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Abstract 

Global climate change, with its projected increase in weather extremes and drought risk, presents global and 
regional agriculture with vulnerability and new challenges. It is crucial to gain a comprehensive understanding and 
accurate quantification of the intricate dynamics of agricultural land cover and its role within the terrestrial system, 
especially in the context of climate change. Land surface models play a central role for the research on climate 
change effects on the Earth's surface and hold particular value in examining the influence of weather patterns on 
agricultural land at larger spatial scales. The incorporation of a comprehensive crop module in land surface models 
offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial 
water, energy and biogeochemical cycles. It may help to improve the simulation of biogeophysical and 
biogeochemical processes on regional and global scales and thus to study climate change impacts on terrestrial 
ecosystem as well as the significance of human land cover changes for climate change. Land surface models 
simulate the complex interactions at the terrestrial land surface in response to atmospheric states, based on land 
cover and soil type information. In combination with data from different sources, like seasonal weather forecasts, 
land surface models can potentially provide useful information for water resources or agricultural planning.  

In this thesis, a systematic evaluation of the state-of-the-art land surface model, the Community Land Model 
version 5.0 (CLM5), was conducted from point to regional scales in combination with data from a multitude of 
sources, e.g. from remote sensing, numerical predictions and field observations. A special focus was placed on the 
representation of arable land and its feedback to weather related factors in the context of climate change.  

In the first part of this thesis, the performance of the crop module of CLM5 was evaluated at point scale with site 
specific field data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and 
harvesting cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent 
agricultural sites, the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) 
in CLM5; (2) implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding 
the two crop functional types (CFT) for sugar beet and potatoes to the list of actively managed crops in CLM5; (3) 
introducing a cover cropping subroutine that allows multiple crop types on the same column within one year. The 
latter modification allows the simulation of cropping during winter months before usual cash crop planting begins 
in spring, which is an agricultural management technique with a long history that is regaining popularity to reduce 
erosion, improve soil health and carbon storage, and is commonly used in the regions evaluated in this study. In 
comparison with field data, the crop specific parameterizations, as well as the winter wheat subroutines, led to a 
significant simulation improvement in terms of energy fluxes (RMSE reduction for latent and sensible heat by up 
to 57 % and 59 %, respectively), leaf area index (LAI), net ecosystem exchange and crop yield (up to 87 % 
improvement in winter wheat yield prediction) compared with default model results. The cover cropping 
subroutine yielded a substantial improvement in representing field conditions after harvest of the main cash crop 
(winter season) in terms of LAI magnitudes and seasonal cycle of LAI, and latent heat flux (reduction of winter 
time RMSE for latent heat flux by 42 %). Our modifications significantly improved model simulations and should 
therefore be applied in future studies with CLM5 to improve regional yield predictions and to better understand 
large-scale impacts of agricultural management on carbon, water and energy fluxes.  

These model improvements were then ported to the regional scale and tested in combination with sub-seasonal 
and seasonal weather forecasts in the second part of this thesis. Long-range weather forecasts provide predictions 
of atmospheric, ocean and land surface conditions that can potentially be used in land surface and hydrological 
models to predict the water and energy status of the land surface or in crop growth models to predict yield for 
water resources or agricultural planning. However, the coarse spatial and temporal resolutions of available forecast 
products have hindered their widespread use in such modelling applications, which usually require high-resolution 
input data. In this study, we applied sub-seasonal (up to 4 months) and seasonal (7 months) weather forecasts from 
the latest European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting system (SEAS5) 
in a land surface modelling approach using the Community Land Model version 5.0 (CLM5). Simulations were 
conducted for 2017-2020 forced with sub-seasonal and seasonal weather forecasts over two different domains with 
contrasting climate and cropping conditions: the German state of North Rhine-Westphalia (DE-NRW) and the 
Australian state of Victoria (AUS-VIC). We found that, after pre-processing of the forecast products (i.e. temporal 
downscaling of precipitation and incoming short-wave radiation), the simulations forced with seasonal and sub-
seasonal forecasts were able to provide a model output that was very close to the reference simulation results 
forced by reanalysis data (the mean annual crop yield showed maximum differences of 0.28 and 0.36 t/ha for AUS-
VIC and DE-NRW, respectively). Differences between seasonal and sub-seasonal experiments were insignificant. 
The forecast experiments were able to satisfactorily capture recorded inter-annual variations of crop yield. In 
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addition, they also reproduced the generally higher inter-annual differences in crop yield across the AUS-VIC 
domain (approximately 50 % inter-annual differences in recorded yields and up to 17 % inter-annual differences 
in simulated yields) compared to the DE-NRW domain (approximately 15 % inter-annual differences in recorded 
yields and up to 5 % in simulated yields). The high- and low-yield seasons (2020 and 2018) among the 4 simulated 
years were clearly reproduced in the forecast simulation results. Furthermore, sub-seasonal and seasonal 
simulations reflected the early harvest in the drought year of 2018 in the DE-NRW domain. However, simulated 
inter-annual yield variability was lower in all simulations compared to the official statistics. While general soil 
moisture trends, such as the European drought in 2018, were captured by the seasonal experiments, we found 
systematic overestimations and underestimations in both the forecast and reference simulations compared to the 
Soil Moisture Active Passive Level-3 soil moisture product (SMAP L3) and the Soil Moisture Climate Change 
Initiative Combined dataset from the European Space Agency (ESA-CCI). These observed biases of soil moisture 
and the low inter-annual differences in simulated crop yield indicate the need to improve the representation of 
these variables in CLM5 to increase the model sensitivity to drought stress and other crop stressors. 

While extensive research is dedicated to investigating the impacts of changing climate conditions on global food 
security, the specific implications for regional inter-annual yield variability remain largely uncertain. In the final 
part of this thesis, the model’s ability to represent the inter-annual variability of crop yield in comparison to 
recorded yield variability was evaluated in multi-decadal simulations (1999-2019) that were forced with the 
WFDE5 reanalysis. Additionally, synthetic experiments were performed for both regional domains, AUS-VIC and 
DE-NRW, and forced with a reduced precipitation rate (50% of the reanalysis precipitation), allowing for a more 
detailed analysis of crop water stress regimes and correlations between seasonal rainfall and crop yields. Overall, 
the simulation results were able to reproduce the total annual crop yields of certain crops, with RMSE values 
between 0.52 t/ha to 1.76 t/ha in AUS-VIC and 0.61 t/ha and 1.58 t/ha in DE-NRW, while also capturing the 
differences in total yield magnitudes between the domains. However, the simulations showed limitations in 
correctly capturing inter-annual differences of crop yield compared to official yield records, in particular for winter 
crops, which resulted in relatively low correlations (maximum correlation coefficients of 0.39 in AUS-VIC and 
0.42 in DE-NRW). Specifically, the mean absolute anomaly of simulated winter wheat yields was up to 4.6 times 
lower compared to state-wide records from 1999 to 2019. Our results suggest the following limitations of CLM5 
in predicting inter-annual variability in crop yields:  (1) limitations in simulating yield responses from plant 
hydraulic stress; (2) errors in simulating soil moisture contents compared to satellite-derived data; and (3) errors 
in the representation of cropland in general, e.g. crop parameterizations, differentiations of crop varieties, and 
human influences (such as management decisions, fertilizer types, and application techniques).  
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Zusammenfassung 

Der globale Klimawandel stellt die Landwirtschaft auf globaler und regionaler Ebene vor neue Herausforderungen. 
Insbesondere die prognostizierte Zunahme extremer Wetterbedingungen wie Dürren, Überflutungen, Unwetter 
und Veränderungen der Saisonalität sind Risikofaktoren, deren Auswirkungen sorgfältig untersucht und 
quantifiziert werden müssen. Diese Untersuchungen sind von großer Bedeutung, um effektive 
Anpassungsstrategien entwickeln und die Sicherheit in der Landwirtschaft zu gewährleisten zu können. Während 
die allgemeinen Auswirkungen des Klimawandels auf die globale Ernährungssicherheit ein viel erforschtes Thema 
sind, bleiben die Implikationen für saisonale Ertragsschwankung auf regionaler Ebene noch weitgehend nicht 
quantifiziert.  

Landoberflächenmodelle spielen eine zentrale Rolle in der Erforschung der Auswirkungen des Klimawandels auf 
die Erdoberfläche. Sie berücksichtigen komplexe Wechselwirkungen an der Erdoberfläche in Reaktion auf 
atmosphärische Bedingungen und können in Kombination mit saisonalen Wettervorhersagen wertvolle 
Informationen für Risikoabschätzungen (Dürren und Überflutungen), den Wasserhaushalt und die 
landwirtschaftliche Planung liefern. Um die Auswirkungen der landwirtschaftlichen Landnutzung auf den 
Wasserkreislauf, den Energiehaushalt und die biogeochemischen Kreisläufe besser zu verstehen, ist die Integration 
eines umfassenden Pflanzenmoduls in Landoberflächenmodelle von großer Bedeutung. Dies ermöglicht eine 
verbesserte Simulation biogeophysikalischer und biogeochemischer Prozesse auf regionaler und globaler Ebene 
und unterstützt die Erforschung der Wechselwirkungen zwischen Klimawandel und landwirtschaftlich genutzten 
Flächen.  

Im Rahmen dieser Doktorarbeit wurde eine systematische Analyse des Landoberflächenmodells Community Land 
Model Version 5.0 (CLM5) auf lokaler und regionaler Skala durchgeführt. Hierzu wurden Daten aus einer Vielzahl 
von Quellen, wie Fernerkundung, numerischen Vorhersagen und Feldmessungen verwendet. Ein besonderer 
Analyseschwerpunkt lag hierbei auf der Darstellung von Ackerland und dessen Wechselwirkung mit 
wetterbedingten Faktoren im Kontext des Klimawandels.  

Im ersten Teil dieser Doktorarbeit wurde die Modell-Performance des neuen Pflanzenmoduls von CLM5 für 
mehrere Europäische Ackerstandorte mit langen Zeitreihen standortspezifischer und hochaufgelöster Messdaten 
getestet, angepasst und bewertet. Dabei lag der Fokus auf der Simulation des Pflanzenwachstums und der 
Ernteerträge spezifischer Nutzpflanzen, sowie der Darstellung von Wasser-, Energie- und Kohlenstoffflüssen. Um 
landwirtschaftliche Standorte besser abbilden zu können, wurde das Modell durch folgende Änderungen 
angepasst: (1) Die Ergänzung des Modellcodes durch Algorithmen zur Darstellung von Wintergetreide (unter 
anderem die Prozesse der Vernalisation, Temperaturresistenz und frostbedingter Schädigungen der Pflanze) 
basierend auf Lu et al. (2017); (2) die Implementierung von pflanzenspezifischen Parametern für Zuckerrüben, 
Kartoffeln und Winterweizen (hierbei wurden zwei neue Nutzpflanzen in die Liste der aktiv bewirtschafteten 
Kulturen in CLM5 aufgenommen) und (3), die Einführung eines neuen Algorithmus für Zwischenfruchtanbau und 
Fruchtwechsel. Die letzte Modifikation erlaubt die Simulation von Deckfrüchten, die typischerweise zwischen den 
Vegetationsperioden der Ertragspflanzen während der Wintermonate oder auf länger brachliegenden Feldern 
angebaut werden. Diese landwirtschaftliche Technik wird häufig in der regenerativen Landwirtschaft genutzt, um 
Erosion zu reduzieren und die Bodengesundheit sowie Kohlenstoffspeicherung zu verbessern.  

Der Vergleich der Simulationsergebnisse mit detaillierten Felddaten ergab, dass sowohl die neuen 
pflanzenspezifischen Parametrisierungen als auch die Berücksichtigung der wesentlichen phenologischen 
Prozesse von Winterweizen zu einer signifikanten Verbesserung der Simulationen führten. Verbesserungen 
ergaben sich bei der Simulation der Energieflüsse auf der Landoberfläche (Reduktion des RMSE für latente und 
sensible Wärme um bis zu 57 % bzw. 59 %), des Blattflächenindex, des Nettoökosystemaustausches und der 
Ernteerträge (bis zu 87 % Verbesserung bei der Vorhersage des Winterweizenertrags) im Vergleich zu den 
Standardeinstellungen des Modells. Zudem führten die technischen Veränderungen des Modellcodes zu einer 
erheblich verbesserten Darstellung der Feldbedingungen nach der Haupternte, sowohl in Bezug auf den saisonalen 
Verlauf des Blattflächenindex, als auch auf die Energieflüsse während der Wintermonate (Reduktion des RMSE 
für latente Wärme um 42 %). Insgesamt haben die Modifikationen die Modellsimulationen signifikant verbessert 
und sollten in zukünftige Studien mit CLM5 eingebunden werden, um regionale Ernteertragsvorhersagen zu 
verbessern und die Auswirkungen des landwirtschaftlichen Managements auf Kohlenstoff-, Wasser- und 
Energieflüsse im großen Maßstab besser untersuchen zu können. 

Im zweiten Teil der Doktorarbeit wurden die Modellverbesserungen auf regionaler Skala angewandt. Das Modell 
wurde für zwei verschiedene landwirtschaftliche Regionen in Kombination mit den aktuellsten saisonalen 
Wettervorhersagen des European Centre for Medium-Range Weather Forecasts (ECMWF) getestet. Saisonale 
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Wettervorhersagen bergen ein großes Potenzial für regionale landwirtschaftliche Planung und 
Entscheidungsfindung, insbesondere in Verbindung mit weiteren Modellanwendungen, die relevante 
Informationen zu Ernteerträgen bestimmter Feldfrüchte liefern können. Trotz des großen Potenzials saisonaler 
Vorhersagen werden sie in der Praxis noch nicht weitreichend von Endverbrauchern genutzt. Dies ist hauptsächlich 
auf unzureichende Daten und das Fehlen benutzerfreundlicher Tools zur Verarbeitung der Rohdaten 
zurückzuführen. Diese Studie bietet einen ersten Einblick in die Anwendung saisonaler Vorhersageprodukte in der 
numerischen Modellierung. Simulationen mit saisonalen Wettervorhersagen und einem Referenzdatensatz aus 
Reanalyse-Wetterdaten wurden für die Anbausaisons (April - Oktober) der Jahre 2017 - 2020 und für zwei 
Modellgebiete mit unterschiedlichen Klima- und Anbaubedingungen durchgeführt: Ein Modellgebiet, welches das 
gesamte deutsche Bundesland Nordrhein-Westfalen (DE-NRW) umfasst und ein weiteres, welches sich über große 
Teile des australischen Bundesstaates Victoria (AUS-VIC) erstreckt. Nach einer umfassenden Aufbereitung der 
Vorhersagedaten (räumliche Skalierung aller Variablen, sowie zeitliche Skalierung von Niederschlag und 
einfallender kurzwelliger Strahlung) konnten die Simulationen mit den saisonalen Vorhersagen Ergebnisse 
erzielen, die sehr nah an denen der Referenzsimulationen lagen. Der mittlere jährliche Ernteertrag zeigte eine 
maximale Differenz von 0,28 t/ha für AUS-VIC und 0,36 t/ha für DE-NRW zwischen den Modellergebnissen mit 
saisonalen Vorhersagen und Reanalyse-Wetterdaten. Interessanterweise konnten die Simulationen mit saisonalen 
Wettervorhersagen die generell höhere interjährliche Ertragsvariabilität in AUS-VIC (ca. 50 % zwischenjährliche 
Variabilität in offiziellen Aufzeichnungen und bis zu 17 % in den Simulationsergebnissen) im Vergleich zu DE-
NRW (mit ca. 15 % zwischenjährliche Variabilität in offiziellen Aufzeichnungen und bis zu 5 % in den simulierten 
Erträgen) erfassen. Die relativen Hoch- und Niedrigertragsjahre 2020 und 2018 spiegeln sich in den 
Simulationsergebnissen deutlich wider. Insbesondere die frühe Ernte im Dürrejahr 2018 im deutschen Gebiet 
konnte mit dem Modell in Verbindung mit saisonalen Wettervorhersagen prognostiziert werden. Während der 
allgemeine Entwicklungstrend der Bodenfeuchtigkeit, wie beispielsweise die europäische Dürre im Jahr 2018, von 
den saisonalen Experimenten erfasst wurden, wurden systematische Über- und Unterschätzungen der 
Bodenfeuchte im Vergleich zu Satelliten-Daten, dem Soil Moisture Active Passive Level-3 Bodenfeuchteprodukt 
(SMAP L3) und dem Soil Moisture Climate Change Initiative Combined Datensatz der European Space Agency 
(ESA-CCI), festgestellt. Obwohl das Modell insgesamt dazu in der Lage war die zwischenjährlichen Variationen 
der Produktivität anzudeuten, waren die Unterschiede zwischen den Jahren quantitativ deutlich geringer als in den 
offiziellen Erntestatistiken. Dies war sowohl bei den Simulationen mit saisonalen Vorhersagen, als auch bei den 
Referenzsimulationen der Fall. Insgesamt weisen diese Abweichungen auf die Notwendigkeit hin, die Darstellung 
dieser Variablen in CLM5 zu verbessern, um die Modellempfindlichkeit gegenüber Trockenstress und anderen 
Stressfaktoren für Pflanzen zu erhöhen. 

Auf diesen Erkenntnissen aufbauend wurden im dritten Teil der Doktorarbeit langjährige Simulationen, von 1999 
bis 2019, mit meteorologischen Reanalyse-Wetterdaten für die gleichen Modellregionen durchgeführt. Hierbei 
wurde insbesondere die Leistung des Modells in Bezug auf die Simulation der jährlichen Ertragsschwankungen 
regionaler Feldfrüchte sowie die Auswirkungen von Wettertrends auf die simulierten Vegetationsproduktivität 
analysiert. Um systematische Ungenauigkeiten in den Simulationen bei der Darstellung der Ertragsvariabilität zu 
identifizieren, wurde der simulierte Ertrag mit der offiziellen Erntestatistiken der jeweiligen Regionen verglichen. 
Zusätzlich wurde untersucht, welche Variablen (z. B. Temperatur, Niederschlag, Bodenfeuchtegehalt) 
hauptsächlich für Veränderungen in der von CLM5 vorhergesagten Ertragsvariabilität verantwortlich sind. 
Darüber hinaus wurden synthetische Experimente durchgeführt, bei denen die Niederschlagsrate um 50% reduziert 
wurde, um die Beziehung zwischen simuliertem Ertrag und simulierten Bodenfeuchtegehalten genauer bewerten 
zu können. 

Insgesamt waren die Simulationsergebnisse in der Lage, die Gesamterträge bestimmter Kulturen zu reproduzieren, 
zeigten jedoch Einschränkungen bei der korrekten Erfassung der jährlichen Unterschiede im Ertrag, insbesondere 
bei Winterkulturen. Die mittlere interjährliche absolute Abweichung der simulierten Winterweizenerträge war 4,6-
mal niedriger im Vergleich zu den offiziellen Erntestatistiken von 1999 bis 2019. Die Analyseergebnisse der Studie 
deuteten auf eine unzureichende Modellsensitivität gegenüber Trockenstress hin. Mögliche Ursachen für die 
Ungenauigkeiten bei den Ertragssimulationen und ihrer interjährlichen Variabilität konnten im Rahmen dieser 
Studie diskutiert werden: (1) ein Mangel an Sensitivität gegenüber Trockenstress und bei der Darstellung der 
Pflanzenhydraulik; (2) Ungenauigkeiten bei der Simulation des Bodenfeuchteregimes im Vergleich zu 
satellitengestützten Daten; und (3) ein fehlendes Einbeziehen weitere wichtiger Faktoren, die interjährliche 
Ernteertragsschwankungen beeinflussen können, wie menschliche Einflüsse (z. B. Managemententscheidungen, 
Düngertypen und Anwendungstechniken), weitere Umweltfaktoren (z.B. Krankheiten, Schädlingsbefall, 
Überflutungen) sowie Ungenauigkeiten in der Parametrisierung der entsprechenden Nutzpflanzen. 
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1 Introduction 

How can we better understand and quantify the complex dynamics of agricultural land cover and its role 

within our terrestrial system to improve the accuracy of crop yield predictions in the face of climate change? 

Global climate change is expected to have a profound impact on future agriculture, with declining global yield 

trends and increasing irrigation requirements (Urban et al., 2012; Challinor et al., 2014; Deryng et al., 2014; 

Rosenzweig et al., 2014; Tai et al., 2014; Levis et al., 2018). New challenges for agricultural planning arise from 

the climate change related rise in annual average temperatures, changes in global radiation, shifts in seasonality, 

changing precipitation amounts and temporal distribution, as well as from the increasing number of extreme 

weather events at higher intensities as predicted in recent climate projections (Urban et al., 2012; Challinor et al., 

2014; Deryng et al., 2014; Rosenzweig et al., 2014; Tai et al., 2014; Levis et al., 2018). Understanding and 

improving predictions of the impact of climate change on food security is crucial for society, as highlighted by 

several studies (Lobell et al., 2011; Aaheim et al., 2012; Ma et al., 2012; Gosling, 2013; Rosenzweig et al., 2014). 

The assessment of the inter-annual variability of yield for specific agricultural regions can provide useful 

information and variables of interest for local stakeholders and policy makers. Furthermore, fluxes of water, energy 

and organic matter associated with agriculture (use of irrigation and fertilizer, timing of crop growth and fallow 

periods, etc.) can have implications for local and regional weather (Sacks et al., 2009). Continued research is 

required to deepen our comprehension of the effects of climate change on terrestrial ecosystems, arable land in 

particular.  

To achieve this, reliable tools are needed to provide accurate predictions of land cover feedback mechanisms in 

response to weather and climate conditions, and to explore potential mitigation strategies and their implications 

for society. Land surface models (LSMs) are our primary tool for studying the effects of climate change at larger 

spatial scales, serving as valuable frameworks for representing the complex interactions within our terrestrial 

system. LSMs are used in global circulation models for numerical weather forecasting and climate projections and 

are broadly applied in scientific studies to simulate water, energy and nutrient fluxes in the terrestrial ecosystem 

(e.g. Baatz et al., 2017; Lu et al., 2017; Chang et al., 2018; Han et al., 2018; Lawrence et al., 2018, 2019; Naz et 

al., 2019; Fisher and Koven, 2020; Lombardozzi et al., 2020). LSMs have become increasingly complex to address 

a range of key questions, spanning multiple disciplines (Fisher and Koven, 2020). Continuous model development 

and thorough performance analyses are vital in enhancing the reliability and accuracy of these models. An accurate 

representation of agriculture in LSMs can provide valuable insights into the interplay between climate change and 

anthropogenic land use, which represents a key gap in current models.  In combination with a comprehensive crop 

module, LSMs have the potential to predict changes in water and energy cycles and crop production in response 

to climate, environmental, and land use changes, thereby improving the simulation of biogeophysical and 

biogeochemical processes on regional and global scales (Kucharik and Brye, 2003; Lobell et al., 2011; Lawrence 

et al., 2018; Lombardozzi et al., 2020). However, incorporating a sophisticated representation of agricultural land 

cover into LSMs is a complex task due to the large variety of crop types and the complexity of agricultural 

management decisions, and thus, remains an ongoing challenge. Recent efforts to integrate detailed crop modules 

in LSMs have resulted in significant improvements in the simulation of vegetation properties and fluxes, such as 
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leaf area index, net ecosystem exchange, and gross primary production. For instance, the representation of 

temperate crop varieties in the Simple Biosphere model (SiB) led to improved simulation of leaf area index and 

net ecosystem exchange (NEE) (Lokupitiya et al., 2009). In addition, the Joint UK Land Environment Simulator 

(JULES) was extended to include a global representation of crops (Osborne et al., 2015), and the latest versions 

of the Community Land Model (CLM) were extended with a prognostic crop module from the Agro-Ecosystem 

Integrated Biosphere Simulator (Agro-IBIS) (Kucharik and Brye, 2003). These developments have yielded 

significant improvements in simulation results over arable land (e.g. Twine and Kucharik, 2009; Levis et al., 2012; 

Webler et al., 2012; Osborne et al., 2015; Xu et al., 2016). Despite recent advancements in the field, the complexity 

of simulating a wide range of crop varieties and management practices poses significant challenges for current 

state-of-the-art LSMs. The main challenges stem from the complex parameterization of simulated crop varieties 

due to their distinct phenology in combination with the scarcity of available data, as well as the incorporation of 

human management decisions such as cover cropping, fertilizer types and application techniques, and political 

influences on agricultural decision-making. To ensure LSMs benefit a wider audience, it is crucial to test and 

validate their applicability for different ecosystems, incorporating more flexible management practices. The 

current scientific literature lacks comprehensive analyses of LSM performance for agricultural land across 

different regions and biomes. Further development of LSMs requires thorough testing across various biomes and 

reviewing the complex parameterizations and interconnected processes. Comprehensive plant-specific parameters 

need to be provided and potentially calibrated. Therefore, there is a continuous demand for performance analysis 

research in the land surface and crop modelling community.  

A central goal of this PhD research was to systematically evaluate and improve the performance of the latest 

Community Land Model, version 5.0 (CLM5), with specific emphasis on the model’s representation of arable 

land. This involved identifying key limitations and potential uncertainties within the model, and validating model 

results against validation datasets from a variety of data sources. The Community Land Model is an open source 

model continuously being developed by a large user community and maintained by the National Center for 

Atmospheric Research (NCAR). Its latest version, CLM5, features an interactive crop module that includes a 

fertilizer and irrigation scheme, as well as eight actively managed crop types (temperate soybean, tropical soybean, 

temperate corn, tropical corn, spring wheat, cotton, rice, and sugarcane), and irrigated and unirrigated unmanaged 

crops. Additionally, CLM5 includes a new representation of plant hydraulic stress that explicitly models plant 

water stress and the transport of water within the soil-root-leaf system. CLM5 also considers root hydraulic 

redistribution in the soil and contains an updated calculation of stomatal conductance compared to earlier model 

versions based on the Medlyn et al. (2011) approach (Lawrence et al., 2019). Ongoing efforts also focus on the 

expansion of the CLM5 crop module to include more varieties of crops through parameterization and model 

developments e.g. perennial bioenergy crops (Cheng et al., 2020), crop trees (Dombrowski et al., 2022), and winter 

crops (Lu et al., 2017). These recent developments in CLM5 have made it one of the most sophisticated LSMs in 

representing cropland and plant hydraulics.  

However, detailed assessments of CLM5’s performance with high-resolution validation data, particularly at the 

point or regional scale, are still scarce (e.g. Chen et al., 2015; Sulis et al., 2015; Lu et al., 2017; Chen et al., 2018; 

Dombrowski et al., 2022; Sheng et al., 2018). The performance of land surface models can vary significantly 

depending on the specific characteristics of the area being simulated, including soil type, vegetation cover, 

anthropogenic influences, and weather patterns. Comparing the results of point-scale simulations with high-
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resolution field observations allows in-depth analysis on how well the model captures the physical processes and 

interactions that govern the land surface. High-resolution point-scale settings also enable the validation and testing 

of technical model developments and set the basis for subsequent regional simulations. This study aimed at 

evaluating and improving the model performance at point scale for multiple European cropland sites, which 

encompassed the addition of crop specific parameters for several important cash crops at these sites (winter wheat, 

sugar beet, and potatoes). 

The primary aim of this research was to improve our understanding of how arable land is represented in LSMs and 

to provide valuable insights for the effective utilization of LSMs in different contexts. A specific focus was placed 

on investigating the performance and capabilities of CLM5 in representing arable land dynamics. The central 

objectives of this PhD work were to:  

− Provide a comprehensive overview of the CLM5 model's performance over agricultural land with a focus 

on crop phenology, plant hydraulic stress representation, yield predictions and the soil moisture regime; 

− Improve the performance of the state-of-the-art land surface model CLM5 for cropland sites, which is an 

important prerequisite for accurately simulating regional agricultural fluxes; 

− Develop algorithmic procedures to include options for cover cropping and more flexible crop rotation 

scenarios on the technical model level; 

− Evaluate the feasibility of using seasonal weather forecasts in a land surface model, such as CLM5, for 

the prediction of regional crop productivity and soil moisture; 

− Identify key limitations of the model and provide recommendations for future model improvements. 

In the course of this thesis, the model was extended to consider an algorithmic representation of cover cropping 

and crop rotations. At this stage, the CLM5 model structure does not allow for a rotation of crop types on the same 

land column within the same year. A large part of global cropland is cultivated with rotations of different non-

perennial cash crops, and with multiple cropping cycles within one year in certain regions. Cover cropping is a 

land management practice where certain crops, such as legumes and grasses, are grown during fallow periods to 

prevent soil erosion and nutrient depletion (Basche et al., 2016; Kaye and Quemada, 2017; Lombardozzi et al., 

2018; Möller and Reents, 2009; Quintarelli et al., 2022). Cover cropping offers additional benefits such as weed 

suppression, pest and disease control, improved biodiversity, and organic fertilization of the soil, making it an 

important strategy for sustainable agriculture and a common practice in many agricultural regions worldwide 

(Kaye and Quemada, 2017; Quintarelli et al., 2022). Including a representation of cover cropping in land surface 

simulations is a crucial factor to accurately represent land surface and vegetation fluxes over agricultural areas, 

particularly outside of the main cropping season. The natural fertilization that is achieved by ploughing of cover 

crops into the soil before planting of the next cash crop influences the carbon cycle and overall nutrient budget of 

the soils and needs to be considered in the simulation of carbon and nitrogen budgets over agricultural areas 

(Lombardozzi et al., 2018; Kollas et al., 2015). In this work, an algorithmic procedure was developed and 

embedded in the model code that enables the model to simulate multiple cropping cycles within a single year and 

the rotation between different crop types. Additionally, the new model development considers the allocation of 

carbon from cover crops to the soil carbon pool instead of the grain carbon pool, representing the natural 

fertilization effect. The new parameterizations and model developments were tested for multiple European sites, 

using high-resolution field observations as validation data, and then ported to the regional scale.  
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Another major aspect to the relevance of land surface model applications for society, for agricultural planning and 

decision making in particular, is the combination with seasonal weather forecasts. The effectiveness of such a 

combination is based on two main pillars: the quality and skill of the land surface model, as well as the 

applicability, efficacy and skill of the forecast. Reliable high-resolution seasonal weather forecasts can provide 

crucial information for weather-sensitive sectors like agriculture, water management, and risk management. 

Knowledge of seasonal rainfall and temperature trends can help in making informed agricultural decisions and 

mitigating drought-related yield losses. Despite significant progress in numerical weather prediction over the past 

decade, particularly for short-term forecasts with improved models and data assimilation techniques and the 

precise characterization of initial conditions, achieving accurate seasonal predictions remains a challenging task. 

Integrating boundary conditions from various sources, including ocean, land surface (soil moisture and 

temperature), and stratosphere (downwelling propagation) data, is essential for enhancing predictive capability 

beyond short-term forecasts. However, current advancements in seasonal weather prediction, especially in 

temperate regions, are limited, with notable progress primarily observed in regions strongly influenced by El Niño-

Southern Oscillation (ENSO). As a consequence of these existing limitations, the adoption of seasonal forecasting 

products in farming and politics remains low (Parton et al., 2019). Another reason is the lack of available data 

supporting their usefulness for the respective sectors, in particular for specific regions and management types (i.e., 

crop varieties) and limited user-friendly communication and data processing tools and services (Hansen et al., 

2006; Meza et al., 2008; Coelho and Costa, 2010; Bauer et al., 2015; Monhart et al., 2018; Parton et al., 2019; 

Klemm and McPherson, 2017). Furthermore, there is often a mismatch between the temporal and spatial 

resolutions of the forecasting products and the modelling applications that can be forced by these products to 

predict variables of interest for stakeholders, such as crop yield and flooding risks. This is further exacerbated by 

the lack of available services for temporal and spatial downscaling of the forecasts. This study aims to explore the 

feasibility and application of seasonal forecasts within a land surface model, contributing to the understanding and 

utilization of these forecasts in practice. Given that agricultural practices vary widely among countries and states, 

influenced by both climatological factors and the political context, regional simulations for areas with available 

high-resolution land cover and land use information as input for the model and official agricultural statistics as 

validation data for the simulation results can be used to assess the model performance at larger scales. Thus, 

regional simulations were conducted with CLM5 for two domains with different climate regimes and agricultural 

characteristics, one covering the state of North Rhine-Westphalia in Germany (DE-NRW), and one covering large 

parts of Victoria in Australia (AUS-VIC). Seasonal weather forecasts for multiple cropping seasons from one of 

the most sophisticated forecasting systems, ECMWFs latest seasonal forecasting system SEAS5 (Johnson et al., 

2019), were used as atmospheric input for the simulations. By addressing the challenges mentioned above, this 

research aimed at enhancing our understanding of the potential benefits and limitations of utilizing seasonal 

forecasts in land surface modelling.  

In addition to evaluating the forecasting product's suitability for LSMs, the assessment also aimed at analysing the 

model's response to seasonal weather changes. A comparison between simulations forced with seasonal forecasts 

and reference simulations using reanalysis data can help understand the model's performance in capturing the 

impacts of seasonal weather variations on soil moisture, crop productivity, and inter-annual crop yield variability. 

It is critical that LSMs used in coupled climate models realistically represent land surface responses to drought, 

particularly in light of the anticipated increase in drought risk associated with climate change. While there is 

growing research on integrating irrigation and human water use in LSMs and hydrological models (e.g. Pokhrel et 
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al., 2016, 2012; Shah et al., 2019; Yassin et al., 2019; Xia et al., 2022), challenges remain in accurately representing 

rain-fed agricultural systems in global climate models (GCMs) and LSMs. These challenges stem from the 

complex interactions between soil, plants, and the atmosphere, including root water uptake, plant responses to 

environmental stress, land use and land cover changes, spatial heterogeneity in soil properties, vegetation cover, 

topography, and uncertainties in model parameterizations (Huntzinger et al., 2013; Franks et al., 2018; Trugman 

et al., 2018; Sulis et al., 2019; Dagon et al., 2020; Fisher and Koven, 2020; Lombardozzi et al., 2020; Blyth et al., 

2021; Sabot et al., 2022). Moreover, LSMs often oversimplify the human influences on land use and land cover, 

such as agricultural practices and management decisions, limiting their ability to capture the impacts of land use 

change on biogeochemistry and hydrology.  

Adequately capturing vegetation responses to changes in precipitation and the corresponding soil moisture 

conditions in global LSMs is crucial to their performance, particularly in rain-fed areas. This requires an accurate 

and detailed representation of plant hydraulics and plant responses to environmental stress, which needs further 

investigation and improvements in global LSMs (De Kauwe et al., 2015b; Franks et al., 2018; Sulis et al., 2019; 

Sabot et al., 2022). The role of root water uptake in rain-fed agricultural systems is crucial and its representation 

in global LSMs is often simplified (De Kauwe et al., 2015b; Sulis et al., 2019). Many LSMs, including earlier 

versions of CLM, employ soil moisture stress parameterizations where water stress is determined based on the 

plant wilting factor, which is calculated using the soil water matric potential relative to plant-specific parameters 

for fully open and fully closed stomata. This simplified representation of plant hydraulics can impact the simulated 

vegetation growth, productivity, and water use efficiency of plants (De Kauwe et al., 2015b; Sulis et al., 2019). 

Additionally, the selection of stomatal conductance model and the role of roots in redistributing water within the 

soil profile have been found to be relevant for atmospheric processes, carbon cycling, and nutrient cycling (Li et 

al., 2012; Tang et al., 2015; Ryel et al., 2002; Zheng and Wang, 2007; Yan and Dickinson, 2014; De Kauwe et al., 

2015b; Sulis et al., 2019; Sabot et al., 2022). The latest version of CLM5 includes a new plant hydraulic stress 

scheme as well as an updated algorithm for stomatal conductance and hydraulic redistribution of soil water from 

roots (Lawrence et al., 2019). These new formulations in CLM5 have resulted in enhanced model performance in 

simulating ecosystem water fluxes, vegetation water stress, and productivity, laying the foundation for more 

accurate and reliable simulations of plant water use and water stress in future applications of CLM5 (Lawrence et 

al., 2019). This study aimed at assessing the model's effectiveness in capturing inter-annual yield variability as an 

indicator of its performance regarding the representation of plant drought stress in two distinct agricultural 

environments.  

Next to an accurate representation of plant hydraulics and plant responses to environmental stress, capturing inter-

annual yield variations in LSMs is also closely linked to the simulation of soil moisture. In particular, it is crucial 

for the model to sufficiently represent changes in the soil moisture regime in response to changes in precipitation 

amounts, specifically in dominantly rain-fed areas. An accurate soil moisture simulation in LSMs is crucial for 

studying the hydrological cycle, land-atmosphere interactions, agricultural practices, water resource management, 

and the impacts of climate change on the terrestrial water budget. Soil moisture plays a direct role in the exchange 

of water and energy between the land surface and the atmosphere, and it serves as the primary water source for 

plant roots in the soil, thus influencing plant growth, photosynthesis, and transpiration rates. The accurate 

simulation of soil moisture is therefore essential for understanding water availability for plants, assessing the 

effects of drought on agricultural systems and a major source of uncertainty in land surface modelling (Trugman 
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et al., 2018). In order to validate soil moisture simulations, satellite derived products such as the Soil Moisture 

Active Passive Level-3 soil moisture product (SMAP L3), which provides daily soil moisture retrievals at a 9 km 

spatial resolution (Entekhabi et al., 2016), can be used. In addition, combined soil moisture products such as the 

Soil Moisture Climate Change Initiative Combined dataset from the European Space Agency's (ESA-CCI) (Dorigo 

et al., 2017; Gruber et al., 2017, 2019; Preimesberger et al., 2021), which provides global daily volumetric soil 

moisture data at a spatial resolution of 0.25 degrees from 1978 to 2019, offer valuable tools for model validation. 

Furthermore, field observations from cosmic ray neutron sensors can be used to validate simulation results. Cosmic 

ray neutron sensors detect these secondary neutrons, and their count rate is inversely related to soil moisture 

content. Cosmic ray neutron sensors offer a non-invasive method of measuring soil moisture, providing valuable 

insights into soil moisture conditions in the uppermost soil layer at larger horizontal scales (several hectares) 

compared to invasive measurements (Bogena et al., 2013; Schrön et al., 2017; Bogena et al., 2018).  

By investigating the performance and applicability of LSMs in agricultural settings and addressing both the 

model's skill and limitations in predicting long-term variations in annual crop productivity and soil moisture levels, 

this research aims to contribute to the advancement and future use of these models and to highlight specific areas 

in need for further investigation.  

In summary, this thesis is structured as follows:  

− Chapter 2 provides a theoretical background on the materials and methods used in this study. In section 

2.1, the underlying assumptions of the Community Land Model and its representation of crop phenology 

and plant hydrology are briefly summarized. Major parts of this PhD project were dedicated to extensive 

data acquisition and processing, as well as the initial compiling and testing of CLM5 in the high-

performance supercomputing environment of the Juelich supercomputers JURECA and JUWELS. 

Section 2.2 presents an overview of the use of computational resources on high-performance systems for 

numerical simulation experiments with CLM5. 

− Chapter 3 is dedicated to detailed performance evaluations and technical model developments of CLM5 

at the point scale. The performance of CLM5 was evaluated for four European cropland sites with long 

records of high-quality field observations. To improve the representation of crop growth and energy 

fluxes on agricultural fields at the point scale, several modifications were made within the code and 

parameter configuration of the crop module. The model was enhanced by implementing winter wheat 

subroutines, plant-specific parameters for sugar beet, potatoes, and winter wheat, and a cover-cropping 

subroutine that allows multiple crop types on the same column within one year. The main objective of 

this study was to evaluate and improve the model as a basis for subsequent regional simulations. 

− In chapter 4, the modified model is applied at the regional scale and tested in combination with state-of-

the-art seasonal weather forecasts from the latest European Centre for Medium-Range Weather Forecasts 

(ECMWF) seasonal forecasting system (SEAS5). Simulations were conducted for 2017-2020 forced with 

sub-seasonal and seasonal weather forecasts over two different domains with contrasting climate and 

cropping conditions: the German state of North Rhine-Westphalia and the Australian state of Victoria. 

This chapter evaluates and discusses the applicability of the seasonal forecast product for land surface 

modelling and provides a first impression of the overall skill and potential of this combination. The 

primary objective was to assess the feasibility of utilizing one of the most sophisticated seasonal forecast 
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product in conjunction with a land surface model for seasonal crop predictions, and to determine the 

potential of this combination at the current stage. 

− Chapter 5 focuses on the evaluation of the inter-annual variability of crop yield simulated with CLM5. 

Multi-decadal simulation results for two domains in different climate zones were compared to official 

crop statistics for the respective regions. To identify potential limitations in the model's sensitivity to 

drought stress and uncertainties in soil moisture simulation, synthetic experiments with reduced 

precipitation rates were carried out for the same regions and timescales. This study provides an 

assessment of the key factors that influence crop yield variability in the model, including precipitation, 

temperature, and soil moisture content, and serves as a foundation for future discussions on possible 

techniques for model performance improvements. 

− Finally, chapter 6 provides a summary of the main results, and chapter 7 concludes with final remarks 

and an outlook for future research based on the findings and developments of this thesis. Additional 

results corresponding to the respective chapters are provided in the appendix. 
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2 Materials and Methods 

In this PhD project, land surface simulations and model developments were carried out with the latest version of 

the Community Land Model version 5.0 (CLM5), the land component of the Community Earth System Model 

(CESM), which is developed by the National Centre for Atmospheric Research (NCAR) (Kucharik and Brye, 

2003; Lawrence et al., 2019). The model is comprised of multiple components related to the hydrologic cycle, 

biogeochemistry, ecosystem dynamics, land biogeophysics and human dimensions that together represent several 

aspects of the land surface (Figure 2.1). CLM5 is structured hierarchically on a grid cell structure, where each grid 

cell can have varying numbers of land units, columns, and patches allowing for the representation of subgrid-scale 

heterogeneity. Land units, such as glacier, lake, urban, vegetated, and crop, further delineate spatial patterns, while 

columns capture variability in soil and snow variables within a land unit. For example, the urban land unit has 

different columns for roof, walls, and canyon floor and the glacier land units are divided into elevation classes. 

The patch level defines the different vegetation categories, plant functional types (PFTs) and bare ground for 

vegetated and crop functional types (CFTs) for crop land units. Fluxes and vegetation state variables are defined 

at the PFT/CFT level and the physics and fluxes within the columns operate with weighted averages across 

PFTs/CFTs.  

CLM5 contains several improvements and updates compared to earlier versions of CLM such as an extended 

hydrology and snow features, an expanded river model, plant hydraulics and hydraulic redistribution, revised 

nitrogen cycle, expansion of number of crop types, time dependent irrigated areas and fertilization rates and an 

improved urban building energy model and carbon isotopes (Lawrence et al., 2018).  Previous versions of CLM 

(e.g. 3.5, 4.0) represented the human influence on land cover outside of urban areas by natural vegetation types, 

such as grass and cultivated forest areas. As a result, the representation of interactive crop management, such as 

irrigation, fertilization, planting, and harvesting, was insufficient. For this purpose, the representation of human 

land management was extended with a prognostic crop module in the latest version of CLM5, which provides a 

more accurate and broader approach to human land management, allowing for the exploration of economic 

challenges and questions related to land use changes and agriculture (Lombardozzi et al., 2020; Lawrence et al., 

2018, 2019). 

2.1.1 Hydrology 

The total water balance of the system is described as the relationship between the water stored in the system (e.g. 

canopy water, canopy snow water, surface water, canopy snow water, soil liquid water, soil ice and water in the 

unconfined aquifer) and the water that enters the system and water that is drained from the system (e.g. liquid and 

solid precipitation, evapotranspiration from vegetation and surface, surface runoff, sub-surface drainage, liquid 

and solid runoff from glaciers and/or lakes and variable surfaces covered by snow and/or ice) (Figure 2.1) 

(Lawrence et al., 2018). 

Liquid and solid precipitation that enter the system are either intercepted by the canopy, or reach the snow or soil 

surface directly or by dripping off the vegetation. Additionally the unloading of previously intercepted snow is 
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considered for solid precipitation. The moisture input at the surface from liquid precipitation (throughfall and 

canopy drip) and the meltwater from snow, is then distributed among surface runoff, surface water storage, and 

infiltration into the soil. 

