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Assortative Matching and Wages:  
The Role of Selection*

We develop a random search model with two-sided heterogeneity and match-specific 

productivity shocks to explain why high-productivity workers tend to work at high-

productivity firms despite low-productivity workers gaining about as much from such 

matches. Our model has two key predictions: i) the average log wage that a worker receives 

is increasing in the worker’s and employer’s productivity, with low-productivity workers 

gaining proportionally more at high-productivity firms and ii) there is assortative matching 

between a worker’s productivity and that of her employer. Selective job acceptance drives 

these patterns. All workers are equally likely to meet all firms, but workers have higher 

surplus from meeting firms of similar productivity. The high surplus meetings result in 

matches more frequently, generating assortative matching. Only the subset of meetings 

that result in matches are observed in administrative wage data, shaping wages. We show 

that our findings are quantitatively consistent with recent empirical results. Moreover, we 

prove this selection is not detected using standard empirical approaches, highlighting the 

importance of theory-guided empirical work. Our results imply that encouraging high-wage 

firms to hire low-wage workers may be less effective at reducing wage inequality than 

wage patterns suggest.
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1 Introduction

Why do high-wage workers tend to work at high-wage firms, even though low-wage workers

seem to enjoy similar gains in log wages from such jobs? Following the path-breaking study

by Abowd, Kramarz and Margolis (1999) using administrative wage data, these empirical

regularities have been extensively documented, yet the economic forces generating them

remain unknown. Bonhomme, Lamadon and Manresa (2019, p. 701) write that “the presence

of strong sorting, together with the absence of strong complementarities in wages, is di!cult

to reconcile with models where sorting is driven by complementarities in production, as in

Becker (1973).” This paper proposes a natural reconciliation.

We prove that a random search model with productive complementarities between het-

erogeneous workers and firms, match-specific productivity shocks, and Nash-bargained wages

o”ers a unified explanation for these patterns. Under simple conditions, average log wages

increase with the permanent component of both worker and firm productivity, while be-

ing submodular. This means that low-productivity workers’ log wages are more sensitive

to firm productivity than are high-productivity workers’ log wages. When the production

technology is suitably complementary, we prove that there is assortative matching between

high-productivity workers and high-productivity firms.1

Our theoretical results arise from a novel mechanism: selective hiring. While all workers

are equally likely to meet all firms, the likelihood that a match forms depends on the worker’s

and firm’s productivity. High-productivity firms rarely hire low-productivity job seekers, but

when match-specific productivity is high enough, these workers are hired at a wage above

the average wage earned by other low-productivity workers. Similarly, low-productivity

firms seldom hire high-productivity workers unless match-specific productivity is unusually

high. This selective hiring creates a systematic di”erence between the matches we observe

in administrative data and all meetings between workers and firms, driving both sorting

patterns and the behavior of wages.

We enrich our baseline model with on-the-job search to match the quantitative evidence.

This means that employed workers can continue to search for better job opportunities, creat-

ing selection in both hiring and worker turnover. We calibrate this extended model to match

results in two influential studies: Bonhomme, Lamadon and Manresa (2019) using Swedish

data, and Kline, Saggio and Sølvsten (2020) using data from the Veneto region of Italy.2

1A corollary of these results is that high-productivity workers are high-wage workers while high-
productivity firms are high-wage firms, which is important for interpretation. In our model productivity
drives behavior, but administrative data sets often record wages rather than productivity. We maintain this
distinction in our terminology throughout the paper.

2These papers tackle the incidental parameters problem (limited mobility bias) in ordinary least squares
estimates of the Abowd, Kramarz and Margolis (1999) model.
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Our analytical results from the simpler model without on-the-job search carry over to

this more realistic environment: log wages are increasing and slightly submodular, though

approximately additively separable, in worker and firm productivity; and there is positively

assortative matching when the production technology is suitably complementary. In ad-

dition, we show that despite its sparse parameterization, our model exactly replicates key

empirical findings from these two studies, namely the magnitudes of the variance of worker

e”ects, the variance of firm e”ects, their covariance, and the variance of the residual. That

selective hiring and turnover can explain these patterns suggests that they may be a central

force behind worker-firm sorting and observed wages.

The match-specific component of wages is fundamental to our analysis and represents a

significant departure from previous research. While earlier studies acknowledged significant

residual wage variation, they typically treated these residuals as measurement error or time-

varying worker heterogeneity that does not a”ect job choice. In our framework these residuals

are evidence of the match-specific shocks that drive selective hiring.

Selective hiring in turn reshapes our understanding of how firms influence wages. As

Card, Cardoso, Heining and Kline (2018, p. S16) note: “in the firm-switching literature, a

key question is whether conventionally estimated firm-specific pay premiums predict the wage

changes associated with exogenously induced job accessions and separations.” The validity of

such predictions rests on an “exogenous mobility” assumption, that wage residuals average to

zero for each worker regardless of employer. Selective hiring in our model leads to a violation

of this assumption. As a result, conventional estimates of firm-specific pay premiums do not

accurately predict a worker’s potential wages at alternative employers. Firm fixed e”ects are

not pure wage premiums.

A natural question is whether this violation of exogenous mobility can be detected in

the data. We prove that constructing a definitive test of exogenous mobility using only

standard administrative data is impossible without imposing additional assumptions like

random search. This result, which builds on insights about lack-of-identification from Flinn

and Heckman (1982), highlights the potential limitations of reduced-form approaches for

understanding wage determination and worker-firm sorting. In particular, when we apply

the widely-used Card, Heining and Kline (2013) “event study” test to data generated from

our calibrated model, it fails to detect evidence of endogenous mobility, instead producing

patterns that have previously been interpreted as supporting exogenous mobility. This is

despite the fact that we know exogenous mobility is violated in our model, with selection

driving the shape of measured wages both with and without on-the-job search.

Our final contribution is to distinguish between the surplus derived from meetings and

the surplus derived from matches. We define the surplus from meetings as the value that
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an unemployed worker puts on meeting a particular type of firm before knowing the real-

ization of match quality. The surplus from matches is the expected value conditional on

the unemployed worker accepting the job. We find that while the surplus from matches is

increasing in the firm’s productivity, the surplus from meetings may not be, particularly for

the least productive workers. Moreover, the surplus from meetings is log supermodular in

our quantitative analysis, so the most productive workers gain proportionately more from

meeting the most productive firms. This cautions against policies designed to mitigate wage

inequality by encouraging high productivity jobs to search for low productivity workers.

Our paper contributes to several strands of literature. First, we build on empirical work

using matched employer-employee data to study wage determination and sorting (Abowd,

Kramarz and Margolis, 1999; Andrews, Gill, Schank and Upward, 2008; Card, Heining and

Kline, 2013; Card, Cardoso and Kline, 2016; Alvarez, Benguria, Engbom and Moser, 2018;

Song, Price, Guvenen, Bloom and Von Wachter, 2019; Bonhomme, Lamadon and Manresa,

2019; Kline, Saggio and Sølvsten, 2020; Bonhomme, Holzheu, Lamadon, Manresa, Mogstad

and Setzler, 2023). We provide a simple and novel theoretical mechanism that can explain

the empirical regularities documented in these papers.

Second, Card, Cardoso, Heining and Kline (2018), Lamadon, Mogstad and Setzler (2022),

and Lamadon, Lise, Meghir and Robin (2024) develop theoretical models with idiosyncratic

and systematic di”erences in amenity valuations that are consistent with the same set of

empirical findings. These papers use a static discrete choice framework while we use a

dynamic search model. We thus address a key previously unresolved question raised by

Card, Cardoso, Heining and Kline (2018, p. 18): “to what extent do insights from simple

static wage-setting models of workplace di”erentiation carry over to dynamic labor market

settings with search or mobility frictions?” A more fundamental di”erence is that the models

in these earlier papers satisfy the exogenous mobility assumption, so selection does not a”ect

measured wages. Future research should investigate the data needed to separately identify

the mechanisms proposed by these distinct approaches.

Third, we build on a large literature that studies how selection a”ects measured wages,

dating back to early econometric analyses of the Roy (1951) model (Borjas, 1987; Heckman

and Honore, 1990). Noe (2020) o”ers a recent theoretical analysis of this question in an

environment where a worker is choosing between a finite number of alternative jobs at a

point in time. The previous research does not study how selection shapes regressions of

wages on worker and firm fixed e”ects, nor does it look at the connection between selection

and assortative matching.

Fourth, we contribute to the theoretical literature on conditions for assortative match-

ing in labor markets with random search (Shimer and Smith, 2000; Hagedorn, Law and
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Manovskii, 2017; Lopes de Melo, 2018; Bagger and Lentz, 2019). Our model extends this lit-

erature by incorporating match-specific shocks, as in Goussé, Jacquemet and Robin (2017)’s

model of the marriage market, and highlighting the role of selection in job acceptance deci-

sions. Our characterization of conditions for assortative matching recalls similar conditions

in competitive search models (Shi, 2001, 2005; Shimer, 2005; Eeckhout and Kircher, 2010)

and models with non-transferable utility (Smith, 2006; Bonneton and Sandmann, 2023). The

details of the mechanisms are quite di”erent, and in particular selection does not play a role

in those papers. Those earlier papers also do not try to fit the empirical findings on how

wages depend on worker and firm productivity. Our model bridges this gap by providing

a framework that not only explains sorting patterns but also shows how the same selection

force that generates sorting drives the wage patterns in administrative data sets.

The rest of the paper is structured as follows. Section 2 presents our model. In Section 3,

we derive conditions for the average log wage to be an increasing and submodular function of

worker and firm productivity. Section 4 derives conditions for assortative matching both of

high-productivity workers to high-productivity jobs and of high-wage workers to high-wage

jobs. Section 5 extends our model to allow for on-the-job search, whereby employed workers

can continue to search for better jobs. In Section 6, we show that our model can quan-

titatively match the wage variance decompositions in Bonhomme, Lamadon and Manresa

(2019) and Kline, Saggio and Sølvsten (2020). Section 7 discusses the di!culty of testing for

exogenous mobility and shows that the “event study” proposed by Card, Heining and Kline

(2013) fails to detect the endogenous mobility that is central to our quantitative model.

Section 8 compares the surplus from meetings with the surplus from matches and discusses

the implications for policies designed to alleviate wage inequality. Section 9 concludes by

discussing how our results a”ect the economic interpretation of patterns in administrative

wage data.

2 Model

We formulate a search model with two-sided heterogeneity (Shimer and Smith, 2000) and

match-specific heterogeneity (Goussé, Jacquemet and Robin, 2017). The model is formulated

in continuous time and we focus on steady states and so drop time arguments in what follows.

2.1 Assumptions

There is measure M of risk-neutral workers and measure N of risk-neutral firms. Everyone

discounts the future at rate r > 0. There are X worker types indexed by x = 1, . . . , X. The
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population measure of type-x workers is mx > 0, with
∑X

x=1 mx = M . There are Y firm

types indexed by y = 1, . . . , Y , with population measure ny > 0 and
∑Y

y=1 ny = N . Workers

can be either unemployed or matched to one firm; likewise, firms can be either vacant or

matched to one worker. Thus, in this model, a firm and a job are identical.

Search is random and for now only unemployed workers and vacant jobs can search. Let

ux be the population measure of unemployed type-x workers, so that ux
mx

is the unemployment

rate for type x. Similarly, let vy be the population measure of type-y vacancies, with vy
ny

the

vacancy rate of y. All unemployed workers contact vacant type-y firms according to a Poisson

process with arrival rate ωvy for y = 1, . . . , Y , where ω > 0. Likewise, all vacant firms contact

unemployed type-x workers at rate ωux for x = 1, . . . , X.3

When a worker and firm meet, they learn the value of a match-specific productivity shock

z drawn from a distribution function with density s(z) and survival function S(z). The

shock is independent across all worker and firm pairs. By definition, the survival function

S : R+ → R+ is non-increasing. For expositional simplicity, we also assume that S is

continuous and strictly positive for all z > 0. Finally, we assume the mean productivity

draw, z→ ↑
∫↑
0 zs(z)dz, is finite, which is necessary for existence of an equilibrium.

After an unemployed type-x worker meets a vacant type-y firm and draws a match-specific

productivity shock z, they decide whether to match. If they match, they stop searching and

produce flow output zfx,y. A matched worker and firm split the surplus according to Nash

bargaining, with worker’s bargaining power equal to ε ↓ (0, 1). We assume fx,y > 0 for all

x and y. Matches end at rate ϑ > 0, leaving the worker unemployed and the job vacant.

2.2 Value Functions

In the remainder of this section, we develop the formal model. We emphasize in advance

that our analytical results in Sections 3 and 4 rely on only three expressions: the selection

equation (6), the structural wage equation (9), and the steady state equation (12).

We start by formulating the value functions of workers and firms. For a type-x unem-

ployed worker, let the value be V u
x :

rV u
x = ω

Y∑

y=1

vy

∫ ↑

0

max
{
V e
x,y(z,Wx,y(z))↔ V u

x , 0
}
s(z)dz. (1)

3This is a quadratic matching technology (Diamond and Maskin, 1979), so the total number of matches
is a homogeneous of degree two in unemployment {ux}Xx=1 and vacancies {vy}Yy=1. It is straightforward to
prove Propositions 2–5 with a linear matching technology (homogeneous of degree one), at the cost only of
additional notational complexity. Similarly, our numerical results carry over exactly to an environment with
a linear matching technology. This is a consequence of some normalizations that we discuss in Appendix C.2.
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At rate ωvy, the worker meets a vacant type y firm. They then draw match-specific produc-

tivity z from a distribution with density s(z). After that, they decide whether to match. If

they do, the worker’s value jumps to V e
x,y(z,Wx,y(z)), the value of a type x worker matched

to a type y firm in a match with productivity z and earning the equilibrium wage Wx,y(z).

Nash bargaining implies that both parties agree on whether to match, so the worker matches

whenever the value of being in the match, V e
x,y(z,Wx,y(z)), exceeds the value of being un-

matched, V u
x .

Once the worker is in the match, we have the corresponding Bellman equation

rV e
x,y(z,W ) = W + ϑ(V u

x ↔ V e
x,y(z,W )). (2)

This equation describes a type x worker at a type y firm with match-specific shock z earning

an arbitrary wage W . The worker earns the wage until the match ends exogenously. This

implies that the worker will accept the match (V e
x,y(z,W ) ↗ V u

x ) if and only ifW ↗ rV u
x ↑ w̄x,

the worker’s reservation wage.

The Bellman equations for firms are symmetric:

rV v
y = ω

X∑

x=1

∫ ↑

0

ux max
{
V f
y,x(z,Wx,y(z))↔ V v

y , 0
}
s(z)dz (3)

rV f
y,x(z,W ) = zfx,y ↔W + ϑ(V v

y ↔ V f
y,x(z,W )). (4)

Notably, a type y firm earns flow profit zfx,y↔W when employing a type x worker in a match

with productivity z and paying a wage W . The firm will accept the match (V f
y,x(z,W ) ↗ V v

y )

if and only if zfx,y ↔W ↗ rV v
y ↑ ϖ̄y, the firm’s reservation profit.

