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Abstract

The soil-plant continuum regulates a wide range of processes, which are crucial for plant per-
formance, such as root water and nutrient uptake and the spatio-temporal distribution of
soil water. Especially for agricultural crops within agro-ecosystems, detailed understanding of
processes and interactions is essential, since agriculture is majorly impacted by climate change
and holds the potential to meet the requirements of increasing feed and food demand. The
non-invasive imaging of processes and the estimation of important parameters and state vari-
ables concerning the soil-plant continuum, in particular root system architecture, soil water
content (SWC) distribution, and soil hydraulic properties, can help to optimize agricultural
management practices and enhance yield productivity while minimizing the use of natural
resources. Currently, most of the processes and parameters are being separately investigated,
at different scales, by differing research fields, such as agrogeophysics and crop science. Since
the different components influence each other, a separate consideration is not feasible, and
more combined research is needed. One approach is to join agrogeophysical methods, such
as ground penetrating radar (GPR), and root information to monitor and characterize the
soil-plant continuum. In this study, an open-source data set including soil sensor data, root
images, and GPR permittivities from five years for various crop types and agricultural treat-
ments was established. For all of these data, new standards were created and provide a novel
comprehensive data set for other researchers. Within this time-lapse data set, certain effects
on the GPR signal related to soil type, surface water treatment, atmospheric conditions, and
previous soil management could be identified. Therefore, the impact of row crops, such as
maize, on the horizontal spatio-temporal distribution of the permittivity and hence SWC was
investigated. A statistical analysis method for the visualization was developed by deriving
the so-called trend-corrected spatial permittivity deviations of the vegetated field. Thereby,
a link and correlation between the permittivity variability and the root volume fractions was
observed. For the further quantification of the relation between the recorded GPR signals
and the presence of roots and above-ground shoot, a numerical study was performed under
different scenarios. Roots showed a greater impact on the synthetic GPR data than the above-
ground shoot, and standard analysis tools, such as first arrival picking, could be confirmed for
investigating the soil-plant continuum using crosshole GPR applications. Additionally, a new
approach to derive the actual available water in the soil was presented, showing that neglect-
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iv Abstract

ing the root phase in appropriate petrophysical mixing models overestimated the SWC. For
the further investigation of the plant available water, we considered the horizontal crosshole
GPR-derived SWCs for a winter wheat growing season in combination with a hydrological
model to derive the soil hydraulic parameters. In a first step, this sequential hydrogeophysical
inversion was used for a one-dimensional averaged case and was upscaled in a second step to
the plot scale, where the pseudo three-dimensional spatially distributed soil hydraulic param-
eters for the dual-porosity Mualem-van-Genuchten model were estimated. Considering these
different aspects of soil-plant interaction of hydrological and biological processes improved the
understanding of the GPR signal within the soil-plant continuum and how information can be
derived and applied to non-invasively monitor and characterize cropped fields. Nevertheless,
to fully facilitate GPR as a tool in sustainable agriculture, further work could focus on the
use of surface GPR applications, correlation with spatially distributed root information, com-
bining electromagnetic and root architecture models, and combining GPR with investigation
methods at the pedon- to regional scale.
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Zusammenfassung

Das Boden-Pflanze-Kontinuum reguliert eine Vielzahl von Prozessen, die fiir die Leis-
tungsfihigkeit von Pflanzen entscheidend sind, z.B. die Aufnahme von Wasser und Néhrstoffen
durch die Wurzeln und die rdumlich-zeitliche Verteilung des Wassers im Boden. Insbesondere
fiir landwirtschaftliche Nutzpflanzen in Agrartkosystemen ist ein detailliertes Verstindnis der
Prozesse und Wechselwirkungen von entscheidender Bedeutung, da die Landwirtschaft in ho-
hem Mafle vom Klimawandel betroffen ist und das Potenzial hat, den steigenden Bedarf an
Futter- und Nahrungsmitteln zu decken. Die nicht-invasive Erfassung von Prozessen und
die Abschitzung wichtiger Parameter und Variablen des Boden-Pflanzen-Kontinuums, ins-
besondere der Architektur des Wurzelsystems, der Verteilung des Bodenwassergehalts und
der hydraulischen Eigenschaften des Bodens, konnen dazu beitragen, die landwirtschaftlichen
Methoden 7zu optimieren und den Ertrag zu steigern, wihrend gleichzeitig die Nutzung
natiirlicher Ressourcen minimiert wird. Gegenwértig werden die meisten Prozesse und Pa-
rameter in verschiedenen Forschungsbereichen wie der Agrargeophysik und der Pflanzen-
bauwissenschaft auf unterschiedlichen Skalen separat betrachtet. Da sich die verschiedenen
Komponenten gegenseitig beeinflussen, ist eine getrennte Betrachtung nicht plausibel, und
vereinte Forschungsmethoden sind erforderlich. Ein Ansatz besteht darin, agrogeophysikalis-
che Methoden wie das Bodenradar (GPR) und Wurzelinformationen zu kombinieren, um das
Boden-Pflanzen-Kontinuum zu beobachten und zu charakterisieren. In dieser Studie wurde
ein Open-Source-Datensatz mit Bodensensordaten, Wurzelbildern und GPR-Permittivitat aus
fiinf Jahren fiir verschiedene Nutzpflanzen und landwirtschaftliche Methoden erstellt. Fiir
diese Daten wurden neue Standards geschaffen, die einen neuartigen umfassenden Daten-
satz fiir andere Forschungen darstellen. Innerhalb dieses Zeitraffer-Datensatzes konnten bes-
timmte Auswirkungen auf das GPR-Signal identifiziert werden, die mit der Bodenart, der
pflanzenbauwissenschaftlichen Methoden, den atmosphérischen Bedingungen und der fritheren
Bodenbewirtschaftung zusammenhingen. Daher wurde der Einfluss von Reihenkulturen
wie Mais auf die horizontale rdumlich-zeitliche Verteilung der Dielektrizitdtskonstante und
damit auf den Bodenwassergehalt untersucht. Es wurde eine statistische Analysemethode
fiir die Visualisierung entwickelt, indem die so genannten trendbereinigten rdumlichen Per-
mittivitdtsvariabilitdten des bewachsenen Feldes abgeleitet wurden. Dabei wurde ein Zusam-
menhang und eine quantitative Korrelation zwischen der Permittivitdtsvariabilitdt und den
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vi Zusammenfassung

Wurzelvolumenanteilen festgestellt. Zur weiteren Quantifizierung der Beziehung zwischen
den aufgezeichneten GPR-Signalen und dem Vorhandensein von Wurzeln und oberirdischen
Pflanzen wurde eine numerische Studie durchgefithrt. Unter Beriicksichtigung verschiedener
Szenarien. Die Wurzeln zeigten einen grofleren Einfluss als die oberirdischen Sprossen, und
zusitzlich konnten Standardanalysewerkzeuge, wie z. B. das Erste-Ankunftszeit Picken, fiir die
Untersuchung des Boden-Pflanzen-Kontinuums mit Hilfe von Crosshole-GPR-Anwendungen
bestétigt werden. Dariiber hinaus wurde ein neuer Ansatz zur Ableitung des tatséchlich
verfiigharen Wassers im Boden vorgestellt, der zeigt, dass die Vernachlissigung der Wurzel-
phase in geeigneten petrophysikalischen Modellen den Bodenwassergehalt iiberschatzt. Fir
die weitere Untersuchung des pflanzenverfiigharen Wassers haben wir die aus horizontalen
Crosshole-GPR abgeleiteten Bodenwassergehalts fiir eine Winterweizen-Wachstumsperiode in
Kombination mit einem hydrologischen Modell zur Ableitung der bodenhydraulischen Pa-
rameter betrachtet. In einem ersten Schritt wurde diese sequenzielle hydrogeophysikalische
Inversion fiir einen eindimensional gemittelten Fall verwendet und in einem zweiten Schritt
auf die Parzellenskala hochskaliert, wo die pseudo-dreidimensionalen, rdumlich verteilten bo-
denhydraulischen Parameter fiir das Mualem-van-Genuchten-Modell mit dualen Porositit
geschétzt wurden. Die Beriicksichtigung dieser verschiedenen Aspekte der Boden-Pflanze-
Interaktion von hydrologischen und biologischen Prozessen verbesserte das Verstdndnis des
GPR-Signals innerhalb des Boden-Pflanze-Kontinuums und der Art und Weise, wie Infor-
mationen abgeleitet und zur nicht-invasiven Uberwachung und Charakterisierung von An-
bauflichen verwendet werden kénnen. Um das GPR als Werkzeug in der nachhaltigen Land-
wirtschaft zu etablieren, kénnten sich weitere Arbeiten auf den Einsatz von Oberflichen-
GPR, die Korrelation mit rdumlich verteilten Wurzelinformationen, die Kombination von
elektromagnetischen und Wurzelarchitekturmodellen und die Kombination von GPR mit Un-
tersuchungsmethoden auf der pedon- bis regionalen Ebene konzentrieren.
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Chapter 1

Introduction

With the start of the Green Revolution and the development of productivity-enhancing
technologies in the second half of the 20" century, agriculture production has tripled and
the usage of natural resources significantly increased. Still in 2023 a malnutrition and hunger
is persisting in many parts of the world (Food and of the United Nations, 2022). By the
year 2050, the world population will reach 9 billion and to ensure food and feed security,
agricultural efficiency needs to increase by 60% (Alexandros et al., 2012). This increase
needs to be achieved while the repercussions of climate change are in full swing and will
only accelerate in the coming decades, which makes today’s agriculture less productive
but also is reducing arable land. Furthermore, political conflicts are disrupting not only
agricultural production, but also affect food chains in different parts of the world. As a
consequence, modern scientific research needs to address these challenges to increase and
promote sustainable crop production, while trying to minimize the environmental footprint
of agro-ecosystems. Thereby, research should focus on how to use less chemicals, like herbi-
cides and fertilizer, as well as, responsible usage of crucial natural resources like soil and water.

To face these global challenges in terms of sustainable crop production, agro-ecosystems
need to be fully understood. This includes detailed process understanding across different
scales and interactions of the different components, under the consideration of the impacts of
modern agricultural practices. The soil-plant continuum within these agro-ecosystems is a
major contributor to increase the yield productivity, since it governs main processes like root
water and nutrient uptake. Major influencing factors of these processes are the soil properties
and crop root architecture as well as their interaction. Understanding these factors and
their interaction will be beneficial to plant breeders, for optimization of the below ground
traits of crops for an optimal yield potential, nutrient and water use efficiency as well as
resistance to diseases (Lynch, 2007). Another important aspect would be the optimization of
agricultural practices. If the spatial and temporal distribution of roots, but also the spatial
and temporal distribution of soil water content (SWC) can be assessed in a non-invasive
way, proxies could be provided to minimize irrigation and fertilization or to direct other
soil management decisions. For example to assist precision agriculture the creation of maps
indicating zones with different soil properties or soil states like, texture, water content or
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salinity are beneficial (Srinivasan, 2006). Additionally, crop cultivars could be selected
according to local soil conditions. These factors show the need for investigation techniques
for the soil-plant continuum. These techniques need to fulfill a long list of requirements,
such as being applicable across different scales, being sensitive to a number of key soil state
variables and different components such as soil, water and crops. Furthermore, to consider
aspects of agro-ecosystems under the application of agricultural practices and agronomic
management an additional requirement is the non-invasive nature. The measurements and
investigations need to be repeatable and realizable while crops are still in place, to ensure
that impacts can be detected. Consequently, there is no stand-alone measurement technique
which can accomplish all these requirements. Therefore, it is recommended to combine
various techniques from different research fields, such as soil physics, hydrogeology, hydro-
or agrogeophysics and plant science to investigate the soil-plant continuum in the field.
Thereby, innovative and non-invasive tools to investigate the soil-plant continuum, so-called
phenotyping methods, at field and catchment scale, where root water availability and soil
heterogeneity are key aspects, are indispensable.

To study the main processes in the soil-plant continuum such as the root water and
nutrient uptake, and their controlling factors, the investigation of crop root architecture and
the surrounding soil volume, with the focus on SWC, is crucial, see Figure 1-1. Therefore, on
one hand the knowledge of the SWC and its distribution is fundamental to understand and
predict the highly dynamic water flow and transport processes in the vadose zone. Accurate
understanding of field scale variability of SWC is likewise important for the management of
agricultural fields in terms of maximizing yield (Vereecken et al., 2022, 2014). SWC dynamics
are caused not only by precipitation and evaporation, but also by root water uptake (tran-
spiration), whereby the root available water depends on atmospheric conditions and on root
distribution (Cai et al., 2017), and the soil hydraulic parameters (SHP) (Ghanbarian-Alavijeh
et al.,, 2010). On the other hand, acquiring information about the spatial distribution of
roots, namely the root system architecture of crops, is essential since it is responsible for the
plant productivity through processes like root water and nutrient uptake, and plant stability

(Lynch, 2007).

To enhance process understanding, it is not feasible to consider SWC and root archi-
tecture separately, since these components mutually influence each other. Crops roots
have an impact on the distribution of soil water and the soil hydraulic properties caused
by their root water uptake and the therefore cause soil water depletion as well as the the
accumulation of water within the root biomass (Feddes et al., 1988, Hupet and Vanclooster,
2005, Zhuang et al., 2001). Furthermore, the soil pore structure can be permanently altered
by roots (Angers and Caron, 1998, Carminati et al., 2011, Gerke and Kuchenbuch, 2007,
Kodesova et al., 2006, Rasse et al., 2000). On the contrary, soil properties such SHP and
soil characteristics (e.g., field capacity, permanent wilting point and plant available water)
influence the root growth and spatial and temporal distribution of roots. Crops may also
affect the infiltration of precipitation and irrigation into the soil, where e.g., decaying roots
can cause preferential flow paths (Mitchell et al., 1995) or the shoots themselves influence
the amount of water, that reaches the soil, where e.g., maize crops can funnel the rainfall
and create a stem flow infiltration (Bui and Box, 1992, Hupet and Vanclooster, 2005). To
optimize the use of ground water and ensure sufficient ground water recharge, several research
has investigated the combined impact of soil heterogeneity and vegetation type on water
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balances (Schliiter et al., 2013). Since roots evidently change the physical conditions of the
soil, which impacts the spatial SWC and root distribution, the combined investigation of
SWC and root system architecture of the agricultural soil-plant continuum is inevitable.

To recognize the wide range of processes, it is necessary to investigate at different scales.

Transpiration

Evaporation

|

Surface retention '

Capillary rise
Root water uptake

Ground water

Figure 1-1: Schematic overview of the processes within the soil-plant continuum related to the
soil water content distribution. Adapted from Stawiriski and Sobczuk (2011).

For the understanding of these systems, which include aquifers, the vadose or critical zone,
vegetation, and atmosphere, methods of all scales are necessary (Simmer et al., 2015a).
The investigation scales are governed by the individual sensing volume (SV) or resolution
of the respective measurement technique, see Figure 1-2. Remote sensing methods, like the
regional and global satellite SWC surveys (e.g., Entekhabi et al. (2010)) or unmanned aerial
vehicle (UAV)-based methods (e.g., Ge et al. (2021)) need to be linked with small-scale point
measurement like the time-domain reflectometry (TDR) or direct soil sampling. While remote
sensing methods can only resolve the uppermost few centimeters of the soil but investigate
at a large- to regional-scale, point measurements have a high vertical resolution. However
agronomic management and roots alter in deeper soil layers as well (e.g., Barej et al. (2014)
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Hobley et al. (2018), Kautz et al. (2013), Maeght et al. (2013)) and field-scale information
that covers a certain depth range is needed. Near-surface geophysical methods can close this
gap between these large- and point-scales, and provide links at field- and catchment-scale,
e.g., (Binley et al., 2015).
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Figure 1-2: Schematic overview of the different investigation methods and the trade-off between
resolution and scale of investigation. Adapted from Rubin and Hubbard (2005).

As mentioned before for detailed understanding of the soil-plant continuum one can not exclu-
sively consider the spatio-temporal distribution of SWC or crop roots. Hence multidisciplinary
research is necessary, which combines the different research ares and field investigation tech-
niques. To investigate crop roots different investigation and root phenotyping techniques are
applied. Major differences are present in the investigation scales or SV and which components
are investigated. Techniques range from small scale laboratory techniques, such as magnetic
resonance imaging (MRI) root observation (Bagnall et al., 2020), rhizotron images (Vamerali
et al., 2011), point scale observations, using proximal soil sensor (Viscarra Rossel et al., 2010)
to non-invasive tools, such as hydro- and agrogeophysics (Binley et al., 2015, Garré et al.,
2021). Especially, non-invasive tools to observe crop roots and SWC in the field with a high-
throughput remains a bottleneck. To derive and analyze dynamic processes of the soil-plant
continuum and their link to hydrological and plant science parameters, repeated or time-lapse
measurements can be important (Blanchy et al., 2020c). Therefore, methods which are easily
repeated over different times and can be applied while crops are still in place to cover the full
range of a vegetation period, are essential. Such time-lapse measurement techniques are ad-
ditionally valuable to recognize the effects of agricultural practices or agronomic management
on soil and crops and go hand in hand with non-invasive tools which are of a non-destructive
nature.
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1-1 Agrogeophysics - closing the gap between plant & regional
scale

In recent years the concept of ‘agrogeophysics’ was shaped, where geophysical methods
can be utilized to overcome the obstacles of modern agriculture. Agrogeophysics describes
geophysical survey techniques, which are used to characterize patterns or processes within the
subsoil, which are relevant for agronomic management. This research field, according to Garré
et al. (2021), combines the research areas within hydrogeophysics (Binley et al., 2015) with
the focus on agricultural application and proximal soil sensing or digital soil mapping, where
geophysical techniques are used. Geophysical survey techniques, like electrical resistivity
tomography (ERT), electromagnetic induction (EMI), induced polarization (IP), spectral
induced polarization (SIP), nuclear magnetic resonance (NMR), and ground penetrating
radar (GPR) can be used to link the different scales and different key soil state variables to
investigate the subsurface systems in an non- or minimal-invasive manner. These commonly
used techniques (ERT, EMI & GPR) provide a wide range of applications, while each of
them has its advantages and disadvantages. ERT images the apparent electrical resistivity
in the soil using electrodes, which require galvanic contact with the soil. Therefore, the
area of investigation is often limited to the fixed locations below the electrodes. In-situ
imaging of the soil-plant continuum structure, particularly SWC temporal distribution and
hence SWC depletion patterns can be achieved using ERT, e.g., (Cassiani et al., 2016,
Garré et al., 2012, Slater and Binley, 2021). Since EMI uses an inductive signal to map the
apparent electrical conductivity of the soil, it does not require direct soil coupling. This
enables a higher throughput compared to ERT and hence a mapping of large areas, and
the possibility to measure while crops are still in place (Blanchy et al., 2020c¢, Brogi et al.,
2019, Schmick et al., 2021). One limitation of ERT and EMI is that the measured electrical
conductivity is influenced by several factors next to the SWC (e.g. temperature, salinity).
Therefore, often site specific relationships or additional calibration data such as TDR or soil
probes are needed to derive the SWC. In contrast, GPR measures the propagation of the
electromagnetic wave in the soil (Jol, 2009), which can be directly linked to the SWC (Huis-
man et al., 2003, Klotzsche et al., 2018) and additionally can map the structures of the subsoil.

Although each of these methods has their benefits, combining various complementary
methods demonstrated a high potential to enhance the soil-plant continuum understanding.
For example, recent studies identify the effects of the wide range of agricultural management
practices, by applying different geophysical survey techniques and the combination of such.
Shin et al. provided an overview on the use of geophysical methods for soil characterization,
such as ERT, IP, EMI, GPR, NMR and seismic methods. Blanchy et al. (2020¢) applied
EMI and ERT to investigate the influences of cover crops, tillage, compaction, irrigation and
fertilization on the SWC dynamics, with a close attention on the application of time-lapse
measurements. The work of Blanchy et al. (2020a) focused on a high-throughput phenotyping
platform installed in the field, to measure ERT under winter wheat considering different
nitrogen treatments. Additional studies focus on fertilization and irrigation are, e.g.,
(Kaufmann et al., 2019, Moghadas et al., 2017). The negative effects of soil compaction on
crops were, e.g., determined by Schmick et al. (2021) using EMI and ERT, Cimpoiasu et al.
(2021) by investigating ERT combined with X-ray computed tomography and Romero-Ruiz
et al. (2022) by applying Direct Current(DC)-resistivity and TDR measurements. Algeo et al.
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(2018) used surface GPR for mapping changes in the shallow SWC, with the goal improve
irrigation efficiency. Akinsunmade et al. (2019) investigated the agrotechnical properties of
different soil types with focus on compaction using surface GPR. Another interesting study is
provided in Kaufmann et al. (2020), where a novel multichannel GPR technique is presented
for soil characterization. Jonard et al. (2013) applied different geophysical techniques to
investigate tillage effects using GPR and EMI and validated their findings with soil sampling,
capacitance probe, and soil penetrometer measurements. Hebel et al. (2021) utilized EMI
and UAV based data to investigate soil information and management zones in potato
fields. Next to the problems of soil compaction and agricultural management, soil salination
processes and their monitoring methods require close attention since climate change increase
in arid and semi-arid climate zones these factors (Besma et al., 2021). A novel soil mapping
strategy was presented in Brogi et al. (2019, 2021), where a geophysics-based soil map for a
area of 1 km? was developed using EMI and direct soil sampling as a ground-truth. They
observed correlations with their EMI-based soil classifications and patterns in crop health
obtained from satellite imagery, and suggested that such geophysics-based soil maps imperove
commonly available soil maps in agro-ecosystem modeling.

Various studies have been performed to investigate the effects of roots on the spatio-
temporal distribution of SWC within agricultural fields. Soil water depletion patterns of
tree orchards have been investigated by, e.g., Cassiani et al. (2016), Vanella et al. (2022),
Vargas et al. (2020) applied ERT and Robinson et al. (2012) using EMI. Additionally, crops
with finer roots system have also been investigated by e.g., Shanahan et al. (2015) using
EMI and Garré et al. (2013, 2011), Michot et al. (2003), Rao et al. (2020), Slater and Binley
(2021) using ERT. Although all of these studies successfully demonstrate the potential of
geophysical methods to investigate the soil-plant continuum, investigating explicitly roots
and roots zones with their functional and structural properties remains challenging. Most
of the characterization of roots is of a indirect nature, while mapping the spatio-temporal
patterns caused by the roots (Garré et al., 2021). Studies have used electrical methods in the
laboratory to derive root parameters and functional root properties (reviewed in Cimpoiagu
et al. (2020) and Weigand and Kemna (2017, 2018). Weigand and Kemna (2017, 2018) have
applied sEIT to image crop root systems under controlled laboratory conditions, while this
technique was extended to promising field applications (Weigand et al., 2022) and first results
(Michels and Kemna (2022) in Revil et al. (2022)).

For these methods and for agrogeophysics in general, challenges and limitation remain
(Cimpoiagu et al., 2020, Ehosioke et al., 2020, Ge et al., 2021). For example, the resolution
of ERT methods for particular events like droughts, is not equipped to map, e.g., small scale
soil water depletion pattern for different genotypes (Cimpoiasu et al., 2020). Further, the
spatial resolution is often restricted by the permanently installed ERT lines. EMI enables
the mapping the soil apparent electrical conductivity by using an inductive signal, since
the galvanic coupling with the soil is not necessary. Hence, entire agricultural field can be
mapped while crops remain intact (e.g., Blanchy et al. (2020b,¢), Schméck et al. (2021), but
simultaneously spatial resolution is not quite sufficient for small scale soil heterogeneities.
While these techniques are sensitive to soil characteristics such as the soil’s porosity, density,
clay content, pore water saturation, temperature, and salinity of the pore water, for a
quantitative interpretation often site specific transfer functions have to be established.
Unfortunately, most of these transfer functions are often only applicable for the respective
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field site and the need for in-situ calibration remains (Garré et al., 2021, Tso et al., 2019).
Blanchy et al. (2020b) investigated the relationship between SWC and electrical conductivity,
to use EMI data for wheat phenotyping, with the result that plot specific relationship models
should be used. Furthermore, Moghadas and Badorreck (2019) approached this problem
by using a machine learning algorithm to estimate the SWC from electrical conductivity
data. Additionally, Terry et al. (2023) used surface GPR, ERT and frequency domain
electromagnetics (FDEM) data acquired during an infiltration experiment with an machine
learning approaches to evaluate semi-automated geophysical SWC measurements in the field.
In contrast to ERT or EMI, GPR has a direct link to SWC and because of the high frequency
electromagnetic pulses, which the method applies, it is the method with the highest possible
spatial resolution among the agrogeophysical methods (Huisman et al., 2003, Klotzsche et al.,
2018).

1-2 GPR for investigating the soil-plant continuum

GPR is an electromagnetic (EM) method, which records the EM wave propagation through
the subsoil, which is influenced by the dielectric properties of the soil components (Annan,
2005, Jol, 2009). The mathematical description of the EM physics are provided by Maxwell’s
equation and in addition the constitutive equations providing the relation to the material
properties, which are the electrical conductivity o, dielectric permittivity € and magnetic
permeability p defined by the material properties. Typically GPR systems consist of a trans-
mitting (Tx) and a receiving antenna (Rx). Tx is emitting short pulses of electromagnetic
waves at a high frequency (between 50 MHz to 2600 MHz for commercial systems) and Rx
is recording a signal over time. The recorded GPR signal can be used to derive the relative
dielectric permittivity €, from the EM wave velocity and the electrical conductivity o from
the attenuation of the EM wave (more details and mathematical descriptions can be found in
Jol (2009)). For the most common GPR cases using high frequencies, the velocity v of the
subsurface material can be derived for low-loss and non-magnetic materials (p &~ 1) with

v = 1-1
N (1-1)
using
e = 55 (1-2)
0

where ¢ is the radar velocity in air (= 0.3 m/ns), ¢ is the effective permittivity of the bulk
material and €y (8.85 - 102 F m!) is the permittivity of free space. In this thesis for
convenience, the relative permittivity will further be referred as the permittivity €,. Typically,
in GPR the relationship for low loss attenuation « is used to derive the electrical conductivity

o with
1 Jp
= = 1-
¢ 2”\/; (1-3)

Both parameters € and o can be linked to SWC and porosity, or, clay content as well as
the pore water salinity of soils, respectively. The resolution and depth of penetration/
investigation is depending on the antennae frequency, the related wavelength of the signals
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and the electrical conductivity of the subsurface. The range of frequencies or band width
B, where the resolutions satisfies the requirements, is a spectrum surrounding the center
frequency f.. While low frequencies have a long wavelength and can penetrate deeper into
the subsurface with a loss of resolution. In contrast, high frequencies are related to shorter
wavelengths and can detect small-scale features in the subsurface, but their penetration depth
is smaller than for low frequencies. Note that, attenuation in natural materials consists of
electrical and scattering losses. An increase in frequency leads to an increase in these losses,
hence a decrease in signal strength. Additionally, high-loss materials with a high electrical
conductivity result in a higher attenuation, leading to challenges in data acquisition for high
electrical conductivity soils.

The non- to minimal-invasive nature of GPR, appropriate depth of investigation, large
sampling volume as well as the high spatial resolution are advantages of the measurement
technique. Different scales and investigation depths are measured with different surface,
off-ground and crosshole GPR configurations using different frequency ranges. The most
common surface GPR survey type is common offset profiling (COP), see Figure 1-3a). This
method is time and cost effective. COP is measured with a constant spacing between Tx
and Rx and is used to map reflection horizons (Steelman et al., 2012). In most cases, the
recorded reflection data provide no information about the depth or thickness of the horizons.
To convert the time axis into a depth axis, the velocity of the subsurface is crucial, where the
provided travel times relates to the distance. Point measurements for GPR such as common
mid point (CMP) and wide angle reflection and refraction (WARR) can provide the velocity
of the subsurface, see Figure 1-3b. For CMP measurements the transmitter and receiver are
moved with the same distance away from the midpoint (Figure 1-3c¢), while using WARR
measurements the transmitter is positioned at a fixed location and the receiver is being
moved with with an increasing separation. From the acquired WARR data, the velocity of
the direct wave, reflections and refractions in the subsurface can be derived (more details in
Huisman et al. (2003)).

Surface ground penetrating radar

a) Common offset profiling b) Wide angle reflection and refraction c) Common midpoint

"

X T y %

Figure 1-3: Schematic overview of surface ground penetrating radar (GPR) applications with a)
Common offset profiling, b) Wide angle reflection and refraction and c¢) Common
mid point. Transmitting and receiving antennae are labeled Tx and Rx respectively.
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Borehole or crosshole GPR measurements have the advantage compared to surface GPR ap-
plications that it enables the investigation of the deeper near-subsurface between boreholes
and hence can be used for, e.g., critical zone characterization (Binley et al., 2002a, Klotzsche
et al., 2013) including monitoring of infiltration and recharge process (Looms et al., 2008a).
Additionally crosshole GPR measurements can be directly linked with the SWC, since the
distance in which the EM wave travels is know from the borehole separation. Therefore,
crosshole GPR application can be used to investigate in-situ information about the soil prop-
erties. Commonly in hydrogeophysical and agrogeophycial applications, two configurations
are used in the transillumination mode: zero offset profiling (ZOP) or multi-offset gathers
(MOG), see Figure 1-4. Note that such transillumination measurements are affected by the
borehole features like deviation, geometry and borehole filling (Annan, 2005). Acquiring ZOP
data, Tx and Rx are moved simultaneously in adjacent boreholes (Figure 1-4a). This is a fast
and inexpensive method, and, because of the known distance between the boreholes the EM
velocity can directly be derived resulting in a one-dimensional averaged permittivity profile
over depth. In contrast, MOG, is more time consuming and labor intense, because Tx is fixed
at a location in one borehole and Rx is moved along the length of a neighboring borehole.
This is repeated for various Tx locations, with a fixed step size for Rx (Figure 1-4b). During
this process two-dimensional profiles of travel time information are recorded (Cassiani et al.,
2006). The obtained MOG data can be used in inversion approaches to derive detailed 2D or
3D information between the boreholes for many number of unknowns (for detailed remarks
see e.g. (Huisman et al., 2003, Klotzsche et al., 2019, 2013). In addition, borehole and surface
measurements can be combined in so-called vertical radar profiling (VRP), where a single-
borehole in which the Rx is places is considered and the Tx is placed at the surface. This
technique is used to derive one-dimensional velocity models by inverting the arrival times the
direct ground waves (Tronicke and Hamann, 2014).

Crosshole ground penetrating radar

a) Zero offset profiling b) Multi-offset gathers

Figure 1-4: Schematic overview of crosshole ground penetrating radar (GPR) applications with
a) Zero offset profiling and b) Multi-offset gathers. Transmitting and receiving
antennae are labeled Tx and Rx respectively.
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Linking GPR to SWC and root zones

To improve the description of the soil-plant continuum, knowledge about the SWC and
the root distributions is essential. Since GPR can be directly linked to the SWC, utilizing
appropriate empirical or petrophysical relationships (Huisman et al., 2003, Klotzsche et al.,
2018, Steelman and Endres, 2011), research had focused in recent years to further understand
the connection of the GPR signals and related SWC. Additional studies have focused on how
GPR can be applied and considered for different aspects of subsoil sensing in agriculture (Liu
et al., 2016).

Most of the studies consider only one aspect, either the SWC distribution and dynam-
ics, or, the effects of root zones. In order to measure the SWC changes at a high spatial
resolution within a field plot, crosshole GPR is a convenient configuration and showed a high
potential to map and monitor hydrological processes and SWC (Binley et al., 2002b, Haruzi
et al., 2021, Klotzsche et al., 2013, Looms et al., 2008a, Rucker and Ferré, 2004). The relation
is linked to the high contrast in dielectric permittivity &, for the soil components, (e.g., dry
sand €5 = 6, air ¢, = 1 and water £, = 84). Investigation of infiltration processes with GPR
can be beneficial to improve and optimize irrigation application to reduce water use or to
map infiltration to avoid pesticide and nutrient leaching into sacred protected groundwater
or surface water like lakes and rivers (Yu et al., 2020).

While several applications and case studies showed the potential to monitor SWC dy-
namics, specific research on roots and root phenotyping using GPR and agricultural plants is
limited. In recent years, surface GPR has been used to investigate the soil-plant continuum,
here we have to differentiate between coarse roots systems, such as trees, and fine roots
system, such as crop roots. The root diameter of 0.002 m distinguish between coarse roots
(larger than 0.002 m) and fine roots (smaller than 0.002 m), in some research small roots
are additionally distinguished with diameters between 0.002 m - 0.005 m. Guo et al. (2013),
Rodriguez-Robles et al. (2017) provided an comprehensive review on the detection of tree
roots systems using GPR. Thereby, mostly surface GPR is used to map the distribution of
tree roots systems, while investigation the reflection hyperbolas in the GPR radargrams.
A wide range of studies was able to detect roots with a diameter of 0.005 m - 0.082 m
and rooting depth of 0.10 - 1.10 m using frequencies between 400 - 2000 MHz (Butnor
et al., 2001, Cox et al., 2005, Cui et al., 2010, Hruska et al., 1999, Raz-Yaseef et al., 2013,
Rodriguez-Robles et al., 2017, Yan et al., 2013). Some studies have additionally focused on
the estimation of the tree root biomass using frequencies between 1500 - 2000 MHz (Butnor
et al., 2005, 2012, 2003, 2001, Cui et al., 2010, Samuelson et al., 2008, Stover et al., 2007).
Additionally, a few studies investigated the potential to estimate SWC of root zones for trees
by analyzing the reflection hyperbolas (Liu et al., 2020, 2019) and shrub roots (Cui et al.,
2021). Detached from the distinction between fine and coarse roots are root and tuber crops,
such as potatoes, sugar beets and cassavas. Delgado et al. (2017) investigated whether GPR
is capable to predict root-bulking rates of cassava root by detecting the total root biomass
during the vegetation period. Resulting in an over prediction for early growth stages, but with
good prediction for later growth stages. Nevertheless, these studies demonstrated the possi-
bility to utilize GPR to derive SWC and link the signal to root phenotyping in relation to SWC.
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In contrast, root zones of agricultural crops, such as cereal crops, have been the focus on a few
studies (Delgado et al., 2017, Klotzsche et al., 2019, Liu et al., 2016, 2017, Wijewardana and
Galagedara, 2010). One of the earliest work was achieved by Wijewardana and Galagedara
(2010), who estimated the spatio-temporal distributions of SWC for raised agricultural beds
cropped with vegetables using surface GPR configurations similar to ZOP and MOG config-
urations, with focus on irrigation SWC patterns. These studies only investigated the roots
zones of fine roots in a indirect manner. Liu et al. (2017) correlated 1600 MHz GPR images
with root diameter and root biomass from soil cores for winter wheat and energy cane in
different soil types. While Parsekian et al. (2012) were able to detect roots < 0.002 m under
laboratory conditions using 1600 MHz antennae. It should be noted that such high frequency
applications at the field-scale are difficult because of the high attenuation of the EM waves
and hence shallow penetration depth. Using GPR to map and detect fine root systems in the
field continues to be a challenge. Additionally, Guo et al. (2013) and Liu et al. (2016) state
that the effect of the roots in the dielectric permittivity derived from the GPR measurements
remains unsolved.

