowd at time t, and subsequently over time. This average value defines two di-

mensionless numbers, the Avoidance number (Av) and the Intrusion number (In). As

Av should quantify the urgency of expected collisions we only consider data points with

finite TTC in the average. Especially in sparse datasets, this allows to focus on the parts

where interactions occur.

Figure 4.2 (A) showcases the regimes of crowd flow that one would intuitively expect to

find in a diagram parameterized by Av and In, using exemplary cases. Close to the origin

(In,Av � 1), the agents can freely pursue their goals, indicating very sparse crowds with
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minimal interactions. As one moves up the In-axis, the setting gets more crowded, and

pedestrians strive to maintain a certain social distance to others, as in a unidirectional

flow. When In � 1, personal space can no longer be preserved and physical contact

may eventually be unavoidable, as in a tightly packed static crowd (Waiting scenario).

Another departure from non-interacting scenarios involves individuals walking or running

towards each other as approximated in the initial stages of an Antipodal experiment,

where participants positioned along the circumference of a circle (with In � 1) are

tasked to reach the antipodal position, introducing conflicting moves and collision risks

in the circle’s center (Av � 1). Finally, competitive evacuations through a bottleneck

illustrate the regime with large In and Av, featuring contacts, pushes, and conflicting

moves.

Let us test these idealized expectations by calculating Av and In from real pedestrian

trajectories. Therefore, we have collected a large dataset including controlled experiments

(single-file motion [46], bottleneck flows [61], corridor flows [18, 52, 147], antipodal sce-

narios [161]) and empirical observations in outdoor settings [162, 163]. Further details

about the datasets as well as the influence of headsways and the filtering we have done

to minimize these will be specified below. We have calculated the Av(t) and In(t) every

0.5s in each scenario and realization and then averaged over the whole quasi-stationary

state (unless otherwise stated).

Indeed, Figure 4.2 (B) affirms the idealized diagram we have worked out intuitively in

Fig. 4.2 (A). Single-File experiments at low density are located at the bottom left corner

at small In and Av. Conversely, the upper region of the diagram, marked by large In,
corresponds to scenarios where physical contacts among pedestrians are nearly unavoid-

able, e.g. a densely packed static crowd (Waiting). While these could be delineated by

the density (or the Level of Service) alone, many scenarios can only be distinguished

by Av. For example, unidirectional flows and cross-flows might share similar In val-

ues, but their distinction lies in Av, where cross-flows exhibit higher values, indicating

a greater likelihood of conflicts. Similarly, antipodal maneuvers exhibit intrusion num-

bers comparable to certain typical outdoor scenarios, yet they feature larger Avoidance

numbers.

Note that in many experiments, although the geometry (e.g., a corridor) remains the

same, the experimental conditions, such as the inflow, are greatly altered, resulting in

flows of different natures. Thus, the spread of points for a given type of scenario is both

expected and sensible. On the flip side, scenarios labeled differently may exhibit overall

similarities, leading to comparable dimensionless numbers. For instance, a bidirectional

flow with thick lanes predominantly consists of unidirectional flows, with only occasional

interactions between the lanes. Another example are crossing flows at high densities
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which generate effective ‘bottlenecks’, so much so that the properties of crossing flows

at higher densities are thought to be controlled by emergent bottlenecks; finding simi-

lar dimensionless numbers for crossing flows and actual bottlenecks is therefore not so

surprising.

In the following, we will give more details on the datasets as well as the way we obtained

the dimensionless numbers. After that we will discuss alternative definitions of the

(somewhat arbitrary) precise ways we defined In and Av. Specifically, we will investigate
the influence of the neighborhood and exponents chosen in the definitions of the agent-

centred Ini, cf. Eq. (4.2), andAvi, cf. Eq. (4.4), on the diagram in Fig. 4.2. Furthermore,

we will discuss the difference between density and Intrusion number in more detail.

A reader more interested in the main results might want to skip the following details and

directly move to Sec. 4.4 where we investigate the qualitative differences of the regimes

delineated here.

4.2.1 Description and curation of the datasets

Above, we have used a large collection of mostly openly available data on pedestrian

dynamics. The collated data and the methods employed to pre-process and extract

average dimensionless numbers In and Av from them are detailed in this section.

4.2.1.1 Summary of the datasets

Name Type Scenario Varied Param. Details Cit. Data

Waiting Exp. Static Density Düsseldorf, Ger, 2013 - Supp.
Single-File Exp. Single-File Density Jülich, Ger, 2006 [46] [164]
Unidirectional I Exp. Uni-dir. Density Düsseldorf, Ger, 2013 [52] [164]
Unidirectional II Exp. Uni-dir. - Tokyo, Jap, 2018 [147] [147]
Bidirectional I Exp. Bi-dir. Density Düsseldorf, Ger, 2013 [52] [164]
Bidirectional II Exp. Bi-dir. - Tokyo, Jap, 2020 [18] [18]
Zara (Outdoor) Obs. Bi-dir. - Nicosia, Cy, 2007 [163] [165]
EWAP (Outdoor) Obs. Bi-dir. - Zürich, Swi, 2007 [162] [166]
Cross Exp. Multi-dir. Density Düsseldorf, Ger, 2013 [52] [164]
Antipodal Exp. Multi-dir. - Beijing, PRC, 2019 [161] -
Students (Outdoor) Obs. Multi-dir. - Tel Aviv, Isr, 2007 [163] [165]
Bottleneck Exp. Bottleneck Corr. Width Wuppertal, Ger, 2018 [61] [164]

Table 4.1: Summary of the different datasets used in our analysis. In Bidirectional I we analyzed the
steady-state, whereas in Bidirectional II we focussed on the part prior to the formation of lanes.
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Table 4.1 provides a concise overview of the utilized datasets, along with their respective

references and, whenever available, download links. Additional information regarding

the experimental setups can be found in the corresponding references.

Note that, for the Waiting scenario, we extracted the trajectories by ourselves from

existing videos. These videos have been recorded within the BaSiGo project in 2013 in

Germany.1 In this experiment, 27 to 600 participants entered a square area through four

entrances, enclosed by crowd control barriers, and were filmed from above. Following

entry, participants waited for approximately one minute before people transversed the

static crowd. Finally the crowd leaves through the entrances. We utilized the semi-

automatic tracking mode of the “PeTrack” software [167] to extract parts of this waiting

period. The corresponding trajectory data is provided as supplemental material.

4.2.1.2 Splitting and merging scenarios

Often, experimental scenarios encompass various stages and spatial regions. In some

cases, specified below, our focus was directed solely towards parts of these stages and

regions or we split the data into distinct scenarios.

In most experiments, there is a clear start and end, where the participants start to fill, or

begin to leave the measurement area. We will start reporting those experiments where

we analyzed the pseudo-stationary state by neglecting the beginning and end of each

run. The Single-File trajectories were treated as purely one-dimensional by neglecting

the transverse coordinate. The dataset was split into a dense and a sparse part, where

the 6 runs with the lowest global density are considered as sparse and the rest as dense.

In Unidirectional I, we have only used the runs where the width of the entrance and

exit corresponds to the total width of the corridor; the other runs rather resemble a

bottleneck. As for Unidirectional II, we have used the totally asymmetric runs where all

people walk from one side to the other. As there is only a small crowd that passes the

measurement area, no steady-state can be analyzed. For simplicity, we have merged the

two unidirectional datasets into a Unidirectional scenario. In Bidirectional steady-state,

we have used variant B, where the participants are instructed to use a fixed exit, i.e.

either on the left or on the right at the end of the corridor. For the Cross scenario,

we have limited our analysis to the area of the crossing itself. In particular, we have

neglected the corridors leading to the crossing area. We have used the variant A of the

90◦ crossing, where people enter from all 4 sides, without an obstacle in the centre of the

crossing. Note that, the runs 6 and 8, i.e., those with the highest Intrusion number, were

cancelled after some time as the experimenters were afraid that participants could get
1For more information on the project see http://www.basigo.de/.

http://www.basigo.de/
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hurt due to the heavy congestion. We split the Cross dataset in a sparse part consisting of

the 3 runs with the lowest global density and the dense part with the rest. In Bottleneck,

only the runs with a number of participants N > 40 were used. Furthermore we have

only used the runs with a high motivation. We restricted the analysis to the area right

in front of the bottleneck.

In some experiments, we were interested in transient states, i.e. a specific temporal part

of the experiment. In Bidirectional pre lane formation, we have used the runs without

any distraction by cellphones, i.e. the baseline condition. We start the measurement after

people have entered the measurement area and end it before the lanes have formed. For

the Antipodal experiment, only the first ≈ 2s of each run are considered. In particular,

the part before the pedestrians get close to each other. The runs with a radius of r = 5m

and 8 participants were used.

4.2.1.3 The case of the Outdoor scenario (passive observations)

The Outdoor scenario gathers real-world observations from different datasets. We have

used the complete sequences of each observation. As for the Zara and Students datasets,

in the original publication the position of each pedestrian present was given in pixel

instead of real-world position. Furthermore, the frame-rate is irregular, accordingly

positions of neighbouring pedestrian might only be available at different frames. We have,

therefore, used the amended data by [168], where real-world positions were estimated and

it was linearly interpolated between the frames. Regarding the EWAP datasets, filmed

from a Hotel and at the ETH campus, the velocities were given with the positions and

frames in two-dimensional real-world units.

In contrast to the controlled experiments, many social groups are present in the Out-

door scenario. This has an effect on the structure of the crowd, as we will show in

section 4.4.2.1. These groups (mostly pairs) must be excluded from the calculation of

Av and more importantly In, as for example friends want to stay in each others per-

sonal space. To exclude social groups we detect these according to a simple rule: Two

pedestrians are assumed to form a social group if their mean distance is smaller than

1m, their maximal distance smaller than 1.5m, and their mutual presence in the scene

lasts at least 2s. We have checked that this indeed detects pairs that would be identified

as pairs in the videos. Note that the corresponding scenes are very sparse and people

move in very different directions which simplifies the classification significantly.
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(a) Uni-Directional (b) Waiting

Figure 4.3: Exemplary original trajectories (blue) and the smoothed trajectories using
a 4-th order Butterworth filter with critical frequency 0.5Hz (red).

4.2.1.4 Processing and smoothing of trajectories

Unless otherwise specified, in all datasets each pedestrian is assigned a unique ID, for

which a two dimensional real-world trajectory is given at a certain frame-rate. In all

videos the real-world positions are obtained by tracking the participants’ heads. Due

to the bipedal gait of humans the head performs an oscillatory swaying motion which

depends on the speed of the pedestrian. Consequently, the trajectories do not directly

show the actual movement direction of the pedestrian [169]. These head sways affect

both the calculation of In and above all Av. To smooth out the head sways, a 4-th

order Butterworth filter with critical frequency 0.5Hz was applied to the trajectories.

From these positions and times we calculated the velocities as the distance covered in

approximately 1s. The typical head sways in the original trajectory as well as the filtered

data with reduced oscillations can be seen in Fig. 4.3 (a).

In Fig. 4.3 (b), we display trajectories of the waiting scenario. We can see oscillations

which seem to originate in more irregular head motion of the waiting pedestrians. The

Butterworth filter does not smooth these fluctuations which might be a reason that the

Waiting scenario is not located at even smaller Av numbers in Fig. 4.2B.

Note that one must be careful with the application of the Butterworth filter because it

alters the beginning and end of each trajectory strongly. Therefore, it can only be applied

in cases where the beginning and end can be fully neglected. In hindsight another filtering

method, e.g. one of the methods put forward in [169], might have been a better choice.
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4.2.1.5 Computation of the In and Av numbers

After the trajectories were filtered and the velocities were calculated, the time-to-collision

(TTC) was computed by assuming that each pedestrian is a disk of diameter `min = 0.2m

as it has also been chosen in the calculation of the In value. This size was chosen

in accordance with [82], in order to limit the number of measured overlaps between

disks, which lead to ill-defined TTC. Nonetheless, especially in dense experiments, some

overlaps are still observed; to mitigate this problem, we set an upper bound Inmax
ij = 400

and Avmax
ij = 60 on all computed In and Av numbers.

Additionally, despite the segmentations detailed in section 4.2.1.2, certain scenarios,

particularly the Outdoor one, feature a significant number of pedestrians walking in

isolation. Another example is the sparse Cross scenario, where we want to focus on the

first half before conflicts in the center of the crossing are resolved. To address this, we

exclude pedestrians with Avi = 0 in the averaged Av. Excluding these values narrows

the datasets down to the parts where interactions really occur and thus yields a much

finer and more robust delineation of the different regimes. It is worth noting that this

is further related to the fact that only collisions between the hard-cores are taken into

account so far. More specifically, we only consider anticipated collision between the disks

of diameter `min. In reality, however, people also shun the ‘soft’ collisions with the private

or intimate space, which are not captured with the discontinuous TTC.

4.2.2 Variations of the Phase Diagram

In the definition of Av and In we have conceded that there is a certain freedom of choice

in their definition, in especially regarding the neighbourhood and the exponents. Here,

we investigate to what extent this choice impacts the delineation of different regimes.

Moreover, we will investigate the similarity between In and the commonly used density.

4.2.2.1 Variations in the definitions of In and Av

To begin with, let us alter the definition of the Intrusion number In. We defined it

for an agent i as the sum of all intrusions over the set Ni of all close neighbors j of i,

here delimited by rij 6 3 rsoc. This additivity is similar to the superposition of forces in

physics. However, of course, we are not dealing with Newtonian forces and, consequently,

there is a priori no reason to assume this superposition. For example, it was found that

the superposition of different factors can lead to unreasonable behaviour especially in

more complex situations where humans much rather prioritize [100]. Therefore, one might
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(a) max (In) (b)
∑

(τ0/τ)2 (c) Density

Figure 4.4: Empirical delineation of different regimes with alternative definitions of
(a) the Intrusion number In in Eq. (4.5), (b) the Avoidance number Av in Eq. (4.7),

and (c) the global density.

choose an alternative neighborhood where the intrusion is dominated by its maximum

value as

Ĩni = max
j 6=i
Inij . (4.5)

In Fig. 4.4 (a) an alternative ‘phase’ diagram is shown where we used the definition

specified in Eq. (4.5). It is difficult to spot any substantial difference to the original

diagram: the delineation is robust under this change.

Conversely, for the Avoidance number, we have defined the agent-centred variable to

be dominated by the most imminent collision. Let us replace this with a sum over all

possible collisions, viz.,

Ãvi =
∑
j 6=i

τ0

τij
. (4.6)

In that case, the delineation of different regimes gets blurred to a large extent. On

the other hand, if more weight is put on the large Avoidance numbers by defining it

symmetrically to the Intrusion number, viz.,

˜̃Avi =
∑
j 6=i

(
τ0

τij

)2

, (4.7)

the delineation is at least partly recovered, see Fig. 4.4 (b).

4.2.2.2 Use of the density instead of In

We opted to use distances as the basis for the Intrusion number instead of relying on local

density, which is partly justified by the ambiguity in defining a local density. However, we

acknowledge that the averaged Intrusion number (In) remains closely related to density,

a quantity commonly used for classifying crowds.
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Therefore, in Fig. 4.4 (c), we replaced the Intrusion number with the global density (ρ),

calculated as the number of pedestrians divided by the available space.2 The delineation

of different regimes is still evident.

Only the Single-File data strongly deviates from the original diagram. In this scenario,

pedestrians lack lateral neighbors, potentially influencing their experienced intrusion.

Alternatively, the deviation could be attributed to the presence of obstacles, such as

walls, which are very close to all agents in the single-file scenario and were not considered

in the calculation of In.

Furthermore, the Cross and the Bottleneck scenarios exhibit lower densities but higher

In values compared to the Waiting scenario. In the latter, people are distributed very

homogeneously, whereas inhomogeneities are conspicuous in the former, including tightly

packed regions. The Intrusion number puts more wheight on these.

The classification of crowd regimes can be accomplished by substituting the Intrusion

number with the global density. This raises the question of whether the agent-centred

intrusion variable Ini still holds relevance or if a local density ρi should have been

used instead. However, defining a local density in crowds presents challenges due to

the similarity in the magnitude of the typical length scales (system size and distances

between pedestrians), unlike in fluid dynamics where these differ markedly. Nonetheless,

the use of Voronoi cells allows for the definition of a local density in crowds, with the

inverse area of the cell providing an agent-centred local density. This density does not

depend on the parameters rsoc and `min which are included in the definition of Ini. These
parameters, however, hold significance by linking Ini to both biomechanical properties,

as represented by the incompressible size of humans `min, and psychological factors, as

represented by rsoc.

For example, consider a large empty room with two individuals; even if one person

significantly intrudes upon the other, the associated Voronoi density for each pedestrian

would be minimal. Though such a scenario may seem artificial, it is typically investigated

in the context of proxemics, where rsoc is measured in ‘stop-distance’ experiments. In

these a subject approaches or is approached by an assistant until the subject begins to

feel uncomfortable due to the proximity of the other person [107]. Such nuances are

effectively captured by the agent-centred variable Ini.

Furthermore, while we have treated the crowd as homogeneous, with the same rsoc and

`min for all pedestrians, these parameters can account for the heterogeneity present in

crowds. This includes social relations (e.g., friends vs. strangers) or context (e.g., concert
2To enable us to plot the Single-File data along with the rest, the one-dimensional density, calculated

as the number of people divided by the length of the track, was rescaled according to [170], where we
assumed a width of 0.3m.



Classification of Crowds 63

vs. work) in terms of rsoc, as well as diverse body shapes such as children and adults with

respect to `min. Additionally, future considerations could involve more complex shapes,

such as elliptical bodies, velocity dependent shapes, taking stepping into consideration,

or asymmetrical social spheres. Though perception effects have been overlooked thus far,

they can easily be incorporated in the neighborhood used to define Ini.

Moreover, the calculation of Voronoi diagrams, in comparison to Ini, is considerably

more intricate, particularly in the presence of obstacles or walls where the precise method-

ology remains ambiguous. Thus, introducing a new yet related quantity is justified.

4.3 Correlations between In and Av

Looking at the diagram in Fig. 4.2 one might wonder whether In and Av feature some

correlations, i.e., that as one of them changes, the other one changes as well. More

specifically, this owes to the impression of a systematic increase of Av with increasing

In in the Waiting scenario and, with a different slope, in the unidirectional or Single-

File scenarios. This trend is apparent even after applying the Butterworth filter, which

already considerably reduced the blurring effect of the participants’ headsways on the

delineation. Especially for the waiting scenario, however, the trajectories still feature

irregular motion due to head movement, cf. sec. 4.2.1.4. Consequently, the trend might

still be related to the swaying of heads.

Nonetheless, we have seen that In and Av are sufficiently independent to allow for a

proper distinction between the typical scenarios encountered in pedestrian streams and

even some degree of interdependence would mostly result in a skewed diagram (given

that the In and Av axes have been plotted orthogonally although they should not) with

no impact on its topology. Ultimately, while for the overall correlation is difficult to make

out the details, we can, of course, calculate the correlation between the agent-centred

Ini(t) and Avi(t) in different regimes.

4.3.1 Crosscorrelation between In and Av

More specifically, let us study the crosscorrelation between In and Av which tells us

how much an anticipated collision at time t, quantified by Avi(t), is correlated with an

intrusion at a later time t+ ∆t, i.e. Ini(t+ ∆t). We use the normalized crosscorrelation

and assume a stationary process. In that case the crosscorrelation is defined as follows

K (Avi(t), Ini(t+ ∆t)) =
E [(Avi(t)− E [Avi]) (Ini(t+ ∆t)− E [Ini])]

σAviσIni
, (4.8)
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Figure 4.5: Crosscorrelation K (Avi(t), Ini(t+ ∆t)) in different regimes of crowd
flow, specifically for the dense single-file (A), the unidirectional flow (B), the sparse
cross flow (C), the antipodal scenario (D), and the dense cross flow (E). The vertical

dashed grey line denotes the mean value of the TTC in the dataset.

where σ denotes the standard deviation and E (·) the expectation value. The range of this

normalized crosscorrelation lies between [−1, 1] where 1 corresponds to perfect correlation

and −1 to perfect anticorrelation. We can empirically estimate this by calculating the

corresponding quantities from the timeseries of each pedestrian present in the scene, and

then average over all pedestrians.

The results for different scenarios are shown in Fig. 4.5 where we depict the crosscor-

relation for different scenarios together with their location in the ‘phase’ diagram. Let

us start by analyzing a regime of low In and high Av number, represented here by the

sparse cross flow and the antipodal scenario in Fig. 4.5C and D. We find that for ∆t close

to zero, Ini and Avi are slightly anticorrelated. The correlation increases with ∆t and

reaches a maximum value. Remarkably, this maximum is located exactly at the mean

value of the TTC τ in the corresponding dataset. This can be understood as follows, two

pedestrians approach each other but are still well separated, which results in a (slight)

anticorrelation. They realize the impending risk of collision and slightly adjust their path

which dissolves the anticipated risk of collision. As the scenario is considerably sparse

both continue to move with a similar velocity as before towards their goal. Accordingly,

the two pedestrians continue to approach each other and get proxemically closer to each
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other. They are closest to each otehr around the time at which they initially antici-

pated a collision to happen. As they continue to move along their path they grow apart

spatially and accordingly the crosscorrelation decreases.

