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Abstract

A detailed understanding of the processes within the critical zone, which covers the area
from the earth’s surface down to the aquifer, is essential for sustainable resource man-
agement and environmental protection. This zone exhibits complex flow and transport
processes and supports critical ecosystem services such as water supply, agriculture, and
climate regulation. However, imaging the complex critical zone accurately, especially at
high resolutions required for a detailed analysis, presents significant challenges because of
the variability of soil water content and complex subsurface structures. This thesis intro-
duces a novel 2.5D ground penetrating radar (GPR) full-waveform inversion (FWI) method
that enhances subsurface imaging by accurately incorporating 3D geometries, such as air
and water filled boreholes, finite length antenna models, and lysimeter geometries, in the
forward modeling of the GPR FWI. Furthermore, the 3D-to-2D data transformation with
its assumptions, e.g. for the far-field, necessary for 2D GPR FWI, is not required with this
method.

We show in synthetic studies with different inversion methods (2D FWI, 2.5D FWI,
2.5D FWI with borehole, and 2.5D FWI with borehole and antenna) an improved source
wavelet reconstruction with the inclusion of realistic borehole and antenna geometries for
the data. The inclusion of these geometries in the forward model of FWI approaches can
significantly improve the accuracy of conductivity reconstructions, with a reduction in the
mean relative absolute error of conductivity of more than 20% compared to simple 2D FWI
and 2.5D FWI. The improvement is particularly noticeable in high-contrast zones. Al-
though including antenna geometries significantly increases computational requirements
by a factor of ∼10, the quality of reconstruction remains similar to the case with only bore-
hole inclusion. In contrast to ray-based inversion (RBI), where artifacts arise when using
high-angle data (72.35°), FWI still provides reliable results.

In a following analysis, we tested if a model that includes boreholes and finite length
antenna models for experimental data measured with transmitter and receiver positioned
in air and water filled boreholes can improve the effective source wavelet estimation. A
synthetic test shows that using this approach, only one wavelet can be used for the recon-
struction of both the unsaturated and saturated zone. However, we still observed challenges
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with the current antenna model to account for the different coupling in air filled boreholes
for measured data. Using the new 2.5D FWI with borehole and antenna models and a sin-
gle source wavelet, the results of the saturated zone reconstruction were similar to those
observed in previous studies where four effective source wavelets were considered. To ob-
tain reliable results in the unsaturated zone, it is necessary to adapt the antenna model to
resolve existing discrepancies.

Next to an improved reconstruction of small-scale structures in aquifers, small-scale
processes in the soil-plant-atmosphere continuum are also of interest. In order to achieve a
higher reconstruction resolution with the FWI for these processes, higher frequencies are
necessary. In a first part, we indicate the constraints imposed by high-frequency GPR data,
which require more precise starting models to fulfill the half-wavelength criterion of the
GPR FWI. This cannot be met by the regular starting model approach of using RBI mod-
els. We show that a frequency-hopping approach can be used to generate starting models
that meet these requirements. Furthermore, we investigated the influence of first-arrival
and amplitude changes in the source wavelets on high-frequency GPR FWI. Utilizing an
adapted heterogeneous model, we were able to show a more detailed reconstruction with
higher frequency data compared to lower frequency data.

In a next step, we extended the model building process of the 2.5D GPR FWI and
are now able to include more complex geometrical structures like lysimeters in the forward
model. As we faced challenges to use the 2D GPR FWI on experimental high-frequency
data acquired on lysimeters, we first investigated the different GPR waves in synthetic stud-
ies at lysimeters filled with homogeneous and heterogeneous soils. We show the com-
plexity of the GPR data, that includes air, direct, and reflected waves. We created a syn-
thetic 3D GPR lysimeter dataset with a center frequency of 450 MHz and applied the novel
2.5D GPR FWI to this dataset. It demonstrates an exceptional good reconstruction of the
soil and fit of the dataset by the inversion results, effectively simulating air-, real soil-, and
reflected waves as well as revealing intricate soil properties.

The newly developed 2.5D GPR FWI presented in this thesis enables the modeling and
reconstruction of small-scale structures with high resolution. The application ranges from
aquifer characterization to the now possible inversion of GPR data measured at lysime-
ter, providing a foundational framework for future research in high resolution subsurface
imaging.
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Zusammenfassung
Ein detailliertes Verständnis der Prozesse in der kritischen Zone, die den Bereich von
der Erdoberfläche bis hinunter zum Grundwasserleiter umfasst, ist für eine nachhaltige
Ressourcenverwaltung und den Umweltschutz unerlässlich. Diese Zone weist komplexe
Strömungs- und Transportprozesse auf und unterstützt wichtige Ökosystemleistungen, wie
Wasserversorgung, Landwirtschaft und Klimaregulierung. Eine hohe Auflösung der kri-
tischen Zone für eine detaillierte Analyse stellt jedoch jedoch aufgrund der Variabilität
des Bodenwassergehalts und der komplexen Strukturen im Untergrund eine große Her-
ausforderung dar. In dieser Arbeit wird eine neue 2.5D Bodenradar (GPR) Vollewellen-
forminversion (FWI) vorgestellt, die die Modellierung des Untergrundes verbessert, indem
3D-Geometrien, wie luft- und wassergefüllte Bohrlöcher, Antennenmodelle und Lysimeter-
geometrien, in die Vorwärtsmodellierung der GPR FWI einbezogen werden. Darüber hin-
aus entfällt bei dieser Methode die 3D-zu-2D Datentransformation, welche für die 2D GPR
FWI notwendig ist (und ihre Annahmen, z.B. für das Fernfeld).

Wir zeigen in synthetischen Studien mit verschiedenen Inversionsmethoden (2D FWI,
2.5D FWI, 2.5D FWI mit Bohrloch und 2.5D FWI mit Bohrloch und Antenne) eine verbes-
serte Rekonstruktion des Quellsignals durch die Einbeziehung von realistischen Bohrloch-
und Antennengeometrien. Dadurch kann die Rekonstruktion der Leitfähigkeit erheblich
verbessert werden, was sich in einer Verringerung des mittleren relativen absoluten Fehlers
der Leitfähigkeit um mehr als 20% im Vergleich zur einfachen 2D FWI und 2.5D FWI
zeigt. Die Verbesserung ist besonders in kontrastreichen Zonen erkennbar. Obwohl die
Einbeziehung von Antennengeometrien den Rechenaufwand um einen Faktor ∼10 erhöht,
bleibt die Qualität der Rekonstruktion ähnlich wie bei der bloßen Einbeziehung von Bohrlö-
chern. Im Gegensatz zur strahlenbasierten Inversion (RBI), bei der es bei der Verwendung
von Daten mit hohem Winkel (72.35°) zu Artefakten kommt, liefert die FWI weiterhin
zuverlässige Ergebnisse.

In einer folgenden Analyse haben wir getestet, ob ein Modell, das Bohrlöcher und An-
tennenmodelle für experimentelle Daten mit eischließt, wobei sich Sender und Empfänger
in luft- und wassergefüllten Bohrlöchern befanden, die effektive Schätzung des Quellsig-
nals verbessern kann. Ein synthetischer Test zeigt, dass mit diesem Ansatz nur ein Quellsig-
nal für die Rekonstruktion sowohl der ungesättigten als auch der gesättigten Zone verwendet
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werden muss, anstatt wie zuvor vier. Wir haben jedoch festgestellt, dass das aktuelle An-
tennenmodell die unterschiedliche Kopplung in luftgefüllten Bohrlöchern für gemessene
Daten noch nicht berücksichtigen kann. Bei Verwendung der neuen 2.5D FWI mit Bohrloch-
und Antennenmodellen und nur einem Quellsignal waren die Ergebnisse der Rekonstruk-
tion der gesättigten Zone ähnlich wie in früheren Studien, die vier effektive Quellsignale
berücksichtigten. Um verlässliche Ergebnisse in der ungesättigten Zone zu erhalten, ist es
notwendig, das Antennenmodell anzupassen, um bestehende Unterschiede zu beseitigen.

Neben einer verbesserten Modellierung kleinskaliger Strukturen in Wasserleitern sind
auch kleinskalige Prozesse im Boden-Pflanze-Atmosphäre-Kontinuum von Interesse. Eine
höhere Auflösung erfodert die Nutzung höherer Frequenzen. Zuerst zeigen wir die Ein-
schränkungen auf, die durch hochfrequente GPR-Daten entstehen und die präzisere Start-
modelle erfordern, um das Halbwellenlängenkriterium der GPR FWI zu erfüllen. Dieses
kann mit dem üblichen Startmodell-Ansatz, der Verwendung von RBI-Modellen, nicht er-
reicht werden. Wir zeigen, dass ein Frequenzsprungverfahren verwendet werden kann, um
Startmodelle zu erzeugen, die diese Anforderungen erfüllen. Darüber hinaus untersuchen
wir den Einfluss von Erstankunfts- und Amplitudenänderungen in den Quellsignalen auf
die hochfrequente GPR FWI. Unter Verwendung eines angepassten heterogenen Modells
können wir eine detailliertere Rekonstruktion mit hochfrequenten Daten im Vergleich zu
niederfrequenten Daten zeigen.

Im nächsten Schritt haben wir den Modellaufbauprozess der 2.5D GPR FWI erweit-
ert und sind nun in der Lage, komplexere geometrische Strukturen wie Lysimeter in das
Vorwärtsmodell einzubeziehen. Da die Anwendung der 2D GPR FWI auf hochfrequente
Daten, die an einem Lysimeter gemessen wurden, eine Herausforderung darstellt, analysieren
wir zunächst die verschiedenen GPR-Wellen in synthetischen Studien an Lysimetern, die
mit homogenen und heterogenen Böden gefüllt waren. Wir zeigen die Komplexität der
GPR-Daten, die Luft, direkte und reflektierte Wellen umfassen. Wir haben einen syn-
thetischen 3D-GPR-Lysimeter-Datensatz mit einer Mittenfrequenz von 450 MHz erstellt
und die neue 2.5D GPR FWI auf diesen Datensatz angewendet. Die Ergebnisse zeigen eine
außergewöhnlich gute Rekonstruktion des Bodens und eine gute Anpassung an den Daten-
satz durch die Inversionsergebnisse, wobei Luft-, reale Boden- und reflektierte Wellen ef-
fektiv simuliert werden und komplizierte Bodeneigenschaften sichtbar werden.

Die in dieser Arbeit vorgestellte neu entwickelte 2.5D GPR FWI ermöglicht die hochau-
flösende Modellierung und Rekonstruktion kleinskaliger Strukturen. Die Anwendung reicht
von der Charakterisierung von Grundwasserleitern bis hin zur Inversion von GPR-Daten,
die an Lysimetern gemessen wurden. Daher bietet sie eine Verbesserung für Problemstel-
lungen im Bereich der hochauflösenden Untergrunddarstellung.
VI
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1. Introduction

Imaging the critical zone, which compromises both the saturated and unsaturated zones
of variably saturated soil-aquifer systems (see Figure 1.1), is a challenging task which is
essential to improve our understanding of the complex dynamics of flow and transport pro-
cesses from the surface to the aquitard. The soil functions of the critical zone are vital
for sustaining human life, for example through their role in buffering and filtering water.
Therefore, the critical zone is extensively exploited for clean water supply, agriculture, and
waste storage (Banwart et al., 2013; Banwart et al., 2019; Field et al., 2015). With this,
mankind has undeniably altered the soil-plant-atmosphere continuum, as soils are essential
for regulating climate and biogeochemical cycles (Lal et al., 2021). To understand these
changes and the original natural processes in detail, a high-resolution characterization is
required. The need for sustainable agricultural practices and the assessment and mitigation
of environmental risks associated with human activities drive this interest, more than just
for academic purposes (Binley et al., 2015; Guo and Lin, 2016; Thomsen et al., 2004).
Small-scale structures are important to map and characterize because they can have a sig-
nificant impact on zones of preferential flow, impermeable clay lenses or root water uptake
(Vereecken et al., 2016). Furthermore, they have a significant impact on the processes that
support clean water and nutrient availability.

In the last two decades, we have seen an tremendous increase in developments and ap-
plications of non-destructive geophysical methods to map and characterize the critical zone
(Binley et al., 2015; Romero-Ruiz et al., 2018), such as electrical resistivity tomography
(ERT) (e.g., Garré et al., 2011; Beff et al., 2013), electromagnetic induction (EMI) (e.g.,
Blanchy et al., 2020) and ground-penetrating radar (GPR) (e.g., Klotzsche et al., 2018).
Although EMI and ERT can either map on a fast large scale or monitor parameters on fixed
installed profile lines, these methods struggle to detect and monitor small-scale processes.
Furthermore, both are in contrast to GPR not directly linked to the SWC. Especially GPR
has shown in the last decade its high potential to identify small-scale structures. Due to
the use of high-frequency electromagnetic waves, these non- or minimally invasive high
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1. Introduction

Figure 1.1.: Schematic view on the critical zone, which compromises the upper meter above
the surface down to the bedrock (adapted from in Chorover et al. (2007); mod-
ified from artwork by R. Kindlimann; licensed under the Creative Commons
AttributionShare Alike 4.0 International license).

resolution methods can then be used to constrain hydrological models, or help to derive
predictions for plant growth for agricultural and the environmental purposes (Binley et al.,
2015) based on petrophysical relationships that are controlled by small-scale subsurface
structures. Particularly in the context of climate change, these technologies have facilitated
the study of processes within various soil-plant-atmosphere continuums (Lärm et al., 2023).
Since the critical zone is highly complex and processes can take place at different scales,
different environments are needed depending of the target. To investigate flow and trans-
port processes at the aquifer scale, controlled test sites are essential. Research sites, which
are highly scientifically analyzed, like the Boise Hydrogeophysical Research Site (Barrash
and Routh, 2006) or Krauthausen test site (Vanderborght et al., 2012) are particularly suit-
able to extend our knowledge of the vadose zone, which extends from the surface to the
water table, and aquifers. While smaller processes such as the soil root interaction require
controlled laboratory or plot-scale studies (e.g., Cai et al., 2016; Klotzsche et al., 2019a;
Lärm et al., 2023; Lärm et al., 2024). Controlled laboratory studies, which can be scaled
up to the field level through tools like lysimeters – soil filled cylinders with a diameter of
around 1.0 m to 1.2 m (e.g., Garré et al., 2011) – offer a controlled environment to measure
soil water content (SWC) and nutrient fluxes, providing a detailed view of soil properties
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and processes. In order to image the properties and processes inside lysimeters, traditional
geophysical methods such as ERT and time-domain reflectometry (TDR) are often con-
sidered to map soil structures and flow patterns (Garré et al., 2010; Garré et al., 2011).
However, ERT has certain limitations, such as the smearing out of small-scale structures,
caused by the inversion approaches, and the alternation of the signal depending on temper-
ature, clay content, salinity, and SWC. One possible solution to overcome this issue is to
combined ERT and GPR (Looms et al., 2008), or use complementary information such as
soil sensors or coring.

In contrast to EMI and ERT, impulse GPR has the advantage of providing the high-
est possible resolution of geophysical field methods of the subsurface because of the use
of high-frequency electromagnetic pulses between 25 MHz and 2.6 GHz (e.g., Klotzsche
et al., 2018). GPR uses electromagnetic wave propagation and can provide information
on the relative dielectric permittivity "r and electrical conductivity � of the subsurface.
These parameters can be linked to important soil properties such as porosity and SWC for
permittivity, and soil texture and salinity for conductivity. Generally, GPR is most success-
fully applied in low-conductivity materials, where energy loss factors are much smaller
than energy storage (Jol, 2009). Because of the large contrast in relative dielectric per-
mittivity between air and water (see Table 1.1), the method is well suited to derive SWC
using empirical or petrophysical models (e.g., Huisman et al., 2003; Klotzsche et al., 2018).
To obtain subsurface images from GPR measurements, conventional ray-based inversion
(RBI) approaches are typically applied (e.g., Dafflon et al., 2011). These methods only
consider the first-arrival times and the first-cycle amplitudes of the measured waves in the
inversion. Therefore, only a limited resolution can be achieved with RBI methods, and ob-
jects or even layers that are smaller than the dominant wavelength cannot be resolved. In
contrast, full-waveform inversion (FWI) uses all the information contained in the measured
data, including secondary events such as reflections and refractions. Hence, the theoretical
resolution is in the order of half the dominant wavelength �∕2 of the signal (Virieux and
Operto, 2009). FWI was first introduced by Tarantola (1984) for the inversion of seismic
data. It is widely used in the seismic community and has continuously been developed
further in the last 50 years (see overview provided by Virieux and Operto (2009)). As a
result, a wide range of adaptations and applications for acoustic, elastic, and viscoelastic
FWI approaches in the time- and frequency-domain have been proposed over the years (e.g.,
Pratt and Worthington, 1990; Pratt and Shipp, 1999; Marelli et al., 2012; Bohlen and Wit-
tkamp, 2016; Liu, 2023). It should be noted that in the seismic community, multi-scale and
multi-frequency approaches are used (Bunks et al., 1995; Sirgue and Pratt, 2004), which
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1. Introduction

Table 1.1.: Material properties of common materials in GPR studies: relative permittivity
"r and electrical conductivity � (modified after Blindow (2005)).

Material "r[−] � [mS/m]
air 1 0

destilled water 80 0.01
fresh water 80 0.5

borehole water 80 50
sea water 80 4000
dry sand 3 - 5 0.01

saturated sand 20 - 30 0.1 - 1
silt 5 - 30 1 - 100
clay 5 - 40 2 - 1000

limestone 4 - 8 0.5 - 2
granite 6 0.01 - 1

ice 3.18 0.01

means that different frequency ranges are considered to create a suitable starting model for
the inversion. Multi-scale approaches use a sequential inclusion of low to high-frequency
components, resulting in a higher computational efficiency and more linear convergence.
Multi-frequency approaches involve selecting different frequencies simultaneously to an-
alyze and mitigate crosstalk artifacts. Furthermore, there are already some 3D FWI ap-
proaches developed and applied in seismics (e.g., Ben-Hadj-Ali et al., 2008; Warner et al.,
2013; Butzer, 2015; Amestoy et al., 2016; Boddupalli et al., 2021).

Although FWI is widely used in the seismic community, it was rarely applied to GPR.
The first adaptations to apply time-domain FWI to GPR data were carried out in the last two
decades (Ernst et al., 2007b; Ernst et al., 2007a; Kuroda et al., 2007). The measurement
types of GPR data used for GPR FWI can be roughly divided into crosshole, surface and
off-ground. Similar to seismics, GPR FWI approaches can be divided into a time-domain
and a frequency-domain approach. Frequency-domain approaches have been successfully
investigated in several synthetic studies (e.g., Busch et al., 2012; Lavoué et al., 2014; Feng
et al., 2021). However, the focus has rarely been extended to experimental data (e.g., Ellef-
sen et al., 2011; Pinard et al., 2016). So far, most of the applications for experimental data
have been performed in the time-domain with more than 100 different datasets from vari-
ous test sites (e.g., Klotzsche et al., 2019b; Güting et al., 2017; Zhou et al., 2020; Haruzi
et al., 2022). All these studies investigated different aquifers and successfully demonstrated
the potential to derive small-scale high resolution images of the permittivity and electrical
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conductivity, showing variablities in the decimeter-scale. Surface FWI applications often
address layered media models (e.g., Busch et al., 2012; Liu et al., 2018). Furthermore,
there are also coupled strategies, e.g., FWI with GPR data with an indirect joint petrophys-
ical inversion with shallow-seismic data by Qin (2022). Another approach is presented by
Domenzain et al. (2020), where a joint inversion of GPR full-waveform and electrical resis-
tivity data was performed for synthetic data to enhance the electrical conductivity models.
Note that until now, combined time- and frequency-domain approaches are rarely applied
in the GPR community. The idea of the seismic multi-scale FWI, is in the GPR commu-
nity referred to as progressively expanded bandwidth approach or the frequency-hopping
approach, which combines frequency- and time-domain benefits. Yang et al. (2014), Zhou
et al. (2021), and others, showed the potential for GPR applications of combining time- and
frequency-domain approaches to enhance model reconstruction by considering the benefits
of both methods.

An important aspect for successfully performing FWI is the definition of adequate
starting models. For time-domain FWI starting models that yield synthetic data within
half the wavelength of the measured signals throughout the entire domain have to be used
(Meles et al., 2011). This is to avoid cycle-skipping, where the wrong phase is fitted within
the gradient approach. Ray-based approaches can provide starting models, that fulfill this
half-wavelength criteria, which is required for a reliable application of time-domain FWI.
However, in regions with high contrasts in permittivity and conductivity, it is often re-
quired to adapt these models to meet this criterion, for example with an amplitude analysis
approach (e.g., Klotzsche et al., 2014; Zhou et al., 2020). Such updates can, for example,
be performed by adding and testing different layers of permittivity in the starting model
based on the result of an amplitude analysis approach and investigating the resulting data
fit (e.g., Klotzsche et al., 2019b). It should also be noted that for experimental data, it is
critically important to have an accurate starting model, as this is used to define the effec-
tive source wavelet that is used for the FWI. Therefore, errors in the starting model will
directly propagate into the wavelet and affect the FWI results. Furthermore, note that while
frequency-domain approaches are less dependent on this criterion, the choice of frequen-
cies and the missing low-frequency components in experimental data limits the application
of this approach.

One of the most common applications for time-domain GPR FWI is crosshole GPR.
After the first pioneering work of Ernst et al. (2007b), Meles et al. (2010) improved the
2D crosshole GPR FWI with considering the field quantities as vectorial functions and
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a simultaneous update of the permittivity and electrical conductivity distributions. An
overview of the further developments, especially for the application to experimental data,
is provided by Klotzsche et al. (2019b). Note that there are multiple pre-processing steps
necessary for the experimental data, such as the time-zero correction. In addition to deter-
mining the starting models, estimating the effective source wavelet is another important step
for the FWI. Especially for changing borehole filling effects, the FWI is challenging because
of the different coupling phenomena that can not be described by only one source wavelet
estimation (Klotzsche et al., 2019c; Mozaffari et al., 2022). Furthermore, the 2D nature of
the forward model prevents the implementation of 3D structures, which have a great influ-
ence on the wave propagation, as well as secondary events like reflections. In particular,
for the inversion of data measured both in unsaturated and saturated soils, the data has to
be separated and each area inverted by its own. Klotzsche et al. (2019c) showed that FWI
is possible, if a unique source wavelet is estimated for all combinations of transmitter and
receiver in the unsaturated and saturated soil. An advantage of crosshole GPR FWI is that
the distance between the antennas is known and the subsurface between the boreholes can
be mapped with a large amount of data at different angles (Klotzsche et al., 2019b). The
typical distance between boreholes for GPR FWI applications is between 2.5 m and 15 m,
with a depth of up to 20 m. The distance is mostly limited by the attenuation of the elec-
tromagnetic wave, which is highly dependent on the local soil. Antenna frequencies for
crosshole applications often range from 100 MHz to 250 MHz.

Although the 2D GPR FWI has shown to be a beneficial tool for high resolution
aquifer characterization, the approach has also its limitations. Since the method considers
a 2D forward model, the experimental data, which are measured in 3D, need to be trans-
formed with the so called Bleistein filter to account for the different radiation pattern and
amplitude decay in 3D and 2D. This filter causes errors especially at late arrival high ampli-
tude data and is only valid in the far-field of the antenna, which complicates the extension
towards surface data as everything there is in the near-field. Therefore, gradient-based
2D surface GPR FWI is not applied to experimental data for permittivity and conductivity
inversion. To overcome the limitations of a 2D forward model, recent developments aim
to move towards full 3D GPR FWI. The steady increase in computational capacity have
made it possible to extend 2D GPR FWI to 2.5D by invariantly extending the 2D model in
the perpendicular direction to create a 3D domain, as previously done in seismics (Song
and Williamson, 1995; Tabarovsky et al., 1996). As shown in Mozaffari et al. (2020), a
2.5D GPR FWI is possible and reduces errors, especially in conductivity, since the 3D-to-
2D correction with the Bleistein data transformation for the measured data is not necessary
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anymore. Although this 2.5D GPR FWI has shown very promising results, developments
are still ongoing, especially in terms of computational optimization to improve calculation
times. Furthermore, the advancement of GPR modeling tools raises new possibilities, such
as introducing detailed antenna geometries and extending FWI to 3D, since using graphic
processing unit (GPU) architectures speeds up the simulations (Warren et al., 2019). In-
cluding antenna geometries in GPR modeling tools is important to better understand elec-
tromagnetic wave propagation and to improve the model towards reality. Simply creating
a geometry is not sufficient to ensure that the signal matches reality as material properties
often need to be adjusted as well. Several approaches have been developed using Taguchi’s
optimization method (e.g., Warren and Giannopoulos, 2011; Stadler and Igel, 2018), a
hybrid linear/nonlinear FWI approach (e.g., Giannakis et al., 2019), or a particle swarm
optimization algorithm (e.g., Stadler and Igel, 2022) have been proposed. Mozaffari et al.
(2022) included boreholes and antennas in 3D forward simulations to show their influence
and the influence of high angles on the signals of crosshole GPR data. In addition, a novel
borehole-fluid effect correction was proposed that can be applied in the pre-processing steps
to account for higher apparent velocities at higher angles in borehole data. It is important
to note that Mozaffari et al. (2022) only included the boreholes and antennas in a regular
forward model and performed travel time inversions but no FWIs. Including these geome-
tries in the FWI forward model was not possible because of the high computational cost at
that time.

Most of the time-domain 2D GPR FWI case studies conducted so far used frequencies
up to 250 MHz and were able to derive decimeter-scale subsurface images. To image finer
structures and properties related to the root zone, e.g., preferential flow paths in the vadose
zone, higher frequencies are needed that can further enhance the resolution for materials
that are commonly found in the critical zone. As a result of the stronger attenuation of
higher frequencies in the subsurface, this also requires shorter offsets between the trans-
mitter and receiver antennas. Therefore, the use of lysimeters, where antennas are placed
around the soil column (similar to the procedure described by Schmalholz et al. (2004)),
or boxes like Mangel et al. (2012), are ideal methods to study and enhance the understand-
ing of centimeter-scale processes and the soil-root continuum using GPR FWI. Note that
using higher frequencies imposes greater constraints on the FWI starting model because
of the shorter wavelengths of the signals and the requirement to meet the half-wavelength
criterion.

7



1. Introduction

1.1. Thesis objective and outline

The primary objective of this thesis is to advance the current GPR FWI method towards a
3D GPR FWI for a high resolution subsurface characterization. To achieve this, we present
a novel 2.5D GPR FWI approach that can include small-scale geometries into the forward
modeling. In this thesis, we state our objectives as the following hypotheses:

1. Using a more complex forward model, including borehole fillings and finite-length
antenna models, can provide source wavelets closer to reality.

2. Using an improved source wavelet based on a forward model, including borehole
fillings and finite-length antenna models, can improve the accuracy of reconstruction.

3. A 2.5D GPR FWI with a realistic forward model can account for variable borehole
fillings and antenna coupling effects with one estimated effective source wavelet.

4. Higher frequencies in 2D GPR FWI yield improved reconstruction resolution within
the sub-decimeter-scale.

5. A 2.5D GPR FWI, including lysimeter geometries, can account for the different
wavetypes and successfully invert synthetic lysimeter data in a sub-decimeter-scale.

The hypothesis 1 and 2 were both investigated in Chapter 3, while 3, 4, and 5 are tested
in Chapter 4, Chapter 5, and Chapter 6. The thesis aims to enhance the geophysical com-
munity’s comprehension of subsurface phenomena, particularly in the critical zone. It has
the potential to significantly improve non-destructive subsurface investigation for environ-
mental, agricultural, and resource management applications.

After the introduction, we propose a new 2.5D GPR FWI in Chapter 3, which is able
to include additional geometries in the forward model. With this, we do not have to inves-
tigate different 3D specific effects such as borehole filling or antenna effects (e.g., Irving
and Knight, 2005; Mozaffari et al., 2022) separately from the GPR FWI, but are able to
account for them in the new 2.5D GPR FWI. Therefore, we investigate the influence of the
inclusion of borehole fillings and finite-length antenna geometries in the forward model of
a 2.5D GPR FWI. This ranges from the source wavelet estimation to the inversion results
and also the influence of higher angles.

We then use the knowledge based on Chapter 3 in Chapter 4 to investigate the source
wavelet estimation for unsaturated and saturated soils. An approach for 2D GPR FWI was
proposed by Klotzsche et al. (2019c), which is based on four different estimated source
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wavelets, as the coupling of the antenna to the borehole and soil is different if the antenna is
in the unsaturated or saturated area. Including borehole and antenna models in the forward
model of the FWI should make this obsolete, as the different couplings should now be
included in the improved forward model. Therefore, we will investigate the possibility of
performing a 2.5D GPR FWI on measured data without estimating different source wavelets
for the unsaturated and saturated zones. We include air and water filled boreholes and a
finite-length antenna model in the forward model for the source wavelet estimation and
also in the 2.5D GPR FWI. If this forward model is accurate enough, it should account
for the different coupling effects and yield one effective source wavelet for all possible
combinations. After this we will show inversion results of a 2.5D GPR FWI with one
source wavelet and including all data of the unsaturated zone as well as the saturated zone.