We define the match surplus as

V s
x,y(z) ↑ V e

x,y(z,W ) + V f
y,x(z,W )↔ V u

x ↔ V v
y =

max{zfx,y ↔ w̄x ↔ ϖ̄y, 0}
r + ϑ

, (5)

where the second equation follows from equations (2) and (4) and the definitions of the

reservation wage w̄x and reservation profit ϖ̄y. The match surplus is positive, so there exists

a wage W which is acceptable both to the worker (V e
x,y(z,W ) ↗ V u

x ) and firm (V f
y,x(z,W ) ↗

V v
y ), if and only if the match-specific productivity shock z exceeds the reservation level z̄x,y,

where

z̄x,y ↑
w̄x + ϖ̄y

fx,y
. (6)

This selection equation is central to our analysis. As we discuss in Sections 3 and 4, it shapes

which wages we observe in the data and how often we observe di”erent types of matches. For
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now, an implication of the reservation productivity level is that we can rewrite the match

surplus as

V s
x,y(z) =

fx,y max{z ↔ z̄x,y, 0}
r + ϑ

. (7)

Finally, when the match surplus is positive, we use Nash bargaining to pin down the equi-

librium wage Wx,y(z):

Wx,y(z) = argmax
W

(V e
x,y(z,W )↔ V u

x )
ω(V f

y,x(z,W )↔ V v
y )

1↓ω. (8)

Using equations (2) and (4), as well as the definitions of the reservation wage and reservation

profit, it is straightforward to show that this implies the structural wage equation

Wx,y(z) = w̄x + ε(zfx,y ↔ w̄x ↔ ϖ̄y) (9)

for z ↗ z̄x,y. Putting this together with the fact that a worker and firm match whenever

z ↗ z̄x,y, we get that type x workers match with type y firms at rate ωuxvyS(z̄x,y), with

matches formed whenever Wx,y(z) ↗ w̄x, a type-x worker’s reservation wage. Symmetrically,

a type-y firm agrees to match with a type-x worker whenever zfx,y ↔Wx,y(z) ↗ ϖ̄y, a type-y

firm’s reservation profit.

We can now combine these equations to get a simpler expression for a worker’s reservation

wage and a firm’s reservation profit. Eliminate the wage from equation (2) using equation (9)

and the definition of reservation productivity in equation (6) to get V e
x,y(z,Wx,y(z))↔ V u

x =
ωfx,y(z↓z̄x,y)

r+ε . Substitute that into equation (1) to get

w̄x =
εω

r + ϑ

Y∑

y=1

vyfx,y

∫ ↑

z̄x,y

(z ↔ z̄x,y)s(z)dz. (10)

Analogous steps lead to the equation for a firm’s reservation profit:

ϖ̄y =
(1↔ ε)ω

r + ϑ

X∑

x=1

uxfx,y

∫ ↑

z̄x,y

(z ↔ z̄x,y)s(z)dz. (11)

2.3 State Variables and Equilibrium

To close the model, we need to find the steady state values of ux and vy. To do this, we

first define the steady state measure of (x, y) matches, ϱx,y. This satisfies the steady state

equation

ϑϱx,y = ωuxvyS(z̄x,y). (12)
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The left hand side is the rate that these matches end, while the right hand side is the rate

that unemployed type-x workers (measure ux) meet vacant type-y jobs (ωvy) in a match with

an acceptable z (share S(z̄x,y) of such meetings).

By adding partner types, we can then recover the unemployment and vacancy measures:

ux = mx ↔
Y∑

y=1

ϱx,y (13)

vy = ny ↔
X∑

x=1

ϱx,y. (14)

A steady state equilibrium is given by (w̄, ϖ̄, z̄,ϱ, u, v) satisfying equations (6), (10), (11),

(12), (13), and (14). We can prove

Proposition 1 An equilibrium exists. In any equilibrium, the reservation wage w̄x and

reservation profit ϖ̄y are strictly positive for all x and y.

All the proofs are in Appendix A.

We note that a model like this may have multiple equilibria (Burdett and Coles, 1997).

All of our claims apply to any steady state equilibrium.

2.4 Monotonicity

We first prove a useful preliminary result, that the reservation wage and reservation profit

are increasing if the production function is increasing:

Lemma 1 Assume fx,y is strictly increasing in x and y. Then the reservation wage w̄x and

reservation profit ϖ̄y are strictly increasing.

The proof is in Appendix A.

We note that since w̄x and ϖ̄y are strictly positive, equation (6) implies z̄x,y is strictly

positive as well. And since there are a finite number of types of workers and firms,
¯
z ↑

minx,y z̄x,y is strictly positive as well. It follows from the definition of equilibrium that in

any steady state equilibrium, the behavior of S(z) at z <
¯
z does not a”ect the equilibrium

(w̄, ϖ̄, z̄, u, v). We build on this observation in Section 3.1 below.

3 Average Log Wage

The goal of this section is to characterize the average log wage in a match between a type-x

worker and a type-y firm, w→
x,y. To do this, we use two equations from our model. The first is
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the structural wage equation (9), which defines wages as a function of the worker type x, the

firm type y, and the match-specific shock z. The second is the selection equation (6), which

specifies that matches form if and only if the idiosyncratic shock z exceeds the threshold

z̄x,y. Using these two pieces of notation, the average log wage in an (x, y) match is

w→
x,y ↑

∫↑
z̄x,y

log(Wx,y(z))s(z)dz

S(z̄x,y)
. (15)

We think of this as a reduced-form wage equation, capturing what we observe in the data.

In this section we illustrate how selection a”ects the average log wage under di”erent distri-

butional assumptions for the match-specific shock z.

The average log wage is of considerable empirical interest. Bonhomme, Lamadon and

Manresa (2019) prove that under reasonable conditions,4 the average log wage is identified

in administrative wage data. They also estimate it using Swedish data and find that the

average log wage is increasing in worker and firm type and perhaps slightly submodular,

meaning that the lowest type workers get a slightly larger increase in their log wage by

moving to more productive jobs.

The average log wage is related to the more familiar log-linear wage equation proposed

by Abowd, Kramarz and Margolis (1999), as we discuss in Appendix B. In short, that paper

proposed that the log wage wi,t of worker i at firm j = Ji,t in period t can be expressed as

wi,t = ςi + φJi,t + ↼i,t, (16)

where ↼i,t is a random variable with mean zero for all i, t, and potential employers j. Under

these conditions, w→
xi,yj = ςi + φj, where xi is the type of worker i and yj is the type of firm

j. Our formulation allows for non-separabilities in w→.

3.1 Pareto-Distributed Match Quality

We first characterize wage behavior under the assumption that z has a Pareto distribution

with scale parameter z0 > 0 and tail parameter ↽ > 1, so S(z) = (z/z0)↓ϑ for z ↗ z0 and

S(z) = 1 otherwise. We also parameterize the contact rate as ω = ω̄z↓ϑ
0 , so the rate that an

unemployed worker contacts a vacant type-y firm and has productivity at least z is ω̄z↓ϑvy

for z > z0. Notably, this is independent of z0. We focus throughout on cases where there is

an interior solution for the threshold z̄x,y for all pairs (x, y), z0 < ¯
z = minx,y z̄x,y, as will be

4Our baseline model does not satisfy the su!cient conditions for identification in Bonhomme, Lamadon
and Manresa (2019) due to the failure of a rank condition. Our extension with on-the-job search in Section 5
satisfies these conditions for their dynamic model.
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the case if z0 is su!ciently small.5 Under these conditions, we have the following result:

Proposition 2 Assume z has a Pareto distribution with scale parameter z0, 0 < z0 <

minx,y z̄x,y, and shape parameter ↽ > 1. Then

w→
x,y ↑

∫ ↑

0

log
(
w̄x + ε(w̄x + ϖ̄y)q

)
↽(1 + q)↓ϑ↓1dq. (17)

Moreover,

1. for all x1 and x2 with w̄x1 < w̄x2, w
→
x1,y < w→

x2,y for all y;

2. for all y1 and y2 with ϖ̄y1 < ϖ̄y2, w
→
x,y1 < w→

x,y2 for all x;

3. for all x1, x2, y1, and y2 with w̄x1 < w̄x2 and ϖ̄y1 < ϖ̄y2, w
→
x1,y2 +w→

x2,y1 > w→
x1,y1 +w→

x2,y2.

In particular, if fx,y is strictly increasing, the average log wage is strictly increasing and

strictly submodular.

Our proof in Appendix A allows for any transformation of the wage, not just the log. We

focus in the text on the average log wage because this is the focus of the empirical literature.

There are many pieces to unpack from Proposition 2. First, the average log wage depends

only on four numbers: the worker’s reservation wage w̄x, the firm’s reservation profit ϖ̄y, the

worker’s bargaining power ε, and the Pareto tail parameter ↽. The production technology

fx,y does not explicitly enter this expression. We view this as both good news and bad news

for empirical research. The bad news is that average log wages are not useful for learning

about the production technology f . The good news is that the model makes strong and

testable predictions for how the average log wage behaves across di”erent types of matches.

Second, workers who have a higher reservation wage earn more at any type of employer,

and similarly firms that have a higher reservation profit pay more to any type of worker.

When the production function is strictly increasing, this implies that more productive firms

pay higher wages to all worker types, in line with a variety of empirical evidence, e.g. Alvarez,

Benguria, Engbom and Moser (2018). But to understand the power of Proposition 2, it is

useful to consider a non-monotonic production function f . That is, suppose that there are

worker types x1 and x2 and firm types y1 and y2 such that fx1,y1 > fx1,y2 and fx2,y1 < fx2,y2 .

One might conjecture that with Nash bargaining, this non-monotonicity would imply a

similar ordering of average log wages, w→
x1,y1 > w→

x1,y2 and w→
x2,y1 < w→

x2,y2 . Proposition 2

5For given ω̄, a change in z0 does not a”ect the equilibrium allocation as long as z0 ↘
¯
z. Thus focusing

on small values of z0 does not change the arrival rate of “good” matches. We could sidestep any discussion
of z0 by assuming that meetings with match quality at least equal to z occur at rate ω̄z→ω times the relevant
vacancy or unemployment rate for any z, as in Oberfield (2018) and Buera and Oberfield (2020).
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establishes that this cannot happen: ϖ̄y2 ↭ ϖ̄y1 ≃ w→
x,y2 ↭ w→

x,y1 for all x.

Proposition 2 also implies that all workers have the same ranking of average log wages

across firm types y, determined by the reservation profit ϖ̄y. This result stands in contrast

to the findings in Shimer and Smith (2000), a similar model except that z has a degenerate

distribution. In that case, an unproductive worker’s wage may be maximized at low-type

firm, while a more productive worker’s wage is maximized at a high-type firm. See Eeckhout

and Kircher (2011) and Lopes de Melo (2018) for an elaboration of this observation. The

common ranking that our model predicts is in line with a large body of empirical evidence.

Finally, we prove that the average log wage is submodular in the worker’s reservation

wage w̄x and the firm’s reservation profit ϖ̄y. That means that the average increase in the

log wage of a given worker who moves from a low ϖ̄y firm to a high ϖ̄y firm is decreasing in

the worker’s reservation wage w̄x. Again, this places strong restrictions for how wages vary

across di”erent types of matches.

3.2 Exponentially-Distributed Match Quality

Next we characterize the average log wage under the assumption that z has an exponential

distribution with parameter ↽ > 0, so S(z) = e↓ϑz for all z ↗ 0.

Proposition 3 Assume z has an exponential distribution with parameter ↽ > 0. Then

w→
x,y = ↽

∫ ↑

0

log(w̄x + εqfx,y)e
↓ϑqdq. (18)

Assume that for all x1 < x2 and y, fx1,y < fx2,y. Then w→
x1,y < w→

x2,y. Additionally, take any

x, y1, and y2. Then w→
x,y1 ↭ w→

x,y2 if and only if fx,y1 ↭ fx,y2.

If fx,y = f 1
xf

2
y for strictly increasing functions f 1

and f 2
, then w→

x,y is strictly increasing

and strictly submodular.

Our proof of the first part of the Proposition in Appendix A allows for any transformation

of the wage, not just the log. The submodularity result for a multiplicatively-separable

production function relies on the logarithmic assumption.

Some of these results parallel the earlier results for a Pareto distribution. In particular,

if f is strictly increasing in both x and y, then so is the average log wage. Thus the model

predicts that more productive workers are paid higher wages at any firm, and that more

productive firms pay higher wages to any worker.

On the other hand, when S is exponential, the average log wage depends on the entire

production function f , not just on the reservation wage and profit, as was the case with a

Pareto. This allows for some interesting possibilities. For example, a type-x worker’s average

11



log wage at a type-y firm is increasing in fx,y, and so di”erent types of workers may have a

di”erent ordering of average log wages across firm types.

When fx,y is strictly increasing and multiplicatively separable. Proposition 3 establishes

that the average log wage is increasing and submodular, exactly as we established in Propo-

sition 2 with the Pareto distribution. Thus once again we see that complementarity in the

production function does not necessarily carry over to the average log wage.

3.3 Other Distributions

A natural question is whether monotonicity of the production function f guarantees mono-

tonicity of the average log wage for other distributions of the match-specific shock z. In

general, the answer is no. First, if the distribution of match-specific productivity shocks is

degenerate, wages are generally a hump-shaped function of a firm’s type for a given worker

(Shimer and Smith, 2000; Eeckhout and Kircher, 2011; Lopes de Melo, 2018). Second, we

are able to construct an economy where the production function is strictly increasing and

z has a continuous distribution on the positive real line, yet the average log wage is not

monotonic in the firm type. Still, it is easy to construct other examples where the wage is

monotone in both the worker and firm types, and for this reason we believe that the special

cases we highlight here are useful for understanding more general properties of the model.

3.4 Selection in the Wage Equation

The previous sections established conditions under which the average log wage w→
x,y is in-

creasing and submodular. While this characterizes what we measure in administrative wage

data, systematic selection in which matches form means that it may not be the most useful

object for understanding how firms a”ect wages. To explain why, we first need to be precise

about which wages we observe in administrative data and which ones we do not observe.

For every worker i of type xi and every firm j of type yj, including those who never meet

each other, let zi,j denote the realization of their match-specific productivity shock. If the

match would be acceptable to the worker and firm, zi,j ↗ z̄xi,yj , their potential wage satisfies

equation (9):

W p
i,j = Wxi,yj(zi,j),

with W p
i,j > w̄xi when zi,j > z̄xi,yj . For realizations of the match-specific shock below z̄xi,yj ,

Nash bargaining does not uniquely determine the potential wage, but we can bound it above

by the worker’s reservation wage, W p
i,j ↘ w̄xi . These potential wages may not even be o”ered

to worker i if they contact firm j; instead, the firm may simply decline to o”er i a job.

12



Now let Ji,t denote worker i’s employer at time t. We only observe the wage of worker

i at firm j when Ji,t = j for some t, which requires both that zi,j ↗ z̄xi,yj and that worker

i and firm j meet. This distinction between potential and realized wages helps us interpret

wage di”erences across firms.

A fundamental question in the empirical literature (Card, Cardoso, Heining and Kline,

2018, p. S16) is whether “conventionally estimated firm-specific pay premiums predict the

wage changes associated with exogenously induced job accessions and separations.”6 The

average log wage of a type-x worker at a type-y firm in period t, a conventional worker- and

firm-specific pay premium, conditions on realized matches:

w→
x,y = E

(
logW p

i,j|x = xi, y = yj, and j = Ji,t

)
.

In contrast, the expected log wage following an exogenously-induced accession averages over

all potential pairs, including those that are mutually unacceptable:

wp
x,y ↑ E

(
logW p

i,j|x = xi and y = yj
)
.

These coincide if and only if z̄x,y ↘ z0, so all (x, y) meetings result in matches. Otherwise firm-

specific pay premia overstate the wage increase from an exogenously-induced job accession.

