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Abstract

The field of spintronics is poised to transform technology with faster, more efficient, and

energy-saving devices by exploring magnetic nanostructures for miniaturization. This thesis

uses a multi-scale modeling approach, combining density functional theory and atomistic

spin dynamics to study topological antiferromagnetic (AFM) spin-swirling textures in thin

films. These textures are seen as ideal dynamic bits for information transmission and stor-

age, offering advantages over ferromagnetic (FM) solitons. While progress has been made

in synthetic AFM multilayers, the observation of intrinsic AFM solitons within film geom-

etry remains elusive. The thesis predicts a realistic combination of ultrathin films capable

of hosting a variety of intrinsic topological AFM solitons with unique properties, exploring

their emergence mechanisms, stability, response to stimuli, and dynamics.

In our study, we choose transition metal layers that are expected to be AFM such as Cr and

Mn, interfaced with Ir(111) surface, to investigate the formation of AFM solitons. We predict

the emergence of intrinsic single and, surprisingly, interchained AFM skyrmions in the row-

wise AFM (RW-AFM) ground state of a Cr layer on PdFe/Ir(111) surface. The stabilization

mechanisms involve Heisenberg exchange interactions, Dzyaloshinskii-Moriya interactions,

and magnetocrystalline anisotropy. The energy barriers and the overlap of AFM skyrmions

are also explained. Then, we take a step further by developing a generic atomistic spin model

with the minimum magnetic interactions required to stabilize those AFM skyrmions. This

model enhances the understanding of the complex phase behavior of AFM skyrmions, show-

ing their sensitivity to diverse magnetic interactions and external magnetic fields. When Cr

is replaced with a Mn layer, a new type of AFM solitons, frustrated multi-meronic textures

such as hexa-merons and tri-merons, are observed in different configurations of Mn based

systems. We delve into the mechanisms underlying their emergence, investigate their proper-

ties and how different topological charges influence their response to external magnetic fields.

The study also explores the dynamics of AFM skyrmions under the influence of a spin-

polarized current-perpendicular-to-plane. Anisotropic skyrmion Hall effect is observed, re-

sulting from the elliptical shape of these AFM skyrmions. Additionally, the interaction

between FM and AFM skyrmions influences the trajectories of AFM skyrmions, creating a

complex hybrid interaction profile.

Finally, we propose a bottom-up approach for the construction of topological magnetic tex-

tures in diluted structures made of Cr, Mn or Fe adatoms on Nb(110) surface and demon-

strate the manifestation of a rich set of topological spin-textures of FM and AFM nature.





Zusammenfassung

Die Spintronik ist ein vielversprechendes Gebiet, dass eine technologische Revolution durch

die Erforschung magnetischer Nanostrukturen für die Miniaturisierung von Geräten hervor-

bringen könnte. In dieser Dissertation wird ein Multiskalen-Modellierungsansatz verwendet,

der die Dichtefunktionaltheorie und atomistische Spindynamik kombiniert, um topologis-

che antiferromagnetische (AFM) Spin-Wirbel-Texturen in dünnen Filmen zu untersuchen.

Diese AFM-Texturen gelten als ideale dynamische Bits für Informationsübertragung und

-speicherung und bieten Vorteile gegenüber ferromagnetischen (FM) Solitonen. Obwohl

Fortschritte bei der Erforschung von synthetischen AFM-Multischichten gemacht wurden,

ist die Beobachtung intrinsischer AFM-Solitonen innerhalb der Filmgeometrie nach wie

vor schwierig. In dieser Arbeit zeigen wir jedoch, dass ultradünne Filme aus bestimmten

Übergangsmetallen eine Vielzahl intrinsischer topologischer AFM-Solitonen mit einzigarti-

gen Eigenschaften beherbergen können.

In dieser Dissertation untersuchen wir die Bildungsmechanismen, Stabilität, Reaktion auf

Stimuli und Dynamik dieser AFM-Solitonen. Wir verwenden Übergangsmetallschichten wie

Cr und Mn, die mit der Ir(111)-Oberfläche verbunden sind, um die Bildung von AFM-

Solitonen zu untersuchen. Wir sagen das Auftreten von einzelnen und verketteten AFM-

Skyrmonen in einer Cr-Schicht auf der PdFe/Ir(111)-Oberfläche voraus. Wir erklären auch

die Stabilisierungsmechanismen und die Energiebarrieren dieser AFM-Skyrmionen. Darüber

hinaus entwickeln wir ein generisches atomistisches Spinmodell, welches das Verständnis

vom komplexen Phasenverhalten von AFM-Skyrmionen verbessert und ihre Empfindlichkeit

gegenüber verschiedenen magnetischen Wechselwirkungen und externen Magnetfeldern

aufweist. Wenn Cr durch eine Mn-Schicht ersetzt wird, entsteht eine neue Art von AFM-

Solitonen: frustrierte multi-meronische Texturen wie Hexa-Meronen und Tri-Meronen. Diese

Dissertation untersucht auch die Dynamik von AFM-Skyrmionen unter dem Einfluss eines

spinpolarisierten Stroms. Es wird ein anisotroper Skyrmion-Hall-Effekt beobachtet, der sich

aus der elliptischen Form dieser AFM-Skyrmionen ergibt. Darüber hinaus beeinflusst die

Wechselwirkung zwischen FM- und AFM-Skyrmionen die Trajektorie der AFM-Skyrmionen,

was zu einem komplexen hybriden Wechselwirkungsprofil führt.

Im letzten Teil dieser Dissertation wird ein Bottom-up-Ansatz für die Konstruktion topologis-

cher magnetischer Texturen in verdünnten Strukturen auf der Nb(110)-Oberfläche vorgeschla-

gen und gezeigt, dass eine Vielzahl von topologischen Spin-Texturen mit FM- und AFM-

Charakter erzeugt werden kann. Dies könnte neue Möglichkeiten für die Konstruktion von

magnetischen Speicher- und Informationsübertragungsgeräten eröffnen.
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1. Introduction

In the ever-evolving landscape of our digital age, information technology holds a dominant

position. Its essence lies in the skillful manipulation, storage, and interpretation of extensive

data reserves. We live in an era where we generate an astounding amount of data daily,

emphasizing the vital need to find new ways of storing and manipulating this torrent of

information effectively. In the realm of technological advancement, particularly over the last

few decades, commercially-used devices have undergone significant transformations. This

evolution has been driven by the persistent pursuit of making electronic circuit elements

smaller, with the transistor leading the way. However, there is a fundamental limit to how

small these components can become because they depend on the charge of electrons [1, 2].

This constant miniaturization now approaches a critical point. Evidence of this slowdown

is apparent in Moore’s Law [3], which raises concerns about the future of charge-based elec-

tronic progress. An ever-growing worry accompanies this trend: as transistors become faster

and smaller, they produce more heat due to increased energy dissipation through Joule heat-

ing [4]. Over the last few decades, the scientific community has been exploring not only the

charge but also the spin of electrons in electronic devices, giving rise to the field of spin-

tronics. In spintronics, information is transported via the spin of electrons, rather than the

electrons themselves, thus mitigating the generation of Joule heat. This principle has led

to the development of various applications, including logic devices in the data storage field.

The monumental breakthrough in spintronics came with the revelation of the giant mag-

netoresistance (GMR), independently discovered by Grünberg et al. [5] and Fert et al. [6].

This important discovery marked the beginning of spintronics and won Grünberg and Fert

the Nobel Prize in 2007. GMR’s core principle hinges on the strong dependence of the resis-

tance on the relative magnetic orientation of two ferromagnetic (FM) layers, separated by a

non-magnetic spacer. In modern magnetic hard disk drives (HDDs), this ingenious concept

finds practical application. Here, a single bit of information is encoded in the alignment of

FM domains, which can be read via the remarkable GMR effect and its close relative, tunnel

magnetoresistance (TMR) [7, 8, 9], where the spacer is insulating instead of being metallic.

The traditional method of storing data in HDDs relies on the concept of magnetic domains,

where regions of opposite magnetization, known as FM domains, define magnetic bits. This

conventional approach necessitates a considerable number of atoms to create a single domain.

This requirement not only limits storage capacity but also results in significant energy con-

sumption, primarily due to the intricate movement of the hard disks magnetic tip. Recent

interest has been directed toward alternative forms of magnetic order that offer advantages
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over ferromagnets. Antiferromagnetic (AFM) materials, where the magnetic moments of

adjacent atoms are antiparallel rather than parallel, exhibit much faster spin dynamics and

are resilient to potentially destabilizing external magnetic fields, absence of stray fields and

general abundance in nature [10, 11, 12]. Experimental evidence has demonstrated that

lower electric currents are required to manipulate the magnetic state in such materials [11].

Moreover, in the pursuit of miniaturizing magnetic bits, a new frontier emerges – the realm

of complex magnetic textures. These intricate magnetic structures hold great potential for

future spintronic devices as they enable the control of increasingly smaller magnetic domains.

Among these complex textures are localized twists in the orientation of magnetic moments

within FM materials, distinguished by non-trivial winding numbers. Notable examples in-

clude skyrmions [13, 14], biskyrmions [15, 16, 17], hopfions [18, 19, 20], chiral bobbers [21, 22],

skyrmionic cocoons [23], and even merons [24, 25]. What sets them apart is their inherent

mobility, their stability and compact size, sometimes down to a few nanometers or atomic

distances [26, 27], which allow them to serve as carriers for magnetic bits. [28, 29]. Indeed,

these noncollinear structures, characterized by their intriguing topology, exhibit remarkable

transport properties and can be propelled by electric currents [30, 31, 32, 33, 34], akin to

domain walls. These concepts have given rise to innovative racetrack-like devices [28, 35, 36],

expanding upon the original idea based on FM domain walls [37].

Skyrmions, named after British physicist Tony Skyrme [38], were initially conceived as topo-

logically protected particles to explain phenomena in nuclear physics. Surprisingly, these

exotic entities found their place not only in the microscopic world of hadrons but also in the

realm of magnetic materials [39, 13, 14, 40, 41]. Their origins are attributed to several mi-

croscopic mechanisms. These mechanisms include the competition between FM Heisenberg

exchange interaction and the antisymmetric exchange interaction, commonly known as the

Dzyaloshinskii—Moriya interaction (DMI) [42, 43], which emerges in inversion-symmetry-

broken systems with large spin-orbit coupling (SOC) either at interfaces of thin-film lay-

ers [40, 44, 27] or in bulk materials with chiral or polar structures [13, 14, 45, 46]. Magnetic

frustration [47, 48, 49], and magnetic dipolar interactions [50] also contribute to their forma-

tion. One defining characteristic of skyrmions is their topological charge (N), often referred

to as the ”winding number” [51, 41]. In contrast to topologically trivial magnetic textures

like ferromagnets or spin spirals where their topological charge is zero, skyrmions possess a

finite integer charge N, endowing them with topological non-triviality and protection [52].

The latter leads to a topological barrier that prevents continuous deformation into magnetic

textures of a different topological nature. Skyrmions exhibit a solitonic nature, combining fi-

nite extension with particle-like motion and interaction, rendering them appealing for future

spintronics devices [41, 53, 54]. Moreover, skyrmions offer energy-efficient mobility and exci-

tations, requiring orders of magnitude lower current densities compared to moving magnetic

domain walls [30, 55]. Their non-collinear spin texture gives rise to emergent electromagnetic

fields [56], leading to phenomena like the topological Hall effect (THE), which provides an
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electric signature of magnetic skyrmions [57, 58]. These intriguing properties make skyrmions

a captivating subject of research with significant potential in various technological applica-

tions. Skyrmions, with their unique properties, have ignited a blaze of scientific curiosity.

These structures, first envisioned in the work of Bogdanov and Yablonskii [59, 39], have since

become the subject of extensive research [13, 60, 14, 40, 55, 28, 61, 62, 63, 54, 64, 65].

However, as the landscape of future nanotechnologies comes into focus, it becomes apparent

that the requirements are stringent. The generation of information bits, though a crucial

step, is just one facet. Efficiency in reading, control, and power consumption stands as

equally vital considerations [54, 66]. The miniaturization of FM skyrmions, for instance,

faces hurdles due to the presence of dipolar interactions [67, 68]. The stabilization of these

structures often necessitates the application of external magnetic fields [62], rendering them

less desirable for certain applications. The unwanted skyrmion Hall effect (SkHE), a conse-

quence of the Magnus force deflecting FM skyrmions when driven with a current, complicates

the precise control of their motion where FM skyrmions exhibit a complex dynamical behav-

ior in response to applied currents, further accentuating the challenges [41, 69, 32, 70, 33].

The presence of defects introduces an additional layer of complexity, hindering the practical

implementation of FM skyrmions in real-world devices [71, 72]. It is against this backdrop

of challenges and limitations that we turn our attention to an alternative: AFM skyrmions.

AFM skyrmions are expected to resolve several of the previous issues and offer various advan-

tages. Indeed, AFM materials being at the heart of the rapidly evolving field of AFM spin-

tronics [11] are much more ubiquitous than ferromagnets. The compensated spin structure of

AFM skyrmions inherently forbids dipolar interactions, which should allow the stabilization

of rather small skyrmions while enhancing their robustness against magnetic perturbations.

Moreover, the predicted disappearance of the Magnus force, which triggers the SHE, would

then enable a better control of the skyrmions motion [73, 74], which has been partially illus-

trated experimentally in a ferrimagnet [64, 75]. AFM skyrmions were predicted early on using

continuum models [76], followed with multiple phenomenology-based studies on a plethora

of properties and applications, see e.g. Refs. [77, 78, 73, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88].

The landscape of topological magnetism took a significant step forward with the experimental

stabilization of synthetic AFM skyrmions [89, 68] just before I started my PhD in 2020. Syn-

thetic AFM skyrmions are composed of two FM skyrmions realized in distinct magnetic layers

and antiferromagnetically coupled through a non-magnetic spacer layer [89, 68, 90, 91, 92]. In

contrast to the synthetic ones, an intrinsic AFM skyrmion is a unique magnetic entity since it

is entirely located in a single layer. However, the observation of intrinsic AFM skyrmions has

so far been elusive, in particular at surfaces and interfaces, where they are highly desirable

for racetrack concepts. Whereas, intrinsic complexes involving AFM meronic spin-textures

(complexes made of half-skyrmions) were recently detected in bulk phases [93, 94, 95].

In the realm of two-dimensional FM systems, merons exhibit a unique behavior, primarily
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existing in pairs or groups [96, 97, 98, 99], hence, offering more topological states than con-

ventional skyrmions, which makes them an important focus in fundamental quasi-particle

research as well as topology-based computing approaches, distinguishing them from their

skyrmionic counterparts. These merons, in essence, enrich our understanding of topologi-

cal spin textures, offering a different perspective on their formation and behavior. Regu-

lar FM merons are in-plane magnetized textures with magnetization that curls around a

stable core pointing out-of-plane (OOP), and are topologically equivalent to one half of a

skyrmion [96, 97, 100, 98, 101, 25, 102, 103, 104, 105]. The topological charge of a single

FM meron equals ±1
2
.

Despite the extensive research on topological AFM solitons, a pristine ultrathin film material

that hosts AFM skyrmions remains challenging to find. It is the aim of this PhD thesis to

investigate the emergence of intrinsic AFM spin textures in ultrathin magnetic films utilizing

the density functional theory (DFT) principles in combination with atomistic spin dynamics

(ASD) simulations. We carried out a systematic procedure to investigate the formation of

such AFM solitons in magnetic layered systems grown on Ir(111) surface with face-centered

cubic (fcc) stacking, which is known to facilitates the formation of FM skyrmions, such as

when PdFe bilayer is deposited over (see Fig. 1-1).

Ir(111)
Fe
Pd

a b

Figure 1-1.: PdFe/Ir(111) system. Schematic representation of PdFe/Ir(111) magnetic
layered system a, where nm-sized FM skyrmions have been experimentally ob-
served to emerge in the Fe layer as depicted in b. Panel b has been adapted
from Ref. [106], with permission from the American Physical Society.

Our strategy involves interfacing the Ir(111) surface with thin magnetic layers composed

of 3d elements (V, Cr, and Mn), which are expected to be of AFM nature. We explored

various combinations of these layers (as depicted in Fig. 1-2). The AFM layers could be

directly interfaced with the Ir substrate, covered with a Pd overlayer, or separated with a

PdFe bilayer and Pd2Fe trilayer. Among the 3d elements, Cr and Mn emerged as promising

candidates to host topological AFM spin-textures, which is the key focus of this thesis. The

V ultrathin film turned to host magnetic interactions favoring ferromagnetism, and therefore

it is disregarded in our reported investigations.
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a

Ir(111)
Fe
Pd
X

Ir(111)
Fe
Pd
Pd
X

Ir(111)
X

Ir(111)
X
Pd

X

b

dc

Figure 1-2.: Configurations of the different inspected magnetic layered thin films
potentially hosting AFM spin-textures. a-d Representation of X/Ir(111),
PdX/Ir(111), XPdFe/Ir(111), and XPd2Fe/Ir(111), respectively. Where X is
either V, Cr or Mn layer.

The thesis is structured in the following manner. In chapter 2 we introduce the topological

solitons discussed in this PhD thesis (skyrmion and merons). First, we discuss some fun-

damental concepts in magnetism. Then we delve into aspects pertaining to non-collinear

magnetism, where we introduce in more detail skyrmions and merons.

Chapter 3 serves as the theoretical foundation for this thesis, introducing essential con-

cepts and methods employed in our investigations. This chapter is twofold, the first section

sheds light into the main ab initio principles utilized in the thesis, which are implemented

in the widely used pseudo-potential DFT code, Quantum Espresso, and the all-electron

full-potential Korringa-Kohn-Rostoker green function method based code (KKR), which has

been developed in our institute (PGI-1) in Jülich research center. Subsequently, we elucidate

the multi-scale modelling approach, which hinges on the mapping of the magnetic interac-

tions pertaining to an extended Heisenberg Hamiltonian from our ab initio simulations. This

is realized via the connection between the system’s Green function, exchange splitting and

spin-orbit coupling, to the parameters governing the Heisenberg exchange interaction and

the DMI through the application of the infinitesimal rotations method [107, 108]. In the

second section, we introduce the ASD principles, implemented in the Spirit code, which

are utilized to handle the extended Heisenberg Hamiltonian and its minimization via the

Landau-Lifshitz-Gilbert (LLG) equation. Additionally, we present the scheme simulating

the spin transfer torque (STT) method that we used to investigate the spin-polarized in-
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duced dynamics of AFM skyrmions.

In chapter 4, we predict the emergence of single and interchained intrinsic AFM skyrmions

in a Cr layer deposited over PdFe/Ir(111). The lattice of triangular nature is characterized

by a row-wise AFM (RW-AFM) ground state, which is dictated by the underlying competing

magnetic interactions. The building-blocks of the unveiled AFM skyrmions emerge within

four sublattices associated to the two-dimensional hexagonal lattice. We analyse the mech-

anisms giving rise to the skyrmions and their overlapping. Additionally, we investigate the

impact of external magnetic fields and explore their thermal stability. Phase diagrams are

presented, illustrating the range and influence of Heisenberg exchange interaction strengths,

DMI, and magnetocrystalline anisotropy energy.

Moving to chapter 5, motivated by our findings in chapter 4 we develop a generic Heisenberg

spin model that encapsulates the minimum magnetic interactions required for the formation

of single and interchained AFM skyrmions on a triangular lattice. This model serves as a

valuable tool to design materials capable of hosting these AFM solitons. The model enables

the exploration of phase diagrams of a larger parameters range than done in chapter 4.

Chapter 6 is devoted to the investigation of a Mn layer interfaced with Ir(111). In contrast

to the Cr case, here different interface combinations involving the presence of Pd, PdFe or

Pd2Fe films, show the emergence of topological AFM states. The ground state is found

to be a Néel state with an in-plane orientation of the magnetic moments due to magnetic

frustration and the presence of a finite perpendicular component of the DMI vector, which

enforces the moments to rotate in the surface plane. This Néel state hosts a unique type of

frustrated AFM multi-meronic spin textures, which spread into three FM sublattices, each

hosting FM meron pairs, giving rise to rich combinations of topological charges, which dif-

ferentiates them from the AFM skyrmions discussed in chapter 4. We discuss the stabilizing

mechanisms of the frustrated multi-merons and their response to an external magnetic field

before providing a simple model with the minimum set of magnetic interactions.

In chapter 7, we delve into the intricate dynamics of single and interchained AFM skyrmions

reported in chapter 4. In contrast to the usual expectations, our AFM skyrmions are found to

show a finite SkHE, which we trace back to their elliptical shape. By injecting perpendicular-

to-plane spin currents, we demonstrate the controllability of both SkHE magnitude and

skyrmion velocity based on the polarization direction of the applied current. Notably, we

identify specific orientations where AFM skyrmions remain unaffected by the Magnus force.

Additionally, we discuss the hybrid AFM-FM skyrmion interactions, which is of an attrac-

tive nature, due to the presence of FM skyrmions at the Fe-interface. This gives rise to the

scattering of the AFM skyrmions in the Cr layer. The Fe skyrmions trigger effective traps

that enrich the energy profile felt by the AFM skyrmions.

In chapter 8, we propose a bottom-up approach for the construction of topological magnetic



7

textures in diluted structures made of Cr, Mn or Fe adatoms on Nb(110) surface and demon-

strate the emergence of topological spin-textures of FM and AFM nature.

Finally, the last chapter draws conclusions and summarizes the results presented in the

thesis.





2. Topological spin textures: Skyrmions

and merons

2.1. Origin of magnetism
The study of magnetism has deep historical roots, with magnetic phenomena known since an-

cient times. Magnetic materials have played an essential role in technological advancements,

revolutionizing fields from navigation with the magnetic compass to data storage such as

hard disk drives. Despite these early practical applications, the fundamental understanding

of the origin of magnetism came much later, in the 19th century. To comprehend the origin

of magnetism, it is essential to explore the microscopic world of atoms and their magnetic

properties.

Magnetism emerges from the quantum properties of electrons that carry a spin and an orbital

angular momentum, which give rise to, respectively, a spin and orbital magnetic moments

m = mS +mL = −1

ℏ
µB (L+ geS) , (2-1)

where µB is Bohr magneton, given by eℏ
2me

in SI units with me, ℏ represent the electron mass

and reduced Planck constant separately, while ge is the Landé g-factor. The magnetic mo-

ments follow Hund’s rules at the atomic level. First, electrons must occupy the orbitals that

maximize the spin angular momentum S. Consequently, each orbital in a subshell is initially

occupied by a single electron with parallel spins before any orbital is doubly occupied. This

principle minimizes Coulomb repulsion among electrons within the same subshell. For a

given value of S, the orbital angular momentum L is maximized. The total angular momen-

tum J is determined by the relationship J = |L − S| if the subshell is less than half-full, or

J = L + S if it is more than half-full. When the subshell is half-full, L equals zero, leading

to J = S. Thus atoms with half-filled d-shells as those explored in this thesis are expected

to carry weak orbital magnetic moments.

Once atoms are brought together to form a solid, the tendency to form a magnetic material

is less common than for isolated atoms. Hybridization phenomena of the electronic states

enable the delocalization of electrons, which reduces the ability of a material to become

magnetic. In a metal, for example, the Stoner criterion [109] relates the emergence of mag-

netism to the condition Iρ(εF ) > 1, meaning that the product of density of states at the

Fermi energy ρ(εF ) of the non-magnetic phase with the intra-atomic exchange interaction I,
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which is tightly connected to electronic correlations, must be larger than one. If the crite-

rion is fulfilled, a magnetic instability occurs, driving the system to magnetic ordering, which

induces an exchange splitting in the electronic states between the majority and minority spin-

channels given by ∆ = ImS. Moreover, in a solid made of transition elements for example,

orbital magnetic moments tend to be quenched and are much weaker than the spin moments.

While the focus of the thesis is based on an atomistic description of magnetism, it is impor-

tant to highlight that another common concept utilized in micromagnetism is that of the

magnetization, which is defined as the volumetric density of magnetic moments and it can

be written as:

M(r) =
dm

dV
, (2-2)

and used at much larger length scales than that of atoms.

Magnetic materials exhibit different types of magnetic arrangements. The most fundamen-

tal one is the ferromagnetic (FM) state where all magnetic moments are parallel to each

other and point along the same direction. In the antiferromagnetic (AFM) case, adjacent

moments (m1 and m2) with equal magnitudes are antiparallel. That is the atoms are spread

int two sublattices (L1, and L2). Transition elements with half-filled d-shells tend to be

AFM [110, 111] and are therefore at the heart of the investigations carried in the thesis.

Some materials have even more intricate structures, like canted magnetic moments creating a

noncollinear configuration as seen in spin spirals and skyrmion lattices, which will be further

discussed in this chapter. In spin spirals, the magnetic moments rotate around a fixed axis

along a given direction. A skyrmion lattice [39, 13], on the other hand, emerges by combining

multiple spin spirals, each having a distinct rotational axis. Additionally, isolated skyrmions

can manifest as localized disruptions in a uniform magnetic field. Non-collinear magnetic

structures can be found in various systems characterized by competing magnetic interactions.

Chiral magnets are of particular interest among these non-collinear structures, marked by

the presence of the antisymmetric exchange interaction known as Dzyaloshinskii-Moriya in-

teraction (DMI) [42, 43], which is finite whenever spin-orbit coupling (SOC) is present and

inversion symmetry is broken as it happens at various interfaces involving heavy elements

and magnetic films. These materials exhibit a unique feature—fixed sense rotation of mag-

netization tied to the crystal lattice’s chirality, resulting from the competition between the

Heisenberg exchange interaction (Jij) favoring parallel spin alignment and the DMI. Under

specific conditions, chiral spin spirals can undergo a transition to form non-trivial topological

entities denoted as magnetic skyrmions. In our study, we are discussing the emergence of

non-collinear magnetic solitons namely skyrmions and merons in AFM materials.
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2.2. Skyrmions

The concept of ”skyrmion” finds its origin in baryonic field theories, initially representing

solitonic solutions proposed by Tony Skyrme within his model describing low-energy inter-

actions between mesons and baryons [38]. In the realm of condensed matter physics, the

term ”magnetic skyrmion” was later introduced by Bogdanov and his colleagues [39]. These

magnetic skyrmions are two-dimensional, non-collinear magnetic spin structures localized in

space, often enabled by the DMI [42, 43]. DMI is present in systems with large SOC and

broken inversion symmetry, favors non-collinear spin configurations. Notably, DMI can also

be induced in centrosymmetric crystals if their symmetry is disrupted by external factors,

such as interfaces in thin magnetic films [112]. Based on the nature of the DMI present

in the material, several types of skyrmions are stabilized, including Néel [40], Bloch [13],

and antiskyrmions [113] as shown in Fig. 2-1. These different skyrmion types offer versatile

platforms for studying various aspects of condensed matter physics and magnetism, making

skyrmions intriguing objects of study. The experimental observation of skyrmions occurred

15 years ago, initially in bulk chiral magnets, followed quickly with their discovery in mag-

netic thin films [40]. Magnetic skyrmions exhibit unique behaviors. They can be manipulated

by spin torques driven by spin-polarized currents [28, 31, 36, 35], making them promising

candidates for applications in spintronics, data storage, and logic devices. Their stability

and robustness, stemming from topological properties, make them compelling choices for

future technological advancements in spintronics. The concept of topology plays a central

role in understanding the stability of skyrmions by providing effectively an energy barrier

that protects them from a continuous deformation into a topologically trivial state, e.g. the

FM state, similar to a knot in a rope that cannot be untied without cutting. Topology is

quantified by the winding number or topological charge [51] discussed in the next subsection.

2.2.1. Topological definition of skyrmions
In the micromagnetic limit, the topological charge (N) is defined by the mixed product

involving the magnetization [51], which quantifies a solid angle summed up over the whole

two-dimensional spin-texture:

N =
1

4π

∫
n ·
(
∂n

∂x
× ∂n

∂y

)
dxdy , (2-3)

which measures how often the non-collinear magnetization texture wraps around a unit

sphere. Here, n = M
|M| is the normalized magnetization vector. This vector may be repre-

sented in spherical coordinates utilizing the symmetry of skyrmionic textures as:

n(r) = [cosΦ(φ) sinΘ(r), sinΦ(φ) sinΘ(r), cosΘ(r)], (2-4)

where the polar angle Φ(φ) of the magnetization depends on the polar angle φ of the position

vector r and Θ(r) depends on the length r of the position vector r. We can rewrite the
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equation of topological charge from Eq. (2-3) as [41]:

N =
1

4π

∫ ∞

0

dr

∫ 2π

0

dφ
∂Φ(φ)

∂φ

∂Θ(r)

∂r
sinΘ(r) = − 1

2
cosΘ(r)

∣∣∣∣∞
r=0

· 1

2π
Φ(φ)

∣∣∣∣2π
φ=0

(2-5)

= p . w (2-6)

p, known as polarity, and w, referred to as vorticity, jointly determine the topological charge.

Polarity specifies the orientation of the magnetization at the core of the spin texture, indi-

cating whether it points upward, or downward. On the other hand, vorticity characterizes

the sense of rotation within the in-plane magnetic texture. Therefore:

• Polarity: p can take values of +1 or -1, representing either an upward or downward

core magnetization orientation.

• Vorticity: w can have values of 0, ±1, ±2, and so on, indicating various degrees of

in-plane magnetic rotation.

This implies that the value of N can vary between 0, ±1, ±2, and so on, contingent upon

the particular interplay of polarity and vorticity. Examples of skyrmions carrying different

topological charges together with the associated projection of the underlying spin-texture on

the surface of a unit sphere are illustrated in Fig. 2-1.