To investigate high resolution reconstruction in GPR we investigate the resulting chal-
lenges in Chapter 5 with the 2D FWI. High-frequency GPR data leads to stricter specifica-
tions of the starting models of the FWI. We introduce the frequency-hopping approach to
meet these requirements. Until now, it was used at low frequencies to achieve better recon-
structions (e.g., Meles et al., 2011; Zhou et al., 2021). Furthermore, we show that the use
of high resolution reconstruction can improve the reconstruction of a more heterogeneous
model.

In Chapter 6, we demonstrate why it is necessary to use 2.5D GPR FWI for GPR data
measured on lysimeters. Based on a synthetic 3D dataset with a 450 MHz source wavelet,
we investigate the reconstruction of the soil within a lysimeter with the 2.5D GPR FWI,
which was not possible until now (Klotzsche, 2023).

The conclusion of this thesis, as well as an outlook for further improvements and
applications, are presented in Chapter 7.

Appendix A is a preparatory study for Chapter 5. Different types of reflections inside
a lysimeter are investigated in a synthetic case and measured data. A comparison between
an unsaturated and saturated soil provides an overview of the influence of the medium
on the reflections. Therefore, it can be considered a guideline for analyzing the different
reflections.
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2. Theory

This section provides an overview of the theory used in this thesis, from the basic introduc-
tion of fundamental electromagnetic theory to the numerical modeling of electromagnetic
waves, and their application in GPR FWI.

2.1. Electromagnetic theory

GPR is based on measuring electromagnetic waves. Maxwell’s equations describe how
electric and magnetic fields interact and form their waves. Their description in this section
is widely based on Taflove and Hagness (2005). If we consider a spatial region without
electric or magnetic current sources, while taking into account the possible presence of
materials capable of absorbing electric and magnetic field energy, we can express the time-
dependent Maxwell’s equations in their differential form as:

∇ × E = −)B
)t

(2.1)
∇ × H = )D

)t
+ J (2.2)

∇ ⋅ D = 0 (2.3)
∇ ⋅ B = 0 (2.4)

where E is the electric field [V/m], D the electric flux density [C/m2], H the magnetic field
[A/m], B the magnetic flux density [W/m2], and J the electric current density [A/m2].

These equations imply the following: Faraday’s law in Equation (2.1) states that a
time-varying magnetic field induces an electric field. Ampere’s law with Maxwell’s exten-
sion in Equation (2.2) indicates that magnetic fields can be generated by electrical currents
(as described by Ampere’s original law) and also by changing electric fields (Maxwell’s
addition). Gauss’s law for electricity in Equation (2.3) implies that the field lines neither
diverge nor converge. Gauss’s law for magnetism in Equation (2.4) states that there are no
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magnetic monopoles. Consequently, magnetic field lines are continuous and form closed
loops or extend to infinity without ever beginning or ending at a point.

If we consider only linear, isotropic, and nondispersive materials, it is possible to
relate D to E and B to H. Note that nondispersive materials are characterized by their field-
independent, direction-independent, and frequency-independent electric and magnetic prop-
erties. The constitutive relationships are:

D = "E = "r"0E; B = �H = �r�0H, (2.5)

where " is the electrical permittivity [F/m], "r the relative permittivity [-], "0 the free-space
permittivity (8.854 × 10−12 [F/m]), � the magnetic permeability [H/m], �r the relative per-
meability [-], and �0 the free-space permeability 4�×10−7 [H/m]). Although these assump-
tions are commonly used, especially for the modeling of electromagnetic wave propagation,
it is important to be aware that some materials on earth are non-linear, anisotropic, and dis-
persive.

The current density J can be a distinct source of electric field energy, referred to as
Jsource. Materials that possess isotropic, nondispersive characteristics in terms of electric
loss, lead to the attenuation of the electric fields through the conversion into heat energy,
resulting in:

J = Jsource + �E, (2.6)
where � is the electric conductivity [S/m]. Considering this, we derive two new equations
for linear, isotropic, nondispersive, and lossy materials, which are also called Maxwell’s
curl equations:

)H
)t

= −1
�
∇ × E (2.7)

)E
)t

= 1
"
∇ × H − 1

"
(

Jsource + �E
)

. (2.8)

By eliminating either the electric or magnetic field the wave character of the equations can
be derived. In the case of eliminating the magnetic field it yields:

∇ × ∇ × E − �")
2E
)t2

− ��)E
)t

= 0. (2.9)

Note that the electromagnetic waves are transverse, resulting in an oscillation of the electric
field perpendicular to the direction of propagation of the wave.
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The material properties that determine electromagnetic waves and fields are therefore
electrical permittivity, magnetic permeability, and electrical conductivity. For the appli-
cation of GPR the electrical permittivity and electrical conductivity are the primary pa-
rameters, as the relative permeability is often assumed to be constant and equal to 1 and
therefore be � = �0. The analysis of the material influence is based on Jol (2009).

The electrical permittivity quantifies the electric polarizability of the material. To-
gether with the magnetic permeability we can calculate the wave velocity v of an electro-
magnetic wave travelling through a medium:

v = 1
√

"�
, (2.10)

with the relative permeability being constant, this shows, that the electrical permittivity
affects the speed of which the electromagnetic wave through a medium. In the case of
vacuum where "r = �r = 1 we get the speed of light: 1

√

"0�0
≃ 3 × 108m/s = c. It is also

possible to calculate the velocity based on the wavelength � and the frequency f of the
wave through:

v = �f . (2.11)
The attenuation of an electromagnetic wave in a medium is given by:

� =
��v
2

= �

2
√

"
�

. (2.12)

Electromagnetic waves change if they encounter different media. Snell’s law brings the
angles of incidence �i and refraction �t together. In the case of low loss media we get:

sin�i
v1

=
sin�t

v2
, (2.13)

with the media velocities v1 and v2. It has to applied every time there is a change in medium
interface. The angle of reflection �r is given by:

�i = �r. (2.14)

Since parts of the incident wave are reflected (R) or transmitted (T ) into the second medium,
using Fresnel equations can provide the different contributions dependent on the polarization
of the incident wave to the plane of incidence. In the case of only non-magnetic materials
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(i.e., �1 = �2 = �0) and if the polarization of the wave is perpendicular to the plane of
incidence (s-polarized) the reflected and transmitted part can be described as:

Rs =
|

|

|

|

n1 cos �i − n2 cos �t
n1 cos �i + n2 cos �t

|

|

|

|

2

=

|

|

|

|

|

|

|

|

|

|

n1 cos �i − n2

√

1 −
(

n1
n2
sin �i

)2

n1 cos �i + n2

√

1 −
(

n1
n2
sin �i

)2

|

|

|

|

|

|

|

|

|

|

2

, (2.15)

Ts = 1 − Rs, (2.16)

with the refractive indexes n1 and n2, which can be calculated as:

n = c
v
. (2.17)

If the polarization of the wave is parallel to the plane of incidence (p-polarized) the reflected
and transmitted parts are:

Rp =
|

|

|

|

n1 cos �t − n2 cos �i
n1 cos �t + n2 cos �i

|

|

|

|

2

=

|

|

|

|

|

|

|

|

|

|

n1

√

1 −
(

n1
n2
sin �i

)2
− n2 cos �i

n1

√

1 −
(

n1
n2
sin �i

)2
+ n2 cos �i

|

|

|

|

|

|

|

|

|

|

2

, (2.18)

Tp = 1 − Rs. (2.19)

Note that we do not include dispersive media in this work. For more information please
refer to Zhang and Li (1998).

2.2. Numerical modeling of electromagnetic waves

In this section, we discuss the simulation of electromagnetic waves (EM) in more detail.
Computational techniques are essential for simulating and analyzing electromagnetic in-
teractions and various methods are possible. The most commonly used one is the finite-
difference time-domain method. Other numerical modeling options are the time-domain
finite element method (TDFEM) and the finite integration technique (FIT). For more in-
formation about the TDFEM please refer to Lee et al. (1997) and for the FIT to Weiland
(1977) and Weiland (2003).
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2.2.1. Finite-difference time-domain method

The finite-difference time-domain (FDTD) method was introduced by Yee (1966) and has
become the most often used approach for time-domain GPR FWI. Major parts of this sec-
tion are based on Taflove and Hagness (2005). This section provides only an overview of
the method. For more detailed information, please refer to Taflove and Hagness (2005).
The development of the FDTD method represented a significant advance in computational
electromagnetics, because of its ability to solve the partial differential equations (PDEs) that
describe electromagnetic phenomena. The solutions to these PDEs are generally unknown
except for a few special cases, making the need for numerical methods such as FDTD crit-
ical to understand wave propagation and electromagnetic fields in complex environments.
It was first introduced for two-dimensional (2D) problems, a significant development at the
time, as it was considered highly computationally expensive at the time. Nowadays, as the
long-run index of integer computations per second has increased from 1×105 to 1×108 in
the 1960s to 1 × 1013 to 1 × 1016 for the 2020s (based on Coyle and Hampton (2024)) even
3D problems can be easily solved.

Yee’s approach involves translating Maxwell’s partial differential equations into a set
of finite-difference equations. These finite-difference equations can be solved to approxi-
mate the electromagnetic fields in time and space. Within the FDTD the domain is subdi-
vided by the so called Yee grid (Figure 2.1), which is a staggered grid that separates the
electric and magnetic fields into two nested grids in space.

Thereby, one grid is dedicated to the electric field and another spatially, for half a cell,
shifted grid for the magnetic field. This arrangement ensures that each electric field com-
ponent is surrounded by four magnetic field components and vice versa, allowing direct
numerical simulation of Maxwell’s curl equations. In addition, the electric and magnetic
field components are centered in time in a leapfrog scheme, where the electric field is up-
dated in integer time steps and the magnetic field is updated in half-integer time steps. This
leapfrog time-stepping scheme is fully explicit and achieves second-order accuracy through
central-difference time derivatives. Additionally, this scheme is very suitable for a parallel
computing implementation.

For a simulation using the FDTD method, a domain must be specified in which ma-
terial properties are assigned to each cell. These material properties (relative permittivity,
electrical conductivity, relative permeability, and magnetic loss) are already known from
Section 2.1. In addition, sources with appropriate wavelets must be defined to initiate the
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Figure 2.1.: 3D representation of a Yee grid cell including E and H field contributions
(based on Yee (1966)).

electromagnetic wave propagation. The simulation proceeds by solving alternately for the
electric field vector components at a given time step and then for the magnetic field vec-
tor components at the next half time step, over the same spatial volume. This process is
repeated for all time steps.

To guarantee a stable simulation, the space and time steps must satisfy the Courant-
Friedrichs-Lewy (CFL) stability condition (Courant et al., 1928), otherwise the leapfrog
integration used to solve the partial differential equation is likely to become unstable:

Δt ≤ 1

c
√

1
Δx2

+ 1
Δy2

+ 1
Δz2

, (2.20)

where Δt is the time step, c is the speed of light in the vacuum or the wave propagation
speed in the medium, Δx, Δy, and Δz are the spatial discretization steps in the x, y, and z
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directions, respectively. For 2D, we consider the unused spatial discretization step Δu to
be infinite.

Another issue is the numerical dispersion that can lead to erroneous simulation results.
This effect occurs when the electromagnetic wave can not be properly be resolved with the
given grid size. In this case, the physical phase velocity is not equal to the numerical phase
velocity. Therefore, to account for this, we need to consider the minimum velocity vmin:

vmin =
c

√

"max
, (2.21)

the minimal wavelength in medium �min:

�min =
vmin
fmax

, (2.22)

the maximum grid cell size Δmax:

Δmax = max(Δx,Δy,Δz), (2.23)

the Courant stability factor Cstab:
Cstab =

cΔt
Δmax

, (2.24)
and the grid sampling density N:

N =
�min
Δmax

, (2.25)
with the maximum permittivity "max and the maximum frequency fmax of the model. The
fmax can be assumed to be 1.5 times of the center frequency of the signal. Using these equa-
tions, we can calculate the numerical phase velocity vp and the resulting physical phase-
velocity error Δvphysical:

vp =
�

N arcsin
(

1
Cstab

sin
(

�Cstab
N

)) (2.26)

Δvphysical =
vp − c
c

100. (2.27)

A common approach in discretization is to determine the maximum grid cell size Δmax with
(gprMax, 2024):

Δmax =
�max
10

. (2.28)
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Although the FDTD method does not explicitly require the source wavelet to be contin-
uous or steady in the mathematical sense, there are practical considerations and require-
ments to ensure accurate simulation results. The grid must be fine enough to accurately
resolve the highest frequency components in the source wavelet. This is constrained by the
Nyquist criterion, which implies that the grid spacing (Δx, Δy, Δz) must be small enough
to capture at least two points per wavelength of the highest frequency present in the source
wavelet. A source wavelet that rises smoothly from zero helps to avoid introducing a wide
range of frequencies and reduces the chance of exciting resonances unrelated to the phys-
ical problem being modeled. Sharp transitions or discontinuities in the wavelet can excite
high-frequency components that the grid may not resolve well, introducing oscillations.

Most FDTD approaches use an equidistant grid. This is a valid approach for many ap-
plications. However, it may not efficiently resolve fine features or sharp discontinuities in
the geometry, materials, or electromagnetic fields. In addition, the grid may not align with
the physical boundaries of geometries or materials, leading to staircasing errors. Round ge-
ometries in particular suffer from this. The main solution for this would be to significantly
reduce the grid size, which would drastically increase the computational requirements like
computation time and required memory. To address this, implementing a subgridding ap-
proach can effectively reduce the grid size while mitigating the increase in computational
demands. In a subgridding approach several blocks of grid cells, smaller than the main grid
cells, can be placed at specific locations in the main grid without modifying it. A possible
example is the Huygens subgridding approach (Bérenger, 2006), implemented by Hartley
et al. (2018) in the open-source FDTD solver gprMax (Warren et al., 2016).

Absorbing boundary conditions (ABCs), like the perfectly matched layer (PML) (Bé-
renger, 1994), are necessary to replicate the effect of an unbounded domain within a finite
simulation domain. The PML is an absorbing layer capable of absorbing electromagnetic
waves with minimal reflection, regardless of the wave’s angle of incidence, polarization, or
frequency. The PML works by surrounding the simulation domain with an artificial layer,
where the electromagnetic fields are exponentially attenuated without inducing spurious
reflections back into the simulation domain.

To achieve the 2D FDTD method the 3D FDTD is split into transverse electric (TE)
and transverse magnetic (TM) modes, depending of the invariant direction and of the chosen
preference of electric or magnetic fields. Therefore, the computation time and memory is
reduced drastically, compared to the full 3D FDTD. In 2D FDTD simulations, structures are
assumed to be invariant along one axis. Hence, commonly line sources are used, to excite
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the fields, emitting radially propagating cylindrical waves, having an amplitude scaling of
1
√

r
. This type of simulation is very efficient for modeling planar structures. However, 2D

FDTD is limited in its ability to account for the effects related to changes along the invariant
axis, e.g., 3D structures.

In 3D FDTD simulations even complicated structures can be included. Note that these
are restricted by the grid size as well. Furthermore, the computational requirements are
significantly higher because of the added dimension. Two types of sources, soft and hard,
are commonly used to excite the electromagnetic fields. Soft sources are characterized by
their ability to specify a current density term at a field location, which is used to simulate
a hertzian dipol. On the other hand, hard sources are idealized as point sources that inject
fields directly into the computational domain. Both of these sources generate a spherical
wave front, with its energy spread over the surface of a sphere, resulting in an amplitude
scaling of 1

r
.

2.3. Ground-penetrating radar full-waveform inversion

Before the FWI can be applied to observed data, the data has to be pre-processed, a starting
model to be generated, and a source wavelet to be estimated. An overview about the indi-
vidual steps, as well as the FWI is given by the flowchart in Figure 2.2. In the following
we will introduce the steps closer.

2.3.1. Pre-processing

In numerous cases, measured data is affected by noise caused by various technological
factors such as radio stations, cell phones, power substations, power lines, or even the radar
system itself and unwanted coupling effects. During the measurement, stacking can be used
to reduce noise (Stephan et al., 2022). However, there are still many datasets where noise
is nevertheless a dominant error factor. Commonly a noise filter is applied to reduce high-
and low-frequency noise. Often simple filters, like band-pass filters which lets through a
specific range of frequency components, prove to be quite effective (Annan, 1993). Due
to the saturation of the signal by early arrivals a dewow filter is necessary (Huisman et al.,
2003).
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Figure 2.2.: Flowchart of the 2D GPR FWI inversion steps, adapted from Klotzsche et al.
(2019b).
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2.3. Ground-penetrating radar full-waveform inversion

The accurate time-zero position of the radar signals is important for the FWI because
inaccuracies in the inversion directly affect the permittivity results. Different data acqui-
sition settings and equipment or instrumental delays can cause a misalignment. To align
the signal’s starting time, a time-zero correction is necessary. Typically, common midpoint
(CMP) or wide-angle reflection and refraction (WARR) measurements in air are performed
before and after the multiple offset gather (MOG) measurements (Klotzsche et al., 2019b).
Interpolating the time-zero for each MOG provides the absolute time-zero. However, be-
cause of the potential variation in time-zero shifts during measurements and the sensitivity
of the full waveform to even small time-zero errors, this interpolation may not be suffi-
ciently accurate. Oberröhrmann et al. (2013) proposed a method utilizing equal transmitter
(Tx) receiver (Rx) combinations. Zero-offset (ZOP) traces and horizontally traveled traces
within the MOGs are cross-correlated to calculate the time-zero individually for the MOGs.

2.3.2. Starting model generation

To prevent cycle skipping during the FWI as well as to achieve more stable and reliable
results, an overlap between the starting model data and the measured data of at least half
a wavelength is required (Meles et al., 2011), which is referred to as the half-wavelength
criterion. To obtain such an accurate starting model, the regular approach is to perform a
ray-based inversion (RBI) on the measured data. Another approach for accurate starting
models is the frequency-hopping approach (Zhou et al., 2021).

2.3.2.1. Ray-based inversion

The main idea of the RBI, is as the name states, the assumption that the wave travels as a
ray between the Tx and Rx. The inversion of first-arrival times can give information about
the velocity v and the inversion of the first-cycle amplitude about the attenuation � of the
medium. The simplest approximation is to assume a straight travel path, indicating not
changing velocities in the ray’s path. A more precise method is to consider the varying
velocities along the ray’s path (based on Snells’ law in Equation (2.13)), which can lead to
curved travel paths. However, it also offers the possibility of more realistic velocity distri-
butions Lanz et al. (1998). With the travel times for all transmitter-receiver combinations
known, a finite-difference implementation of the Eikonal equation (Vidale, 1990) can be
used to solve the forward problem. The eikonal solver for ray-based inversion is based on
an equidistant grid where velocities are specified at each point. To minimize discretization
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errors, as noted by Rabbel (2009), the spacing between grid points, both horizontally and
vertically, should be narrower than the spacing between receivers. Note that this section is
based on Klotzsche (2013).

First-arrival travel time inversions can be used to estimate a velocity model, which is
inversely proportional to the "r, see (2.10). After defining a starting model, the inversion
steps are:

1. Generate the travel times for the current model with forward modeling (e.g., an
eikonal solver).

2. Estimate the error between the observed and simulated travel times.
3. Convert the error to an improved model.
4. Update the model.

The travel time misfit function CTT in step 2 can be described as:

CTT =
∑

s

∑

r

(

tsrobs − tsrsyn
)2

n
, (2.29)

where n, s and r are indicating the datapoints, the source and the receiver number, respec-
tively, for the corresponding observed tsrobs and simulated travel times tsrsyn. Step 3 can be
expressed as solving a sparse matrix, for which multiple approaches can be used, e.g., like
a least squares proposed by Lanz et al. (1998).

First-cycle amplitude inversions are used to estimate the attenuation � of the electro-
magnetic waves. As the name states, the main information for this inversion is the first-cycle
amplitude, which is an exponential decay of the initial source amplitude and proportional
to � (Giroux et al., 2007). The attenuation is depending on the permittivity (velocity) as
well as the conductivity (see Equation (2.12)). A first-arrival travel time inversion and
first-cycle amplitude inversion are commonly combined. In addition to the first-cycle am-
plitude, other details such as travel times and radiation patterns are necessary. For more
information, please consult Holliger et al. (2001) and Maurer and Musil (2004).

The low computational demands of the RBI make it very attractive for a preliminary
investigation. However, the inversion is only depending on two parameter sets, the first-
arrival time and the amplitude of the first-cycle, neglecting a big amount of data stored in
the measured signals. Therefore, the reconstruction resolution is limited. Since the con-
ductivity is also dependent on the permittivity, most commonly the reconstruction of the
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2.3. Ground-penetrating radar full-waveform inversion

permittivity is better than the conductivity reconstruction. For standard ray-based crosshole
GPR inversion approaches the reconstruction resolution scales approximately with the di-
ameter of the first Fresnel zone, or √�L with � and L indicating the dominant wavelength
and path length, respectively (Williamson, 1991). Due to this resolution, issues often occur
at high-contrast zones. Note that the ray-based models need to be updated in these high-
contrast regions such as water table and waveguiding structures (Klotzsche et al., 2014) if
they shall be used as starting models for the FWI.

2.3.2.2. Frequency hopping

The frequency hopping approach utilizes the wide frequency spectrum of the measured
GPR data. It was used in frequency-domain for microwave imaging applications (Chew
and Lin, 1995; Dubois et al., 2009) and for seismic data (Pratt et al., 1998; Maurer et al.,
2009). First a low-frequency bandwidth inversion is performed and the results are used for
the next inversion with a progressively higher frequency bandwidth, which is repeated till
the centre frequency of the data. Meles et al. (2011) proposed a workflow for synthetic
GPR data where the frequency of the source wavelet is iteratively increased, while the ob-
served data retains the full bandwidth. Due to problems with real data, Zhou et al. (2021)
proposed a workflow, which is the basis for the used frequency hopping approach in this
work. A tapered bandpass filter is applied to the effective source wavelet (used to generate
the synthetic data), as well as the observed data. Then, a specified number of FWI itera-
tions are performed and the result is used for the next-largest frequency. This is continued
until the entire frequency range is covered and subsequently the original effective source
wavelet and data are considered. Usually a RBI model is used for the initial permittivity
and conductivity of the frequency hopping. With this approach it is possible to overcome
the problems of the RBI in the presence of high contrast layer, where the ray-based start-
ing models for the FWI are inaccurate and need adaptions (e.g., Klotzsche et al., 2012;
Klotzsche et al., 2013; Klotzsche et al., 2014).

2.3.3. 3D-to-2D correction

Measured GPR data can always be considered as 3D data. As mentioned in Section 2.2.1,
there are differences in the modeling when considering 2D or 3D. For example, there are
different radiation patterns, from spherical in 3D to cylindrical in 2D, which results in a
different amplitude decay A. This decay is proportional to the travelled distance r and
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time t, where r = vt. In 3D it is A ∝ 1
r
∝ 1

t
and in 2D A ∝ 1

√

r
∝ 1

√

t
. This means, that if we

want to use 3D data, we have to multiply the data with √

t if we use a 2D forward simulation
in a FWI. Furthermore, there is a phase shift, as 2D sources are considered as infinitive long
extended lines of point dipole. If we use a 2D forward model, we have to compensate for
this, too. Most commonly a 3D-to-2D data transformation based on Bleistein (1986), as
proposed by Ernst et al. (2007a) is used. Note that the correction here is based on Klotzsche
(2013).

In our case we use a phase shift of �
4

with a scaling factor of 1
√

!
in the frequency

domain, resulting in:

Ê2D(xs, xr, !) = Êobs(xs, xr, !)

√

2�tobs(xs, xr)
−j!"mean�

(2.30)

where Ê2D are the corrected and Êobs the original measured data, while the ̂ indicates the
frequency domain, xs and xr indicate the transmitter and receiver location, respectively,
and tobs(xs, xr) are the travel times of the data that will be corrected.

Note that while Ernst et al. (2007a) attested a good agreement between 3D and corre-
sponding 2D data in the far-field, Mozaffari et al. (2020) showed that the highest amplitudes
do not always correlate to the first-arrival times. This is especially the case in high contrast
layers. Such discrepancies can introduce errors, affecting the accuracy of the permittivity
and conductivity reconstruction. In addition, out-of-plane arrivals in the data, caused by
the presence of 3D geometries, can introduce further errors.

2.3.4. Source wavelet estimation

The last preparation for the FWI is the source wavelet estimation (see Figure 2.2 Part II).
The source wavelet is unknown for measured data, as the antenna as well as the coupling
effects change the emitted source wavelet. Since a source wavelet is necessary for the
forward modeling with the FDTD method, it has to be estimated. The process can be
divided in the initial source wavelet estimation (estimation of the shape of the wavelet)
and the source wavelet correction (shape and amplitude of the wavelet). This is based on
Klotzsche et al. (2019b).

The initial source wavelet is estimated by determining the average pulse by using
the normalized and aligned approximately horizontally traces. Data with erroneous wave
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2.3. Ground-penetrating radar full-waveform inversion

shapes, e.g., from reflections, can be identified by cross-correlating the profiles and then
be excluded. Since the electric field is proportional to the time derivative of the current
density source, which corresponds to a multiplication by j! in the frequency domain, it is
necessary to divide the Fourier-transformed mean pulse by j!, to derive the initial source
wavelet in the frequency spectrum. The wavelet is then normalized to 1 in the time-domain.

The source wavelet correction uses a deconvolution approach to correct the initial
source wavelet Sini in shape and amplitude. We first use the FDTD to generate a synthetic
dataset Esyn for all transmitter and receiver combinations with Sini and the starting model
(ray-based). In the time-domain, a GPR dataset can be represented as a convolution of the
source wavelet with the medium’s impulse response, the Greens function G. The effective
source wavelet Sk can then be calculated by the deconvolution of the observed dataEobs with
G. To calculateG, we can apply a spectral division on the synthetic fieldEsyn with the initial
wavelet spectrum. A new estimated source wavelet Sk+1 can be calculated by dividing Eobs
with the newly calculated G. To ensure numerical stability and prevent division by zero,
prewhitening factors �D and �I are introduced. Through iterative deconvolution, which can
be applied prior to or during FWI, the time-domain source wavelet Sk+1 is progressively
refined until its shape and amplitude consistently align with the observed data.

2.3.5. Full-waveform inversion1

The FWI used in this study is based on Meles et al. (2010) and the extensions illustrated
in Klotzsche et al. (2019b). Therefore, in this section we will give an overview about the
important steps that are essential (Figure 2.2 Part III). The full-waveform inversion of GPR
data is based on solving Maxwells equations in a forward problem in the time-domain to
estimate electromagnetic fields for certain model parameters. Note that this approach, as
the majority of GPR FWI, assumes frequency-independent medium properties. Only few
approaches investigate GPR FWI with frequency-dependent medium properties (Qin et al.,
2022).

1adapted from D. Hoven, A. Mester, H. Vereecken, and A. Klotzsche (2023). “Evaluation of starting
model approaches and effective source wavelet variations for high-frequency ground-penetrating radar
full-waveform inversion”. In: GEOPHYSICS 88.2, KS27–KS45. DOI: 10.1190/geo2021-0683.1
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2. Theory

Maxwells equations (Equations (2.1), (2.2), (2.3), and (2.4)) can also be expressed in
a compact form as (Meles et al., 2010):

M(", �)

[

Es

Hs

]

=

[

Js

0

]

(2.31)

with the linear operator M (", �), which can be rewritten as:
[

−"(x) )
)t
− �(x) ∇×

−�0
)
)t

∇×

][

Es(x, t)
Hs(x, t)

]

=

[

Js(x, t)
0

]

. (2.32)

The fields are vector quantities, exist for each individual transmitter, marked with the index
s for source, and are locally defined at any point of space x and time t. They thus cover
the entire space-time-domain of interest. The magnetic permeability is often simplified to
its value in free space (�r = 1); it seldom has an influence on GPR wave propagation, and
leads for non-magnetic material to � = �0. The medium properties are scalar functions of
position, while the field quantities (in bold) are vectorial functions of both space and time.
If we only investigate the electric field we can rewrite Equation (2.32) to:

Es = ĜJs, (2.33)

where Ĝ is the Green’s operator of M.
Time-domain FWI uses a conjugate gradient-type method that minimizes the misfit

function C between measured data Es
obs and modeled data Es

syn:

C(", �) = 1
2
∑

s

∑

r

∑

�

[

Es
syn(", �) − Es

obs
]T

r,�
⋅�(x−xr, t−�)

[

Es
syn(", �) − Es

obs
]

r,�
, (2.34)

where T represents the adjoint operator. To extract segments of interest from the electric
fields, the Dirac delta � function is used, which is necessary because the electric fields
include the combined information from all sources s, receivers r, and observation times �.
To calculate Es

syn and minimize the FWI cost function, an accurate forward model that
solves Maxwells equations is required. To minimize the cost function and to optimize
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2.3. Ground-penetrating radar full-waveform inversion

the distributions for permittivity and conductivity, corresponding gradients are calculated
(more details in Meles et al. (2010)):

[

∇C"(x′)
∇C�(x′)

]

=
∑

s

[

�(x − x′))tEs

�(x − x′)Es

]T

ĜTRs (2.35)

with

Rs =
∑

r

∑

�
[ΔEs]d,� =

∑

r

∑

�
�(x − xr, t − �)

[

Es
syn(", �) − Es

obs
]

r,�
. (2.36)

A cross-correlation at all locations of the medium for all time steps and all transmitter-
receiver combinations of the incident wavefield Es

syn of each transmitter, with the residual
wavefieldRs back-propagated by all receivers, yields the gradients (for further details Meles
et al. (2010)). These gradients indicate the location and direction of the update of the
permittivity and conductivity distributions to reduce the cost function C . To update the
permittivity and conductivity, two step lengths �" and �� are needed, respectively. This
enables the updating of both distributions in each iteration at the same time:

"upd = " − �"∇C", (2.37)

and
�upd = � − ��∇C�. (2.38)

with the step lengths �" and ��:

�" =
∑

s
∑

r
∑

�

[

Essyn("+�"∇C",�)−Essyn(",�)
]T

r,�
�(x−xr,t−�)

[

Essyn(",�)−Es
obs

]

r,�
∑

s
∑

r
∑

�

[

Essyn("+�"∇C",�)−Essyn(",�)
]T

r,�
�(x−xr,t−�)

[

Essyn("+�"∇C",�)−Essyn(",�)
]

r,�(2.39)

and

�� =
∑

s
∑

r
∑

�

[

Essyn(",�+��∇C� )−Essyn(",�)
]T

r,�
�(x−xr,t−�)

[
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]

r,�
∑
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∑
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[
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�(x−xr,t−�)
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]

r,�

.