There are two special cases where selection may not be a huge problem. First, when

match-specific productivity is degenerate, zi,j = z→ for all pairs (i, j) as in Shimer and Smith

(2000), then w→
x,y is the log wage in all potential (x, y) matches. However, this model cannot

explain within-match wage residuals, predicts wages are generally hump-shaped in firm type

(Eeckhout and Kircher, 2011; Lopes de Melo, 2018), and provides no guidance about the

potential wage in an (x, y) match if we never observe such a match, as will be the case when

z→ < z̄x,y. Second, if all worker-firm pairs have the same acceptance threshold, z̄x,y = z̄,

selection would truncate the distribution of match-specific shocks identically for all pairs, so

w→
x,y still measures the value of randomly assigning a type x worker to a type y firm, up to

a missing constant reflecting the probability the match is acceptable, S(z̄).

In our model, however, z̄x,y varies systematically with both worker and firm types. We

argue in the next section that this systematic selection is empirically reasonable and evident

in the data: it generates realistic assortative matching between workers and firms. High

productivity workers are more likely to match with high productivity firms than low pro-

6Card, Heining and Kline (2013), Abowd, McKinney and Schmutte (2019), and others call the assump-
tions needed for an a!rmative answer to this question “exogenous mobility.” Section 3 in Kline (2024) care-
fully lays out these conditions. Our model violates strict exogeneity because worker i’s error term in period
t depends on the firm they work at. For example, if worker i would have been exogenously induced to work
at a firm j with zi,j < z̄xi,yj in period t, the error term would have been negative.
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ductivity workers are, even though low productivity workers gain proportionately more from

such matches when they occur. This assortative matching pattern arises because selection

di”ers systematically across worker-firm pairs. Observed sorting patterns thus provide in-

dependent empirical validation of our model’s key mechanism, systematic selection, which

simultaneously explains both assortative matching and the shape of average log wages.

4 Assortative Matching

This section shows that our model can generate (positively) assortative matching between

workers and firms. As in Section 3, we only use two equations from our model. The first

in the steady state equation (12), which explains how the measure of matches ϱx,y depends

on both meeting rates and the selection threshold z̄x,y. The second is again the selection

equation (6).

We find conditions under which ϱ satisfies a strong notion of assortative matching, the

monotone likelihood ratio order. We say that ϱ has the monotone likelihood ratio order if

for all x1 < x2 and y1 < y2,
ϱx2,y2

ϱx2,y1

>
ϱx1,y2

ϱx1,y1

.

This means that high type workers are relatively more likely to match with high type firms.

Manipulating the fractions, we find that this is equivalent to stating that high type firms

are relatively more likely to match with high type workers. A well-known implication of

the monotone likelihood ratio order is that higher type workers and firms have a better

distribution of match partners in the sense of first order stochastic dominance and that the

correlation between the types of matched workers and firms is strictly positive.

4.1 Assortative Matching in Productivity

We first find conditions for assortative matching for the Pareto case:

Proposition 4 Assume z has a Pareto distribution with scale parameter z0, 0 < z0 <

minx,y z̄x,y, and shape parameter ↽ > 1. Also assume fx,y is strictly increasing and weakly

log-supermodular. Then the measure of matches ϱ has the monotone likelihood ratio order.

Weak log-supermodularity of f is equivalent to fx1,y1fx2,y2 ↗ fx1,y2fx2,y1 for all x1 < x2 and

y1 < y2. Since f is strictly positive, it is a statement that more productive workers have a

weak comparative advantage working at more productive firms (fx,y2/fx,y1 is nondecreasing

in x when y2 > y1) and that more productive firms have a weak comparative advantage

hiring more productive workers (fx2,y/fx1,y is nondecreasing in y when x2 > x1).
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The results for the exponential case impose somewhat stronger assumptions.

Proposition 5 Assume z has an exponential distribution with parameter ↽ > 0. Also as-

sume fx,y is strictly increasing and either ↔1/fx,y is weakly supermodular or fx,y is mul-

tiplicatively separable. Then the measure of matches ϱ has the monotone likelihood ratio

order.

For a strictly increasing function f , the assumption that ↔1/fx,y is weakly supermodular im-

plies that fx,y is strictly log supermodular, while multiplicative separability is the borderline

case for weak log supermodularity.

The combination of submodular average log wages (Propositions 2 and 3) and assortative

matching (Propositions 4 and 5) may seem surprising. After all, if low productivity workers

gain proportionately more from moving to high productivity firms, why do they work there

less frequently? Once again, our model’s answer is selection. We use wage data as measured

in a typical administrative data set, the wage paid by a firm to its employee. Such data

sets do not have information about meetings that do not result in matches, i.e. about wage

o”ers that are below the worker’s reservation wage. Low wage workers rarely get acceptable

wage o”ers from high productivity firms, and so rarely match there; but when such wage

o”ers do materialize, our model predicts that the average log wage is higher than at a low

productivity firm.

4.2 Assortative Matching in Wages

Define the average log wage paid to a type x worker and the average log wage paid by a type

y firm:

⇀x ↑
∑Y

y=1 w
→
x,yϱx,y

∑Y
y=1 ϱx,y

, (19)

µy ↑
∑X

x=1 w
→
x,yϱx,y

∑X
x=1 ϱx,y

(20)

We combine our earlier results to obtain conditions for ⇀x and µy to be strictly increasing:

Corollary 1 1. Assume S(z) = (z/z0)↓ϑ
with z0 > 0 and ↽ > 1. Also assume fx,y is

strictly increasing and weakly log-supermodular. Then ⇀x and µy are strictly increasing.

2. Assume S(z) = e↓ϑz
with ↽ > 0. Also assume fx,y is strictly increasing and either

↔1/fx,y is weakly supermodular or fx,y is multiplicatively separable. Then ⇀x and µy

are strictly increasing.
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The proof follows immediately from monotonicity of w→
x,y in both arguments (Propositions 2

and 3) and first order stochastic dominance of the match density ϱ (Propositions 4 and 5).7

This result implies that if f is strictly increasing and satisfies the appropriate supermod-

ularity condition, there is an increasing mapping between a worker’s type x and their average

log wage ⇀x, and an increasing mapping between a firm’s type y and its average log wage µy.

Using the monotonicity of ⇀ and µ, Propositions 4 and 5 then imply that high wage workers

(high ⇀x) match more frequently with high wage firms (high µy) in the sense of the monotone

likelihood ratio order. That is, we have found conditions not only for assortative matching

of more productive workers to more productive firms, but also of high wage workers to high

wage firms.

In Borovičková and Shimer (2020), we develop unbiased estimates of ⇀ for each worker

and µ for each firm. We also show how to obtain consistent estimates of the variance of ⇀x

across employed workers, the variance of µy across filled jobs, and the covariance between ⇀x

and µy across matched workers and firms using a short panel with many workers and firms.

Using administrative data from Austria, we verify that in fact the correlation between ⇀ and

µ is strictly positive.

5 On-the-Job Search

In this section, we extend our model to allow for on-the-job search, so employed workers can

search for better jobs. This implies that vacant jobs meet both employed and unemployed

workers, and that filled jobs sometimes end when the employee finds a better job opportunity.

We introduce on-the-job search for two reasons. First, the assumption is realistic. Em-

ployed workers often climb a job ladder, attaining higher wages as they move from job-to-job

(Topel and Ward, 1992). It is important to see whether our findings on wages and assor-

tative matching carry over to such an environment. Second, models with on-the-job search

can generate considerably more within-worker-type wage dispersion than models where only

unemployed workers search (Hornstein, Krusell and Violante, 2011). This is important for

the quantitative results in Section 6.

The model is the same as the baseline model but we now assume that workers can meet

vacancies also when employed. An unemployed worker contacts a type-y vacancy according

to a Poisson process with arrival rate ω0vy, while an employed worker contacts a type-y

vacancy according to a Poisson process with arrival rate ω1vy, with ω1 < ω0. Following

7Perhaps surprisingly, monotonicity of w↑
x,y and ε having the monotone likelihood ratio order do not imply

monotonicity of the Abowd, Kramarz and Margolis (1999) fixed e”ects ϑ̄x and ϖ̄y, defined in Appendix B
and equations (39) and (40).
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Bonhomme, Lamadon and Manresa (2019), we assume that a type-x worker matched with

a type-y firm with a match-specific productivity shock z gets a fraction ε of the joint match

surplus. The resulting wage Wx,y(z) does not depend on whether the worker has been hired

from employment or unemployment, and is constant during the duration of the match, so

there is no renegotiation.8 The rest of the model is the same as our baseline model.

Selection shapes which matches we observe through two distinct channels in this model.

First, as in our baseline model without on-the-job search, unemployed workers do not accept

all meetings with firms, only forming matches when the match-specific productivity realiza-

tion is su!ciently high. Second, employed workers provide an additional source of selection,

moving to new jobs that o”er them higher value than their current job. Both channels a”ect

which wages we observe in equilibrium and how often we observe di”erent types of matches.

To understand how, we write out the model equations.

For a type-x worker, the Bellman equation for the value of being unemployed is

rV u
x = ω0

Y∑

y=1

vy

∫ ↑

0

max
{
V e
x,y(z)↔ V u

x , 0
}
s(z)dz, (21)

the same as equation (1), except that we suppress the dependence of the value of employment

on the wage. The value of a type x worker employed at a type y firm with a match-specific

shock z is

rV e
x,y(z) = Wx,y(z) + ϑ(V u

x ↔ V e
x,y(z))

+ ω1

Y∑

y→=1

vy→
∫ ↑

0

max
{
V e
x,y→(z

↔)↔ V e
x,y(z), 0

}
s(z↔)dz↔. (22)

The worker earns the wage Wx,y(z) until the match ends. This happens either exogenously at

rate ϑ or endogenously when the worker finds a better job. At the rate ω1vy→ , the worker meets

a type-y↔ firm with a vacancy and draws a match-specific shock z↔ according to distribution

s. If the value of being employed at y↔ with z↔ exceeds the value of current employment,

V e
x,y→(z

↔) > V e
x,y(z), the worker accepts the new job o”er.

We next formulate Bellman equations for a firm. The Bellman equation for a vacant

8Our model is thus di”erent than the competing o”ers framework in Cahuc, Postel-Vinay and Robin
(2006). We use this wage setting protocol because it is consistent with the assumptions in the dynamic
model in Bonhomme, Lamadon and Manresa (2019), while the competing o”ers framework is not.
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type-y job is

rV v
y = ω0

X∑

x=1

∫ ↑

0

ux max
{
V f
y,x(z))↔ V v

y , 0
}
s(z)dz

+ ω1

X∑

x=1

Y∑

y→=1

∫ ↑

0

ϱx,y→(z
↔)

(∫ ↑

0

(V f
y,x(z)↔ V v

y ) V e
x,y(z)>V e

x,y→ (z
→)s(z)dz

)
dz↔, (23)

where ϱx,y(z) is the density of (x, y, z) matches, and is an indicator function. A vacant

job meets an unemployed type-x worker at the rate ω0ux and decides to form a match if firm

surplus is positive, V f
y,x(z) ↔ V v

y > 0. At the rate ω1ϱx,y→(z↔), the vacancy meets a type-x

worker employed in a type-y↔ firm with match-specific shock z↔. They draw a new match-

specific shock z. If the worker prefers the o”er from the poaching firm, i.e. V e
x,y(z) > V e

x,y→(z
↔),

the worker accepts the new o”er. Note that whenever the worker prefers the poaching o”er,

the poaching firm is willing to hire the worker.

Finally, we write the value of a type-y firm employing a type-x worker with match-specific

shock z:

rV f
y,x(z) = zfx,y ↔Wx,y(z)

+

(
ϑ + ω1

Y∑

y→=1

vy→
∫ ↑

0
V e
x,y→ (z

→)>V e
x,y(z)s(z

↔)dz↔
)
(
V v
y ↔ V f

y,x(z))
)
. (24)

The firm receives the profit flow zfx,y ↔ Wx,y(z) during the duration of the match. The

match can dissolve for one of two reasons: exogenously at the rate ϑ or endogenously due

to a worker accepting an outside o”er. This happens when the worker meets a type-y↔ firm

with a vacancy and draws a shock z↔ such that the value of being employed there exceed

worker’s value of being in the current match, V e
x,y→(z

↔) > V e
x,y(z).

Define the match surplus V s
x,y(z) = V e

x,y(z) + V f
y,x(z)↔ V u

x ↔ V v
y . We assume that for all

(x, y, z), the worker keeps a share ε of the match surplus, V e
x,y(z) ↔ V u

x = εV s
x,y(z), and the

firm keeps the remainder, V f
y,x(z) ↔ V v

y = (1 ↔ ε)V s
x,y(z). Using these as well as equations

(21)–(24), we find the Bellman equation for the match surplus

(r + ϑ)V s
x,y(z) = zfx,y ↔ rV u

x ↔ rV v
y

+ ω1

Y∑

y→=1

vy→
∫ ↑

0
V s
x,y→ (z

→)↗V s
x,y(z)

(
εV s

x,y→(z
↔)↔ V s

x,y(z))
)
s(z↔)dz↔. (25)

Here we use the fact that V e
x,y(z) > V e

x,y→(z
↔) if and only if V s

x,y(z) > V s
x,y→(z

↔).
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We can also rewrite the values of unemployed workers and vacant firms using equa-

tions (21) and (23) as well as the surplus sharing rule:

rV u
x = εω0

Y∑

y=1

vy

∫ ↑

0

max{V s
x,y(z), 0}s(z)dz, (26)

rV v
y = (1↔ ε)ω0

X∑

x=1

∫ ↑

0

ux max{V s
x,y(z)), 0}s(z)dz (27)

+ (1↔ ε)ω1

X∑

x=1

Y∑

y→=1

∫ ↑

0

ϱx,y→(z
↔)

(∫ ↑

0

V s
x,y(z) V s

x,y(z)>V s
x,y→ (z

→)s(z)dz

)
dz↔.

To close the model, we characterize the distribution of unemployed workers ux, vacant

jobs vy and the density of matches ϱx,y(z). The steady-state measure of (x, y, z) matches

satisfies

ϱx,y(z)

(
ϑ + ω1

Y∑

y→=1

vy→
∫ ↑

0
V s
x,y→ (z

→)↗V s
x,y(z)s(z

↔)dz↔
)

= vys(z)

(
ω0ux V s

x,y(z)↗0 + ω1

Y∑

y→=1

∫ ↑

0
V s
x,y(z)↗V s

x,y→ (z
→)ϱx,y→(z

↔)dz↔
)
. (28)

The left hand side is the measure of matches that are destroyed through exogenous separa-

tions and through endogenous on-the-job search. The right hand side counts matches which

are created through a vacancy meeting an unemployed worker (first term) or an employed

worker who prefers the new o”er.

The measures of unemployed and vacant jobs satisfy

ux = mx ↔
Y∑

y=1

∫ ↑

0

ϱx,y(z)dz (29)

vy = ny ↔
X∑

x=1

∫ ↑

0

ϱx,y(z)dz. (30)

A steady state equilibrium is values V u
x , V

v
y , and V s

x,y, as well as matched and unmatched

rates ϱx,y(z), ux, and vy solving equations (25)–(30).

Finally, using the surplus sharing rule and equation (22), we find an expression for the
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wage

Wx,y(z) = rV u
x +ε(r+ ϑ)V s

x,y(z)↔εω1

Y∑

y→=1

vy→
∫ ↑

0

max
{
V s
x,y→(z

↔)↔V s
x,y(z), 0

}
s(z↔)dz↔. (31)

The wage equals worker’s flow value of unemployment plus a ε-share of the flow match

surplus, adjusted for the option value of on-the-job search.

In Appendix C.1, we reformulate these equations by expressing the match-specific pro-

ductivity shock as a function of the match surplus. This allows us to reduce the model to a

system of ordinary di”erential equations, making it amenable to a numerical solution.