Soil hydraulic parameters obtained from geophysical data

Next to the state variables such as soil texture and SWC, the estimation of the SHP is
essential to accurately describe hydrological and crop models. Geophysical data have been
used in the past decades to derive these SHP using geophysical inversion approaches, such
as sequential or coupled inversion. In a sequential inversion geophysical measurements are
inverted to the respective state variables, independently from a the hydraulic or hydrological
model. The state variables are then used as the calibration targets for the hydrologic model
(Pleasants et al., 2022). Singha et al. (2014) and Pleasants et al. (2022) have noticed that the
term sequential inversion Yu et al. (2021) is not consistently used in the literature. Level 1
data fusion (Yeh and Simtinek, 2002), no specific term (Doetsch et al., 2012, Farmani et al.,
2008, Kemna et al., 2002, Vanderborght et al., 2005) or uncoupled hydrogeophysical inversion
(Beaujean et al., 2014, Camporese et al., 2015, Claes et al., 2020, Gonzalez-Quirés and Comte,
2021, Hinnell et al., 2010, Irving and Singha, 2010) describe the same inversion approach.
Different geophysical or hydrogeophysical approaches have been successfully used to estimate
the SHP, e.g., using ERT time-lapse data (Huisman et al., 2010, Manoli et al., 2015, Pleasants
et al., 2022) , surface GPR (Busch et al., 2013) and using crosshole GPR (Looms et al.,
2008a, Rucker and Ferré, 2004, Yu et al., 2022). For the coupled inversion the hydraulic or
hydrological model predicts the respective state variable, which are then transformed into
geophysical variables with petrophysical relationships. These geophysical variables are then
used to predict a geophysical response in geophysical forward simulations (Pleasants et al.,
2022). Coupled inversion has be applied to estimate the SHP utilizing ERT (Kuhl et al.,
2018, Mboh et al., 2011, Tran et al., 2016) and GPR (Jadoon et al., 2012, Yu et al., 2021).
The advantage of using a coupled inversion approach is, that the no potential error can occur
while the geophysical measurements are inverted to the state variables, which makes it less
sensitive to errors. The drawback of coupled inversions is, the requirement a state-of-the-art
hydrological and geophysical model, which associated high computational demands.
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1-3 Root phenotyping in the field

For the determination of the root system architecture in the field, we first need to differentiate
between destructive or invasive methods and non- or minimal-invasive methods. The most
obvious root sampling method is excavation. Here the entire or parts of the root system
are excavated (Bohm, 1978, Hossne et al., 2016, Weaver, 1926). Shovelomics is root crown
phenotyping focusing exclusively on the uppermost part of the root system (Trachsel et al.,
2010)). Further destructive root sampling method are trench profiles or trench walls which
are mainly used to derive the lateral distribution of root traits. Here a trench is excavated
either parallel or perpendicular to the crop row, although perpendicular to the row is most
commonly used. To distinguish the roots from the surrounding soil and to count root
intersections in a mesh grid, the roots are brushed or washed. The most common root
sampling technique in the field is auger sampling or soil coring (do Rosdrio G. Oliveira et al.,
2000, Wasson et al., 2020). Soil cores are being drilled into the soil surrounding the root
system. A wide range of execution possibilities depending on the research question need
to be considered: number and positioning of cores, core diameter and investigation depth.
Soil coring requires a wide range of steps to derive quantitative root traits, after retrieving
the cores from the soil, such as segmenting, removing of soil, washing roots, sorting alive
and dead roots. After this the root quantification can be achieved with root counting or by
scanning and consecutive image analysis. Although destructive root sampling methods are
labor intensive and disturb the root growth, they have the advantage that they provide the
most reliable information and they are predestined to investigate the infield variability in
root system architecture at a certain point in time. Especially the excavation of monoliths
can provide the spatial variability in roots traits which is especially interesting for row crops,
such as maize. Soil corings and trench wall profile cannot determine the spatial variability
of the entire root system, but are less labor-intensive than excavating monoliths. The major
disadvantage of all three methods is the non-repeatable nature. The measurements can-
not detect any time-depended developments on the same crops throughout the growing season.

A minimal- to non-invasive alternative method, are minirhizotron (MR) techniques.
Here, transparent rhizotubes are directly embedded into the soil and function as observation
windows (Atkinson, 2000, Buczko and Kuchenbuch, 2013, Johnson et al., 2001, Rewald and
Ephrath, 2013, Vamerali et al., 2012)). MR do not only provide the opportunity to investigate
root distribution, but also to investigate root development over the entire vegetation period or
different crop growing seasons. Furthermore, depending on the construction and compositions
of rhizotubes, they also allow the investigation of multiple roots systems, over various depths
and thus enable the investigation of the horizontal variability of the root system. There
are only a few MR facilities under field conditions present to this day (Cai et al., 2016,
Olof Andrén, 1991, Svane et al., 2019, Vamerali et al., 2011). Their construction ranges
from a inclined rhizotubes, with semi-field conditions (Svane et al., 2019) to horizontally
installed rhizotubes in different soil types under natural field conditions (Cai et al., 2016). To
obtain information on roots traits from MR, recordings need to be acquired from within the
rhizotubes, here digital photo- or video cameras or scanners are used. Limitations of the root
observation using MR are that the collected two dimensional images only show a limited sec-
tion of the entire root system. Another disadvantage are the high costs of the installation and
maintenance of MR facilities. Additionally, different installation techniques disturb the soil
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and the rooting zone. Thereby, different interferences occur, like soil smearing, lacking contact
between soil and rhizotubes, soil compaction and the rhizotubes act as obstacles for the roots,
e.g., Guo et al. (2007), Johnson et al. (2001), Maeght et al. (2013), Rewald and Ephrath (2013).

The output of many in-field root sampling methods, like the here presented MR tech-
nique, are root images. Since progress in root sampling methods in field, but also in
greenhouses, resulted in high-throughput data sampling of root system images, fast and ac-
curate software-based solutions for image analysis are required. Tools to provide quantitative
root information from these digital images or scans have undergone tremendous development
in recent years (Atkinson et al., 2019). Since, in this work we are only considering root
information from two-dimensional measurements, we are not considering available tools for
three-dimensional data sets, see Atkinson et al. (2019). To acquire quantitative information
from images or scans mainly two steps are required, namely root object segmentation and
object quantification (Leitner et al., 2013). Especially for MR images the segmentation
proves to be difficult caused by the heterogeneity between roots and soil within the images.
Numerous manual or (semi-)automated software tools for root system information extraction
have emerged, reviewed in Lobet et al. (2013). However, manual tools require the user to
interact with each individual image and also the semi-automated and automated tools and
filter algorithms (Dowdy et al., 1998, Murphy and Smucker, 1995, Zeng et al., 2010) only
expedite the post processing (Vamerali et al., 2011) but still require the user’s interaction.
These limitation for available tools make them only applicable for certain, very homogeneous,
image types, such as high-contrast root scans (Yasrab et al., 2019). Due to the heterogeneity
within the most MR data sets this resulted in the manual annotation of the images. Since
GPR is sensing a soil volume and image only record a planar image, an upscaling of the
two-dimensional image to a three-dimensional soil volume is required. Therefore, a respective
soil volume is necessary Different approaches are present in the literature, to derive this
respective soil volume, e.g., from the image size and the depth of view, i.e., respective soil
thickness. Most studies assume the depth of view to be 0.002 m, e.g.,(Brown et al., 2008,
Merrill and Upchurch, 1994, Steele et al., 1997), which was originally suggested by Taylor
et al. (1990). According to Brown et al. (2008) using a depth of view of 0.002 m would lead to
an overestimation of the respective soil volume and therefore an underestimation of the root
volume. Brown et al. (2008) showed, by using two different depths of view, which considered
the actual root diameter, to avoid underestimation of the respective soil volume with root
diameters larger than 0.002 m. A different approach was chosen by (e.g.,Cai et al. (2017),
Morandage et al. (2021)), where the rhizotube radius was used to derive the respective depth
of view. This accounts for the uncertainty, that the roots would grow differently, of the
obstacle of the rhizotube was not present and a shorter root length were present.

1-4 Aims and Objectives

Different investigation methods for the soil-plant continuum are available and each is
individually sensitive to different soil parameters and variables, ranging from physical and
dielectrical properties of the soil and the roots, to parameters like root system architecture.
Each investigation techniques observes the continuum at their own scale, which leads to
unique advantages and challenges. What current research is missing is the link of investigation
techniques across discipline, such as agropgeophysics and plant science and especially using
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the information for bilateral validation. This research aims towards bringing different
investigation techniques and scales closer together and to enhance the overall understanding
of the soil-plant continuum.

The overarching goal of this doctoral project is to develop possibilities to promote the
application of GPR as a non-invasive investigation tool for sustainable agriculture and explore
its advantages and overcome its limitations. Thereby, this work focuses on the development
of novel data analysis methods, data understanding, validation procedures, suggests areas of
application and proposes optimized field data acquisition techniques. The following chapters
are aiming towards establishing what the capabilities of GPR data are and providing a
foundation of knowledge that future research can build on. To establish a data base for
the indented field of attention, a comprehensive data set for two minirhizotron facilities in
Selhausen was acquired, analyzed and made publicly available. This was not only to acquire
information in the framework of this doctoral project, but also to provide a multidisciplinary
data set available to other scientists of various research fields and to promote open science.

Furthermore, this work followed these main research objectives:

1. Collecting and providing a comprehensive data set to for a wide range of scientific fields
and applications

2. Imaging the horizontal spatio-temporal variability in crosshole GPR-derived permittivi-
ties to investigate soil-plant continuum processes like soil water depletion patterns, root
growth and influences of agricultural practices

3. Linking and correlating the impact of row crops on the horizontal spatio-temporal vari-
ations in crosshole GPR-derived permittivities using root information for the quantifi-
cation of data acquired with non-invasive subsurface investigation tools such as GPR to
derive information about and soil water content redistribution connected to root presence

4. Improving the understanding of the crosshole GPR signal related to crops and crop
roots, to use this knowledge in further GPR applications such as surface GPR and to
optimize investigation techniques

5. Determining the importance of considering a root phase within the soil system when
calculating the soil water content in appropriate petrophysical mixing models, to derive
the soil water actually present in the soil under the presence of roots

6. Identifying the potential of using crosshole GPR to derive quantitative and spatially
distributed information of soil state variables for the soil-plant continuum of agricultural
crops, such as soil hydraulic parameters and soil characteristics

7. Establishing GPR as a standard investigation tool to non-invasively monitor and char-
acterize the soil-plant continuum for field practices related to sustainable agriculture
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1-5 Outline of the thesis

This thesis composed of six chapters and five appendices:

Chapter 1 is the introductory chapter, which formulates the research questions and
objectives that have been addressed over the course of this doctoral project. It will provide
an overview of the current state of research area and related fields. First, this introductory
chapter will explore the importance of investigating the soil-plant continuum and its com-
ponents, and, processes under different aspects. Further, an overview of the current state of
the scientific research in the field of agrogeophysics and especially the application of ground
penetrating radar is provided, including the current challenges and limitations. Within
the soil-plant continuum and the vadose zone static and dynamic processes are present
between the different component, which are additionally dynamically influencing each other.
Therefore, non-invasive parameter estimation for hydraulic and hydrogeological applications
are needed, within Chapter 1, overview on the current approaches is provided. Since this work
is multidisciplinary and tries to combine different field investigation methods, an overview of
root phenotyping in the field is given, including the root investigation and how researchers
deal with high-throughput data sets and the upscaling of two-dimensional data.

Chapter 2 provides an overview of the comprehensive sub-soil data set acquired at
the two minirhizotron facilities in Selhausen, Germany. Thereby, we describe the data
acquisition and processing for data collected for the years 2016 - 2021 for wheat and maize
crops sown on two different soil types. The measurement techniques includes time-lapse
horizontal crosshole GPR, root images, soil sensors recording soil water content, soil water po-
tential, and, soil temperature. The research in the subsequent chapters is based on these data.

Chapter 3 is analyzing the data acquired while maize was sown on the minirhizotron
facilities. Here, a novel statistical analysis for time-lapse horizontal crosshole GPR data is
presented to identify horizontal variations caused by the maize crops. Hereby, the so-called
trend corrected spatial permittivity deviation of vegetated field was derived. The patterns
observed in the GPR data could be validated and correlated with root-image-derived root vol-
ume fraction redistribution of the soil water, and therefore an increase the soil water variability.

Chapter 4 is further exploring the influences of the different soil-plant continuum
components, such as soil, water and roots, on the GPR signals. Thereby, one focus is
to understand the effects of consideration of an additional root phase in the application
of commonly-used petrophysical relationships to transform the GPR-derived dielectric
permittivity into SWC. A numerical study is performed to derive synthetic GPR signals for
different soil-plant continuum compositions including, soil, roots information based on trench
wall count data, and above-ground shoots.

Chapter 5 introduces a sequential hydrogeophysical inversion approach to derive the
soil hydraulic parameters for one of the rhizotron facilites using data of a growing period. In
this sequential inversion the horizontal crosshole GPR derived SWC values over the growing
season is combined with a hydrological model HYDRUS-1D, where root information and
atmospheric conditions from the test site are included. Using this approach the SHP of
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the uni- and bimodal Mualem-van-Genuchten model for an one-dimensional averaged case
were investigated, while the best model setup was consider to upscale the SHP for each
measurement points of the rhizotron. Using the bimodal Mualem-van-Genuchten model, the
SHP along the horizontal axis are derived for the entire field-plot resulting in a pseudo 3D
representation of the site.

Chapter 6 is summarizing the key findings of the doctoral project and is providing
the final conclusions of this project. Recommendations for future work and research topics
are provided in the outlook section.

Following these main chapters are appendices, which are divided into two parts Ap-
pendices A - C, contain the respective complementary material for the Chapters 3 to 5.
Appendices D - F include additional studies, which were published in cooperation of this
doctoral project:

Appendix D - Klotzsche et al. (2019) - "Monitoring soil water content using time-
lapse horizontal borehole GPR data at the field-plot scale". L. Larm performed experiments
and data collection, data analysis, and performed revisions of the manuscript.

Appendix E - Bauer et al. (2022) - "Development and Validation of a Deep Learning
Based Automated Minirhizotron Image Analysis Pipeline". L. Larm performed experi-
ments and data collection, prepared the annotated dataset, and performed revisions of the
manuscript.

Appendix F - Yu et al. (2021) - "Sequential and coupled inversion of horizontal borehole
ground penetrating radar data to estimate soil hydraulic properties at the field scale ". L.
Lérm contributed to the methodology and software developments and performed revisions of
the manuscript.
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Chapter 2

Multi-year belowground data of
minirhizotron facilities in Selhausen

Abstract

The production of crops secure the human food supply, but climate change is bringing new
challenges. Dynamic plant growth and corresponding environmental data are required to
uncover phenotypic crop responses to the changing environment. There are many datasets
on above-ground organs of crops, but roots and the surrounding soil are rarely the subject of
longer term studies. Here, we present what we believe to be the first comprehensive collection
of root and soil data, obtained at two minirhizotron facilities located close together that have
the same local climate but differ in soil type. Both facilities have 7m-long horizontal tubes
at several depths that were used for crosshole ground-penetrating radar and minirhizotron
camera systems. Soil sensors provide observations at a high temporal and spatial resolution.
The ongoing measurements cover five years of maize and wheat trials, including drought stress
treatments and crop mixtures. We make the processed data available for use in investigating
the processes within the soil plant continuum and the root images to develop and compare
image analysis methods.

Adapted from: Lena Lirm”, Felix Maximilian Bauer”, Normen Hermes, Jan van der
Kruk, Harry Vereecken, Jan Vanderborght, Thuy Huu Nguyen, Gina Lopez, Sabine
Julia Seidel, Frank Ewert, Andrea Schnepf and Anja Klotzsche (2023): Multi-year
belowground data of minirhizotron facilities in Selhausen.  Scientific Data 10, 672.
https://doi.org/10.1038/s41597-023-02570-9 (“contributed equally to this publication)
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18 Multi-year belowground data of minirhizotron

2-1 Background & Summary

As a result of climate change, ensuring food security for the vastly growing human population
is one of the major challenges of the 215 century. While climate change is exerting increasing
pressure on the availability of natural resources such as water and soil nutrients, there is
an increasing demand on food production. To ensure food security for the growing world
population, agricultural production will have to increase by at least 60% by 2050 (Alexandros
et al., 2012). The yield of agricultural crops therefore needs to be increased and yield
stability under changing conditions must be preserved, if current consumption patterns
are maintained. A comprehensive understanding of all processes within agro-ecosystems is
crucial to identify the key parameters to maintain yield stability and increase yield. The
main source of water and nutrients for plants is the rhizosphere and the surrounding soil.
Key parameters for potential improvements in water and nutrient efficiency could be revealed
through a comprehensive understanding of the soil-plant continuum and its processes. This
includes parameters describing the root architecture, influencing processes such as root water,
and nutrient uptake, which governs the yield (Lynch, 2007). Field phenotyping, especially
incorporating below ground information is crucial for breeders to capitalize on developments
in genetics, since information identified under controlled environment are often not accounting
for "real-world" field conditions (Araus and Cairns, 2014). In-field observations also enable
to investigate quantitative traits, particularly those related to root features that influence
drought stress tolerance. Therefore, field phenotyping facilities including below ground
information provide precious data for breeders (York, 2021). Additionally, knowledge about
soil heterogeneity is crucial to understanding the distribution in soil water and nutrient
content.

The data presented here include information about crop-relevant subsoil data such
as soil water content, soil water potential, soil temperature, and root development — on a
high temporal-spatial resolution for multiple crop growing periods.

There are several techniques to observe roots non-destructive. The whole root system
development can be observed with rhizotrons, equipped with a clear window on the side.
Rhizotrons exist in various shapes for greenhouse and in-field observation (Silva and Beeson,
2011, Wasson et al., 2020). If installed above ground, these rhizoboxes allow for the sampling
and imaging of root systems through easily accessible windows and apertures at the side (Ras-
mussen et al., 2020, Thorup-Kristensen et al., 2020). In the past, several in-field rhizotrons
often took the form of covered underground cellars or walkways with transparent windows
or side walls for observing root development. In order to avoid expensive construction and
maintenance costs, transparent — minirhizotrons (MR) — were introduced, enabling the in
situ observation of the root in a fixed position, but at several depths (Taylor et al., 1990).
By installing transparent tubes with an inclination, they could be accessed from the surface.
These rhizotubes were subsequently also used in rhizotron facilities, where they were installed
horizontally from the trench walls at different depths to ensure that root distributions and
root development could be observed in a larger soil volume than only at the side walls (Van de
Geijn, 1994). It is important that the installation of the rhizotubes is causing as little soil
disturbance as possible. Especially in fine textured soil, less soil compaction around the
tube, caused by the installation process, might alter the root growth (Johnson et al., 2001).
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These influences on the collected root data can be reduced to a negligible minimum when
auger with the same diameter as the rhizotubes are used to drill holes for tube insertion, the
soil is re-compacted according to previous bulk density measurements and a resting period
is respected after tube installation (6-17 month) (Johnson et al., 2001, Joslin et al., 2006,
Pritchard, 2008, Vamerali et al., 2012). The permanent installation and maintenance of MR
at several depths has only been done on very rare occasions due to the high manufacturing
effort involved (Svane et al., 2019, Van de Geijn, 1994). However, this kind of MR facility
enables insights into processes within the soil-plant continuum at the plot scale, while offer-
ing high instrumentation for multifaceted observations at high spatial and temporal resolution.

One way to observe the root growth is imaging the roots and surrounding soil through
the transparent rhizotubes with a special camera system. To analyze the resulting root im-
ages, various methods from root counting to single root analysis were performed with several
manual or semi-automated software tools (Atkinson, 2000, Moller et al., 2019, Vamerali
et al., 2012, Zeng et al., 2010). Depending on the targeted phenotypic traits and root image
quality it is not always feasible to extract it manually from the images (Atkinson et al., 2019,
Vamerali et al., 2012). In contrast to genotype analysis, which can be performed with various
high-throughput methods, the phenotyping of corresponding plant architecture and anatomy
is still a bottleneck (Minervini et al., 2015). Image analysis based on the convolutional neural
network (CNN) is the most promising way to close this gap (Song et al., 2021). In particular,
CNNs are used to automatically detect different plant organs by segmenting them from the
background (Kamilaris and Prenafeta-Boldd, 2018). While this is already established for
above-soil organs of plants, applying these techniques to extract information about the root
system remains challenging, especially under field conditions (Ubbens and Stavness, 2017,
Wang and Su, 2022). This is mainly due to the lack of availability of root image data, which
are required to train a segmentation model, compared to shoot image data. Capturing shoot
images is inexpensive and easy, while in-field root imaging is time- and labor-intensive (image
acquisition time is 5-10 minutes on average per tube) (Atkinson et al., 2019, Yang et al.,
2020).

In addition to the root information, soil sensors measure point information on soil water
content, soil water potential and soil temperature. Moreover, the spatial soil water content
per depth can be measured with a ground-penetrating radar (GPR) (Klotzsche et al., 2019,
Yu et al., 2020) between two neighboring rhizotubes.

The two MR facilities(Cai et al., 2016) in Selhausen, Germany, enable longer term
studies of the soil-plant continuum on two different soils in the same climate. To investigate
the different components of the soil-plant continuum, these MR facilities offer unique
conditions to record 4D subsoil information for multiple growing seasons under different field
conditions and agronomic treatments. Detailed information about soil water content (SWC),
soil water potential, and soil temperature was obtained at two locations within different soil
types by the soil sensors mentioned above. Furthermore, morphological root information was
obtained in situ, including relevant root system traits such as length, diameter, branching
frequency, etc.. Root traits were acquired with cameras, taking images through horizontal
transparent rhizotubes installed at several depths (Cai et al., 2016, Morandage et al., 2021).
Since all measures to avoid altered root growth due to tube installation were taken, the root
parameters are expected to have at most negligible deviations in this respect.
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The data collected in this study can be used to develop, calibrate, and validate mod-
els of the soil-plant continuum across different scales (Schnepf et al., 2022b) with regard
to different root zone components such as soil processes, including flow processes (Landl
et al., 2021, Vereecken et al., 2016), root development (Schnepf et al., 2022a), and biopores
(Landl et al., 2019) as well as different model compilations such as single-plant and (Schnepf
et al., 2022b) multi-plant modeling (Morandage et al., 2019) or soil water content and
root water uptake modeling (Cai et al., 2017, 2018b). The data include agronomically
relevant information for breeding water-efficient cultivars and for field management under
various conditions, which can be directly used by, for example, agronomists and biologists.
Furthermore, the root image data provided here can be used to train and benchmark neural
networks, since deep learning-based technologies are a fast and continuously developing
branch of plant and agronomic data analysis. The images presented in this paper, which
correspond to the root data, are — to the best of our knowledge — the largest available MR
image collection, covering several years, cultivars, and agronomic treatments. In this context,
the advantage of this image collection is twofold. Firstly, we provide more than 160,000 MR
images in one freely available and categorized data set. Secondly, we simultaneously publish
reference data that can be used for validation. On the one hand, this will help machine
learning scientists to develop models, capturing more heterogeneity. On the other hand, soil
and plant scientists will benefit directly from the analyzed data. The data set was acquired
for the years 2016, 2017, 2018, 2020, and 2021, and will be continued in the future. The data
set will thus be added to each year. Data for the years 2012-2015 are partly available, but
are not included in this publication. The related above-ground data, including measurements
on crop development, transpiration fluxes, and assimilation rates, will be published in a
corresponding paper.

2-2 Methods

2-2-1 Minirhizotron Facilities

The data for this publication were acquired at two MR facilities, allowing us to observe root
growth through the rhizotubes and to measure 4D geophysical data. A detailed description
of the construction of the MR facilities is provided in Cai et al. (2016). Here, we provide a
basic overview of the facilities and the data acquisition.

The MR facilities are situated within the TERENO (TERrestrial ENvironmental Ob-
servatories) Eifel/Lower Rhine observatory near Selhausen, Germany (50°52'N, 6°27'E) (see
Figure 2-1a). The Selhausen test site was mentioned in various studies ranging from geo-
physical observations and soil physics to root and plant modeling (Bauer et al., 2011, Bogena
et al., 2018, Brogi et al., 2019, Cai et al., 2017, Jadoon et al., 2012, Weihermiiller et al., 2007).
The weather station (SE_BDK_002) is located within the Selhausen test site. The recorded
parameters are used to calculate the evapotranspiration with a temporal resolution of 10 min.
The data are available in the TERENO Data Discovery Portal (https://ddp.tereno.net/ddp/).
The soil at the two MR facilities was deposited by fluvio-glacial sediments of the river Rur
catchment during the Pleistocene (Bogena et al., 2018, Cai et al., 2016, Piitz et al., 2016).
Different river sediments were deposited at each MR facility. The upper terrace sediments
consist of gravely, partly stony, and silty sand, and it is here where the upper terrace MR
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Figure 2-1: Overview of the location of the minirhizotron(MR)-facilities a) Map of the apparent
electrical conductivity (ECa in [mS/m]) measured with the electromagnetic induction
(EMI) (vertical diapoles, 9.7 cm depth of investigation, 135 cm coil distance) of the
Selhausen test site. Provided by Brogi et al. (2019). b) Aerial photograph of the
Selhausen test site and the MR-facilities. Both maps are given in WGS 1984 UTM
Zone 32N [m]. For a) and b) the location of the MR-facilities is given by the blues
rectangles, the upper terrace facility (Ryt) and the lower terrace facility (Ryt), the
location of the access trench is indicated with a grey rectangle. c¢-d) Photos of the
soil profiles of the loamy soil at the Ryt (c) and of stony soil at the Ryt (d).

facility (Ryr) is located. Tt is classified as Orthic Luvisol with a high stone content (>50 %)
(Yu et al., 2020) according to the World Reference Base for Soil Resources (IUSS Working
Group WRB, 2007). The soil at the lower terrace is classified as Cutanic Luvisol (Ruptic,
Siltic) (Bauer et al., 2011), and it is here where the lower terrace MR facility (Ryr) is located.
The soil organic content and total soil nitrogen (derived from 2020) were 1.14 % and 0.116
% (0-0.3 m), 0.66 % and 0.081 % (0.3-0.6 m), and 0.42 % and 0.059 % (0.6-1 m) in Ry as
well as 1.39 % and 0.128 % (0-0.3 m, with a stone weight of 45 %) in Ryp. The sand, silt,
and clay contents are on average 16 %, 63 %, and 21 % (0 1 m, Ryr) and 32 %, 53 %, and
15 % (0-0.3 m, Ryr). The different soils cause a 4° morphology incline from Ryt towards
Rrr (see Cai et al. (2016). Due to regular tilling and plowing, a 0.3-m-thick plow layer (Ap
horizon) was present in the upper 0.3 m of the two MR facilities (see Figure 2-1b and 2-1c¢).

To compare different agronomic treatments under the same soil and atmospheric conditions,
the two MR facilities were divided into three plots (Figure 2-2a). Within the individual plots,
three horizontal rhizotubes were installed at each of six different depths between 0.1 m and
1.2 m, each with a length of 7 m. The rhizotubes were embedded at a distance of 0.75 m in
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the horizontal axis (Figure 2-2a). For each crop growing season, a crop row orientation per-
pendicular to the rhizotubes was chosen. To perform the measurements within the rhizotubes
an access trench was built within the ground in front of the plots, from which the rhizotubes
can be reached. At Ryr, the soil was excavated and refilled while installing the rhizotubes,
which was due to the high stone content. A plastic foil was installed down to 1.3 m depth
to separate the plots. At Rpr, the soil is undisturbed since the installation was performed
by drilling. The soil was precisely compacted layer by layer to the same bulk density as the
undisturbed soil (see Cai et al. (2016). For Ry, the differences in excess length is negligible,
as they are less than < 0.02 m. In contrast, for Ry, excess lengths are up to 0.10 m. This was
taken into account during the processing of the data. Due to soil erosion and soil compaction
after tillage and seedbed preparation, the depths of the rhizotubes vary between the individual
measurement seasons. The individual rhizotube depths are provided in the repository “Addi-
tional Information”

In addition to the measurements (GPR and root images) that can be performed within the
rhizotubes, various soil sensors are embedded within the soil (see Soil Sensor Data section).
Above ground at Ry, there is a monitoring system for spectral electrical impedance tomog-
raphy (SEIT) (Weigand et al., 2022).

A water reservoir is installed to provide rainwater for irrigation.

2-2-2  Study Design

The MR facilities allow an in situ investigation of the soil-plant continuum. To observe
the impact of drought stress and planting density on different crops and the impact of
crop mixtures on root development, various agronomic treatments were carried out for the
different plots. This includes, depending on the growing season, surface water treatment
(sheltered, natural/rainfed & irrigated), planting density, sowing date, and different crop
cultivar mixtures. In this study, we present the data of multiple crop growing seasons
between the years 2016 and 2021. An overview of the individual crop growing seasons and
the agricultural treatments is provided in the repository “Additional Information”.

During the 2016 crop growing season, the goal was to compare different drought stress
levels for winter wheat (Triticum aestivum, cv. Ambello). A shelter was therefore installed
on Plot 1 for both MR facilities. The shelter had a cover, which was removed when no
precipitation was forecasted. Plot 2 was left under natural conditions and is also referred
to as the rainfed plot. For Plot 3, irrigation pipes were installed and the soil was irrigated
regularly. The individual irrigation values can be found in the “Additional Information”.
For crop growing seasons 2017 & 2018, Zea mays (cv. Zoey) was chosen and the shel-
ter needed to be removed due to the height of the crop. This resulted in two rainfed
plots (Plot 1 and Plot 2). As before, Plot 3 was irrigated. In 2018, the influence of the
sowing date and the planting density was investigated on Plot 1 for Ry and Ry, respectively.

Since the 2020 crop growing season, the focus of research was on comparing the differ-
ent crop root architectures of cultivars — purely sown and in a cultivar mixture with
alternating rows. To explore the beneficial effects of mixing deep and shallow rooting
cultivars, one cultivar chosen was always a deep rooting, while the other one was a shallow
rooting cultivar. The surface water treatment was therefore uniform for all three plots.
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a) Facility & treatment overview b) Inside access trench

c) Plot overview & data acquisition d) Sensor Locations within one exemplary plot
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Figure 2-2: Overview of the Minirhizotron (MR)-facilities. a) Schematic setup of the MR-
facilities indicating that at each of the plots a different agricultural treatment was
applied for the different growing seasons. The direction of the crop rows is per-
pendicular to the direction of the rhizotrubes (red arrow). The measurements are
carried out from the access trench. b) View within the access trench. c) Overview of
one exemplary plot within the MR-facilities with the horizontal crosshole GPR ZOP
measurement set up. Transmitter and receiver antennae are labeled Tx and Rx,
respectively. Root image measurement are acquired using camera system attached
to an index handle. d) Sensor location for one exemplary plot.
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sowing, 2015 | 2016 harvest
Triticum aestivum cv. Ambello

Herbizide Herbizide 80kgha'N 60 kgha!N Insectcide S0kgN
60 kg ha' K,0 2016
30 kg hal P05
2017

harvest sowing

Zea mays cv. Zoey,

Herbizide 80kgha'N 100 kgha' N Herbizide
2017 100 kg hal K,0 40 kg hal P,0;

2018 :
sowlni harvest

Zea mays cv. Zoey,

80kgha'N

2018
2020

sowing harvest sowing
lzea mays: Plot1 -> cv. Sunshinos, Plot2 -> mixture, Plot3 -> cv. Stacey l

40kghalp,0, 80kghalN
2020 40 kg ha' K,0

2021 :
harvest sowing

Triticum aestivum: Plot1 -> cv. Milaneco, Plot2 -> mixture, Plot3 -> cv. Trebellier l

Drought stress experiments 1 Pesticide
N N
S0kghaN S0kgha'N Sowing density and planting density experiment Fertilization

Crop mixture experiments t \rrigation

Figure 2-3: Overview of the experimental timeline including cultivars and management actions,
such as sowing, harvest, pesticide applications and irrigation.

Irrigation was only applied to all crops under heavy drought conditions when the crops
showed severe drought stress symptoms. For the 2020 crop growing season, two different
Zea mays cultivars (cv. Sunshinos and cv. Stacey) were sown on Plot 1 and Plot 3,
respectively. The cultivar mixture was sown on Plot 2. For the 2021 growing season, winter
wheat (Triticum aestivum) with two different cultivars (cv. Milaneco and cv. Trebelir) was
again sown on Plot 1 and Plot 3, respectively. The mixture was sown on Plot 2. In 2021,
irrigation was not required since the winter wheat was sufficiently supplied by precipitation
and the crops did not show any stress symptoms (Figure 2-3). In order to perform de-
structive measurements above and below ground in 2020 and 2021, a replication field (extra
field (EF)) next to Ry was sown. The EF had the same dimension and plot design as the
MR facilities and was located on the west side of the facility (see Above-Ground Data section).

2-2-3 Ground-Penetrating Radar Data
Crosshole GPR Data Acquisition at the MR Facilities

The time-lapse GPR data were collected using a 200 MHz PulseEKKO borehole system
manufactured by Sensors and Software (Canada). Crosshole zero-offset-profiling (ZOP)
measurements were carried out, with the transmitter (Tx) and receiver antennae (Rx) located
within neighboring rhizotubes. Both antennae were simultaneously pulled in parallel positions
along the length of the rhizotubes, with a spacing of 0.05 m between the individual ZOP
positions. An electromagnetic (EM) wave is emitted by Tx, which is sent through the soil
and then recorded by Rx. Changes in soil and root properties between the rhizotubes affect
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the measured GPR traces and, therefore, information about the medium parameters can be
obtained (more information can be found in Klotzsche et al. (2019)). Due to the different
rhizotube lengths of both MR facilities, the length over which the ZOPs are collected is 6.70
m and 6.40 m, resulting in 115 and 109 traces for Ryt and Ry, respectively.

For a time-zero calibration, wide-angle reflection and refraction (WARR) measurements are
carried out within the access trench. Here, Rx antennae are moved over a distance of 6.0 m
with a step size of 0.1 m, while the Tx antennae are fixed at the zero location. At least four
calibration measurements per MR facility and measurement day were performed to capture
daily variations of the time-zero (see GPR Data Processing section).

In contrast to the root images, which capture the soil in contact with the rhizotubes,
the ZOP measurements investigate the soil between two rhizotubes. A 1D horizontal
permittivity profile is thus obtained. For the measurements seasons 2016-2018, only one
horizontal permittivity plane was measured per depth. For Plot 1 and Plot 2, this were the
slices between column C1 and C2, and for Plot 3 between column C2 and column C3. In
2020, two main planes were measured per depth; occasionally only one plane was measured
with the same configuration as for the previous measurement seasons. Table 2-1 indicates
that the number of horizontal permittivity planes was measured per measurement date.
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Table 2-1: Detailed overview of the GPR data acquired during growing season 2016, 2017, 2018,

2020 and 2021.

2016 2017 2018 2020 2021
no | fac date pl date pl date pl date pl date pl
1 Ryt | 03.02.2016 12 | 26.04.2017 15 | 25.04.2018 15 | 19.03.2020 12 - -
Ryr | 03.02.2016 - | 26.04.2017 14 | 25.04.2018 14 - - | 25.11.2020 29
9 Ryt | 30.03.2016 15 | 03.05.2017 15 | 02.05.2018 15 | 12.05.2020 30 - -
Rpr | 30.03.2016 10 | 03.05.2017 14 | 02.05.2018 14 - -1 02.12.2020 30
3 Ryr | 08.04.2016 15 | 10.05.2017 14 | 09.05.2018 15 | 28.05.2020 30 - -
Rpr | 08.04.2016 15 | 10.05.2017 14 | 09.05.2018 14 - - | 14.12.2020 29
4 Ryt | 14.04.2016 15 | 17.05.2017 15 | 14.05.2018 15 | 03.06.2020 30 - -
Rpyr | 14.04.2016 15 | 17.05.2017 14 | 14.05.2018 14 - - | 14.01.2021 29
5 Rur | 20.04.2016 15 | 23.05.2017 15 | 24.05.2018 15 | 10.06.2020 30 - -
Rpr | 20.04.2016 15 | 23.05.2017 11 | 24.05.2018 14 - - | 27.01.2021 29
6 Ryr | 28.04.2016 15 | 31.05.2017 15 | 20.06.2018 15 | 17.06.2020 25 - -
Rpr | 28.04.2016 15 | 31.05.2017 14 | 20.06.2018 14 - - | 10.02.2021 29
7 Ryt | 04.05.2016 15 | 07.06.2017 15 | 27.06.2018 15 | 06.07.2020 29 | 04.03.2021 30
Rpr | 04.05.2016 15 | 07.06.2017 14 | 27.06.2018 14 - - - -
8 Ryr | 12.05.2016 15 | 14.06.2017 15 | 04.07.2018 15 | 15.07.2020 30 - -
Rir | 12.05.2016 15 | 14.06.2017 14 | 04.07.2018 14 - - | 09.03.2021 -
9 Ryr | 19.05.2016 15 | 21.06.2017 15 | 09.07.2018 15 | 23.07.2020 5 | 11.03.2021 30
' Ryr | 19.05.2016 15 | 21.06.2017 14 - 14 - - | 11.03.2021 -
10 Ryt | 25.05.2016 15 | 05.07.2017 15 | 11.07.2018 15 | 27.07.2020 30 | 19.03.2021 24
Rpr | 25.05.2016 15 | 05.07.2017 14 | 11.07.2018 14 - - | 19.03.2021 -
1 Ryr | 02.06.2016 15 | 12.07.2017 15 | 18.07.2018 15 | 05.08.2020 5 | 30.03.2021 15
Rir | 02.06.2016 14 | 12.07.2017 14 | 18.07.2018 14 - 30.03.2021 29
12 Ryt | 09.06.2016 15 | 19.07.2017 15 | 19.07.2018 15 - - | 15.04.2021 30
Rpr | 09.06.2016 15 | 19.07.2017 14 | 19.07.2018 14 - - | 15.04.2021 -
13 Ryr | 13.06.2016 15 | 27.07.2017 15 | 20.07.2018 15 - - | 14.07.2021 30
Rpr | 13.06.2016 15 | 27.07.2017 14 | 20.07.2018 14 - - | 22.07.2021 -
14 Ryr | 20.06.2016 15 | 02.08.2017 15 | 25.07.2018 15 - - | 28.07.2021 30
Rir | 20.06.2016 14 | 02.08.2017 14 | 25.07.2018 14 - - | 28.07.2021 29
15 Ryt | 27.06.2016 15 | 09.08.2017 15 | 01.08.2018 15 - - | 04.08.2021 30
Ryr | 27.06.2016 14 | 09.08.2017 14 | 01.08.2018 14 - - | 04.08.2021 28
16 Ryr | 04.07.2016 15 | 14.08.2017 15 | 08.08.2018 15 - - | 18.08.2021 15
Rpr | 27.06.2016 15 | 09.08.2017 15 | 01.08.2018 15 - - | 04.08.2021 30
17 Ryr | 20.07.2016 15 | 23.08.2017 15 | 15.08.2018 15 - - - -
Rir | 20.07.2016 15 | 23.08.2017 14 | 15.08.2018 14 - - | 25.08.2021 30
18 Ryt | 27.07.2016 15 | 30.08.2017 15 | 22.08.2018 15 - - - -
Ryr | 27.07.2016 15 | 30.08.2017 14 | 22.08.2018 14 - - | 31.08.2021 23
19 Ryr | 01.08.2016 15 | 06.09.2017 15 | 05.09.2018 15 - - | 10.09.2021 30
Rpr | 01.08.2016 15 | 06.09.2017 14 | 05.09.2018 14 - - | 10.09.2021 19
20 Ryr | 08.08.2016 15 | 13.09.2017 15 | 17.09.2018 15 - -1 29.09.2021 30
Rpr | 08.08.2016 15 | 13.09.2017 14 | 17.09.2018 14 - - - -
91 Ryt | 15.08.2016 15 | 20.09.2017 15 | 24.09.2018 15 - -1 03.11.2021 30
Rpr | 15.08.2016 15 | 20.09.2017 14 | 24.09.2018 14 - -1 03.11.2021 27
99 Rur - - | 27.09.2017 15 | 02.10.2018 15 - - - -
Rir - - | 27.09.2017 14 | 02.10.2018 14 - - - -
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Ground-penetrating radar data processing

From horizontal GPR crosshole ZOP measurements, we can derive the relative dielectric
permittivity &,, which can be transformed into SWC wusing appropriate petrophysical
relationships. All the required pre-processing steps are explained in detail by Klotzsche et al.
(2019). Here, we highlight the most important aspects. Firstly, a dewow filter is applied,
which reduces low-frequency noises on the GPR data. Secondly, a time-zero (Ty) correction
of the ZOP data is performed and thirdly, the first breaks (FB) of the signals are estimated
(Figure 2-4a).