In the case of a discrete atomic lattice, the topological charge defined in the micromagnetic

limit as presented in Eq. (2-3) needs to be replaced by:

N =
1

4π

∑
l

Al (2-7)

with

cos

(
Al

2

)
=

1 + ni · nj + ni · nk + nj · nk√
2 (1 + ninj) (1 + njnk) (1 + nkni)

, (2-8)

where l runs over all elementary triangles of any triangulated regular lattice and Al is

the solid angle, i.e., the area of the spherical triangle with vertices ni,nj, and nk; see

Fig. 2-2 as described in [114]. ni,nj, and nk are the unit vectors of the magnetic mo-

ments associated to the building-blocks triangles. The sign of Al is determined as sign

(Al) = sign [ni · (nj × nk)].

Two magnetic configurations are considered to be topologically equivalent if they share the

same topological charge. This implies that it is possible to continuously transform one into

the other without having to overcome an infinite energy barrier. The uniformly magnetized

state, like the FM or AFM state, holds a topological number of zero, so it is coined as topo-

logically trivial state. In contrast, different types of skyrmions exhibit an integer topological

charge of 1 or -1, designating them as ”topologically non-trivial.” As a result, they cannot be

continuously transformed into the uniform state by continuous deformation. This property
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(-1,+1,-1) (-1,+1,-1) (+1,-1,-1)

Néel skyrmion Bloch skyrmion Anti-skyrmion

a b c

d e f

AntiskyrmionBloch skyrmionNéel skyrmion

Figure 2-1.: Different types of skyrmions. Schematic illustration of a Néel, b Bloch and
c antiskyrmion with their associated topological charge, polarity and vorticity,
i.e. (N, w, p). d, e, f Projection of the different skyrmionic spin-textures onto
the surface of a unit sphere.

is what classifies them as ”topologically stable”.

Skyrmions emerging in a FM background, FM skyrmions, characterized by a distinct topolog-

ical charge, exhibit the skyrmion Hall effect (SkHE) directly proportional to the topological

charge under the influence of spin-polarized currents (Fig. 2-3 a). When skyrmions are sub-

jected to an electric current, the skyrmions do not simply move along the direction of the

current; instead, they also exhibit a transverse motion perpendicular to the direction of the

current, which arises due to the interplay between the unique spin structure of skyrmions

and the flow of electric charges. In essence, as the electric current flows through the material,

it interacts with the magnetic moments of the skyrmions, exerting a force perpendicular to

both the current and the magnetic orientations of the skyrmions (Magnus force). This force

causes the skyrmions to drift sideways, leading to their transverse motion [41, 115, 33, 70].

This phenomenon has spurred considerable interest in exploring the AFM counterparts of

skyrmions [76, 77, 11, 78, 73, 79, 80, 86, 87, 88, 81, 82, 83, 84, 85], wherein two oppositely

cored FM skyrmions combine in an AFM arrangement (see Fig. 2-3 b and Fig. 2-4 ), re-

sulting in a total topological charge of zero. This renders them as ’Topologically neutral’

entities [116]. The concept of topological neutrality pertains to magnetic structures with an

effective net zero topological charge. It involves summing two opposing individual skyrmion

numbers, each scaled by its corresponding saturation magnetization. AFM skyrmions can
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Figure 2-2.: Topological charge on a discrete lattice. An illustration of a portion of a
hexagonal magnetic spin lattice that exemplifies how the elementary topological
charges are defined on a discrete lattice. The solid angle Al is defined by the
unit vectors ni,nj, and nk associated to the atomic magnetic moments carried
by atoms defining the vertices of a triangle of lattice points (shaded).

manifest in two configurations: synthetic and intrinsic. In the synthetic scenario [117], the

two FM skyrmions forming the AFM structure reside in distinct magnetic layers, separated

by a non-magnetic spacer (depicted in Fig. 2-4 a). Conversely, intrinsic AFM skyrmions

involve the coexistence of the two FM skyrmions within the same magnetic layer [73, 80, 86]

(illustrated in Fig. 2-4 b).

Besides integer topological solitons, spin-swirling textures carrying half-integer charges can

exist. They are called merons, which are topologically equivalent to half skyrmions [96, 97,

100, 98, 101, 25, 102, 103, 104, 105], by exhibiting a topological charge of ±1
2
and effectively

wrapping half of the unit sphere (refer to Fig. 2-5). The latter indicates that they emerge

in a magnetic background with a magnetization pointing in-plane. Merons come in four

distinct types, depending on their vorticity and polarity, as illustrated in Fig. 2-5. Due

to their unique half-integer topological charge, merons can only exist in infinite systems as

pairs, forming either a bi-meron or a meron-antimeron pair [97, 98, 99].

To ensure the stability of AFM skyrmions or merons, various magnetic interactions within

the energy functional of the skyrmion play a crucial role. In the upcoming sections, we delve

into the specifics of these interactions in the context of the atomistic model. Exploring these

terms is essential for understanding the intricate factors that contribute to the stability of

these fascinating magnetic structures.
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Skyrmion trajectory
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Figure 2-3.: Skyrmion Hall effect. a An illustration of the skyrmion Hall effect when FM
skyrmion is subjected to spin currents. b An illustration of the cancellation
of the Magnus force for AFM skyrmions, where the skyrmion Hall angle is
suppressed.

2.3. Magnetic interactions in atomistic models
The magnetic interactions, essential for establishing magnetic order, originate from diverse

sources. This includes the electron-electron Coulomb interaction, SOC, and magnetic dipole-

dipole interactions. Typically, the dominant exchange interaction is primarily driven by

Coulomb interactions. Furthermore, the spin-orbit interaction couples spin to the lattice,

which gives rise to preferred magnetic orientations through the magnetocrystalline anisotropy

energy (MAE) and breaking of magnetic chirality via the DMI. The long-range dipole-dipole

interaction is responsible in creating magnetic domains. However, in the scope of this thesis,

we are not discussing the dipolar interactions, as our focus centers on AFM materials, known

for their insensitivity to such dipolar influences.

This section provides a brief overview of the crucial interactions within the magnetic systems

studied in this thesis using an atomistic model. Of particular significance is the interplay

involving the frustration of Heisenberg exchange interactions (Jij), along with the influence

of DMI, MAE parameter K, and external magnetic field.

2.3.1. Exchange interaction
The isotropic exchange interaction is a quantum mechanical phenomenon that stems from

the Coulomb repulsion between electrons, and from the Pauli exclusion principle. It was

recognized independently by Heisenberg and Dirac [118, 119]. Mathematically, the inter-

action energy between two neighbouring sites i, j can be expressed in its atomistic form as

−Jij ni · nj, where Jij is the exchange integral between sites i and j. Isotropic Heisenberg

exchange is referred to as FM if it favours parallel spins, i.e., if Jij > 0, and AFM if Jij < 0,

which favours anti-parallel spins. The interaction is symmetric upon interchanging i and j,
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a b

Figure 2-4.: AFM skyrmions. Schematic representation of a synthetic and b intrinsic
AFM skyrmion.

and isotropic as it is independent of the direction of the change relative to the magnetiza-

tion direction. The total Heisenberg exchange energy of a system of N interacting spins is

expressed as:

HExc = −
∑
<ij>

Jij ni · nj (2-9)

in which the summation is done over pairs of neighbouring spins < ij >, with i; j = 1 . . .N
and i ̸= j. (see Fig. 2-6).

2.3.2. Spin-orbit coupling induced magnetic interactions

Dirac’s relativistic theory of the atom introduces the SOC correction to the energy: ESOC =

− e
m2

ec
2

(
1
r
dϕ
dr

)
L ·S, where ϕ is the electric potential due to the nucleus, c is the speed of light

in vacuum. This term couples the electron spin with its orbital motion due to the electric

field of the nucleus. Although typically small, the strength of the SOC is proportional to

the square of the atomic number, making it particularly crucial for heavier elements [120].

Magnetocrystalline anisotropy

The magnetocrystalline anisotropy (MAE) arises from SOC. Because of the SOC in an

isolated isotropic atom, a change in the spin direction pulls the orbital angular momentum

along. However, the spatial isotropy is disrupted in a crystal, causing the systems energy to

be contingent upon the alignment of spherically asymmetric orbitals with the crystal’s major

axes. The resulting dependence on the magnetic moment orientation defines the MAE. In

instances favoring the alignment of the magnetic moment along a specific direction, the

system exhibits uniaxial anisotropy. In this simple case, the corresponding spin Hamiltonian
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+−

Figure 2-5.: Different types of merons. Schematic representation of a Core-up meron, b
core-up antimeron, c core-down antimeron, and d core-down meron associated
with their distinct topological charge, polarity and vorticity (N, w, p). e, f, g,
h Projection of the meronic spin-textures onto the surface of the unit sphere.

for this interaction is expressed as:

HAni = −
∑
i

Ki(ni · ean)2, (2-10)

where ean is a unity vector along the preferred direction, and K represents the MAE pa-

rameter. If K > 0, the system possesses an easy-axis, minimizing energy when magnetic

moments align parallel to ean. Conversely, a negative K implies an easy-plane, where the is

energy minimized with magnetic moments perpendicular to ean.

The Dzyaloshinksii-Moriya Interaction

Dzyaloshinskii-Moriya Interaction (DMI), also referred to as antisymmetric exchange inter-

action, emerges as an exchange interaction between adjacent spins, originating from SOC. In

the Heisenberg model, the total DMI energy for a system of N interacting spins is expressed

as:

HDMI = −
∑
<ij>

Dij · (ni × nj). (2-11)

The existence of DMI is confined to systems with broken inversion symmetry, with the di-

rection of Dij dictated by the underlying structure, guided by Moriya’s symmetry rules [43].

Typically, the DMI manifests in regions like surfaces, interfaces, or low-symmetry bulk mate-

rials. The introduction of heavy elements such as Ir is often employed to amplify the effects

of SOC. The DMI in the systems explored in the current thesis is typically one order of

magnitude lower than the Heisenberg exchange interaction (Jij). The energy contribution

associated with the DMI is minimized when neighboring spins are oriented perpendicularly
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J1 J2 J3

Figure 2-6.: Nearest neighboring isotropic exchange interactions in a two-
dimensional triangular (hexagonal) lattice. J1, J2, J3 are the Heisenberg
exchange interactions between the central atom with the first (blue), second
(red), and third (black) nearest neighboring atoms, respectively.

to each other, determined by the rotation sense specified by Dij. Consequently, the DMI

induces non-collinear magnetic configurations, such as spin spirals and skyrmions, and some

frustrated magnets.

Initially theorized by Dzyaloshinskii [42] and Moriya [43], the DMI is a consequence of

low crystal symmetry and SOC, prevalent in non-centrosymmetric magnetic crystals. This

interaction was first observed in weak ferromagnetism in AFM compounds like Fe2O3 and

CrF3. Its effects were later identified in chiral bulk magnets such as MnSi (Bulk DMI) [13].

The DMI of this form stabilizes Bloch skyrmion in which spins are rotated in the tangential

plane. Another type of DMI arises for systems where the inversion symmetry is broken due to

explicit formation of interfaces by two different grown layers (Interfacial DMI) [121, 122, 40].

This form of DMI stabilizes Néel skyrmions such that the rotation of spin is in the radial

plane and attributed to the cycloid propagation. Fig. 2-7 illustrates the various types of

DMI alongside the corresponding skyrmion types they stabilize.

2.3.3. Zeeman Energy
The Zeeman energy contribution arises from the interaction between the magnetic moments

and an external magnetic field B. It can be formulated as follows:

HZeem = −
∑
i

miB · ni, (2-12)

and favors parallel alignment of the spins with the magnetic field.
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a       Bulk DMI

c    Interfacial DMI

e    Anisotropic DMI

b    Bloch skyrmion

d    Néel skyrmion

f    Antiskyrmion

Figure 2-7.: Distinct skyrmions resulting from different types of DMI vectors.
Schematic representation of a Bulk DMI and b the corresponding Bloch
skyrmion. c Interfacial DMI and d the resulting Néel skyrmion. e and f are for
the anisotropic DMI

2.4. The extended Heisenberg Hamiltonian

The extended Heisenberg Hamiltonian is obtained by taking into account all of the interac-

tions previously mentioned. We can now formulate the generalized Heisenberg Hamiltonian
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utilized in the thesis:

H = HExc +HDMI +HAni +HZeem. (2-13)

In this dissertation, as mentioned in chapter 1 and illustrated in Fig. 1-2, we are investigating

several magnetic layered systems involving mainly films of potentially AFM transition metals

X (Cr, Mn, V) interfaced with an Ir surface involving the presence or not of Fe, Pd and FePd

layers so that, Eq. (2-13) can be dissected as follows:

HExc = −
∑
<ij>

JX-X
ij ni · nj −

∑
<ij>

JFe-Xij ni · nj −
∑
<ij>

JFe-Feij ni · nj, (2-14)

the termHExc accounts for the isotropic Heisenberg exchange coupling strengths, represented

by JX-X
ij and JFe-Feij (if an Fe-film is present). These parameters dictate the interactions

between the AFM transition metal (X) and Fe atoms, playing a pivotal role in shaping the

magnetic behavior of the system. Similarly, the DMI term is given by:

HDMI = −
∑
<ij>

DX-X
ij · (ni × nj)−

∑
<ij>

DFe-X
ij · (ni × nj)−

∑
<ij>

DFe-Fe
ij · (ni × nj), (2-15)

while the contribution from the MAE valid for both easy axis and easy plane cases reads:

HAni = −KX
∑
i

(nz
i )

2 −KFe
∑
i

(nz
i )

2, (2-16)

and finally the Zeeman interaction:

HZeem = −
∑
i

miB · ni. (2-17)

The aforementioned magnetic interactions are extracted from first-principles using an ap-

proach elucidated in the subsequent chapter.



3. Multi-scale modelling – DFT in

combination with atomistic spin

dynamics

In chapter 2, we introduced a generalized Heisenberg Hamiltonian that, once parameter-

ized, enables the exploration of the magnetic properties of materials with localized magnetic

moments at atomic sites. To predict the magnetic properties of a material, we need to

extract the system-specific parameters associated with the Hamiltonian’s interactions. Ab

initio simulations provide means to extract these parameters, allowing the determination

of model parameters through a fundamental quantum-mechanical description of the crys-

tal’s electronic structure. Consequently, we obtain a parametrized Heisenberg Hamiltonian

utilizing Density functional theory (DFT) principles, facilitating realistic predictions for ma-

terial behavior. After the ab initio simulations and the extraction of magnetic interactions,

atomistic spin dynamics (ASD) calculations are employed to minimize the parameterized

Heisenberg Hamiltonian, which enables the exploration of complex and large spin-textures

unattainable with pure ab initio simulations. In this chapter, we discuss this multi-scale

modelling approach we carried out in this thesis.

The following sections commence with an exploration of the quantum-mechanical many-

body problem for electrons within a crystal. Subsequently, we delve into DFT [123, 124],

that deals with the many-body problem by tackling the electronic system’s charge den-

sity rather than its wavefunction. The DFT-based methodologies utilized in the thesis

are introduced: (i) first we introduce the pseudopotential-based plane wave basis method,

Quantum Espresso [125, 126], to solve the single-particle eigenstates of the Kohn-Sham

equations; (ii) then, we discuss the fundamentals of the Korringa-Kohn-Rostoker method

(KKR) [127, 128, 129, 130], which incorporates multiple-scattering theory and Green func-

tions. Access to the Green function provides access to the tensor of magnetic interactions

using the infinitesimal-rotation approach [107, 131, 132]. The aim of this chapter is to offer

a concise overview of the essential theoretical concepts utilized in our thesis. It does not

aim to provide an exhaustive descriptions to either the KKR formalism or DFT. Compre-

hensive introductions to DFT can be found in standard textbooks (e.g., [133, 134]). The

KKR formalism is thoroughly presented in the textbook Ref. [135] and in the PhD thesis of

Bauer [136].
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3.1. The many-body Schrödinger equation
In order to describe a condensed matter system consisting of nuclei and electrons, the

Schrödinger equation, expressed here in Rydberg atomic units, is the fundamental equa-

tion that can describe the stationary states:

Hψ (r1, r2, .., rN ,R1,R2, ..,RM) = Eψ (r1, r2, .., rN ,R1,R2, ..,RM) . (3-1)

It consists of a HamiltonianH and the many-body wave function ψ (r1, r2, .., rN ,R1,R2, ..,RM),

which contains all information about physical observables of the system with N interacting

electrons and M nuclei (we disregarded the spins in this notation). In this chapter, we use

the atomic Rydberg units, where ℏ = 2me = e2/2 = 1, where me is the rest mass of the

electron and e its charge. Neglecting relativistic corrections, the general form of the full

many-body Hamiltonian takes the following general form:

H = −
N∑
i

∇i
2

︸ ︷︷ ︸
Te

−
M∑
I

1

MI

∇I
2

︸ ︷︷ ︸
Tn

−
∑
i,I

ZI

|ri −RI |︸ ︷︷ ︸
Ve−n

+
∑
i ̸=j

1

|ri − rj|︸ ︷︷ ︸
Ve−e

+
∑
I ̸=J

ZIZJ

|RI −RJ |︸ ︷︷ ︸
Vn−n

. (3-2)

The first two terms represent the kinetic energy operators of respectively the electrons and

ions. The third term, Ve−n, describes the attractive interaction between an electron located

at ri and an ion positioned at RI . The fourth term, Ve−e, accounts for the repulsion be-

tween electrons, and the last term, Vn−n, reflects the repulsion between ions. Here, MI

and ZI represent the mass and atomic number of ion I, respectively. The practicality of

solving the Schrödinger equation diminishes rapidly as the number of electrons in a system

increases. Even a single Fe atom poses computational challenges, rendering an exact solution

unattainable. To clarify that, consider that we want to calculate the wavefunction of an iron

atom with its 26 electrons, in three dimensions, we have 3 × 26 = 78 degrees of freedom.

If we want to solve Eq. (3-1) on a real space grid of 10 × 10 × 10 points, this corresponds

to 1078 potential configurations, and for each of these configurations, we need to evaluate

the wavefunction. Simply storing this function requires physical memory with the mass of

the observable universe [137], which illustrates part of the challenge to address even before

considering how to solve the Schrödinger equation for such a problem!

3.2. Born-Oppenheimer approximation
The high velocity of light electrons compared to the much slower nuclei, which are at least

a thousand times heavier, allows us to consider the nucleus as stationary in the study of

electron motion. By neglecting the nucleus velocity, we can separate the electrons motion

from that of the nucleus, which is a principle known as the Born-Oppenheimer approxima-
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tion [138] or adiabatic approximation. This approximation decouples the motion of nuclei

and electrons. Consequently, the electrostatic potential from the nucleus can be treated as

an external potential, akin to other externally applied fields, allowing for the expression of

the Hamiltonian as:

H = Te + Vee + Vext, (3-3)

where Vext is the external potential which includes the nuclear electrostatic potential. This

is the first simplification towards an effective description of a system of interacting particles,

since it leaves only the electron-electron interaction responsible for all the difficulties. The

electronic problem, however, is a quantum many-body problem; due to the mutual inter-

action of all the electrons in the system, where the system’s wavefunction ψ(r1, r2, .., rN)

depends on the coordinates of all the electrons, and hence, can not be separated into a single

particle contribution, making it too complicated to get the exact solution of the problem.

The idea of DFT is to use the electronic charge density ρ(r) instead of the wave function to

determine all observables of a given system.

3.3. Density functional theory

3.3.1. Hohenberg-Kohn theorems
The Hohenberg-Kohn theorems, which were introduced in 1964 [123], provide the essential

framework for DFT. The fundamental concept of DFT is to address the many-body electronic

problem by focusing on the ground state probability density ρgs(r), rather than calculating

the intricate many-body wavefunction ψ(r1, r2, .., rN).

For a system of N interacting electrons governed by the Hamiltonian in Eq. (3-3), the

expression for ρgs(r) is given by:

ρgs(r) =

∫
|ψ(r1, r2, ..., rN)|2dr2dr3...drN . (3-4)

The first Hohenberg-Kohn theorem states [123]: Given the Hamiltonian described by Eq. (3-3)

and an arbitrary external potential, if the ground state is non-degenerate, a unique correspon-

dence exists between the external potential (up to a constant), the ground-state wavefunction,

and the electron density of the ground state. Thus, each observable as well as the total energy

are given as a functional of the ground state density:

E[ρ] = ⟨ψ[ρ]|H|ψ[ρ]⟩ = T [ρ] + U [ρ] + Vext[ρ]. (3-5)

Further, Hohenberg and Kohn established their second theorem [123], which states: the
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ground state density ρgs(r) minimizes the total energy functional E[ρ]. This suggests that

one can use the variational principle to calculate the ground state density.

For magnetic materials, the energy is written as a functional of the charge density ρgs(r) and

of the spin density mgs(r), which for collinear magnetic materials can be written as:

ρgs(r) = ρ↑gs(r) + ρ↓gs(r), (3-6)

where ρ↑gs(r), ρ
↓
gs(r) denote the charge density for respectively the majority and minority

spin electrons. The spin density is expressed as:

mgs(r) = ρ↑gs(r)− ρ↓gs(r). (3-7)

Hence, the energy, that can now be written as E [ρgs,mgs], should be minimized with respect

to the charge and spin densities.

Although the Hohenberg-Kohn theorems are very powerful, they do not provide a practical

scheme for minimizing Eq. (3-5), which is required to obtain the ground state density. This

has been further elaborated by by Kohn and Sham [124] as summarized below.

3.3.2. Kohn-Sham equations

The Hohenberg-Kohn theorems enable us to deduce the ground state characteristics of a

system with multiple electrons by focusing on the ground state charge density instead of the

wave function. Nevertheless, solving the many-body problem remains a significant challenge.

In 1965, Kohn and Sham introduced a systematic method to minimize the total energy func-

tional, laying the groundwork for modern DFT calculations [124]. They suggested creating

an auxiliary imaginary system of noninteracting particles with the same ground state den-

sity as the many-body interacting system of study, and hence, the same ground state energy.

The solutions for this noninteracting problem can be determined by solving the Kohn-Sham

equation: (
−∇2 + Veff (r)

)
ϕi(r) = εiϕi(r), (3-8)

which has the form of a single-particle Schrödinger equation, and ϕi are known as Kohn-

Sham orbitals with orbital eigenvalues εi, while the density can be easily calculated using

the Kohn-Sham orbitals:

ρ(r) =
N∑
i=1

|ϕi(r)|2 . (3-9)

The mapping between the many-body and the noninteracting problems is obtained through
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the effective potential Veff, which is an unknown functional of the ground state density.

The potential Veff(r) is split into:

Veff(r) = Vext(r) + VH(r) + Vxc(r), (3-10)

where Vext is the external potential, VH is the Hartree potential given by:

VH(r) =

∫
2ρ (r′)

|r− r′|
dr′, (3-11)

which represents a noninteracting mean-field electrostatic contribution from the electrons

in the system, and Vxc is called the exchange-correlation potential, which is unknown and

accounts for the many-body effects, such as the exchange coupling due to Pauli’s exclusion

principle and electronic correlations. Thus, the energy functional of the Kohn-Sham system,

which needs to be minimized, can be written as:

E[ρ] = Ts[ρ] + EH[ρ] + Exc[ρ] + Eext [ρ], (3-12)

where the first terms (Ts[ρ]) is the kinetic energy associated to the noninteracting Kohn-Sham

orbitals:

Ts[ρ] = −
N∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r)dr. (3-13)

EH[ρ] is the Hartree term, which describes the Coulomb interaction between electrons

EH[ρ] =

∫∫
ρ(r)ρ (r′)

|r− r′|
dr dr′. (3-14)

The third term Exc is the exchange-correlation energy, which remains unknown, and it is

connected to Vxc by:

Vxc(r) =
δExc[ρ]

δρ(r)
. (3-15)

3.3.3. Exchange-correlation energy

The exchange-correlation energy remains to be evaluated. Various approaches and approxi-

mations have been proposed since the seminal paper of Kohn and Sham. In this section, we

introduce simple yet highly valuable approximations for the exchange-correlation energy.
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Local (spin) density approximation

One of the earliest and simplest approximations of the exchange-correlation energy is the

local density approximation (LDA) [124], where the exchange-correlation energy is given by:

ELDA
xc [ρ] =

∫
ρ(r)εhomxc (ρ(r)) dr, (3-16)

where εhomxc

(
ρ↑(r), ρ↓(r)

)
is the exchange-correlation energy density of a homogeneous elec-

tron gas.

An extension of the approximation known as the local spin density approximation (LSDA) is

utilized here, accounting for distinct spin channels [139]. In both the LDA and LSDA meth-

ods, the exchange-correlation energy is approximated using the energy of a ”homogeneous”

electron gas, with its density assumed to be identical to the local electron density.

ELSDA
xc

[
ρ↑, ρ↓

]
=

∫
ρ(r)εhomxc

(
ρ↑(r), ρ↓(r)

)
dr. (3-17)

The exchange-correlation energy comprise a correlation and an exchange component:

εxc
(
ρ↑(r), ρ↓(r)

)
= εx

(
ρ↑(r), ρ↓(r)

)
+ εc

(
ρ↑(r), ρ↓(r)

)
, (3-18)

in which εx represents the exchange term, which can be computed for the homogeneous

electron gas using the Hartree-Fock method. On the other hand, εc, the correlation term,

can be calculated through Quantum Monte Carlo simulations [139, 140]. For materials

like metals, which have slowly varying densities, LSDA exhibits remarkable performance.

Additionally, it provides reasonable outcomes for inhomogeneous systems in other materials

due to a systematic error cancellation. Specifically, while LSDA tends to underestimate the

exchange energy, it compensates by overestimating the correlation energy, and these errors

exhibit opposite signs [141].

Generalized gradient approximation

The Generalized Gradient Approximation (GGA) is a more advanced method than the

LDA [142]. It improves accuracy by considering not only the local electron density but also

its gradient. When taking the spin into account, the energy functional can be formulated as

follows:

EGGA
xc

[
ρ↑, ρ↓

]
=

∫
ρ(r)εxc

(
ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)

)
dr. (3-19)

Various GGA formulations, such as PBE [142] and PBEsol [143], are widely used for the

approximation of the exchange-correlation energy. Ongoing efforts aim to explore more accu-
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rate approximations to enhance the precision of these calculations. However, it is important

to note that the increased accuracy achieved with such methods is often accompanied by

higher computational complexity.

As discussed earlier, DFT in practice involves intricate models and approximations designed

to represent interactions within many-body systems realistically. To apply this theory to

actual calculations on real systems, we need to acknowledge specific numerical constraints.

It is crucial to choose a suitable basis set for the Kohn-Sham orbitals to practically solve

the DFT equations. In our thesis, we employed DFT calculations utilizing the KKR Green

function method [127, 128, 129, 130], as elaborated in the following sections. However,

atomic relaxations with the KKR Green function method is computationally cumbersome.

An alternative is provided by Quantum Espresso [125, 126] DFT code. This code, which is

a plane wave pseudo-potential method, was employed specifically for obtaining the relaxed

positions of the magnetic materials explored in our study.

3.4. Ab initio method I: Plane waves basis and

pseudo-potentials (Quantum Espresso)

3.4.1. Plane waves
Using Bloch’s theorem [144], the Kohn-Sham orbitals (Eq. (3-8)) can be expanded on a basis

set of plane waves as follows:

ϕku(r) =
∑
G

au,G+k ×
1√
V
ei(G+k)·r, (3-20)

where the expansion coefficients of the wavefunction, now expressed in terms of orthonormal

plane waves, are au,G+k, and the sum runs over the reciprocal lattice vector G, where V

is the unit cell’s volume. The Kohn-Sham equations in reciprocal space for the expansion

coefficient au,G+k are obtained by substituting this expansion into Eq. (3-8). The plane

wave expansion is exact in the limit of infinite G-vectors. Eq. (3-20) of the wave functions is

truncated in practical calculations by retaining only those plane wave vectors (G+k) whose

kinetic energy is less than a specified cutoff value Ecut:

|G+ k|2 ≤ Ecut. (3-21)

To find the minimum number of wave functions (or minimum energy cut-off) in practical

calculations that allows the total energy to converge, one should first conduct a preliminary

investigation. The expansion of all electronic states on a plane wave basis is required after

Ecut has been determined. Because many plane waves are needed to fully describe the sys-

tem—especially when localized states are involved—this is computationally inconvenient.
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The problem can be avoided by making a distinction between the valence electrons and core

electrons and assuming that the valence electrons account for the majority of the relevant

physics, while the core electrons being considered as fixed in their atomic configuration [145]

(frozen core approximation). Consequently, a pseudo-potential (PP) [146, 147] can be in-

troduced in place of directly treating the core electrons in order to replicate the interaction

between the real atomic potential and the outermost states.

In addressing core electrons, a pseudo-wavefunction is employed, designed to be smooth

within a specified core cut-off radius and aligned with the scattering properties of the entire

system beyond this radius. Essentially, the Kohn-Sham orbitals derived from a comprehen-

sive all-electron calculation beyond the core-shell should coincide with the single-particle

orbitals originating from the PP. There are different families of PPs depending on the shape,

the conditions placed on the pseudo-wavefunction, the location of the core cut-off radius, and

the mathematical structure of the PPs. One example is the Norm-conserving PPs [148, 149]

which is contingent upon the preservation of the original full-potential wavefunction norm.