 

Figure 2.1: Schematic representation of primary land biogeophysical, biogeochemical, and landscape processes simulated by 

CLM5. Figure adapted from Lawrence et al. (2019).  

Surface runoff is described within the system with the runoff model SIMTOP (Niu et al., 2005) that is based on 

the TOPMODEL (Beven and Kirkby, 1979). Depending on the topographic characteristics and the soil moisture 

state of a grid cell, surface runoff will be induced by the saturation excess mechanism. Lateral sub-surface runoff 

is initiated when the soil column reaches saturated soil moisture conditions. Surface water storage and outflow are 

functions of the microtopography of each grid cell and each sub-grid scale water body, thus being related to the 

height of the surface water. After the surface runoff has been removed, the surface moisture flux is partitioned into 

water building up on the surface and water infiltrating into the soil. Once the maximum infiltration capacity of the 

soil is reached, infiltration excess runoff is generated (Lawrence et al., 2018).  

The vertical transport of soil moisture is governed by various processes, including surface and sub-surface runoff, 

infiltration, gravity, and canopy transpiration through root extraction. The one-dimensional vertical water flow in 

soils is solved numerically by dividing the soil column into multiple vertical layers and integrating downward over 

each layer.  
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The vertical water flow in a soil layer is given by the one-dimensional Richards equation:  

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝑘 (

𝜕𝜓

𝜕𝑧
+ 1)],         (2.1) 

where θ is the volumetric soil water content [mm3/mm3], t is time [s], z is the vertical distance from the soil surface 

to the point in the soil column (depth of the soil layer) [mm], k is the hydraulic conductivity [mm/s], and  is the 

soil water potential [mm].  

The hydraulic conductivity and the soil water potential for each layer vary with volumetric soil water and soil 

texture. The soil water retention and permeability curves are determined according the sand and clay contents 

using the pedotransfer functions by Clapp and Hornberger (1978) and Cosby et al. (1984), and organic properties 

based on Lawrence and Slater (2008) (Lawrence et al., 2018, 2019). 

2.1.2 Plant hydraulics and stomatal conductance  

In CLM5, the soil moisture stress function from earlier model versions was replaced by a new plant hydraulic 

stress routine. The new routine adapts the vegetation water potential according to water supply with transpiration 

demand (or plant water demand). It simulates water transport through the vegetation based on Darcy´s Law for 

porous media flow and influenced by Williams et al. (1996), Sperry et al. (1998), Chuang et al. (2006), Bonan et 

al. (2014), and Sperry and Love (2015) (Lawrence et al., 2018, 2019). Additionally, a plant-mediated vertical 

hydraulic redistribution of soil water from wet to dry soil layers through either positive or negative soil-to-root 

fluxes depending on the water potential gradients was implemented (Lawrence et al., 2018, 2019).  

The new plant hydraulic stress routine models both plant water supply and demand as function of vegetation water 

potential and iteratively finds the vegetation water potential that ensures continuity between non-linear water 

supply and demand. The water supply is discretised into soil-to-root, root-to-stem and stem-to-leaf. Water fluxes 

in the soil-root-stem-leaf system are modeled as water potential gradients at each time step as follows (Lawrence 

et al., 2018, 2019):  

𝑞 =  𝑘𝐴 (𝜓1 − 𝜓2),          (2.2) 

where q is the flux of water spanning the segment between 1 and 2 [mmH2O/s], 1 - 2 is the gradient in water 

potential across the segments [mmH2O], k is the hydraulic conductance [s-1] and A is the area basis [m2/m2].  

The hydraulic stress of plants is represented as the segments resistance to hydraulic stress, with hydraulic 

conductance decreasing as water potentials decrease (Lawrence et al., 2018): 

𝑘 =  𝑘𝑚𝑎𝑥 ∙ 2
−(

𝜓1
𝑝50

)
𝑐𝑘

,         (2.3) 

where kmax is the maximum segment conductance [s-1], p50 is the water potential at 50 % loss of conductivity 

[mmH2O], 1 is the water potential of the lower part of the plant segment [mmH2O] and ck is the vulnerability 

curve shape-fitting parameter [-].  

In this equation, the maximum segment conductance is multiplied by a sigmoidal function that accounts for the 

percentage loss of conductivity using the water potential at 50% loss of conductivity (p50) and a shape parameter 
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(ck). The parameters kmax, p50 and ck control the modelled plant hydraulic stress and thus determine the capability 

of the plant to extract water from the soil and to resist hydraulic stress. These parameters were derived from the 

Kennedy et al. (2019) parameterization and are the same for all crop functional types in CLM5 (Figure 2.2).  

 

Figure 2.2: Sigmoidal vulnerability curve with water potential () and segment conductance (k) for CLM5 crop physiology. 

The vegetation water demand is simulated as the leaf transpiration which is calculated based on maximum 

transpiration regulated by the leaf water potential for shaded and sunlit leaves separately (Lawrence et al., 2019). 

The maximum transpiration is calculated using the maximum stomatal conductance, thus plant water demand 

depends on stomatal conductance (Lawrence et al., 2019). 

The sunlit and shaded leaf stomatal conductance and leaf photosynthesis are modelled based on the approaches of 

Medlyn et al. (2011), and Farquhar et al. (1980) for C3 plants and Collatz et al. (1992) for C4 plants (Lawrence et 

al., 2019). Adapted from Medlyn et al. (2011), the leaf stomatal resistance is calculated using the net leaf 

photosynthesis, the vapor pressure deficit and the CO2 concentration at the leaf surface with plant-specific slope 

parameters based on de Kauwe et al. (2015a) and Lin et al. (2015) as follows (Lawrence et al., 2019):  

1

𝑟𝑠
=  𝑔𝑠 = 𝑔𝑜 + 1.6(1 +

𝑔1

√𝐷
)

𝐴𝑛

𝑐𝑠/𝑃𝑎𝑡𝑚
,       (2.4) 

where rs is leaf stomatal resistance [s m2/µmol], go is the minimum stomatal conductance [µmol/m2/s], An is leaf 

net photosynthesis [µmolCO2/m2/s], g1 is the plant dependent slope parameter [-] (for a full parameter table see 

Lawrence et al. (2018)), cs is the CO2 partial pressure at the leaf surface [Pa] and Patm is the atmospheric pressure 

[Pa] and D is the vapor pressure deficit at the leaf surface [kPa].  

The ratio of stomatal conductance of the leaf transpiration relative to maximum stomatal conductance 

corresponding to maximum transpiration is then used to calculate plant water stress, for shaded and sunlit leaves 

separately (Lawrence et al., 2018):  

𝐸 =  𝐸𝑚𝑎𝑥 ∙ 2
−(

𝜓

𝑝50𝑒
)

𝑐𝑘

,        (2.5) 

𝛽𝑡 =  
𝑔𝑠

𝑔𝑠,𝑚𝑎𝑥
,          (2.6) 
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where E is leaf transpiration [mm/s], Emax is the leaf transpiration absent water stress [mm/s], βt is the transpiration 

water stress [-], where βt =1 is no water stress and βt < 1 is the relative transpiration water stress, gs is the stomatal 

conductance of water corresponding to leaf transpiration [µmol/m2/s], and gs,max is the stomatal conductance of 

water corresponding to maximum transpiration [µmol/m2/s].  

The calculated transpiration water stress is then used for the attenuation of photosynthesis. In CLM5, 

photosynthetic capacity is calculated in a mechanistic model of Leaf Utilization of Nitrogen for Assimilation, 

LUNA (Ali et al., 2016), and represented by two key parameters, the maximum rate of carboxylation at 25 °C and 

the maximum rate of electron transport at 25 °C (Lawrence et al., 2019). LUNA iteratively solves for attenuated 

photosynthesis and stomatal conductance until convergence is reached by adjusting these two parameters with the 

transpiration beta factor βt:  

𝑉𝑐,𝑚𝑎𝑥25,𝑖 =  𝑉𝑐,𝑚𝑎𝑥25,𝑖−1 ∙  𝛽𝑡 ,        (2.7) 

𝐽𝑚𝑎𝑥25,𝑖 =  𝐽𝑚𝑎𝑥25,𝑖−1 ∙  𝛽𝑡 ,        (2.8) 

where Vc,max25 is the maximum rate of carboxylation at 25 °C and Jmax25 is the maximum rate of electron transport 

at 25 °C at the current time step i and the previous step i-1 respectively.   

2.1.3 Crop module and plant physiology 

CLM5 includes a prognostic crop model based on Agro-IBIS, a process-based ecosystem model with options to 

simulate dynamic vegetation and crop management (Kucharik, 2003; Kucharik and Brye, 2003). The CLM5 crop 

model introduces several new developments compared to earlier model versions: (1) additional crop functional 

types, (2) active management of all crop areas, (3) updated fertilization and irrigation schemes, and (4) the 

capability to simulate changing distributions of crops and crop management due to dynamic land units (conserving 

carbon, nitrogen, water, and energy during all transitions) (Lombardozzi et al., 2020). While it is based on the 

same plant physiology as natural vegetation, the crop module uses crop specific plant parameters, phenology and 

allocation as well as the possibility of interactive fertilizer and irrigation (Lawrence et al., 2018, 2019; 

Lombardozzi et al., 2020). The parameterizations for the interactive crop management were derived from 

combining earlier versions of CLM with Agro-IBIS (Lombardozzi et al., 2020). 

In order for interactive crop management to take place without affecting natural vegetation, vegetated land units 

are separated into natural vegetation and crop land unit with only one CFT on each soil column, thus allowing 

CFT specific land management techniques to be applied (Lawrence et al., 2018). A total number of 78 plant and 

crop functional types are included in CLM5 including an irrigated and unirrigated unmanaged C3 crop, eight 

actively managed crop types - spring wheat, temperate and tropical corn, temperate and tropical soybean, cotton, 

rice and sugarcane and twenty-three crop types without specific crop parameters associated. For the simulation of 

those crop types, the specific crop parameters of the spatially closest and most similar out of the eight active crop 

types are used (Lawrence et al., 2018). 

The crop phenology and CN cycling processes in CLM 5.0 adopt the crop phenology algorithm from Agro-IBIS 

that consists of three phases – phase 1 from planting to leaf emergence, phase 2 from leaf emergence to beginning 

of grain fill and phase 3 from beginning of grain fill to maturity and harvest (Lawrence et al., 2018). The 

progression of these phases is influenced by growing-degree-day threshold values (percentages of the crop-specific 
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number of growing degree days (GDD) necessary for the crop to mature). Harvesting takes place once maturity is 

reached or the crop-specific maximum number of days for crop growths is exceeded (Lawrence et al., 2018). 

Allocation of assimilated carbon as well as the allocation to leaf, stem, root and reproductive pools is linked to the 

crop phenology phases and ends with harvest of the crop. The total amount of assimilated carbon is regulated by 

availability of soil nitrogen. The allocation of nitrogen is based on the specific C/N ratios in plant tissue (varying 

for roots, stem, leaves, reproductive pools) that vary throughout the growing season and are therefore also related 

to crop phenology phases (Lawrence et al., 2018). For crops, food C and N are allocated to a grain product pool, 

where they decay to the atmosphere over one year. Additionally, a crop seed pool is filled with C and N from the 

grain product pool for the following year (Lawrence et al., 2018). The annual grain yield can be calculated from 

the annual amount of C that is allocated to the food C pool (GRAINC_TO_FOOD) by accounting for the 

proportion of C in the dry crop weight and under the assumption that harvest efficiency is typically about 85 % 

(Lawrence et al., 2018):  

𝐺𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 =  
∑(𝐺𝑅𝐴𝐼𝑁𝐶_𝑇𝑂_𝐹𝑂𝑂𝐷)∙0.85

𝐶𝑑𝑟𝑦
,        (2.9) 

where GRAINC_TO_FOOD [gC/m2/s] is the CLM5 history field that is calculated on the CFT level and Cdry 

[g/m2] is the proportion of C in the dry crop weight of the respective crop. 

Each crop type has an irrigated and an unirrigated CFT that can coexist on a land unit but are on individual soil 

columns. This allows the simulation of irrigated cropland areas which are dynamically connected to simulated soil 

moisture conditions (Lawrence et al., 2018). The irrigation algorithm initializes water supply through irrigation to 

the soil, once a specified threshold of available soil water is reached, based on the principle of Ozdogan et al. 

(2010). With irrigated and rain-fed crops on separate soil columns, runoff between two neighboring soil columns 

with irrigated and rain-fed crop areas is not considered.  

Besides water availability from irrigation and rain, crop yields and food productivity greatly depend on nutrient 

availability in the soil and additional fertilization. In CLM 5.0, fertilization is carried out by adding nitrogen 

directly to the soil mineral pool. Fertilization dynamics depend on the crop functional types and vary spatially and 

yearly based on the Land Use Model Intercomparison Project (Lawrence et al., 2016) land use and land cover 

change time series. Land fractions of natural vegetation are not influenced by fertilizer application. Manure 

nitrogen is applied at slower rates to prevent rapid denitrification rates that were observed in earlier CLM versions 

and more uptake by the plant. Industrial fertilizer application starts during the leaf emergence phase of crop growth 

and continues for 20 days (Lawrence et al., 2018, 2019).  
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Figure 2.3: Scaling behavior of CLM5 on JUWELS. Corresponding data is listed in Table 2.1.  

All simulation experiments were conducted on the high performance computers JURECA and JUWELS from the 

Juelich Supercomputing Centre (JSC). The CLM5 code runs on Central Processing Units (CPU) and is parallelized 

with pure Message Passing Interface (MPI) which is a message-passing standard for parallel computing 

architectures. We conducted scaling studies prior to computationally expensive production simulations to analyse 

the scaling behaviour on the supercomputers. The example below shows a scaling study performed for CLM5 on 

JUWELS with a problem size of 300 x 300 x 20 grid cells that indicated a relatively good scalability up to 384 

cores (Table 2.1, Figure 2.3). Further large scale simulations were then conducted in accordance with effective 

usage of computational resources.  

Table 2.1: Scaling behavior of CLM5 on JUWELS. This test was performed a problem size of 90.000 cells, absolute timings 

per time step and relative speedup normalized to 48 cores are given. 

Number of cores  
Absolute timing 

[s] Speedup  
Performance per core 

[MFLOPS/s] x efficiency 
48 2583 1.00 800x1.00 
96 1311 1.97 800x0.98 

192 710 3.64 800x0.91 
384 434 5.95 800x0.74 
768 348 7.42 800x0.46 
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3 Improving the representation of cropland sites in 

CLM5 

Adapted from: Boas, T., Bogena, H., Grünwald, T., Heinesch, B., Ryu, D., Schmidt, M., Vereecken, H., Western, 

A., and Hendricks-Franssen, H.-J.: Improving the representation of cropland sites in the Community Land Model 

(CLM) version 5.0, Geoscientific Model Development, 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, 

2021. 

 

Figure 3.1: Schematic of the CLM5 phenology routine in (a) the default CLM5 model and (b) the modified CLM5_WW_CC 

model source code. The default crop phenology routine allows for one cropping cycle a year that is dependent on the fiscal 

year change on the first of January, while the modified crop phenology routine is constraint by a program control flag 

(covercropping flag). Additionally, an organic fertilizer option was implemented (PF) that imitates the common practice of 

ploughing cover crops into the soil, by moving the carbon (C) from the grain pool to the soil litter pool instead of the food pool. 

The phenology stages are indicated in roman numbering and corresponding thresholds are listed in the legend. Planting starts 

after an accumulated temperature of 10 consecutive days (T10d) is met within a planting window (Tp), the start of the leaf 

emergence stage is based on heat accumulated in the top soil layers (GDDTsoi) equal to 1-5 % of the maximum growing degree 

days needed for maturity of the crop (GDDmat), the grain fill stage commences based on heat accumulated since leaf emergence 

(GDDT2m), or when the leaf area index (TLAI) has reached its maximum (Lmax), and finally the crop is harvested once GDDmat 

is reached or the maximum days for crop growth (GDDplant) are exceeded.  
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Global climate change is widely believed to have an important impact on future agriculture and consequently food 

security under changing climate is an important research topic (Lobell et al., 2011; Aaheim et al., 2012; Ma et al., 

2012; Gosling, 2013; Rosenzweig et al., 2014). With a trend of declining crop yield and increasing uncertainty in 

yields in many parts of the world (Urban et al., 2012; Challinor et al., 2014; Deryng et al., 2014; Rosenzweig et 

al., 2014; Tai et al., 2014; Levis et al., 2018), understanding the impact of climate change on crop production and 

improving its prediction at local to global scales is a research topic of great importance to society. Also, agricultural 

expansion and management practices exert strong influences on physical and biogeochemical properties of 

terrestrial ecosystems that need to be considered in model simulations of the terrestrial system. Thus, the evaluation 

and improvement of integrated modelling approaches, including through incorporation of improved crop 

phenology, to simulate realistic land management and crop yield in response to climate conditions are the focus of 

many studies (Stehfest et al., 2007; Olesen et al., 2011; Van den Hoof et al., 2011; Rosenzweig et al., 2014). 

Nevertheless, the sophisticated representation of agricultural land cover in Earth system models (ESMs) remains 

an ongoing challenge due to the complexity of agricultural management decisions and the variety of different crop 

types and their respective phenologies. In many land surface models (LSMs) and land components of ESMs, the 

representation of crops is limited to simplistic schemes lacking the representation of management (e.g. irrigation 

and fertilization) or to surrogate representation by natural grassland (Betts, 2005; Elliott et al., 2015; McDermid 

et al., 2017). In recent studies there is a trend towards the incorporation of a comprehensive crop module in LSMs. 

These modules offer improved potential to study changes in water and energy cycles and crop production in 

response to climate, environmental, land use, and land management changes. This may help to improve the 

simulation of biogeophysical and biogeochemical processes on regional and global scales (Kucharik and Brye, 

2003; Lobell et al., 2011; Lokupitiya et al., 2009; Levis et al., 2012; Osborne et al., 2015; McDermid et al., 2017; 

Lawrence et al., 2018; Lombardozzi et al., 2020). For example, the Simple Biophere model (SiB) incorporated a 

crop module to represent a number of temperate crop varieties which resulted in improved simulated LAI and net 

ecosystem exchange (NEE) (Lokupitiya et al., 2009). Also, the Joint UK Land Environment Simulator (JULES) 

was extended to a global representation of crops which improved simulated LAI and gross primary production 

(GPP) (Osborne et al., 2015).  

Recent versions of CLM (i.e. 4.0, 4.5 and 5.0) have adopted the prognostic crop module from the Agro-Ecosystem 

Integrated Biosphere Simulator (Agro-IBIS) (Kucharik and Brye, 2003), which has the ability to simulate the soil-

vegetation-atmosphere system including crop yields, and has been evaluated in multiple studies (e.g. Twine and 

Kucharik, 2009; Webler et al., 2012; Xu et al., 2016). Even the simplified version of the Agro-IBIS crop scheme 

that was implemented in CLM4 led to improved simulation of climate-crop interactions and more comprehensive 

ecosystem balances than previous CLM versions (Levis et al., 2012). Evaluation studies of CLM4 by Levis et al. 

(2012) and Chen et al. (2015) revealed significant sensitivities of energy and carbon fluxes to biases in crop 

phenology, especially for the seasonality of the NEE for managed crop sites where the flux is governed by planting 

and harvest times. In its latest version, CLM (CLM5) has been extended with an interactive crop module that 

represents crop management. It includes eight actively managed crop types (temperate soybean, tropical soybean, 

temperate corn, tropical corn, spring wheat, cotton, rice, and sugarcane), as well as irrigated and non-irrigated 

unmanaged crops (Lombardozzi et al., 2020). CLM5 is to date the only land surface model that includes time-

varying spatial distributions of major crop types and their management (Lombardozzi et al., 2020). Despite these 
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improvements over earlier versions of CLM, the few studies that evaluated CLM5 at point and regional scale 

suggest inaccurate phenology and crop yield estimates for specific crops (Chen et al., 2018; Sheng et al., 2018). 

In summary, current crop modules in LSMs are limited by their ability to represent many different crop types and 

important management practices such as cover cropping, flexible fertilizer application types and amounts, etc. The 

main challenges are related to the complex parameterization of simulated crop varieties due to their distinct 

phenology in combination with information scarcity, as well as the complexity of human interaction through 

management decisions and biogeochemical processes. In addition to irrigation and fertilizer application, crop 

rotations and cover cropping are important management practices and their consideration is a crucial factor to 

accurately represent energy fluxes and crop phenology of agricultural sites (or areas) over longer time scales.  

In Western Europe, a large proportion of arable land is cultivated with rotations of different non-perennial cash 

crops (Kollas et al., 2015; Eurostat, 2018). The most important cash crops grown in the European Union (EU) are 

cereals such as wheat (mostly winter wheat varieties in Western Europe), barley and maize, root crops such as 

sugar beet and potatoes, and oilseed crops such as rape, turnip rape, and sunflower (Eurostat, 2018). Cereals 

account for the majority of all crop production in the EU, contributing up to 12 % to global cereal grain production 

(Eurostat, 2018). The EU production of sugar beet accounts for about half of the global production (Eurostat, 

2018). The use of cover crops is a common agricultural management practice to reduce soil erosion, soil 

compaction, and nitrogen leaching as well as to increase agricultural productivity by nitrogen fixation (Sainju et 

al., 2003; Lobell et al., 2006; Basche et al., 2014; Plaza-Bonilla et al., 2015; Tiemann et al., 2015; Kaye and 

Quemada, 2017). The biogeochemical effects and benefits of cover crops as well as their potential to mitigate 

climate change are the focus of many studies (e.g. Sainju et al., 2003; Lobell et al., 2006; Groff, 2015; Plaza-

Bonilla et al., 2015; Basche et al., 2016; Carrer et al., 2018; Lombardozzi et al., 2018; Hunter et al., 2019). Despite 

recent development efforts, the representation of these management practices has not yet been included in CLM5. 

Furthermore, in a previous study by Lu et al. (2017) the default representation of winter cereals performed poorly 

in simulating the phenology of winter wheat.  

In this study, we evaluate and enhance the performance of the crop module of CLM5 focusing on the representation 

of seasonal and inter annual variations in crop growth, planting and harvesting cycles, and crop yields as well as 

energy and carbon fluxes. First, we have transferred the modified vernalization and cold tolerance routine by Lu 

et al. (2017) to the CLM5 code to simulate winter cereal in a more meaningful way. Secondly, new crop specific 

parameter sets for winter wheat, sugar beet and potatoes that were gathered from the literature and from 

observation data were added to the default parameter scheme. Finally, we extended CLM5 by adding a new crop 

rotation and cover cropping subroutine that models the growth of winter cover crops and the rotation from a 

summer to a winter crop within the same year. All modification were tested at point scale at four cropland reference 

sites of the ICOS (Integrated Carbon Observation System) and TERENO (Terrestrial Environmental Observatory) 

networks in central Europe.  

3.2.1 Community Land Model 

Land surface models such as CLM5 are broadly applied in scientific studies to simulate water, energy and nutrient 

fluxes in the terrestrial ecosystem (Niu et al., 2011; Han et al., 2014; Lawrence et al., 2018; Naz et al., 2019). 

CLM5 represents the latest version of the land component in the Community Earth System Model (CESM) 
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(Lawrence et al., 2018; 2019). In CLM5, simulated land surface fluxes such as latent and sensible heat are driven 

by atmospheric/meteorological input variables in combination with soil and vegetation states (e.g. soil moisture 

and LAI) and parameters (e.g. hydraulic conductivity, land cover) (Oleson et al., 2010; Lawrence et al., 2018). 

The new biogeochemistry and crop module of CLM5 (BGC-Crop) adopted the prognostic crop module from the 

Agro-Ecosystem Integrated Biosphere Simulator (Agro-IBIS) (Kucharik and Brye, 2003). This incorporation of 

agriculturally managed land cover may help to improve the general representation of biogeochemical processes 

on the global scale to better address challenges from land use changes and agriculture practices (e.g. Lobell, Bala, 

and Duffy, 2006). The CLM5 crop module includes new crop functional types, updated fertilization rates and 

irrigation triggers, a transient crop management option as well as some adjustments to phenological parameters. 

Also extensive modifications have been made to the grain C and N pool, e.g. C for annual crop seeding comes 

from the grain C pool and initial seed C for planting is increased from 1 to 3 gCm-2 (Lawrence et al., 2018,  2019; 

Lombardozzi et al., 2020).  

Vegetated land units are separated into natural vegetation and crop land units, with only one crop functional type 

(CFT) on each soil column, including irrigation as a CFT specific land management technique ( Lawrence et al., 

2018; Lombardozzi et al., 2020). A total of 78 plant and crop functional types are included in CLM5 including an 

irrigated and unirrigated unmanaged C3 crop, eight actively managed crop types - spring wheat, temperate and 

tropical corn, temperate and tropical soybean, cotton, rice and sugarcane and 23 crop types without specific crop 

parameters associated that are merged to the most closely related and parameterised CFTs (Lombardozzi et al., 

2020). For the simulation of those inactive crop types, the specific crop parameters of the spatially closest and 

most similar out of the eight active crop types are used. Irrigation is simulated dynamically for defined irrigated 

CFTs in response to soil moisture conditions and is partly based on the implementation of Ozdogan et al. (2010) 

(Leng et al., 2013; Lawrence et al., 2018).  

Besides water availability from irrigation and precipitation, crop yield and food productivity greatly depends on 

fertilization. In CLM5-BGC-Crop, fertilization is represented by adding nitrogen directly to the soil mineral pool 

(Lawrence et al., 2018). Fertilization dynamics and annual fertilizer amounts depend on the crop functional types 

and vary spatially and yearly based on the land use and land cover change time series derived from the Land Use 

Model Intercomparison Project (Lawrence et al., 2016). In CLM5, land fractions with natural vegetation are not 

influenced by fertilizer application. In cropping units, mineral fertilizer application starts during the leaf emergence 

phase of crop growth and continues for 20 days. Manure nitrogen is applied at slower rates (0.002 kg N m-2 per 

year by default) to prevent rapid denitrification rates that were observed in earlier CLM versions so that more 

uptake by the plant is achieved (Lawrence et al., 2018). 

CLM5-BGC-Crop is fully prognostic with regards to carbon and nitrogen in the soil, vegetation and litter at each 

time step. The crop phenology as well as the carbon and nitrogen cycling processes follow three phenology phases: 

phase (1) from planting to leaf emergence, phase (2) from leaf emergence to beginning of grain fill and phase (3) 

from beginning of grain fill to maturity and harvest. These phenology phases are governed by temperature 

thresholds and the percentage of Growing Degree Days (GDD) required for maturity of the crop with harvest 

occurring when maturity is reached (Lombardozzi et al., 2020). 

The first phenology stage, planting, starts when crop specific 10-day mean temperature thresholds (of both the 

daily 2-m air temperature T10d and the daily minimum 2-m air temperature Tmin,10d) are met. The transition from 

planting to leaf emergence (phase 2) begins when the growing degree-days of soil temperature at 0.05 m depth 
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(GDDTsoi) reaches 1 - 5 % of the GDD required for maturity (GDDmat), depending on a crop specific base 

temperature for the GDDTsoi. Grain fill (phase 3) starts with either the simulated 2-m air temperature (GDDT2m) 

reaching a heat unit threshold (h) of 40 – 65 % of GDDmat or when the maximum leaf area index (Lmax) is reached. 

The crop is harvested in one time step when 100 % GDDmat is reached or when the crop specific maximum number 

of days past planting is exceeded. The LAI is dependent on the specified specific leaf area (SLA) and the calculated 

leaf C. The SLA as well as the maximum LAI are specified for each crop in the parameter file (Table A2).  

The allocation of carbon and nitrogen also follows the phenology phases. During the leaf emergence phase, carbon 

from the seed carbon pool is transferred to the leaf carbon pool. Nitrogen is supplied through the soil mineral 

nitrogen pool. During the grain fill phases, nitrogen from the leaf and stem of the plant is translocated to the grain 

pool. Allocation ends upon harvest of the crop where grain carbon and nitrogen are transferred from the grain pool 

to the grain product pool and, a small amount of 3g C m-2, to the seed carbon pool for the next planting (Lawrence 

et al., 2018;  Lombardozzi et al., 2020).  

The total amount of assimilated carbon and nitrogen is regulated by availability of soil nitrogen, among other 

resources, and also depends on crop specific target C/N ratios in the plant tissue (varying for roots, stem, leaves, 

reproductive pools) (Lawrence et al., 2018;  Lombardozzi et al., 2020). For a detailed technical description of the 

model and all its features, the reader is referred to the technical documentation and description of new features in 

CLM5 ( Lawrence et al., 2018,  2019; Lombardozzi et al., 2020).   

3.2.2 Model modifications 

In the course of this study, three main limitation of CLM5 for the intended simulation of agricultural sites in 

Western Europe at point scale were identified: (1) the default CLM5-BGC-Crop code and parameterization yielded 

a very poor representation of crop growth of winter wheat and other winter crops, (2) the default plant parameter 

dataset lacks specific parameterization for several important cash crops (here especially sugar beet and potatoes), 

and (3) CLM5-BGC-Crop does not allow a second crop growth onset or a second CFT to be grown on the same 

field within one year. These limitations were met by modifications to the code structure and parameterization of 

the CLM5-BGC-Crop module described below.  

3.2.2.1 Winter cereal representation 

Winter wheat is an important crop for global food production and covers a significant fraction of the European 

croplands. (Chakraborty and Newton, 2011; Vermeulen et al., 2012). In general, winter wheat is exposed to a 

different range of environmental stresses compared to summer crops such low temperatures. In regions with 

sufficiently cold winters, the main processes that allow a successful cultivation of winter wheat during the colder 

months are vernalization and cold tolerance (Barlow et al., 2015; Chouard, 1960). Vernalization represents the 

process that an exposure to a period of non-lethal low temperatures is required to enter the flowering stage for 

winter crops. In general, the vernalization process ensures that the reproductive development of plants growing 

over winter (winter crops and also natural vegetation) does not start in late summer or autumn but rather in late 

winter or spring. The other process, cold tolerance, ensures that the crop can acclimate to low temperatures and 

thus survive cold temperatures and even freeze-thaw cycles. However, cold damage to the crop can occur when 

the crop is exposed to low temperatures at a certain development stage. These damages have been documented to 

have significant impacts in crop yield (Lu et al., 2017). Lu et al. (2017) introduced a new vernalization, as well as 
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a cold tolerance and frost damage subroutine in CLM4.5 to better simulate the phenology of winter cereal.  For 

this, they adapted the winter wheat vernalization model from Streck et al. (2003). Streck et al. (2003) evaluated 

their vernalization algorithm for a wide range of winter wheat cultivars for the purpose of being used in crop model 

approaches. Furthermore, Lu et al. (2017) implemented a cold tolerance scheme including frost damage 

representation using the approaches after Bergjord et al. (2008) and Vico et al. (2014). In this study, their 

modifications were ported to the newer version of the model, CLM5, and tested for several study sites.  

Vernalization and cold tolerance are cumulative processes that operate in a certain optimum temperature ranges 

(that can be different for different crop types and cultivars). The vernalization process starts after leaf emergence 

and ends before flowering (Streck et al., 2003) and is dependent on the crown temperature (Tcrown) (see Equation 

A1). The crown is the connecting tissue between the roots and the shoots at the base of the plant. For winter wheat, 

the crown node is located at about 3 – 5 cm soil depth (Aase and Siddoway, 1979). The daily vernalization 

dependence is calculated based on Tcrown and the optimum vernalization temperature (Topt), limited to times when 

the crown temperature lies within the minimum to maximum vernalization temperature (Tmin and Tmax) range:  

𝑣𝑑 = ∑ 𝑓𝑣𝑛(𝑇𝑐𝑟𝑜𝑤𝑛),         (3.1) 

𝑓𝑣𝑛(𝑇𝑐𝑟𝑜𝑤𝑛) =
2(𝑇𝑐𝑟𝑜𝑤𝑛−𝑇𝑚𝑖𝑛)𝛼(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)

𝛼
−(𝑇𝑐𝑟𝑜𝑤𝑛−𝑇𝑚𝑖𝑛)2𝛼

(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)2𝛼 ,    (3.2) 

𝛼 =
𝑙𝑛2

𝑙𝑛 [(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)/(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)]
,       (3.3) 

𝑣𝑓 =
𝑣𝑑5

22.55+𝑣𝑑5,         (3.4) 

where vd [-] is the sum of the sequential vernalization days, fvn [-] is the daily vernalization rate, vf [-] is the 

vernalization factor, Tcrown [K] is the crown temperature, Topt [K], Tmax [K] and Tmin [K] are the optimum, maximum 

and minimum vernalization temperatures respectively.  

The vernalization factor can range between 0 (not vernalized) and 1 (fully vernalized). It is multiplied with the 

GDD during the phenology phase after planting and the grain carbon allocation coefficient which leads to a reduced 

growth rate in the beginning of the phenology cycle until the plant is fully vernalized. The vernalization factor is 

further used in the cold tolerance subroutine to assess the cumulative cold hardening of the plant and the 

dehardening process when exposed to higher temperatures (see below). Lu et al. (2017) introduced a scheme to 

quantify the impacts of frost damage based on the approaches after Bergjord et al. (2008) and Vico et al. (2014). 

The damage from low temperatures is quantified by three main variables: the temperature at which 50 % of the 

plant is damaged (LT50), the survival probability (fsurv) and winter killing degree days (WDD) (Bergjord et al., 

2008; Lu et al., 2017; Vico et al., 2014). A detailed description of these approaches can be found in Bergjord et al. 

(2008) and Vico et al. (2014).  

The temperature at which 50 % of the plant is damaged (LT50) is calculated interactively at each time step (LT50,t) 

depending on the previous time step (LT50,t-1) and on several accumulative parameters. These parameters are the 

exposure to near-lethal temperatures (rates), the stress due to respiration under snow (rater), the cold hardening or 

low temperature acclimation (contribution of hardening – rateh) and the loss of hardening due to the exposure to a 
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period of higher temperatures (dehardening – rated) that are each functions of the crown temperature (Lu et al., 

2017 and references therein) (see Equations A2-A11).  

The survival rate (fsurv) is then calculated as a function of LT50 and the crown temperature. The probability of 

survival is a function of Tcrown in time (t). It increases once Tcrown is higher than LT50 or decreases when it is lower 

(Vico et al., 2014):   

𝑓𝑠𝑢𝑟𝑣(𝑇𝑐𝑟𝑜𝑤𝑛 , 𝑡) = 2
−

𝑇𝑐𝑟𝑜𝑤𝑛
𝐿𝑇50

𝛼𝑠𝑢𝑟𝑣

,       (3.5) 

where αsurv is a shape parameter of 4.   

The winter killing degree day (WDD) is calculated as a function of crown temperature and survival probability, 

where the maximum function limits the integration to the potentially damaging periods, when the air temperature 

(T) is lower than the base temperature (Tbase) of 0°C (Vico et al., 2014): 

𝑊𝐷𝐷 = ∫ 𝑚𝑎𝑥 [(𝑇𝑏𝑎𝑠𝑒 − 𝑇𝑐𝑟𝑜𝑤𝑛),0] [1 − 𝑓𝑠𝑢𝑟𝑣(𝑇𝑐𝑟𝑜𝑤𝑛 , 𝑡)]𝑑𝑡
 

𝑤𝑖𝑛𝑡𝑒𝑟
,   (3.6) 

Lower LT50 indicate a higher frost tolerance and would result in higher survival rates, smaller WDD and less cold 

damage to the plant. Thus, when the survival probability and crown temperature are low, the WDD will be high 

(Vico et al., 2014).  

Lu et al. (2017) also implemented a relationship between frost damage described above and the subsequent growth 

or carbon allocation of the plant. Whenever the survival factor is less than 1, a small amount of leaf carbon (5 g C 

m-2 per model time step) as well as a small amount of leaf nitrogen (scaled by the prescribed C/N target ratios, 

Table 3.1 and Table A2) are transferred to the soil carbon and nitrogen litter pool thus simulating a reduction in 

growth and/or damage of small/young leaves and seedlings. Additionally, in order to simulate more drastic and 

instantaneous damage or death of the plant due to a longer duration of lethal temperatures (most likely to occur in 

spring when the plant has emerged and is close to or already fully vernalized), a second frost damage function is 

implemented. When WDD > 1° days the frost damage function is triggered, leading to crop damage by transferring 

leaf carbon (amount scaled by the survival probability (1 -fsurv)) to the soil carbon litter pool.  A more detailed 

description of these routines can be found in the source literature Lu et al. (2017) and references therein.   

3.2.2.2 Crop specific parameterization 

In order to yield a reasonable representation of agricultural areas on the regional scale in future studies, the default 

parameter set was extended with specific crop parameters for sugar beet, potatoes, and winter wheat based on the 

characteristics of our study sites to better fit the observed plant phenology and energy fluxes at the simulation sites.  

The CTFs sugar beet and potatoes are merged to the spring wheat CFT on the default parameter scheme due to the 

lack of crop specific parameters for these crops. For winter wheat there is a pre-existing default parameter set 

available in CLM5. However, this default parameterization performed poorly in representing the crop phenology 

for the evaluated study sites in this study. This was also reported in an earlier study by Lu et al. (2017). Thus, crop 

specific parameters were added for sugar beet, potatoes and winter wheat. The parameters to be modified were 

selected taking into account the sensitivity analysis and parameter estimation studies by Post et al. (2017) (for 

version 4.5), Cheng et al. (2020) and Fisher et al. (2019) (for version 5.0). Key parameters as identified by previous 
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studies (Sulis et al., 2015; Post et al., 2017; Lu et al., 2017; Fisher et al., 2019; Cheng et al., 2020) are listed in 

Table 3.1. These parameters were added with values from the literature or site-specific observations to match 

observed values. General phenology parameters such as the maximum canopy height, planting temperatures, 

maximum LAI, maximum and minimum planting dates and days for growing were adjusted according to field data 

including planting and harvest dates. A list of plant types, planting and harvest dates is provided in Table A1. C/N 

ratios in leaves and roots for wheat and sugar beet were adapted from Whitmore and Groot (1997), Gan et al. 

(2011), Sánchez-Sastre et al. (2018) and Zheng et al. (2018). The specific leaf area (slatop) and the fraction of leaf 

N in Rubisco (flnr) for sugar beet and winter wheat were taken from Sulis et al. (2015) and references therein and 

adopted also for potatoes. Table A2 provides a full list of default and newly added crop specific parameters for the 

CFTs temperate corn, spring wheat, sugar beet, potatoes and winter wheat.  

Table 3.1: CFT specific phenology and CN allocation parameters. 

Parameter CLM variable name Units 
Phenology 
Minimum planting date for the Northern Hemisphere min_NH_planting_date MMDD 

Maximum planting date for the Northern Hemisphere max_NH_planting_date MMDD 

Average 5 day daily temperature needed for planting planting_temp K 

Average 5 day daily minimum temperature needed for planting min_planting_temp K 

Minimum growing degree days gddmin °days 

Maximum number of days to maturity mxmat Days 

Growing Degree Days for maturity hygdd °days 

Base Temperature for GDD baset °C 

Maximum Temperature for GDD mxtmp °C 

Percentage of GDD for maturity to enter phase 3 lfemerg % GDDmat 

Percentage of GDD for maturity to enter phase 4 grnfill % GDDmat 

Canopy top coefficient ztopmax M 

Maximum Leaf Area Index laimx m2/m2 

Specific Leaf Area  slatop m2/gC 

CN ratios and allocation 

Leaf C/N leafcn gC/gN 

Minimum leaf C/N leafcn_min gC/gN 

Maximum leaf C/N leafcn_max gC/gN 

Fine root C/N frootcn gC/gN 

Grain C/N graincn gC/gN 

Fraction of leaf N in Rubisco flnr fraction/gNm-2 

3.2.2.3 Cover cropping and crop rotation scheme 

The effect of cover crops on the physical and biogeochemical properties of the land surface alters latent heat flux, 

albedo and soil carbon and nitrogen storage and can potentially impact local and regional climate (Sainju et al., 

2003; Lobell et al., 2006; Möller and Reents, 2009; Plaza-Bonilla et al., 2015; Basche et al., 2016; Carrer et al., 

2018; Lombardozzi et al., 2018; Hunter et al., 2019).  

In the default BGC phenology, the growth algorithm starts in the beginning of each year, when the crop is not alive 

on the specific patch. Furthermore, the CLM structure does not allow multiple CFTs to coexist on the same column 

so that multiple planting phases related to cover cropping over winter months or crop rotations with winter and 
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summer crops, both being very common practices in Europe and worldwide, cannot be accounted for. This might 

also be an issue when representing ecosystems where agricultural management practices involve multiple sowing 

and harvest cycles in accordance with the monsoon season (e.g. India). Therefore, a cover cropping subroutine 

was implemented in the BGC phenology module that affects the onset/offset (crop cycle/fallow) algorithm to allow 

a second onset period (crop cycle) on the same column.  

A cover crop flag was introduced in the parameter file and in the source code. This flag can be set for any CFT in 

the parameter file and calls the cover-cropping subroutine when it is set to true (covercrop_flag ≠ 0). This allows 

a flexible handling of this option as well as an application on a larger scale. With this modification, the onset 

period can start again within one simulation year for another (or the same) CFT. For example, when the maturity 

of the crop is reached and it has been harvested, the model would by default switch to the next stage (phase 4) 

where the crop is not alive and the offset (fallow) period begins. The next onset period and GDD accumulation for 

planting would then start in the subsequent simulation year. In our modified CLM5 version, the cover-cropping 

subroutine is called before entering into the offset period when the cover-crop flag for the current CFT is set to 

true. In the cover-cropping subroutine, the CFT is then changed according to a predefined rotation scheme and 

another onset period and GDD accumulation for planting is initialized.  

A common practice is to plough the cover crops into the soil instead of removing their biomass from the field. We 

simulated this by relocating the biomass of the crop into the litter pool instead of the grain product pool upon 

harvest using the use_grainproduct flag described below (Figure 3.2).  

Individual crop rotation schemes were customized within the code and depend on the currently planted crop type. 

For example, if a simulation starts with a crop coverage of spring wheat specified in the surface file, the new 

subroutine is called after harvest of the crop (Figure 3.1). Within the subroutine, the CFT is then changed to the 

next crop, e.g. sugar beet. Again, after the harvest of this crop, e.g. sugar beet, the CFT is again changed to the 

next crop and so on. When the CFT is changed back to spring wheat, the rotation cycle starts again. This rotation 

is defined in a repetitive sequence based on the harvested CFT and its harvest date (Figure 3.2).   

The actual rotation of crop types can be user-customized by defining the variables hd and cropx in a list (e.g. hd1 

= 150 [day of year], crop1 = spring wheat, etc.). By including the harvest date as a dependency, it is also possible 

to simulate the planting of cover crops based on harvest date thresholds. A user-defined maximum harvest date for 

any specific cash crop can define whether a cover crop would be planted or not. This technique can be beneficial 

to study the effects of conceptual cover cropping scenarios on regional scales. The possibility to change the CFT 

within the same year represents a significant improvement in flexibility, as CLM5 only permitted land use changes 

at the beginning of every year. In order to simulate cover cropping at our study site DE-RuS, we implemented a 

new CFT for a greening mix cover crop (or covercrop1).  
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Figure 3.2: This figure illustrates the key variables and parameters involved in the definition of crop rotation within the new 

subroutine, written in Fortran code. Harvdate is the harvest day of the current simulation year and hd is the customizable harvest 

date of the respective CFT, p is the simulated patch on the model grid, ivt is the simulated CFT, crop1-3 represent the user-

specified CFTs to the rotated, idop is the planting day and use_grainproduct is a flag to define whether the grain carbon of 

simulated crop is to be harvested into the food pool or not. If this flag is set to false, the plant carbon and nitrogen are transferred 

to the soil litter pool and not allocated to the food product pool upon harvest of the crop.  