(2.40)
The gradient calculations and step-length calculations depend on the number of transmitter
and receiver locations used, and therefore for each new dataset Es

obs with different antenna
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numbers, new perturbation factors �" and �� have to be selected and adapted with great
care. Yang et al. (2014) introduced an update for the gradient calculation, which allowed
the use of similar perturbation factors for different acquisition setups. Because most of the
current experimental data investigations used similar frequency ranges between 50 MHz
and 120 MHz (center frequency of the data), no update of the perturbation factors was
needed. To perform a parameter update in the vicinity of the antennas and to avoid a muting
zone, a gradient precondition based on van der Kruk et al. (2015) is applied. For this
gradient precondition, additional stabilization factors for permittivity and conductivity are
required.

Overall, to judge the final FWI results, four criteria should be fulfilled, which were de-
fined especially for experimental data applications (Klotzsche et al., 2019b). First, the root-
mean-square error (RMS) must converge smoothly. As a convergence criterion, a change
of the RMS of less than 0.5% between the single iterations is chosen. Second, the final
RMS should be at least 50% lower than the starting model based on the ray-based inver-
sion. Third, the gradient of the final iteration should be sufficiently attenuated. Finally, the
correlation coefficient between the measured data and the data obtained with the models of
the final iteration should be higher than 0.8. If the half-wavelength criterion is not satisfied,
at least one of the previously mentioned criteria are often also not satisfied, which makes
the FWI results unreliable.

2.3.6. Computational requirements

The computation of the forward model with the FDTD forms the main part of the computa-
tional requirements of the FWI, this short overview is based on Klotzsche (2013). During
each iteration of the FWI, the forward problem has to be solved four times. The first solution
is used to compute the residual wavefield, the second solution is necessary to calculate the
model update directions (gradients), and two FDTD calculations are required to determine
the step lengths. The calculations for each transmitter position are performed indepen-
dently, allowing a parallelization with the message passing interface (MPI). A master is
responsible for coordinating communication and calculating gradients and model updates,
while every transmitter requires a slave. The overhead for distributing the calculations is
approximately 10% when using the MPI system (Ernst et al., 2007b). The forward modeled

28



2.3. Ground-penetrating radar full-waveform inversion

field Es from the first forward modeling remains in the computer memory till the end of
the second forward modeling. The computation time Tcomp can be calculated with:

Tcomp = 4 ⋅ 1.1 ⋅ Tforward ⋅Niter, (2.41)

where 4 represents the four calculations of the FDTD within one FWI iteration, Tforward the
time for a single FDTD calculation including the build of the grid, and Niter the number of
iterations (Meles et al., 2010). Note that Tforward changes drastically between 2D and 3D,
scaling with the additional cells in the extra dimension. Most of the full-waveform calcula-
tions are conducted on JURECA-DC, a modular supercomputer at Jülich Supercomputing
Centre (Jülich Supercomputing Centre, 2018).
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3. Next generation 2.5D GPR FWI
including borehole and antenna
models1

In previous studies, e.g., Mozaffari et al. (2022), it was only possible to perform a stan-
dalone 3D forward simulation to investigate borehole and antenna coupling effects. With
new developments in the forward solver gprMax and increased computational resources,
it is now possible to implement boreholes, as well as antennas in the forward modeling
of the GPR FWI. This is possible by using subgrids. Note here, that with regular FDTD
approaches the necessary computation time would be too high to use these geometries in
the FWI, as for the forward and backward propagation and the step length calculation four
forward models have to be simulated within one inversion step (Klotzsche et al., 2019b).
Using the new 2.5D GPR FWI we investigate the benefits of this novel approach by apply-
ing it to a synthetic aquifer dataset with water filled boreholes, finite-length antenna models
and high angles between transmitter and receiver. Thereby, especially the enhancements
of the source wavelet estimation and the influence on the reconstruction resolution play an
important role.

3.1. New 2.5D GPR FWI

Since the first developments of 2.5D GPR FWI a new version of gprMax, written in Python
with computational intensive parts in Cython, as well as support for graphics processing
units (GPUs), was released. To use this new gprMax as a forward model in our existing GPR
FWI, we had to rewrite this code from C++ to Python. Note that with the 2.5D GPR FWI

1adapted from D. Hoven, C. Warren, J. van der Kruk, H. Vereecken, and A. Klotzsche (in preparation).
“Including the effects of borehole fillings and finite-length antenna models in 2.5D crosshole ground
penetrating radar full-waveform inversion”. Planned for publication in GEOPHYSICS.
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the 3D-to-2D correction of measured data is not necessary anymore (marked in blue in Fig-
ure 3.1). We extend the regular 2D models of dielectric relative permittivity and electrical
conductivity for a customizable number of cells in the perpendicular direction and save the
models utilizing HDF5 (The HDF Group et al., 2020) in a way, that the model can be di-
rectly loaded into gprMax. Note that in the following dielectric permittivity and electrical
conductivity will be referred to as permittivity and conductivity, respectively. Further-
more, we allowed the definition of additional forward modeling mediums and structures,
that will be added to the plain 2.5D model in every forward simulation. This can be, e.g., a
borehole, or even a finite-length antenna model. For the latter, we also included an option
for automatically placing antennas at every transmitter and receiver position. When using
finite-length antenna models in the 2.5D case, it is important to note that it is not possible
to calculate all receivers with one transmitter simultaneously because of the overlapping
antenna geometries. To prevent this issue, a clustering technique was implemented where
the receiver antennas are arranged in a way that the next antenna is outside the near-field
of its nearest antenna. This means that only every Ncluster-th antenna is simulated, resulting
in Ncluster times as many simulations.

The new version of gprMax, includes a Huygens subgridding approach (Hartley et al.,
2018), which allows a local refinement of the model space. We added the subgridding to
the flowchart in Figure 3.1. However, this means that it is necessary to check whether a
transmitter, receiver, or geometry is in the main or in the subgrid and place it accordingly.
Furthermore, the model of the permittivity and conductivity has to be added separately to
the subgrid. Note that the subgrid areas are currently not included in the calculation of the
gradients in the FWI, as they are placed tight around the transmitter and receiver, allowing
a transmitter-receiver muting.

In the regular 2.5D case, the computation time is roughly scaling with the number
of cells in the perpendicular direction. When using subgrids, the calculation increases
according to the computation time of each subgrid, as they do not replace the main grid in
that area, but are added to it. If clustering is applied, the regular computation time must be
multiplied with Ncluster. Note that the effective computation time, especially when finite-
length antennas are included and clustering is activated, depends heavily on the available
computational resources.
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Figure 3.1.: New flowchart of the 2.5D GPR FWI inversion steps with subgridding. Based
on the 2D GPR FWI flowchart by Klotzsche et al. (2019b). The changes are
marked in blue.
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3.2. Realistic synthetic model

To demonstrate the potential and improvement of the novel 2.5D FWI , we defined a realistic
synthetic model based on 2D GPR FWI crosshole results from the well-defined Widen test
site in Switzerland (Klotzsche et al., 2012). To investigate the impact of high angle data,
the original model was stretched to a size of 4.95 m x 13.68 m, and, uses a cell size of 9 cm
for the inversion and 3 cm for the standard forward modeling (Figure 3.2a). The upper
1.98 m of the model simulates the unsaturated zone of an aquifer with a homogeneous
layer ("r = 5; � = 12 mS/m). Below this, a smoothed layer with a width of 0.36 m exists
to mimic the capillary fringe, followed by the stretched and compressed inversion results
from Klotzsche et al. (2012) illustrating a saturated aquifer. Boreholes are positioned at a
distance of 0.9 m and 4.05 m and extend to a depth of 12.6 m.

To increase the complexity of the model, we added three features to the models similar
to those in Meles et al. (2010). The first one is a rectangular shaped structure in the middle
of the domain with a dimension of 1.35 m x 0.45 m ("r = 20; � = 10 mS/m). Between 9 m
and 10.8 m depth, we added triangular structures extending from each borehole towards
the inner medium. The third structure is a rising layer ("r = 18; � = 25 mS/m) that begins
at the left borehole at a depth of 11.34 m and ends in the right borehole at 10.8 m depth.
Compared to their surrounding areas, these structures indicate high-high, high-low, and
low-high combinations of relative permittivity and electrical conductivity. Note that we
do this, to investigate if the FWI can reconstruct specific high contrast permittivity and
conductivity combinations better than others.

To realistically model crosshole GPR data, we used in total 46 Tx and 222 Rx in a
semi-reciprocal setup with each 23 Tx and 111 Rx per side, starting at a distance of 0.9 m
or 4.05 m. The antenna locations start at a depth of 2.43 m and stop at a depth of 12.33 m,
creating angles up to 72.35°. The spacing of Tx and Rx are 0.45 m and 0.09 m, respectively.
With this setup we are able to investigate high angles up to 72.35° between the transmitters
and receivers.

In a first step, for the transition of 2D to 2.5D, we extend the forward model in the
perpendicular direction (y) for 100 cells (Figure 3.2b). Thereby, the Tx and Rx are located
in the middle of the perpendicular direction. In a second step, we added at the locations
of the Tx and Rx boreholes with a diameter of 12 cm in the 2.5D model to investigate the
borehole filling effects. These are filled with air ("r = 1; � = 0 mS/m) in the unsaturated
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Figure 3.2.: Synthetic model setup for 2D and 2.5D FWI. a) "r and � input model de-
fined in a 2D plane, adapted from the Widen dataset (Klotzsche et al., 2012).
b) Medium properties are extended in the perpendicular direction resulting in
2.5D models. Transmitter and receiver locations are indicated with circles and
crosses, respectively. c) 3D model including circular 3D boreholes filled with
air in the unsaturated zone and water in the saturated zone. 3D cylindrical re-
sistive loaded finite-length antennas (Mozaffari et al., 2022) are present inside
the water-filled borehole. The different modeling cell sizes are shown in c).

zone from 0 m to 1.98 m and with water ("r = 80 (Jol, 2009); � = 50 mS/m (Coscia et al.,
2011)) in the saturated zone below 1.98 m.

Additionally, subgrids with a grid size of 1 cm are used for the boreholes, reducing
staircasing errors, and to add resistive-loaded finite-length antennas (RLA) for the Tx and
Rx (illustrated in Figure 3.2c). We use a resistive-loaded finite-length antennas similar to
Mozaffari et al. (2022), which is based on the Sensors and Software crosshole 200 MHz
PulseEKKO system. The antenna model, which has a total length of 0.6 m, contains ten
1 cm long resistor elements on each side of the feeding point with a 1 cm gap between
them (see Figure 3.3). The feeding point is located 25 cm from the left end of the antenna.
Symmetrically extending from the feeding point, the cable (perfect electric conductor) has
a length of 24 cm on both sides. Both resistor elements ("r = 20; � = 0.1 mS/m) and the
cable have a radius of 2 cm and are embedded in the insulator ("r = 4; � = 1e − 7 mS/m)
with a radius of 3 cm. To allow a better comparison between the point source and the
finite length antennas effects, we decreased the radius of the boreholes to 6 cm for the point
sources such that the medium around the different sources is the same.

35



3. Next generation 2.5D GPR FWI including borehole and antenna models

Resistive-loaded antenna model

Figure 3.3.: Resistive-loaded finite length antenna model similar to Mozaffari et al. (2022),
which is based on the Sensors and Software crosshole 200 MHz PulseEKKO
system. The resistor is colored in orange, the cable in blue, and the feeding
point in red. Note the size of one cell equals 1 cm x 1 cm.

3.3. GPR full-waveform inversion using different
forward model approaches

To analyze the impact of increased complexity in the forward model on FWI reconstruction,
we generated ’realistic’ input GPR data using the full 2.5D forward model, which includes
subgrids with the air and water filled boreholes and antenna models (see Figure 3.2c). Using
the full 3D modeled crosshole GPR data, we applied four different inversion scenarios with
increased complexity in each step:

• 2D FWI
• 2.5D FWI
• 2.5D FWI with borehole fillings in the subgrids (marked as 2.5D FWI BH)
• 2.5D FWI with borehole fillings and antennas in the subgrids (marked as 2.5D FWI

BH A)
As Irving and Knight (2005) showed, we need to be careful using high ray-path angle data in
the inversion. We can see a similar behavior of our realistically modelled 3D data as Irving
and Knight (2005), where we detect an increased apparent velocity with higher ray-paths
angle between the Tx and Rx (Figure 3.4). Therefore, we use in the different inversion data
until a ray-path angle of 45° and the full dataset with ray-path angles until 72.35°. Note
that we have 5106 traces for the full dataset, while we have only 2628 for the 45° dataset.
The use of first break picks of ray-path angles higher as 45° is expected to cause numerical
artefacts in the ray-based tomograms, while the effect on the FWI has not been investigated
in much detail so far.

In a first pre-processing step, the 3D data are transformed to 2D using the Bleistein
filter (Equation (2.30)) to be used in the 2D FWI. Note that the 3D and 2D datasets are
normalized to its global maximum to avoid large numbers within the gradient calculation
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Figure 3.4.: Apparent velocity versus raypath angle for the synthetic data generated with
the 3D synthetic aquifer model with water-filled boreholes and finite-length
antenna models for transmitter (Tx) and receiver (Rx).

with the use of perturbation factors (necessary for the step length calculation in Equation
(2.39) and (2.40)). Following the typical pre-processing steps for experimental data (see
flowchart in Figure 2.2), we first define the starting models and then the effective source
wavelet for each of this inversion.

3.3.1. Ray-based inversion

As stated in Chapter 1, good starting models for the FWI are mandatory and in most cases
provided by the ray-based inversion results. Therefore, we performed the travel time and
the first-cycle amplitude inversion (see Section 2.3.2.1) using data until a ray-path angle
of 45° and the full dataset with ray-path angles until 72.35° (Figure 3.5).

The first-arrival times and first-cycle amplitudes of the realistic dataset are picked with
an automatic routine. The starting model for the 45° angle dataset ray-based inversion was a
homogeneous model with a velocity of 65 m/�s, while we used 70 m/�s for the full dataset.
In both, a damping and smoothing factor of 1 was used.

The travel time inversion yields a clear layered reconstruction for the 45° dataset (Fig-
ure 3.5b). The high permittivity layer around 4 m depth also shows a small rise from the
left to the right borehole. Additionally, we can see a slightly higher permittivity for the
rectangular object, which is surrounded by low permittivity layers. The RMS decreased
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Figure 3.5.: Comparison of the RBI results (travel time and first-cycle amplitude inversion)
for the 45° and full dataset with the synthetic model. Lines in the synthetic
model indicate the vertical (A1-A2, B1-B2) and horizontal sections (C1-C2,
D1-D2) that will be used to investigate the reconstruction through the rectan-
gular object in more detail. Transmitter and receiver locations are indicated
with circles and crosses, respectively.
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3.3. GPR full-waveform inversion using different forward model approaches

from 6.42 ns to 0.36 ns. The results for the full angle dataset (Figure 3.5c), show only
a straight high permittivity layer. In the low permittivity area between 4.8 m and 8.5 m
only two smaller areas are visible. Furthermore, the low permittivity around 10.8 m is
divided by a higher permittivity area into a left and right half. The RMS decreased from
4.19 ns to 0.73 ns. Overall, the structures are better resolved with the travel time inversion
for the 45° dataset. Therefore, we used these as a starting model for permittivity for the
FWIs. Note that we only have first-cycle amplitude inversion results for the 45° dataset
(Figure 3.5e), as the inversion failed for the full dataset. Since the first-cycle amplitude
inversions provide a relatively smooth image, we use a homogeneous conductivity model
with a value of 9.5 mS/m (Figure 3.5f) for the different angle FWIs. Such an approach
is similar to most of the experimental data applications (e.g., Klotzsche et al., 2012) and
showed best robustness.

3.3.2. Effective source wavelets

The source wavelet is crucial for the forward modeling of electromagnetic wave propa-
gation. While the source wavelet is known for most synthetic studies it is especially for
experimental data unknown. Therefore, we estimate an effective source wavelet for each
of our four different FWIs using the deconvolution approach (Section 2.3.4). We generate
synthetic data using our ray-based results as the input model. Note that the forward model-
ing (Figure 2.2) uses the same setup as in the corresponding FWI. Therefore, in the forward
model with the included finite length antenna model, the effective source wavelet for the
antenna is estimated.

As the 3D and 2D dataset are normalized and the radiations in 3D and 2D are different,
a clear difference in the amplitude of the 2D effective source wavelet and the 2.5D wavelets
can already be seen (Figure 3.6a and b). Furthermore, some of the amplitude differences
between 2D FWI and 2.5D FWI are based on different implementations in the FWI forward
model. Additionally, we can observe an increase in amplitude for the 2.5D FWI wavelets
when we include boreholes and the antennas. For a better visual comparison, we normalize
the wavelets to their maximum (Figure 3.6c and d). We observe that the 2D FWI source
wavelet starts later than the original source wavelet and also has stronger later amplitudes.
Furthermore, its center frequency (80.9 MHz) is lower compared to the original source
wavelet (86.1 MHz). The 2.5D FWI is similar in both the time and frequency domain
(80.9 MHz) to the 2D FWI source wavelet. Although it looks as if the source wavelet for the
2.5D FWI BH is closer to the input source wavelet in the time-domain, a significantly lower
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Figure 3.6.: Estimated effective source wavelets in a) time-domain and b) frequency-
domain. Same wavelets normalized to 1 in c) and d) for better comparison,
respectively. Note the detailed section in d) for a better visualization of the
center frequencies. The input source wavelet is shown in black. The source
wavelets for 2D FWI, 2.5D FWI, 2.5D FWI with borehole (BH), and 2.5D
FWI with borehole and antenna (BH A) have been estimated using the decon-
volution approach and are shown in red, blue, green, and purple, respectively.

center frequency (78.3 MHz) can be noticed. We assume, that the water filled borehole acts
as a frequency filter. The estimated source wavelet for the 2.5D FWI BH A is the closest to
the input source wavelet in shape and also in center frequency (84 MHz). This comparison
demonstrated that with increasing complexity of the forward model, the effective source
wavelet is closer to the real input wavelet of the antenna and only minor differences can be
observed. These observations support the hypothesis that the more complex the forward
model, the closer the effective source wavelet is to the real input wavelet of the antenna.
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3.3. GPR full-waveform inversion using different forward model approaches

3.3.3. FWI of the different approaches

Using the RBI starting models and the corresponding source wavelet for each FWI ap-
proach, the different permittivity results for the 45° dataset and the full angle dataset are
shown in Figure 3.7. In contrast to the RBI, the FWI approaches yield very similar results
for both datasets, regardless the common assumption, that the full datasets may cause arte-
facts related to the increased apparent velocity. Note that all FWI results fulfilled the four
criteria mentioned in Klotzsche et al. (2019b). We saw a proper reduction in the RMS and
no remaining gradients in the final iteration of the FWI approaches. In contrast to the RBI,
all the FWI results provide more details in the tomograms and structures in the decimeter-
scale are resolved. We observed similar structures and an overall good fit to the input model
for all FWI approaches. Having a closer look at the details in the models, we can observe
that the FWI approaches utilizing more complex forward models, are able to enhance these
reconstructions, e.g., between 3.6 m and 10.8 m depth, particularly at the rectangular object
at 6.3 m depth and the triangular object between 9 m and 10.8 m depth. Please note here,
that errors related to a low data coverage in the top and the bottom of the model increase
with the more complex FWIs. In addition, we can see vertical artefacts in the area of the
boreholes, probably caused as a result of the absence of gradient normalization (van der
Kruk et al., 2015), which is not yet implemented for the 2.5D FWI.

While we see only minor improvements in the permittivity tomograms of the different
FWI approaches, we can notice more effects on the electrical conductivity reconstructions
in Figure 3.8. We see that the higher conductivity at a depth of 2.7 m and a distance of 0.9 m
was not reconstructed with the 2D FWI, but only using the different 2.5D FWI approaches.
The 2.5D FWI approach using boreholes (BH) most accurately determined the localization
of the lens at a depth of 4.5 m and a distance of 2.7 m. The simple 2.5D FWI tends to
overshoot between 5.4 m and 8.1 m depth, an effect that was reduced with the more com-
plex 2.5D FWI. Furthermore, compared to the 2D FWI, the 2.5D FWI reconstructed the
rectangular structure more clearly. The 2D FWI and 2.5D FWI yielded very similar results
in the range between 8.1 m and 10.8 m depth, as did the 2.5D FWI BH and 2.5D BH A.
A possible explanation for this is the influence of the borehole integration in the forward
model. Note that contray to our expectations, the 2.5D FWI BH A shows more difficulties
especially in the lower parts of the models compared to the 2.D FWI BH. The reconstruc-
tion results with the full dataset were similar to those of the reduced dataset, without any
additional anomalies. As noted in the permittivity results, artefacts were present in the
upper and lower areas of the reconstructions because of the limited data coverage.
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Figure 3.7.: Overview of the different FWI permittivity results: a) True model, b) RBI, c)
2D FWI, d) 2.5D FWI, e) 2.5D FWI with borehole (BH), and f) 2.5D FWI
with borehole and antenna (BH A) for the 45° dataset, whereas g), h), i), j) and
k) show the results for the full angle dataset, respectively. In all tomograms,
the transmitter and receiver locations are indicated with circles and crosses, re-
spectively, and boreholes are indicated by blue cylinders. Lines in the synthetic
model indicate the vertical (A1-A2, B1-B2) and horizontal sections (C1-C2,
D1-D2) that will be used to investigate the reconstruction through the rectan-
gular object in more detail.

42



3.3. GPR full-waveform inversion using different forward model approaches

5

30

σ [mS/m]

3

4

7

6

9
8

20

15

25

10

h) 2D FWI i) 2.5D FWI j) 2.5D FWI BH

1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

k) 2.5D FWI BH A

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9.0

9.9

10.8

11.7

D
e
p
th

[m
]

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9.0

9.9

10.8

11.7

D
e
p
th

[m
]

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

a) Synthetic model b) RBI c) 2D FWI d) 2.5D FWI e) 2.5D FWI BH f) 2.5D FWI BH A

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

0.9 1.8 2.7 3.6

Distance [m]

g) Homogenous

0.9

A1

A2

B1

B2

C1

D1

C2

D2

Conductivity results 45° data set

Conductivity results full angle data set

Figure 3.8.: Overview of the different FWI conductivity results: a) True model, b) RBI, c)
2D FWI, d) 2.5D FWI, e) 2.5D FWI with borehole (BH) and f) 2.5D FWI with
borehole and antenna (BH A) for the 45° dataset, while h), i), j) and k) show the
results for the full angle dataset, respectively. Note that the RBI failed for the
full dataset, instead we show the homogeneous model in g) that was used for all
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are indicated with circles and crosses, respectively, and boreholes are indicated
by blue cylinders. Note the logarithmic scales for the conductivity. Lines in the
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(C1-C2, D1-D2) that will be used to investigate the reconstruction through the
rectangular object in more detail.
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To investigate the reconstruction of the parameters in more detail, we plotted vertical
slices through the rectangular object, as illustrated in Figure 3.9. The positions are marked
as dotted lines in Figure 3.5. Here, Figure 3.9a and b correspond to the left edge (profile
A1-A2) and Figure 3.9c and d to the center (profile B1-B2). In the permittivity results for
profile A1-A2, the RBI reconstruction is shifted by about 25 cm in depth. The sections of
all FWI reconstructions are very similar. Differences mainly occur in the upper area down
to a depth of 3.6 m and in the lower area starting from a depth of 10.8 m, which are the
areas with low data coverage. The reconstructions with 2.5D FWI BH and BH A are better
than those with 2D FWI and 2.5D FWI, especially in the middle area (see Figure 3.9b).
The results in Figure 3.9c are similar to those in Figure 3.9a, with 2D FWI overshoot-
ing at the boundaries of the rectangular object. However, the conductivity reconstruction
in 2.5D FWI for profile B1-B2 shows a stronger tendency to resolve higher values than
2D FWI. The 2.5D FWI BH A reconstruction shows the least overshoot in the border re-
gion of the rectangular object, but has some difficulties in the area around 4.5 m. In general,
2.5D FWI BH and BH A provide the best reconstructions.

The horizontal sections in Figure 3.10 offer a detailed view into the horizontal recon-
struction of the rectangular object, with Figure 3.10a and b cutting through the object’s
upper boundary (profile C1-C2), and Figure 3.10c and d providing insights into the core
region (D1-D2). Only a very small shift of the RBI can be seen in the area of the rectangu-
lar object. This is probably caused by the offset we observed in the vertical sections. In the
permittivity results for profile C1-C2 it is visible that the 2D FWI has the lowest coverage
in the width of the object and also provides higher values on the outer sides of the area.
The 2.5D FWI and 2.5D FWI BH A give similar results, with the 2.5D FWI BH showing
the best fit. While the rectangular object is not visible in the 2D FWI results in the con-
ductivity reconstruction in profile C1-C2, the 2.5D FWI shows this structure even though
the conductivities are clearly too low. The 2.5D FWI BH and BH A provide very similar
results, with the 2.5D FWI BH giving the best results in Figure 3.10b. The results for the
permittivity profile D1-D2 show only small differences between the FWI results, while for
the conductivities in Figure 3.10d we can again see a similar behavior as for profile C1-C2,
showing the superiority of the 2.5D FWI BH and BH A.

Transitioning from the spatial analysis to the quantitative evaluation of inversion ac-
curacy, we investigate the RMS for the different inversion approaches as illustrated in Fig-
ure 3.11. The effective RMS is higher for the inversions with a full dataset because of
the larger amount of data used in the calculation, but the RMS decrease is similar for
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FWI, 2.5D FWI with borehole (BH), and 2.5D FWI with borehole and an-
tenna (BH A) are shown in orange, red, blue, green, and purple, respectively,
and marked with a dotted line for the full dataset, respectively. Note the loga-
rithmic scales for the conductivity.
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Figure 3.10.: Horizontal sections through the rectangular object. a) and b) show a com-
parison of the results for a horizontal section through C1-C2 (see Figure 2),
whereas c) and d) represent the section through D1-D2. The true model is
shown in black. The results for RBI, 2D FWI, 2.5D FWI, 2.5D FWI with
borehole (BH), and 2.5D FWI with borehole and antenna (BH A) are shown
in orange, red, blue, green, and purple, respectively, and marked with a dot-
ted line for the full dataset, respectively. Note the logarithmic scales for the
conductivity.
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Figure 3.11.: Root Mean Square error (RMS) of the inversion iterations. a) shows the ef-
fective root mean square error of the different inversions for every iteration,
whereas b) shows the normalized RMS, which is normalized to the RMS with
the data generated by using the starting models and the corresponding esti-
mated wavelet. The results for 2D FWI, 2.5D FWI, 2.5D FWI with borehole
(BH), and 2.5D FWI with borehole and antenna (BH A) are shown in red,
blue, green, and purple, respectively, and marked with a continuous and dot-
ted line for the 45° and full dataset, respectively.

all methods. It appears that 2D FWI is better than 2.5D FWI, but the normalized RMS
(Figure 3.11b) shows that the reduction compared to the initial RMS is very similar to
2.5D FWI. The effective RMS difference is partially attributed to the use of the Bleistein
transformed dataset to compute the RMS for the 2D FWI. The 2.5D FWI BH A yields the
lowest effective RMS. Additionally, the inclusion of borehole (and antenna) results in a
significant improvement in RMS reduction. However, it is worth noting that even in the
normalized cases, the reduction with the full dataset is not as good as in the dataset with
reduced angles.

The final RMS in Table 3.1 shows that the final RMS for the 2D FWI is smaller com-
pared to the 2.5D FWI for both the 45° and full angle dataset. Nevertheless, the RMS
reduction is quite similar for both of them. 2.5D FWI BH and BH A show a decrease in
the final RMS, compared to the FWI with the less complex forward model. In all of the
cases the 2.5D FWI BH A yields the highest RMS reduction. Note here, that the initial
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3. Next generation 2.5D GPR FWI including borehole and antenna models

Table 3.1.: Initial versus final RMS with its reduction factor as well as the MRAE"r and
MRAE� of the final inversion results.