However, this condition poses a drawback, particularly in systems like transition metals,

where an extensive number of plane waves is required for wave function expansion, in-

curring high computational costs. This constraint is alleviated in Projector-Augmented

Waves PPs (PAW) [150, 151], minimizing the G-vectors needed to describe the pseudo-

wavefunction’s variation in the core region and subsequently reducing computational ex-

penses. PAW presents a potentially more reliable alternative, providing comparable results

to other PPs but with enhanced accuracy for specific materials.

3.4.2. Quantum Espresso
The many-body Hamiltonian within the framework of DFT is mapped into self-consistent

single-particle Kohn-Sham equations, where the single-particle eigenstates of the Kohn-Sham

equations are determined using the open-source computer codes Quantum Espresso [125,

126, 152]. The electron-ion interactions were modeled using pseudopotentials (PPs) from

the PSLibrary, applying the frozen-core approximation [146, 147, 153, 145]. For determin-

ing the electronic structures and geometrical details of our magnetic systems, the Projector

Augmented Wave (PAW) method was employed [150, 151].

To conduct PAW calculations using Quantum Espresso, the process involves several steps:
1. Define the system structure by specifying the arrangement, positions, and types of

atoms in the material.

2. Perform the PAW self consistent calculations: Use the Quantum Espresso pw.x code

with the PAW option to perform the self consistent DFT calculations with the PAW

method to converge the system allowing the vertical relaxations of the atoms.

3. Extract the relaxed positions of the magnetic atoms to be plugged in KKR DFT

calculations.
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After establishing the relaxed positions of our magnetic systems, our next goal is to calculate

material-specific magnetic properties using the KKR Green function-based method, which

is described in the following section.

3.5. Ab initio method II: Korringa-Kohn-Rostoker Green

function method (KKR)
In solid state physics and quantum chemistry, a wide range of approaches and implemen-

tations for solving the Kohn-Sham equation of DFT are currently available on the market

with a comparable level of accuracy, enabling the creation of quantitative predictions for

experimentally observable quantities [154]. The all-electron approaches, which handle va-

lence and core electrons equally, are recognized as the gold standard. The KKR Green

function method is a full-potential relativistic implementation made possible by the KKR

code developed in Jülich [155, 156, 129, 136, 157]. The KKR method was first proposed by

Korringa, Kohn, and Rostoker [127, 128], and it was used for the majority of first-principles

calculations in this thesis. Using this technique, the space is divided into Voronoi cells, each

of which defines a scattering center. In a solid, the scattering centers typically correspond

to the atoms. The basic idea behind the KKR Green function method is to split the process

of accurately describing a solid’s electronic structure into two tasks:

1. Solve the problem for a single scattering center.

2. Incorporate the structural environment of this particular scatterer by use of a multiple

scattering ansatz.

The condition that the outgoing wave function from one scattering center equals the sum of

all incoming wave functions to this scatterer formally fulfils the second request. The Green

function formulation of the KKR method imparts it with considerable power, characterized

by certain non-standard features, some of which (pertinent to this thesis) will be elucidated

below. This section presents a brief introduction to the fundamental properties of Green

functions in solid-state physics and delves into the multiple scattering theory to the KKR

formalism. While providing a concise overview of the theory, we recommend a more in-

depth exploration through standard literature, such as Gonis’ book [158], or KKR-specific

references like those in the introductions of publications such as Refs. [159, 136].

3.5.1. Definition and general properties of a Green function
Suppose a system is described by the time-independent HamiltonianH0 for which a complete

basis set of eigenfunctions |ψ0⟩ with eigenvalues ε0 exists, satisfying:

H0|ψ0⟩ = ε0|ψ0⟩ . (3-22)

When the system is subject to a perturbation given by potential V , the Schrödinger equation
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reads:
H|ψ⟩ = ε|ψ⟩

(H0 + V)|ψ⟩ = ε|ψ⟩
(ε−H0)|ψ⟩ = V|ψ⟩ .

(3-23)

Instead of solving the eigenvalue problem the usual way by calculating the density from the

eigenfunctions, one can utilize the Green function G associated with the precedent Hamilto-

nian.

The Green function of the unperturbed system is defined as:

(zI −H0)G0(z) = I, (3-24)

where z is a complex energy with a finite imaginary part (z ≡ ε + iη) and I is the identity

operator. Similarly, the Green function G(z) of the perturbed system described by H is given

by:

(zI −H)G(z) = I. (3-25)

The Green function is also called resolvent of the Hamiltonian and can be characterized as

its inverse,

G(z) = (zI −H)−1. (3-26)

Using the eigenvalues εn and the complete set of the Hamiltonians eigenfunctions {|ψn⟩},
the Green function can be written as a sum over all eigenstates. This is called the spectral

or Lehmann-representation of the Green function:

G(z) =
∑
n

|ψn⟩⟨ψn|
z − εn

. (3-27)

From Eq. (3-25), the Green function of the perturbed system G can be expressed by means

of G0 (the Green function of the unperturbed system) according to:

(zI −H0 − V)G(z) = I
(zI −H0)G(z) = I + VG(z)

G(z) = (zI −H0)
−1 + (zI −H0)

−1VG(z)
G(z) = G0(z) + G0(z)VG(z).

(3-28)

The last equation is known as the Dyson equation and plays a central role in the KKR Green
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function theory. One can formally expand Eq. (3-28) by subsequently inserting the left-hand

side into G(z):

G(z) = G0(z) + G0(z)VG(z)
= G0(z) + G0(z)V G0(z) + G0(z)VG0(z)VG(z)
= G0(z) + G0(z)VG0(z) + G0(z)VG0(z)VG0(z) + . . .

= G0(z) + G0(z)(V + VG0(z)V + . . .)G0(z).

(3-29)

Such a series allows to express the requested Green function G(z) exclusively by the two

operators G0(z) and V .

The term in brackets in Eq. (3-29) is the transition matrix (t-matrix), defined as:

T (z) = V + VG0(z)V + VG0(z)VG0(z)V + . . . . (3-30)

Then, Eq. (3-29) can be written as:

G = G0 + G0T G0. (3-31)

A similar approach can be followed for the solutions of the differential equations (Eq. (3-22),

and Eq. (3-23)) resulting in the Lippmann-Schwinger equation. It connects the wave func-

tions of a perturbed (|ψ⟩) and an unperturbed (|ψ0⟩) system:

(zI−H0)|ψ0⟩ = 0 (3-32)

(zI−H0)|ψ⟩ = V|ψ⟩. (3-33)

Multiplying Eq. (3-33) with the resolvent, G0 = (zI −H0)
−1, we get:

|ψ⟩ = |ψ0⟩+ G0V|ψ⟩. (3-34)

However, the desired solution |ψ⟩ appears in both side of this equation. We can iteratively

insert the above equation into itself to produce a Born series:

|ψ⟩ = |ψ0⟩+ G0(z)V|ψ0⟩+ G0(z)VG0(z)V|ψ0⟩+ . . .

= |ψ0⟩+ G0(z)T |ψ0⟩.
(3-35)

The Lippmann-Schwinger equation is, besides the Dyson equation, the second central equa-
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tion which is used in KKR theory.

A convenient attribute of the Green function formalism is that observables A, which depend

only on single particle properties, can be extracted from G(ε) by making use of the algebraic

connection:

⟨A⟩ = − 1

π
Im

∫ εF

−∞
dεTr[AG(ε)], (3-36)

where εF is the Fermi energy of the system and the is trace over the degrees of freedom

(e.g. position, spin and orbital angular momenta). The integration is performed along the

energy contour up to the Fermi energy εF of the electronic structure. This allows for the

straightforward calculation of the electronic density, a key ingredient in DFT. It can be easily

computed in the position representation by taking the trace of the Green function via:

ρ(r) = − 1

π
Im

∫ εF

−∞
dεTr[G(r, r′; ε)]. (3-37)

3.5.2. Full potential

In the Green function formalism of the KKR method, a Voronoi decomposition is used to

partition the space containing the material. Typically, in this process, the decomposition

starts at the center of each atom. Next, we locate the area in space whose points are nearest

a given atom. Every area is referred to as a Voronoi cell, which contains either a single

atom or vacuum. Centered in each Voronoi seed, we construct a Wigner–Seitz cell which is

a sphere with the same volume as the Voronoi cell. The purpose of these cell divisions is to

be able to separate the calculation of the Green function into local problems (on-site), which

each can be solved independently, and a global part in which all local solutions are connected

(multiple-scattering). The Voronoi cells collectively occupy the entire space. Nevertheless,

within the KKR framework, two distinct approaches are employed for handling the geom-

etry. The first is the atomic sphere approximation (ASA), which represents each cell as a

sphere encompassing a spherically symmetric potential, and therefore neglects any inter-cell

region. The second is the full potential method which makes no shape approximations of the

potential and describes correctly the interstitial region between the atoms. In this thesis, we

opted for the full potential approach.

Due to the cell construction, the corresponding sites i and j at Ri and Rj, respectively, serve

as the center of the spatial coordinates of the KKR Green function:

G(x,x′; ε) = G(r+Ri, r
′ +R′

j; ε) = Gij(r, r
′; ε), (3-38)

as depicted in Fig. 3-1. With this separation, the Green function can be dissected into an on-

site contribution and a structural contribution, addressing multiple scattering, as elucidated
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in the subsequent sections.

Gij(r, r
′; ε) = Gon-site

ij (r, r′; ε)δij + Gstr
ij (r, r

′; ε). (3-39)

A site i’s potential is only defined within the volume Vi of the corresponding cell because of

the Voronoi construction:

Vi(r) =

{
Vi(r), if r ∈ Vi

0, else
. (3-40)

This results in the definition of the so-called shape function Θi(r),

Θi(r) =

{
1, if r ∈ Vi

0, else
. (3-41)

For every site i, the potential is treated in the local frames and expanded in real spherical

harmonics (refer to Fig. 3-1).

Vi(r)Θi(r) =
∑
L

VL(r)YL(r̂). (3-42)

The spherical harmonics carry an index L = (ℓ,m) combining the orbital quantum number

and the magnetic quantum number, the absolute distance is denoted by r = |r|, while

the unit direction is indicated by r̂ = r/r. Keep in mind that real spherical harmonics,

not complex spherical harmonics, are employed throughout the thesis. According to this

convention, VL(r) is convoluted with the shape function.

VL(r) =
∑
L′L′′

CL
L′L′′V0

iL (r
′)ΘL′′(r). (3-43)

The Gaunt coefficient CL
L′L′′ is expressed as

CL
L′L′′ =

∫
dr̂YL(r̂)YL′(r̂)YL′′(r̂) . (3-44)

represents the potential expansion in spherical harmonics, excluding spatial constraints,

while ΘL(r) stands as the shape functions expansion coefficient. In the full potential con-

text, the radial argument r extends up to the radius of the bounding sphere. This sphere is

the smallest one that encompasses the entire Wigner-Seitz cell, as depicted in Fig. 3-1.

In the subsequent sections, we apply the Green function formalism to address the Schrödinger

equation, beginning with the free electron gas, reaching the multiple scattering problem.
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origin

𝐱

Voronoi cell

𝐫

𝐱 ́

𝐫 ̀

Figure 3-1.: Visualization of the Voronoi construction for a hexagonal lattice. The
Voronoi cell associated with site i is centered at Ri, establishing a local frame
x = r+Rj. Each cell features key parameters, including the muffin tin radius
RMT, defined as the largest sphere fully contained within the Wigner-Seitz cell,
the Wigner-Seitz radius RWS corresponding to a sphere with equivalent volume
to the Wigner-Seitz cell, and the bounding sphere’s radius RBS, representing
the smallest sphere encompassing the entire Wigner-Seitz cell.

3.5.3. Green function for free electrons

In the following it is explained how the propagation of a single electron in a finite potential

can be described by a Green function. But before that, we introduce the Green function for

the simple case of a three-dimensional free electron gas (i.e. V(r) = 0). The electronic wave

function ψ0
k(r) is a plane wave and is expanded in the real spherical harmonics basis YL(r̂):

ψ0
k(r) = eik.r

=
∑
L

4πiljl(
√
εr)YL(r̂)YL(k̂) .

(3-45)

The energy ε is connected to the wave vector k through the equations k = |k| =
√
ε and

r = |r|. jl(kr) is the spherical Bessel function of first kind. The Green function, for an

energy ε, that connects a point at position r in space with a point at r′ in a free electron

gas is provided by:
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g (r, r′, ε) = − 1

4π

eik|r−r′|

|r− r′|
. (3-46)

g (r, r′, ε) is expanded in its turn in a real spherical harmonics basis as:

g (r, r′, ε) =
∑
L

YL(r̂)gl (r, r
′, ε)YL (r̂

′) (3-47)

= −ik
∑
L

YL(r̂)jl (kr<)hl (kr>)YL (r̂
′) , (3-48)

where r<(>) is the smaller (larger) of the radii r and r′ respectively. The Hankel function

hl(kr) is irregular in the limit of r → 0, while the Bessel function jl(kr) is regular in the

same limit. The Green function fulfills the translational invariance of the free electron gas

and depend therefore only on the relative distance |r− r′|.

3.5.4. Single site problem
We now consider the presence of a finite potential V and solve the Schrödinger equation to

determine the electronic wave function ψk. Based on the wavefunction of the free electron

gas, Eq. (3-45), an ansatz for the wavefunction of the full system is

ψk(r) =
∑
L

4πiℓYL(k̂)R
L(r; ε), (3-49)

where RL(r; ε) is the regular solution of the Schrödinger equation, which can be expressed

as follows in a basis of spherical harmonics:

RL(r; ε) =
∑
L′

1

r
RL

L′(r; ε)YL′(r̂), (3-50)

generally reliant on two angular indices: L, which represents the partial wave component

of the original free-electron plane wave, and L′, which describes the spatial shape that the

partial wave takes on when it is scattered by a non-spherical potential. Eq. (3-34) can be

substituted with Eq. (3-45), Eq. (3-49), and Eq. (3-50) to obtain a set of coupled radial

Lippmann-Schwinger equations:

RL′

L (r; ε) = rjℓ(kr)δLL′ +

∫
dr′gℓ (r, r

′;E)
∑
L′′

VLL′′ (r′)RL′

L′′ (r′; ε) , (3-51)

where two spherical harmonics were employed as matrix elements of the non-spherical po-

tential,

V(r) =
∑
LL′

YL(r̂)VLL′(r)YL′(r̂) with VLL′(r) =
∑
L′′

CL′′

LL′VL′′(r). (3-52)
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To construct the on-site Green function, a few more basis functions are required in addition to

the regular solution. The first one, denoted as SL′
L (r; ε), is the irregular solution based on the

Hankel functions. Moreover, if the potential is non-diagonal in spin space, the Schrödinger

equation, which is a system of coupled second-order linear differential equations, allows for

left and right solutions (refer to Ref. [136] for specifics). The right solutions were previously

discussed, while the left solutions, denoted as R̄L′
L and S̄L′

L for the regular and irregular

solutions, respectively, are two-dimensional row vectors in spin space. One can obtain the

radial wave functions from:

SL′

L (r; ε) = rhℓ(kr)β
L′

L +

∫
dr′gℓ (r, r

′; ε)
∑
L′′

VLL′′ (r′)SL′

L′′ (r′; ε) ,

R̄L′

L (r; ε) = rjℓ(kr)δLL′ +

∫
dr′
∑
L′′

R̄L′

L′′ (r′; ε)VL′′L (r
′) gℓ (r

′, r; ε) ,

S̄L′

L (r; ε) = β̄L′

L rhℓ(kr) +

∫
dr′
∑
L′′

S̄L′

L′′ (r′; ε)VL′′L (r
′) gℓ (r

′, r; ε) ,

(3-53)

with

βL′

L = δLL′ − k

∫
dr′rjℓ (kr

′)
∑
L′′

VLL′′ (r′)SL′

L′′ (r′; ε) , (3-54)

β̄L′

L = δLL′ − k

∫
dr′
∑
L′′

S̄L′

L′′ (r′; ε)VL′′L (r
′) rjℓ (kr

′) . (3-55)

Using the right and left solutions (see, for example, [136]), the on-site Green function can

be obtained as follows:

Gon−site
LL (r, r′; ε) = −ik

∑
L′′

{
RL′′

L (r; ε)S̄L′′

L′ (r′; ε) , if r′ > r

SL′′
L (r; ε)R̄L′′

L′ (r′; ε) , if r > r′
. (3-56)

3.5.5. Multiple scattering theory
Following the computation of the single-site Green function, the subsequent critical step

involves calculating the structural part of the Green function which takes into account the

multiple scatterings induced by the presence of neighboring atoms in addition to the geomet-

rical details. In this section, we explore how insights derived from the single-site problem

inform the computation of the globally defined Green function. By expanding the Green

function, we separate its calculation into a localized part, addressing the single-site problem,

and a globally defined part, forming the structural Green function. The Green function

between the two distinct sites i and j, starting from the free electron gas, can be expanded

as follows:

g (r+Ri, r
′ +Rj; ε) =

∑
LL′

YL(r̂)jℓ(kr)g
ij
LL′(ε)jℓ′ (kr

′)YL′ (r̂′) , (3-57)

where a transformation theorem for Hankel functions can be used to derive the coefficient
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gijLL′(ε),

gijLL′(ε) = − (1− δij) 4πik
∑
L′′

iℓ−ℓ′+ℓ′′CL′′

LL′hℓ′′ (k |Ri −Rj|)YL′′

(
Ri −Rj

|Ri −Rj|

)
. (3-58)

Utilizing a suitable assumption for the total Green function of the system,

Gij (r, r
′; ε) = Gon−site

i (r, r′; ε) δij +
∑
LL′

Ri
L(r; ε)G

ij
LL′(ε)R̄

j
L′ (r

′; ε) , (3-59)

where the first term is the single-site Green function at site i, and the second term is

a multiple scattering term including a structural Green function, which by utilizing both

Eq. (3-59) and the Dyson Eq. (3-28) can be written as (Refer to [136] for details),

Gij
LL′(ε) = gijLL′(ε) +

∑
m

gimLL′′(ε)tmL′′L′′′(ε)Gmj
L′′′L′(ε), (3-60)

with the t-matrix

tmLL′(ε) =

∫
dr rjℓ(kr)Vm(r)Rm

L′(r; ε), (3-61)

describing the scattering at the potential of site k. The essence of multiple scattering theory

is therefore described by successively iterating the Dyson equation as shown in Eq. (3-45),

which describes free waves being scattered at different potentials corresponding to different

sites. It turns out that the structural Green functions decay slowly as function of distance,

which enlarges the size of the matrices used in solving Eq. 3-60. One then introduces a new

reference system with repulsive potentials, which enable an exponential decay of the Green

function and permit a faster sparse and smaller matrix inversion [160, 161].

3.5.6. Energy integration
To minimize computational expenses in the Green function KKRmethod, energy integrations

like the one in Eq. (3-36) are carried out by splitting the integration interval into two halves:∫ εF

−∞
dε =

∑
core states

+

∫ εF

εB

dε. (3-62)

Finding an energy εB that is higher than the energies of the core states but lower than the

energies of the valence states is necessary to accomplish this. We also utilize the Green

function’s analytic continuity properties. Consequently, rather than following the real axis,

we carry out the integration using an energy contour integration in the complex plane [162].

This increases the calculation’s accuracy because the Green function is smoother when it is



38 3 Multi-scale modelling – DFT in combination with atomistic spin dynamics

away from the real axis. In addition to that, this method is computationally cheap since it

requires a small number of complex energy points.

3.5.7. Spin-orbit coupling in KKR
The coupling between the spin and orbital angular momenta of the electrons, as discussed

in section 2.3.2, is a very significant relativist effect in magnetism and can be described by

the following spin-orbit Hamiltonian:

HSOC = VSOC =
1

M(r)2c2
1

r

∂V(r)
∂r︸ ︷︷ ︸

χ(r)

L · S , (3-63)

where c represents the speed of light in a vacuum, and M(r) stands for the relativistic mass,

defined as M(r) = 1
2
+ ε−V(r)

2c2
. Here, V(r) denotes the Kohn-Sham potential, specifically

chosen as the average of the spin-up and spin-down potentials, V(r) = V↑+V↓
2

. Given its

dependence on the potential’s derivative, it is anticipated to be more pronounced as electrons

approach the nuclei. Additionally, since the spin-orbit coupling operator is proportional to

the nuclear charge, it becomes more prominent for heavy elements. We treat the SOC as an

addition to the Hamiltonian. Consequently, the complete potential entering the Schrödinger

equation can be broken down into components as follows

Vtot =

(
V↑↑ 0

0 V↓↓

)
+

(
V↑↑
SOC V↑↓

SOC

V↓↑
SOC V↓↓

SOC

)
. (3-64)

Calculating the SOC potential requires determining the prefactor χ(r) in Eq. (3-63), which

incorporates a potential derivative. To enhance the accuracy of the derivative calculation,

we can separate the potential into components: one stemming from the nucleus charge Z,

characterized by an analytical form of −2Z/r, and the other originating from the electronic

contribution:
∂V(r)
∂r

=
2Z

r2
+
∂Ve(r)

∂r
. (3-65)

The numerical differentiation is applied to the electrons’ contribution to the potential, which

encompasses the exchange-correlation and Hartree terms.

Since, the single-site solutions are expanded in real spherical harmonics the same basis is

used for L · S. One way to express the SOC potential is as follows:

V2×2
SOC = − 1

M(r)2c2

(
1

r

dV(r)
dr

)(
Lz L−

L+ −Lz

)
, (3-66)
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where L± are the ladder operators defined as L± = Lx ± iLy. Their decomposition in terms

of complex spherical harmonics Ylm is straightforward, as we already understand the action

of these operators on them:

Lz |Ylm⟩ = m |Ylm⟩ , L± |Ylm⟩ =
√
l(l + 1)−m(m± 1) |Ylm⟩ . (3-67)

Finally, the matrix elements can be re-expressed in the usual basis using the transforma-

tion from complex to real spherical harmonics. Then, the Dyson and Lippmann-Schwinger

equations can be solved to obtain the total Green function once we have the SOC potential.

Further details can be found in Refs. [159, 136].

3.5.8. KKR self-consistent cycle
In order to wrap up this overview of the Green function KKR method, we outline the

procedural steps for its practical implementation [163]:

1. First, we identify the Voronoi cells that surround the atoms. The vacuum regions

that come into contact with the material are also divided into Voronoi cells for surface

calculations, just like atomic layers would be.

2. An initial potential V in is selected. We usually use a potential that has previously

been calculated for isolated atoms in bulk calculations. The converged potential of

a corresponding bulk material could be initially used for subsequent simulations of a

thin film.

3. Using Eq. (3-51) and Eq. (3-61), solve the single-site problem for each cell to get RL

and tL.

4. Establish the reference system gLL′ through Eq. (3-58).

5. Solve the Dyson equation in Eq. (3-60) and integrate over the k-space to obtain the

real-space Green function, thereby acquiring the on-site elements Gon−site
i (E) necessary

for charge density computation.

6. Calculate the charge density by integrating along the energy contour.

7. Determine the new potential Vout by solving Poisson’s equation and compute the

exchange-correlation potential Vxc.

8. Check convergence by comparing Vout and V in. If they differ beyond a set tolerance,

mix Vout with V in and use the result as new V in to start again from step 3.
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3.6. Mapping procedure from ab initio of interaction

parameters of an extended Heisenberg Hamiltonian

Introduced in Sec. 2.4, the generalized Heisenberg Hamiltonian offers an apparent simplified

tool to describe magnetism for materials possessing localized magnetic moments.

Throughout the remainder of this section, our goal is to introduce the method used to extract

both the Heisenberg exchange interaction and the Dzyaloshinskii-Moriya interaction (DMI)

using the Green function KKR method. Additionally, we will address the calculation of the

magnetocrystalline anisotropy energy (MAE). The Zeeman energy, which connects the spin

moments to an external magnetic field, is the simplest term, which requires to determining

the net magnetic moment mi at each atomic site.

3.6.1. Infinitesimal rotations method for calculating magnetic

interactions

We use the infinitesimal rotation method to derive magnetic interactions from first-principles

computations and use them to parametrize the extended Heisenberg Hamiltonian. The

change in DFT total energy with respect to a spin-dependent perturbative potential, which

corresponds to a rotation of the magnetic moment, can be used to determine the magnetic

interactions. Since the KKR Green function technique offers direct access to the Green

function, it is especially well-suited for this use. A formalism for computing Jij was first

presented by Liechtenstein et al.[107]. Udvardi et al.[108] later improved this formalism to

take into account new contributions to the extended Heisenberg model. The method enables

the extraction of the distance-dependent magnetic interactions starting from one single con-

verged collinear magnetic state.

The method is based on the Andersen’s magnetic force theorem [164, 165], which offers an

approximation of the change of the total energy upon rotation of the magnetic moments

that simplifies into the alteration of the the one-particle energies (band energies):

δε =

∫ εF

−∞
(ε− εF) δρ(ε)dε = −

∫ εF

−∞
δN (ε)dε, (3-68)

where N (ε) is the number of electronic states (integrated density of states) with energy

smaller than or equal to ε, and ρ(ε) = dN
dε

is the density of states, while δρ(ε), δN (ε) stand

for, respectively, the change in ρ(ε), N (ε) due to the rotation of magnetic moments from

the reference collinear magnetic state.

Next, Lloyd’s formula [166] is used to associate the single-particle energy (εsp) variation upon



3.6 Mapping procedure from ab initio of interaction parameters of an extended Heisenberg
Hamiltonian 41

the rotation of the magnetic moments with the system’s T-matrix as:

εsp = − 1

π

∫ εF

−∞
ImTr lnT(ε)dε, (3-69)

where the inverse of T is provided by(
δT−1

)ij
Lσ,L′σ′ =

(
δt−1

)i
Lσσ′ δijδLL′ − Gij

LL′δσσ′ , (3-70)

which shows the connection to the Green function G and single-site t-matrix.

Upon an infinitesimal rotation of two magnetic moments at sites i and j simultaneously, the

change in energy with respect to an infinitesimal change in the t-matrix can be written as:

δεij = − 1

π

∫
ImTr[δtiGijδtjGji]dε, i ̸= j , (3-71)

where

δti = (δtxi , δt
y
i , δt

z
i ) · δni (3-72)

with tαi (ε) is the derivative of ti(ε) with respect to nα
i (tαi (ε) =

∂ti(ε)
∂nα

i
) and α = (x, y, z).

Inserting Eq. (3-72) into Eq. (3-71) leads to the form

δεij = − (δnx
i , δn

y
i , δn

z
i )

 J xx
ij J xy

ij J xz
ij

J yx
ij J yy

ij J yz
ij

J zx
ij J zy

ij J zz
ij

 δnx
j

δny
j

δnz
j


= −δnT

i · Jij · δnj ,

(3-73)

where ni is the column unit vector and the 3× 3 matrix Jij is defined as:

(Jij)
αβ =

1

π
Im

∫
Tr δtαi Gijδt

β
j Gjidε . (3-74)

What we have done is to identify the tensor of magnetic exchange interactions of an extended

Heisenberg model that can be evaluated from first-principles [131]:

H = −
∑
<ij>

nT
i Jijnj . (3-75)
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The tensor of magnetic interactions can be decomposed into three parts,

Jij = J tr
ij + J S

ij + J A
ij . (3-76)

The first part, is the isotropic part corresponding to the conventional Heisenberg exchange

interaction, given by:

J tr
ij = JijI, (3-77)

where I is the identity matrix, and the isotropic exchange interaction describing the average

diagonal value,

Jij =
1

3
TrJij . (3-78)

The third part of Eq. (3-76) represents the anisotropic antisymmetric exchange contribution

corresponding to the DMI. It can be expressed as:

J A
ij =

(
Jij − J T

ij

)
=

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

 , (3-79)

where the three components of a Cartesian vector Dij = (Dx
ij, D

y
ij, D

z
ij) are given by:

Dx
ij =

1

2

(
J yz

ij − J zy
ij

)
, Dy

ij =
1

2

(
J xz

ij − J zx
ij

)
, Dz

ij =
1

2

(
J xy

ij − J yx
ij

)
. (3-80)

The antisymmetric part of Eq. (3-76) can then be reformulated into a vector product by:

HDMI = −
∑
<ij>

Dij · (ni × nj) . (3-81)

Finally, the second term in Eq. (3-76) is given by the remaining symmetric traceless contri-

butions,

J S
ij =

(
Jij + J T

ij

)
− JijI, (3-82)

where J T
ij is the transpose of Jij. The latter turns out to be small in the materials in-

vestigated in this thesis and therefore, we do not consider its effect in the present work.

Essentially, in order to obtain every element of the interaction matrix, the computation

must be done with the magnetization aligned along three orthogonal directions, such as x, y,
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and z.

3.6.2. Extraction of the magnetocrystalline anisotropy energy

A general formulation of the magnetic anisotropy in second order is given by:

HAni = −nT
i Kini with K =

Kxx Kxy Kxz

Kxy Kyy Kyz

Kxz Kyz Kzz

 , (3-83)

where K is a symmetric traceless matrix.

To extract the tensor elements defining MAE one needs to compute the energy of the mate-

rial for different magnetization-rotated directions and proceed to energy differences.

In general, taking the energy difference between the cases where the magnetization points

along the x and z axis gives:

εx − εz = Kzz −Kxx, (3-84)

while considering the magnetization along the x and y axis leads to:

εx − εy = Kyy −Kxx. (3-85)

If there is no anisotropy in the xy-plane, the magnetic anisotropy energy matrix takes a

simple diagonal form with only one free parameter, Kzz. Depending on the sign of Kzz the

anisotropy is called easy-axis (Kzz > 0) or easy-plane (Kzz < 0) anisotropy. In this case, the

MAE adopts the form,

HAni = Kzz cos
2(ϑ) , (3-86)

where one notices that there is no need to specify Kxx and Kyy.