6 Quantitative Evaluation

In this section, we show that our on-the-job search model can generate numerical predictions

that are in line with state-of-the-art empirical findings. We propose two calibrations of our

model. The first, BLM, is designed to match the variance decomposition of log wages in

Bonhomme, Lamadon and Manresa (2019). The second, KSS, matches the same variance

decomposition in Kline, Saggio and Sølvsten (2020).

The calibrations serve three purposes. First, our analytical results showed it is possible

to match the qualitative wage and sorting patterns in the empirical literature. Here we show

it is possible to match their quantitative behavior. Second, we show that the analytical

characterizations of average log wages and assortative matching carry over to reasonably-

calibrated versions of the on-the-job search model. Third, in the remainder of our paper we

use our calibrated model as a laboratory for evaluating several strands of existing research.

6.1 Calibration Strategy

In both calibrations, we set the discount rate to r = 0.05, and so think of a time unit as a

year. We also set the match dissolution rate to ϑ = 0.25, which implies that the expected

duration of employment is 4 years. We set the number of types at X = Y = 10 and assume

equal measures of each type, so mx = 1
X and ny = 1

Y . This implies in particular that the

total measure of workers and firms are the same.

The production function is CES with elasticity of substitution ⇁,

fx,y =
(

1
2

(
(1 +#w)

x↓1
) ω↑1

ω + 1
2

(
(1 +#f )

y↓1
) ω↑1

ω

) ω
ω↑1

,

where #w and #f are numbers that govern the amount of heterogeneity across workers and
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firms, respectively. We assume that the distribution of match quality is Pareto, S(z) =

(z/z0)↓ϑ, with a su!ciently small lower bound z0 such that all (x, y) pairs reject some

matches. We set the meeting rate ω0 so the average log wage in (1, 1) match is zero, w→
1,1 = 0.9

Finally, we assume bargaining power is equal for workers and firms, ε = 0.5.

This leaves five parameters, the dispersion in worker types #w, the dispersion in firm

types #f , the elasticity of substitution ⇁, the Pareto tail parameter ↽, and the e!ciency

of on-the-job search ω1. In the text, we set ω1 = 0.2ω0, but show results with higher and

lower values in Appendix C.3.10 We set the remaining four parameters to match results

from Bonhomme, Lamadon and Manresa (2019) and Kline, Saggio and Sølvsten (2020). We

briefly discuss those papers before calibrating those four parameters.

Using administrative data from Sweden, Bonhomme, Lamadon and Manresa (2019) es-

timate the average log wage w→
x,y in an (x, y) match, as well as the share of such matches

ϱx,y. Their main findings are depicted in Figure 2 of their paper, as well as in Figure S7

in the supplemental appendix. We summarize those figures here. First, there is strong

sorting between workers and firms, with low-type firms mostly employing low-type workers

and high-type firms mostly employing high-type workers. Second, average log earnings are

increasing in the worker type and firm type. Third, the average log earnings of the lowest

worker type is the most responsive to the firm type, consistent with submodular average log

wages.11

Bonhomme, Lamadon and Manresa (2019) also use their estimates to decompose the

variance of log wages into four components: the variance of worker e”ects var(ς), the variance

of firm e”ects var(φ), twice the covariance between worker and firm e”ects 2cov(ς,φ), and

9We prove in Appendix C.2 that an equal proportional change in ω0 and ω1 causes a proportional change
in wages without a”ect matching patterns.

10In our model, ω1/ω0 determines the number of jobs that a worker holds per employment spell, or
equivalently the share of new hires that come from unemployment. In the BLM calibration, workers have
between 1.9 and 2.3 jobs per employment spell, so 44 to 52 percent of new hires come from unemployment.
In the KSS calibration, workers have 2.7 to 3.3 jobs per employment spell, so only 30 to 37 percent of hires
come from unemployment. Using French administrative data, Postel-Vinay and Robin (2002) estimate ω1/ω0
lies between 0.31 and 0.48, depending on worker occupation and skill category. Jolivet, Postel-Vinay and
Robin (2006) estimate this ratio to be 0.03 and 0.19 for di”erent European countries.

11Other papers present evidence consistent with submodular average log wages. Card, Heining and Kline
(2013) regress log wages on worker and establishment (firm) fixed e”ects, as we discuss in Section B. They
then sort workers and firms into deciles based on their estimated person and establishment e”ects and
compute the average residual for each of the one hundred combinations of deciles. Figure VI in their paper
shows that these residuals are on average positive when high types match with low types and negative when
low types match with low types or high types match with high types. This is consistent with submodular
average log wages, so low worker-types increase their average log wage by more than the typical worker when
they increase the firm type. On the other hand, Card, Cardoso and Kline (2016) show analogous calculations
using Portuguese data in Figures B5 and B6 of their online appendix. They find that log wage residuals are
positive for low-type workers working in low-type firms and negative for low-type workers in high-type firms,
which is consistent with average log wages being supermodular.
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var(logW ) var(ς) var(φ) 2cov(ς,φ) var(↼) corr(ς,φ)
BLM 0.1240 0.0747 0.0053 0.0166 0.0274 0.4190
KSS 0.1843 0.1119 0.0240 0.0294 0.0190 0.2830

Table 1: Decomposition of the variance of log wages into four components: variance of
worker types, firm types, twice its covariance and the variance of the error term. The first
row shows the decomposition reported in the dynamic model in Bonhomme, Lamadon and
Manresa (2019). Their Table I shows the variance of wages, while the relative variance of
the other components are in their Table V. The second row shows the decomposition in the
Leave-Out estimator in Kline, Saggio and Sølvsten (2020). Their Table I shows the variance
of the log daily wage, while their Table II shows the remaining components of the variance
decomposition.

the variance of the residual var(↼). They show their results in their Tables I and V.12 We

show them in the first row of our Table 1 for convenience.

Kline, Saggio and Sølvsten (2020) use a di”erent econometric methodology to perform

a similar variance decomposition using administrative data from the Veneto region of Italy.

They do not estimate the average log wage for each worker-firm pair, but instead impose that

the log wage is additive in the worker’s and firm’s unobserved type, as in Abowd, Kramarz

and Margolis (1999). They address biases in ordinary least squares estimates of the log wage

variance decomposition though their Leave-Out estimator. We use this decomposition, shown

in their Tables I and II and again repeated in the second row our Table 1 for convenience.

The di”erence in the variance decomposition between BLM and KSS comes from dif-

ferences in data sets (Sweden vs. Veneto, monthly earnings vs. daily wages, etc.), as well

as di”erences in the econometric methodologies.13 Notably, the overall variance of wages is

higher in the KSS data than in the BLM data, as are all components of the decomposition

except the wage residual. Firm e”ects are almost five times larger in the KSS data and the

correlation between worker and firm types is noticeably smaller. We take no stand on which

estimates are preferable, instead showing here that our model is able to match both.

For each set of estimates, we have four moments to target with the four parameters.14

12Bonhomme, Lamadon and Manresa (2019) propose two estimators, a static model and a dynamic
model. We report estimates from their dynamic model because our on-the-job search model satisfies the
assumptions needed for consistent estimation of their dynamic model but not of their static model. The
estimated variance of the firm e”ects in their static model is smaller, and indeed smaller than any other
estimates we are aware of in the literature.

13Our model makes no distinction between wages and hours for employed workers, since hours are fixed.
See Bonhomme, Holzheu, Lamadon, Manresa, Mogstad and Setzler (2023) for a comparison of di”erent
econometric approaches to estimating the variance decomposition. We believe both estimators are credible.

14By construction, var(logW ) = var(ϑ) + var(ϖ) + 2cov(ϑ,ϖ) + var(ϱ) and corr(ϑ,ϖ) =
cov(ϑ,ϖ)/

√
var(ϑ)var(ϖ). Since the four targets are a non-linear function of the model parameters, there is

no guarantee that we can match these moments.
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#w #f ⇁ ↽
BLM 0.05169 0.2698 0.964 22.15
KSS 0.07421 0.5853 4.103 81.43

Table 2: Calibrated Parameters to fit the BLM Dynamic Model and KSS Leave-Out variance
decomposition of log wages. In both cases, we assume ω1/ω0 = 0.2, ε = 0.5, r = 0.05, and
ϑ = 0.25.

In calculating the model-generated moments, we assume we have infinitely much data. This

means we know each worker’s type x and each firm’s type y. It also means that all dis-

tributions are deterministic functions of model parameters. Appendix B.2 details how we

compute the worker and firm fixed e”ects in the model, as well as the variance decomposition

of the log wage.

6.2 Calibration Results

Table 2 shows the calibrated parameters. Both calibrations hit the targets in Table 1. In

both calibrations, there is considerably more dispersion in firm types than in worker types,

#f > #w, even though the variance of worker fixed e”ects ς is considerably larger than the

variance in firm fixed e”ects φ.15 The slight di”erence in the correlation between ς and φ

between the two sets of moments masks large di”erences in the elasticity of substitution ⇁,

which is just below one for the BLM calibration but above 4 for the KSS calibration. And

finally, the smaller residual wage variance in the BLM calibration implies a much smaller

tail parameter for the match-specific shock distribution.

Figure 1 is a direct analogue of Figures 2 and S7 in Bonhomme, Lamadon and Manresa

(2019). The top row shows results from the BLM calibration, the bottom row from the

KSS calibration. The results are qualitatively very similar to those reported in Bonhomme,

Lamadon and Manresa (2019), though naturally results from our model are smoother than

those from real-world data. The left panels of Figure 1 shows the average log wage as a

function of firm type y. Each line corresponds to a di”erent worker type x. For the model

without on-the-job search, we proved in Proposition 2 that the average log wage is increasing

in x and y and submodular. The same results hold in our calibrated model with on-the-job

search, though the fact that the lines are nearly parallel implies that the average log wage

15In the BLM calibration, the most productive worker produces between 22.6 and 23.5 log points more
than the least productive worker at a given value of z, depending on firm type. The most productive firm
produces between 105 and 106 log points more that the least productive firm at a given level of z. In the
KSS calibration, these di”erences are bigger. The most productive worker produces 3.4 to 36.1 log points
more than the least productive at a given firm and match-specific shock realization. The most productive
firm produces 296 to 329 log points more than the least productive one.
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Figure 1: Average log wages and distribution of worker types conditional on firm type in
the model with on-the-job search for BLM and KSS calibration. The left panels show the
average log wage w→

x,y paid by di”erent firms for di”erent worker types. Each line represents
one worker type. The right panels show the distribution of worker types x in firms with
di”erent firm types y. The top row shows results for BLM calibration, bottom row for KSS
calibration. See Table 2 for parameter values.
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is almost additively separable in worker and firm types.

The right panels of Figure 1 shows the distribution of worker types in the di”erent firm

types, ϱx,y/
∑X

x→=1 ϱx→,y. The BLM calibration satisfies the monotone likelihood ratio order,

with high-type firms systematically employing relatively more high-type workers. This is

again consistent with the theoretical prediction without on-the-job search (Proposition 4).

The KSS calibration has a positive correlation between matched worker and firm types,

but the monotone likelihood ratio order is violated for the highest types of firms. That is,

while there is a lot of sorting by workers across the lowest five firm types, the distribution

of workers in the highest five firm types is fairly similar. This may be because the high

elasticity of substitution, ⇁ = 4.103, takes us away from the assumptions in Proposition 4.

The results from both calibrations are qualitatively the same, though there are di”erences

in magnitude resulting from di”erent calibration targets. For example, the average log wage

w→
x,y is more convex with respect to firm type y in the KSS calibration than BLM calibration,

a consequence of the higher variance of firm fixed e”ects.

Figures 5–8 in Appendix C.3 show results for both a lower and a higher value of employed

search intensity, ω1/ω0 = 0.1 and ω1/ω0 = 0.3. We recalibrate the four parameters #w, #f , ⇁,

and ↽ to match the same variance decomposition. We find the same qualitative patterns for

average log wages and sorting. We conclude that our model provides a plausible mechanism

for interpreting the findings in papers like Bonhomme, Lamadon and Manresa (2019) and

Kline, Saggio and Sølvsten (2020).

7 Testing for Selection

Following Abowd, Kramarz and Margolis (1999), a large literature regresses the log wage

wi,t of worker i employed by firm Ji,t at time t on fixed e”ects ςi for worker i, fixed e”ects

φJi,t for the employer Ji,t, and an error term, as in equation (16). As we discussed in

Section 3.4, a key question is whether the firm e”ects capture the impact of an exogenously-

induced job change. In our model this is not the case, because matches only form when the

match-specific productivity shock z is su!ciently high. This selection violates the exogenous

mobility assumption (Card, Heining and Kline, 2013; Abowd, McKinney and Schmutte, 2019;

Kline, 2024). This section shows why testing for such selection using administrative wage

data is impossible unless the researcher takes a stand on the data generating process. We

also use our model as a laboratory for evaluating the power of one popular test, the event

study proposed by Card, Heining and Kline (2013).
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7.1 The Di!culty of Testing

Using administrative wage data, we cannot test whether there is selection without impos-

ing auxiliary assumptions on the structure of the economy. This fundamental identification

problem arises because we can construct alternative models that generate identical adminis-

trative wage data but have di”erent underlying selection mechanisms. Building on an insight

from Flinn and Heckman (1982), we demonstrate this by constructing a model without se-

lection that exactly replicates the observable outcomes of our baseline model with selection.

For expositional simplicity, we assume there is no on-the-job search.

In our alternative model, we modify two key assumptions: random search and the distri-

bution of match-specific shocks. Fix z̄x,y from our model with selective job acceptance. We

assume that a type-x worker meets a type-y firm at rate ωS(z̄x,y)vy (rather than ωvy). In that

event, they draw a match-specific productivity shock with survival function S(z)/S(z̄x,y) for

z ↗ z̄x,y (rather than S(z) for z ↗ z0), and the wage is given by Wx,y(z) defined in equa-

tion (9).

By construction, the acceptance thresholds are identical across the two models, but in

the alternative model all meetings result in matches, eliminating selection. The two models

therefore generate identical observable outcomes in administrative data sets, particularly the

joint distribution of wages and match partners. This observational equivalence implies that

researchers working with such data cannot test whether observed wages represent a random

or selected sample from the broader distribution of potential wages.

The observational equivalence of models with and without selection poses a fundamental

empirical challenge. Recall from Section 3.4 that if mobility is exogenous, we can infer

the potential log wages from exogenously induced job accessions (wp
x,y) using observed log

wages (w→
x,y) without the need for a structural model. In our baseline model, mobility is

endogenous because matches only form when the match-specific productivity shock z exceeds

the threshold z̄x,y, causing wp
x,y to be systematically smaller than w→

x,y. The alternative model

modifies meeting rates and the distribution of productivity shocks to ensure that all meetings

result in matches. This implies wp
x,y = w→

x,y. It follows from the observational equivalence

between these two models that administrative data alone cannot tell us the potential wages

from exogenously induced accessions. Economic theory combined with alternative sources

of variation, such as quasi-experimental policy changes that a”ect meeting rates between

specific worker and firm types, could help identify whether there is selection and what are

the wages from exogenously induced job accessions.
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7.2 Event Studies

To circumvent the di!culty of testing for exogenous mobility directly, the literature has

proposed proxies. Card, Heining and Kline (2013) introduced the best-known test. They

looked at whether the wage gains of workers who move from one establishment to another

are equal in magnitude and opposite in sign to the wage gains of workers who move in the

opposite direction. They argue that this would not be the case in models where workers

select which jobs to take based on the wage. Examples include the Burdett and Mortensen

(1998) model of on-the-job search as well as our model. In these environments, workers

always enjoy a wage increase when voluntarily switching jobs. Card, Heining and Kline

(2013) and subsequent research by these authors find remarkable support for the “equal in

magnitude and opposite in sign” prediction.