Inversion Method Initial RMS Final RMS RMS Reduction MRAE "r MRAE �
2D FWI 45◦ 1.93e-6 5.25e-7 72.80% 5.03% 24.98%

2.5D FWI 45◦ 2.16e-6 5.93e-7 72.55% 5.35% 24.56%
2.5D FWI BH 45◦ 2.07e-6 4.90e-7 76.33% 5.52% 18.42%

2.5D FWI BH A 45◦ 2.04e-6 3.78e-7 81.47% 6.59% 19.28%
2D FWI full 2.02e-6 6.28e-7 68.91% 5.36% 21.84%

2.5D FWI full 2.24e-6 6.89e-7 69.24% 5.31% 26.20%
2.5D FWI BH full 2.14e-6 5.62e-7 73.74% 5.46% 21.37%

2.5D FWI BH A full 2.09e-6 4.23e-7 79.76% 6.76% 22.11%

RMS increases with the full angle dataset, but the more complex the model, the smaller
the increase. Furthermore, the RMS reduction is decreaed with the full dataset, while the
effect decreases with more complex approaches, as the 2D FWI reductions is decreased by
3.89% the 2.5D FWI BH A is only decreased by 1.71%. The mean relative absolute error
(MRAE) "r in contrast is increasing, especially the 2.5D FWI BH A for both the 45° and full
angle dataset. This can be attributed to the poorer reconstruction in the area below 10.8 m
depth. The MRAE � shows a significant decrease of nearly 6% if we compare the results
of both plain 2D FWI and 2.5D FWI with the 2.5D FWI BH and BH A for the 45° dataset.
The MRAE � for the full dataset show no such trend, and the 2.5D FWI performs poorly
independently of the others, which is because of the overshooting in the reconstruction of
the area 4.5 m to 8.1 m depth.

The RMS progressions in Figure 3.11 provide us a metric about how good the ap-
proaches can reduce the error compared to each other. Nevertheless, it is important to also
investigate the RMS for the different FWIs for each transmitter-receiver combination for
the final iteration with the full dataset (Figure 3.12). Because of the reciprocal model setup
we first show the RMS with the transmitter in the left borehole and then in the right bore-
hole. Here we see that the RMS error distributions are very similar for both the 2D FWI
and the 2.5D FWI. In particular, we can see that higher errors occur in the upper part of the
model. These are already reduced by the 2.5D FWI BH, while the 2.5D FWI BH A shows
negligible RMS errors in this range. This shows the significant improvement in optimiza-
tion when boreholes and antennas are included in the FWI forward model. Note that for
the 2.5D FWI BH A, the errors increase especially in the lower range of the transmitters
from about 11 m. This correlates with the higher errors in the lower reconstruction area,
which are attributed to problems in the inversion because of a poorer data coverage. The
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Figure 3.12.: Root mean square error (RMS) for every transmitter receiver combination,
in the upper part the transmitter in the left borehole and below in the right,
for the full angle data. For the final results of a) 2D FWI, b) 2.5D FWI, c)
2.5D FWI with borehole (BH), and d) 2.5D FWI with borehole and antenna
(BH A). Note the dashed lines indicate the positions of transmitter 6 and 10.

described improvements and results can be seen regardless of whether the transmitter is in
the left or right borehole, however the RMS is not strictly reciprocal.

It is important to consider the actual datafit (Figure 3.13). The transmitter is posi-
tioned in the left borehole and the receiver is in the right borehole. The differences between
the synthetic and modeled data for the 2D FWI are smaller than for the 2.5D FWI, for both
transmitter depths (4.68 m and 6.48 m). This is because of the Bleistein transformed dataset
and the 2D modeling. Note that transmitter 6 is still in the waveguide (a high permittivity
layer). Errors in the traces that are located in the waveguide and above are more noticeable
in the 2D FWI and 2.5D FWI, but less so in the 2.5D BH and BH A. The differences in the
2.5D FWI are greater in the traces where the receiver is located below the waveguide com-
pared to the 2D FWI. The differences below the waveguide obtained with the 2.5D FWI BH
are similar to those obtained with the 2D FWI. The 2.5D FWI BH A has particularly low
errors in the traces compared to the other differences, indicating exceptionally good opti-
mization by the inversion. Transmitter 10 is positioned at the lower edge of the rectangular
object. This is visible in all the data, particularly from about 65 ns with a receiver depth
of about 6.5 m. The 2D FWI shows errors in the traces between 6 m and 8 m receiver
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3. Next generation 2.5D GPR FWI including borehole and antenna models

depth, since there is a possible discrepancy between the Bleistein transformed dataset and
the 2D simulated data regarding reflections in the rectangular object. These issues are not
present in any of the differences for the 2.5D FWI. From a depth of 6 m, the 2D FWI has
smaller errors than the 2.5D FWI. Both 2.5D FWI and 2.5D FWI BH produce higher er-
rors between 6 m and 8 m depth. At a depth of 8 m, the errors of the 2.5D FWI are higher
compared to the 2D FWI, while the errors of the 2.5D FWI BH are similar to those of the
2D FWI. Similar to the previous results, the 2.5D FWI BH A shows a significant reduction
in errors.

The computational demand increased as the FWI methods became more complex.
The 2D FWI approach required 1.28 core-hours per iteration. Transitioning to 2.5D FWI
increased computation time to 158.72 core-hours per iteration because of the three-dimen-
sional forward modeling, with 100 cells in the y-direction. The 2.5D FWI BH method
introduced additional complexity as it used subgrid modeling for borehole integration, re-
quiring 560 core-hours per iteration. The 2.5D FWI BH A method required the highest
computational resources, using 5099.52core-hours per iteration. This was caused by a spe-
cial parallelization strategy that is required to integrate the antenna geometries into the
inversion process, since it is not possible to simulate all receivers for a transmitter in one
forward model, as the antenna geometries would overlap. It is important to note that sub-
grids were also utilized in this approach. It is important to point out that these are the total
core-hours for an iteration, which are distributed across all nodes and their CPU cores.
Note that the core-hour metric is dependent on the supercomputer used. In our case it is
the system presented in Jülich Supercomputing Centre, 2018.
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Figure 3.13.: Comparison of the synthetic and final full-waveform modeled data (full angle)
with the corresponding differences for a) transmitter 6 and b) transmitter 10 at
4.68 m depth and 6.48 m depth, respectively. Results are shown for 2D FWI,
2.5D FWI, 2.5D FWI with borehole (BH), and 2.5D FWI with borehole and
antenna (BH A).
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3.4. Conclusions and outlook

In conclusion, our study utilized a synthetic model based on 2D GPR FWI crosshole re-
sults from the extensively surveyed Widen test site in Switzerland. We created a synthetic
3D dataset by extending 2D models in the perpendicular dimension and incorporating bore-
holes and resistive-loaded finite-length antennas to closely mimic realistic antenna radiation
characteristics. The source wavelet estimations showed that a very good reconstruction
of the wavelet can be achieved, especially with the inclusion of boreholes and antennas.
The RBI results are inferior to the FWI results and suffer from artefacts with higher an-
gle data, and we were not able to perform a first-cycle amplitude inversion for high angle
data. Our FWI strategies, ranging from 2D to the more advanced 2.5D with boreholes
and antennas, showed that incorporating detailed models for boreholes and antennas in the
forward model significantly improved the conductivity inversion results. The advanced
2.5D FWI methods were superior, particularly in identifying a rectangular structure and
other (high-contrast) structures within the domain, while the simple FWI methods failed to
detect high-contrast conductivity features. In addition, the mean relative absolute error of
conductivity was reduced by more than 20% with the advanced 2.5D FWI methods com-
pared to simple 2D FWI and 2.5D FWI. The superiority of the complex 2.5D FWIs was fur-
ther demonstrated through vertical and horizontal sections, indicating their higher spatial
reconstruction. However, challenges remain in areas of low data coverage. Furthermore,
additional investigation is required for vertical artefacts in the borehole region. We expect
to solve this problem by implementing a gradient normalization. The RMS analysis high-
lights the improved performance of the more complex FWI methods, despite their higher
computational requirements. Although the 2.5D FWI BH A yields the best RMS values, its
reconstructions are not significantly superior to those of the 2.5D FWI BH. Therefore, we
recommend using the 2.5D FWI BH for the time being if high-contrast zones are expected,
particularly in conductivity. If the main interest is in permittivities and high-contrast zones
are not expected, the 2D FWI may be sufficient as it already delivers significantly better
results than the RBI.

In a next step we want to investigate the influence of borehole and antenna inclusion
in the forward model on measured data. Especially a dataset with both air and water filled
boreholes should benefit from the newly added geometries.
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4. Benefits of the 2.5D GPR FWI for
variably saturated soil-aquifer
system

The application of the common 2D FWI to experimental data measured in variable aquifers
is challenging because of the changing borehole filling. Klotzsche et al. (2019c) investi-
gated how the 2D FWI can be applied to such crosshole GPR data acquired at the Widen test
site in Switzerland. It was shown that four effective source wavelets have to be estimated to
account for the variable borehole filling and antenna coupling effects caused by the differ-
ent combinations transmitter-receiver combinations in the unsaturated and saturated zone
to be able to invert such data. In the previous chapter, it was shown that the effective source
wavelet becomes closer to the input source wavelet when borehole filling and finite-length
antenna models are included in the forward modeling. Therefore, we will investigate the
possibility of applying the new 2.5D FWI with borehole and antenna inclusion to data of
a variably saturated soil-aquifer system. The more complex forward model should account
for the coupling effects, and therefore only one source wavelet has to be estimated.

4.1. Simulation setup for unsaturated and saturated
soil FWI

Based on the previous study by Klotzsche et al. (2019c), we created a schematic simulation
setup for the FWI (see Figure 4.1a). According to this study, the transmitter (Tx) and
receiver (Rx) were positioned in either the unsaturated zone (5 Tx and 26 Rx) or in the
saturated zone (23 Tx and 114 Rx). Our model accounts for the transition between the
two zones by moving from an air to a water filled borehole, with the water table located
at a depth of 4.2 m, as in the previous study. Note that Klotzsche et al. (2019c) partly
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Figure 4.1.: a) Schematic view of the simulation setup based on Klotzsche et al. (2019c).
b) 3D borehole and RLA. Tx and Rx locations are based on experimental data
and indicated with circles and crosses, respectively. Tx and Rx can be placed
in the unsaturated (UU) and saturated zone (SS) respectively. Furthermore, Tx
can be placed in the unsaturated zone while Rx in the saturated zone (US) or
vice versa (SU).

excluded Tx and Rx in the area of the water table, as the 2D FWI could not account for the
half submerged antenna coupling. We plan to conduct a study in the future to investigate
whether we can include these Tx and Rx with the method presented in this chapter.

Similar to the setup in Chapter 3, we use a 9 cm inversion grid size, 3 cm for the for-
ward model main grid and a 1 cm forward model subgrid for the boreholes and antennas
(Figure 4.1b). As the monitoring boreholes at the test site have a diameter of 11.4 cm, we ap-
proximated the boreholes with a diameter of 12 cm. Note that Klotzsche et al. (2019c) mea-
sured the data with the RAMAC Ground Vision system of Malå Geosience with 250 MHz
antennas. As developing a new antenna model is time consuming, we tested in a first at-
tempt the antenna model used in Chapter 3, which is a resistive-loaded finite-length antenna
similar to a design used by Mozaffari et al. (2022), which is based on the Sensors and Soft-
ware crosshole 200 MHz PulseEKKO system. We therefore can not expect perfectly fitted
data, but can hope to achieve better results than with a point source.
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4.2. Synthetic case: Study on the source wavelet estimation with synthetic data

In the study by Klotzsche et al. (2019c), the UU combination had the highest center
frequency at 123 MHz, while the SS combination had the lowest at 85 MHz. The US and
SU combinations had similar center frequencies of 94 MHz and 95 MHz, respectively. Note
that in the previous 2D study, the data was processed similiar to the study by Klotzsche et al.
(2010) with dewowing, pre-processing, a time-zero correction, and a 3D-to-2D correction,
before the source wavelet was estimated.

4.2. Synthetic case: Study on the source wavelet
estimation with synthetic data

First, we want to investigate the source wavelet estimation, based on a deconvolution ap-
proach (see Section 2.3.4) in a synthetic study to proof the concept. Therefore, we calculate
a realistic synthetic dataset Eobs based on the final inversion results from Klotzsche et al.
(2019c), shown in Figure 4.2c with their estimated effective source wavelet SSS . Further-
more, we added realistic air and water filled borehole geometries, according to the water
table of 4.2 m, as well as the finite length antennas described in detail in Section 3.2. Note
that as we include the finite length antenna model in the forward model, we estimate the
effective source wavelet for the antenna. Since the geometries should account for different
couplings between antennas, borehole, and soil, the same effective source wavelet should
be estimated, for the four different effective source wavelets related to the Tx-Rx combina-
tions in the unsaturated and saturated zone.

To verify the source wavelet estimation, we consider Esyn = Eobs and calculated them
with the same input source wavelet SSS . Then, the source wavelet estimation should again
yield SSS for all combinations. The results for the different Tx-Rx combinations in Fig-
ure 4.3a and b show that the estimated effective source wavelet for all combinations are
overlapping with SSS , indicating that the source wavelet estimation works error free.

In a next step, we test the effect of the starting model on the source wavelet estimation.
For this, we compare the estimated effective source wavelets of Eobs calculated with SSS

and a new Esyn, based on the starting model of Klotzsche et al. (2019c) (see Figure 4.2a),
including air and water filled boreholes and finite length antenna models in the 2.5D model,
and using the same source wavelet SSS .

The estimated effective source wavelets have similar shapes and amplitudes, indicating
that the estimation can capture the essential characteristics of the input source wavelet (see
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Figure 4.2.: a) Starting model as used in Klotzsche et al. (2019c), b) adapted starting model,
similar to Mozaffari et al. (2020) to fulfill the half-wavelength criteria for the
3D data. c) final inversion results of Klotzsche et al. (2019c). Tx and Rx
locations are indicated with circles and crosses, respectively.

Figure 4.4a). Differences in phase and amplitude are partly noticeable, which can be related
to the errors introduced as the starting model is missing details from the original model.
Note that the starting model is based on ray-based inversion analysis and synthetic tests for
the 2D case. While UU and SS have similar first-arrival times, US and SU show a time
shift (Figure 4.4b). Note that US and SU include larger amount of higher angle data and
are more affected by the starting model error. Furthermore, the amplitude of SS decreases
after the first maximum. This is especially visible with the second maximum at around
22 ns. US and UU are lower than the original at the first minimum, while at the second
minimum, US, SU, and SS are higher than UU and the original (see Figure 4.4c). In the
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Figure 4.3.: Estimated source wavelets where Esyn equals Eobs and are calculated with the
same source wavelet SSS . Estimated source wavelet in a) the time-domain and
b) the normalized frequency spectrum. Original in black represents the input
source wavelet SSS , while UU, SS, US, and SU represent the estimated source
wavelets, corresponding to the Tx-Rx combination. Note that all four combi-
nations are overlapping. Furthermore, the source wavelets in a) are normalized
to the maximum of all for visualization purposes.

frequency domain, US has fewer frequencies after 130 MHz, but is otherwise similar to the
original, as are UU and SU (Figure 4.4d). Of particular note is the lower center frequency
of the SS source wavelet (78.5 MHz), which indicates a mismatch of the permittivities
in the RBI as compared to the original synthetic model. The center frequencies of UU
(85.6 MHz), US (84.4 MHz), and SU (84.4 MHz) are close to the original (85.6 MHz). A
possible explanation could be the "stretched" phase of the SSS after 20 ns, which indicates
a lower frequency component. This indicates, that it is possible to estimate an effective
source wavelet similar to the original source wavelet, if the forward model is close enough
to the original model.

57



4. Benefits of the 2.5D GPR FWI for variably saturated soil-aquifer system

0

a) Source wavelets c) Norm. & moved to max. source wavelets

UU

SS

US

SU

Original

0 5 10 15 20 25 30 35

b) Normalized source wavelets

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

d) Normalized frequency spectra of source wavelets

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 355 10 15 20 25 30 35

-1.5

-1

-0.5

0

0.5

1

-1.5

-1

-0.5

0

0.5

1

A
m

p
lit

u
d

e
 [

-]

Frequency [MHz]

A
m

p
lit

u
d

e
 [

-]

Time [ns]Time [ns]

A
m

p
lit

u
d

e
 [

-]
A

m
p

lit
u

d
e

 [
-]

Time [ns]

Figure 4.4.: Estimated source wavelets where Eobs is calculated with 4.2c and Esyn with
4.2a using SSS . Estimated source wavelets in a) the time-domain, b) normal-
ized in the time-domain in, c) normalized and moved to the maximum in the
time-domain, and d) the normalized frequency spectrum. Original in black
represents the input source wavelet SSS , while UU, SS, US, and SU represent
the estimated source wavelets, corresponding to the Tx-Rx combination. Note
that the source wavelets in a) are normalized to the maximum of all for visual-
ization purposes.

4.3. Experimental case: Source wavelet estimation
with measured data

The synthetic test showed that the inclusion of borehole filling and the finite-length antenna
model yielded similar source wavelets, thus opening the possibility of using a single source
wavelet for the variable aquifer. Therefore, we want to investigate the source wavelet esti-
mation with experimental data as used in Klotzsche et al. (2019c), that incorporates data
measured in the unsaturated and the saturated zone. As we are using a 2.5D FWI, we do
not apply the 3D-to-2D conversion to the data in the pre-processing step. It is important to
note that the unconverted 3D data has a higher noise level compared to the converted data.
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This is because the 3D-to-2D correction is an integration that amplifies low frequencies
and not high frequencies, resulting in a reduction of the frequency content of the data and
a decrease in high-frequency noise. However, since we do not conduct any further pre-
processing of the data, it includes more noise, particularly in the unsaturated area. In the
first test, we used the same water table of 4.2 m as in previous studies.

4.3.1. Source wavelet estimation using the starting model of the
2D case study

First, we test the same starting model as in the 2D case study. Note that already in this study,
difficulties with the starting model in UU were indicated. Following the deconvolution
approach (see Section 2.3.4), we used the measured dataset from Klotzsche et al. (2019c)
for Eobs and calculated with their original starting model (Figure 4.2a) and estimated source
wavelet of SS (SSS) the synthetic dataset Esyn to derive the effective source wavelets. First
thing to note is, that the estimated effective source wavelets show a decrease in amplitude
from UU to a similar amplitude for US and SU down to SS (Figure 4.5a), which can be
related to the water in the boreholes for these Tx-Rx combinations. Similar to the synthetic
case, we can observe a similar first-arrival for UU and SS, whereas there is a time shift for
US and SU (Figure 4.5b). Note that US and SU match till the second maximum at around
20 ns, while SS and US show a different behaviour after 10 ns. Furthermore, we see that the
second maximum in UU is higher than the first, leading to a mismatch if we move all to the
maximum. Therefore, we normalized everything to the minimum und moved it there (see
Figure 4.5c for visual comparison), which highlights the similar shape of the estimated
effective source wavelets. Note that we can observe a more steep start of the estimated
effective source wavelet for SS. As the signals in Esyn arrive too late compared to Eobs, the
deconvolution approach adjusts the source wavelet to an earlier arrival. As the time filter is
applied after the frequency filter, low frequency components are introduced in the frequency
spectrum of SS mainly visible in the time-domain after 20 ns (Figure 4.5d). Furthermore,
a wide gap between the center frequencies from UU (132.7 MHz) to SS (94.6 MHz), US
(104.4 MHz), and SU (100.7 MHz) is visible (see Figure 4.5d). US and SU are closer
together and SS has a slightly lower center frequency.
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Figure 4.5.: Estimated source wavelets with Eobs being the measured dataset from
Klotzsche et al. (2019c) and Esyn calculated with 4.2a. Estimated source
wavelets in a) the time-domain, b) normalized in the time-domain, c) nor-
malized and moved to the minimum in the time-domain, and d) the nor-
malized frequency spectrum. UU, SS, US, and SU represent the estimated
source wavelets, corresponding to the Tx-Rx combination. Note that the source
wavelets in a) are normalized to the maximum of all for visualization purposes.

4.3.2. Source wavelet estimation using an updated starting
model

In a second test, we used an adapted starting model, because we observed a misfit in the
upper layers (in the range of half of a wavelength) when comparing the calculated data based
on Figure 4.2a with the measured data. Note that Klotzsche et al. (2019c) also observed
problems, with deriving the starting model, especially in the unsaturated zone. Compared
to the RBI results, the layer was updated, as the ray-based picking uses a single shift of
a maximum or minimum to the assumed arrival time for all traces the same, resulting in
incorrect ray-based travel times. This is because the frequencies for the unsaturated and
saturated zones are different. It is possible that this only occurs with the real 3D data,
because of the filtering capacities of the 3D-to-2D correction also change the arrival of

60



4.3. Experimental case: Source wavelet estimation with measured data

the wave. To reduce this misfit, we adjusted the starting model by splitting the second
layer into two layers with permittivity values of 18 and 22, respectively. This approach is
similar to the one used by Mozaffari et al. (2020) to update the SS starting model for use
in 2.5DFWI (Figure 4.2b).

Using this new starting model, we generated a new synthetic dataset Esyn that better
aligns with the measured data Eobs, particularly in the upper area. We then derived with the
deconvolution approach new effective source wavelets for the different Tx-Rx combinations
and compare them in detail with the results from Klotzsche et al. (2019c). All effective
source wavelets that are estimated using Esyn with the new complex 2.5D forward model
show an earlier first-arrival compared to the 2D estimations (Figures 4.6a and b). Note
that there is a difference of approximately 3-4 ns between SS, US, and SU, while there is
only a 1 ns difference for UU. The source wavelets for US and SU are further apart than
with the previous starting model. This difference can be attributed to the antenna geometry,
as well as the water filled boreholes. Additionally, in the 2D case, the estimated effective
source wavelet for SU arrived before US, whereas it is reversed in the 2.5D case. A reduced
amplitude difference between the estimated effective source wavelets SS, US, and SU can
be observed when transitioning from 2D to 2.5D. As we do not change the conductivity of
the model, this has to be related to the different refraction, caused by the changed medium
properties. Compared to the 2.5D estimation for the original starting model, we are able to
observe an improvement in the amplitudes with the adapted RBI model, as UU is now more
similar to SS, US, and SU with the first maximum now higher than the second (Figure 4.6c).
Overall, the center frequencies of SS (94.6 MHz), US (98.3 MHz), and SU (95.8 MHz)
are closer together and UU (126.5 MHz) is also slightly lower with the new adapted RBI
starting model for 2.5D compared to the 2D estimation (Figure 4.6d). Note that similar to
the estimated effective source wavelet for SS with the original starting model, low frequency
components are introduced for SS with the new starting model.

The results indicate that it is feasible to estimate a single source wavelet for the SS, US,
and SU cases, which is a notable improvement compared to Klotzsche et al. (2019c). How-
ever, when both Tx and Rx are in the unsaturated zone, the center frequency is evidently
too high compared to SS, US, and SU. This discrepancy may be attributed to a different
coupling between the antenna, the air filled borehole, and the soil in reality. The reason for
this may be that our antenna model (Sensors and Software crosshole 200 MHz PulseEKKO
system) does not match the system used to measure the data (250 MHz RAMAC Ground
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Figure 4.6.: Estimated source wavelets with Eobs being the measured dataset from
Klotzsche et al. (2019c) and Esyn calculated with 4.2b. Estimated source
wavelets in a) the time-domain, b) normalized in the time-domain, c) nor-
malized and moved to the maximum in the time-domain, and d) the normal-
ized frequency spectrum. UU, SS, US, and SU represent the estimated source
wavelets, corresponding to the Tx-Rx combination. Note that the estimated
source wavelets from Klotzsche et al. (2019c) are indicated with a dashed line.
Note that the source wavelets in a) are normalized to the maximum of all for
visualization purposes.

Vision system from MalåGeoscience). Therefore, a further adaption of the antenna model,
especially for air filled boreholes, is needed.

Note that the depth of the water table measured by the GPR data depends on the thick-
ness of the capillary fringe of the medium (Igel et al., 2013; Igel et al., 2016). In envi-
ronments characterized by unsaturated and saturated gravel, the capillary transition zone
is expected to be very thin (10 cm to 20 cm). However, the water table measured in the
boreholes may vary. Therefore, we altered the water table (4.2 m based on Klotzsche et al.
(2019c)) in the boreholes by 20 cm to investigate the effect of the capillary fringe. Fur-
thermore, we also investigated the source wavelet estimation with point sources. Moreover
we investigated different starting models for permittivity, where we: adjusted only the top
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layer ("r = 5); the top layer ("r = 7) and divided the second layer into two ("r = 22 and
"r = 18); divided the second layer in "r = 22 and have kept the other half as in Klotzsche
et al. (2019c); changed the second layer to "r = 18. All these investigations showed no
further improvements.

4.4. 2.5D GPR FWI of a variably saturated
soil-aquifer system with one source wavelet

Although a perfect fitting source wavelet for all Tx-Rx combinations was not found, we
want to investigate a FWI with the combined estimated source wavelet from Figure 4.6
with 4.2b as a starting model. We are aware, that this will introduce errors caused by
the mismatch of the source wavelet for the unsaturated zone, but we expect to be able to
reconstruct similar structures for the saturated zone as Klotzsche et al. (2019c) and improve
the saturated zone. Furthermore, we compare our inversion results to the final results from
Mozaffari et al. (2020), who investigated only the saturated part using the 2.5D FWI.

The permittivity distributions of the different results show a remarkable degree of
similarity between the models, with slight variations in the different layers (Figure 4.7).
The 2.5D FWI reconstructs lower permittivity values in the 4.8 m - 5.2 m region com-
pared to both the 2D FWI and 2.5D FWI with borehole and antenna models (BH A). The
2.5D FWI BH A reconstruction shows low permittivity "wings" extending upward into the
unsaturated zone from 4.2 m to 5.3 m depth, in contrast to the higher permittivity layer
observed in the other models at similar depths. Across all models, a high permittivity
layer exists at a consistent depth between 5.3 m and 6 m, although with varying intensity.
Inside this layer is a high permittivity concentration, predominantly to the right for the
2D FWI and 2.5DFWI, and additionally to the left for the 2.5D FWI BH A. Notably, both
the 2D FWI and 2.5D FWI BH A reveal a lens-like feature at a depth of 5.5 m to 6 m and
a distance of 1.5 m, which is missing in the 2.5D FWI reconstruction. The reconstructions
consistently identify a low permittivity layer spanning from 6 m to 8 m, with visible vari-
ations in the reconstruction of a central lens. The 2.5D FWI shows a gradual dip from the
left to the right, while the 2D FWI and 2.5D FWI BH A show a more horizontally lay-
ered structure at about 7.5 m depth. This layer is followed by a higher permittivity layer in
all models appear in similar configurations, although the 2D FWI structure differs slightly
from that of the 2.5D FWI and 2.5D FWI BH A models. At the base of the domain, there is
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Figure 4.7.: Final FWI results for permittivity and conductivity for the experimental data
from the Widen test site. The final results from using a) a combined 2D FWI
for the unsaturated and saturated zone (Klotzsche et al., 2019c), b) a 2.5D FWI
for the saturated zone (Mozaffari et al., 2020), and c) the new 2.5D FWI with
borehole and antenna (BH A) combined for the unsaturated and saturated zone.
Note that four source wavelets were used in a), while b) and c) used only one.
Tx and Rx locations are indicated with circles and crosses, respectively.

an area with reduced permittivity. The 2D FWI shows lower values than the 2.5D FWI and
2.5D FWI BH A. Furthermore, a curvature in the layer, associated with the ray coverage
is reduced in the 2.5D FWI BH A reconstruction.

The analysis of conductivity is limited till a depth of 4.2 m to 2D FWI and 2.5D FWI
BH A because Mozaffari et al. (2020) only investigated the saturated zone. We can observe
a high conductivity layer in the 2D FWI reconstruction, followed by a lower conductivity
while we see a low conductivity for the 2.5D FWI BH A, then high conductivity and then
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again low conductivity values. Each model reconstructs a high conductivity layer between
4 m and 5 m. The 2D FWI displays predominantly straight borders, while the 2.5D FWI and
2.5D FWI BH A display curved lower borders. The 2.5D FWI notably features a zone of
increased conductivity on the left side, and existing or the 2.5D FWI BH A also on the right,
which is not present in the 2D FWI reconstructions. The results show a lower conductivity
layer extending to 7.8 m. A few higher conductivity lenses exhibit similarities in position
and amplitude. However, the amplitude of the central lens at 5.5 m depth is higher in the
2.5D FWI than in the 2D FWI and 2.5D FWI BH A. Low conductivity intrusions are visible
in the 2.5D FWI BH A. Starting from a depth of 8 m, there is a noticeable high conductivity
zone that transitions into a layer of lower conductivity at around 9 m in all reconstructions.
The lowest layer shows similar conductivity in both the 2D and 2.5D FWI. However, in
the 2.5D FWI BH A, there is a significant concentration of higher conductivity near the
boreholes.