Following this processing procedure, the EM wave travel times between the neighbor-
ing rhizotubes for each ZOP position are obtained. Since the horizontal spacing between the
neighboring rhizotubes (dihizotubes) i known to be 0.75 m, the EM wave velocity v for each
ZOP position can be calculated using the obtained travel times (tyavel), see Figure 2-4b. As
suggested by Jol (2009), when considering low-loss and non-magnetic soils the EM velocity v
can be transformed into the relative dielectric permittivity ¢, of the bulk material with

(2-1)

where ¢ is the speed of light (70.3 m/ns).

Because of the presence of the soil sensors and pertaining cables in the first 0.75 m away from
the facility wall, GPR measurements were made between 1 and 7 m away from the facility
wall. Close to the surface (depth of 0.1 m) the radar wave interferences of the critically
refracted air wave and the direct wave (Klotzsche et al., 2019) occur. Therefore, these data
were excluded. Additionally, at Ry, an sEIT system is installed and the metal parts interfere
with the GPR waves. Therefore, at a depth of 0.2 m, where the sEIT system is located, the
data were also excluded.

GPR-derived permittivity can be transformed into the soil water content (SWC), which
provides a parameter that is directly used in soil science. This is achieved by using different
conversion formulas, which are based on empirical relationships and petrophysical, volumetric
mixing models (see Huisman et al. (2003) and Steelman and Endres (2011)). In this data
descriptor, we provide the permittivity values to ensure that the conversion can be chosen by
the user of the data. In the past, we have used two conversions, the Topp’s equation Topp
et al. (1980) and the complex refractive index model (CRIM) (Steelman and Endres, 2011)
(see Klotzsche et al. (2019) and the Dielectric Permittivity to Soil Water Content section).

2-2-4 Root images
Root image acquisition at the minirhizotron facilities

Images of roots and the surrounding soil were captured through the transparent rhizotubes.
The amount of images obtained varied depending on the vegetation and the progress of root
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development. To save resources, the depth of measurement was continuously increased at the
beginning of each growing season as root depth increased. Meticulous care was taken not to
omit any root depth at which roots were already present. A measurement produces always 40
images per tube. Half of the images were taken 80° clockwise and the other half were taken
80° counter-clockwise from the top point of the rhizotubes. Two different camera systems were
used over time to take the images. The camera used in 2016, and for most measurements in
2017, was manufactured by Bartz (Bartz Technology Corporation). The camera used for some
of the images taken in 2017 and for all images taken in 2018, 2020, and 2021 was produced
by VSI (Vienna Scientific Instruments GmbH).The photographed area differs depending on
the camera (Table 2-2). Table 2-3 provides a detailed overview of the images taken over the
different growing seasons.

Table 2-2: Overview of the camera-systems and experiment timeline of minirhizotron images
acquisition

camera system Bartz VSI

resolution (px) 1508 x 1020 | 2060 x 2060

real size (mm) 16.5x 23.5 | 20 x 20

wavelength (nm) | 400-780 400-780

growing season 2016 & 2017 | 2017 & 2018 & 2020 & 2021

Root image data processing

The post processing of the images was performed by an automated analysis pipeline including
neural network segmentation and automated feature extraction following the analysis pipeline
of Bauer et al. (2022). Neural network training and image segmentation were performed with
the “RootPainter” (Smith et al., 2022) software. Firstly, the roots were segmented by a CNN.
As part of the process, the roots are separated from the background and extracted as binary
image data. A small subset of the root images is used as training data to train the CNN. The
evaluation of the models was performed with the Fl-score (0.7 for each model used). More
information on the models can be found in Bauer et al. (2022). The resulting neural network
model was then used for the segmentation of the roots. The segmentation of the images
was performed in a batch process. Secondly, the morphological features were extracted by
the automated feature extraction program “RhizoVision Explorer” (Seethepalli et al., 2021).
This includes multiple automated steps for thresholding obstacles and filling holes smaller
than 0.2 mm as well as the skeletonization of the roots and the feature derivation from the
skeletonized roots.

The root system parameters provided by the automated analysis include the total root
length, branch points, branching frequency, diameter (average, maximum, median), network

area, perimeter, amount of root tips, volume, and surface area (Bauer et al., 2022) (Figure
25).
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Figure 2-4: GPR processing steps
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Table 2-3: Detailed overview of the images taken at the growing season 2016, 2017, 2018, 2020
and 2021.
2015/16 2017 2018 2020 2020/21
no | fac date img date img date img date img date img
1 Ryt | 16.11.2015 719 | 08.06.2017 480 | 23.05.2018 440 | 02.07.2020 1,160 | 24.02.2021 1,480
Rrr | 16.11.2015 720 | 08.06.2017 584 | 23.05.2018 720 | 13.08.2020 1,760 | 14.01.2021 600
9 Ryt | 26.11.2015 1,070 | 29.06.2017 1,800 | 30.05.2018 480 | 13.08.2020 1,800 | 03.03.2021 1,440
Rrr | 26.11.2015 1,073 | 22.06.2017 1,800 | 30.05.2018 720 - - | 27.01.2021 920
3 Ryr | 17.12.2015 1,799 | 06.07.2017 1,800 | 07.06.2018 960 - - | 11.03.2021 1800
Rrr | 17.12.2015 1,439 | 29.06.2017 2,160 | 07.06.2018 1,075 - - | 04.02.2021 1,280
4 Ryt | 02.02.2016 1,518 | 13.07.2017 1,800 | 18.06.2018 1,280 - - 1 01.04.2021 440
Rrr | 21.01.2016 1,795 | 06.07.2017 2.160 | 18.06.2018 1,436 - -1 24.02.2021 1,320
5 Ryt | 12.02.2016 1,789 | 20.07.2017 1,800 | 26.06.2018 1,400 - - | 08.04.2021 2,160
b Ryr | 12.02.2016 1,798 | 13.07.2017 2,160 | 26.06.2018 1,800 - -1 03.03.2021 1,280
6 Ryt | 26.02.2016 1,795 | 27.07.2017 1,200 | 05.07.2018 1,638 - - | 22.04.2021 1,560
Rrr | 26.02.2016 2,155 | 20.07.2017 2,160 | 18.07.2018 2,156 - - 1 10.03.2021 1,640
7 Ryr | 14.03.2016 1,792 | 02.08.2017 1,840 | 18.07.2020 1,760 - - | 21.05.2021 2,160
Rpr | 14.03.2016 2,158 | 27.07.2017 1,430 | 01.08.2018 2,159 - - | 07.04.2021 2,000
8 Ryr | 26.03.2016 1,837 | 10.08.2017 1,959 | 01.08.2018 1,680 - - | 01.06.2021 520
Rrr | 24.03.2016 2,155 | 02.08.2017 2,157 | 23.08.2018 2,159 - - | 21.05.2021 1,960
9 Ryt | 07.04.2016 2,157 | 23.08.2017 2,120 | 16.08.2018 1,676 - - 1 07.06.2021 240
Rir | 07.04.2016 2,158 | 10.08.2017 2,154 - - - - | 01.06.2021 1,960
10 Ryt | 13.04.2016 2,160 | 12.09.2017 1,800 - - - - - -
Rpr | 13.04.2016 2,157 | 24.08.2017 2,159 - - - - - -
11 Ryt | 29.04.2016 2,154 - - - - - - - -
Rpr | 29.04.2016 2,157 | 12.09.2017 2,150 - - - - - -
12 Ryt | 06.05.2016 2,154 - - - - - - - -
Rrir | 06.05.2016 2,144 - - - - - - - -
13 Ryr | 13.05.2016 2,151 - - - - - - - -
Rrr | 13.05.2016 2,155 - - - - - - - -
14 Ryt | 20.05.2016 2,156 - - - - - - - -
Rrr | 20.05.2016 2,155 - - - - - - - -
15 Ryr | 27.05.2016 2,152 - - - - - - - -
Rir | 27.05.2016 2,153 - - - - - - - -
16 Ryt | 03.06.2016 2,108 - - - - - - - -
Rir | 03.06.2016 2,153 - - - - - - - -
17 Ryt | 09.06.2016 2,114 - - - - - - - -
Rir | 09.06.2016 2,083 - - - - - - - -
18 Ryt | 16.06.2016 2,111 - - - - - - - -
Rir | 16.06.2016 2,142 - - - - - - - -
19 Ryt | 23.06.2016 2,087 - - - - - - - -
Rrr | 23.06.2016 2,006 - - - - - - -
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2-2-5 Soil coring in the extra field

Soil coring was performed in the EF (extra field established next to Rpr) dedicated to
destructive belowground measurements in 2020 (maize) and 2021 (winter wheat). The soil
next to Ry is not homogeneous, which is why a representative replica was not feasible. The
maize roots were extracted once on July 14, 2020 when the crops were in BBCH 65, whereas
the winter wheat roots were extracted on June 16, 2021 when the crops were in BBCH 69.
The soil was cored using a root auger with an inner diameter of 0.9 m and a length of 1.0 m,
and the cores were drilled directly around the plant. The soil core was then divided into 0.1
m pieces and filled into plastic bags.

For maize in 2020, four replicates were taken in Plot 1 and four replicates in Plot 3 of
the EF (no core was taken in the cultivar mixture treatment Plot 2). For winter wheat in
2021, one replicate was taken in Plot 1, one in Plot 3, and two in Plot 2 of the EF (one core
for each variety in the cultivar mixture).

The soil samples were then put into refrigerators and processed step by step. The
samples were later soaked in tap water, washed, and passed through several sieves with mesh
sizes of 1.00 mm, 0.83 mm, and 0.5 mm until the coarsest soil and residues were cleared. The
roots were subsequently stored in tap water at 3°C until they were scanned with an EPSON
scanner (HP Expression 1100XL). The roots of each sample were laid (preferably without
overlaps) into an acrylic glass plate filled with tap water and were subsequently scanned. The
images of the scanned roots were processed using a similar procedure as for the minirhizotron
images, resulting in the total length estimation of the roots and the root length density (Han
et al., 2021).

2-2-6 Soil sensor data

All plots within the two MR facilities have the same layout. Each plot contains three
horizontal rhizotubes per depth but the soil sensors are distributed into four columns,
with the middle section divided into two columns, column C2a and C2b (see Figure 2-2
¢). For each column, there are four TDR-sensors installed for each of the six depths.
For the tensiometers and the soil water potential and soil temperature sensors, one sen-
sor is installed for each depth. The distribution over the four columns is shown in Figure 2-2 c.

To measure the soil water potential for dry soil conditions and to acquire the soil
temperature, MPS-2 sensors manufactured by Decagon Devices, Inc., US are used. The soil
water potential is measured in a range of -9 kPa to -100,000 kPa (pF 1.96 to pF 6.01) with a
resolution of 0.1 kPa. The accuracy is of £(25% of reading +2 kPa) over the range of -9 to
-100 kPa and proven to be higher for drier conditions until permanent wilting point (-1,500
kPa) under lab conditions and -4,500 kPa under field conditions by the manufacturer. The
soil temperature is measured in a range of -40°C to 60°C with a resolution of (0.1°C. The soil
water potential for wet soil conditions is measured using T4 pressure transducer tensiometers
manufactured by UMS GmbH, Germany. The measurement range is -85 kPa to +100 kPa
with an accuracy of + 0.5 kPa. To acquire and record the soil sensor data, all sensors

with the exception of the TDR sensors — are connected to a DataTaker DT85 manufactured
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by Omni Instruments Ltd, UK. The TDR sensors were manufactured by the institute’s
technicians and consist of three rods, with a length of 200 mm and a spacing of 26 mm. The
TDR sensors are connected to institute-made multiplexers (50C81-SDM), providing a lower
relative error (>1%) then commercial system (Weihermiiller et al., 2013). To acquire and
record the data, the multiplexers are connected to a TDR100 Time-Domain Reflectometer
manufactured by Campbell Scientific, Inc., US. Because of the high stone content at Ryt the
relationship of SWC and dielectric permittivity measured by the TDR was calibrated in the
lab (Cai et al., 2016). For information on SWC calculation see Dielectric Permittivity to Soil
Water Content section.

2-2-7 Soil water content using a mobile frequency domain reflectometry device

In addition to the soil sensors (see Soil Sensor Data section), the soil water content was mea-
sured using the mobile FDR device that employs the HH2 moisture sensor with the ThetaProbe
ML3 (ecoTech Umwelt-Mefsysteme GmbH, Bonn, Germany). Due to the nature of the soil
at Ryr, the soil moisture was only measured for the topsoil, while for the Rrr and EF, the
soil water was measured at depths of 0 m, 0.30 m, 0.6 m, and 0.9 m. In total, the soil water
was measured ten times in each plot of the Ry, six times in each plot of the Ry, and eleven
times in each plot of the EF over the crop growing season. The sensor was always placed
between crop rows.

2-2-8 Soil sampling

In September 2020, a new irrigation tank was installed at Rrp and undisturbed soil samples
were taken from the trench for the new tank. The samples were taken from several depths
and analyzed in the in-house soil physics lab. The soil hydraulic parameters were measured
using the HYPROP (Meter, Miinchen, Germany) method (Schindler et al., 2010) and a WP4
Dewpoint Potentiometer (Decagon Devices, WA, USA). The saturated hydraulic conductivity
was derived using the KSAT system (Meter, Miinchen, Germany). Soil texture was determined
according to DIN ISO 11277 using the pipette method combined with wet sieving (Miiller et al.,
2009).

The soil hydraulic properties can be found in “Additional Information” .

2-3 Data Records

All data were uploaded to Geonetwork in accordance with ISO 19115. The data were per-
sistently stored and will be regularly updated (see Usage Notes). The data were subdivided
according to the characteristics of the sensing method and data type. GPR data , root
data root images, and soil sensor data are each available with a DOI, providing a link to
a repository. Within these repositories, the data were subdivided by year of measurement.
In the GPR data repository, one folder for each year contains two CSV files one for all
measurements performed on each facility in the corresponding year. The root image data
repository contains a CSV file for each root trait measured in the corresponding year and
facility.

July 22, 2024



34 Multi-year belowground data of minirhizotron

ADDITIONAL_
GPR_DATA ROOT_DATA ROOT_IMAGES SENSOR_DATA INFORMATION
Experiment_overview..csv
Irrigation.csv
YEAR YEAR YEAR YEAR Soil_parameter.csv
Rhizotubes_depth.csv
| FACILITY_YEAR_GPR_ESP.csv FACILITY_YEAR_Branch_Points.csv FACILITY_SENSOR_YEAR_ALL.csv

FACILITY_YEAR_Branching_Frequency.csv
FACILITY_YEAR_Diameter(maximum).csv FACILITY
FACILITY_YEAR_Diameter(median).csv
FACILITY_YEAR_Diameter(mean).csv
FACILITY_YEAR_Network_Area.csv

FACILITY_YEAR_Perimeter.csv MEASUREMENT
FACILITY_YEAR_Root_Tips.csv DATE
FACILITY_YEAR_Surface_Area.csv

FACILITY_YEAR Total_Length.csv FACILITY_DATE_TUBE_WINDOW

_MEASUREMENT_INITIALS.jpg

FACILITY_YEAR_Volume.csv

Figure 2-6: Folder structure of the repositories.

The root images were organized by year and facility. For each measurement date, one
folder (labeled: YYYYMMDD) contains all images measured on that date in the correspond-
ing facility. The sensor data repository contains one file for each sensor type and facility,
corresponding to the year the data were obtained. The file names are explained in Table 2-4
and the repository structures in Figure 2-6. The data can be downloaded using the following
links:

GPR data: https://doi.org/10.34731/cg3t-nb88,

Root data: https://doi.org/10.34731/7x05-2r96,

Root images: https://doi.org/10.34731/5zwe-t974,

Soil sensor data: https://doi.org/10.34731/ffsk-sy65,
Additional information: https://doi.org/10.34731/st8e-4082.

Table 2-4: Overview of the repository content and data labelling. The labels always contain the
facility name (Rytor Rit) and the year the data haven been obtained. For the root
images, each image is also labeled according to exact date (year (YYYY), month
(MM) , day (DD)), tube and position it was taken.

repository data label size
GPR_ Data FACILITY _ YYYY _GPR_EPS.csv 2.68 MB
Root_Data FACILITY _YYYY ROOT PARAMETER.csv 21.6 MB
Root_Images FACILITY YYYYMMDD _TUBE_WINDOW _MEASUREMENT _INITIALS.jpg | 199 GB
Soil sensors_ Data FACILITY _ SENSOR YYYY _ALL.csv 103 MB
Additional _Tnformation | experiment, irrigation and soil overview (CSV) 1 MB

Some root image data have been previously used and published. Root length data from 2016
were used by Nguyen et al. (2020). Root length data obtained from the images and the soil
moisture values, measured by TDR and MPS-2 sensors on both facilities in 2016 and 2017
were used byMorandage et al. (2021). The root image data of Ryr from June 8, July 13,
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and September 12, 2017 were used by Nguyen et al. (2022b). However, the root lengths used
in these three studies were obtained by a different method and are based on a manual single
root annotation (Zeng et al., 2008). The root length data of Ryp and Ry from 2017 were
published by Bauer et al. (2022) to validate the analysis pipeline used to extract all root data.
The GPR data and the mean soil water content values calculated from TDR sensors from
2016 and 2017 have already been partly used by Klotzsche et al. (2019).

2-4 Technical validation

Ground-penetrating radar data

The GPR permittivities were manually checked for plausibility and unreliable data were ex-
cluded. Implausible permittivity outliers were manually detected and removed.

Root Images

The root data derived from the minirhizotron images were automatically analyzed by the
pipeline following Bauer et al. (2022) using deep neural networks and automated feature
extraction (Seethepalli et al., 2021, Smith et al., 2022). Using this approach, part of the total
root length data has been representatively compared to a manual annotation of the images.
Approximately 36,500 images were used for validation. The correlation of total root length
values obtained from the same images by manual annotation and automated analysis is very
high (r=0.9) (Bauer et al., 2022).

2-4-1 Soil Sensor Data

The data of the different sensor types were filtered for the different measurement ranges
listed in the Methods Soil Sensor Data section. To remove outliers, we applied a Hampel
filter, which involves a sliding window being moved over the data. As a window size, we used
10 data points for each size of the element, which corresponds to 5 h for the tensiometers
and MPS-2 to 10 h for the TDR sensors. For the element, we calculated the median and the
standard deviation. If the element deviated more than one time the standard deviation, then
the element is replaced by the median (Hampel, 1974).

Additionally, the data from the different soil sensors were manually checked for plausi-

bility and unreliable data were excluded. The TDR sensor data were filtered for errors in the
TDR wave recordings and data for different dates and sensors were excluded.

2-5 Usage Notes

Figure 2-7 provides information on which periods of data are available for the different
measurement seasons and the different measurement techniques. In 2019, no crops were sown
on the MR facilities due to a project change. In 2020 and 2021, the data sets do not cover the
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M [season [ 2015 | 2016 | 2017 | 2018 | 2020 | 2021
interval

Root Images 0
GPR [weekly

Ry, [TOR [confinuous
T [MPS-2
Tensiometer
FDR

Site

Root Images
GPR

[occasionally

Figure 2-7: Data availability for the measurement seasons 2016 - 2021.

whole growing period due to technical issues within the access trench and the measurement
systems. Different measurement intervals were used for the different measurement techniques.
For the root images and the GPR measurements, weekly measurements were performed when
possible during the vegetation period. The interval was adjusted to a biweekly period for the
root images when the root growth stagnated.

The availability of the sensor data (TDR, Tensiometer & MPS-2) depends on the technical
state of the measuring devices, and in 2020 and 2021 there were problems with the data
recording system. The measurements should be recorded as continuous measurements with
measuring intervals of 30 min for tensiometers and MPS-2 sensors and 1 hour for TDR
sensors. All timestamps are UTC+1.

2-5-1 Soil sensor data

Due to the measurement interval and the sensitivity of the TDR permittivity time series
results, we suggest applying a median filter or similar filters to the TDR data set to smooth
the data as well as to remove the outliers, as mentioned above.

2-5-2 Dielectric permittivity to soil water content

Using the geophysical measurement techniques mentioned in this study, we provide the di-
electric permittivity of the soil. Point information is provided by the TDR measurements and
spatial information along the rhizotubes is provided by the GPR measurements. The dielectric
permittivity can be converted to the soil water content. In the past, literature using TDR and
GPR data measured within the MR facilities have used the empirical Topp’s equation (Topp
et al., 1980) and the petrophysical relationships referred to as the complex refractive index
model (CRIM) (see Huisman et al. (2003)). The Topp’s equation is valid for sandy loam to
clay and requires the bulk permittivity of the soil (&,) to derive the soil water content (SWC):

SWC =—-53x10"24292x 1072, — 5.5 x 10742 + 4.3 x 107%. (2-2)

For the petrophysical relationship CRIM, which considers the different dielectric components
of the soil (air, soil matrix, and soil water), we obtain

SWC = \/‘57_(\}5%‘?1/‘5_05. (2-3)
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For the CRIM approach, additional parameters such as the porosity ¢ and the permittivity of
the soil matrix &g, air (g, = 1) and water (g, = 84, at 10°C) are necessary. The permittivity
of the soil matrix is 4.7 and 4.0 for Ryp and Ry, respectively (Robinson et al., 2005). The
porosity in the plow layer is considered to be 0.33 and 0.4 for Ryt and Ry, respectively. For
underlying subsoil, the porosity is considered to be 0.25 and 0.35, respectively (Weihermiiller
et al., 2007). In particular, for Ryr, we recommend using the CRIM relationship instead of
the Topp’s equation due to the high stone content.

2-5-3 Soil hydraulic parameters

To provide information on, for example, rhizosphere modeling, we provide an overview of the
soil hydraulic parameters, which were derived for the MR facilities using different methods.
InCai et al. (2017), soil hydraulic parameters (SHP) for both MR facilities can be estimated.
These were derived by inverse modeling using soil water content, potential measurements, and
root observations of winter wheat. Yu et al. (2020) and Jadoon et al. (2012) estimated the
SHP using hydrogeophysical inversion for Ry and Ry, respectively. The SHP for Ry was
derived by an inverse parameter estimation using a 1-dimensional COg transport and carbon
turnover model, with direct soil sampling and laboratory analysis by Bauer et al. (2011).

2-5-4 Updates

The data corresponding to this paper will be updated regularly on a yearly basis once the
analysis is finalized. The updated data can be downloaded from these DOlIs:

GPR data: https://doi.org/10.34731/reng-anbl,

Root data: https://doi.org/10.34731/jnhr-ke36,

Root images: https://doi.org/10.34731/jgd1-tq27,

Soil sensor data: https://doi.org/10.34731/rb0q-2a208,
Additional Information: https://doi.org/10.34731/ke7b-a021.

2-5-5 Above-ground data

The related above-ground data are managed by the Crop Science group of the Institute of
Crop Science and Resource Conservation (INRES), University of Bonn, and will be available
upon demand in a future data paper. These data have been partially published in Nguyen
et al. (2020),Nguyen et al. (2022a), (2022b) (Nguyen et al., 2022b). The data measured within
the EF were carried out by the project partner at INRES.

2-5-6 Code availability
Custom code was used to process the data. For the GPR Data we used MATLAB version:
9.13. 0 (R2022b) to run the codes. The root image processing and soil sensor data is run

with Python 3.10.10. Processing codes for the roots images can be found in the Supporting
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Material for Bauer et al. (2022) at https://doi.org/10.34731/pbn7-8g89. The soil water
content data measured with the FDR device was processed using R version 4.0.2.

The custom codes can not be made publicly accessible due to copyright issues, but are available
upon request, by contacting the corresponding or senior author.
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Chapter 3

Linking horizontal crosshole GPR
variability with root image
information for maize crops

Abstract

Non-invasive imaging of processes within the soil-plant continuum, particularly root and soil
water distributions, can help optimize agricultural practices such as irrigation and fertilization.
In this study, in-situ time-lapse horizontal crosshole ground penetrating radar measurements
and root images were collected over three maize crop growing seasons at two minirhizotron
facilities (Selhausen, Germany). Root development and GPR permittivity were monitored at
six depths (0.1 m 1.2 m) for different treatments within two soil types. We processed these
data in a new way that gave us the information of the “trend-corrected spatial permittivity
deviation of vegetated field”, allowing us to investigate whether the presence of roots increases
the variability of GPR permittivity in the soil. This removed the main non-root-related
influencing factors: static influences such as soil heterogeneities and rhizotube deviations, and
dynamic effects, such as seasonal moisture changes. This trend corrected spatial permittivity
deviation showed a clear increase during the growing season, which could be linked with a
similar increase in root volume fraction. Additionally, the corresponding probability density
functions of the permittivity variability were derived and cross-correlated with the root volume
fraction, resulting in a coefficient of determination (R2) above 0.5 for 23 out of 46 correlation
pairs. Although both facilities had different soil types and compaction levels, they had similar
numbers of good correlations. A possible explanation for the observed correlation is that the
presence of roots causes a redistribution of soil water, and therefore an increase in soil water
variability.

Adapted from: Lena Lérm, Felix Bauer, Jan van der Kruk, Jan Vanderborght, Shehan
Morandage, Harry Vereecken, Andrea Schnepf, Anja Klotzsche: Linking horizontal crosshole
GPR variability with root image information for maize crops. Vadoze Zone Journal €20293,
https://doi.org/10.1002/vzj2.20293.
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3-1 Introduction

The soil-plant continuum is influenced by multiple factors, including soil properties, soil
nutrients, root system architecture, precipitation, irrigation, evapotranspiration, fertilization,
and agricultural practices. Understanding how these factors interact in crops is beneficial to
plant breeders for optimizing the below-ground traits, achieving an optimal yield, efficiently
using nutrients and water, as well as resistance to diseases. Both experimental and theoretical
studies describe how plant roots can influence soil water variability and how they interact
with soil heterogeneity. Spatial variability in crop roots (e.g., row crops) can also lead to soil
water variability (Hupet und Vanclooster, 2002; Baroni et al., 2013). However, the presence
of crop roots may decrease soil water variability since plants take up water from regions
where water is present (Garré et al. 2011; Schliiter et al. 2013). Finally, crop roots and
above-ground shoot may also increase variability in water infiltration and in this way impact
soil water variability. Crops may funnel the rainfall that is intercepted by the canopy, thus
creating local infiltration near the stem and roots. This can alter the soil structure and
generate preferential infiltration paths so that more water is found in the presence of roots
than without (Bui & Box, 1992; Hupet & Vanclooster, 2005).

Commonly used techniques to investigate the spatial and temporal distribution of roots and
the soil water content (SWC) at the field scale mainly focus on investigating either root
system architecture or soil properties. In-situ exploration of the root system architecture
can be achieved using labor intensive and destructive methods like excavation (Weaver &
Bruner, 1926; Bohm, 1978), shovelomics root crown phenotyping (Trachsel et al., 2010),
auger sampling, and trench wall methods (e.g., Wasson et al., 2016; do Rosdrio et al.,
2000; van Noordwijk et al., 2001). The main disadvantage of these destructive methods
is the lack of repeatability. Non-invasive assessment could be used to optimize irrigation
and fertilization, and guide cultivar selection according to local soil conditions (Atkinson et
al., 2019). A minimal-invasive alternative is provided by minirhizotron (MR)-techniques,
whereby transparent rhizotubes are permanently or temporarily installed within the soil,
providing observation windows (e.g., Vamerali et al., 2011; Atkinson et al., 2019; Rewald,
2013; Johnson et al., 2001). These methods are less destructive, providing an option for
the long-term monitoring of roots at the plot-scale (e.g., Andrén et al., 1991; Vamerali
et al., 2011; Cai et al., 2016; Svane et al., 2019). MR techniques enable the observation
of both root distribution and root development during the vegetation period, so that
different crop growing seasons can be compared. However, MR facilities are expensive to
install and maintain, and root observations are limited to two-dimensional images that
provide only a restricted display of the root system. Additionally, different installation
techniques can disturb the soil and the rooting zone. This can cause soil smearing, loss of
contact between soil and rhizotubes, soil compaction, and the rhizotubes can act as obstacles
for root growth (e.g., Rewald, 2013; Guo et al., 2007; Johnson et al., 2001; Maeght et al., 2013).

In the past decades, the field of non-invasive ‘agrogeophysics’ has been established for
in-situ investigation of root systems and the soil below agricultural crops (Garré et al., 2021).
In agrogeophysics, methods such as Electrical Resistivity Tomography (ERT), Electromag-
netic Induction (EMI) and Ground Penetrating Radar (GPR) are often applied. ERT uses
electrodes in the soil to image the electrical resistivity and has been shown to be well suited
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for in-situ monitoring of the soil-plant continuum and its structure, in particular soil water
content and accordingly, soil water depletion patterns (Cassiani et al., 2016; Garré et al.,
2012). Weigand & Kemna (2017; 2018) have sucessfully used spectral electrical impedance
tomography (sEIT) to image crop root systems under controlled labratory conditions, but it
remains challenging to utilize these methods for in-field root phenotyping. Shanahan et al.
(2015) identified a correlation in EMI derived conductivity and SWC in root zones of wheat
during soil water depletion dependent on the soil lithology. Additionally, Whalley et al. (2017)
considered EMI, ERT and penetrometer measurements to quantify differences in genotypic
root activity from soil drying profiles of wheat. Under certain field conditions, such as
drought, the resolution of the ERT method is not sufficient to monitor small scale differences
in soil water depletion for different crop genotypes (Cimpoiagu et al., 2020). Further, the
usage of fixed, permanently installed ERT lines can limit the monitoring area. EMI can
map the apparent electrical conductivity of the soil by using an inductive signal; its lack of
dependence upon a galvanic coupling with the soil results in a higher throughput compared
to ERT. Both EMI and ERT can be used while crops are still growing (e.g., Shanahan et
al., 2015; Whalley et al., 2017; Blanchy et al., 2020a; Blanchy et al., 2020b; Schméck et
al., 2021). For a detailed review on EMI and ERT, refer to Ehosioke et al. (2020) and
Cimpoiagu et al. (2020). When investigating the soli-plant continuum, each of these methods
has benefits but also limitations. The EMI and ERT signals are influenced by the electrical
conductivity of the soil, which is controlled by the porosity, density, clay content, pore water
saturation, temperature, and salinity of the pore water. Hence, deriving the SWC from
these methods may be challenging. Furthermore, while EMI is a high-throughput method,
allowing large areas to be mapped in a short amount of time, it lacks spatial resolution.
Several studies indicate the potential of monitoring root water uptake or soil water distribu-
tion. However, the signal is influenced by multiple factors and the spatial resolution is limited.

GPR is a geophysical method that can provide both high levels of spatial resolution
and a direct link to SWC (e.g., Klotzsche et al., 2018), making it an ideal tool to monitor
SWC as affected by root water uptake. GPR uses electromagnetic wave (EM) propagation
in the soil (Jol, 2009) from which one can derive the relative dielectric permittivity (&),
and the attenuation of the EM wave can be linked to the electrical conductivity ¢ when
using full-waveform inversion approaches (Klotzsche et al., 2019b). GPR typically uses high
frequencies (50 MHz 3.6 GHz). The depth of penetration depends on the frequency of
the antennae, as well as the attenuation of the EM wave, which is related to the electrical
conductivity of the soil. This creates a trade-off between spatial resolution and the depth
of penetration. The GPR-derived permittivity can be linked directly to SWC by using
appropriate empirical or petrophysical relationships (e.g., Steelman & Endres, 2011; Huisman
et al., 2003). The contrast in &, for different soil components (e.g., dry sand e, — 6, air g, — 1
and water g, 80 (20 °C)) enables the establishment of a link between the &, and SWC. Note
that depending on the frequency of the antennae and the applied petrophysical relationships,
uncertainties can be present in the GPR-derived SWCs. GPR techniques can be divided
in two major groups: surface and crosshole GPR. For surface GPR, the EM wave velocity,
and therefore the e, can be derived from the direct ground EM wave or reflected EM waves
(Jol, 2009). When using the reflected EM waves, the derivation of the SWC is dependent on
what is known about the soil horizon thickness. In contrast, using crosshole GPR allows a
direct link from the EM wave velocity to e, (for more details see Klotzsche et al., 2018). In
recent years, surface GPR has been used to investigate the soil plant continuum with large
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root systems such as tree roots (reviewed in Guo et al., 2013 and Rodriguez-Robles et al.,
2013) and shrub roots (e.g., Liu et al., 2020; Liu et al., 2019; Parsekian et al., 2012; Cui
et al., 2021). Although some studies investigated the possibility of estimating agricultural
root systems (Delgado et al., 2017; Klotzsche et al., 2019a/ Appendix D; Wijewardana &
Galagedara, 2010; Liu et al., 2017), the detection and mapping of finer root systems found in
crops is still challenging using surface GPR. Individual fine roots of < 0.002 m can only be
detected using a higher frequency GPR (1600 MHz antennae) as shown by Parsekian et al.
(2012) under laboratory conditions. However, high-frequency applications at the field-scale
are difficult because of the high attenuation of the EM waves and the accompanying reduced
penetration depth. Note that for most research questions it is more interesting, although
also more challenging, to investigate the entire root system and its root system architecture
rather than to just consider individual fine roots. This becomes even more challenging to
quantify the entire root system and the surrounding soil.

Klotzsche et al. (2019a)/ Appendix D used time-lapse horizontal borehole GPR data
to investigate the link between SWC, atmospheric conditions, soil, and crop types over several
crop growing seasons. The authors showed that wheat and maize crops have different effects
on the GPR signal and hence the SWC distribution. Individual maize crop rows were shown
to have a clear impact on the SWC distribution, with a higher SWC below the maize rows
in dry soil conditions. Regardless of the findings linking the atmospheric conditions and soil
types to SWC distribution over time in the subsurface, open questions remained such as the
effect of the roots and crops themselves on the obtained SWC along the horizontal rhizotubes.
However, the influence of the wheat root system on the GPR signal could not be identified
and hence the root systems of the individual crops and their direct effects on SWC were not
estimated.