Let us now study the opposite regime with In ∼ 1 and small Av number as shown

in Fig. 4.5A and B for the single-file and the unidirectional scenario. As before, if

a pedestrian faces an anticipated collision, the intrusion will typically increase in the

future. In contrast to the regime of high Av and low In numbers, however, for small ∆t

the correlation is still positive and quickly reaches a maximum located at ∆t ≈ 0.8s, i.e.

at times much smaller than the mean value of the TTC. Both scenarios show the peak at

almost the same time, which is associated with the step-frequency of pedestrians. This

indicates, as already discussed above, that some effect of oscillations is still present even

after applying the Butterworth filter.

Ultimately, for the dense cross in Fig. 4.5E, in a regime of high In and high Av numbers,

the crosscorrelation is zero for small times and approaches a maximum which is, as above,

located at ∆t ∼ 0.8s. The mean value of the TTC is however located quite close to the

maximum. In such non-asymptotic regimes, multiple effects might be superimposed onto

each other.

4.4 Self-Organized Structure in Crowds

We have introduced two agent-centred variables Ini, based on the preservation of per-

sonal space, and Avi, based on the anticipation of collisions. By averaging these over the

whole crowd we defined two dimensionless numbers which allowed us to visually delineate

regimes of crowd flow, as shown in Fig. 4.2. This indeed appears sensible. Nonetheless,

its physical significance becomes apparent only if the delineated regimes exhibit consti-

tutive differences. More specifically, we want to link the associated regimes with the

typical self-organisation of the pedestrians. This would make the delineation especially

useful for theoretical endeavours, i.e., for the modelling of pedestrian crowds.

Remarkably, a substantial difference is found here not in the static symmetry of the

structure (as in distinguishing a liquid from a crystal), but rather in the nature of this

self-organized ‘structure’ - more practically, in the variables that characterize it. Inspired

by condensed matter physics and following the approach in [82], we utilize the pair-

distribution function (pdf) g(x) = P (x)/PNI(x) between pedestrians as a structural

probe. This function quantifies the probability that two interacting pedestrians are

found a given distance x apart, normalized by the probability PNI of measuring this

distance for pedestrians that do not interact. This will lead us to the observation that
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Figure 4.6: Exemplary figure of the pair-distribution function.

Euclidean distances are relevant for describing the crowd’s structure at low Avoidance

numbers, whereas Time-to-Collisions (TTCs) are relevant at low Intrusion numbers. In

the former case, the interactions governing the dynamics can be considered as ‘spatially

controlled’, while in the latter case, they are ‘temporally controlled’. This distinction

provides insight into the different nature of crowd dynamics and how it manifests in the

structural characteristics of the crowd.

Before discussing these qualitative differences between the regimes in greater detail we

will give some insights of how to approximate the aforementioned probabilities by ran-

domizing the time or space information. Besides, we will need to show first that in-

deed the pair-distribution-function inhibits crucial information about the crowds’ self-

organized structure in various scenarios.

4.4.1 Definition of the Pair-Distribution Function

The pair-distribution function (pdf) is a common tool in materials science used to infer

the atomic or molecular structure of materials. In general a value of g(x) > 1 indicates

that the distance x is observed frequently between two atoms (or alternatively pedes-

trians), a value g(x) < 1, on the other hand, means that distance x is suppressed by

the organization of the material (or the by the self-organized structure of the crowd).

Figure 4.6 provides an illustration of the relation of the pdf to the structure of a material.

Imagine starting from the red atom in the centre and moving radially away from it. For

small values of r, we will not find another atom due to volume exclusion and accordingly
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g(r) � 1. This is followed by a strong peak at the nearest neighbour distance. The

peaks and minima decay at some length scale beyond which fluctuations wash away the

structural features. An experimental example of a pdf, measured for solid and liquid

Argon, can be found in [171].

In our case, we calculate the pdf of crowds according to the approach in [82]. For a

variable x, the pdf is given by the probability that two pedestrians are separated by x

normalized by the probability PNI(x) that two non-interacting pedestrians are separated

by x, specifically g(x) = P (x)/PNI(x). This normalization is crucial in the definition of

g(x) as it corrects, for example the finite system size that leads to the fact that large

distances are rarely observed irrespective of the structure itself.

While P (x) can be straightforwardly estimated by the relative frequencies in the dataset,

PNI(x) is, in principle, unknown. However, it can be estimated by randomizing either

the spatial or the temporal information. To estimate the distribution, we employed strict

binning with bins of size 0.1m or 0.1s.

4.4.1.1 Calculation in various Scenarios

The process of estimating PNI(x) is most comprehensible in the context of single-file

motion. In this scenario, the observation area is confined to the x-coordinate, spanning

from 0 to L. Since all pedestrians enter on the left and exit on the right, all positions

are equally probable. However, due to the limited size of the area, finite-size effects

strongly suppress large distances. Therefore, PNI(x) can be estimated by computing

the distribution of distances between points randomly placed within the interval [0, L].

Another approach to estimate PNI(x) is by randomizing the time-information, creating a

‘time-scrambled’ version of the dataset as suggested by [82]. This ensures that distances

calculated in the scrambled dataset correspond to non-interacting pedestrians, as they

were not originally present in the same frame. Both methods yield the same result in

the case of single-file motion.

For the static crowd (Waiting scenario), temporal information cannot be scrambled, as

pedestrians exhibit minimal movement. Therefore, we assume that all positions within

the rectangular measurement area are equally likely. This assumption is justified as

we neglect the edges of the observation area, where people lean on the crowd-control

barrier. On the other hand, in the Outdoor dataset, in addition to finite-size effects,

considerations must be made for various forbidden areas (such as trees or cars) in the

middle of scenes and different areas where people enter or leave the scene. This is achieved

by randomizing the time-information.
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(a) Single-File (b) Unidirectional

Figure 4.7: Evaluation of the pdf g(r) in different scenarios. In (a) for one run of the
SingleFile, dense dataset. In (b) the Unidirectional I dataset, the run with ρ = 2.1/m2

the position of the peaks depends on the angle φ. In particular, the longitudal distances
(to the front) are larger than the transversal distances (to the sides).

4.4.2 Insights into the crowd’s structure in different scenarios

Let us return to our ‘phase’ diagram in Fig. 4.2. If we start from the origin (In,Av = 0)

and move up along the In-axis while keeping Av � 1, the scenery gets more and more

crowded. Therby, the crowd structures itself in real space which is evidenced by its radial

pdf g(r), where r is the Euclidean spacing between people. This is best exemplified by

one-dimensional configurations. More specifically, it is most clearly demonstrated in

the experiments conducted by [46]: high density, periodic, single-file experiments with

soldiers as the participants. The corresponding pdf is shown in Fig. 4.7 (a) for a single

run at ρ = 2.1/m, where long-ranged correlations in the pdf can be seen, owing to the

strong homogeneity, combined with the spatially confined setting. The pdf displays peaks

that are well separated and located at the integral multiples of the mean spacing, i.e.

correspond to the k-th neighbor. This resembles the pdf of a liquid or a dense suspension

of active colloids [172].

But structural features are also visible in two-dimensional settings, notably in the uni-

directional flow through a corridor with open boundaries at a density of ρ = 2.1/m2.

The corresponding pdf is shown in Fig. 4.7 (b). Its pdf displays a strong dip at short

distances, below 0.3 ∼ 0.4 m, reflecting strong short-range repulsion, due to hard-core

impenetrability and the reluctance for intrusion into the intimate space; the dip is fol-

lowed by a peak at the nearest-neighbor distance. This is followed by multiple peaks

which decay much faster than in the one-dimensional setting.

Furthermore, the curves are binned according to the angle φ between the velocity vi

and the vector connecting the centers of two pedestrians rij . The two curves exhibit

a difference between longitudinal (green) and transversal (red) distances, reflecting the

existence of anisotropy. In particular, pedestrians keep smaller distances to their sides
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(a) Waiting g(r) (b) Outdoor g(r)

(c) Waiting g(τ) (d) Outdoor g(τ)

Figure 4.8: (a) and (c) pdf for the Waiting dataset and (b) and (d) for the Outdoor
dataset. The curves are binned according to the rate of approach v = −dr/dt (given in
m/s). As for the Waiting the pdf is well parameterised by r and poorly by τ and for

the Outdoor vice versa.

than to the front. The angular dependence may have practical implications as to whether

the capacity of a corridor increases linearly or step-wise with its width.

Similarly, for the dense static waiting crowd in Fig. 4.8 (a), we can see that small

distances are strongly suppressed. This is followed by a peak representing the nearest-

neighbor. This time, we have binned the pdf not in dependence on the angle φ, but

on the rate of approach v (i.e., the rate at which the distance between two pedestrians

declines). The described features are insensitive to changes in this dynamic variable: the

radial pdf exhibit the very same trend Fig. 4.8 (a), quite independently of v.

The situation is widely different if one departs from the non-interacting regime by in-

creasing Av, i.e., examining scenarios with very sparse crowds (In � 1) characterized

by conflicting moves. Examples include the antipodal scenario or situations involving

sparse outdoor crowds, as extensively analyzed in [82]. Strikingly, in this regime, the

radial pdfs no longer collapse onto a single curve. When binned according to the rate

of approach v as depicted in Fig. 4.8 (b), the pdfs exhibit distinct shapes. Notably, as

pedestrians approach each other at higher speeds, the Euclidean spacing at which their

interactions commence becomes larger.
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(a) Single-File g(r) (b) Unidirectional g(r)

(c) Single-File g(τ) (d) Unidirectional g(τ)

Figure 4.9: In (a) and (c) pdf for the Single-File dataset and in (b) and (d) for
the Unidirectional I dataset. The curves are binned according to the rate of approach
v = −dr/dt (given in m/s). In both cases the pdf is reasonably well parameterised by

r and poorly by τ .

Instead, if the TTC denoted as τ is used in place of r as the input for the pdf, a master

curve emerges, as depicted in Fig. 4.8 (d) for the Outdoor dataset. Specifically, the pdf

gets more and more strongly depleted as τ becomes shorter, signalling the risk of an

imminent collision. In this regime, the structure of crowds is not readily apparent in

real space but becomes evident in TTC space only. This major finding of [82] is here

contextualized by ascribing it to a particular regime of crowd flow: it does not hold for

the waiting room (finite In, small Av) Fig. 4.8 (c). It is important to note that, for

negative rates of approach (thus, infinite TTC), no curve can be plotted in Fig. 4.8(c),

even though the structure remains independent of it in real space, as seen in Fig. 4.8 (a).

The failure of g(τ) to describe the dynamics in the high In and low Av regime can be

further exemplified by considering starting waves, see e.g. [72, 173, 174]. Here, in an

initially static and typically dense crowd the first person (or first row) starts to move.

This allows the people behind them to move as well which triggers a backwards travelling

starting wave. If we look at this phenomenon in ‘TTC-space’ we can not distinguish

whether the pedestrians ahead of a reference agent stand still (v ≈ 0) or move ahead

(v < 0), their TTC is infinite in both cases.
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(a) sparse Cross g(r) (b) sparse Cross g(τ)

Figure 4.10: The pdf for the sparse Cross dataset. The curves are binned according
to the rate of approach v = −dr/dt (given in m/s). It seems that the pdf can neither

be fully parameterized by r nor by τ .

Let us test these observations in different data sets. Therefore, we calculate the ac-

cordingly binned pdfs g(r) for the Single-File experiment already discussed above, cf.

Fig. 4.9 (a), as well as for the unidirectional dataset, cf. Fig. 4.9 (b), which are lo-

cated at low but nonetheless higher Av-numbers if compared to the Waiting dataset.

The structure of nearest-neighbor or next-nearest-neighbor are still clearly visible for

each binned curve. Moreover, the locations of the peaks seem to be independent of the

rate-of-approach. On the other hand, in both cases, the nearest-neighbor has a reduced

probability to have a large rate of approach. For the pdfs g(τ), it is clearly visible that

the TTC alone can not at all describe the crowd in this regime.

These results are related to the modelling of Single-File motion in the first chapter 3.

More specifically we found that a TTC based model completely fails in describing the

main features of single-file motion. A simple model, in which the agents chose their

velocity according to their headway leads to a homogeneous solution which is very closely

resembled by g(r) in Fig. 4.7 (a). If we look at more subtle effects, however, one needs

to take the relative velocity into consideration which seems to be reflected in the (slight)

dependence of g(r) on the rate of approach.

Along the Av-axis, finding another dataset at low In-number with enough data-points

is difficult. As these scenes are sparse by definition long observational sequences are

needed. Moreover, the experiments located here (like Antipodal) only feature very specific

distances and velocities such that estimating the pdf becomes even more challenging.

Nonetheless, in Fig. 4.10 we show the pdfs for the sparse cross-flow. As for g(r), the

picture seems fairly similar to the Outdoor data: the faster two pedestrians approach each

other, the larger will be the typical Euclidean spacing at which they begin to interact.

The collapse on g(τ), on the other hand, can not be fully recovered. Even though the

pdfs are quite noisy, probably due to the missing data (especially for v > 2) we can

attest that for small values of τ the collapse is not recovered. But this might not be the
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(b) Outdoor (c) Outdoor

Figure 4.11: Evaluation of the pdf g(r) in the Outdoor scenarios. In (a), the marked
peak at small distances to the sides arises from many pairs which are present in the

observation. This cannot be observed in the TTC-based pdf g(τ), cf. (b).

expectation anyway - the sparse Cross-flow is not in the close vicinity of the Av-axis,
especially the run with the highest number of participants which, consequently, consists

of the most trajectories and can therefore be assumed to dominate in the calculation of

the pdf.

4.4.2.1 Effect of pairs and social groups on the pdf

Finally, let us investigate the effect of social groups on the pdf. Therefore, once again

we calculate the pdf for the Outdoor dataset but this time we bin the curves according

to whether pedestrian i is part of a social group (∈ group) or not (/∈ group). To this

end, we employ the classification described in section 4.2.1.3. Notably, distinct curves

are evident in Fig. 4.11 (a) contingent upon whether we move away radially from a

member of a social group (∈ group) or a pedestrian which is not part of a social group.

Specifically, for pedestrians within a social group, the pdf displays a pronounced peak

at small (transversal) distances that originates in the presence of anohter member of

the social group. These are characterized by a desire to maintain close proximity which

allows for instance to talk or to walk hand in hand. Apart from this, and a robust

short-ranged repulsion, no spatial structure is discernible. The pdf bears resemblance to

a mixed gas consisting of single atoms and molecules. When the pdf is computed for the

time-to-collision, as illustrated in Fig. 4.11 (b), the two curves converge. This is because

spatial proximity does not imply an imminent collision risk; pair members aim to remain

close but without colliding.

Above, we have underlined that the finding of [82] (namely, that the TTC is a more

suitable descriptor than the spatial distances) is valid in a certain regime only (i.e. low

In, moderate Av). Here, by turning the original argument upside down, we contend

that further constraints are necessary when it comes to social groups. More specifically,
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two types of interactions are present here, an attractive distance-based (‘proxemic’) in-

teraction within each group and a TTC-based (avoidance) interaction with other people.

These are both mirrored in their respective pdfs: the notable peak at short distances in

g(r) (but not in g(τ)) and the depletion of g(τ) for imminent risks of collisions. Thus, the

collapse of the two curves for g(τ) in Fig. 4.11 (b), actually fails to reflect a fundamental

difference in the interactions between members and non-members of social groups. Inci-

dentally, this also explains the large variations in the pdf g(r) in [82], binned by rates of

approach: in [82], pairs were not excluded and the rate of approach of their members is

very small, and thus falls in one specific bin.

4.5 Summary and Outlook

In summary, we have introduced two dimensionless parameters that quantify the de-

sire to preserve one’s personal space, the Intrusion number In, and the anticipation

of collisions, the Avoidance number Av. While on an individual level they are based

on directly perceivable quantities capturing psychological properties of pedestrians, on

the level of the crowd their averages define two dimensionless numbers that delineate

different regimes of crowd flow.

In particular, we have collated an extensive data set of pedestrian trajectories in diverse

scenarios and calculated Av and In empirically. This allowed a visual delineation of

different crowd regimes that aligns with our intuition. We showed that these regimes

are marked by specific ‘structural’ arrangements: while at low Av-numbers the crowd

self-organizes in a way best described in terms of Euclidean spacings, at low In-numbers

the self-organized structure is much better captured in terms of temporal spacings, i.e.,

times-to-collisions. Furthermore, we found that the cross-correlation differs markedly

between these asymptotic regimes which gave complementary insight.

At present, the definition of Av only accounts for collisions between the hard-cores of

pedestrians. A more sophisticated definition of Av should not be binary but also capture

‘softer’ collisions, i.e., anticipated intrusions into the private or intimate space. Such a

definition would mitigate the number of pedestrians with Avi = 0 which have been

neglected in the averaged value of Av.

So far, our main focus has been on asymptotic regimes, which are in the vicinity of either

one of the two axis. When moving to regimes with non-zero Av and In number, empirical

results are difficult to interpret. The effect of headsways on the calculation of Av in

regimes of large In number, even after applying the Butterworth-Filter, complicates this

matter. A different filtering method could allow a less obstructed view here. Another
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track in improving our understanding of non-asymptotic regimes will be the theoretical

description put forward in the concurring chapter.

There we will try to rationalize the findings presented here for a theoretical description

by proposing perturbative models based on Av and In. Similarly to Fluid Mechanics,

where dimensionless numbers guide the choice between different approximations, the

dynamics of crowds can be approached in each regime by perturbative expansions, which

yield pedestrian models applicable in the corresponding regime (and only there).

Finally, while the focus throughout this chapter has been on the delineation of crowd

regimes with the help of Av and In, they can also be employed as measures with regard

to all sorts of more nuanced behaviour observed in crowds. Therefore, before proceed-

ing, let us try to utilize the Avoidance and Intrusion numbers to investigate motivation

and pushing behavior of crowds at bottlenecks. To this end, we will also study the

distributions of Av and In.

4.5.1 Outlook: Motivation at Bottlenecks

Let us start by explaining the different runs in the Bottleneck experiment in more detail.

The experiments have been conducted to investigate the effect of the corridor width on

the behaviour on the crowd. Accordingly, as noted in Table 4.1, the width of the corridor

leading to the bottleneck was varied between the runs [61]. For each width two runs were

performed, once with high motivation, on which we have been focused so far, and once

with a lower motivation. To trigger these two levels of motivation, the instructions

given to the participants were changed. In particular, for the high motivation runs the

participants were told to (translated from German) “imagine [that] you are on your way

to a concert by your favourite artist. You know that at the back you can hardly see

anything at all or only the video screen. You absolutely want to be standing next to the

stage and therefore want to access the concert as fast as possible. After a signal, we will

open the entrance” [61], For the lower motivation, on the other hand, the participants

were told to “imagine again that you are on your way to a concert by your favourite

artist. This time you know that everyone will have good view. Still, you would like to

access the concert quickly” [61]. We can distinguish these different levels of motivation

on the level of the whole crowd by the averaged Av and In number, where the latter is

located at higher In and higher Av numbers, cf. Fig. 4.12.

Thereby, we have assumed that motivation is static and homogeneous across the crowd

which is known to be inaccurate. Motivation is a widely discussed topic in social sciences,

in our case, however, it can simply be defined as the desire to reach the goal, i.e. to reach

the bottleneck quickly [175]. This behaviour strongly varies between individuals and does
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Figure 4.12: Location of the runs with low (orange triangles) and high motivation
(red triangles) bottleneck runs in the ‘phase’ diagram.

not stay constant over time: some people are eager to reach the exit as fast as possible

and for example push others to reach their goal. Other pedestrians, on the contrary,

do not engage like that but instead get overtaken by others [175]. Exactly this time-

dependent and individual information has been obtained by qualitatively rating each

pedestrian in every frame as falling behind, just walking, mild pushing or strong pushing

[176] which we can now employ to measure motivation in a heterogeneous and dynamic

way.3

In Fig. 4.13 we depict the mean value of Av and In averaged for each level of pushing.

We can clearly see two things, first we see again that the global level of motivation leads

to higher values of both Av and In, as it has already be verified in Fig. 4.12. Moreover,

both Av and In increases monotonically with the level of pushing in almost all runs.

Note that this is also the case for the other runs which are not shown here. This means

indeed that increased Av and In numbers, in comparison to the rest of the crowd, are

an indicator for higher motivation.

However, we have (again) only looked at the mean values of the accordingly binned data

points. Let us now, instead, look at the distributions which are a blind spot in the

overall investigation of the avoidance and intrusion variable so far. In Fig. 4.14 we show

the distributions P (Av) which have been obtained by employing strict bins of size 0.1.