The analysis of the RMS reduction shows a 49.36% reduction for the 2D FWI, while it
is 30.67% for the 2.5D FWI BH A. It is important to note that the reduction for 2.5D FWI BH
A was calculated using the updated starting model to fulfill the half-wavelength criterion. If
we calculate the RMS reduction based on the initial RMS with the original starting model
used for 2D FWI, we observe a reduction of 33.30%. The lower RMS reduction for the
2.5D FWI and 2.5D FWI BH A may be related to additional noise in the original 3D data,
compared to the 2D data. This may be related to the Bleistein transformation, which lowers
the frequency content of the data and thus reduces the high-frequency noise. Additionally,
the 2D FWI has an advantage in the unsaturated area with an specifically for that area
adapted higher frequency source wavelet. We achieved better results than the 2.5D FWI,
which only considered the saturated area and showed an RMS reduction of 23.63%.

To further investigate the RMS, a visualization of the RMS distribution of the final
inversion results for 2D FWI and 2.5D FWI BH A is visible in Figure 4.8. The RMS for
each Tx-Rx combination was normalized to the mean RMS for all Tx-Rx combinations of
the starting model. The 2.5D FWI with borehole antennas (BH A) in particular allows to
distinguish between the unsaturated and saturated zone. This is indicated by the increased
RMS in the unsaturated region because of the misfit created by using a lower frequency
source wavelet. The 2D FWI utilizes an adapted source wavelet with a higher frequency
for the unsaturated area, resulting in a better fit and lower RMS values in this area. Further-
more, we observe higher amplitudes for the unsaturated area, resulting in a higher RMS
compared to the saturated zone. The 2D FWI shows higher RMS values for transmitters
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Figure 4.8.: Root mean square error (RMS) normalized to the mean RMS of the starting
model for every transmitter receiver combination, in the upper part the trans-
mitter in the left borehole and below in the right. For the final results of a)
2D FWI and b) 2.5D FWI with borehole and antenna (BH A). Note the dashed
lines, indicating the water table and high values shown in red.

located between depths of 3.6 m and 7 m, particularly in the central part of the domain,
when compared to the 2.5D FWI BH A. This area also includes the waveguide, indicating
a better fit with the 2.5D FWI BH A. However, both inversion strategies exhibit comparable
RMS profiles below 6.5 m and across the remaining domain. It is worth noting that when
the transmitter is placed in the left borehole at a depth of 7 m, the 2.5D FWI BH A exhibits
lower errors than the 2D FWI. This is reversed when the transmitter is positioned in the
right borehole, with the 2.5D FWI BH A showing increased RMS errors compared to the
2D FWI for receivers beyond 7 m depth. This could be explained by a better fit in the left
part of the model as then the coupling of the antenna emitting the wave into the ground is
better.
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Note that the coefficient of determination, r2, which is the square of the correlation co-
efficient, for all traces decreases from 0.7686 to 0.6026, when we move from 2D FWI with
four estimated effective source wavelets to 2.5D FWI BH A with one estimated effective
source wavelet. This shows that further investigation of the antenna model is inevitable for
a better data fit of the inversion.

4.5. Conclusions and outlook

In the first part of this chapter, we conducted a synthetic study on source wavelet estimation
using a deconvolution approach to determine its functionality and how errors in a realistic
model affect the source wavelet. Our observations revealed that errors primarily affect the
time of rise in the source wavelet, with minor changes in amplitude. Additionally, we noted
a lower center frequency for the source wavelet for SS. During our analysis of the source
wavelet estimation using measured data, we observed changes in amplitude that correlated
with the positioning of the transmitter and receiver. Specifically, we observed a decreasing
amplitude from UU to US and SU down to SS. This can be related to the presence of water
in the boreholes, which attenuates the electromagnetic wave. Our findings are consistent
with those of Klotzsche et al. (2019c), a previous study that used 2D FWI and four effective
source wavelets and also observed that UU yielded the highest frequency source wavelet and
SS the lowest, with US and SU falling in between. An update to the starting model resulted
in source wavelets with similar center frequencies for US, SU, and SS. Our hypothesis of a
better fit for all source wavelets only worked for partly water filled boreholes. As the antenna
model does not fully match the antennas used for the measurement, we must consider its
different coupling behavior. Especially in air filled boreholes it proves to be a major issue.

Finally, we performed a 2.5D GPR FWI of unsaturated and saturated soil with one
source wavelet. Comparing it to two previous studies on the same dataset, we were able to
reconstruct very similar structures in the saturated zone. Since there is no ground truth, we
can only evaluate the data misfit, which was particularly high for the unsaturated zone. Con-
sidering that the antenna model is based on the Sensors and Software crosshole 200 MHz
PulseEKKO system and not on the RAMAC Ground Vision system of Malå Geosience
with 250 MHz antennas that was used to measure the data, allows the conclusion that the
results for the unsaturated area cannot be assessed as reliable. In order to use one source
wavelet for the entire domain, the antenna model needs improvement.

The reconstruction of the unsaturated and saturated zone could be further improved
by using a customized antenna model. Especially, by adapting the resistive-loaded finite-
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length antenna based on the Sensors and Software crosshole 200 MHz PulseEKKO sys-
tem to the RAMAC Ground Vision system of Malå Geosience with 250 MHz antennas,
which was used for the measured data. For this, we plan to collaborate with experts in
the field, such as Peter Annan, and explore an optimization technique for anntenna mod-
eling. This could include Taguchi’s optimization method (e.g., Warren and Giannopoulos,
2011; Stadler and Igel, 2018), a hybrid linear/nonlinear FWI approach (e.g., Giannakis et
al., 2019), or a particle swarm optimization algorithm (e.g., Stadler and Igel, 2022). The
implementation was beyond the scope of this study because of its time-consuming nature.
However, we plan to implement it in the future to enable a more detailed investigation of
other datasets measured with the same antenna.

In the current implementation of the 2.5D GPR FWI, we disregard the bending of the
borehole, a common drilling problem. This can result in a displacement of the antenna
from its central position in the borehole, causing not centered. As a result, the energy
transferred to the soil is no longer symmetrical. In a future study, we want to quantify the
influence of this displacement, since it introduces a significant implementation challenge,
as the entire antenna geometry must be deviated within the equidistant grid of the FDTD
grid. To accurately model the deviated antenna and avoid introducing staircasing errors,
a much finer subgrid is necessary. However, this results in computational times that are
currently not feasible. With the steady increase in computing capacity of supercomputers,
it is reasonable to expect that it will be possible to implement these deviations in the near
future.

In the 2D FWI case the data was transformed from 3D-to-2D with the Bleistein filter.
As this lowers the frequency content of the data, high-frequency noise can be reduced in
the 2D data. In a next step, we want to apply a noise filter to the measured 3D data and
investigate its influence on the reconstruction.

The current implementation roughly covers the capillary fringe with a grid size of
9 cm. This causes the implementation and reconstruction to treat it as a hard contrast.
However, the capillary fringe is actually not a distinct contrast between the unsaturated and
saturated zones, but rather a transition. Therefore, errors are introduced as harder contrasts
result in stronger reflections and data where the feeding point of the antenna was near the
capillary fringe could not be used. If a subgrid is inserted in the area of the capillary fringe,
it is possible to implement a smoothing of the hard contrast to a smooth transition from
two cells by interpolating the medium over several cells, making this area more realistic.
However, care must be taken to ensure a correct representation of the prevailing water
column.
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5. Evaluation of starting model
approaches and effective source
wavelet variations for
high-frequency ground-penetrating
radar full-waveform inversion1

A high resolution reconstruction is necessary for the investigation of small-scale structures.
The theoretical reconstruction resolution of the FWI is in the order of half the dominant
wavelength of the signal (Virieux and Operto, 2009). As GPR FWI can use high frequen-
cies (Klotzsche et al., 2018) and the wavelength is smaller with higher frequencies (Equa-
tion (2.22)), we should be able to increase the reconstruction resolution with higher fre-
quency pulses. In the following, we will investigate regular approaches for high-frequency
GPR data, investigate their limitations and propose an alternative solution. Note that this
study was conducted in the computationally efficient 2D domain.

5.1. Synthetic aquifer model

To test FWI for higher-frequency GPR data (up to 700 MHz), we defined a synthetic aquifer
model based on FWI results obtained from the Widen site (Klotzsche et al., 2012). The
geometry of the model (Figure 5.1) was chosen for its similarity to a typical soil column or
lysimeter setup, which are often used in laboratory studies to investigate preferential flow
using geophysical methods, for example (Garré et al., 2011; Schmalholz et al., 2004). This

1adapted from D. Hoven, A. Mester, H. Vereecken, and A. Klotzsche (2023). “Evaluation of starting
model approaches and effective source wavelet variations for high-frequency ground-penetrating radar
full-waveform inversion”. In: GEOPHYSICS 88.2, KS27–KS45. DOI: 10.1190/geo2021-0683.1
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Figure 5.1.: a) "r and b) � distributions for the synthetic aquifer model. Input models are
based on the Widen data (Klotzsche et al., 2012) and downscaled to the size of
a lysimeter. Note the logarithmic scale for the conductivity image. Tx and Rx
locations are indicated with circles and crosses, respectively.

heterogeneous and challenging model was chosen, because it is based on a gravel aquifer
and contains a waveguiding structure related to zones of preferential flow that causes late-
arrival, high-amplitude events in the data. Such events are difficult to detect with RBI and
can also cause problems when defining an optimal starting model for FWI.

The dimensions of the model are based on a real lysimeter with a height of 1.5 m and
a diameter of 1.1 m. To avoid reflections at the model boundaries in the FDTD, which is
used to calculate the electromagnetic fields, perfectly matched layers were defined around
the forward modeling domain. They require a distance of approx. 0.5 m to the edge and
were added to the model as additional cells. We tested these boundary conditions, and
they satisfy the assumption of no reflection. Since the inversion is based on a cell size of
3 cm, the constructed models will have a height of 2.52 m and a width of 2.1 m. Note
that the forward model has a finer discretization of 1 cm to decrease numerical errors in
the FDTD. The permittivity and conductivity values of the gravel aquifer were interpolated
to fit the dimensions of the lysimeter. The area next to the lysimeter towards the domain
boundaries was filled with the last value inside the lysimeter. Similarly to crosshole studies,
we positioned our transmitter Tx and receiver Rx antennas around the soil column. The area
enclosed by Tx and Rx has a height of 1.5 m and a width of 1.08 m, and is located at the
center of the model. Tx and Rx spacing are 0.05 m and 0.02 m for the multi-offset gathers,
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respectively, and we applied a reciprocal setup, which means that we switched the sides of
Tx and Rx and repeated the measurements. For the simulations, Ricker source wavelets
with center frequencies of 200, 450 and 700 MHz were used. We chose 700 MHz as the
highest frequency, because this is approximately the center frequency of GPR data provided
by a commercial antenna (e.g., EKKO Pro 1000 MHz, Sensors & Software, ON, Canada)
placed around a soil column. RBI requires first break times to be picked, which is difficult
due to the slow increase of the Ricker wavelets. Therefore, we modified these wavelets by
shifting the starting time towards 0 ns, and we also tapered the wavelet amplitudes after
this time shift to guarantee a start at 0 amplitude at 0 ns. The maximum amplitudes of the
wavelets were normalized to 1 by division with their maximum amplitude, and therefore
the amplitudes are unitless.

As discussed before, one crucial point for the FWI is to obtain starting models within
the half-wavelength criterion. Therefore, we investigated the allowed maximum difference
for the permittivity for our model and considered thereby the planned frequencies in order
to guarantee reliable and stable FWI results. To calculate this maximum difference Δ"r
for the FWI relative permittivity starting model, a number of parameters, described below,
need to be known. The first break of the GPR signals is the time required for a wave to
travel the specified distance in a material with a certain permittivity, and is provided in ns.
As a function, the first break fb is then defined as:

fb(d, "r) =
d
c
√

"r (5.1)

with the distance d between Tx and Rx, c the speed of light (c ∼ 0.3 m/ns) and the relative
permittivity of the material "r . It should be noted that for all further applications, we used
the relative dielectric permittivity, which is unitless. For this case, half the time between
the maximum and minimum of the wavelet was chosen as half the wavelength. The unitless
maximum difference Δ"r of the relative permittivity is then defined as:

Δ"r(fb, �ℎ, d) =
(

fb ± �ℎ
d

c
)2

, (5.2)

with the half-wavelength �ℎ. Here, the half-wavelength �ℎ is not the wavelength of the
data but the parameter of the half-wavelength criterion in nanoseconds, and depends on
the data. The first break, half-wavelength criterion, and maximum differences Δ"r were
calculated in Table 5.1 for the minimum, mean, and maximum "r in the synthetic aquifer
model (12.32, 16.54, and 25.87). For calculating the requirements of the half-wavelength
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5. High-frequency GPR FWI

Table 5.1.: Parameters to estimate the half-wavelength parameter for the different frequen-
cies: First break, half-wavelength criterion time parameter and maximum dif-
ference Δ"r for 200, 450, and 700 MHz. Calculations are performed for the
minimum, mean, and maximum "r in the synthetic aquifer model (12.32, 16.54
and 25.87).

Center frequency 200 MHz 450 MHz 700 MHz
"r 12.32 16.54 25.87 12.32 16.54 25.87 12.32 16.54 25.87

First break [ns] 12.88 14.92 18.66 12.88 14.92 18.66 12.88 14.92 18.66
�ℎ [ns] 0.97 0.43 0.28

Max. difference Δ"r
"min 10.53 14.46 23.25 11.51 15.60 24.69 11.79 15.93 25.10
"max 14.24 18.76 28.63 13.15 17.51 27.08 12.86 17.17 26.65

criterion, we consider these values for the entire domain instead of heterogeneous medium
properties. We assumed a distance d of 1.1 m to obtain the first break and the maximum
difference Δ"r. The most severe constraints on the starting model are in areas with a high
permittivity. Therefore, we will address this case ("r = 25.87) in particular. While for
200 MHz, the half-wavelength criterion time parameter �ℎ allows a shift of almost 1 ns and
a deviation of approximately ±2 in permittivity, for 700 MHz this shift is reduced to 0.3 ns
and the permittivity should not deviate by more than ±0.5 for such high contrast zones.
It is clear that for the higher frequency in particular, the criterion is harder to reach, and
difficulties can be expected. Since we calculated the criterion for a homogeneous material,
high restrictions are only the case for high permittivity layers. Nevertheless, if the starting
model deviates by more than this in such areas, the FWI will probably not converge for
this starting model and remaining gradients will be present (Klotzsche et al., 2010). This
implies that for low-frequency data less accurate starting models can be used, while for
higher frequency data a refined starting model approach is necessary. Inaccurate starting
models are often indicated in the final inversion results by remaining gradient in certain
domains or a bad data fit between the measured and modeled data. An often-used option
for refinements of the starting models is to add structures in the ray-based inversion results,
in the domain where the observed and modeled data not fulfill the half-wavelength criterion.
Additionally, an amplitude analysis approach of the measured data can be used to identify
areas in the domain with high contrast that can be added to the starting models (Zhou et
al., 2020). Such approaches are well suited for lower frequencies but struggle with higher
frequency data and often require some training on the applicant to identify such problematic
zones. In contrast, frequency-hopping allows a refinement that covers the entire inversion
domain, which makes it particularly attractive for high frequencies.
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5.2. FWI for high-frequency data

5.2. FWI for high-frequency data

Until now, FWI has only been applied to frequencies up to 250 MHz. To achieve an im-
proved characterization and resolution of the subsurface and thus to monitor changes related
to small-scale processes below the decimeter-scale, we first tested the effect of higher fre-
quencies on FWI results and how the inversion parameters need to be updated. Therefore,
we produced GPR data for our synthetic aquifer model (Figure 5.1) using the three modified
Ricker wavelets, and performed individual FWI using different starting model strategies.
In the following discussion, all FWI results fulfill the four criteria indicating reliable FWI
results that were described by Klotzsche et al. (2019b), unless otherwise stated. An im-
portant aspect to consider for the inversion is the choice of perturbation and stabilization
factors, which are also affected by the frequency of the measured data, choice of frequency
steps in the frequency-hopping, and starting models. It should be noted that we optimized
these factors in the beginning for each dataset with the different frequencies (e.g., 200, 450
and 700 MHz) and starting model approaches, to fulfill the four criteria indicating reliable
FWI results by testing various options and set of parameters. The factors remain constant
during the frequency-hopping.

First, we investigated the performance of the FWI using the 200 MHz data to show the
ability of the FWI to correctly invert the data generated with the synthetic aquifer model
with a lower frequency. For the 200 MHz FWI, we tested the three starting model ap-
proaches that are commonly considered for this frequency range (Figure 5.2): smoothed
"r input model, "r ray-based inversion result and modified ray-based "r. The modified per-
mittivity model was chosen in accordance with Klotzsche et al. (2012), who showed that
the pure ray-based results cannot explain the results of the Widen site, and therefore a ho-
mogeneous layer was added to the FWI starting model to fit the half-wavelength criterion.
For the FWI results presented here, a homogeneous starting model of the conductivity was
considered in a similar way to Klotzsche et al. (2012), where different starting models for
the conductivities were tested, and we therefore chose the same best conductivity starting
model described in that study (� = 9.5 mS/m). The perturbation factors for the step lengths
(Equation 2.39 and 2.40) for 200 MHz need to be between 1e8 and 1e7 for "r and 1e5 for
�. We can see that the starting models (Figure 5.2a) differ mainly in the permittivity values
between 0 m and 0.4 m depth as well as 1 m to 1.5 m. In these regions, we can also find the
greatest difference between the corresponding FWI results (Figure 5.2b and d). Differences
in the permittivity tomograms between 0 m and 0.2 m are visible in a direct comparison
of the FWI results (Figure 5.2b) and by calculating the difference images (Figure 5.2c).
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5. High-frequency GPR FWI

The permittivity results of the FWI with the RB starting model are showing larger values
in the upper area between 0 m and 0.2 m in contrast to the input model, while the results
with the RB-L starting model are slightly too low, which is consistent with the starting
models. The influence of the starting models on permittivity in the area between 1.2 m
and 1.5 m is only visible in the difference plot (Figure 5.2c). Furthermore, larger errors
can be seen in the waveguide (0.3 m to 0.4 m) in addition to smaller errors throughout the
model. All FWI conductivity results (Figure 5.2d) show a bending in the layer between
0 m and 0.2 m as well as between 1.3 m and 1.5 m. This is caused by insufficient ray path
coverage in these areas, which is due to the positioning of Tx and Rx. Moreover, the fitting
is noticeably worse in the areas peripheral to the antennas between 0.3 m and 0.9 m. The
difference plot (Figure 5.2e) shows the previously mentioned problematic areas, as well as
minor deviations in the inner model area.

Comparing the final RMS values for the three inversions in Table 5.2, the best val-
ues were obtained from the FWI using the smoothed starting model, although it should be
taken into account that this option is not available for experimental data applications. This
is also true when considering the reduction of the RBI RMS (1.58e4) to the final RMS of
the FWI, stated here as a percentage below the RMS values. The RBI RMS was derived by
performing an FDTD simulation based on the ray-based results and comparing the result-
ing traces to the real traces. For all FWI results, there is a 95% reduction in RMS compared
to the RBI RMS. A similar behavior can be observed for the mean absolute error (MAE) of
the standard deviation of the absolute error (STDAE) for the permittivity and conductivity
tomograms. For the calculations of these performance values, the zone between the an-
tenna positions was considered. RB provides the next-best results for the "r values. RB-L
was noted to have the best values for � MAE and � STDAE despite having the poorest "r
values. If FWI shows smaller errors in even one parameter, it must be kept in mind that
in a multi-parameter inversion, all parameters need to be acceptable. By comparing the
FWI tomograms and the reconstruction of the parameters, we can conclude that the modi-
fied ray-based results deliver the most optimal results, given that smoothed starting models
cannot be considered for experimental data due to the unknown subsurface.

Similarly, to the procedure for the 200 MHz FWI, we generated 450 MHz data and
performed FWI for different starting models (Figure 5.3a). In addition to the S, RB, and
RB-L starting models for the 450 MHz FWI, we added two more starting models based
on the RB and RB-L models from the 200 MHz FWI. These two new starting models are
indicated by the suffix IT4. They are the permittivity distributions of the fourth iteration
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Figure 5.2.: Overview of the 200 MHz FWI results. The synthetic aquifer models (with
RM signifying real model) are shown on the left. a) shows the different per-
mittivity starting models (S: smoothed input model, RB: ray-based inversion
result, RB-L: ray-based inversion result and added homogeneous layer), while
the conductivity starting models are always homogeneous. The corresponding
permittivity and conductivity FWI results are presented in b) and d), respec-
tively. The errors between the synthetic aquifer model and the FWI results are
shown for c) "r and e) �. In all tomograms, the transmitter and receiver loca-
tion are indicated with circles and crosses, respectively. Note the logarithmic
scales for the conductivity image. 75



5. High-frequency GPR FWI

Table 5.2.: Overview of the 200 MHz FWI results in terms of root-mean-square error
(RMS), mean absolute error (MAE), and the standard deviation of the absolute
error (STDAE) for permittivity and conductivity using three different starting
models. The smoothed, ray-based, and modified ray-based models are indicated
by S, RB, and RB-L.

S RB RB-L
RMS 5.8e-6 7.2e-6 7.9e-6

3.59% 4.57% 5.03%
"r MAE 0.19 0.24 0.29
"r STDAE 0.24 0.28 0.31
� MAE 1.48 1.80 1.40
� STDAE 2.45 3.00 1.83

of the 200 MHz FWI, with the respective starting model. This approach is based on the
frequency-hopping previously described. Comparing the five starting models, the differ-
ence made by the additional four iterations of the 200 MHz FWI can be seen in RB-IT4
and RB-L-IT4. The waveguide with its higher permittivity is more separated and has in-
creased in amplitude. In the RB-IT4 starting model, we can already see the curved shape
of the layer between a depth of 0 m and 0.2 m caused by the insufficient ray path coverage.
In contrast, a homogeneous uniform layer with a lower permittivity value can be seen in
the RB-L-IT4 starting model. The area with a lower permittivity at a depth of 0.6 m and
between a distance of 0 m and 0.6 m is now visible, whereas the higher permittivity at a
depth of 1.2 m and a distance between 0 m and 0.3 m increases. Compared to the 200 MHz
FWI permittivity results, we can see negligible changes in the 450 MHz S starting model
results (Figure 5.3b). For RB, the layer between 0 m and 0.2 m is curved, while the fit for
RB-L decreases on the sides between a distance of 0 m to 0.3 m and 0.8 m to 1.1 m in this
layer. The permittivity results for RB-IT4 are similar to those for RB, although the upward
dipping layer between 0 m and 0.25 m depth is narrower in distance but increased in depth.
The error plot (Figure 5.3c) shows the described changes in the upper layer, as well as errors
in the waveguide as previously noted for 200 MHz. However, there is a noticeable diagonal
line from a depth of 0.5 m and a distance of 0 m to a depth of 1.5 m and a distance of 0.8 m
with higher permittivities. This diagonal effect, which is probably a numerical artefact, is
not visible in the S starting model.

The conductivity results (Figure 5.3d) show a curve in the upper and lower layers, as
they did at 200 MHz. For the S, RB, RB-IT4 and RB-L-IT4 models, the curve in the upper
layer has a higher conductivity, while above it is a thin layer with a lower conductivity. For
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Figure 5.3.: Overview of the 450 MHz FWI results. The synthetic aquifer models (with RM
signifying real model) are shown on the left. a) shows the different permittivity
starting models (S: smoothed input model, RB: ray-based inversion result, RB-
L: ray-based inversion result and added homogeneous layer, RB-IT4: result
of the fourth iteration of the 200 MHz FWI based on the RB starting model,
RB-L-IT4: result of the fourth iteration of the 200 MHz FWI based on the
RB-L starting model), while the conductivity starting models are always ho-
mogeneous. The corresponding permittivity and conductivity FWI results are
presented in b) and d), respectively. The errors between the synthetic aquifer
model and the FWI results are shown for c) "r and e) �. In all tomograms, the
transmitter and receiver location are indicated with circles and crosses, respec-
tively. Note the logarithmic scales for the conductivity image.
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RB-L, the conductivity in this layer is distributed in a similar way to the RM model. RB has
increased conductivity in the lower layer compared to the other results. All of the results
for 450 MHz show problems with the fit in the outer region of the middle, similar to the
results previously obtained for 200 MHz. The fit of the conductivity in the range between
0.9 m and 1.3 m depth is similar for all models.

The RMS, "r MAE, and "r STDAE values of the results (Table 5.3) are lower for the
two frequency-hopping starting model approaches than the corresponding values of the
respective standard version, while for the � STDAE value the opposite is the case. For the
� MAE, RB-IT4 is marginally better than RB, whereas RB-L-IT4 is significantly inferior
to RB-L. When comparing the RMS and the reduction of the RBI RMS (6.42e4) to the
final RMS of the FWI, the use of a frequency-hopping approach is recommended. The
decision to use an approach based on an RB or RB-L starting model should be retested for
each dataset. It should be noted that such layers only need to be introduced if high-contrast
layers are present in the subsurface, which cannot be resolved by ray-based approaches.
In such cases, additional constraints on the starting model need to be fulfilled from the
beginning of the FWI.

Similarly to the 200 and 450 MHz tests, for the 700 MHz FWI, the three starting
models used at 200 MHz were applied again and the starting models based on frequency-
hopping were updated. To do so, we chose the permittivity distributions of the fourth iter-
ation of the 450 MHz FWI for which the corresponding IT4 starting models were used. In
these two starting models (Figure 5.4a), the existing structures increase in intensity. In the
FWI results for permittivity (Figure 5.4b), we can see that a successful fit to the synthetic
aquifer model is only possible for the RB-IT4 and RB-L-IT4 starting models. As before,

Table 5.3.: Overview of the 450 MHz FWI results using five different starting models:
smoothed (S), ray-based (RB), adapted ray-based (RB-L), and updated start-
ing modes after 4 iterations of RB and RB-L (RB-IT4 and RB-L-IT4). The
RMS, MAE, and STDAE for permittivity and conductivity are presented.

S RB RB-L RB-IT4 RB-L-IT4
RMS 3.3e-5 4.2e-5 3.9e-5 2.9e-5 3.1e-5

5.09% 6.54% 6.03% 4.47% 4.86%
"r MAE 0.23 0.28 0.27 0.23 0.24
"r STDAE 0.35 0.30 0.30 0.25 0.28
� MAE 1.97 2.14 1.62 2.11 2.60
� STDAE 4.35 4.56 3.00 4.64 6.40
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some errors occur for RB-IT4 in the upper layer and for both in the waveguide. Addition-
ally, the diagonal line that already occurred at 450 MHz is also visible here. For S, RB,
and RB-L, at least one of the four criteria for reliable FWI results is violated, regardless of
the perturbation and stabilization factors. This is due to a violation of the half-wavelength
criterion. As already shown in Table 5.1, the restrictions are tighter at higher frequencies
and thus limit the possible range of values in the starting model. For S, this is only vi-
olated in the region between 0 m and 0.6 m depth, which leads to an incorrect fit in this
region, while the fit in the rest of the model is reliable, with the exception of minor errors.
In addition to the range between 0 m and 0.6 m depth, the criterion is also violated in the
range between 1.1 m and 1.5 m for RB and RB-L, with the result that the fitting is incorrect
there. Errors in permittivity have a direct influence on conductivities (Figure 5.4d). As
FWI tries to minimize the error in permittivity by adjusting the conductivities, this leads
to overshooting, which can be observed for S, RB, and RB-L. The conductivity results for
RB-IT4 and RB-L-IT4 show major fitting problems in the range from 0 m to 0.3 m depth
(Figure 5.4e). These errors occur because the permittivities are difficult to fit in this re-
gion because of the high medium contrasts and the starting model is probably not fitting
the half-wavelength criterion in this region. As a result of the multi-parameter inversion,
the conductivity gradient tries to minimize the errors in this domain and hence the conduc-
tivities are overshooting. Therefore, the inversion tries to compensate for the permittivity
error with conductivity, and therefore becomes trapped in a local minimum. Slight errors
are present between 0.3 m and 1.5 m depth.

The misfit in S, RB, and RB-L is also reflected in the FWI results (Table 5.4). Specif-
ically, the RMS and the reduction to the RBI RMS (1.44e3), "r MAE, "r STDAE, and �
MAE are significantly higher than in RB-IT4 and RB-L-IT4. However, it was observed
that � STDAE is also relatively high in RB-IT4 and RB-L-IT4. RB-L-IT4 shows better
values than RB-IT4.