When employing this approach to calculate the MAE, it is crucial to consider that these

energy differences are significantly smaller than the total energy, posing a numerical chal-

lenge. Instead of proceeding to self-consistency in the first-principles simulations, another

approach consists in utilizing the magnetic force theorem, as illustrated in [167]. This the-

orem justifies substituting the difference in self-consistent total energies with the difference

in band energies εband by proceeding to a single iteration after rotating the moments from

an initially converged calculation along a given direction of the magnetization.
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3.7. Atomistic Spin dynamics
DFT inherently operates within a static framework, as exemplified by the Kohn-Sham equa-

tions (Eq. (3-8)), where time dependence is conspicuously absent. While Time-Dependent

DFT (TD-DFT) exists to address dynamic effects, such as atomistic magnetic precession, its

computations are intricate and resource-intensive, constrained to short time scales (typically

within femtoseconds [168, 169]). In response to these challenges, ASD are introduced as

a more affordable approach compared to the computationally expensive real-time solutions

of TD-DFT equations. One main method of ASD is the simulation of dynamical spin tra-

jectories, by solving the Landau-Lifshitz-Gilbert (LLG) equation. This section introduces

ASD methods, LLG, the Geodesic Nudged Elastic Band (GNEB), and Monte Carlo (MC)

methods, all implemented in the Spirit code [114, 170]. In particular, LLG is instrumental in

our exploration of metastable magnetic states in materials, while GNEB and MC are used to

inspect transition mechanisms and the properties of the thermal ensemble of our magnetic

states, respectively. For a more comprehensive understanding of this subject, additional

insights can be found in pertinent textbooks [171] and PhD theses [170, 172] within the

field.

3.7.1. Landau-Lifshitz-Gilbert equation (LLG)
Upon extracting the magnetic interactions of the system from first-principles and incorpo-

rating them into the extended Heisenberg Hamiltonian (Eq. (2-13)), our next step involves

investigating the magnetic states that can be stabilized by these extracted interactions. To

accomplish this, we employ a spin relaxation method based on the LLG equation of motion,

which describes the magnetization dynamics of a material and can be expressed as follows:

dni

dt
=− γ

(1 + α2)mi

ni ×Bi
eff − γα

(1 + α2)mi

ni ×
(
ni ×Bi

eff

)
, (3-87)

where α is the Gilbert damping controlling the dissipation of angular momentum and energy

from the magnetic subsystem, γ is the gyromagnetic ratio, and Bi
eff is the effective field

related to the energy gradient,

Bi
eff = − ∂H

∂ni

. (3-88)

The first term in LLG Eq. (3-87) is called the precessional term, it accounts for the moment’s

precession that is directed perpendicular to the direction of the moment and the direction

of the effective field, i.e. it causes the moment to precess on a circular path which means

that an effective field perpendicular to the spins sets them into precession. The second term,

parametrized by α, is called the damping term as it yields a vector that damps the precession

of ni and eventually causes it to realign with the effective magnetic field.
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In order to evolve a spin system in time and drive it towards a minimum of the energy land-

scape, various well-established numerical solvers [173, 174, 175] implemented in the Spirit

code [114, 170] can be employed. In our energy minimization simulations, we utilized the

limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) method, known for signifi-

cantly accelerating the convergence [176]. The ASD methods consist of starting from a

initial spin configuration, e.g., a random configuration, then use an energy minimization to

evolve the spin in time at zero temperature until an equilibrium configuration is reached.

Once identified, this equilibrium configuration’s spin matrix allows us to scrutinize its prop-

erties and explore how it responds to external stimuli, such as the presence of an external

magnetic field or its reaction to spin-polarized currents.

An additional significant facet of ASD involves studying the motion induced by spin cur-

rents. When subjected to a current perpendicular to plane (CPP), The dynamics of the

magnetization ni at the lattice site i is then governed by the extended LLG equation taking

into account the spin transfer torque (STT) term [177, 178, 117, 73, 179],

dni

dt
=− γ

(1 + α2)mi

ni ×Bi
eff − γα

(1 + α2)mi

ni ×
(
ni ×Bi

eff

)
− γαη

(1 + α2)
ni × np +

γη

(1 + α2)
ni × (ni × np) ,

(3-89)

where np is the current polarisation direction with the current amplitude monitored by the

parameter η which is related to the current density je by:

η =
jPgµB

2edMsγ
, (3-90)

where P is the polarization, g the Landé factor, µB the Bohr magneton, e the electronic

charge, d the film thickness and Ms the saturation magnetization.

Eq. (3-89) models the effect of a perpendicular to thin film spin current onto the magnetiza-

tion structure [180]. With the ability to simulate these effects, the current induced motion

of magnetic configurations such as skyrmions, and therefore potential racetrack memory

designs, can be studied numerically.

3.7.2. Geodesic nudged elastic band method (GNEB)
To determine the energy barrier required for the annihilation of a magnetic configuration from

a local minimum state to the system’s ground state, the GNEB method is utilized [181, 182,

114]. This method is employed for computing minimum energy transition paths between two

predefined configurations. The path is discretized into several spin configurations, referred

to as images. Convergence from an initial guess (starting configuration) to a stable, energy-

minimized path (ground state configuration) is achieved by applying spring forces along the
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path tangents, while energy gradient forces are applied orthogonal to the path tangents. The

total force is expressed as:

F tot
ν = F s

ν + F g
ν , (3-91)

where F s represents a spring force given by:

F s
ν = (dν−1,ν − dν,ν+1) τν , (3-92)

with dν,ν′ is a measure of distance between images ν and ν′. F g denotes a force related to the

energy gradient, acting to pull each image towards the minimum energy path while keeping

the distances to other images constant:

F g
ν = −∇Eν + (∇Eν · τν) τν , (3-93)

where and ν is the image index along the chain, ∇=∂/∂ni, and τν is the (normalized) path

tangent at image ν. To accurately locate the highest energy point along the minimum

energy path, known as the saddle point, a climbing image (CI) can be employed [181]. After

identifying the saddle point, the energy barrier can be calculated by determining the energy

difference between the saddle point and the initial configuration, as illustrated in Fig. 3-2.

3.7.3. Monte Carlo (MC) simulations
In our study, we employed the Monte Carlo (MC) method to calculate the critical tem-

perature of the magnetic systems. The MC method is well known in physics and has a

broad range of applications [183]. MC requires only the calculation of the energy, making it

the most straightforward method of those implemented in Spirit. While it is a useful tool

to calculate equilibrium properties, the drawback is that it cannot resolve time-dependent

processes. One iteration of the METROPOLIS algorithm will sequentially—but in random

order—pick each spin in the system once and perform a trial step. Trial steps are performed

by defining a relative basis in which the current spin is the z axis and choosing a new spin

direction by uniformly distributed random variables ϕ ∈ [0, 2π] and cos θ ∈ [0, cos θcone],

where θcone is the opening angle of the cone. The trial step is accepted with a probability

P = e−∆E/KBT , (3-94)

where ∆E is the energy difference between the previous spin configuration and the trial

step. The cone angle can be set by an adaptive feedback algorithm according to a desired

acceptance-rejection ratio. Using this method, one can, for example, calculate the critical
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Reaction coordinate 𝑅!

E

Initial configuration

Final configuration

Saddle point

∆E

Figure 3-2.: Schematic energy barrier. An energy path is shown schematically, with
the energy barrier ∆E of a metastable state (initial configuration) with respect
to the ground state (final configuration). The path is discretized by a set of
configurations, often referred to as images. Rx is the reaction coordinate, which
is simply a measure of distance along the transition.

temperature of a spin system, Tc [183], which for a ferromagnetic system is the Curie tem-

perature of the transition from the collinear phase at low temperature to the paramagnetic

phase at high temperature. For antiferromagnets, Tc is the Néel temperature at which the

antiferromagnetic order is lost. In general, as with other transitions, for example between

non-collinear and paramagnetic states, the low-temperature order will at some point be de-

stroyed by fluctuations, when the temperature is increased. In order to calculate Tc, the

average total magnetization M(T ) = 1
N
|
∑

i ni| is evaluated at each temperature, then by

fitting the results with,

M(T ) =

{
(1− T/Tc)

b , T < Tc

0 else
(3-95)

Tc can be calculated once the critical exponent is defined.





4. Intrinsic AFM skyrmions in Cr films

interfaced with PdFe/Ir(111)

Antiferromagnetic (AFM) skyrmions, with their topological spin structures, offer poten-

tial as localized magnetic bits in future technology. They differ from ferromagnetic (FM)

skyrmions in their expected immunity to the skyrmion Hall effect, which is advantageous

for applications. While they have been observed in synthetic AFM structures and as com-

plex meronic textures in intrinsic AFM bulk materials, their realization in non-synthetic

AFM films has been elusive. Here, we unveil their presence in a row-wise AFM (RW-AFM)

Cr film deposited on a PdFe bilayer grown on a face-centered cubic (fcc) Ir(111) surface.

Using first-principles in combination with atomistic spin dynamics (ASD), we demonstrate

the emergence of single and strikingly interpenetrating chains of AFM skyrmions, which can

co-exist with the rich inhomogeneous exchange field, including that of FM skyrmions, hosted

by PdFe. Besides identifying an ideal platform for intrinsic AFM skyrmions, we anticipate

these knotted solitons to be promising in AFM spintronics.

The results discussed in this chapter have been previously published in the following refer-

ence [184]:

”Emergence of zero-field non-synthetic single and interchained antiferromagnetic

skyrmions in thin films”.

4.1. Introduction
As elaborated in the introduction chapter 1, AFM skyrmions both synthetic and intrinsic

have been at the heart of extensive research for their potential as promising candidates for

replacing the FM skyrmions in spintronic devices [77, 11, 78, 73, 79, 80, 86, 87, 88, 83, 84],

due to their ultrafast dynamics, robustness against magnetic perturbations, and insensitiv-

ity to dipolar fields, which should allow the stabilization of rather small skyrmions. On the

one hand, synthetic AFM skyrmions consist of two FM skyrmions realized in two differ-

ent magnetic layers, which are antiferromagnetically coupled through a non-magnetic spacer

layer [117, 185, 89, 68]. On the other hand, an intrinsic AFM skyrmion is a unique magnetic

entity since it is entirely located in a single layer [73, 74, 80]. Recently, and just before

starting this PhD study, synthetic AFM skyrmions have been successfully engineered ex-

perimentally [68]. However, the experimental observation of intrinsic AFM skyrmions has

proven challenging, especially at surfaces and interfaces, which are of significant interest for

racetrack concepts and various applications.

https://www.nature.com/articles/s41467-022-35102-x
https://www.nature.com/articles/s41467-022-35102-x
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We predict here, utilizing first-principles and atomic spin dynamics (ASD), see the section

on computational details 4.2, the emergence of intrinsic AFM skyrmions in a monolayer of

Cr deposited on a surface known to host FM skyrmions: A PdFe bilayer grown on Ir(111) fcc

surface [27] as illustrated in Fig. 4-1 a. The AFM nature of Cr coupled antiferromagnetically

to PdFe remarkably offers the right conditions for the emergence of a rich set of complex

AFM textures. The ground state is collinear RW-AFM within the Cr layer (see inset of

Fig. 4-2 a). The emergence of the RW-AFM magnetic spin order on a triangular lattice is

an unexpected magnetic configuration. Typically, one expects that with the AFM first near-

est neighbours (n.n.) interactions on a triangular lattice, magnetic frustration would lead to

the formation of an AFM Néel state. However, the introduction of the next n.n. interactions

becomes influential. In particular, when the second and third n.n. interactions being of AFM

and FM nature, respectively, which happens to be the case for the interactions among Cr

atoms as depicted in Fig. 4-3 b. The competition between those three first n.n. interactions

leads to the formation of the RW-AFM spin alignment as shown in the three dimensional

phase diagram depicted in Fig. 4-4. This magnetic state was first theoretically predicted

by Kurz [186] and has been so far observed experimentally only in Mn/Re(0001) [187, 188].

The difference to the latter, however, is that although being collinear, the Cr layer interfaces

with a magnetic surface, the highly non-collinear PdFe bilayer.

A plethora of localized chiral AFM-skyrmionic spin textures (Fig. 4-2 a) and metastable

AFM domain walls (see Fig.A-1 of Appendix A) emerge in the Cr overlayer. Besides isolated

topological AFM solitons, we identify strikingly unusual interpenetrating AFM skyrmions,

which are reminiscent of crossing rings (see schematic Fig. 4-2 c), the building blocks of knot

theory where topological concepts such as Brunnian links are a major concept [189]. The

latter has far reaching consequences in various fields of research, not only in mathematics

or physics but extends to chemistry and biology. For instance, the exciting and intriguing

process of interchaining is paramount in carbon-, molecular-, protein- or DNA-based as-

semblies [190, 191, 192]. We discuss the mechanisms enforcing the stability of the unveiled

catenated topological objects, their response to magnetic fields and the subtle dependence

on the underlying magnetic textures hosted in PdFe bilayer.

4.2. Computational details

4.2.1. First-principles calculations
Our investigation is based on first-principles calculations within the framework of density

functional theory (DFT). Details of the concepts and methodologies were introduced in chap-

ter 3. These ab initio calculations unfolded through a two-stage process. In the initial phase,

our focus was on obtaining the relaxed geometry of the various interfaces. This was accom-

plished by employing the Quantum Espresso computational package [125]. To describe the

electronic structure, we utilized pseudopotentials sourced from the PSLibrary [153] consid-
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Ir(111)
Fe
Pd
Cr RW-AFM

Figure 4-1.: Schematic representation of the investigated trilayer deposited on
Ir(111) following fcc stacking, with illustration of the RW-AFM order
of spins emerging at Cr layer.

L
2

L
4

ba

c

L1       L2       L3       L4     

Figure 4-2.: Interchained AFM skyrmions in Cr layer atop PdFe bilayer on
Ir(111). a The ground state of Cr layer being RW-AFM (see inset) can
host AFM skyrmions that can be isolated or interchained to form multimers
of skyrmions. Here we show examples ranging from dimers to pentamers. The
AFM skyrmions can be decomposed into FM skyrmions living in sublattices
illustrated in b. c The interchaining of skyrmions is reminiscent of interpene-
trating rings, which realize topologically protected phases.

ering a 28×28×1 k-mesh. The kinetic energy cutoff for the wavefunction and for the charge

density were set to 70 Ry and 700 Ry, respectively.

For our multi-layered system, visually depicted in Fig. 4-1, the interlayer relaxations are

presented in Table 4-1. These layers, encompassing Cr, Pd, Fe, and Ir, were arranged in an

fcc stacking configuration along the [111] direction. The interlayer relaxation with respect

to the one characterizing the ideal bulk of Ir were found to be 4%, 5.8%, 8.1%, and -1%.
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It is worth noting that positive and negative values signify atomic relaxations toward and

away from the Ir surface, respectively.

In the subsequent stage of our investigation, we delve into the electronic structure and

magnetic properties. This was achieved through simulations employing the all-electron full-

potential Koringa-Kohn-Rostoker (KKR) Green function method [129, 136], which incorpo-

rates SOC self-consistently within the local spin density (LDA) approximation. The slab

configuration for this stage consisted of 30 layers, comprising 3 vacuum layers, 1 Cr layer, 1

Pd layer, 1 Fe layer, 20 Ir layers, and 4 vacuum layers.

In the mathematical treatment, the momentum expansion of the Green function was trun-

cated at ℓmax = 3. Self-consistent calculations were executed using a k-mesh comprising

30 × 30 points. Furthermore, the energy contour was constructed with 23 complex en-

ergy points situated in the upper complex plane, incorporating 9 Matsubara poles. The

tensor of magnetic exchange interactions were quantified using the infinitesimal rotation

method [107, 131], with a 200× 200 k-mesh.

Table 4-1.: Vertical relaxations or Cr, Pd, Fe layers and the first layer of Ir towards (positive
sign) or away from the (negative sign) Ir(111) surface. The values are expressed
as a change with respect to the ideal bulk Ir interlayer distances.

Atom nature Relaxation(%)
Cr 4
Pd 5.8
Fe 8.1
Ir -1

4.2.2. Hamiltonian model and atomistic spin dynamics

To uncover the magnetic properties and the emergence of complex states at Cr layer as well

as Fe layer, we employ the Landau-Lifshitz-Gilbert equation (LLG) [173] implemented in the

Spirit code [114], to minimize the extended Heisenberg Hamiltonian discussed in chapter 2

section 2.4. For CrPdFe/Ir(111) magnetic layered system, the Heisenberg Hamiltonian reads:

H = HExc +H DMI +HAni +HZeem, (4-1)

with:
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HExc = −
∑
<ij>

JCr-Cr
ij ni · nj −

∑
<ij>

JFe-Cr
ij ni · nj −

∑
<ij>

JFe-Feij ni · nj,

HDMI =
∑
<ij>

DCr-Cr
ij · [ni × nj] +

∑
<ij>

DFe-Cr
ij · [ni × nj] +

∑
<ij>

DFe-Fe
ij · [ni × nj],

HAni = −KCr
∑
i

(nz
i )

2 −KFe
∑
i

(nz
i )

2,

HZeem = −
∑
i

hin
z
i ,

where i and j are site indices carrying each magnetic moments. n is a unit vector of the

magnetic moment. JX-Y
ij is the Heisenberg exchange coupling strength, being < 0 for AFM

interaction, between an X atom on site i and a Y atom on site j. A similar notation is

adopted for the Dzyaloshinskii-Moriya interaction (DMI) vector D and the magnetocrys-

talline anisotropy energy (MAE) parameter K (0.5 meV per magnetic atom). The latter

favors the out-of-plane (OOP) orientation of the magnetization, and hi = miB describes the

Zeeman coupling to the atomic spin moment m at site i assuming an OOP field.

The magnetic interactions involving Cr and Fe, which are extracted from first-principles, are

shown in Fig. 4-3 for both the Heisenberg exchange interactions and DMI.

In this chapter we also inspect the phase diagram resulting from changing the magnitude

of the magnetic interactions among Cr atoms (J,D and K) after multiplication with renor-

malization factor, and explore the magnetic state forming with the new set of magnetic

interactions as explained later in this chapter in section 4.7.

Moreover, the investigations of the thermal stability of the AFM solitons were carried out

utilizing the GNEB method [181] implemented in the Spirit code as well. In our analysis,

we consider periodic boundary conditions, effectively modeling an extended two-dimensional

system with cells containing 1002, 2002, 3002, and 4002 sites.

4.3. RW-AFM state and emergence of intrinsic AFM

skyrmions
In the well-known system of PdFe/Ir(111), homo-chiral spin spiral emerges as its ground

state [27, 62], arising from the intricate interplay between Heisenberg exchange interactions

and the DMI. This DMI is induced by the heavy Ir substrate, characterized by a strong spin-

orbit coupling (SOC). When subjected to a magnetic field, sub-10-nanometer FM skyrmions

emerge [27, 62, 61, 106, 193, 194, 195]. Following the deposition of the Cr overlayer, signifi-

cant modifications in the magnetic interactions governing Fe become apparent, as evidenced

by the comparison depicted in Fig. 4-3. These changes stem from alterations in the elec-
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a b c

Figure 4-3.: Distance-dependent magnetic interactions in CrPdFe and PdFe de-
posited on Ir(111). a The Heisenberg exchange interactions as function of
distance among Fe atoms (JFe-Fe) in PdFe/Ir(111) (blue) and in CrPdFe/Ir(111)
(red), with inset indicating the corresponding magnitude of DMI. b The Heisen-
berg exchange interactions between Cr atoms (JCr-Cr) with DMI depicted in the
inset. Similarly to b, the interactions between Cr and Fe atoms are shown in c.

tronic structure, illustrated in Fig. A-2 of Appendix A. Specifically, the Heisenberg exchange

interaction among Fe n.n. undergoes a substantial reduction of 5.5 meV, corresponding to

a decrease of 33%. This reduction in Heisenberg exchange interaction enhances the non-

collinear magnetic behavior of Fe, enabling the spontaneous formation of FM skyrmions

even in the absence of an external magnetic field, as demonstrated in Fig.A-3 of Appendix A.

The first n.n. Cr atoms exhibit strong AFM coupling (-51.93 meV). This strong AFM cou-

pling within the first n.n. on a triangular lattice is expected to favor the AFM Néel spin

alignment due to magnetic frustration. However, the subtle interplay between magnetic in-

teractions beyond the first n.n. becomes crucial in determining the ultimate spin alignment.

In our case, the AFM interaction of the second n.n. (-6.69 meV) further reinforces the for-

mation of the Néel state. Intriguingly, a subtle competition arises from the FM Heisenberg

exchange interactions of the third n.n. (5.32 meV) on the triangular lattice. This competi-

tion stabilizes the RW-AFM state as established in a prior study [186] and illustrated in the

phase diagram Fig. 4-4.

In Fig. 4-4, we are showing the three dimensional magnetic phase diagram of the Heisenberg

model on a triangular lattice including only the Heisenberg exchange interactions up to the

third n.n. Here, J1, J2 and J3, denote the Heisenberg exchange interactions with the first,

second, and third nearest neighbors, respectively. The values of J2 and J3 are normalized

to the absolute value of J1, while J1 is being of AFM nature (< 0). If only J1 is considered

(J2 = J3 = 0), the magnetic frustration leads to the AFM Néel state, whereas negative J2
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and J3, both favoring an AFM coupling, would trigger an AFM spin-spiraling state. How-

ever, the FM values of J3 stabilize the RW-AFM state. Notably, when both J2 and J3 exceed

|J1| while being positive, the FM state becomes the ground state. The interactions among

the first three n.n. among Cr atoms position our system within the RW-AFM region as

illustrated in the figure. Remarkably, the stability of the RW-AFM state at Cr layer remains

independent of the AFM interaction with the Fe substrate.

RW-AFM

Néel

Spin spirals

FM

J1 < 0

J3 /|J1|

J 2
 /|

J 1
|

-2.0 -1.0 0.0 1.0
-2.0

-1.0

0.0

1.0

J1 J2 J3

CrPdFe/Ir(111)

Figure 4-4.: Phase diagram of the Heisenberg model for a hexagonal two-
dimensional lattice including magnetic interactions up to the third
n.n. The impact of magnetic interactions up to the third n.n. is considered
while neglecting the DMI as illustrated in upper left inset, assuming an AFM
coupling J1 among first n.n. The circled point represents the position of our
magnetic system (CrPdFe/Ir(111)).

As depicted in Fig. 4-2 a, the RW-AFM configuration is characterized by parallel magnetic

moments along a close-packed atomic row, with antiparallel alignment between adjacent
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rows. The hexagonal symmetry of the atomic lattice allows for the rotation of the AFM

rows in three symmetrically equivalent directions. Importantly, the magnetic moments point

OOP due to the presence of an MAE reaching 0.5 meV per magnetic atom.

L1

L2

L4

L3

a

b

10 nm

L1

L2

L4

L3

Figure 4-5.: Single and double AFM skyrmions. In case of the single AFM skyrmion,
two of the sublattices, L1 and L2, are occupied by the FM skyrmions shown in
a. L3 and L4 host quasi-collinear AFM spins in contrast to the FM skyrmions
emerging in the case of the double AFM skyrmion presented in b. Note that
the separation of sublattices L1, L2, L3 and L4 shown in a and b is only done
for illustration.

The DM interactions among Cr atoms arise due to the broken inversion symmetry and is

mainly induced by the underlying Pd atoms hosting a large SOC. The n.n. Cr DMI (1.13

meV) is of the same chiral nature and order of magnitude as that of Fe atoms (1.56 meV),

which gives rise to the chiral non-collinear behavior illustrated in Fig. 4-2 a. We note that

the solitons are only observed if Cr magnetic interactions beyond the n.n. are incorporated,

which signals the significance of the long-range coupling in stabilizing the observed textures.

Since the Heisenberg exchange interaction among the Cr atoms is much larger than that of
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Fe, the AFM solitons are bigger, about a factor of three larger than the FM skyrmions found

in Fe.

While the RW-AFM state is defined by two sublattices, the different AFM skyrmions, iso-

lated or interchained, can be decomposed into interpenetrating FM skyrmions living in 4

sublattices (L1, L2, L3 and L4) as illustrated in Fig. 4-2 b and Fig. 4-5. In the RW-AFM

phase, L1 and L4 are equivalent and likewise for L2 and L3. It is evident that the moments

in L1 and L4 are antiparallel to the ones in L2 and L3. Taking a closer look at the iso-

lated AFM magnetic texture, one can dismantle it into two FM skyrmions with opposite

topological charges anchored in the distinct antiparallel FM sublattices L1 and L2, while

L3 and L4 carry rather collinear magnetization (Fig. 4-5 a). In the case of the overlapped

AFM skyrmions, however, no sublattice remains in the collinear state. As an example, the

dimer consists of two couples of antiferromagnetically aligned skyrmions, each being embed-

ded in one of the four sublattices (Fig. 4-5 b). One can clearly demonstrate that within a

given sublattice, say L1, the magnetic interaction among the n.n. is mediated via J3, which

is of FM nature and the associated DMI D3. Both together with the OOP MAE are re-

sponsible for the emergence of FM skyrmions in each sublattice. Then J1 and J2 taking care

of the inter-sublattice AFM coupling enforce the AFM alignment of the sublattice skyrmions.

Our investigation uncovers a notable disparity between the behavior of single AFM skyrmions

and their interchained counterparts in response to the magnetic environment originating

from the underlying PdFe bilayer. In the subsequent sections, we delve into a more detailed

analysis of the stability mechanisms governing single and overlapping AFM skyrmions.

4.4. Elucidating the stabilization mechanisms of

interchained AFM skyrmions

The occurrence of overlapped solitons is an unusual phenomenon as conventional FM skyrmions

tend to repel each other. This phenomenon arises from the intricate interplay of competing

interactions among skyrmions residing in different sublattices, which is rooted in the inher-

ent AFM coupling between n.n. magnetic moments. Depending on the hosting sublattice

(L1 to L4), the four skyrmions shown in Fig. 4-5 b experience attraction or repulsion. The

sublattices are arranged such that n.n. within a sublattice correspond to third n.n. in the

overall system. This arrangement results in the Heisenberg exchange coupling favoring the

parallel alignment of spins within a given sublattice.

When looking at any sublattice in isolation, this effective FM-like exchange interaction en-

ables the existence of skyrmions in a collinear background. In the overall system, however,

pairs of sublattices interact via the first and second n.n. exchange interactions, which prefers

anti-parallel spin alignments. Therefore, the exchange interaction between skyrmions formed

at sublattices with a parallel background, such as (L1, L4) and (L2, L3), and denoted in
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Figure 4-6.: Energetics of two interchained AFM skyrmions. a Two overlapping AFM
skyrmions decoupled from the PdFe bilayer with black and blue line represent-
ing two examples of paths along which the lower skyrmion is rigid-shifted with
respect to the upper one, which is pinned. b Two-dimensional map of the total
energy difference with respect to the magnetic state shown in a as a function of
the distance between the skyrmion centers. c Energy profile along the blue line
shown in a. A double minimum is found once the skyrmions swap their positions
and become truly degenerate once the rigidity of the spin state is removed (see
the red circle). d The Heisenberg exchange is the most prominent contribution
to the skyrmion stabilization, as shown along the path hosting a single min-
imum. The total skyrmion-skyrmion repulsive homo-interaction is dominated
by the attractive hetero-interaction, red curves in e and f, respectively. The
DMI contribution, shown in insets, is smaller and sublattice independent. It
favors the overlap of AFM skyrmions.

the following as skyrmion-skyrmion homo-interactions, are repulsive as usually experienced

by FM skyrmions. In contrast, and for the same reasons, interaction between skyrmions in

sublattices with oppositely oriented background spins, denoted as hetero-interactions, are

attractive as it is for (L1, L2), (L2, L4), (L3, L4) and (L1, L3). Detailed illustration of the
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interactions among sublattices spins is depicted in Fig. A-4 of Appendix A. Clearly, the

set of possible hetero-interactions, enforced by the attractive nature induced by the DMI,

outnumbers the homo ones. The interchained AFM skyrmion is simply the superposition of

the sublattice skyrmions at the equilibrium distance, here 2.58 nm between the two AFM

skyrmions, where both interactions (attraction and repulsion) are equal.

To substantiate the proposed mechanism, we quantify the skyrmion-skyrmion interaction.

We simplify the analysis by neglecting the Cr-Fe magnetic interactions, which puts aside

the impact of the rich non-collinear magnetic behavior hosted by the PdFe bilayer. In this

case, only the overlapping AFM skyrmions are observed, and single AFM skyrmions dis-

appear. We note that be reducing the MAE from 0.5 to 0.4 meV for the Cr atoms helps

maintaining the single AFM skyrmion even when switching-off the Cr-Fe interaction. We

take the skyrmion dimer illustrated in Fig. 4-6 a, and proceed to a rigid shift of the lower

AFM skyrmion while pinning the upper one at the equilibrium position. We extract the

skyrmion-skyrmion interaction map as a function of distance, as shown in Fig. 4-6 b, which

clearly demonstrates that as soon as the AFM skyrmions are pulled away from each other,

the energy of the system increases. Note that within this procedure, the sublattice interac-

tions (L1, L2) and (L3, L4) do not contribute to the plots since they are assigned to each

of the AFM skyrmions moved apart from each other. Two minima are identified along a

single direction as favored by the symmetry reduction due to the AFM arrangement of the

magnetic moments in which the skyrmions are created. Indeed, one notices in Fig. 4-2 b that

due to the sublattice decomposition symmetry operations are reduced to C2, i.e. rotation

by 180◦, while mirror symmetries, for example, originally present in the fcc(111) lattice are

broken.