In this study, we provide multi crop growing season information about spatial varia-
tion in both soil water content and root observations. It shows the potential of GPR to
non-invasively monitor and characterize the soil-plant continuum of maize crops by linking
time-lapse horizontal crosshole GPR measurements and time-lapse root volume fractions
derived from root images over the course of three crop growing seasons and within two soil
types. Maize was used because of the larger crop row spacing, which provides a higher
contrast between the root system and the soil as compared to crops with narrow crop row
spacing, such as wheat. Fine root systems are challenging, since GPR acquires information
about a volume of soil which includes, e.g., soil, water, roots, nutrients, fertilizer, microbes,
and additionally applied agricultural management practices. The linking of time lapse
GPR measurements and root images obtained for three crop growing seasons allowed the
investigation of whether the presence of roots influences the GPR permittivity. Calculation
of the spatial permittivity deviation was done by subtracting the mean of the horizontal
permittivity profile for each measurement date from the permittivity distribution. This was
done to eliminate the effects due to the ‘dynamic’ factors caused by different atmospheric
conditions during the crop growing season. Blanchy et al. (2020b) used time-lapse EMI
and ERT measurements to detect changes in electrical conductivity caused by cover crops,
compaction, irrigation, and tillage. They subtracted a reference survey from the time-lapse
surveys to remove influences from the static effects, such as soil texture, and then analyzed
the dynamic part of the electrical conductivity over time. Similar to this study, the ‘static’
spatial permittivity deviations that were assumed to be caused by heterogeneities, e.g.,
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variability of soil properties, or artifacts, e.g., unknown exact distances between emitting and
receiver antennas, were subtracted from the spatial permittivity deviations of vegetated fields
to obtain trend-corrected spatial permittivity deviations. The static spatial permittivity
deviations were derived from spatial permittivity deviations measured in bare-field soil.
These trend-corrected spatial permittivity deviations of the vegetated fields are a measure of
the soil water or permittivity variability that is generated by the presence of roots. In this
study, the key hypothesis is that spatial variation in root volume fraction can be linked with
spatial variability in GPR permittivity. To test this hypothesis, we used repeated crosshole
GPR measurements and root observations within minirhizotrons. First, the experimental
setup is described, which is followed by a description of the root image measurement and data
analysis. Next, the GPR measurements and processing steps are discussed. The time-lapse
root data are then shown, followed by the time-lapse GPR data. Finally, a link between the
RVF and GPR permittivity data variability is investigated.

3-2 Experimental setup

3-2-1 Minirhizotron facilities

Two MR facilities were present at the test site within the TERENO (TERrestrial ENvironmen-
tal Observatories) Eifel-Lower Rhine observatory close to Selhausen (North Rhine-Westphalia,
Germany) with the geographic coordinates 50°52’N, 6°27'E. They were geologically situated
within fluvio-glacial sediments of the Rur river catchment (Bogena et al., 2018). Various
studies have investigated the Selhausen test site using geophysical measurement techniques
(e.g., Weihermiiller et al., 2007; Bauer et al., 2011; Jadoon et al., 2012; Brogi et al., 2019).

At the Selhausen test site, different river deposits were present. The deposits could be
observed due to a morphological slope of 4° from the upper terrace down to the lower
terrace. Sediments at the upper terrace consisted of gravely, partly stony, and silty sand,
whereas the lower terrace consisted of a silty, sandy, and slightly gravely loam with significant
clay content, which gave the sediments of the lower terrace a firm consistency. The fluvio-
glacial sediments were covered by a plow layer with a thickness of 20 - 30 c¢m, for both terraces.

The MR facilities were situated in both the upper and lower terrace such that each
MR facility was located in a river deposit where different soil properties were present,
(see Cai et al., 2016). The upper (Ryr) and lower (Rpr) MR facilities each consisted of
three plots (Figure 3-1a), which allowed the comparison of different agricultural treatments
and different soil properties under the same atmospheric conditions. In each plot, three
rhizotubes of 7 m length were installed at six different depths, between 0.1 m and 1.2 m,
below the surface. Rhizotubes were laid parallel to one another other with a horizontal
distance of 0.75 m. It is important to note that the depths of the rhizotubes varied between
the individual crop growing seasons due to soil erosion and soil compaction after tillage and
seedbed preparation (depths were measured every season). One end of each rhizotube was
present in an access trench from which the measurements were performed. In the lower
facility, Rpr, tubes were installed in horizontally drilled boreholes and deviations could
be up to 0.10 m. Because of the high stone content at Ry, drilling horizontal boreholes
was not possible (Cai et al., 2016). Instead, the soil was excavated in layers and refilled
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during the installation of the rhizotubes. The deviations in horizontal distance between
Ryt rhizotubes were less than 0.02 m. Additionally, in order to make the measurements
within the rhizotubes, various sensors were installed within the soil to measure the soil water
potential (tensiometers & MPS-2 sensors manufactured by UMA GmbH, Germany, Decagon
Devices, Inc., US, respectively), soil water content (time domain reflectometer (TDR)
in-house production), and soil temperature (MPS-2 sensors). Above-ground at Ryr there
was a monitoring system for sEIT installed 3.5 m away from the trench (Weigand et al., 2022).

The MR facilities provided ideal circumstances to study the different components of
the soil-plant continuum under field conditions and included data from different above- and
below-ground measurement techniques, e.g., semi 4D geophysical data and information from
root images. The below-ground data acquired within the MR facilities between 2016 and 2021
can be found in Lirm et al., 2023/ Chapter 2. The below-ground geophysical measurements
were analyzed by Cai et al. (2016), Klotzsche et al. (2019a)/ Appendix D, Yu et al. (2020/
Appendix F; 2021), and Weigand et al. (2022). Other soil and root measurements were
analyzedd by Cai et al. (2017), Cai et al. (2018), and Morandage et al. (2021). Above-ground
crop measurements are described by Nguyen et al. (2022).
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Figure 3-1:
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a) Overview of the minirhizotron (MR) facilities. At each of the plots, different
agricultural treatments were applied for the different crop growing seasons. The
direction of the crop rows was perpendicular to the direction of the rhizotrubes (red
arrow). The measurements were carried out within an access trench. b) Overview of
one representative plot within the MR facilities with the horizontal crosshole ground-
penetrating radar (GPR) zero-offset-profiles (ZOP) measurement setup. Transmitter
and receiver antennae are labeled Tx and Rx, respectively. Root images were acquired
using a camera system attached to an index handle.
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3-2-2 Experiment design and agricultural practices

In the time since the MR facility was installed, different wheat and maize cultivars have been
sown for various crop growing seasons (e.g., Morandage et al., 2021 and Klotzsche et al., 2019a/
Appendix D). Agricultural treatments, such as sowing density, sowing date, crop cultivars, and
surface water treatment (sheltered, natural & irrigated) vary for the different crop growing
seasons. This study considered three seasons (2017, 2018 & 2020) in which maize (Zea mays)
was sown. Different agricultural practices, which included irrigation, sowing density, and
varying cultivars were simultaneously carried out for both MR facilities (overview in Table
1). For the crops growing seasons 2017 and 2018, the cultivar cv. zoey was sown on all three
plots. A different sowing date (Ryt) and sowing density (Rpr) were chosen for Plot 1 in
2018. For the 2020 crop growing season, two different cultivars, cv. stacey and cv. sunshinos,
were planted on the outer plots (Plot 1 & Plot 3), respectively. For Plot 2, a mixture of
the two cultivars with alternating rows was sown. The spacing between the individual maize
crop rows was 0.75 m. When a higher sowing density was applied, crop row spacing was
kept constant and the interrow distance was decreased. During the 2017 and 2018 growing
seasons, an irrigation treatment was applied. While Plot 1 and Plot 2 were rain-fed, Plot 3 was
irrigated on a regular basis throughout the growing seasons. During the 2018 crop growing
season, crops on Plots 1 and 2 showed severe stress symptoms and emergency irrigation was
necessary on a few occasions to ensure the continuation of the experiment. For the 2020
growing season, additional irrigation due to stress conditions was carried out equally on all
three plots. The individual irrigation volumes can be found in the Supplemental Material,
Appendix A-3 Table A-3.1 and A-3.2. Additionally, Table 3-1 provides information about the
sowing, harvest dates, the dates for the different maize vegetation stages, and measurement
times. Prior to the maize crop growing seasons, winter wheat had been sown on the MR
facilities. The last winter wheat crops were harvested on 26.07.2016 (Klotzsche et al. 2019a/
Appendix D), with the soil laying fallow for 9.5 months without crop cover. Due to changes
in project funding, in 2019 a flower meadow was planted but not further investigated.
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Table 3-1: Overview of the crop growing seasons used in this study, including the different
agricultural practices, the maize growing stages, and number of measurement days.

Propert Year 2017 2018 2020
perty MR-Facility Ryt Rur Rour Rir Rour
Plot 1 Rain-fed ~ Rain-fed Rain-fed Rain-fed Irrigated
Treatment Plot 2 Rain-fed ~ Rain-fed Rain-fed Rainfed Irrigated
Plot 3 Trrigated  Irrigated ITrrigated Trrigated Irrigated
Plot 1 Zea mays L. 'Sunshinos’
Cultivar Plot 2 7ea mays I.. cv. Zoey’ Zea mays L. cv. "Zoey' Mixture
Plot 3 7ea mays L. 'Stacey’
Plot 1 16
. . 2
Sowing Density [Plants m™] 0, 10.66 10.66 10
10.66
Plot 3
Plot 1 22.05.2018
i 4.05 7 5 9.04.2
Sowing Plot 2 04.05.2017 08.05.2018 08.05.2018  29.04.2020
Plot 3
Plot 1 26.05.2018
: 5 s 9 0% 90
Emergence Plot 2 09.05.2017 14.05.2018 13.05.2018  12.05.2020
Plot 3
Plot 1 21.07.2018
Tasseling Plot 2 09.07.2017 10.07.2018 09.07.2018  12.07.2020
Plot 3
Plot 1 23.07.2018
ilki / ” = 5
Silking Plot 2 14.07.2017 12.07.2018 11.07.2018  15.07.2020
Plot 3
Plot 1 02.09.2018
Harvest Plot 2 12.09.2017 99.08.2018 22.08.2018  23.09.2020
Plot 3
Number of GPR. meas. 22 21 22 19 9
Number of Root Images meas. 9 9 7 6 2

3-3 Root image measurements and processing

The root images were obtained within the rhizotubes using a digital camera on an aluminum
index handle, see Figure 3-2b. Two different camera systems were used. For the 2017 data
set the Bartz system (Bartz Technology Corporation) was used and for the 2018 and 2020
data sets the VSI system (Vienna Scientific Instruments GmbH). Due to time constraints,
images were taken only at certain locations along the rhizotubes. The images taken from one
rhizotube were composed of four groups of five images. The between-group spacing was 0.93
m (Figure 3-2a) and the within-group spacing varied between 0.08 m - 0.12 m. For the time-
lapse data set, 40 images were captured from each rhizotube. This consisted of twenty images
at an angle of 80° from the left side and twenty at an angle of 80° from the right side (Figure
3-2b). For comparison, the GPR-ZOP spatial measurement range is indicated in Figure 3-2a.
In addition to the time-lapse root images, which were obtained over the three growing seasons
2017, 2018 and 2020, a continuous root image data set was collected during the 2020 growing
season. This data set consisted of continuous sequences of root images over a length of 4 m in
the rhizotubes (see 3-2a). These measurements required approximately 7-fold more time than
the regular root image measurements.
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Figure 3-2: a) Root image locations within rhizotubes, with the location of the aboveground
crop rows in comparison to the image locations. The upper rhizotube illustrates
the positions of the time-lapse root images, the middle rhizotube illustrates the
positions of the high spatially resolute root image measurement in 2020, the lower
rhizotube illustrates the section where the ground-penetrating radar (GPR) zero-
offset-profiles (ZOP) measurements were acquired. b) Root image angles within the
rhizotubes, c) representative root image, d) corresponding segmented root image

after an automatic image analysis pipeline, developed by Bauer et al. (2022)/
Appendix E.

v

The root image data set acquired over the 2017 crop growing season was briefly discussed in
Morandage et al. (2021). For this study, the automatic image analysis pipeline developed by
Bauer et al. (2022)/ Appendix E was used to derive information from the root images (Figure
3-2¢). The pipeline consists of the following processing steps. i) Pre-processing of the images,
which includes renaming, distortion correction, cropping, and resizing. While resizing, the
dimensions of the images were changed to 0.0165 m by 0.0235 m and 0.02 m by 0.02 m for
the Bartz and VSI camera system, respectively, resulting in a root image size of 0.0004 m?
and adds up to an area of 0.016 m? per rhizotube. For the continuous root image over 4m,
the image sizes of 0.02 m by 0.02 m were made every 0.02 m, covering an image area of (.16
m?. ii) Applying an automated image segmentation using RootPainter (Smith et al., 2020),
performed by a pre-trained neural network model; and iii) converting the segmented images
to binary images (Figure 3-2¢), from which the root traits were extracted by RhizoVision
Explorer (Seethepalli et al., 2021) for each individual root image.

The root volume per image was calculated by RhizoVision Explorer using the root
length and the root diameter. To compare the root traits with the GPR measurements, the

root volume fraction [%| (RVF) was used. This was defined as the volume percentage of
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space occupied by the roots in a respective soil volume, see Equation 3-1. The respective
soil volume was derived by assuming that the roots visible in the image were displaced by
the rhizotube and would have otherwise grown within a volume that was equal to the image
area times the outer rhizotube radius (0.032 m), see Equation 3-2 (e.g., Cai et al., 2017;
Morandage et al., 2021). This resulted in a sensing volume (SV) of 1.24:10-5 m? and 1.28-10-5
m? per image, for the Bartz and VSI camera systems respectively. Accordingly, the RVF was
calculated by using the RV and the respective soil volume V.

RV
RVF = 2 31
Vsoil ( )
while using
Vsort = L-W - Trhizotubess (3_2)

newline where L is the length of the image, and W is width of the image. To compare the
RVF data with the GPR measurements and taking into consideration the different Vj,;; of the
methods, the mean RVF of four root image windows per position along the rhizotubes was
used. This refers to images on either side of the two neighboring rhizotubes, from where the
transmitting antenna (Tx) and receiver antenna (Rx) are inserted. Using four root images
increases the image area to 0.001551 m? for each position along the rhizotube for the Bartz
and to 0.0016 m? for the VSI camera system. Note that images in both directions were used
and not only in the GPR measurement direction to account for the scale difference between
the size of the root images and the SV of the GPR measurements. The root length density
(RLD) was also calculated for 2017, as it is a common parameter in rhizosphere science,
and an overview in comparison with the RVF can be found in Table 3-2. The values for
the years 2018 and 2020 can be found in the Supplementary Appendix Tables A-3.1 and A-3.2.

Table 3-2: Comparison of the root volume fraction (RVF) and the root length density (RLD) as
minimum, maximum and mean for Ryt and Rt in 2017, respectively.

Rut Rur

RVF RLD RVF RLD

(%] [em em™] %] [em cm™]
Minimum 0.0000005 0.0006 0.000001  0.001
Maximum  0.36 1.84 0.75 2.1
Mean 0.01 0.103 0.042 0.25

In 2017, photographs were taken at different crop growth stages until the crops reached the
reproductive stage to illustrate crop development at both facilities. A description of the
individual growth stages is included in Figure 3-3. From this the growth stages of the crops
both above- and below-ground can be recognized. For Plot 3 in Ry, an increased height of
about 20 cm can be observed in Figure 3-3a for 29.06.2017, shown behind the line indicated
by the two red arrows. Overall, the crops at Ry performed visibly better than at Ryp. A
similar trend can be seen in the root images for the 27th of July 2017 (Figure 3-3c). While
a greater number of thicker roots are visible for deeper positions in Ryr, the roots in Ryr
are thinner and less distributed in the deeper soil. Ritchie et al. (1966) describes that the
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optimal development of maize is only dependent on nutrient uptake after the dough stage
(reproductive stage 4), meaning that at this point maize crops are expected to require less
water. Previous to this stage, the development of the yield (number, size, and weight of the
maize ears) is highly dependent on both the soil water and nutrient availability.

a) Crop images - growing season 2017

14.06.17 29.06.17 12.07.17 27.07.1

s ¢ \

7
l

Vegetative (V) Stages Reproductive (R) Stages
VE v v3 Ve Ve vT R1 R2-RS Ré
Growing Emerge |First | Third | Sixth Ninth Leaf |Tasseling | Silking |R2 - Blister | Maturity
Stage nce Leaf |Leaf |Leaf R3 - Milk
R4 - Dough
RS - Dent
Days after 7 12 21 30 56 66 R2-78 130
Emergence R3-92
(aer ey ot R4 - 102
1. (1986) R5- 114
Date in 2017 |09.05 | 16.05 31.05 07.06 09.07 14.07 |27.07 (R2) |16.09
Date in 2018 | 26.05* | 02.06* |07.06* | 16.06* 25.06" 21.07* 31.07* | 12.08* (R2) |03.10*
14.05 |21.05 |26.05 |04.06 13.06 09.07 19.07 |31.07 (R2) |21.09
Date in 2020 | 12.05 |19.05 |24.05 |02.06 11.06 07.07 17.07 |29.07 (R2) |19.09

c) Root images of the 27.07.2017

Figure 3-3: a) Images of both minirhizotron (MR) facilities during the 2017 crop growing season.
(b) Overview of the maize vegetation stages and the corresponding dates for the crop
growing seasons. (c) Root images of July 27, 2017 for different depths for both MR
facilities. *For Plot 1 at Ryt , a later sowing date is applied. Hence, the respective
dates for the different crop growing stages vary.
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3-4 GPR measurements and processing

During the three growing seasons under study, weekly time-lapse GPR measurements and
discontinuous time-lapse root images were acquired. The time-lapse GPR data were acquired
using the crosshole Zero-Offset-Profiling (ZOP) measurement technique, employing a 200 MHz
PulseEKKO borehole system manufactured by Sensors & Software. For ZOP measurements,
Tx and Rx were located within adjacent rhizotubes, see Figure 3-1b. Tx emitted an EM wave
through the soil and the signal was recorded by Rx. Tx and Rx were moved in simultaneously
in 0.05 m increments over the length of the rhizotubes. For time-zero calibration of the
crosshole GPR data, wide-angle reflection and refraction (WARR) measurements in air were
performed within the access trench. In this procedure, Tx was fixed, and Rx moved in 0.1 m
increments over the 6 m distance. In total, over all three growing seasons, 53 datasets were
obtained for RyT and 40 for Rir. For each measurement day, the permittivity values of the
GPR measurements were estimated every 0.05 m along 5 m of the horizontal borehole length,
resulting in 100 GPR traces per measurement depth. Only data between 2.5 m and 6 m were
considered because GPR data from close to the access trench where the soil sensors were
located were not reliable and were therefore excluded. The 1.2 m depth in Plot 3 of Ry was
not measured due to a broken rhizotube, and a data gap is present between 2.8 m and 3.3 m
along the rhizotubes at 0.2 m depth due to the installed sEIT line (Weigand et al., 2022)
which affected the GPR measurements.

To estimate the relative dielectric permittivity (g,) from horizontal GPR crosshole
ZOP measurements, several processing steps are required: i) apply a dewow filter, ii) correct
for time-zero, and iii) estimate the first signal breaks (for more details see Klotzsche et
al., 2019a/ Appendix D). After finalizing these steps, picked travel times of the EM wave
between the adjacent rhizotubes were obtained for each ZOP position. Because of the known
horizontal distance (0.75 m) between the rhizotubes, using the picked travel times allowed
calculation of the EM velocity for each ZOP position. Considering low-loss and non-magnetic
soils (Jol, 2009), the EM velocity could be transformed into the relative dielectric permittivity
g, of the bulk material with,

c
v = 3-3
NG (3-3)
where
6 == (3-4)
T EO b

¢ is the speed of light (0.3 m/ns), is the effective permittivity of the bulk material, and
€0 is the permittivity of free space with 8.85-10-12 F/m. Note that from this point forward
when permittivity is mentioned in the text, it refers to relative dielectric permittivity &,.

To obtain SWC from the relative permittivity, a petrophysical or empirical relation-
ship is needed. One of the most common petrophysical volumetric mixing models is the
Complex Refractive Index Model (CRIM) (Huisman et al., 2003). In this, it is assumed that
the soil system consists of different phases, with different dielectric properties and volume
fractions. The general formula for a system with n dielectric components is expressed by

e = il ixa(ed)” (3-5)
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where €% is the bulk permittivity of the mixed system and « is a fitting exponent, which
accounts for the geometry of the system. y; and ¢; indicate the volume fraction and permit-
tivity of the i-th component of the system, respectively. Commonly, three-phase soil systems
are used, which include soil, water, and air. Using o = 0.5 for the geometry factor and
€4 — 1 for the permittivity of air, Equation 3-5 can be reformulated for a three-phase system to

r:((17¢)'\/‘§+0'@+(¢79))27 (3'6)

where ¢ is the soil porosity. €5 and &, represent the permittivities of the soil (solid phase) and
water components of the system, respectively. 6 represents the volumetric SWC. Rearranging
Equation 3-6, the SWC for the three-phase system could be calculated using:

9:\/57_%?);/5_"5. (3-7)

Like Klotzsche et al. (2019a)/ Appendix D, an €,= 84 at 10°C was used, which represents
the mean soil temperature obtained from the soil temperature sensors. ¢, was 4.7 and 4.0 for
the Ryt and Ry, respectively. The SV of the GPR data, described by the Fresnel volume, is
an elongated rotational ellipsoid where the foci are at the locations of Tx and Rx, see Figure
3-1. The size of the volume depends on the spacing between the antennae, center frequency,
and the bulk permittivity of the soil. The SV for intermediate soil water content conditions
for Ryt was approximately 0.35 m® (see Klotzsche et al. 2019a/ Appendix D). Note that the
SV for the GPR data was significantly larger than the investigated soil volume to obtain the
RVF values, such that a direct comparison was not possible. In addition, the GPR-derived
permittivity values are influenced by the soil, the water content of the soil, and the water
content of the roots. The separate contribution of each factor cannot be disentangled with this
type of measurement setup. Since the RVF was very small (see Table 3-2) and the dielectric
permittivity of the soil particles was small compared to that of water, the main contribution
to the bulk soil permittivity came from the soil water (e.g., Cassidy, 2009). Additionally,
uncertainties of the solid phase are higher for dry conditions with a low saturation of the soil.
Therefore, in the following, the obtained relative permittivity from the measured GPR signals
and its spatial and temporal variability is discussed.

3-5 Spatial and temporal variability of the soil-plant continuum

Root images and crosshole GPR data were acquired, when possible, on a weekly or biweekly
basis over three crop growing seasons. The total number of measurements per crop growing
season is shown in Table 3-1. For the GPR dataset, the information from the 0.1 m deep
rhizotubes was excluded, mainly due to the interference of the critically refracted air wave with
the direct wave. The GPR traces at a depth of 0.2 m also shows an impact of this interference,
particularly for dry conditions. However, the uncertainties remain in an acceptable range and
the data can still be used for further analysis (Klotzsche et al., 2019a/ Appendix D, Yu et
al. 2021/ Appendix F & F). Since the GPR has a larger SV than the root images, the data
acquired from the root images at a depth 0.1 m is included.
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3-5-1 Time- lapse root data

From the results of the automatic image analysis pipeline (Bauer et al., 2022/ Appendix
E), the RVF information was derived for each rhizotube for both MR facilities. For each
plot, the mean RVF was calculated at each depth, taking into consideration both rhizotubes,
which were also used for the GPR measurements. In some cases where unrealistic RVF values
occurred due to changes in image settings and acquisition errors, data needed to be excluded.

The curves for the root development over time with the root arrival for 2017 are shown in
Figure 3-4, where the RVF is plotted for all three plots for Ryt and Ryt as function of time.
Depths of 1.2 m were only measured late in the crop growing season, due to the absence
of roots in the earlier vegetation stages. For most of the root arrival curves an increase in
RVF over time was observed, where a strong increase in RVF was mostly present around the
date of tasseling and silking. During tasseling, the male flowers start to shed their pollen.
This takes place when the plant has reached its full height. Silking is the emergence of
silks from the ear shoot of the female maize flower. At the end of the crop growing season,
up to the harvest date, there was a significant decrease in RVF. In general, Rir showed
higher RVF than Ryr. For Ryr the maximum RVF was below  0.08% and for Ry the
maximum RVF was 0.15%, see Figure 3-4. In addition, there were considerable differences
in root development at the different depths, both between the MR facilities and between
individual plots. The highest RVF for both Rrr and Ryt were found in Plot 1, at 0.8 m
and 0.1 m, respectively. The next highest RVF obtained in Ryp was at Plot 3, followed
by Plot 2 and for Rpr Plot 2 followed by Plot 3. The maximum rooting depths for both
MR facilities in the 2017 crop growing season and the results obtained using an additional
excavation measurement showed similar results (see Klotzsche et al., 2019a/ Appendix D)
and Morandage et al., 2021). In these studies, a maximum rooting depth of 1 m for Ryt and
of 1.40 m for Ry was detected, which exceeded the maximum observation depth for Ryr.
Figure 3-5 shows the same RVF data as Figure 3-4 but plotted as function of depth, such
that the depth distribution is both more clearly visible and not median-filtered over time. A
comparison of the three individual plots of Ryr and Ry reveals significant differences. The
natural /rain-fed Plot 1 and Plot 2 at Ryt had maximum values at a depth of 0.1 m and 0.6
m, although for Plot 1 the maximum value at depth 0.1 m was significantly larger than at
depth 0.6 m. Note that the axis for the 0.1 m depth was significantly larger than the other
depths. At Rpr, the natural/rain-fed Plot 1 showed two maxima in RVF at depths of 0.8 m
and 0.4 m, whereas for Plot 2 a maximum was present only at a depth of 0.8 m. Note that
the axis range for Plot 1 was again significantly larger than for Plot 2 and 3. The irrigated
Plot 3 showed a local maximum in RVF at a depth of 0.4 m for Ryt and at depths of 0.1 m
and 0.4 m for Rrr. The same analysis was carried out for 2018 and 2020, and the results can
be found in the Supplemental Material, Appendix A-3 Figures A-3.1 to A-3.3, respectively.
The depth distribution of 2018 was similar to that of 2017, and what few differences were
observed were possibly related to differences in measurement dates. A large difference was
visible for Ryt Plot 3, where the highest values in RVF were present at depths of 0.4 m and
0.6 m. During the 2020 growing season, only two measurements at Ry were possible, and
therefore no comparison was made.
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Root arrival curves 2017
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Figure 3-4: Root arrival curves in root volume fraction (RVF) for 2017 for the three plots for
Ryt and Ry, left and right, respectively. The root images were measured within the
same rhizotubes where the ground-penetrating radar (GPR) antennae was placed.
The colored triangles represent the RVF over time, which were median-filtered over
3 measurement days. The colors indicate the different depths. Tasseling and silking
are indicated by the vertical lines. Note the different y-axes scales for Plot 1 in
comparison to Plots 2 and 3.
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Figure 3-5: Root volume fraction (RVF) depth profiles of 2017 for Ryt a), ¢), and e) and Rt b),

d), and f). The colored triangles represent the RVF values for the different depths,
where the different colors represent the measurement date over the crop growing
season. Note the different x-axis for Ryt and R, 1 below all plots and a separate axis
for Plot 1 of Ryt and a depth 0.1 m of Plot 1 of RUT shown on top of the figure.
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3-5-2 Time-lapse GPR data

For each measurement day, the permittivity values of the GPR measurements were estimated
for each position (every 0.05 m) along the horizontal rhizotubes for five depths and three
plots/treatments. The obtained permittivity values were then plotted as horizontal per-
mittivity profiles between the rhizotubes. Figure 3-6 shows semi-three-dimensional images
for a 1.2-m-depth by 9-m-width by 3.5-m-length soil volume, obtained for 26.04.2017 and
27.07.2017, which show the horizontal permittivity profiles before and during the maize
growing season.

Overall, the permittivity of Rpyp indicated higher values than Ryr, which was related
to the porosity ¢ and soil type differences of both MR facilities. While the topsoil of Ryt
had an approximate porosity of ¢ = 0.33 and the subsoil of ¢ = 0.25, the topsoil and subsoil
of Ryr had a porosity ¢ = 0.4 and ¢ = 0.35, respectively. Additionally, at Rpp a shallower
water table depth was present (seasonal fluctuations between 3 5 m below the surface,
see Jadoon et al. (2012)). Generally, the permittivity increased with increasing depth for
Ryt and Ryp. Comparing the two measurement days, the permittivities before the growing
season were generally slightly higher than during the season for both MR facilities, which
was related to the weather conditions. To better understand the seasonal changes, the mean
permittivity per depth over time was compared with the weather data (Figure 3-7 and Figure

3-8 for Ryt and Ry, respectively).

Similar to the findings from the root arrival curves and RVF depth distribution (Fig-
ure 3-4 & Figure 3-5), there was a difference in permittivity between the individual plots.
For Ryt a permittivity gradient between the three plots was present (Figure 3-6a and b),
with Plot 1 having the lowest permittivity values, followed by Plot 2 and Plot 3. This was
particularly evident before the growing season (see gray frames in Figure 3-7). The difference
was particularly distinct at depth 0.2 m (plow layer), while the irrigated Plot 3 showed the
highest permittivity values. Although Plot 1 and Plot 2 received the same surface water
treatment, Plot 1 showed lower permittivity values at all depths.
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Figure 3-6: Semi-3D plots of horizontal permittivity profiles for 2 days during the crop growing
season 2017. Permittivity results for Ryt and Ryt for the dates April 26, 2017,
and July 27,2017, for a) and b) and d) and e), respectively. The different colors
represent the permittivity values along the rhizotubes, the green diamonds indicate
the aboveground location of the maize crop rows, and the red dashed rectangles
indicate two zooms for Plots 2 shown in c) and f) with an adjusted color bar. Note
that for April 26, 2017, no crops were sown, while for July 27,2017, maize crops
were present.
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Additionally, it can be assumed that because of the larger SV of the GPR measurements,
information acquired below a depth of 1.2 m included naturally deposited soil. Similar
to Ry, Rer had a visible permittivity gradient between the individual plots, with Plot
1 showing the lowest permittivity values, and Plot 3 the highest (Figure 3-6 and Figure
3-8b & d). Additionally, this gradient from lower to higher permittivity values was equally
noticeable over all depths. In contrast to Ryr, the 0.2 m depth had the lowest permittivity
values, compared greater depths, and the permittivity increased with increasing depth. The
horizontal permittivity variations were smaller compared to the vertical variation for both
MR facilities (Figure 3-6¢ and f). The areas along the rhizotubes with higher permittivity
values in depths of 0.2 m coincided with the spatial above-ground location of the maize crop
rows, indicated by green diamonds (see also Klotzsche et al., 2019a/ Appendix D). These
patterns were more distinct for Ryt than for Ry, caused by the higher permittivity changes
for Ryp. Greater depths did not show these clear permittivity patterns, although there were
variations along the rhizotube with smaller differences. The semi three dimensional plots
of winter wheat in Klotzsche et al. (2019a/ Appendix D), did not show the same patterns
within the horizontal permittivity profiles.

To investigate a possible link between permittivity variations and atmospheric changes,
comparisons between the mean permittivity values per day and depth, and the daily precipi-
tation and temperature for both MR facilities were made (Figure 3-7 and Figure 3-8). Similar
to the findings observed in Figure 3-6, it was found that along the rhizotubes that the mean
permittivity: i) was higher for Ryp than for Ryr, ii) mostly increased with increasing depth,
except for at a depth of 0.2m for Ryr, where the highest mean permittivity was observed
during periods with high precipitation and irrigation events, and iii) showed dependence on
the weather conditions, where high permittivity values were observed during periods with
high precipitation/irrigation and lower temperatures. Presumably the responses to changes
in the weather conditions were different due to the different soils of the MR facilities. While
for Ryt there was a faster response of the mean permittivity at all depths, Rrr exhibited
a delayed response with increasing depth. As previously mentioned, this was likely caused
by the higher porosity of the fine grained soil, and for Rrr, perhaps additionally due to the
closer distance of the ground water table and the associated capillary rise (see Klotzsche et
al., 2019a/ Appendix D). Interestingly, for Ryp a trend was observed that did not seem to
correlate with the weather conditions. After the silking and tasseling, a steady decrease in
mean permittivity at all depths was apparent, even in correlation with precipitation events
when temperatures did not change. The lack of effects of precipitation events was likely
because the increase in SWC was counteracted by an increased root water uptake. This effect
was less recognizable for Ryp. The same analysis was carried out for 2018 and 2020, and
results confirming these findings can be found in the Supplemental Material, Appendix A-3
Figures A-3.4 and A-3.6, respectively.
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Comparison of the weather data and permittivity for Ryt during the 2017 crop

growing season. a) Weather data: the solid red line represents the daily temperature
values, and the light blue bars represent the daily precipitation values. The dark
blue irrigation values are only valid for Plot 3. Mean permittivity per depth for Plots
1-3 are shown in b) and d). The colored circles with the error bars indicate the
permittivity mean along the rhizotube with its standard deviation as error bars. The
colored solid lines connect the individual measurement days. The horizontal lines
represent the dates for the vegetation stages and sowing and harvest dates. For
convenience, the approximate soil water content (SWC) values were added on the
right-hand axis for b) and d) using the three-phase complex refractive index model

(CRIM).
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Figure 3-8: Comparison of the weather data and permittivity for R 1 during the 2017 crop
growing season. a) Weather data: the solid red line represents the daily temperature
values, and the light blue bars represent the daily precipitation values. The dark
blue irrigation values are only valid for Plot 3. Mean permittivity per depth for Plots
1-3 are shown in b) and d). The colored circles with the error bars indicate the
permittivity mean along the rhizotube with its standard deviation as error bars. The
colored solid lines connect the individual measurement days. The horizontal lines
represent the dates for the vegetation stages and sowing and harvest dates. For
convenience, the approximate soil water content (SWC) values were added on the
right-hand axis for b) and d) using the three-phase complex refractive index model
(CRIM).
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3-6 Linking depth-dependent RVF with depth-depentent GPR
permittivity variablity

This section investigates the connection between the RVF and GPR permittivities. Although
Plots 1 and 2 at Ryt and Ry had the same surface water treatment in 2017 and 2018, the
observed RVF depth profiles shown in Figures 3-4 and 3-5 and permittivities in Figures 3-6,
3-7 and 3-8 obtained in 2017 showed distinct differences. The measured RVF and permittivity
data from 2018 show significantly smaller differences, as shown in see Appendix A-3, Figures
A-3.1 - A-3.3, . A possible explanation for the larger differences between Plots 1 and 2 in
Ryt and Ry in 2017 than in 2018 is the application of different surface water treatments for
Plots 1 and 2 from previous years. While Plot 2 was always under rain-fed conditions, Plot 1
was sheltered between 2012 - 2016 for Ryt and between 2014 - 2016 for Ryr. The rain-out
shelter for Plot 1 resulted in drier soil and, consequently, both a different root distribution
within the soil profile and lower crop growth compared to the other plots. This generated a
so-called “memory effect”. Consequently, the soil conditions at the beginning of the experi-
ment were not the same for both years, resulting in different patterns in SWC and root growth.

The influence of the maize crops on the horizontal permittivity profiles is clearly shown in
Figure 3-6¢ and f. Five crop rows were present along the rhizotubes, overlapping with the
GPR measurements as shown in Figure 3-2; and five peaks could be identified in the per-
mittivity values at the shallowest depth of 0.2 m. This indicated that increased SWC values
were present between the two rhizotubes, probably due to the presence of shallow crown roots.

Since root images were collected only at selected locations, as indicated in Figure 3-2,
no direct comparison could be made between the observed RVF and permittivity along the
rhizotubes. Only once on 5.8.2020, a labor-intensive continuous image of the roots made
along the complete rhizotubes was acquired. Figure 3-9 shows the results, and includes the
measured permittivity values. Additionally, five peaks in the permittivity can be observed at
the 0.2 m depth, which correspond to the five maize rows, though they show a considerable
shift. The permittivity peaks at 1.5 m and 2.25 m along the rhizotubes also correlated with
the corresponding root information (RVF). However, while multiple small peaks in RVF were
present between 2.5 m and 5 m, there was no clear direct correlation between the RVF and
permittivity data. Although the SV of the RVF was limited to the area directly around the
rhizotube and the GPR SV represented the larger soil volume in between two rhizotubes,
these results indicate that the presence of roots increase the variability in permittivity. In
contrast, permittivity in a bare-field (BF), where no roots are present, showed very small
variation in permittivity (Figure 3-6). In the following section it is assumed that the roots
observed along the rhizotubes represented the root growth at that specific depth and an
investigation of whether a correlation exists between the average RVF along the rhizotubes
and the variability in permittivity follows.
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RU.r - 2020 - Comparison - CRIM soil water contents - 05.08.2020
a) Depth 0.2 m
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Figure 3-9: Comparison of the permittivity high-resolution root image dataset measured on Au-
gust 5, 2020, and the respective root volume fraction (RVF). The different plots
represent the different depths of 0.2-0.8 m, a)—d), respectively, for Plot 2 at RyT.
The solid blue line indicates the permittivity. The green bars indicate the RVF along
the rhizotubes. The black solid line indicates the smoothed RVF along the rhizo-
tube over five positions. The dashed black line represents the mean RVF along the
rhizotubes.