For frequencies of approximately 700 MHz, we do not recommend the use of con-
ventional starting models, since these no longer meet the increased requirements (see Ta-
ble 5.1). Instead, we propose the use of either a frequency-hopping approach or our adapted
frequency-hopping approach based on a modified ray-based starting model. Note that for
higher frequency data the conductivities of the FWI show more troubles to fit the input
data as for lower frequencies. This behavior is caused by the nature of the multi-parameter
inversion, since small changes in permittivity can result in large changes in conductivity.
This is something already known from past studies (e.g., Mozaffari et al., 2020). One way

79



5. High-frequency GPR FWI

b) FWI Permittivity

a) Permittivity starting models

d) FWI Conductivity

RBS RB-L RB-IT4 RB-L-IT4

c) -ε εFWI RM

e) -σ σFWI RM

RM Permittivity

RM Conductivity

0 0.3 0.6 0.9
Distance [m]

0 0.3 0.6 0.9
Distance [m]

0 0.3 0.6 0.9

0 0.3 0.6 0.9
Distance [m]

0 0.3 0.6 0.9
Distance [m]

0 0.3 0.6 0.9
Distance [m]

0 0.3 0.6 0.9
Distance [m]

0

0.3

0.6

0.9

1.2

1.5
D

e
p

th
 [

m
]

0

0.3

0.6

0.9

1.2

1.5

D
e

p
th

 [
m

]

0

0.3

0.6

0.9

1.2

1.5

D
e

p
th

 [
m

]

0

0.3

0.6

0.9

1.2

1.5

D
e

p
th

 [
m

]

0

0.3

0.6

0.9

1.2

1.5

D
e

p
th

 [
m

]

σ [mS/m]

εr [-]

8

10

12

14

16

18

20

22

24

εr [-]

8

10

12

14

16

18

20

22

24

3

4
5
6

8
10

15

20
25

σ [mS/m]

-5

-2.5

0

2.5

5

εr [-]

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 5.4.: Overview of the 700 MHz FWI results. The synthetic aquifer models (with RM
signifying real model) are shown on the left. a) shows the different permittiv-
ity starting models (S: smoothed input model, RB: ray-based inversion result,
RB-L: ray-based inversion result and added homogeneous layer, RB-IT4: re-
sult of the fourth iteration of the 450 MHz FWI based on the RB-IT4 starting
model, RB-L-IT4: result of the fourth iteration of the 450 MHz FWI based
on the RB-L-IT4 starting model), while the conductivity starting models are
always homogeneous. The corresponding permittivity and conductivity FWI
results are presented in b) and d), respectively. The errors between the syn-
thetic aquifer model and the FWI results are shown for c) "r and e) �. In all
tomograms, the transmitter and receiver location are indicated with circles and
crosses, respectively. Note the logarithmic scales for the conductivity image.
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Table 5.4.: Overview of the 700 MHz FWI results using five different starting models:
smoothed (S), ray-based (RB), adapted ray-based (RB-L), and updated start-
ing models after 4 iterations of RB and RB-L (RB-IT4 and RB-L-IT4). The
RMS, MAE, and STDAE for permittivity and conductivity are presented.

S RB RB-L RB-IT4 RB-L-IT4
RMS 7.2e-4 9.5e-4 9.7e-4 1.1e-4 0.8e-4

49.79% 65.93% 67.45% 7.89% 5.73%
"r MAE 0.71 1.30 1.50 0.28 0.21
"r STDAE 1.10 1.50 1.63 0.35 0.24
� MAE 7.82 14.02 10.34 2.54 2.34
� STDAE 8.47 7.28 6.89 6.50 5.83

to improve this would be to use finer spatial sampling of the transmitter and receiver spac-
ing, as shown by Oberröhrmann et al. (2013). Furthermore, attention should be paid to
the perturbation factors for the final inversion with 700 MHz data, which range from 1e11
and 1e10 for "r to 5e8 and 1e7 for �. These are approximately 2 to 4 orders of magnitude
smaller than for 200 MHz data.

5.3. Effect of source wavelet variations on
high-frequency FWI

An estimation of the unknown effective source wavelet is essential for FWI (for more de-
tails, see Klotzsche et al. (2019b)). Nevertheless, this can result in errors in the amplitude
as well as in time shifts of the wavelet, because the estimation is based on the starting mod-
els used for the FWI. In the following section, this effect is considered first separately and
then in combination with the 700 MHz effective source wavelet (Figure 5.5). Please note
that for these comparisons, the RB-L-IT4 from Figure 5.4a was used as a starting model as
this was shown to be the most adequate option for experimental data FWI.

For the time shift, the source wavelet was shifted ±5% and ±1% of its total length. The
time shift mainly influences the permittivity. The full results are listed in Table 5.5, while
Figure 5.6 shows an overview of the ±5% changes. The influence on the FWI permittivity
results (Figure 5.6a) can be seen for the −5% time shift in the lower permittivity values.
For +5%, the differences from the results obtained with the original source wavelet are
only visible in the difference plot (Figure 5.6b). The differences from the synthetic aquifer
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Figure 5.5.: Comparisons of the different source wavelets used to evaluate the influence
of uncertainties in the effective source wavelet for high-frequency FWI in the
time-domain. The source wavelets are shown in a) and b) is a detailed section,
marked with a rectangle in a). The original source wavelet is based on a center
frequency of 700 MHz, indicated in black, and its amplitude- and time variation
are indicated in blue and red, respectively.

model increase between 0 m and 0.5 m depth and decrease between 0.5 m and 1.5 m. The
conductivity clearly overshoots at −5%, whereas the results at +5% in the area between
0.3 m and 1.5 m depth are better than the original. This is due to the different results for
permittivity.

The weak results for the � MAE and � STDAE at −5% stand out in the overview of the
results (Table 5.5). These lead to the significantly increased RMS value, which is 1144.25%
higher than without changes in the effective source wavelet. Also noticeable in the table
are the good values for � MAE and � STDAE at T+5%. They decreased by 18.44% and
25.59% compared to the original source wavelet, especially since "r MAE is 36.06% higher
than in the results obtained with the original source wavelet. This was not observed for a
time shift of +1%, where the results are consistently worse than those obtained with the
original source wavelet.

For the amplitude variation, the amplitude of the source wavelet was varied by ±5%
and ±1% of its maximum. Amplitude is strongly related to conductivity in FWI. This is
visible in the FWI results obtained with the varied amplitude (Figure 5.7). The misfit in
the permittivity (Figure 5.7b) shows only minor differences at the varied amplitudes. The
results for the ±1% variation are only included in Table 5.6, since the differences are not
visible. As expected, major changes in conductivity (Figure 5.7c) are visible for the ±5%

82
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Figure 5.6.: Overview of the FWI results with time variation in the source wavelet. The
synthetic aquifer models (with RM signifying real model) are shown on the
left. The RB-L-IT4 model for 700 MHz was used as a starting model for the
permittivity, while the conductivity starting models are always homogeneous.
The permittivity and conductivity FWI results are presented in a) and c), re-
spectively. For T-5% and T+5%, the source wavelet was shifted by 5% of its
length to the left and right, while for the original, the source wavelet was not
changed. The errors between the synthetic aquifer model and the FWI results
are shown for b) "r and d) �. In all tomograms, the transmitter and receiver
location are indicated with circles and crosses, respectively. Note the logarith-
mic scales for the conductivity image.
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5. High-frequency GPR FWI

Table 5.5.: Overview of the time variation (T) FWI results. The percentage values indicate
the difference from the values of the original wavelet varying between ±1% and
±5%. The RMS, MAE and STDAE for permittivity and conductivity for each
FWI are presented.

T-5% T-1% Original T+1% T+5%
RMS 102.9e-5 8.9e-5 8.3e-5 9.1e-5 8.5e-5

1144.25% 7.13% 9.55% 2.78%
"r MAE 1.21 0.22 0.22 0.22 0.29

469.53% 1.28% 4.14% 36.06%
"r STDAE 0.80 0.24 0.24 0.24 0.22

233.05% 1.92% 0.17% -6.73%
� MAE 282.44 2.49 2.34 2.43 1.91

11981.88% 6.49% 4.11% -18.44%
� STDAE 384.27 6.62 5.83 5.99 4.34

6494.48% 13.68% 2.74% -25.59%

variation. For a lower amplitude, the conductivity decreases, while for a higher amplitude
it increases. This occurs throughout the model but is most noticeable between 0.3 m and
1 m depth.

The comparison of the information in Table 5.6 shows that the results for the −1% am-
plitude are slightly better, and the RMS is 2.54% smaller, than the original for all parameters
except � STDAE. This is due to the fact that in the original, the fit in the area between 0.3 m
and 1.5 m depth is slightly too weak, which results in too-high conductivities. With the re-
duced amplitude, the conductivity also decreases further in this range, resulting in a lower
error. Since this is a multi-parameter inversion, better conductivity results can positively
affect the permittivity results, which can be seen at A-1%. If the amplitude is reduced even
further (−5%), the error increases. Due to the weaker fit with the original source wavelet
and the shift, which leads to a better fit at −1%, the RMS at −5%with a deviation of 14.03%
from the results with the original source waveletis smaller than at +5%, where the deviation
is 19.7%.

The combination of time- and amplitude variation was carried out for the extrema of
each case (±1% and±5%). In the following sections, only the percentages of variation are
specified and in Figure 5.8, only the largest variation (±5%) is shown. The first value rep-
resents the time-, and the second the amplitude variation. The results for the permittivity
(Figure 5.8a) are similar to those for the time. The misfit for the −5%−5% combination
is clearly visible. For −5%+5%, the misfit is similar to a −5% variation of the time only,
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5.3. Effect of source wavelet variations on high-frequency FWI
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Figure 5.7.: Overview of the FWI results with amplitude variation in the source wavelet.
The synthetic aquifer models (with RM signifying real model) are shown on
the left. The RB-L-IT4 model for 700 MHz was used as a starting model for
the permittivity, while the conductivity starting models are always homoge-
neous. The permittivity and conductivity FWI results are presented in a) and
c), respectively. For A-5% and A+5%, the source wavelet amplitude was de-
creased or increased by 5% of the maximum amplitude, while for the original,
the source wavelet was not changed. The errors between the synthetic aquifer
model and the FWI results are shown for b) "r and d) �. In all tomograms, the
transmitter and receiver location are indicated with circles and crosses, respec-
tively. Note the logarithmic scales for the conductivity image.
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5. High-frequency GPR FWI

Table 5.6.: Overview of the amplitude variation (A) FWI results. The percentage values
indicate the difference from the values of the original wavelet varying between
±1% and ±5%. The RMS, MAE, and STDAE for permittivity and conductivity
for each FWI are presented.

A-5% A-1% Original A+1% A+5%
RMS 9.4e-5 8.1e-5 8.3e-5 8.4e-5 9.9e-5

14.03% -2.54% 1.24% 19.70%
"r MAE 0.22 0.21 0.21 0.21 0.22

1.74% -0.80% 0.71% 4.61%
"r STDAE 0.25 0.24 0.24 0.24 0.25

2.26% -1.25% 0.50% 6.14%
� MAE 2.54 2.29 2.34 2.43 2.97

8.46% -0.20% 4.13% 26.85%
� STDAE 5.90 5.86 5.83 6.08 6.64

1.17% 0.56% 4.39% 13.87%

but the waveguide is more consistent in the results for the combination. The differences
for the combinations with a +5% time variation are best visible in the difference plot (Fig-
ure 5.8b). For both +5%−5% and +5%+5%, the error increases in the area between 0 m and
0.5 m depth and decreases between 0.5 m and 1.5 m depth. The results for the conductivity
(Figure 5.8c) directly show the overshooting for the combination with a time shift of −5%.
We can also see that the conductivity decreases for the +5%−5% combination in the area
between 0.3 m and 1.5 m depth. The opposite is true for the +5%+5% combination.

The overview of the information values of the FWI results in Table 5.7 shows that the
errors for the ±1% combination are similar to the basic variation. They all deviate by less
than 10% compared to the original results, except for � STDAE at −1%+1%. Note that the
structures in permittivity and conductivity remain stable for the ±1% combination of both
quantities. For a time shift of −5% the conductivity is overshooting and therefore a higher
RMS is present. There, "r MAE, "r STDAE, � MAE, and � STDAE are also significantly
increased. The combination of +5%−5% yields better results than using the original source
wavelet for all parameters except "r MAE, while at +5%+5%, only � STDAE is better than
for the original source wavelet. The good results for +5%−5% are due to the fact that
the −5% variation in amplitude reduces the conductivity, making it closer to the correct
model, which in turn leads to a better reconstruction of the permittivity. Overall, we see an
increasing mismatch with increasing phase and amplitude errors.

86
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Figure 5.8.: Overview of the FWI results with a combination of time and amplitude varia-
tion in the source wavelet. The synthetic aquifer models (with RM signifying
real model) are shown on the left. The RB-L-IT4 model for 700 MHz was used
as a starting model for the permittivity, while the conductivity starting models
are always homogeneous. The permittivity and conductivity FWI results are
presented in a) and c), respectively. For T5% and T+5%, the source wavelet
was shifted by 5% of its length to the left and right. For A-5% and A+5%, the
source wavelet amplitude was decreased or increased by 5% of the maximum
amplitude, while for the original, the source wavelet was not changed. The
errors between the synthetic aquifer model and the FWI results are shown for
b) "r and d) �. In all tomograms, the transmitter and receiver location are in-
dicated with circles and crosses, respectively. Note the logarithmic scales for
the conductivity image.
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5. High-frequency GPR FWI

Table 5.7.: Overview of the combined time and amplitude variation FWI results. The per-
centage values indicate the difference from the values of the original wavelet
varying between ±1% and ±5%. The RMS, MAE and STDAE for permittivity
and conductivity for each FWI are presented. The first value in the first line
indicated the time and the second value the amplitude variations.
-5% -5% -5% +5% -1% -1% -1% +1% Original +1% -1% +1% +1% +5% -5% +5% +5%

RMS 103.1e-5 103.1e-5 8.9e-5 8.8e-5 8.3e-5 8.9e-5 8.6e-5 8.3e-5 11.3e-5
1146.80% 1146.68% 7.93% 6.78% 7.76% 4.19% -0.26% 36.60%

"r MAE 2.24 1.13 0.21 0.22 0.21 0.22 0.22 0.28 0.30
951.06% 433.00% 0.38% 1.13% 3.71% 3.76% 33.85% 40.90%

"r STDAE 1.4105 0.63 0.24 0.26 0.2393 0.24 0.24 0.21 0.25
489.43% 165.06% 1.59% 2.47% 0.04% -0.88% -10.61% 3.51%

� MAE 66.84 219.80 2.34 2.51 2.34 2.39 2.43 2.27 2.42
2759.29% 9302.39% -0.09% 7.36% 2.25% 4.11% -2.93% 3.72%

� STDAE 169.64 310.60 5.93 6.65 5.83 5.84 5.99 4.78 4.37
2811.24% 5230.15% 1.68% 14.14% 0.25% 1.55% -18.01% -24.97%

5.4. Evaluation of starting models using
frequency-hopping

In the first part of this study, we used an adapted and simplified version of the frequency-
hopping approach as described above. This involved using two datasets with lower fre-
quencies (200 MHz and 450 MHz) to generate a starting model for the 700 MHz data.
These datasets were also created with the synthetic aquifer model. In reality, doing this
would mean measuring three datasets with different frequencies for the lysimeter. Such an
approach is often impossible due to the additional measurement time required and the lim-
ited frequency range of the antennas. Therefore, the results presented in this section were
obtained using a frequency-hopping approach based on Zhou et al. (2021) applied to the
700 MHz GPR data. To generate data as well as effective source wavelets for lower fre-
quencies, a low-pass filter was applied. We used a raised cosine filter with a roll-off factor
of cos

(

�
f+100MHz

)

, where f is the frequency to be filtered. These results had to be further
smoothed with a time filter at the edges to avoid problems with the underlying forward
model of the FWI, the finite-difference time-domain method. Finally, the results were nor-
malized by dividing the maximum of the traces before filter application by the maximum
after application, and then multiplying the traces after filter application with this value.
Note that the applied bandpass filter reduces the amplitudes of the data, which we coun-
terbalance with normalization of each frequency-hopping dataset. This step is necessary,
to avoid that the conductivity FWI models for the filtered data will update with extremely
high values to compensate for the differences in amplitude. The resulting source wavelets
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Figure 5.9.: Comparisons of the different effective source wavelets used for frequency-
hopping in a) the time-domain and b) the frequency-domain. The filtered sig-
nals were normalized to the maximum of the original source wavelet in the
time-domain, which results in higher amplitudes in the frequency domain.

for frequency-hopping are shown in Figure 5.9a. The normalization in the time-domain
leads to a larger amplitude in the frequency-domain (Figure 5.9b), as the target frequency
is smaller. The frequencies in Figure 5.9 indicate the corresponding beginning of the low-
pass taper. The frequency ranges were chosen by investigating the frequency spectra of the
original GPR data and the source wavelet. Note that this needs to be checked for every
dataset individually since different GPR antennas, coupling conditions and the medium
itself can influence the measured frequency spectra. For practical applications, we also
need to consider that the frequency ranges of measured data in low loss media are reduced
compared to the emitted pulse in air.

The RB and RB-L starting models were used as the starting model for the frequency-
hopping. Two different frequency-hopping approaches were tested: first, constant pertur-
bation factors with frequency steps of 50 MHz (suffix -50), and second, frequency steps of
250 MHz (suffix -250) were used. The last permittivity distributions before the final step
with the complete 700 MHz data are shown in Figure 5.10a. When comparing these final
starting models, it was observed that they are very similar below 0.3 m and differ mainly
in the upper layer between 0.2 m and 0.3 depth. While the layer with increased permit-
tivity is shaped like a V in the pure ray-based starting models (RB-50 and RB-250), the
basic shape in the adapted starting models with an added layer (RB-L-50 and RB-L-250)
is improved. In the case of RB-L-50, however, an area shaped like a V can also be seen in
this layer. A similar behavior was observed in Klotzsche et al. (2012), indicating that the
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5. High-frequency GPR FWI

starting model is trapped in a local minimum as a result of an inaccurate starting model.
The waveguide is poorest resolved at RB-L-50, and the permittivity above this layer is too
low. In addition, between 0.6 m and 0.9 m depth and between 0.8 m and 1 m depth, an area
with a too-low permittivity can be observed, which is not visible with the other strategies.
For both starting models based on 50 MHz frequency-hopping steps, it was observed that
the permittivity in the range between 0.5 m and 0.6 m depth at a distance of 0.1 m to 0.4 m
is lower than at the 250 MHz frequency-hopping steps. In the FWI results for permittivity,
only RBL-L-250 converged towards the synthetic aquifer model in the range between 0 m
and 0.2 m depth. For RB-L-50, the zone of low permittivity above the waveguide, which
was already present in the starting model, is still present in the corresponding FWI results.
The closest conductivity reconstruction (Figure 5.10c) to the synthetic aquifer model was
achieved using RB-L-250, whereas a reconstruction with RB-L-50 led to the largest differ-
ences. Both RB starting model approaches show lower conductivity values between 0 m
and 0.1 m depth. An acceptable reconstruction was not achieved for any of the results in the
range between 0.2 m and 0.9 m depth, whereas a better reconstruction could be achieved
between 0.9 m and 1.3 m depth.

Our investigation of the RMS, MAE, and STDAE for both permittivity and conduc-
tivity of the four results (Table 5.8) shows that all parameters are smallest for RB-L-250
and highest for RB-L-50. While RMS, permittivity, and � STDAE values are better for
RB-50, the � MAE is lower for RB-250, which is related to the improved conductivity
reconstruction in the range between 0.3 m and 0.9 m depth.

Table 5.8.: Overview of the frequency-hopping FWI results for 700 MHz data for the four
different strategies using different starting models and frequency ranges. RB
and RB-L indicate the ray-based and ray-based adapted models, respectively,
and 50 and 250 illustrate the frequency steps used for the frequency-hopping.
The RMS, MAE, and STDAE for permittivity and conductivity are presented.

RB-50 RB-L-50 RB-250 RB-L-250
RMS 7.3e-5 14.9e-5 10.8e-5 6.8e-5

"r MAE 0.39 0.55 0.42 0.30
"r STDAE 0.35 0.58 0.40 0.27
� MAE 2.57 4.19 2.47 1.89
� STDAE 6.46 15.73 6.56 4.49
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Figure 5.10.: Overview of the frequency-hopping FWI results. The synthetic aquifer mod-
els (with RM signifying real model) are shown on the left. a) shows the differ-
ent permittivity starting models for the final frequency-hopping step (RB-C-
50: ray-based inversion result as first starting model and constant perturbation
factors for FWI steps of 50 MHz from 200 MHz to 700 MHz; RB-L-C-50:
ray-based inversion result with an added homogeneous layer as first start-
ing model and constant perturbation factors for FWI steps of 50 MHz from
200 MHz to 700 MHz; RB-A-50: ray-based inversion result as first starting
model and adapted perturbation factors for each FWI step of 250 MHz from
200 MHz to 700 MHz; RB-L-A-50: ray-based inversion result with an added
homogeneous layer as first starting model and adapted perturbation factors for
each FWI step of 250 MHz from 200 MHz to 700 MHz), while the conductiv-
ity starting models are always homogeneous. The corresponding permittivity
and conductivity FWI results are presented in b) and d), respectively. In all to-
mograms, the transmitter and receiver location are indicated with circles and
crosses, respectively. Note the logarithmic scales for the conductivity image.
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5. High-frequency GPR FWI

5.5. Noise in higher-frequency data

Several synthetic studies for crosshole GPR FWI investigated the effect of noise and the
performance of the inversion using low-frequency data (e.g., Keskinen et al., 2021; Haruzi
et al., 2022). It can be assumed that noise in the data will have a larger effect for high-
frequency data than low-frequency data. Therefore, we investigate the effect of noise on
the final FWI results using the best starting model approach for the 700 MHz data. Other
synthetic studies either added 5% noise to the data (Meles et al., 2010) or applied different
signal-to-noise ratio (S/N) levels (e.g., 25, 20 and 15 dB) to the data (Feng et al., 2021). In
recent investigations for experimental higher-frequency GPR data under controlled condi-
tions (e.g., laboratory or crosshole GPR), we did not observe a noise level higher than 25
dB. Therefore, we considered for our application a 25 dB S/N. Note that if in other sce-
narios a higher noise level would be observed in the GPR data, appropriate pre-processing
steps are probably required to reach a similar low noise level to allow a reliable and stable
FWI.

As a starting model approach, we use the previously described RB-L-250. The noise
was generated using normally distributed random numbers, normalized to the range of -
1 to 1, and scaled them accordingly to the S/N. To each of the 200, 450, and 700 MHz
frequency filtered data and the full spectrum data, the same noise level was added. Due
to the noise level, we adjusted the stopping criterion for the FWI from 0.5% to 1% change
between subsequent iterations to avoid overfitting of the noise.

The FWI results in Figure 5.11 show negligible differences for the permittivity. This
is because the added noise does not significantly change the phase of the data, which has
an influence on the permittivity. In contrast, the results for conductivity with noise dif-
fer substantially from those without. Although the overall structures are still captured, the
quantitative results are different, and, higher and lower values can be observed. Addition-
ally, the shape of the layer between 0 m and 0.3 m depth has changed and artefacts between
0.3 m and 0.6 m depth are visible. The conductivity values between 0.4 m and 0.9 m depth
are overall too low. Particularly noticeable is an area between 1 m and 1.3 m depth in the
results with noise, as there is now an area with a significantly lower conductivity. The
RMS of the final FWI inversion increased up to 5.00e-04 from before 0.68e-04. Since the
noise mainly effects the amplitudes of the GPR data, most errors in the conductivity tomo-
grams can be related to the noise level. Additional noise tests with lower SNR values (20
and 15 dB) showed a similar trend. Whereas the permittivity tomograms remained almost

92



5.5. Noise in higher-frequency data
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Figure 5.11.: Overview of the FWI results with the RB-L-250 approach and a signal-to-
noise ratio of 25 dB. The results of the RB-L-250 approach without noise are
shown on the left and on the right with noise. The permittivity and conduc-
tivity FWI results are presented in a) and b), respectively. In all tomograms,
the transmitter and receiver location are indicated with circles and crosses,
respectively. Note the logarithmic scale for the conductivity image.

stable, the quantitative conductivity values were less good while the structures were still
visible (not shown). Note that we did not further pre-process the noisy GPR data. There-
fore, we recommend for experimental data, if a higher noise level is present in the data,
to pre-process the data to increase the SNR to avoid errors in the conductivity models. A
possible method for the pre-processing for the frequency-hopping approach can be, for ex-
ample, the use of an automatic band-pass filtering procedure as proposed by Economou,
2016, which suggests a method for band pass filtering without altering the amplitudes.
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5. High-frequency GPR FWI

5.6. Stochastic aquifer model

One of the goals of using higher-frequency GPR data for FWI is to achieve higher-resolution
images and an improved reconstruction of the subsurface properties. Therefore, we added
a perturbation of the permittivity and conductivity real models with a variogram. We used
a horizontal and vertical correlation length of 0.5 m and a Hurst exponent of 0.01 result-
ing in small-scale variations in the permittivity and conductivity images. We scaled it to
a magnitude in permittivity and conductivity of 20% of the maximum permittivity and
conductivity values of our original synthetic model (Figure 5.1). Afterwards, we added
the scaled variogram to the original synthetic model, in order to generate an updated syn-
thetic model with a higher spatial variability in permittivity and conductivity (Figure 5.12).
Based on this, we calculated new 200 MHz, 450 MHz and 700 MHz GPR data. The new
input models marked as RM (signifying real model) in Figure 5.12 show more details and
variation in the models. Similar to the previous test, we performed FWI using the modi-
fied ray-based starting model with an added layer for the 200 MHz data and the simplified
frequency-hopping approach with the same starting model for 700 MHz (cf. RB-L-IT4
in Figure 4). The permittivity results at 200 MHz resemble a smooth version of the RM.
In contrast, the results for the 700 MHz data, show finer structures, especially between
0.4 m and 1.3 m depth. While the conductivity results for 200 MHz in the range between
0 m and 0.3 m depth are more accurate than for 700 MHz, the results between 0.3 m and
1.4 m depth are better for the 700 MHz FWI. With the 700 MHz FWI, structures with a
cell size of 9 cm can apparently be resolved, whereas at 200 MHz the resolution is limited
to the known decimeter-scale. To show the advantages and an improved reconstruction of
the 700 MHz FWI results in more detail, we plotted a vertical cross-section through the
model at a distance of 0.6 m (indicated with the dashed lines in RM in Figure 5.12). Com-
paring the permittivity and conductivity values of the stochastic aquifer model with the
200 MHz FWI results, relatively smooth curves can be observed. In contrast, the results
with 700 MHz show a finer reconstruction of the medium properties, for example between
0.5 m and 0.9 m depth, where also small-scale changes in permittivity are resolved. Ad-
ditionally, the conductivity values are closer to the values of the stochastic model than for
the 200 MHz FWI results. In fact, a much closer fit to the original data can be seen in both
permittivity and conductivity. Nevertheless, it should be noted that the conductivity results
still provide a poorer fit to the original input values than the permittivity results. However,
we advise using higher frequencies, if possible, to resolve finer structures.

94



5.6. Stochastic aquifer model
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Figure 5.12.: Overview of the FWI results with a stochastically changed version of the
synthetic aquifer model. The stochastic aquifer models (with RM signify-
ing real model) are shown on the left. The ray-based inversion result for
200 MHz for the synthetic aquifer model was used for 200 MHz as start-
ing model. The fourth iteration of this 200 MHz FWI was used as a starting
model for 450 MHz, the fourth iteration of which was then used as a start-
ing model for the 700 MHz FWI. The permittivity and conductivity FWI re-
sults for 200 MHz and 700 MHz data are presented in a) and b), respectively.
Transmitter and receiver location are indicated with circles and crosses, re-
spectively. The dashed line in the RM shows the location of the plotted cross-
section of the permittivity and conductivity at a distance of 0.6 m. The gray,
blue and orange lines represent the cross-sections through the three corre-
sponding models. Note the logarithmic scale for the conductivity images.
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5. High-frequency GPR FWI

5.7. Conclusions and outlook

In this chapter, we highlight the possible challenges and pitfalls that can occur when apply-
ing GPR FWI to higher-frequency data. Thereby, special focus was on an optimal starting
model definition and the importance of an accurate effective source wavelet estimation. For
our study, we considered a challenging aquifer structure including small-scale high con-
trast layers to prove the effectiveness of our approaches. Thereby, we demonstrated that a
starting model selection based on ray-based inversion results no longer yields reliable FWI
results at frequencies higher than 450 MHz since difficulties arise to fit the half-wavelength
criterion. This implies that at low frequencies less accurate starting models can be used,
while for higher frequencies the frequency-hopping approach should be utilized. There-
fore, we adapted an existing frequency-hopping approach to create a simplified version for
higher frequencies and showed its potential to produce reliable FWI results, with some
limitations. When using the frequency-hopping approach in the presence of high-contrast
layers, particular care still needs to be taken by adapting the ray-based starting models to re-
duce problems with the half-wavelength criterion. In addition, based on our test results, we
recommend updating the perturbation factors for the step-length calculations for the sim-
plified frequency-hopping approach for higher frequencies. As the frequencies increase,
the perturbation factors decrease. If the chosen perturbation factors are too small, the FWI
resolves fewer structures and truncation errors can emerge, while perturbation factors that
are too big cause overshooting of the FWI results. In the worst case, the inversion may
then be trapped in a local minimum. Note that the choice of the inversion parameters needs
further investigation for experimental data and need to be adapted for different frequency
ranges.

For the electrical conductivity, the medium reconstruction is more challenging since it
is also more sensitive to errors with increasing frequency. Future work will investigate how
the frequency-hopping approach can be applied to improve conductivity starting models.
Additionally, when applying the frequency-hopping approach to other datasets with differ-
ent frequency spectra, the frequency steps and the starting frequency need to be adjusted
to guarantee sufficient frequency data coverage at the beginning of the FWI. Overall, we
can conclude that to successfully perform FWI for higher-frequency GPR data, frequency-
and time-domain methods need to be combined to enhance the starting model based on
lower-frequency data.