While the ‘global’ trend of the mean value has been, the larger the level of pushing the

larger the value of Av, this seems not to be the case for the individual values: they can
3Note that high motivation might not always be associated with pushing, a counter-example would

be a ‘cornered’ individual that pushes for protection in a very dense crowd.
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(a) 〈Avi〉 for w = 5.6m (b) 〈Ini〉 for w = 5.6m

(c) 〈Avi〉 for w = 3.4m (d) 〈Ini〉 for w = 3.4m

Figure 4.13: Mean value of Av and In in dependence of the associated level of
pushing: falling behind (1), just walking (2), mild pushing (3) or strong pushing (4).
The color of the symbols refers to the ‘global’ level of motivation, i.e. green as low and

red as high.

not be distinguished as the distributions themselves are fairly similar and display a quite

large variance.

The result presented here unveil a change of the meaning of the Avoidance number at

high densities, which is not correctly captured by its naming. Specifically, an increase of

avoidance with a higher pushing intensity is counterintuitive because pushing refers to

situations in which pedestrians do not avoid contact. Nonetheless the TTC, on which

the Avoidance number is based, quantifies the conflicts that arise from the fact that two

or more pedestrians face an anticipated collisions or heavy intrusion in their personal

or intimate space. While at low densities pedestrians typically are able to avoid an

anticipated collision by slightly changing their velocity, thus, by avoidance, this is often

not possible in dense scenarios.
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(a) High motivation, w = 5.6m (b) Low motivation, w = 5.6m

(c) High motivation, w = 3.4m (d) Low motivation, w = 3.4m

Figure 4.14: Distributions of the avoidance variable Av in different experimental runs
for the different levels of pushing.

Nonetheless, the two variables Av and In can indicate different levels of motivation

which might prove useful in future endeavours to model motivation in a heterogeneous

and dynamic way [177] because they provide means to measure the individual level of

motivation which in the simulation can not be done by a complex qualitative rating of

the actual experimental videos. Besides, in this section we have studied the distribution

of the avoidance variable. To get further inside in the structure of the crowds’ state

in different regimes we will need to study these more closely - this might also allow

a more detailed understanding on their dependence on individual and dynamic level of

motivation. Apart from this, the analysis put forward here alludes to the usage of Av and
In beyond the classification of crowds as measures for diverse phenomena encountered

in crowds.



Chapter 5

Perturbative Models

In the previous chapter we have drawn inspiration from the methodology of fluid dy-

namics and introduced dimensionless numbers to analyze and characterize pedestrian

streams. Similarly as the Reynolds number in fluid dynamics, the Intrusion number In
and the Avoidance number Av provide means to intuitively and quantitatively distin-

guish different regimes. In particular, we have used these to rationally organize a large

collection of empirical data sets and showed that different regimes thus delineated are

characterized by different types of arrangements, best understood in terms of either Eu-

clidean distance or ‘times to collision’. Thereby, we have connected the psychological

underpinning with a classification of crowds, notably relevant for safety analysis. We

will now try to rationalize the empirical classification of crowd flows theoretically, for

the modelling of pedestrian crowds. Notably, in fluid dynamics, gauging the validity

of approximations is the main utilization of dimensionless numbers like the Reynolds

number.

In particular, the distinct types of arrangements evidenced above, depending on the

regime, contribute to making the delineation of regimes useful. Based on this, we will

argue that the dynamics of a pedestrian is in many cases governed only by the agent

centred intrusion Ini and Avi avoidance variable. Starting from a very general but

only formal model, this will allow us to perform a first-order expansion around the non-

interacting situation and to obtain asymptotic models for pedestrian crowds. We will

show that the performance of each model is tightly connected to a specific the regime of

crowd flow. More specifically, by testing these models in different regimes, we show that

they are generically only applicable in the regime they were derived for.

78
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5.1 Perturbative Analysis

Let us consider a crowd ofN pedestrians at time t. Formally, the dynamics of a pedestrian

i is a function of all positions and possibly body orientations observed so far. We denote

the set of positions at time t by R(t) = (r1(t), . . . , rN (t)) and the shapes of the agents

by the set S, which might also be defined to include the infrastructure, e.g., walls.

Apart from interactions with the other pedestrians or the infrastructure, pedestrians have

certain goals they try to reach, typically represented by a desired velocity vdes,i which

might depend on time and space. Furthermore, there might be some unobserved internal

parameter ξi that, for example, varies between different runs of the same experiment.

It is possible to recast this functional dependence as a minimization, by designing a

suitable mathematical (cost-)function Ci [106, 178, 179]. We are therefore led to phrase

this functional dependence for each agent as,

v?i = arg min
v∈R2

Ci
[
v, {R(t′), t′ 6 t},S, ξi

]
, (5.1)

where v?i denotes the decision of agent i which serves as an input to a mechanical layer

which yields the actual velocity vi(t). Unfortunately, neither the cost function Ci nor the
hidden variables ξi are known.

Nevertheless generic perturbative expansions can provide a basis for the study of systems

near their critical states, for example by utilizing symmetries. In this context, we can

not rely on symmetry considerations, but the empirical classification of crowd regimes

presented in the previous chapter has proved the significance of the Intrusion and Avoid-

ance numbers. This justifies the assumption that the interactions between pedestrians

are predominantly influenced by Ini and Avi, simplifying the second part of Eq. (5.1)

to

v?i = arg min
v∈R2

Ci [v, Ini (ri(t) + δtv) ,Avi(v)] , (5.2)

where Avi is evaluated with the test velocity v and Ini at the associated position ri(t)+

δtv where δt is a time step. We have approximated the shapes S with discs.

The critical state is here represented by the non-interacting scenario (Ini,Avi = 0) in

which the agent freely pursues her goal. This goal is represented by the desired velocity

vdes,i, where without loss of generality we neglect temporal or spatial dependencies.

Hence, to leading order, Eq. (5.2) simplifies to

Ci(v) ≈ (vdes,i − v)2. (5.3)
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Expanding Eq. (5.2) around this reference situation, as detailed in the following section,

yields the Av ? In-model,

Ci [v, Ini (ri(t) + vδt) ,Avi(v)] ≈ [vdes,i − v + β∇Ini (ri(t))]
2 + αAvi(v), (5.4)

with α, β ≥ 0. We will refer to the case α = 0 as the In-model and β = 0 as the

Av-model. Here, we have neglected all mechanical interactions between the agents and

the actual velocity relaxes towards the optimum v?i over a relaxation time-scale τR.

Accordingly, the acceleration of agent i is given by ai = (v?i − vi) /τR.

It should be emphasized here that the purpose of these models is not to describe pedestri-

ans crowds in every conceivable situation. Rather the models should give some additional

insights into the relevance of the characteristic numbers introduced, especially through

their limitations. These limitations become conspicuous if we study the models in the

asymptotic regimes.

Furthermore, these models are closely related to models that have previously been in-

troduced to describe pedestrian crowds. In particular, the In-model resembles a simple

algebraic-force model and the Av-model is closely related to Velocity Obstacle models.

If we chose a different exponent in the definition of Ini or another neighborhood in Avi,
the perturbative expansion would have resulted in other well-known models. This will

be investigated in the subsequent chapter where we will gauge the range of applicability

of numerous models for pedestrian crowds.

In the following, we detail the perturbative expansion that gives rise to the proposed

In, Av and Av ? In-models. Furthermore, we will give some details regarding the

implementation. A reader more interested in the modelling results than in the details of

the perturbative expansion might move directly to section 5.2.

5.1.1 Generic cost function

We have argued that, the interactions of agent i are mainly controlled by Avi and Ini.
Accordingly we have approximated the way in which pedestrians choose their velocity as

v?i = arg min
v∈R2

Ci [v, Ini(r),Avi (v)] , (5.5)

where we shortened the dependencies Avi (v) = Avi (v,R(t),V(t)) and

Ini(r) = Ini (ri(t) + vδt,R(t)) this means that the TTC τij entering Avi are evalu-

ated using the current positions and velocities of all agents, except that agent i’s velocity

is substituted by v. Recall that v denotes the test-velocity and r = ri(t) + vδt the

associated test position.
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Expanding the cost-function of Eq. (5.5) to lowest order in Ini and Avi, notably, around
the non-interacting situation, yields

Ci [v, Ini (r) ,Avi (v)] ≈ C(0)
i (v) + aiAvi (v) + bi Ini (r) , (5.6)

where we have shortened the dependencies as above.

Taking advantage of the simple form of Eq. (5.5) and without any other major assumption

on the microscopic dynamics, we will show that expanding this equation naturally gives

rise to the asymptotic models.

5.1.2 Reference situation: The isolated agent

The reference situation is that of an isolated pedestrian, walking at her desired velocity

vdes,i where the positional or temporal dependence of the desired velocity is not explicitly

written. Specifically, in the absence of any interaction, Ini = 0 and Avi = 0, Eq. (5.5)

reduces to

v?i = arg min
v∈R2

Ci (v, 0, 0) , (5.7)

and its minimum should be reached for v?i = vdes,i. It follows that

0 = ∇v C(0)
i (v)

∣∣∣
v=vdes,i

, (5.8)

where ∇v = (∂/∂vxi , ∂/∂vyi), and the Hessian matrix M = ∂2C
(0)
i (v) /∂v2|v=vdes,i is

positive definite. We assume that deviations around the desired velocity are penalized

isotropically, in which case M is an identity matrix multiplied by a positive scalar γi.

Since the cost function can be arbitrarily rescaled, we set γi to unity without loss of

generality. Then, up to second order, the cost-function for an isolated pedestrian is

C(0)
i (v) = (vdes,i − v)2 . (5.9)

The cost increases as the squared Euclidean distance between the test velocity and the

desired velocity. In particular, deviations in the magnitude and the direction of the de-

sired velocity are equally penalized. While this is a common assumption in the literature,

this need not be exact in reality.
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5.1.3 The Av-model

Now, let us introduce a perturbation to the non-interacting system by allowing Avi 6= 0,

while keeping Ini = 0. For instance, let us consider two joggers who are still well sepa-

rated but face an anticipated collision. In this case, the cost function can be expanded

into

Ci [v, 0,Avi (v)] ≈ (vdes,i − v)2 + αiAvi (v) . (5.10)

Here, we introduced αi := (∂Ci/∂Avi)Avi=0, which is non-negative because pedestrians

avoid collisions. Complemented with a relaxation process we recover the proposed Av-
model.

It is worth underlining, that this expansion is an expansion in Avi and thus irrespective

on the precise dependence of Avi on the TTC. For instance, there is no obvious reason

why the exponent in the definition of Avi should be unity in which case the Av-model

shares the same dependence on the TTC as the RVO model [125]. However, setting it

to two aligns more closely with the empirical analysis presented in [82]. Qualitatively,

Av-models derived with different exponents will exhibit similar behavior, but the extent

to which agents anticipate collisions and deviate from their straight paths will differ.

5.1.4 The In-model

Now, we assume Ini 6= 0 while Avi = 0, for example in a moderately dense, static crowd

as in the Waiting scenario. In this case, Eq. (5.6) simplifies to,

Ci [v, Ini (r)] ≈ (vdes,i − v)2 + β̃i Ini (r) , (5.11)

where β̃i := (∂Ci/∂Ini)Ini=0. This function is extremal for v = v?i , which implies that

0 = ∇v (vdes,i − v)2
∣∣
v=v?i

+ β̃i∇vIni (r)
∣∣
r=ri(t)+v?i δt

. (5.12)

Therefore, by substitution,

0 = −2 (vdes,i − v?i ) + βiδt∇rIni (r)
∣∣
r=ri(t)+v?i δt

, (5.13)

where ∇r = (∂/∂x, ∂/∂y), if r = (x, y). For sufficiently small δt, one can assume

r ≈ ri(t) and subsequently obtain

v?i = vdes,i − βi∇rIni (ri(t)) , (5.14)
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where βi := β̃iδt/2. Combined with a relaxation time-scale, Eq. (5.14) is the proposed

In-model.

To improve our understanding of the In-model, let us rewrite Eq. (5.14) by inserting the

definition of Ini and the relaxation time-scale explicitly

ai =
vdes,i − vi

τR
−Ai

∑
j∈Ni

(
1

rij − `

)3

eij , (5.15)

where Ai = βi(rsoc−`)2/2τR and eij the vector pointing from i to j. Now it is easy to see

that Eq. (5.15) resembles a simple algebraic force model. As discussed above, for the Av-
model, a different choice for the exact definition of Ini would lead to a slightly different

distance based model. For example in the case of an exponential in the definition of

the In-number the simplest Social-Force model would be recovered. Besides, Eq. (5.11)

could also be used directly and, on the other hand, one might also obtain a gradient-based

Av-model by a similar procedure as specified here.

5.1.5 The Av ? In-model

Let us now turn to the general case Avi 6= 0 and Ini 6= 0. Combining the expansions

of Eqs. (5.10) and (5.11), and expressing the extremal condition for v?i in Eq. (5.5), we

arrive at

Ci [v, Ini (r) ,Avi (v)] = (vdes,i − v)2 + β̃i Ini (r)︸ ︷︷ ︸
C(In)
i

+ αiAvi (v) . (5.16)

Given that Avi 6= 0, the solution v
(In)
i := vdes,i−βi∇rIni (ri(t)) minimizes C(In)

i (or, in

other words, the In-model), to leading order, C(In)
i is well approximated by the parabola

C(In)
i ≈ [vdes,i − βi∇rIni (ri(t))− v]2 . (5.17)

It follows that

Ci [v, Ini (r) ,Avi (v)] ≈ [vdes,i − βi∇rIni (ri(t))− v]2 + αiAvi (v) , (5.18)

which is the cost function of the Av ? In-model.

This corresponds to applying the In-model first and then inserting the result as the

optimization goal into the Av-model in each time-step.
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5.1.6 Implementation

The Av, In, and Av ? In-models have been implemented in Julia1. The corresponding

code is available at [180].

A simple first-order Euler scheme with an explicit time-step (δt = 0.01s) was used to solve

the differential equations. The optimization problem was solved by a random sampling

algorithm, taking 3000 samples each time-step. If not specified differently, we used

uniform and constant model parameters: α = 1.5 m2/s2, β = 0.02 m2/s, vdes = 1.4 m/s,

and τR = 0.1 s. Speeds were capped at vmax = 1.7 m/s. Agents are modeled as hard

disks of diameter `min = 0.2 m. Nevertheless, to account for the fact that people shun

collisions not only between their hard cores, but also between their private spaces, the

diameter was increased to `soc = 0.4 m for the computation of Avi. Also note that a

small scalar ε > 0 is subtracted from Inij in Eq. (4.2) to make Ini continuous across

the cut-off distance.

In some scenarios, walls and obstacles exist. These have been implemented as nu-

merous small (` = 0.1m) circular, nonmotile ‘agents’ where it is not distinguished be-

tween a social-size and an incompressible size. Furthermore, the value of β is reduced

(βGeometry = 0.002m2/s), which is related to the fact that numerous small obstacles,

combined with superposition of intrusive interactions, can lead to excessive repulsion of

the geometry. Apart from that obstacles are treated equivalently as actual agents. This

has the advantage that no additional interactions need to be introduced.

Let us now test this perturbative expansion in the different regimes which have been

delineated in the previous chapter. The dynamics of all scenarios are shown in the

supplemental video, which has also been uploaded at https://youtu.be/E8NvgRLPvLg.

5.2 Waiting Scenario

Let us start testing our models. Probably the simplest regime (apart from the non-

interacting case) is a regime of low Av and moderate In-number. To find a suitable

scenario, let us recall the ‘phase’ diagram introduced in the previous chapter: in Fig. 5.1

we see that the waiting scenario is conspicuous of this regime. It will therefore serve as

an exemplary case in the following. According to the perturbative expansion, we expect

the In-model as well as the Av ?In-model to describe the scenario reasonably well. The

Av-model, on the other hand, should not be applicable to the regime under study.
1https://julialang.org/

https://youtu.be/E8NvgRLPvLg
https://julialang.org/
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Figure 5.1: Location of the Waiting scenario in the ‘phase’ diagram. The experimental
run analyzed in this section is highlighted by a red cross.

The experiment begins as soon as the crowd enters the rectangular measurement area

through four door-ways. After some time, the crowd seems to reach a steady-state in

which the available space is more or less evenly occupied, as depicted in the exemplary

snapshot in Fig. 5.2 (a). We will focus on this static part of the experiment. In the

simulations, in order to avoid the complex inflow process, we initially assign random

positions to the agents within the rectangle, set vdes,i = 0, and let the system equilibrate.

In the In-model, the agents make use of the available space to keep social distances

to each other. Similarly to the experiments, the crowd self-organizes into a spatially

homogeneous state, cf. Fig. 5.2 (b). This is reflected in comparable averaged In numbers:

In = 16 for the experiments vs. 14 with the In-model. The In-model can reproduce the

basic features of the scenario. Consequently, in Fig. 5.1 the waiting scenario simulated

by the In-model would be located at almost the same position as the actual experiment.

The central role of In is also readily understood in the case of a waiting line, where

people halt to preserve each other’s personal space.

By contrast, the Av-model fails to capture these features: the system remains frozen in

its initial state as no collision is expected. An example is shown in Fig. 5.2 (c) where the

agents are very densely packed in one part of the system, whereas the rest of the space

is left completely empty. In this model there is no mechanism which makes the agents

avoid each others personal or private space. Accordingly, the averaged In number would
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(a) Experiment (b) In-model (c) Av-model (d) Av ? In-model

Figure 5.2: Snapshots of the waiting scenario.

be way higher than the one observed in the experiments and the position of the waiting

scenario in the (Av, In)-plane would be strongly altered.

In Fig. 5.2 (d), a snapshot of the waiting scenario simulated by Av ? In-model is shown.

As expected there is no substantial difference between the results of the In-model and

the Av ? In-model.

Of course, in the experiment the spatial homogenization is less perfect than in the In-
model (or the Av ? In-model) which is reflected in the larger In-number found for the

former. This could be related to multiple, more complex (‘second-order’) effects. People

not only shun intrusions into the personal space but also extrusions out of the personal

space can arouse discomfort [107]. Specifically people that want to talk to each other

prefer to stay close to each other, as it can be spotted in the videos. Furthermore, it has

been observed that minor violations of the personal space do not trigger a compensation

in terms of adjusting the position [107] - such a mechanism is lacking in our model where

it would translate into something similar as a slow-to-start rule which is often included

into models for vehicular traffic [29]. Note that we have neglected the boundary of the

experiment as pedestrians prefer to stay there because they can lean onto the crowd-

control barrier. Similar preferential areas are known to lead to strongly pronounced

inhomogeneities in the distribution of the crowd over the available space [181].

In summary, we have shown that the In-model can describe the basic features of the

waiting scenario whereas the Av-model fails to do so. These observations align with the

perturbative expansion by means of which we derived the models. Let us now turn to the

‘opposite’ regime by departing from the origin along the Av-axis instead of the In-axis.

5.3 Cross Flow

So let us return to the ‘phase’ diagram in Fig. 5.3. The sparse CrossFlow seems to

be suited best to test our models in the regime of low In-number and non-zero Av-
number because in contrast to the Outdoor scenario the boundary conditions are much
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Figure 5.3: Location of the Cross scenario in the ‘phase’ diagram. The experimental
run analyzed in this section is highlighted by a red cross.

less complicated and in contrast to the Antipodal scenario we can analyze a ‘steady-state’

instead of only the beginning of an experiment, cf. Section 4.2.1.2.

This time, the basic features of the sparse CrossFlow, notably successful collision avoid-

ance, are well replicated by the Av-model. The agents approach the centre of the crossing

from all four entrances and often face a collision conflict in the centre. Due to the antic-

ipative nature the agents in the Av-model successfully avoid each other and continue to

walk towards their goal. This is testified by similar values of the dimensionless numbers

if compared to the experiments, i.e. Av = 1.8 and In = 1.2 for the experiment and

Av = 1.1 and In = 2.9 in the Av-model.

In contrast to this, in the In-model the agents bump into each other. They are unable

to maintain reasonable spacings (in TTC or in real space) to each other. This is reflected

in the values of the dimensionless numbers which do not match the experimental results,

i.e. Av = 1.8 and In = 1.2 for the experiment and Av = 1.1 and In = 5.3 in the

In-model.

As expected, the results of the Av ? In-model are similar to those of the Av-model in

this case, i.e. Av = 1.0 and In = 2.2. From the viewpoint of the perturbative analysis

it is reasonable that the Av ? In-model slightly outperforms the model solely based on

the Av-number as the In-number of this scenario is low but not strictly zero.

As we will discuss below in more detail the mismatch between the model and the exper-

iment can partly be traced back to the fact that only hard-core collisions are included in

our model - to which an alternative has been proposed in [182]. Apart from that there

seems to be a tendency to underestimate the Avoidance number in simulations which
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Figure 5.4: Phase space trajectory for the sparse CrossFlow. The arrows in the
In − Av plot are spaced by 1s. In the simulation the temporal values of Av and
In are averaged over multiple realizations with random initial conditions. Exemplary

snapshots of the sparse CrossFlow scenario are shown below.

could be related to the strong influence of the swaying of the participants’ heads on the

empirical Avoidance number as discussed already in section 4.2.1.4.