 

Figure 3.3: ICOS and TERENO cropland study sites Selhausen (DE-RuS), Merzenhausen (DE-RuM), Klingenberg (DE-Kli) 

and Lonzée (BE-Lon) 

The CLM5 model was set up for four European cropland sites: Selhausen, Merzenhausen, Klingenberg and Lonzée 

(Figure 3.3). These sites were selected mainly for their excellent continuous measurements of surface energy 

fluxes. Selhausen (50.86589°N, 6.44712°E) is part of the TERENO Rur Hydrological Observatory (Bogena at al., 

2018) as well as the Integrated Carbon Observation System (ICOS, 2020). The test site covers an area of 

approximately 1 km x 1 km and is located in the catchment of the Rur river (Bogena et al., 2018). Selhausen had 
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a crop rotation of sugar beet (Beta vulgaris), winter wheat (Triticum aestivum) and winter barley (Hordeum 

vulgare), fewer times also rapeseed (Brassica napus) and potatoes (Solanum tuberosum) from 2015 to 2019. Cover 

crops such as oilseed radish or cover crop mixes are planted occasionally between two main crop rotations. 

Continuous records of meteorological variables, soil specific observations, as well as greenhouse gas and energy 

fluxes are available for Selhausen since 2011. Regular LAI measurements are available since 2016 (Ney and Graf, 

2018). 

Merzenhausen (50.93033°N, 6.29747°E) is located at approximately 14 km from Selhausen and is also part of the 

TERENO Rur Hydrological Observatory. The crop rotation of the site includes sugar beet (Beta vulgaris), winter 

wheat (Triticum aestivum), winter barley (Hordeum vulgare), rape seed (Brassica napus) and occasionally catch 

cover crop mixes. For Merzenhausen, continuous records of meteorological variables, soil specific observations 

and energy fluxes are available since 2011 and LAI measurements from 2016 – 2018. 

Klingenberg (50.89306°N, 13.52238°E) is an ICOS cropland site located in the mountain foreland of the 

Erzgebirge that is operated by the Technical University Dresden (TU Dresden) (ICOS, 2020; Prescher et al., 2010). 

The site is characterized as managed cropland with a 5-year planting rotation of rapeseed (Brassica napus), winter 

wheat (Triticum aestivum), maize (Zea mays), spring and winter barley (Hordeum vulgare) (Kutsch et al., 2010). 

Since 2004, data on ecosystem fluxes (including net ecosystem and net biome productivity), meteorological 

variables and soil observations are collected. Furthermore, biomass observations and agricultural management 

information are available for this site.  

The cropland site Lonzée (50.553°N 4.746°E) in Belgium is also part of ICOS (Buysse et al., 2017). It has been 

planted in a four-year rotation cycle with sugar beet (Beta vulgaris), winter wheat (Triticum aestivum), potato 

(Solanum tuberosum) since 2000 with Mustard as a cover crop after winter wheat harvest (Moureaux, 2006; 

Moureaux et al., 2008). For Lonzée, continuous records of meteorological variables, EC flux data and LAI (GLAI 

and GAI) measurements are available from 2004 onwards. General information on the ICOS study sites such as 

climatic conditions, soil types etc. is provided on the ICOS Carbon Portal under the respective site codes (ICOS, 

2020).  

At all sites, the application of mineral fertilizer and herbicides/pesticides as well as occasional application of 

organic fertilizer is regular management practice. Station data required to force CLM, i.e. meteorological variables 

(see following section), were measured as block averages over 10 minutes or at higher resolutions, gap-filled using 

linear statistical relations to nearby stations where possible (Graf, 2017), or otherwise, by marginal distribution 

sampling within the software package REddyProc (Wutzler et al., 2018). Fluxes required for model validation (i.e. 

net ecosystem CO2 exchange (NEE), latent heat flux (LE), sensible heat flux (H), soil heat flux (G) and gross 

primary production (GPP)) and net radiation (Rn), were either measured (G and Rn) or computed from turbulent 

raw measurements (frequency ≥ 10 s-1) using the eddy-covariance method, for 30-minute block averages by the 

site PIs. Subsequently, gaps were filled and GPP estimated from NEE using REddyProc (Wutzler et al., 2018). 

More details on quality control, filling of longer gaps and by nearby stations, correction of soil heat flux and energy 

balance closure analysis are given in Graf et al. (2020) and specifically for DE-RuS and DE-RuM including LAI 

measurements in Reichenau et al. (2020). The long-term annual energy balance closures of the sites DE-RuS, DE-

Kli and BE-Lon were approximately 79%, 77% and 76%, respectively, according to analyses in Graf et al. (2020) 

and 76% at DE-RuM according to an earlier study by Eder et al. (2015). All half-hourly meteorological and flux 

data were aggregated to hourly averages to match our customized CLM forcing time step. Site-specific 
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measurement records of latent and sensible heat fluxes, net ecosystem exchange (NEE), LAI, soil temperature and 

soil moisture were used as validation data for the simulation runs. Forcing variables were always used in gap-filled 

form, while validation variables were used in un-filled, quality-filtered form. Continuous measurements of 

meteorological variables and land-atmosphere exchange fluxes are available via the respective data portals 

(Kunkel et al., 2013; ICOS, 2020; TERENO, 2020). 

Table 3.2: ICOS and TERENO cropland study site location coordinates and altitude A [msl], soil types, Köppen-Geiger climate 

classification based on Peel et al. (2007), approximate mean annual temperature T [°C], mean annual precipitation amounts P 

[mm/a] and corresponding reference. Textural fractions for the top soil layers (up to 50 cm) at each study site are provided in 

Table A3.  

Site/ID Project Location A Soil type Climate T* P* Reference 

Selhausen     
DE-RuS 

TERENO 
ICOS 

50.865°N 
6.447°E 104.5 Luvisol 

Cfb - 
temperate 
maritime 

10 698 Ney and Graf (2018) 

Merzenhausen 
DE-RuM TERENO 50.930°N 

6.297°E 100 Cambisol 
Cfb - 
temperate 
maritime 

10 698 Bogena et al. (2018) 

Klingenberg 
DE-Kli ICOS 50.893°N 

13.522°E 478 Gleysoil 
Cfb – 
suboceanic, 
subcontinental 

8 766 
Grünwald (personal 
communication, 
2020) 

Lonzée         
BE-Lon ICOS 50.553°N 

4.746°E 167 Luvisol 
Cfb - 
temperate 
maritime 

10 800 Buysse et al. (2017) 

* Reference periods: 1961-2010 for DE-RuS (adapted also for DE-RuM), 2005-2019 for DE-Kli and 2004-2017 for BE-Lon. 

3.3.1 Model implementation 

For the single point study sites, CLM was run in point mode with only one grid cell and forced with site specific 

hourly meteorological data. The annual fertilization amounts at the single point study sites were adjusted according 

to documented amounts of applied fertilizer that ranged between 12 and 20 gNm-2. In CLM5, the potential 

photosynthetic capacity as well as the total amount of assimilated carbon during the phenology stages are regulated 

by the availability of soil nitrogen (Lawrence et al., 2018). With modern fertilization practices in Europe, nitrogen 

is not assumed to be a limiting factor for the studied sites.  

In order to balance ecosystem carbon and nitrogen pools, gross primary production and total water storage in the 

system, a spin-up is required (Lawrence et al., 2018). An accelerated decomposition spin-up of 600 years and an 

additional spin-up of 400 years was conducted for each site with the BGC-Crop module (Lawrence et al., 2018; 

Thornton and Rosenbloom, 2005). The simulated conditions at the end of the spin-up were then used as initial 

conditions for the following simulations.  

In order to test the winter wheat representation, several simulations were conducted for all winter wheat years at 

the sites DE-RuS, DE-RuM, DE-Kli and BE-Lon. In a first step, the impact of each modification was assessed 

individually by simulating one winter wheat year at the site DE-RuS using four different model configurations: 

(1) the default model and default parameter set (control), (2) the default model with the new parameter set (control 

+ crop specific), (3) the extended winter wheat model with the default parameter set (new routine), and (4) the 

extended winter wheat model with the new parameter set (new routine + crop specific). Further evaluations for the 

other study sites and years were conducted for the combined winter wheat modifications CLM_WW (extended 
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model with winter wheat subroutines and new crop specific parameterization) in comparison to control simulations 

(default model configuration and default parameterization of winter wheat).  

For the evaluation of the crop specific parameter sets for sugar beet and potatoes, simulations were run with the 

new parameterizations at the sites DE-RuS and BE-Lon over several years. For both sites, control simulations were 

conducted without the new parameter set, in which both CFTs sugar beet and potatoes are simulated as a spring 

wheat by default. Furthermore, an evaluation of the default parameterization for the CFT temperate corn at the site 

DE-Kli is included in the appendix (Figure A1, Table A4).  

The cover cropping and crop rotation scheme was tested for two practical cases at DE-RuS. From 2016 to 2017, 

planting was altered at DE-RuS from barley (here represented by the CFT for spring wheat) in 2016 to sugar beet 

in 2017 with a greening mix cover crop in between (winter months 2016/2017). In order to simulate this common 

cover cropping practice, we implemented a new CFT for a greening mix cover crop (or covercrop1). For the years 

2017 to 2019 at DE-RuS, the subroutines ability to simulate realistic crop rotation cycles was tested by changing 

the simulated CFT from sugar beet (2017) to winter wheat (2017-2018) and then to potatoes (2019). In this step, 

simulations were run with the previously tested crop specific parameterizations for sugar beet, potatoes and winter 

wheat. Simulation results were again compared to a control simulation run, where a consecutive growth of spring 

wheat is simulated. 

3.3.2 Evaluation of model performance 

For statistical evaluation of the model results, the root mean square error (RMSE), the bias (BIAS) and the Pearson 

correlation (r) were chosen as performance metrics:   

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1 ,        (3.7) 

𝐵𝐼𝐴𝑆 = ∑ (𝑛
𝑖=1 𝑥𝑖 − 𝑦𝑖)/ ∑ (𝑦𝑖)𝑛

𝑖=1 ,       (3.8) 

𝑟 =
∑(𝑥𝑖−�̅�)(𝑦𝑖−𝑦)

(𝑛−1)𝜎𝑥𝜎𝑦
,                        (3.9) 

where n is the total number of time steps (days or years), xi and yi are the simulated and the observed values of a 

given variable at every time step i, and the overbar represents the mean value, and σx and σy are the standard 

deviations of the simulated and observed data respectively.   

The statistical evaluation was conducted for daily simulation output and daily observation data for the variables 

NEE, LE, H and Rn. 
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3.4.1 Winter cereal representation 

The impact of the new winter wheat specific parameterization and the new winter wheat routine, as well as the 

combination of both is illustrated in Figure 3.4. Here we show simulated LAI for the default model and default 

parameter set (control), the default model with the new parameter set (control + crop specific), the extended winter 

wheat model with the default parameter set (new routines) and the extended winter wheat model with the new 

parameter set (new routines + crop specific).   

Using only the new crop specific parameter set with the default model configuration resulted in slightly higher 

LAI values compared to the control run but did not reach the observed maximum LAI values and the growth cycle 

duration. The implementation of the winter wheat subroutines using the default parameter set led to a more realistic 

reproduction of the growth cycle duration compared to the control run, but did not yield good correspondence with 

observed LAI magnitudes. The combination of the new crop specific parameter set and the new winter wheat 

subroutines resulted in the most realistic LAI dynamics (Figure 3.4). As previously described by Lu et al. (2017), 

the default vernalization routine reaches a factor of 1 (fully vernalized) shortly after planting when the first frost 

occurs. This induced an unrealistically early commencement of the grain fill stage within two months after planting 

in the control run (November or December). The default vernalization also resulted in peak LAI occurring too 

early in the year, leading to significantly lower photosynthesis compared to the observations. This also applies to 

the implementation of the new crop-specific parameter set, which generally leads to slightly higher LAI values.   

In the extended winter wheat model, the adapted vernalization routine produces lower initial vernalization factors 

which reduce the growing degree days. This leads to later onset of the leaf emergence and grain fill stage and 

allows a more realistic representation of the LAI cycle and peak in combination with the new crop specific 

parameterization.  

  

Figure 3.4: Daily simulation results for the LAI, simulated with default model and the default parameter set (control), the 

default model with new parameter set (control + crop specific), the extended winter wheat model with default parameterization 

(new routines) and the extended model with the new parameter set (new routines + crop specific), compared to point 

observations for a winter wheat year at DE-RuS. 

In further evaluations, the combined winter wheat package, including the new crop specific parameterization and 

the extended winter wheat subroutines is implemented in CLM_WW simulations and compared to control runs 

(Figure 3.5). For all study sites and simulation years, CLM_WW simulations resulted in a much better 
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representation of the growth cycle and corresponding seasonal LAI variation and magnitudes compared to control 

simulations (Figure 3.5). Also, the temporal pattern of energy fluxes and NEE were improved with CLM_WW 

compared to the control run.  

 

Figure 3.5: Simulation results of (a-d) LAI and simulation results averaged for each month of (e-h) NEE, (i-l) LE, and (m-p) 

H for all winter wheat years (see) at the sites (from left to right) BE-Lon, DE-RuS, DE-RuM and DE-Kli. Simulation results 

from the new routine with crop specific parameterization – CLM_WW (blue) are compared to control simulations (orange) and 

available site observations (grey) of LAI (all available point observations plotted) and fluxes (averaged over all respective years 

and for each month respectively). Corresponding performance statistics for daily simulation results during the crop growth 

cycle are listed in Table 3.4.. 

In general, CLM_WW yielded LAI peak magnitudes similar to observations at the sites BE-Lon, DE-RuS and DE-

RuM (Figure 3.5). For DE-Kli, site-specific observations of the LAI were not available, but simulated LAI 

magnitudes for DE-Kli using CLM_WW are similar to those for BE-Lon. For the BE-Lon site, CLM_WW 

simulated peak LAI magnitudes are close to the observations. An exception is the year of 2015, where CLM_WW 
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underestimated the unusually high LAI values observed in May and June, which ranged from 5.40 to 6.38 m2/m2. 

For BE-Lon, faster growth was simulated in the early growing stage of winter wheat, resulting in a more gradual 

increase in LAI compared to the other sites (Figure 3.5). This is related to higher air temperatures at BE-Lon early 

in the growing stage (especially in February) that enabled more simulated growth compared to the other sites.  

Overall, the LAI peak simulated with CLM_WW occurred about one month earlier than observed, suggesting that 

maturation was reached too early. This is also reflected in the simulated CLM_WW harvest dates that are 

approximately one month earlier than the recorded dates (Table 3.3). While the planting date is the same for the 

control run and the CLM_WW simulations, CLM_WW generally resulted in a better match of simulated and 

recorded harvest dates (1.5 to 2 months later than control run).  

The correlation of simulated grain yield and site records was significantly improved by up to 87 % in CLM_WW 

simulations compared to the control run. At the DE-RuS site, CLM_WW resulted in a grain yield of 9.15 t/ha that 

is very close to the observed value of 9.2 t/ha, while grain yield is strongly underestimated in the control run 

(1.17 t/ha). For DE-Kli, the CLM_WW simulated crop yield matched the recorded yield data very well for the 

year 2016 and was overestimated for 2011 by approximately 16 %. The control run resulted in an underestimation 

of yield by more than 80 % (Figure 3.6, Table 3.3). For BE-Lon the simulated crop yield is underestimated 

compared to site harvest records (Figure 3.6, Table 3.3). While CLM_D simulations underestimated the grain yield 

by approximately 85 – 90 %, CLM_WW underestimated yield by only 18 - 36 % at BE-Lon. The simulated yields 

by CLM_WW for the individual years show only minimal variations with values from 8.12 to 8.16 t/ha, while the 

measured yields ranged from 9.92 to 12.88 t/ha, indicating that CLM did not capture the inter-annual yield 

variation very well (Table 3.3). 

 

Figure 3.6: Annual grain yield [t/ha] simulated with the control run (orange) and the extended winter wheat model with crop 

specific parameterization (blue), compared to recorded harvest yields (grey) for all simulated winter wheat years (indicated on 

the x axis) at the sites BE-Lon, DE-RuS, DE-RuM and DE-Kli. 
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Table 3.3: Simulated annual planting and harvest dates and grain yield [tDM/ha] by CLM_WW and CLM_D simulations 

(calculated using the peak daily grain carbon throughout the growth cycle) compared to recorded harvest dates and grain yield 

(Obs) for all simulated winter wheat years at the sites BE-Lon, DE-RuS, DE-RuM and DE-Kli. For CLM simulation results, 

grain yield is calculated from grain carbon which is assumed to be 45 % of the total dry weight.  

Year Source  Planting date Harvest date Grain Yield [tDM/ha] 
BE-Lon 

2010/2011 
CLM_D 11.09.2010 10.05.2011 1.71 
CLM_WW 11.09.2010 05.07.2011 8.14 
Obs 14.10.2010 16.08.2011 10.64* 

2012/2013 
CLM_D 12.09.2012 19.04.2013 1.68 
CLM_WW 12.09.2012 25.06.2013 8.16 
Obs 25.10.2012 12.08.2013 12.88 

2014/2015 
CLM_D 09.09.2014 20.04.2015 1.71 
CLM_WW 09.09.2014 01.07.2015 8.15 
Obs 15.10.2014 02.08.2015 11.13 

2016/2017 
CLM_D 11.09.2016 02.05.2017 1.68 
CLM_WW 11.09.2016 24.07.2017 8.12 
Obs 29.10.2016 30.07.2017 9.92 

DE-RuS 

2017/2018 
CLM_D 29.09.2017 17.05.2018 1.17 
CLM_WW 29.09.2017 27.06.2018 9.15 
Obs 25.10.2017 16.07.2018 9.2 

DE-RuM 

2016/2017 
CLM_D 27.09.2016 15.05.2017 1.45 
CLM_WW 27.09.2016 30.06.2017 9.65 
Obs 17.10.2016 22.07.2017 - 

DE-Kli 

2010/2011 
CLM_D 15.09.2009 23.07.2011 1.19 
CLM_WW 15.09.2009 11.08.2011 7.53 
Obs 02.10.2010 22.08.2011 6.12 

2015/2016 
CLM_D 17.09.2015 24.07.2016 1.17 
CLM_WW 17.09.2015 28.07.2016 7.44 
Obs 18.09.2015 24.08.2016 7.48 

*: Grain yield estimated from 18.09 t/ha total biomass (stem and ear) yield according to stem and ear (grain) biomass yield 

ratios measured for other winter wheat years at the same site.  

Overall, the better representation of the winter wheat growing cycle by CLM_WW can also be inferred from the 

simulated surface energy fluxes (Figure 3.5). In terms of net radiation, both CLM_WW and the control run are 

very close to the observations (Table 3.4). However, CLM_WW was able to better capture seasonal variations of 

surface energy fluxes during the growing cycle of the crop (Figure 3.5). The correlation coefficients for the energy 

fluxes (LE, H and Rn) calculated over the period from planting to harvest date for daily simulation results and 

daily observation data improved for all sites (Table 3.4). Highest correlations were reached for the sites DE-Kli 

with r values of 0.62 and 0.71 and for BE-Lon with r values of 0.5 and 0.46 for sensible heat and latent heat flux 

respectively (Table 3.4). Due to the simulated LAI peak being too early, latent heat flux is underestimated by 

CLM_WW (Figure 3.5, Table 3.4). The high latent heat fluxes measured at BE-Lon and DE-Kli in the later months 

of the year (from day 220 onwards) reflect the growth of a cover crop. At both the BE-Lon site as well as at the 

DE-Kli site, cover crops are typically sown after harvest of winter wheat (mustard at BE-Lon, radish and brassica 

at DE-Kli), and they strongly affect surface energy fluxes later in the year. In contrast, in the control simulations, 

as well as in CLM_WW, the crop field were simulated as fallow after the harvest of winter wheat (Figure 3.5). 

While the correlation of the latent and sensible heat flux during the growing cycle of the crop is generally increased 

with the CLM_WW model, the overall annual correlation is still relatively poor due to the influence of cover 

cropping and poor representation of post-harvest field conditions (annual performance metrics are included 

appendix, Table A5). 
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Table 3.4: Bias, RMSE and r for the control run and CLM_WW simulated daily NEE [umol CO2 W m-2 s-1], LE [W m-2], H 

[W m-2] and Rn [W m-2] at the sites BE-Lon, DE-RuS, DE-RuM and DE-Kli respectively. Values were calculated over the time 

period between recorded planting and harvest dates (averaged over all winter wheat years at each site) using simulation output 

and observation data at daily time step. 

CFT WINTERWHEAT 
Site BE-Lon DE-RuS DE-RuM DE-Kli 

Year(s) 

2010/2011 
2012/2013 
2014/2015 
2016/2017 

2017/2018 2016/2017 2010/2011 
2015/2016 

Model control CLM_WW control CLM_WW control CLM_WW control CLM_WW 
NEE 
Bias -0.87 -0.37 -1.01 -0.61 - - -0.56 0.50 
RMSE 6.34 4.96 7.73 7.58 - - 3.80 3.27 
r -0.13 0.46 0.21 0.33 - - 0.29 0.56 
LE 
Bias -0.72 -0.13 -0.47 -0.23 -0.55 -0.09 -0.47 -0.77 
RMSE 61.96 50.73 52.47 52.65 67.17 48.67 44.64 56.75 
r 0.35 0.46 0.21 0.24 0.50 0.67 0.61 0.71 
H 
Bias 5.56 1.35 4.24 1.70 -8.49 -2.74 4.99 3.10 
RMSE 45.97 27.63 40.93 39.94 47.26 32.81 49.30 35.08 
r 0.42 0.50 0.45 0.48 0.21 0.36 0.47 0.63 
Rn 
Bias -0.18 -0.05 -0.17 -0.13 -0.09 0.08 -0.03 -0.09 
RMSE 36.11 38.01 47.28 45.15 37.34 46.43 45.17 44.49 
r 0.80 0.81 0.68 0.69 0.78 0.97 0.71 0.73 

Furthermore, CLM_WW was generally better able to match NEE observations compared to control runs, partly 

due to the better representation of the seasonal LAI variations (Figure 3.5). During the growing season of winter 

wheat, the negative peak in NEE, coincides with the peak in LAI. Negative NEE values indicate a carbon sink and 

happen when the crop gains more carbon through photosynthesis than is lost through respiration. Correlation 

improved (comparing CLM_WW to the control run) from 0.13 to 0.46 for BE-Lon, from 0.21 to 0.33 for DE-RuS 

and from 0.29 to 0.56 for DE-Kli. The resulting correlation for CLM_WW simulations is still relatively low due 

to an underestimation of the cumulative monthly NEE during seasons with high NEE at BE-Lon and DE-RuS. For 

DE-Kli, CLM_WW was able to match NEE observed at peak LAI very well, but late seasonal NEE (July), shortly 

before harvest, is overestimated by CLM_WW resulting in a low overall agreement with observation data.  

Furthermore, post-harvest field observations at BE-Lon, DE-RuS and DE-Kli indicate that heterotrophic 

respiration from soil organic matter and litter results in a carbon source which is not simulated well in CLM (no 

GPP, near zero NEE) (Figure 3.5). This poor representation of post-harvest field conditions is reflected in low 

correlations over the whole year (Table A5). 

3.4.2 Crop specific parameterization of sugar beet and potatoes 

The crop specific parameter sets were tested for several years with sugar beet and potatoes planting at BE-Lon and 

DE-RuS respectively. The performance in reproducing seasonal variations and magnitudes of energy fluxes was 

strongly improved with the crop specific parameterization. Correspondingly, simulations with the crop specific 

parameter sets for both sugar beet and potatoes were able to reasonably capture seasonal variations and peak values 

of LAI as well as growth cycle length and harvest time (Figure 3.7 and Figure 3.8). The control run in CLM uses 

the spring wheat parameterization for these crop types and therefore reproduced the growth cycle and seasonal 

LAI of spring wheat, while simulations using the crop-specific potato and sugar beet parameterizations better 

captured harvest date and growth cycle of these crops. 
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The improved growth cycle representation with crop specific parameters also led to more accurate simulation of 

energy fluxes. For sugar beet at BE-Lon, the latent heat flux at peak LAI corresponds well with observed values 

while being underestimated before and after peak LAI and hence the sensible heat flux is overestimated at these 

times (Figure 3.7). Seasonal variations of energy fluxes and magnitudes were also captured much better in 

simulations with the new parameterization. The simulations with crop specific parameters show slightly better net 

radiation correlations for both the sugar beet and potato CFTs at each site, compared to the control run (Table 3.5). 

The correlation between simulated and observed latent heat flux for sugar beet were strongly improved by 

changing the parameters (0.11 to 0.55 for DE-RuS and 0.21 to 0.55 for BE-Lon). The same is true for the simulated 

sensible heat flux for sugar beet (0.04 to 0.76 for DE-RuS and 0.08 to 0.51 for BE-Lon site). The NEE for the 

sugar beet CFT is underestimated during peak LAI periods in the control run, resulting in poorer correlations 

compared to latent and sensible heat flux and net radiation (Figure 3.7). Simulations with the crop specific 

parameter set resulted in a reduction in negative bias for NEE and reached higher correlation compared to the 

control simulation (0.03 to 0.37 for DE-RuS and 0.05 to 0.64 for BE-Lon).  

Similar improvements can be observed for the new potato parameterization while the correlation of simulation 

results with observation data is generally lower compared to the sugar beet CFT (Figure 3.8, Table 3.5). Seasonal 

LAI variations, growing cycle length and corresponding energy flux variations are improved in simulations with 

the new parameter set. Both the latent and the sensible heat flux are strongly improved at DE-RuS with correlation 

coefficients of 0.54 and 0.45 respectively for CLM_WW simulations. For BE-Lon, the improvement in correlation 

is slightly lower for both latent and sensible heat flux compared to DE-RuS. The seasonal variation of the NEE at 

BE-Lon is reasonably captured while monthly sums are overestimated with both parameterizations. Simulations 

of the NEE using the crop specific parameter set yielded a slightly better correlation of 0.58 compared to the 

control simulation that resulted in a correlation of 0.43 (Table 3.5).  

Table 3.5: Bias, RMSE and r for the simulated daily NEE [μmol CO2 W m-2 s-1], LE [W m-2], H [W m-2] and Rn [W m-2]) 

using the crop specific parameterization (specific) for the CFTs sugar beet and potatoes at the sites BE-Lon and DE-RuS 

respectively. Results are compared to those from the control simulation runs (control). Values were calculated over the time 

period between recorded planting and harvest dates (averaged over all respective CFT years at each site) using simulation 

output and observation data at daily time step. 

CFT SUGARBEET POTATOES 
Site DE-RuS BE-Lon DE-RuS BE-Lon 

Year(s) 2017 2008 
2016 2019 

2010 
2014 
2018 

Parameter set control specific control specific control specific control  specific 
NEE 
Bias -0.59 -0.75 0.05 -0.05 - - 19.73 19.56 
RMSE 9.1 5.94 6.19 3.75 - - 5.24 5.21 
r -0.03 0.37 0.05 0.64 - - 0.43 0.58 
LE 
Bias -0.32 0.01 -0.37 -0.35 -0.28 0.25 0.26 0.09 
RMSE 58.44 24.47 60.09 48.31 60.94 50.58 43.41 40.05 
r 0.11 0.55 0.21 0.55 0.01 0.54 0.5 0.53 
H 
Bias 1.65 0.45 1.73 1.61 1.01 -0.38 0.5 0.22 
RMSE 42.77 17.24 39.75 33.45 51.61 29.9 34.06 31.17 
r -0.04 0.76 -0.08 0.51 -0.1 0.45 0.18 0.31 
Rn 
Bias -0.02 0.04 -0.11 -0.11 -0.04 0.04 - - 
RMSE 19.74 15 37.47 35.87 48.39 49.88 - - 
r 0.5 0.51 -0.22 -0.22 0.56 0.57 - - 
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Figure 3.7: Simulation results of (a-b) LAI and monthly averaged simulation results of (c-d) NEE, (e-f) LE, (g-h) H, (i-j) G 

and (k-l) Rn for all sugar beet years (see Table 3.5) at the sites (left) BE-Lon and (right) DE-RuS. Simulation results for the 

control run (orange) and the crop specific parameter set (blue) are compared to available site observations (grey) of LAI (all 

available point observations plotted) and fluxes (averaged over all respective years). Corresponding performance statistics for 

daily simulation results are listed in Table 3.5.  
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Figure 3.8: Simulation results of (a-b) LAI and monthly averaged simulation results of (c-d) NEE, (e-f) LE, (g-h) H, (i-j) G 

and (k-l) Rn for all potatoes years (see Table 3.5) at the sites (left) BE-Lon and (right) DE-RuS. Simulation results for the 

control run (orange) and the crop specific parameter set (blue) are compared to available site observations (grey) of LAI (all 

available observations plotted) and fluxes (averaged over all respective years). Corresponding performance statistics for daily 

simulation results are listed in Table 3.5. 
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3.4.3 Cover cropping and crop rotation scheme 

The cover cropping scheme was tested for two fields of application: (1) simulation of a cover crop as a second 

crop growth onset within a single year, and (2) a more flexible crop rotation between different cash crops. In this 

step, simulations were run with the previously tested crop specific parameterizations for sugar beet, potatoes and 

winter wheat and results were again compared to a control simulation run, where a consecutive growth of spring 

wheat is simulated. 

To test the first application of the cover cropping and crop rotation scheme, we simulated the cash crop and cover 

crop rotation cycle at DE-RuS from 2016 to 2017 (Figure 3.9). A greening mix was planted as a cover crop in 

between the cash crop rotation of barley (simulated using the spring wheat CFT) in 2016 and sugar beet in 2017. 

While only a consecutive growth cycle of spring wheat is simulated in the control run, the new routine was able 

to represent the crop rotation from barley to sugar beet in the following year as well as a cover crop in between 

the cash crop cycles. Both, the simulation of a cover crop and the rotation of cash crops strongly improved the 

representation of LAI in simulations with the new routine over multiple years, especially during winter months 

(Figure 3.9 and Figure 3.10). While in control simulations, the model assumed bare field conditions with no plant 

growth (LAI of 0) and very low latent heat flux, the new routine simulated the planting of a cover crop in autumn 

of 2016, which leads to an increase in latent heat flux related to increased transpiration. Statistical evaluation of 

the simulated latent heat flux for the time window after harvest of the first cash crop from August 2016 to April 

2017 shows that with the new routine, the negative bias was reduced from 0.74 to 0.13 compared to control 

simulation results, resulting in an RMSE reduction by approximately 42 % (Figure 3.9). 

   

Figure 3.9: (a) Simulated LAI for cover cropping at DE-RuS with a barley (2016), greening mix cover crop (2016/2017) and 

sugar beet (2017) using the new cover cropping subroutine (blue) in comparison to control simulation results with the default 

phenology algorithm of CLM5 (orange). (b) Corresponding monthly averaged simulation results for the latent heat flux with 
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respective bias, RMSE and r for the time window between the red dashed lines (calculated using simulation output and 

observation data at daily time step). Available observation data are plotted in grey.  

For the second case (DE-RuS), which represents a higher flexibility towards cash crop rotation, we simulated the 

years of 2017 to 2019. Here, the crop rotation switched from sugar beet in 2017 to winter wheat in 2017/2018 to 

potatoes in 2019 (Figure 3.10). In the control simulation, using the default CLM5 phenology algorithm, a 

consecutive cycle of spring wheat is simulated. The new routine was able to represent the rotation between 

different cash crops on the same field. This resulted in a much better correspondence of simulated LAI cycle and 

magnitudes with observations compared to control simulations. Statistical analysis of the latent heat flux showed 

an improvement of the RMSE (calculated for daily simulation output and observation data over these three years) 

from 43.74 to 32.94 and the correlation coefficient from 0.40 to 0.63 with the new routine. The improvement in 

simulated energy fluxes for each CFT individually is in accordance with the results presented in the previous 

chapters (0 and 0). 

 

Figure 3.10: (a) Simulated LAI for crop rotation from sugar beet (2017) to winter wheat (2017/2018) and to potatoes (2019) 

at DE-RuS using the new cover cropping subroutine (blue) in comparison to control simulation results with the default 

phenology algorithm of CLM5 (orange). (b) Corresponding monthly averaged simulation results for the latent heat flux with 

respective bias, RMSE and r over the whole time interval (calculated using simulation output and observation data at daily time 

step). Available observation data are plotted in grey.  

All three modifications that were implemented in this study helped to improve the representation of cropland sites 

in CLM5.  Similar to the findings of Lu et al. (2017) for CLM4.5, the implementation of their winter wheat routine 

resulted in a significant improvement in representing the seasonal LAI variations and surface energy fluxes during 

winter wheat growth. Next to maize and rice, wheat is one of the most important international food crops and 

among the most important cash crops in Germany (22.8 million tons winter wheat yield in 2019 nation-wide 

(Statista, 2020). In Germany and other western European countries, winter cereal varieties (e.g. winter rye, barley 



Chapter 3: Improving the representation of cropland sites in the CLM5 38 

 

and wheat) are more abundant than summer cereals due to climatic conditions (Palosuo et al., 2011; Semenov and 

Shewry, 2011; Thaler et al., 2012). With an average annual winter wheat yield of around 20 Mt/a for Germany, an 

improvement of 87 % in simulated yield with CLM_WW compared to the default model (as observed at the DE-

RuS site in 2018) could result in a difference of several tens of millions of tons in total predicted annual yield on 

a nation-wide scale. 

Despite the general improvement of winter wheat growth and yield simulated with the modified CLM_WW, there 

is still potential in further increasing the flexibility towards simulating different crop varieties and management 

practices. Due to the phenology algorithm of CLM5, a low simulated LAI can indicate a lower grain yield due to 

low biomass growth. Accordingly, the higher simulated LAI for the DE-RuS site was associated with a slightly 

higher simulated grain yield for DE-RuS compared to BE-Lon. However, this relationship is not reflected in the 

observations, as the measured grain yield is lower for DE-RuS compared to BE-Lon, although the observed LAI 

is higher for DE-RuS (Figure 3.5, Table 3.3). 

In CLM, there are several variables that influence the simulated crop yield, such as LAI cycle and peak, length of 

the leaf emergence phase, harvest date, and water availability from the soil. Except for soil moisture, these 

variables are strongly correlated to the GDD scheme which suggests that the simulated crop yield profoundly 

depends on the GDD. The high sensitivity of simulated yield in CLM towards GDD is not reflected in actual field 

observation, where crop yield depends on a multitude of factor, environmental conditions (weather, nutrient 

availability, atmospheric CO2) and management decisions. Underestimation of winter wheat yield at BE-Lon may 

be due to model deficiencies in representing the complex crop management practices, such as timing and type of 

fertilizer, ploughing crop varieties and the usage of different winter wheat varieties that can show different 

responses to water or heat stress, frost and have different grain productivities (White and Wilson, 2006; Bergkamp 

et al., 2018; Ceglar et al., 2019). In order to include different varieties of any crop, the list of CTFs could be 

extended with suitable plant parameterizations. However, this information is not readily available, due to a 

combination of measurement data scarcity and the complexity of the phenology algorithm and parameter scheme. 

The introduction of a phenology scheme based on plant physiological trait information in CLM could be a major 

improvement in this field (see Fisher et al., 2019), as plant trait information becomes more readily available (e.g. 

TRY Plant Trait Database, Kattge et al., 2011). Whether considering different varieties and cultivars of a crop is 

important for regional or global scale simulations remains to be evaluated. In general, as already noted by Lu et 

al. (2017), a more process based vernalization and cold tolerance routine would be useful to make this subroutine 

more applicable to other winter crops like rapeseed.  

The early leaf onset and harvest for winter wheat simulated by CLM (both with the new routine and parameter set 

and the control run) could be met by adjusting the minimum date for planting within the CFT parameterization. 

This could be useful to easily improve the crop cycle representation in regional simulations, where planting 

patterns are similar for larger agricultural areas. However it would restrict the flexibility of the model to 

prognostically simulate planting dates.  

In general, the simulated plant growth and resulting yield were highly sensitive to plant parameters that govern the 

growing degree calculation which in turn influence the phenological development and allocation of C and N. With 

only a limited number of CFTs in CLM, a discretization of plant parameters or varieties on a regional scale is not 

possible at this point. A potential solution, without introducing additional CFT´s, could be to account for key 

parameters for each CFT varying with climate and soil conditions for large scale simulations (e.g. by gridded 
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parameter sets). Furthermore, there is a need to evaluate and further discretise plant hydraulic properties (at this 

point one set of hydraulic parameters is applied to all types of crops) (Verhoef and Egea, 2014; Kennedy et al., 

2019). Within the crop module of CLM5, the carbon allocation of crops is limited by soil water available to the 

plant. Thus, both an improved soil hydrology  and an improved representation of plant hydraulics could play a 

major role in improving the quality of yield prediction by the model (Bassu et al., 2014; Kennedy et al., 2019). 

These plant hydraulic properties could be estimated by inverse modelling or data assimilation (e.g. by assimilating 

measurement data like NEE, LAI, soil moisture and/or energy fluxes using an augmented state-vector approach). 

In addition, data assimilation of e.g. in situ or remotely sensed soil moisture data and/or LAI could play a major 

role in increasing the accuracy of regional yield predictions (e.g. Guérif and Duke, 2000; Launay and Guerif, 2005; 

de Wit and van Diepen, 2007; Fang et al., 2008; Vazifedoust et al., 2009; Huang et al., 2015; Jin et al., 2018).  

The default CLM5 does not account for the influence of weeds or cover crops and/or its litter on the carbon balance. 

There is a tool available for CLM5 that enables the simulation of transient land use and land cover changes 

(LULCC) (Lawrence et al., 2018). It was designed to simulate the effects of changing distributions of natural and 

crop vegetation, e.g. land use change from forest to agricultural fields and also allows for changes in crop type 

between years (Lawrence et al., 2018), but does not account for intra-annual changes of agricultural management 

on crop vegetated areas that happen in double and triple cropping scenarios. While this tool is useful to study 

general land use changes by changing the land cover type of individual land units, we found it lacks flexibility in 

accounting for changes within land units of the same land cover and does not account for all 64 CFTs. Furthermore, 

this tool changes the CFT of each column on the 1st of January every year according to prescribed values 

(customized). Thus, when using the CLM5 land-use change tool, for example to simulate the crop rotation from 

sugar beet in 2017 to winter wheat in 2017/2018 at DE-RuS, winter wheat would not be planted before autumn of 

2018 (rather than in the same year as sugar beet is harvested) resulting in a long period of fallow field when 

switching from summer to winter crop (Figure 3.10). Here, the implementation of our cover cropping routine 

enabled a second onset of plant growth within a year (including the switch to another CFT). This resulted in a 

pronounced improvement in LAI curves and latent heat flux, especially during winter months, by simulating the 

growth of a cover crop. It also proved to be beneficial in representing realistic agricultural field conditions by 

allowing crop rotations with higher flexibility than the default model.  

This new routine can be used to study cover cropping scenarios in future large-scale simulations. The effect of a 

cover crop during winter months on all crop land units where cash crops are grown in summer could be tested. 

This could also be tested for specific cash crops only. In addition, it is possible to simulate cover crop plantations 

based on harvest date thresholds. A defined maximum harvest date for any specific cash crop could define whether 

a cover crop such as winter wheat would be planted or not. For example, for all sugar beet land units with harvest 

dates before a certain threshold (e.g. day 290 of any given year) winter wheat could be planted as a cover crop 

during winter. If this harvest threshold were not reached and the summer crop is harvested late in the year, no 

cover crop would be planted. Alternatively, these harvest thresholds could define the type of cover crop, e.g. early 

harvest - winter wheat, late harvest – simple greening mix, etc. Also, historical land use information could be used 

to simulate realistic cover cropping and crop rotation scenarios. The succession of different crops from historical 

data could also be used to model the succession of crops for the future. In order to study large scale effects of cover 

cropping and common crop rotations, the CLM5 model would greatly benefit from further crop specific parameter 

sets for cover crops such as mustard, and further important cash crops.  
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In their approach, Lombardozzi et al. (2018) studied the effects of idealized cover crop scenarios by simulating 

winter crops in all crop regions throughout North America. They found that the effects of cover crops on winter 

temperatures is strongly related to plant height and LAI and emphasized the importance of biogeophysical effects 

and varietal selection when evaluating the climate mitigation potential of cover cropping (Lombardozzi et al., 

2018). With our new routine, it is now possible to evaluate the biogeophysical effects of cover crops over longer 

time scales and in combination with typical cash crop rotations throughout agricultural areas. Also the ecological 

potential of different cover crop varieties could be evaluated. We anticipate that this modification will allow a 

more realistic representation of seasonal LAI in ecosystems where cover cropping and crop rotations are common 

management practices. The application of this routine is also of interest for areas with several cash crop cycles 

within a year like multiple annual crop cycles in India and China (Biradar and Xiao, 2011; Li et al., 2014; Sharma 

et al., 2015). We see further development potential for this routine and corresponding datasets to account for typical 

crop rotations and cover cropping scenarios for regional scale simulations (e.g. EU regulations and goals on the 

adoption of cover crops for climate change mitigation (Smit et al., 2019)). 

The default CLM5 was extended by adopting the winter wheat representation of Lu et al. (2017), by including 

crop specific parameterization for winter wheat, sugar beet and potatoes and by the addition of a cover cropping 

subroutine that allows several growth cycles within one year. The model modifications were tested for the 

respective crops at four TERENO and ICOS cropland sites in Germany and Belgium, Selhausen (DE-RuS), 

Merzenhausen (DE-RuM), Klingenberg (DE-Kli) and Lonzée (BE-Lon), for multiple years. The main results 

drawn from this study are as follows:  

− The implementation of the winter wheat subroutines led to a significant simulation improvement in terms of 

energy fluxes, leaf area index, net ecosystem exchange and crop yield (reduction of underestimation from 80 

– 90 % to 18 – 36 % at test site BE-Lon, good match for the test sites DE-RuS and DE-Kli in 2016 and slight 

overestimation at test site DE-Kli in 2011) 

− The model performance was strongly improved with the crop specific parameter sets for sugar beet and 

potatoes: seasonal variations and magnitudes of energy fluxes and LAI were better reproduced with RMSE 

reduction during the crop cycle by up to 57 % for latent and 59 % for sensible heat flux at test site DE-RuS. 

− In most cases the modification of CLM5 led to better reproduction of measured NEE at the test sites. However, 

the model showed a general weakness in reasonably simulating the NEE on agricultural fields, especially the 

peak value and post-harvest conditions. 

− The implementation of our cover cropping routine enabled a second onset of plant growth within a year and 

thus was able to better capture realistic field conditions after harvest. Winter time RMSE for latent heat flux 

was reduced by 42 %. Also, a higher flexibility in terms of crop rotations is now possible with CLM5.  

We anticipate that our implementation of the winter wheat representation and specified parameterization will 

markedly improve yield predictions at regional scale for regions with a high abundance of winter cereal varieties. 

The cover cropping routine offers an improved basis on which to study the effects of large scale cover cropping 

on energy fluxes, soil water storage, soil carbon and nitrogen pools, as well as to investigate the role of different 

cover crops as natural fertilizer in future studies with CLM5. A more realistic representation of post-harvest field 
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conditions can play a crucial part in better representing the role of agriculture on regional and global energy and 

carbon fluxes and will be further developed and tested for regional scale simulations in future studies. 

Despite our improvements, there is still a need to further develop certain functionalities and specific routines 

regarding the crop representation and land management in CLM5 in order to achieve better model performance 

for agricultural land. The applicability of the routines to large scale simulations would strongly benefit from 

additional crop specific parameterizations for important cash and cover crops. Also a better representation of 

ploughing and tillage needs be included in future model versions in order to better account for the effects of cover 

crops on the terrestrial carbon cycle and their biogeochemical benefits. 

Further general examples for improvements include: (1) an improved representation of plant and soil hydrology 

that may be highly beneficial for yield predictions, (2) a more detailed representation of agricultural management 

practices (e.g. tillage, C/N turnover, post-harvest surface conditions, fertilizer types and applications), (3) tools to 

account for spatial variability in plant physiological parameters, and (4) the discretization of plant hydraulic 

properties as opposed to using one parametrization for all crops.  
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4 Seasonal soil moisture and crop yield predictions 

with fifth-generation seasonal forecasting system 

(SEAS5) long-range meteorological forecasts in a 

land surface modelling approach  

Adapted from: Boas, T., Bogena, H. R., Ryu, D., Vereecken, H., Western, A., and Hendricks Franssen, H.-J.: 

Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-

range meteorological forecasts in a land surface modelling approach, Hydrology and Earth System Sciences., 27, 

3143–3167, https://doi.org/10.5194/hess-27-3143-2023, 2023. 