One other critical criterion for the FWI is the estimation of the unknown effective
source wavelet. Since in our synthetic study the wavelet was known, we could analyze the
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5.7. Conclusions and outlook

effect of errors in the effective wavelet that may be caused by errors in the starting model
definition resulting in shift in time and/or frequency. The analysis of the influence of the
variation of the effective source wavelet at high frequencies showed that time shifts of 5%
are fatal for the FWI results, while the results for +5% time shifts are still acceptable. Am-
plitude variations cause a lower electrical conductivity result for a lower amplitude and
higher values for a higher amplitude, but still allow reliable conclusions to be drawn about
the model. The multi-parameter FWI problem cannot be solved uniquely. Thus, changes in
the source wavelet or even artefacts can quickly lead to problems in the inversions. Since
the effective source wavelet estimation is based on the starting models and the data pro-
cessing methods, for experimental data, time and amplitude errors can be present which
will then affect the final FWI tomograms. Note that errors in the time-zero correction are
not accounted for and cannot be validated with the FWI tomograms. Therefore, the knowl-
edge about the errors that we have gained here can be directly linked to experimental data
applications to add a further quality check for results. We would also like to point out that
the validation of FWI results not only requires a consideration of individual components –
such as the data fit, the final RMS, the permittivity or conductivity images, or even the sta-
tistical values – but also a careful consideration of all of these criteria together. It should be
noted that we ignored signal dispersion in our study, as we did not expect it to occur in the
medium and at the frequencies we used. Additional added noise to the data illustrated that
mainly the conductivity results in terms of quantitative values are affected, while the differ-
ences in permittivity tomograms were minor. Therefore, to avoid errors in the conductivity
models, we recommend pre-processing noisy data to increase the SNR before applying the
FWI. Finally, we were able to show the better reconstruction of small-scale variations in
the model by using higher frequencies with a stochastic variant of our input model. Over-
all, we can conclude that the GPR FWI can reconstruct finer structures in the subsurface
as using lower frequencies, but also special care is needed in the choice of the starting
model definition approach and to minimize the errors on the effective source wavelet. We
provided guideline by applying a frequency-hopping approach, which combines both the
advantages of time and frequency domain, to better constrain the half-wavelength criterion
to guarantee reliable FWI results.

In a later study we want to test this new approach for high-frequency data on real
data. For this we first need to investigate the influence of the lysimeter geometry on the
electromagnetic signal.
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6. Towards 3D GPR FWI for
lysimeter investigation

We demonstrated in a synthetic study (Chapter 5) that higher frequencies can be utilized to
achieve a sub decimeter-scale soil parameter reconstruction. Some imaging studies using
GPR data, have already been performed on lysimeters (e.g., Stoffregen et al., 2002; Schmal-
holz et al., 2004). Nevertheless, none of these considered GPR FWI. This is because there
are problems with the 3D-to-2D conversion, as it has difficulties to account for the late
time reflections from the lysimeter geometry. As we tried to perform the 2D GPR FWI
with measured lysimeter data, we faced significant challenges, as the 2D forward model
could not account for many of the wave types measured at the lysimeter. Therefore, we
had issues especially with the ray-based inversions as well as the estimation of the source
wavelet (Havas, 2019). The inversion results, e.g., Figure 6.1 based on data measured at
the lysimeter shown in Figure A.3 look promising. However, they did not meet the four
criteria established by Klotzsche et al. (2019b). There was insufficient data fit, significant
remaining gradients, and convergence problems. Note that we also could not solve these
problems with applying the frequency hopping on the 2D GPR FWI.

To further investigate the wave types caused by the lysimeter geometry that are rele-
vant to FWI, we first conducted simplified synthetic studies (see Appendix A). The main
results of the studies were the presence of direct waves, reflections from the top/bottom and
sides, and air waves traveling around the lysimeter. The separation of waves can be chal-
lenging, and interferences are observed for dry soil conditions. Additionally, an overlap of
air and direct wave can cause issues in estimating the first-arrival times, which is especially
challenging with Tx and Rx near the top and bottom of the lysimeter.

Since the study in Appendix A only considered homogeneous soils, we want to extend
our investigation to realistic synthetic lysimeter data, based on a heterogenous soil. For this
we first have to be able to generate them with a 3D lysimeter model. After that we will
investigate the influence of a decreasing model complexity with heterogenoeus soil on the
simulated data. Finally, we perform a 2.5D GPR FWI on realistic synthetic lysimeter data.
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6. Towards 3D GPR FWI for lysimeter investigation

Figure 6.1.: Preliminary experimental lysimeter FWI results for a) "r and b) � distribution
for Kaldenkirchen soil. Tx and Rx locations are indicated with circles and
crosses, respectively. Adapted from (Klotzsche, 2023).

6.1. 3D lysimeter model using 2.5D soil model

The model setup as introduced in Chapter 3 uses as the initial input a 2D permittivity and
conductivity model (e.g., Figure 6.2a and b) that is extended in the perpendicular direction
to build the entire 2.5D forward modeling domain. This is not suitable for the lysimeter
because of its circular structure. However, it would be difficult to adjust the model building
and expansion in the perpendicular plane to create a cylinder. Note that the resolution of the
2D models is 3 cm, resulting in an inversion cell size of 3 cm, while the cell size during the
forward modeling is 1 cm. Furthermore, we use 180 cells in the perpendicular direction,
to fully integrate the hollow cylinder that forms the lysimeter.

Therefore, we adapted the 2.5D model to realistic model lysimeter. We use the option
of adding geometries, as used in Chapter 3 for borehole and antenna integration. For this we
introduced the hollow cylinder as a new geometry class to gprMax, to insert hollow cylinder
geometries in the 3D model (see Figure 6.2). With this it is possible to overwrite preexisting
medium parameters from the general 2.5D model building process with polyvinyl chloride
(PVC) ("r = 4; � = 1 mS/m (derived from Mujal-Rosas et al., 2015), colored in blue in
Figure 6.2c) as a lysimeter casing (3 cm thick) to form a soil column and also to add air
(colored in grey in Figure 6.2c) around it. Note that we also added a 3 cm thick PVC plate
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6.2. Influence of decreasing model complexity
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Figure 6.2.: Synthetic lysimeter model setup. a) 2D "r and b) 2D � distributions for the
synthetic lysimeter model, and c) a half of the 3D lysimeter model for permit-
tivity. Note the logarithmic scale for the conductivity image. Input models are
based on the Widen data (Klotzsche et al., 2012) and downscaled to the size of
a lysimeter. The transmitter and receiver positions are marked with circles and
crosses, respectively. We will later investigate GPR data from the transmitter
marked with the star (Tx 1, Tx 6, and Tx 15).

at the top and bottom of the soil column, followed by air. We use a similar model as in
Chapter 5 was used (see Figure 6.2a and b). Note that we show in Figure 6.2c only a 3D
model for permittivity but we used the same setup for conductivity.

Similar to Chapter 5, the area enclosed by the Tx and Rx has a height of 1.5 m and a
width of 1.08 m, and is located at the center of the modeling domain. In order to simplify
the description in the model, we have set the coordinate origin to the position of the first
transmitter. The Tx and Rx spacing are 0.05 m and 0.02 m for the multi-offset gathers,
respectively, and we applied a reciprocal setup, which means that we switched the sides of
Tx and Rx and repeated the measurements. Note that the Tx and Rx are placed in air and
directly coupled to the PVC of the lysimeter. In the following, we consider a time window
of 35 ns, while the time step of the forward simulation is 0.019258 ns.

6.2. Influence of decreasing model complexity

This section presents a brief study examining the impact of decreasing model complexity
on the data. We tested three different scenarios which are all based on Figure 6.2a and b:
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6. Towards 3D GPR FWI for lysimeter investigation

• Case A: This case represents the full lysimeter model. The 2D models have been
extended to a 2.5D model, with the addition of a PVC hollow cylinder and PVC
shields at the top and bottom. Air was added at the sides of the lysimeter as well as
above and below (see Figure 6.3a).

• Case B: The 2D models have been extended to a 2.5D model, with the addition of a
PVC hollow cylinder and PVC shields at the top and bottom. Air was added above
and below the lysimeter (see Figure 6.3b).

• Case C: The 2D models have been extended to a 2.5D model, with the addition of
PVC shields at the top and bottom. Air was added above and below the lysimeter
(see Figure 6.3d).

Examining the GPR data, we can see that the air wave within the 9 ns to 14 ns time
frame is only visible in case A( Figure 6.3a), marked with a rectangle. Additionally, there
are noticeable differences between 20 ns and 25 ns, when we compare case a with case B
and C (Figure 6.3b and d). While we still see a reflection from a depth of 0.4 m till 1.2 m,
marked with an oval, in case B similar to case A, we can not see it in case C. Note that
the reflection in case B is continuous, while it is interrupted in case A. Both cases A and B
show two distinct reflections, marked by a starting at 20 ns and 25 ns up to 30 ns starting
at the top and bottom moving towards the center, whereas in case C only one reflection is
visible. Note that the reflections for case B are slightly earlier than for case A. Furthermore,
the reflection of case C exhibits a higher amplitude. The plots in Figure 6.3c and e highlight
the major differences in the model, particularly in the first-arrival between 15 ns and 20 ns,
mostly in amplitude. A reflection from the top and bottom, forming a crossing, is especially
visible in the difference for case C.
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Figure 6.3.: Simulated data for transmitter 15 at the lysimeter using Figure 6.2 as a basis
with reductions of model geometries. a) Case A, the full complex model, b)
case B, only air at the top and bottom of the lysimeter with and including the
full PVC casing, and d) case C, only air at the top and bottom of the lysimeter
and only the top and bottom PVC shields. Additionally, the difference from b)
and d) to a) in c) and e), respectively.
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6. Towards 3D GPR FWI for lysimeter investigation

6.3. 2.5D FWI of synthetic 3D lysimeter data

As shown earlier, a full 3D model including the PVC and air around the lysimeter is nec-
essary to reliably reproduce all wave types related to the geometry. Therefore, we included
these geometries in the synthetic GPR data generation (based on Figure 6.2), as well as in
the forward model of the 2.5D GPR FWI, to investigate its reconstruction capacities. We
were able to show in Chapter 5, that a frequency hopping starting model may not be essen-
tial for a source wavelet with a center frequency of 450 MHz, but can improve the inversion
results. Hence, we base the starting model for the 2.5D FWI on the RB-IT4 approach for
450 MHz of Section 5.2 (Figure 6.4). Note that we use the same source wavelet for the
2.5D GPR FWI as for the synthetic GPR data generation and a perturbation factor for the
permittivity of 1e-2 and 5 for the conductivity.

The inversion results for permittivity show an exceptional good convergence of the
starting model towards the original input model over the entire domain (Figure 6.4a). It is
especially noticeable, that most parts of the curvature in the starting model between 0 m
and 0.2 m has been reduced in the 2.5D FWI results. Note that the "r mean absolute error
(MAE) is 0.2083 and the "r standard deviation of the absolute error (STDAE) is 0.2273.
Both are exceptionally low, and no model reconstruction of the similar model without the
lysimeter geometry in the 2D case (see Table 5.3) was able to yield such a good fit.

Also the conductivity shows a good convergence towards the original model (see Fig-
ure 6.4b). The thickness of the high conductivity layer between 0 m and 0.3 m depth at
the center of the domain is accurately reconstructed, with a slight curve at the edges of the
domain. The layer between 0.3 m and 0.9 m fits well in its intensity. In contrast to the 2D
reconstructions for 450 MHz (see Figure 5.3), even at the borders of the domain. Note here,
that the higher conductivity lenses in this layer at 0.4 m distance and at the right border are
shifted to the left side of the domain, which could be related to the inversion parameters.
The structures from 0.9 m to 1.5 m are reconstructed well. In particular, the lowest layer,
between 1.4 m and 1.5 m, was better reconstructed than what was observed in the previ-
ously mentioned 2D results. Note that we use a gradient normalization. Furthermore, it
is important to note the existence of vertical artefacts in the conductivity results between
0.3 m and 0.9 m at the left and right domain borders. Additional investigation is required
to determine their origins. Nevertheless, the MAE for the conductivity is 1.4243 with a
STDAE 2.8916. Similar to the values for permittivity, they are particularly low and yield
better results than any 2D case (see Table 5.3).
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6.3. 2.5D FWI of synthetic 3D lysimeter data
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Figure 6.4.: Permittivity and conductivity distributions for the synthetic aquifer model
(Original), 2.5D FWI starting model (based on Figure 5.3a) RB-IT4) and final
2.5D FWI inversion results (2.5D FWI). The transmitter and receiver positions
are marked with circles and crosses, respectively.

To evaluate the model update, according to the four criteria for FWI by Klotzsche
et al. (2019b), we compare the initial and final gradients (see Figure 6.5) and examine the
remaining gradients. We see only a very small remaining permittivity gradient around
0.3 m depth in Figure 6.5b, indicating very good inversion results that explain the observed
data well. In contrast, there is still a small gradient in the conductivity over the entire
domain visible. The remaining conductivity gradient is highest between a depth of 0.3 m
and 0.9 m, an area where we already saw in Figure 6.4 that there is still a mismatch with
the structures. A possible explanation could be, that the perturbation factors for the step
length of the conductivity are too low and should be increased to get a better convergence.
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Figure 6.5.: Initial and final gradients of the 2.5D GPR FWI of a lysimeter, with the initial
gradients of permittivity in a) and conductivity in c) and the final gradients
of permittivity in b) and the conductivity in d). The transmitter and receiver
positions are marked with circles and crosses, respectively.

The data comparison of the transmitter position at the top of the lysimeter, the high
permittivity layer and the middle of the lysimeter shows the capacities of the 2.5D FWI (see
Figure 6.6). The original data and the final 2.5D FWI results show a very small mismatch.
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6.3. 2.5D FWI of synthetic 3D lysimeter data

Synthetic data Full-waveform modeled data Difference data
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Figure 6.6.: Data comparison between original synthetic data and final 2.5D FWI data for
transmitter 1, 6, and 15 (depth marked as a star). Additionally, the difference
between the datasets was calculated.

Only the difference plots allow us to examine the difference of the results in detail. For
all data, we can see no difference in the first 15 ns, indicating a good fit for the air waves
(see Figure A.2). We can observe for both transmitter 1 and 6 (see Figure 6.6a and b) a
higher error in the first 0.5 m. A detailed investigation for the individual traces (not shown)
revealed, that the amplitude of the GPR data is fitted well, but there is a small time shift
in the upper part, resulting in the higher errors. The errors below are based on a small
amplitude difference. The overall error for transmitter 15 is low and mostly based on a
small amplitude difference. Note that the coefficient of determination r2, the square of the
correlation coefficient, for all traces combined is 0.9985, indicating an exceptionally good
fit to the data. This is also true for transmitters 1, 6, and 15, where it is also close to 1.
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Figure 6.7.: Root mean square error (RMS) of the final 2.5D GPR FWI results for every
transmitter receiver combination. a) The transmitter is placed on the left side
of the lysimeter and b) on the right side.

Previously, higher errors were observed in the traces in the upper area for transmitter
1 and 6. This is also reflected in the RMS distribution (Figure 6.7), where we calculated
the individual RMS for every transmitter receiver combination. A higher trace RMS is
observed when the transmitter and receiver are within the first 0.5 m which can be traced
back to a time shift, resulting from the permittivities. Furthermore, the trace RMS is higher
and when Tx and Rx are placed more central. This can be attributed to more reflections
from the top and bottom in the observed time window. A consistently lower trace RMS is
visible for lower transmitter and receiver positions. Note that the total RMS was reduced
from 6.71e-6 with the starting model to 5.36e-07 with the final inversion results, a reduction
of 92%.

6.4. Conclusions and outlook

In this chapter, we have introduced a new geometric structure, the hollow cylinder, into
the electromagnetic simulation software gprMax to invert for more complex geometrical
structures like lysimeters. This allowed us to use our existing forward model construction
routine and still create cylindrical objects. In addition, we successfully simulated various
GPR waves, including air, direct, and reflected waves, at a lysimeter. Our results highlight
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the importance of including the complete lysimeter structure, including both the PVC cas-
ing and the surrounding air, to capture all wave types. We also demonstrated the advance-
ments with our new additions by performing a preliminary inversion of synthetic 3D GPR
lysimeter data using a source wavelet with a center frequency of 450 MHz. While there
is still some room for refinement in the inversion parameters, the results were remarkably
good. Including the lysimeter structure within the forward model, we were able to recon-
struct permittivity and conductivity in a way, that exceeded the reconstruction of the 2D
case shown in Figure 5.3. Furthermore, it shows a good agreement with the data, including
late arrival events.

In the future, we would like to apply this new development to measured lysimeter data,
starting from low frequencies to high frequencies, demonstrating a sub decimeter-scale re-
construction with measured data. Since the forward modeling tool gprMax is based on a
rectangular equidistant grid of Yee cells, a staircasing error is introduced during the im-
plementation of cylindrical structures. Note that we have not investigated this effect on the
reflection of electromagnetic waves in the cylindrical lysimeter in this study. To achieve a
higher simulation accuracy, we want to investigate it and also possible solutions for imple-
menting subgrids for the lysimeter walls to reduce these staircasing errors. Furthermore,
antenna models could be included to enhance the source wavelet estimation and with this
the inversion results. Finally, we want to develop this 2.5D inversion into a full 3D inver-
sion. For this we need more GPR data, which could be acquired with antennas of a multi
channel system placed all around the lysimeter (Steinbeck et al., 2023).
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In this chapter, the main findings on the advances and applications of the newly developed
2.5D GPR FWI are presented, ranging from aquifer characterization to the now possible
inversion of GPR data measured at lysimeters. The outlook summarizes possible future
research topics.

7.1. Conclusions

This doctoral thesis presents a thorough investigation into the improvement of 2.5D ground
penetrating radar (GPR) full-waveform inversion (FWI) techniques towards 3D. The goal is
to enhance subsurface imaging resolution, particularly through the incorporation of com-
plex geometries, e.g., borehole, antenna, and lysimeter geometries in forward modeling,
and the use of high-frequency signals. It presents a series of focused studies to enhance our
comprehension of high resolution subsurface characterization and tackles the difficulties
that arise from such efforts.

In a first study, we use a synthetic 2.5D model with boreholes and antennas based on
2D GPR FWI crosshole results to test the capabilities of a newly developed 2.5D GPR FWI
(Chapter 3). With this FWI it is now possible to include boreholes and finite-length antenna
models in the forward model, which has become feasible through the use of subgrids im-
plemented in the 3D forward solver gprMax. Source wavelet estimations based on different
forward models showed a better reconstruction with more complex models. Therefore, we
investigate the reconstructions of ray-based inversion (RBI), 2D FWI, 2.5D FWI, 2.5D FWI
with borehole, and 2.5D FWI with borehole and antenna to determine the influence of bore-
hole and antenna geometries and high angle data on the results. We observed limitations of
the RBI reconstructions and negligible differences for the different FWI approaches when
applied to high-angle data. The results showed that including detailed models of bore-
holes and antennas within the forward modeling significantly improved the reconstructions
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at conductivity, particularly in zones of high contrast. Furthermore, the RMS reduction
from the RBI starting model to the final FWI results increased continuously with the more
complex FWI, from 72.80% up to 81.47%. However, the use of more complex models in
2.5D FWI results in significantly higher computational requirements, which highlights a
necessary trade-off between computational requirements and gain in reconstruction accu-
racy. Therefore, we recommend using the 2.5D FWI BH for the time being if high-contrast
zones are expected, particularly in conductivity. If the main interest is in investigating per-
mittivity structures and high-contrast zones are not expected, the 2D FWI is adequate as
it already provides significantly better results than the RBI and also requires significantly
less computational resources than the 2.5D FWI BH.

Moving from a synthetic dataset to measured data, we evaluate in Chapter 4 the appli-
cation of 2.5D modeling with boreholes and antennas and 2.5D FWI with these geometries.
The dataset includes data measured in both unsaturated and saturated soils at the Widen test
site in Switzerland. The analysis demonstrates an improvement in source wavelet estima-
tions for transmitter-receiver positions where at least one of them is located in a water filled
borehole. Nevertheless, we still observed challenges with the current antenna model to ac-
count for the different coupling in air filled boreholes. It indicates that it can be possible to
perform 2.5D GPR FWI studies with only one source wavelet for all unsaturated-saturated
transmitter-receiver position combinations if the forward model includes both boreholes
and antenna models. Therefore, we peformed a 2.5D FWI with boreholes and antenna
models and one source wavelet and observed similar reconstruction results as in previous
studies for the saturated zone. To obtain reliable results in the unsaturated zone, it is nec-
essary to update the antenna model.

We investigate in Chapter 5, how high-frequency GPR FWI can be used for higher res-
olution reconstructions. The higher frequency data causes a stricter definition of the starting
model for the FWI. The RBI starting models are not sufficient anymore above 450 MHz,
whereas frequency hopping approaches result in suitable starting models. We investigated
the influence of time shifts in the source wavelet and observed, that time shifts of 5% cause
the inversion to fail, while the results for +5% time shifts are still acceptable to obtain a
good inversion result. Amplitude variations cause a lower electrical conductivity result for
a lower amplitude and higher values for a higher amplitude, but still allow reliable conclu-
sions to be drawn about the model. Finally, we were able to show an improved reconstruc-
tion of small-scale variations in the model by using higher frequencies with a stochastic
variant of our input model. Overall, we can conclude that the GPR FWI can reconstruct
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finer structures in the subsurface as using lower frequencies, but also special care is needed
in the choice of the starting model definition approach and to minimize the errors on the
effective source wavelet. We have provided guidelines for applying a frequency-hopping
approach that combines the advantages of both time and frequency domains. With this
approach, the half-wavelength criterion can be better constrained to ensure reliable FWI
results when using high-frequency data.

In the last study, we present in Chapter 6 a novel approach for applying 2.5D GPR
FWI to lysimeter data. We introduced the hollow cylinder as a new geometric structure in
gprMax. By using a realistic soil model, we were able to demonstrate the ability to account
for different reflections in a lysimeter. Then, we applied the 2.5D GPR FWI to realistic
synthetic lysimeter data using a source wavelet with a center frequency of 450 MHz. The
results demonstrate a remarkably good fit to the data. Furthermore, the results for permit-
tivity and conductivity inversion exceeded those of the 2D case.

In conclusion, this thesis highlights the critical role of advanced 3D modeling and the
use of high-frequency data in achieving high resolution GPR FWI subsurface reconstruc-
tions. This doctoral thesis offers convincing evidence to support the use of 2.5D FWI for
measured data, because of superior inversion results that are critical for accurate model-
ing of critical zone processes. These insights provide a foundational framework for future
research in high resolution subsurface imaging.

7.2. Outlook

Several key areas have been identified for future research and development. During the
course of this doctoral thesis, it became clear that a particularly important goal is the op-
timization of the code of the 2.5D GPR FWI. A lower computational burden will increase
the flexibility and scientific scope of GPR FWI and researchers without access to high-
performance computers would be able to use GPR FWI. This optimization has to include a
detailed evaluation of the current use of MPI and the potential of implementing more code
with pre-compile techniques such as Cython or just-in-time compilation techniques such
as numba. Additionally, we aim to adapt the FWI for GPUs to reduce computation time,
taking advantage of gprMax’s support for GPU-accelerated computation of the FDTD. It
is important to note that the current GPU gprMax version does not support subgrids.
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Currently, the inversion model is not updated in areas that include subgrids. This is
because subgrids are currently only used around the antenna where a transmitter-receiver
muting is regularly used. However, we plan to implement the inclusion of subgrids within
the inversion domain. This would be particularly useful for refining the representation of
the capillary fringe, which is currently simulated more abruptly than it is in reality. The use
of a subgrid could reduce errors in the simulation by conducting a smoothing of the cells
of the capillary fringe in the subgrid.

In all of the FWI studies conducted in this doctoral thesis and other related studies,
we have observed challenges in determining appropriate perturbation factors for calculat-
ing the gradient step length. To overcome this problem, we want to investigate different
seismic FWI approaches or even artificial intelligence based techniques for the step length
calculation.

Another area of ongoing development is the refinement of antenna models. We plan
to collaborate with experts in the field, such as Peter Annan, and explore optimization
techniques for antenna models (e.g., Warren and Giannopoulos, 2011; Stadler and Igel,
2018; Giannakis et al., 2019; Stadler and Igel, 2022; Patsia et al., 2023). Specially, for
a variable aquifer system (e.g., Chapter 4), we aim to achieve better results in the source
wavelet estimation using an adapted antenna model. Furthermore, additional GPR data,
such as those measured in the peatlands of the Ahlenmoor, Germany, can benefit from the
more realistic forward model, as it increases the accuracy of the inversion.

We aim to expand the use of 2.5D GPR FWI beyond crosshole and lysimeter appli-
cations to include a wider range of GPR applications. For instance, it could be applied
to horizontal boreholes, such as those installed in the minirhizotron facility in Selhausen,
Germany. This facility utilized to monitor small-scale processes within the soil-plant-
atmosphere continuum (Lärm et al., 2023; Lärm et al., 2024; Klotzsche et al., 2019a).
Using GPR FWI would allow us to further investigate the different small-scale processes.
Until now on-ground GPR data alone could not be used for a valid conductivity recon-
struction with the 2D GPR FWI, as the far-field assumptions of the 3D-to-2D correction
are invalid for this case. To address this issue, Domenzain et al. (2020) proposed a joint
inversion of GPR and electrical resistivity data. The 3D forward model of the 2.5D GPR
FWI can account for the near-field effects of the antenna. Therefore, we want to extend it
for on-ground GPR data and test it on WARR measurements conducted near Thyrow, Ger-
many. With these new options for GPR FWI, we hope to expand the use of the technique
in geophysical exploration for a variety of research questions.
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The next step in the development of the GPR FWI is to expand the 2.5D inversion
to a full 3D inversion. This task involves investigating the calculation of new 3D GPR
FWI gradients. We hope to gain more valuable information on 3D gradient calculation
from the 3D seismic FWI and try to adapt it to GPR FWI. Given the increased model and
inversion complexity of the full 3D GPR FWI, we expect significantly higher computational
requirements. With the installation of exascale computers worldwide, we are excited to
take advantage of this new computing power. The GPR data for a 3D GPR FWI could
be acquired with antennas of a multichannel system placed around a lysimeter (Steinbeck
et al., 2023). It is important to note that managing the large amount of measurement data
using such a setup will require targeted big data management.
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A. Appendix A: Using full-wave
inversion techniques to image soil
properties and water content at
high spatial resolution at the
lysimeter scale1

A.1. Abstract

Resource efficient management of soils requires detailed information on the spatial and tem-
poral variation of soil properties and soil water content (SWC). Cropped lysimeters have
been widely used to analyze and assess management practices. In this paper, we present
theoretical analyses of using a full-wave form inversion (FWI) approach to analyze ground
penetrating radar (GPR) data in order to obtain soil water content estimates in cylindrical
lysimeters. We performed synthetic studies using a 3D finite-difference time-domain for-
ward modeling tool to investigate wave propagation effects in order to better constrain FWI
and thus soil water content estimates. Various scenarios of changing soil properties, differ-
ent interfaces of the soil cylinder and antennae frequencies were considered. Our studies
show that it is highly important to incorporate the geometry of the 3D lysimeter into the
FWI inversion approach especially for dry soil conditions and higher frequency antennae.
Comparison of the various wave types observed by the synthetic findings with experimen-
tal GPR data confirmed these observations. To achieve the best possible resolution of a 3D
distribution of soil electromagnetic state variables (permittivity and electrical conductivity)

1adapted from A. Klotzsche, K. Havas, D. Hoven, and H. Vereecken (in preparation). “Using full-wave
inversion techniques to image soil properties and water content at high spatial resolution at the lysimeter
scale”. Planned for publication in IEEE.
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including soil water content, two aspects need to be considered. First the differentiation of
the various wave types is easier for saturated than for dry soils, although the attenuation is
increasing for saturated soils. Second, only FWI approaches can handle and use the inter-
fering wave types and relate them to high resolution soil information such as permittivity
and electrical conductivity.

A.2. Introduction

Ground penetrating radar (GPR) has the potential to provide images of soil properties and
state variables such as water content (SWC) with the highest resolution among commonly
near surface geophysical methods because of the applied high frequencies. This becomes
important especially since the near surface stores many resources such as soil water, soil
carbon and nutrients which play a key role in the challenges related to the environmen-
tal changes (Binley et al., 2015). Therefore, an improved understanding of soil structures
and heterogeneities is necessary to improve agricultural management and soil-root models,
among other things. Especially, small-scale heterogeneities within the subsurface can have
a significant impact on, for example, flow and transport processes (Haarder et al., 2011;
Binley et al., 2015) or soil-plant interactions (Blanchy et al., 2020; Lärm et al., 2024).
Geophysical techniques, including electromagnetic induction (EMI), electrical resistivity
tomography (ERT), and GPR have been extensively studied and employed to improve sub-
surface characterization and to better understand associated processes (Binley et al., 2015).
Thereby, GPR utilizes high frequency electromagnetic (EM) pulses, allowing it to pro-
vide subsurface details with higher resolution compared to most other geophysical methods
(Klotzsche et al., 2018). GPR can provide both the velocity v and the attenuation of the EM
waves in the investigated medium through which the waves travels. The velocity and atten-
uation of the waves can be converted into the relative electromagnetic permittivity "r and
electrical conductivity � (Jol, 2009). These properties are strongly linked to hydrogeologi-
cal parameters such as porosity, clay content and soil state variables such was water content.
The versatility of GPR makes it applicable to a range of engineering, geological, hydrolog-
ical and environmental applications (e.g., Paz et al. (2017)). In the past ten years, the GPR
full-waveform inversion (FWI) approach has advanced significant, with widespread usage
of time-domain crosshole applications. A detailed overview of these developments and the
various applications is provided by Klotzsche et al. (2019b). Most of these studies used
frequencies ranging between 100 and 250 MHz and successfully resolved structures on the
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decimeter scale. Although FWI is a promising inversion method, it still has limitations.
Data collection needs to be accurate, and the data pre-processing must be done carefully
to provide sufficiently good initial models. For using higher frequencies for the FWI, es-
pecially, the starting model definition will be challenging because of the decreased wave
length of the data and the requirements to meet the half- wavelength criterion. Hoven et
al. (2023) performed for the first time 2D GPR FWI to investigate the opportunities and
challenges associated with high frequency FWI by using synthetic data of up to 700 MHz.
It was shown that defining the initial values of permittivity and electrical conductivity to-
mograms and the estimation of the effective source wavelet become more difficult for the
higher frequency data, leading to a greater likelihood of errors in the tomograms.