We replicate their test on data generated from our calibrated model. We describe the

procedure for generating artificial data in detail in Appendix D. We stress that we apply

the same sample selection criteria as Card, Heining and Kline (2013). We use our model to

generate work histories for 500,000 workers at 5000 firms. We focus on workers’ main job,

defined as the job with the highest earnings in the given year. We classify firms into quartiles

based on co-workers’ average log wages. And finally, we select job switchers between years

t and t + 1 who have the same main job in years t ↔ 1 and t as well as years t + 1 and

t + 2. Importantly, we do not condition on whether the move involves an intervening spell

of unemployment, but we do often drop such spells because workers fail to spend two years

in the same main job immediately after an unemployment spell.

Figure 2 shows the mean log wages of movers in the model-generated data for both

calibrations.16 In the figure, the move happens between years -1 and 0. We comment on a

few features of the figure and compare them to the data.

First, a worker going from quartile q1 to quartile q2 generally earns more in both jobs

if q1 or q2 is bigger. Card, Heining and Kline (2013) observe this in the data, writing on

page 985 that “di”erent mobility groups have di”erent wage levels before and after a move.”

The same forces that lead to a firm e”ect in wages explains the impact of q1 on the first

wage and q2 on the second wage. To understand the impact of q2 on the first wage or q1 on

the second wage, we note that this event study does not condition on the worker’s type. In

the model, the worker’s wage depends on their type and their employer’s type, but not on

future or past employers. However, future and past employers’ types are correlated with the

workers’ type because of assortative matching, and thus help to predict the workers’ wage.

16We generated 100 samples from the model to compute the standard errors. Standard errors are very
small: the 95% confidence intervals for di”erent combinations of quartiles have length between 0.01 and 0.03,
and so we do not show them in the figure.
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Figure 2: Mean log wages of movers in the artifical data generated from our model with
on-the-job search. We select movers who change jobs between times -1 and 0, and have
at least two years of tenure in both origin and destination firm. The left panel shows the
results from the model calibrated to match the BLM wage decomposition, the right panel is
calibrated to match the KSS wage decomposition. See Table 2 for parameter values.

This is particularly so in the BLM calibration, since matching patterns satisfy the monotone

likelihood ratio order.

Second, wages are stable in the year before and after the move. In our model this happens

by construction since wages do not change during the match.

Third, the mean log changes for upward and downward moves are nearly symmetric. This

is easier to see in Figure 3. The figure shows pairs of quartiles q1 and q2, with q1 ⇐= q2, and

depicts the mean log wage change associated with the upward and downward move. If the

gains were exactly symmetric, they would be aligned along the minus 45 degree line, shown

in red. We see that the data points lie very close to this line. Card, Heining and Kline

(2013) argue that “This symmetry suggests that a simple model with additive worker and

establishment e”ects may provide a reasonable characterization of the mean wages resulting

from di”erent pairings of workers to establishments (p. 985).” We agree with this statement,

but our model illustrates why that does not imply the exogenous mobility restriction.

To understand why our model generates these patterns, first consider the model without

on-the-job search, where all job transitions occur through unemployment. In this case,

the symmetry of wage changes has a simple two-part explanation. First, the distribution of

worker types moving between quartiles q1 and q2 is identical regardless of the direction of the
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Figure 3: Mean log wage change of upward and downward movers from our model with on-
the-job search. Each square labeled q1 ⇒ q2 represents a pair of firm quartiles (q1, q2), with
q1 < q2. The horizontal axis shows the mean log wage gain of moving from q1 to q2, while
the vertical axis shows the mean log wage gain of moving from q2 to q1. The red dashed line
represents symmetric changes for upward and downward movers. The left panel shows the
results from the model calibrated to match the BLM wage decomposition, the right panel is
calibrated to match the KSS wage decomposition. See Table 2 for parameter values.

move, since each worker has the same probability of moving from q1 before an unemployment

spell to q2 after one, or having these jobs in the reverse order. Second, at each firm type, the

average log wage depends only on the worker’s and firm’s types, not on their employment

history. These two properties together guarantee exact symmetry in wage changes for upward

and downward moves. Bonhomme, Lamadon and Manresa (2019) first made this observation

in a model without on-the-job search and without idiosyncratic shocks.

With on-the-job search, this exact symmetry breaks down because employed workers also

accept new jobs that o”er higher wages. Still, the steady state assumption imposes strong

restrictions on mobility patterns. Consider a simple example with just two groups of firms

(high-wage and low-wage) and no sample restrictions on job tenure. In steady state, if there

were no average wage change for workers who stay within the same group of firms, then

the wage gains of workers moving from low-wage to high-wage firms must exactly equal the

wage losses of workers moving in the opposite direction. This exact symmetry breaks down

because we have four quartiles of firms, modest wage changes for workers who switch firms

but stay in the same quartile, and a job tenure restriction on the sample. Nevertheless, our

quantitative analysis shows that the calibrated model generates the near-symmetric patterns

observed in empirical work.
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We note that the magnitude of wage changes di”ers between our two calibrations. For

example, the magnitude of wage gains for movers between quartile 1 and quartile 4 is twice

as large in the KSS as the BLM calibration. This is directly related to the role of firm fixed

e”ects. Since BLM attributes relatively little of the overall wage variation to firm e”ects,

the wage gains and losses from interquartile moves are relatively small.

There are two takeaways from this exercise. First, we show that our model can quantita-

tively replicate additional patterns that have been documented for several countries. Second,

it shows that the tests presented in Figure 2 and Figure 3 do not necessarily detect the pres-

ence of selection. Indeed, based on these figures one would be tempted to conclude that the

exogenous mobility assumption is not violated in our model. We know that it is.

8 The Surplus of Matches and Meetings

A fundamental challenge in labor economics is evaluating policies that aim to encourage

the most e!cient worker-firm matches in the labor market. Place-based policies and similar

interventions often try to encourage meetings between specific types of workers and firms,

assuming these meetings will lead to productive matches (Bilal, 2023; Hong, 2024). However,

policymakers typically must rely on observed wage patterns to guide these interventions,

which our analysis reveals may be misleading. The expected surplus created by encouraging a

meeting between a worker and firm can di”er substantially from the average surplus observed

in successful matches. This distinction matters because selective hiring means that only the

most productive meetings result in matches, potentially creating a deceptive picture of which

worker-firm meetings policymakers should encourage.

To rigorously evaluate these policies, we measure their marginal e”ects, specifically, how

much value is created by generating one additional meeting between any given type of worker

and firm. This measurement is challenging because we typically only observe outcomes for

meetings that result in successful matches. Our model allows us to distinguish between these

concepts by precisely defining and measuring two di”erent quantities: the expected surplus

from a random meeting between a worker and firm (before they learn their match quality),

and the average surplus observed in realized matches.

Formally, the value of a meeting between an unemployed worker and a vacancy is captured

by the match surplus V s
x,y(z) in equation (25). We define the average surplus in meetings
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as17

V̄ s,m
x,y ↑

∫ ↑

z0

V s
x,y(z)s(z)dz. (32)

We also define the average surplus of a new match between an unemployed worker and a

vacancy,

V̄ s
x,y ↑

1

S(z̄x,y)

∫ ↑

z̄x,y

V s
x,y(z)s(z)dz. (33)

The average surplus in meetings, V̄ s,m
x,y , captures the expected value that an unemployed

type-x worker and a vacant type-y firm would get from creating a single meeting between

them, before learning their match-specific productivity z. This is distinct from the average

surplus in matches, V̄ s
x,y, which only considers meetings that actually result in employment

relationships. The surplus of matches is analogous to the wage in administrative data sets,

capturing only the value of meetings that result in matches. The surplus of meetings is

more relevant for thinking about the marginal value of place-based policies, which alter the

number of (x, y) matches by creating more meetings between type-x workers and type-y

firms, many of which may not result in matches.

In Figure 4, we plot the average surplus in a new (x, y) match, V̄ s
x,y, in the left panel,

and the average surplus in any (x, y) meeting, V̄ s,m
x,y , in the right panel. The top row shows

the model calibrated to match the BLM wage decomposition, the bottom row the KSS wage

decomposition.

The left panels are reminiscent of the average log wage results in left panels of Figure 1:

the average surplus in matches is increasing in firm type for each worker type. Looking at

this panel, one might be tempted to conclude that all workers benefit more-or-less equally

from meeting higher-type firms.

The right panels of the same figure, where we show average surplus in meetings, chal-

lenge this conclusion. In the model calibrated to BLM, the average surplus in a meeting is

decreasing in the firm type for the lowest-type worker. The lowest worker type gains the

largest surplus from meeting with a type-1 firm and gets around 75 percent less surplus from

meeting a type-10 firm. In the KSS calibration, the average surplus in a meeting is u-shaped

for the lowest worker type. This worker prefers meeting a type-1 firm to meeting a firm with

a median type.

The di”erence between the left and right panels is selection: while the left panels show

the average surplus in meetings that result in matches, the right panels show the average

surplus in all meetings, keeping the support of the z distribution the same for every pair. In

17For this definition alone, we set the lower bound on the match-specific shock distribution, z0, equal to
the minimum acceptance threshold across (x, y) pairs, z0 = minx,y z̄x,y, where the acceptance threshold z̄x,y
is implicitly defined by V s

x,y(z̄x,y) = 0.

31



1 2 3 4 5 6 7 8 9 10
0.2

0.5

1

Average surplus in matches V̄ s
x,y, BLM

1 2 3 4 5 6 7 8 9 10

0.1

1

Average surplus in meetings V̄ s,m
x,y , BLM

1 2 3 4 5 6 7 8 9 10

0.1

1

firm type y

Average surplus in matches V̄ s
x,y, KSS

x = 1 x = 2 x = 3 x = 4 x = 5
x = 6 x = 7 x = 8 x = 9 x = 10

1 2 3 4 5 6 7 8 9 10

0.01

0.1

firm type y

Average surplus in meetings V̄ s,m
x,y , KSS

Figure 4: Average surplus in matches (left) and meetings (right) when z0 is equal to the
minimum threshold across (x, y) pairs, with ω1 = 0.2ω0. Top row shows the BLM calibration,
bottom row KSS calibration. Each line represents one worker type and each point one firm
type. Vertical scales are logarithmic. The top panels show the results from the model
calibrated to match the BLM wage decomposition, the bottom panels are calibrated to
match the KSS wage decomposition. See Table 2 for parameter values.
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other words, the right panel is not a”ected by selection of worker types into firms based on

the realized value of z. In light of the fact that high-type firms rarely hire low-type workers,

as illustrated in the right panels of Figure 1, it should not be surprising that there is little

surplus in such matches, as shown in the right panels of Figure 4.

Our structural model demonstrates that the relationship between match surplus and

meeting surplus is far from straightforward. Despite monotonically increasing match sur-

pluses in both calibrations for all worker types as firm quality rises, the surplus of meetings

exhibits markedly di”erent patterns across calibrations. Notably, in the BLM calibration,

the lowest-type workers prefer meeting the lowest-type firms, while in the KSS calibration,

they prefer a mix of low and very high-type firms. Crucially, in both scenarios, high-type

workers stand to gain the most from meetings with higher-type firms, an insight entirely

masked by the submodular nature of average log wages.

These findings underscore the importance of structural modeling in labor economics for

predicting the e!cacy of policies aimed at reducing wage inequality. For instance, job

search assistance programs might be redesigned to target specific worker-firm pairings that

maximize the surplus of meetings, rather than supporting high wage matches that may be

di!cult to create. Similarly, education and training policies could be tailored to enhance

the gains from meetings between workers and firms, rather than simply aiming to increase

average wages. Policies promoting labor mobility and firm relocation might also be refined

to encourage moves that increase the likelihood of valuable meetings, not just high-wage

matches. Without such structural insights, policymakers risk misinterpreting wage data

and implementing counterproductive measures. By revealing these aspects of the labor

market, our approach provides a more nuanced and accurate foundation for crafting e”ective

interventions to address issues of job matching and wage inequality.

9 Conclusion

We have developed a random search model of the labor market with ex ante heterogeneous

workers and firms and ex post match-specific productivity shocks. A single selection equation

determines which meetings result in matches and the resulting model can explain multiple

empirical patterns. When the distribution of match-specific shocks is Pareto or exponen-

tial, this selection mechanism delivers three results. First, we show that on average, more

productive workers earn higher wages at any type of firm and more productive firms pay

higher wages to any type of worker. Second, we show that with reasonable restrictions on

the production function, there is assortative matching. And finally, we show that more pro-

ductive workers earn more on average and more productive firms pay more on average, so
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high productivity workers and firms are the same as high wage workers and firms.

We also argue that our model is consistent with a variety of facts in the empirical labor

economics literature built around the Abowd, Kramarz and Margolis (1999) wage equation

and the non-separable specification in Bonhomme, Lamadon and Manresa (2019). In partic-

ular, we show how this selection mechanism shapes the decomposition of the cross-sectional

variance of log wages into its four components, the variance of worker e”ects, the variance

of firm e”ects, their covariance, and the variance of the residual.

Additionally, our model predicts that average log wages may be submodular—low-wage

workers gain proportionately more than high-wage workers when they move from low-wage

to high-wage firms—while simultaneously low-wage workers may be disproportionately em-

ployed at low-wage firms. In our model, this reflects the same selection mechanism. Low-

wage workers rarely accept high-wage jobs, but when they do, productivity is so high that

their average log wage is also very high.

Our theory cautions against prevailing interpretations of empirical patterns in labor eco-

nomics. For instance, the “establishment-specific wage premiums” identified by Card, Hein-

ing and Kline (2013) and many other papers may not solely reflect rent-sharing, e!ciency

wages, or strategic wage posting. Instead, our model suggests that selection significantly

shapes these premiums. It follows that these wage premia may not be informative about

the wage gains from exogenously-induced accessions, as we illustrate through our quantita-

tive analysis of the surplus from meetings and the surplus from matches. This distinction

may have profound implications for policies aimed at altering sorting in the labor market to

address wage inequality.

Our analysis also reveals limitations in using administrative wage data to infer properties

of production functions. The relationship between worker and firm types in wage data

may not directly reflect complementarities in production, as selection processes can mask

these underlying relationships. This finding underscores the need for structural models to

disentangle the complex interplay between production technologies, worker-firm sorting, and

observed wage patterns.

The importance of selection extends to recent studies examining time-varying firm types,

such as Engbom, Moser and Sauermann (2023) and Lachowska, Mas, Saggio and Woodbury

(2023). Our model implies that changes in estimated firm fixed e”ects over time may capture

shifts in selection patterns rather than actual changes in firm pay policies. This nuance is

crucial for correctly interpreting empirical findings and their policy implications.

Our findings speak to work by Card, Cardoso, Heining and Kline (2018), Lamadon,

Mogstad and Setzler (2022), and Lamadon, Lise, Meghir and Robin (2024), who posit that

high-wage workers systematically value amenities at high-wage firms more than low-wage

34



workers do. While this systematic di”erence in amenity valuations can explain the empir-

ical patterns, it requires a particular correlation between worker productivity and amenity

preferences. Our model demonstrates that selection alone—a simpler and more fundamental

mechanism—can generate the same key empirical regularities. This does not rule out an

important role for amenities. Indeed, we believe that idiosyncratic variation in how workers

value di”erent workplace characteristics influences individual job choices. But our parsimo-

nious explanation suggests that selection may be the primary driver of aggregate sorting

patterns. Future research should seek to understand the data needed to identify the role of

selection versus both systematic and idiosyncratic amenity valuations in shaping observed

wages and sorting patterns.