Reliable high-resolution seasonal weather forecasting systems can provide important information for a multitude 

of weather-sensitive sectors, especially for agricultural regions with high inter-annual variability of rainfall 

patterns that are strongly influenced by El Niño events (Ash et al., 2007; McIntosh et al., 2007; Troccoli, 2010). 

Information on seasonal rainfall and temperature development can influence agricultural management decisions 

at the beginning of the growing season and potentially mitigate yield losses related to droughts. However, the 

relevance and usability of such seasonal forecasts depend on the predicted variables, their accuracy and their lead 

time as well as whether they are supplied in a user-friendly and content-specific format, e.g.  in combination with 

other model applications (e.g. crop or land surface models), to assess the expected benefits to the economy or 

natural resources (Cantelaube and Terres, 2005; Hansen et al., 2006; Ash et al., 2007; McIntosh et al., 2007; Meza 

et al., 2008). Sub-seasonal (1 to 3 months) and seasonal (up to 7-month lead times) forecasts bridge the gap 

between short-range weather forecasts and climate predictions and are the most important time periods for model 

applications and planning purposes, e.g. in agriculture or risk management (Monhart et al., 2018). In the last 

decade, substantial improvements have been made in numerical weather prediction, especially in short- and 

medium-range weather forecasts by further model development, data assimilation methods and the incorporation 

of ensemble prediction into seasonal forecasting systems (Coelho and Costa, 2010; Bauer et al., 2015; Monhart et 

al., 2018).  

In spite of these substantial improvements, there are still considerable challenges in interfacing forecast 

information from climate to systems science (Coelho and Costa, 2010). For instance, deficiencies remain in the 

definition and communication of forecast uncertainties (e.g. due to discrepancies between the spatial and temporal 

resolutions of the global weather forecasting system and the regional or local land surface models) and in the lack 

of available tools, literature and experience for correct usage and data processing (Coelho and Costa, 2010). 

Seasonal and sub-seasonal forecasts do not reflect day-to-day weather statistics but rather project general weather 

trends of the predicted season. This leads to high-precipitation biases compared to observations, which is a major 

limitation for crop models that usually operate on sub-daily time steps in response to precipitation and 

corresponding soil moisture dynamics. In their study, Monhart et al. (2018) conducted a verification of sub-
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seasonal forecasts (with a 1-month lead time) from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) against ground-based observational time series of 20 years across Europe for precipitation and 

temperature and performed two different bias-correction techniques. They found generally better skill for 

temperature than precipitation and that the accuracy of both variables improved significantly after station-based 

bias correction (Monhart et al., 2018). However, McIntosh et al. (2007) evaluated the potential of different 

forecasting systems for wheat growth in Victoria, Australia, and concluded that even a perfect forecast of the total 

rainfall amount throughout the growing season is not enough to explain even half of the overall potential of an 

ideal forecasting system.  

The major aim of this study was to evaluate the efficacy and applicability of this state-of-the-art forecasting product 

for physical and biogeochemical land surface responses and regional crop production in an ecosystem process 

model approach. To this end, we tested the combination of the Community Land Model version 5 (CLM5) 

(Lawrence et al., 2018; 2019) and seasonal forecasts from the ECMWF’s latest seasonal forecasting system SEAS5  

(Johnson et al., 2019). Regional simulations were conducted for two domains with different climate regimes and 

agricultural characteristics, one covering the state of North Rhine-Westphalia in Germany (DE-NRW), and one 

the state of Victoria in Australia (AUS-VIC), using sub-seasonal and seasonal forecasts with different lead times 

as input. In our evaluations we focused on (1) the model’s sensitivity to seasonal changes in weather patterns and 

their effect on regional vegetation properties, e.g. leaf area index (LAI), evapotranspiration (ET), and crop yield; 

(2) the representation of the surface soil moisture content; and (3) the overall applicability and potential of seasonal 

weather forecasts for the prediction of regional agricultural production in model applications such as CLM5. In 

addition, we address the pre-processing steps required for the usage of the SEAS5 product in this model application 

and briefly discuss the importance of temporal downscaling.  

The  long-range forecast product generated by the ECMWF SEAS5 system, the fifth-generation seasonal forecast 

system that became operational in November 2017 (Johnson et al., 2019), represents one of the most sophisticated 

seasonal products available to date. Studies that evaluated the quality of the SEAS5 product globally and for 

specific regions concluded that it outperforms earlier versions of ECMWF forecast products and can provide useful 

information for regional agriculture (e.g. Johnson et al., 2019; Wang et al., 2019; Gubler et al., 2020). The 

prediction performance was found to be highest for maximum temperature over South America (with an up to 70% 

probability that the predictions will correctly capture the observed outcomes in the tropics during austral summer) 

(Gubler et al., 2020) and Australia (Wang et al., 2019). For precipitation, the performance was considerably lower 

and more variable (spatially and temporally) than for temperature (Wang et al., 2019; Gubler et al., 2020). The 

best forecast performance was observed over regions that are influenced by El Niño where SEAS5 outperformed 

predictions from statistical relationships at the seasonal scale (Gubler et al., 2020). 

The relevance and value of meteorological forecasting systems for agriculture have been evaluated by a number 

of studies (e.g. Cantelaube and Terres, 2005; Marletto et al., 2007; McIntosh et al., 2007; Semenov and Doblas-

Reyes, 2007). In their study, Semenov and Doblas-Reyes (2007) used a stochastic weather generator to obtain site-

specific daily weather from seasonal DEMETER (European Development of a European Multimodel Ensemble 

system for seasonal to inTERannual climate prediction) predictions. They found that dynamical seasonal forecasts 

did not improve single-site yield predictions with the wheat simulation model compared to approaches based on 

historical climatology due to their low skill for latitudes higher than 30° for the Northern Hemisphere and Southern 

Hemisphere. Cantelaube and Terres (2005) evaluated an ensemble of seasonal weather forecasts from the 
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DEMETER project in a multi-model approach with a crop growth modelling system (CGMS), showing 

encouraging results for the usage of seasonal forecasts for weather-sensitive decision-making.  Wang et al. (2020) 

investigated the impact of pre-season and early season El Niño-Southern Oscillation (ENSO)-related large-scale 

climate signals on wheat yields in Australia. They found that these ENSO signals can have a significant impact on 

wheat yields in the Australian wheat belt and could explain up to 21% of the yield variation. In another study by 

Potgieter et al. (2022), the lead time and skill of Australian wheat yield forecasts using seasonal climate forecasts 

derived from a statistical ENSO-analogue system were compared with using a dynamic general circulation model 

(GCM). They found that ENSO-derived forecasts showed higher skills at a longer lead time (6 months), with a 

higher correlation coefficient of 0.48 compared to 0.37 for GCM forecasts, while GCM forecasts provided higher 

skill at shorter lead times (1-3 months) with a higher correlation coefficient of 0.44 compared to 0.35 for ENSO-

analogue forecasts. 

Thus, although seasonal weather forecasts have immense potential for the agricultural sector, i.e. for individual 

farming decisions, risk management and adaptation strategies for increasing climate variability, and extreme 

weather events in the context of climate change (Calanca et al., 2011), they need to be combined with a measurable 

system response via e.g. crop models or Earth system models. Land surface models are our primary tools for 

simulating water, energy and nutrient fluxes in the terrestrial ecosystem and are broadly applied for different 

scientific purposes (e.g. Niu et al., 2011; Lawrence et al., 2018, 2019; Lombardozzi et al., 2020; Naz et al., 2019). 

CLM5 is the latest version of the land component in the Community Earth System Model and offers the possibility 

of prognostic vegetation state and yield prediction with its new biogeochemistry module (Lawrence et al., 2018; 

2019). CLM5 includes a representation of crops and agricultural management (fertilization, irrigation, different 

crop types) essential for studying the impact of climate change on yield as well as the implications of agriculture 

for climate change (Lombardozzi et al., 2020). In CLM5, crop productivity is a dynamic non-linear interaction 

between meteorological conditions, crop phenology, nutrient dynamics, and water availability in the soil. Thus, a 

reliable prediction of the soil moisture regime is also essential for the relevance of land surface model applications 

for climate change research and is a major source of uncertainty for the simulation of the terrestrial carbon cycle 

(Trugman et al., 2018).  

Another major limitation of the usage of seasonal and sub-seasonal forecasting products for crop or land surface 

modelling is their coarse spatial and temporal resolution. This problem can be addressed by disaggregating forecast 

variables using stochastic weather generators (e.g. Hansen et al. 2006), which has already been done for several 

crop model approaches (see the reviews in Cantelaube and Terres, 2005; Ash et al., 2007; Meza et al., 2008).  

Despite their potential economic value for agricultural production systems, the quantitative adoption of seasonal 

climate forecasts by farmers is low, both in Victoria and NRW (e.g. Parton et al., 2019). The Australian Bureau of 

Meteorology attributed this to insufficient data and evidence about their value and conducted a series of studies of 

the potential value of a forecast based on a particular production system and for specific regions and timescales 

(Hansen, 2002; Hansen et al., 2006). Furthermore, the challenges highlighted above have hindered widespread 

application of such long-range forecasts for agriculture, particularly for larger (not site-specific) scales (Coelho 

and Costa, 2010; Calanca et al., 2011). The lack of user-friendly tools and services that can provide content-

specific information based on seasonal forecasts and account for other economic factors (e.g. political choices, 

outlook for crop markets) represents another constraint. 
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A thorough review of the economic value of seasonal weather forecasts for agriculture can be found in Meza et al. 

(2008), Klemm and McPherson (2017), and references therein. For an improved understanding of the value of 

seasonal forecasts for the agricultural sector, more studies are needed that explore state-of-the-art forecast products 

and for a larger range of regions (i.e. high seasonal predictability, large areas of extensive management, rain-fed). 

Here, we provide a first feasibility study of the combination of seasonal forecasts from SEAS5 with CLM5, 

focusing on crop yield and soil moisture predictions on a regional scale.  

4.2.1 Regional domains and surface input data 

The CLM5 simulations were carried out in two regional domains, one in western Europe covering the state of 

North Rhine-Westphalia in Germany (DE-NRW) and one that covers large parts of the state of Victoria in Australia 

(AUS-VIC) (Figure 4.1, Figure 4.2). The DE-NRW domain is characterized by a very diverse land cover with 

urban, natural and mixed agricultural areas that are mostly fed by rainwater. The agricultural land cover in DE-

NRW is especially abundant in the northern and western parts of the domain along with natural vegetation and 

urban areas. Winter wheat, winter barley, corn, sugar beet and rape seed are the most important cash crops in DE-

NRW, which are mostly rain-fed (Figure 4.2, BMEL, 2020, 2022). In the southern part of the domain over the 

Eifel region, forests and grasslands are the dominant land cover. Recently, agricultural yield in this area was 

impacted in 2018 and 2019, by a late cold spell (late February to early March 2018) and extreme heat and dry 

spells in both summers which led to an unusually high spatial variability of yield, especially for cereals (NRW 

Gov., 2020; BMEL, 2020, 2022). The AUS-VIC domain covers large parts of the Australian wheat belt in the state 

of Victoria (Figure 4.1). The land cover is dominated by rain-fed agricultural areas with large paddock sizes of 

mostly cereal cultivation, with winter wheat being the most important crop, followed by barley and canola 

(ABARES, 2020; Morse-McNabb et al., 2015), along with large patches of naturally vegetated areas (i.e. pasture, 

grasslands, and native woody cover) and woody horticulture and wood plantations. Unfavourable weather 

conditions for winter crop farming (i.e. the timing and intensity of early season rainfall events) are clearly reflected 

in the relatively low regional production and yield per area (ABARES, 2020).  

For the DE-NRW domain, land cover information was derived from the crop and land cover dataset by Griffiths 

et al. (2019) that covers Germany at 30-m resolution. This dataset was generated from Sentinel-2A MultiSpectral 

Instrument and Landsat-8 Operational Land Imager observation data from the NASA Harmonized Landsat-

Sentinel dataset for the year 2016 (Claverie et al., 2018). Comparison of the derived crop type and land cover map 

with agricultural reference data showed a very good overall accuracy of > 80%, especially for crop types with high 

abundances, e.g. cereals, maize and canola (Griffiths et al., 2019). For the AUS-VIC domain the 500 m resolution 

Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (Friedl and Sulla-Menashe, 2019) 

was aggregated to the coarser resolution of 1 km and masked with information from the latest Victorian Land Use 

Information System (VLUIS) product for the year 2016 (Morse-McNabb et al., 2015). The VLUIS dataset covers 

the whole state of Victoria and contains information on land use and land cover for each cadastral parcel. It is a 

product of time series analysis of remote-sensing data (MOD13Q1 or MYD13Q1 by NASA) and annually 

collected field data (Morse-McNabb et al., 2015).  

For both domains, we used soil texture and soil organic matter information from the global SoilGrids database that 

provides soil information at seven depths (0, 0.05, 0.15, 0.30, 0.60, 1 and 2 m) at 250 m spatial resolution (Hengl 
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et al., 2017). Soil information from SoilGrids are publicly accessible via the International Soil Reference and 

Information Centre (ISRIC) – World Soil Information Data Hub (ISRIC, 2023). 

Other soil parameters, such as the saturated hydraulic conductivity and soil retention parameters, were calculated 

within CLM5 with the pedotransfer function after Cosby et al. (1984). Additional properties of each of the sub-

grid land fractions (e.g. properties of urban land cover) were derived from the global CLM5 surface dataset (see 

Lawrence et al., 2018). 

  
Figure 4.1: (a) AUS-VIC simulation domain extent. (b) Dominant land use type based on VLUIS data, modified after the 

Victorian Government Data Directory (2018). (c) Percentage of sand content (averaged throughout the soil profile) based on 

SoilGrids data. (d) Percentage of clay content (averaged throughout the soil profile) based on SoilGrids. The locations of 

CosmOz network (Hawdon et al., 2014) stations 15 (Hamilton), 18 (Bishes), and 19 (Bennets) are indicated in panel (a). 
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Figure 4.2: (a) DE-NRW simulation domain extent. (b) Dominant land use type based on Griffiths et al. (2018, 2019). (c) 

Percentage of sand content (averaged throughout the soil profile) based on SoilGrids data, and (d) percentage of clay content 

(averaged throughout the soil profile) based on SoilGrids. The locations of the COSMOS-Europe (Bogena et al., 2022) stations 

Merzenhausen, Heinsberg, Selhausen, and Aachen are indicated in panel (a). 

4.2.2 Agricultural statistics 

The mild climate in Victoria is favourable to a range of winter crops, especially cereals (wheat, barley, oats), 

oilseeds (canola) and pulses (lentils, beans, chickpeas) contributing to Australia’s total annual winter crop yield of 

~5 million tons on average. Most of the crop production in Victoria is from the western and northern regions, 

expanding to high-rainfall zones of southern Victoria. Wheat varieties represent the most commonly sown winter 

crop in Victoria, with an average operated area of 1.3 million hectares (2015 to 2019 average) (ABARES, 2020). 

The production of summer crops such as grain sorghum, cotton or rice in Victoria is negligible, with an average 

total production of 2000 t per year (2015 to 2021 average) (ABARES, 2020). The main cropping season in Victoria 

is from April to November. Regional average farming yield in the Victoria domain is highly influenced by seasonal 

rainfall patterns. In 2018, Victoria experienced substantial yield losses due to long dry spells and high temperatures 

after the first seasonal rainfalls, while record grain yields were recorded for the year 2020 (ABARES, 2020). 

In the state of NRW, the most relevant cash crops are grain crops such as cereals (especially winter cereals) and 

corn, followed by canola, sugar beet and potatoes (BMEL, 2020, 2022). The main cropping season in Germany 

occurs during the spring and summer months until the beginning of autumn from April to the end of October. The 

European drought of 2018 led to local yield losses, especially for the crops corn, potatoes and sugar beet and 

slightly for canola, and to unusually high spatial wheat yield variability within the region. The spatial variability 

was strongly related to soil type (IT.NRW, 2019; NRW Gov., 2020). Regions with clay-rich soils that have high 

water-holding capacities, saw unexpectedly high wheat yields in 2019, while regions dominated by less fertile 
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sandy soils in the north-western part of the state experienced yield losses due to water deficits (NRW Gov., 2020). 

In general, the annual crop yield of the main cash crops varies more in Victoria than in NRW, where, on a regional 

average, there is only small variation between the annual yields of the respective crops (for a complete list of 

cropland area and production of major cash crops in Victoria and NRW, please see Table B6 and Table B7). 

4.2.3 Land surface model 

Land surface models such as CLM5 are essential tools for the study and prediction of terrestrial processes (e.g. 

energy, water and nutrient fluxes) and climate feedbacks in the terrestrial ecosystem and are broadly applied in 

different scientific disciplines (e.g. Baatz et al., 2017; Lu et al., 2017; Chang et al., 2018; Han et al., 2018; 

Lawrence et al., 2018, 2019; Naz et al., 2019; Lombardozzi et al., 2020). In this study, the land surface model 

simulations were carried out with the latest version of CLM5, which includes an adopted version of the prognostic 

crop module from the Agro-Ecosystem Integrated Biosphere Simulator (Kucharik and Brye, 2003; Lawrence et 

al., 2019). CLM5 is forced by atmospheric states at a given time step and simulates the exchange of water, energy, 

carbon and nitrogen between land and the atmosphere, their storage and transport on the land surface and in the 

sub-surface, as well as the biomass and respective yield of crops upon harvest (Lawrence et al., 2019; Lombardozzi 

et al., 2020). In CLM5, the plant hydraulic stress routine simulates water transport through the soil-root-stem-leaf 

system based on Darcy´s law for porous media flow and adapts the vegetation water potential according to the 

water supply with transpiration demand. Water stress for plants is based on leaf water potential which is used for 

the attenuation of photosynthesis in a transpiration loss function relative to maximum transpiration  (Lawrence et 

al., 2018). The leaf stomatal conductance and leaf photosynthesis are modelled for sunlit and shaded leaves 

separately based on the approaches of Medlyn et al. (2011) and Farquhar et al. (1980) for C3 plants and Collatz et 

al. (1992) for C4 plants (Lawrence et al., 2018) respectively. Adapted from Medlyn et al. (2011), the leaf stomatal 

resistance is calculated using the net leaf photosynthesis, the vapour pressure deficit and the CO2 concentration at 

the leaf surface with plant-specific slope parameters (Lawrence et al., 2018).  

With its biogeochemistry module, CLM5 is fully prognostic regarding crop phenology (e.g. grain yield, leaf area 

index or crop height) as well as carbon and nitrogen in the soil, vegetation and litter. The crop module includes a 

total of 78 plant and crop functional types, including an irrigated and non-irrigated C3 crop and crops such as 

winter wheat, spring wheat, canola temperate and tropical corn, temperate and tropical soybean, cotton, rice and 

sugarcane (Lawrence et al., 2018). Fertilization dynamics and annual fertilizer amounts in CLM5 depend on the 

crop functional types and vary spatially and yearly based on the land use and land cover change time series from 

the Land Use Model Intercomparison Project (Lawrence et al., 2016). Mineral fertilizer application starts during 

the leaf emergence phase of crop growth and continues for 20 d, and manure nitrogen is applied at slower rates of 

0.002 kg N m-2 per year. For a more detailed description of the features and formulations of CLM5, the reader is 

referred to the technical description and the latest literature (Lawrence et al., 2018, 2019).  

Here, we used a modified version of CLM5 that includes a winter cereal representation, an updated parameter set 

for several cash crops (winter wheat, sugar beet and potatoes) and a new sub-routine that allows the simulation of 

cover cropping and a more flexible crop rotation (Boas et al., 2021). The modified CLM5 version led to 

significantly improved simulations of LAI, net ecosystem exchange, crop yield and energy fluxes at several central 

European sites (Boas et al., 2021).  
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4.2.4 Seasonal weather forecasts  

In this study, we used long-range meteorological forecasts from the ECMWF’s fifth-generation seasonal 

forecasting system, SEAS5, which has been operational since November 2017 (Johnson et al., 2019). The SEAS5 

forecasts are based on a coupled atmosphere-ocean model and provide forecasts of numerous meteorological 

variables at either 6-hourly or daily time steps at a horizontal resolution of 1 degree. For the seasonal forecast, an 

ensemble of 51 members is initialized on the first day of a month and integrated for 7 months (Johnson et al., 

2019). Furthermore, SEAS5 provides a set of retrospective seasonal hindcasts from 25 ensemble members for the 

years 1981 to 2016 that are used to calibrate and verify the forecasts compared to other datasets. While the whole 

period of hindcasts is used to verify the system, a subset from the years 1993 to 2016 is used in the calculation of 

forecast anomalies to avoid unreasonable effects from long-term climate trends on the forecast product (Johnson 

et al., 2019). A detailed description of the SEAS5 forecasting system and an overview of its performance are 

presented in Johnson et al. (2019). The SEAS5 forecasting product provides all the variables needed to force CLM5 

at daily or 6-hourly time steps: accumulated daily precipitation amounts, daily short-wave and long-wave radiation 

fluxes, wind speed, air temperature, dew point temperature and mean sea level pressure. In this study, we used the 

years 2017 to 2020 for our simulation experiments, in accordance with the availability of the forecasting product.  

We used different sets of SEAS5 forecast data, seasonal forecasts with a 7-month lead time and sub-seasonal 

forecasts with 3- and 4-month lead time. Those variables available at only a daily time step (incoming short-wave 

radiation and precipitation) were temporally disaggregated to a 6-hourly time step using the Meteorology 

Simulator (MetSim) (Bennett et al., 2020) to provide realistic information on atmospheric states. MetSim is based 

on algorithms from the Mountain Microclimate Simulation Model (MTCLIM) (Hungerford et al., 1989; Thornton 

and Running, 1999; Thornton et al., 2000; Bohn et al., 2013) and the Variable Infiltration Capacity (VIC) 

macroscale hydrologic model (Liang et al., 1994). MetSim can be used to either generate spatially distributed sub-

daily time series of meteorological variables from a smaller number of input variables (daily minimum and 

maximum temperatures and elevation data) or to disaggregate meteorological data from a coarse temporal 

resolution to a finer one (Bennett et al., 2020).  

In addition to the necessary meteorological input and calibration variables, MetSim also requires a grid description 

file that comprises information like spatial location (latitude and longitude), size of the grid cells and topography. 

Here, elevation data at a spatial resolution of 1 arc second from the ASTER Global Digital Elevation Model were 

used (NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team, 2019).  

The daily variables were disaggregated to sub-daily resolution. The total daily precipitation was split into four 

equal amounts of precipitation and then spread across the sub-daily time steps (6-hourly). Similar approaches were 

used for the National Centre for Environmental Prediction (NCEP) dataset (Viovy, 2018) and in Hudiburg et al. 

(2013). Unfortunately, this deterministic approach cannot characterize the diurnal cycle of precipitation properly. 

The incoming short-wave radiation is disaggregated by multiplying the total daily short-wave radiation by the 

fraction of radiation that is calculated by the solar geometry module of MetSim. The solar geometry module within 

MetSim computes the daily potential radiation, day length and transmittance of the atmosphere based on the 

algorithms from MTCLIM (Thornton and Running, 1999). The influence of the temporal resolution of forcing data 

on simulation results and the quality of MetSim-disaggregated data for the CLM5 model performance relative to 

hourly forcing data is illustrated and discussed for an example at point scale in Appendix B1.  
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4.2.5 Simulation experiments and performance metrics 

We conducted simulation experiments using different sets of seasonal (up to a 7-month lead time) and sub-seasonal 

(up to a 4-month lead time) forecasts in order to assess a potential difference for the prediction of annual crop 

yields and general model system responses for different forecast lead times. For the seasonal experiments (CLM-

S), forecasts with a lead time of 7 months covering the main growing season (1st of April to 31st of October) were 

used. The seasonal simulations started on 1st of April and continued for 7 months, until the end of October of the 

same year. The same timescale was used for the sub-seasonal experiments (CLM-SUB) that were forced with a 

combined set of forecasts with lead times of 3 and 4 months (from 1st of April until the end of June and from the 

1st of July until 31st of October) (Figure 4.3). Seasonal and sub-seasonal experiments were conducted for the years 

2017, 2018, 2019 and 2020 in order to assess the ability of the model to portray inter-annual differences in crop 

production for both domains. Furthermore, reference simulations (CLM-WFDE5) were conducted for the years 

2017, 2018 and 2019 using the bias-adjusted global reanalysis dataset WFDE5 (Cucchi et al., 2020). The WFDE5 

dataset was generated from the ERA5 reanalysis product (Hersbach et al., 2020) using the WATCH Forcing Data 

(WFD) methodology (Cucchi et al., 2020). It is provided at 0.5° spatial resolution and at an hourly time step for 

the period from 1979 to 2019.  

An 850-year spin-up was performed prior to production runs for both domains in order to reach equilibrium 

conditions for soil carbon and nitrogen pools, soil water storage and other ecosystem variables. The global 

CRUNCEP atmospheric forcing dataset  (Viovy, 2018) was used to force the spin-up simulations. The CRUNCEP 

dataset is a combination of the CRU TS3.2 0.5 x 0.5 degree monthly data covering the period 1901-2002 (Harris 

et al., 2014) and the NCEP reanalysis 2.5 x 2.5 degree 6-hourly data covering the period 1948-2016 (Kalnay et al., 

1996).  

 

Figure 4.3: Overview of experimental simulation design. CLM-SUB and CLM-S were driven by SEAS5 forecasts 

at hourly timestep, with a spatial resolution of approximately 36 km. CLM-WFDE5 reference runs were forced 

with WFDE5 data, characterized by a spatial resolution of 0.5° at hourly timestep. 
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In order to evaluate the quality of the simulation results we used the root mean square error (RMSE), the mean 

bias error (MBE) and the squared correlation coefficient (R2) as statistical validation metrics:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1 ,        (4.1) 

𝑀𝐵𝐸 =
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𝑖=1

𝑛
,         (4.2) 
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𝑖=1

∑ (𝑦𝑖−𝑦)2𝑛
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,        (4.3) 

where n is the total number of time steps, Xi and yi are the simulated and the observed values of a given variable 

at every time step i, and the overbar represents the mean value.   

4.2.6 Validation data  

For the validation of CLM5-simulated surface soil moisture, we compared simulation results with the Soil 

Moisture Active Passive (SMAP) mission Enhanced Level-3 radiometer soil moisture product (SMAP L3) 

(Entekhabi et al., 2016) and with the Soil Moisture CCI combined dataset, version 05.2 (ESA-CCI), from the 

European Space Agency (ESA) Soil Moisture Essential Climate Variable (ECV) Climate Change Initiative (CCI) 

project (Dorigo et al., 2017; Gruber et al., 2017, 2019). The global SMAP L3 product comprises soil moisture 

retrievals at both 06:00 and 18:00 LT at a spatial resolution of 9 km (Entekhabi et al., 2016). The ESA-CCI soil 

moisture combined product provides global daily volumetric soil moisture data at a spatial resolution of 0.25 

degrees from 1978 to 2019. It was created by merging multiple scatterometer and radiometer soil moisture products 

(from the AMI-WS, ASCAT, SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, SMOS and SMAP satellites) 

and covers the period from 1978 to 2019 (Dorigo et al., 2017; Gruber et al., 2017, 2019). 

In addition, simulation results were compared to available soil moisture content (SMC) measurements from three 

cosmic-ray neutron sensor (CRNS) measurements. For AUS-VIC we used measurement data from the stations 

Hamilton (station 15), Bishes (station 18) and Bennets (station 19) that are part of the CosmOz network (Hawdon 

et al., 2014). For DE-NRW, CRNS measurements were obtained from the four COSMOS-Europe stations 

Selhausen, Merzenhausen, Aachen and Heinsberg (Bogena et al., 2022).  For this comparison, simulation outputs 

from the closest grid point to the respective station were averaged with the weighting approach after Schrön et al. 

(2017). 

In order to validate the regional LAI and ET simulation results, we used the latest MODIS satellite data product 

(MCD15A3H version 6). This includes the Combined Fraction of Photosynthetically Active Radiation (FPAR) 

and LAI product (Myneni et al., 2015) as well as the MODIS ET/Latent Heat Flux (LH) (MOD1A2 version 6) 

product (Running et al., 2017). The MODIS LAI product is a 4-day composite dataset (combined acquisitions of 

both MODIS sensors located on NASA’s Terra and Aqua satellites) on a 500 m global grid (Myneni et al., 2015). 

The MODIS ET product is an 8-day composite at 500 m global resolution (Running et al., 2017). We compared 

simulated LAI and ET with monthly mean values from MODIS for cropland-dominated land units throughout both 

domains.  
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4.3.1 Comparison of seasonal forecasts to recorded weather statistics 

In a first step, the forecasts for both domains were compared to official weather statistics and trends.  

In 2017, the weather in Victoria was generally slightly drier and warmer than average. However, the winter season 

was unusually cool, with record minimum temperatures in July and August (BOM, 2021). Annual rainfall was 

below average in most months, especially in June and July, which resulted in the driest winter season since 2006.  

However, early growing season rainfall in April was more than 50% above average for large parts of the state 

(BOM, 2021). The year 2018 continued with drier and warmer-than-average weather, with the lowest annual 

rainfall amount since 2006 and an annual mean temperature of more than 1°C above average (reference period of 

1980-2010) (BOM, 2021). In the south-west and south of Victoria, winter season rainfall was close to average, 

while below-average rainfall amounts were recorded across the north and east of the state (BOM, 2021). Similarly 

to the previous years, 2019 was generally warmer and drier than average. Winter season rainfall showed high 

variability throughout the state, it was below average for large parts of Victoria in the north and east and above 

average in the south (BOM, 2021). The year 2020 continued with close-to-average rainfall and temperatures 

(BOM, 2021). The recorded weather pattern in Victoria is to a certain extent represented in the SEAS5 seasonal 

forecast data. The predicted state-wide average rainfall amount was highest for the autumn and winter seasons 

(from April to October) of 2020 and 2017, where recorded early season rainfall was 50 % above average, and 

lowest for 2018, where extremely low winter season rainfall was predicted. In NRW, the weather in 2017 was 

slightly warmer than the 30-year average with close-to- average rainfall. The year 2018 was characterized by an 

exceptional heat and drought wave during summer (Graf et al., 2020; DWD, 2021). Overall summertime rainfall 

in 2018 was below average which, in combination with high temperatures, led to exceptional drought conditions 

in NRW and most of Europe that represent the largest annual soil moisture anomaly in the period 1979–2019 (Graf 

et al., 2020, and references therein). The same pattern, though less extreme, was observed in 2019, where a heat 

wave occurred during summer in combination with long dry spells. Total summertime rainfall was slightly below 

average. The year 2020 continued with above-average summertime temperatures and below-average rainfall, 

making it the third too dry and too warm year in a row (DWD, 2021). The trend of the recorded weather patterns 

is to a certain extent reflected in the SEAS5 forecasts for NRW. The predicted total rainfall over 7 months was 

lowest in the 2018 forecasts. The heat wave in 2018 is reflected in the forecasts of the predicted mean daily 

temperature, which is more than 1°C higher than in 2017, 2019 and 2020. 

4.3.2 Model performance with long-range forecasts  

4.3.2.1 Soil moisture content  

In general, the SMAP L3 dataset depicts much stronger fluctuations in the SMC than the ESA-CCI product over 

both domains. Over the DE-NRW domain, SMAP L3 is drier in the early growing season and shows a slightly 

wetter trend towards the end of the season compared to ESA-CCI (Figure 4.4). Large differences in SMC can be 

observed for the AUS-VIC domain, where SMAP L3 shows much higher magnitudes of SMC compared to ESA-

CCI, in July-September in particular. Overall, the simulated SMC shows lower fluctuations for the DE-NRW 

domain than for AUS-VIC. While the CLM5-simulated SMC for AUS-VIC corresponds better with the ESA-CCI 

product, for the DE-NRW domain, the CLM5-simulated SMC shows larger fluctuations and correlates better with 
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the SMAP L3 product. For AUS-VIC, the CLM5-simulated SMC shows a wet trend towards the end of the winter 

season (August, September, October), especially for 2018 and 2019, compared to ESA-CCI (Figure 4.4). The 

reference runs, CLM-WFDE5, generally correlated better with the ESA-CCI data (R2 > 0.8) than the seasonal and 

sub-seasonal runs (R2 values between 0.2 and 0.64) for AUS-VIC (Table 4.1). Overall, the fluctuations of the 

SMAP L3 product are not well represented in CLM5-simulated SMC over AUS-VIC. Both the forecast 

experiments and the reference simulations underestimated the SMC in comparison to SMAP L3 during the middle 

of the growing season for all the years, while overestimating early and late growing season SMCs (Figure 4.4).  

A different trend can be observed for the DE-NRW domain (Figure 4.4). While simulation results from CLM-S 

and CLM-SUB show a slight overestimation of the surface SMC in the beginning of the growing season (April to 

June) of 2017 and 2019 compared to the ESA-CCI product, a clear negative bias can be observed over summer 

and towards the end of the growing season (July to October) of 2017 and 2020 compared to ESA-CCI (Figure 

4.4). This is also true for the CLM-WFDE5 run in 2018 and 2019. For 2017, CLM-WFDE5 overestimated the 

early season surface SMC but captured it relatively well towards the end of the season in reference to ESA-CCI 

(Figure 4.4). Compared to the SMAP L3 product, CLM5 overestimated early growing season SMC for all the 

years except 2020, where a systematic underestimation of simulated SMC can be observed throughout the whole 

season. For the years 2018 and 2019, the SMAP L3 product seems to capture the recorded drought conditions in 

DE-NRW better compared to the ESA-CCI product, showing much lower SMCs. In the late growing season of 

2019 (September and October), the SMAP L3 data and the ESA-CCI product show a prominent increase in SMC 

that is to a certain extent captured in the reference simulations, but not in the seasonal and sub-seasonal 

experiments. Overall, the CLM-WFDE5 simulations correlated better with both SMAP L3 and ESA-CCI (R2 > 

0.54 for all years) compared to forecast experiments (R2 values between 0.12 and 0.42).  

Only minor differences between the seasonal and sub-seasonal experiments can be observed for AUS-VIC, while 

for DE-NRW, the sub-seasonal experiment yielded lower mean soil moisture contents compared to the seasonal 

model runs in the late growing season, especially in August and September of 2017. 

Because of the large differences between the two validation datasets ESA-CCI and SMAP L3 over AUS-VIC, we 

also compared the simulated SMC to available SMC measurements from three CRNS stations (station 15: 

Hamilton; station 18: Bishes; station 19: Bennets) (Hawdon et al., 2014) for the years 2017 and 2018 (Figure B4). 

A relatively good correlation is reached for Hamilton during the early growing seasons of 2017 and 2018, while 

later in the season the SMC is underestimated. The simulated SMC is relatively high at the Bennets and Bishes 

stations (Figure B4) compared to CRNS data. We note that this comparison can only serve as an impression to 

give a tendency of model performance as simulation results and measurements may differ in soil types. For 

instance, Bishes and Bennets have a very sandy soil composition while in the SoilGrids dataset the sand content 

is between 20 and 40 % (Figure 4.1). Station Hamilton is characterized by soils with a high water-holding capacity 

which explains the high SMCs in the middle and towards the end of the wet season (Figure B4) and which is not 

to the extent represented in the CLM5 simulations and underlying SoilGrids data. Single precipitation and/or 

flooding events that are reflected in the CRNS data are not represented in the forecasts and, thus, are naturally not 

captured in the simulation results. However, the reference simulations were also not able to represent these 

fluctuations (Figure B4). For DE-NRW, CLM5 simulations correspond better with SMAP L3 and show more 

fluctuations in day-to-day SMC. Here, the forecast experiments performed reasonably well in capturing the 

drought conditions, with very low soil moisture contents throughout summer and autumn in 2018 and 2019. We 
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compared CRNS measurements from four stations within DE-NRW (Selhausen, Merzenhause, Aachen and 

Heinsberg) (Bogena et al., 2022) to the simulated SMC at the closest grid point. The comparisons showed that the 

reference simulations forced with reanalysis generally produced higher SMCs than the forecast simulations and 

corresponded better with CRNS measurement in terms of fluctuation intensity and magnitudes than SMCs from 

forecast simulations for single sites (Figure B5).  

 

Figure 4.4: CLM-S, CLM-SUB and CLM-WFDE5 (for 2017, 2018 and 2019) simulated daily soil moisture content in the 

surface layer (0 – 0.05 m) from April to October of 2017, 2018, 2019 and 2020 averaged over (a, c, e, g) the AUS-VIC domain 

and (b, d, f, h) the DE-NRW domain, compared to the ESA-CCI surface soil moisture product and SMAP L3 data for the same 

time period and domain respectively. Corresponding statistics (RMSE and bias) are listed in Table 4.1. 
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Table 4.1: RMSE, MBE and R2 of CLM-S-, CLM-SUB- and CLM-WFDE5-simulated surface soil moisture [m3/m3] (0 – 0.05 

m) from the 1st of April to the 31st of October of 2017, 2018, 2019 and 2020, compared to the ESA-CCI and SMAP L3 soil 

moisture products for the AUS-VIC and the DE-NRW domains. 

 2017 2018 2019 2020 
  RMSE MBE R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE R2 

AUS-VIC             
SMAP L3                 
CLM-S 0.102 0.012 0.450 0.089 0.015 0.797 0.100 0.027 0.567 0.049 0.002 0.045 
CLM-SUB 0.101 0.009 0.448 0.105 0.028 0.475 0.109 0.032 0.295 0.048 0.001 0.124 
CLM-WFDE5 0.094 0.009 0.629 0.086 0.012 0.708 0.085 0.014 0.751 - - - 
ESA-CCI                 
CLM-S 0.038 0.018 0.233 0.043 0.031 0.635 0.054 0.038 0.452 0.079 0.074 0.226 
CLM-SUB 0.036 0.014 0.288 0.058 0.048 0.477 0.059 0.045 0.392 0.077 0.071 0.200 
CLM-WFDE5 0.022 0.014 0.886 0.033 0.023 0.846 0.029 0.019 0.881 - - - 
DE-NRW 
SMAP L3                         
CLM-S 0.068 -0.011 0.186 0.056 -0.010 0.420 0.065 -0.016 0.190 0.079 -0.047 0.123 
CLM-SUB 0.083 -0.023 0.259 0.058 -0.016 0.412 0.071 -0.024 0.199 0.075 -0.044 0.404 
CLM-WFDE5 0.053 0.030 0.521 0.057 0.014 0.523 0.053 0.009 0.473 - - - 
ESA-CCI                    
CLM-S 0.068 -0.033 0.161 0.071 -0.051 0.458 0.071 -0.046 0.164 0.079 -0.047 0.123 
CLM-SUB 0.092 -0.053 0.266 0.076 -0.060 0.464 0.085 -0.057 0.174 0.075 -0.044 0.404 
CLM-WFDE5 0.040 0.029 0.583 0.058 -0.010 0.621 0.049 -0.011 0.548 - - - 

4.3.2.2 Leaf area index and evapotranspiration  

For AUS-VIC, the simulated LAI from seasonal and sub-seasonal experiments corresponds well with MODIS 

data, especially for the years 2017 and 2018. Only minor differences can be observed for 2017 and 2018 between 

the seasonal and sub-seasonal experiments and reference simulations. For 2019, CLM-S and CLM-SUB performed 

better than the reanalysis run which shows a systematic underestimation of LAI compared to MODIS throughout 

most of the cropping season. This is also reflected in CLM-WFDE5-simulated ET, which is strongly 

underestimated for 2019 compared to MODIS. CLM5 simulation results for AUS-VIC generally show a systematic 

negative bias in simulated ET compared to MODIS data from April to August (Figure 4.5). The simulated inter-

annual differences in LAI and ET are relatively small. For the DE-NRW domain, CLM5 overestimated the LAI 

compared to MODIS, in particular for the months June and July (Figure 4.6). For 2017 and 2018, CLM-WFDE5 

resulted in very similar LAI values compared to CLM-S and CLM-SUB, while for 2019 the CLM-WFDE5-

simulated LAI curve peaked later (highest LAI in August) compared to forecast simulations (highest LAI in July). 

Both CLM-S and CLM-SUB captured lower LAI magnitudes in August 2018 compared to the other years. In 

general, CLM-S and CLM-SUB show only minor differences in terms of LAI and ET. An exception is the year 

2017, where CLM-SUB resulted in very similar LAI values compared to MODIS in September and October, while 

at the same time also resulting in a smaller underestimation of ET compared to CLM-S. Similarly to the results for 

the other domain, the simulated inter-annual differences in LAI and ET are relatively small.  
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Figure 4.5: (a, c, e, g) Monthly mean LAI and (b, d, f, h) monthly mean ET derived from MODIS for April-October 2017-

2020 compared to corresponding CLM-S and CLM-SUB simulation results, averaged over all land units with more than 70 % 

cropland within the AUS-VIC domain. 
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Figure 4.6: (a, c, e, g) Monthly mean LAI and (b, d, f, h) monthly mean ET derived from MODIS for April-October 2017- 

2020 compared to corresponding CLM-S and CLM-SUB simulation results, averaged over all land units with more than 70 % 

cropland within the DE-NRW domain. 

4.3.2.3 Regional crop yield predictions  

CLM5 was able to reproduce the higher annual total crop yield for the DE-NRW domain compared to AUS-VIC 

(Figure 4.7, Table 4.2). For AUS-VIC, the simulations resulted in similar magnitudes of overall annual yield 

compared to statistics from the Australian Department of Agriculture, Water and Environment (ABARES) (Figure 

4.7, Table 4.2). CLM-S and CLM-SUB systematically underestimated the crop yield of all crops for the years 

2017, 2019 and 2020 while overestimating crop yields for 2018 in comparison to official records. Still, the annual 

trends of recorded crop yield were to a certain extent captured in the simulations. CLM-S and CLM-SUB showed 

the lowest yields in 2018 and slightly higher yields in 2017, 2019 and 2020, with 2020 being the most productive 

year in terms of total crop yield (Figure 4.7). Thus, for AUS-VIC, both the high-yield year of 2020 and the low-

yield year of 2017 are well captured in the simulations. However, both the forecast experiments as well as the 

reference simulations resulted in a slightly lower overall yield for 2019 compared to 2017, which is contrary to the 

records. CLM5 simulations generally showed lower inter-annual differences in crop yield compared to the records. 

While the recorded annual crop yield varies by up to 50 %, simulations resulted in differences of up to 17 % for 

the years 2017-2020. Inter-annual differences in the mean annual crop yield (averaged for the regarded crops) of 

up to 1.31 t/ha can be observed in the records, while crop yield simulated by CLM5 showed only differences of 

up to 0.30 t/ha in the forecast simulations (0.28 t/ha for CLM-SUB) and up to 0.24 t/ha in the reference simulations. 

In addition, we observed a difference in the spatial distribution of crop productivity between the forecast 
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experiments and reference simulations. While in the forecast experiments the highest crop productivity is 

simulated in the central and north-eastern parts of the domain, the highest crop productivity in the reference 

simulations is located in the southern part of the domain closer to the coastline (Figure 4.8). 

For the DE-NRW domain, the simulated crop yields are relatively close to recorded yields in terms of magnitudes 

for all of the analyzed cash crops wheat, corn, and canola (Figure 4.7, Table 4.2). The seasonal experiments were 

able to capture the high-yield year of 2020 and the yield loss in 2018. In addition, the second- and third-highest 

yield years are captured in CLM-S and CLM-WFDE5 simulation results but not in CLM-SUB simulation which 

had higher yields in 2019 than in 2017 (Figure 4.7). CLM-S performed slightly better than CLM-SUB for all years 

in terms of total yields compared to records, except for 2018 where the CLM-SUB yield is lower and closer to 

records. CLM5 simulations resulted in smaller inter-annual differences in the total annual crop yield with up to 6 

% variation, compared to a recorded inter-annual difference of up to 15 % from 2017 to 2020. While inter-annual 

differences in crop yield of up to 1.23 t/ha were observed in official records, CLM5 simulations resulted in smaller 

differences of up to 0.45 t/ha in CLM-S, 0.35 t/ha in CLM-SUB and 0.38 t/ha in reference simulations, on average 

for the regarded crops. There are no apparent spatial differences in simulated agricultural productivity between the 

different experiments (Figure 4.9). Despite earlier enhancements to the model code and parameterization scheme 

(see Boas et al., 2021), the crop module of CLM5 does not include a proper representation of root crops. Here, we 

focus on the analysis of simulation results for wheat, corn and canola (Figure 4.7). An evaluation of simulation 

results for root crops can be found in the Appendix B5: Regional crop yield predictions for root crops.  