Fig. 4-6 c-d depict the skyrmion-skyrmion interaction, which hosts either one or two min-

ima, as a function of distance along two directions indicated by the dashed lines, blue and

black, in Fig. 4-6 a. The two minima found along the blue line should be degenerate and

correspond to the swapping of the two AFM skyrmions. The breaking of degeneracy is an

artifact of the rigid shift assumed in the simulations, which can be corrected by allowing

the moments to relax (see red circle in Fig. 4-6 c). The maximum of repulsion is realized

when the two AFM skyrmions perfectly overlap (see inset). The interaction profile shown in

Fig. 4-6 d is decomposed into two contributions: the skyrmion-skyrmion homo- and hetero-

interactions, which we plot in Fig. 4-6 e and f, respectively. The data clearly reveals the

strong repulsive nature of the homo-interaction mediated by the Heisenberg exchange, which

competes with the attractive hetero-interaction driven by both the Heisenberg exchange cou-

pling and DMI. The latter skyrmion-skyrmion interaction is strong enough to impose the

unusual compromise of having strongly overlapping solitons.



60 4 Intrinsic AFM skyrmions in Cr films interfaced with PdFe/Ir(111)

a cb L1               L2               L3               L4     L1                L2L1                L2              L3              L4     

B (Tesla) B (Tesla)B (Tesla)

R
ad

iu
s(

nm
)

R
ad

iu
s(

nm
)

R
ad

iu
s(

nm
)

Without Fe-Cr interactions With Fe-Cr interactions With Fe-Cr interactions

Figure 4-7.: Impact of magnetic field on the AFM skyrmion radius. Radius of the
sublattice FM skyrmions for two-interchained AFM skyrmions a decoupled from
and b coupled to the Fe magnetization. c A single case is shown for the isolated
AFM skyrmion since it disappears without the inhomogeneous magnetic field
emerging from the substrate. Examples of snapshots of the AFM skyrmions are
illustrated as insets of the different figures. In Fe, the amount of FM skyrmions
and antiskyrmions increases once applying a magnetic field, which erases the
ground state spin-spiral. The coupling to the Fe magnetization affects the
evolution of the AFM skyrmions as function of the magnetic field dramatically.

4.5. Impact of magnetic field

Before delving into an in-depth exploration of stability aspects concerning single AFM

skyrmions, we apply a magnetic field perpendicular to the substrate and disclose pivotal

ingredients for the formation of the isolated solitons. In general, the reaction of FM and

AFM skyrmions to an external magnetic field is expected to be deeply different. When

applied along the direction of the background magnetization, FM skyrmions reduce in size

while recent predictions expect a size expansion of AFM skyrmions [86, 87, 77], thereby

enhancing their stability.

To inspect the response of AFM skyrmions to a magnetic field perpendicular to the sub-

strate, we first remove, as done in the previous section, the Cr-Fe interactions since they

give rise to a non-homogeneous and strong effective exchange field. In this particular case,

we explored the case of AFM skyrmion dimers. As illustrated in Fig. 4-7 a, the size of each

of the sublattice skyrmions, which together form the AFM skyrmion dimer, increases with

an increasing magnetic field. The type of the hosting sublattice, with the magnetization

being parallel or antiparallel to the applied field, seems important in shaping the skyrmions

dimension.

Strikingly, and in strong contrast to what is known for FM skyrmions, the AFM skyrmions,

single and multimers, were found to be stable up to extremely large magnetic fields. Al-
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though the assumed fields are unrealistic in the lab, they can be emulated by the exchange

field induced by the underlying magnetic substrate. Indeed, the magnetic interaction be-

tween Cr and its nearest neighboring Fe atoms, carrying each a spin moment of 2.51 µB,

reaches -3.05 meV, which translates to an effective field of about 21 Tesla. At this value, the

average skyrmion radius is about 1.6 nm, which is 30% smaller than the one found once the

Cr-Fe magnetic coupling is enabled (see Fig. 4-7 b). We note that since the skyrmions are

not circular in shape, their radius is defined as the average distance between the skyrmions

center and the position where the spin moments lie in-plane. The significant size difference is

induced by the strong inhomogenous exchange field emanating from the Fe sub-layer, which

can host spirals, skyrmions and antiskyrmions.

If the Cr-Fe interactions are included, the size dependence changes completely. Instead of

the rather monotonic increase with the field, the size of the skyrmion is barely affected

until reaching about 50 Tesla, which is accompanied by substantial miniaturization of the

AFM skyrmions. Here, a phase transition occurs in Fe, which initially hosts spin spirals

that turn into FM skyrmions (see Fig. A-5 of Appendix A). After being squeezed down

to an average radius of 1.48 nm at 140 Tesla, the size expansion observed without the Cr-

Fe interactions is recovered because the substrate magnetization is fully homogeneous and

parallel to the Zeeman field. Likewise, single AFM skyrmions, found only once the coupling

to the substrate is enabled, react in a similar fashion to the field as depicted in Fig. 4-7

c. The substantial difference, however, is that fields larger than 80 Tesla destroy the AFM

skyrmions due to the annihilation of the Fe FM skyrmions. This highlights an enhanced

sensitivity to the underlying magnetic environment and clearly demonstrates the robustness

enabled by skyrmion interchaining.

4.6. Stabilization mechanism for single AFM skyrmions

We learned that single AFM skyrmions can be deleted after application of an external mag-

netic field or by switching off the exchange coupling to the magnetic substrate. Both effects

find their origin in the magnetization behavior of the PdFe bilayer. To explore the underlying

correlation, we consider as an example the magnetic configuration obtained with a field of

70 Tesla and delete one after the other the skyrmions and antiskyrmions found in Fe, then

check whether the AFM skyrmion in Cr survives (see example in Fig. 4-8). We notice that

the AFM skyrmion disappears by deleting the FM solitons located directly underneath or

even a bit away. Fig. A-6 of Appendix shows that when shifted across the lattice, the AFM

skyrmion disappears if fixed above a magnetically collinear Fe area.

We proceed in Fig. 4-9 to an analysis of the Fe-Cr interaction pertaining to the lower-right

snapshot presented in Fig. 4-8 c by separating the Heisenberg exchange contribution from

that of DMI and plotting the corresponding heat maps of the site-dependent of these two

contributions for each sublattice. Here, we consider as reference energy that of the RW-AFM
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Figure 4-8.: Impact of Fe FM skyrmions on the stability of single AFM skyrmion.
a-d snapshots depicting the dependence of the AFM skyrmion under a magnetic
field of 70 Tesla on the surrounding magnetic environment, by sequentially
deleting one FM skyrmion or antiskyrmion in the Fe layer and relaxing the
spin structure. At some point, removing any of the single FM skyrmions in c
annihilates the AFM skyrmion.

collinear state surrounding the non-collinear states in Fig. 4-8 c. The building-blocks of the

AFM skyrmion are shown in Fig. 4-9 a and d, where one can recognize the underlying Fe

FM skyrmions in the background. The latter are more distinguishable in the sublattices free

from the AFM skyrmion as illustrated in Figs. 4-9 g and j. The order of magnitude of the

interactions clearly indicates that the DMI plays a minor role and that one can basically

neglect the interactions arising in the skyrmion-free sublattices, namely L3 and L4. It is

the Heisenberg exchange interaction emerging in the sublattices L1 and L2 that dictates the

overall stability of the AFM skyrmion.

In L2, the core of the magnetization of the Cr FM skyrmion points along the same direction as

that of the underlying Fe atoms, which obviously is disfavored by the AFM coupling between

Cr and Fe (-3.05 meV for the first n.n.). This induces the red exchange area surrounding the

core of the AFM skyrmion (black circle in Fig. 4-9 e), which is nevertheless sputtered with
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Figure 4-9.: Interaction map of the single AFM skyrmion with the magnetic sub-
strate. In the first row of figures, sublattice decomposition of a Cr skyrmion
including the underlying Fe skyrmions shown in four columns a, d, g and j, cor-
responding respectively to L1, L2, L3 and L4. The AFM skyrmion is made of
two FM skyrmions hosted by sublattices L1 and L2. In Fe, FM skyrmions and
antiskyrmions can be found in all four lattices. The second row (b, e, h and
k) illustrates the sublattice dependent two dimensional Heisenberg exchange
energy map corresponding to the areas plotted in the first row, followed by the
third row (c, f, i and l) corresponding to DMI. Note that the energy difference
∆E is defined with respect to the RW-AFM background.
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blue spots induced by the magnetization of the core of the Fe FM skyrmions pointing in the

direction opposite to that of the Cr moments in L2. The latter is a mechanism reducing the

instability of the Cr skyrmion. Overall, the total energy cost in having the Cr skyrmion in

L2 reaches +693.7 meV and is compensated by the Heisenberg exchange energy of -712.4

meV generated by the one living in sublattice L1. Here, the scenario is completely reversed

since the core of the Cr skyrmion has its magnetization pointing in the opposite direction

than that of the neighboring Fe atoms and therefore the large negative blue area with the

surrounding area being sputtered by the Fe skyrmions, similar to the observation made in L2

(see Fig. 4-9 d). Overall, the Cr AFM skyrmion arranges its building blocks such that the

energy is lowered by the skyrmion anchored in sublattice L1. Here, the details of the non-

collinear magnetic textures hosted by Fe play a primary role in offering the right balance to

enable stabilization. This explains the sensitivity of the single AFM skyrmion to the number

and location of the underlying FM Fe skyrmions. Removing non-collinearity in Fe makes

both building blocks of the AFM skyrmion equivalent without any gain in energy from the

Cr-Fe interactions, which facilitates the annihilation of the Cr skyrmion.

4.7. Phase diagrams

Exploring the phase diagrams of AFM skyrmions in relation to the underlying magnetic

interactions offers valuable insights. The magnetic interactions among Cr atoms shown

in Fig. 4-3 b are multiplied by a factor renormalizing the initial parameters. In Fig. 4-

10 we illustrate the impact of DMI vectors magnitude (D), Heisenberg exchange (J) and

MAE parameter (K) on the formation of various phases including the one hosting double

interchained AFM skyrmions. For simplicity, we consider the case where the interaction

between Cr and the underlying Fe layer is switched off. A color code is amended to follow

the changes induced on the distance between the AFM skyrmions. From this study, we

learn that in contrast to the DMI, which tend to increase the size of the structures, J and

K tend to miniaturize the skyrmions, ultimately favoring their annihilation. The phase

hosting AFM skyrmions is sandwiched between the RW-AFM state and a phase hosting

stripe domains. It is convenient to analyse the unveiled overall behavior in terms of the

impact of DMI. The latter protects the AFM skyrmions structure from shrinking, similarly

to FM skyrmions [35, 196]. So for small values of DMI compared to J in Fig. 4-10 a, or

compared to K in Fig. 4-10 b, the AFM skyrmions shrink and disappear. In contrast, large

values of the DMI increase the size of the skyrmions till reaching a regime where stripe

domains are formed. Within the phase hosting AFM skyrmions, increasing J or K results in

smaller skyrmions.
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Figure 4-10.: Phase diagrams of the free double interchained AFM skyrmions.
a Phase diagram obtained by fixing K while changing the set of DMI and
Heisenberg exchange interaction J, or b by fixing J while modifying K and
DMI. The color gradient pertaining to the skyrmion phase indicates the dis-
tance between two AFM skyrmions. c Illustration of the states shown in the
phase diagrams. Note that an in-plane Néel state is predicted for large DMI
and small J.

4.8. Thermal stability with geodesic nudged elastic band

(GNEB) method

Up to this point, we have demonstrated the existence of interchained AFM skyrmion mul-

timers as localized energy minima within the framework of the Heisenberg Hamiltonian

(Eq. (4-1)). However, a critical question arises regarding the stability of these structures

against thermal excitations. To address this, we need to assess the depth of these energy

minima, quantified as the minimum energy barrier that must be overcome for the system to

transition out of a minimum state. It is important to note that the Néel temperature of the

RW-AFM ground state is approximately 310 ◦K, a value we determined through our Monte

Carlo (MC) simulations [197, 173, 114]. To investigate this issue, we systematically carried

out a series of GNEB simulations [181, 182, 114] for AFM multimers, containing initially 10

interchained skyrmions not interacting with the Fe film. We then calculate the energy bar-
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Figure 4-11.: Energy barriers for chains of free interchained AFM skyrmions. a
The energy barrier obtained with GNEB simulations for deleting a single AFM
skyrmion from the lower edge of the free (not interacting with PdFe) chains,
the x-axis shows the magnetic states between which the energy barrier is cal-
culated. For example, (6-5) means that the energy barrier needed to annihilate
one AFM skyrmion from the chain containing initially 6 AFM skyrmions as
depicted in c. b-e Snapshots of some of the explored skyrmion chains, with
the number of AFM skyrmion in each chain clarified at the bottom right cor-
ner.

rier needed to annihilate one AFM skyrmion at a time as depicted in Fig. 4-11 b-e, showing

the successive magnetic states between which, the energy barrier has been calculated. The

energy barrier is given by the energy difference between the nth AFM skyrmions state local
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minimum (hosting n AFM interchained skyrmions) and the relevant saddle point located on

the minimum energy path connecting the initial state with the (n − 1)th AFM skyrmions

state. The energy barrier increases from about 8 meV (≈ 90 ◦K) for the double interchained

AFM skyrmions to 13 meV (≈ 150 ◦K) for three interchained ones, reaching a saturation

value of ≈ 18.5 meV (≈ 214 ◦K) for chains containing more than five AFM skyrmions, see

Fig. 4-11 a. Hence, increasing the number of interchained skyrmions enhances their stabil-

ity, which is further amplified when enabling the interaction with the PdFe substrate.

Instead of 8 meV pertaining to the free skyrmion dimer, the barrier reaches 45.7 meV (≈ 530
◦K) owing to the interaction with the underlying substrate while the single AFM skyrmion

experiences a barrier of 10 meV (≈ 113 ◦K). Thus, the exchange field emanating from the

PdFe substrate promotes the use of interchained AFM skyrmions in room temperature appli-

cations. By analysing how the different interactions contribute to the barrier, we identified

the DMI as a key parameter for the thermal stability of the interchained AFM skyrmions.

For example, in the case of free double interchained AFM skyrmions, the Heisenberg ex-

change interactions contribution is -87 meV, MAE contribution is -150 meV while the DMI

provides a barrier of 245 meV. Interestingly and as expected, it is the magnetic Heisenberg

exchange interaction between Cr and Fe that is mainly responsible for the thermal stability

of the single AFM skyrmion.

4.9. Conclusion
Following a two-pronged approach based on first-principles simulations combined with ASD,

we identify a thin film that can host intrinsic, i.e. non-synthetic, AFM skyrmions at zero

magnetic field. A Cr monolayer deposited on a substrate known to host FM skyrmions,

PdFe/Ir(111), offers the right AFM interface combination enabling the emergence of a rich

set of AFM topological solitons [184]. The ground state among Cr atoms is the RW-AFM con-

figuration, a magnetic configuration sought after for so long. The explored AFM skyrmions,

whether single or interchained, showcase remarkable stability and open the door for poten-

tial applications in room temperature racetrack memory devices, driven by currents with

potential to suppress the skyrmion Hall effect. The prospects of utilizing the underlying FM

substrate to control and manipulate these AFM solitons present an exciting opportunity to

design novel materials and devices for AFM spintronics.

Since the experimental observation of intrinsic AFM skyrmions has so far been elusive at in-

terfaces and ultrathin films, our predictions open the door for their realization in well-defined

materials and offer the opportunity to explore them in thin film geometries. The robustness

of the single and interchained skyrmions qualifies them as ideal particles spintronic devices

to be driven with currents while avoiding the skyrmion Hall effect.

We anticipate that our work will facilitate the search and the identification of single or

overlapping AFM skyrmions while contributing to the detailed understanding of their various
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properties, which is a cornerstone in the field of topological antiferromagnetism and its

potential use in devices for information technology.



5. Spin model for intrinsic AFM

skyrmions

Following our first-principles simulations predicting the emergence in an intrinsic antiferro-

magnetic (AFM) skyrmions within a RW-AFM single monolayer of Cr deposited on PdFe

bilayer grown on Ir(111) surfaces ( chapter 4), here, we explore the minimal Heisenberg model

enabling the occurrence of such AFM solitons and the underlying phase diagrams by account-

ing for the interplay between the Dzyaloshinskii-Moriya interactions (DMI) and Heisenberg

exchange interactions, as well as the magnetocrystalline anisotropy energy (MAE) parameter

(K) and impact of magnetic field. By providing the fundamental basis to identify and un-

derstand the behavior of intrinsic AFM skyrmions, we expect our model to serve as powerful

tool for exploring and designing new topological magnetic materials to conceptualize devices

for AFM spintronics.

The results discussed in this chapter, have been previously published in [198]:

”A spin model for intrinsic antiferromagnetic skyrmions on a triangular lattice”.

5.1. Introduction

The findings from our previous first-principles investigations reported in chapter 4 showed

that intrinsic single and interchained AFM skyrmions can emerge on a triangular lattice host-

ing a RW-AFM out-of-plane (OOP) state. These results motivated us to take a step further

and construct a generic spin model that is capable of describing the underlying physics.

In this chapter, we introduce a Heisenberg model that incorporates the essential magnetic

interactions required to form AFM skyrmions, single and interchained ones, on a triangular

lattice. As done in the previous chapter, we perform atomistic spin simulations on the basis

of the Landau-Lifshitz-Gilbert (LLG) equation [173] as implemented in the Spirit code [114].

We consider the interplay between the Heisenberg exchange interactions, DMI, K and the

impact of an external magnetic field to establish the phase diagrams of the intrinsic AFM

skyrmions while inspecting their stability via simulations based on Geodesic nudged elastic

band method (GNEB) method [181, 182, 114].

Our model offers a robust approach to comprehend the behavior of AFM skyrmions in a tri-

angular lattice with the aim of understanding the required ingredients for their stabilization

and to create novel materials and devices for AFM spintronics.

https://www.frontiersin.org/articles/10.3389/fphy.2023.1175317/full
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5.2. Computational details
For completeness we present once more the tow-dimensional Heisenberg model that we con-

sider for the hexagonal lattice, which is equipped with the Heisenberg exchange coupling,

DMI, K, and Zeeman term. The energy functional reads as follows:

H = −
∑
<ij>

Jij ni · nj −
∑
<ij>

Dij · (ni × nj)−K
∑
i

(nz
i )

2 −
∑
i

miB · nz
i , (5-1)

where we consider only the first, second and third neighboring atoms for the Heisenberg

exchange interactions and just the third nearest neighboring DMI. The motivation behind

our assumptions will be discussed in the upcoming section. we assume m = 1 µB and an

OOP field.

The LLG simulations were carried out with 1002, 2002 and 3002 sites assuming periodic

boundary conditions at zero Kelvin.

5.3. Minimal generic model for the RW-AFM state and

emergence of AFM skyrmions
To explore the conditions required for the formation of single and interchained AFM skyrmions

within a triangular lattice, the initial step involves determining the prerequisites for estab-

lishing the RW-AFM state. We recall that the latter configuration can be separated into

four sublattices L1, L2, L3 and L4, carrying each ferromagnetic (FM) moments which are

aligned antiferromagnetically with respect to each other when considering the inter-sublattice

magnetization direction. As established in Refs. [186, 199] the minimum set of Heisenberg

exchange interactions involves the interactions with first (J1), second (J2) and third (J3) near-

est neighboring atoms. The formation of the FM skyrmions building up our AFM skyrmions

requires, as demonstrated in chapter 4, a third nearest neighbors (n.n.) interaction J3, which

should mediate an FM coupling between magnetic moments hosted by the same sublattice.

Fig. 4-4 in chapter 4 illustrates the underlying phase diagram, where we expect four regions

that can host either a Néel, FM, AFM spin spiraling and RW-AFM states. If too weak with

respect to J1 or if it is of an AFM nature, either spin spirals or a Néel state are favored

depending on the strength of J2. We observe that the RW-AFM configuration occupies a

larger phase area when J2 is of AFM nature. In the RW-AFM state, J3 is thus positive, which

together with the DMI vector D3, that is connecting the third n.n. similarly to J3, enables

the formation of sublattice FM skyrmions. Therefor in our model, we do not need further

DM interactions and it is enough to assume that D3 lies in-plane while being perpendicular

to the bond connecting neighboring atoms as shown in Fig. B-1 of Appendix B. The AFM

interaction among the FM skyrmions is mediated by J1 such that the presence of J2 is not

requested. As discussed in the previous chapter, the single AFM skyrmion consists of FM
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skyrmions present in two sublattices (L1 and L2) with the other two sublattices remaining

collinear, while for the double AFM skyrmions, the building blocks FM skyrmions reside in

each of the four sublattices (L1, L2, L3 and L4). The MAE should favor an OOP orientation

of the magnetic moments, therefore K > 0.

5.4. Phase diagrams of the AFM skyrmions in a hexagonal

lattice
After setting the base for the magnetic interactions needed to realize our AFM solitons, we

inspect the range of parameters (J2, J3, D3 and K) normalized to the absolute value of the

AFM J1, within which the single and double interchained AFM skyrmions can be stabilized

(Fig. 5-1 a-d). The region hosting the skyrmions, color coded in terms of their radius, is

sandwiched between the RW-AFM and stripe domains phases. Since the building blocks of

the AFM solitons are FM skyrmions, the impact of the underlying interactions is similar

to what is expected from the FM topological objects. For instance increasing J3 (Fig. 5-1

a-b), which defines the FM interaction among the spins of the FM skyrmions, or increasing

the OOP K (Fig. 5-1 c-d) shrinks the size of the spin-texture by ultimately leading to its

annihilation, while the DM interaction D3 induces the opposite behavior (Figs. 5-1 c-d).

Interestingly, J2 counteracts J3 by amplifying the skyrmion size, which at some point can be

deformed into stripe domains. For completeness, snapshots of skyrmions, labelled from A to

L in Fig. 5-1, are presented in Fig. B-2 of Appendix B.

5.5. The shape of the AFM skyrmions
The shape of the AFM skyrmions is determined by the specific interaction parameters in-

volved. While the interactions between spins in one sublattice Li, characterized by J3 and

D3, lead to the formation of a FM skyrmion in that sublattice, the interactions with spins in

the other FM skyrmion hosting sublattice, governed by J1 and J2, have a significant impact

on shaping the resulting AFM skyrmion, as illustrated in Fig. 5-2. If the two FM skyrmions

building up the AFM skyrmion are hosted by sublattices L1 and L2 as shown in Fig. 5-2

b and d, then their centers will be located at positions M and N. As depicted in Fig. 5-2

a, M interacts with N through J1, and with N′ through J2. For the skyrmion depicted in

Fig. 5-2 b, M will only be affected by N, and, since J2/|J1| = 0, M will not notice N′

while its response to P, and O will cancel out since sublattices L3 and L4 are oppositely

collinearly oriented. As a result, this unbalanced interaction leads to the elongation of the

AFM skyrmion along MN direction. Whereas if the two centers are positioned at M and P

as shown in Fig. 5-2 c, the elongation will be along MP direction. The shape of the AFM

skyrmion becomes more symmetric when M reaches out N′ (P′), i.e. for larger values of

J2/|J1| as depicted in Fig. 5-2 d (e), where J2/|J1|= 0.28.
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Figure 5-1.: Phase diagrams for AFM skyrmions. Phase diagram showing the range
of interactions J2/|J1| and J3/|J1| at which the single a and double b AFM
skyrmions can be stabilised with D3/|J1| =0.03, and K/|J1|=0.024. The color
code indicates the radius of the stabilized AFM skyrmion. c and d Phase
diagrams obtained by changing the D3/|J1| magnitude along with that of
K/|J1| while fixing J2/|J1| at -0.2, and J3/|J1| at 0.2, for single and double
AFM skyrmions, respectively. The letters A-L shown in the diagrams indicate
skyrmions which are plotted in Fig. B-2 of Appendix B. e, f Snapshots of the
single and interchained AFM skyrmions

It is worth mentioning that the size of the single AFM skyrmion is smaller than those

participating in the formation of the interchained magnetic textures (see for example the

radius given in Fig. 5-1 e-f), which impacts on the details of the phase diagrams. On the

one hand, the window in which the double AFM skyrmions are stabilised while varying

J2/|J1| and J3|J1| is larger than that of the single magnetic objects (Fig. 5-1 a-b). On the
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Figure 5-2.: The shape of AFM skyrmions. a Schematic representation of the four
sublattices distribution on the triangular lattice. The shape of the single AFM
skyrmion is elongated along the line connecting the centers of the two FM
skyrmions building up the single AFM skyrmion, in b the elongation is along
MN where the centers of the two FM skyrmions reside, with M not interacting
with N′, while in c the elongation is along MP, where the the centers are
positioned at M and P, and M does not interact with P′. d, e The shape of
the AFM skyrmion becomes more symmetric when the value of J2/|J1| increases.

other hand, the single skyrmion phase seems wider and shifted to the upper region of the

diagram while tuning D3/|J1| and K/|J1|.

5.6. Response to an external OOP magnetic field
We have investigated in chapter 4 section 4.5, the effect of the external magnetic field on

the single and interchained AFM skyrmions formed with the realistic interactions among

Cr atoms. We demonstrated how the size of both single and interchained AFM skyrmions

changes with the magnetic field, revealing that they can withstand high magnetic fields.

Here, we show the effect of changing the values of K|/J1| and D3/|J1| affect the critical

magnetic field up to which the AFM skyrmions survive. In addition to that, we investigate

the response of the single and double AFM skyrmions with different values of D3/|J1| and
K/|J1| to magnetic fields perpendicular to the lattice. Within our model, as theoretically
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and c the normalized values of DMI D3/|J1|. The critical field is defined by the
largest field to which the skyrmion survives. b Increasing K/|J1| shrinks the
radii of both the double and single AFM skyrmions, while d increasing D3/|J1|
expands them. e, f Impact of the external magnetic field on the radii of both
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expected [77, 86, 87, 184], and in contrast to their FM counterparts, the size of the AFM

skyrmions increases with the external magnetic field, until its magnitude approaches a crit-

ical value (Bc), after which, the skyrmion deforms into the stripe domain phase.

The critical value of the normalized magnetic field (mBc/|J1|) can be enhanced by increasing

K/|J1| magnitude, as depicted in Fig. 5-3 a, for both single and double AFM skyrmions. In

contrast, the DMI lessens the highest magnetic field survived by the AFM solitons, as shown

in Fig. 5-3 c. Various formulas have been proposed to describe the impact of DMI and K

magnitude on the radius of the FM skyrmions [196, 200, 54, 201]. Inspired by Ref. [201], and

utilizing the fact that |J1| >> D3,K, our results on the dependence of the AFM skyrmion

radius R on K (Fig. 5-3 b) and DMI (Fig. 5-3 d) when the external field is switched-off can

be fitted with R0 = aD3

K

(
1 + b

D2
3

|J1|K

)
, where a and b are fitting parameters.

Upon application of the magnetic field, we found that the form proposed in Ref. [86] has

to be amended with a linear field-dependent term. After a Taylor expansion in the regime

where the field is smaller than the rest of the magnetic interactions, we find

R = aD3

K

(
1 + b

D2
3

|J1|K

)(
1 + α B

|J1| + β B2

|J1|2 + γ B3

|J1|3

)
, where α, β and γ are additional fitting

parameters, grasps reasonably the dependencies reported in Figs. 5-3 e-f (with D3/|J1| = 0.03

and K/|J1| = 0.023). Overall, the magnetic interactions that decrease (increase) the size

of the skyrmions, such as K (DMI), contribute to an enhanced (reduced) stability in the

presence of an external magnetic field.

5.7. Effect of magnetic field on the thermal stability of

single and double AFM skyrmions
Next, we delve into the stability of AFM skyrmions when subjected to thermal fluctuations by

quantifying the energy barrier protecting the single and double interchained AFM skyrmions

from collapsing into the RW-AFM ground state utilizing the GNEB method [181, 182, 114].

We assume J2/|J1| = -0.2, J3/|J1| = 0.2, D3/|J1| = 0.03, and K/|J1| = 0.024. The barrier

is determined by the energy difference between the local minimum magnetic state hosting

the AFM skyrmion and its relevant saddle point, which lies on the path of minimum energy

connecting the skyrmion configuration to the RW-AFM ground state. In the absence of

external magnetic field, the double AFM skyrmions with radius of 1.95 nm, has an energy

barrier of 0.67 meV, which translates to ≈ 7.8 ◦K, while for the single AFM skyrmion with

radius of 1.6 nm, the energy barrier is 0.055 meV (≈ 0.64 ◦K). For both cases, the major

key for the stability of the AFM skyrmions is the DMI which contributes with ∆EDMI =

15.66 meV to the energy barrier of the double AFM skyrmion and 4.33 meV for the single

case, while K and Heisenberg exchange interactions prefer the collapse of the AFM solitons

by contributing with ∆EK = -9.21 meV (-2.53 meV), and ∆EJ = -5.79 meV (-1.71 meV)

for double (single) AFM skyrmions. Moreover, we addressed another important aspect, the

impact of the magnetic field, by carrying out a systematic study with results illustrated in
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Fig. 5-4. The thermal stability is obviously enhanced with the magnetic field, which impacts

more efficiently the double than the single AFM skyrmion (Fig. 5-4 a). For mB/|J1| = 1, the

energy barrier of the double (single) AFM skyrmions increased to 0.81 meV (0.12 meV) ≈
9.4 ◦K (1.3 ◦K). By increasing the magnetic field, the skyrmions expand (Fig. 5-4 f), which

in contrast to the DMI and Zeeman contributions (Figs. 5-4 c-d) is disfavored by those of

the Heisenberg exchange and K (Figs. 5-4 b, e). Snapshots of the various states prospected

in defining the energy barriers are presented in Fig. B-3 of Appendix B.
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Figure 5-4.: Thermal stability of the single and double AFM skyrmions in the
presence of an external magnetic field. a The total energy barrier for
double (golden) and single (green) AFM skyrmions as a function of the nor-
malized value of the external magnetic field. The different contribution to the
energy barrier as shown in b Heisenberg exchange, c DMI, d Zeeman and e K.
f The Radii of the single and double AFM skyrmions are plotted as function of
the magnetic field.