In summary, our approach o”ers a new perspective on empirical wage and worker-firm

sorting patterns. By highlighting the potential role of selection in shaping observed patterns,

our framework encourages a more nuanced interpretation of these findings and suggests new

avenues for research. We hope that our framework will contribute to ongoing research about

wage determination, sorting, and the design and limitations of e”ective labor market policies.
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Appendix

A Proofs

A.1 Existence and Monotonicity

Proof of Proposition 1. Consider the following 2(X + Y ) functions of (w̄x, ux)Xx=1 and

(ϖ̄y, vy)Yy=1:

T1,x(w̄, ϖ̄, u, v) =
εω

r + ϑ

Y∑

y=1

vyfx,y

∫ ↑

z̄x,y

(z ↔ z̄x,y)s(z)dz,

T2,y(w̄, ϖ̄, u, v) =
(1↔ εω)

r + ϑ

X∑

x=1

uxfx,y

∫ ↑

z̄x,y

(z ↔ z̄x,y)s(z)dz,

T3,x(w̄, ϖ̄, u, v) = mx ↔
Y∑

y=1

ωuxvyS(z̄x,y)

ϑ
,

T4,y(w̄, ϖ̄, u, v) = ny ↔
X∑

x=1

ωuxvyS(z̄x,y)

ϑ
,

where z̄x,y = (w̄x + v̄y)/fx,y, as in equation (6). We refer to this mapping collectively as

T = (T1, T2, T3, T4). It is immediate that any vector (w̄, ϖ̄, u, v), together with z̄ solving

equation (6) and ϱ solving equation (12), is an equilibrium if and only if it is a fixed point

of T , i.e. T (w̄, ϖ̄, u, v) = (w̄, ϖ̄, u, v).

Now define the mapping T̃ :

T̃1,x(w̄, ϖ̄, u, v) = min {T1,x(w̄, ϖ̄, u, v), ¯̄wx} ,

T̃2,y(w̄, ϖ̄, u, v) = min {T2,y(w̄, ϖ̄, u, v), ¯̄ϖy} ,

T̃3,x(w̄, ϖ̄, u, v) = max {T3,x(w̄, ϖ̄, u, v), 0} ,

T̃4,y(w̄, ϖ̄, u, v) = max {T4,y(w̄, ϖ̄, u, v), 0} ,

where

¯̄wx =
εω

r + ϑ

Y∑

y=1

nyfx,y

∫ ↑

¯̄wx/fx,y

(z ↔ ¯̄wx/fx,y)s(z)dz,

¯̄ϖy =
(1↔ ε)ω

r + ϑ

X∑

x=1

mxfx,y

∫ ↑

¯̄ϖy/fx,y

(z ↔ ¯̄ϖy/fx,y)s(z)dz.
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The mapping T̃ is continuous. Moreover, it maps points satisfying w̄x ↓ [0, ¯̄wx], ϖ̄y ↓ [0, ¯̄ϖy],

ux ↓ [0,mx], and vy ↓ [0, ny] for all x ↓ {1, . . . , X} and y ↓ {1, . . . , Y } into itself. Therefore

T̃ has a fixed point by Brouwer’s fixed point theorem.

We prove that at any (w̄, ϖ̄, u, v) which is a fixed point of T̃ , T (w̄, ϖ̄, u, v) = T̃ (w̄, ϖ̄, u, v),

and thus (w̄, ϖ̄, u, v) is also a fixed point of T . In the first step we prove that ux > 0 for all

x. This is because if ux = 0, T̃3,x(w̄, ϖ̄, u, v) = mx, contradicting (w̄, ϖ̄, u, v) being a fixed

point. This implies T̃3,x(w̄, ϖ̄, u, v) = T3,x(w̄, ϖ̄, u, v) for all x at any fixed point. Similarly

vy > 0 at any fixed point of T̃ and so T̃4,y(w̄, ϖ̄, u, v) = T4,y(w̄, ϖ̄, u, v) for all y at any fixed

point.

Next, any fixed point has w̄x > 0 for all x: T̃1,x(w̄, ϖ̄, u, v) is continuous and decreasing

in w̄x and is strictly positive at w̄x = 0 since vy > 0 for all y. Similarly any fixed point has

ϖ̄y > 0 for all y.

Finally, in any fixed point of T̃ , any solution to T̃1,x(w̄, ϖ̄, u, v) = w̄x has w̄x < ¯̄wx because

ϖ̄y > 0. This implies that the fixed point of T̃ also solves T̃1,x(w̄, ϖ̄, u, v) = T1,x(w̄, ϖ̄, u, v) for

all x. The same logic implies T̃2,y(w̄, ϖ̄, u, v) = T2,y(w̄, ϖ̄, u, v) for all y in any fixed point.

In summary, we have proved that there exists a vector (w̄, ϖ̄, u, v) with T̃ (w̄, ϖ̄, u, v) =

(w̄, ϖ̄, u, v), that at any such vector T (w̄, ϖ̄, u, v) = T̃ (w̄, ϖ̄, u, v) and so (w̄, ϖ̄, u, v) is a fixed

point of T , and that any fixed point of T is an equilibrium. This proves an equilibrium

exists.

Along the way we also proved that w̄x > 0 for all x and ϖ̄y > 0 for all y at any fixed

point of T̃ , and hence in any equilibrium.

Proof of Lemma 1. We prove that w̄x is strictly increasing. The proof that ϖ̄y is strictly

increasing is analogous.

To find a contradiction, suppose there exists an x1 < x2 with w̄x1 ↗ w̄x2 . Since f is

monotonic, fx2,y > fx1,y for all y. Then using equation (6), we have z̄x1,y > z̄x2,y for all y.

Additionally, observe that
∫↑
z̄ (z ↔ z̄)s(z)dz is strictly positive for all z̄, since S(z) > 0 for

all z. Additionally, the integral is decreasing in z̄, as can be confirmed directly. This means

that
∫↑
z̄x2,y

(z ↔ z̄x2,y)s(z)dz >
∫↑
z̄x1,y

(z ↔ z̄x1,y)s(z)dz > 0.

Putting this together, if there exists an x1 < x2 with w̄x1 ↗ w̄x2 ,

w̄x2 =
εω

r + ϑ

Y∑

y=1

vyfx2,y

∫ ↑

z̄x2,y

(z ↔ z̄x2,y)s(z)dz

>
εω

r + ϑ

Y∑

y=1

vyfx1,y

∫ ↑

z̄x1,y

(z ↔ z̄x1,y)s(z)dz = w̄x1 ,
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where the two equations use the value function (10) and the inequality uses fx2,y > fx1,y

and
∫↑
z̄x2,y

(z ↔ z̄x2,y)s(z)dz >
∫↑
z̄x1,y

(z ↔ z̄x1,y)s(z)dz > 0, together with strict positivity of the

remaining terms. But this is a contradiction, proving w̄x1 < w̄x2 .

A.2 Average Log Wage

Proof of Proposition 2. We prove a more general version of this proposition. For any

strictly increasing function G : R+ → R, define

wG
x,y =

∫↑
z̄x,y

G(Wx,y(z))s(z)dz

S(z̄x,y)
. (34)

From equations (6) and (9), we have

Wx,y(z) = w̄x + ε(w̄x + ϖ̄y)

(
z

z̄x,y
↔ 1

)
.

Using equation (34) and the functional form of the Pareto distribution, we obtain

wG
x,y =

∫↑
z̄x,y

G
(
w̄x + ε(w̄x + ϖ̄y)

(
z/z̄x,y ↔ 1

))
↽z↓ϑ↓1dz

z̄↓ϑ
x,y

.

Now let q = z/z̄x,y ↔ 1 and perform a change in the variable of integration to obtain

wG
x,y ↑

∫ ↑

0

G
(
w̄x + ε(w̄x + ϖ̄y)q

)
↽(1 + q)↓ϑ↓1dq.

Setting G(W ) = log(W ) for all W gives us equation (17). This equation implies that wG
x,y

is simply a weighted average of G
(
w̄x + ε(w̄x + ϖ̄y)q

)
, with the same weights for all (x, y).

This means that x and y only a”ect wG
x,y through w̄x and ϖ̄y.

Now since G is strictly increasing, it is straightforward to verify that increasing either

w̄x or ϖ̄y raises the integrand in equation (17) at all q > 0, and hence raises wG
x,y. This

establishes the first two enumerated points.

We next prove the third point if G is strictly concave. If G is strictly convex, we prove

wG
x1,y2 + wG

x2,y1 < wG
x1,y1 + wG

x2,y2 . If G is linear, this is an equality. Take x1 and x2 with

w̄x1 < w̄x2 ; and y1 and y2 with ϖ̄y1 < ϖ̄y2 . Let

⇀ ↑ (1 + εq)(w̄x2 ↔ w̄x1)

(1 + εq)(w̄x2 ↔ w̄x1) + εq(ϖ̄y2 ↔ ϖ̄y1)
.
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The assumptions on x1, x2, y1, and y2 ensure that ⇀ ↓ (0, 1) for all q > 0. Then verify

algebraically that

w̄x1 + ε(w̄x1 + ϖ̄y2)q = ⇀(w̄x1 + ε(w̄x1 + ϖ̄y1)q) + (1↔ ⇀)(w̄x2 + ε(w̄x2 + ϖ̄y2)q), and

w̄x2 + ε(w̄x2 + ϖ̄y1)q = (1↔ ⇀)(w̄x1 + ε(w̄x1 + ϖ̄y1)q) + ⇀(w̄x2 + ε(w̄x2 + ϖ̄y2)q).

Thus G concave (convex) implies

G(w̄x1 + ε(w̄x1 + ϖ̄y2)q) > (<)⇀G(w̄x1 + ε(w̄x1 + ϖ̄y1)q) + (1↔ ⇀)G(w̄x2 + ε(w̄x2 + ϖ̄y2)q), and

G(w̄x2 + ε(w̄x2 + ϖ̄y1)q) > (<)(1↔ ⇀)G(w̄x1 + ε(w̄x1 + ϖ̄y1)q) + ⇀G(w̄x2 + ε(w̄x2 + ϖ̄y2)q).

Summing these gives

G
(
w̄x1 + ε(w̄x1 + ϖ̄y2)q

)
+G

(
w̄x2 + ε(w̄x2 + ϖ̄y1)q

)

> (<)G
(
w̄x1 + ε(w̄x1 + ϖ̄y1)q

)
+G

(
w̄x2 + ε(w̄x2 + ϖ̄y2)q

)

when G is concave (convex). Integrating over the density ↽(1 + q)↓ϑ↓1 for q > 0 delivers the

third bullet point.

Finally, we note that if fx,y is strictly increasing in x and y, Lemma 1 implies w̄x and

ϖ̄y are strictly increasing. Then the three numbered conditions in the statement of the

proposition imply that wG
x,y is strictly increasing and strictly submodular (supermodular) in

x and y when G is strictly concave (convex).

Before proving Proposition 3, we establish a preliminary result:

Lemma 2 Assume fx,y = f 1
xf

2
y for strictly positive and strictly increasing functions f 1

and

f 2
. Then w̄x/f 1

x and ϖ̄y/f 2
y are strictly increasing.

Proof. We prove that w̄x/f 1
x is strictly increasing. To find a contradiction, assume there

is an x1 < x2 with w̄x1/f
1
x1

↗ w̄x2/f
1
x2
. Note x1 < x2 implies 1/f 1

x1
> 1/f 1

x2
. Equation (6)

states

z̄x,y =
w̄x
f1
x
+ ϖ̄y

f1
x

f 2
y

,

and so z̄x1,y > z̄x2,y for all y. Moreover, equation (10) implies

w̄x

f 1
x

=
εω

r + ϑ

Y∑

y=1

vyf
2
y

∫ ↑

z̄x,y

(z ↔ z̄x,y)s(z)dz.
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Since the integral is decreasing in z̄x,y, we have
w̄x1
f1
x1

<
w̄x2
f1
x2
, a contradiction.

The proof that ϖ̄y/f 2
y is strictly increasing is identical, manipulating equation (11) instead

of equation (10).

Proof of Proposition 3. For the first part of the Proposition, we again work with the

more general version, using wG defined in equation (34) for an arbitrary increasing function

G. From the wage equation (9) and the exponential distribution, we have

wG
x,y = ↽

∫ ↑

z̄x,y

G(w̄x + ε(zfx,y ↔ w̄x ↔ ϖ̄y))e
↓ϑ(z↓z̄x,y)dz.

Let q = z ↔ z̄x,y to get

wG
x,y = ↽

∫ ↑

0

G(w̄x + ε((q + z̄x,y)fx,y ↔ w̄x ↔ ϖ̄y))e
↓ϑqdq.

From equation (6), we can reduce this to

wG
x,y = ↽

∫ ↑

0

G(w̄x + εqfx,y)e
↓ϑqdq,

which is equivalent to equation (18) when G(W ) = logW for allW . If f is strictly increasing,

so is w̄x (Lemma 1). And since G is strictly increasing, then the integrand in equation (18)

is strictly increasing in both x and y for all q. Thus wG is strictly increasing.

Finally we turn to the multiplicatively separable case, fx,y = f 1
xf

2
y . Here we assume

G(W ) = logW . We use equation (18). w→ is strictly submodular if

log(w̄x + εqf 1
xf

2
y )

is strictly submodular for all q > 0. So take x1 < x2 and y1 < y2. Strict submodularity

requires

log(w̄x1 + εqf 1
x1
f 2
y1) + log(w̄x2 + εqf 1

x2
f 2
y2) < log(w̄x1 + εqf 1

x1
f 2
y2) + log(w̄x2 + εqf 1

x2
f 2
y1),

or equivalently

(w̄x1 + εqf 1
x1
f 2
y1)(w̄x2 + εqf 1

x2
f 2
y2) < (w̄x1 + εqf 1

x1
f 2
y2)(w̄x2 + εqf 1

x2
f 2
y1).

Expand the products and cancel common terms to get

w̄x1f
1
x2
f 2
y2 + w̄x2f

1
x1
f 2
y1 < w̄x1f

1
x2
f 2
y1 + w̄x2f

1
x1
f 2
y2
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or (
w̄x2

f 1
x2

↔ w̄x1

f 1
x1

)
(f 2

y2 ↔ f 2
y1) > 0.

Lemma 2 implies the first term is positive for all x1 < x2 and the second term is positive by

assumption.

A.3 Assortative Matching

Proof of Proposition 4. We first prove that z̄x,y is strictly log-submodular. Substituting

equation (6) for z̄, we must prove that for x1 < x2 and y1 < y2,

(
w̄x1 + ϖ̄y1

fx1,y1

)(
w̄x2 + ϖ̄y2

fx2,y2

)
<

(
w̄x1 + ϖ̄y2

fx1,y2

)(
w̄x2 + ϖ̄y1

fx2,y1

)
.

Weak log supermodularity of f implies fx1,y1fx2,y2 ↗ fx1,y2fx2,y1 . And we see that the product

of the numerators on the left hand side is smaller than the product of the numerators on the

right hand side if and only if

w̄x1 ϖ̄y2 + w̄x2 ϖ̄y1 < w̄x1 ϖ̄y1 + w̄x2 ϖ̄y2 ⇑ (w̄x2 ↔ w̄x1)(ϖ̄y2 ↔ ϖ̄y1) > 0.

This is immediate because w̄ and ϖ̄ are strictly increasing (Lemma 1).

We now use the assumption that S(z) = (z/z0)↓ϑ. Then since log z̄x,y is strictly submod-

ular, logS(z̄x,y) = ↽ log z0↔ ↽ log z̄x,y is strictly supermodular. Finally, equation (12) implies

that log ϱx,y inherits the strict supermodularity of logS(z̄x,y); and strict log-supermodularity

of ϱ is equivalent to ϱ having the monotone likelihood ratio order.

Proof of Proposition 5. We split the proof into two pieces.