 

Figure 4.7: CLM-S-, CLM-SUB-, and CLM-WFDE5-simulated crop yield compared to corresponding official production 

records (a) from ABARES (2020), averaged for all analyzed winter crops (wheat, barley, and canola) within the AUS-VIC 

domain, and (b) from BMEL (2020, 2022), averaged for all analyzed crops (wheat, corn, and canola) within the DE-NRW 

domain, for the years 2017 to 2020. Corresponding data are listed in Table 4.2. 
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Table 4.2: Simulated crop yields [t/ha] for the main cash crops CLM-S, CLM-SUB and CLM-WFDE5 forcing data for the 

years 2017 to 2020, compared to official crop statistics from ABARES (2020) for the AUS-VIC domain and from BMEL 

(2020, 2022) for the DE-NRW domain. The lowest (italics) and highest (bold) yields amongst the respective years are indicated. 

  AUS-VIC   DE-NRW 

  2017 2018 2019 2020   2017 2018 2019 2020 

Wheat Wheat 

ABARES 2.54 1.62 2.48 2.98 BMEL 7.92 7.91 8.14 8.66 
CLM-S 2.15 2.05 2.15 2.23 CLM-S 7.96 7.59 7.61 8.19 
CLM-SUB 2.15 2.03 2.19 2.23 CLM-SUB 7.57 7.24 7.76 7.67 
CLM-WFDE5 2.48 2.12 2.26 - CLM-WFDE5 8.04 7.41 7.67 - 

Barley Corn 

ABARES 2.50 1.50 3.05 3.2 BMEL 10.74 7.80 8.44 10.49 
CLM-S 2.46 2.15 2.17 2.47 CLM-S 9.27 9.12 9.27 9.68 
CLM-SUB 2.47 2.12 2.20 2.47 CLM-SUB 9.21 9.06 9.34 9.29 
CLM-WFDE5 2.61 2.38 2.45 - CLM-WFDE5 9.72 9.31 9.26 - 

Canola Canola  

ABARES 1.73 1.23 1.69 2.11 BMEL 3.90 3.48 3.69 3.74 
CLM-S 1.20 1.03 1.13 1.35 CLM-S 4.73 4.49 4.52 4.69 
CLM-SUB 1.21 1.02 1.18 1.35 CLM-SUB 4.53 4.28 4.54 4.63 
CLM-WFDE5 1.42 1.29 1.56 - CLM-WFDE5 4.62 4.59 4.46 - 

Average Average 
ABARES 2.26 1.45 2.41 2.76 BMEL 7.52 6.40 6.76 7.63 
CLM-S 1.94 1.74 1.81 2.02 CLM-S 7.32 7.07 7.13 7.52 
CLM-SUB 1.94 1.72 1.86 2.02 CLM-SUB 7.10 6.86 7.21 7.20 
CLM-WFDE5 2.17 1.93 2.09 - CLM-WFDE5 7.46 7.08 7.16 - 
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Figure 4.8: Spatial and inter-annual differences in the simulated annual crop yield (averaged) from (top) CLM-S, (middle) 

CLM-SUB and (bottom) CLM-WFDE5 simulations throughout the AUS-VIC domain for the years 2017 to 2020.  

 

Figure 4.9: Spatial and inter-annual differences in the simulated annual crop yield (averaged) from (top) CLM-S, (middle) 

CLM-SUB and (bottom) CLM-WFDE5 simulations throughout the DE-NRW domain for the years 2017 to 2020. 
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Overall, annual crop yield predictions from the forecast experiments were close to results from the reference 

simulations, with maximum differences between mean annual crop yield simulated with forecasts and with 

reanalysis of 0.28 and 0.36 t/ha for AUS-VIC and DE-NRW respectively. The forecast experiments were able to 

reproduce the recorded inter-annual trends of high-yield year (2020) and low-yield year (2018). In addition, the 

forecast experiments and the reference simulations were also able to reproduce the generally higher total values of 

annual crop yield for NRW compared to Victoria. The lower recorded crop yields in Victoria can be explained by 

less productive soils, limited water availability and different crop varieties. This is to a certain extent also 

represented in CLM5 by a different parameterization and classification of Northern Hemisphere and Southern 

Hemisphere crops. Furthermore, we used the CLM5 version and parameterization that were optimized for several 

European cropland sites and crops in an earlier study (Boas et al., 2021). The same study revealed a significant 

limitation of the default CLM5 phenology module and default crop parameterization in accurately representing 

European cropland sites, especially in terms of crop phenology (LAI magnitudes and seasonality), and grain yield 

(Boas et al., 2021). Still, the inter-annual differences are lower in the CLM5 simulations compared to official yield 

statistics. On the one hand this could be due to the limited resolution and quality of the forecasts that predict 

general meteorological trends rather than realistic weather patterns (especially for precipitation). Although 

seasonal and sub-seasonal forecasts correctly predicted drier and hotter trends (e.g. for 2018), the 2018 drought 

was less pronounced in the forecast than in the observations. In addition, we observed a difference in the spatial 

pattern of crop productivity over the AUS-VIC domain simulated with forecasts and reanalysis. Reference 

simulations resulted in a higher crop production in the southern part of the domain than forecast experiments 

(Figure 4.8). This is related to the influence of near-coastal precipitation events that are not well represented in the 

forecasts.  

We found that the simulated LAI and ET corresponded reasonably well with data from MODIS in terms of 

magnitudes and fluctuations for the AUS-VIC domain, while for the DE-NRW simulations simulated LAI and ET 

were larger than the observed values, in particular for the months of May, June and July. The better correlation 

between the simulated LAI and ET with observed values in the AUS-VIC domain, compared to DE-NRW, can be 

partly attributed to the larger paddock sizes and more homogeneous land cover in Victoria. The land cover in the 

state of NRW is more diverse, with numerous urban areas and fallow lands between croplands that are not 

considered to the same extent by CLM5. Moreover, agricultural management practices and the variety of crop 

types and cultivars are more diverse in DE-NRW, which is more challenging to represent accurately in simulations 

due to limitations in the input data and model structure. Several studies over European forest sites found lower 

absolute LAI values for MODIS compared to ground-based measurements as well as different seasonal dynamics 

that were partly explained by understory or herbal-layer greening together with cryptophytes and microphytes in 

the understory that are not included in the measurements (e.g. Wang et al., 2005; Sprintsin et al., 2009). Earlier 

studies with CLM5 showed relatively good correspondence between CLM5-simulated LAI and field 

measurements for several crops (Boas et al., 2021). For 2018, the seasonal experiments showed a relatively steep 

decline in LAI towards the end of the growing season that occurred earlier than for other years. The decline in LAI 

reflects the early simulation onset of harvest. The early harvest in a large part of the cropland in 2018 is closely 

linked to the recorded yield losses in NRW (Reinermann et al., 2019).  
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In general, the inter-annual differences in simulated LAI and ET were relatively low in the forecast experiments 

and in the reference simulations. This is also reflected in low inter-annual differences in simulated crop yields. 

The seasonal experiments were able to reproduce the generally higher inter-annual differences in crop yield 

throughout the AUS-VIC domain (up to 50 % in records and 17 % in simulated yields) compared to the DE-NRW 

domain (up to 15 % in records and 5 % in simulated yields). After weather conditions, regional agriculture and 

crop yield are largely impacted by agricultural management decisions (e.g. on crop varieties, planting dates, 

irrigation, and fertilizer types and application techniques) and other environmental factors such as pests and crop 

damage from wildlife, which are not sufficiently well represented by CLM5. In addition, the crop module of CLM5 

lacks parameterizations for most crop types and varieties, and the fertilizer application routine is highly simplified. 

These deficiencies in the model structure led to considerable uncertainties in the crop phenology simulated by 

CLM5. 

Thus, the inter-annual variability in crop yield simulated by CLM5 is primarily influenced by the variability of 

model forcing data and soil moisture states, as it does not consider further anthropogenic or economic factors 

affecting crop yield, as discussed above. Consequently, the small inter-annual differences in simulated yield 

suggest that the CLM5 crop module has limited sensitivity to changes in climate conditions. Uncertainties in the 

simulated annual crop productivity and its low inter-annual differences can be partly explained by the observed 

systematic biases of the simulated soil moisture content compared to satellite-derived soil moisture products, i.e. 

ESA-CCI and SMAP L3, and CRNS measurements for both domains.  

The reference simulations showed higher correlations between the simulated and observed surface soil moisture 

than the forecast experiments, which could be expected given the wrong timing of precipitation events in the 

seasonal weather predictions, while still showing similar systematic differences compared to all the products. 

Earlier studies with CLM3.5 (e.g. Zhao et al., 2021; Hung et al., 2022) and CLM5 (e.g. Strebel et al., 2022) found 

pronounced discrepancies in CLM-simulated soil moisture contents and field measurements. In this context, data 

assimilation has proven to be a valuable technique for reproducing better soil moisture dynamics (Strebel et al., 

2022). While the assimilation of soil moisture and groundwater level data into the Terrestrial Systems Modeling 

Platform (TSMP), which includes an earlier version of CLM (version 3.5), significantly improved simulated soil 

moisture properties and groundwater levels, it had only limited effects on the resulting evapotranspiration (Hung 

et al., 2022). Whether a better representation of soil moisture within the model, i.e. through data assimilation, can 

significantly improve crop yield predictions with CLM5 remains to be evaluated.  

The systematic uncertainties in the simulated soil moisture content as well as the low inter-annual differences in 

predicted crop yield and vegetation parameters (e.g. LAI and ET) show the need to improve the representation of 

these variables at the technical model level and to improve the model sensitivity to drought stress and other 

stressors (e.g. frost, pests, hail and wind). A sophisticated representation of crops and agricultural management in 

Earth system models is essential in order to better assess the impact of climate change on yield in land surface 

models and specifically CLM5 (Lombardozzi et al., 2020). This includes e.g. the consideration of different types 

of fertilizers and application strategies, as well as a more detailed representation of root crops. It is crucial for the 

model to be sensitive enough to respond to changes in seasonality, drought stress and extreme events and 

realistically reflect these in resulting crop yields in order to study future yield scenarios. A better characterization 

of plant physiological and hydraulic properties, e.g. via plant trait information, is one suggestion for future model 
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improvements. Studies over longer simulation periods are needed to confirm whether this low inter-annual 

difference in CLM5-simulated crop yield is a systematic problem.  

One major challenge in applying long-range forecast products in land surface models stems from the extensive 

pre-processing that is needed, including the temporal downscaling of certain meteorological variables (especially 

incoming short-wave radiation and precipitation). Simplifications in physical model formulations and uncertainties 

in the forcing data (e.g. due to coarse spatial and temporal resolution) may have impacted the simulated states. A 

more sophisticated temporal downscaling of precipitation, e.g. through machine-learning techniques, could help 

improve the applicability of forecasting products for model applications and improve the quality of model system 

responses. This becomes especially relevant when studying the impact of extreme events on agricultural 

productivity and other land surface processes. However, more sophisticated downscaling approaches often require 

further datasets that are not readily available. A clearer statement about the SEAS5 seasonal forecasting product 

regarding its overall quality for land surface modelling can be made once it is available for longer timescales. A 

performance analysis of available hindcasts over longer timescales and for further domains could provide a further 

systematic evaluation of the accuracy of the products in combination with CLM5. This could also benefit the 

creation of appropriate tools for end-users in order to increase the user-friendliness of the respective products. For 

future studies, we additionally propose a benchmarking study of different forecasting products, e.g. from the 

German Weather Service (DWD), NCEP or CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici) 

Seasonal Prediction System, in combination with different land surface models like CLM5 that can point towards 

the relative differences and limitations of each product in terms of applicability and overall skill. We believe that 

such a study, in addition to providing a better representation of the current state of the art in this field, will also 

benefit the exchange of knowledge at the interface between science and society. 

The effects of climate change and the growing demand for food production entail vulnerability and challenges for 

regional agriculture and food security across all scales. Reliable high-resolution seasonal weather forecasting 

systems can provide important information for a multitude of weather-sensitive sectors when combined with a 

measurable model system response.  

Here, we evaluated the quality and applicability of SEAS5 long-range meteorological forecasts in combination 

with CLM5 for two different regions. Our analysis illustrated that simulations forced with long-range forecasts 

were able to generate a model system response that was close to reference simulations which is an encouraging 

result for future studies. Both forecast- and reanalysis-forced models captured the inter-annual differences in yield, 

at least in sign (increase or decrease). The low-yield and high-yield seasons of 2018 and 2020 are clearly indicated 

for both simulated regions. The inter-annual differences in crop yield and other vegetation parameters (LAI and 

ET) were comparably low. Still, simulation results represented the higher inter-annual differences in crop yield 

across the AUS-VIC domain compared to the DE-NRW domain. While general trends of soil moisture such as the 

drought in 2018 were reproduced in the simulations, we found systematic overestimations and underestimations 

compared to different validation datasets and site observations in both the forecast and reference simulations that 

cannot be explained by uncertainties in the forecasting product alone. These systematic uncertainties in the 

simulated soil moisture and the low inter-annual differences in simulated vegetation parameters indicate the need 

for further technical model improvements.  
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Overall, this study provides a first impression of the utility and skill of the relatively new SEAS5 forecasting 

system for land surface models and provides an evaluation of the CLM5 crop module potential for regional-scale 

agricultural yield prediction in two different climate zones. Our evaluation and analysis of the CLM5 crop model 

performance set the stage for further model evaluation and improvements. A strong conclusion about the SEAS5 

seasonal forecasting product regarding its overall quality for land surface modelling can be drawn once this is 

available for longer timescales. This research underlines the value of combining seasonal forecasts with land 

surface models such as CLM5 or similar model applications (i.e. crop models). 
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5 Multi-decadal soil moisture and crop yield 

variability – A case study with CLM5 

Adapted from: Boas, T., Bogena, H., Ryu, D., Western, A., and Hendricks-Franssen, H.-J.: Multi-decadal soil 

moisture and crop yield variability – A case study with the Community Land Model (CLM5), Journal of Advances 

in Modeling Earth Systems, 16(9), http://dx.doi.org/10.1029/2023MS004023, 2024.   

Agricultural production and management are closely connected to weather and climate conditions and farming 

yields are significantly affected by inter-annual weather variability. In addition to changes in annual average 

temperatures and shifts in seasonality, recent climate projections also indicate an increasing number of extreme 

weather events and a higher intensity of such events, which poses a new challenge for agriculture (Urban et al., 

2012; Challinor et al., 2014; Deryng et al., 2014; Rosenzweig et al., 2014; Tai et al., 2014; Levis et al., 2018). The 

impacts of climate change on food security and agricultural land are a research topic with high relevance to society. 

In addition, the fluxes of water, energy and carbon associated with agriculture (use of irrigation and fertilizer, 

timing of crop growth and fallow periods, etc.) can have implications for local and regional weather and climate, 

and biochemistry (Sacks et al., 2009).  

Numerical modelling of Earth system components plays a vital role in assessing the impacts of climate change, 

exploring adaptation strategies and their impact on various parts of the terrestrial system. Land surface models 

(LSMs) such as the Community Land Model (CLM) are essential tools for studying changes in response to weather 

conditions and are particularly valuable for examining the effects of climate change on agricultural land at larger 

spatial scales. Prognostic simulations of land surface models (LSMs) and global crop models can be used to 

quantify the impact of climate change on agro-ecosystems and study the response of agricultural land to inter-

annual weather variations. While both contribute to our understanding of Earth's systems, LSMs encompass a 

broader focus on land surface processes, including natural ecosystems, while global crop models specialize in 

simulating and analysing agricultural systems at a global scale. For example, results from the Global Gridded Crop 

Model Intercomparison (GGCMI; Franke et al., 2020; Jägermeyr et al., 2021) offer valuable insights into long-

term productivity trends and the adaptive capacity of the agricultural system under different climate scenarios on 

a global scale and have been applied to investigate various questions, e.g. on challenges for food production, future 

crop yields and irrigation water demand (e.g. Wada et al., 2013; Müller et al., 2015; Blanchard et al., 2017; 

Jägermeyr et al., 2021). The Agricultural Model Intercomparison and Improvement Project (AgMIP) is another 

important example of a research initiative focused on improving agricultural models and enhancing our 

understanding of climate change impacts on food security and developing integrated assessment tools for decision-

making in agriculture (e.g. White et al., 2013; Rosenzweig et al., 2013, 2014; Tumbo et al., 2020; Asseng et al., 

2019; Cammarano et al., 2020; Kimball et al., 2019). Multiple studies have showcased assessments of AgMIP 

datasets at the regional scale and for a variety of crops, which revealed significant variations in climate change 

impacts on wheat yields across different regions, emphasizing the need for tailored adaptation strategies (e.g. 

Kimball et al., 2019; Rosenzweig et al., 2014; Cammarano et al., 2020; Asseng et al., 2019).  
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The impacts of climate change on food security have received considerable attention in recent years. Still, the 

consequences of altered weather patterns on yearly yield variations remains an important area of interest. The 

potential value of LSMs for these purposes largely depends on their ability to adequately simulate the crop 

productivity variability, which has not been tested rigorously for dryland and dominantly rain-fed cropping 

regions, where yield is vulnerable to drought and heat stresses. The inter-annual variability of model output is an 

important performance measure for land surface models (LSMs) as it reflects the ability of the model to capture 

the natural variability observed in the real world over multiple years. Assessing and understanding inter-annual 

variability of terrestrial fluxes is crucial for various applications, including climate projections, agricultural 

management, water resources management, and ecosystem dynamics. Reliable predictions of regional crop yield 

variability can help to design agricultural adaptation and mitigation strategies and can provide useful information 

for local stakeholders and policy makers. 

In order to adequately represent inter-annual variability of crop growth, it is crucial for the model to sufficiently 

represent the soil moisture regime and corresponding vegetative drought stress in response to changes in 

precipitation amounts, specifically in dominantly rain-fed areas. While an increasing number of studies focus on 

incorporating irrigation and human water use in LSMs and hydrological models in general (e.g. Pokhrel et al., 

2016, 2012; Shah et al., 2019; Yassin et al., 2019; Xia et al., 2022; McDermid et al., 2023), many challenges still 

remain in representing rain-water limited agricultural regimes in general circulation models and LSMs.  

The realistic representation of many processes is still a challenge in LSMs. Major challenges arise from the 

complex representation of soil-plant-atmosphere feedbacks, root water uptake and plant responses to 

environmental stress, land use and land cover change, spatial heterogeneity in soil properties, vegetation cover and 

topography, and uncertainties in model parameterizations (Huntzinger et al., 2013; Franks et al., 2018; Trugman 

et al., 2018; Sulis et al., 2019a; Dagon et al., 2020; Fisher and Koven, 2020; Lombardozzi et al., 2020; Blyth et 

al., 2021; Sabot et al., 2022). The ability of LSMs to capture the impacts of land use change on biogeochemistry 

and hydrology is often limited by the oversimplification of human influences on land use and land cover, such as 

agricultural practices and management decisions. Additionally, multiple studies found that the representation of 

plant responses to environmental stress need to be improved in global LSMs (Sabot et al., 2022; De Kauwe et al., 

2015b; Franks et al., 2018; Sulis et al., 2019b). In a recent study, Boas et al. (2023) highlighted the potential value 

of combining CLM5 with seasonal weather forecasts. They also identified limitations of the model in capturing 

inter-annual variations in agricultural characteristics over a short period of four cropping seasons. 

Focussing on soil water, root water uptake plays an important role in rain-fed agricultural systems and is often 

simplified in LSMs, which can affect simulated vegetation growth, productivity and water use efficiency of the 

plants (De Kauwe et al., 2015b; Sulis et al., 2019a). Most LSMs, including earlier versions of CLM, utilize soil 

moisture stress parameterizations where water stress is based on a plant wilting factor (calculated with the soil 

water matric potential values corresponding to plant dependent parameters for fully open and fully closed stomata 

conditions) (Lawrence et al., 2019). In contrast to this physical representation, the active role of roots in 

redistributing water within the soil profile has been investigated by numerous studies and different formulations 

of root hydraulic redistribution have been included in LSMs, highlighting the relevance of atmospheric processes 

and carbon and nutrient cycling (e.g. Li et al., 2012; Tang et al., 2015; Ryel et al., 2002; Zheng and Wang, 2007; 

Yan and Dickinson, 2014; Sulis et al., 2019). CLM5 includes a plant hydraulic stress model that replaced the 

empirical soil moisture stress formulation from earlier model versions (Lawrence et al., 2019). This plant hydraulic 



Chapter 5: Multi-decadal soil moisture and crop yield variability –                            67 
A case study with CLM5 

 

stress scheme simulates vegetation water potential for every segment in the soil-root-stem-leaf system and includes 

a stress formulation where leaf water potential is used to attenuate photosynthesis. This plant hydraulic framework 

provides a better physical basis for multiple processes represented in CLM, such as the attenuation of 

photosynthesis and transpiration during drought conditions (Lawrence et al., 2019). A similar approach has been 

presented in Sulis et al. (2019), where a macroscopic root water uptake model was introduced in CLM (version 

4.0) that also explicitly simulated the leaf water potential at stomatal closure defining water stress conditions for 

the plants. They found that root hydraulic properties control transpiration during dry periods and that the roots 

distribution induced a larger variability in the hydraulic model response (Sulis et al., 2019a). Their modified model 

resulted in a good correlation of simulated and observed transpiration fluxes for a winter wheat test site and a more 

distinct response under water stress conditions compared to default model simulations (Sulis et al., 2019a). The 

subject of plant response to drought stress also encompasses the representation of stomatal conductance. In a recent 

study by Sabot et al. (2022), multiple empirical and optimization formulations for stomatal conductance were 

evaluated using a simplified LSM framework. They found that the selection of the stomatal conductance model 

could considerably influence the simulation of carbon and water exchange in global models. Further factors that 

can impact inter-annual variations in yield variability and that also need to be considered in the numerical 

representation of the system are changes in crop management practices in relation to technical advances, public 

policies, and farming techniques such as fertilization or double-cropping, as well as pests, diseases, and floods 

(Lombardozzi et al, 2020). 

Furthermore, the accuracy of LSMs also heavily depends on their complex parameterizations that aim to account 

for a wide range of variability in soil and vegetation types. Uncertainties arise due to the limited availability of 

observational data for parameter estimation and validation as well as the complexity of the parameterizations 

themselves, leading to potential errors in model predictions (Huntzinger et al., 2013; Sulis et al., 2015; Lu et al., 

2017; Lombardozzi et al., 2020; Boas et al., 2021). In addition to improvements in model parameterization (e.g. 

through new methods for parameter estimation and uncertainty quantification), the study by Fisher and Koven 

(2020) highlights the role of data assimilation techniques, including the use of remote sensing and machine 

learning, that can help improve the accuracy of LSM predictions (e.g. Dagon et al., 2020; Pinnington et al., 2020; 

2021). 

This study aims to analyse the model performance across two regions with different climates and dominated by 

rain-fed agriculture, for a period spanning multiple decades. Specifically, we assessed the ability of the CLM5 

with its prognostic crop module to capture the inter-annual variability of crop yield, soil moisture and plant water 

stress over two simulation domains: one covering large parts of the south-east Australian wheat belt in the state of 

Victoria in Australia (AUS-VIC) and the other extending over the state of North Rhine-Westphalia in Germany 

(DE-NRW). Simulations were conducted over the two regional domains, which are in different climate zones, and 

forced with the global bias-adjusted reanalysis dataset WFDE5 (Cucchi et al., 2020). We compared our simulation 

results with recorded yields and examined which variables (i.e., seasonal rainfall, root zone soil moisture) 

dominantly drive changes in CLM5-predicted total yield and yield variability. Additionally, the simulated multi-

decadal near-surface soil moisture was compared with two reference datasets, the combined ESA-CCI product 

(Dorigo et al., 2017) and the satellite-derived SMAP L3 soil moisture product (Entekhabi et al., 2016). In this 

study, we provide an overview on multi-decadal model performance across two model domains, both of which are 

dominated by rain-fed agriculture and with state-wide agricultural yield statistics available as validation data. The 
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results of this follow-up study provide valuable insights for the use of CLM5 in agricultural landscapes. We 

addressed both the model's skill and limitations in predicting long-term variations in annual crop productivity and 

soil moisture levels at the regional scale, which allowed us to highlight specific areas in need for further 

investigation. 

5.2.1 Land surface model 

In this study, all simulation were carried out with CLM5, which is the first model version that includes a fully 

prognostic crop module (Lawrence et al., 2018, 2019; Lombardozzi et al., 2020). In CLM5, human management 

is represented by fertilization and irrigation. Other aspects of agricultural management, such as residue 

management and soil tillage, or ecological factors affecting crops, such as pests, diseases, or wildlife damage, are 

also not accounted for in CLM5 at this stage of development. Crop growth and phenology are simulated based on 

atmospheric factors (i.e. incoming shortwave and longwave radiation, atmospheric pressure, relative humidity, 

wind speed and temperature) and water availability from irrigation and precipitation (soil moisture). Besides, crop 

biomass and yield depend on nutrient availability in the soil. Fertilization is represented in a simplified scheme by 

adding prescribed amounts of nitrogen directly to the soil mineral pool. The possibility of simulating crop growth 

and development in CLM5 enables a broader and more accurate approach to address economic challenges and 

questions in land use change and agriculture (e.g. Lobell et al., 2006). Furthermore, a new plant hydraulic stress 

formulation was introduced in CLM5 that explicitly simulates the transport of water within the soil-root-leaf 

system, as well as the plant-mediated vertical hydraulic redistribution of soil water from wet to dry soil layers was 

implemented (Lawrence et al., 2018, 2019). While CLM5 does not explicitly model groundwater dynamics, it 

indirectly considers its effects on crop growth through its representation of soil moisture dynamics (redistribution 

within the soil column) and groundwater discharge and recharge. Groundwater is simulated with explicit 

representation of the saturated and unsaturated zone, using soil thickness and impermeable bedrock as a zero-flux 

boundary. Soil profile depths are based on a spatially explicit soil thickness data product by Pelletier et al. (2016). 

Additionally, the stomatal conductance scheme was updated in CLM5 to the approach proposed by Medlyn et al. 

(2011). The new model formulations led to better performance in simulating ecosystem water fluxes, vegetation 

water stress, and productivity, thus providing a basis for an improved plant water use and water stress simulation 

in future applications of the model (Lawrence et al., 2019).   

The plant hydraulic stress routine simulates water transport in the soil-root-stem-leaf system by explicitly 

calculating water potential gradients based on Darcy´s Law for porous media flow (Lawrence et al., 2018, 2019 

and references therein). The representation of either positive or negative soil-to-root fluxes depending on the water 

potential gradients allows for a plant-mediated vertical hydraulic redistribution of soil water from wet to dry soil 

layers through vegetation tissue (Lawrence et al., 2018, 2019). 

Water potential gradients in the soil-root-stem-leaf system (water fluxes from soil to root, from root to stem and 

in between the plant segments) are modelled at each time step as follows (Lawrence et al., 2018, 2019):  

𝑞 =  𝑘𝐴 (
1

− 
2

)          (5.1) 
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where q is the flux of water spanning the segment between 1 and 2 [mmH2O/s], 1 - 2 is the gradient in water 

potential across the segments [mmH2O], k is the hydraulic conductance [s-1] and A is the area basis [m2/m2].  

The segment’s resistance to hydraulic stress is calculated with a sigmoidal curve function, where hydraulic 

conductance decreases as water potentials decrease. The maximum segment conductance is multiplied by a 

sigmoidal function that accounts for the percentage loss of conductivity using the water potential at 50% loss of 

conductivity (p50) and a shape parameter (Lawrence et al., 2018): 

𝑘 =  𝑘𝑚𝑎𝑥 ∙ 2
−(

1
𝑝50

)𝑐𝑘
         (5.2) 

where kmax is the maximum segment conductance [s-1], p50 is the water potential at 50 % loss of conductivity 

[mmH2O], 1 is the water potential of the lower segment terminus [mmH2O] and ck is the vulnerability curve 

shape-fitting parameter [-]. Parameters such as kmax, p50 and ck strongly control the modelled plant hydraulic stress 

routine and thus determine the capability of the plant to extract water from the soil and to resist hydraulic stress. 

These routines are physically constrained by the plant hydraulic parameterization after Kennedy et al. (2019) which 

until now contains the same parameters for all crops.  

In this routine, the vegetation water potential responds to water supply and transpiration demand (i.e. plant water 

demand), and transpiration demand is dependent on stomatal conductance. The leaf stomatal conductance and leaf 

photosynthesis are modelled for sunlit and shaded leaves separately based on the approaches after Medlyn et al. 

(2011), and Farquhar et al. (1980) for C3 plants and Collatz et al. (1992) for C4 plants (Lawrence et al., 2018). 

Adapted from Medlyn et al. (2011), the leaf stomatal resistance is calculated using the net leaf photosynthesis, the 

vapor pressure deficit and the CO2 concentration at the leaf surface with plant-specific slope parameters based on 

de Kauwe et al. (2015a) and Lin et al. (2015) as follows (Lawrence et al., 2018):  

1

𝑟𝑠
=  𝑔𝑠 = 𝑔𝑜 + 1.6(1 +

𝑔1

√𝐷
)

𝐴𝑛
𝑐𝑠

𝑃𝑎𝑡𝑚

        (5.3) 

where rs is leaf stomatal resistance [s m2/µmol], go is the minimum stomatal conductance [µmol/m2/s], An is leaf 

net photosynthesis [µmolCO2/m2/s], g1 is the plant dependent slope parameter [-] (for a full parameter table see 

Lawrence et al. (2018)), cs is the CO2 partial pressure at the leaf surface [Pa] and Patm is the atmospheric pressure 

[Pa] and D is the vapor pressure deficit at the leaf surface [kPa].  

The leaf transpiration is regulated by the leaf water potential. It is calculated for shaded and sunlit leaves separately 

based on maximum transpiration multiplied by the percent of maximum transpiration as modelled by the sigmoidal 

loss function (Equation 2) (Lawrence et al., 2018). Plant water stress is then calculated for shaded and sunlit leaves 

separately as the ratio of stomatal conductance of the leaf transpiration relative to maximum stomatal conductance 

corresponding to maximum transpiration (Lawrence et al., 2018). Leaf transpiration and the transpiration water 

stress (transpiration beta) are calculated for sunlit and shaded leaves separately as follows:  

𝐸 =  𝐸𝑚𝑎𝑥 ∙ 2
−(



𝑝50𝑒
)

𝑐𝑘

,        (5.4) 

𝛽𝑡 =  
𝑔𝑠

𝑔𝑠,𝑚𝑎𝑥
 ,          (5.5) 
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where E is leaf transpiration [mm/s], Emax is the leaf transpiration in the absence of water stress [mm/s], βt is the 

transpiration water stress [-], gs is the stomatal conductance of water corresponding to leaf transpiration 

[µmol/m2/s], and gs,max is the stomatal conductance of water corresponding to maximum transpiration [µmol/m2/s]. 

The calculated transpiration water stress is then used for the attenuation of photosynthesis, where βt = 1 is no water 

stress and βt < 1 is the relative transpiration water stress.  

For a more detailed description of the algorithms applied in CLM5, the reader is referred to the model technical 

description (Lawrence et al., 2018, 2019) and references therein.  

In this study, all simulations were carried out with a modified version of CLM5 that was developed in an earlier 

study by Boas et al. (2021). This CLM5 version was extended with an adaptation of the winter cereal representation 

after Lu et al. (2017), a cover cropping and crop rotation routine, and crop phenology parameters for the northern 

hemisphere crop types winter wheat, sugar beet and potatoes. These modifications have proven to significantly 

improve the simulation of energy fluxes, vegetation states and carbon fluxes (e.g. leaf area index (LAI), net 

ecosystem exchange (NEE) and yield) at several Central European sites (Boas et al., 2021).  

5.2.2 Study areas and input data  

Simulations were conducted for two intensive cropping regions in different climate zones, spanning a two-decade 

period from 1999 to 2019 (Figure 5.1). The first domain covers large parts of the south-east Australian wheat belt 

in the state of Victoria in Australia (AUS-VIC) and is characterized by large rain-fed agricultural areas with large 

paddock sizes, primarily dedicated to cereal cultivation, and extensive naturally vegetated or woody areas (i.e., 

grasslands, native woody cover and woody horticulture). The agricultural parts of the domain are mostly 

characterized by deep groundwater tables. The main cash crop in this domain is winter wheat, followed by barley 

and canola. Land cover information for the AUS-VIC domain was based on the Victorian Land Use Information 

System (VLUIS) product for the year 2016 (Morse-McNabb et al., 2015; Victoria Government Data Directory, 

2020). This dataset was generated through a combination of time series analysis of remote sensing data 

(MOD13Q1 or MYD13Q1 by NASA) and annually collected field data (Morse-McNabb et al., 2015), and provides 

detailed information on land use and land cover for the entire state of Victoria. Unfavourable weather conditions 

for winter crop farming can have profound impacts on regional grain production and yield per area (ABARES, 

2020). 
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Figure 5.1: (a) AUS-VIC simulation domain extent and (b) dominant land use type based on VLUIS data, modified after 

(Victorian Government Data Directory, 2020; Morse-McNabb et al., 2015); (c) DE-NRW simulation domain extent and (d) 

dominant land use type based on Griffiths et al. (2018, 2019), modified from Boas et al. (2023). 

The second domain covers the state of North Rhine-Westphalia in Germany (DE-NRW). It is characterized by a 

diverse landscape with urban, natural, and mixed agricultural areas that are mostly rain-fed. The groundwater 

regime in this domain is largely characterized by relatively shallow groundwater tables and a high degree of human 

influence due to intensive land use and urbanization. Land cover information for the DE-NRW domain was based 

on the 30-m resolution land cover dataset by Griffiths et al. (2019). This dataset was generated from Sentinel-2A 

MSI and Landsat-8 OLI observation data from the NASA Harmonized Landsat-Sentinel dataset for the year 2016 

(Claverie et al., 2018). Compared to agricultural reference data, the derived crop type and land cover map showed 

a high overall accuracy of over 80%, particularly for crop types with high abundances such as cereals, maize, and 

canola (Griffiths et al., 2019). The agricultural land cover in DE-NRW is primarily concentrated in the northern 

and western part of the domain, alongside natural vegetation and urban areas. The main cash crops in this region 

are winter wheat, winter barley, corn, sugar beet and rape seed (Figure 1, BMEL, 2020, 2022). In the southern part 

of the domain, which includes the Eifel, Bergisches Land and Sauerland regions, forests and grassland are the 

dominant land cover. Due to a late cold spell in late February/early March, agricultural yields in the area were 

significantly impacted in 2018. In addition, extreme heat and dry spells during both summers of 2018 and 2019 

resulted in unusually high spatial variability of yield, particularly for cereals (NRW State Government, 2020; 

BMEL, 2020, 2022). 

For both domains, soil variables such as clay, sand and organic matter content were derived from the global 

SoilGrids database (Hengl et al., 2017). SoilGrids provides soil information at seven depths (0, 0.05, 0.15, 0.30, 

0.60, 1 and 2 m) at 250 m, 500 m and 1 km spatial resolution. Further soil properties, such as the saturated hydraulic 
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conductivity and soil retention parameters are calculated within CLM5 based on the pedotransfer function after 

Cosby et al. (1984). Irrigation demand is dynamically calculated based on simulated soil moisture conditions. For 

irrigated croplands, the model assesses daily whether irrigation is needed. Irrigation is triggered when the crop leaf 

area index is greater than zero and available soil water drops below a specified threshold.  

The amount of fertilizer is prescribed by crop functional types and varies spatially based on the LUMIP land use 

and land cover change time series (Lawrence et al., 2016). The LUMIP time series (1999-2019) provides land use 

and land cover data for prescribing fertilizer rates in the CLM5 model. Fertilizer application is adjusted spatially 

based on crop type and regional agricultural intensity, representing average historical rates. While spatial 

variability is accounted for, temporal changes in fertilization practices are not simulated beyond a repeated annual 

cycle, with nitrogen from industrial fertilizer applied consistently over 20 consecutive days each year. Manure 

nitrogen is uniformly applied at 0.002 kg N/m²/year across all crop types. 

5.2.3 Forcing and validation data  

The simulations were forced with the bias-adjusted global reanalysis dataset WFDE5 (Cucchi et al., 2020). The 

WFDE5 dataset provides all meteorological variables that are needed to force CLM5 (i.e., precipitation, incoming 

shortwave and longwave radiation, atmospheric pressure, relative humidity, wind speed and temperature) at hourly 

time step for the period from 1979 to 2019, and at a 0.5° spatial resolution. The dataset was generated using the 

WATCH Forcing Data (WFD) methodology (Cucchi et al., 2020) based on the ERA5 reanalysis product (Hersbach 

et al., 2020).   

In order to validate and compare model results for crop yields, we used state-wide agricultural statistics. For 

Victoria, official records of annual crop yields are available for all simulated years from the database of the 

Australian Bureau of Agricultural and Resources Economics and Sciences (ABARES). The Australian crop report 

contains both realised and forecast growing area, production and yield for the major winter and summer crops on 

the Australian state level. The reports are produced with the participation of industry contacts and are released 

quarterly with the most recent estimates and updated forecasts.  

For the DE-NRW domain, official agricultural records are available for 2005-2019 from IT.NRW (2022). The 

yield statistics are compiled for selected agricultural crops at the state and municipal levels in Germany. This 

information is gathered through an annual crop reporting process, where industry contacts with local expertise for 

the reporting areas, typically a municipality, provide harvest information and yield estimates for the year. 

Acknowledging the inherent uncertainties in these agricultural datasets, i.e. stemming from variations in reporting 

methods, they provide valuable insights into the overall magnitudes and yearly trends of crop yield. As such, they 

serve as suitable validation datasets to assess the general quality of yield predictions in terms of magnitudes and 

inter-annual variations. 

For validating simulated soil moisture contents in the top soil layers (up to 0.06 m depth), we used the CCI Soil 

Moisture-Combined dataset, version 07.1 (ESA-CCI), from the European Space Agency's (ESA) Soil Moisture 

Essential Climate Variable (ECV) Climate Change Initiative (CCI) project (Dorigo et al., 2017; Gruber et al., 

2017, 2019; Preimesberger et al., 2021). The ESA-CCI-SM combined product provides global daily volumetric 

soil moisture data at a spatial resolution of 0.25 degrees from 1978 to 2021 (Dorigo et al., 2017; Gruber et al., 

2017, 2019; Preimesberger et al., 2021). Additionally, we compared simulation results to the Soil Moisture Active 

Passive (SMAP) mission Enhanced Level-3 radiometer soil moisture product (SMAP L3) that is available since 
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March 2015 and comprises soil moisture retrievals at a spatial resolution of 36 and 9 km (Entekhabi et al., 2016). 

When comparing daily simulation results with satellite-derived soil moisture retrievals, it is important to 

acknowledge the inherent uncertainties of these products, e.g. due the impact of vegetation cover and surface 

characteristics, variations in satellite sensor characteristics, algorithm and model uncertainties etc., which may 

result in a distorted representation of daily soil moisture dynamics (Seo and Dirmeyer, 2022). Furthermore, it is 

crucial to recognize that these products represent near-surface soil moisture and can only serve as an indication 

for the conditions over the entire root zone.  

5.2.4 Simulation experiments and performance metrics 

Table 5.1: Overview of conducted simulation experiments, used forcing and simulation period, for each domain. 

  Description Forcing Simulation period 
I Spin-up CRUNCEP 1901-2016, loop 
II Realistic land cover simulations WFDE5 1999-2019 
III Winter wheat monoculture experiments WFDE5 1999-2019 

IV Winter wheat monoculture experiments with reduced 
precipitation 

modified WFDE5 with 50% 
reduced precipitation 1999-2019 

As a first step, a model spin-up of more than 850 simulation years was conducted for each simulation domain so 

that the model ecosystem variables reach equilibrium prior to production simulations (experiment I in Table 5.1). 

This spin-up process comprised an initial phase under accelerated decomposition conditions lasting more than 300 

years, followed by a final phase in normal mode lasting over 500 years. The spin-up is essential to attain 

equilibrium in ecosystem carbon and nitrogen pools, gross primary production, and total water storage. Notably, 

achieving equilibrium is particularly time-intensive for the slow carbon and nitrogen pools. For the spin-up, the 

combined global CRUNCEP atmospheric forcing dataset (Viovy, 2018) was used, which consists of the CRU 

TS3.2 0.5 x 0.5 degree dataset covering the period from 1901-2002 (Harris et al., 2014) and the NCEP reanalysis 

2.5 x 2.5 degree 6-hourly dataset available for 1948-2016 (Kalnay et al., 1996).  

Then, simulations were conducted for both study domains with high resolution land cover information as described 

above for the period 1999-2019, forced with WFDE5 data (experiment II in Table 5.1) (Cucchi et al., 2020). In 

the following step, the land cover was modified by setting the CFTs on all cropland land units within the domain 

to winter wheat. This synthetic winter wheat monoculture was simulated for both domains with the WFDE5 

forcing data set, and for the years 1999-2019 (experiment III in Table 5.1). Additionally, the same set of 

simulations was conducted for the synthetic winter wheat monocultures with 50 % reduced WFDE5 precipitation 

to synthetically create more drought stress for the crop (experiment IV in Table 5.1). 

The model performance was statistically evaluated using the root mean square error (RMSE), the Pearson 

correlation coefficient (r), the squared correlation coefficient (R2), and the mean bias error (MBE):  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1 ,        (5.6) 

𝑟 =
∑(𝑥𝑖−�̅�)(𝑦𝑖−𝑦)

(𝑛−1)∙𝜎𝑥𝜎𝑦
,         (5.7) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦)2𝑛
𝑖=1

,        (5.8) 
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𝑀𝐵𝐸 =
∑ (𝑥𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
,         (5.9) 

where n is the total number of time steps (days or years), xi and yi are the simulated and the observed values of a 

given variable at every time step i, overbar represents the mean value, and σx and σy are the standard deviations of 

the simulated and observed data respectively.   

In order to quantify the inter-annual variability of annual crop yields and daily soil moisture contents, the mean 

absolute anomaly (MAA [%]), the mean absolute deviation (MAD) and mean absolute deviation ratio (MADr [-]) 

were defined as follows:  

𝑀𝐴𝐴 =  
∑ (𝑛

𝑖=1 |
𝑌𝑖 − �̅�

�̅�
| ∙100 )

𝑛
,                    (5.10) 

𝑀𝐴𝐷 =
∑ (𝑛

𝑖=1 |𝑌𝑖 − Ȳ̅|)

𝑛
,                     (5.11) 

𝑀𝐴𝐷𝑟 =
𝑀𝐴𝐷𝑋

𝑀𝐴𝐷𝑦
,                     (5.12) 

where i is time step (days or years) and n the total number of time steps, Yi is the respective variable [t/ha] at every 

time step i, Ȳ is the 1999-2019 average of that variable [t/ha], MADX and MADy are the mean absolute deviation 

[t/ha] for the simulations and the reference dataset respectively.  

The absolute anomaly (AA) and the absolute deviation (AD) provide the percentage difference and the average 

absolute difference, respectively, between observations at the respective time step and the long-term average. Their 

mean values MAA and MAD provide insight into overall variability. Lower values in both metrics indicate less 

variability and a closer alignment to the long-term average. The MADr compares the calculated variability (MAD) 

between simulations and the reference dataset, with values nearing one indicating greater similarity.  

5.3.1 Soil moisture regime 

We compared the simulated surface soil moisture content (SMC) of the top soil layers (0 – 0.06 m depth) with 

data from the combined ESA-CCI product (Dorigo et al., 2017; Gruber et al., 2017, 2019) and the satellite derived 

SMAP L3 data (Entekhabi et al., 2016).  

For AUS-VIC, the simulated SMC is systematically higher than ESA-CCI during the main cropping season (May 

- October) and lower during the austral summer months (December - February), resulting in a R2 value of 

approximately 0.7 (Figure 5.2). The SMAP L3 product generally showed larger day-to-day fluctuations compared 

to the ESA-CCI data, with higher values during the main cropping season (May - October) and lower values during 

the summer months (December - February) than ESA-CCI. The simulations resulted in SMC very close to the 

SMAP L3 product during the first quarter of the year, while underestimating maximum values in the SMAP L3 

data set during the growing season (May - October).  