3-6-1 Calculation of time-lapse variability analysis of GPR data

The investigation into the effects of the soil-plant continuum on the GPR-derived permittivity,
distinguished between static and dynamic influences. Static influences were soil heterogeneity
and variations in the distances between rhizotubes, and exerted a time-constant effect on the
permittivity at the MR facilities. The dynamic influences were dominated by the temporal
changes in permittivity caused by the seasonal variations in weather conditions (e.g., precipi-
tation, evapotranspiration) as well as the soil water depletion caused by the root water uptake.
To come up with a proxy for the permittivity changes related to the presence of roots, it was
necessary to optimally reduce static effects and minimize the dynamic influences caused by
atmospheric conditions for each measurement day.
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Variability analysis processing steps
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Plot 2 - Depth 0.8 m
a) Permittivity profile g, b) Spatial permittivity deviation of vegetated field &,
0 T T T 1 T

3 35 4 45 5 55 6 5 35 4 al5 5
Distance along rhizotubes [m] Distance along rhizotubes [m]

——26.04.2017 —03.05.2017 —17.05.2017 ——31.05.2017 ——21.06.2017 ——05.07.2017 12.07.201;IF
19.07.2017 27.07.2017 ——02.08.2017 ——09.08.2017 —23.08.2017 ——13.09.2017 ===~ MEAN £, °

Figure 3-10: Processing steps to derive the trend-corrected spatial permittivity deviation of the
vegetated field for Ryt Plot 2, depth 0.8 m. The different colors represent the
measurement dates. a) Daily permittivity profile ¢, along the rhizotubes for all
dates during the measurement season 2017. b) Daily spatial permittivity deviation
of the vegetated field s”,j/ . The green bars indicate the root volume fraction
(RVF) derived from root images for the different measurement positions. c) Daily
spatial permittivity deviation for the bare-field eB%; ;. The dashed black line
represents the mean of the 2017. d) Trend-corrected spatial permittivity deviation
of the vegetated field AE”-V]-/.

When investigating the horizontal permittivity profiles over the course of the measurement
season, it was observed that the vertical permittivity variations with depth for the different
dates were caused by changes in the weather conditions (Figure 3-10a), as shown in the
exemplary case for depth 0.8 m within Plot 2 of Ryy. To minimize the dynamic factors
caused by different atmospheric conditions during the crop growing season, each day needed
to be considered separately. As a first step, we reduced the dynamic influences for each
horizontal permittivity profile:

Eri,jl = Erij — Eri,- (3-8)
by calculating the mean g;. along the rhizotubes for each horizontal permittivity profile
and then this value was subtracted from the €,;; of the individual ZOP positions along the
rhizotubes. Here 7and j indicate the date and the position along the rhizotube, respectively.
These so-called spatial permittivity deviations sm;,j' represent the deviations of the individual
permittivities at the individual ZOP positions j from the mean ;. along the horizontal
permittivity profiles and are independent from the seasonal changes in SWC conditions.
Data from the growing season and the BF measurements, which were collected before
the sowing of the maize crops, were considered separately. Comparing the derived spatial
permittivity deviations sm»ﬂj' for all measurement dates in Figure 3-10b and c, a trend of
reoccurring patterns is observed. The obtained spatial permittivity deviations for the BF
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measurements shown in Figure 3-10c have a much smoother and more regular trend than the

measurements from the growing season. The mean BF spatial permittivity deviations 67{5’ij/
were calculated for each season separately and for all positions along the rhizotube j, since

small changes were present between the individual (67_BF47]‘/) values for each year. All daily
spatial permittivity deviations for the BF 5}?1’#,]-/ can be found in Appendix A-3 Figure A-1.1
for 2017 and 2018. Additionally, the 55171-,]- values for RyT can be found in the Supplemental

Material, Appendix A-3 Figure A-3.7. As a final step, the trend-corrected spatial permittivity
deviations Ag,; ; , were derived for each GS measurement along the horizontal permittivity

profiles. Static effects were removed by subtracting (EPFU/) from the daily variability during
S ’
7’7

the crop growing season, represented by sg i

’ as 7
Aepij =e,"; —ePF.;.(3-9)

o,

From the sample dataset in Figure 3-10d, the static trend along the rhizotube disappears, and
the fluctuating of minima and maxima around zero remained. This approach filters out both
the dynamics of the spatially averaged permittivities that are caused by dynamic boundary
conditions, as well as the temporally averaged spatial variation of permittivities outside of the
growing season that resulted from spatial variations in soil properties and unknown variations
in inter-rhizotube distances. In this way, the obtained deviations reflect the dynamic variability
in the relative permittivity during the growing season.

3-6-2 Results and discussion of time-lapse variability of the GPR data

The approach introduced above to derive the trend-corrected spatial permittivity deviations
for the vegetated field Aeri,j/ was applied to Plots 1-3 of Ryt and Ryt in 2017, and the
results are shown in Figure 3-11. Only days when root information and GPR data were both
available were considered. Several different patterns emerge as a function of time, including
several consistently increasing maxima and minima during the growing season. These patterns
were present at the same horizontal location along the rhizotube at different depths and were
identified in the Aari,j/ data, shown in Figure 3-11 d for Plot 2 in the blue and red frames,
respectively. A possible explanation is that the soil water depletion processes had an influence
beyond a certain depth range/volume of soil. For Ry, patterns were not as distinct as those
for Ry, which had clear maxima and minima along the rhizotube. This could have been
caused by fewer roots present in the soil at Ry, see Figure 3-5a, ¢ & e. For Plot 3, where
irrigation was applied, distinctive peaks are apparent along the rhizotubes on certain days,
e.g., 09.08.2017 and 23.08.2017 between depths 0.4 m to 0.8 m and at a horizontal distance
of 2.3 m to 3 m. In both cases, measurements were taken a few days after irrigation was
applied (see Appendix A-3 Table A-3.1 and A-3.2) and the peaks were probably due to the
drip irrigation system which caused spatially variable infiltration.
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Trend-corrected spatial permittivity deviation of vegetated field - 2017
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Figure 3-11: Trend-corrected spatial permittivity deviation Aem-,j/ of the vegetated field, along
the rhizotubes over the different plots & depths, for Ryt and Ryt in 2017. The
colored solid lines represent different dates during the crop growing season. The
data gap of Ryt at 0.2 m depth is caused by the presence of the sEIT line.
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The same analysis was performed for 2018 and 2020, which can be found in the Supplemental
Material, see Appendix A-3 Figures A-3.7 A-3.8 and A-3.9. Evaluating the patterns of Aari,j/
for the different crop growing seasons, recurring patterns were observed at some locations
(e.g., Rur, Plot 1, depth 0.4 m between 4.5 m and 5.5 m; Ry, Plot 2, depth 0.4 m and 0.6
m, see Figure 3-11, Supplemental Material, see Appendix A-3 Figure A-3.8). These reoccur-
ring patterns indicate that spatial variations in permittivity likely correspond with static soil
properties that may have influenced water flow and root growth.

3-6-3 Probability density function of the trend-corrected permittivity deviation

To quantify the values of Aem-’j/ in more detail, a normal distribution model was fitted to
the data and a range of one standard deviation from the mean (SD) was obtained for the
vegetated and bare-fields. The SD of bare-field plots was considerably smaller than that of
the vegetated field plots (an example of which is shown in Figure 3-12 for depths 0.2 m and 0.6
m, in Plot 2 at Ryt and Ryr). The presence of the crops clearly increased the permittivity
Asm;yj/ variability. When comparing both MR facilities, SD values were generally lower at
RUT than at RLT-
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Figure 3-12: Probability density function (PDF) of of trend-corrected spatial permittivity devia-
tion Aam-,jl for depths 0.2 m and 0.6 m for Plot 2, for both MR-facilities of 2017,
respectively. The black solid, dashed and dotted lines represent the dates for the
bare-field measurements and the colored lines represent the PDF of trend-corrected
spatial permittivity deviation Asr,;Tj, for the crop growing season measurements.
For PDFs with the most narrow and widest peaks we added the respective values
of the standard deviation (SD).
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By plotting all SD values from 2017 for Ryt and Ryt for the different depths in Figure
3-13, low values were observed under bare field conditions (non-colored lines), whereas the
values for later times initially increased and then decreased. These results indicate that the
variability in Ae,.i,j/, and therefore SWC, was increasing during the growing season.

A comparison of the different plots for Ryr revealed that Plot 1 generally had a higher SD
than Plot 2, except for 27.07.2017, and that the SD in Plot 1 was at its maximum at a depth
of 0.2 m. Plot 3 showed higher SD values than both Plots 1 and 2. For Ryp Plot 3 had the
highest SD values, but the difference between Plots 1 and 2 was small.

3-6-4 Cross-correlation of depth dependent RVF and depth dependent GPR
variability

The RVF values in Figure 3-5, as well as the permittivity variability showed an increase during
the growing season. Here, the RVF and SD were cross-correlated individually for every depth
as shown in Figure 3-14. To account for the SD variability in the bare-soil conditions present
at the MR facilities, the first bare-field measurement was added to the cross-correlation with
an RVF value of 0. Almost all the results from 2017 and 2018 returned a positive correlation,
with one exception where the coefficient of determination (R?) was 0. The remaining cross-
correlations resulted in R2 ranging between 0.02 and 0.9 (Table 3-3). Out of the 46 cross
correlations, 23 had an R® > 0.5 (0.51 < R? < 0.9) and 23 values had an R? < 0.5 (0.02
< R? < 0.49). At 0.4 m depth, the correlations are the lowest, whether this has to do with
the interface between the top- and subsoil interface needs to be investigated. These results
indicate that at most depths the SD, and therefore the permittivity variability, is increasing
with increasing RVF. When considered alongside the bare field measurements, the presence
of roots leads to increased variability in permittivity.

Table 3-3: Coefficient of determination between the root volume fraction and the SD for Ryt
and Ryt for both years 2017 and 2018.

Ryur Rir
2017 2018 2017 2018

RSP pioi 1 Plot2 Plot3 Plot1 Plot2 Plot3 Plot 1 Plot2 Plot3 Plot 1 Plot2 Plot 3
02 06 03 037 084 008 056 062 055 037 049 078 072
04 053 045 014 09 007 02 033 006 026 00 013 019
0.6 065 019 002 007 051 066 064 049 073 048 067 047
0.8 060 053 057 045 011 086 08 065 058 -a 034 076
1.2 _a _a _a _a _a _a _a _a b _a _a _b

# Three or less data pairs No cross-correlation was performed.

® No GPR measurements carried out.
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Figure 3-13: Standard deviation (SD) values for different depths in 2017 for Ryt and Ry,
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respectively. The black circles indicate the minimum and maximum of the SD,
indicated in Figure 3-12.
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Standard deviation of the probability density function vs. root volume fraction - 2017
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Figure 3-14: Correlation between the root volume fraction (RVF) and the standard deviation
(SD) for the individual plots for Ryt and Ryt in 2017, respectively. The colored
squares represent the values for the RVF and the SD for the vegetated field and
the colored diamonds represent the values during the bare-field, where the RVF
was set to 0, the different colors represent the different depths. The colored lines
represent the linear regression per plot and depth, the R? values are indicated next

to the regression lines.
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3-7 Conclusions and outlook

In this study, root images and time-lapse horizontal crosshole GPR measurements were
made to non invasively monitor the root zone of maize crops at different depths for different
treatments and different soils. Repeated root images and GPR measurements were carried
out before and during three separate maize growing seasons. Overall, the analysis of the
root images acquired in the upper (Ryr) and lower terrace (Rpp) MR facilities showed
that the RVF of the maize crop increased during the crop growing seasons and decreased
towards the harvest date. The RVF varied between soil types: in the stoney upper terrace
the roots were not able to reach greater depths due to the stones, whereas the roots were
able to grow deeper than the lowest rhizotube in the lower terrace. In addition to soil
type, the surface water treatment and previous soil management seemed to influence the
RVF. It was observed, for instance, that in a plot that was sheltered in previous growing
seasons, the maize crops developed more roots than in a plot that was not previously sheltered.

Using the crosshole GPR-derived permittivity values, both the temporal and spatial
(vertical & horizontal) permittivity distributions were able to be monitored and variations
for different soil types, weather conditions, and surface water treatments were observed. A
direct comparison between the root images and the GPR-derived permittivity values was
not possible because of the significant difference in sensing volumes of the two methods
(0.21 m®  0.35 cm® for each GPR-ZOP position and 1.28x10-5 cm?® for each set of root
images). A time-lapse variability analysis was introduced, where the trend-corrected spatial
permittivity deviations were derived for the vegetated field where static influences (soil
heterogeneity or variations in the distance between rhizotubes), as well as dynamic influences
(atmospheric conditions) were removed. Next, a probability density function (PDF) model
was fit, describing the trend-corrected spatial permittivity deviations for both the vegetated
and bare-fields to obtain a proxy for the permittivity variability. A low standard deviation,
and therefore low permittivity variability, was obtained before and early in the crop growing
season, with larger values obtained later in the crop growing season. To investigate the
relationship between the trend-corrected spatial permittivity deviations with the RVF in more
detail, the PDF standard deviation of the trend-corrected spatial permittivity deviations
during each season was cross-correlated with the RVF values for each depth, plot, and soil
type. Almost all results for 2017 and 2018 were positively correlated, with coefficients of
determination ranging between 0.02 < R? < 0.9 (Table 3-3). Out of the 46 cross correlations,
23 values had an R? > 0.5, (0.51 < R? < 0.9) and 23 values had a R? < 0.5 (0.02 < R?
< 0.49). These relatively large coefficients of determination show a clear link between RVF
and the permittivity variability at multiple soil depths. Additionally, both soil types reacted
similarly and provided a comparable number of good correlation pairs, even when within
different facilities.

More investigations are necessary to understand why the correlation at some depths is
weak. A possible explanation is the difference between the SV of the GPR measurements
and the root image data. The root images represent a significantly smaller two-dimensional
space on the rhizotube surface, while the root volume present in the soil volume between
the rhizotubes, which is measured by the GPR, remains unknown. Acquiring denser and
higher resolution of higher frequency GPR data (between 500 - 1000 MHz) would enhance
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the imaging of the subsurface between the boreholes. Extending the GPR-ZOP data, with
multi-offset GPR data, combined with a ray-based travel time inversion (e.g., Binley et al.,
2001, Musil et al., 2006), would also enhance the resolution between the rhizotubes towards
2D and 3D images instead of 1D profiles. These higher resolution images could possibly
improve the understanding of processes within the soil-plant continuum and might also allow
a more localized correlation. In addition, a possible improvement to the RVF could involve
obtaining continuous root images along the entirety of the rhizotubes (as shown in Figure
3-9). With recent technological developments, measurements along an entire rhizotube can
be performed simultaneously, and these RVF data would be expected to better represent the
actual RVF changes at different depths and times.

The presented results are based on measurements made during several growing seasons
in different soils for different treatments. Taking multiple high resolution GPR measurements
made during the day and night cycle for very hot days and very wet days, and analyzing the
results with improved imaging approaches would provide additional information. To optimize
the monitoring parameters, the construction of a detailed soil-plant-root model that could
record time-lapse soil water content changes (depending on the root activity) under changing
atmospheric influences would be ideal. In this way, synthetic GPR data could be generated
and processed, and the acquisition parameters could be optimized to include as much infor-
mation as possible to describe the rhizosphere processes that take place under field conditions.

Although the rhizotron facilities provide a great opportunity to deepen the understanding of
below ground soil-plant interactions, such facilities are destructive, limited to the plot-scale,
and are both expensive and time-consuming. Therefore, future challenges will involve finding
ways to up-scale the link between the permittivity variability and the root image data to
surface data. In a next step, combined rhizotube and surface investigations could be analyzed
to investigate if a similar link can be observed for above-ground data between root information
and GPR data. Furthermore, providing root and plant models with GPR~derived permittivity
and hence SWC distribution could help to establish possible surface measurements and to
understand the measured signals.

To conclude, this study has established a link between the root volume of maize crops
and the spatial variability of horizontal crosshole GPR-derived permittivity values, which is
an important step in investigating processes within the soil-plant continuum in more detail.
The current approach and the above-described improvements open new possibilities for the
combination of non-invasive geophysical measurements with root information measurements
to enhance crop models and agricultural management decisions.
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Chapter 4

High resolution soil-root modeling
for crosshole GPR data

Abstract

Using non-invasive geophysical tools, such as ground penetrating radar, to investigate
the soil-plant continuum of agricultural crops, has become increasingly popular in the
past decades. One major challenge which these tools face is the high complexity of this
continuum, where the different components dynamically influence each other, and the
processes are not yet fully understood. A first step towards understanding the impact
the different soil-plant continuum component, such as soil, water and roots, have on the
GPR signal is provided in this study. We investigated the influence of the roots on the
soil water content calculation in a synthetic feasibility study before we performed synthetic
forward modeling using an open-source electromagnetic simulation software gprMax. Here,
we analyzed the GPR traces considering scenarios with different soil-plant continuum
compositions containing, soil, roots and above-ground shoots. Thereby, we included the
two realistic root contribution, related to contrasting soil types based on trench wall
counts of the minirhizotron facilities, in the models. We observed that the roots have a
higher impact than considering an above-ground shoot in the modeling. Additionally, if
roots are not considered in the soil water content calculation using appropriate mixing models.

Adapted from: Lena Lérm, Jan Rdédder, Harry Vereecken, Anja Klotzsche: High resolution
soil-root modeling for crosshole GPR data. In preparation.
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4-1 Introduction

Investigating the soil-plant continuum of agricultural crops in a non-invasive matter using
geophysical measurements techniques such as ground penetrating radar (GPR) has shown
to be challenging in terms of small-scale soil heterogeneities, which effect processes like
infiltration, soil water depletions and root growth. The processes within the soil-plant contin-
uum are highly dynamic and impacting factors range from atmospheric weather conditions,
soil physical and chemical properties, nutrients, micro-organisms to root architecture and
agricultural management. As shown in Chapter 3 it is challenging to identify and quantify
these influences directly in the GPR signals. Thereby, we have observed and investigated that
for crops with a high inter crop row distance such as maize an influence on the distribution
in dielectric permittivity along a horizontal axis is present. Especially at very dry conditions
below the plants an increased permittivity and hence soil water content (SWC) was observed
compared to the surrounding soil. This could not clearly be related to the actual water
present in the soil, the roots or if it was affected by the above ground shoot and its related
stem flow infiltration. Regardless these effects, in a first step, we were able to qualify the
influence of maize roots on the GPR signal throughout the growing season using statistical
methods like spatial and temporal permittivity variability analysis for the GPR measurements
acquired at the rhizotron facilities (Chapter 3). Nevertheless, fine root systems, as present
in cereal crops (e.g., maize), remain challenging, since with the GPR we acquire informa-
tion about a volume of the rhizosphere system, which includes soil, water, roots, and nutrients.

To provide a possible proxy for a sustainable crop production, it is essential to derive
the available water content in the soil without the effect of water-filled roots from the
GPR data. Conventionally, to calculate the SWC a petrophysical relationship is utilized
which accounts for the different component of the soil. Therefore, we investigate here the
possibilities if and how a distinction between water in the soil and roots is possible using
horizontal borehole GPR data by performing synthetic forward modeling with an open-source
electromagnetic simulation software gprMax (Warren et al., 2016). Additionally, questions
about above-ground effects are addressed by incorporating in the realistic model the part of
the plants. As a first step, we added a root contribution to this petrophysical relationship
and investigated the influence of this root component on the GPR-derived SWC. To realistic
model the root distributions in the soil related to maize crops, we considered the root volume
fraction (RVF') information derived from trench wall root count acquired for maize crops (see
Appendix D, Morandage et al. (2021)). In the next step, we define a synthetic forward model
of the minirhizotron (MR) facilities using the soil information and the root trench counts.
The upper (Ryr) and lower (Ry) MR-facilities each is situated in different soil type, see
Chapter 2. Similar to previous studies, we used the standard first arrival time picking of the
GPR electromagnetic waves to derive the dielectric permittivity of the soil and hence the
SWC of the soil-plant continuum, see Chapter 2 and 3.
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Soil Systems

a) Three-Phase b) Four-Phase

Roots

Figure 4-1: lllustration of the soil system for the soil-plant continuum: a) three-phase and b)
four-phase system including roots.

4-2 Materials and Methods

4-2-1 GPR-derived soil water content considering crop roots

As shown in Chapter 3 the GPR data and its first arrival time can be used to derive the
dielectric permittivity of the soil system (Equation 4-1), which can be related to SWC. To
derive the SWC petrophysical or empirical relationship are required (Huisman et al., 2003,
Klotzsche et al., 2018). A widely used petrophysical volumetric mixing model is the complex
refractive index model (CRIM). In contrast to Topps equations (see Chapter 5 Equation 5-1),
mixing models can also consider additional components next to soil, water and air, such as a
root fractions. The general form of the mixing model assumes that the soil consists of different
phases with different dielectric properties and volume fractions. For a system with n dielectric
components the general formula is

ey = Bilixi(e)® (4-1)

where €7 is the relative dielectric bulk permittivity of the mixed system, x; and ¢; are the
volume fraction and the permittivity of the i-th component of the system and « is a fitting
exponent, which describes the geometry of the system. Conventionally, soil systems are con-
sidered to be three-phase, containing soil, water, and air (see Figure 4-1a). The often used
CRIM is derived by using a geometry factor of « = 0.5 and considering the permittivity of
air to be g, — 1. Using these values, we can transform Equation 4-1 to calculate the bulk
permittivity €, of a three-phase soil system

er=((1=¢) Ve +0-Veu+(¢—0))° (4-2)

where ¢ is the porosity of the soil. &, €, are the permittivities of the soil (solid phase) and
water components of the system, respectively, and 0 is the volumetric water content in the soil.
This equation (Equation 4-2) can then be rearranged to calculate the SWC of the three-phase
soil system to
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Vew —1

It should be noted that when we apply the three-phase system to derive the SWC, this SWC
cannot distinguish between water in the soil or water in the roots. Especially for row crops
with spatially varying roots distribution in the field, like maize, the uncertainty on the SWC
without including roots information can be high. Therefore, to improve the SWC estimation,
which is available to the crops, we need to extend the three-phase soil system by a fourth
phase, which considers the root volume inside the pore space (Figure 4-1b). Thereby, we
assume that the porosity equals the summations of RVF, water in the pores and air. The RVF
is considered to be the percentage of roots in a soil volume. Extending Equation 4-2 with the
RVF and the corresponding permittivity of the roots e, we derive:

er=((1—¢) VEs+0-\/Ew+ (¢ — RVF —0) + RVF - \/ep)?, (4-4)

under the assumption that the roots grow within the pore space. Similar to Equation 4-3, we
can reformulate Equation 4-4 to derive the SWC for a four-phase soil system

g_ V= (1=0) V&~ (9= RVF) — RVF - \/ex (45)
Ve -1 |

4-2-2 Deriving root volume fraction from trench wall counts

To use realistic field data as root information, we used the root count density values acquired
on trench walls at the MR facilities in Selhausen. In 2017 for the MR facilities trenches were
excavated and the roots were counted on the trench walls and the root count density (RCD)
was derived (Huisman et al., 2003, Klotzsche et al., 2018). Here a trench was dug, next to a
maize plant and on the wall a grid was installed (Figure 4-2a and b). Within each 3.75 cm
by 3.75 c¢m grid cell the RCD was obtained (Figure 4-2¢). In a few steps we calculated the
RVF from the RCD for each grid cell. First, we derived the root length (RL) per grid cell
dimensions and the RCD

RL = (RCD - Ayia) - Lgrid, (4-6)
where Agiq is the size of the grid cell and Lgq is the length of the grid cell. In the next step,
we calculated the root volume using

d2
RVZRLWT'%, (4-7)
with dy,q, is the maximum root diameter recorded for the data in 2017 (Appendix E, Chapter

3), with a value of 0.05 cm. We considered the respective soil volume V,; to be the area of
the grid Agpq cell times the maximum root diameter dpq, as

‘/soil = Agm‘d . dmaz (4'8)
and
RV
RVF = 4-9
‘/soil ( )

to derive the RVF' per grid cell.
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c) Results root count density d) Grid for root counts
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Figure 4-2: Overview of the trench wall counts to derive the root count density. a) Finalized
trench perpendicular to the maize crop rows. b) Grid on the trench wall, in which
the roots were counted. c¢) Results for the root count density for Ryt, adapted by
Appendix D and d) schematic illustration of the trench wall root counts for one grid
cell with a size of 3.75cm.
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As Figure 4-3 indicates the distribution of the RVF varies for the different soil types of the MR
facilities. For Ryt the highest number of roots is present close to the surface and decreases
with increasing depth (Figure 4-3a). Additionally, the RVF distribution in the horizontal axis
is less distributed as for Ryp. For Ryt the RVF indicated higher amounts of roots in general,
but also indicated a more complex distribution in both directions of the recorded profile. For
the later comparison of the different SWC calculations (Equation 4-2 & Equation 4-4), we
derived the RVF mean per depth (Figure 4-3b). The depth distribution of RVF shows a
similar distribution of root length density as shown in Morandage et al. (2021). For Ry a
mean value of 3% and maximum value of 13% for the shallow depths , which decreased
with increasing depth was observed. For Rrr the mean is higher with up to 10% at a depth
of 0.6 m, and reaching an overall maximum of 20% between 0.6 m and 0.8 m depth.
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a) Root volume fraction spatial distribution
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Figure 4-3: Root volume fraction (RVF) for both MR facilities with a) RVF values calculated
for every grid cell and then interpolated to a cell size of 1 cm. b) RVF depths
profiles for Ryt and Ryt with corresponding mean, standard deviation, maximum &
minimum distribution.

July 22, 2024



80 High resolution soil-root modeling for crosshole GPR data

4-3 Feasibility study - petrophysical relationships considering
roots

To investigate the necessity to account for the root fraction at the MR facilities or if the effect
is minor and can be neglected, we performed a feasibility study by calculating the three- and
four phase SWC for a range of relative bulk permittivity values, porosities (see Appendix C-1)
and root volumes, which are common for agricultural systems in Selhausen (e.g., Appendix
D; Chapter 3). As Figure 4-3b shows the RVF maximum values of about 20% for Ryr,
whereas mean values up to 10% were recorded (for Ry). Therefore, we are using a maximum
RVF of 20% for this feasibility study. For the calculation of the SWC using Equation 4-2 and
Equation 4-4, we used &,, — 84 for a temperature of 10°C in the soil, and 5 — 4 (Appendix
D). For e we applied a value of 70, which anticipates that roots almost entirely consist of
water. For the porosity of the soil system, we used ¢ — 0.35 and ¢ — 0.25, which is the
porosity of the subsoil for Ry (Figure 4-4) and Ryt (Appendix C-1). By comparing the
results for a range of RVF values for the three-phase and four-phase CRIM, we can observe
that for increasing amounts of roots, the differences become more significant (Figure 4-4).
Note that the three-phase SWC is equal to the four-phase SWC with a RVF of 0% (Figure
4-4a). For lower bulk permittivity values the four-phase SWC reaches values below zero, in
that case in Figure 4-4b the values were replaced with a SWC of 0 for illustration purposes.

Analyzing the four-phase SWCs depending on the RVF, we notice a decrease in SWC
with an increase in RVF (Figure 4-4b). Hence, using a three-phase SWC CRIM is over-
estimating the SWC if the root phase is not considered in the calculation. For dry soils/
soil with low permittivity, already a low presence of roots will lead to an absence of water
on the soil phase, e.g., with a permittivity of e, = 4, a RVF values above 3.8% will lead
to a four-phase SWC of 0, while the three-phase SWC is 0.04. For a soil with &, — 8, the
threshold for the RVF, where there no water left in the soil is RVF = 12.06%. This effect
is even more pronounced with a lower porosity in the soil, see Appendix C-1. Considering
these observations using a three-phase SWC calculation is feasible either if no or very few
roots are present or if the root distribution is evenly distributed (and known). Therefore,
for analyzing the variations of SWC related to maize roots, which have in our study a row
separation of 0.75 m, a four-phase SWC calculation is recommended, when the RVF exceeds
a threshold of 5%. For crops with narrow crop row separation, e.g., winter wheat, a more
homogeneous root distribution can be assumed, therefore using a three-phase SWC leads to
an evenly distributed error.
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a) Three-phase SWC  b) Four-phase SWC

CRIM SWC [cm?® cm”]
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Figure 4-4: Results of the feasibility study for a) three-phase and b) four-phase CRIM equation
for varying bulk permittivity and RVF of the soil-plant continuum. Porosity was
defined as ¢ = 0.35.

4-4 gprMax forward modeling

As we have seen from the feasibility study, we should consider the root fraction for maize
crops when a certain number of roots are present (e.g., after silking). To further improve
our understanding of the effects of the roots on the GPR signal, we performed several
synthetic tests ranging from various soil parameters, root systems, above-ground shoot,
changing electrical conductivity values of the roots, up to the possibilities to consider higher
frequencies. Therefore, to realistically model the influences of the different components of
the soil-plant continuum on the GPR signal, we performed our synthetic study using an
open-source electromagnetic simulation software gprMax (Warren et al., 2016). gprMax is a
finite difference time domain solver, which can used to model 2D or 3D electromagnetic waves.
In this study, we are not investigating the spatial variabilities in the GPR signal along the
horizontal axis as we would with the horizontal rhizotubes, rather we are focusing on the com-
parison of the GPR signal between different set ups of the soil-plant continuum. Therefore,
we modeled four scenarios where the model consists of: I) soil, II) soil and roots, III) soil and
above ground shoot, and IV) soil, roots, and above ground shoot (Figure 4-5). As a template
for our model domain, we are considering the setup of the MR facilities cropped with maize,
see Chapters 2 & 3. We defined a two-layered model, which includes an above ground air
layer with a ¢, = 1 and a soil layer with varying bulk permittivity depending on the soil-plant
continuum scenario based on realistic values for the rhizotrons for dry and wet condition
(Figure 4-5, Table 4-1). The models have a cell size of 0.01 m, and the model domain was
defined with 1.75 m in x-direction, 2 m in the z-direction including 10 cells of perfect matched
layers. Similar to, the MR facilities, we calculated ZOP GPR traces at six different depths
with a horizontal spacing of 0.75 m and with Tx and Rx in adjacent rhizotubes, see Chapter 2.

To calculate the bulk permittivity, we assumed the below-ground half space to be a
three-phase soil-air-water system (Equation 4-2), when the soil does not include roots
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(Scenario I and III) and to be a four-phase system (Equation 4-4), while the soil includes
roots (Scenario IT & TV). The RVF (Equation 4-6 - 4-9) was calculated from trench wall
counts (Figure 4-3).

a) Scenario I: Soil b) Scenario II: Soil + roots c) Scenario lll: Soil + shoot d) Scenario IV: Soil + roots + shoot
2r r o

1.50 m

051

Depth [m]

0 05 1 15 0 0.5 1 15
Distance [m]

8 9 10 1 12 13 14 15 16 17 18
&[]

Figure 4-5: Schematic overview of the different scenarios for Rpt with a soil water content (SWC)
of 0.2 [em® cm3]. a) Scenario | with only of soil, b) Scenario Il with soil and roots, c)
Scenario I1l with soil and shoot and d) Scenario IV with all the different components
soil, roots and above-ground shoot. Note that the permittivity was derived using
Equation 4-2 for Scenario | & Il and Equation 4-4 for Scenario Il & IV.

To model the above-ground shoot (Scenario IT & IV), we used a cylindrical shape with a
diameter of 0.03 m and a height of 1.5 m, which should represent the shoot during the time
of the trench wall counts. We explicitly considered the scenario with the above-ground shoot
since we observed for dry soil conditions interferences of the shallow GPR data, which were
not clear if they were related to shoot itself (see Chapter 3). Note that, we modeled the
scenarios with the shoot in a 3D domain with a y-direction of 1.5 m to realistically model
the EM propagation related to the shoot, while Scenarios I and II were modeled in 2D to
keep the computations costs low. For the 3D models, we extended the roots in 3D by keeping
them constant in the y-direction.

For simplification we are using a constant electrical conductivity of os= 0.015 [S m™']
for a loamy soil (Brovelli and Cassiani, 2011) for all model components in the first part of
the study. Additional calculations were performed, where the electrical conductivity of the
roots was assumed to be or — 0.05 [S m™!] for the roots (Rao et al., 2020). Since the op
is usually not constant for the entire root system, it may vary with root age, root order
and root diameter, see Rao et al. (2020). Furthermore, they investigated in their simulation
study, that the electrical conductivity of the roots may change with the root growth away
from the root collar and found conductivities between o = 0.0154 — 0.03 [S m™!] for roots
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up to three weeks old. Since the root system used in this study was mature, nevertheless to
account for different conductivities we used an additional root electrical conductivity of o
= 0.03 [S m™'|. For most of the tests a Ricker wavelet was considered as source pulse with a
center frequency of 200 MHz as used in the field measurements. Additional simulations were
performed using a center frequency of 500 MHz to investigate whether the various effects can
be better discriminated using higher frequency and hence shorter wavelengths.

Since the two MR facilities were built in two different soil types, which result in dif-
ferent soil permittivities, but also in a different root distribution. We calculated GPR. traces
for a range of realistic expected permittivity values for dry and wet conditions for both
facilities (Table 4-1) Similar to Chapters 2 & 3, we derived the bulk permittivity using the
first arrival times of the GPR traces and the known distance between the Tx and Rx.

Table 4-1: Overview of the different model input parameters to calculate the SWC related to
the three-phase and four-phase CRIM. Note that a homogeneous soil was assumed
and no differentiation between top and subsoil was included.

Rur Rur
& [ 0.25% 0.35%
Ew -] 84
e N AT 4
SWC in HHS  [cm? Cm'g] 0.05 0.15 0.25 0.10 0.20 0.35
o [Sm™] 0.015
oR S m] 0.03/0.05
GPR frequency [MH?7| 200/500

# Similar to the porosity of the subsoil of the facilities, see Chapters 2 & 3 and Appendix D

4-5 Effects of roots on the GPR signal

To get a first impression on how the root distribution in the soil would influence the GPR
signal in the different depths for the MR facilities, we investigate the GPR traces related to
model Scenario I and II (5a and b). Therefore, we modeled GPR ZOP traces for a set of
SWC values, which are common for both tests sites (dry, intermediate, and wet conditions).
The modeled traces are standard analyzed such as the experimental data by first arrival time
picking and calculate the permittivity of the soil system (Table 4-2, see Chapters 2 & 3.).

First, we investigate the wave types and effect of the SWC on the GPR traces related
to soil changes itself (Scenario I). For the shallow depth of 0.1 m, the direct wave and the
critical refracted air wave are interfering in both cases and no differentiation between these
events is possible (Figure 4-6). Therefore, using current analysis tools like first arrival time
picking, such data needs to be rejected from the interpretations since the air wave interference
causes an under estimation of the permittivity and hence the SWC (Table 4-2 & Table 4-3).
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Table 4-2: Permittivity results for the two-dimensional study for Scenario | & Il for Ryt & R,
for different SWC conditions. The misfit between the picked travel time permittivity

and the permittivity of the HHS is provided in brackets below the values.

g, of the HHS is considered as the true value.