Finally, we can also look a bit closer at the sparse CrossFlow, namely the temporal

evolution of the experiment as it is experienced by each agent. Agent i enters the scene

at t0,i, we denote the individual time-series of the avoidance and intrusion variable by

Avi(t) and Ini(t). Subsequently, to obtain an averaged ‘individual’ time-series as

〈Avi〉(t) =
1

N(t)

N∑
i=1

Avi(t− t0,i), (5.19)

and analogously for 〈Ini〉(t) and vary t from 0 to the mean time an agent spends in the

scene. The corresponding time-evolution of Av and In is shown in Fig. 5.4.

The pedestrian enters the scene in A, where she is well separated from others and ac-

cordingly the value of In is relatively low. As other pedestrians are also approaching

the centre of the crossing the value of Av on the other hand is maximal. In B, the two
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Figure 5.5: Location of the Bidirectional scenario in the ‘phase’ diagram. The red
cross denotes the averaged value of the similar experimental runs analyzed in this
section. The deviation from between the cross and the blue roms stems from the fact
that the former is averaged over the whole run wheras the latter over the part before

lanes have formed.

pedestrians have solved the anticipated collision already which results in a low Av num-

ber. Now, however, they are proxemically close to each other and accordingly In reaches

its maximum. Finally in C, the two agents have passed each other and both In and

Av are low, the pedestrians can freely approach their goal. The picture discussed above

for the averaged value of Av and In is confirmed here: the In-model fails to capture

the observed behaviour. The Av-model and the Av ? In-model qualitatively reproduce

the empirical curve where the latter is slightly closer to the observed trajectory in the

(Av, In)-plane.

Let us wrap up: the perturbative expansion works as expected in the asymptotic regimes,

in both along the In-axis as well as along the Av axis. In these asymptotic regimes the

Av ?In-model has not been ‘needed’. However, the deficiency of models premised solely

on In or Av becomes manifest in scenarios which are not confined to the vicinity of the

axes of the (Av, In) plane. An example of which will be discussed next.

5.4 Bidirectional Flow

Let us therefore pay attention to the temporal evolution of a bidirectional flow for which

the average value of Av and In is located right in the centre of our ‘phase’ diagram in

Fig. 5.5.
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Figure 5.6: Phase space trajectory during and after the formation of lanes using
empirical results [18] and simulations of the proposed models. The arrows in the In−Av
plot are spaced by 2.5 s. The temporal values of Av and In are averaged over multiple
realizations of the experiment as well as the simulations, with random initial conditions.

We will focus on the temporal evolution of the Av and In number to calculate a phase

space trajectory. In contrast to the procedure specified above, we average over pedes-

trians (Av(t) = 1/N(t)
∑

iAvi(t), and analogously for In) and over multiple similar

realizations. For input we will use the experimental data of [18].

The process of lane formation and then disappearance of the lanes after the two groups

have passed each other entails a loop in the phase space, as represented in Fig. 5.6.

Shortly after pedestrians enter the measurement area, in A, the limited space for each

crowd leads to moderate values of In, but Av gets relatively high as the groups are

walking towards each other. In B, they have formed lanes which reduces Av. The intru-
sion In, on the other hand, is large because the limited space is now occupied by both

groups. Finally, in C, the crowds have passed each other (low Av) and the pedestrians

make use of the available space by dissolving the lanes (moderate In), marking a return

to the origin.

Even though all models reproduce the formation of lanes, only the Av ? In-model pro-

duces a loop comparable to the empirical one. In the In-model the agents can not

anticipate the impending collisions and start interacting just before bumping into each

other which leads to high Av numbers or stated differently small distances in TTC-space.

This anticipative behaviour is well captured by the Av-model which, accordingly, repro-

duces the Av-number much closer. It, however, fails to ensure sufficient space between
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Figure 5.7: On the left, a snapshots from the Jülich experiment where two assistants
dressed up as paramedics cross a static crowd. On the right, the displacement field of

the surrounding pedestrians for a run at lower density.

people when lanes have formed, leading to very high In values. Moreover, the lanes do

not dissolve even after the two groups have passed each other!

Let us now turn towards another scenario that is located even further away from the

origin of the ‘phase’ diagram, namely the intruder scenario. We will study it in greater

detail as it will allow both a further understanding of the fundamental differences between

the Av and the In-model and it will point to limitations of the approach put forward

here.

5.5 The Intruder Scenario

The intruder experiment originates in the study of granular materials, where an object

(the intruder), is injected into a granular medium to study its response to this pertur-

bation [183]. It has been introduced to the study of pedestrians too, where it refers

to a static crowd, like in the Waiting scenario, which is additionally transversed by an

intruder [79]. The intruder might be another pedestrian, paramedics as in the snapshot

in Fig. 5.7, an ambulance [184], or as in the laboratory setting studied here, a circular

obstacle that is moved through the crowd [79].

While the static crowd all alone is located in a regime of low Av-number, the traversing

intruder leads to anticipated collisions and consequently a strongly increased Av number.

The data obtained in [79], in the dense condition, are therefore located almost in the

top-right corner of the ‘phase’ diagram in Fig. 5.8.

Let us start by quickly summarizing the main results obtained by [79] which elucidated

differences and similarities between crowds and granular matter. Then we will apply

the perturbative models to this scenario. We will see that the In-based interaction
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Figure 5.8: Relative position of the Intruder scenario in the ‘phase’ diagram.

resembles a passive granular behaviour wheras Av-based interaction - at least in some

conditions - is able to explain the anticipative nature of human interactions which were

experimentally found here. Besides, the intruder scenario confirms the importance of

anticipation in regimes far away from the origin of our ‘phase’ diagram. But it also

points to more complex types of anticipation encountered in crowds than those captured

by the Av-number so far.

5.5.1 Empirical Results

The main results from the intruder scenario are shown in Fig. 5.9. In the top row we see

the density profiles and in the bottom row we see the corresponding displacement fields for

different experimental conditions. The fields were averaged over time and over multiple

experimental runs. We are operating in the intruder’s frame of reference regarding the

positions, i.e. the intruder is always placed at the origin represented by a blue disc.

The densities are calculated with Voronoi diagrams [40]. The velocities are calculated in

the laboratory frame of reference as the distance travelled over time. Subsequently the

displacement field has been obtained by smoothing over truncated Gaussian kernels. For

a more detailed description of the methods refer to [79].

In the leftmost column, Fig. 5.9 (a) and (d), all participants face the intruder. In the

density-field, we see a depleted area in front and in the back of the intruder. At each side

of the intruder, ‘wings’ of increased density emerge. This matches with the transversal

arrows in front of the intruder in the displacement field. The participants are aware of

the approaching intruder, anticipate an impending collision, and, accordingly, step to

the side to avoid the collision. In the back of the intruder the arrows point towards
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Figure 5.9: Empirical results for the intruder experiment for the dense condition
where ρ ≈ 3/m2. In the top row the density profiles are shown and in the bottom row
the displacement fields. Each column corresponds to a different experimental condition.

The figure was taken from [79].

the depleted area as people step into the free space the intruder leaves behind. This

behaviour is observed for different densities and experimental conditions [79]. It can also

be seen in Fig. 5.7, which originates in different experiments and has been observed in

the footage of an ambulance crossing a demonstration [184].

In comparison to granular matter, we can observe similarities and differences. Granular

matter and crowds are both dissipative, which leads to a quick decay of the intruders’

influence: even though the crowd is quite dense the perturbation of the intruder decays

quickly. This stands in contrast to a liquid, where perturbations are typically long-

ranged. On the other hand, in contrast to granular matter, humans are able to self-

propel and to anticipate. They react in advance to the approaching intruder. They

can anticipate that the impending conflict is simply solved by stepping to the side. In

granular matter, the intruder pushes the medium through mechanical interaction forces

which leads to a radial displacement field in front of the intruder Fig. 5.10 [183].

By changing the initial conditions of the experiment, namely the orientation of the partic-

ipants or the instructions given to them, the authors of [79] were trying to suppress antic-

ipation in the crowd. Instructing the participants ‘not to anticipate’ led to an increased

density in front of the intruder. The transversal, anticipative motion is, however, still

present in the displacement field, cf. middle column of Fig. 5.9. A more extreme initial
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Figure 5.10: Empirical displacement field of granular matter around a circular in-
truder. The figure was taken from [183].

condition in which all participants turn their back to the intruder successfully suppressed

the anticipative behaviour: the density in front of the intruder is strongly increased and

the displacement field resembles the radial interaction conspicuous of granular matter.

Let us now try to replicate these features in our models. To this end we initially distribute

the agents randomly in the system and let the crowd equilibrate for some time. Then

an intruder (`min = 0.6m, `soc = 0.8m) transverses the crowd at velocity 0.4m/s. For

the pedestrians, we use the same parameters as reported above (apart from the social

radius which we reduce to a more suitable value for larger densities, rsoc = 0.5m). We

set vdes,i = 0 as in the waiting scenario. While the experiments were specifically focused

on high density conditions we will look at sparse systems as well. Because we want to

see how the perturbative models break down the further away we move from the origin

of our phase diagram. The dynamics of all models for the different conditions of the

intruder scenario are shown in the additional supplemental video which has also been

uploaded at https://youtu.be/14bzj2gZKlY.

5.5.2 Results of the In-model

In Fig. 5.11 the results of the In-model are shown for three different densities. All density

profiles show an increased density directly in front of the intruder whereas the area in the

back is depleted. The displacement fields show a radial repulsion at all densities in front

of the intruder. Furthermore, apart from the lowest density, the agents move into the

depleted area in the vicinity of the intruder. As for the lowest density the overall density

seems to be so small that the agents do not feel the need to increase their distances to

the rest of the crowd and are thus hardly repelled into the (only slightly) depleted area.

https://youtu.be/14bzj2gZKlY
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(a) ρ = 1/m2 (b) ρ = 2/m2 (c) ρ = 3/m2

Figure 5.11: The density profiles and displacement fields for the In-model for three
different densities. The profiles are obtained by averaging over multiple realizations of

the same experiments with randomized initial conditions.

The In-model quite closely resembles the experimental condition where the participants

turn their back to the intruder which was found to be conspicuous of passive granular

behaviour. The anticipative nature of human behaviour is however not captured in this

model - let us therefore move towards the Av-model.

5.5.3 Results of the Av-model

As we have seen in the simulation of the waiting scenario, the Av model will not alter

the initial distribution. It will not equilibrate into a more or less spatially homogeneous

state but remains frozen in the initial condition. To nonetheless allow a study of the

intruder scenario, we chose a semi-homogeneous initial condition where agents are ran-

domly placed into the system but if the distance to any other agent is below 1/
√
ρ − ε

a new position is drawn until this condition is met. For ε = 0, this would result in a

perfectly homogeneous initial condition. We chose ε = 0.2m for this semi-homogeneous

initial condition.

The density profiles and displacement fields for the Av-model are shown in Fig. 5.12.

In the density profiles, the area in front and in the back of the intruder is depleted.

Characteristic wings emerge on both sides of the intruder. Regarding the density field

the experimental findings are matched, at least qualitatively. As for the displacement
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(a) ρ = 1/m2 (b) ρ = 2/m2 (c) ρ = 3/m2

Figure 5.12: The density profiles and displacement fields for the Av-model for three
different densities. The profiles are obtained by averaging over multiple realizations of

the same experiments with randomized initial conditions.

fields, if we look at the lowest density we clearly observe transverse motion, i.e., the

agents move to the side to avoid the approaching intruder. Thereby the anticipated

collision is dissolved and the agents can come to a halt quickly. At higher densities,

however, the behaviour seems to change: the arrows point in the radial direction similar

as in the In-model. The resemblance of the density profiles in the intruder scenario by a

TTC (and thus Av-based model) was already reported by [185] where it was found that

the model did not capture the transverse motion. The authors, however, did not study

the scenario for sparse crowds.

This break down of the anticipative behaviour in terms of the displacement fields can

be understood as follows: in principle, the agents want to step to the sides. However, as

the scene gets more and more crowded it becomes more difficult for the agents to find a

gap they can move into, specifically towards the sides where ‘wings’ of increased density

emerge. In the depleted area in front of the intruder the agents can avoid a collision with

the intruder - however only at cost of a constant motion. The agents get ‘trapped’ and

continue to move in the same direction as the intruder. This can be very well seen in

the supplemented videos. In reality this is not the case, the pedestrians make room for

each other and find gaps to squeeze into.

Let us look at the back of the intruder. Here, no motion is triggered at all and the
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(a) ρ = 1/m2 (b) ρ = 2/m2 (c) ρ = 3/m2

Figure 5.13: The density profiles and displacement fields for the Av ? In-model for
three different densities. The profiles are obtained by averaging over multiple realiza-

tions of the same experiments with randomized initial conditions.

intruder leaves a totally depleted area behind. Even though the formation of gaps after

the transversal of a pedestrian has been reported [186], it is unrealistic at densities

between 2/m2 and 3/m2. This is related to the incapability of the Av-model to replicate

the waiting scenario, cf. section 5.2: the agents see no reason to move into this depleted

area because no collisions are impending. As we have seen above, the behaviour in the

back of the intruder is well replicated by the In-model. Thus, we can follow that it

needs both Av and In to replicate the basic features of the intruder scenario, which is of

course indicated already by its positioning in the ‘phase’ diagram. Accordingly, we will

study the Av ? In-model next.

5.5.4 Results of the Av ? In-model

The results of the Av ? In-model are shown in Fig. 5.13. Similarly as in the Av-model

the density profiles resemble the experimental results well. As for the displacement fields

depicted in the row below, we can partially see the expected transversal motion in front

and in the back of the intruder. If the density is increased, the transversal behaviour is

maintained a little longer than in the Av-model, specifically if we compare the results

for ρ = 2/m2. This behaviour is completely lost for the density ρ = 3/m2, notably the

density for which the described features are strongly pronounced in the experiments.
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5.5.5 Conclusions

The distance based In-related interaction leads to a radial repulsion which is conspic-

uous of passive granular matter - or pedestrians whose ability to anticipate is strongly

hindered. However, this is only relevant for the behaviour in front of the intruder. In

the back of the intruder, the empirical behaviour is can be explained by a distance-based

intrusive interaction.

TheAv-model shows the ability to capture the transversal motion in front of the intruder.

This, however, breaks down as soon as the density is becoming larger. While the Av?In-
model combines these two essential mechanisms it only pushes the density at which the

observed behaviour is lost a bit further to larger densities. At large densities (ρ = 3/m2)

which have been the main focus of the experiments the models can not replicate the

findings.

This points to at least two problems in our models. We have approximated the shapes S
with discs which of course is not true for pedestrians. The circular shape makes it much

more difficult for the agents to find a suitable gap to squeeze into. More importantly,

the TTC and thus the Av number has been derived under the assumption of constant

velocities. It seems that more complex anticipation strategies are needed here. Specif-

ically, the agents in front of the intruder can not anticipate that they will stop after

moving to the side - instead they assume constant motion in this direction. This leads

to a lot of anticipated collisions which humans rightfully do not take into consideration.

Moreover, an actual pedestrian in front of the intruder can anticipate that the others

will make room for her as soon as she tries to move to either one of the sides. This is

not included in our models. Both of these limitations are related to the assumption of

constant velocities.

These more complex types of anticipation have been incorporated into crowds models

by game theorazical considerations. This has lead to a successful replication of the

intruder scenario [185]. The corresponding model is, however, quite different than most

agent-based models, very difficult to solve, and has not yet been applied to less specific

scenarios. Another approach originates in the navigation of robots where accelerations

can be included in the anticipation [187]. In a similar approach we will try to bridge

the gap between operational and tactical level by including a more complex planning in

a pedestrian model in Appendix D. These complex anticipation strategies, are crucuial

in other scenarios as well, for instance corner flows which are inherently ‘non-linear’.

Related to the assumption of constant velocities, in all approaches specified above the

future costs are taken into consideration in much greater detail as in any of the agent

based models typically encountered in pedestrian dynamics. It remains to be seen if
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there is another way of including such complex anticipation strategies in the TTC which

would allow to keep the corresponding model much simpler.

Nonetheless, we have further identified fundamental differences between the interaction

types that arise from the Av and the In-number which have both proven to be essential

in different regimes of pedestrian motion. Let us therefore now introduce the concept

of field-lines to pedestrian dynamics. This will allow us to directly visualize interactions

in models in a similar way as one would visualize the field-lines of a magnet. This will

prove especially useful in the next chapter where we will study the implications of our

results for numerous existing pedestrian models.

5.5.6 Pedestrian Field-Lines

In physics, the repulsion or attraction that, for example, a specifically shaped magnet

would have on a test sample, is usually visualized by field-lines. In Fig. 5.14 three

exemplary representations of field-lines are shown for an axially magnetized ring-magnet.

The magnetic field can be visualized experimentally for example using iron filings that

arrange themselves according to the magnetic field, cf. the left of Fig. 5.14. Note that,

even though this is the typical experiment to visualize magnetic fields, the obtained

picture is not equivalent to the field-lines because the iron filings themselves have a

non-negligible effect on the magnetic field.

Strictly spoken field-lines are, thus, rather mathematical objects. They are derived by

integrating a vector field along its direction starting from some set of initial positions.

More specifically, after choosing some initial position x0 the next positions are calculated

recursively as

xi+1 = xi +
F (xi)

|F (xi)|
ds, (5.20)

where F (x) denotes some vector-field and ds an increment along which we integrate. In

the middle of Fig. 5.14, a set of starting positions on the surface of the ring-magnet are

chosen which are then integrated until the opposite pole of the magnet is reached.

An alternative representation is shown on right of Fig. 5.14, where a fixed grid of initial

positions is chosen and each of these is just integrated once. Figuratively this can be

imagined as placing a compass-needle at each initial position. The direction of the needle

represents the field-line. The concept of field-lines is not limited to magnets. For example

in Fluid Dynamics, stream-lines, i.e. the velocity-field, display the direction and velocity

of the flow.
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Figure 5.14: Three different representations of the field of an axially magnetized
ringmagnet (shown in profile). On the left a schematic illustration of an experimentally
visualized for example using iron filing on paper. In the middle typical field-lines with
initial positions located on the surface of the magnet. On the right a regular grid of
initial positions is chosen at which the direction of the field is shown by a compass

needle. The picture is taken from Wikipedia Commons.

Let us employ the concept of field-lines to models for pedestrian dynamics. To this end,

recall the definition of our model. More specifically, we have defined v?i as the decision of

agent i. As we have disregarded any mechanical interactions all interactions are inhibited

in this vector field. In the presence of another agent j, v?i depends on the relative position

∆xij and on the relative velocity ∆vij .

In the following, we want to vary the position of agent i relative to agent j. Therefore we

will again operate in the reference frame of agent j which corresponds to placing agent

j at the origin. Furthermore, we fix the relative velocity as ∆vij = (−1, 0)m/s. The

remaining parameters are chosen as in the rest of the chapter. We can now, starting

from an initial position x0, calculate the field-lines according to

xi+1 = xi + v? (xi,∆vij) δt, (5.21)

where we have introduced a small time-step δt.

We choose a regular grid of initial positions and integrate only once at each position.

Furthermore, as in the intruder experiment, we choose vdes,i = 0. The results for the

three perturbative models are shown in Fig. 5.15.

As one can see for the In-model in Fig. 5.15 (a), the interaction is a simple isotropic

radial interaction force, similar to radial repulsion in many systems in classical physics.

The interaction strength in independent of the relative velocity. This indicates why

the In-model leads to a spatial homogenization in the waiting scenario, a reasonable

distancing in the bidirectional flow within each lane, and a realistic behaviour in the

vicinity of the intruder. On the other hand, if we recall the example of the two joggers

approaching each other, it is apparent that this short-ranged interaction is not capable
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(a) In-model (b) Av-model (c) Av ? In-model

Figure 5.15: Field-lines of the perturbative Models with a regular grid of test-positions
and vdes,i = 0. The blue arrows correspond to the chosen velocity v? and red arrow
is a legend representing a velocity of 1.5m/s. In (b) and (c) a slightly finer grid was

chosen.

to describe the long-ranged interaction that would be present in such a case. Besides, if

we compare the results to the displacement field obtained above we can already see that

the In-model can not reproduce the transversal movement observed in that case.2

In the middle, Fig. 5.15 (b), the field-lines of the Av-model are shown. An interaction

is only present if a collision is impending, accordingly most positions have no arrow

assigned to them. If we chose ∆vij = 0 the interaction would have been zero everywhere.

Similarly no matter how close we chose the test-position to agent j to the sides or the

back no interaction is present. This reflects the fact that the Av-model is incapable

to maintain realistic Euclidean spacings between agents, e.g., it can not explain the

behaviour observed in the back of the intruder. In front of agent j, however, a long-

ranged and transversal motion is present. Consequently, the model is able to solve

collision conflicts and shows the transversal motion observed in the intruder scenario, at

least for sparse settings.

At last, in Fig. 5.15, the field-lines of the Av ? In-model are shown. They resemble a

superposition of the In and the Av-model as it has been defined.