For the DE-NRW domain, comparison against ESA-CCI revealed large deviations compared to the simulated 

surface SMC, resulting in an R2 value of approximately 0.4. For DE-NRW, the simulated winter season (December 

– February) and early growing season (March, April) SMC were significantly overestimated for all years, while 
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late summer SMCs (August, September) were systematically underestimated with respect to ESA-CCI (Figure 

5.3). The SMAP L3 product showed smaller values compared to ESA-CCI and was largely overestimated by 

CLM5 results for the majority of years and months, particularly during the main growing season (April-August) 

(Figure 5.3). The drought years of 2018 and 2019 are reflected in lower simulated SMC compared to the 1999 - 

2019 average, particularly in (late) summer, where CLM5 showed lower values than SMAP L3 in 2019 (Figure 

5.3i). Simulated soil moisture by CLM5 showed a smaller inter-annual variability than SMAP, but a larger inter-

annual variability than ESA-CCI. For the AUS-VIC domain, the mean absolute anomaly (MAA) for simulated 

soil moisture was approximately 30% (0.063 m³/m³ MAD), while it was 19% (0.036 m³/m³ MAD) for ESA-CCI 

and 48% (0.097 m³/m³ MAD) for SMAP (Table 5.2). Similarly, for the DE-NRW domain, the simulated soil 

moisture showed an MAA of approximately 17% (0.058 m³/m³ MAD), while ESA-CCI showed 7% MAA (0.02 

m³/m³ MAD) and SMAP L3 had 23% MAA (0.058 m³/m³ MAD). The correlations between the simulated daily 

surface soil moisture and the reference datasets were generally higher for the AUS-VIC domain compared to DE-

NRW. The correlation coefficient between simulated soil moisture and both reference datasets in AUS-VIC was 

approximately 0.85, whereas it was approximately 0.6 for both SMAP and ESA-CCI in DE-NRW.  

 

Figure 5.2: Simulated daily surface soil moisture (0 - 0.06 m depth) throughout the AUS-VIC domain (a) from 1999 – 2019, 

and (c, d, e, g, h, i) for individual years, compared to the ESA-CCI product and available SMAP L3 data. Scatterplots show 

the correlation between simulated SMC and (b) ESA-CCI, and (f) SMAP L3, with the respective regression equations. 
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Figure 5.3: Simulated daily surface soil moisture (0 - 0.06 m depth) throughout the DE-NRW domain (a) from 1999 – 2019, 

and (c, d, e, g, h, i) for individual years, compared to the ESA-CCI product and available SMAP L3 data. Scatterplots show 

the correlation between simulated SMC and (b) ESA-CCI, and (f) SMAP L3, with the respective regression equations. 

Table 5.2: Mean annual SMC, mean absolute anomaly (MAA), mean absolute deviation (MAD) and mean absolute deviation 

ratio (MADr) for simulated daily soil moisture content, and daily soil moisture data from ESA-CCI and SMAP L3 from 1999 

– 2019, for AUS-VIC and DE-NRW respectively. Corresponding performance parameters r, RMSE and MBE were calculated 

with respect to the validation datasets ESA-CCI and SMAP L3 

  
Mean SMC MAA MAD MADr r RMSE MBE 
[m3/m3] [%] [m3/m3] [-] [-] [m3/m3] [m3/m3] 

AUS-VIC        
CLM 0.21 29.927 0.063 - - - - 
ESA-CCI 0.188 19.012 0.036 1.757 0.858 0.032 0.01 
SMAP L3 0.203 48.038 0.097 0.645 0.846 0.014 0.001 
DE-NRW        
CLM 0.344 16.869 0.058 - - - - 
ESA-CCI 0.267 7.041 0.019 3.087 0.622 0.064 0.033 
SMAP L3 0.262 26.306 0.069 0.843 0.574 0.024 0.004 

5.3.2 Regional crop productivity  

For the multi-decadal simulation runs we compared the simulated annual crop yields for DE-NRW and AUS-VIC 

to available yield records. We calculated yield variability as mean absolute deviation (MAD) and mean absolute 

anomaly (MAA) both for simulations and yield records, as well as the ratio of MAD from simulations and records 

(MADr) as explained in chapter 5.2.4 (Table 5.3).  

In general, the simulations produced mean annual crop yields that are comparable to the mean observed yields 

across both domains and for all considered crop types in terms of overall magnitudes (Figure 5.4a and 5.4c). For 

AUS-VIC, the average simulated mean annual crop yield (excluding sorghum) was 1.57 t/ha, compared to 1.75 

t/ha in records. In DE-NRW, the simulated mean yield averaged for all considered crops was 6.7 t/ha, while the 

official records reported approximately 7 t/ha. Additionally, there were differences in the simulated yield amounts 

and inter-annual yield variability between the two domains (Figure 5.4b and 5.4d). The simulated annual yield 

amounts were significantly higher in DE-NRW than in AUS-VIC for all crops, which is consistent with official 

yield statistics (Table 5.3). Additionally, the simulated inter-annual variability was lower for DE-NRW than for 

AUS-VIC, which is also the case in the official records (Figure 5.4b and 5.4d, Table 5.2) 
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Figure 5.4: Simulated mean annual crop yield (CLM) and recorded mean annual yield (Obs), and corresponding absolute 

deviation from the 1999 – 2019 mean for each year (AD), averaged for all regarded crops, for (a-b) the AUS-VIC domain 

(winter wheat, barley, canola, sorghum) and (c-d) the DE-NRW domain (winter wheat, spring wheat, canola, corn).   

For AUS-VIC, profound differences were observed in the inter-annual yield variability between the simulation 

results and crop survey records, with the absolute deviation (AD) being more than 3 times lower on average in 

simulation results compared to records (Figure 5.4b, Table 5.3). Specifically, the mean absolute anomaly was 

approximately 5% (0.12 t/ha MAD) for winter wheat in the simulations and 29 % in the records. Similarly, the 

MAA and MAD values for sorghum were substantially underestimated, with 9% and 0.2 t/ha for simulations, 

compared to 59 % and 1.3 t/ha for yield records. Overall, the lowest MAD ratios were reached for sorghum and 

winter wheat, with 0.15 and 0.2 respectively, while simulation results for canola and barley had ratios of 0.95 and 

0.5 respectively (Table 5.3). The crop functional types (CFTs) for barley and canola are both derived from the 

spring wheat CFT (with adjusted values for several phenological parameters such as maximum LAI, maximum 

crop height, etc.), which explains the very similar yield predictions and inter-annual fluctuations for these two 

crops (Figure 5.5c and 5.5e). The drought year of 2018 and the reduction in recorded yields compare to previous 

years was only captured in the simulations for barley and canola (Figure 5.5c and 5.5e).  

For the DE-NRW domain, the simulated total annual crop yield was close to official records, especially for winter 

wheat (Figure 5.6a, Table 5.3). However, simulated inter-annual yield variability was considerably lower than in 

the yield records for winter wheat (with a MAA of 2.6% and MAD of 0.3 t/ha in the simulations compared to 5.4% 
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and 0.5 t/ha in the records) and corn (MAA of 3.4% and MAD of 0.3 t/ha in the simulations, and 7.9% and 0.8 

t/ha in the records, approximately), resulting in low MAD ratios of 0.6 and 0.4, respectively (see Figure 5.6, Table 

5.3). Similar to the results for AUS-VIC, the influence of the shared crop parameterization between canola and 

spring wheat was evident in the simulation results for D-NRW. While the inter-annual yield variations for spring 

wheat were reasonably well-captured in the simulations, with a MAD ratio of approximately 0.8, the inter-annual 

yield variations for canola were overestimated in comparison to records, resulting in a very high MAD ratio of 

2.5.  

 

Figure 5.5: (left) Simulated mean annual crop yields for (a) winter wheat, (c) barley, (e) canola and (g) sorghum from 1999 – 

2019 throughout the AUS-VIC domain compared to available records from ABARES (2020) with (right) corresponding 

correlations between simulated and observed values, with the respective R2 values and regression equations. The corresponding 

data is also shown in Table C1. 

Throughout AUS-VIC, crop yield is strongly correlated with the total amount of rainfall throughout the cropping 

season (May – October), as demonstrated by the positive correlation of total growing season rainfall and recorded 

grain yields (Figure 5.7). This relationship was not evident in the CLM simulation results. In addition, a weak 

correlation could be observed between the simulated annual yield and the simulated root zone soil moisture (0.02 

- 0.32 m depth) (Figure 5.8a).  

For DE-NRW, the correlation between total growing season rainfall and recorded or simulated crop yields is not 

significant, reflecting the energy-limited regime in the area. This is demonstrated by the weak correlation between 

recorded yields and seasonal rainfall amounts. For spring wheat, the influence of precipitation is reflected in the 

correlation with recorded yields (wetter years resulted in higher grain yield), while for other crops the constraining 
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effects of water availability and energy are more in balance. The simulation results showed a slightly negative 

correlation of yield, particularly pronounced for spring wheat and canola, with seasonal rainfall (and root zone soil 

moisture), which might be related to less energy input (smaller global radiation) for growing seasons with higher 

precipitation amounts (Figure 5.8b). With this negative correlation the simulation results overestimated the effects 

of energy limitation for the domain.  

 

Figure 5.6: (left) Simulated mean annual crop yields for Simulated mean annual crop yields for (a) winter wheat, (c) spring 

wheat, (e) canola and (g) corn from 1999 – 2019 in the entire DE-NRW domain compared to available records from 2005 – 

2019 (IT.NRW, 2022) and (right) corresponding correlations between simulated and observed values, with the respective R2 

values and regression equations. The corresponding data is also shown in Table C2. 
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Table 5.3: Mean annual crop yield, mean absolute anomaly (MAA), mean absolute deviation (MAD) and mean absolute 

deviation ratio (MADr) for simulated and recorded yields for 1999 – 2019, averaged for winter wheat, barley, canola and 

sorghum for AUS-VIC, and for winter wheat, spring wheat, canola and corn for DE-NRW. Corresponding performance 

parameters r, RMSE and MBE were calculated for the annual mean yield from 1999-2019 for AUS-VIC and 2005-2019 for 

DE-NRW with respect to available observations. 

 Mean yield [t/ha] MAA [%] MAD [t/ha] MADr [-] r [-] RMSE [t/ha] MBE [t/ha] 

  Obs CLM Obs CLM Obs CLM     
AUS-VIC           
Winter wheat 1.95 2.25 28.65 5.26 0.56 0.12 0.21 0.39 0.68 0.30 
Barley 1.97 1.31 28.75 22.62 0.57 0.29 0.51 0.07 0.98 -0.64 
Canola 1.32 1.15 21.99 24.03 0.29 0.28 0.95 0.11 0.52 -0.18 
Sorghum 1.84 2.20 59.21 9.05 1.34 0.20 0.15 0.07 1.76 0.42 
DE-NRW           
Winter wheat 8.32 7.90 5.39 2.63 0.45 0.27 0.60 0.42 0.61 -0.40 
Spring wheat 6.30 5.09 8.29 7.27 0.52 0.43 0.83 0.11 1.40 -1.12 
Canola 3.87 5.07 5.05 8.49 0.20 0.49 2.51 0.22 1.39 1.28 
Corn 9.97 8.76 7.93 3.43 0.79 0.30 0.38 0.13 1.58 -1.29 

In order to better isolate the impact of soil moisture and precipitation on simulated crop yield, we additionally 

performed a multiple regression analysis, taking global (shortwave) radiation into account. We examined two 

different models to explain the simulated mean annual crop yield using (1) the simulated mean seasonal root zone 

soil moisture and the mean seasonal global radiation, and (2) the seasonal precipitation amount and the mean 

seasonal global radiation as independent variables. For DE-NRW, the model showed a moderate relationship 

between the variation in crop yield and changes in root zone soil moisture and global radiation with a R2 of 0.38, 

and a slightly lower correlation of seasonal precipitation amount and global radiation with crop yield with a R2 of 

0.35 (Table C3). For DE-NRW, global radiation exhibited a positive relationship, implying that increased radiation 

was associated with higher crop yields, while both the root zone soil moisture and seasonal rainfall amount 

exhibited negative relationships (not showing any statistical relevance with p-values > 0.05) (Table C3). For the 

AUS-VIC domain, the model showed a weaker relationship between variations in crop yield and changes in root 

zone soil moisture and global radiation than in DE-NRW, with an R2 of 0.16. Both the root zone soil moisture (p-

value of 0.09) and global radiation (p-value of 0.26) were not statistically significant predictors in this case. The 

correlation of seasonal precipitation amount and global radiation with crop yield was slightly higher with an R2 of 

0.34, with both showing a positive relationship with crop yield (Table C3).  

Analysis of the simulated transpiration beta factor, which represents plant water stress in CLM5, did not show any 

apparent correlation with the simulated yield in both domains (Figure 5.9). The transpiration water stress (βt =1 

indicates absence of water stress; declining values indicate growing water stress) is utilized in CLM5 to regulate 

plant photosynthesis. The lack of a correlation for AUS-VIC suggests that the simulated crop yield was not 

influenced by transpiration water stress (Figure 5.9a). In DE-NRW, even a slightly negative correlation could be 

observed for simulated crop yield and transpiration beta (Figure 5.9b). This is consistent with the results regarding 

the correlation of simulated yield with both root zone soil moisture and precipitation as discussed above (Figure 

5.6 and 5.7).   
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Figure 5.7: Relationship between mean annual crop yield (simulated (CLM) and recorded (Obs)) and WFDE5 cropping season 

rainfall amounts (May – October for AUS-VIC, and April – September for DE-NRW) for the period of 1999 – 2019. Average 

crop yields are given for (top) AUS-VIC and (bottom) DE-NRW. The yields of the following individual crops are given: (a) 

winter wheat; (b) barley; (c) canola; (d) sorghum; (e) winter wheat; (f) spring wheat; (g) canola; (h) corn. The respective R2 

values and regression equations are given for (blue) simulation results and (black) records. 

 

Figure 5.8: Relationship between mean annual crop yield (CLM) and the mean simulated root zone soil moisture (0.02 - 0.32 

m depth) for the cropping seasons from 1999 - 2019, averaged for (a) AUS-VIC (May - October) and (b) DE-NRW (April - 

September), and for the respective crops. The respective R2 values and regression equations for the mean yield are indicated in 

black.  
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Figure 5.9: Relationship between simulated mean annual transpiration beta and simulated mean annual crop yield (CLM - 

mean), and recorded mean annual yield (Obs - mean) respectively, averaged for all regarded crops, for (a) the AUS-VIC domain 

(winter wheat, barley, canola, sorghum) and (b) the DE-NRW domain (winter wheat, spring wheat, canola, corn). The 

respective R2 values and regression equations for (blue) simulations and (black) records are also given.  

5.3.3 Winter wheat monoculture experiments with reduced precipitation  

In a subsequent step, we conducted synthetic monoculture experiments where winter wheat cultivation was 

implemented exclusively across all crop land units. These experiments were performed using two different 

forcings: the default WFDE5 dataset (CLM_WFDE5) and the WFDE5 dataset with 50% reduction in precipitation 

(CLM_LowP). The reduction in rainfall synthetically increased the plant water stress for both domains, as 

represented by the transpiration beta factor. 

In the AUS-VIC domain, the simulations with reduced precipitation not only led to decreased mean yield amounts, 

introducing a larger negative bias in overall yield results, but also increased inter-annual variability compared to 

the WFDE5 simulations with unchanged precipitation. The recorded winter wheat yields exhibited a mean absolute 

anomaly of 28.7% (0.56 t/ha MAD), which was underestimated in the default CLM_WFDE5 runs with a mean 

absolute anomaly of 8.4% (0.16 t/ha MAD). In the reduced precipitation runs this underestimation was less 

pronounced with a mean absolute anomaly of 13.5% (0.18 t/ha MAD) (Figure 5.10b, Table 5.4). In the rain-fed 

and water-limited regions of the AUS-VIC domain, we expect a positive correlation between seasonal rainfall 

amounts and crop productivity. CLM results were able to capture this relationship only with the reduced 

precipitation, indicating an underestimation of plant water stress in the scenario with the default WFDE5 forcing 

(Figure 5.11a).  

In the DE-NRW domain, the reduced precipitation runs consistently underestimated the total annual winter wheat 

yield for all years, except 2007 (Figure 5.10c, Table 5.4). The variability of yield increased from 3.3% (0.25 t/ha 

MAD) in default WFDE5 simulations to 7.5% (0.55 t/ha MAD) with reduced precipitation amounts (CLM_LowP), 

which was even higher than the recorded yield variability with 5.39 % MAA (0.45 t/ha MAD). The overestimation 

of yield variability in the CLM_LowP runs was also reflected in the high MADr value of 1.2. By reducing 

precipitation amounts, we artificially created a more water-limited regime in the DE-NRW domain, resulting in a 

positive linear correlation between seasonal rainfall amounts and yield, which was even more pronounced than for 

the official yield records (Figure 5.11d). 
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Figure 5.10: Mean annual crop yield from simulations forced with WFDE5 (CLM_WFDE5) and 50 % reduced WFDE5 

precipitation (CLM_LowP), and recorded mean annual yield (Obs) for (a) the AUS-VIC domain and (c) the DE-NRW domain, 

with (b, d) the corresponding annual absolute yield anomaly (AA) for each simulation scenario and domain. The corresponding 

data is also shown in Table C1 and Table C2. 
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Table 5.4: Mean annual crop yield, mean absolute anomaly (MAA), mean absolute deviation (MAD) and mean absolute 

deviation ratio (MADr) for available records and results from winter wheat monoculture experiments, forced with WFDE5 

precipitation (CLM_WFDE5) and 50 % reduced WFDE5 precipitation (CLM_LowP), averaged for 1999 – 2019, for both 

domains. Corresponding performance parameters r, RMSE and MBE were calculated for the annual mean yield from 1999-

2019 for AUS-VIC and 2005-2019 for DE-NRW with respect to available observations. 

  Mean yield  
[t/ha] 

MAA  
[%] 

MAD  
[t/ha] 

MADr  
[-] 

r 
[-] 

RMSE 
[t/ha] 

MBE 
[t/ha] 

AUS-VIC        
Obs 1.95 28.65 0.56     
CLM_WFDE5 1.92 8.41 0.16 0.29 0.05 0.67 -0.03 
CLM_LowP 1.33 13.51 0.18 0.32 0.59 0.83 -0.62 
DE-NRW        
Obs 8.32 5.39 0.45     
CLM_WFDE5 7.89 3.20 0.25 0.56 0.29 0.64 -0.43 
CLM_LowP 7.14 7.48 0.55 1.22 0.45 1.60 -1.46 

 

Figure 5.11: : Relationship between mean annual winter wheat yield (either WFDE5 precipitation simulations 

(CLM_WFDE5), 50 % reduced WFDE5 precipitation simulations (CLM_LowP) or records (Obs)) and the corresponding 

rainfall amounts for the cropping seasons of 1999 – 2019 (a, d), the simulated root zone soil moisture (b, e) and the simulated 

transpiration beta factor (c, f). Results are provided for the AUS-VIC domain (May - October) (a-c) and the DE-NRW domain 

(April - September) (d-f). The corresponding regression equations are indicated and color coded. The recorded yield is 

compared to WFDE5 annual precipitation.  

The synthetic winter wheat monoculture experiments additionally offer the possibility to study simulated spatial 

differences as well as the effects of soil properties on simulated crop productivity in more detail (Figure 5.12). The 

highest variability of simulated annual crop yield is reached for regions with high sand contents, while in regions 

with relatively high clay contents, the inter-annual variability of yield is comparably low. This observed pattern 

suggests a link between the simulated yield and the higher water-retaining capabilities of clay-rich soils. In 

summary, the reduced precipitation amounts illustrate a more realistic water stress response from the crops, leading 

to a more realistic correlation of yield and rainfall amounts for the water-limited regime in AUS-VIC and higher 
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inter-annual yield variabilities. However, the reduced precipitation lead to an underestimation of annual yield 

amounts for both domains compared to records (Table C1 and Table C2). 

 

Figure 5.12: Spatial mean absolute yield anomaly (MAA) for winter wheat monoculture simulations (1999-2019) throughout 

(a) AUS-VIC and (c) DE-NRW, and (b, d) the sand content in the root zone throughout the respective domains, based on 

SoilGrids (Hengl et al., 2017). 

During the growing season, the vast majority of agricultural land is under water-limited conditions 

(Papagiannopoulou et al., 2017; Koster et al., 2009; Nemani et al., 2003). Studies indicate a widespread trend of 

ecosystems moving from energy to water limited due to climate change (Denissen et al., 2022; Orth et al., 2023). 

Unsustainable water use in large parts of the world additionally increases the ecosystem vulnerability to drought 

with depleting groundwater and surface water resources (Samaniego et al., 2018; Taylor et al., 2013; Wada et al., 

2012, 2010). Thus, a reliable representation of the plant water stress regime and drought responses of vegetation 

are essential for the relevance of LSM applications for climate change research. The representation of vegetation 

responses to changes in available water is a major issue for studying the impact of climate change on ecosystems 

and food security.  

In this study, we assessed the skill of CLM5 in portraying inter-annual variations of crop yield in response to 

weather patterns recorded in the bias corrected reanalysis product WFDE5. Validation of simulated crop yields 

against state-wide statistics demonstrated that the model was able to estimate the total crop yield for both domains 

reasonably well, while underestimating the inter-annual variability of annual crop yield. A relatively good match 

of simulated total annual yield amounts for winter wheat in the DE-NRW domain, compared to yield records, was 

achieved which reflects the modifications and enhancements validated for winter wheat at several European sites 

in Boas et al. (2021). The model’s ability to portray inter-annual yield variability was better for the CFTs related 
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to or derived from spring wheat, i.e. spring wheat, barley and canola, which show very similar magnitudes and 

fluctuations of annual yield. The summer wheat CFT has been widely tested at global scale and its parameterization 

calibrated for CLM5 (Lombardozzi et al., 2020). In general, CLM5 is tuned to replicate average crop yields through 

parameter adjustments. Theoretically, well-calibrated parameters have the potential to offset the impacts of 

environmental factors such as pests, diseases, wildlife damage or pollutants. Previous studies showed that 

including crop-specific physiological parameters had a significant effect on the quantification of the diurnal energy 

partitioning and resulting grain yields (e.g. Lu et al., 2017; Sulis et al., 2015; Boas et al., 2021). Further improving 

the parameterization within the crop phenology module of CLM5 for the individual crops could help to alleviate 

model limitations. Another example of recent CLM5 model improvement is the incorporation of externally-

specified crop planting dates and maturity requirements, as highlighted in a recent study by Rabin et al. (2023). 

By utilizing planting and maturity inputs derived from observations, biases in the simulated global yield of 

sugarcane and cotton were reduced, although an increased bias was observed for corn, wheat, and particularly rice. 

These inputs also led to a 15% reduction in the simulated global irrigation demand, with significant effects 

observed in regions where corn and rice are extensively cultivated. Lombardozzi et al. (2020) highlight that 

advancements in data availability and the development of new parameterizations enable further model 

developments for improved representation of arable land in LSMs (e.g. McDermid et al., 2017, 2023; Pongratz et 

al., 2018). Further specific areas for improvement as proposed by Lombardozzi et al. (2020) include enhancing 

the connection and expansion of phenological triggers to address water availability and heat stress, improving the 

representation of agricultural management (through the representations for residue management and soil tillage, 

allowing fertilizer and manure application to be more flexible, and including more complexity in the irrigation 

scheme) and accounting for major technological advancements related to recent intensification (e.g. higher 

planting densities, earlier sowing dates, and genetic improvements).  

Analysis of the correlation between simulated annual yield and recorded rainfall amounts, as well as simulated 

root zone soil moisture contents, revealed model limitations in representing the water-limited regime in AUS-VIC. 

Throughout Victoria, crop growth and yield is highly influenced by rainfall patterns and amounts (French and 

Schultz, 1984a, b) which is also reflected in a strong positive correlation between total growing season rainfall 

amounts from reanalysis and observed total yields (Figures 5.7a - d). This relationship is not reflected in CLM5 

simulations. Only in reduced precipitation experiments for winter wheat, did we observe a positive linear 

relationship between yield and rainfall amounts; and yield and soil moisture for AUS-VIC (Figure 5.11a - c). In 

the DE-NRW domain, the shallower groundwater tables and better water storing properties of soils lead to an 

absence of positive correlation between rainfall and overall annual yield compared to AUS-VIC. In addition, due 

to the high annual precipitation in general, soil water does not represent the main limiting factor for state-wide 

agricultural yields throughout DE-NRW, and global radiation is the most limiting factor. Even during the drought 

year of 2018, the state-wide yield statistics for DE-NRW do not show a strong declining trend (Figure 5.4c). While 

severe yield losses were recorded in specific regions within the state NRW, other regions with shallower 

groundwater tables and soils with higher water-storing capacities experienced record yields due to more sunshine 

hours (which is also represented in the negative correlation between seasonal rainfall and yield, Figure 5.7e - h). 

The slightly negative correlation between simulated crop yield and seasonal rainfall, as well as root zone soil 

moisture, in DE-NRW (which can be attributed to the reduction in sunshine hours caused by cloud cover associated 

with increased rainfall) suggests an exaggeration of the energy-limited regime by the land surface model and thus, 

a failure to correctly reproduce the effects of soil water stress on crop yield. The simulation results do not reflect 
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the differences in the water-limited and energy-limited regimes between the two domains, except for a weak 

positive correlation between yield and rainfall in AUS-VIC, which indicates an inaccurate representation of the 

water-limited regime in AUS-VIC and a systematic model insensitivity towards drought stress. This is also 

underlined by the results from the multiple regression analysis (i.e. root zone soil moisture, precipitation and global 

radiation) that did not identify seasonal soil moisture as a relevant predictor for simulated crop yield in the AUS-

VIC domain. 

Our results are consistent with other studies that indicate systematic issues across LSMs in simulating vegetation 

responses under drought conditions (e.g. Ukkola et al., 2016; Trugman et al., 2018; De Kauwe et al., 2015b). 

Especially in water-limited agricultural regions, the selection of crop varieties is largely influenced by their 

resilience to prolonged dry periods. While plant physiological properties play an important role in the energy 

partitioning at the land surface and carbon fixation and drought sensitivity varies considerably among plants, state-

of-the-art LSMs currently assume the same drought sensitivity for all crop types. The studies by Trugman et al. 

(2018) and Sulis et al. (2019) emphasize the importance of including mechanistic water limitation algorithms in 

LSMs to improve the representation of plant hydraulics and thus projections of the land carbon sink. Trugman et 

al. (2018) found that soil moisture-limited productivity and its uncertainties significantly influenced carbon cycle 

simulations and thus concluded that the representation of soil moisture represents a major source of uncertainty in 

land surface models.  

In CLM5, the empirical soil moisture stress formulation from earlier model versions was replaced with a plant 

hydraulic stress model (Lawrence et al., 2019). However, one of the main challenges for the application of plant 

hydraulic models for different biomes is the parameterization. In CLM5, plant hydraulics are physically 

constrained by plant-dependent parameters, such as the conductivities of the soil-root interface and at the interfaces 

between each of the plant elements (Kennedy et al., 2019). Due to a lack of readily available data for these 

parameters, they do not vary for the different crops and represent first estimates, which is a challenge the model 

developers are well aware of (Kennedy et al., 2019; Lawrence et al., 2019). The simulated plant water states in 

CLM5 are physical properties that can be validated against field observations (e.g. Konings et al., 2017; Li et al., 

2017) which could facilitate the estimation of specific hydraulic parameters for the individual plants.  

Our analysis of the transpiration beta factor that represents water stress in CLM5 revealed a lack of correlation 

between transpiration beta and the simulated annual yield. Reducing the precipitation in the forcing data sets 

generally had an effect on the transpiration beta factor, which reflects the induced water stress at lower 

precipitation rates. It appears that the threshold for plant water stress induced yield loss is not reached in the 

simulations with unchanged WFDE5 precipitation amounts or its effects on overall grain yield remain too small. 

The small range of transpiration water stress in simulation results implies that the modelled system experienced a 

relatively uniform degree of water stress, possibly due to low variations in soil moisture conditions or other factors 

influencing water availability for transpiration, such as the water-retaining capacities of the soil or irrigation. While 

the effects of irrigation can be considered negligible in our predominantly rain-fed simulation domains, this small 

range of beta serves as an indication for inconsistencies in the representation of the soil moisture regime. In 

addition to limitations in representing crop yield variability, we also observed profound differences of the 

simulated soil moisture contents throughout the decades compared to the ESA-CCI and the SMAP L3 products. 

For DE-NRW, the simulated surface soil moisture was systematically overestimated compared to both ESA-CCI 

and SMAP L3 during the early growing season. The same was observed for the AUS-VIC simulation results 
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compared to ESA-CCI, where CLM5 simulations resulted in higher daily SMCs. Compared to SMAP L3, 

however, the simulated SMC fitted well during the early stages of the year, while daily values of SMAP L3 during 

the growing season were underestimated in the simulation results. The observed differences in error between the 

simulated soil moisture content (SMC) by CLM5 and satellite-derived data (ESA-CCI and SMAP L3) at different 

growth stages can be attributed to several factors specific to each region. Overall, these discrepancies in error 

between simulated and satellite-derived SMC at different growth stages could stem from variations in soil 

properties, precipitation patterns, and uncertainties associated with satellite-derived data retrieval algorithms and 

spatial resolution, all of which interact differently in each region and influence soil moisture dynamics throughout 

the year. The discrepancy during winter months may be due to greater biases in satellite-derived products related 

to frozen soil and snow cover. Moreover, the higher SMC in CLM5 simulations outside of the main cropping 

season in DE-NRW could also result from a misrepresentation of post-harvest field conditions, where large fields 

of cropland are simulated as bare soil while, in reality, cover crops or weeds are growing on these fields. A 

misrepresentation of the soil moisture regime with overly high soil moisture contents could potentially dampen 

the potential benefits of the new plant hydraulic stress routine in CLM5. In earlier studies, data assimilation has 

been applied to address discrepancies between CLM simulated soil moisture and data derived from satellite and 

field observations (e.g. Zhao et al., 2021; Hung et al., 2022; Strebel et al., 2022; Naz et al., 2019). However, data 

assimilation of soil moisture and groundwater level observations had only limited effects on simulated 

evapotranspiration (Hung et al., 2022). Another way to improve the predictions of hydrologic states and fluxes 

with LSMs is the coupling with subsurface or groundwater models, such as ParFlow (Kollet and Maxwell, 2008; 

Kuffour et al., 2020), in integrated modelling approaches (e.g. Kollet and Maxwell, 2008; Yuan et al., 2008; 

Maxwell et al., 2011; Tian et al., 2012; Soltani et al., 2022; Naz et al., 2023). These studies have shown that 

coupled models can simulate complex processes more realistically than uncoupled models (e.g. Yuan et al., 2008; 

Maxwell et al., 2011; Tian et al., 2012). In addition, it is crucial to acknowledge the uncertainties in the satellite-

derived data sets. Studies evaluating the quality of SMAP in Europe found local errors of 0.056 cm3/cm3 for a 

catchment in the state of NRW, Germany (Zhao et al., 2021), and comparable error magnitudes close to 0.06 

cm3/cm3 for a region in the Netherlands (van der Velde et al., 2021). Addressing these uncertainties is crucial for 

interpreting satellite-derived soil moisture data accurately, with ongoing research and technological advancements 

contributing to improvements in reliability. For example, Seo and Dirmeyer (2022) propose an adjustment of ESA-

CCI soil moisture achieved through Fourier transform time-filtering, which led to improved subseasonal 

variability, increased temporal correlation, and enhanced skill across various land cover classes.   

Moreover, the simulation of soil water fluxes is intricately linked to the hydraulic properties of the soil, which are 

in CLM5 estimated from soil texture information using pedotransfer functions after Clapp and Hornberger (1978) 

or Cosby et al. (1984). In addition, the use of different pedotransfer functions for specific soil types can introduce 

substantial variability in the numerical modelling results of water fluxes, as demonstrated by Weihermüller et al. 

(2021) and Boas and Mallants (2022). One approach to improve the simulation of soil moisture in CLM5 may 

therefore involve the numerical implementation of various pedotransfer functions tailored to different soil types. 

Alternatively, the soil hydraulic information could be acquired through machine learning techniques or by utilizing 

suitable pedotransfer functions, similar to the approach outlined by Montzka et al. (2017), and incorporated via 

input files similar to the other surface input data. The inherent uncertainty in simulation results due to input data 

extends also to meteorological information. Bodjrenou et al. (2023) assessed multiple reanalysis products, 

including WFDE5, in West Africa from 1981 to 2019. While WFDE5 provided accurate estimates for annual 
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precipitation, it exhibited an excess of small rainfall events compared to observations. These uncertainties in 

commonly used reanalysis products for land surface modelling add an additional layer of complexity when 

examining the inter-annual variability of simulated variables influenced by precipitation.  

While the adequate simulation of plant water stress is crucial to simulate crop productivity in response to changing 

weather conditions, it is also important to address additional processes that influence the yield variability of rain-

fed agriculture. Crop management practices (e.g. fertilization, double cropping) and the selection of cultivars 

specifically bred for high grain yields under local climate conditions have significant impacts on agricultural 

production and are currently not accounted for in CLM5. Allowing for a broader range of yields (maximum 

productivity) for specific crops through changes in the physiological parameters that constrain the simulation of 

crop growth and development in CLM5 could be another approach to allow for a higher inter-annual variability of 

yield. Whether structural modifications to the phenology module or systematic adjustments in the crop-specific 

parameterization can effectively allow for a broader range of yield magnitudes for the respective crops remains to 

be evaluated through model evaluation and parameter sensitivity studies. 

In summary, we argue that the limitations of model performance presented and discussed in this study arise from 

three main sources. Firstly, despite the incorporation of the new plant hydraulic stress routine in CLM5, there is a 

lack of sensitivity of crop yield towards drought stress and soil water availability. This may arise from the 

simplified parameterization of plant hydraulics which is unified for all plant functional types in CLM5. Secondly, 

CLM5 simulated soil moisture exhibited higher values during the cropping season, particularly in the early stage, 

than both ESA-CCI and SMAP products, which may have contributed to the weaker inter annual variability of 

yield. Thirdly, while CLM5 already incorporates a complex representation of crop growth and phenology 

compared with other state-of-the-art LSMs, there are several significant factors that contribute to inter-annual yield 

variability that are currently not adequately accounted for. Some examples include human crop management 

practices in response to technological advancements and public policies, diverse farming techniques such as 

varying fertilization amounts and types, double cropping, as well as environmental factors such as pests, diseases, 

and floods. Additionally, the crop–specific parameterizations in the crop phenology module, as well as the limited 

availability of data representing a wide range of crop varieties and geographic regions, represent substantial areas 

for improvement. 

To overcome these challenges, the plant specific hydraulic parameterization needs to be improved, which can be 

achieved with the help of high-resolution field observations combined with parameter estimation methods. For a 

better representation of crop growth and yield, there is a need for further model developments, representing the 

influence of frost, pests, hail and wind on crop growth, different fertilizer types and application techniques and a 

more detailed representation of root crops. Finally, we propose to use state and parameter updating techniques, 

such as data assimilation, when studying global climate change impacts on agriculture with CLM5 to better account 

for model and parameter uncertainties (e.g. Strebel et al, 2022). 

Rapid changes in atmospheric conditions and land use over recent decades have made the fate of our terrestrial 

biosphere, depletion of natural water resources, food security, and the impact of anthropogenic carbon emissions 

major global research topics. Land surface models (LSMs), such as CLM5, are the primary tools used to study 

changes in our terrestrial surface in response to climate projections. With predicted changes in regional and global 
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climate, and a potential increase in drought risk, it is vital for the LSMs used in coupled climate models to 

realistically portray the drought responses of the land surface, and vegetation in particular. Reliable predictions of 

crop yield variability can contribute to discussions on climate change impacts and mitigation strategies. 

In this study, we evaluated the performance of the land surface model CLM5 forced with reanalysis data in 

representing inter-annual variability of crop yield in multi-decadal simulations for two regions, AUS-VIC and DE-

NRW, in different climate zones and with different soil moisture regimes. Evaluation studies for different 

ecosystems, such as the one presented here, are essential to improve our understanding of model performance and 

to identify the key challenges towards reliable projections of LSMs in climate change research. 

Our analysis showed that CLM5 was able to capture the overall magnitudes of yields for individual crops, as well 

as regional differences for the same crops in the two domains (i.e., lower overall yield magnitudes for AUS-VIC 

than for DE-NRW for the same crop type). Overall, the lower annual yields per area over AUS-VIC can be 

attributed to differences in climate, crop varieties grown, soil characteristics, fertilizer rates and management 

techniques (e.g. larger paddock sizes with less dense plantations). Previous studies showed that the yield 

magnitudes for winter cereals specifically were too low at multiple European test sites (Boas et al., 2021). Hence, 

modifications and enhancements were introduced and validated for several European sites by Boas et al. (2021). 

These modifications were also used in our study, contributing to the reasonable yield magnitudes observed for DE-

NRW. These factors collectively contribute to the disparities observed in simulation results between the two 

domains. However, the inter-annual fluctuations of yield in response to differences in weather patterns, such as 

seasonal rainfall amounts, were underestimated for both domains. Interestingly, the higher variability throughout 

the AUS-VIC domain compared to DE-NRW was reflected in the simulation results. Analysis of the plant water 

stress regime and correlations between seasonal rainfall amounts and crop yields revealed a misrepresentation of 

the more water-limited regime in AUS-VIC. 

Experiments with reduced precipitation amounts that synthetically increased the plant water stress in simulations 

were able to better capture inter-annual variations of crop yield but underestimated crop yield.  CLM5 is typically 

fine-tuned to replicate average crop yields through parameter adjustments. Theoretically, well-calibrated 

parameters have the potential to offset the impacts environmental factors such as pests, diseases, wildlife damage 

or pollutants. 

Possible explanations for the underestimation of inter-annual variability of crop yields include: (1) a lack of 

sensitivity within the vegetation and crop module towards changes in soil moisture contents and soil water 

available for plants, possibly due to the parameterization of plant hydraulics; (2) systematic wet bias in simulated 

soil moisture content that may have dampened the potential benefit of the new plant water stress representation in 

CLM5; and (3) general uncertainties in the simulation of crop growth and yield due to inaccurate parameterizations 

and underrepresentation of environmental factors (e.g. pests, diseases) and human influences (e.g. agricultural 

management decisions, fertilizer type and application, cultivar selection). To remedy those effects, model 

enhancements are necessary, particularly in the field of plant hydraulic and physiological parameterizations. In 

addition, integrated approaches with subsurface or groundwater models (e.g. ParFlow) along with data assimilation 

offer potential for enhancing the simulation accuracy of soil moisture and other variables in future studies.  
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6 Summary and discussion  

A sophisticated representation of agricultural land cover in Earth system models is essential to enhance our 

understanding and the predictability of feedback mechanisms between climate change and agriculture, a research 

area of great importance to society. Land surface models like CLM5 are our primary tool to study changes of the 

terrestrial surface in response to weather conditions and are essential for exploring the impacts of climate change 

on agricultural land at larger spatial scales. The potential value of land surface models for these purposes largely 

depends on their ability to adequately simulate the soil moisture regime, crop phenology and the variability of crop 

productivity in response to changes in weather patterns. Despite being the focus of many studies, accurately 

simulating agricultural land remains a persistent challenge due to the intricacy of agricultural management 

practices and the diverse range of crop types and biomes. In addition, with the majority of global cropland being 

water limited, an accurate prediction of the soil moisture states, the plant water stress regime and drought responses 

of vegetation is imperative for the relevance of LSM applications for climate change research. The recent inclusion 

of a crop module for prognostic calculation of crop phenology and the integration of a plant hydraulic stress model 

in CLM5 are significant advancements (Lawrence et al., 2019; Lombardozzi et al., 2020), positioning CLM5 as 

one of the most advanced and sophisticated LSMs currently available.  

This cumulative thesis aimed to systematically evaluate and enhance the new prognostic crop representation of 

CLM5 across different spatial scales using input and validation datasets from various data sources. Point-scale 

simulations were conducted at several European cropland sites to identify any model limitations and to improve 

the model performance through new parameterizations and technical model development. The availability of high-

resolution observation data on meteorological variables, surface energy fluxes, vegetation parameters and detailed 

information on agricultural management practices at the selected sites offer an excellent opportunity for in-depth 

validation of simulation results, model parameterizations and technical model developments. These model 

enhancements were then ported to the regional scale and tested in combination with reanalysis data in multi-

decadal simulation scenarios and with seasonal weather forecasts over multiple cropping seasons. Information on 

agricultural practices and crop yield from official sources are typically provided at the state or administrative level, 

thus, regional scale simulations for two states with contrasting climate conditions and agricultural practices 

allowed for a comprehensive evaluation of model performance at the regional scale. The simulation domains DE-

NRW and AUS-VIC were selected due to the availability of high-resolution input data on land cover and land use 

and meaningful validation data on crop yield and soil moisture. In addition, these two regions are characterized by 

agricultural land that is largely rain-fed, which minimized the impact of irrigation both in the simulation results 

and the official yield statistics. The regional studies allowed a comprehensive evaluation of the model's long-term 

performance (1999 - 2019), utilizing the bias-adjusted WFDE5 reanalysis dataset, and provided initial insights 

into the utility and skill of one of the most sophisticated seasonal forecasting products from the latest European 

Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting system (SEAS5) in combination 

with CLM5.  

The main evaluation focus was placed on the representation of crop phenology, the inter-annual variability of crop 

yield, and the representation of surface soil moisture. Several key aspects were extensively explored throughout 
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this body of work: (1) The parameterization of crop phenology within CLM5; (2) technical advancements in the 

model that have the potential to significantly augment the crop module's performance; (3) the accurate 

representation of plant hydraulics and the model's sensitivity to drought stress, reflected in the simulated inter-

annual variability of crop yield; (4) addressing biases in simulation outcomes pertaining to regional surface soil 

moisture; and (5) exploring the combination of CLM5 with seasonal forecasts for the prediction of regional crop 

yield.  

In a first step, several limitations in the crop module were identified, including the absence of crop-specific 

parameters for abundant European cash crops and an oversimplified representation of winter cereal varieties (e.g. 

winter rye, barley and wheat). Winter cereals are more frequently planted than summer cereals in Germany and 

other western European countries (Palosuo et al., 2011; Semenov and Shewry, 2011; Thaler et al., 2012). In CLM5, 

there are several variables that influence simulated plant growth and resulting yield, such as LAI cycle and peak, 

length of the leaf emergence phase, harvest date, and water availability from the soil. With the exception of soil 

moisture, these variables are particularly responsive to plant-related parameters that guide the computation of 

growing degree days. This, in turn, significantly affects the calculation of the phenological progression and the 

allocation of carbon and nitrogen. However, within the crop phenology parameterization of CLM5, specific 

parameters for a majority of crop types and varieties, although present in the model's infrastructure, remain 

uncalibrated. To address these issues, crop-specific parameters for sugar beet, potatoes, and winter wheat were 

incorporated into the crop phenology parameterization scheme (Chapter 3). At point scale, an improved 

performance in simulating energy fluxes, leaf area index, net ecosystem exchange, and crop yield, with a RMSE 

reduction of up to 57% and 59% for latent and sensible heat could be attributed to the added crop-specific 

parameterization (Chapter 3). The role of parameterization effects were also noticeable in regional simulations 

(Chapter 4 and 5). The model performed better in portraying the inter-annual yield variability for the CFTs related 

to or derived from spring wheat, i.e. spring wheat, barley and canola, which has been widely tested at global scale 

and its parameterization calibrated for CLM5 (Lombardozzi et al., 2020). Consistent with previous studies (Sulis 

et al., 2015; Lu et al., 2017; Rabin et al., 2023), this emphasized the significant impact of including crop-specific 

physiological parameters on the representation of diurnal energy distribution and resulting grain yields in 

simulation results. In general, this indicates the potential benefits of expanding CLM5's parameter range to cover 

a wider range of crop varieties for improving simulation results for agricultural areas. However, the extension of 

the parameter scheme for more crop varieties poses challenges due to limited available measurement data and the 

complexity of the phenology algorithm and parameter framework. In their study, Rabin et al. (2023) highlighted 

that incorporating externally-specified crop planting dates and maturity requirements derived from observations 

could mitigate biases in the simulated global yield of sugarcane and cotton, and result in a 15% decrease in the 

simulated global irrigation demand. Another potential approach, without introducing additional Crop Functional 

Types (CFTs), might involve incorporating key parameters for each CFT that vary with climate and soil conditions, 

particularly for large-scale simulations, through gridded parameter sets. In addition, the integration of a phenology 

scheme based on plant physiological traits in CLM could be a significant advancement in this field (Fisher et al., 

2019), as plant trait information becomes increasingly accessible (e.g., TRY Plant Trait Database, Kattge et al., 

2011). 