5.8. Conclusion
Inspired by our first-principles findings on the emergence of single and interchained AFM

skyrmions on a triangular lattice, we propose here a spin model with the minimum set of
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magnetic interactions needed to realize such intriguing solitons. This model is carefully

constructed to represent the essential magnetic interactions required for the emergence of

intrinsic AFM skyrmions, single and interchained, on a triangular lattice. They form in an

RW-AFM state, which can be decomposed into four sublattices. The exchange interaction

within each sublattice, mediating the coupling between the third n.n., is of FM nature which

along with the associated DMI and OOP MAE permits the formation of FM skyrmions

within the sublattices. The first n.n. has to be of an AFM nature to impose the emergence

of AFM skyrmions. We identify the phase diagrams of the latter entities as well as their

dependencies on the magnitude of various magnetic interactions and sensitivity to an external

magnetic field. We anticipate that our work will facilitate the search and the identification

of single or overlapping AFM skyrmions while contributing to the detailed understanding of

their various properties, which is a cornerstone in the field of topological antiferromagnetism

and its potential use in devices for information technology.





6. Intrinsic Néel AFM multi-meronic

solitons

In this chapter, we proceed further with our investigation of AFM solitons in thin films. We

predict an intriguing exchange-frustrated multi-meronic spin-textures that emerge within a

Néel magnetic order of spins by replacing the Cr layer addressed in the previous chapters with

Mn. The frustrated multi-merons are topological entities, which are intrinsic to the AFM

Mn film and showcase remarkable stability against external magnetic fields. The discovery

of the frustrated Néel AFM multi-meronic spin-textures opens doors to a new frontier in

AFM solitons, offering tantalizing prospects for innovative spintronic devices based on non-

synthetic AFM quantum materials.

The results discussed in this chapter, have been previously published in [202]:

”Intrinsic Néel antiferromagnetic multi-meronic spin textures in ultrathin films”.

6.1. Introduction
Since this chapter deals with meronic textures, it is order to recapitulate what has been

achieved in the FM topological world regarding merons. Regular FM merons are in-plane

magnetized textures with magnetization that curls around a stable core pointing out-of-

plane (OOP), and are topologically equivalent to one half of a skyrmion with a topological

charge (N) = ±1
2
[96, 97, 100, 98, 101, 25, 102, 103, 104, 105]. They have been observed

experimentally in thin films [25, 203] and in bulk as cross sections of vortex-antivortex

three-dimensional rings [204]. Antiferromagnetically coupled merons emerge synthetically

in confined geometries [100, 101] or nucleate across domain walls [205, 206]. They were

identified in hybrid complexes involving various magnetic objects in intrinsic bulk (thick

films) phases [207, 93, 95], following a large body of phenomenology-based simulations [208,

209, 210, 211, 212]. However, a pristine ultrathin film material that hosts AFM merons

remains unattainable.

6.2. Computational details
In this study, we conducted a systematic investigation to explore the magnetic structures

that can be hosted by the magnetic layers of our four layered systems depicted in Fig. 6-1.

For instance, we considered the case where the Mn layer: (i) is directly interfaced with the

Ir(111) surface; (ii) covered with a Pd overlayer; (iii) separated from Ir with a PdFe bilayer

https://pubs.acs.org/doi/full/10.1021/acs.jpclett.3c02419
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or with (iv) a Pd2Fe trilayer. Similar to chapter 4, we follow a two-fold procedure, combining

ab initio calculations with atomistic spin dynamics. The details of this procedure are similar

to what has been already discussed in computational details section(section 4.2 in chapter 4).

The investigated thin films were arranged in an fcc-stacked configuration along the [111]

direction. The relaxed atomic positions were then extracted and presented in table 6-1 in

terms of their relative difference with respect to the ideal inter-layer Ir distance, where pos-

itive (negative) values indicate atomic relaxations towards (away from) the Ir surface.

After establishing the geometries of the various magnetic systems, we conducted in a second

step a detailed investigation of their magnetic properties and interactions similar to the

procedure conducted in chapter 4.

a

Ir(111)
Fe
Pd
Mn

Ir(111)
Fe
Pd
Pd
Mn

Ir(111)
Mn

Ir(111)
Mn
Pdb

dc

Figure 6-1.: Mn-based magnetic systems under investigation. We explore several sce-
narios where topological spin-textures emerge: a Mn layer interfaced directly
with Ir(111) surface; b Mn layer covered with a Pd overlayer; c Mn layer sep-
arated from Ir by a PdFe bilayer; d Mn layer separated from Ir by a Pd2Fe
trilayer.
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Table 6-1.: Relative vertical relaxations of the magnetic layers for the different investigated
scenarios of Mn interfaced with Ir(111) surface. Positive and negative values
correspond to respectively relaxations towards and away from the Ir surface.

6.3. Magnetic interactions and ground state of Mn-based

thin films on Ir(111)
When Cr serves as our AFM layer deposited on Ir(111) based surfaces, the interactions

among the Cr atoms in CrPdFe/Ir(111), particularly the interactions among first, second

and third nearest neighbors (n.n.) as discussed in chapter 4, stabilize the RW-AFM state as

the ground state. Mn film provides important changes with respect to Cr. The first Mn n.n.

Heisenberg exchange interactions are in general strongly AFM but smaller than those of Cr:

JCr−Cr
1 = -51.9 meV in CrPdFe/Ir(111), while JMn−Mn

1 = -41.7 meV, -19.6 meV, -37.4 meV,

and -32.1 meV in Mn/Ir(111), PdMn/Ir(111), MnPdFe/Ir(111), and MnPd2Fe/Ir(111), re-

spectively. Importantly, the third Mn n.n. interaction favors an AFM coupling (except for

PdMn/Ir(111), where it is extremely weak) in contrast to the FM nature found for the Cr

layer. This, together with the strong AFM couplings of the first n.n. compared to the second

and third ones (see Fig. 6-2) for Mn-based films, lead to the emergence of the AFM Néel

state as the ground state due to magnetic frustration.

It is instructive to locate the ground state for Mn in the phase diagram presented in chapter 4

(Fig. 4-4) when analysing the case of CrPdFe/Ir(111) surface. As illustrated in Fig. 6-3,

assuming only the three n.n. isotropic Heisenberg interactions, we find that all the points

pertaining to the Mn-based films are located in the Néel phase. The n.n. DMI is found

to be significant for Mn/Ir(111) and PdMn/Ir(111) surfaces and experiences a significant

decrease when Mn is separated from Ir with the PdFe bilayer of Pd2Fe trilayer. Except for

Mn/Ir surface, the magnetocrystalline anisotropy energy (MAE) favors an OOP orientation

of the magnetic moments. The incorporation of the DMI and MAE maintained the Néel
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Figure 6-2.: Magnetic interactions among Mn atoms for the investigated sys-
tems. The Heisenberg exchange interactions values as a function of distance
for Mn/Ir(111) a, PdMn/Ir(111) b, MnPdFe/Ir(111) c and MnPd2Fe/Ir(111)
d. Insets show the DM interaction values as a function of distance. e The spin
moment per Mn atom (m) in µB and the magnetocrystalline anisotropy energy
(K) for Mn layer for the inspected systems.

configuration as the ground state. Intriguingly, however, the Néel state is found to be in-

plane, which means that the moments rotate in the surface plane. As mentioned before,

the MAE in general favors an OOP orientation of the moments. It turns out that the

z-component of the DMI is strong enough to compete against the MAE and enforces the

in-plane orientation of the Mn moments. We are thus dealing with a chirality-induced
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including magnetic interactions up to the third n.n. Besides the case
of CrPdFe/Ir(111) surface, which is lying in the RW-AFM phase (see Fig. 4-4
in chapter 4), the cases of Mn-based films are all positioned in the Néel phase.

stabilization of an in-plane Néel state. The associated critical temperatures range from

130◦K for PdMn bilayers to about 600◦K or more for the rest of thin films.

6.4. Topological magnetic states in frustrated Mn ultrathin

films
A thorough investigation of the potential emergence of intrinsic topological states in the

different Mn-based films demonstrated the existence of a plethora of AFM Néel meronic

magnetic states forming metastable states emerging in the Mn layer as depicted in Fig. 6-4

a, Fig. 6-5 and Fig. C-1 of Appendix C.

The spins forming the AFM Néel order are segmented into three sublattices L1, L2 and L3,

each hosting FM spin alignment (Fig. 6-4 j). At each sublattice, FM meronic pair can be

stabilized, so in total, in the case of single AFM Néel meronic pair (Fig. 6-4 a), we have
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six FM merons (antimerons), as shown in Fig. 6-4 d-i, which we refer to as a hexa-meronic

state. By zooming in into the two spin-swirling extremities of the hexa-meron(Figs. 6-4 b-c)

and their respective sublattice decomposition (Figs. 6-4 d-i), we identify a vortex (Fig. 6-4

d) and an antivortex (Fig. 6-4 h) whose cores reside on an Mn lattice site, around which

the spins of the remaining meronic textures precess, as dictated by the magnetic frustration

induced by the underlying AFM magnetic interactions.

Each of the FM building blocks of our AFM explored solitons holds a topological charge

(N) defined as: N = wp/2 [96] (see discussion in section 2.2.1 in chapter 2), where w =

+1 (-1) for the vortex (antivortex) is the vorticity describing the rotational direction of the

in-plane magnetization, and p is the polarity which defines the OOP magnetization of the
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center being +1 (-1) when pointing up (down) [213]. Since the merons and antimerons carry

a topological charge of -1/2 and +1/2, respectively [25, 203, 93], the sublattice charge NL

is either -1 (+1) for a meron-meron (antimeron-antimeron) pair, as the case of L3 (Fig. 6-4

f, i), or 0 for a hybrid (see L1 and L2 in Fig. 6-4 d, g, e, h) meron-antimeron pair. By

summing up the total charge Nt for a hexa-meron, one can end up with three possible values

-1, 0 and +1 (see Fig. 6-4 k), which interestingly are energetically degenerate in the absence

of an external magnetic field.

a b

c

Figure 6-5.: Plethora of AFM magnetic states emerges at Mn layer. Snapshots of
hexa-meronic state a, dodeca-meronic state b with Néel AFM order of spins
at the background. c Hexa-meronic state with AFM Néel spirals at the back-
ground, while inset shows the spiral at the background.

Besides the hexa-meronic frustrated AFM Néel state, we identified a rich set of other meronic

textures, such as the dodeca-meron, hosting 12 merons, shown in Fig. 6-5 b. Further ex-

amples of complex multi-merons are presented in Fig. C-1 of Appendix C. Similarly to the

purely FM counterparts, in confined geometries (see Fig. C-1 b-c of Appendix C) a ”single”

AFM Néel meronic state can be stabilized. This object is a tri-meron resulting from three

frustrated merons with overlapping cores, carrying in total a half integer topological charge.
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6.5. Stability against external magnetic fields
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Figure 6-6.: Impact of external magnetic field. a The critical OOP magnetic field an-
nihilating. Blue and red bars refer to respectively hexa- and dodeca-merons
emerging in AFM Néel order, while green bars correspond to hexa-merons
hosted by initially spiraling Néel states. Bars with solid versus dashed lines
distinguish the cases without and with Mn-Fe interactions. b Snapshot show-
ing the blue dashed bar representing the Mn layer(upper layer) interfaced with
the Fe layer (lower layer) in MnPd2Fe.

Investigating how topologically paired AFM Néel meronic pairs respond to magnetic fields is

a crucial aspect to understand their stability and potential non-trivial topological transitions.

Remarkably, these frustrated meronic textures exhibit robustness even when subjected to

extremely high in-plane magnetic fields exceeding 200 Tesla. However, when an OOP mag-

netic field is applied, it has a multifaceted impact on the explored spin textures. Therefore,

in this context, we conduct a detailed examination of the latter scenario, with a particular

focus on three distinct AFM Néel meronic states, as illustrated in Fig. 6-5 a-c and Fig. 6-6 b.

As a prototypical chiral magnetic object, we consider the hexa-meron emerging either in

the AFM Néel (Fig. 6-5 a) or in the spiraling AFM Néel states (Fig. 6-5 c) as well as

the dodeca-meron (Fig. 6-5 b). For interfaces hosting the Fe layer, MnPdFe/Ir(111) and

MnPd2Fe/Ir(111), we examined both cases: switching-off (solid bars in Fig. 6-6 a) and

-on (dashed bars in Fig. 6-6 a) the Mn-Fe magnetic interactions. A snapshot for the Mn-

hexa-meron interfaced with ferromagnetic Fe spirals and skyrmion is illustrated in Fig. 6-6 b.

While we were expecting the robustness of the unveiled meronic textures against external

magnetic fields, we were intrigued by the annihilation of some hexa-merons emerging in an

AFM Néel background with experimentally accessible OOP fields, e.g. 10 Tesla, in contrast

to dodeca-merons and hexa-merons arising in a Néel spiraling state (red and green bars in
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Fig. 6-6 a).

To get insight into the origin of the sensitivity of these magnetic states, hexa-merons form-

ing in an AFM Néel background, we scrutinize the sublattices topological distribution along

with the spin orientation at each sublattice of the different hexa-meronic states shown in

Fig. 6-7 (see Fig.C-2 of Appendix C illustrating snapshots of the different hexa-merons). As

introduced earlier, there is a quadruple degeneracy for each hexa-meron in the absence of a

magnetic field. The four states, denoted Hexa A–D and illustrated in Fig. 6-7, can be distin-

guished by the vortex nature of their core constituents and the orientation of the core spins

(see Fig. 6-4 k). A finite OOP field lifts partially the degeneracy and favors the hexa-meron,

here Hexa D, with most spins pointing along the field direction (see also Fig. C-2 of Ap-

pendix C). Among the four hexa-merons, Hexa D will be the most robust to the applied field

and therefore survives gigantic fields. The remaining hexa-merons experience at some point

magnetization switching to reach the optimal sublattice topological distribution defined by

Hexa D. This requires a flip of the spins for at least one meron (antimeron) implying going

through a topological charge transition, being a non trivial process, during which, the AFM

meronic structure might encounter an unstable spin distribution, leading to the annihilation

of the AFM meronic structure where the AFM vortex and antivortex start rolling towards

each other and then collapse at a rather low magnetic field. If the transition occurs, however,

the new magnetic state would be capable of surviving large magnetic fields similar to Hexa D.

However, the presence of Néel spirals in the background or additional pairs of AFM meronic

textures (leading for example to dodeca-merons) prevent the formation of unstable states

within the topological transition induced by the magnetic field, which would lead to the

collapse of the frustrated soliton. Effectively, a barrier is provided by enabling the rear-

rangement of the spins to acquire the desired topological state, which would withstand

immense magnetic fields.

6.6. Emergence mechanism of the frustrated multi-merons
The ingredient requested to stabilize the frustrated multi-merons is the stabilization of an in-

plane Néel state. A minimal Heisenberg model consists then of a hexagonal two-dimensional

lattice with AFM Heisenberg exchange coupling among the first n.n. atoms (J1). The in-

plane orientation of the moments can be enforced by either the in-plane MAE, K < 0, as

observed in Mn/Ir(111) or by the z-component of the DMI vector (Dz).

The minimal Heisenberg model can be then written as:

H = −
∑
<ij>

J1 ni · nj −
∑
<ij>

Dz
1(ni × nj)

z, (6-1)

which involves Dz only, since the latter played the main role in stabilizing the meronic tex-
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Figure 6-7.: Topologically-dependent response to the external magnetic field.
Lifting the quadrupole degeneracy of the hexa-meron (Hexa A–D) upon ap-
plication of an OOP magnetic field. Each hexa-meron is decomposed into the
three sublattices with the illustration of the vortex nature of the meronic core
constituents together with the core spin-direction. Hexa D is the frustrated
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tures in the four investigated Mn-based interfaces.

To inspect the range of J1 and Dz values within which the multi-meronic spin textures are

stabilized, we change the values of J1 and Dz and analyze the resulting magnetic states in

the phase diagram shown in Fig. 6-8 a. Increasing Dz enforces a stronger in-plane alignment

of the spins, which reduces the size of the meronic constituents (Fig. 6-8 b and Fig. C-3 of

Appendix C). Clearly, the size of merons is dictated by a competition between the Heisenberg

exchange interaction and DMI. Keeping Dz fixed while increasing the AFM J1 counteracts

the effect of DMI and enlarges the meron core (Fig. 6-8 c).

Fig. 6-8 d presents the critical OOP magnetic field upon which the meronic texture, here

Hexa D similar to that shown in Fig. 6-7, is annihilated as function of the OOP DMI

component all normalized by the n.n. AFM Heisenberg exchange interaction. The obtained

curve follows a quadratic dependence, highlighting that the DMI enhances the stability of

the frustrated merons. In fact, the application of an OOP magnetic field counteracts the

influence of the OOP DMI component by tilting the spins to the OOP direction. This causes

disruption to the in-plane alignment of the spins, imposed by the OOP DMI component,

throughout the surrounding area, including the region spanning between the extremities of

the hexa-meron, ultimately leading to its collapse. Consequently, the larger the OOP DMI

component (smaller meronic cores), the larger the critical field required to destroy the AFM
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spin-swirling textures.

6.7. Conclusion
Our ab initio simulations uncovered nonsynthetic Néel-frustrated AFM meronic textures

emerging in a realistic set of materials and interfaces. The newly unveiled nanoscale mag-

netic objects are hosted by a triangular Mn layer interfaced with an Ir(111) surface alone,

or covered with a Pd overlayer, or separated from Ir by either a PdFe bilayer or a Pd2Fe tri-

layer, which all represent substrates that can readily be grown experimentally. We note that

at the time of finishing writing this thesis, spin-polarized STM experiments confirmed our

simulations in detected a Néel state in a single Mn layer deposited on Ir(111) surface [214].
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The frustrated AFM states form hexa-merons, composed of three FM meronic pairs each

located at one of the three FM sublattices building up the AFM Néel background. Other

solitons can emerge such as dodeca-merons (12 merons) while confined geometries enable

the stabilization of a frustrated tri-meron.

We have observed that these AFM Néel meronic solitons survive high values of magnetic

fields if the majority spins align in the direction of the OOP magnetic field. Otherwise, a

transition of the sublattice topological charge occurs, leading to the potential annihilation

of the AFM solitons at experimentally accessible values of magnetic fields. To gain a better

understanding of the characteristics of these AFM solitons, we provided a spin model that

outlines the minimum set of magnetic interactions necessary to generate the detected AFM

solitons.

We anticipate the integration of these intricate AFM meronic spin-textures into future spin-

tronic devices, where a major aspect to be addressed is the ability to manipulate them, since

in general AFM spin-textures are robust to magnetic fields. We expect that the AFMmeronic

structures, similar to the AFM topological solitons, despite their inherent immunity to mag-

netic fields, remain amenable to manipulation through external stimuli such as spin currents.

For conventional AFM solitons, this was proposed either theoretically [74, 73, 211, 215], or

realized experimentally in the synthetic scenario [89, 95, 216]. Moreover, our demonstration

of the sensitivity of certain hexa-meronic states to experimentally attainable magnetic fields

suggests that the latter can be utilized as an external stimuli to control these frustrated

AFM multi-meronic spin-textures, contingent upon the distribution of sequential topologi-

cal charges across the sublattices.

The discovery of novel AFM solitons with a realistic existence scenario is at the heart of

AFM topological magnetism. Our predictions can initiate the experimental discovery of

the intriguing intrinsic frustrated multi-meronic textures, which can delineate in various

topological sequences. It remains to be explored how such spin states can be implemented

and designed in AFM spintronic devices. Certainly, the thin films being proposed provide a

solid platform for AFM meronic textures with a potential impact in information technology.



7. Current-driven dynamics of AFM

skyrmions

In chapter 4, we unveiled the emergence of intrinsic single and interchained antiferromagnetic

(AFM) skyrmions on Cr layer when deposited on PdFe/Ir(111). Understanding the response

of these skyrmions to external stimuli, particularly spin-polarized currents, is crucial for

their potential application in spintronic devices. A distinguishing feature of AFM skyrmions

is their zero topological charge and hence anticipated zero skyrmion Hall effect (SkHE).

In this chapter we unveil that the latter is surprisingly finite under the influence of spin-

transfer torque, depending on the direction of the injected current impinging on intrinsic

AFM skyrmions emerging in CrPdFe trilayer on Ir(111) surface. Hinging on first-principles

combined with atomistic spin dynamics (ASD) simulations, we identify the origin of the

SkHE and uncover that ferromagnetic (FM) skyrmions in the underlying Fe layer act as

effective traps for AFM skyrmions, confining them and reducing their velocity. These findings

hold significant promise for spintronic applications, the design of multi-purpose skyrmion-

tracks, advancing our understanding of AFM-FM skyrmion interactions and hybrid soliton

dynamics in heterostructures.

7.1. Introduction
Building upon the findings revealed in chapter 4 regarding the emergence of intrinsic of single

and interchained AFM skyrmions, it becomes motivating to further explore the impact of

spin-polarized currents on the dynamical behavior of these magnetic entities, when applying

a perpendicular to plane currents (CPP).

Various methods have been proposed to drive magnetic skyrmions, encompassing electric

currents [28, 31, 36, 35], spin waves [217], magnetic field gradients [218], temperature gra-

dients [219], and voltage-controlled magnetic anisotropy [220, 221, 222, 223]. However, one

significant challenge that arises during their manipulation via electrical means or magnetic

field gradient [224] is the SkHE, wherein skyrmion trajectories deviate from the driving cur-

rent direction due to the Magnus force [225, 56, 70] proportional to the topological charge [41].

This undesired effect hampers the precise control and movement of skyrmions in spintronic

devices. In contrast, AFM skyrmions are expected to be transparent to the SkHE since the

building-blocks skyrmions carry opposite topological charge, which enforce the motion along

the direction of the applied current, as predicted theoretically [73, 117, 74] and observed for

significant distances experimentally [89].
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Here, we explore the dynamical response of intrinsic AFM skyrmions to an applied current.

We consider the scenario of a magnetic tunnel junction (MTJ), where a magnetic electrode

injects a perpendicular-to-plane spin-polarized current (SP-CPP) with in-plane polarization

on the row-wise AFM (RW-AFM) CrPdFe thin film deposited on Ir(111) surface (Fig. 7-1).

Counter-intuitively, we demonstrate that the AFM skyrmions present in the thin film exhibit

a significant SkHE, which is strongly anisotropic, i.e. that is dependent on the polarization

direction of the applied spin-current. We identify the origin of the SkHE and its vanishing

conditions while unveiling complex interactions when interfacing intrinsic AFM skyrmions

hosted in Cr with the spin-textures, including individual FM skyrmions, found in Fe. This

unique hybrid scenario enables the exploration of AFM-FM inter-skyrmion dynamics. The

mutual inter-skyrmion interactions design a non-trivial two-dimensional energetical map,

with pinning and repulsive centers, which impact both the trajectory and velocity of AFM

skyrmions and provide pinning and deflection processes. These findings pave the way for

further exploration and control of skyrmion-based devices and applications in AFM storage

systems.

7.2. Computational details

The ab initio part of the simulations as well as the conventional investigation of the mag-

netic behavior of the emerging skyrmionic states were detailed in the computational details

section in chapter 4. We assumed periodic boundary conditions to model the extended two-

dimensional system with cells containing 2002.

We apply the SP-CPP injection to induce transitional motion of AFM skyrmions. In the

CPP case, the current is perpendicular to the film plane, but polarized in in-plane direction

(Fig. 7-1 a-d). The dynamics of the magnetization ni at the lattice site i is then governed

by the extended LLG equation taking into account the STT term [177, 178, 117, 73, 179],

which was introduced in chapter 3 section 3.7. To ease the readability of the current chapter,

we reproduce the STT term in the following:

dni

dt
=− γ

(1 + α2)mi

ni ×Bi
eff − γα

(1 + α2)mi

ni ×
(
ni ×Bi

eff

)
− γαη

(1 + α2)
ni × np +

γη

(1 + α2)
ni × (ni × nP) ,

(7-1)

with γ, α and Bi
eff being respectively the gyromagnetic ratio, Gilbert damping, and the

effective field given by (− ∂H
∂ni

). H is the Heisenberg Hamiltonian in Eq. (4-1), while the

current polarisation direction is defined by nP and the current amplitude is quantified by η =
jsPgµB

2edMsγ
. Here js is the current density, P the polarization, Ms the saturation magnetization

in each sublattice and g the Landé factor while d is the film thickness.
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Figure 7-1.: Current-driven dynamics of AFM skyrmions. a, b Schematic representa-
tions of CPP induced motion of an elliptical AFM skyrmion showing the SkHE
a or not b depending on the alignment of the polarization of the applied current
nP with respect to the skyrmion. c, d Top view of a and b, respectively. e
Schematic representation of the material hosting intrinsic AFM skyrmions at
the triangular lattice of a Cr layer grown on PdFe film deposited on an fcc(111)
surface of Ir. As discussed in chapter 4 the ground state in the Cr layer is the
RW-AFM configuration illustrated in the top view of the surface as red and blue
spheres for different orientation of the spins shown in inset of f. For complete-
ness, snapshots of single f and double g overlapping AFM skyrmions emerging
in the Cr film with the spins distribution among four sublattices L1-L4.

7.3. Trajectories of AFM skyrmions driven by

perpendicular-to-plane currents
When injecting the SP-CPP as illustrated in Fig. 7-1, one expects a straight motion of an

AFM skyrmion along the direction perpendicular to the polarization nP of the applied spin

current js [117, 73], as illustrated in Fig.7-1 b-d.

We initiate our study by investigating the case of single AFM skyrmions and consider two

possibilities: either (i) by neglecting the Cr-Fe magnetic exchange interactions, which corre-

sponds to a free standing Cr film (Fig. 7-2 a), or (ii) not by scrutinizing various magnetic
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Figure 7-2.: Transitional motion of elliptical AFM skyrmion driven by SP-CPP
currents. a-d Snapshots of the AFM skyrmion at Cr layer in four different
cases: a Cr-free case, where the magnetic interactions with Fe layer are not
included (AFM skyrmion radius is 2 nm); b Fe interactions are included with
a finite magnetic field saturating Fe into an FM state (AFM skyrmion radius
is 2.1 nm) while c a weaker magnetic field leads to a skyrmion lattice (SkX)
which slightly enlarges the AFM skyrmion (radius of 2.5 nm); d in the absence
of a magnetic field spirals emerge at Fe layer (AFM skyrmion reaches a radius
of 3.2 nm). e Impact of the current parameter ratio η/α on the skyrmion Hall
angle, and f on velocity. g The trajectories of the AFM skyrmion for cases in
a-d with η/α =0.01 meV.

states in PdFe, which can be tuned by applying a magnetic field (Fig. 7-2 b-d). For the

latter, we consider the case of a saturated FM state in the Fe film (Fig. 7-2 b), which is

obtained upon application of a large magnetic field, while a moderate field can transition the

spin-spiraling state shown in Fig. 7-2 d to a skyrmion lattice (SkX) illustrated in Fig. 7-2

c [27, 106]. The effective impact of the spin current can be monitored via the current pa-

rameter η, which is directly proportional to js (see computational details section).

As mentioned before, AFM skyrmions exposed to spin-polarized currents via STT, typically

do not experience a SkHE [117, 73, 185, 74, 89] while their velocity is expected to be propor-

tional to η/α in the case of CPP injection [185]. Surprisingly, our AFM skyrmions exhibit an



7.4 Directionality of the current-driven elliptical AFM skyrmions 95

unexpected dynamical behavior, deviating from conventional expectations. Independently

from the Cr-Fe interaction and the nature of the magnetic state pertaining to the PdFe film,

the Hall angle is found overall to be around -5◦ (negative sign means the deviation is clock-

wise), which remains consistent across various η/α values (Fig. 7-2 e). Deviations occur,

however, for weak driving forces (small η/α) when Cr is placed atop Fe spin spirals. Indeed,

the AFM skyrmions display then an irregular ’Brownian-like’ motion as depicted in Fig. 7-2

g, due to uncontrolled scattering at various spin-textures emerging in Fe. In this particular

case, the extraction of the Hall angle is not trivial, since the skyrmion trajectories are not

straight. Impressively, the Fe spirals can strongly deflect the AFM skyrmions, which can

lead to effective Hall angles that are larger than 10◦, as calculated up to average distances

of about 90 nm. Overall, the Hall angles are found to be the smallest (largest) atop the SkX

Fe (Fe spirals).

The velocity of the skyrmions is linear with η/α, with the largest speed found when Fe

host a spirals state (Fig. 7-2 f). Intriguingly, the Cr-Fe interaction in general favors large

skyrmion velocities, which can be traced back to the size of the skyrmions. Indeed the Cr-

Fe interaction enlarges the diameter of the AFM skyrmion, which is known to increase its

velocity [226, 227], as unveiled in the upcoming analysis.