↔1/fx,y weakly supermodular. Take any x1 < x2 and y1 < y2. Then

(
1

fx2,y2

↔ 1

fx2,y1

)
(w̄x2 ↔ w̄x1) < 0,

(
1

fx2,y2

↔ 1

fx1,y2

)
(ϖ̄y2 ↔ ϖ̄y1) < 0,

since in both cases the first term is negative (since f is positive and strictly increasing) and

the second term is positive by Lemma 1. Additionally, 1/f submodular implies

1

fx1,y1

+
1

fx2,y2

↘ 1

fx1,y2

+
1

fx2,y1

.
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Multiply each term in the last inequality by w̄x1 + ϖ̄y1 and add to the preceding inequalities

to get
w̄x1 + ϖ̄y1

fx1,y1

+
w̄x2 + ϖ̄y2

fx2,y2

<
w̄x1 + ϖ̄y2

fx1,y2

+
w̄x2 + ϖ̄y1

fx2,y1

,

From equation (6), this implies that z̄x,y is strictly submodular.

Next, in steady state with an exponential distribution, we have from equation (12) that

log ϱx,y = log(ω/ϑ) + log ux + log vy ↔ ↽z̄x,y.

Since z̄x,y is strictly submodular and the other terms are amodular, this proves that log ϱx,y

is strictly supermodular, i.e. that ϱ has the monotone likelihood ratio order.

fx,y multiplicatively separable. Assume fx,y = f 1
xf

2
y for some strictly positive and

strictly increasing functions f 1 and f 2. As in the other case, we must prove that for all

x2 > x1 and y2 > y1, z̄x,y is strictly submodular:

w̄x1 + ϖ̄y1

f 1
x1
f 2
y1

+
w̄x2 + ϖ̄y2

f 1
x2
f 2
y2

<
w̄x1 + ϖ̄y2

f 1
x1
f 2
y2

+
w̄x2 + ϖ̄y1

f 1
x2
f 2
y1

.

Regroup terms to write this as

(
w̄x1

f 1
x1

↔ w̄x2

f 1
x2

)(
1

f 2
y1

↔ 1

f 2
y2

)
+

(
ϖ̄y1

f 2
y1

↔ ϖ̄y2

f 2
y2

)(
1

f 1
x1

↔ 1

f 1
x2

)
< 0.

Lemma 2 establishes that of w̄x/f 1
x is increasing. A parallel (omitted) proof establishes

monotonicity of ϖ̄y/f 2
y . Thus both of the terms on the left hand side are negative, proving

the result.

B Log-Linear Wage Equation

Most of the empirical literature does not aim to estimate the average log wage, w→
x,y. Instead,

following Abowd, Kramarz and Margolis (1999), authors impose a log-linear wage structure

to estimate worker and firm fixed e”ects. In this section we analyze what that procedure

recovers if our model is data-generating process, and in particular the relationship between

a log-linear wage equation and the average log wage w→
x,y.
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B.1 Econometric Framework

Consider a panel data set containing the wage Wi,t of worker i ↓ {1, . . . , I} at time t ↓
{1, 2, . . . , T} as well as the employer identifier Ji,t ↓ {1, . . . , J}. Since the worker may not

always be employed, we let Ti ⇓ {1, 2, . . . , T} denote the periods when the worker earns a

wage. We assume, in line with the literature, that we observe neither a wage nor a wage o”er

for i when they are not employed, at t ↓ T c
i ↑ {1, 2, . . . , T}\Ti. For notational simplicity and

following the literature, we impose that each worker only works for one firm at each point

in time, for example by focusing on their main job in each period that they are employed.

Following Abowd, Kramarz and Margolis (1999), we could regress the log wage on a full

set of worker and firm fixed e”ects and an error term: For all i ↓ {1, . . . , I} and t ↓ Ti,

logWi,t = ςi + φJi,t + ↼i,t. (35)

We are interested in the coe!cient estimates ς̂i and φ̂j when estimating equation (35) using

ordinary least squares (OLS). Regardless of the economic model and the data set, OLS is a

statistical procedure which minimizes the sum of squared errors:

{ς̂i, φ̂j} = arg min
{ϱi,ςj}

I∑

i=1

∑

t↘Ti

(logWi,t ↔ ςi ↔ φJi,t)
2. (36)

The first order condition for ςi from equation (36) is

∑

t↘Ti

(logWi,t ↔ ς̂i ↔ φ̂Ji,t) = 0. (37)

Symmetrically, define Ij,t as the set of workers whom j employs at t, so j = Ji,t if and only

if i ↓ Ij,t.18 Then the first order condition for φj is

T∑

t=1

∑

i↘Ij,t

(logWi,t ↔ ς̂i ↔ φ̂j) = 0. (38)

Under the assumption that all workers and firms are connected though the matching graph,19

Abowd, Creecy and Kramarz (2002) establish that equations (37) and (38) pin down ς̂ and

φ̂ up to an additive constant. That is, we can increase all the worker fixed e”ects by k and

18In our model, Ij,t has either zero or one element, depending on whether the job is filled or vacant. In
real world data, firms can employ multiple workers and so Ij,t typically has multiple elements.

19Formally, we require that any worker i0 can be linked to any firm j through a finite sequence of steps
t0, t1, . . . , tn: jt = Jit→1,t for t odd and it ↓ Ijt→1,t for t even, with j = Jtn .
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decrease all the firm fixed e”ects by k without changing the fit of equation (36).

B.2 Estimates in Model-Generated Data

Next consider estimating equation (35) using an ideal data set generated by our model. We

assume that there is a large number of workers I and a large number of firms J . Each worker

i has an unobserved type xi, and similarly each firm j has an unobserved type yj. We assume

i and j behave according to the decision rules in our model, for simplicity described here

without on-the-job search. That is, when i is unemployed, they meet a type-y vacant job in

a match with productivity at least z at rate ωvyS(z), and they accept the job and earn a

wage Wxi,y(z) if and only if z ↗ z̄xi,y. Symmetrically, when j has a vacant job, it meets a

type-x unemployed worker in a match with productivity at least z at rate ωuxS(z), and it

hires the worker and earns profits zfx,yj ↔Wx,yj(z) if and only if z ↗ z̄x,yj .

We are interested in an environment where there is a large but finite number of workers

and jobs and where we observe each worker and job for a very long time, T → ⇔.20 In

this case, worker i with type xi will spend a fraction uxi/mxi of their time unemployed and

fraction ϱxi,y/mxi of their time matched to a type-y firm. In such matches, the density of

match productivity will be s(z)/S(z̄xi,y) for z ↗ z̄xi,y and the wage will beWxi,y(z). Similarly,

the relative likelihood of firm j with type yj matching with a type-x worker is proportional

to ϱx,yj . Again, in such matches, the density of match productivity will be s(z)/S(z̄x,yj) for

z ↗ z̄x,yj and the wage will be Wx,yj(z). Since there is no uncertainty about these long-run

distributions, ς̂i and φ̂j have well-behaved limits in the limit as T → ⇔. These limits

depend only on the worker’s and firm’s type, since the distribution of partners and wages

only depend on types. We let ς̄xi denote the limiting value of ς̂i and φ̄yj denote the limiting

value of φ̂j when T → ⇔.21 We are interested in characterizing and interpreting those

values.

20In the real world, T is finite, so the OLS estimates ϑ̂i and ϖ̂j are unbiased but noisy estimates of ϑ̄xi

and ϖ̄yj , respectively. This creates econometric issues which we sidestep in this paper through our idealized
“large T” assumption.

21In practice, the literature estimating equation (35) looks only at one job per worker per year. In Abowd,
Kramarz and Margolis (1999), this is the job where the individual works the most days. In Card, Cardoso
and Kline (2016), this is the job where the worker has the most hours during a reference week. In Bonhomme,
Lamadon and Manresa (2019), a worker is only included in the sample if they are employed by a single firm
in all twelve months. Since the duration distribution of all jobs is the same in our model without on-the-job
search, none of these selection criterion a”ect the asymptotic values ϑ̄x and ϖ̄y.
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Using equations (37) and (38) and the model structure, we obtain

ς̄x =

∑Y
y=1(w

→
x,y ↔ φ̄y)ϱx,y

∑Y
y=1 ϱx,y

= ⇀x ↔
∑Y

y=1 φ̄yϱx,y
∑Y

y=1 ϱx,y

, (39)

φ̄y =

∑X
x=1(w

→
x,y ↔ ς̄x)ϱx,y

∑X
x=1 ϱx,y

= µy ↔
∑X

x=1 ς̄xϱx,y∑X
x=1 ϱx,y

, (40)

where w→
x,y is the average log wage in an (x, y) match, defined in equation (15), ϱx,y is the mea-

sure of (x, y) matches, defined in equation (12), and ⇀x and µy are defined in equations (19)

and (20). Our model ensures that all workers and firms are connected when T → ⇔, since

S(z̄x,y) > 0 for all (x, y). That means that we can solve equations (39) and (40) for (ς̄x, φ̄y)

up to the additive constant k mentioned before.

If the average log wage were an additively separable function of the worker’s type and

the firm’s type, w→
x,y = ax + by, then equations (39) and (40) would imply ς̄x = ax + k

and φ̄y = by ↔ k, where k is the irrelevant additive constant discussed before. In this case,

φ̄y2 ↔ φ̄y1 is the average di”erence in the log wage that any worker earns at a type-y2 firm

compared to a type-y1 firm when following the equilibrium decision rules. Our model with

a Pareto distribution of match-specific shocks implies that w→
x,y is increasing in x and y but

is submodular rather than linear.

Finally, we follow Abowd, Kramarz and Margolis (1999), Andrews, Gill, Schank and

Upward (2008), Card, Heining and Kline (2013), and others in focusing on the cross-sectional

variance of ς̄ and φ̄ as well as the covariance between ς and φ in matched pairs. Define

E(gx,y) ↑
∑X

x=1

∑Y
y=1 gx,yϱx,y

∑X
x=1

∑Y
y=1 ϱx,y

for any g. We let σ2
ϱ̄ ↑ E

(
(ς̄x ↔ E(ς̄x))2

)
and σ2

ς̄
↑ E

(
(φ̄y ↔ E(φ̄y)))2

)
denote the variance

of ςxi and φyj across employed workers i and filled jobs j. Also let covϱ̄,ς̄ ↑ E
(
(ς̄x ↔

E(ς̄x))(φ̄y ↔ E(φ̄y))
)
denote the covariance between ς̄xi and φ̄yj across matched pairs (i, j)

with j = Ji,t. The unidentified additive constant k does not a”ect any of these moments.

If we estimate ς̂i and φ̂j using OLS, the well-known issue of limited mobility (Andrews,

Gill, Schank and Upward, 2008) biases estimates of the variances and covariances when T

is finite. Throughout this paper, we assume an idealized environment, either one where

T → ⇔, or alternatively a statistical procedure that gives unbiased estimates of the variance

and covariance, as proposed by Andrews, Gill, Schank and Upward (2008), Bonhomme,

Lamadon and Manresa (2019), or Kline, Saggio and Sølvsten (2020).

We find that the parameters in Table 2 deliver the variance decomposition targets in
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Table 1, in line with BLM and KSS.

C On-the-Job Search Model

We show how to reformulate the model so that it is easier to solve, and then report some

additional quantitative results.

C.1 Reformulation of the Model

Define Zx,y(ν) to be the value of z such that the match surplus equals ν: V s
x,y(Zx,y(ν)) = ν.

Then z = Zx,y(V s
x,y(z)) so dz = Z ↔

x,y(ν)dν. We change variables in (25):

(r + ϑ)ν = Zx,y(ν)fx,y ↔ rV u
x ↔ rV v

y + ω1

Y∑

y→=1

vy→
∫ ↑

φ

(εν ↔ ↔ ν)s(Zx,y→(ν
↔))Z ↔

x,y→(ν
↔)dν ↔. (41)

To solve this equation, we need to find the value of unemployed workers V u
x , the value of

vacancies V v
y , and the vacancy measures vy.

Next, we find the steady state unemployment rate by equating inflows and outflows from

unemployment:

ϑ(mx ↔ ux) = ω0ux

Y∑

y=1

vyS(Zx,y(0)). (42)

Employed workers become unemployed at rate ϑ, while unemployed type x workers find a

job at rate ω0ux

∑Y
y=1 vyS(Zx,y(0)). There is no such simple equation for vacancies, however,

because filled jobs end at an endogenous rate that depends on worker’s quitting decision.

To find the unemployment and vacancy rates, we first let ϱ̃x,y(ν) be the density of the

type x workers matched with type y firms with the match surplus ν. Let $̃x(ν) be the

measure of worker type x who are employed in a match with surplus less than ν, $̃x(ν) =∑Y
y=1

∫ φ

0 ϱ̃x,y(ν ↔)dν ↔. Then it holds,

(
ϑ + ω1

Y∑

y=1

vyS(Zx,y(ν))

)
$̃x(ν) = ω0ux

Y∑

y=1

vy (S(Zx,y(0))↔ S(Zx,y(ν))) . (43)

The outflow from $̃x(ν), the left-hand side of (43), is either due to exogenous separations

or workers accepting o”ers with surplus higher than ν. The inflow into $̃X(ν) is only from

unemployment, and it is given by the rate at which workers receive o”ers with surplus

between 0 and ν.
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It is now straightforward to characterize density ϱx,y(ν):

(
ϑ + ω1

Y∑

y→=1

vy→S(Zx,y→(ν))

)
ϱ̃x,y(ν) = (ω0ux + ω1$̃x(ν))vys(Zx,y(ν))Z

↔
x,y(ν). (44)

The left-hand side shows the outflow from ϱ̃x,y(ν), which is either due to exogenous separa-

tions or workers moving to higher-surplus matches. The right-hand side shows the inflow.

Workers come from unemployment by receiving an o”er at the rate ω0ux, or from employ-

ment at the rate ω1$̃x(ν) since $̃x(ν) is the measure of workers with surplus below ν. We

can also use equation (43) to write

ω0ux + ω1$̃x(ν) = ω0ux

(
ϑ + ω1

∑Y
y=1 vyS(Zx,y(0))

ϑ + ω1
∑Y

y=1 vyS(Zx,y(ν))

)

=
ϑ
(
ω0ux + ω1(mx ↔ ux)

)

ϑ + ω1
∑Y

y=1 vyS(Zx,y(ν))
, (45)

where the second equation eliminates
∑Y

y=1 vyS(Zx,y(0)) using equation (42). Thus we obtain

from equation (44)

ϱ̃x,y(ν) =
ϑ
(
ω0ux + ω1(mx ↔ ux)

)
vys(Zx,y(ν))Z ↔

x,y(ν)(
ϑ + ω1

∑Y
y→=1 vy→S(Zx,y→(ν))

)2 . (46)

The measures of type-x unemployed and type-y vacancies are

ux = mx ↔
Y∑

y=1

∫ ↑

0

ϱ̃x,y(ν)dν, (47)

vy = ny ↔
X∑

x=1

∫ ↑

0

ϱ̃x,y(ν)dν. (48)

Next, we write equations (26) and (27) in terms of Zx,y(ν):

rV u
x = εω0

Y∑

y=1

vy

∫ ↑

0

νs(Zx,y(ν))Z
↔
x,y(ν)dν (49)

rV v
y = (1↔ ε)ω0

X∑

x=1

ux

∫ ↑

0

νs(Zx,y(ν))Z
↔
x,y(ν)dν

+ (1↔ ε)ω1

X∑

x=1

∫ ↑

0

ν$̃x(ν)s(Zx,y(ν))Z
↔
x,y(ν)dν. (50)
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We can simplify equation (50) using equation (45):

rV v
y = (1↔ ε)ϑ

X∑

x=1

(
ω0ux + ω1(mx ↔ ux)

) ∫ ↑

0

νs(Zx,y(ν))Z ↔
x,y(ν)

ϑ + ω1
∑Y

y→=1 vy→S(Zx,y→(ν))
dν. (51)

Finally, rather than trying to solve the integral equation (41) directly, we di”erentiate it

with respect to ν to get a di”erential equation for Zx,y(ν):

r + ϑ = Z ↔
x,y(ν)fx,y ↔ ω1

Y∑

y→=1

vy→S(Zx,y→(ν)) + ω1(1↔ ε)
Y∑

y→=1

vy→νs(Zx,y→(ν))Z
↔
x,y→(ν). (52)

Additionally, plugging ν = 0 into equation (41) and using equation (49) to simplify, we

obtain the initial condition Zx,y(0)fx,y = (1 ↔ ω1/ω0)rV u
x + rV v

y . For each x, this is system

of Ny di”erential equations, easily solved numerically if we know V u
x , V

v
y , and vy.