Note the

Depth Rur Rur

[m] Scenario I Scenario II Scenario I Scenario II
SWC in the HHS 0.05 6.08
¢, in the HHS 5.22 6.08

0.1 3.06 (41.3%)  3.10 (40.67%)  3.36 (44.71%)  3.39 (-44.26%)

0.2 4 83 (749%) 515 (L36%) 555 (881%)  5.98 (-1.68%)

0.4 21 (0.13%) 54 (6.23%)  6.09 (0.08%)  7.55 (24.08%)

0.6 5.21 (0.13%) 5. 50 (5.39%)  6.09 (0.08%)  8.29 (36.19%)

0.8 2 21 013%) 5. 33 (2.18%)  6.09 (0.08%)  7.79 (28.02%)

1.2 21 (0.13%) 22 (-0.06%)  6.09 (0.08%) 6.3 (4.01%)
SWC in the HHS 0.15 0.20
¢, in the HHS 9.62 10.78

0.1 139 (54.34%) 440 (54.22%) 4.6 (56.51%)  4.70 (-56.40%)

0.2 815 (-15.28%)  8.30 (-13.71%)  8.89 (-17.48%)  9.10 (-15.54%)

0.4 9.62 (0.02%)  10.05 (4.57%)  10.77 (-0.06%)  12.70 (17.85%)

0.6 9.62 (0.02%)  10.02 (4.19%)  10.77 (-0.06%)  13.75 (27.58%)

0.8 9.62 (0.02%)  9.78 (1.66%)  10.77 (-0.06%)  13.07 (21.30%)

1.2 9.62 (0.02%)  9.61 (-0.04%)  10.77 (-0.06%)  11.10 (2.95%)
SWC in the HHS 0.25 0.35
¢, in the HHS 15.35 20.32

0.1 5.77 (-62.39%) 5.78 (-62.33%) 6.82 (-66.43%) 6.83 (-66.41%)

0.2 11.62 (-24.25%) 11.69 (-23.83%) 14.31 (-29.58%) 14.43 (-28.99%)

0.4 15.35 (0.01%)  15.90 (3.60%)  20.32 (0.00%)  22.96 (12.98%)

0.6 15.35 (0.01%) 15.87 (3.41%) 20.32 (0.00%) 24.50 (20.57%)

0.8 15.35 (0.01%) 1555 (1.36%)  20.32 (0.00%)  23.51 (15.71%)

1.2 15.35 (0.01%) 1535 (0.01%)  20.32 (0.00%)  20.78 (2.26%)
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Figure 4-6: GPR traces modelled in 2D for 200 MHz, where the black and blue solid line indicates

Scenario | and Il for the different depths of the MR facilities. The corresponding
traces are shown for the different MR facilities and different soil water content (SWC)
conditions a)-c) for Ryt and d)-f) for Rit. The black box in a) indicates the zoom
area shown in Figure 4-7.
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Klotzsche et al. (2016) observed similar features and concluded that only full-waveform ap-
proach can analysis such events. By comparing the ‘true’ permittivity values with the first
arrival time picking derived permittivity, we clearly can see that with increasing depth and
permittivity the misfit decreases and have the smallest errors (Table 4-2). For the depth 0.1
m the misfit shows values between 41.3% and 66.43% for Ryt (SWC = 0.05 cm® cm™) and
Rir (SWC — 0.35 cm® ecm™®), respectively. For depth 0.2 m this misfit is already significantly
lower, between 7.49% and 29.58%, for the remaining depths the misfits is smaller than 1%.
For all the different SWC conditions and for both MR facilities the ‘measured’ permittivity
underestimates the permittivity present in the homogeneous half space (HHS), see Table 4-2.
We will further exclude this depth from the detailed analysis. This wave interferences are also
partly present at depth 0.2 m, especially for very dry soil conditions with a low permittivities.
Nevertheless, for depth 0.4 m the first arrival time picking becomes more robust to reconstruct
the actual soil permittivity (Scenario I), although the interferences still effect the amplitude
of the trace, and it is not possible to clearly distinguish between the different wave types.
Starting from depth 0.4 m, the different wave types begin to be separated and the direct wave
is less affected by the reflection from the subsurface, which arrives later in time (Figure 4-6,
black circle). For increasing permittivity these reflections become clearer and more distinct.
Note that, both MR facilities are affected by these wave interferences, although Ryr is less
impaired since the overall permittivity is higher as for Ryr.

In the next step, we increased the complexity of the model by incorporating the root
information (Scenario II). By comparing the EM waves for the different scenarios (I & II),
we first notice a difference in the travel times, where the first arrival of the EM wave is
delayed for Scenario II (Figure 4-6 and Figure 4-7). This effect differs for the different SWC
conditions and the MR facilities, whereas with increasing SWC the travel time difference
between Scenario I and II increases and the travel time differences for Rpr are larger
than for Ryr. The time shift is caused by the increased permittivity associated with the
RVF and therefore an overall decreased wave velocity and hence resulting in later arrival times.

For Scenario II at Ryt we notice, that only for the depth 1.2 m for all SWC condi-
tions, the misfit between the permittivity of the HHS and the ‘measured’ permittivity <
1% (Table 4-2) indicating that the roots have a significant effect on the permittivity values
and in most cases lead to an increased permittivity. Interestingly to notice is the effect
of the roots for the shallow depth of 0.2m depth. The misfits between the ‘measured’
permittivity and the permittivity of the homogenous half space (HHS) for Scenario I
& 11, is smaller for Scenario II (Table 4-2). Especially for dry conditions for the soil
permittivity between 5<e,<6, the misfit is reduced by 5%. The additional root phase
in soil system reduces the interferences on the first arrival time, which is related to the
higher overall permittivity in the soil system, where the interferences have less influences.
While for Scenario I, the true permittivity values are identified by the first arrival picking
for most cases below 0.4 m depth, for Scenario II the misfit depends on the amount of
roots present in this depth range (Table 4-2. For example, for Ry the highest misfits are
observed for the depths 0.6 m and 0.8 m, where also the highest RVF' are present (Figure 4-3).

Considering the entire phase of the traces, we notice differences in for the first cycle
amplitude and in the maximum amplitude, e.g., Ryt depth 0.2 m and Ryt depth 0.2 m

0.6 m (Figure 4-7). Furthermore, for some depths a phase shift in late arrivals is especially
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recognizable for Ry at depths 0.6 m and 0.8 m, again associated with the highest RVF' area.
To quantify these phase shifts, we estimated the travel times differences of the maximum
amplitude (Table 4-3). For Ryr it is the largest time difference can be observed for 0.2 m
depth and for Ry for the 0.6 m depth, which correlated with high RVF values. Additionally,

we notice an increasing difference with increasing SWC.
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Figure 4-7: Detailed view of Figure 4-6 for the traces of the depth of 0.2, 0.4, and 0.6 m for
a) Ryt and b) Ry, where the black and blue solid line represents Scenario | and 11,

respectively.

Table 4-3: Differences between the travel times of the maximum amplitude between Scenario |
and 11, for Ryt and Ry1.

Travel time differences

Rur Ryir
SWC in the HHS [('Ins Cm’g] 0.05 0.15 0.25 0.10 0.20 0.35
Depth [ns]
0.2 0.31 037 040 0.46 0.50 0.46
0.4 0.20 024 022 0.71 064 0.66
0.6 [m] 0.13 0.16 0.17 1.0 1.02 1.06
0.8 0.08 0.06 0.07 0.87 085 0.88
1.2 0.01 0.01 0.00 0.09 0.10 0.11

An influence of the roots on the amplitude of the traces is especially recognizable for Ryr
(Figure 4-6 and Figure 4-7). Using the estimated permittivity of each scenario, we calculated
the three-phase and four-phase SWC either ignoring the root part in the calculation or using
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the RVF information. As expected from the feasibility study, if the root parts are not in-
corporated, the SWC is overestimated, depending on the RVF (compare to Figure 4-3). The
overall errors are smaller in contrast to the true values for higher SWC values and decrease
with depth. Note that if the RVF are not incorporated in the calculations, errors between
-3% to 55% can occur (not considering depth 0.1 m).

Table 4-4: Three-phase soil water content (SWC) for Scenario | and three-phase and four-phase
SWC results for Scenario |l for Ryt & Ryt and different SWC conditions between
0.05 — 0.35. The [%] misfit between the three- & four-phase SWC is provided in
brackets.

Depth Ryt Rrr
[m] Scenario T Scenario II Scenario I Scenario 11

three-phase three-phase four-phase ‘three-phase three-phase four-phase

SWC SWC SWC SWC SWC SWC
SWC in HHS 0.05 | 0.10
0.1 -0.02 -0.01 -0.04 (157.14%) 0.02 0.02 -0.01 (-134.78%)
0.2 0.04 0.05 0.02 (-50.00%) 0.09 0.10 0.06 (-39.18%)
0.4 0.05 0.06 0.05 (-18.64%) 0.10 0.13 0.09 (-36.57%)
0.6 0.05 0.06 0.05 (-17.54%) 0.10 0.15 0.07 (-55.33%)
0.8 0.05 0.05 0.05 (0.00%) 0.10 0.14 0.12 (-11.43%)
1.2 0.05 0.05 0.05 (0.00%) 0.10 0.11 0.10 (-6.60%)
SWC in HHS 0.15 | 0.20
0.1 0.03 0.03 0.01 (-81.48%) 0.06 0.06 0.03 (-49.21%)
0.2 0.12 0.12 0.10 (-19.51%) 0.16 0.17 0.13 (-22.75%)
0.4 0.15 0.16 0.15 (-6.92%) 0.20 0.23 0.19 (-20.94%)
0.6 0.15 0.16 0.15 (-6.33%) 0.20 0.25 0.17 (-32.94%)
0.8 0.15 0.15 0.15 (0.00%) 0.20 0.24 0.23 (6.64%)
1.2 0.15 0.15 0.15 (0.00%) 0..20 0.21 0.20 (-3.40%)
SWC in HHS 0.25 | 0.35
0.1 0.06 0.09 0.07 (-23.91%) 0.12 0..12 0.09 (-27.12%)
0.2 0.19 0.22 0.19(-11.52%) 0.26 0..26 0.23 (-14.45%)
0.4 0.25 0.28 0.28 (-3.50%) 0..35 0.39 0.34 (-12.99%)
0.6 0.25 0.28 0.28 (-3.50%) 0.35 0.40 0.32 (-20.54%)
0.8 0.25 0.28 0.28 (-0.36%) 0.35 0.39 0.38 (-4.08%)
1.2 0.25 0.28 0.28 (0 00%) 0.35 0.36 0.35 (-1.97%)

To characterize in more detail the observed wave interferences, we calculated the correspond-
ing frequency spectra of the GPR traces for the Scenario I and II for the intermediate soil
conditions with a SWC of 0.15 cm® cm™ and 0.2 cm® cm™, for Ryt and Ry, respectively
(Figure 4-8). For the frequency spectra for depth 0.2 m and 0.6 m depth, we notice that the
center frequency of the data is at around 200 MHz. The constructive interference at 0.2 m
cause a higher amplitude of the frequency spectrum almost twice as high as for depth 1.2
m. For depth 0.6 m we can observe the interferences of the direct air wave and the refracted
wave also in the frequency spectra causing two peaks in the frequency spectrum, for both MR
facilities, which indicates the partly overlap of the EM waves (Figure 4-6). Comparing the
different scenarios, we notice that for Scenario II the center frequency is slightly reduced.
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Figure 4-8: Frequency spectra for a SWC of 0.15 cm3 cm™ and 0.2 cm® cm3 for Ryt and Ry,
respectively, for exemplary depths of 0.2, 0.6 and 1.2 m. Frequency spectra for Ryt
are shown in a), ¢) and e), and for Ryt in b), d) and f). The black and blue solid
line indicates Scenario | and Il, respectively.

For a better understanding, how the EM waves propagates in the two-dimensional space with
and without the presences of the roots, we analyzed the image plots for various time steps
of the EM wave propagations. We chose to estimate these time steps the Ryt setup with
the SWC of 0.10 [cm? cm'3] at depth 0.2 m (Figure 4-9). Thereby, we notice for Scenario I,
that the EM wave propagated relatively circular and uniform through the soil, whereas for
Scenario II, the EM wave show more scatterings and amplitude changes over the half space.
At 3 ns and 5 ns (Figure 4-9b and ¢, f and g), clearly the development of the different wave
types at the soil-air interface is visible, where the wave in air travels faster as the wave in the
soil. At later times of 7 ns (Figure 9d, h), clearly an event can be observed with increased
amplitude (Figure 4-9d, black circle). Below, these positive interferences, a time shift and
a diminished amplitude is present (Figure 4-9d, black arrow), Both events can be related to
the phase and amplitude of the corresponding measured traces as shown in Figure 4-6d. The
electrical field distribution when the Tx ad Rx are located at depth 0.6 m for the same model
case, show overall less wave interferences, although the wave interaction close to the surface
can be observed (see Appendix C-2 Figure C-2.1).
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Figure 4-9: Image plots a)-d) for Scenario | and e)-h) for Scenario Il of the forward modeled
electrical field distributions through the model domain for four time steps when3 the
Tx and Rx are located at 0.2 m depth in the Rt with a SWC of 0.1 [cm® cm ].
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4-6 Effects of electrical conductivity of the roots on the GPR
signal

To investigate the influence of the root electrical conductivity, we tested different conductivities
for the root component in the soil system, while keeping the electrical conductivity of the soil at
o5 = 0.015 [S m~!] constant. Since the root electrical conductivity varies with age, root system
architecture and diameter, we tested two different conductivities based on literature values.
For the fraction of the roots we considered the corresponding root electrical conductivity of
either op = [0.05 S m™!] or o = 0.03 [S m™!], and for the fraction of the soil we considered
the electrical conductivity of the soil with og — 0.015 [S m™!]. We performed these tests for
exemplary models of Scenario I and II with the SWC of 0.15 cm® cm-1 and 0.2 cm?® cm-1 for
Ryt and Ry, respectively (Figure 4-11). As expected by the increased electrical conductivity
and hence higher wave attenuation, for the cases with the larger electrical conductivities of
the roots the amplitudes are smallest. But, overall, only minor differences in the first cycle
amplitudes between the traces of the three cases are visible indicating that the electrical root
conductivity does not have a large effect on the GPR traces. This finding suggests that
in further research with more complex soil or/and root models, the different electrical root
conductivities are not a major contributor on the GPR signals rather than the soil electrical
conductivity.

GPR trace amplitudes - Scenario | & Il
with different root electrical conductivities
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Figure 4-10: GPR traces modeled in 2D for 200 MHz while using different electrical root con-
ductivities o for Scenario Il for a) Ryt with a SWC of the HHS of 0.15 [cm? cm™]
and b) ) Ryt with a SWC of the HHS of 0.2 [cm® cm™], where the red solid line
indicates oz = 0.015 [S m™!], the blue solid line indicates oz = 0.05 [S m!], and
the yellow solid line indicates o = 0.03 [S m™]. Note that only traces related to
the highest RVF region are plotted.
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4-7 Effects of the measurement frequency on the GPR signal

When talking about resolution and reconstruction of medium properties it is also necessary
to consider the actual sensing volume (SV) of the GPR measurements. The SV of GPR
measurements is characterized by the Fresnel volume, which has the shape of an elongated
rotational ellipsoid. The foci of this ellipsoid are the locations of Tx and Rx. The dimensions
(size of volume) depend on the distance between Tx and Rx, GPR center frequency, and bulk
soil permittivity (Appendix D). As the recent research related to the MR facilities focused on
200 MHz data because of the commercial availability, the previous tests were focusing on this
frequency. Since roots and the related rhizosphere are in the millimeter to centimeter scale,
higher frequency GPR data such as 500 MHz would be more suitable to better disentangle
the different contributions of the medium. Note that, antennae in the GHz range should not
be considered since the distance of the rhizotubes and the wave attenuation would prevent
the detection of the signal.

Since the bulk soil permittivity depends on the actual SWCs and soil structural prop-
erties, we calculated like in Appendix D the SV as a function of SWCs for the MR-facilities
for 200 MHz and 500 MHz to estimate the possibilities to detect roots or the rhizosphere
in the soil better (Table 4-5). Using 500 MHz antennae instead of a 200 MHz antennae,
the SV could be reduced by a factor between 3 to 4, and especially for wet conditions with
a high permittivity/SWC. Therefore, we perform forward modeling using a source wavelet
with a center frequency of 500 MHz to investigate if the interfering waves and effects caused
by the presence of the roots can better be distinguished and analyzed. For an exemplary

Table 4-5: Sensing volume (SV) for the different SWC and different frequencies for Ryt and

Rur Ryir
Frequency [MHz| 200 500 200 500
SWC in HHS SWC in HHS
[em® em?] [m?] [em® em¥] [m®]
0.05 0.43 0.11 0.10 0.39  0.10
0.15 0.28 0.08 0.20 0.25 0.07
0.25 0.20 0.06 0.35 0.16  0.05

model scenario, we considered a for Ryt and Ryp a SWC of 0.15 cm® cm™ and 0.2 cm® em™,

respectively (Figure 4-11). When using 500 MHz as the frequency for the source wavelet,
we can recognize similar findings as for the 200 MHz simulations. First, we can notice the
interference of the direct air wave and refracted air wave, where for the 0.1 m depth we
observe small amplitude prior to the actual first arrival of the EM wave. For the 0.2 m depth
the interfering wave arrive at the Rx location almost at the same time as the direct ground
wave and are very difficult to distinguish the first arrivals. For traces at a depth of 0.4 m
and 1.2 m we notice, clear amplitudes after the arrival of the direct ground wave, where with
increasing depth the interfering wave arrival times increases and we can clearly distinguish
the events (Figure 4-11, black circles). For the comparison between Scenario I and II, the
differences while using a frequency of 500 MHz seem more significant than using 200 MHz.
Overall, we notice a later first arrival time when including the roots into the model. While
for Ryt and the uppermost depths for Ryt the arrivals times are not significantly different,
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for the traces below depth 0.8 m for Ryr larger offset can be observed. Additionally, the
interfering waves are also affected by this delay in travel time. Interestingly to notice is
phase and the amplitude behavior of the traces at depth 0.2 m to 0.6 m for Scenario II
for Ryr. These traces show an increase amplitude for the first direct waves in contrast to
Scenario I. The corresponding frequency spectra are minorly affected by the roots and the
wave interfered as the 200 MHZ data (Appendix C-3, Figure C-3.1). While for the for data
at depth 1.2 m the center frequency is at about 500 MHz, for depth 0.2 m depth the center
frequency is reduced to approximately 400 MHz to 420 MHz.

500 MHz GPR trace amplitudes - Scenario | & Il

a) R,y SWC = 0.15 b) R, SWC = 0.2

e
IS

e
)

Depths [m]

3 05 15 : 3
Time [s] %108 Time [s] x10°8

| —Scenario | —Scenario Il |

Figure 4-11: GPR traces modeled in 2D for 500 MHz, where the black solid line indicates Sce-
nario | and the blue solid line represents Scenario Il for the different depths of the
MR facilities. The traces are shown for a) Ryt with a SWC of 0.15 [ecm® cm3] for
the HHS and b) Ryt with a SWC of 0.2 [cm? cm_3] for the HHS.

4-8 Effects of the above-ground shoot on the GPR signal

To further investigate the influence of the above-ground shoot on the GPR traces, we need to
expand the model domain into 3D (Scenario II and IV) to realistically model the EM propa-
gation related to cylindrical object on top of the soil. Note that, cylindrical objects cannot
be modeled properly in the 2D space. We assumed the above-ground shoot to be a cylinder
with a diameter of 0.03 m and a height of 1.5 m. First, we considered only one maize plant on
the soil, and second, we extend the model to multiple maize plants. For the second part, we
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extended the model domain in the z-direction and added shoots with the same dimension as
before, with a separation of 0.12 m. The root distribution was just extended in the z-direction.

When considering the EM wave results of the three-dimensional study for Scenario III
and IV, we first notice the same influences of the direct air wave and refracted wave shallow
depths (Figure 4-12). The difference in the two scenarios is the presence of roots. Under the
consideration of the presence of the above-ground shoot for both scenarios, we notice the
same influence of roots, where the first arrival is delayed, and the amplitudes are smaller.
But in the uppermost depths 0.1 m to 0.4 m, we can see later wave arrivals, which were
not present in the two-dimensional simulation without the above-ground shoot. When
considering not one but multiple above-ground shoots, we can identify multiple reflections
in the uppermost depths (Figure 4-12¢ & d). When we compare the permittivity of the

GPR trace amplitudes - Scenario Ill & IV

Single above-ground shoots Multiple above-ground shoots

a) R,; SWC =0.15 [cm® cm] b) R,; SWC = 0.20 [cm® cm”] c) R,; SWC =0.15 [cm® cm"] d) R,; SWC =0.20 [cm® cm”]
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Figure 4-12: Three-dimensional synthetic EM waves for 200 MHz, where the orange solid line
indicates Scenario Il and the green solid line represents Scenario IV for the different
depths of the MR facilities. The EM waves are shown for a) Ryt with a SWC of
0.15 [em® cm3] for the HHS and b) Ryt with a SWC of 0.2 [cm® cm™3] for the
HHS.

HHS with the ‘measured’ permittivity, we again have the highest misfits present in the
uppermost depths (Table 4-6). Furthermore, we can compare the misfits of Scenario I and
II1, to estimate the influence of the above-ground shoot on the signal. Whereas the misfit
decreases between the ‘true’ and ‘measured’ permittivity, e.g., for depth 0.2 m at Ry (SWC
= 0.15 cmn® cm™) the misfit for Scenario I is 15.28% and for Scenario III (single plant) it is
12.03% (Table 4-2 & Table 4-6). This effect is even more enhanced under consideration of
multiple above-ground shoots, here for Scenario III a misfit of -9.92% is present. Since we
only consider the first arrival of the traces to derive the ‘measured’ permittivity the misfits
for the scenarios without the above-ground shoot and the one with shoot are not significant.
Note that, the shoots seem to only affect later arriving reflections in the signal and therefore
the first arrival time picking is only minorly affected.
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When analyzing the three- and four-phase SWC under consideration of the above-ground
shoot (single & multiple), the effects are dominated by the impacts we had already noticed,
so that only depth and 0.1 m and 0.2 m indicate different SWC values between single and
multiple shoots (Appendix C-4, Table 4-4). Concluding, we can additionally note, that the
RVF has the same influence on the misfit and the difference between the three- & four-phased
SWC, as noticed for Scenario I & II, where the misfit increases with the increased presence
of roots and the difference between (Table 4-4 & Appendix C Table C-4.1). Note that,
changed infiltration patterns, caused funneled precipitation by stem flow, into the soil could
not considered in this study.

In the frequency spectra (Appendix C-4, Figure C-4.1), we can see an influence of the
above-ground shoot, but only for the depth of 0.6 m, where the maximum around 300 MHz
is significantly larger than for the scenarios without the above-ground shoot. Furthermore,
we notice the same effects on the spectra as for Scenario I & II, where in the depth 0.2 m
indicates an amplitude twice the amplitude as for depth 1.2 m, caused by the interferences
with the reflected and refracted wave. But no significant difference is noticeable between a
single and multiple above-ground shoots.

Table 4-6: Permittivity results for the two-dimensional study for Scenario Ill & IV for Ryt & RT,
for different SWC conditions. The misfit between the picked travel time permittivity
and the permittivity of the HHS is provided in brackets below the values. Note the r
of the HHS is considered as the true value.

Depth [m] Ruyr Rrr
SWC in HHS 0.15 0.2
¢, in the HHS 9.62 10.78

Single above-ground shoot

0.1 4.69 (-51.22%) 4.71 (-51.06%) 5.00 (-53.66%) 5.01 (-53.50%)
0.2 8.46 (-12.03%) 8.68 (-9.68%) 9.24 (-14.30%) 9.52 (-11.68%)
0.4 9.62 (0.0%)  10.03 (4.26%) 10.74 (0.32%) 12.64 (17.25%)
0.6 9.62 (0.0%)  10.00 (4.00%) 10.74 (0.32%) 13.67 (26.83%)
0.8 9.62 (0.0%)  9.76 (1.49%)  10.74 (0.32%)  12.97 (20.32%)
1.2 9.62 (0.0%)  9.59 (-0.25%)  10.74 (0.32%)  11.00 (2.04%)

Multiple above-ground shoots

0.1 5.05 (-47.52%) 5.06 (-47.33%)  5.38 (50.08%)  5.38 (-50.08%)
0.2 8.66 (-9.92%)  8.94 (-7.07%)  9.50 (11.89%)  9.83 (-8.79%)
0.4 9.62 (0.0%)  10.03 (4.26%)  10.74 (0.32%)  12.64 (17.25%)
0.6 9.62 (0.0%)  10.00 (4.0%)  10.74 (0.32%) 13.67 (26.83%)
0.8 9.62 (0.0%)  9.76 (1.49%)  10.74 (0.32%)  12.97 (20.32%)
1.2 9.62 (0.0%)  9.59 (0.25%)  10.74 (0.32%)  11.00 (2.04%)
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4-9 Conclusion and Outlook

Since the effects of roots and the rhizosphere on the GPR signals are not fully understood we
investigated various effects in a numerical study using realistic model scenarios. A feasibility
study demonstrated the need that RVF' should be considered in the SWC calculations if a
threshold of 5% is reached and especially under the consideration of row crops. In trench wall
root count data values above this threshold were observed and therefore we considered this
root information as input for our synthetic models. To disentangle the different influences of
the soil, water, roots, and above-ground shoots, we considered different scenarios with varying
compositions and calculated the corresponding GPR traces. Because we have seen influences
by the presence of roots and above-ground shoots on field measurements, we used two MR
facilities as a template for the setup of the model, with varying soil types and root distributions.

We observed two major impacts on the GPR signal. First, the air-subsoil interface
causes critical refracted air waves and reflections, which are nearly impossible to distin-
guish from the direct ground wave for shallow investigation depths of 0.1 m. Here, we
noticed that an increase in permittivity and therefore SWC or root fraction (associated
with higher permittivity), results in a better distinction between the different wave types.
Additionally, such effects can be minimized, when using a higher measurement frequency
with shorter wavelength where such events can be better recognized. Note that, also the SV
with higher frequencies is reduced and therefore, small-scale variability can better be detected.

Second, the presence of roots, which resulted in a permittivity increase for the grid
cell, lead to an effect on the first arrival time and amplitudes of the GPR trace. This time
shift causes an overestimation in SWC, if a conventional three-phase soil system calculation
for the SWC is used. To calculate the SWC for the soil-plant continuum as a soil system with
four phases (soil, air, water, and roots), we used the mean RVF between the transmitting and
receiving antenna. This approach bares the uncertainty of the SV of the GPR measurements,
since depending on frequency and bulk permittivity of the soil, different SV are present in
the shape of an elongated rotational ellipsoid with the foci at the locations of transmitting
and receiving antennae. When calculating the four-phase SWC all roots present in the
ellipsoid should be considered, but the estimation of the number of roots is nearly impossible
with the investigation techniques currently available. Here modeling approaches, which
could provide factors to use either root information derived from root images or trench wall
counts, to derive the RVF for a certain soil volume, would be beneficial. Additionally, the
estimation of the RVF from the root count density contains uncertainties. We considered
the roots to grow straight through the grid and the root diameter to equal over the entire
root system. Especially maize roots have a distinct root system architecture with the crown
root on top of the soil and close to the shoot. Few studies have investigated the distribution
of the root diameter distribution in the field, especially considering row crops, such as maize
(Buczko et al., 2008). Anderson (1987) found larger maize root diameters within the crop
row and Qin et al. (2005) detected larger root diameters in the topsoil. When considering
the root as an individual phase within the soil system, we considered the root permittivity
to be similar to the permittivity of water, but research in the permittivity of roots is rarely
available. Al Hagrey (2007) only provided a permittivity for wood cellulose, depending on
the water content between 4.5 < i <22, because of the non-wooden nature of crop roots,
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realistic values are unknown. Further research could include the investigation of the root
permittivity in general, but also considering the root growth and decay under this aspect.
Incorporating the distribution of the root permittivities into a root architecture model and
combining this with a soil modeling tool for the precise generation of the model domain for
the electromagnetic simulation would be more than beneficial to study the influence of the
soil components on the GPR signal in more detail. With the here described approach, we
adjusted the grid cell bulk permittivity under the presence of roots. Since coarse roots, as
are present for maize crown roots have diameters > 2 mm and are of a wooden texture, they
could cause reflection effects in the EM wave.

As one open question from the experimental data is related on how much crops above
the surface effect GPR signals close to the surface. Therefore, we investigated the effects of
a single and multiple above-ground shoots. While only late arrival phases and amplitudes
are affected by the shoots, the first arrival times should not be affected. Note that infil-
tration processes related to stem flow, could not be investigated with the current model set up.

This simulation study is only the first step towards fully disentangling the GPR signal
since here the soil profile had constant properties, which is not feasible, when investigating
row crops. Additional simulations considering more soil layers could be performed. Fur-
thermore, with this approach the time component in the soil-plant continuum has not been
considered. While infiltration of precipitation and irrigation as well as soil water depletion
are taking place, the bulk permittivity distribution varies. In this study the SWC conditions
and therefore the permittivity of the HHS was considered to be equal. The use of a more
realistic permittivity profile in all dimensions, would be essential here common soil modeling
tools like HYDRUS-1D could be used to derive permittivity profiles, see Chapter 5. Further,
the influence of soil nutrient/ fertilization (Kaufmann et al., 2019), management practices
(Blanchy et al., 2020c) could be investigated.

Further advantages could be provided by using more sophisticated analysis approaches,
such as full-waveform inversion (FWI) (Klotzsche et al., 2019, 2016, Yu et al., 2022). As
observed in this study, effects caused by the root presence, conductivity changes and above-
ground shoots are related to later EM wave phases and amplitudes, the FWI approaches,
have the potential to analyze these effects. Considering FWI approaches have an increased
computational demand and hence additions to data acquisitions should be considered.
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Chapter 5

Spatial variability of hydraulic
parameters of a cropped soil using
horizontal crosshole ground
penetrating radar

Abstract

Soil hydraulic parameters play a crucial role in crop growth, as they control the spatio-temporal
distribution of water in the soil-plant continuum and thus affect water availability for crops. To provide
reliable information on the soil hydraulic parameters at different scales, measurement techniques with
a good spatial resolution and low labor costs are required. In this study, we used crosshole ground
penetrating radar (GPR) derived soil water contents measured along horizontal rhizotubes under a
controlled experimental test site cropped with winter wheat to estimate the parameters of the unimodal
and dual-porosity Mualem-van-Genuchten model in a non-invasive manner. We applied a sequential
hydrogeophysical inversion approach for a one-dimensional averaged case, by combining the GPR-
derived soil water content with a hydrological model (HYDRUS-1D). To optimize the chosen approach,
we considered different model configurations and performed additional synthetic studies. In addition,
this approach was upscaled by deriving the 3D spatial distribution of soil hydraulic parameters for the
entire field plot. We observed correlations between the individual soil hydraulic parameters. a2 and n2
in the dual-porosity Mualem-van-Genuchten model showed a negative correlation for both soil layers,
while A and K in the Mualem-van-Genuchten model showed only for the plow layer a correlation.
Finally, we derive parameters for crop growth studies including the soil water content at field capacity,
permanent wilting point and plant available water and their spatial variability.

Adapted from: Lena Larm, Lutz Weihermiiller, Jan Rédder, Jan van der Kruk, Harry Vereecken,

Anja Klotzsche: Spatial variability of hydraulic parameters of a cropped soil using horizontal crosshole
ground penetrating radar. In Review at Vadoze Zone Journal, Submission-ID: VZJ-2023-12-0120-0OA
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5-1 Introduction

Understanding the hydraulic processes within the vadose zone is important for various
applications including environmental studies, ecosystem science, agriculture, soil science,
meteorology, and hydrology. To investigate the wide range of processes that influence the
hydrological response between the subsurface and the atmosphere, it is necessary to access
the hydrological systems at different scales (Vereecken et al., 2008; Vereecken et al., 2022).
For example, small-scale modeling of rhizosphere processes and root-soil interactions requires
information on the processes and parameters at the point- to rhizosphere(pedon)-scale
(Schnepf et al., 2022), whereas land-surface or Earth system models used for ecosystem
quantification and prediction require information at the field to regional scale (Looy et al.,
2017; Vereecken et al., 2016; Simmer et al., 2015). Methods are therefore needed to provide
soil parameters at different scales. When hydrological dynamics are in focus of interest,
the soil water retention (SWR) and hydraulic conductivity characteristics (HCC) must
be known, whereby the soil hydraulic parameters (SHP) usually derived either directly or
indirectly. Direct methods are based on experiments, often conduced in the laboratory (rarely
in the field), which are costly and labor intensive (Durner & Lipsius, 2005). Laboratory
measurements of hydrological dynamics (SWR & HCC) are based on a variety of techniques
using small-scale soil columns of a few cm3 (typically 100 - 300 ¢m3) in volume. In the field,
the small representative volume for the estimation of the SHP by in situ soil water and matric
potential sensors also limits this approach to relatively small units mostly to the pedon
scale. Tt is common practice to repeat the small-scale point measurements (usually by taking
undisturbed samples for laboratory measurements) at the field scale for several sites, and
to upscale the laboratory hydraulic parameters to the entire field site. Although, a detailed
vertical representation of the heterogeneous soil can be mapped at the point locations, spatial
distributions between the points and small-scale heterogeneities cannot be captured (Kool et
al., 1987).

Over the last two decades, geophysical methods have been widely used to estimate in-
direct SWC. . Most popular techniques are Electrical Resistivity Tomography (ERT) (Michot
et al., 2003; Brunet et al., 2010; Samouélian et al., 2005), Electromagnetic Induction (EMI)
(Brosten et al., 2011; Moghadas et al., 2017; Altdorff et al., 2017; Corwin & Lesch, 2005;
Doolittle & Brevik, 2014; Sheets & Hendrickx, 1995), and Ground Penetrating Radar (GPR)
(Huisman, Hubbard, Redman, & Annan, 2003; Klotzsche et al., 2018). While ERT and EMI
provide the electrical conductivity as physical parameter, GPR is able to provide both the
dielectric permittivity and electrical conductivity. Using petrophysical relationships such as
Archies law for electrical conductivity or Topp‘s equation for permittivity (Topp et al., 1980),
both parameters can be related to soil water content, which can be used as inputs to estimate
hydraulic properties (SWR & HCC). A promising approach is the combination of non-invasive
geophysical measurements and laboratory-based point information to upscale hydrological
parameters to the catchment-scale. For example, large-scale 1 km2 EMI measurements were
performed to obtain high resolution electrical conductivity maps for different sensing depths.
Based on these maps and the obtained clusters, representative locations were selected for soil
sampling that could be used for extrapolation in the obtained clusters (Brogi et al., 2019,

2021).
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Another option to derive the SHP is to use time-lapse geophysical data sets and com-
bine them with sequential or coupled inversion approaches. For the sequential inversion, the
geophysical quantity such as electrical conductivity or GPR travel time (related to relative
dielectric permittivity) is first converted to soil water content. In a second step, these derived
soil water content estimates are used in an inversion to estimate the SHP using appropriate
hydrological models. This approach has been successfully applied, for example, by Huisman
et al. (2010) or Manoli et al. (2015) to obtain the SHP from ERT. Other successful studies
have been performend with surface (Busch et al., 2013) and crosshole GPR (Looms et al.,
2008; Rucker & Ferré, 2004; Yu et al., 2021/ Appendix F).

A more complex inversion scheme is the coupled hydrogeophysical inversion, where the
geophysical information is not converted to soil water content prior to the inversion but
used directly as information in the inversion process (Hinnell et al., 2010). In general, the
coupled inversion will overcome potential errors introduced by the conversion of the measured
geophysical quantity to the soil water content used in the sequential inversion, and therefore,
this inversion scheme should be more reliable. On the contrary, the coupled inversion
requires a state-of-the-art hydrological and geophysical model, both of which are often
computationally demanding, and therefore, the computational requirements are increased in
contrast to the sequential inversion approach (Yu, et al., 2021). Coupled inversions have been
performed by e.g. Mboh et al. (2011), Kuhl et al. (2018), Tran et al. (2016) for ERT and
by e.g., Yu et al. (2021)/ Appendix F for GPR. Yu et al. (2021) compared the performance
and the reliability of both inversion approaches for GPR data acquired during an infiltration
experiment. It was observed that in the presence of fast dynamics caused by infiltration or
heavy rainfall, a coupled inversion should be considered, while for long term investigations
covering entire seasons a sequential inversion can be equally efficient.

Even though most geophysical techniques can determine the water content in either
two dimensions (Cassiani et al., 2012; Klotzsche et al., 2019/ Appendix D, Lirm et al.,
2023b/Chapter 3) or even three dimensions (Beff et al., 2012; Koestel et al., 2008), the SHP
was primarily estimated in one dimension (e.g., Jadoon et al., 2012; Busch et al., 2013). To
our knowledge, a two- or three-dimensional estimation of the SHP based on geophysical data
has yet to be performed. Especially, for small-scale field trials such as those used in breeding
and fertilization experiments, the small-scale heterogeneity of the underlying soil might be
significant for both analysis and the modelling processes involved in crop growth. Hereby, it is
established that water and nutrient uptake by the plants through their root system is heavily
reliant on the current water and nutrient availability in the small-scale volume surrounding
the roots (rhizosphere). Even small changes can significantly affect the crop performance
(Schnepf et al., 2022; Landl et al., 2019). In addition, biochemical processes like greenhouse
gas formation often depend on the conditions of designated hotspots (e.g., Kravchenko et al.,
2017). Therefore, the knowledge of the two- or three-dimensional states of the soil (e.g., water
content, matric potential) is important, and as this information can generally be predicted
by spatially resolved models, spatially resolved soil hydraulic parameters are also required.