Fig. 7-2 e-f is just the tip of the iceberg. By scrutinizing the skyrmion dynamics as function

of the direction of the applied current, we unveil a rich anisotropic response: both the Hall

angles and velocities are modified and we identify directions along which the SkHE cancels

out. Before discussing the anisotropic current-driven dynamical response, we briefly address

the origin of this behavior, which is induced by the ellipticity of the AFM skyrmions emerging

in CrPdFe/Ir(111) surface. By carefully scrutinizing the AFM skyrmions, one can identify

an elliptical shape. For instance the single AFM skyrmion shown in Fig. 7-3 c has a major

and minor axis of 2.2 nm, and 1.8 nm, respectively. Upon formation of a double AFM

skyrmion, the shape of the skyrmions remains elliptical. The size of the skyrmions forming

the solitonic dimer, experiences a significant increase, enlarging both the major and minor

axes of the skyrmion building-blocks to 3 nm and 2.4 nm, respectively. The origin of the

observed ellipticity can be traced back to the interplay between the neighboring exchange

interactions as elaborated in chapter 5 section 5.5. Phenomenologically, one can demonstrate

that by tuning the underlying interactions, the skyrmions can be reshaped into an isotropic

form. We note that this is clearly a material dependent property.

7.4. Directionality of the current-driven elliptical AFM

skyrmions
To explore the anisotropic current-driven response of the AFM skyrmions, we focus here on

the case of the free-standing Cr layer, i.e. with the Cr-Fe interaction switched-off, which is

also representative of the behavior found when the interaction is switched on while the Fe
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between the current polarization direction and the major ellipse axis, for single
(brown) and double(blue) AFM skyrmions, with η/α = 0.05 meV. c Schematic
representation of the AFM skyrmion showing an elliptical shape, with a long
(short) axis defining the x-axis (y-) axis. The angles associated with the spin-
polarization of the current nP and the SkHE are displayed. The colored regions
within the ellipse correspond to those shown in a and b.

film hosts either the skyrmion lattice or the saturated FM state. As an example, we inject a

current with η/α = 0.05 meV, but varying systematically the angle θjs between the in-plane

current and the major axis of the ellipse, which is represented by the orange dashed line in

Fig. 7-3 c.

The skyrmion Hall angle as function of θjs is illustrated in Fig. 7-3 a, which clearly shows

an oscillating behavior for both the single (brown) and double (blue) AFM skyrmions, with

color coded regions corresponding to colored areas depicted in Fig. 7-3 c. From Fig. 7-3 a,

one can notice that θHall is suppressed when the current is polarized along the two ellipse

axes, and reaches its maximum value of about 6◦ when θjs = 42◦. Notably, it is not only

the Hall angle that changes with θjs ; the velocity of AFM skyrmions also varies as shown

in Fig. 7-3 b, exhibiting the maximum (minimum) velocity when the skyrmions move along

the ellipse major (minor) axis. Interestingly as depicted in Fig. 7-3 a, double and single

AFM skyrmions show the same Hall angle when subjected to the same polarized currents,

however the double AFM skyrmion moves faster than the single (Fig. 7-3 b).

7.5. Thiele equation for elliptical AFM skyrmions
To comprehend these intriguing findings, we analyze the Thiele equation governing skyrmions

driven by CPP [228, 29, 117, 73, 70]:

G× v− αD · v + B · nP = 0, (7-2)
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where, G = (0, 0, Q), with Q is the topological charge of the skyrmion being +1,−1 for core

up, core down FM skyrmions, respectively. v is the skyrmion velocity, D is the dissipative

tensor, where Dµν =
∫
d2r (∂µn · ∂νn) /4π, and n(r) is the magnetic skyrmion profile can

be expressed as, n(r) = n(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ). nP = (cos θjs , sin θjs) stands

for the unit vector defining the spin polarization direction of the injected current. Note that

the x and y axes are defined respectively by the large (semi-major) and small (semi-minor)

axes of the elliptical skyrmion (see Fig. 7-3 c). B is the driving force related tensor, where

Bµν = γη
∫
d2r (∂µn× n)ν /4π.

For each building-block FM skyrmion i forming the AFM skyrmion, the associated compo-

nents of the dissipative tensor [229], assuming skyrmions of identical size and shape, are given

by: (Di
xx,Di

yy) =
π2

8

(
b
a
, a
b

)
, where a, and b are the semi-major and semi-minor ellipse axes,

while Di
yx = Di

xy = 0. The components of the driving force tensor are (Bi
xy,Bi

yx) =
γπ
8
η(−b, a)

and Bi
xx = Bi

yy = 0.

So, Eq. (7-2) for elliptical AFM skyrmion reads,

−αDi
xxvxı̂− αDi

yyvy ȷ̂+ Bi
xy sin θjsı̂+ Bi

yx cos θjsȷ̂ = 0, (7-3)

The skyrmion velocity is then given by:

v =
1

α

(
Bxy

Dxx

sin θjs ,
Byx

Dyy

cos θjs

)
=
γηa

πα

(
− sin θjs ,

b

a
cos θjs

)
, (7-4)

|v| =
γηa

πα

√
sin2 θjs +

b2sk
a2sk

cos2 θjs , (7-5)

where one immediately notices that if the skyrmions were circular isotropic, the polarization

of the spin-current is perpendicular to the velocity since v·np = 0. The propagation direction

associated to the isotropic case case defines the reference angle from which the skyrmion Hall

angle is measured θref = tan−1 vy
vx

= θjs +
π
2
. Therefore, the Hall angle is evaluated from:

θHall = arctan

[
b

a
tan
(
θjs +

π

2

)]
−
(
θjs +

π

2

)
. (7-6)

With these findings at hand, we can explain the behavior of the AFM skyrmions. If the

current is polarized along the major or minor axes of the spins, i.e. θjs is a multiple of π
2
, the

Hall angle cancels out, which define the extrema of the velocity given by γηb
πα

for θjs = 0, π

(minimum) and γηa
πα

for θjs = π
2
, 3π

2
(maximum). The ratio b

a
, which is about 0.8 for both

the single and double AFM skyrmions, defines the magnitude of the Hall angle as well as

the range of oscillations in the velocity. This means with elliptical AFM skyrmions, we have

two more degrees of freedom to manipulate the CPP induced motion of the AFM skyrmions,

where the skyrmion exhibits its maximum velocity when injecting currents polarized along

its minor axis, resulting in a Hall free motion along the major axis. This analysis goes along

with our findings depicted in Fig. 7-3 b, where the double AFM skyrmion with dimensions
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of (a, b) = (3, 2.4) nm moves with maximum velocity of 355 m/s while the single AFM

skyrmion with smaller size (dimensions of (2.2, 1.8) nm), and hence slower motion according

to Eq. (7-4), where its maximum velocity reaches 260 m/s. The maximum Hall angle is

expected for θjs +π/2 = arccos
√

b
a+b

, which leads to θjs = 42◦ and θHall = 6.2◦ in agreement

with the numerical findings of the previous section. Notably, the impact of ellipticity of FM

skyrmions subjected to spin currents was discussed in Refs. [230, 229, 231].

7.6. Current-driven dynamics of AFM skyrmions

interacting with FM skyrmions

When the Fe substrate hosts spirals with an inhomogeneous distribution of FM skyrmions,

we unveiled in Fig. 7-2 g that the intrinsic AFM skyrmions driven in the Cr overlayer exhibit

typical dynamics pertaining to interactions with defects. In this section, we explore the syn-

thetic configuration of an AFM skyrmion interacting with a FM one through a Pd film. This

scenario is trivially realized in CrPdFe/Ir(111) surface by applying an out-of-plane magnetic

field, which reduces the size of the FM skyrmions and transforms the lattice configuration

into individual topological objects. By applying spin-polarized current, as done previously,

we drive an AFM skyrmion living in the Cr film towards a pinned FM skyrmion hosted by

the Fe layer. We consider two cases, either the planned skyrmion trajectory passes trough

the FM skyrmion, or it is shifted (see Fig. 7-4 a-b). We notice that when the applied current

is not strong enough, the AFM skyrmion gets pinned at the FM skyrmion, which clearly in-

dicates the attractive nature of the FM-AFM skyrmion interaction. This scenario is evident

when η/α = 0.001 meV, where the AFM skyrmion gets trapped by the FM skyrmions, as

shown in Fig. 7-5. When the applied current is larger, e.g. η/α = 0.017 meV, the AFM

skyrmion experiences a velocity increase from the initial 75 m/s to reach 130 m/s once get-

ting close to the FM skyrmion, which leads to a ”speeding up zone” as shown in Fig. 7-4 c.

Conversely, if the driving force surpasses the attraction force, the AFM skyrmion overtakes

the FM skyrmion, and experiences a velocity reduction of about 88% down to around 15

m/s due to FM-AFM skyrmion interaction that opposes the driving force and leads to a

”slowing-down zone”. As the AFM skyrmion moves away from the proximity of the FM

skyrmion, it is no longer influenced by the attraction force. In this phase, only the driving

force dictates its motion, resulting in a ”constant motion regime”, depicted in Fig. 7-4 c and

Fig. D-1 c of Appendix D, where the velocity stabilizes at approximately 75 m/s.

If the AFM skyrmion is off-centered with respect to the FM one, their mutual attractive

interaction is capable of deviating the underlying trajectory to bring the AFM skyrmion

to the vicinity of the FM one as depicted schematically in Fig. 7-4 b and demonstrated

systematically for different paths illustrated in Fig. 7-4 d and Figs. D-1, D-2, and D-3 of

Appendix D. Due to the AFM-FM skyrmion attraction the AFM skyrmion deflects at the

vicinity of the FM one and then continues its motion along a straight line with a velocity
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Figure 7-4.: Position dependent deflection of AFM skyrmions due to the AFM-
FM skyrmionic interaction. a, b Schematic representation of the forces
acting on the AFM skyrmion: The driving force due to the applied spin current
and the AFM-FM skyrmionic interacting induced by the FM skyrmion in the
Fe layer through the Pd-spacer. In a two trajectories with different starting
points are illustrated. c Schematic representation of the effect of the Fe FM
skyrmion on the velocity of the AFM skyrmion with the blue and orange lines
corresponding to the paths shown in a. d The trajectory of the AFM skyrmion
shown in a when current-driven toward a pinned FM skyrmion considering
different initial positions (motion from left to right). Deflection in the motion
direction occurs depending on the relative position between the AFM and FM
skyrmions.

of 75 m/s. Intriguingly, a second deflection manifests when the AFM skyrmion starts an

approach from positions (11) and (12) after passing the FM skyrmion, which signals a non-

trivial energy profile of the hybrid AFM-FM skyrmionic interaction.
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Figure 7-5.: AFM skyrmion trapped by a FM skyrmion at Fe layer. a-f Snapshots
showing how AFM skyrmion got trapped by FM skyrmion at low driving force,
with η/α=0.001 meV.

7.7. AFM-FM skyrmion interaction profile

To elucidate the underlying reason for the unanticipated second deflection mentioned in the

previous section, we analyse the AFM-FM skyrmion interaction profile. Since the AFM

skyrmion in Cr film is made of two FM skyrmions oppositely oriented with respect to each
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Figure 7-6.: AFM-FM skyrmion interaction profile. a Two-dimensional heat map of
the total energy difference resulting when rigid-shifting the AFM skyrmion all
over the lattice with the presence of Fe-FM skyrmion at the center of the Fe
layer. The energy difference is taken with respect to the case when the two
skyrmions are not interacting. This energy difference is further decomposed
into the interaction with the AFM skyrmions building-blocks: the red-cored
FM skyrmion residing at sublattice L2 b, which is of attractive nature, and
the interaction with the blue-cored skyrmion residing at sublattice L1 c, which
is of repulsive nature. d Energy profile along the purple line indicated in a,
decomposed in e into the L2 blue and L1 red contributions. f The z component
of the spin in the two sublattices L1 (blue) and L2 (red) along the purple line
when the AFM skyrmion positioned at the second minimum shown in a. Inset
in d is a schematic representation of the nature of the interaction between the
building blocks of the AFM skyrmion and the FM Fe-skyrmion.

other, we expect two competing interactions with the FM skyrmion in Fe layer, as shown in

the inset of Fig. 7-6 d. The FM skyrmions having their cores pointing in the same direction

and residing in the same FM background would repel each other, while those having an

opposite magnetic alignment would attract each other. This is clearly illustrated in Fig. 7-6

b, and c, respectively, which shows the energy contribution of both types of coupling to

the energy profile, that is obtained by rigidly shifting the AFM skyrmion all over the Cr

lattice atop the FM skyrmion pinned in center of the Fe film. The total interaction heat

map depicted in Fig. 7-6 a exhibits a minimum when the AFM skyrmion overlaps with

the FM skyrmion, signifying their mutual attraction. A second minimum appears when the

AFM skyrmion is positioned in the lower right part of the FM skyrmion, which explains the
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aforementioned second deflection experienced by the AFM skyrmion as noted in the previous

section.

The surprising second minimum finds its origin in the intrinsic asymmetric shape of the AFM

skyrmion with respect to the skyrmion core residing in one of the sublattices, as illustrated

in Fig. D-4 of Appendix D. When interfaced with the Fe FM spins, the Cr spins residing

in the background of sublattice L1 tilt away from their initial direction, while those residing

in sublattice L2 get more collinear and antiferromagnetically aligned with respect to the

Fe-magnetization, see the red and blue plots respectively in Fig. 7-6 f obtained along the

purple line in Fig. 7-6 a when positioning the Cr skyrmion at the second minimum. At the

vicinity of the Fe FM-skyrmion, the interaction picture gets reversed, which leads to the

sublattice-dependent interaction profile shown in Fig. 7-6 e. In particular, the asymmetric

profile of the AFM skyrmions together with the magnetic interaction across the sublattices

enable an energy gain in an area of sublattice L1, where the Cr spins benefit from the AFM

coupling with the core of the Fe skyrmion, see the kink in the spin profile highlighted in

the inset of Fig. 7-6 f. Unveiling the interaction profile between AFM and FM skyrmions

holds significant importance, as it offers an opportunity for manipulating and regulating

the trajectories and dynamics of AFM skyrmions by strategically positioning pinned FM

skyrmions at the Fe layer.

7.8. Conclusion
In this chapter, we uncovered the intricate dynamics of intrinsic AFM skyrmions subjected

to perpendicular to plane spin polarised currents, with a particular attention to the impact

of FM skyrmions emerging in a hybrid heterostructure (CrPdFe/Ir(111) surface) made of

an AFM layer (Cr) separated from an FM layer (Fe) by a Pd spacer layer. In contrast to

expectations, even in AFM skyrmions we demonstrate the emergence of the SkHE stemming

from the elliptical shape of the topological states. Both the SkHE and skyrmion velocity are

anisotropic and follow well defined dependencies with respect to the polarization direction

of the applied currents. The ability to manipulate the polarization direction of impinging

spin currents provides a clear avenue for designing tracks where the SkHE either diminishes

or persists.

The presence of non-trivial magnetic states in the FM film can impact the dynamics of the

AFM skyrmions by tuning both their velocity and trajectory. For instance, FM skyrmions act

as pinning centers, which depending on the applied current can deflect AFM skyrmions. The

seeding of FM skyrmions modifies non-trivially the emergent hybrid AFM-FM skyrmionic

interaction profile, which can host several minima, offering the potential of customizing path-

ways for the motion of AFM skyrmions (see examples illustrated in Fig.D-5 of Appendix D).

In summary, our study advances the understanding of AFM skyrmion dynamics and their

interplay with FM skyrmions. These insights hold great promise for the development of in-
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novative spintronic devices that harness the unique properties of AFM and FM spin textures.

As the field of AFM spintronics continues to evolve, this research contributes to the founda-

tion for efficient information processing and storage schemes, potentially revolutionizing the

realm of next-generation spintronic technologies.





8. Topological magnetism in diluted

artificial adatom lattices

In the previous chapters, we addressed conventional scenarios for the emergence of topologi-

cal spin-textures. By conventional, we mean that we have explored magnetic films interfaced

with heavy metallic substrates. In this chapter, we propose a bottom-up approach for the

construction of topological magnetic textures by considering magnetic adatoms forming di-

luted structures deposited on a non-magnetic substrate. We choose as a substrate Nb(110)

surface, which is heavily investigated as a superconducting platform on which adatom-based

nanostructures trigger trivial and potentially non-trivial states in the superconducting gap

of Nb. Our goal, however, is not aiming at studying topological superconductivity but at

demonstrating that topological spin-textures of FM and AFM nature can emerge in diluted

adatom-based lattices, wherein the magnetic interactions are mainly mediated by the sub-

strate, which enables exploration of a portion of the magnetic phase diagram not reachable

with conventional magnetic thin films.

8.1. Introduction
The bottom-up construction of artificial nanostructures offers an exceptional framework

for investigating synthetic quantum states of matter, meticulously engineered atom by

atom [232, 233]. The groundbreaking creation of the inaugural quantum corral [234], en-

abling the visualization of confined electronic states, propelled scanning tunneling microscopy

(STM) and spectroscopy (STS) into indispensable tools for crafting and customizing the elec-

tronic and magnetic characteristics of materials at the atomic level.

Arranging atoms into chains and clusters facilitates the exploration of a rich array of quantum

phenomena, including quantum-confined electrons [235, 236, 237], Dirac bands [238, 239],

flat bands [240], and topological defects [241, 242]. The magnetic states exhibited by such

nanostructures exhibit intriguing complexity influenced by underlying competing interac-

tions [243, 244, 245, 246, 247, 248]. Atomic impurities possess the capacity to influence the

stability of large spin textures by either pinning or deflecting them [72, 249, 250, 65, 251].

Man-engineered nanostructures can induce chiral orbital magnetism [252, 253, 254] and

give rise to novel magnetoresistance effects [255]. Superlattices of adatoms can emerge

through interactions mediated by surface-state electrons [256, 257], which are influenced by

Friedel charge oscillations [258, 259] leading to long-range magnetic interactions known as

Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions [260, 261, 262]. These interactions,
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such as the isotropic Heisenberg interaction and the spin-orbit induced Dzyaloshinskii-Moriya

interaction (DMI) [42, 43], oscillate and decay as a function of distance. They play a dom-

inant role when magnetic atoms are placed directly atop a metal surface and have been

quantified through measurements and electronic simulations in various diluted nanostruc-

tures [263, 264, 265, 266, 267, 268].

The capability to fabricate artificial atomic lattices with adjustable inter-atomic distances

presents a unique opportunity to explore a vast magnetic phase diagram, a feat unattainable

with conventional materials without altering their chemical compositions and structures.

One remarkable example that hinges on the delicate balance of various magnetic interac-

tions is the emergence of magnetic skyrmions [269, 28, 41, 270, 54, 271, 272, 66].

By adjusting the separation between magnetic atoms, it becomes possible to toggle the mag-

netic coupling from FM to AFM, manipulate the chirality governed by the DMI, or even

access a regime where the Heisenberg magnetic interaction is eclipsed by the DMI [264, 265,

266, 267]. This motivates the design of artificial lattices capable of realizing topological

magnetic textures. Herein, we examine the case of Cr, Mn, or Fe adatoms deposited on

a Nb(110) surface, renowned for its superconducting properties and extensively utilized in

cutting-edge experiments [273]. These experiments aim to probe the potential emergence of

topological Majorana boundary states [274, 275, 276] or trivial ones [277, 278, 279, 280, 281].

Recently, it was demonstrated that two-dimensional diluted lattices comprising Cr adatoms

atop a Nb(110) surface host two types of mirror-symmetry-protected topological supercon-

ductors [282].

Hinging on first-principles simulations combined with atomic spin-dynamics (ASD) (see com-

putational details section), we illustrate that the magnetic interactions among the adatoms

on various lattices give rise to diverse magnetic states, such as domain walls, skyrmions,

and antiskyrmions. Noting that skyrmions, being FM or AFM, have been proposed to trig-

ger the formation of Majorana states once interfaced with a superconductor [283, 284], the

proposed diluted lattices provide an appealing playground for the exploration of topological

superconductivity.

8.2. Computational details
As explained in the previous chapters and outlined in chapter 3, our approach involves a

two-fold procedure, combining ab initio calculations with ASD. Similarly to the experimen-

tal construction of the adatoms-based diluted structures reported in our article [282], we

consider two possible lattices denoted as (A) and (B), visually depicted in Fig. 8-1. We

assume a slab configuration consisting of 5 Nb layers and 1 diluted adatoms-based layer. In

each layer we have 8 atoms per unit cell for lattice A, and 9 atoms per unit cell for system

B. We place the diluted magnetic layer (the magnetic adatoms are either Cr, Mn or Fe)

such that the adatoms reside on the hollow stacking site as depicted in Fig. 8-1.



8.3 Magnetic interactions among the magnetic adatoms on Nb(110) 107

Cr, Mn, Fe

A B

a b

0.8
7 n

m

0.66 nm

0.
93

 n
m

𝑥

𝑦

𝑥

𝑦

Figure 8-1.: Diluted lattices. a, b Schematic representation of the magnetic adatoms
positioned in both investigated lattice types, (A) the rectangular lattice with
the first (second) nearest neighbours atoms separated by 0.66 nm (0.93 nm),
and (B) the rhombic lattice with the first nearest neighbors set 0.87 nm apart.

After extracting the magnetic interactions characterizing the adatoms, we solve, as done in

the previous chapters, the Landau-Lifshitz-Gilbert (LLG) equation to minimize the under-

lying extended Heisenberg Hamiltonian (see section 2.4 in chapter 2).

8.3. Magnetic interactions among the magnetic adatoms

on Nb(110)
The magnetic interactions among the magnetic adatoms (Cr, Mn, and Fe) as a function of

distance are shown in Fig. 8-2, 8-3, and 8-4, for Cr, Mn and Fe, respectively. Our first-

principles calculations reveal that the magnetic interactions among the first nearest neighbors

(n.n.), and beyond depend strongly on the types of the considered adatom lattices. For in-

stance, the first n.n. Heisenberg exchange interactions among Mn adatoms transition from
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Figure 8-2.: Magnetic interactions among Cr adatoms on Nb(110). a Heisenberg
exchange interactions among Cr atoms as a function of the distance, with the
DMI values in inset. The values obtained for both lattices are plotted in the
same curve. The lines serve as a guide for the eye. b, c Illustration of the
simulated lattices, where each circle is coloured as a function of the size of J
with respect to the central atom (grey colour). The positive (negative) values
correspond to FM (AFM) coupling.

FM coupling (J1= 2 meV) in the rectangular lattice (lattice (A)) to AFM coupling (J1=

-0.43 meV) in the rhombic lattice (lattice (B)). For Cr adatoms, the n.n. AFM coupling

is reduced by 94%, decreasing from -5 meV to -0.3 meV. While the Fe adatoms experience

a cancellation of the magnetic interaction, initially FM, when placing them in lattice (B)

instead of (A). The DMI is found to be finite and can be of the same order of magnitude

than the Heisenberg exchange interactions (e.g. Mn in lattice (B)). Alternatively, in the

other cases, it can be one to two orders of magnitude smaller than the Heisenberg exchange
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Figure 8-3.: Magnetic interactions among Mn adatoms on Nb(110). a Heisenberg
exchange interactions among Mn atoms as a function of the distance, with the
DMI values in inset. The values obtained for both lattices are plotted in the
same curve. The lines serve as a guide for the eye. b, c Illustration of the
simulated lattice, where each circle is coloured as a function of the size of J
with respect to the central atom (grey colour).

interactions.

Notably, not only the Heisenberg exchange interactions and DMI vary across different adatom

lattices, but the magnetocrystalline anisotropy energy (MAE) also changes, as shown in Ta-

ble 8-1. In contrast to what we have experienced in the previous chapters, where we had

either OOP easy-axis (CrPdFe/Ir(111)) or easy-plane cases (Mn/Ir(111)), here the MAE

tensor gets more complex. The energy differences are shown in terms of the MAE tensor

elements introduced in Eq.3-83 in chapter 3. For Mn adatoms, the MAE exhibits a distinct

shift between lattice (A) and lattice (B). The OOP spin orientation is favored in lattice (A)
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Figure 8-4.: Magnetic interactions among Fe adatoms on Nb(110). a Heisenberg
exchange interactions among Fe atoms as a function of the distance, with the
inset showing the DMI. The values obtained for both lattices are plotted in the
same curve. The lines serve as a guide for the eye. b, c Illustration of the two
simulated lattices, where each circle is coloured as a function of the size of J
with respect to the central atom (grey colour).

by 0.1 meV with respect to the in-plane magnetization case (Kzz − Kxx = Kzz − Kyy = 0.1

meV). Here, there is no in-plane anisotropy in contrast to all cases investigated in this chap-

ter. Conversely, in lattice (B), there is a transition to anisotropic spin alignment in the xz

plane with (Kyy − Kxx,Kyy − Kzz) = −(0.24 meV, 0.18 meV). Moving to Cr adatoms lat-

tices, the MAE prefers anisotropic in-plane (xy plane) spin orientation for both lattices, but

with different values ((Kzz − Kxx,Kzz − Kyy) = −(0.31 meV, 0.15 meV), −(0.49 meV, 0.21

meV)) for lattice (A), lattice (B), respectively). Similarly, both Fe adatoms lattices MAEs

prefer anisotropic spin alignment in yz plane with ((Kxx − Kyy,Kxx − Kzz) = −(0.44 meV,
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0.32 meV), −(0.58 meV, 1.28 meV)) for lattice (A), lattice (B), respectively). The rich set

of MAEs underscores the tunability of the adatoms magnetic properties depending on the

lattice configurations.

The observed modifications in the magnetic interactions induced by the two types of diluted

lattices considered in our study impacts on the ground states and metastable states emerging

spin-textures, which will be discussed in the next section.

MAEs (in meV) Cr (A) Cr (B) Mn (A) Mn (B) Fe (A) Fe (B)
Kzz - Kxx -0.31 -0.49 0.1 -0.06 0.32 1.28
Kzz - Kyy -0.15 -0.21 0.1 0.18 -0.12 0.70

Table 8-1.: Tensor elements associated to the magnetocrystalline anisotropy energies for the
different adatoms lattices.

8.4. Complex magnetic states emerging at the two types

of diluted adatom-lattices
After extracting the magnetic interactions among the adatoms for each lattice type, the next

step is to investigate the underlying magnetic states.

Starting with the case of Cr adatoms, the ground states are the in-plane AFM magnetic

states for both lattice (A) and (B), as depicted in the insets of Fig. 8-5 a, b, where the spins

are oriented in-plane due to the underlying in-plane MAE. AFM domain walls emerge across

both types of lattices, as shown in Fig. 8-5 a, b. Since the values of the MAEs are found to

be rather small, it is educational to explore the impact of their magnitude on the magnetic

states characterizing the Cr-adatoms-based lattices. When reducing the MAE down to 0.01

meV but with an isotropic in-plane magnetization (Kzz−Kxx = Kzz−Kyy = −0.01 meV), an

in-plane AFM antiskyrmion with a size of 15.8 nm emerges as a metastable state (Fig. 8-6

a). This AFM antiskyrmion is composed of in-plane FM antiskyrmions (Fig. 8-6 b and c)

residing at two FM sublattices with an inter-sublattice coupling of AFM nature. Similarly,

when flipping the sign of the MAE while keeping the value of 0.01 meV, the OOP AFM

configuration is stabilized (see Fig.8-6 d), which can host an elliptical AFM antiskyrmion.

The major and minor axes of the elliptical AFM antiskyrmion measure 7.6 nm and 4.6 nm,

respectively. The constituents of this AFM antiskyrmion are two FM antiskyrmions emerg-

ing at FM sublattices, as depicted in Fig.8-6 e and f. The manifestation of antiskyrmions

rather than skyrmions, is due to the DMI vectors that favor a directional dependence of

the chirality, with the latter being of opposite sign along the x-direction than that along

the y-direction (see e.g. Fig. 2-7 in chapter 2). The same scenario holds for the (B) lattice

of Cr adatoms. Initially, with an isotropic in-plane MAE (Kzz − Kxx = Kzz − Kyy = −0.2
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Figure 8-5.: Magnetic states emerging at Cr, Mn, Fe lattices. a, b Snapshots of
the AFM domain walls forming on the in-plane (xy plane) AFM ground state
with the in-plane anisotropic MAE (Kzz −Kxx,Kzz −Kyy) = −(0.31 meV, 0.15
meV), −(0.49 meV, 0.21 meV)) for Cr (A) and (B) lattices, respectively. For
Mn (A) lattice, MAE favors an OOP spin alignment (Kzz − Kxx,Kzz − Kyy =
0.1 meV). The magnetic interactions, however, induce FM spin spirals as the
ground state c. The application of an OOP magnetic field of 0.4 T enables the
stabilization of FM skyrmions d. e For Mn (B) lattice, MAE prefers anisotropic
spin alignment in the xz plane ((Kyy − Kxx,Kyy − Kzz) = −(0.24 meV, 0.18
meV)), and the ground state is a complex set of AFM spin spirals. f Snapshot
of the FM domains forming at the FM ground state, shown in inset, for the
Fe (A) lattice, where the MAE prefers anisotropic spin orientation in the yz
plane ((Kxx −Kyy,Kxx −Kzz) = −(0.44 meV, 0.32 meV)). g For Fe (B) lattice
the magnetic interaction among the adatoms, with an anisotropic MAE in the
yz plane ((Kxx − Kyy,Kxx − Kzz) = −(0.58 meV, 1.28 meV)), gives rise to an
irregular AFM order of spins.

meV), we obtain an in-plane AFM state as depicted in the inset of Fig. 8-7 a. In this case,

the DMI vectors stabilizes AFM skyrmion (Fig. 8-7 a). This 3.9 nm sized in-plane AFM

skyrmion is built up of two in-plane FM skyrmions, residing at two FM sublattices (Fig. 8-7

b, and c). Whereas upon changing the sign of the MAE (Kzz − Kxx = Kzz − Kyy = 0.08

meV) to favor an OOP spin alignment, the ground state flips from the in-plane orientation

to an OOP AFM state depicted in the inset of Fig. 8-7 d. Here, an OOP AFM skyrmion
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emerges. This skyrmion is elliptical in shape with dimensions of (5.5 nm, 2.4 nm) as depicted

in Fig. 8-7 d, and the building blocks in this case are two elliptical FM skyrmions residing

at two oppositely spin oriented FM sublattices (Fig. 8-7 e, and f).

a
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d e f

Figure 8-6.: Magnetic states emerging at Cr (A) lattice by tuning the MAE. a
Snapshot of the in-plane AFM Cr antiskyrmion when Kzz −Kxx = Kzz −Kyy =
−0.01 meV. With this MAE the spins can align isotropically in-plane, with
the in-plane AFM state shown in inset being the ground state. b, c The
building blocks of the in-plane AFM antiskyrmion, which are two in-plane FM
antiskyrmions coupled antiferromagnetically. d Snapshot of the OOP AFM Cr
antiskyrmion after flipping the sign of the MAE (Kzz −Kxx = Kzz −Kyy = 0.01
meV), which leads to an OOP AFM order. e, f The building blocks of the AFM
antiskyrmion, which are two FM antiskyrmions coupled antiferromagnetically.