Of course, as for the magnet, we could have chosen another representation of the field-

lines. In Fig. 5.16 we have chosen initial positions along the line parallel to the y-axis

at x = −2m, set vdes,i = (1, 0)m/s and integrated many steps. Here we can see the

difficulties of the In-model to solve the collision conflict. Apart from this we see that

in the Av-model only the hard-core repulsion is present which leads to a very close

avoidance in which the agents i and j almost touch. On the right, the superposition

seems to lead to unrealistic behaviour in terms of another repulsion after the two have

already passed.
2The main difference between the displacement-field and the field-lines is that in the latter no infor-

mation is included whether an agent would actually end-up at a certain position as we have chosen this
grid of initial positions. Furthermore inertia-effects are disregarded in the field-lines.
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(a) In-model (b) Av-model (c) Av ? In-model

Figure 5.16: Alternative representation of the field-lines of the perturbative Models
with vdes,i = (1, 0)m/s. The initial positions resemble a line parallel to the y-axis

located at x = −2m.

In the following chapter we will, however, stick to the former representation as it focuses

only on the interaction instead of the desire to move. This allows us to draw some

conclusions regarding the applicability of the models in different regimes. Moreover the

representation in Fig. 5.16 is slightly misleading as these paths are not actual paths

agents would take in the model. Specifically, the interaction would strongly be changed

as soon as agent i changes its velocity in the next time-step whereas here we assumed

that ∆vij remains constant during the procedure specified by Eq. (5.21).

5.6 Summary

In this chapter, we have rationalized the empirical classification of crowds by performing

a perturbative analysis. This way we have obtained three models, the In-model closely

related to an algebraic force model, the Av-model related to a velocity obstacle model,

and the Av ? In-model a combination of both. We have verified that, as expected from

the perturbative expansion, the Av-model is applicable in regimes of low In-number, and

the In-model is applicable in regimes of low Av-number. If we leave the close vicinity

of either one of the axis both Av and In are needed to reproduce the basic features.

Consequently, only the Av ? In-model is applicable here.

To compare the results of our models with the empirical findings we extended the analysis

of the previous chapter by studying the temporal evolution of In and Av. Similarly to

the crosscorrelation between In and Av, these phase-space trajectories seem to show a

typical shape, where large Av numbers lead to an increased In number at a later time.

Investigating these typical trajectories in the (In,Av)-plane in more detail or identifying

further ‘shapes’ could deepen our understanding of the different regimes.
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(a) In-model (b) Av-model (c) Av ? In-model

Figure 5.17: Range of applicability of the Perturbative models. The three colors
indicate whether a the corresponding model can be applied in the regime. Specifically,
green means that the model can be applied, yellow means caution is needed if the model
is applied, and red means that the model can not be applied in the corresponding regime.

Finally we have studied the intruder scenario at high density which can not be fully

replicated by our perturbative models. This appears sensible, given that it is located

almost at the top right corner, far away from the origin, of our ‘phase’ diagram. But

it also points to more specific limitations of the Av-number, namely the assumption of

constant velocities in the definition of the TTC.

However, at lower densities, the Av ? In-model can replicate both essential behaviours

observed here: transversal motion in front of the intruder and closing the gap behind

the intruder. These behaviours can be identified with two distinct types of interaction,

transversal avoidance which originates in the Av-part of the model and an intrusive

radial interaction related to the In-part of the model. In order to visualize these types of

interactions, we have introduced field-lines. The field-lines seem to be a good indicator of

range of applicability of the models studied here. We can qualitatively guess (or rule out)

in which regimes a model is applicable by studying the field-lines instead of implementing

and simulating the model in various scenarios, as it was done for the perturbative models

in this chapter. This simplicity will prove be very useful when approaching the zoo of

pedestrian models in the next chapter.

Finally, to visualize the range of applicability, let us introduce a ‘traffic-light’ system. For

our perturbative models, it is depicted in Fig. 5.17. The three colors indicate whether

the corresponding model can be applied in the regime. Specifically, green means that

the model can be applied, yellow means caution is needed if the model is applied, and

red means that the model can not be applied in the corresponding regime. We have

set these colors according to the simulations performed in this chapter. Note that, we

have colored the In-model as yellow in regimes with low Av-number. This is justified by

observations from the first chapter, where we found that a force-based model, such as the

In-model, can not replicate the fundamental diagram without any further assumptions.
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This incapability to reproduce the fundamental diagram points towards limitation of our

work, which will be discussed in the last chapter.



Chapter 6

Classification and Validation of

Models

While in the previous chapter the focus was put on the asymptotic In and Av-models,

the discussion has bearing on the broader category of agent-based models: their equations

of motion often hinge on variants of either the Ini variable or the Avi variable, thereby
limiting their range of applicability to the associated regime.

Therefore, in this chapter, we want to extend this discussion to the large zoo of models

for pedestrian crowds. Since the first agent-based models for pedestrian crowds have

been proposed in the 70s [14], its number has been growing steadily [24–27]. Often

modelers realize that an existing model can not be applied to a certain scenario and, thus,

propose an new model or a slightly altered extension. This leads to numerous models and

extensions or different versions of these. To help sort out this mess, several classifications

of pedestrian models exist. These mainly focus on the mathematical properties, for

example, continuous vs. discrete models or first vs. second order models [29]. While

this is an important step to get some idea of the variety of models and to emphasize

their structural differences, it usually contains little information about the ability of the

corresponding models to reproduce certain aspects of pedestrian dynamics.

On the other hand, different approaches exist to validate models of pedestrian crowds.

These try to gauge whether certain models are better than others, for example, by

designing numerous test-cases which generally have to be met [23, 76] or by assigning

a general score to each model [77, 78]. While this approach might be helpful for the

practical use of pedestrian models in the planning of real scenarios, it fails to capture

the context dependency of different models. For example, a certain model that can

only describe one specific regime but fails in describing another, might still be a very

good model - as long as the modeller is aware of its limited range of applicability. This

105
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is actually almost a platitude which is, however, often forgotten: a complete model

definition includes an associated range of applicability.

We propose a scheme which is much more similar to the situation typically encountered

in physics. For example in fluid dynamics, certain approximations only exist to describe

specific flow regimes. An approximation for laminar flow provides a precise description

of (and only of) laminar flow. It is tautological to point out that it fails to capture

the behaviour of turbulent flows correctly. The task of a modeller is then to resort to

the correct approximation in the different situations. The choice of an approximation is

usually guided by dimensionless numbers, such as the Reynolds number. For pedestrian

dynamics, such a classification of different flow regimes has been largely missing so far.

However, as we showed in the previous chapters, the dimensionless Intrusion number

In and Avoidance number Av delineate different flow regimes in pedestrian dynamics.

Thus, we can now propose a flow regime based validity of models for pedestrian crowds.

From a practical point of view this allows to pose the question of modeling quite differ-

ently. Without such a scheme, one would easily be left with various very specific models,

applicable to a certain situation only, or in desperate search of the complete pedestrian

model. It might turn out to be much easier to have different models for different regimes

to which the modeller can resort to, instead of having the need to combine all different

factors correctly.

We will start by reformulating various pedestrian models such that their dependency

on the agent-centered intrusion Ini or avoidance Avi variables is highlighted. For each

model, we visualize the interactions by plotting the field-lines, as it was proposed in the

previous chapter. This allows to get a more intuitive understanding of the proposed

interactions while avoiding to simulate all models in numerous scenarios. Based on

this, we estimate the range of applicability using the traffic-light system introduced in

the previous chapter. Finally, we will test this intuition by investigating the collective

behaviour of the crowd in some models by simulations of test-cases that are representative

for different flow regimes.

We will see that, indeed, the intrusion and avoidance variables appear in many pedestrian

models. In particular, in some models, like the simple Social-Force model or Velocity

Obstacle models, either Ini or Avi appears directly. We will see that, similarly to the

perturbative models proposed in the previous chapter, this clearly limits the range of

applicability to certain regimes.

Other models do not include Ini or Avi in their ‘pure’ form. These models are often

extensions of simpler models and can be understood as endeavours to extend the range of

applicability of the original model to another flow regime. As a result, while the extended
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model may acquire the capability to describe a different regime, it often does so at the

expense of losing its applicability in a regime that is well-captured by the original model.

This points to the problem of the correct combinations of the different behaviours. For

instance, rather than relying on two independent interactions, one might try to construct

a single repulsion that includes various behaviours. This approach, however, swiftly

yields complicated ‘non-minimal’ interactions. This can lead to artifacts when the model

is applied to situations slightly different from those the model was tested in.

An extensive testing of all different models in the different regimes would be an unfeasible

task. Therefore, we estimate the range of applicability for each model based on the

equations of motion and by analyzing the field-lines. Even though we test this for some

models by actually simulating the model in different regimes, the range of applicability

has to be taken with some caution. Besides, this is not the only aim of this chapter. We

also want to follow the evolution of different models and see how the implicit knowledge

of different regimes encountered in pedestrian crowds has shaped the development of new

models and extensions of these.

6.1 General Form of the Considered Models

Before delving into the broad realms of pedestrian models we have to restrict ourselves

to a certain ‘structural’ class. In particular, we will study models continuous in space,

defined either by differential equations or by an iterative map with an explicit time-step.

We further neglect all mechanical interactions. The class of models studied here can then

be formulated as

vi = v? (. . . ) , (6.1)

for first-order models and

ai =
v? (. . . )− vi

τR
, (6.2)

for second-order models. In both cases v? is a function of various parameters. In partic-

ular, v? is the result of the decisional layer that includes the goal and the interactions

between the agents.1 These of course vary strongly between the models, it might for

example be defined as the result of a minimization process or related to the gradient of

a potential.

Mathematically, v? is a vector field that assigns to each set of variables a unique vector.

While in some models, the form of v? is quite intuitive, its interpretation can be very
1For simplicity we have left aside the complex dependencies of v? which without loss of generality

would read as v? = v? (x1, . . .xN ,v1, . . . ,vN ).
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difficult in others. Therefore, we want to visualize the decisions of agents in different

models by plotting v?.

In particular, we plot the field-lines in the same setting as discussed in Section 5.5.6

where an agent j is placed at the origin.2 Another agent i is positioned at a fixed grid of

test-positions where, in absence of agent j, she would prefer to remain without moving

(vdes,i = 0). We assign a relative velocity ∆vij = vj − vi to the agents which is plotted

as a black arrow in the center. Then, we plot the result of the decisional layer v? at

each test-position. We apply a maximal velocity of vmax = 2m/s in all models. In the

visualization, the size of agent i is ‘absorbed’ into agent j which basically makes i a

point-particle and doubles the size of agent j. If not stated differently, for each model we

have used the parameters that are given by the authors of the corresponding citation.

6.2 Social-Force Models

Let us start with the original Social-Force model, in particular, its simplest form, as it

was proposed in [60]. The dynamics of agent i can be written as

ai =
vdes,i − vi

τR
− α · ∇r

∑
j 6=i

f (Inij)

 , (6.3)

where we neglected terms that should account for mechanical interactions as well as an

anisotropy which is often used to model effects of limited perception.

Apart from the driving term, Eq. (6.3) only depends on the agent-centered intrusion

variable Inij . The intrusions of various neighbours are added up, analogous to the

superposition of Newtonian forces, and weighted by the function f(x) = exp (−1/
√
x).

Direction and strength of the interaction are given by the gradient of this potential.

Consequently, the repulsion between two pedestrians i and j always acts radial, i.e. along

the vector eij connecting the centers of the two. This can also be seen in Fig. 6.1 (a),

where we plotted the field-lines of the Social-Force model. Many models of pedestrian

crowds include interactions based only on Euclidean distances. This corresponds to a

qualitatively analogous radial interaction.

As we have seen in the last chapter, this radial interaction is conspicuous of passive

granular matter and fails to capture anticipative effects, such as moving sideways to

avoid an approaching pedestrian. Moreover, the parameter values reported in [60], i.e.,

rsoc = 8cm, result in a very short-ranged repulsion. To elucidate the limitations of

the Social-Force model in regimes with moderate or large Av number, let us recall the
2We add a small off-set ε = (0.0001, 0.0001)m to avoid perfectly symmetrical situations.
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(a) Field-Lines (b) Range of Applicability

Figure 6.1: In (a), the field-lines of the Social-Force model are plotted. Qualitatively
the same picture is obtained for the In-model, the Collision-Free Speed model and the
simplest Algebraic-Force models. The red arrow depicts the scale of the velocities and
corresponds to 2m/s. In (b) the estimated range of applicability of the Social-Force

model is plotted.

example of two joggers who approach each other on a collision course. In the Social-Force

model, they would start interacting at the length scale rsoc, i.e., just before they bump

into each other.

Accordingly, the range of applicability of the Social-Force model is limited to flow regimes

with negligible Av numbers, cf. Fig. 6.1 (b). Note that the low Av regimes are colored

yellow as well, which is justified by the difficulties of the Social-Force model in repro-

ducing the uni-directional fundamental diagram [30] and the lack of proper mechanical

forces in Eq. (6.3).

These limitations are of course anything but new and numerous extensions or alternative

specifications have been proposed. As we will see in the following, these can often

be understood as endeavours to extend the range of applicability to regimes of larger

Avoidance numbers.

6.2.1 Elliptical Specifications

The original Social-Force model, i.e. Eq. (6.3), is based on a radial repulsion, conse-

quently equipotential lines take on the form of circles. In contrast to this, a specification

with elliptical equipotential lines is proposed in [16]. Here, the repulsive interaction does
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(a) Field-Lines (b) Range of Applicability

Figure 6.2: In (a) we show the repulsion in the Social-Force model with the elliptical
specification. The red arrow depicts the scale of the velocities and corresponds to 2m/s.
In (b) the estimated range of applicability of the Social-Force model with elliptical

interactions is plotted.

not depend on the Euclidean distance but on an ‘effective distance’ given by

reff,ij =
1

2

√(
rij + |rij − vjτA|

)2
− (vjτA)2, (6.4)

which is based on the idea that agent i takes into consideration where she is going to step,

τA representing the duration of one step. Another elliptical specification is introduced

in [188]. Here, the effective distance is given by

reff,ij =
1

2

√(
rij + |rij −∆vijτA|

)2
− (∆vijτA)2, (6.5)

where, in contrast to Eq. (6.4), the relative velocity between i and j is taken into account.

Aiming at a translation into the In and Av framework, we are led to define an effective

intrusion variable as

Ineff,ij =

(
rsoc
reff,ij

)2

. (6.6)

The elliptical Social-Force models can then be defined by replacing Inij in Eq. (6.3) with

this effective intrusion.

In both models, for τA = 0 the interaction is radial and the original Social-Force model

is recovered. The only difference that remains is that the size of the agents is not taken

into account here, i.e. ` = 0. In the following, we will only consider the second variant,

i.e. Eq. (6.5), as both are equivalent if we assume that j does not move and therefore

∆vij = vi.
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(a) Finer grid (b) Zero relative velocity

Figure 6.3: Repulsion in the elliptical variant of the Social-Force Model for a finer
grid of test-positions in (a) and for a zero relative velocity in (b). The red arrow

depicts the scale of the velocities and corresponds to 2m/s.

In Fig. 6.2 (a), the field-lines of the elliptical Social-Force model are plotted. The typical

sideways motion to avoid an approaching pedestrian seems to be captured correctly as

well as a more long-ranged interaction. If we look a bit closer, i.e. the finer grid in

Fig. 6.3 (a), we see that these specifications still yield a repulsion in the radial direction

close to x = −2m. Furthermore, the strength of the repulsion, in some cases, seems

to increase with the distance which seems unreasonable. In Fig. 6.3 (b) a scenario is

plotted in which ∆vij = 0 for the same set of parameters. As expected for a situation

without any relative velocity (Av � 1), the repulsion is radial. In this case, however,

even if the agents are almost at contact, the repulsion is very weak which most likely

leads to overlaps and related problems.

In the elliptical specifications, attempts are made to address issues present in the original

Social-Force model by incorporating anticipation into the repulsive interaction. Accord-

ingly the models might be applicable in regimes of moderate Av number. In the low-Av
regime, however, the original Social-Force model should outperform the elliptical ex-

tension because the corresponding interactions are very weak. This is also related to

the fact that the physical size of the agents is neglected. We have chosen the range of

applicability accordingly, cf. Fig. 6.2 (b).

Of course, the parameters can be adjusted to yield a reasonable repulsion in regimes of

low Avoidance number as well - but only at the cost of loosing the ability to describe

regimes of non-zero Av number. Especially the parameter τA is critical for adjusting

the level of anticipation in this model. This observation has led to the proposal of the

extension discussed next.
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(a) Field-Lines (b) Range of Applicability

Figure 6.4: In (a) we show the repulsion in the Social-Force model with explicit
collision prediction. The red arrow depicts the scale of the velocities and corresponds

to 2m/s. In (b) the corresponding estimated range of applicability is depicted.

6.2.2 Explicit Collision Prediction

In [189] a variant of the Social-Force model is proposed which includes an explicit collision

prediction. Instead of using a fixed anticipation time τA as above, the model relies on the

time-to-closest-approach (tca) which ‘self-gauges’ the anticipation time in dependence on

the situation. The time-to-closest-approach is the time until the distance between two

pedestrians is minimal, under the assumption of constant velocities.

Let us define tcai as the smallest time-to-closest-approach for agent i over the set of all

other agents j. This set is further restricted to agents for which the angle between the

relative velocity ∆vij and their binding vector eij is smaller than π/4. Already note that

the interaction detailed below is set to zero if this set is empty. Apart from that, if no

agent in this set approaches agent i the interaction is set to zero as well.

The proposed model can now be written as

ai =
vdes,i − vi

τR
− α · vi

tcai

∑
j 6=i

f (Inij) ·
∆xij + tcai ·∆vij
|∆xij + tcai ·∆vij |

, (6.7)

where instead of a radial repulsion along the vector eij = ∆xij/|∆xij | the interaction is

based on the anticipated binding vector between i and j at the later time t+ tcai under

the assumption of constant velocities. Again, and notably, the size of the pedestrians is

chosen as ` = 0.
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Figure 6.5: Possible range of applicability of the Social-Force model with explicit
collision prediction and further extensions from [190].

The authors show that the proposed model outperforms the other Social-Force models

discussed so far, notably, in a low-density situation, where people go in different direc-

tions. This is presumably a regime with In� 1 and Av ∼ 1. Concurrently, the repulsion

shown in Fig. 6.4 (a) seems to describe avoidance processes well. This is not surprising

as the time-to-closest approach is linked to the TTC on which the Avoidance number is

based. In ‘spatially’ controlled regimes of non-zero In numbers, however, the interaction

will be zero most of the times. The model can, therefore, not be applied in these regimes.

We have estimated the range of applicability accordingly, cf. Fig. 6.4 (b).

These limitations have been realized by the authors as well. In particular, in [190], the

model is applied to moderately dense cross-flows, i.e. a regime with Av � 1 and In ∼ 1.

Here, the authors show that the model captures the experimental results reasonably well

- but only after it has been extended to include, among other things, a short-ranged

distance-based interaction. In Fig. 6.5, we have plotted a possible range of applicability.

Note that this range of applicability has to be taken with even more caution than those

showed so far because the model ends up being quite complicated and contains many

parameters. Thus, it is much more difficult to test and might lead to artifacts or new

problems in other regimes.

6.2.3 Rotated Forces

In [191] another variant of the Social-Force model is proposed, explicitly for collision

avoidance problems. In particular, a tendency of the agents to avoid each other on the

left side or on the right side is included by rotating the ‘force’.
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(a) Field-Lines (b) Range of Applicability

Figure 6.6: In (a) the field-lines for the Social Force model with a rotated interaction
are shown. The red arrow depicts the scale of the velocities and corresponds to 2m/s.

In (b) the corresponding estimated range of applicability is depicted.

The model can be written as

ai =
vdes,i − vi

τR
− α ·R(λφ) · ∇r

∑
j 6=i

f (Inij)

 , (6.8)

where R(·) is the 2d rotation matrix, φ is the angle between vi and vj , and λ is a

dimensionless constant. The angle is set to zero if either vi or vj = 0, in which case

the original Social-Force model is recovered. We note that, as above, the size of the

pedestrians is set to zero.

As it can be seen in the field-lines in Fig. 6.6 (a), the rotation triggers movement to

the sides in front of agent j, which is conspicuous of avoidance behaviour. Accordingly,

in [191], it is shown that this model clearly outperforms the original Social-Force model

with regard to simple avoidance scenarios, like a heads-on collision or sparse cross-flows.

However, multiple unrealistic parts can also be seen in the field-lines. In particular, at

certain initial positions the pedestrian i is drawn towards a collision-course. Moreover,

if pedestrian i is located in the back of agent j the repulsion is asymmetric as well which

seems unreasonable. The estimated range of applicability is shown in Fig. 6.6 (b).

6.2.4 Moussaid

A quite different extension of the Social-Force model has be proposed in [144]. Instead

of changing the details of the repulsion in Eq. (6.3), another layer is added to the model.