In this study, we demonstrate that horizontal crosshole 200-MHz time-lapse GPR data
can be used to derive the one-dimensional vertical SHP. Additionally, we explore the
potential to map pseudo-3D representations of the SHP across a controlled experimental test
site cropped with winter wheat. Therefore, time-lapse soil water content information was
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extracted from crosshole GPR data along 7 m long rhizotubes. This data was then inverted
to estimate the soil hydraulic parameters at a resolution of 0.05 meters. After demonstrating
the feasibility of our sequential inversion for a one-dimensional averaged scenario, we utilize
the approach to upscale the SHP to the entire field-plot providing detailed information about
a soil volume with the dimension 3.0 m by 1.2 m by 0.75 m.

5-2 Materials and Methods

5-2-1 Data acquired at the minirhizotron facility Selhausen

To parameterize the hydrological model for this study, a comprehensive and detailed dataset
is required. Therefore, we used the minirhizotron facility (MR facility) Ryr (Lérm et al.,
2023a)/ Chapter 2) located within the TERENO (TERrestrial ENvironmental Observatories)
Eifel-Lower Rhine observatory in North Rhine-Westphalia, Germany (Piitz et al., 2016,
Bogena et al., 2018). The facility was situated within the lower terrace of the Rur-river
system (Weihermiiller et al., 2007; Brogi et al., 2019). The loess soil of the Ryp was formed
by eolian deposits during the Pleistocene and is characterized as a Cutanic Luvisol (Ruptic,
Siltic) (Bauer et al., 2012) based on the World Reference Base for Soil Resources (IUSS
Working Group WRB, 2007). The soil contained 17% clay, 70% silt, and 13% sand as
reported by Weihermiiller et al. (2007). The soil is comprised of two distinct layers, namely
the topsoil or plow layer that spans from 0 - 30 cm and the subsoil located below. For further
details regarding the construction and setup of the MR-facilities, we refer to the works by
Cai et al. (2016) and Larm et al.(2023a)/ Chapter 2. Our investigation aimed to observe the
effects of natural conditions, we focused on the middle Plot 2 of Ry, where no additional
surface water treatment such as rainout sheltering, or irrigation were applied (Figure 5-1).
Within this plot, three sets horizontal rhizotubes with six depths ranging between 0.1 m and
1.2 m and a horizontal separation of 0.75 m between the rhizotubes. GPR and root image
measurements were conducted utilizing these rhizotubes, as shown in Figure 5-1. A thorough
dataset of all required parameters, including boundary conditions, soil states, precipitation,
evapotranspiration, soil water content, soil water potential, and crop growth observations, is
available for this site.

The field dataset was acquired during the crop growing season 2016 while winter wheat (cul-
tivar Ambello) was grown (Table 1), the dielectric permittivity data is published in Larm et
al., (2023a)/ Chapter 2. Crop management practices, including pest control and fertilization,
were executed in compliance with regional standards. The wheat was sown with a seeding
density of 300 — 320 grains per m2 at a crop row separation of 12 cm perpendicular to the
direction of the rhizotubes. The climatic variables used were obtained from the TERENO
weather station (SE_BDK_002) located approximately 15 m away. Technical terms are defined
upon first usage. Daily reference evapotranspiration (ETy) was calculated according to FAO
Irrigation and drainage paper 56 (Allen et al., 1998). Details of the calculation and gap filling
is describecd by Graf et al. (2020) and Rahmati et al. (2020).
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Figure 5-1: Schematic illustration of a plot within the minirhizotron facility and the zero-offset
profiling GPR measurement and root imaging setup.

Table 5-1: Overview crop management and measurements for the crop growing season 2016.

Crop Cultivar Winter Wheat (cv. Ambello)
Sowing Date 26.10.2015
Flowering Date 03.06.2016
Harvest Date 26.07.2016

GPR Measurements 20 (from 30.03.2016 to 08.08.2016)
Root Measurements 22 (from 16.11.2015 to 22.07.2016)
LAI Measurements 20 (from 17.12.2016 to 22.07.2016)

The maximum rooting depth for various measurement dates was determined from available
total root length values obtained from root image data sets captured using a minirhizotron
camera (Bartz Technology Corporation, Carpinteria, CA, USA) inserted inside rhizotubes.
The images were analyzed using an automatic image analysis pipeline developed by Bauer
et al. (2022)/ Appendix E. Additionally, the leaf area index (LAI) was regularly measured
during the vegetation period using a plant canopy analyzer (LIA-220, LI-COR Inc., USA).

5-2-2 GPR-derived soil water contents

GPR data were obtained through crosshole Zero Offset Profiling (ZOP), wherein the transmit-
ting antenna (Tx) and the receiving antenna (Rx) were placed in adjacent rhizotubes at the
same depth. The measurements were taken using a 200 MHz PulseEKKO System from Sen-
sors & Software (Canada). The antennae are moved in parallel along the length of neighboring
rhizotube with a 0.05 m measurement spacing. The standardized processing of crosshole GPR-
ZOP data involves three steps: i) de-wow filtering, ii) time-zero correction, and iii) detection
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of the first break point to estimate the travel time for each measurement point (for further
details, refer to Klotzsche et al., 2019/ Appendix D). The velocity of the electromagnetic wave
is determined by utilizing the known distance of 0.75 m between the rhizotubes along with
the estimated travel time from each ZOP measurement location.The calculated v is converted
into relative dielectric permittivity &, [-] using

er= (92 (5-1)

where ¢ indicates the speed of light [m s']. Considering appropriate petrophysical relation-
ships or empirical equations, the volumetric SWC 6 [cm?® cm-3] can be derived from the
relative dielectric permittivity ,. For Ry we use the Topp’s equation (Topp et al., 1980)

0=-53x10"242.92x 107 2%, — 5.5 x 10742 + 4.3 x 10753, (5-2)

The GPR-derived soil water content (SWC) values at a depth of 0.1 m in the uppermost
rhizotube produced unrealistically low results due to interference from critically refracted air
and direct waves (Klotzsche et al., 2016, 2019/ Appendix D). Thus, these values were omitted
from the study. Moreover, the data at both ends of the 7 m rhizotubes were also excluded
because they were affected by the access trench, soil sensors on one end, and the excavation
trench on the other end. Only data within the range of 3 to 6 meters from the access trench
was included. This resulted in 61 GPR SWC values for each depth, which were combined to
create a semi-3D horizontal SWC depth plane. Another option is to use the mean SWC along
the rhizotube, which is suitable for winter wheat because of its low crop row separation (refer
to Klotzsche et al., 2019/ Appendix D). Due to the 2016 installation of a spectral electrical
impedance tomography (sEIT) monitoring system between 5.5-6 meters along the rhizotubes
(Weigand et al., 2022), data measured at a depth of 0.2 meters had to be disregarded.

5-2-3  Soil hydraulic modeling

The soil hydraulic parameters were estimated from GPR-derived SWC using the HYDRUS
1D software (Simunek, Van Genuchten, & Sejna, 2013), which solves the one-dimensional
Richards equation (Richards, 1931) for a partially saturated, porous, and ridged medium:

20(h) 0 oh
ot " o2 K(h)(a) +1] =5, (5-3)

where ¢ is time |d], z is the positive upward vertical coordinate |[cm|, and K(h) is the hydraulic
conductivity [cm d-1] as a function of the pressure head h [cm]. The sink term S determines
the quantity of water extracted from the soil through root water uptake. To characterize root
water uptake, we utilized the Feddes model (Feddes, Bresler, & Neuman, 1974) and adapted
the Feddes root water uptake parameters from Wesseling (1991) for wheat vegetation. PO
was set to 0 cm, POy to -1 cm, P2H to -5000 cm, P2L to -9000 c¢cm, and P3 to 16000 cm.
The simulation domain reached a depth of 200 c¢m and includes an uppermost layer, which
is the plow layer that is 30 ¢m thick and rests above the subsoil (Bt horizon). To apply the
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sequential hydrogeophysical inversion approach to the field data, we extended the model
to three layers, introducing a new layer between 100 and 200 ¢cm depth. The model was
discretized using 303 nodes, with the node spacing increasing with depth.

As the upper boundary condition, daily atmospheric conditions with surface runoff
were used. Daily precipitation was distributed throughout the day using the sine function
embedded in HYDRUS-1D. To differentiate potential transpiration Ty from ETj during crop
growth, we utilized Beers-Law:

T = BETy(1 — e FEATY, (5-4)

where k is the radiation extinction factor which typically ranges between 0.5 to 0.75 (here set
to 0.625). Since FAO 56 calculated ETj is only valid for a grass reference the T0 was adjusted
during crop growth using Kc vales as a function of LAI with

T =Ty - K. (5-5)

Thus, the crop coefficient (K.) was set to 1 during the initial growth stages and increased
to a maximum of 2 at maximum leaf area index (LAT) during the flowering stage. Kc then
decreased to 1.2 at harvest during the senescence period. The Kc values for intermediate
periods were linearly interpolated and illustrated in Figure 5-2. The allowable minimum

- N\ A K. =1.2

—~

K.=1
N
3 A/

Initial Crop development Mid-season Late season Harvest

Crop coefficient K.

Winter wheat growing season

Figure 5-2: Crop coefficient K. over the crop growing season of winter wheat. Adjusted after
Pokorny (2019).

pressure head at the soil surface (hCritA) was set at -15,000 ¢m, which results in a transition
of the upper boundary from flux to a fixed pressure head. The water table is situated between

3 to 5 meters below ground, contingent upon seasonal changes (Jadoon et al., 2012).

Therefore, the lower boundary was set to a specified pressure head [cm], as calculated
from soil water potential (SWP) measurements at a depth of 140 ¢cm recorded close to the
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MR facility. To calculate the SWP at a depth of 200 cm (total simulation depth) a constant
offset of 60 cm was added to the values recorded at 140 cm depth.

Two functions were considered for describing the soil water retention and hydraulic
conductivity curve. The first is the unimodal or single porosity Mualem-van-Genuchten
model (Van Genuchten, 1980; Mualem, 1976), referred to hereafter as the unimodal model.
The second is the bimodal or dual-porosity model by Durner (1994), referred to hereafter as
the dual porosity model. In the case of a dual porosity model, the soil water retention curve
is described by:

k
0(h) = 60, + (0 — 0,) > _ w;Se; (5-6)
i=1
and
Se; = [1+ |agh|™]™i, (5-7)

where 6, and 6, are the residual and the saturated water contents [cm® cm™], respectively,
k is the order of porosity in the soil system (here & — 1 for the unimodal and & — 2 for
dual-porosity model), Se is the effective saturation [-|, w; is the weighting factor (> w; =
1). a; [em™], n; [-], and m; [-] are empirical parameters, whereby a; can be related to the
inverse of the air entry values and ni to the width of the pore size distribution, whereas mi is
classically related to n; by m; = 1-1/n;.

The relative soil hydraulic conductivity function K(h) is given by Priesack & Durner
(2006):

k k (1 — Ggpl/miym, r
K(h) = K.Y wsSe} 2iz(l S Se ™) (5-8)
i=1 D iy Witk

where K [em d']is the saturated hydraulic conductivity, A [-] is the tortuosity factor, r is a
shaping factor for the relative hydraulic conductivity function and set to r — 2 according to
(Mualem, 1976). This dual-porosity model’s parametrization assumes two components in the
soil: the soil matrix and macropores; unlike the SP model, which has only the matrix. As in
numerous crop growth investigations, details regarding field capacity (FC), permanent wilting
point (PWP) and plant available water (PAW) are necessary to compute soil characteristics
obtained from the soil water retention and hydraulic conductivity curves. Therefore, FC was
calculated by determining the SWC at a pressure head of pF 1.8 (equivalent to a height of
330 ¢m), while PAW was calculated as the difference in SWC between FC and PWP, defined
at a pressure head of pF 4.2 (equivalent to a height of 15,000 cm) (Novdk, 2018).

5-2-4 Sequential inversion

To estimate the SHP in the MvG models (unimodal and dual-porosity model), the Shuffled-
Complex-Evolution algorithm (SCE-UA) as described by Duan et al. (1993 and 1994) was
used. The SCE-UA is a global search routine that has been effectively utilized in hydrogeo-
physical inversion research conducted by Kuhl et al. (2018), Mboh et al. (2011), Busch et

July 22, 2024



5-3 Results and Discussion 107

al. (2013) and Yu et al. (2021)/ Appendix F. Normalized individual error terms were calcu-
lated for the plow and subsoil layers due to the presence of one rhizotube and four rhizotubes
respectively. The squared sum of the differences between modeled SWC 6,,,44; and observed
SWC 0 were divided by the mean of the modeled SWC 6,,,,4jper layer. Based on this, the
cost function to be minimized can be written as:

N Layer anepthS(e ) 0 N2
i=1 modj — Obsj)
or= 30 &
i=1 aobsj

(5-9)

where CF is the normalized squared mean error, 6,5 and 6,,,q4 are the observed GPR-derived
and HYDRUS-1D modeled SWC, respectively. The inversion was terminated, when the
objective function did not improve more than 0.01% within the last 10 inversion loops.
Except for A, expert knowledge was utilized to choose the feasible space for the parameter
optimization for all parameters. According to the study conducted by Peters et al. (2011), a
physical threshold of HCC = -2 for A always yields robust results.

Various model setups were examined in this study, including two versus three layers
and unimodal versus dual-porosity soil hydraulic characteristics. To determine the most
suitable model for the data, we utilized the Akaike Information Criteria (AIC) (Akaike, 1974):

SSR Msip(2 1
AIC = n(Z22) 4 2ngrp + nsnp(2nsip + 1)

Fy— (5-10)
where N is the number of GPR-derived SWCs, nggp is the number of optimized SHP and
SSR is the sum of squared residuals between measurements and model results. The model
with the lowest AIC values is deemed the best. Equation 5-10 demonstrates that the AIC’s
right-hand side penalizes the number of model parameters used. The AIC is advantageous
over other statistical measures as it can be used even for a small number of observations N.

5-3 Results and Discussion

5-3-1 Field data set for hydraulic modeling

The TERENO weather station (SE_BDK_002) gathers data on on daily reference evapotran-
spiration (ETp) and the precipitation (Figure 5-3a). The precipitation data shows sporadic
rain events, with fewer occurrences during October 2015 and mid-May 2016, and higher
rainfall events in June. Evapotranspiration is at its lowest during winter, increasing in spring
and reaching its maximum during summer.

Based on the data from the root images, it is evident that the depth of root growth
progressively increased until it reached a plateau during the flowering period, as demon-
strated in Figure 5-3b. Due to constraints of the MR facility, root observation was feasible
only until a depth of 1.2 m. Given that wheat is a crop known for its deep-rooting nature
(Thorup-Kristensen et al., 2009), we extrapolated the rooting depth to a depth of 140 cm.
The Leaf Area Index (LAT) exhibits low values during the initial growing stages but shows
a significant increase from mid-March to early May (refer Figure 5-3b). The LAI fluctuates
around a maximum between mid-May and early July, followed by a decrease towards the end
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of the growing season. Both the LA and the rooting depth are considered to be zero after
the harvest date, assuming no root activity after removal of the shoots. As described earlier,
using Equations 5-4 and 5-5, we adjusted the crop transpiration using a crop coefficient. This
crop coefficient was linearly interpolated, according to Figure 5-2. The respective dates for
changing the crop coefficient were determined by the observed LAT pattern (see Figure 5-3c).
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Figure 5-3: Parameters for the hydrogeophysical sequential inversion with (a) daily precipitation
(blue bars) and reference grass evapotranspiration (red line). (b) leaf area index
(LAI) (grey solid line) and the rooting depth (black dashed line) (c) crop coefficient
(black dashed line) and rescaled potential transpiration (grey solid line). d) mean
GPR-derived soil water content (SWC) (colored dashed lines) (e) soil water potential
(SWP) at 140 cm depth (black dots). The vertical solid black line indicates Sowing
date, the vertical dotted black indicates Flowering date and vertical dashed black
line indicates Harvest date. The grey dashed frames indicate the GPR-derived SWC,
which are shown in more detail in Figure 5-5.

To explore the temporal and vertical variations in GPR-derived SWC across both time and
depth, we initially utilize the analysis the arithmetic mean of the SWC values along the rhizo-
tubes (Figure 5-3a). Generally, lowest mean SWCs were detected in the plowed topsoil layer
(0.2 m), with increasingly elevated amounts in deeper zones of the soil profile. Moreover, the
temporal variability decreases with increasing depth as the dynamics stem primarily from the
surface atmospheric conditions imposed, including evapotranspiration and precipitation. Fur-
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thermore, heavy rainfall in June around flowering caused relatively high degree of saturation
at 0.4 m depth. When comparing the mean GPR-derived SWC values (Figure 5-3d) with the
precipitation and the evapotranspiration data (Figure 5-3a), a distinct correlation between
SWC and the rainfall and drought events becomes evident. It should be noted that the dif-
ferences in SWC between drier and wetter periods are not significant since the fine grained
soil at the MR which allows it to hold water for extended periods, even during prolonged dry
spells in the summer. The soil profile’s lower boundary can be studied by analyzing SWP
values taken at a depth of 140 cm near the MR facility (see Figure 5-3d). Generally, seasonal
fluctuations occur with noticeable SWP increases during the winter months (October - Febru-
ary) and detectable increases towards the summer months (March - August), which reflect
groundwater depletion and recharge throughout the year.

5-3-2 One-dimensional inversion results

As a first step, the mean GPR-derived SWC along the rhizotubes at each measurement depth
were used in an inversion. In order to find a hydrological model that best represents the
water flux dynamics at the MR facility, four different model setups were tested. Namely, a
two-layer and a three-layered model with either single- or dual porosity soil characteristics.
The convergence of the cost function for the individual parameters, we refer to Appendix
B-1, Figure B-1.1 . Figure 5-4 compares the modeled SWCs of the four optimized models
mentioned, whereby the largest differences in predicted SWC between the individual models
can be found in the plow layer and the lowest depth of 1.2 m. As the best model cannot be
distinguished visually, the AIC was computed, and the models were ranked accordingly. The
two-layer single porosity model had the lowest AIC value of 1918 (Table 5-2), indicating that
it is the best model in terms of representing the measured SWC and fitted parameters. The
second-best model was the two-layer dual porosity model, closely followed by the three-layer
single porosity model with AIC values of 3115 and 3129, respectively. Here, the AICs were
relatively similar for both model setups because the total number of optimized parameters
was the same and the SWCs were equally well matched. The largest AIC was calculated for
the three-layer dual-porosity model (AIC = 4910), which was primarily due to the model’s
requirement to fit a larger number of parameters.

When additionally considering the root mean square error (RMSE) we were able to
evaluate if the two- or the three-layered model would be detailed enough to represent the
measured data. We noticed that the RMSE generally indicated that the additional layer did
not result in a significantly better fit between the modeled and the GPR derived SWC (see
Table 5-2). Therefore, we identified the two-layered model to be best suited to represent our
system. Comparing the RMSE between the single- and dual-porosity model, we noticed for
the two-layered models the same RMSE for both the single- and dual porosity model (RMSE
= 0.033). For the three-layered model the RMSE is slightly smaller for the dual-porosity
model (RMSE = 0.032). As mentioned, the two-layered unimodal model yielded lowest
AIC and was therefore the best model to describe the GPR-derived SWC followed by the
two-layer dual-porosity model. Looking at the weighting factor w2 of the dual porosity
model fitted to the data, one can see that for the plow layer w2 is 0.85, indicating a certain
degree of bimodality, whereas for the subsoil layer the weighting factor yielded 1 indicating
no bimodality.
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Optimized HYDRUS-1D model with Field GPR data
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Figure 5-4: Results for the inversion of the horizontally averaged GPR-derived SWCs. The up-
permost plots show the atmospheric conditions followed by the different SWC mea-
surement depths. The solid lines indicate the modeled SWC for the different model
setups. The red circles indicate the GPR-derived mean SWCs
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Table 5-2: Results for the inversion of the horizontally averaged GPR-derived SWCs, with bound-
aries set in the SCE-UA optimization and the optimized SHP values for the different
models. For the selection of the best model, the R? and AIC were calculated for each
soil layer individually and over all depths.

SHP
Lower houndary Upper boundary Two-layered model Three-layered maodel
unimodal dual-porosity unimodal dual-porosity

0, [em® em™) 0 0.01 0.002 0.009 0.004 0.01
0, [em3 em3] 0.25 0.45 0.25 0.275 0.25 0.276
@ [1em] 0.009 0.1 0.0795 0.0998 0.0546 0.099
n [ 11 3.0 1.118 2.789 1.129 1.998
K [emd’] 10 200 199.75 10.31 139.8 12.38
Plow layer A [] -2 10 4.59 -1.28 6.39 -1.15
w2 |-l 0.85 1 - 0.864 - 0.851
a2 |1 em™] 0.001 0.01 - 0.0088 - 0.0091
n2 [l 1.1 1.6 - 1.445 - 1.382
RMSE 0.0034 0.0268 0.04 0.0268

AIC 142 253 0.3927 253

0, [em® cm 9 0 0.01 0.009 0.006 0.013 0.005
O, [em® em™) 0.3 0.45 0.387 0.379 1.261 0.366
a [1 em] 0.008 0.1 0.0086 0.0299 107.88 0.0423
n [-] 11 3.0 1.358 2.091 0.1723 2.048
K, Jem d 0.8 200 159.52 192.51 133.04
Subsoil layerl X [-] -2 10 -0.6 -0.06 -1.88
w2 [ 0.85 1 - 1 - 0.957
a2 |1 em 0.001 0.01 - 0.0061 - 0.0047
n2 - 1.1 1.6 - 1.501 - 1.495
RMSE 0.019 0.019 0.019 0.014

AIC 722 722 243 457

0, [em® em™) 0 0.01 - - 0.005 0.004
0, [cm® cm ¥ 0.3 0.45 - - 0.4 0.367
a [1em] 0.08 0.1 - - 0.01 0.0552
n - 1.1 3.0 - - 1.166 1.964
K, [emd!] 0.8 200 - - 86.1778 156.67
Subsoil layer2 A [-] -2a 10 - - 1.74 0.61
w2 - 0.85 1 - - - 0.999
a2 [lem'] 0.001 0.01 - - - 0.0015
n2 [ 1.1 1.6 - - - 1.372
RMSE - - 0.023 0.017

AIC - - 127 236

Number of optimized parameters 12 18 18 27
RMSE 0.033 0.033 0.035 0.032

Overall AIC 1918 3115 3129 4910

Overall, Figure 5-4 shows that none of the utilized models perfectly represent the GPR-derived
SWC. A pattern of SWC underestimation during spring (March to April) and overestimation
at later times is evident. Furthermore, all models exhibit less temporal SWC variability
compared to the GPR-derived SWC, although they effectively capture high rainfall events at
all measurement depths.

Sharp gradients in SWCs can result in incorrect estimations of GPR-derived SWC
when the first arrival time (first break) is used (Yu et al., 2021 /Appendix F). To determine if
this occurs under natural field climatic conditions, a synthetic modeling study was conducted
using the three-dimensional finite difference time domain software gprMax (Warren et al.,
2016) (refer to Appendix B-1 for detailed results). For the simulation, we utilized the
projected soil water content profiles for the two-layered unimodal model (refer to Table 5-2
and Figure 5-2). From these profiles, we computed the distribution of relative dielectric
permittivity throughout the entire depth of the soil profile for the 20 days in which GPR data
were collected in the field. We subsequently used these relative dielectric permittivity profiles
as input in gprMax. Finally, synthetic radargrams were simulated and analyzed following
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the same procedure (first arrival) as the real measurements (refer to Appendix B-2, Figure
B-2.1a). This exercise demonstrates that the first arrival time analysis accurately estimated
the simulated soil water contents (SWCs). Additionally, infiltration water after rainfall events
did not create significant gradients in soil water content that could impact SWC estimation
from the radargrams (refer to B-2, Figure B-2.1).

The second issue to be discussed is the adequacy of the number of GPR-derived SWC
measurements needed to accurately estimate the SHP. As indicated earlier, our field exper-
iments yielded only 20 measurements over a period of 6 months. As such, it is uncertain
whether this insufficient number of data points contains sufficient information to constrain
the inversion. To investigate further, we utilized a synthetic model that was configured in
the manner specified in the previous section and grounded on the approximated parameters
for the dual-layer unimodal model discussed prior (refer to Appendix B-3). We created three
sets of synthetic GPR-derived SWC measurements, i) for the 20 available field experiment
measurement days, both with and without ii) white noise, and iii) daily measurements over
a period of 6 months without noise. Based on all three scenarios, successful retrieval of
the SHP was achieved. Therefore, it can be concluded that the 20 available measurements
provide sufficient information to constrain the hydrogeophysical sequential inversion. For
more details, please refer to Appendix B-3, Table B-3.1.

5-3-3 Upscaling to a pseudo-3D sequential inversion

To investigate the horizontal variability of the SHP along the rhizotubes, the GPR-derived
SWCs for each measurement day can be visualized and examined over time for all 61
measurement points. Figure 5-5 displays the horizontal depth planes of three different
measurement dates (April 28th, June 20th, and August 1st). Typically, the lowest SWCs
were detected in the plow layer (0.2 m), while the deeper soil profile showed systematically
higher values. Temporal variability decreases with increasing depth due to atmospheric
conditions at the surface. Patches of GPR-derived SWC variability demonstrate that soil
conditions are heterogeneous, affecting variability in the SHP. To explore the spatially dis-
tributed SHP, 61 individual inversions were performed at each location along the rhizotubes
at each measurement depth. Based on the previous inversion of mean GPR-derived SWC, a
two-layer setup, consisting of a plow (topsoil) and a subsoil layer, provides sufficient detail for
parameter estimation. Since bimodality may exist within the soil hydraulic characteristics,
excluding it a priori during inversion is not advised. Additionally, the dual-porosity function
allows for flexibility in yielding an unimodal characteristic if the weighting factor is close to
or equals 1 (refer to Equation. 5-10). Therefore, the dual-porosity soil hydraulic model was
chosen for the inversion. After inverting the SHPs to all GPR-derived SWCs for all individual
locations within the rhizotubes located in the plow and subsoil layers, the soil water retention
and hydraulic conductivity curves were plotted in Figure 5-6. As depicted in the figure, we
observed a noticeable dual-porosity pattern in the wet range for the plow layer in Figure 5-6a
and ¢, while the soil characteristics for the subsoil layer displayed a more unimodal pattern
(Figure 5-6b and d). The dual-porous nature of the plow layer and the unimodal nature of
the subsurface layer were also observed in the 1D inversion.
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Figure 5-6: Soil water retention (a &b) and relative hydraulic conductivity function (¢ & d) for
the plow and subsoil layer respectively. The different colors represent the results
along the rhizotubes. The black dashed line and the black solid line indicate the
results of the 1D field study and the mean of the upscaling results, respectivelfl.myfﬁge’ 2024
vertical lines in the soil water retention functions represent the pressure head and
the corresponding soil water content values at field capacity (FC) and permanent
wilting point (PWP).



114 Spatial variability of hydraulic parameters of a cropped soil

To examine the dual-porosity behavior of both layers in more detail, a histogram of the
weighting factor w2 is plotted in Figure 5-7. For the plow layer, there is almost no spread in
the weighting factor w2, with 59 of the models having a w2 between 0.85 and 0.86, and only
two between 0.86 and 0.87. Hence, the plow layer shows a bimodality of 15%. In contrast,
for the subsoil layer, w2 is much more variable, ranging from 0.88 to 1, and is highly skewed
toward 1, indicating low bimodality to near unimodality. The estimated SHP for the 61
locations along the rhizotubes are shown in Figure 5-8, where the plots include not only
the estimated parameter for each individual GPR location, but also the mean parameter
calculated from the individually optimized parameters along the rhizotubes (here denoted as
Mean upscaling results, see Figure 5-8), as well as the results of the inversion based on the
mean SWCs along the rhizotubes.

For the plow layer, there is a deterministic trend is present for the soil matrix param-
eters a2 and n2 (see Figure 5-8a). For a2 between 3 and 4.0 m, the values are generally
below the mean of the inversion results based on the mean SWC. In contrast, between
4 and 6 m the values are above this mean. This trend is reversed for n2, suggesting
a negative correlation between matrix a and n as already found by Zhang et al. (2022)
for laboratory derived data. A similar trend can be seen for the subsurface layer in Figure 5-8b.

To investigate this further, Figure 5-9 shows the negative correlation between «2 and
n2 for both soil layers. The R? gives values of 0.4 and 0.53 for the plow and subsoil layer,
respectively. When analyzing Ky and A within the plow layer, we can notice similar patterns
along the locations of the rhizotubes, where high values for both parameters above the mean
of the upscaling results, between 3.0 and 3.7 m are present, which then decrease below the
mean towards 5.1 m. Between 5.1 and 6.0 m a slight increase is present towards values around
the mean. This similar trend of K and A suggests a correlation between those parameters
(see Appendix B-4, Figure B-4.1). For all other parameters estimated in for the plow layer
(0, 0., a1, and nl) no clear trend is visible.

In contrast to the plow layer a clear trend along the rhizotube location for the esti-
mated 6 can be found in the subsoil layer (Figure 5-9b), where the values between 3 and
4.4 m (roughly at the center of the rhizotube) are higher than 0.37 cm® cm™ and decrease
steadily towards the end of the rhizotube. The remaining parameters (0,, Ks, A, a1, and nl)
do not follow a clear trend, and only for w2, «, and n2 high variability in the first half of the
rhizotube is noticeable, which is smaller for the second half along the tube. Finally, there is
no correlation between Ky and A compared what was present in the plow layer.
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Figure 5-7: Histogram of the weighting factor w2 for (a) the plow layer and (b) the subsoil layer
for all 61 GPR locations.

In a final step, we compared the effective (mean) SHPs for the MR facility. On the one hand,
a set of SHPs was estimated based on the mean SWC derived from the spatially resolved
GPR measurements and on the other hand, the SHPs were estimated from resembled mean
retention and conductivity pairs of the individual curves and depicted in Figure 5-3a and b.
For Kg and X the parameters were averaged directly over the length of the rhizotubes. The
offset and the direction of the offset between the different mean values is quite variable. In
some cases the values are very similar, e.g., 05, n2 within the plow layer. Whereas within
the subsoil layer, the values between the different mean SHP are quite large Additionally, no
clear trend is present, where the upscaling mean or results from the one-dimensional study is
consistently larger than the other.

Information on FC, PWP, and PAW is often required in crop growth studies (Kerse-
baum et al., 2015). The variability of these parameters can significantly affect plant
performance under conditions such as water stress or nutrient deficiency and, consequently,
crop productivity, including yield (Van Keulen et al., 1987; Aggarwal, 1995 The SWC at FC,
PWP, and PAW was individually calculated for each GPR-derived SWC location along the
rhizotubes, as shown in Figure 5-10. Furthermore, we incorporated the SWC at FC, PWP,
and PAW obtained through the inversion of the average SWC and upscaled approach mean.
The SWC levels at PWP (Figure 5-10b) and PAW (Figure 5-10c) indicate a symmetrical
distribution in the topsoil layer, while FC (Figure 5-10a) also shows a symmetrical distribution
in the subsoil layer. However, the remaining parameters are skewed towards the lower SWC
range. Furthermore, the soil characteristics of individual layers can be compared. The SWC
at FC is lower for the plow layer and exhibits slightly more variability in the subsoil layer.
Conversely, the SWC at PWP is higher and more variable for the plow layer. Three outliers
are observed for the subsoil layer, which are very different from the other values, while there
is only one outlier at the lower end of the range for the plow layer. The SWC at PAW
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Figure 5-8: a) and b) show the upscaling results for the plow layer and the subsoil layer, respec-
tively. The individual subplots indicate the results along the rhizotube for the soil
hydraulic parameters. The black solid lines show the individual optimization results,
the red dashed line indicates the mean of the upscaling results, and the green solid
line indicates the results of the inversion based on mean SWCs along the rhizotubes.
Note, for some SHP the mean values were out of range to show values along the
rhizotubes, hence only the corresponding values is indicated.

in the plow layer is lower compared to that of the subsoil layer. Furthermore, there is a
higher variability in the subsoil layer, as indicated by a wider range between the 25% an
75% percentiles. When comparing the boxplot median to the results of the inversion method
using mean SWC, it is evident that the inversion of the mean SWC produces a result outside
the quartiles for the SWC at FC and PWP of the subsoil layer. For the SWC at PWP, the
value is near the upper whisker, indicating considerable variability beyond the upper quartile.
Meanwhile, for SWC at FC and PWP in the plow layer, the results of the one-dimensional
inversion are positioned close to the lower quartile.

For the SWC at PAW, the results based on the inversion of the mean SWC are close to the
median of the upscaling results for the plow and subsoil layers, respectively. Moreover, we
can evaluate the convergence of the results obtained by inverting the mean SWC values and
the soil characteristics data from upscaling (refer to Figure 5-6a and b). The results for the
SWC at FC show the mean SWC and the upscaling results are similar, but they differ for the
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Figure 5-9: Correlation between « and n2, for a) plow layer and b) the subsoil layer based on
the inversion along the 61 locations within each rhizotube.

plow and subsoil layers. Additionally, there is a considerable difference in the mean results
exists for SWC at PWP, with the same direction as for SWC at FC. Mean results for SWC at
PAW are once again similar. With the approach to derive the SHP from crosshole GPR-ZOP
data over a soil volume of approximately 4 m® demonstrates our ability to provide a single
SHP parameter set for the entire soil volume. We can also produce a semi-3D distribution of
the SHP that can be used for soil modeling at different scales, at a single plant scale such as
soil-plant interaction models, or at large scales such as effective crop models.
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Figure 5-10: Boxplot for the upscaling results for the soil water content at field capacity (a),
permanent wilting point (b) and plant available water (c). The green solid line
indicates the values based on the inversion of the mean SWC along the rhizotubes
and the dark red dashed line indicates the mean upscaling result. The red solid
line shows the median from the upscaling results, the blue box the 25% and 75%
percentile, the black whiskers the most extreme data points not considered as
outliers, and stars the outliers.
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5-4 Summary and Conclusions

In this presented study, the soil hydraulic parameters (SHP) were calculated using the uni-
and bimodal Mualem-van-Genuchten model (MvG). The method relied on time-lapse 200-
MHz horizontal zero-offset-profiling (ZOP) crosshole GPR derived data, which determined
the soil water content (SWC) over the course of a winter wheat crop growing season.

We have shown that our sequential hydrogeophysical inversion approach can accurately
determine the soil hydraulic parameters for a one-dimensional averaged scenario, where
we used the averaged GPR-derived SWC along the rhizotubes. The findings indicate that
these measurements provide sufficient details to calculate the SHP for the plow (topsoil)
and subsoil layer, with the added capability of also estimating the parameters of bimodal
MvG. Regardless of the good fit of the GPR-derived SWCs by the optimized model, some
discrepancies were identifiable, where the modeled SWCs showed less variability than the
measured ones. To ensure that this discrepancy is not caused by the method how SWCs were
derived from GPR data (i.e., first arrival time), we performed synthetic modeling. Therefore,
the calibrated model was utilized in conjunction with gprMax, a three-dimensional finite
difference time domain software (Warren et al., 2016). Simulated EM waves were analyzed in
the same manner as those measured in the field. The findings indicate that the method of
picking the first arrival times is appropriated under natural atmospheric conditions, as sharp
SWC gradients did not affect the analysis, as suggested earlier by Yu et al. (2021)/Appendix F.

In the next step, a pseudo-3D sequential inversion of the SHP was performed, using
the individual GPR derived SWCs from the different locations along the rhizotubes (N
= 61 per rhizotube). The results show that the calculated SHP vary across the locations
of the rhizotubes. The pseudo 3D SHP differ from the SHPs estimated using the mean
GPR-derived SWC along the rhizotubes, as well as from the calculated mean of the upscaled
SHPs. The latter was obtained by fitting the soil hydraulic properties to the average
soil water retention function. Moreover, some SHPs showed correlation, for instance, a
negative correlation was observed between matrix a2 and n2 as previously demonstrated
for lab data by Zhang et al. (2022), and between K and A but here only for the plow
layer. From the soil water retention functions for the different methods used to estimate
the SHP (inversion of the mean GPR-derived SWCs, inversion of SWC along individual
locations along the rhizotubes or averaging of the latter) further soil water character-
istics were estimated, including field capacity, permanent wilting point, and the plant
available water. The results showed that the different techniques for calculating the SHPs
also yield different SWCs at field capacity, permanent wilting point, and plant available water.