Thus, in order to apply the FWI to higher frequency experimental GPR data needed to
obtain the highest possible spatial resolution, we need to understand effects that should be
considered in the starting model definition to guarantee a stable FWI. Therefore, a compre-
hensive investigation of relevant wave phenomena resulting from the setup and the require-
ment for 3D modeling is necessary. Lysimeters (soil columns) are frequently utilized in soil
research to study flow and transport processes in soils. Lysimeters can either be packed or
filled with undisturbed soil and enable flow and transport studies under controlled condi-
tions (Pütz et al., 2018). Applications of geophysical methods to lysimeters are limited
in number and were mainly focused on ERT (e.g., Garré et al. (2010) and Bechtold et al.
(2011)). GPR data typically are acquired either on top of the lysimeter constructed in metal
or around the lysimeter when the material is PVC. Stoffregen et al. (2002) was one of the
first performing GPR measurements on top of a lysimeter to investigate SWC variations.
While Schmalholz et al. (2004) employed 1000 MHz multi-offset data around the lysime-
ter and showed flow and transport patterns with a resolution of ∼0.3 m using ray-based
inversion. Instead of using lysimeters, rectangular tanks, in which wave propagation can
be investigated more easily, have been employed to study alterations in soils. For example,
Mangel et al., 2012 applied multi-offset GPR to monitor infiltration fronts, whereas Glaser
et al. (2012) examined the influence of ethanol releases on the GPR signals.

Here, we aim to investigate and improve our understanding of the factors to be consid-
ered prior to employing high frequency GPR using cylindrical lysimeter and utilizing the
FWI for 3D soil characterization with a spatial resolution down to the centimeter-scale. We
focus on understanding wave propagations effects related to the lysimeter casing, as well as
disentangling the various types of waves and their interaction in the GPR data caused by the
cylindrical setup. Therefore, high resolution 3D forward modeling is conducted to examine
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the impact of varying frequencies, soil conditions (dry with no SWC and fully saturated),
antenna placement, PVC casing, and model configuration. A comparison with field data
demonstrates the necessity of enhancing our understanding to untangle the effects of wave
propagation and analyze the data for realistic soil permittivity and electrical conductivity
distributions.

A.3. Materials and methods

A.3.1. Realistic synthetic lysimeter model setup

Since full-waveform inversion approaches require a large amount of data with many differ-
ent angles, this study focus on multi-offset GPR data, where the transmitter antenna (Tx)
and the receiver antenna (Rx) are positioned on opposite sides of a lysimeter. While the
Tx remains fixed at a specific location on the lysimeter wall, the Rx is subsequently moved
to the next location with a defined constant spacing. This kind of measurement setup is
referred to multi offset gather (MOG). This procedure is repeated for many different Tx
locations, resulting in a dense ray-coverage in the soil column. This technique is similar
to the multi-offset gathers used in crosshole scenarios (Paz et al., 2017; Klotzsche et al.,
2019b). The synthetic data is simulated using the 3D EM forward model gprMax (ad-
ditional details can be found in Warren et al. (2016)). This open-source software uses the
FDTD technique to numerical model EM wave propagation using Maxwells equations. For
the complex simulations the high-performance cluster JURECA is used (Jülich Supercom-
puting Centre, 2016).

The model domain is 2.2 m by 2.2 m by 2.5 m. To avoid numerical artefacts and signal
dispersion especially for the high frequency data, a cell size of 0.002 m was used. A cylinder
was placed in the middle of the model to represent the lysimeter with a height of 1.5 m and
a diameter of 1.2 m (Figure A.1). For the tests using a PCV casing, the inner diameter
was reduced to 1.16 m to consider a wall thickness of 2 cm (blue layer in Figure A.1). As
permittivity of the PVC 3.3 was chosen (Table A.1). For the perfect matched layers, which
are part of the model, 10 cell were implemented. As source pulse a Ricker wavelet was
used with a center frequencies fc of 500 MHz or 800 MHz. The Tx antennae was placed
either at the middle or at the top part of the column’s side. The Rx array is placed vertically
at the opposite side of the examined soil body with a spacing of 0.02 m resulting in total in
76 traces. The material inside the lysimeter is described with either dry or saturated sand.
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Figure A.1.: Schematic 3D geometry setup of the lysimeter model. Lysimeter height and
diameter are 1.5 m and 1.2 m, respectively. PVC lysimeter’s wall (blue) around
the soil (grey) with transmitter (light blue star) and receiver line (red rectan-
gular) on the opposite side of the column. Around the lysimeter the domain is
filled with air and surrounded with PMLs on the side of the cube. Visualiza-
tions are performed with Paraview.

Table A.1 presents the related EM wave velocity in the soil vsoil and corresponding
wavelength �. As saturated sand has a higher permittivity than dry sand, the velocity and
the wavelength of the EM wave are smaller. The wavelength of the saturated sand is twice
that of the dry sand. Since resolution is directly related to the wavelength, structures can
be better imaged in a saturated media. However, it has the drawback that the EM waves
attenuate faster (Jol, 2009). Note that in experimental data for the same antennae frequency
often a reduction of the fc with increasing permittivity can be observed.

Table A.1.: Medium properties of the synthetic model. The wavelength is calculated using
� = vsoil

f
and frequency of 500 MHz.

Dry sand Saturated sand PVC
"r [-] 4 20 3.3

vsoil [m/ns] 0.15 0.067 0.17
�soil [m] 0.3 0.134 0.33
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A.3.2. Expected ray-paths and travel-times for the synthetic case

Considering the geometry of the lysimeter several wave types, i.e., air, direct and reflected
waves, can be expected and should be investigated. Depending on the medium properties
the expected travel times of the direct wave (DW), the air wave (AW), which can go around
the lysimeter, and reflected waves (RW) measured at the Rx can interfere (Table A.2). The
AW travels around the lysimeter walls and on top and bottom of the lysimeter in air. While
the DW propagates directly through the media from the Tx to Rx, the RW are waves which
are according to reflections coefficients back reflected into the medium and occur at layer
boundaries such lysimeter walls. For different Tx and Rx location, the ray-path can be
different and hence also reflections and refractions in the data can occur and interfere with
the direct wave (Figure A.2). Note that the lysimeters wall is 2 cm PVC, which is currently
not considered in these calculations of the travel times because of their minor impact but
should be considered for experimental data (4 cm of PVC relates to approximately 0.24 ns).
This will especially be challenging for the dry sand scenario, while for the saturated sand
case the AW will arrive earlier then the DW and RW. The wave arrivals in the dry sand
are earlier than in the saturated media (Table A.2). This can cause difficulties to detect the
individual arrival times, as in the dry sand the direct wave (D1) arrives just a few ns later
than the A1 and overlaps with A2. Reflections can occur either from the top/bottom (R1)
or from the sides (R2) of the lysimeter and can also possible Interference with the DW. In
most cases a back reflected direct wave should not interact with other events.

Table A.2.: Travel times TT of the expected ray-paths for a homogeneous sand model, when
the Tx (500 MHz) is placed on the middle and the top part of the column. As
air wave velocity 0.3 m/ns is used.

Tx position Wave type Distance [m] TT dry [ns] TT saturated [ns]
Middel A1 1.91 6.37 6.37
Middel A2 2.72 9.07 9.07
Middel D1 1.22 8.13 22.33
Middel R1 1.93 12.87 32.17
Middel R2 1.73 11.53 28.83
Middel 3*D1 3.66 24.39 60.99
Top A1 1.91 6.37 6.37
Top A3 1.22 4.07 4.07
Top D1 1.22 8.13 20.33
Top R1 3.24 21.66 54.00
Top R2 1.73 11.53 28.83
Top 3*D1 3.66 24.39 60.99
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Figure A.2.: Possible ray-paths for the lysimeter setup. Ray-paths for the case when Tx and
Rx are positioned a) at the middle and b) at the top of the lysimeter. Different
wave types are indicated A1, A2 and A3 for the air waves, D1 as the direct
wave (D1), and reflected waves from the bottom part of the column (R1) and
from the side (R2).

A.3.3. Experimental design of a sand filled lysimeter

To compare our synthetic observations with experimental data, we acquired MOG GPR
data acquired at an artificially sand filled lysimeter for both dry and saturated conditions.
The experimental PVC lysimeter had identical dimensions as the synthetic counterpart. The
bottom of the lysimeter was sealed using a perforated PVC plate to enable de-watering. The
holes with roughly 1 cm diameter were arranged in three different circles. The entire con-
struction was positioned on a PVC pallet with appropriate holes that matched those located
at the bottom of the lysimeter. Geotextile was positioned at the bottom of the lysimeter to
avoid loss of sand material. The lysimeter is positioned below a tent to protect it from pre-
cipitation. The lysimeter was packed with a mixture of different soil materials: fine sand
(MF36, grain size 0.125-0.25 mm), coarse sand (MF31 grain size 0.25-0.5 mm), pebbles
(between 2-5 cm) and moist loamy soil from Kaldenkirchen (Garré et al., 2010). Note that
inside the lysimeter, two layers with structures and objects were installed. Layer 1 of objects
is located at approximately a height of 0.75 m and Layer 2 at a height of 0.6 m (Figure A.3).
The single objects were wrapped in geotextile to guarantee their form and locations during
the filling process. Note that we chose such challenging structures to demonstrate the need
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of FWI methods to construct them and to investigate the existence of complicated wave
type interactions.

A.4. Results and discussion

A.4.1. Effects of lysimeter casing on wave propagation

To entangle the various wave types AW, DW and RW, models that systematically build
up from a single soil column towards a full covered lysimeter are tested. Using the de-
scribed model setup, homogeneous soils were tested, while three scenarios of casing were
investigated to estimate the effects related to the PVC covers:

• sand column: sand column without casing and air around it,
• sand in PVC lysimeter: sand column within PVC lysimeter and air around it,
• sand in PVC ring: sand column within PVC ring (no bottom and top cover) and air

around it.

A.4.1.1. Saturated sand scenario

As expected from the calculations, we see in all three scenarios first the arrival of the AW
and the DW can clearly be separated (Figure A.4a-c). The AW arrives approximately after
8-9 ns, while the DW arrives at around 20-23 ns for all receivers. The different AW arrivals
from different pathways are visible within the saturated system, e.g., there are diagonal
small amplitude arrivals around 10-14 ns (Figure A.4). The differences between stand-
alone column and PVC lysimeter or PVC ring can be seen on picture d) and e). The air
waves are more pronounced as in the soil column case and slightly latter detected caused by
the different permittivity of the PCV. The first detected direct wave arrives approximately
24 ns after the transmitter emitted the wave. The amplitudes are different in the middle
part of the lysimeter, than on the sides, as in the middle there is a strong positive amplitude
and on the upper and lower part of the column a negative amplitude can be noticed. For
both cases two diminished amplitude zones in the height of approximately 0.4 and 1.2
m can be observed. This phenomenon is probably caused by negative wave interference
effects, where two reflected wavefield interact and cancel each other. The reflections from
the top and bottom are hardly visible (Figure A.4d-e black circles) and are only visible by
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Figure A.3.: Experimental design of a lysimeter filled with different sand types and pat-
terns. Left part shows the pattern placing in Layer 1 including a picture from
the preparation of the different layers. GPR measurements were performed
section AA’ indicated by the dashed line. Right side shows the measurement
locations marked on the outer side of the land along the entire height of the
lysimeter. The distance between the marked lines is the outer diameter of the
column with 1.2 m. Tx and Rx spacing for the MOG measurements was 0.05
m. Tx locations at 0.1, 0.75 and 1.05 m are indicated by blue stars.
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subtracting both wavefield from each other (Figure A.4f). Thereby, we can notice that the
diagonal reflections between 25-30 ns are stronger in the case of the lysimeter than without
the PVC covers on the top and bottom.

Figure A.4.: Synthetic GPR data for 500 MHz for a) saturated (wet) sand column, b) sat-
urated sand column in PVC lysimeter and c) saturated sand column in PVC
ring without bottom and top. Right side image plots represent differences in
reflections between d) sand column minus sand column in PVC lysimeter and
e) sand column minus sand column in PVC ring. f) Shows the difference be-
tween d) and e) to illustrate the effect of the bottom and top shielding. Tx is
located at the center of the column and indicated by a star. Rx positions are
placed at the opposite side using a spatial sampling interval of 0.02 m.

To understand the wave interference effects better, snapshots of the electromagnetic
wave propagation for the saturated sand lysimeter case are generated (Figure A.5). The
spherical shape of the wave-field can be clearly seen from time 1-21 ns, and the reflections
from the side of the Tx and the bottom and top. At later times (16 and 21 ns) the interfering
of the direct wave and the reflections from the boundaries are visible, where the reflections
from the side and top coincide in the middle of the lysimeter with the DW. Interesting to
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notice is the development of the complicated wavefield formed for the receiver close to the
top and bottom of the lysimeter, where the DW, AW and RW interfere.

Figure A.5.: Snapshot of the electromagnetic wave propagation for the Ez field inside the
saturated sand filled lysimeter using a Tx with 500 MHz positioned at the
middle of the lysimeter. Snapshots are shown every 5 ns starting with 1 ns.

A.4.1.2. Dry sand scenario

While already several interferences of wave types have been observed for the saturated
case, this becomes more complicated for the dry case (Figure A.6). The air waves arrive
the same time as for the saturated case, but the other wave types arrive and interfere much
earlier caused by the much higher velocity of the media. The AW and the DW are directly
interfering and can hardly be separated. The reflections are hard to distinguish, as mostly
the arrival times overlap, the air wave has the similar travel time as some of the direct waves.
Only in the difference plot, the effect of the PVC covers, and casing are visible (Figure A.6d
and e). The direct wave arrives around 12 ns for all three cases, as previously discussed
the PVC has a small effect on the travel times (0.24 ns longer for the EM waves to travel
through the PVC cover). The diagonals in Figure A.66d and e, starting from the top and
bottom of the image plot at approximately 16 ns, are reflections from the lids (R1). The
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amplitudes are stronger and more visible in the difference between the stand-alone dry sand
column and the soil in PVC lysimeter, therefore it can be assumed that those reflections are
caused by the PVC top and bottom covers (Figure A.6d). Comparing the amplitude of the
stand-alone column and the soil with the PVC ring, the amplitudes of the diagonals are
more reduced (Figure A.6e). The events after 28 ns are back reflected waves, which travel
once back and forth in the lysimeter.

Investigating the wave propagation over time for the dry sand cases (Figure A.7), we
can clearly see that the wave propagation is much faster as for the saturated case. Addition-
ally, the first wavefront propagates between 1-10 ns, the spherical shape is nicely recog-
nizable at the snapshot of 5 ns. The wave interferences are clearly visible at 11 and 16 ns,
e.g., the interference of air waves with the direct wave. At around 21 ns, the back-reflected
waves have already reached the Tx side of the lysimeter, with a reduced amplitude caused
by the attenuation of the wave. Interesting to notice is the difference frequency content of
the dry and saturated cases (compare Figures A.4 and A.6). The phases of the waveforms
are longer for the dry cases and shorter for the saturated cases indicating a lower frequency
content of the dry case data.

A.4.2. Antenna effects on wave propagation

A.4.2.1. Effects of transmitter position

This section compares the effect of the EM wave propagation and related reflections from
two different Tx (500 MHz) positions. Both dry and saturated scenarios are considered for
the lysimeter case with PVC cover all around the soil column (Figure A.8). When Tx is
positioned in the center of the lysimeter at 0.75 m height, the reflections are symmetrical,
and the earliest detected direct wave is clearly visible at the same height as the Tx (Fig-
ure A.8a and c). The upper and lower PVC covers cause the transverse reflections, which
interfere with each other in the center of the lysimeter. When Tx is positioned at the top
of the lysimeter, the reflected wave at the bottom exhibits diagonal arrival features (Fig-
ure A.8b and d). The air wave travels atop the lysimeter (A3), making it the fastest wave
with a travel-time of about 8 ns. When Tx is positioned at the top, the bottom reflected
waves have diagonal feature of arrival.

For the saturated scenario, it is possible to distinguish the AW and the RW, while
in the dry scenario both wave types interfere. Especially in the dry case, it is difficult to
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Figure A.6.: Synthetic GPR data for 500 MHz for a) dry sand column, b) dry sand column in
PVC lysimeter and c) dry sand column in PVC ring without bottom and top.
Right side image plots represent differences in reflections d) between sand
column minus sand column in PVC lysimeter and e) between sand column
minus sand column in PVC ring. Tx is located at the center of the column and
indicated by a star. Rx positions are placed at the opposite side using a spatial
sampling interval of 0.02 m.
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Figure A.7.: Snapshot of the electromagnetic wave propagation for the Ez field inside the
dry sand filled lysimeter using a Tx with 500 MHz positioned at the middle of
the lysimeter. Snapshots are shown every 5 ns starting with 1 ns.

distinguish between the direct wave and the AW below a height of 0.8 m. However, it is
likely that the AW has a minor effect on the first breaks. The reflection caused by the bottom
of the lysimeter starts at 15-17 ns. It could be difficult to determine the precise time since
the direct and reflected waves from the bottom interfere in the lower part of the lysimeter.
Furthermore, it can be observed that the reflected waves have reduced amplitudes. It is
apparent that the reflected wave originated from the bottom diminishes as the Rx height
increase. After 30 ns, the back-reflected waves in the dry scenario are again visible.

For the saturated scenario, it is possible to differentiate the waveforms and the first
breaks from the Aws, and no impact should be anticipated. It is interesting to note that in
saturated conditions, the receivers in the top 0.4 m receive signals with lower amplitudes
compared to the receivers located below. Similar to the saturated case for the Tx position in
the center, at a certain distance from Rx, the signals polarization switches from a positive
to a negative amplitude. The same effect is visible when the Tx is situated at the top, at
a height of approximately 0.5. A significant positive amplitude is detectable at the top of
the lysimeter when the Tx is positioned there. The amplitude is a result of the different air
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Figure A.8.: Comparison of the different locations of Tx. Synthetic GPR data for 500 MHz
for a)-b) dry and c)-d) saturated conditions for Tx located in the middle and
the top of the lysimeter, respectively. Rx positions are placed at the opposite
side using a spatial sampling interval of 0.02 m.

wave interactions, which travel around and above the top of the lysimeter. This scenario
highlights that the position of the antennae and the PVC cover have an effect of the GPR
signals and must be considered.

A.4.2.2. Effects of transmitter frequency

Since we have noticed that the AW and DW cause interferences, particularly for dry sce-
narios, we explored whether using higher frequencies with shorter wavelengths can more
effectively separate these interferences. Note that higher frequencies will result in images
with higher spatial resolution. Therefore, we compare the dry and saturated scenarios for
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the Tx located at the center of the lysimeter (Figure A.9). It should be noted that the dif-
ferent frequencies results in different delays in picking the first break caused by the slowly
steady increase of the amplitude increase of the Ricker wavelet (not shown). For 500 MHz
this delay is about 4 ns, and for 800 MHz, it is around 2.3 ns. Compared to the lower
frequencies, higher frequencies result in a clearer distinction between the different wave
events (compare Figure A.9 to Figure A.8a and c). Additionally, the AWs attenuate more
quickly with the higher frequencies. When comparing the dry and saturated sand models,
it can also be observed that the polarization change in the amplitudes is more pronounced
in the saturated medium. In the saturated sand scenario, the gap in the data previously
observed around heights of 0.4 and 1.2 m is less pronounced in the 800 MHz data due to
the smaller wavelength. Overall, higher frequencies provide higher resolutions and more
precise arrival-time distinction, however, they attenuate faster, especially in saturated con-
ditions.

Figure A.9.: Comparison of a) dry and b) saturated wave propagation for a 800 MHz ricker
wavelet for Tx located in the center of a PVC lysimeter. Rx positions are placed
at the opposite side using a spatial sampling interval of 0.02 m.
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A.4.3. Experimental data measured data at a sand filled
lysimeter

The GPR data was measured with the 1000 MHz surface GPR antennae of the PulseEKKO
Pro System (Sensors & Software Inc.). It turned out that the central frequency fc of data
was around 1500 MHz in air, therefore, we refer in the following to 1500 MHz antennae.
Similar to the synthetic studies, we conducted MOG GPR measurements through NE-SW
direction. First, the Tx was placed on the NE side and the Rx was moved along the SW side.
Afterwards the sides were changed. The sampling rate dt was 0.05 ns and the time widow
was 30 ns. Tx and Rx spacing were 0.05 and 0.02 m, respectively. These measurements
were repeated for the dry sand and for a fully saturated sand scenario. To achieve this, tap
water was infiltrated on top of the lysimeter for an entire day to guarantee a fully saturated
system. To investigate the effects caused by the lysimeter setup, we will investigate three
positions of the MOGs along the lysimeter, marked with blue start in Figure A.3. Note only
a dewow filter and a time-zero correction was applied at the GPR data.

A.4.3.1. Wave propagation for dry and saturated conditions

To compare the experimental data with the modeling, we investigated the GPR data for
three positions at a height of 0.1, 0.75 and 1.05 m height at the lysimeter for dry and sat-
urated conditions (Figure A.10). Since the contrast permittivity between dry sand ("r ∼4)
and air ("r ∼1) is relatively small, the first arrivals for the Tx located at 0.75 m exhibit a
parabolic shape, similar to the synthetic study (Figure A.10b). The transverse reflections
from the top and bottom PVC covers can be identified from time 14-16 ns, which also shows
a good correspondence with Figure A.7a. Note that no clear air wave which travels around
the lysimeter is visible. Only for receivers located close to the bottom and the top of the
lysimeter show some features of air refracted waves. The corresponding frequency spectra
show two peaks, the highest is at approximately 1400 MHz and a second at around 1100
MHz (Figure A.10h). This effect is probably caused by coupling effects and the design of
the antennae (personal communication with Peter Annan).

For the fully saturated sand scenario, overall later wave arrivals and clear effects
caused by the layering can be noticed. Since the different materials have varying porosi-
ties, the effect of water filled pores is causing higher contrast in the layers. For example, the
boundary of the two coarse sand layers at around 1 m height can be seen (Figure A.10e),
while the layer between 0.5 m and 1 m height can be related to higher velocities, which
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is caused by the presence of the artificial designs. For the data of the Tx located at 0.1m
height (Figure A.10f), the impact of the pebbles embedded in the coarse sand can be noticed
for the Rx ranging from 0-0.2m. Additionally, amplitude changes related to the different
layering are present. The fully saturated data has overall a lower fc of the data of about
800 MHz, which is also indicated by the longer waveforms of the data (Figure A.10g-i).
When the lysimeter is filled with dry sand and air in the pores, the attenuation of the waves
is not as strong as in a saturated environment. Nevertheless, because of the higher relative
permittivity of water of ∼80 than air of 1, differences in porosity are easier detectable in
the saturated media. Note that for the saturated sand case the fc of the data is almost half
of that of the dry scenario. Considering the related medium properties (Table A.1), the re-
sulting wavelength is approximately the same of about 0.1 m indicating a similar possible
resolution.
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Figure A.10.: Overview of experimental GPR MOG data acquired for the dry and saturated
sand lysimeter. For both scenarios three different Tx location at a), d) 1.0 m,
b), e) 0.75 m and c), f) 0.1m height are plotted (indicated in Figure A.3)
Corresponding frequency spectra are shown in g)-i).

A.5. Conclusion

Since the emerge of FWI approaches for GPR data, the boundaries of the resolution limits
of the medium properties permittivity and electrical conductivity, and their reconstructions
have been continuously improved. To explore the potential for achieving centimeter-scale
high resolution and 3D reconstruction of these soil parameters and related soil states like
soil water content, this study investigates the effects that should be considered while using
high frequency GPR data acquired at a lysimeter. Because of the size and the possibil-
ity to position GPR antennas around the soil column, commercial surface high frequency
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antennas up to the GHz range can be considered, resulting in signal wavelengths in the
centimeter-scale. Caused by the special geometry of these lysimeters, various wave types
are caused by reflections and refractions on the top and bottom of the lysimeter, but also
from the surrounding walls. Next to direct waves, reflections from the top/bottom and
sides, and air waves traveling around the lysimeter can be noticed. By investigating dry
and saturated soil states, and GPR frequencies between 500 and 800 MHz, we observed
that especially for dry conditions, a clear separation of wave types is difficult and wave
interferences are observed. Not only that the direct wave and reflection are interfering, but
also air wave and direct wave overlapping provide difficulties to estimate first arrival times
of the wave which travel through the soil column.

Overall, the different wave types were best visible for fully saturated media because of
the high contrast in permittivity between air and water. Furthermore, significant issues arise
for the Tx and Rx near the top and bottom of the lysimeter, where airwaves which travel
on top of the layer boundaries and direct waves interfere. While in high frequency data the
different wave types can better be distinguished and more precise arrival-time distinction
is possible, the attenuation of the waves is faster, especially in saturated conditions. This
should be considered for real applications, especially for soil with an intermediate or higher
electrical conductivity.

Considering all the interfering wave types it becomes evident that standard ray-based
approaches, which mostly uses the first arrival times of the measured signals which travel
through the soil, can hardly resolve medium properties in a lysimeter. This is especially
the case for dry conditions, when the direct waves easily interference with the airwave.
Note that in FWI approaches reflected and refracted waves can be fitted if the contrasts
that cause these events are included in the model, e.g., top and bottom layer boundary
conditions and PVC casing. Our studies show that it is very important to incorporate the
lysimeter geometries in the 3D model for the FWI inversion approach to obtain reliable
inversion results. Generally, AW are more critical to fit since the modeling considers a point
source instead of a realistic antennae model. Therefore, a setup, where AW can clearly be
distinguished between DW and RW is favorable. So far, we have utilized point sources and
homogeneous media in the numerical study. Further work should investigate the integration
of antennae models and more complex medium parameters, which needed to be rejected in
this study because of the computational burdens (Giannakis et al., 2019; Mozaffari et al.,
2022; Warren and Giannopoulos, 2011).
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We performed first GPR measurements using a commercial 1000 MHz antennae for a
dry and a fully saturated artificially filled sand lysimeter. Overall, similar direct and reflect
waves can be noticed in the GPR data as shown by the synthetic studies. Excepts on the top
and bottom of the lysimeter, the air wave which travel around the lysimeter is not visible,
probably because of the shielding of the antennae. Especially for the saturated scenario,
various layers and changing wavefronts can be noticed caused by the different porosities
and hence soil water content of the sand. Additionally, these measurements show that with
increasing saturation the center frequency of the data is reduced by a factor of 2. Although
higher permittivity values related to a higher saturation are better to distingue between the
wave types, the attenuation of the waves is also increases. Considering the related medium
properties, for both cases a wavelength of approximately 10 cm is accepted. In a next step,
these data set will be analyzed using full-waveform inversion approaches, which should be
able to resolve features in the centimeter-scale with such datasets. Since high frequency
data required adaption especially in terms of the starting model requirements to meet the
half wavelength criterion (Hoven et al., 2023), this research is beyond the scope of this
study, which should provide a first guideline how to handle GPR data acquired around
lysimeter. To conclude, if we fully understand the resulting waveforms at the lysimeter
scale, it will allow us to consider sophisticated inversion approaches such as full-waveform
inversion, to improve the link between centimeter-scale high-resolution images, and, hydro-
logical and biotic processes. For study showed that the geometry of the lysimeter should
be considered in the modelling and soils with a certain saturation are more favorable to
reconstruct the medium properties.
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FIT finite integration technique
FWI full-waveform inversion

GPR ground-penetrating radar
GPU graphics processing unit

MAE mean absolute error
MOG multiple-offset gather
MPI message passing interface
MRAE mean relative absolute error

PDE partial differential equation
PML perfectly matched layer
PVC polyvinyl chloride

RBI ray-based inversion
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Glossary

RLA resistive-loaded antenna
RMS root-mean-square error
Rx Receiver

S/N signal-to-noise ratio
STDAE standard deviation of the absolute error
SWC soil water content

TDFEM time-domain finite element method
TDR time-domain reflectometry
TE transverse electric
TM transverse magnetic
Tx Transmitter

WARR wide-angle reflection and refraction

ZOP zero-offset profile
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