In particular, the desired velocity vdes,i is not treated as a constant but determined
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dynamically by ‘simple rules’. This introduces a long-ranged interaction to the inherently

short-ranged Social-Force model, thereby making the desired velocity frequently more

predominant.

It is assumed that agent i wants to go towards the goal, in direction e0, with speed v0.

This velocity is used to calculate the desired velocity which is then passed to the original

Social-Force model. The desired velocity is decomposed into its absolute value, the speed

vdes,i, and the orientation edes,i which are calculated one after another.

The desired orientation edes,i is determined by an optimization process based on the

distance to the closest collision, denoted by dcc. This quantity is closely related to the

TTC, in especially, the closest collision of agent i is given by dcci = vi · τi where τi is the
minimal TTC of agent i. The minimization reads as

edes,i = arg min
e∈Dφ

(
d2
max + dcc2

i − 2dmaxdcci · e · e0

)
, (6.9)

where the set of possible ‘test directions’ is given by all 2d, unit-vectors that are within

the current field of vision.3 The distance to the closest collision is calculated using the

current velocity of agent j and the test velocity of agent i, i.e. v0 · e. The constant dmax

denotes the ‘horizon distance’. This distance is also implemented as an upper bound for

the distance to the closest collision.

Subsequently, the desired speed is caluclated as

vdes,i = min

[
v0,

∆xi(edes,i)

T

]
, (6.10)

where ∆xi(edes,i) denotes the minimal center-to-center distance in the desired direction

and T the desired time-gap. Note that this corresponds to the heuristic that the agents

chose their speed such that the time-gaps Tij to all other agents j are larger than the

desired time-gap T . This idea has been at the heart of the models we discussed in

Section 3.3.2 with the only difference that the size of the agents has been neglected here.

In principle, the model includes all different factors which we have found to be important

to describe pedestrians in different situations: a distance-based interaction, an interaction

related to avoidance behaviour, as well as the time-gap. Unfortunately, it is not possible

to estimate the range of applicability analogously to the other models because this model

inherently strongly depends on the desire to reach a goal. Thus, we can not plot the

field-lines easily.
3i.e. unit-vectors that incline an angle with the current direction of motion of less than φ, more

formally Dφ = {e ∈ R2 with |e| = 1 and |e · ei(t)| ≤ φ}.
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However, we will see later, when simulating the collective behaviour of the crowd, that

this model struggles to replicate the test cases which are representative of the different

regimes. This exemplifies problems often encountered in complex models: the combi-

nation of different mechanisms is one of the most difficult tasks. If more and more

behaviours are taken into account this might yield an ‘over-controlled’ and inflexible

model.

6.3 Algebraic-Distance Models

Even before the Social-Force model was proposed, Hirai and Tarui [14] introduced a

model with several distance-based interactions. Among those, they propose a repulsive

interaction which decays algebraically with the distance, in contrast to the exponential

decay in the Social-Force model.

To begin, it is worth noting that such a simple algebraic-distance model, qualitatively,

yields the same radial repulsion as the original Social-Force model, for instance regarding

the field-lines in Fig. 6.1 (a). The range of applicability can therefore be expected to be

similar as well, cf. Fig. 6.1 (b). Of course, there exist more subtle differences between

the two, i.e. regarding stability properties which have been investigated in the chapter

about single-file motion.

In the following section, we will focus on two models based on the idea of an algebraic

interaction ‘force’ that take the relative velocities between pedestrians into account - in

a quite different way than the models discussed so far.

6.3.1 Centrifugal-Force Model

The Centrifugal-Force model, introduced in [192], reads as

ai =
vdes,i − vi

τR
− α

∑
j 6=i

v2
ij · ∇rh (Inij)

 , (6.11)

where h(x) = ln (1/
√
x) and vij the rate of approach between i and j. The size of the

pedestrians is neglected (` = 0). The gradient in Eq. (6.11) only acts on the part of the

interaction based on the intrusion variable. It therefore points in the radial direction, i.e.

∇rh (Inij) ∝ eij/rij . Note that this repulsion decays much slower with distance than,

for example, an exponential interaction. The multiplication with the rate of approach

entails, that the faster two pedestrians approach each other the larger is the amplitude
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(a) Field-Lines (b) Range of Applicability

Figure 6.7: (a) We visualized the repulsion of the Centrifugal Force Model. The red
arrow depicts the scale of the velocities and corresponds to 2m/s. In (b) we show its

estimated range of applicability.

of the repulsion between the two. If the rate of approach is negative, i.e. if they grow

apart or keep a constant distance, their mutual interaction is set to zero.

Consequently, pedestrians that heavily intrude each others personal space do not interact

at many instances which is also shown in the field-lines in Fig. 6.7 (a). This leads to

problems that have been observed by the authors as well: the definition of the model in

[192] further includes a collision detection algorithm to avoid overlapping. The model

defined by Eq. (6.11) alone, however, is not applicable to regimes of non-zero In numbers.

In front of pedestrian j, where the rate of approach is positive, the model correctly cap-

tures the long-ranged interaction conspicuous of the moderate Av and low In regime.

In an analogy with the centrifugal force in physics, the authors chose the amplitude

of the repulsion as ∝ v2
ij/rij . This is similar to the TTC (1/τ ∝ vij/rij) on which the

Avoidance number is based. But, as mentioned above, the repulsion still acts in radial di-

rection which has proven unrealistic in many collision conflicts. Furthermore, the square

more heavily weights the ‘approaching-part’ which can lead to a vanishing interaction

strength in situations where two people approach each other slowly but nonetheless face

an imminent risk of collision.

Besides, an essential part of the definition of the TTC are the conditions that indicate

whether a collision occurs at all. In the Centrifugal-Force model, instead of this, only one

simple condition indicates whether two pedestrians are approaching each other or not.

Thus, the model leads to a strong interaction when pedestrians approach each other even

though a collision is not impending. This can be seen in the field-lines in Fig. 6.7 (a),

e.g., in the top left corner. In the last chapter, in contrast to this, we have seen in
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(a) Field-Lines (b) Range of Applicability

Figure 6.8: In (a) the repulsion in the Generalized Centrifugal-Force Model is shown.
The red arrow depicts the scale of the velocities and corresponds to 2m/s. In (b) the

range of applicability is visualized.

the cross-correlation of the sparse cross flow that pedestrians continue to approach each

other after solving the collision conflict, without any sign of further interactions.

According to this discussion, we have chosen the range of applicability, cf. Fig. 6.7 (b).

6.3.2 Generalized Centrifugal-Force Model

In the Generalized Centrifugal-Force model [193], some of these problems have been

addressed. The model is defined as

ai =
vdes,i − vi

τR
− α

∑
j 6=i

(vij + β)2 · ∇rh (Inij)

 , (6.12)

where as above vij is set to zero if the rate of approach is negative. We have neglected

perception which was originally included by an anisotropy that weights pedestrians in

the direction of motion more strongly and disregards those that are outside a visual cone.

Furthermore, Chraibi et al [193] introduced elliptic shapes to the model which we have

disregarded here as well.

One can easily see that by introducing the parameter β a solely distance-dependent inter-

action is present - which should allow for a realistic simulation of regimes with a moderate

In number, e.g., the Waiting scenario. In the field-lines, in Fig. 6.8 (a), this is reflected

in a radial repulsion between i and j even if the distance between them is increasing.

Besides, here, a non-zero size of the pedestrians is included which strongly increases the
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repulsion between pedestrians that are close to each other. Consequently, the authors

show that the collision detection algorithm which was employed in the Centrifugal-Force

model to avoid overlapping is not needed anymore [193]. The very slow decay of the

repulsion might, however, still lead to problems in regimes of high In numbers.

Regarding collision-avoidance and interactions conspicuous of non-zero Av numbers, the

same discussion as for the Centrifugal-Force model applies because this part of the model

remains largely unchanged. This can also be seen in the field-lines. The estimated range

of applicability is shown in Fig. 6.8 (b).

From the viewpoint of the perturbative analysis performed in the last chapter, the model

is non-minimal. In particular, the perturbative analysis resulted in two independent

interactions, one based on Ini and the other one on Avi. In Eq. (6.12), on the other

hand, the squared term (vij + β)2 yields mixed terms of the type ∼ Av · In which

correspond to a Taylor expansion of higher order. This might be beneficial in more

complex regimes but could also be more difficult to control.

6.4 Collision-Free Speed Model

Let us now consider the Collision-Free Speed model introduced in [81]. In contrast to the

models discussed so far, speed vi = |vi| and orientation ei are calculated independently.

The model can be seen as a two-dimensional version of the simplest Optimal Velocity

model which has been discussed in chapter 3.

As for the orientation, however, the model is similar to the ‘force’-based models discussed

so far. In particular, we can write the sub-model as

ei =
1

Z

edes,i − α · ∇r

∑
j 6=i

f (Inij)

 , (6.13)

where the same exponential function f(x) as in Eq. (6.3) is used, and Z such that |ei| = 1.

For the speed, the definition in [81] is based on the heuristic that the agents choose a

maximal speed while ensuring that the time-gaps Tij to all other agents j are larger than

the desired time-gap T . This can be written as an optimization process

vi = arg min
v∈[0,vdes,i]

[
1

ε
·Θ
(

T

Ti(v · ei)
− 1

)
+ (v − vdes,i)2

]
, (6.14)

with ε→ 0, the Heaviside step function Θ, and Ti the minimal time-gap in direction ei

calculated with the test-speed v.
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(a) Collision-Free Speed Model (b) Anticipative Extension

Figure 6.9: In (a) the range of applicability of the Collision-Free Speed model is
shown and in (b) of the anticipative Collision-Free Speed model.

The first part of the model is a radial repulsion based on In and thus should allow an

applicability in the low Av regime. Note that the model does not distinguish between

vdes and vmax, therefore one could only plot the field-lines of the dimensionless vector u?

defined by ei = (edes,i + u?) /Z in Eq. (6.13). This yields qualitatively the same picture

as the Social-Force model, cf. Fig. 6.1 (a).

The second part of the model, given by Eq. (6.13), is based on the Time-Gap which

allows a robust replication of the (uni-directional) fundamental diagram. Moreover, the

model is inherently collision-free which allows a safer application in the high In-regime.

However, neither the time-gap nor the In based repulsion allows a convincing solution

of collision avoidance conflicts [49].

We have set the range of applicability according to these considerations, cf. Fig. 6.9 (a).

6.4.1 Anticipation in the Collision-Free-Speed Model

The lack of collision avoidance and the observation of frequent grid-locks at sparse bidi-

rectional flows has led to the amendment proposed in [49]. In this model, the repulsion

is changed to be non-radial and includes anticipative effects.

In particular, the strength of the repulsion does not depend on the current positions.

Instead it depends on the anticipated distance at time t + τA under the assumption of

constant velocities.4 Furthermore, the amplitude of the repulsion that agent i feels is

chosen to be stronger if agent j is positioned in the direction that i desires to move to.
4More precisely, on its projection on the binding vector between i and j.
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(a) vi‖vdes,i (b) vi ⊥ vdes,i (c) ∆vij = 0

Figure 6.10: Repulsion in the Collision-free speed model with anticipation for different
scenarios. Instead of plotting the velocity v?, we plot the dimensionless vector u?

that inhibits the interactions regarding the orientation. In this case the red arrow
corresponds to a length of 2.

More importantly, instead of a radial repulsion, the direction of the repulsion is set to

be always perpendicular to the desired direction.

These changes allow to reproduce movement to the sides in collision avoidance conflicts,

as it is shown in Fig. 6.10 (a). Concurrently, in [49], the authors show that the model

outperforms the Collision-Free Speed model in simple avoidance scenarios and bidirec-

tional flows. In the latter, it is shown to replicate experimental results well.

The amendments put forward here can, however, also result in unexpected behaviour.

For instance, if there is a significant misalignment between the current velocity and

the desired velocity, as illustrated in Fig. 6.10 (b), the agents can feel some attraction

towards each other. Such a strong deviation from the desired path would however only

occur in regimes of high Av number and/or high In number. Furthermore, in contrast

to the simple Collision-Free Speed model, the anticipative extension can not capture the

simple radial interaction conspicuous of the low Av regimes as shown in Fig. 6.10 (c).

The estimated range of applicability is shown in Fig. 6.9 (b). Note that this has to be

taken with additional caution as the interactions introduced here seem to be difficult to

control, i.e., lead to unexpected behaviour if tested in different situations.

6.5 Time-to-Collision Based Models

So far, we have discussed multiple models and their extensions. We have seen that these

models were grounded in the idea of a distance based interaction, and thus related to

the intrusion variable. This naturally limits their range of applicability to regimes of low

Avoidance number. This observation has prompted multiple extensions in which it was
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(a) Field-Lines (b) Range of Applicability

Figure 6.11: In (a), the repulsion in the the gradient based Power-Law model is
shown. We show the field-lines in a finer grid as otherwise only the row with y = 0 would
show an interaction. The red arrow depicts the scale of the velocities and corresponds

to 2m/s. In (b) the corresponding range of applicability.

tried to include anticipation to extend the range of applicability to regimes of non-zero

Av number.

Now, let us shift our focus to models that have been introduced more recently, ones that

are inherently grounded in anticipation. Specifically, we will explore various models that

rely on the concept of time-to-collision and, consequently, are closely connected to the

Avoidance number.

6.5.1 Power-Law Model

In [82], the Power-Law model has been proposed. To highlight its dependence on Av,
we write it as

ai =
vdes,i − vi

τR
− α · ∇r

∑
j 6=i

g (Avij)

 , (6.15)

where the function g(x) = x2 exp (−1/x) was chosen by fitting an empirically obtained

interaction potential.5

Even though Eq. (6.15) looks very similar to the Social-Force model in Eq. (6.3), the

interaction potential is widely different. This can be seen in the field-lines plotted in

Fig. 6.11 (a). The two agents do not interact as long as no collision is expected even

if they are almost at physical contact. Accordingly, the model can not be applied in

regimes of non-zero In number.
5Under the debatable assumption of a Boltzmann like distribution function.
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Conversely, when a collision is anticipated a strong and long ranged interaction comes

into play. This interaction which acts along the gradient of Avi partially leads to the

expected movement to the side. The expected avoidance behaviour, however, can not

be completely reproduced. This observation aligns with [185], where this model yields

a similiar displacement field as depicted in Fig. 6.11 (a) for an intruder crossing a

densely packed crowd. This displacement field, as well as the field-lines shown here, fails

to accurately capture the empirically observed lateral movement right in front of the

intruder.

We have chosen the range of applicability according to this in Fig. 6.11 (b).

6.5.2 Velocity Obstacle Model

Let us now look at a class of models based on reasoning in velocity space, in particular,

Velocity Obstacle models. The concept of Velocity Obstacles originates in motion plan-

ning of robots around moving obstacles and was introduced in [124]. More recently, it

has also been applied to pedestrian dynamics.

In these models, each agent has a set of admissible velocities which is further restricted

by the presence of other agents or (moving) obstacles. In particular, velocities that lead

to an anticipated collision within the next τ0 seconds (equivalently: velocities that have

Avi < 1) are forbidden. Geometrically, this translates into non-admissible cone-shaped

areas in the velocity space of agent i.

To highlight the dependency on Avi we write the Velocity Obstacle model as

v?i = arg min
v∈R2

[
1

ε
·Θ
(
Avi (v)− 1

)
+ (vdes,i − v)2

]
, (6.16)

with ε → 0 and Heaviside step function Θ. Velocities inside such a collision-cone, are

assigned an infinite cost whereas all other velocities have a cost corresponding to the

distance to the optimisation goal vdes,i.

Note that if Eq. (6.16) is defined as a first-order differential equation (continuous in

time), it becomes an implicit equation, which is more difficult to solve. Typically, it is,

however, defined with an explicit time-step. One can also define it as a second-order

model continuous in time with a relaxation time τR.

The field-lines are illustrated in Fig. 6.12 (a) and are essentially identical to those in

the Av-model discussed in the preceding chapter. The characteristic lateral movement

is evident, indicating that avoidance conflicts are likely to be resolved accurately. In
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(a) Field-Lines (b) Range of Applicability

Figure 6.12: In (a), the field-lines of the Velocity Obstacle model are shown. The red
arrow depicts the scale of the velocities and corresponds to 2m/s. We show the field-
lines in a finer grid as otherwise only the row with y = 0 would show an interaction.
In (b) the estimated range of applicability of the Velocity Obstacle model, the RVO

model, and the ORCA model is shown.

comparison to the Power-Law model, the anticipative behavior appears to be more so-

phisticated, as sideways motion is evident in the middle row (y = 0) as well. This

suggests an advantage of the optimization-based approach over a gradient-based model.

As no In-related variable is present in Eq. (6.16), the agents have no tendency to spread

homogeneously in the system, i.e. to make use of the available space. Accordingly, no

radial interaction can be spotted in Fig. 6.12 (a). Furthermore, it was shown that this

yields a very unrealistic Fundamental Diagram [83]. Consequently, we have set the range

of applicability in Fig. 6.12 (b).

6.5.3 Reciprocal Velocity Obstacles

Van den Berg and colleagues, found that if Eq. (6.16) is implemented as a first-order time-

discrete model, it leads to unrealistic oscillations between mutually interacting agents.

Therefore, the Reciprocal Velocity Obstacle model [125] is introduced where agents take

shared responsibility to avoid each other.

The model is defined as

vi,t+δt = arg min
v∈R2

[
Avi (2 · v − vi,t) +

1

α
· |vdes,i − v|

]
, (6.17)

with an explicit time-step δt and Avi is calculated with the velocity (2 · v − vi,t) which

models the shared responsibility.
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The definition was changed to a discrete time as the average of old and new velocity does

not have a reasonable limit as δt → 0. In contrast to Eq. (6.16), the authors changed

the cost-function to allow a (reasonable) application even if all velocities are assigned an

infinite cost.

Despite of these changes we expect the field-lines and the range of applicability to be

very similar to Fig. 6.12. Consequently, the model was shown to solve all different kinds

of avoidance conflicts convincingly [125].

6.5.4 ORCA Model

Optimization-based models appear to incorporate more advanced anticipation compared

to gradient-based models. The optimization problem, however, has to be solved. This is

usually done by sampling the velocity space which comes at a high computational cost.

In the ORCA model [126], the Velocity Obstacles are reformulated to enable a computa-

tionally efficient, collision-free, and exact solution of the optimization. Specifically, the

collision-cones are transformed into more strict conditions resembling lines, allowing the

application of linear programming. We denote the new Avoidance number based on the

transformed Velocity Obstacles as Ãv.

We then obtain the ORCA model by inserting Ãv into Eq. (6.16), i.e.

vi = arg min
v∈R2

[
1

ε
·Θ
(
Ãvi (v)− 1

)
+ (vdes,i − v)2

]
, (6.18)

where ε→ 0 and Heaviside step function Θ. In the case that all velocities have Ãvi < 1,

another cost-function is employed.

As expected from Eq. (6.18), and the discussion of the other Velocity Obstacle models,

it was found that the ORCA model does not show a reasonable fundamental diagram,

neither in uni-directional flow, nor in bi-directional flow [30].

On the other hand, the ORCA has been shown to solve avoidance conflicts convincingly.

It has, however, also been found that the reformulation of the Velocity Obstacles can

lead to non-intuitive behaviour discussed in [194]. Nonetheless, we expect the range of

applicability to be the same as in Fig. 6.12 (b).

A typical application of the ORCA models is computer graphics, where smooth and

optically realistic trajectories with small computational effort are desired. In this appli-

cation a realistic speed-density relation is much less important than a smooth collision

avoidance.
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6.5.5 ORCA and Density Dependent Behaviour

The observation that certain models struggle to describe regimes at larger density (or

regimes at larger In-number) accurately has prompted the formulation of the model

presented in [30]. This model aims to integrate ‘density-dependent behavior’ into models

for pedestrian crowds. To this end, similarly to [144], an additional layer is proposed

which determines the dynamics of vdes,i. In theory, this layer can be applied to any

other model. Nonetheless, our emphasis will be on using it as an extension to the ORCA

model, a choice also made by the authors in [30].

In this model, the desired velocity is decomposed into the desired direction and the

desired speed. The desired direction is given by the orientation that minimizes the

distance to the goal in a given time-period τA, i.e. by

edes,i = arg min
e∈D

|xgoal,i − [xi + vFD (e) · e] τA|, (6.19)

where xgoal,i the position of the goal and D the set of 2d unit vectors. The function

vFD (e) gives the ‘fundamental diagram adherent’ speed in direction e which is based on

the idea of preservation of personal space.

Contrary to the Intrusion number In, the size of the personal space is assumed to

increase with the speed. In particular, the socially acceptable distance is given by the

typical step length at a certain speed, L(v) = α̃
√
v, scaled by a constant factor. For the

social radius, this yields rsoc(v) = βL(v) = α
√
v. The ‘fundamental diagram adherent’

speed in direction e is then given by

vFD (e) = min

[
vmax,

∆xi(e)2

α2

]
. (6.20)

This is equivalent to the heuristic that pedestrians always chose the largest speed with

v ≤ vmax that yields an intrusion, here defined as rsoc(v)/∆xi, that is smaller than one.