In addition to an extension of the crop parameter scheme, technical model developments were implemented to 

improve the performance over arable land. A winter cereal representation based on Lu et al. (2017) was introduced, 
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incorporating the cumulative effects of vernalization and cold tolerance of winter crops, and a quantitative 

representation of frost damage. In combination with the new parameterization for winter wheat, the incorporation 

of the winter cereal representation in CLM5 resulted in improved crop yield predictions for winter wheat by up to 

87% compared to default model results at European cropland sites (Chapter 3). This could potentially translate to 

a substantial difference, possibly amounting to tens of millions of tons in the projected annual yield (average 

annual winter wheat yield of around 20 Mt/a throughout Germany), in simulation results compared to default 

model simulations on a nation-wide scale. A relatively good match of simulated total annual yield amounts was 

also found for winter wheat in the regional DE-NRW domain, compared to yield records, which reflected the 

antecedent modifications and enhancements validated for winter wheat at several European sites (Chapter 5).  

Another major development derived from this study is the integration of a cover cropping and crop rotation 

subroutine. In CLM5, the crop phenology simulation is limited to a single crop type and phenological cycle per 

column within a year. This limitation fails to account for common agricultural practices, such as cover cropping, 

crop rotations from summer crops to winter crops, and multiple intra-annual cropping cycles, which are prevalent 

in various regions across the globe. Incorporating these practices into LSMs is pivotal for accurately simulating 

terrestrial fluxes (i.e. water and energy fluxes, carbon and nitrogen cycles) in agricultural areas, in particular over 

extended time scales. With the newly introduced subroutine, CLM5 has gained enhanced flexibility for crop 

rotations, enabling the simulation of multiple cropping cycles within a year and the representation of cover 

cropping. In addition, organic fertilization through cover crops can now be simulated with CLM5. These technical 

developments led to a better representation of field conditions after harvest for several sites, significantly reducing 

model bias during the winter season as indicated by the seasonal cycle of LAI magnitudes, and a 42% reduction 

in the RMSE of winter season latent heat flux compared to default model simulations. The specific implementation 

of the routine allows the simulation of cover crop plantations based on the CFT specified for the regarded land 

unit and customizable harvest date thresholds. Specifically, a defined maximum harvest date for any cash crop 

could define whether a cover crop is planted or not, and which type of cover crop is planted. With the modified 

model version, a more flexible land cover transition could be simulated based on the succession of different crops 

from historical data. It can furthermore be used to evaluate the biogeophysical effects of cover crops in 

combination with typical cash crop rotations throughout agricultural areas over longer time scales. For instance, 

the effect of cover crops during winter months on all crop land units designated for cash crop cultivation during 

summer could be tested on a larger scale. A similar study was presented by Lombardozzi et al. (2018), who studied 

the effects of idealized cover crop scenarios by simulating winter crops in all crop regions throughout North 

America. Their results indicate that cover crops can increase winter temperatures by up to 3°C in these regions. 

These findings highlight the importance of accurately implementing agricultural management options that can 

influence land-climate feedbacks over large regions. Accurately representing these biogeophysical impacts of 

anthropogenic land use in LSMs, which are used in GCMs, can enhance global climate projections and aid in 

developing climate mitigation strategies. With the new routine, a more systematic methodology could be pursued 

to study this, allowing for continuous simulations over longer timescales and considering the effects of organic 

fertilization through ploughing cover crops residuals into the soil. 

Furthermore, the utilization of this routine holds significant promise for regions characterized by multiple cropping 

cycles within a single year, as seen in the context of monsoon-influenced cropping seasons in regions of India and 

China (e.g. Biradar and Xiao, 2011; Li et al., 2014; Sharma et al., 2015). Without its incorporation, CLM5 fails to 



Chapter 6: Summary and discussion            94 

 

accurately depict key variables related to crop phenology, including the cycle of LAI, ET and nutrient fluxes. 

Similar to the approach by Rabin et al. (2023), who defined planting and maturity dates based on observations, the 

crop phenology algorithm of CLM5 could be reinitialized multiple times within one year with the new subroutine 

based on prescribed planting and harvest threshold in order to simulate multiple cropping cycles in those regions.  

Combining this routine with an expanded parameter scheme designed to encompass a wider range of cover crop 

varieties would allow the evaluation of ecological potentials associated with various cover crop options. Next to 

the challenges arising from parameterization of new crop varieties in CLM5 as discussed above, there is additional 

development potential for this routine. This includes the technical incorporation of spatially varying crop rotations 

and cover cropping practices. The underlying structure of CLM5 inherently supports geospatial input data sets, as 

the input files for atmospheric forcing and surface information are sourced from gridded and georeferenced files. 

Exploiting the existing model infrastructure could entail the incorporation of spatially varying crop rotation 

schemes, linked to individual land units rather than being contingent upon specific crop types and harvest date 

thresholds. This development could synergize with the previously discussed regionally varying plant 

parameterizations through gridded input datasets. 

The accurate representation of regional land surface fluxes and understanding their inter-annual variability is 

crucial for a range of applications, including climate projections, agricultural management, water resources 

management, and understanding ecosystem dynamics. Furthermore, reliable predictions of regional crop yield can 

help to design agricultural adaptation and mitigation strategies. Overall, the simulation results were able to 

reproduce annual magnitudes of simulated yields for winter wheat, barley, canola, and sorghum in AUS-VIC and 

winter wheat, spring wheat, canola, and corn in DE-NRW, which were comparable to official yield records. 

Interestingly, the simulation results also reflected the general difference in yield magnitudes between the two 

regional domains (lower mean crop yield in AUS-VIC in simulation results and records). However, the model 

showed limitations in capturing inter-annual variations of crop yield, showing profound differences in the inter-

annual variability of crop productivity compared to official statistics. Specifically, the mean absolute deviation of 

mean regional yield from 1999-2019 was, on average, more than three times lower in simulation results compared 

to records for the regarded crops in AUS-VIC, and more than 1.5 times lower on average in DE-NRW (except for 

canola) (Chapters 4 and 5).  

With regard to the simulation of inter-annual variations in crop growth and yield prediction, the representation of 

vegetative drought stress as well as the accurate simulation of soil moisture (available water for root uptake) play 

a crucial role. Analysis of the multi-decadal simulation results indicated that the simulations were not able to 

accurately represent the correlation between the annual crop yield and seasonal rainfall amounts or seasonal root 

zone soil moisture. This was also highlighted in synthetic regional simulation experiments with reduced 

precipitation rates. Particularly for AUS-VIC, the lack of a positive correlation between simulated crop yield and 

water available from precipitation and root zone soil moisture indicated a misrepresentation of the water-limited 

regime. Together with the low inter-annual variability in simulated crop yields, this indicated a limited sensitivity 

towards drought stress in spite of the new representation of plant hydraulics in CLM5. This plant hydraulic scheme 

provides a better physical basis for multiple processes represented in the model, such as the attenuation of 

photosynthesis and transpiration during drought conditions (Lawrence et al., 2019). Incorporating root water 

uptake formulations into LSMs has demonstrated significant potential for achieving more accurate simulations of 

transpiration fluxes compared to the soil moisture stress functions commonly found in LSMs (Kennedy et al., 
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2019; Lawrence et al., 2019; Sulis et al., 2019). The primary challenge in applying plant hydraulic models across 

different biomes is the parameterization due to limited data availability. In CLM5, the plant-specific parameters 

that constrain the calculation of plant hydraulics remain uniform across all CFTs. Nevertheless, CLM5's simulated 

plant water states hold physical significance and can therefore be estimated and validated against field observations 

for individual plants (e.g., Konings et al., 2017; Li et al., 2017). However, achieving a satisfactory representation 

of global-scale agricultural fields can be an extensive and time-consuming endeavour, heavily dependent on the 

availability of observational data and extensive field measurements. An alternative approach to estimating new 

plant-specific parameters is the use of state and parameter updating techniques, such as data assimilation, to 

address model and parameter uncertainties (e.g., Strebel et al., 2022). 

The simulation of inter-annual yield variations in LSMs is also closely linked to the representation of soil moisture, 

specifically, an accurate representation of changes in the soil moisture regime in response to changes in weather 

patterns. In addition, a misrepresentation of the soil moisture regime can potentially dampen the potential benefits 

of the new plant hydraulic stress routine in CLM5. In the course of this work, systematic differences of the 

simulated soil moisture contents compared to various validation data sets were identified. At the regional scale, 

the simulated surface soil moisture was systematically overestimated compared to both ESA-CCI and SMAP L3 

during the early growing season for DE-NRW. The same was observed for the AUS-VIC simulation results, where 

CLM5 simulations resulted in higher daily SMCs compared to ESA-CCI, while, compared to SMAP L3, the daily 

soil moisture contents were underestimated during the growing season (Chapter 4 and 5). The multi decadal 

regional simulations resulted in RMSE of 0.032 m3/m3 and 0.014 m3/m3 with respect to ESA-CCI and SMAP L3, 

with moderate correlations of approximately 0.86 and 0.85 respectively. For DE-NRW, correlations were lower 

with values of approximately 0.62 and 0.57 compared to ESA-CCI and SMAP L3, with higher RMSE of 0.064 

m3/m3 and 0.024 m3/m3 respectively (Chapter 5).  

These challenges in correctly simulating soil moisture contents can be addressed by applying data assimilation 

techniques using data from remote sensing or field observations (e.g., Zhao et al., 2021; Hung et al., 2022; Strebel 

et al., 2022; Naz et al., 2019). However, the gained skill by data assimilation would only be effective for historic, 

real-time or short-term forecasting simulations, and could not be applied for long-term projections. Another 

established approach to improve the predictions of hydrologic states and fluxes with LSMs is the coupling with 

subsurface or groundwater models such as ParFlow (Kollet and Maxwell, 2008; Kuffour et al., 2020), in integrated 

modelling approaches (e.g., Kollet and Maxwell, 2008; Yuan et al., 2008; Maxwell et al., 2011; Tian et al., 2012; 

Soltani et al., 2022; Naz et al., 2023). While these approaches can be good measures to improve simulations of the 

hydrological cycle and soil moisture regime, both data assimilation and integrated modelling approaches, or a 

combination of both, can be computationally expensive, depending on the scale and resolution of simulations. 

Moreover, they may not effectively address the processes that could be responsible for these errors on the technical 

model level. The simulation of soil water fluxes is intricately linked to the hydraulic properties of the soil. In 

CLM5, soil hydraulic properties are estimated using pedotransfer functions after Clapp and Hornberger (1978) or 

Cosby et al. (1984). The utilization of different pedotransfer functions for specific soil types can introduce 

substantial variability in the numerical modelling results of water fluxes, as demonstrated by Weihermüller et al. 

(2021) and Boas and Mallants (2022). An approach to improve the simulation of soil moisture in CLM5 could 

therefore involve the numerical implementation of various pedotransfer functions tailored to different soil types, 

which vary based on textural fractions (i.e. sand, clay and organic matter content) provided in the input data. 
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Alternatively, the soil hydraulic information could be obtained through machine learning techniques or by utilizing 

appropriate pedotransfer functions, similar to the approach outlined by Montzka et al. (2017), and incorporated 

via input files, comparable to the other surface input data. 

When assessing the applicability and significance of LSMs for agricultural planning purposes, a promising avenue 

of research involves integrating LSMs with weather data on time scales pertinent to agriculture. Next to the 

thorough evaluation of simulation results obtained with bias corrected reanalysis, this study also assessed the 

effectiveness and practicality of combining CLM5 with SEAS5 seasonal weather forecasts for regional crop yield 

prediction. Despite their potential to enhance agricultural production systems, the use of seasonal forecasting 

products by farmers remains low, which can be partly attributed to a lack of sufficient data and evidence supporting 

their value, as well as to the absence of user-friendly tools and services that provide relevant information on crop 

yield for specific crop varieties based on seasonal forecasts.  Furthermore, there is often a resolution mismatch of 

forecasting products and modelling applications which has hindered their widespread use in this field.  

After extensive pre-processing of the forecasting product that specifically involved temporal downscaling of 

precipitation and incoming shortwave radiation, the forecasts produced model output closely matched the reference 

simulation results forced by reanalysis. Over the four simulated cropping seasons (2017-2020), the forecast 

simulations successfully captured both the highest and lowest yield years and replicated the generally larger year-

to-year variations and lower annual yield magnitudes in crop yield across the AUS-VIC region compared to the 

DE-NRW region. The limitations in adequately representing the inter-annual variations in crop yield, as previously 

discussed, were evident in both the forecast and reanalysis simulations. This was also observed for the simulated 

LAI and ET, which showed lower inter-annual variabilities in comparison to MODIS data. The simulated LAI and 

ET from both forecast and reanalysis simulations corresponded reasonably well with data from MODIS in terms 

of magnitudes and fluctuations for AUS-VIC, while for the DE-NRW simulated LAI and ET were larger than the 

observed values, in particular in early summer (May, June and July). Still, CLM5 was able to reproduce the 

generally higher inter-annual differences in crop yield throughout the AUS-VIC domain (up to 50 % in records 

and 17 % in simulated yields) compared to the DE-NRW domain (up to 15 % in records and 5 % in simulated 

yields), which can be attributed to the more diverse land cover in DE-NRW (i.e. larger variety of cultivated crops, 

more urban areas and fallow land between croplands, smaller paddock sizes) that is more challenging to represent 

in CLM5.  

A noteworthy limitation in the forecast quality stems from the large uncertainties in the prediction of precipitation 

amounts and patterns. This became evident in the higher crop production in the southern region of the AUS-VIC 

domain attributed to near-coastal precipitation events that was evident in the reference simulations with reanalysis, 

but not represented in the forecast simulations. Advanced temporal downscaling methods, like machine learning 

techniques, could help to improve the usability of forecasting products in model applications. This topic has been 

gaining increasing attention in research due to its growing significance and the recent developments in the field of 

machine learning (e.g. Hwang et al., 2019; Xu et al., 2019; Pakdaman et al., 2022; Jin et al., 2023). Performance 

analyses over extended periods and multiple regions, including benchmarking with other forecasting products and 

LSMs, are needed, that can provide valuable insights into uncertainties of the respective models and advance our 

understanding and the applicability of forecasting products. Conducting research for agricultural regions 

influenced by El Niño events, e.g. soybean cropping in Brazil, can shed more light on the effectiveness of seasonal 

forecasts, which exhibit higher predictive accuracy in El Niño-affected regions, in combination with CLM5 and 
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other model applications. Interestingly, the seasonal experiments revealed an early decline in LAI in DE-NRW 

during the 2018 growing season, reflecting the early onset of harvest. During the European drought of 2018, a 

large part of the cropland in Germany was harvested earlier than usual which was closely linked to the recorded 

yield losses in NRW (Reinermann et al., 2019). This indicates a certain level of skill in this model combination 

that warrants further exploration, and, in light of improving forecast quality, suggests potential for using seasonal 

forecasts in model applications like CLM5. 

While the adequate simulation of plant phenology, plant water stress and the soil moisture regime are crucial to 

simulate crop productivity in response to changing weather conditions, it is also important to address additional 

processes that influence the yield variability of rain-fed agriculture. Beyond weather conditions, regional 

agriculture and crop yield are largely impacted by agricultural management decisions such as the selection of crop 

varieties, planting schedules, irrigation, and fertilizer types and application techniques (White and Wilson, 2006; 

Bergkamp et al., 2018; Ceglar et al., 2019). Furthermore, other environmental factors such as soil quality and 

nutrient availability, atmospheric CO2, pests and crop damage from wildlife play a role in some regions, which are 

not sufficiently well represented by CLM5.  

One approach to improve crop yield predictions with CLM5 and to allow for a higher inter-annual variability of 

yield is by expanding the permissible yield range for specific crops through changes in the physiological 

parameters, and by parameterizing more crop types and crop cultivars that are specifically bred for high grain 

yields under local climate conditions. In addition, a sophisticated representation of root crops could potentially 

enhance yield forecasts and improve the simulation of C and N cycling, particularly in regions with extensive 

cultivation of root crops (EU production of sugar beet accounts for about half of the global production (Eurostat, 

2018). Incorporating a broader range of crop types into CLM5 represents a pivotal objective for advancing the 

model and is the aim of many studies (e.g. Lu et al., 2017; Cheng et al., 2020; Dombrowski et al., 2022). Further 

specific areas for enhancing the representation of agricultural management in CLM5 include improvements in 

residue management and soil tillage representations, allowing greater flexibility in fertilizer and manure 

application. In addition, there is a need for increased complexity in the irrigation scheme (Zhu et al., 2020; Brogi 

et al., 2022; Yang et al., 2022; McDermid et al., 2023; Rabin et al., 2023) and the incorporation of major 

technological advancements associated with recent agricultural intensification, such as higher planting densities, 

earlier sowing dates, and genetic improvements (Lombardozzi et al., 2020; McDermid et al., 2023).  

Whether structural modifications to the phenology module or systematic adjustments in the crop-specific 

parameterization can effectively allow for a broader range of yield magnitudes for the respective crops requires 

rigorous evaluation through further model assessments and parameter sensitivity studies. Further studies should 

be prioritized in regions known for significant crop-yield variability, like the Corn Belt regions in the United States. 

These areas are prone to weather anomalies, including late frosts, excessive rainfall, and heatwaves during the 

growing season, resulting in substantial yield fluctuations. Utilizing the dataset provided by global and regional 

networks of eddy-covariance towers, such as FLUXNET (FLUXNET, 2023), can facilitate comprehensive 

investigations in these regions. Exploring the model performance in regions impacted by monsoon timing and 

intensity, such as rice plantations in Southeast Asia or cotton plantations in India, also hold opportunity to study 

inter-annual yield variability in particular, provided sufficient data is accessible for both model input and result 

validation.  
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While there is a need for more process complexity and representation of land surface heterogeneity, further 

technical advancements of already complex LSMS also encompasses growing uncertainties in understanding 

parameter dynamics, process interactions within the model code and differences between LSMs predictions. 

Modularization of model code in LSMs, allowing for more effective testing and validation of model code and 

more flexibility for different scientific interests via alternate configurations and parameterizations as proposed by 

Fisher and Koven (2020), is one approach for this issue. Considering the increasing availability of data and a 

growing number of open source data providers, along with the expanding field of machine learning for dataset 

generation, another proposed solution to tackle these structural issues is the integration of a technical framework 

for incorporating supplementary input datasets. Specifically, this could involve modifying the model to 

accommodate georeferenced information on soil hydraulic properties and plant parameters derived from plant 

traits (e.g. TRY Plant Trait Database, Kattge et al., 2011). 

Overall, there is a need for further comprehensive model evaluation studies such as the ones presented in this 

cumulative thesis, for other regions, ecosystems and biomes. These investigations should focus on consistently 

addressing the significant gaps and challenges that persist in current land surface modelling, in particular in the 

representation of arable land and anthropogenic influences. As we move forward, a collective effort to 

systematically improve our understanding of Earth's land surface dynamics remains imperative for advancing 

environmental research and predicting the impacts of global climate change. 
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7 Final conclusions and outlook 

The accurate representation of agricultural land cover within Earth system models is pivotal for enhancing our 

understanding of the intricate feedback mechanisms between climate change and agriculture. While this field of 

research is of paramount importance to society, it remains challenging due to the complexity of agricultural 

management practices and the diversity of crop types and ecosystems. LSMs such as CLM5 represent our primary 

tool to study terrestrial surface fluxes in response to changing weather conditions. Evaluation studies for different 

ecosystems are essential to improve our understanding of model performance and to identify the key challenges 

towards reliable projections of LSMs in climate change research.  

This cumulative thesis systematically evaluated the performance of CLM5 to accurately represent agricultural land 

at different scales and identified some key limitations in the representation of crop phenology and model responses 

to drought stress. Significant progress has been made throughout this cumulative work in enhancing and evaluating 

the representation of crops within the CLM5 model across various spatial scales. This work has involved refining 

crop phenology parameterization, introducing technical advancements, addressing plant hydraulics and drought 

sensitivity, and exploring the combination of CLM5 with seasonal weather forecasts for crop yield prediction.  

The technical developments and novel parameterizations developed in the course of this work, i.e., the introduction 

of winter cereal representation, new crop-specific parameterizations for multiple cash crops, and the incorporation 

of a new cover cropping and crop rotation subroutine, led to significant improvements of the simulation results 

over arable land. The improved model can provide better predictions of the carbon cycle, vegetation phenology 

and terrestrial fluxes for arable land, which is crucial for understanding and managing agricultural productivity. 

The promising outcomes achieved with model developments in the crop module of CLM5 will greatly benefit the 

land surface modelling community in better representing the role of agriculture on regional and global energy and 

carbon fluxes, in particular for regions with high abundance of winter cereal varieties and multiple cropping cycles 

per year.  

This cumulative work furthermore emphasized the significance of accurately representing plant hydraulic 

responses to water stress and the importance of a reliable representation of soil moisture in land surface models. 

The implementation of the new plant hydraulic stress model in CLM5 marks a significant advancement in the field 

of plant hydraulics within land surface models that remains to be evaluated for a larger number of climate zones 

and biomes (Kennedy et al., 2019; Lawrence et al., 2019). Multi-decadal regional simulations revealed systematic 

limitations of CLM5 in adequately representing inter-annual variations of crop productivity for certain cash crops 

and a lack of model sensitivity to drought conditions. The new plant hydraulic scheme in CLM5 allows for further 

refinement through the use of physical plant hydraulic parameters that constrain the new algorithms, which can be 

validated with field measurements. However, the lack of available plant-specific parameters is a current limitation 

that must be addressed through the calibration of parameters for different biomes in future studies to fully utilize 

its potential. Whether the simulation of inter-annual crop variability and more sensitivity of the model towards 

drought stress can be obtained through parameter estimation for plant hydraulics remains to be evaluated in future 

studies. In addition, the validation of soil moisture simulations in CLM5 against satellite data and field 
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observations revealed systematic biases, which could lead to inaccurate representation of the environmental stress 

regime and biased simulations of vegetation responses to drought stress.  

This thesis furthermore highlights the promising prospects of combining land surface models with seasonal 

weather forecasts for agricultural forecasting.  By assessing the feasibility of combining seasonal weather forecasts 

with CLM5, a first study of this scope of application is provided. Overall, results from forecast simulations were 

able to give a first indication of the annual crop productivity trends, generating similar results to reference 

simulations forced with reanalysis, which is an encouraging result for future applications. However, next to the 

uncertainties in the forecasting products, challenges in data handling, which includes the temporal downscaling of 

certain meteorological variables, need to be addressed for widespread adoption. Benchmarking studies of different 

forecasting products in combination with different modelling applications can provide better representation of the 

current state of the art in this field and can also help to increase the adaptation of forecasting products in agriculture 

and politics. In light of the predicted global climate change and the growing number of skilful seasonal forecast 

products, this combination is of great interest for science and society. 

Insights from this work serve as a basis for future analysis of CLM5 simulations over agriculturally managed land 

and can guide future technical and empirical model enhancements. Despite the advancements made throughout 

this thesis, there remain challenges in simulating the full range of agricultural management practices, soil types, 

and crop varieties. Some of the suggested model improvements to the crop module of CLM5 include a more 

comprehensive representation of human management impacts such as different fertilizer types and application 

strategies, including residue management and soil tillage, a more sophisticated irrigation scheme, a representation 

of technological advancements, as well as the addition of other environmental factors such as pests and wildlife 

damage. Moreover, incorporating a larger number of crop types and cultivars, as well as a sophisticated 

representation of root crops, should be a priority. These efforts will require rigorous evaluations and parameter 

sensitivity studies. Alternatively, the integration of supplementary input datasets, particularly for soil hydraulic 

properties and plant phenology, e.g. from plant trait information, present promising avenues to address growing 

uncertainties in land surface models. By systematically enhancing the models' capabilities and refining the 

parameterizations, we can continue to improve our understanding of the complex interactions between climate 

change and agriculture, ultimately supporting more informed decision-making in agricultural adaptation and 

mitigation strategies. 

Overall, the outcomes of this research hold significant potential to greatly benefit the scientific community, 

especially in enhancing the representation of arable land in global land surface and earth systems models - an 

essential area that currently presents a key gap in land surface modelling.  
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Table A1: Sowing and harvest dates at the ICOS and TERENO cropland study sites. 

Site code Site Years Crop Sowing Harvest/plowing 
DE-RuS Selhausen 2015-2016 Winter barley 29.09.2015 10.07.2016 

  2016 Greening mix cover crop 22.08.2016 06.01.2017 
  2017 Sugar beet 31.03.2017 05.10.2017 
  2017-2018 Winter wheat 25.10.2017 16.07.2018 
  2019 Potato 26.04.2019 03.10.2019 

DE-RuM Merzenhausen 2016 Potato 12.04.2016 24.08.2016 
  2016-2017 Winter wheat 17.10.2016 22.07.2017 
  2017-2018 Rapeseed 30.08.2017 16.07.2018 

DE-Kli Klingenberg 2003-2004 Winter barley 06.09.2003 31.07.2004 
  2004-2005 Rapeseed 18.08.2004 02.08.2005 
  2005-2006 Winter wheat 25.09.2005 06.09.2006 
  2007 Corn 23.04.2007 02.10.2007 
  

2008-2009 Winter barley 25.04.2008 27.08.2008 
  12.09.2008 22.07.2009 
  2009-2010 Rapeseed 25.08.2009 24.08.2010 
  2010-2011 Winter wheat 02.10.2010 22.08.2011 
  2012 Corn 25.04.2012 18.09.2012 
  

2013-2014 Winter barley 17.04.2013 24.08.2013 
  01.10.2013 20.07.2014 
  2014-2015 Rapeseed 21.08.2014 08.08.2015 
  2015-2016 Winter wheat 18.09.2015 24.08.2016 
  2016-2017 Radish and Brassica cover crop 01.09.2016 15.03.2017 
  2017-2018 Winter barley 02.04.2017 25.08.2017 
  2016-2017 Radish and Brassica cover crop 13.09.2017 13.04.2018 
  2018 Corn 02.05.2018 04.09.2018 
  2019 Bean 23.03.2019 18.08.2019 

BE-Lon Lonzée 2006-2007 Winter wheat 13.10.2006 05.08.2007 
  2008 Sugar beet 22.04.2008 04.11.2008 
  2008-2009 Winter wheat 13.11.2008 07.08.2009 
  2009 Mustard 01.09.2009 01.12.2009 
  2010 Potato 25.04.2010 05.09.2010 
  2010-2011 Winter wheat 14.10.2010 16.08.2011 
  2012 Corn 14.05.2012 13.10.2012 
  2012-2013 Winter wheat 25.10.2012 12.08.2013 
  2013 Mustard 05.09.2013 15.11.2013 
  2014 Potato 07.04.2014 22.08.2014 
  2014-2015 Winter wheat 15.10.2014 02.08.2015 
  2015 Mustard 26.08.2015 09.12.2015 
  2016 Sugar beet 12.04.2016 27.10.2016 
  2016-2017 Winter wheat 29.10.2016 30.07.2017 
  2017 Mustard 07.09.2017 08.12.2017 
  2018 Potato 23.04.2018 11.09.2018 
  2018-2019 Winter wheat 10.10.2018 01.08.2019 
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Table A2: Default (control) and new crop specific (new) phenology and CN allocation parameters for the CFTs sugar beet and 

potatoes (control parameters are those for the CFT spring wheat) and winter wheat. 

CFT Sugar beet Potatoes Winter wheat 

Parameter set control new control new control new  
Variable Units Phenology  
min_NH_planting_date MMDD 401 401 401 401 901 901 

max_NH_planting_date MMDD 615 530 615 530 1130 1130 

planting_temp K 280.15 280.15 280.15 277.15 1000 1000 

min_planting_temp K 272.15 272.15 272.15 272.15 283.15 283.15 
gddmin °days 50 60 50 60 50 100 
mxmat days 150 180 150 180 330 400 
baset °days  0 0 0 0 0 0 
mxtmp °C 26 30 26 30 26 26 
hybgdd - 1700 2000 1700 2000 1700 2000 
lfemerg % 0.05 0.05 0.05 0.05 0.03 0.03 
grnfill % 0.6 0.65 0.6 0.65 0.4 0.6 
ztopmx m 1.2 0.5 1.2 0.5 1.2 1.2 
laimx m2/m2 7 6 7 6 7 7 
slatop m2/gC 0.035 0.02 0.035 0.02 0.035 0.028 
Variable Units CN ratios and allocation 
leafcn gC/gN 20 11 20 11 20 20 
leafcn_min gC/gN 15 8 15 8 15 15 
leafcn_max gC/gN 35 20 35 20 35 35 
frootcn gC/gN 42 42 42 42 42 43 
graincn gC/gN 50 50 50 50 50 15 

flnr fraction/gNm-

2 0.41 0.15 0.41 0.15 0.41 0.3 

 

Table A3: Textural fractions (sand, silt and clay percentages) for the ICOS and TERENO cropland study sites averaged for the 

upper soil layers (up to 50 cm) with corresponding reference.  

Site/ID Sand [%] Silt [%] Clay  [%] Ref. 

Selhausen/DE-RuS 16.4 63.4 14.9 Brogi et al. (2019) 

Merzenhausen/DE-RuM 16.4* 63.4* 14.9* - 

Klingenberg/DE-Kli 21.5 22.8 55.7 Grünwald (personal 
communication, 2020) 

Lonzée/BE-Lon 5-10 68-77 18-22 Moureaux et al. (2006) 

*adopted from the DE-RuS site 
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A1: Winter cereal representation (extended)  

The temperature at the crown of the plant (Tcrown) is assumed to be slightly higher than the 2-m air temperature 

(T2m) in winter when covered by snow, and the same as the 2-m air temperature without snow cover. Within CLM5, 

it is calculated separately for temperatures below and above the freezing temperature (Tfrz):  

𝑇𝑐𝑟𝑜𝑤𝑛 = 2 + (𝑇2𝑚 − 𝑇𝑓𝑟𝑧) ∗ (0.4 + 0.0018 ∗ (𝑚𝑖𝑛(𝐷𝑠𝑛𝑜𝑤 ∗ 100, 15) − 15)2 

for T2m < Tfrz                       (A.1) 

𝑇𝑐𝑟𝑜𝑤𝑛 = 𝑇2𝑚 − 𝑇𝑓𝑟𝑧  

for  T2m > Tfrz                         (A.2) 

where Tcrown [K] is the calculated crown temperature, T2m [K] is the 2-m air temperature, Tfrz [K] is the freezing 

point and Dsnow [m] is the snow height.  

The temperature at which 50 % of the plant is damaged (LT50) is calculated interactively at each time step (LT50t) 

depending on the previous time step (LT50t-1) and on several accumulative parameters. These parameters are the 

exposure to near-lethal temperatures (rates), the stress due to respiration under snow (rater), the cold hardening or 

low temperature acclimation (contribution of hardening – rateh) and the loss of hardening due to the exposure to a 

period of higher temperatures (dehardening – rated) that are each functions of the crown temperature (Lu et al., 

2017 and references therein): 

𝐿𝑇50𝑡 =  𝐿𝑇50𝑡−1 − 𝑟𝑎𝑡𝑒ℎ + 𝑟𝑎𝑡𝑒𝑑 + 𝑟𝑎𝑡𝑒𝑠 + 𝑟𝑎𝑡𝑒𝑟                    (A.3) 

The exposure to near-lethal temperatures is based on the winter survival model after (Fowler et al., 1999) and is 

calculated as follows:  

𝑟𝑎𝑡𝑒𝑠 =  
𝐿𝑇50𝑡−1− 𝑇𝑐𝑟𝑜𝑤𝑛 

𝑒−1.9(𝐿𝑇50𝑡−1− 𝑇𝑐𝑟𝑜𝑤𝑛 )−3.74                      (A.4) 

The stress due to respiration under snow is calculated as a function of snow depth (dsnow) that ranges from 0 to 1 

for snow cover up to 12.5 cm (equal to 1 for all snow depth higher than 12.5), and a specific respiration factor 

(RE):  

𝑟𝑎𝑡𝑒𝑟 =  𝑅 𝑥 𝑅𝐸 𝑥 𝑓(𝑑𝑠𝑛𝑜𝑤)        

𝑅 = 0.54 𝑓(𝑑𝑠𝑛𝑜𝑤) = 𝑚𝑖𝑛(𝑑𝑠𝑛𝑜𝑤, 12.5) /12.5     

𝑅𝐸 =  
𝑒0.84+0.051 𝑇𝑐𝑟𝑜𝑤𝑛−2

1.85
                       (A.5) 

The contribution of hardening and dehardening are calculated within certain temperature ranges as follows:  

For Tcrown < 10°C 

𝑟𝑎𝑡𝑒ℎ =  0.0093(10 − 𝑚𝑎𝑥(𝑇𝑐𝑟𝑜𝑤𝑛 , 0))(𝐿𝑇50𝑡−1 − 𝐿𝑇50𝑐)                   (A.6) 
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For Tcrown ≥ 10°C when vf < 1 (not fully vernalized),  

and Tcrown ≥ -4°C when vf =1 (fully vernalized) 

𝑟𝑎𝑡𝑒𝑑 =  2.7 𝑥 10−5(𝐿𝑇50𝑖 − 𝐿𝑇50𝑡−1)(𝑇𝑐𝑟𝑜𝑤𝑛 + 4)3                    (A.7) 

where LT50c is the maximum frost tolerance of -23 °C and LT50i represents the LT50 for an unacclimated plant 

(LT50i = -0.6+0.142 LT50c).  

The survival rate (fsurv) is then calculated as a function of LT50 and the crown temperature. The probability of 

survival is a function of Tcrown in time (t). It increases once Tcrown is higher than LT50 or decreases when it is lower 

(Vico et al., 2014):   

𝑓𝑠𝑢𝑟𝑣(𝑇𝑐𝑟𝑜𝑤𝑛 , 𝑡) = 2
−

𝑇𝑐𝑟𝑜𝑤𝑛
𝐿𝑇50

𝛼𝑠𝑢𝑟𝑣

                      (A.8) 

where αsurv is a shape parameter of 4.   

The winter killing degree day (WDD) is calculated as a function of crown temperature and survival probability, 

where the maximum function limits the integration to the potentially damaging periods, when the air temperature 

(T) is lower than the base temperature (Tbase) of 0°C (Vico et al., 2014): 

𝑊𝐷𝐷 = ∫ 𝑚𝑎𝑥 [(𝑇𝑏𝑎𝑠𝑒 − 𝑇𝑐𝑟𝑜𝑤𝑛),0] [1 − 𝑓𝑠𝑢𝑟𝑣(𝑇𝑐𝑟𝑜𝑤𝑛 , 𝑡)]𝑑𝑡
 

𝑤𝑖𝑛𝑡𝑒𝑟
                  (A.9) 

Lower LT50 indicate a higher frost tolerance and would result in higher survival rates, smaller WDD and less cold 

damage to the plant. Thus, when the survival probability and crown temperature are low, the WDD will be high 

(Vico et al., 2014).  

The survival probability and the WDD are then used to estimate instant and accumulated frost damage to the crop 

during the leaf emergence phase (Lu et al., 2017). Instant frost damage is assumed to happen at the beginning of 

the growing season when the plants are not fully vernalized (vf < 0.9) when the growth of leaves (especially new 

leaves or small seedlings) due to an exposure to low temperatures. It is simulated by reducing the leaf carbon at 

low survival probabilities (whenever fsurv is below 1). The leaf carbon is reduced by an amount of 5 gC m-2 scaled 

by a factor of 1- fsurv that is moved to the carbon litter pool, up to a minimum value of 10 gC m-2 leaf carbon:    

𝑙𝑒𝑎𝑓𝑐𝑡 = 𝑙𝑒𝑎𝑓𝑐𝑡−1 − 𝑙𝑒𝑎𝑓𝑐𝑑𝑎𝑚𝑎𝑔𝑒(1 − 𝑓𝑠𝑢𝑟𝑣)  

for vf < 0.9, WDD > 0, fsurv < 1, and leafct > 10                 (A.10) 

where leafct is the simulated leaf carbon of the current time step, leafct-1 is the leaf carbon of the previous step and 

leafcdamage is equivalent to 5 gC m-2.  

When the plant is close to vernalization towards the end of the leaf emergence phase, it is not as susceptible to 

suffer from instantaneous frost damage as in the beginning of this phase. Still, an extended period of freezing 

temperatures can potentially induce damage to the plant (Lu et al., 2017). This accumulated frost damage is 

simulated based on the accumulated WDD and average survival probability. When the accumulated WDD reaches 
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a value higher than 1° days, the leaf carbon from the previous time step (leafc t-1), scaled by the average fsurv, is 

moved to the soil carbon litter pool:  

𝑙𝑒𝑎𝑓𝑐𝑡 = 𝑙𝑒𝑎𝑓𝑐𝑡−1(1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑠𝑢𝑟𝑣)    

for vf  ≥ 0.9 and WDD > 1                    (A.11) 

Once this has occurred, the accumulated WDD is reset to 0 and the tracking of the average fsurv is restated. 

Corresponding to the leaf carbon reduction, the leaf nitrogen is reduced from the leaf nitrogen pool to the soil 

nitrogen litter pool scaled with the parameterized leaf C/N ratio for winter wheat of 20.   

A2: Evaluation of default parameterization for temperate corn 

There is already a specific set of parameters available for the CFT temperate corn. This parameterization was 

tested for the site DE-Kli, where it resulted in a reasonable representation of seasonal LAI variation and magnitude 

(Figure A1). A moderate correlation was obtained for latent heat flux (0.56), with underestimation of latent heat 

flux during the early growing cycle of corn, as well as for sensible heat flux (0.41). Similar to winter wheat at BE-

Lon and DE-RuS, the simulated NEE shows a negative bias with an underestimation of peak NEE (Figure A1).  

Table A4: Bias, RMSE and r for the simulated daily NEE [μmol CO2 W m-2 s-1], LE [W m-2], H [W m-2] and Rn [W m-2] ) 

using the default parameterization for the CFT temperate corn at DE-Kli for the year 2007. Values were calculated for the time 

between recorded planting and harvest dates using simulation output and observation data at daily time step. 

CFT CORN 
Site DE-Kli 
Year(s) 2007 
Parameter set default 
NEE 
Bias -1 
RMSE 2.59 
r 0.46 
LE 
Bias -0.33 
RMSE 37.82 
r 0.56 
H 
Bias -0.01 
RMSE 39.21 
r 0.41 
Rn 
Bias -0.12 
RMSE 52.33 
r 0.51 

 



Appendix             106 

 

 

Figure A1: Daily simulation results of (a) LAI, (b) LE, (c) H, and (d) monthly averaged NEE rates over all corn years at DE-

Kli using the default parameterization (orange). Site observation data on LAI (all available observations plotted) and fluxes 

(averaged over all respective years) are indicated in grey. Corresponding statistical analysis is listed in Table A4.  
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A3: Annual metrics for winter wheat, temperate corn, sugar beet and potatoes simulation runs 

Table A5: Bias, RMSE and r of the simulated daily NEE [umol CO2/m2/s], LE [W/m2], H [W/m2] and Rn [W/m2] averaged 

for all winter wheat years at the sites BE-Lon, DE-RuS, DE-RuM and DE-Kli respectively, simulated with CLM_WW and the 

control configuration. 

CFT Winterwheat 
Site BE-Lon DE-RuS DE-RuM DE-Kli 

Year(s) 

2010/2011  
2012/2013  
2014/2015  
2016/2017 

2017/2018 2016/2017 2010/2011  
2015/2016 

Model  control CLM_WW control CLM_WW control CLM_WW control CLM_WW 
NEE 
Bias -0.9 -0.36 -1.06 -0.41 - - -0.48 0.97 
RMSE 5.52 4.96 5.61 5.03 - - 2.5 6.82 
r -0.03 0.43 0.26 0.46 - - 0.56 0. 28 
LE 
Bias -0.73 -0.34 -0.40 -0.30 -55.55 -27.83 -0.48 -0.10 
RMSE 52.24 44.37 38.40 36.53 53.07 44.02 37.01 35.73 
r 0.44 0.52 0.45 0.72 0.47 0.57 0.61 0.71 
H 
Bias 2.50 1.20 0.96 0.79 -28.00 -16.72 1.83 0.42 
RMSE 41.30 31.49 30.19 25.64 37.79 32.23 32.33 30.83 
r 0.48 0.53 0.68 0.78 0.47 0.53 0.47 0.63 
Rn 
Bias -0.21 -0.11 -0.09 -0.05 -11.29 -0.06 -0.08 -0.04 
RMSE 34.77 35.49 35.17 35.95 16.05 39.23 38.76 38.21 
r 0.78 0.79 0.79 0.79 0.82 0.78 0.78 0.80 
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Table A6:  Bias, RMSE and r for the simulated daily NEE [μmol CO2 W m-2 s-1], LE [W m-2], H [W m-2] and Rn [W m-2]) 

using the crop-specific parameterization (specific) for the CFTs sugar beet and potatoes at the sites BE-Lon and DE-RuS 

respectively. Results are compared to those from the control simulation runs (control). Values were calculated over the whole 

year (averaged over all respective CFT years at each site) using simulation output and observation data at daily time step. 

CFT Corn Sugarbeet Potatoes 

Site DE-
Kli DE-RuS BE-Lon DE-RuS BE-Lon 

Year(s) 2007 2017 
2004 
2008 
2016 

2019 

2006 
2010 
2014 
2018 

Parameter 
set control control crop-

specific control crop-
specific control crop-

specific control crop-
specific 

NEE 
Bias -0.99 -0.81 -0.73 -0.41 -0.39 - - 6.96 6.03 
RMSE 2.59 7.31 6.21 5.83 4.41 - - 3.73 3.54 
r 0.26 0.05 0.31 0.16 0.56 - - 0.43 0.55 
LE 
Bias -0.93 -0.45 -0.07 -0.46 -0.41 -0.37 0.16 -0.98 -0.47 
RMSE 51.65 47.84 20.43 49.39 39.88 48.9 40.59 53.14 38.54 
r 0.24 0.38 0.61 0.43 0.65 0.23 0.55 0.2 0.39 
H 
Bias 0.04 4.89 1.45 4.15 3.37 1.57 -0.29 0.1 0.14 
RMSE 35.12 35.43 14.37 33.39 27.85 42.14 27.11 30.06 30.09 
r 0.58 0.32 0.83 0.31 0.59 0.17 0.41 0.44 0.47 
Rn 
Bias -0.22 -0.08 0.01 -0.2 -0.18 -0.08 0.02 - - 
RMSE 43.09 15.75 11.7 32.01 30.83 39.86 40.82 - - 
r 0.79 0.81 0.82 0.63 0.64 0.69 0.7 - - 

B1: Effect of temporal forcing data resolution – a synthetic experiment 

In a first step, we analyzed the performance of MetSim as a disaggregation tool for solar radiation by using MetSim 

to disaggregate the daily averaged variables to an hourly time step and comparing the output to the hourly 

observations (Figure B1, Table B1). Comparing the time series of disaggregated shortwave radiation at hourly 

time step with the initial hourly measurement data, we see that the disaggregated dataset has slightly higher 

monthly sums of solar radiation and a higher mean value over the entire time series of 7 years (Figure B1a), while 

underestimating the peak daily value compared to the initial observations (Figure B1b). The disaggregated dataset 

represents a realistic diurnal cycle with reasonable magnitudes of solar incoming radiation. 
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Figure B1: Comparison of MetSim disaggregated data with initial observations of incoming shortwave radiation (SR): (a) 

averaged for each months over 7 years, and (b) the respective daily maximum values for one selected year.  