Regarding the Mn-based (A) lattice case, the ground state is FM spin spirals in the ab-

sence of magnetic filed, as shown in Fig. 8-5 c. Upon applying an OOP magnetic field of

0.4 Tesla, the spin spirals deform into elliptical FM skyrmions surrounded by an OOP FM

state (Fig. 8-5 d). In this case the ellipse has major and minor axes of 6.4 nm, and 2.5

nm. By flipping the sign of the MAE, and choosing it to prefer in-plane spin alignment

(Kzz −Kxx = Kzz −Kyy = −0.5 meV), a 3.9 nm sized in-plane FM skyrmion emerges at the

in-plane FM background (Fig. 8-8 a). For Mn-based (B) lattices, the magnetic interactions

among the adatoms do not support the stabilization of topological solitons, and only com-

plex sets of AFM spin spirals emerge as the ground state, see Fig. 8-5 e.

Finally, for the Fe adatoms lattices, the FM state in the yz plane is the ground state for the

(A) lattice, which can host FM magnetic domain walls (see Fig. 8-5 f and its inset). Upon

reducing the MAE value down to 0.025 meV, and choosing it to be preferring an isotropic

in-plane (xy plane) orientation of spins, i.e. Kzz − Kxx = Kzz − Kyy = −0.5 meV, a 15.1
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nm sized in-plane FM antiskyrmion emerges (Fig. 8-8 b). Whereas, when flipping the sign

of the MAE, an elliptical FM antiskyrmion emerges in the OOP FM background as shown

in Fig. 8-8 c, with major and minor axes of 7.9 nm, 5.1 nm, respectively. For the Fe (B)

lattices, the weak magnetic interactions among the Fe adatoms (J1 = −0.03 meV) do not

support the stabilization of topological solitons, and only AFM irregular (kind of arbitrary)

spin alignments emerge, see Fig. 8-5 g.

To summarize, we have learned from this study that Mn-based dilute lattice (A) is the most

promising case to explore the emergence of topological magnetic states. The other cases,

were not successful, not because of the underlying magnetic exchange interactions, but due

to the complexity of the MAE tensor, which shows a third MAE axis that breaks magnetic

rotation in the encompassing plane, which works against the formation of solitonic spin-

textures. Restoring an isotropic in-plane rotation enables the formation of various magnetic

objects such as AFM of FM skyrmions or antiskyrmions.

d
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Figure 8-7.: Magnetic states emerging at Cr (B) lattice by tuning the MAE. a
Snapshot depicting the in-plane AFM Cr skyrmion emerging when Kzz−Kxx =
Kzz −Kyy = −0.2 meV. The latter promotes an isotropic in-plane spin orienta-
tion and therefore, the in-plane AFM order is the ground state (inset of a). b,
c The building blocks of the in-plane AFM skyrmion, consisting of two in-plane
FM skyrmions that are coupled antiferromagnetically. d The AFM Cr skyrmion
when the MAE favors an OOP spin orientation (Kzz −Kxx = Kzz −Kyy = 0.08
meV), with the associated OOP AFM ground state shown in inset. e, f Snap-
shots of the constituents of the AFM skyrmion, two FM skyrmions that are
antiferromagnetically coupled.

8.5. Conclusion
In this study, we unveiled the emergence of a plethora of topological solitons on the di-

luted lattices of Cr, Fe, and Mn adatoms deposited on Nb(110) surface. We find potential

stabilization of FM and AFM skyrmions, as well as antiskyrmions, which depend on the



8.5 Conclusion 115

b

15.1	𝑛𝑚 𝑎
𝑏

𝑎 = 7.9	𝑛𝑚, 𝑏 = 5.1	𝑛𝑚𝑥

𝑦

ca

3.9	𝑛𝑚

Figure 8-8.: Magnetic states emerging at Mn and Fe adatoms (A) lattices by
tuning MAE. a Snapshot of the in-plane FM skyrmion forming at Mn (A)
lattice when the MAE is preferring in-plane spin alignment (Kzz − Kxx =
Kzz − Kyy = −0.5 meV). b Snapshot of the in-plane FM antiskyrmion emerg-
ing at Fe (A) when the MAE is modified to be isotropic in the xy plane
(Kzz − Kxx = Kzz − Kyy = −0.025 meV). Flipping the sign of the MAE
(Kzz −Kxx = Kzz −Kyy = 0.015 meV) favors the OOP spin orientation, where
the ground state is the FM state, which hosts FM antiskyrmions c.

lattice type of the adatom structures. Motivated by our recent collaboration involving STM

experiments, demonstrating the possibility of creating diluted lattices, we assumed either a

rectangular lattice (lattice (A)), or a rhombic lattice (lattice (B)).

The Heisenberg exchange interactions, DMI and MAE can be strongly modified depending

on the lattice considered. For instance, the coupling between the n.n. adatoms can change

from being FM to AFM such as what we observed for the case of Mn adatoms. Moreover

the DMI chirality changes across the different lattices types stabilizing for example anti-

skyrmions in the (A) lattices of Cr and Fe adatoms, while in the Mn (A) and Cr (B) lattices,

skyrmions are formed.

In conclusion, our study provides a comprehensive understanding of the magnetic interac-

tions and topological spin textures in diluted adatom lattices. This research opens up new

possibilities for exploring synthetic quantum states of matter and their potential applications

in technologies. Future research could focus on the diluted lattices on several interfaces such

as Ir(111), which might lead to more isotropic MAE.





9. Conclusions

In this thesis, we have conducted first-principles investigations to predict the emergence of

intrinsic antiferromagnetic (AFM) solitons emergence within magnetic layered systems. Our

research aimed to understand the formation, dynamics, and potential applications of these

magnetic structures in various realistic combination of materials. We have carried out a

systematic study, depositing magnetic layers of 3d elements, being potentially AFM (V, Cr,

and Mn) on Ir(111) surface. We have explored several interfaces involving those magnetic

layers with films made of Pd and Fe. We employed density functional theory (DFT) as a

theoretical framework to investigate the structural, electronic, and magnetic properties of

the materials under study. Subsequently, we utilized atomistic spin dynamics (ASD) using

the Landau-Lifshitz-Gilbert (LLG) equation to minimize the extended Heisenberg Hamilto-

nian, incorporating parameters derived from ab initio principles. This approach allowed us

to explore and analyze the magnetic states that emerge within our magnetic layered sys-

tems. Among the investigated 3d transition metal elements, Cr and Mn have emerged as

promising candidates due to their inherent AFM properties, which facilitate the formation

of novel types of AFM solitons. Each chapter of this thesis contributes to our comprehen-

sive understanding of those discovered AFM solitons, revealing their intricate properties and

shedding light on their profound significance in the realm of spintronics and technology.

Our study started with the prediction of intrinsic single and interchained AFM skyrmions

in chapter 4. Within a Cr layer deposited on PdFe/Ir(111) substrate, we observed the

emergence of single and interchained AFM skyrmions. Their formation within the Cr layer,

characterized by a row-wise AFM (RW-AFM) configuration on a triangular lattice at zero

magnetic field, was governed by the intricate interplay between Heisenberg exchange inter-

actions (Jij), Dzyaloshinskii-Moriya interactions (DMI), and magnetocrystalline anisotropy

energy (MAE). The spins of the Cr layer are spread into four sublattices, each of them hosting

ferromagnetically aligned spins pointing either up or down, and can stabilize a ferromagnetic

(FM) skyrmion within the sublattice. We systematically investigated the influence of vary-

ing parameters on the size of the AFM skyrmions, identifying a critical range of interaction

strengths within which these novel solitons can be stabilized. Additionally, we examined the

effects of external magnetic fields on the size of the AFM skyrmions. Moreover, our research

investigated the catenation of AFM skyrmions, revealing that their overlap enhances their

stability.

Taking a step forward, in chapter 5, we constructed a generic spin model designed to capture

the fundamental magnetic interactions essential for AFM skyrmion formation on a triangular
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lattice. Our model elucidates that the stabilization of the AFM skyrmions under investiga-

tion necessitates the incorporation of magnetic interactions extending up to the third nearest

neighbors (n.n.). Crucially, the first n.n. Heisenberg exchange interaction (J1) needs to be

of an AFM nature, in addition to an out-of-plane (OOP) MAE, complemented by DMI, and

FM Heisenberg exchange interactions with the third n.n. (D3, and J3). The latter facilitate

the formation of FM skyrmions at the sublattice level. We explored how altering those mag-

netic interactions affect the size and stability of the single and interchained AFM skyrmions.

We then constructed the corresponding phase diagrams and identify the window where they

can emerge. We have found that the external magnetic field enhances the thermal stability

of those AFM soltions by increasing their energy barrier. These insights have enriched our

theoretical framework and are expected to serve as a pivotal tool for experimentally identi-

fying materials capable of hosting these distinctive AFM solitons.

In chapter 6, we replaced Cr with a Mn layer, which in contrast to Cr is characterized

by an in-plane Néel state in all different magnetic layered systems, namely Mn/Ir(111),

PdMn/Ir(111), MnPdFe/Ir(111), and MnPd2Fe/Ir(111). Here, we found frustrated multi-

merons in the Mn ultrathin film, which combine for example in a hexa-meronic texture, when

assuming periodic boundary conditions. Those multi-meronic solitons are characterized by

FM meronic pairs with different topological charges occupying distinct sublattices. The in-

triguing outcome was the formation of hexa-meronic solitons, each bearing a total topological

charge of 0, 1, or -1, and further higher excited states were found, such as dodeca-merons.

Moreover, our investigation unveiled a critical insight into the role of topological charge at

the sublattice level, profoundly influencing the behavior of these multi-meronic spin tex-

tures when subjected to an external OOP magnetic field. To deepen our understanding, we

meticulously crafted a minimal spin model, intricately mapping the magnetic interactions

necessary for the emergence of these AFM textures.

In chapter 7, we investigated the dynamical behavior of the single and interchained AFM

skyrmions discussed in chapter 4. We have inspected the spin-polarized induced motion of

the AFM skyrmions, when subjected to perpendicular-to-plane spin current with in-plane

polarization. The AFM skyrmions show unexpected trajectories, showing an anisotropic

skyrmion Hall effect (SkHE) stemming from the elliptical shape of the AFM skyrmions. The

direction of the polarization of the current with respect to the axes of the skyrmions defines

both the magnitude of the Hall angles and the skyrmion velocity. The skyrmions exhibit

their highest (slowest) velocity when moving along their main (minor) axis, where the Hall

angle vanishes. The interaction between the AFM skyrmions in Cr layer and the FM ones

in the Fe interface gives rise to a rich energy profile. The FM skyrmions within the Fe layer

serve as pinning sites, exerting a substantial influence on the trajectories and velocities of

AFM skyrmions. These findings significantly enhance our understanding of AFM skyrmion

dynamics and their intricate interplay with FM skyrmions. Such insights hold promise for

the development of innovative spintronic devices, enabling the engineering of customized
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racetracks by seeding pinned FM skyrmions at the Fe layer to create tailored paths for the

AFM skyrmions.

In the last results chapter (chapter 8), we investigated the formation of topological solitons

(AFM and FM) on diluted adatoms lattices of Cr, Mn, or Fe deposited on Nb(110) sub-

strates. By adjusting the distance between the magnetic adatoms, it is possible to toggle

the magnetic interactions from FM to AFM. We have examined two cases, the first one,

where the adatoms are arranged in a rectangular lattice where the atoms at the corners are

with 0.66 nm and 0.93 nm separation distances. The second lattice is rhombic, where the

atoms are allocated at 0.87 nm separation. We have found that Mn (Fe) rectangular lattices

can stabilize FM skyrmion (antiskyrmions), while their rhombic lattice does not stabilize

topological solitons, with AFM spirals being the ground state. Whereas Cr rectangular

lattice supports the formation of AFM antiskyrmion, in-plane or OOP, depending on the

sign and magnitude of the MAE, while AFM skyrmions can emerge at the Cr rhombic lattice.

Our research significantly advances our understanding of AFM topological spin textures and

paves the way for exploring the non-trivial effects of spin-polarized currents on the dynam-

ics of elliptical AFM skyrmions. Notably, our predictions regarding Cr and Mn magnetic

layers deposited on Ir(111) surfaces present an intriguing opportunity for the experimental

community to realize entirely new types of zero-field AFM spin textures—a milestone that

has remained elusive until now. This breakthrough holds profound implications for future

research in the field. In summary, our findings have opened new avenues for designing ex-

periments aimed at experimentally verifying the formation of these novel AFM solitons in

thin layered systems and shaping the development of racetrack devices with controlled paths.

However, the identification of AFM spin-textures requires specific experimental techniques.

We expect the recently proposed all-electrical detection based on the tunneling spin-mixing

magnetoresistance (TXMR) [193, 285], with its different possible modes [195] that can be en-

hanced by the proper implantation of atomic defects [255], to be useful for the exploration of

AFM states. In this context, the predicted non-collinear Hall effect [286], the topological spin

Hall effect for antiferromagnets [287] as well as the spin-resolved inelastic electron scattering

approaches could be valuable [288, 289]. Obviously, spin-polarized scanning tunneling mi-

croscopy is capable of resolving AFM states via atomic resolution [290, 291] while enormous

progress has been made with X-ray magnetic microscopy [91] and all-optical relaxometry

with a scanning quantum sensor based on a single nitrogen-vacancy (NV) defect in dia-

mond, which were applied for various synthetic AFM textures, among which skyrmions [90].

Although our study has uncovered significant insights, there remains ample room for future

exploration. Our next steps involve a deeper investigation into the influence of spin-polarized

currents on the motion of AFM Néel multimeronic solitons. Moreover, the prospect of explor-

ing thicker films of Cr or Mn at the vicinity of Ir surface is appealing by offering the potential

of exploring the evolution of the unveiled 2D spin-texture into 3D. This intricate stacking
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of materials may yield emergent phenomena and exotic magnetic states, paving the way for

exciting possibilities enabling entirely novel applications and technological paradigms.



A. Appendix for chapter 4

3 nm

a b c

Figure A-1.: AFM domain walls as metastable states in Cr layer deposited on
PdFe/Ir(111). a, b and c Snapshots of AFM domain walls emerging in Cr
overlayer along different but equivalent orientations.
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Figure A-2.: Electronic structure of the CrPdFe trilayer and PdFe bilayer de-

posited on Ir(111) surface. Spin-resolved local density of states (LDOS) of
Fe, Pd, Ir and Cr. Red and blue colors correspond to the presence or not of
the Cr overlayer. The assumed magnetic state is collinear with Cr moments
aligned antiferromagnetically to those of Fe.
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3 nm

Figure A-3.: Magnetic state of Fe layer when covered by the AFM Cr layer. FM
skyrmions emerge within the spin spirals hosted by the Fe layer without appli-
cation of an external magnetic field.
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Figure A-4.: Schematic representation of the interactions among the building
blocks of the interchained AFM skyrmions. Intra-interactions represent
magnetic interactions within one sublattice. Hetero-interactions are associated
to magnetic interactions between sublattices, which host skyrmions coupled
antiferromagnetically. Homo-interactions mediate magnetic coupling between
sublattices hosting skyrmions coupled ferromagnetically.
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Figure A-5.: Double AFM skyrmion – Impact of magnetic field on the magnetic
state of both Cr and Fe layers. The spin configuration in Cr (upper row)
and Fe layers (lower row) for different magnetic fields applied perpendicular to
the surface: 0, 60, 140 and 400 Tesla depicted at a, b, c and d, respectively.
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Figure A-6.: Single AFM skyrmion – Stability Impacted by the magnetic inho-
mogeneity of Fe. Snapshots of the evolution of the single AFM skyrmion
upon shifts across the lattice under a magnetic field of 70 Tesla. The AFM
skyrmion positioned directly above the FM Fe skyrmions and antiskyrmions in
a survives; b shows an intermediate state while c represents the final converged
configuration. In d, the AFM skyrmion is displaced to a rather collinear region
such that the skyrmion edges are rather close to the Fe skyrmions. The AFM
soliton shrinks as shown in e before disappearing in f. A similar faith occurs for
the AFM skyrmion shifted to a larger collinear Fe area g (evolution illustrated
in h and i).



B. Appendix for chapter 5

Figure B-1.: Schematic representation of the DMI vectors among the third nearest
neighbours sitting on the same sublattice Li. The DMI vectors are
assumed to be in-plane and experience a clock-wise rotation.
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Figure B-2.: Snapshots of single and interchained AFM skyrmions for different
values of magnetic interactions at zero magnetic field.
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a b

Figure B-3.: Snapshots of the AFM skyrmions with in the inset the associated
saddle points considered in the GNEB simulations.





C. Appendix for chapter 6
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Figure C-1.: Different AFM multi-meronic textures that emerge in the Mn layer.
a Excited state with six AFM meronic structures. b, c Single AFM meron,
antimeron form on confined geometries.
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Figure C-2.: Illustration of the initially degenerate topologically different hexa-
meronic states. Snapshots showing the hexa-merons (upper) and their FM
meronic decomposition at the three sublattices (lower).
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Figure C-3.: Impact of the nearest neighboring magnetic interaction on the size of
the AFM vortex-antivortex pairs. Results obtained with a minimal spin
model with the Heisenberg exchange interaction J1 and out-of-plane component
of DMI Dz. Snapshots for a Dz=0.005 meV, J1=-1 meV, b Dz=0.01 meV, J1=-
1 meV, c Dz=0.01 meV, J1=-2 meV, and d Dz=0.01 meV, J1=-4 meV.
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Figure D-1.: Impact of a pinned FM skyrmion on the translational motion of AFM
skyrmion in a synthetic AFM-FM skyrmion scenario. a-c Snapshots
showing the different regions where a current-driven AFM skyrmion (η/α=
0.0167 meV) interact with single FM skyrmion at Fe layer when located at
position (1) in Fig. 7-4 d. a When the FM skyrmions lays ahead of the AFM
skyrmions and it lays in its vicinity, both the attraction force works with the
drag force causing the velocity increase of the AFM skyrmion , while when the
AFM skyrmion passes the FM skyrmion, and it lays behind it, the attraction
force acts against the drag force causing deceleration of the AFM skyrmion
b. When the AFM skyrmion passes the interaction area, it gains constant
motion speed c, similar to the velocity of the AFM skyrmion when moving
away from the FM skyrmion d which represents the AFM skyrmion when
located at position(8) in Fig. 7-4 d.



136 D Appendix for chapter 7

a

b

Figure D-2.: Position dependent deflection of AFM skyrmions due to the presence
of FM skyrmions at Fe layer assuming a driving motion from right
to left. a In contrast to Fig. 7-4 , the AFM skyrmion is positioned on the
right hand side with respect to the FM skyrmion. b The trajectory of the
single AFM skyrmion when moved toward pinned FM skyrmion at Fe layer
from different positions from right to left, which shows deflections that depend
on the relative position of the AFM skyrmion and the FM skyrmion.
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Figure D-3.: Direction of motion of AFM skyrmion interacting with a FM
skyrmion in a synthetic AFM-FM skyrmion scenario. a-c Snapshots
showing the trajectory of the AFM skyrmion when the FM skyrmion is not
located along the path. A deflection occurs, followed by a straightforward mo-
tion. Here, the FM skyrmion is pinned.
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Figure D-4.: Spin analysis along the line connecting the two FM building-block
skyrmions of the single AFM skyrmion. a Snapshot showing the AFM
skyrmion. b Snapshot of the spins along the line connecting two centers of the
AFM skyrmion. Two spirals belong to two sublattices L1 and L2 are shown
separately in respectively c and d. Once, one sublattice hosts a skyrmion
core, the adjacent spins rearrange themselves to accommodate the different
magnetic interactions and produce a natural spin asymmetry with respect to
the skyrmionc core. This asymmetry is quantified in the nz profile e. f Taking
the difference between right and left nz highlights how the spin asymmetry
develops away from the skyrmion core. It reaches a maximum at a distance of
1.4 nm.
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Figure D-5.: Design of FM skyrmions for the motion control of AFM skyrmions.
a-f Snapshots vividly demonstrating the capacity to precisely steer the motion
of AFM skyrmions by precisely arranging the positions of FM skyrmions within
the Fe layer in a hybrid synthetic scenario of AFM and FM films. The figures
obtained with a current parameter of η/α= 0.0167 meV.





Bibliography

[1] S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics—a retrospective and

perspective,” IBM J. Res. Dev., vol. 50, p. 101, 2006.

[2] J. Sinova, “Thinks globally but acts locally,” Nat. Mater., vol. 9, p. 880, 2010.

[3] L. Eeckhout, “Is Moore’s law slowing down? what’s next?,” IEEE Micro, vol. 37, p. 4,

2017.

[4] R. Jansen, “Silicon spintronics,” Nat. Mater., vol. 11, p. 400, 2012.

[5] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance

in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev.

B, vol. 39, p. 4828, 1989.

[6] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet,

A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001) Fe/(001) Cr mag-

netic superlattices,” Phys. Rev. Lett., vol. 61, p. 2472, 1988.

[7] M. Julliere, “Tunneling between ferromagnetic films,” Phys. Lett. A, vol. 54, p. 225,

1975.

[8] T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junc-

tion,” J. Magn. Magn. Mater., vol. 139, p. L231, 1995.

[9] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large magnetoresistance

at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett.,

vol. 74, p. 3273, 1995.

[10] O. Gomonay, T. Jungwirth, and J. Sinova, “High antiferromagnetic domain wall ve-
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R. Georgii, P. Böni, R. A. Duine, et al., “Spin transfer torques in MnSi at ultralow

current densities,” Science, vol. 330, p. 1648, 2010.

[31] J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in

constricted geometries,” Nat. Nanotechnol., vol. 8, p. 742, 2013.
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G. Bihlmayer, and S. Blügel, “Spontaneous atomic-scale magnetic skyrmion lattice in

two dimensions,” Nat. Phys., vol. 7, p. 713, 2011.

[41] N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic

skyrmions.,” Nat. Nanotech., vol. 8, p. 899, 2013.

[42] I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferro-

magnetics,” J. Phys. Chem. Solids, vol. 4, p. 241, 1958.

[43] T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys.

Rev., vol. 120, p. 91, 1960.

[44] X. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang, S. Ishiwata, Y. Matsui, and

Y. Tokura, “Near room-temperature formation of a skyrmion crystal in thin-films of

the helimagnet FeGe,” Nat. Mater., vol. 10, p. 106, 2011.

[45] S. Seki, X. Yu, S. Ishiwata, and Y. Tokura, “Observation of skyrmions in a multiferroic

material,” Science, vol. 336, p. 198, 2012.

[46] Y. Tokunaga, X. Yu, J. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and

Y. Tokura, “A new class of chiral materials hosting magnetic skyrmions beyond room

temperature,” Nat. Commun., vol. 6, p. 7638, 2015.

[47] A. Leonov and M. Mostovoy, “Multiply periodic states and isolated skyrmions in an

anisotropic frustrated magnet,” Nat. Commun., vol. 6, p. 8275, 2015.

[48] S. Hayami, S.-Z. Lin, and C. D. Batista, “Bubble and skyrmion crystals in frustrated

magnets with easy-axis anisotropy,” Phys. Rev. B, vol. 93, p. 184413, 2016.
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and S. Lounis, “Emergence of zero-field non-synthetic single and interchained antifer-

romagnetic skyrmions in thin films,” Nat. Commun., vol. 13, p. 7369, 2022.

[185] J. Xia, X. Zhang, M. Ezawa, Z. Hou, W. Wang, X. Liu, and Y. Zhou, “Current-driven

dynamics of frustrated skyrmions in a synthetic antiferromagnetic bilayer,” Phys. Rev.

Appl., vol. 11, p. 044046, 2019.

[186] P. Kurz, Non-collinear magnetism at surfaces and in ultrathin films. PhD thesis,

RWTH Aachen, 2000.

[187] J. Spethmann, S. Meyer, K. von Bergmann, R. Wiesendanger, S. Heinze, and A. Ku-

betzka, “Discovery of magnetic single-and triple-Q states in Mn/Re (0001),” Phys.

Rev. Lett., vol. 124, p. 227203, 2020.
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magnetic multimeronic spin textures in ultrathin films,” J. Phys. Chem. Lett., vol. 14,

p. 8970, 2023.

[203] N. Gao, S.-G. Je, M.-Y. Im, J. W. Choi, M. Yang, Q.-c. Li, T. Wang, S. Lee, H.-S.

Han, K.-S. Lee, et al., “Creation and annihilation of topological meron pairs in in-plane

magnetized films,” Nat. Commun., vol. 10, p. 5603, 2019.

[204] C. Donnelly, K. L. Metlov, V. Scagnoli, M. Guizar-Sicairos, M. Holler, N. S. Bingham,

J. Raabe, L. J. Heyderman, N. R. Cooper, and S. Gliga, “Experimental observation of

vortex rings in a bulk magnet,” Nat. Phys., vol. 17, p. 316, 2021.

[205] A. Kolesnikov, V. Plotnikov, E. Pustovalov, A. Samardak, L. Chebotkevich, A. Ognev,

and O. A. Tretiakov, “Composite topological structure of domain walls in synthetic

antiferromagnets,” Sci. Rep., vol. 8, p. 15794, 2018.



Bibliography 157

[206] O. Amin, S. Poole, S. Reimers, L. Barton, A. Dal Din, F. Maccherozzi, S. Dhesi,

V. Novák, F. Krizek, J. Chauhan, et al., “Antiferromagnetic half-skyrmions electrically

generated and controlled at room temperature,” Nat. Nanotechnol., vol. 18, p. 849,

2023.

[207] F. P. Chmiel, N. Waterfield Price, R. D. Johnson, A. D. Lamirand, J. Schad, G. van der

Laan, D. T. Harris, J. Irwin, M. S. Rzchowski, C. B. Eom, et al., “Observation of

magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure,”

Nat. Mater., vol. 17, p. 581, 2018.

[208] R. Fernandes, R. Lopes, and A. Pereira, “Skyrmions and merons in two-dimensional

antiferromagnetic systems,” Solid State Commun., vol. 290, p. 55, 2019.

[209] P. Radaelli, J. Radaelli, N. Waterfield-Price, and R. Johnson, “Micromagnetic mod-

eling and imaging of vortex— meron structures in an oxide— metal heterostructure,”

Phys. Rev. B, vol. 101, p. 144420, 2020.

[210] X. Li, L. Shen, Y. Bai, J. Wang, X. Zhang, J. Xia, M. Ezawa, O. A. Tretiakov, X. Xu,

M. Mruczkiewicz, et al., “Bimeron clusters in chiral antiferromagnets,” npj Comp.

Mater., vol. 6, p. 169, 2020.

[211] L. Shen, J. Xia, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, G. Zhao, and Y. Zhou,

“Current-induced dynamics and chaos of antiferromagnetic bimerons,” Phys. Rev.

Lett., vol. 124, p. 037202, 2020.

[212] R. Silva, “Antiferromagnetic-bimeron dynamics driven by a spin-polarized current at

an inhomogeneous racetrack,” Phys. Lett. A, vol. 403, p. 127399, 2021.

[213] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core

observation in circular dots of permalloy,” Science, vol. 289, p. 930, 2000.
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skyrmions—overview of recent progress in an active research field,” J. Appl. Phys.,

vol. 124, 2018.

[272] Y. Zhou, “Magnetic skyrmions: Intriguing physics and new spintronic device con-

cepts,” Natl. Sci. Rev., vol. 6, p. 210, 2019.

[273] A. B. Odobesko, S. Haldar, S. Wilfert, J. Hagen, J. Jung, N. Schmidt, P. Sessi, M. Vogt,

S. Heinze, and M. Bode, “Preparation and electronic properties of clean superconduct-

ing Nb (110) surfaces,” Phys. Rev. B, vol. 99, p. 115437, 2019.

[274] L. Schneider, P. Beck, T. Posske, D. Crawford, E. Mascot, S. Rachel, R. Wiesendanger,

and J. Wiebe, “Topological Shiba bands in artificial spin chains on superconductors,”

Nat. Phys., vol. 17, p. 943, 2021.

[275] L. Schneider, P. Beck, J. Neuhaus-Steinmetz, L. Rózsa, T. Posske, J. Wiebe, and
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