Note that instead of using the headway or distance in direction e directly, in this model,

the pedestrians estimate the distance via the local density at the position xi + e which

is calculated using Gaussian kernels. Finally, the desired velocity is given by vdes,i =

edes,i · vFD (edes,i).

In this model, the absence of personal space for individuals with zero velocity (note that

rsoc(v = 0) = 0) stands in contrast to the typical scenarios studied in psychology [152],

which may be considered a drawback when compared to the personal space conceptual-

ization proposed by the In-number. However, unlike the In-model, this interpretation

of personal space, based on the variable size of pedestrians, enables the reproduction of
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Figure 6.13: The estimated range of applicability of the ORCA model combined with
the DenseSense model.

Figure 6.14: Estimated range of applicability of a granular model.

the fundamental diagram. As demonstrated in [30], when combined with ORCA, it can

successfully reproduce the fundamental diagram in both uni- and bidirectional flow.

Consequently, it is expected to expand the range of applicability of the ORCA model

to regimes of moderate In-values. The estimated range of applicability is illustrated in

Fig. 6.13.

6.6 Granular Model

A granular model, as defined in [27] that includes a goal reaching mechanism but only

short-ranged mechanical interactions might have a range of applicability as depicted in

Fig. 6.14.
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6.7 Multi-Agent Simulations

In this section, we want to investigate whether the models discussed in the last section

are actually applicable in the associated regimes (only). Therefore, we have chosen four

scenarios, namely, the Uni-directional corridor, the Waiting scenario, and the sparse

and the dense Cross flow. We simulated the ORCA, RVO, Social-Force, its extension

‘Moussaid’, and the Power-Law models using the UMANS software [178]. We have

changed the definition of the Social-Force model from [16] to [60], as it is shown in

Eq. (6.3). Furthermore, we have implemented the Collision-Free Speed model as well as

the proposed Av-model, In-model, and Av ?In-model. We calculate Av and In, as well
as the mean speed 〈v〉, from the simulated trajectories and compare them to empirical

values. The results are summarised in Fig. 6.15.

Let us first consider the Waiting scenario depicted in Fig. 6.15 (a). Models that do not

inhibit In can not reproduce the basic features of the crowd, namely a more or less even

distribution of the agents over the available space. They do not (or hardly) alter the

initial condition at all and, thus, strongly overestimate In. All models that inhibit In,
on the other hand, are able to approximately reproduce the experimental In-value. An
exception is the Collision-Free Speed model and the Moussaid model: A static crowd

lies beyond the scope of these models as it is not distinguished between a desired and a

maximal speed.

As for the Unidirectional scenario Fig. 6.15 (b) the picture is similar regarding the intru-

sion variable, however, now the pedestrians have a desire to walk, thus, leading to a non-

zero mean speed. The Av-based models can neither reproduce In nor the speed which

aligns with [30, 83] where TTC based models were shown to yield completely unreason-

able fundamental diagrams. However, also purely In based models do not reproduce the

mean speed, which aligns with [30]. The mean speed is reproduced in the Collision-Free

Speed model only. This indicates that there might be a third ‘essential’ mechanism based

on the dimensionless variable T . The Moussaid model, however, includes this variable

and is unable to reproduce the slowing down related to the uni-directional fundamental

diagram. Furthermore, the agents do not spread evenly in the system which is reflected

in an increased Intrusion number if compared to the experiments - even though an In
related interaction is present. This points to the problem of the correct combination of

different factors in complex models.

Let us now turn to the sparse Cross scenario in Fig. 6.15 (c). All Av based models

lead to a successful collision avoidance. They are able to reproduce the mean speed, the

Av-value, and the In-value relatively well. The overestimation of In is probably related

to the fact that in Av only collisions between the hard-cores are taken into consideration
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(a) Waiting (d) Cross, dense

(b) Uni (c) Cross, sparse

Figure 6.15: The dimensionless numbers for different models in four different sce-
narios. The color of the symbols corresponds to the mean speed, i.e. the darker the

slower.
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whereas ‘softer’ anticipated intrusions are left aside. The models that do not include Av,
however, fail in different ways to reproduce the experiment. The Social-Force model ends

up in a complete grid-lock, which is reflected in the high In-value and the zero speed.

In the Collision-Free Speed model, the system is heavily congested (small mean speed)

which is in stark contrast to the experiment which is still in the free-flow branch of the

fundamental diagram. In the In-model, on the other hand, the agents do not slow down

at all, however, without solving the avoidance conflicts convincingly: the agents bump

into each other which leads to very high Intrusion and Avoidance numbers.

The dense Cross scenario in Fig. 6.15 (d) can not be reproduced by any of the models.

Here, more realistic shapes as well as mechanical interactions need to be taken into

account. None of the models inhibits these features. Apart from this tunneling through

the walls can be observed in some models.6

6.8 Summary

In this chapter, we observed that numerous models rely directly on either the intrusion

or avoidance variable. Through the utilization of field-lines, we explored how their ap-

pearance shapes the interactions between agents. An interaction based on intrusion (In)
tends to be radial, short-ranged, and reactive, while an avoidance (Av) based interaction

acts in lateral direction, is long-ranged, and anticipative in nature. The appearance of

Av or In in the equations of motion limits the applicability of the corresponding model

to the associated regimes. This has been verified by simulations of the whole pedestrian

crowd in different scenarios.

The described factors are two different behaviours, in particular we have intrusion and

anticipated (heavy) intrusions. Consequently, endeavours to reformulate an In-based
interaction such that it also captures Av-related behaviour fails. We have seen that

anticipation can be incorporated into a distance based interaction, this adaptation comes

at the expense of forfeiting the original short-range, radial, and reactive interaction.

Alternatively, one might end up ‘somewhere in the middle’ of both interaction types

which leads to models that are difficult to control and to understand.

Apart from that, we have encountered another factor in several models, namely, the

time-gap. The time-gap has been at the heart of the models put forward in Section 3.3

for single-file motion. But it also appeared in this chapter, namely in the ‘Moussaid’

model (Section 6.2.4) as well as in the Collision Free Speed model (Section 6.4). Thus,
6Note that this might be related to the fact that in many models the authors do not specify how

interaction with walls or other obstacles should be handled.
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we are tempted to introduce a third dimensionless variable that quantifies the risk while

following as

Ti =
∑
j∈Ni

T

Tij
(6.21)

where Tij denotes the time-gap between i and j, and T the desired time-gap. The

neighborhood Ni may be chosen such that only the maximum value of T/Tij is taken

into account. The heuristic of all time-gap based models we have come across so far,

would translate to the statement that the agents chose their speed such that Ti < 1. The

‘Risk-while-Following’ number would correspond to different regimes as

• T < 1: the situation is safe, the follower could even increase her speed

• T = 1: the situation is safe, no need to adjust speed or spacing

• T > 1: the situation is not safe, in case of an abrupt stopping of the predecessor a

collision may be unavoidable. The follower should slow down.

However, before claiming the Risk-while-Following number, on a similar basis as Av and

In, it would need to prove its empirical relevance in crowds. Interestingly, while for

vehicular traffic there are multiple studies investigating the time-gap, for instance its

distribution on highways [29], no such studies exist for pedestrian dynamics.

Coming back to modeling, we are now confronted with at least two or three fundamental

aspects of pedestrian motion at the micro level, captured by Ini, Avi, and potentially

Ti. Furthermore, the desire to move, is at the heart of any active system such as crowds.

This poses the problem of how to combine these factors in a model.

We have argued that the delineation of flow regimes allows the modeler to resort to differ-

ent models in different regimes. This partly allows to circumvent the problem of modeling

how humans choose between different heuristics. It is worth noting, however, that our

focus has primarily been on extensively studied asymptotic regimes. This considerably

simplifies the question because only one interaction comes into play anyway.

In any ‘mixed’ regime where neither Av nor In is low, we will likely have to combine

different interactions. For a regime with In,Av ∼ 1, as demonstrated in the last chapter,

the Av?In model produces realistic results through a straightforward superposition. By

summing up the In and Av interactions and assigning relative weights between them,

we successfully replicated empirical findings of a bi-directional flow. This has also been

shown in other works discussed in this chapter. If this is possible in other regimes, further

away from the origin of the ‘phase diagram’, such as those with either In or Av � 1,

remains uncertain.
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The superposition principle is indeed a prevalent way for combining different factors in

models, but there are several other approaches to achieve this in spatially continuous

models. Let us briefly explore some of these ideas encountered in this chapter:

• Superposition: Borrowed from the superposition principle of Newtonian forces, dif-

ferent factors can be combined by summing over them. It allows a straightforward

incorporation of different factors. This approach is utilized to some extent in all

models discussed here. The Social-Force model and its numerous variants serve as

a prominent example. However, especially for more complex scenarios, it may fall

short in capturing the ability of humans to prioritize [100]. For instance, consider

someone wanting to use the restroom and also stay with their friends; they are

unlikely to navigate somewhere in the middle (as a superposition of both factors

yields) but would instead address each need sequentially.

• Restriction: Here, agents choose from a specific set of decisions, such as the space

of admissible velocities which is further restricted by certain conditions that have

to be met. Subsequently, some quantity is maximized or minimized within the

remaining set of possible decisions. This approach is evident in granular models

[27] to ensure volume exclusion or in Velocity Obstacle models to avoid anticipated

collisions [124]. While this demonstrates some ability to prioritize, challenges arise

if no admissible velocity is available. In such cases, an alternative procedure must

be specified, as exemplified in [126].

• Multi-Layer: In this approach multiple effects are combined not by superimposing

but by passing the result of one layer as an input to the next layer. The final

layer yields, for instance, the velocity that is actually realized in the system. For

example, the model put forward in [182], consists of a decisional layer whose result

is passed on to a mechanical layer which yields the actual velocity. This is also

exemplified by [144] where the result of a more complex cognitive model is passed as

the desired velocity to the social-force model according to which the actual velocity

is determined. Different layers could also distinguish between short and long term

planning.

• Decomposition: Through the decomposition of velocity into direction of motion

and speed, different factors can be combined. Typically, the direction of motion

is calculated first, followed by the determination of the corresponding speed. This

process is exemplified in works such as [30, 81, 144]. This decomposition is however

limited as it can only combine two different factors (speed and direction). It might

prove unreasonable in some situations to chose one after the other.
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Often, models depend on multiple concepts of combinations. For instance, the Collision-

Free Speed Model is built on a decomposition, where the direction of motion is determined

through superposition, and the speed is derived from a restriction on admissible speeds.

Finally, let us consider another approach, particularly applicable in more complex sce-

narios, such as evacuating a stadium, where various regimes are at play but are spatially

separated. Leveraging the microscopic determinants of Av and In, one could measure

these quantities to assess the regime and dynamically adjust the model. In other words,

the dimensional numbers could serve as indicators to switch between different heuristics

locally. This strategy may find parallels in more complex Fluid Dynamics simulations,

where challenges might arise in simulating a large interconnected system of different

flow regimes. Maybe algorithms already exist in which the approximation of the under-

lying equations is adjusted based on dimensionless numbers like the Reynolds number

associated with the nearby region.

Throughout the text the Reynolds number was used as an illustration for our study.

Before concluding and discussing the limitations of the work presented in this thesis, let

us discuss a major difference between the Reynolds number and the numbers we have

put forward here.

6.8.1 Relation to Scaling Analysis

Drawing inspiration from the methodology of fluid mechanics, we have been able to

define two dimensionless numbers for crowd dynamics that serve similar purposes as

dimensionless numbers in Fluid Dynamics, namely,

• to delineate different flow regimes,

• to gauge the validity of some approximations in the model.

Of course, we do not claim that there is a strict analogy between the Reynolds number and

numbers introduced here. Let us therefore turn towards a fundamental difference between

the Reynolds number and the dimensionless numbers introduced here. In particular the

Reynolds number can be derived by a scaling analysis of the Navier-Stokes equation,

see e.g. [195]. Scaling analysis is a powerful tool to study various problems in physics.

An introduction into the topic as well as numerous other (pedagogical) examples can

be found in [143]. Another example can be found in the first chapter of this work -

let us therefore recall the discussion of the non-dimensional Optimal Velocity model in

Section 3.3.5.
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By introducing suitable length and velocity scales we have non-dimensionalized the de-

pendent parameters and, thus, the complete differential equation. Thereby, the number

of parameters was reduced and we obtained a single non-dimensional parameter that

encapsulates the essential physical properties of the underlying system.

Similarly, the Ini and Avi numbers introduced here are non-dimensional variants of

the dependent parameters. They depend on the positions rj and the velocities vj for

potentially all other agents j, more specifically on the Euclidean spacings rij and the

‘time-distances’ τij . In order to non-dimensionalize these we have introduced a length-

scale rsoc and a time-scale τ0. However, the models discussed here still depend on the

actual positions and velocities as well. It seems that we can not express the dynamics of

the system in terms of the set of Ini(t) and Avi(t) for i ∈ [1, N ] alone. For example by

a set of coupled partial differential equation that connects the intrusion and avoidance

variables with its time derivatives.

On the contrary, we always have to include the definitions of our dimensionless variables

and can not reduce the number of parameters with the analysis performed here. This

problem can be illustrated by the non-bijectivity of the Avi variable - there is no one-

to-one correspondence between configurations of the systems because many different

configurations lead to a zero avoidance variable. This could be related to the fact that

we study a microscopic model. Possibly a macroscopic model could actually consist of

dynamics purely described by space and time dependent Av and In variables.
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Conclusions

In summary, we have introduced two variables that quantify the desire to preserve one’s

personal space from intrusions and the anticipation of collisions. With these two vari-

ables at hand we delineated different regimes in crowd flows. This allowed a much finer

classification than the traditional density-based level of service. More importantly, we

also showed that the way in which the crowd self-organizes is best described by ‘dis-

tances’ in time (TTCs) in the low-In regime and by distances in space in the low-Av
regime.

These structural differences between the regimes have led to a perturbative expansion

around the non-interacting situation. Thereby, three different models have been put

forward, based on Av, In, or on both. These models are applicable in the corresponding

regime (and only there). Furthermore, we have shown that this discussion has a much

wider bearing on the plethora of agent-based pedestrian models: many of these are

either based on Av or In, which limits their range of applicability to specific crowd

regimes. These limitations have been observed by modelers beforehand, who, accordingly,

put forward new or slightly different interactions in order to extend the models’ range

of applicability. This has sometimes led to non-minimal or ‘mixed’ interactions which

can blur our understanding of the microscopic determinants of pedestrian motion. We

have now clearly separated two essential mechanisms, as quantified by the intrusion

number In and the avoidance number Av which link the psychological and biomechanical

underpinning with different flow regimes on the level of the whole crowd.

At present, however, only collisions between the hard-cores have been taken into account.

This leads to many instances at which Avi = 0 who have been left aside in the averaged

Av. In reality, the ’softer’ collisions, i.e. the anticipated intrusions into the private

or intimate space, are also avoided. A more sophisticated, non-binary definition of Av
should be able to capture these. This would also lead to a more sophisticated Av-model,

135
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where currently these effects can only be incorporated by choosing a larger size when

calculating the anticipated collisions.

In our empirical analysis, the main focus has been put on asymptotic regimes. When

moving further away from the origin of our ‘phase’ diagram the corresponding regimes

get more and more complex. Thereby, results are difficult to interpret which is related

to the stronger influence of headsways even after applying the Butterworth filter but

also owes to the fact that neither Av nor In can be neglected. This is reflected in the

theoretical description as well: away from the vicinity of the Av and In axis, only the

Av ? In-model was able to replicate the essential features of crowd flow, as evidenced

by the bidirectional flow as well as the intruder scenario at low-density. If the density

is increased in the latter, the perturbative expansion breaks down and can not replicate

the empirical findings.

While this breakdown is sensible for a linear expansion, it also points towards a specific

limitation in the way anticipation is captured by the TTC and thus the Av number.

In particular, the assumption of constant velocities is violated and more sophisticated

anticipation strategies come into play that take into account future accelerations. Such

problems are not only relevant for the intruder scenario, but also for corner-flows which

are inherently ‘non-linear’ and, thus, difficult to replicate in any pedestrian model. In-

terestingly, in both cases, the intruder scenario and corner flows, ‘successful’ modelling

approaches take long term planning into consideration, for instance by factoring in future

costs or through a floor-field. In Appendix D another modelling approach is introduced

which includes more complex anticipation strategies by bridging the gap between tactical

and operational level. Here, each agent plans its trajectory multiple time steps ahead.

The trajectory can here be pictured as a string connecting start and goal through space-

time which the agents can deform or stretch according to their needs. In the presence

of multiple agents, such complex anticipation strategies naturally pose questions related

to game theory, which are much more difficult to solve than traditional modelling ap-

proaches. Developing models based on such elaborate anticipation strategies presents an

important next step in modeling intelligent behaviour. It remains to be seen, if relatively

simple and generic models can nonetheless be obtained that way.

Interestingly, we have encountered a ‘non-linear’ and yet simple anticipation strategy

in the first chapter of this dissertation, namely, the time-gap which is grounded in the

worst-case anticipation that the neighbors may suddenly come to a halt. This quantity is

closely related to the fundamental diagram. To elaborate on this let us quickly summarize

the main results of the first chapter.

Here, instead of trying to understand pedestrian dynamics by looking at the large picture

we have considerably simplified the system by studying single-file motion. This simplicity
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allowed us to closely investigate the meaning of different parameters as well as to unveil

connections between different models. More importantly, we have found that models

based on the TTC (and thus Av) or models grounded in a distance-based repulsion (i.e.,

based on In) are not well suited to describe single-file motion. Models that originate

in vehicular traffic based on the time-gap, on the other hand, capture the essential

properties of single-file motion. This stands in contrast to the line of argumentation

followed above, where we have stated that in most scenarios the dynamics of the agents

are mostly controlled by In and Av. However, we have also found that neither In
nor Av on its own include a mechanism to replicate the fundamental diagram. The

fundamental diagram is however well described by the time-gap which, for instance,

shows the expected scaling behavior between vehicular, bicycle, and pedestrian traffic.

Consequently, we have discussed whether a third dimensionless variable, the Risk-of-

Following number T based on time-gaps could be a third axis of our ‘phase’ diagram.

However, it would still need to prove its empirical relevance in crowds.

The observed similarity between the fundamental diagram of vehicular and pedestrian

traffic, however, seems not to apply for high densities [91] where other effects such as

motivation or biomechanical constraints come into play. Such effects have been empha-

sized in [196] where a forbidden region of the fundamental diagram has been identified

by analyzing pedestrians at different levels of motivation, i.e., from waiting to fleeing

at a bulls’ race. Based on these findings, the same authors proposed a classification

of crowds based on motivation and congestion where each regime is tied to a different

fundamental diagram [197]. These findings strongly indicate that not a single effect or

mechanism governs the emergence of the fundamental diagram but different constraints

and heuristics come into play depending on the regime. This is reflected in the strong

disagreement that exists regarding the maximum flow and the density at which this max-

imum is reached. More notably, the density at which the flow is expected to approach

zero ranges over a large interval [42]. Paying close attention to the multidirectionality of

the flow helped to clarify some of these controversies [147]. Tieing the different shapes

of the fundamental diagram to their psychological and biomechanical underpinning and

thereby to the different regimes of crowd flows would be a crucial next step in developing

a more comprehensive theory of crowd flows.

With regard to regimes at very high In number, a more realistic shape of pedestrians and

mechanical interactions would be needed. In such regimes the naming of the ‘Avoidance

number’ Av becomes ambiguous, because not every anticipated collision can or is tried

to be avoided as we come to realize when studying pushing behaviour at bottlenecks.

The occurrence of physical contact also states a ‘breakdown’ of the analogy between

vehicular and pedestrian traffic which we have drawn in the first chapter. While in the

former collisions are dangerous in any case, they are non-critical or even fun at many
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instances in the latter. This is exemplified by mosh pits at rock-concerts [198] but also

becomes apparent when conducting experiments: many participants are eager to perform

high motivation runs or pushing experiments. Of course, this can switch completely in

cases when the situation becomes potentially hazardous and people can not leave the

crowd at any time. Understanding these regimes is crucial to get insight into hazardous

situations. New experimental methods in crowds like tracking shoulder movement [37]

or even complete body posture [39] as well as measuring contact forces through pressure

sensors [38] have given complementary insights into these regimes. These need to be

facilitated by models for pedestrian streams as well.

Beyond that, other dimensionless numbers can, and certainly should, be introduced to

describe specific features of crowd dynamics such as an analogue of the Mach number

to quantify the propagation of waves or information in crowds. A variant of the Péclet

number (diffusion over advection), which is frequently used to characterize active systems,

e.g., [199], could be defined to account for the variability in the outcome of nominally

similar experiments caused by some unknown parameters. In models this would be

reflected by introducing noise or stochasticity which we only considered in the case of

single-file motion.