Table B1: Comparison of MetSim disaggregated incoming shortwave radiation [W m-2] at hourly time step with the original 

hourly observation data over the time period of 7 years.  

Data Min Max Mean Total (7-year sum) Bias RMSE 
Initial observation 0.00 988.24 127.81 7843522.00 0.04 41.23 Disaggregated 0.00 867.26 132.42 8126221.50 

For statistical evaluation of the results, the root mean square error (RMSE) and the bias were chosen as 

performance metrics:   

𝑏𝑖𝑎𝑠 = ∑ (𝑛
𝑖=1 𝑋𝑖 − 𝑋𝑜𝑏𝑠,𝑖)/ ∑ (𝑋𝑜𝑏𝑠,𝑖)

𝑛
𝑖=1 ,                     (B.1) 

where i is time step and n the total number of time steps, Xi and Xobs,i  are the simulated and the observed values 

at every time step.  

The statistical evaluation was conducted against the reference simulation results that were generated from the 

original hourly observation forcing for multiple simulated variables: leaf are index (LAI), latent heat flux (LH), 

sensible heat flux (SH), evapotranspiration (ET), ground evaporation (Qsoil), transpiration (QVegT), soil water 

content at different depths (SWC) and surface runoff (Qover). In general, the 6 hourly disaggregated data, both for 

single forcing variables as well as for combined forcing datasets performed better for all individual output variables 

than the daily data in terms of RMSE and bias (Figure B2). The daily forcing dataset with all variables at daily 

time step performed the most poorly compared to the reference forcing, thus resulting in high RMSE and high 

biases for all output variables that were analyzed. The effect is especially prominent for the soil water content and 

the surface runoff. For the individual forcing variables, the temporal resolution of incoming shortwave radiation 

had slightly higher effects on simulation results than the resolution of precipitation for most of the analyzed output, 

such as leaf area index, soil water content at different depths of the soil profile, ground evaporation, 

evapotranspiration and energy fluxes, except for surface runoff, where daily precipitation data resulted in a higher 

bias than daily shortwave radiation (Figure B2). The simulated grain yield was the model output variable least 

affected by the temporal resolution of forcing data (Table B2). Here, most of the forcing dataset combinations 

resulted in similar or slightly higher grain yields compared to the reference dataset, except for the all daily and all 

6 hourly forcings and the 6 hourly precipitation dataset (Table B2).  
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Table B2: Simulation results for grain yield [t/ha] calculated with different forcing datasets at different temporal resolutions; 

all forcing variables (Incoming shortwave and longwave radiation, precipitation, temperature, relative humidity, wind speed 

and pressure) at either daily or 6 hourly disaggregated resolution, and only shortwave or precipitation as well as a combination 

of both shortwave and precipitation at daily and 6 hourly resolution with all other forcing variables at hourly time step. 

Temporal resolution  Grain yield [t/ha] 
Hourly forcing 4.90 
All - 6h 4.71 
All - daily  4.13 
SW+Precip - 6h 5.41 
SW+Precip - daily 5.75 
SW - 6h 5.40 
SW - daily 5.66 
Precip - 6h 4.74 
Precip - daily 5.13 

 

Figure B2: Biases introduced by different temporal forcing data resolutions and combinations on various output variables. 

TPQW refers to temperature, pressure, relative humidity and wind speed, Precip to precipitation, and SW to shortwave 

radiation.  

In order to analyse the overall effect of temporal forcing data resolution on model outputs and to assess the general 

need for temporal disaggregation from daily variables for CLM5 simulations, we performed a synthetic simulation 

experiment for a high-resolution dataset at the point scale. We used a continuous measurement dataset at an hourly 

time step for 5 consecutive years from the cropland study site Selhausen (DE-RuS) located in the western part of 

Germany.  Selhausen (50.86589°N, 6.44712°E) is part of the TERENO (TERrestrial Environment Obervatories) 

Rur Hydrological Observatory (Bogena at al., 2018), the TERENO Eifel/Lower Rhine Valley Observatory 

(Zacharias et al., 2011) and the Integrated Carbon Observation System (ICOS, 2020). Continuous measurements 

of meteorological variables and land-atmosphere exchange fluxes are available via the respective data portals 

(Kunkel et al., 2013; ICOS, 2020; TERENO, 2020). The original measurement data were first averaged to daily 

values and then temporally disaggregated to a 6-hourly time step using MetSim. Hence, simulations for a 

consecutive cycle of spring wheat over 5 years (hypothetical) were conducted with the reference observation data 
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at an hourly time step, with daily averaged observations, and with the disaggregated 6-hourly forcing dataset. A 

spin-up was conducted prior to this trial in order to balance ecosystem carbon and nitrogen pools, gross primary 

production and total water storage in the system (see Lawrence et al., 2018). As expected, the 6-hourly 

disaggregated data performed significantly better for all individual output variables than the daily data, which 

performed poorly compared to the reference forcing. The effect is especially prominent for the soil water content 

and the surface runoff. Here, the 6-hourly disaggregated forcing was able to capture more realistic magnitudes of 

both soil moisture content and runoff, resulting in only a small wet bias compared to the reference forcing (Table 

B3). The 6-hourly forcing resulted in a grain yield of 4.71 t/ha, which is relatively close to the grain yield simulated 

with an hourly forcing of 4.9 t/ha, while the grain yield simulated with a daily forcing of 4.12 t/ha is slightly lower. 

The soil moisture content (in the surface layers and the root zone) plays an important role in the simulation of 

reasonable crop productivity, especially when trying to simulate inter-annual differences in crop yield and crop 

growth in response to e.g. drought conditions. However, in the given simulation example for the DE-RuS site, 

water availability in the root zone does not represent the main limiting factor for plant growth for the simulated 

years. This explains the small variations of simulated grain yield and LAI with the different forcing datasets despite 

the profound differences in simulated soil water contents. The results from this trial underline the importance of 

an adequate temporal resolution for forcing data. For the seasonal weather forecast data, the temporal 

disaggregation of the product to an adequate temporal resolution is crucial in order to make the data suitable for 

comparable model applications.  

 

Figure B3: (Top) Comparison of simulation results for a cycle of (hypothetical) spring wheat cropping (averaged over 5 years) 

at DE-RuS with different temporal resolutions of the forcing data: reference simulations forced with hourly observation data 

(light blue), daily averaged forcing data at a 24 h time step (orange) and disaggregated forcing data at 6-hourly resolution 

(navy) for (a) LAI, (b) latent heat flux, (c) ground evaporation, (d) surface runoff and (e) SMC (in an upper soil layer of 0.12 

to 0.20 m depth). (Bottom) The difference in the simulation results for each variable. Results from the reference simulation 

forced with hourly data minus the daily forcing (orange) and 6-hourly disaggregated forcing (blue) respectively. Corresponding 

statistics are listed in Table B3. 
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B2: Comparison with CRNS data 

 

Figure B4: Comparison of CRNS data (level 4) from the stations 15 (Hamilton), 18 (Bishes) and 19 (Bennets) available from 

the CosmOz network (Hawdon et al., 2014) with simulated SMCs at the closest grid point for the years 2017 and 2018. 

Corresponding statistics Corresponding statistics can be found in Table B4.   

 

Figure B5: Comparison of CRNS data from the COSMOS-Europe sites Selhausen, Merzenhausen, Aachen and Heinsberg 

(Bogena et al., 2022) with simulated SMCs at the closest grid point for the years 2017-2020. Corresponding statistics can be 

found in Table B5.  
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Table B4: RMSE, MBE and R2 for CLM-S-, CLM-SUB- and CLM-WFDE5-simulated surface soil moisture moisture from 

the 1st of April to the 31st of October of 2017 and 2018 compared to daily averaged CRNS measurements (Level 4) from the 

CosmOZ sites Hamilton, Bishes and Bennets respectively. The simulation outputs were averaged using a physically based 

weighting approach after Schrön et al. (2017). 

AUS-VIC 
  2017 2018 
  RMSE MBE R2 RMSE MBE R2 
Station 15 - Hamilton          

CLM-S 0.12 -0.07 0.48 0.10 -0.05 0.81 
CLM-SUB 0.12 -0.07 0.43 0.09 -0.04 0.83 
CLM-WFDE5 0.11 -0.07 0.63 0.10 -0.06 0.82 
Station 18 - Bishes          

CLM-S 0.09 0.08 0.14 - - - 
CLM-SUB 0.10 0.09 0.30 - - - 
CLM-WFDE5 0.09 0.08 0.58 - - - 
Station 19 - Bennets          

CLM-S 0.08 0.03 0.29 - - - 
CLM-SUB 0.08 0.04 0.25 - - - 
CLM-WFDE5 0.08 0.03 0.34 - - - 

 

Table B5: RMSE, MBE and R2 for CLM-S-, CLM-SUB- and CLM-WFDE5-simulated surface soil moisture from the 1st of 

April to the 31st of October of 2017, 2018, 2019 and 2020, compared to daily averaged CRNS measurements from the 

COSMOS-Europe sites Selhausen, Merzenhausen, Aachen and Heinsberg respectively. The simulation outputs were averaged 

using a physically based weighting approach after Schrön et al. (2017). 

DE-NRW 

  2017 2018 2019 2020 
  RMSE MBE R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE R2 

Selhausen                 

CLM-S 0.08 0.03 0.10 0.08 0.06 0.80 0.08 0.03 0.16 0.12 0.00 0.08 
CLM-SUB 0.09 0.01 -0.01 0.08 0.06 0.79 0.08 0.03 0.22 0.11 0.01 0.17 
CLM-WFDE5 0.08 0.07 0.69 0.10 0.09 0.82 0.09 0.05 -0.03 - - - 

Merzenhausen                 

CLM-S 0.09 0.06 0.27 0.10 0.09 0.78 0.11 0.08 0.34 0.10 0.08 0.45 
CLM-SUB 0.09 0.05 0.11 0.10 0.09 0.75 0.10 0.08 0.42 0.10 0.08 0.45 
CLM-WFDE5 0.11 0.11 0.81 0.12 0.11 0.85 0.12 0.10 0.25 - - - 
Aachen                 
CLM-S 0.10 -0.01 -0.31 0.06 0.01 0.70 0.08 0.00 0.42 0.11 -0.01 -0.18 
CLM-SUB 0.11 -0.03 -0.36 0.06 0.01 0.72 0.08 0.00 0.50 0.10 -0.01 -0.13 
CLM-WFDE5 0.07 0.03 0.22 0.07 0.05 0.75 0.08 0.01 0.34 - - - 
Heinsberg                 
CLM-S 0.08 0.04 0.34 0.08 0.06 0.78 0.08 0.04 0.53 0.08 0.05 0.50 
CLM-SUB 0.08 0.03 0.30 0.07 0.06 0.81 0.07 0.04 0.60 0.08 0.05 0.49 
CLM-WFDE5 0.08 0.08 0.87 0.08 0.08 0.84 0.08 0.04 0.45 - - - 
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B3: State-wide agricultural statistics  

Table B6: Cropping area and production of major cash crops in Victoria, Australia, from 2014/15 to 2020/21, and six year 

average (Source: ABARES, 2020). 

Year Area (''000 ha) Production (kt)  Yield (t/ha)  
Wheat 
2014-15 to 2020-21 average 1455.43 3348.24 2.30 
2014-15 1492.66 2631.30 1.76 
2015–16 1,342 1,815 1.35 
2016–17  1,454 4,665 3.21 
2017–18  1,447 3,682 2.54 
2018–19 1,403 2,277 1.62 
2019–20 * 1,450 3,600 2.48 
2020–21 * 1,600 4,768   
Barley 
2014-15 to 2020-21 average 876.17 2042.15 2.33 
2014-15 916.08 1373.83 1.50 
2015–16 844 1,107 1.31 
2016–17  946 3,083 3.26 
2017–18  844 2,110 2.50 
2018–19 893 1,337 1.50 
2019–20 * 820 2,500 3.05 
2020–21 * 870 2,784 3.20 
Canola  
2014-15 to 2020-21 average 411.12 646.71 1.57 
2014-15 483.27 558.68 1.16 
2015–16 277 287 1.04 
2016–17  327 633 1.94 
2017–18  542 938 1.73 
2018–19 414 511 1.23 
2019–20 * 385 650 1.69 
2020–21 * 450 950   
Oats 
2014-15 to 2020-21 average 128.84 250.15 1.94 
2014-15 133.21 179.47 1.35 
2015–16 140 185 1.32 
2016–17  162 493 3.05 
2017–18  97 188 1.94 
2018–19 134 165 1.23 
2019–20 * 100 175 1.75 
2020–21 * 135 365 2.70 

*ABARES estimate 
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Table B7: Cropping area and production of main cash crops (grain crops, wheat, corn, canola, potatoes and sugar beet) in North 

Rhine-Westphalia, Germany, from 2016 to 2020, and five year average (Source: BMEL, 2022). 

Year Area (''000 ha) Production (kt)  Yield (t/ha)  
Grain crops (without corn) 
2013 to 2018 average 610.9 4036.4 7.87 
2016 514.2 3852.6 7.49 
2017 502.4 3694.6 7.35 
2018 485.5 3534.1 7.28 
2019 498.6 3826 7.67 
2020 490.00 3700.30 7.55 
Wheat (winter and summer wheat) 
2013 to 2018 average 270 2292.5 8.49 
2016 268.6 2161.3 8.05 
2017 265 2098.3 7.92 
2018 247.2 1955.5 7.91 
2019 253.5 2063.7 8.14 
2020 230.60 1996.56 8.66 
Corn 
2013 to 2018 average 98.3 984.2 10.01 
2016 88.6 873.7 9.86 
2017 99.8 1071.1 10.74 
2018 88.5 690.2 7.8 
2019 85.8 724.5 8.44 
2020 79.73 836.60 10.49 
Canola 
2013 to 2018 average 60.8 240.8 3.96 
2016 58.7  226.0 3.85 
2017 56.7  221.2 3.9 
2018 57.2  198.8 3.48 
2019 40.3  148.6 3.69 
2020 42,3 158,5 3.74 
Potatoes 
2013 to 2018 average 31.1 1502.7 48.28 
2016 31 1457.2 46.95 
2017 31.1 1627.0 52.26 
2018 33.2 1322.8 39.83 
2019 40.5 1885.7 46.53 
2020 36.7 1694.9 46.16 
Sugar beet 
2013 to 2018 average - - - 
2016 - - - 
2017 61 5411.5 88.7 
2018 61.7 3958.1 64.2 
2019 59.3 4450 75.1 
2020 52.7 4183.9 79.3 

B4: Processing and analysis of seasonal forecasts - precipitation bias 

We compared the ECMWF SEAS5 seasonal precipitation forecasts initialized on the first of April with 7 month 

lead time for the years 2017 and 2018 to corresponding data from the bias-adjusted global reanalysis dataset 

WFDE5 (Cucchi et al., 2020).  

For the AUS-VIC domain, both the seasonal and sub-seasonal forecasts were not able to capture the wet period in 

August 2017. A slightly better correspondence was reached for the late growing season of 2018 (August, 

September and October) both in the seasonal and sub-seasonal forecasts (Figure B6). No systematic or consistent 

improvement in terms of total predicted precipitation amounts respective to the WFDE5 data can be observed in 

the sub-seasonal forecasts starting on the 1st of July of the respective years compared to the seasonal forecasts that 

are initialized on the 1st of April (Figure B6).  
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For the DE-NRW domain the predicted rainfall amounts in the seasonal forecasts are too large compared to 

WFDE5, especially in the beginning of the growing season (April, May, June) of 2017, and towards the end of the 

growing season of 2018 (especially September and October), where the forecasts were not able to capture the dry 

spell that corresponds to the 2018 European drought. The sub-seasonal forecasts performed better for September 

2018, while still overestimating the overall rainfall amounts of the second half of the growing season (July, August 

and October). Both the seasonal and sub-seasonal forecast predicted a generally dry year in 2018 (with the 

exception being September 2018 in the seasonal forecasts), but did not reflect the extreme drought conditions that 

were recorded in 2018 (Figure B6).  

In general, the correspondence of predicted total monthly rainfall amounts in seasonal and sub-seasonal forecasts 

with the WFDE5 reanalysis is better for the AUS-VIC domain than for the DE-NRW domain. The bias is much 

smaller over the Australian continent, with a maximum of +/- 0.90 mm/day, than for Germany (and Europe), where 

a maximum bias of up to 2.70 mm/day (local maximum, 2018) can be observed (Figure B6, Figure B7).  

 

Figure B6: SEAS5 total monthly precipitation amounts from seasonal forecasts starting on the 1st of April (SEAS5-S) and sub-

seasonal forecasts starting on the 1st of July (SEAS5-SUB) for the years 2017 and 2018, for (a, b) the AUS-VIC domain and 

(c, d) the DE-NRW domain, compared to WFDE5 data for the respective domains. 
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Figure B7: Bias (forecast – reference data) for ECMWF SEAS5 mean daily rainfall amount [mm/day] with 51 ensemble 

members for (top) Australia and (bottom) Germany. Forecast period initialized on the 1st of April until the 31st of October of 

(left) 2017 and (right) 2018 respectively. The bias was computed with respect to the WFDE5 dataset. 

B5: Regional crop yield predictions for root crops 

Despite earlier enhancements to the model code and parameterization scheme, the crop module of CLM5 does not 

include a proper representation of root crops. The harvesting scheme of root crops in CLM5 crop module is adapted 

to the one for grain crops. This resulted in large discrepancies between simulated and recorded crop yields for 

potatoes and sugar beet with recorded yields being up to 10 times larger (Table B8).  
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Table B8: Simulated crop yields [t/ha] for potatoes and sugar beet with seasonal (CLM-S), sub-seasonal (CLM-SUB) and 

reanalysis (CLM-WFDE5) forcing data for the years 2017 to 2020, compared to official crop statistics from (BMEL, 2022) for 

the DE-NRW domain. The lowest (italics) and highest (bold) yields amongst the respective years are indicated. 

  DE-NRW 
 2017 2018 2019 2020 

Potatoes 
BMEL 52.26 39.83 46.53 46.16 
CLM-S 7.50 6.95 6.97 7.29 
CLM-SUB 7.11 6.63 7.03 6.94 
CLM-WFDE5 7.37 6.79 7.03 - 
Sugarbeet 
BMEL 88.7 64.2 75.1 79.3 
CLM-S 7.35 6.82 6.83 7.34 
CLM-SUB 6.87 6.50 6.84 6.97 
CLM-WFDE5 7.22 6.65 6.89 - 

 

Figure C1: Correlation of mean annual winter wheat yield (simulated (CLM_WFDE5), simulated with reduced precipitation 

(CLM_LowP) and from records (Obs)) with the corresponding mean daily maximum and minimum temperatures from 1999 – 

2019 for (a-b) the AUS-VIC domain and (c-d) the DE-NRW domain respectively. 
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Figure C2: Simulated daily evapotranspiration and root zone soil moisture (0 - 0.32 m depth) throughout (a) the AUS-VIC 

domain and (b) the DE-NRW domain from 1999 – 2019.  



Appendix             121 

 
  

T
ab

le
 C

1:
 T

ot
al

 a
nn

ua
l c

ro
p 

yi
el

d 
(t/

ha
) a

nd
 c

or
re

sp
on

di
ng

 y
ie

ld
 a

no
m

al
y 

(%
) f

ro
m

 s
im

ul
at

io
n 

re
su

lts
 (C

LM
) f

or
 w

in
te

r w
he

at
, w

in
te

r w
he

at
 m

on
oc

ul
tu

re
 w

ith
 u

nc
ha

ng
ed

 W
FD

E5
 p

re
ci

pi
ta

tio
n 

(C
LM

-W
FD

E5
) 

an
d 

re
du

ce
d 

pr
ec

ip
ita

tio
n 

(C
LM

_L
ow

P)
, b

ar
le

y,
 c

an
ol

a 
an

d 
so

rg
hu

m
 th

ro
ug

ho
ut

 th
e 

A
U

S-
V

IC
 d

om
ai

n 
fo

r 
th

e 
ye

ar
s 

19
99

 –
 2

01
9,

 c
om

pa
re

d 
to

 a
va

ila
bl

e 
re

co
rd

s 
(O

bs
) 

fro
m

 

A
B

A
R

ES
 (2

02
0)

. 

 
19

99
 

20
00

 
20

01
 

20
02

 
20

03
 

20
04

 
20

05
 

20
06

 
20

07
 

20
08

 
20

09
 

20
10

 
20

11
 

20
12

 
20

13
 

20
14

 
20

15
 

20
16

 
20

17
 

20
18

 
20

19
 

Y
ie

ld
 [t

/h
a]

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

O
bs

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

W
in

te
r w

he
at

  
2.

14
 

2.
70

 
2.

46
 

0.
72

 
2.

23
 

1.
45

 
2.

21
 

0.
65

 
1.

32
 

1.
14

 
1.

66
 

2.
46

 
2.

36
 

2.
15

 
2.

21
 

1.
76

 
1.

35
 

3.
21

 
2.

54
 

1.
62

 
2.

60
 

B
ar

le
y 

2.
03

 
2.

41
 

2.
36

 
0.

62
 

2.
61

 
1.

41
 

2.
31

 
0.

66
 

1.
62

 
1.

29
 

1.
91

 
2.

43
 

2.
41

 
2.

29
 

2.
22

 
1.

50
 

1.
31

 
3.

26
 

2.
50

 
1.

50
 

2.
83

 
C

an
ol

a 
1.

39
 

1.
46

 
1.

46
 

0.
71

 
1.

61
 

1.
21

 
1.

43
 

0.
24

 
1.

13
 

0.
82

 
1.

43
 

1.
47

 
1.

44
 

1.
47

 
1.

62
 

1.
16

 
1.

04
 

1.
94

 
1.

73
 

1.
23

 
1.

81
 

So
rg

hu
m

 
7.

32
 

1.
88

 
- 

- 
0.

43
 

1.
32

 
2.

64
 

1.
91

 
1.

92
 

- 
- 

2.
01

 
- 

0.
56

 
1.

27
 

- 
2.

78
 

0.
34

 
0.

61
 

0.
72

 
- 

M
ea

n 
 

1.
85

 
2.

19
 

2.
09

 
0.

68
 

2.
15

 
1.

36
 

1.
98

 
0.

52
 

1.
35

 
1.

08
 

1.
67

 
2.

12
 

2.
07

 
1.

97
 

2.
01

 
1.

47
 

1.
23

 
2.

80
 

2.
26

 
1.

45
 

2.
41

 
C

LM
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
W

in
te

r w
he

at
 

2.
13

 
2.

38
 

2.
33

 
2.

24
 

2.
53

 
2.

37
 

2.
35

 
2.

06
 

2.
16

 
2.

18
 

2.
07

 
2.

53
 

2.
22

 
2.

31
 

1.
95

 
2.

33
 

2.
03

 
2.

21
 

2.
27

 
2.

24
 

2.
33

 
B

ar
le

y 
1.

66
 

1.
40

 
0.

87
 

1.
46

 
1.

40
 

1.
81

 
1.

13
 

1.
42

 
1.

62
 

1.
12

 
0.

81
 

1.
27

 
1.

43
 

1.
47

 
2.

05
 

1.
55

 
1.

15
 

1.
54

 
0.

90
 

0.
35

 
1.

59
 

C
an

ol
a 

1.
26

 
0.

85
 

0.
80

 
1.

34
 

1.
29

 
1.

22
 

0.
58

 
0.

91
 

1.
74

 
1.

21
 

1.
42

 
0.

99
 

1.
07

 
0.

89
 

1.
92

 
1.

40
 

0.
86

 
1.

15
 

1.
10

 
0.

46
 

1.
48

 
So

rg
hu

m
 

2.
39

 
2.

31
 

1.
78

 
1.

90
 

2.
45

 
1.

63
 

2.
19

 
2.

07
 

2.
05

 
2.

25
 

2.
33

 
2.

50
 

2.
46

 
2.

42
 

2.
04

 
2.

05
 

2.
40

 
2.

18
 

2.
55

 
2.

40
 

2.
22

 
M

ea
n 

 
1.

68
 

1.
54

 
1.

33
 

1.
68

 
1.

74
 

1.
80

 
1.

35
 

1.
46

 
1.

84
 

1.
50

 
1.

43
 

1.
59

 
1.

57
 

1.
56

 
1.

98
 

1.
76

 
1.

35
 

1.
63

 
1.

42
 

1.
02

 
1.

80
 

W
in

te
r w

he
at

 m
on

oc
ul

tu
re

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

C
LM

_W
FD

E5
 

1.
81

 
2.

13
 

2.
20

 
2.

13
 

2.
32

 
2.

06
 

2.
13

 
1.

90
 

1.
90

 
1.

79
 

1.
67

 
2.

07
 

1.
89

 
1.

98
 

1.
68

 
1.

96
 

1.
59

 
1.

68
 

1.
86

 
1.

82
 

1.
76

 
C

LM
_L

ow
P 

1.
39

 
1.

65
 

1.
70

 
1.

46
 

1.
54

 
1.

36
 

1.
51

 
0.

90
 

1.
34

 
0.

97
 

1.
32

 
1.

71
 

1.
48

 
1.

24
 

1.
33

 
1.

02
 

0.
86

 
1.

37
 

1.
38

 
1.

17
 

1.
30

 
Y

ie
ld

 a
no

m
al

y 
[%

] 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
O

bs
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
W

in
te

r w
he

at
  

9.
72

 
38

.1
8 

25
.9

3 
-6

3.
16

 
14

.4
4 

-2
5.

55
 

13
.4

4 
-6

6.
54

 
-3

2.
43

 
-4

1.
31

 
-1

4.
75

 
26

.1
6 

21
.1

3 
10

.2
3 

13
.3

6 
-9

.6
2 

-3
0.

64
 

64
.4

6 
30

.4
8 

-1
6.

80
 

33
.2

7 
B

ar
le

y 
2.

91
 

22
.0

4 
19

.7
7 

-6
8.

84
 

32
.1

5 
-2

8.
49

 
17

.1
0 

-6
6.

47
 

-1
8.

14
 

-3
4.

86
 

-3
.2

9 
22

.8
7 

22
.1

6 
15

.7
5 

12
.2

3 
-2

4.
05

 
-3

3.
59

 
65

.0
1 

26
.6

4 
-2

4.
14

 
43

.2
6 

C
an

ol
a 

5.
25

 
10

.1
6 

10
.1

4 
-4

6.
09

 
21

.3
8 

-8
.8

8 
7.

92
 

-8
2.

20
 

-1
4.

80
 

-3
8.

07
 

8.
40

 
11

.3
1 

9.
06

 
11

.1
5 

22
.1

8 
-1

2.
59

 
-2

1.
45

 
46

.4
7 

30
.8

6 
-6

.8
2 

36
.6

1 
So

rg
hu

m
 

29
8.

88
 

2.
25

 
- 

- 
-7

6.
59

 
-2

7.
98

 
43

.8
2 

4.
14

 
4.

41
 

- 
- 

9.
35

 
- 

-6
9.

48
 

-3
1.

07
 

- 
51

.6
0 

-8
1.

67
 

-6
6.

66
 

-6
1.

01
 

- 
M

ea
n 

 
6.

03
 

25
.0

4 
19

.6
3 

-6
0.

99
 

22
.8

5 
-2

2.
46

 
13

.4
3 

-7
0.

46
 

-2
2.

61
 

-3
8.

07
 

-4
.6

0 
21

.1
8 

18
.4

8 
12

.5
4 

15
.1

6 
-1

5.
80

 
-2

9.
44

 
60

.1
3 

29
.1

3 
-1

7.
05

 
37

.8
7 

C
LM

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

W
in

te
r w

he
at

 
-5

.3
4 

5.
99

 
3.

58
 

-0
.2

0 
12

.4
7 

5.
53

 
4.

34
 

-8
.4

6 
-4

.0
1 

-3
.2

7 
-7

.8
8 

12
.2

8 
-1

.2
2 

2.
86

 
-1

3.
10

 
3.

64
 

-9
.9

3 
-1

.6
6 

0.
84

 
-0

.2
0 

3.
75

 
B

ar
le

y 
26

.5
5 

6.
73

 
-3

3.
71

 
11

.0
1 

6.
87

 
37

.7
1 

-1
3.

76
 

8.
43

 
23

.2
8 

-1
4.

80
 

-3
8.

31
 

-3
.5

2 
8.

73
 

11
.9

7 
56

.4
4 

17
.8

0 
-1

2.
18

 
17

.4
4 

-3
1.

23
 

-7
3.

38
 

21
.2

1 
C

an
ol

a 
9.

76
 

-2
5.

96
 

-3
0.

04
 

16
.5

6 
12

.2
3 

6.
51

 
-4

9.
76

 
-2

0.
72

 
51

.3
7 

5.
48

 
23

.7
3 

-1
4.

13
 

-7
.1

7 
-2

2.
57

 
67

.1
7 

22
.1

9 
-2

5.
27

 
0.

42
 

-4
.5

8 
-6

0.
27

 
28

.8
4 

So
rg

hu
m

 
8.

48
 

4.
85

 
-1

9.
29

 
-1

3.
95

 
11

.0
1 

-2
5.

97
 

-0
.4

4 
-6

.2
4 

-6
.9

6 
2.

17
 

5.
67

 
13

.3
9 

11
.6

1 
9.

97
 

-7
.5

2 
-7

.0
2 

8.
94

 
-0

.9
5 

15
.7

6 
8.

99
 

0.
82

 
M

ea
n 

 
6.

95
 

-1
.8

4 
-1

5.
22

 
6.

74
 

10
.5

7 
14

.4
4 

-1
4.

11
 

-6
.9

8 
16

.8
0 

-4
.5

9 
-8

.8
8 

1.
19

 
-0

.1
5 

-1
.0

5 
25

.5
2 

11
.8

2 
-1

4.
51

 
3.

90
 

-9
.6

4 
-3

5.
39

 
14

.4
4 

W
in

te
r w

he
at

 m
on

oc
ul

tu
re

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

C
LM

_W
FD

E5
 

-5
.6

5 
11

.0
4 

14
.3

5 
10

.9
7 

20
.9

2 
7.

19
 

10
.7

2 
-1

.2
8 

-1
.1

4 
-6

.6
1 

-1
3.

23
 

7.
70

 
-1

.4
2 

3.
35

 
-1

2.
47

 
2.

06
 

-1
7.

38
 

-1
2.

37
 

-3
.2

3 
-4

.9
5 

-8
.5

8 
C

LM
_L

ow
P 

3.
98

 
23

.5
2 

27
.6

4 
9.

34
 

15
.7

1 
1.

73
 

13
.6

0 
-3

2.
81

 
0.

75
 

-2
6.

92
 

-1
.1

2 
27

.9
3 

11
.0

7 
-6

.9
6 

0.
11

 
-2

3.
62

 
-3

5.
70

 
2.

74
 

3.
70

 
-1

2.
26

 
-2

.4
4 

  



Appendix             122 

 
  

T
ab

le
 C

2:
 T

ot
al

 a
nn

ua
l c

ro
p 

yi
el

d 
(t/

ha
) a

nd
 c

or
re

sp
on

di
ng

 y
ie

ld
 a

no
m

al
y 

(%
) f

ro
m

 si
m

ul
at

io
n 

re
su

lts
 (C

LM
) f

or
 w

in
te

r w
he

at
, w

in
te

r w
he

at
 m

on
oc

ul
tu

re
 w

ith
 u

nc
ha

ng
ed

 W
FD

E5
 p

re
ci

pi
ta

tio
n 

(C
LM

-W
FD

E5
) a

nd
 re

du
ce

d 
pr

ec
ip

ita
tio

n 
(C

LM
_L

ow
P)

, s
pr

in
g 

w
he

at
, c

an
ol

a 
an

d 
co

rn
 th

ro
ug

ho
ut

 th
e 

D
E-

N
R

W
 d

om
ai

n 
fo

r t
he

 y
ea

rs
 1

99
9 

– 
20

19
, c

om
pa

re
d 

to
 a

va
ila

bl
e 

re
co

rd
s 

(O
bs

) f
ro

m
 

IT
.N

R
W

 (2
02

2)
. 

 
19

99
 

20
00

 
20

01
 

20
02

 
20

03
 

20
04

 
20

05
 

20
06

 
20

07
 

20
08

 
20

09
 

20
10

 
20

11
 

20
12

 
20

13
 

20
14

 
20

15
 

20
16

 
20

17
 

20
18

 
20

19
 

Y
ie

ld
 [t

/h
a]

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

O
bs

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

W
in

te
r w

he
at

  
- 

- 
- 

- 
- 

- 
8.

55
 

7.
83

 
7.

29
 

8.
93

 
8.

65
 

7.
79

 
8.

13
 

8.
44

 
9.

15
 

9.
08

 
8.

81
 

8.
07

 
7.

94
 

7.
98

 
8.

17
 

Sp
rin

g 
w

he
at

 
- 

- 
- 

- 
- 

- 
6.

54
 

6.
08

 
5.

73
 

6.
84

 
6.

65
 

6.
01

 
5.

83
 

7.
14

 
7.

15
 

6.
60

 
7.

08
 

6.
21

 
5.

85
 

5.
40

 
5.

36
 

C
an

ol
a 

- 
- 

- 
- 

- 
- 

3.
83

 
3.

82
 

3.
50

 
3.

65
 

4.
25

 
4.

01
 

3.
64

 
3.

90
 

4.
14

 
4.

29
 

4.
03

 
3.

85
 

3.
90

 
3.

48
 

3.
69

 
C

or
n 

 
- 

- 
- 

- 
- 

- 
10

.1
0 

8.
70

 
9.

61
 

10
.5

8 
10

.3
3 

9.
46

 
11

.1
8 

11
.3

7 
10

.1
7 

11
.1

7 
9.

99
 

9.
86

 
10

.7
4 

7.
80

 
8.

44
 

M
ea

n 
- 

- 
- 

- 
- 

- 
7.

26
 

6.
61

 
6.

53
 

7.
50

 
7.

47
 

6.
82

 
7.

20
 

7.
71

 
7.

65
 

7.
79

 
7.

48
 

7.
00

 
7.

11
 

6.
17

 
6.

42
 

C
LM

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

W
in

te
r w

he
at

  
8.

58
 

7.
20

 
8.

11
 

7.
49

 
7.

73
 

8.
26

 
7.

92
 

7.
62

 
7.

46
 

8.
30

 
7.

91
 

8.
03

 
7.

98
 

8.
03

 
7.

71
 

8.
20

 
7.

72
 

8.
13

 
7.

79
 

7.
60

 
8.

23
 

Sp
rin

g 
w

he
at

 
5.

76
 

4.
12

 
5.

02
 

3.
68

 
5.

50
 

5.
03

 
5.

34
 

5.
09

 
4.

30
 

4.
90

 
5.

76
 

5.
37

 
5.

43
 

5.
05

 
4.

65
 

5.
36

 
4.

93
 

4.
61

 
5.

67
 

5.
34

 
5.

89
 

C
an

ol
a 

5.
71

 
3.

86
 

4.
93

 
3.

71
 

5.
54

 
5.

08
 

5.
32

 
5.

03
 

3.
89

 
4.

90
 

5.
71

 
5.

38
 

5.
37

 
5.

18
 

4.
62

 
5.

37
 

4.
91

 
4.

59
 

5.
65

 
5.

80
 

5.
80

 
C

or
n 

 
9.

31
 

7.
93

 
9.

25
 

8.
42

 
9.

52
 

9.
25

 
9.

08
 

8.
74

 
8.

21
 

8.
57

 
9.

21
 

8.
04

 
8.

93
 

9.
15

 
8.

11
 

9.
05

 
8.

62
 

8.
67

 
8.

83
 

8.
74

 
8.

33
 

M
ea

n 
7.

34
 

5.
78

 
6.

83
 

5.
82

 
7.

07
 

6.
91

 
6.

91
 

6.
62

 
5.

96
 

6.
67

 
7.

15
 

6.
70

 
6.

93
 

6.
86

 
6.

27
 

6.
99

 
6.

54
 

6.
50

 
6.

98
 

6.
87

 
7.

06
 

W
in

te
r w

he
at

 m
on

oc
ul

tu
re

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

LM
_W

FD
E5

 
8.

56
 

7.
20

 
8.

13
 

7.
49

 
7.

74
 

8.
29

 
7.

92
 

7.
64

 
7.

46
 

7.
97

 
7.

91
 

8.
08

 
7.

99
 

8.
03

 
7.

72
 

8.
10

 
7.

73
 

8.
13

 
7.

80
 

7.
60

 
8.

24
 

C
LM

_L
ow

P 
8.

58
 

7.
08

 
8.

17
 

7.
26

 
7.

14
 

7.
98

 
7.

15
 

5.
19

 
7.

23
 

7.
19

 
7.

12
 

6.
25

 
6.

06
 

7.
71

 
7.

42
 

7.
52

 
6.

87
 

7.
75

 
6.

83
 

6.
41

 
6.

25
 

Y
ie

ld
 a

no
m

al
y 

[%
] 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
O

bs
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
W

in
te

r w
he

at
  

- 
- 

- 
- 

- 
- 

2.
76

 
-5

.9
0 

-1
2.

39
 

7.
32

 
3.

96
 

-6
.3

8 
-2

.2
9 

1.
43

 
9.

97
 

9.
13

 
5.

88
 

-3
.0

1 
-4

.5
7 

-4
.0

9 
-1

.8
1 

Sp
rin

g 
w

he
at

 
- 

- 
- 

- 
- 

- 
3.

84
 

-3
.4

6 
-9

.0
2 

8.
61

 
5.

59
 

-4
.5

7 
-7

.4
3 

13
.3

7 
13

.5
3 

4.
80

 
12

.4
2 

-1
.4

0 
-7

.1
1 

-1
4.

26
 

-1
4.

89
 

C
an

ol
a 

- 
- 

- 
- 

- 
- 

-0
.9

1 
-1

.1
7 

-9
.4

5 
-5

.5
7 

9.
95

 
3.

74
 

-5
.8

3 
0.

90
 

7.
11

 
10

.9
9 

4.
26

 
-0

.4
0 

0.
90

 
-9

.9
7 

-4
.5

4 
C

or
n 

 
- 

- 
- 

- 
- 

- 
1.

34
 

-1
2.

71
 

-3
.5

8 
6.

15
 

3.
65

 
-5

.0
8 

12
.1

7 
14

.0
8 

2.
04

 
12

.0
7 

0.
23

 
-1

.0
7 

7.
76

 
-2

1.
74

 
-1

5.
32

 
M

ea
n 

- 
- 

- 
- 

- 
- 

2.
00

 
-7

.1
0 

-8
.1

6 
5.

45
 

5.
02

 
-4

.1
5 

1.
16

 
8.

43
 

7.
59

 
9.

45
 

5.
13

 
-1

.6
2 

-0
.0

7 
-1

3.
32

 
-9

.8
1 

C
LM

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

W
in

te
r w

he
at

  
8.

58
 

-8
.9

2 
2.

54
 

-5
.2

7 
-2

.1
9 

4.
47

 
0.

17
 

-3
.5

4 
-5

.6
8 

4.
97

 
0.

10
 

1.
56

 
1.

02
 

1.
59

 
-2

.4
5 

3.
73

 
-2

.3
1 

2.
80

 
-1

.5
1 

-3
.8

1 
4.

14
 

Sp
rin

g 
w

he
at

 
13

.2
2 

-1
8.

91
 

-1
.2

1 
-2

7.
58

 
8.

11
 

-1
.0

9 
4.

92
 

0.
11

 
-1

5.
43

 
-3

.6
2 

13
.2

0 
5.

60
 

6.
84

 
-0

.5
9 

-8
.6

0 
5.

32
 

-3
.1

3 
-9

.4
4 

11
.4

7 
5.

06
 

15
.7

6 
C

an
ol

a 
12

.6
3 

-2
3.

74
 

-2
.6

4 
-2

6.
76

 
9.

35
 

0.
30

 
5.

08
 

-0
.6

2 
-2

3.
14

 
-3

.2
0 

12
.8

1 
6.

15
 

6.
03

 
2.

36
 

-8
.8

0 
5.

94
 

-3
.1

6 
-9

.3
3 

11
.5

8 
14

.5
3 

14
.6

0 
C

or
n 

 
6.

28
 

-9
.5

1 
5.

62
 

-3
.9

3 
8.

72
 

5.
62

 
3.

67
 

-0
.2

0 
-6

.3
3 

-2
.2

1 
5.

09
 

-8
.2

1 
1.

99
 

4.
47

 
-7

.4
3 

3.
31

 
-1

.5
8 

-1
.0

1 
0.

81
 

-0
.2

5 
-4

.9
2 

M
ea

n 
9.

47
 

-1
3.

81
 

1.
86

 
-1

3.
12

 
5.

50
 

3.
00

 
3.

14
 

-1
.2

0 
-1

1.
04

 
-0

.5
5 

6.
62

 
0.

00
 

3.
38

 
2.

26
 

-6
.4

4 
4.

31
 

-2
.3

9 
-3

.0
6 

4.
18

 
2.

50
 

5.
36

 
W

in
te

r w
he

at
 m

on
oc

ul
tu

re
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

C
LM

_W
FD

E5
 

8.
51

 
-8

.7
3 

3.
02

 
-5

.1
0 

-1
.9

0 
5.

05
 

0.
32

 
-3

.2
2 

-5
.5

1 
1.

05
 

0.
27

 
2.

43
 

1.
23

 
1.

70
 

-2
.2

2 
2.

65
 

-2
.1

1 
2.

99
 

-1
.2

0 
-3

.6
5 

4.
41

 
C

LM
_L

ow
P 

20
.7

6 
-0

.2
6 

15
.0

6 
2.

20
 

0.
60

 
12

.2
9 

0.
74

 
-2

6.
89

 
1.

73
 

1.
19

 
0.

22
 

-1
2.

01
 

-1
4.

67
 

8.
53

 
4.

41
 

5.
81

 
-3

.2
6 

9.
09

 
-3

.8
4 

-9
.7

0 
-1

1.
99

 

  



Appendix             123 

 

Table C3: Multiple correlation coefficient (multiple r), R2, adjusted R2 (R2 adjusted for the complexity of the model), standard 

error and corresponding t-statistics and probability values (p-values) resulting from multiple regression analysis for simulated 

annual mean crop yield (averaged for all regarded crops, dependent variable), explained with the simulated mean seasonal root 

zone soil moisture and the mean seasonal WFDE5 global radiation as independent variables, and with the seasonal WFDE5 

precipitation amount and mean seasonal WFDE5 global radiation as independent variables, for the DE-NRW and AUS-VIC 

domain, respectively. 

Annual mean crop yield - mean seasonal root zone soil moisture and mean seasonal global radiation 
DE-NRW 
Multiple r 0.6146   Coefficients Standard error t-statistics P-value 
R2 0.3777 Intercept 4.5111 2.7914 1.6161 0.1235 
Adjusted R2 0.3086 Root zone soil moisture -6.9219 4.5068 -1.5359 0.1420 
Standard error 0.3563 Global radiation  0.0356 0.0159 2.2312 0.0386 
AUS-VIC 
Multiple r 0.4081   Coefficients Standard error t-statistics P-value 
R2 0.1665 Intercept -3.3872 2.9009 -1.1676 0.2582 
Adjusted R2 0.0739 Root zone soil moisture 5.5062 3.0850 1.7849 0.0911 
Standard error 0.2102 Global radiation  0.0182 0.0123 1.4782 0.1566 
Annual mean crop yield - seasonal precipitation amount and mean seasonal global radiation 
DE-NRW 
Multiple r 0.5945   Coefficients Standard error t-statistics P-value 
R2 0.3534 Intercept 3.1432 2.3843 1.3183 0.2039 
Adjusted R2 0.2816 Seasonal rainfall -0.0016 0.0013 -1.2625 0.2229 
Standard error 0.3631 Global radiation 0.0339 0.0172 1.9677 0.0647 
AUS-VIC 
Multiple r 0.5864   Coefficients Standard error t-statistics P-value 
R2 0.3439 Intercept -3.6735 2.2545 -1.6294 0.1206 
Adjusted R2 0.2710 Seasonal rainfall 0.0034 0.0012 2.9854 0.0079 
Standard error 0.1865 Global radiation 0.0226 0.0107 2.1063 0.0495 
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