To recover wages, we rewrite (31) in terms of Zx,y(ν),

W̃x,y(ν) = rV u
x + ε(r + ϑ)ν ↔ ω1ε

Y∑

y→=1

vy→
∫ ↑

φ

(ν ↔ ↔ ν)s(Zx,y→(ν
↔))Z ↔

x,y→(ν
↔)dν ↔. (53)

To solve the model, we proceed as follows:

1. Given V u
x , V v

y , and vy, we solve ODE (52) with the initial condition Zx,y(0)fx,y =

(1↔ ω1/ω0)rV u
x + rV v

y .

2. Given Zx,y(ν), use equations (43)—(48) to update ux and vy and equations (49) and

(50) to update V u
x and V v

y .

3. Repeat until the changes in ux, vy, V u
x , and V v

y are small.

4. Lastly recover the wage using equation (53).

C.2 Normalizations

A steady state equilibrium is described by a solution to equations (41) and (43)–(53). Here

we show how to normalize the wage in both the Pareto and Exponential cases.

Pareto Case

Assume S(z) = z↓ϑ. Consider an equilibrium (V u
x , V

v
y , Zx,y(ν), $̃x(ν), ϱ̃x,y(ν), ux, vy, W̃x,y(ν))

given one value of the contact rates ω0 and ω1. Let ω̂0 = ⇀ω0 and ω̂1 = ⇀ω1 for some ⇀ > 0.
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Then we claim that with the contact rate ω̂, there is an equilibrium as follows:

V̂ u
x = ⇀1/ϑV u

x , V̂ v
y = ⇀1/ϑV v

y

Ẑx,y(⇀
1/ϑν) = ⇀1/ϑZx,y(ν),

ˆ̃Wx,y(⇀
1/ϑν) = ⇀1/ϑW̃x,y(ν)

ˆ̃$x(⇀
1/ϑν) = $̃x(ν)

⇀1/ϑ ˆ̃ϱx,y(⇀
1/ϑν) = ϱ̃x,y(ν)

ûx = ux, v̂y = vy.

The proof involves writing the eight equations in terms of the hatted variables evaluated at

⇀1/ϑν and simplifying. For, equation (41) becomes

(r + ϑ)⇀1/ϑν = Ẑx,y(⇀
1/ϑν)fx,y ↔ rV̂ u

x ↔ rV̂ v
y

+ ω̂1

Y∑

y1=1

vy1

∫ ↑

↼1/εφ

(εν ↔ ↔ ⇀1/ϑν)↽Ẑx,y1(ν
↔)↓ϑ↓1Ẑ ↔

x,y1(ν
↔)dν ↔.

In the integral, do a change of variables to ν ↔↔ ↑ ⇀↓1/ϑν ↔, so dν ↔ = ⇀1/ϑdν ↔↔. Also change the

“hatted” variables to their unhatted counterparts using our conjectured functional forms

(r + ϑ)⇀1/ϑν = ⇀1/ϑZx,y(ν)fx,y ↔ ⇀1/ϑrV u
x ↔ ⇀1/ϑrV v

y

+ ⇀ω1

Y∑

y1=1

vy1

∫ ↑

φ

(ε⇀1/ϑν ↔↔ ↔ ⇀1/ϑν)↽
(
⇀1/ϑZx,y1(ν

↔↔)
)↓ϑ↓1

Z ↔
x,y1(ν

↔↔)⇀1/ϑdν ↔↔.

All the terms involving ⇀ cancel, yielding equation (41). We omit the other steps in the

argument, which use an identical logic.

We now show that the measures of type-x workers employed by type-y firms is una”ected

by the scale parameter in the meeting rate, ⇀:

ϱ̂x,y ↑
∫ ↑

0

ˆ̃ϱx,y(ν)dν =

∫ ↑

0

ˆ̃ϱx,y(⇀
1/ϑν ↔)⇀1/ϑdν ↔ =

∫ ↑

0

ϱ̃x,y(ν
↔)dν ↔ ↑ ϱx,y.

We first define ϱ̂x,y. We then use a change of variables with ⇀1/ϑν ↔ = ν. The third equation

then replaces ˆ̃ϱ with our expression for ϱ̃. Thus the right hand panels in Figure 1 are

una”ected by the scale of the meeting rate.

We also calculate the average log wage that a type-x worker receives when employed by
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a type-y firm:

ŵ→
x,y ↑

∫↑
0 log ˆ̃Wx,y(ν)

ˆ̃ϱx,y(ν)dν
∫↑
0

ˆ̃ϱx,y(ν)dν
=

∫↑
0 log ˆ̃Wx,y(⇀1/ϑν ↔) ˆ̃ϱx,y(⇀1/ϑν ↔)⇀1/ϑdν ↔

∫↑
0

ˆ̃ϱx,y(⇀1/ϑν ↔)⇀1/ϑdν ↔

=

∫↑
0 log

(
⇀1/ϑW̃x,y(ν ↔)

)
ϱ̃x,y(ν ↔)dν ↔

∫↑
0 ϱ̃x,y(ν ↔)dν ↔

=
1

↽
log ⇀+ w→

x,y.

The steps are the same: define ŵ→, do the same change of variables, replace ‘hatted’ variables

by the ‘unhatted’ counterparts, and simplify. This shows how we choose ⇀ to target an

average log wage of 0 in (1, 1) match, and that this simply scales all average log wages by

the same additive constant.

Exponential Case

Let (V u
x , V

v
y , Zx,y(ν), $̃x(ν), ϱ̃x,y(ν), ux, vy, W̃x,y(ν)) denote an equilibrium when the distri-

bution of match-specific shocks is exponential distribution with mean 1. We construct an

equilibrium with an exponential distribution with mean ↽, i.e. S(z) = e↓z/ϑ, as follows:

V̂ u
x = ↽V u

x , V̂ v
y = ↽V v

y

Ẑx,y(↽ν) = ↽Zx,y(ν),
ˆ̃Wx,y(↽ν) = ↽W̃x,y(ν)

ˆ̃$x(↽ν) = $̃x(ν)

↽ ˆ̃ϱx,y(↽ν) = ϱ̃x,y(ν)

ûx = ux, v̂y = vy.

Again, we prove this by writing the eight equations (41) and (43)–(53) in terms of the hatted

variables evaluated at ↽ν and simplifying. Start with equation (41):

(r + ϑ)↽ν = Ẑx,y(↽ν)fx,y ↔ rV̂ u
x ↔ rV̂ v

y + ω1

Y∑

y1=1

vy1

∫ ↑

ϑφ

(εν ↔ ↔ ↽ν)
1

↽
e↓Ẑx,y1 (φ

→)/ϑẐ ↔
x,y1(ν

↔)dν ↔.

In the integral, do a change of variables to ν ↔↔ = ν ↔/↽, so dν ↔ = ↽dν ↔↔. Also change the hatted

variables to their unhatted counterparts:

(r+ ϑ)↽ν = Ẑx,y(↽ν)fx,y↔ ↽rV u
x ↔ ↽rV v

y +ω1

Y∑

y1=1

vy1

∫ ↑

φ

(ε↽ν ↔↔↔ ↽ν)
1

↽
e↓Zx,y1 (φ

→→)Z ↔
x,y1(ν

↔↔)↽dν ↔↔.
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ω1/ω0 ↽ #w #f ⇁
BLM 0.1 10.809 0.084 0.361 0.967
BLM 0.2 22.150 0.053 0.270 0.964
BLM 0.3 60.810 0.024 0.221 1.026
KSS 0.1 61.311 0.193 0.855 5.414
KSS 0.2 81.430 0.074 0.585 4.103
KSS 0.3 368.43 0.016 0.513 4.099

Table 3: Calibrated parameters for di”erent values of ω1. For di”erent values of ω1/ω0, we fix
r, ϑ, ε and calibrate the remaining four parameters to match the wage decomposition in BLM
(top 3 rows) or KSS (bottom three rows). The last column shows the implied unemployment
rate.

All the terms involving ↽ cancel, yielding equation (41). We again omit the remaining steps

in the argument, which use the same logic.

The proof that the measure of type-x workers employed by type-y firms is una”ected by

the mean of the exponential is the same as in the Pareto case. For the average log wage, we

also have follow similar steps as we did with the Pareto:

ŵ→
x,y ↑

∫↑
0 log ˆ̃Wx,y(ν)

ˆ̃ϱx,y(ν)dν
∫↑
0

ˆ̃ϱx,y(ν)dν
=

∫↑
0 log ˆ̃Wx,y(↽ν ↔) ˆ̃ϱx,y(↽ν ↔)↽dν ↔

∫↑
0

ˆ̃ϱx,y(↽ν ↔)↽dν ↔

=

∫↑
0 log

(
↽W̃x,y(ν ↔)

)
ϱ̃x,y(ν ↔)dν ↔

∫↑
0 ϱ̃x,y(ν ↔)dν ↔

= log ↽ + w→
x,y.

This shows how we choose ↽ to target an average log wage of 0 in (1, 1) match, and that this

simply scales all average log wages by the same additive constant.

C.3 Quantitative Results with Di”erent ω1

For comparison, we present results for the model with Pareto distributed match quality and

ω1 = 0.1ω0 and ω1 = 0.3ω0. We re-calibrate the values of #w,#f , ↽, ⇁ to match the BLM

or KSS wage decompositions, and keep the other parameters the same as in the main text.

Table 3 summarizes the parameter values. As search on the job becomes more e”ective, the

amount of firm heterogeneity required to match the variance of firm e”ects becomes smaller,

with the parameter #f decreasing significantly. More search while employed also generates

more wage dispersion, and so in order to keep the variance of log wages and the variance of

the error term equal to the targeted values, the parameter ↽ has to increase to decrease the

variance of the match-specific productivity shock.

Figures 5 and 6 show results with ω1 = 0.1ω0 and ω1 = 0.3ω0 for BLM calibration. The
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results are qualitatively the same as for BLM calibration with ω1 = 0.2ω1, shown in Figure 1

and Figure 4.

We now turn to Figure 7, the KSS calibration with ω1 = 0.1ω0. The top panel is quali-

tatively the same is ω1 = 0.2ω0: average log wages are monotone in worker and firm types,

and there is sorting. The average surplus in matches is increasing in the firm type for each

worker type, again same as Figure 4. The bottom right panel shows the average surplus in

meetings. Every worker type has the lowest value from meeting type-1 firm, and the highest

value of meeting a type-10 firm. This is di”erent from Figure 4 where several worker types

have a higher value of meeting type-1 firm than type-5 firm. An important driver of this

di”erence is firm heterogeneity, which is calibrated to be larger in KSS ω1 = 0.1ω0 than in

ω1 = 0.2ω0 (see the value of #f in Table 3). The firm productivity di”erences are strong

enough to overweight the fact that for low-type worker, a meeting with a high-type firm

rarely turns into a match. This observation underlines our earlier discussion that we would

not be able to conclude this without a calibrated structural model.

Figure 8 which shows KSS calibration ω1 = 0.3ω0 is qualitatively the same as ω1 = 0.2ω0

discussed in the main text.

D Event Study Methodology

We generate data from our model for 500,000 workers and 5,000 firms.

At time t=0, the economy is in the steady state, with the unemployment given by ux and

the joint distribution of matches by the ergodic distribution ϱ̃x,y(ν) in equation (46). Note

that worker and firm types, x and y, and the value of the match, ν determine the distribution

of workers’ next jobs. In particular, the identities of workers and firms, and wages, are not

needed at this stage.

We distinguish between employed and unemployed workers when determining worker’s

next job.

Consider a type-x unemployed worker. This worker meets a type-y firm with a positive

match surplus at the rate ω0vyS(Zx,y(0)). Hence, the probability that the worker’s first job

out of unemployment is in a y-type firm is

vyS(Zx,y(0))∑Y
y→=1 vy→S(Zx,y→(0))

.

Conditional on that, the distribution of the match specific shock z is Pareto, with the scale

parameter Zx,y(0). Once we draw y and z according to these distributions, we use the func-

tion Zx,y(ν) to invert the value of z into the value of the match ν. Finally, we record the date
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Figure 5: Results for model with on-the-job search, ω1 = 0.1ω0, BLM calibration. Bottom
row is on a logarithmic scale.
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Figure 6: Results for model with on-the-job search, ω1 = 0.3ω0, BLM calibration. Bottom
row is on a logarithmic scale.
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Figure 7: Results for model with on-the-job search, ω1 = 0.1ω0, KSS calibration. Bottom
row is on a logarithmic scale.
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Figure 8: Results for model with on-the-job search, ω1 = 0.3ω0, KSS calibration. Bottom
row is on a logarithmic scale.
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of the end of the unemployment spell and the start of this job. The duration of an unemploy-

ment spell is exponentially distributed with the rate ⇀u
x where ⇀u

x = ω0
∑

y1
vy1S(Zx,y1(0)).

Now consider an x-type worker employed at a y-type firm with value of the match ν.

The worker receives a separation shock at the rate ϑ, and an acceptable o”er from a y-type

firm at the rate ω1vyS(Zxy(ν)). Define ⇀e
x(ν) as

⇀e
x(ν) = ω1

Y∑

y=1

vyS(Zx,y(ν)).

The probability that the worker’s next transition is to unemployment is ε
ε+↼e

x(φ)
, and the

probability that the worker makes a direct transition to a y-type firm is ↽1vyS(Zx,y(φ))
ε+↼e

x(φ)
. The

distribution of the duration of an employment spell is exponential with the rate ⇀e
x(ν) + ϑ.

For the worker with the next job at a y-type firm, the distribution of match-specific shock

z is Pareto with the scale parameter Zx,y(ν). Again, we use Zx,y(·) to invert the value of

z into the value of the new match ν ↔. If the worker becomes unemployed, we use the same

procedure as described above to draw the duration of the unemployment spell and the type

of the next job.

We continue this procedure until we have four years of employment history for every

worker.

We draw firm identities randomly from the set of firms with the given type y. If a worker

makes a job-to-job transition from a y-type firm to another y-type firm, we exclude identity

of the original firm from the set used to draw the new firm identity. Finally, we compute the

wage associated with the match using equation (53).

We note that the first employment spell might be left-censored, and the last one right-

censored, but this does not play a role in this event study.

We apply the same sample selection criteria as Card, Heining and Kline (2013). In every

year, we define worker’s main job as the match with the highest earnings within that year.

For every worker-firm pair in the sample, we compute the average log wage of co-workers

and then sort these pairs into four quartiles. Next, we select long-tenure movers. These are

workers who changed main jobs between year 2 and 3, and had the same main job in years

1 and 2 as well as 3 and 4. We then sort these movers into 16 bins based on the quartile of

the origin and destination firm, and compute the mean log wage of each group in years 1, 2,

3 and 4.
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