Interestingly, such a series of dimensionless numbers would allow to successively depart

from very simple systems to more complex ones: while along the In-axis agents do not

differ from particles subjected to distance-based interactions, Av introduces a velocity

based component in the interaction violating the reciprocity of forces. Paying attention

to effects of limited perception would introduce another violation of that principle, which

has important implications for active systems [200]. This sets the stage for a general the-

oretical study of the statistical physics of pedestrian assemblies. In particular, it should

be tried to derive a macroscopic flow theory by starting from regimes at which Av = 0,

and thus interactions are local. Relaxing that constraint one would face challenges raised

by the non-locality inherent to the Avoidance number. Such a macroscopic flow theory

would be an important step in understanding the fundamental differences between the

diverse active systems.

In terms of practical purposes, the classification of crowds put forward here should be

used as a basis to develop an extended Level of Service concept. It would be better

suited to capture the comfortability but also risk-profiles of real pedestrian facilities.

Apart from that it should be tested as a tool for real-time risk assessment of pedestrian

assemblies: a map showing Av and In as spatially resolved values could help crowd

managers to identify potentially hazardous situations timely.



Afterword

I would like to end with some more general considerations. In many fields of science,

mathematical descriptions have become increasingly important. This is true for crowds,

but also for biology, as exemplified by the growing number of physicists that engage

in its investigation. But also in the social sciences, for example in economics, where

the introduction of game theory was an important step in its transformation into a

mathematical discipline. A quantitative description brings order and objectivity to what

might otherwise be considered a somewhat ‘vague’ social science. This is particularly

valuable in the study of emergent behavior, where relatively simple assumptions lead

to unexpected and complex behavior - this is where the tools of statistical physics and

agent-based modeling seem invaluable.

On the other hand, the use of sophisticated mathematics can just create a sense of preci-

sion and objectivity. Especially for those who are not ‘fluent’ in math or programming,

models are black boxes, that seem to allow, like a magic trick, to predict the outcome

of hypothetical situations. This can be encouraged by the way models are presented: as

scientists are incented to emphasize the ‘usefulness’ of their work and negative results

are generally hard to publish, results can be oversold. More worryingly, in commercial

software, the assumptions are typically proprietary and fancy visualizations may indi-

cate a false level of detail. For example, commercial crowd modeling software typically

visualizes pedestrians as 3d humans including detailed stepping processes even though

the underlying model presumably treats pedestrians as disks navigating in the 2d plane.

Ever since I started thinking about physics outside of its traditional branches, I have

been two-minded about it. With regard to pedestrian dynamics, by writing this thesis,

I am now convinced that employing tools from statistical physics truely facilitates a

deeper understanding of crowds. This conviction could only be established because of

the high quality empirical data that exists for crowds. With respect to other fields,

especially those with fewer experimental opportunities and much more complex initial

and boundary conditions, I remain sceptikally interested in what physics has to offer to

improve our understanding of the world.
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The Fundamental Diagram of the

Social-Force Model

In the main text we have stated that the social-force model, in its simplest form struggles

to replicate the fundamental diagram. In this appendix we will investigate this in more

detail. In particular, we will non-dimensionalize the equations of motion to identify

the essential parameters which determine the fundamental diagram of the homogeneous

solution (cf. the definition in section 3.3.1) in single-file motion.

For simplicity, let us consider the overdamped social-force model given by

vi = vdes − α
∑
j 6=i

kije
−

∆xij−`
rsoc , (A.1)

where the factor kij models an anisotropy in the interaction. The following discussion

applies equally to the second-order social-force model, as long as its homogeneous solution

is stable.

Let us start by noting that, if kij = 1 the homogeneous solution would simply be given

by vi = vdes for all agents i as each agent is equally repelled from the agent in the front

as from the agent in the back.

In single-file motion it is, however, usually assumed that the interaction is restricted to

the agent in front which simplifies the model to

vi = vdes − αe−
∆xi−`
rsoc . (A.2)

Let us identify the essential parameters by non-dimensionalizing Eq. (A.2). As we argue

in more detail in section 3.3.5, a suitable length scale is the agents’ size ` and a suitable
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Figure A.1: The non-dimensional fundamental diagram of the simple social-force
model in the typical representations with π1 = α/vdes varied and π2 = 1, i.e. the size
of the pedestrians is as large as the length-scale at which the interaction decays. The

legend applies for both diagrams.

second scale is the velocity vdes. Inserting these into Eq. (A.2) we arrive at

vi = 1− π1e
−π2(∆xi−1), (A.3)

where we have been able to reduce the number of parameters from four parameters -

vdes, α, `, and rsoc - to two parameters π1 = α/vdes and π2 = `/rsoc. To obtain the

fundamental diagram of the homogeneous solution we simply exchange ρ = 1/∆xi and

obtain

v (ρ) = 1− π1e
−π2(1/ρ−1) and J (ρ) = ρ

(
1− π1e

−π2(1/ρ−1)
)
. (A.4)

Let us start by investigating the influence of π1 = α/vdes which determines the relative

strength between driving force and repulsion. Therefore we will fix π2 = 1, i.e., assume

that the size of the agents equals the length scale of the interactions. The corresponding

fundamental diagrams are depicted in Fig. A.1. It can be seen that, in order to reproduce

the fundamental diagram, one has to chose π1 ∼ 1 as it leads to a vanishing flow at ρ = 1.

Otherwise if any of the two, driving force or repulsion, is predominant either a high flow

is maintained at high densities (dominant driving) or the flow becomes zero for small

densities already (dominant repulsion).

Let us now fix π1 = 1 and vary π2. As it can be seen in Fig. A.2 the capacity in- or

decreases and is reached at larger or smaller densities ρ. If the size of the agents is much

larger than the length of the interaction, the maximum is reached at larger densities ρ

and reaches higher flows and vice-versa if the interaction length is much larger than the
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Figure A.2: The non-dimensional fundamental diagram of the simple social-force
model in the typical representations with π2 = `/rsoc varied and π1 = 1, i.e. the
strength of the driving term is equally strong as the distance based-repulsion. The

legend applies for both diagrams.

size of the agents. If both π1 ∼ 1 and π2 ∼ 1 the resulting fundamental diagram shows

a realistic shape.

Thus, parameters can be chosen to replicate the fundamental diagram of single-file mo-

tion. However, typically the parameter values are chosen quite differently, e.g., π1 = 33

and π2 = 7.5 in [60] or π1 = 33 or π2 = 0.5 in [189]. Accordingly, the fundamental

diagram using the parameters specified in [60] was shown to be unrealistic [30].

Besides, it is highly questionable if one set of parameters can replicate the fundamental

diagram of both single-file motion and a wider uni-directional corridor: due to the super-

position of the repulsion, the number of nearest neighbors in front has a strong influence

on the fundamental diagram in the model. Empirically, however, it has been shown that

there is no significant difference between the fundamental diagram of these two scenarios

[170]. Such effects could be mitigated by taking into account the dependency of space

requirement on the speed, as for instance proposed in [108].



Appendix B

The Harmonic Oscillator

The role of inertia can be understood most easily using the damped harmonic oscillator.

A body or particle is subject to different forces: 1) an elastic or restoring force that is

proportional to the displacement x from the equilibrium position of the body and 2)

a frictional damping force that is proportional to its velocity v = ẋ. The equation of

motion is then given by

m
d2x

dt2
+ γ

dx

dt
+ kx = 0, (B.1)

wherem is the inertial mass of the body and γ and k are proportionality constants for the

frictional and elastic force, respectively. For convenience, one introduces the relaxation

time τ = m
γ and the free oscillation frequency ω2

0 = k
m .

Three different types of solutions of Eq. (B.1) exist, depending on the relative values of

the proportionality constants m, γ and k. The different cases are depicted in Fig. B.1.

1. Underdamped: for k < γ2

4m the body performs an oscillating motion with decreasing

amplitude; the solution has the form x(t) = x0e
−t/2τ sin(ωt + ϕ) where x0 and ϕ

are determined by initial conditions. The frequency ω is smaller than the free

frequency ω0 which is reached in the limit of vanishing damping (γ → 0).

2. Overdamped: for k > γ2

4m no oscillations occur and the body returns exponen-

tially fast to the equilibrium position; the solution then has the form x(t) =

e−t/2τ
(
Aeαt +Be−αt

)
where α depends on k,m, γ and A,B on the initial con-

ditions.

3. Critically damped: for k = γ2

4m the body returns quickly to the equilibrium position;

the solution has the form x(t) = e−t/2τ (A+Bt) with A,B on determined by the

initial conditions.
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Figure B.1: Schematic representation of the behavior in the three regimes of a damped
harmonic oscillator. Red: underdamped, blue: overdamped, yellow: critically damped.

The behavior in the overdamped regime is similar to that without inertia, i.e. for m = 0.

Therefore, the dynamics in this regime is well described by a 1st order equation.



Appendix C

Linear Stability Analysis

In this part of the Appendix we analyze the linear string stability of the model defined

by (FVDM, del). Its equations of motion for N agents on a ring of length L reads

x1(t+ τR) = α (x2(t)− x1(t)− `) + β (ẋ2(t)− ẋ1(t)) ,

...

xN−1(t+ τR) = α (xN (t)− xN−1(t)− `) + β (ẋN (t)− ẋN−1(t)) ,

xN (t+ τR) = α (x1(t)− xN (t) + L− `) + β (ẋ1(t)− ẋN (t)) ,

(C.1)

with α = 1/T and β = τA/T . The equilibrium values ∆xeq = 1/ρ and veq = α(∆xeq− `)
define the equilibrium solution

xeqi (t) = xeqi (0) + tveq for ∀i ∈ [1, N ]. (C.2)

The differences between Eq. (C.1) and Eq. (C.2) are

x̄1(t+ τR) = α (x2(t)− x1(t)) + β (ẋ2(t)− ẋ1(t)) ,

...

x̄N−1(t+ τR) = α (xN (t)− xN−1(t)) + β (ẋN (t)− ẋN−1(t)) ,

x̄N (t+ τR) = α (x1(t)− xN (t)) + β (ẋ1(t)− ẋN (t)) ,

(C.3)

which can be rewritten as a single vector equation

~y(t+ τR) + α~y(t) + β~y(t) = αΛ~y(t) + βΛ~y(t), (C.4)

with ~y(t) = (x̄1(t), ..., x̄N−1(t), x̄N (t))T and Λ the shifting operator, i.e.

Λ~y(t) = (x̄2(t), ..., x̄N−1(t), x̄N (t), x̄1(t))T .
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A linear delayed differential system is solved by a linear combination of exponential

terms. Let us, therefore, assume that

yi(t) = γie
λt for i ∈ [1, N ]. (C.5)

Then the characteristic polynomial is obtained as

λeλτR + α+ βγ − (α+ βλ) εk = 0, (C.6)

with εk = exp (i2π(k − 1)/N). Note that, for k = 1 Eq. (C.6) is solved by λ = 0. For

k ∈ [2, N ], however, the equation can not be solved. Therefore, the critical points with

Re(λ) = 0 are analyzed. Let us write λ = iω and εk = ck + isk = cos (2π(k − 1)/N) +

i sin (2π(k − 1)/N). The characteristic equation Eq. (C.6) can be divided into the real

and imaginary parts as

−ω sin(ωτ) + α (1− ck) + βsk = 0,

ω cos(ωτ) + βω (1− ck)− αsk = 0.
(C.7)

These equations give rise to the critical parameter values

αCR =
ω

2

(
sin(ωτ) + cos(ωτ)

sk
1− ck

)
,

βCR =
1

2

(
sin(ωτ)

sk
1− ck

− cos(ωτ)

)
.

(C.8)

The curves are plotted in Fig. C.1. In contrast to the other models in section 3.3.2, no

curve (α, β)k confines the other curves. The lines intersect and no single line delimits

a region for which stability conditions then might be obtained. The stability depends

on many values of k, i.e., which wavelength is the most unstable depends on the model

parameters. Therefore, a it can not be hoped to obtain a ‘simple’ stability condition.

With the result Eq. (C.8), however, the stability condition can easily be visualized and

numerically be obtained by finding the maximum T for a single τA for all k and large N

as in Fig. 3.8.
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Figure C.1: The critical curves of (τA, T ) with τA = β/α and T = 1/α for τR = 1
and N = 20.



Appendix D

Spin Off: Merging Operational and

Tactical Level

As we have argued in the main text, originally most modelling approaches were based on

a distance dependent interaction. Limitations of such models have led to the proposal of

numerous models which include anticipation in different ways. In that regard, we have

shown, following [82], that the time-to-collision accurately captures anticipation in a way

that is essential in many regimes of crowd flow. However, we have mainly focussed on

the asymptotic regimes, at low In numbers. By studying the intruder scenario we found

that more complex anticipation strategies are needed, in particular the assumption of

constant velocities is violated and, consequently, the observed behaviour can no longer

be modelled based on the TTC.

Another, even simpler, example are corner flows, as investigated, e.g., in [201]. Such ‘non-

linear’ scenarios are often inadequately described by models, in which corners effectively

act as a strong bottleneck, leading to heavy congestions [187]. This is related to (at

least) two factors: the desired velocity is no longer constant but strongly depends on

the position of the agent. This is typically achieved by including a floor-field. Thus,

the models can no longer be purely restricted to the operational level but the tactical

level gains some influence as well. Secondly, and related to that, the assumption of

constant velocities is heavily violated. Consequently, most anticipation strategies fail:

agents struggle to solve conflicts at corners which can lead to an unrealistic reduction of

flow in models.

In this part of the appendix we will discuss some premiliary ideas and results of a quite

different modeling approach. Here we envision the trajectory of each agent as a flexible

string connecting the start and the goal through space-time. Each agent individually
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...
vi−1

vi

...

αi

Start

xi−1
xi

xi+1

Goal

t = 0, (i− 1)δt, iδt, (i+ 1)δt, T

Figure D.1: Illustration of a typical trajectory x ∈ X . Note that the velocities and
angles are completely fixed by chosing the travel time T and the spatial coordinates xi.

adjusts its future trajectory according to some cost-function. Compared to traditional

modelling approaches this means that the agents will plan many time steps ahead.

Let us assume a single agent who wants to navigate in a complex environment through

space-time. She starts from (xStart, t0) and plans to arrive at the goal (xGoal, t0 + T ),

where T denotes the total travel-time. Let X denote the set of all possible trajectories

x and total travel-times T connecting start and goal, discretised in time. In particular,

X = {x = ([x1,x2, ...,xi, ...,xN ], T ) |

xi ∈ R2, x1 = xStart, xN = xGoal and T ∈ R+},
(D.1)

where the subscript i indicates the time, i.e. t = t0 + i · δt and δt = T/N . As mentioned

above trajectories may be pictured as a flexible strings connecting start and goal through

space-time. In order to achieve their goal, to avoid obstacles or areas of discomfort, the

agent can change its route by deforming or stretching the string. In other words, change

her route and velocity. A schematic trajectory is shown in Fig. D.1.

The agents deform or stretch their trajectory by minizing an energy functional. This

functional assigns a scalar-valued energy to each trajectory x ∈ X as

E : X → R, x� E[x]. (D.2)

In our model, the agent will follow the optimal trajectory xFinal which is given by the

minimum of the energy-functional, i.e.

xFinal = min
x∈X

E[x]. (D.3)
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Numerically the optimal trajectory is approximated by applying a gradient descent op-

timisation scheme to an initial guess. In particular, every element of the trajectory is

moved down the energy gradient ∇E with the step-size α until some convergence cri-

terium is met. This corresponds to the iterative scheme

xj = xj−1 − γ∇E[xj−1], (D.4)

where the superscript j indicates the step. If not stated differently, the initial-guess is a

straight line from xStart to xGoal with T = vdes/d where vdes is the desired velocity and

d the euclidian distance between start and goal.

The Energy Functional

This energy functional is given by superposition of different costs. In our case we chose

the following factors

E[x] = EBiomechanics[x] + EGoal[x] + EComfort[x]. (D.5)

The first term corresponds to the biomechanical energy needed to move, the second

represents the desire to reach the goal, and the third quantifies the comfort along the

trajectory. Each of these will be described in more detail below.

The biomechanical energy corresponds to the cost of propulsion. In [202] the energy

consumption of people walking on a treadmill has been measured. The following function

represents as reasonable fit to the obtained data, cf. [182],

f(v) =

7.6v − 35.4v2 for v < 0.1m/s,

0.4 + 0.6v2 else.
(D.6)

Accordingly, we define the biomechanical energy of a trajectory x as

EBiomechanics[x1,x2, ...,xN ] = δt

N∑
i=1

f(|vi|), (D.7)

where the velocity is given by vi = (xi+1 − xi)/δt.

The goal energy incorporates the desire of the agent to reach its goal. It is constructed

from the assumption that, in the absence of any other agents or obstacles the agent

should walk with vdes towards its goal. In particular, if EComfort = 0, the trajectory with
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|vi| = vdes is the global minimum of the energy E. This results in

EGoal[x1,x2, ...,xN ] = αδt
N∑
i=1

(
vdesf

′(vdes)− f(vdes)
)
. (D.8)

The comfort energy is determined by two factors, the avoidance of uncomfortable regions,

and the desire for a smooth trajectory without abrupt changes. The energy is given by

EComfort[x1,x2, ...,xN ] =
N∑
i=1

(
η(xi) · |vi|+ βα2

i

)
, (D.9)

where the angle αi is the angle between the lines from xi−1 to xi and from xi to xi+1.

The field η(x) assigns for each point in space a value between 0 (comfortable) and 1

(uncomfortable). It is multplied by the velocity to account for the fact that agents will

be more cautious in regions of low comfort. Depending on the reason for discomfort

this could be vice-versa. In our case, the field corresponds to the collision probability at

position xi at time t0 + i · δt.

To estimate this probability, assume a disk shaped obstacle of radius rO and a disk

shaped agent with radius r. Let us further assume that the initial position xO is not

perfectly known but subject to some uncertainty. We will model this uncertainty to be

Gaussian with a standard deviation σ. The collision probability between the obstacle

and the agent at position xi is then given by

PC(xi) =

∫∫
|x−(xi−xO)|≤(r+rO)

1

2πσ2
exp

[
−|x− (xi − xO)|2

2σ2

]
dx, (D.10)

where the velocities, or a time-dependent uncertainty could be introduced as well. The

integral in Eq. (D.10) is often studied to estimate the collision probabilities of satellites.

According to [203] it can be approximated by

PC(xi) ≈ exp

(
−|xi − xO|2

2σ2

)
·
[
1− exp

(
−(r + rO)2

2σ2

)]
. (D.11)

Let us now define the field η(xi) by combining the collision probabilities of all (moving)

obstacles. In especially

η(xi) =
∑
k

P kC(xi)−
∑
k,l>k

(
P kC(xi) · P lC(xi)

)
. (D.12)

Thereby we have defined all factors that determine our energy functional in Eq. (D.5).

Let us now test the model.
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Results

Let us test our model in a simple scenario, i.e. a static obstacle placed in the centre of

a narrow corridor, as it was empirically conducted in [204]. In Fig. D.2 the field η(x)

is visualized with the optimal trajectory in (a) and the convergence of the numerical

scheme is shown in (b). Finally we have chosen the parameters such that the resulting

trajectory matches the experimental results reasonably well, cf. (c).1

Let us now take a second minimal example, namely a single agent that moves around

a corner. As an input we will be using the experimental data from [164] and keep

the parameters the same as above. The results are depicted in Fig. D.3 - our model

reasonably well aligns with the empirical trajectory.

Even though the development of this model is still in a very early stage, the results

are quite promising. Arguably, the model is unfinished and multiple interacting agents

are not included yet. While it is straightforward to incorporate agents into the energy

functional defined above, close attention will have to be paid to the update procedure.

So far, we have dealt with a single agent only, therefore it does not make a difference

whether the trajectory is planned once, from the beginning to the end, or if the agents will

make corrections during walking. In the presence of unexpected changes, e.g. reactions

from other agents due to the trajectories that has been chosen such questions will arise.

Essentially, so far we faced an optimal control problem, whereas in the presence of other

agents the model will become a differential game. This will raise questions of Nash

Equilibria or solutions with imperfect knowlegde. Such considerations might be needed

if complex anticipation strategies in crowds ought to be modelled in future.

1The following parameter have been used vdes = 1.29m/s, δt = 0.2s, α = 1, β = 0.125, σ = 0.3,
r = 0.15m and γ = 0.0001.



Appendices 153

(a) The Field η(x) and xFinal

(b) The convergence of the numerical procedure

(c) Experimental data and xFinal

Figure D.2: The proposed model applied to a corridor with a static obstacle in the
centre, as empirically investigated by [204]. In (a) We display the field η(x), where
grey corresponds to η(x) = 0 (comfortable) and yellow to η(x) = 1 (uncomfortable).
The black line represents the optimal trajectory which discretization is indicated by the
black circles. In (b) the convergence of the numerical procedure is verified. In (c) the
result (red) is compared to the empirical data, i.e., the mean trajectory (yellow) with

its standard deviation indicated by the dashed line.
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Figure D.3: Single agents walk around a corner. The yellow lines correspond to
different single agents going around the corner. Note that each pedestrian individually

walked around the corner. The red line depicts the result of the proposed model.
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