Based on this research, it can be concluded that the two upscaling methods (inversion
on mean GPR-derived SWC and mean dual-porosity SHPs from individual soil hydraulic
characteristics along the rhizotubes) produces different SHPs. A next step would be to analyze
how these variations in SHP would affect crop growth, for example, by using a dynamic crop
growth model. Another consideration would be how these small-scale heterogeneities would
impact biogeochemical processes like greenhouse gas (GHG) emissions using an appropriate
biogeochemical model.

July 22, 2024



Chapter 6

Conclusions and Outlook

Conclusions

In this doctoral project approaches to promote the application of GPR as a non-invasive tool
to investigate the processes within the soil-plant continuum to advance sustainable agriculture
were explored. By using a multi crop growing season data set, novel statistical data analysis
methods were developed, using time-lapse crosshole GPR measurement and utilizing root
images to provide a link, correlation and validation between root presence and permittivity
distribution.Consequently, missing links between the dielectrical properties of roots and the
GPR signal were identified and further explored using a numerical modeling. To provide input
at plot to catchment scale for modeling across different scales, horizontally distributed soil
hydraulic parameters and soil characteristics for a cropped field were estimated by combining
GPR-derived SWCs and hydraulic modeling, with the application of a hydrogeophysical
inversion approach.

The first part (Chapter 2) described the acquisition and analysis of a comprehensive
data set acquired at two minirhizotron facilities, including time-lapse crosshole GPR data,
root images, soil sensors data (soil water potential, SWC and soil temperature), and additional
root corings. These data were collected over five crop growing seasons for winter wheat and
maize and served as a data basis for the remaining chapters. Especially the deep learning
based automated minirhizotron image analysis pipeline developed by Bauer et al. (2022) (see
Appendix E) made the analysis of the enormous minirhizotron image set feasible. In two
parts the pipeline is combining state-of-the-art software tools, where first a segmentation
by a pre-trained model is taken place using "RootPainter” (Smith et al., 2022), which is
followed by an automated feature extraction using "RhizoVision Explorer” (Seethepalli et al.,
2021). The publicly availability and standardized description of this data set will enhance
the use across scientific fields and applications. It provides possibilities for the development,
parameterization, calibration, and validation of models across scales, train and benchmark
neural networks and provide ground truthing data for other field inventions.
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The second part (Chapter 3) was complementing findings in Klotzsche et al. (2019)
(see Appendix D), where time-lapse horizontal crosshole GPR data collected over multiple
crop growing seasons was used to investigate the link between SWC, atmospheric conditions,
soil and crop types. Individual maize crop rows showed an effect on the SWC distribution,
with increased SWC below the rows in dry soil conditions. This effect could not be recorded
for winter wheat. The roots were not considered for the calculation of the SWC, and no
validation of the signals was performed. In Chapter 3 time-lapse in-situ crosshole GPR
permittivity and root volume fraction derived from root images were collected before and
during three maize crop growing seasons for the two minirhizotron facilities with varying
soil types. Identifying soil type, agronomic management and the progress during crop
growing season as influencing factors for the vertical distribution of roots, and the vertical
and horizontal permittivity variability. To further explore the horizontal permittivity
variability the so-called trend-corrected spatial permittivity deviation of vegetated field
were derived, with the goal to remove impacting factors (soil heterogeneities, rhizotube
deviations and seasonal SWC changes). A clear trend, which increased over time could
be identified and be linked to the vertical root volume fractions over time. To validate
this link a cross-correlation between the standard deviation of the trend-corrected spatial
permittivity deviation of vegetated field and the vertical root volume fraction distribution
was performed. Resulting in positive correlation, with coefficients of determination ranging
between 0.02 < R? < 0.9. Even though the link could be validated, questions about the
patterns in the horizontal permittivity variability remain. A horizontal validation is still
missing, therefore infiltration or soil water depletion processes caused by roots can not be
conclusively identified or be separated from the presence of roots. Additionally, using the
image-derived root volume fraction bares uncertainty caused by the difference in sensing
volume and the use of depth of investigation, which remains un-validated. Especially,
missing is spatially distributed root information and knowledge on how the roots influence
the bulk dielectric permittivity and therefore the GPR signal. Nevertheless, this chapter
showed the ability to image horizontal spatio-temporal variability in crosshole GPR-derived
permittivities using a novel statistical analysis. Which is the first step towards fully visual-
izing processes in the soil-plant continuum, like soil water depletion patterns, root growth
and influences of agricultural practices. The link and correlation between the permittivity
variations and the vertical root volume fractions enables a first basic quantification of the
impact of row crops on the horizontal spatio-temporal permittivity variations, hence the SWC.

The following Chapter 4 explored the influences of different soil components on the
GPR signal. Therefore, we investigated synthetic EM waves using the open-source electro-
magnetic simulation software gprMax. The minirhizotron facilities, described in Chapter 2
served as a template for the model domain, trench wall root counts for maize crops were
transformed to a permittivity distribution, using a petrophysical-mixing model for a four-
phase soil system (soil, water, air and roots). Using a conventional three-phase soil system
petrophysical relationship, the actual SWC for a cropped soil is overestimated. Using different
scenarios with varying compositions of soil, roots and above-ground shoots, showed an impact
of the air-subsoil interface causes critical refracted air waves and reflections on the uppermost
depths, which aggravates the estimation of the permittivity. Further, higher permittivity
related to the presence of the root phase, is impacting the first arrival and amplitude of the
EM wave. To exclude the above-ground shoots as an impacting factors for the patterns, below
crop rows, scenarios including a single and multiple above-ground shoots, were considered.

July 22, 2024



121

Consequently, shoots are not worth considering in modeling approaches and that infiltration
and soil water depletion processes cause patterns below crop rows. Further studies should
consider a spatial-temporal distribution of the permittivity caused by infiltration processes
and incorporate root-soil interaction models to investigate the impact of root water uptake
processes on the GPR signal. This numerical study improved the understanding of crosshole
GPR signals in relation to crops and crop roots. Which was the first step towards fully
understanding the impacting factors on the EM wave and using this knowledge to interpret
data in other GPR applications. Additionally, it was determined that the consideration of a
root phase in the calculation of the soil water content in appropriate petrophysical mixing
models is crucial to derive the soil water actually present in the soil under the presence of roots.

The spatio-temporal distribution in SWC is mainly controlled by the soil hydraulic pa-
rameters. Therefore, crosshole GPR can be used to derive the soil hydraulic parameters
non-invasively by applying sequential hydrogeophysical inversion approaches. This was per-
formed in Chapter 5, for one minirhizotron facility cropped with winter wheat by combining
GPR-derived SWC data with a hydrological model (HYDRUS-1D). First, a one-dimensional
averaged case was investigated while considering different configurations. Further, the
best model configuration was used for the upscaled estimation of the pseudo 3D-spatial
distribution of soil hydraulic parameters of the dual-porosity Mualem-van-Genuchten model.
For parameter distribution correlations were found between a2 and n2 in both soil layers
and for A and K for the plow layer. Furthermore, the soil hydraulic parameters were used
to calculate the soil characteristics, such as field capacity, permanent wilting point and plant
available water, which could benefit to investigate the impact of small scale heterogeneities on
dynamic crop growth models. This chapter highlighted the potential of using crosshole GPR
for the quantitative and spatially distributed estimation of information on soil state variables
for the soil-plant continuum of agricultural crops, such as soil hydraulic parameters and soil
characteristics. This showed the potential to use surface GPR applications to estimate maps
soil hydraulic properties, which is a major advantage to point-scale soil sensor estimation or
direct sampling.

The compilation of the different parts of this doctoral project, has shown how a com-
prehensive insight into horizontal crosshole GPR data and how it can be used, analyzed and
validated to investigate the spatio-temporal distribution of the GPR-derived information such
as permittivity, SWC, soil hydraulic parameters and soil characteristics for agricultural fields
at plot scale. Some challenges still remain, however, novel approaches were demonstrated to
establish GPR as a standard investigation tool to non-invasively monitor and characterize
the soil-plant continuum for field practices related to sustainable agriculture.
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Outlook

Building on the mentioned observations, conclusions and explored limitations, the following
section should provide suggestions for further research. Based on this, suggestions can be
made to promote GPR as an adequate tool for sustainable agriculture with close attention to
field applications.

Advancing GPR field applications

For shallow soil depths interference caused by the air-subsurface interface occurred, in the
experimental field (Chapter 2) and synthetic data (Chapter 4), which caused the standard
first arrival time picking to be erroneous. One approach to solve this issue, as suggested
in Appendix D, is to apply more sophisticated analysis approaches such as full-waveform
inversion Klotzsche et al. (2016, 019b). On the other hand, there are field measurement
configuration, which provide a solution. Yu et al. (2020) have used surface and borehole GPR,
in combination during an infiltration experiment at one MR facility, where the SWC derived
for the depths 0.1 m and 0.2 m returned more reliable information. Another advantage of
this combined application was possibility to use higher frequencies (500 MHz), than the
ones available for crosshole applications, where only 200 MHz antennae were commercially
available at the time. Higher frequencies are able to detect small scale heterogeneities,
further applying this approach to a cropped field would be beneficial. This would enable to
investigate the shallow processes within the soil-plant continuum, which were left undetected
in this project. Patterns below the crop rows, as observed in dry soil conditions below
maize crops (Chapter 3 and Appendix D), infiltration (caused by stem flow and preferential
flow paths) or soil water depletion processes could be imaged. The application of higher
frequencies is not only valid for the use in crosshole-to-surface applications. As shown in
Chapter 4 this would also benefit crosshole and surface applications, since contributions to
the GPR signal could be disentangled at millimeter to centimeter scale. These contributions
range from small scale soil heterogeneities to single roots, with certain diameters, such as
maize crown roots.

The described data acquisition and analysis relies on the installment of a minirhizotron facility
or at least rhizotubes in the subsurface, which is very cost- and labor-intensive. Here, the
application of surface GPR techniques as described in Chapter 1 would be beneficial, which
are more time-, cost and labor efficient and do not require any pre-installments. Further, data
acquisition is particularly suitable to map large fields in a short amount of time. Especially if
mounted on, or pulled by agricultural equipment, e.g., tractors. First approaches to overcome
obstacles which remained so far for most surface GPR applications as a tool for sustainable
agriculture, is the absence of velocity information (crucial for the permittivity estimation).
Here novel simultaneous multi-offset multichannel GPR system (Kaufmann et al., 2020) are
promising to be used for the fast mapping of field scale permittivity distribution and the
parameters. With the development of artificial intelligence and deep learning algorithms the
obstacles of the data analysis for surface GPR to directly derive the SWC could be resolved
in the future.
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a) Common offset profile parallel to maize rop rows
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Figure 6-1: First field trials using surface GPR at Campus Klein-Altendorf. Common offset profile
parallel to crop rows for a) maize and b) sugar beets. Schematic illustration of a plot
within the minirhizotron facility and the zero-offset profiling GPR measurement and
root imaging setup. c) Excavated maize crown root systems and sugar beet tubers.
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As mentioned by Binley et al. (2015), Garré et al. (2021) the different hydrogeophysical and
agrogeophysical techniques are sensitive to different key soil state variables and the direct link
to soil-plant continuum processes remains a challenge and additionally requires the application
of site specific transfer functions for a quantitative interpretation. Therefore, GPR could be
coupled with other measurement techniques or additional geophysical tools, such as EMI, and
ERT. Very promising are the results of imaging the root activity in the laboratory (Weigand
and Kemna, 2017, 2018) and field (Michels and Kemna, 2022, Weigand et al., 2022), which
could be coupled with time-lapse GPR applications. But also measurements from different
scales of investigation such as drones and point-scale soil sensors could be beneficial. However,
novel inversion approaches, such as joint inversion (Doetsch et al., 2010, Kowalsky et al., 2005,
Moghadas et al., 2010) or machine learning approaches (Moghadas and Badorreck, 2019) will
be necessary.

First field trials have been performed using surface GPR applications in combination with
EMI and sEIT measurements for a field cropped sugar beets and maize (Figure 6-1a and b).
For the surface GPR different antennae frequencies (200, 500 and 1000 MHz) and antennae
configuration (COP parallel, adapted surface ZOP with crop row between transmitting
and receiving antenna , multichannel measurements and adapted surface MOG) were used.
Subsequent to the measurements, the maize crown root systems and sugar beet tubers were
excavated and analyzed for validation, see Figure 6-1c. In future, time-lapse surface GPR
measurements could be carried out and the data analysis methods, suggested validation
procedures and parameter estimation approaches as described in Chapter 3 to 5 could be
applied. Note that, for cropped field measurements the size of the antennae arrays and the
crop type need to be considered. While for crops like maize and sugar beet, with a larger crop
row spacing, 500 and 1000 MHz antennae could be used, for wheat field such an application
can not be considered.

GPR are measurements in the field, especially crosshole measurements, with the com-
mercially available systems, are quite labor-intensive. Here the automatization using, e.g.,
robots would benefit the data acquisition. Surface antennae or special designed antennae
systems could be mounted onto robots arms and be inserted into the ground, like cone
penetration tests, without needing a prior installment of rhizotubes or boreholes. Further
surface GPR antennae could be mounted onto robots be pulled by them. One major obstacle
in this application could be that robots contain quite a large amount of metal, which
because of the ferromagnetic properties interferes with the EM wave. Which also needs
to be considered if GPR equipment is mounted onto or pulled by other agricultural equipment.

For a better understanding of the soil heterogeneities, which could be used to improve
the trend-corrected spatial permittivity deviation of vegetated fields, a comprehensive inves-
tigation of the bare-field soil conditions could be recorded prior to measurements for cropped
fields. Here repeated bare-field measurements as described in Chapter 3 could be performed
over a longer period without crops present on the field, where different soil conditions are
recorded. Especially, very dry conditions are of interest to estimate the structure without
SWC distribution patterns, hence the recorded permittivity would only impacted by the
soil structure. When different soil water conditions are recorded, information on preferential
flow paths, infiltration and drying patterns and how variable the soil conditions are, could
be acquired. This could simplify the interpretation of the patterns recorded, while crops
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where in place and link these patterns to processes like soil water depletion caused by root
presence. This approach is universal for the different GPR applications and can be performed
for crosshole, crosshole to surface and surface configurations or even be performed by the
mentioned robot applications. Additionally, when using non-to minimal-invasive techniques
such as GPR and root images acquired within minirhizotron and in the field, appropriate
validation approaches remains a challenge.

Advancing validation approaches

A three-dimensional validation for the root images and GPR could be carried out using, e.g.,
lysimeters with installed rhizotubes, as mentioned by Garré et al. (2011). Here crops such as
maize could be sown and investigated throughout the crop growing season. Prior bare-field
measurements to better understand the patterns caused by soil heterogeneity should be
performed. Additional infiltration experiments and measurements under dry conditions and
at field capacity to identify flow paths and drying patterns would be beneficial. This could
help to differentiate patterns caused by the soil heterogeneity and by irrigation and soil water
depletion patterns caused by roots. Additionally, within the lysimeter installed rhizotubes
could be used to investigate the root growth throughout the entire crop growing season.
Within these rhizotubes crosshole GPR measurements could be performed. Additional
surface and crosshole-to-surface applications are possible. As recent developments have
shown, GPR system could also be directly be mounted onto the lysimeter (Steinbeck et al.,
2022). After the crop growing season, the entire root system could be excavated and analyzed
and a correlation between the actual root presence in the soil and the root images could be
derived. Additional research questions could be investigated using this controlled experiment,
when additionally measuring above-ground parameter such as leaf gas exchange, leaf water
potential and crop growth parameter (e.g., Nguyen et al. (2022a)) to estimate the behavior of
the plant and root waters under stressed conditions Lobet et al. (2014) are performed. The
downside of using a lysimeters is the scale, the amount of planting space is limited and the
investigation of the plant behavior within the crop row is not feasible.

For a better validation of the variability in the permittivity information spatially root
image data sets with a high spatial resolution are necessary, while the vertical root in-
formation was feasible to provide a first estimate on how the variability correlated with
the presence of roots, the information is not yet sufficient enough to explain all recorded
permittivity patterns. Therefore, especially in the horizontal direction but also in the vertical
direction a higher resolution images are necessary, such that small scale variabilities can
be detected. The use of the root images for validation is still facing a major obstacle: the
sensing volume. The root information is derived from a two-dimensional image and upscaled
using a respective soil volume, which is derived from the diameter of the rhizotubes, until
this day there is no standardized way on how this upscaling should be performed as well no
appropriate validation is available. When comparing the GPR information, which is acquired
for a three-dimensional space between the rhizotubes and the root images, which capture
the soil in contact with the rhizotube, the validation inherits a bias. To explore the impact
of this bias and scale difference modeling approaches could be of help, where root system
architecture models are used to simulate field sampling (Morandage et al., 2019). Therefore,
modeling approaches could be used to solve different kinds of challenges.
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Advancing analysis and field sampling through modeling

With Chapter 4 some questions which resulted from investigating the permittivity variability
in chapter 3 have been approached, but still challenges remain, where the combination of elec-
tromagnetic modeling, and root system architecture and root-soil-interaction models could be
beneficial. Since the sensing volume is dependent on the GPR antennae frequency and the
bulk permittivity of the soil (see Chapter 3), combined models could derive the sensing volume
for the permittivity present in the soil and calculate from the incorporated root system archi-
tecture model the roots present in the soil volume sensed by the GPR. When this is performed
for different SWC conditions and root distributions and compared to virtual field sampling
(Morandage et al., 2019), factors for the validation using root images and GPR data acquired
in the field could be developed, which are valid for different crop and soil types. Using this
information, the root field sampling techniques could be optimized and manual labor as well
as data analysis efforts be kept to a minimum. Furthermore, the combination of these models
could be beneficial to model small scale heterogeneities in SWC and root distribution and ad-
ditionally investigate the influence in the GPR signal. Since we have seen in Chapter 4, that
the root phase, soil-air interface and above-ground shoot mainly influences later events in the
EM wave, novel analysis approaches such as full-waveform inversion (Klotzsche et al., 2019)
are required. These combined models could be used to synthetically estimate which GPR
measurements configurations best to detected the soil-plant continuum components. Hereby,
a digital twin of e.g., minirhizotron facilities, lysimeters or an agricultural field (including
robot applications) could be developed. With the mirrored model domain, field measurement
campaign including the above mentioned GPR configurations, such as crosshole, surface-to-
crosshole and different surface techniques using different antennae configurations (ZOP, MOG,
COP and multichannel) and antennae frequencies. Further, GPR has the possibility to in-
vestigate as plot to catchment scale, hence the derive information could be used as input for
agro-ecosystem modeling to connect models at different scales.

Advancing knowledge about agro-ecosystems through modeling

To incorporate the spatial distribution of soil parameters into models as mentioned above
the spatially derived soil hydraulic parameters, see Chapter 5 could be used. The parameter
set was derived along one pair of rhizotubes for two soil layers cropped with winter wheat.
Additional parameter sets could be derived using the sequential hydrogeophysical inversion
approach as described in Chapter 5, for more than one rhizotube pair (vertically and horizon-
tally neighboring), which would results in an actual three-dimensional distribution of the soil
hydraulic parameters. Further, it would be interesting to quantify, how crops influence the
soil hydraulic parameters. Thereby, the SHP of a bare-field and for different crops could be
estimated. Especially row crops, such as maize, are interesting to investigate since the spatial
distribution of the SHP, will be more heterogeneous. Here using a one-dimensional modeling
tool such as HYDRUS-1D might not be sufficient enough and a two- to three-dimensional
modeling tool could bring advantages, but with higher computational costs. Further, when
considering the root growth in the three-dimensional model, the spatio-temporal distribution
of the roots needs to be considered. Here root images with a high spatial resolution
are required, to fully comprehend for the difference in root distribution for the different
directions parallel and perpendicular to the crop row. For extended process understanding
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a distribution in soil hydraulic parameters in multiple direction could be compared to the
variability in permittivity, as derived from the trend-corrected spatial permittivity deviation
of the vegetated field.

The estimation of pseudo- or actual three-dimensional distribution of the soil hydraulic
parameters, soil characteristics or additionally the spatio-temporal distribution of the SWC,
could be used as input for agro-ecosystem models at different scales. Here GPR-derived
information could close the gap between point- to rhizosphere(pedon)-scale (Schnepf et al.,
2022b) and regional land-surface or earth system models (Vereecken et al., 2022, 2016), where
it can either be used as an input or ground truth. Additionally, the output from said models
could be used for electromagnetic modeling approaches with different field applications, such
as antennae development, optimization of field measurement campaigns.
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Chapter A

Appendix A: Linking horizontal
crosshole GPR variability and root
image information of maize crops

A-1 Daily spatial permittivity deviation for the bare-field

The results of the spatial permittivity deviation of the bare-field Ef”Fi,jl for 2017 and 2018,
indicate that the two years show similar values along the rhizotubes for the different plots and
depths with similar patterns for both sites. Since no crops were present for these measure-
ments, these daily variabilities along the rhizotubes are linked to the soil heterogeneity and the
rhizotube deviation. Comparing for Ry, all depths for all three plots we identify minima and
maxima in eri’j/ along the rhizotubes. These are more distinct and the variation between the
individual measurement seasons is less significant, compared to Ryp. In contrast, Rpp does
not show these clear minima and maxima in 5TBF241]~’, only in depths 0.2 m and 0.4 m changes
on the extend of Ef'zFl-y]-/ along the rhizotubes are recognizable. For the depths below we can

’
see trends along the rhizotubes where EFFM is either steadily increasing (e.g., Plot 3 depth

0.8 m) or steadily decreasing (e.g., Plot 2 depth 0.8 m) along the rhizotubes. Additionally,
the variation between the individual measurement seasons is larger for Ry compared to Ryry.
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Daily spatial permittivity deviation for the bare-field
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Figure A-1.1: Daily spatial permittivity deviation for the bare-field 2, ; along the rhizotubes
under bare-field conditions for a) Ryt and b) Ryt for the crop growing seasons
2017 and 2018. The colored solid lines indicate the daily spatial permittivity
deviation for the bare-field E”"j/ values of 2017 and the colored dashed lines the
daily spatial permittivity deviation for the bare-field e”-?]-’ of 2018.
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A-2 Probability density function of the trend-corrected permit-
tivity deviation 2018
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Figure A-2.1: Standard deviation (SD) values for different depths in 2018 for Ryt and R,
respectively. Note that the axes limits differ between the different depths to show
the SD variations between the individual depths.
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Standard deviation of the probability density function vs. root volume fraction - 2018
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Figure A-2.2: Correlation between the root volume fraction (RVF) and the SD for the individual
plots for Ryt and Ryt in 2018, respectively. The colored squares represent the
values for the RVF and the SD for the vegetated field and the colored diamonds
represent the values during the bare-field, where the RVF was set to 0, the dif-
ferent colors represent the different depths. The colored lines represent the linear
regression per plot and depth, the R? values are indicated next to the regression
lines.
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A-3 Supplementary Material - Linking horizontal crosshole GPR
variability and root image information of maize crops.

Table A-3.1: Irrigation amounts applied on Ryt in 2017, 2018 & 2020.

Plot 1 Plot 2 Plot 3

Date

mm
19.06.2017 - - 1.10
22.06.2017 - - 13.19
02.07.2017 - - 13.19
06.07.2017 - - 13.19
17.07.2017 - - 13.19
31.07.2017 - - 13.19
03.08.2017 - - 13.19
08.08.2017 - - 13.19
14.08.2017 - - 13.19
24.08.2017 - - 13.19
SUM 2017 0 0 119.81
16.05.2018 - - 6.59
25.05.2018 - - 6.59
07.06.2018 - - 8.79
26.06.2018 - - 26.37
03.07.2018 - - 18.46
05.07.2018 13.19 13.19 13.19
09.07.2018 - - 26.37
13.07.2018 - - 21.98
17.07.2018 21.98 21.98 21.98
26.07.2018 23.74

01.08.2018 13.19 13.19 26.37
05.08.2018  17.58 17.58 26.37
15.08.2018 - - 30.77
SUM 2018 65.94 65.94 257.57
20.05.2020  2.39 2.33 2.32
22.05.2020 2.24 2.29 2.32
25.05.2020 2.10 2.12 2.13
27.05.2020 8.42 8.02 8.79
02.06.2020  5.00 5.00 5.00
03.06.2020  5.08 5.08 5.08
12.06.2020  5.00 5.00 5.00
23.07.2020 - - -
24.07.2020  15.00 15.00 15.00
29.07.2020 5.00 5.00 5.00
10.08.2020 7.01 7.01 7.01
26.08.2020 5.27 5.27 5.27
31.08.2020 7.01 7.01 7.01
SUM 2020 69.52 69.13 69.93

July 22, 2024



134 Appendix A

Table A-3.2: Irrigation amounts applied on Ry in 2017, 2018.

Plot 1 Plot 2 Plot 3

Date

mm
19.06.2017 - - 1.10
22.06.2017 - - 13.19
02.07.2017 - - 13.19
06.07.2017 - - 13.19
17.07.2017 - - 13.19
31.07.2017 - - 13.19
03.08.2017 - - 13.19
08.08.2017 - - 13.19
14.08.2017 - - 13.19
24.08.2017 - - 13.19
16.05.2017 - - 6.59
SUM 2017 0 0 126.4
25.05.2018 - - 6.59
07.06.2018 - - 8.79
26.06.2018 - - 26.37
03.07.2018 - - 18.46
05.07.2018 - - 13.19
09.07.2018 - - 26.37
11.07.2018 - - 6.59
13.07.2018 - - 21.98
17.07.2018 - - 0.00
18.07.2018 - - 21.98
26.07.2018 - - 23.74
01.08.2018 - - 26.37
05.08.2018 - - 26.37
15.08.2018 - - 0.00
16.08.2018 - - 15.38
SUM 2018 0 0 242.18

Table A-3.3: Comparison of the root volume fraction (RVF) and the root length density (RLD)
as minimum, maximum and mean for Ryt and Ryt in 2018, respectively. The
RLD was calculated using the total (root) length and the median diameter, per
root image. The total (root) length is an additional output of RhizoVision, which
not further used on this study.

Rur Rir
RVF RLD RVF RLD
[%] [em? em3] [%] [em® em?]
Minimum  0.00000006 0.00027 0.00000012 0.00042
Maximum 0.15 0.95 0.70 2.29
Mean 0.006 0.07 0.008 0.30
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Table A-3.4: Comparison of the root volume fraction (RVF) and the root length density (RLD)
as minimum, maximum and mean for Ryt in 2020, respectively. The RLD was
calculated using the total (root) length and the median diameter, per root image.
The total (root) length is an additional output of RhizoVision, which not further
used on this study.

Rur
RVF RLD
[%] [em? cm™]
Minimum  0.00000006 0.0028
Maximum 0.186 0.53
Mean 0.0056 0.05
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Appendix A

Root arrival curves 2018
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Figure A-3.1: Root arrival curves in root volume fraction (RVF) for 2018 for the three plots
for Ryt and Ry, left and right, respectively. The root images were measured
within the same rhizotubes where the ground penetrating radar (GPR) antennae
are placed. The colored triangles represent the RVF over time, which are median-
filtered over 3 measurement days. The colors indicate the different depths. Tas-
seling and Silking are indicated by the vertical lines. Note the different y-axes
scales for Plot 1 in comparison to Plot 2 and Plot 3.
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Root volume fraction (RVF) depth profiles of 2018 for Ryt a), ¢) & €) and Ryt
b), d) & f). The colored triangles represent the RVF values for the different
depths, where the different colors represent the measurement date over the crop

growing season.
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Root Volume Fraction Depth Profiles - 2020

a) Ry, - Plot 1 b) R,; - Plot 2 c) R, -Plot 3
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Figure A-3.3: Root volume fraction (RVF) depth profiles of 2020 for Ryr. The colored trian-
gles represent the RVF values for the different depths, where the different colors
represent the measurement date over the crop growing season.
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Temporal GPR data for different soils in comparison with the weather data
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Figure A-3.4: Comparison of the weather data and permittivity for Ryt during the 2018 crop
growing season. a) weather data: the solid red line represents the daily temper-
ature values and the light blue bars represent the daily precipitation values. The
dark blue irrigation values are only valid for Plot 3. b)-d) show mean permittivity
per depth for Plot 1 2 & 3. The colored circles with the error bars indicate the
permittivity mean along the rhizotube with its standard deviation as error bars.
The colored solid lines connect the individual measurement days. The horizontal
lines represent the dates for the vegetation stages and sowing and harvest dates.
For convenience the approx. SWC values were added on the right-hand axis for

b)-d) using the three-phase complex refracted index model (CRIM).
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Temporal GPR data for different soils in comparison with the weather data
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Figure A-3.5: Comparison of the weather data and permittivity for Ryt during the 2018 crop
growing season. a) weather data: the solid red line represents the daily temper-
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ature values and the light blue bars represent the daily precipitation
dark blue irrigation values are only valid for Plot 3. b)-d) show mean
per depth for Plot 1 2 & 3. The colored circles with the error bars

values. The
permittivity
indicate the

permittivity mean along the rhizotube with its standard deviation as error bars.
The colored solid lines connect the individual measurement days. The horizontal

lines represent the dates for the vegetation stages and sowing and h

arvest dates.

For convenience the approx. SWC values were added on the right-hand axis for

b)-d) using the three-phase complex refractive index model (CRIM).
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Temporal GPR data for different soils in comparison with the weather data
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Figure A-3.6: Comparison of the weather data and permittivity for Ryt during the 2020 crop
growing season. a) weather data: the solid red line represents the daily temper-
ature values and the light blue bars represent the daily precipitation values. The
dark blue irrigation values are only valid for Plot 3. b)-d) show mean permittivity
per depth for Plot 1 2 & 3. The colored circles with the error bars indicate the
permittivity mean along the rhizotube with its standard deviation as error bars.
The colored solid lines connect the individual measurement days. The horizontal
lines represent the dates for the vegetation stages and sowing and harvest dates.
For convenience the approx. SWC values were added on the right-hand axis for
b)-d) using the three-phase complex refractive index model (CRIM).
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Daily spatial permittivity deviation for the bare-field R,;

Plot 1 Plot 2 Plot 3

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
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Figure A-3.7: Daily spatial permittivity deviation for the bare-field €2, ; along the rhizotubes
under bare-field conditions for Ryt for the crop growing seasons 2017, 2018 &
2020. The colored solid lines indicate the daily spatial permittivity deviation for

the bare-field 5,{3Fi,]~/ values of 2017 and the colored dashed lines the daily spatial

permittivity deviation for the bare-field sfFi,jl of 2018 and the colored dotted
lines for 2020.
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Trend-corrected spatial permittivity deviation of vegetated field - 2018
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Figure A-3.8: Trend-corrected spatial permittivity deviation Asm-,j/ of the vegetated field, along
the rhizotubes over the different plots & depths, for Ryt and Ryt in 2018. The
colored solid lines represent different dates during the crop growing season. The
data gap of Ryt at 0.2 m depth is caused by the presence of the sEIT line.
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solid lines represent different dates during the crop growing season.
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Probability Density Function
R, (2017)
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Figure A-3.10: Probability density function (PDF) of the trend-corrected spatial permittivity
deviation Asmv,j, for all plots and depths of 2017, for both MR- facilities, re-
spectively. The black solid, dashed and dotted lines represent the dates for the
bare-field measurements and the colored lines represent the probability density
functions of trend-corrected spatial permittivity deviation Asn-,j/ for the crop
growing season measurements.
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Probability Density Function - Plot 2
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Figure A-3.11: Probability density function (PDF) of the trend-corrected spatial permittivity
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deviation AE”-T]-, for depths 0.2 m and 0.6 m for Plot 2, for both MR- facilities
of 2018, respectively. The black solid, dashed and dotted lines represent the dates
for the bare-field measurements and the colored lines represent the probability
density functions of the trend-corrected spatial permittivity deviation Aam-,jl for
the crop growing season measurements.
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Probability Density Function
Ry; (2018)
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Figure A-3.12: Probability density function (PDF) of the trend-corrected spatial permittivity
deviation Aem-?]-/ for all plots and depths of 2018, for both MR- facilities, re-
spectively. The black solid, dashed and dotted lines represent the dates for the
bare-field measurements and the colored lines represent the probability density
functions of the trend-corrected spatial permittivity deviation Asm;yjl for the crop
growing season measurements.
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Probability Density Function - Plot 2
Ry (2020)
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Figure A-3.13: Probability density function of the trend-corrected spatial permittivity deviation
Aerm-/ for all depths and plots, for Ryt in 2020. The black, solid, dashed
and dotted lines represent the date for the bare field days and the colored lines
represent the probability density functions over the crop growing season
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Ry: (2020)
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Figure A-3.14: Probability density function of the trend-corrected spatial permittivity deviation
As”,j, for all depths and plots, for Ryt in 2020. The black, solid, dashed
and dotted lines represent the date for the bare field days and the colored lines
represent the probability density functions over the crop growing season
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Chapter B

Appendix B: Spatial variability of
hydraulic parameters of a cropped
soil using horizontal crosshole
ground penetrating radar

B-1 One dimensional field study — Cost function during opti-
mization

The propagation of the cost function during optimization for soil hydraulic parameters in-
dicates convergence across different parameters (Figure B-1.1). For specific parameters (6,
a2 subsoil layer) the convergence clearly headed towards a global minimum. For others, the
funnel shape is more widespread out or skewed towards either side of the feasibility space
boundary. Overall, all parameters exhibit a clear trend, minimizing the cost function.
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Soil hydraulic parameter vs. cost function
during optimization

(b) Subsoil layer
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Figure B-1.1: Cost function values vs. soil hydraulic parameters during the optimization process.
Note, that only cost function values between 0 and 1 are shown here.

B-2 Synthetic GPR modeling using gprMax

To verify the possibility of computing the SWCs by utilizing first arrival times obtained
from time-lapse GPR measurements taken from horizontal rhizotubes, and subsequently
estimating the SHP using sequential hydrogeophysical inversion, we conducted a synthetic
experiment employing the three-dimensional finite-difference time-domain gprMax software
(Warren et al., 2016). The SWC profiles were used for the second layer by optimizing the
SHP in the two-layered unimodal model, as shown in Table 5-2 and Figure B-2.1. We derived
the relative dielectric permittivity values for every 0.02 m from these profiles. For each of the
5 depths, a pair of rhizotubes with a spacing of 0.75 m between the receiver and transmitter
antennae were used to compute the EM field components at the depth locations. The soil’s
electrical conductivity o remained constant at 10 mS/m, while the source pulse was set to a
Ricker wavelet centered at 200 MHz.

The EM waves generated from the calculations follow a processing similar to the one
used for field measurements. The first break/first arrival time (FB) must be determined
(see Figure B-2.1a), and from this the EM travel time, EM wave velocity, relative dielectric
permittivity, and finally the SWC are calculated. This entire process is repeated for each
depth at each timestep. The SWC profiles resulting from this processing can be compared
to both the GPR-derived SWC measurements and the SWC profiles generated through
optimized SWC employing HYDRUS 1D. Figure B-2.1b shows a comparison of the SWC
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profiles for five dates during the measurement season. For depths ranging from 0.6 m to 1.2
m, the SWC derived from gprMax correlates with the optimized SWC profile, indicating the
sufficiency of the first arrival time approach for estimating SWC. At depths of 0.2 m and
0.4 m, there is an observable offset between the SWC optimized and gprMax-derived SWC.
This may be attributed to the difference in SHP between the plow layer and subsoil layer,
resulting in significant differences in SWC values over short distances.

(a) GPR traces for different depths on the 28.04.2016 (b) Comparison SWC Hydrus & SWC gprMax & meas. GPR-SWC
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Figure B-2.1: Synthetic GPR traces modeled using gprMax (Warren et al, 2016) for the different
depths on the 28.04.2016, where the black lines indicate the EM waves per depths
and the grey marks represent the first break (FB) of the EM waves. SWC profile
comparison for five exemplary GPR days (28.04.2016, 02.06.2016, 13.06.2016,
20.06.2016). The blues line presents the SWC profile resulting from the hydraulic
SHP from the one-dimension inversion results, the red dashed line represents the
results by using the SWC profile from the forward models as input for the synthetic
gprMax modeling, and, the green line represents the GPR-SWC profile measured
in the field.

B-3 Synthetic one-dimensional field study — Different measure-
ment intervals and added noise

To assess the adequacy of recorded GPR information for retrieving hydraulic parameters
using a sequential inversion approach, we conducted a synthetic study. We compiled synthetic
GPR-SWC data using SHP results from a one-dimensional field study of a model with
two layers and a single porosity retention curve. To reduce computing time, we adjusted
the optimization search range (feasible space), as shown in Appendix B-2 Table B-3.1.
Two distinct synthetic GPR-SWC datasets were compiled: (i) for the 20 GPR-days on
which measurements were taken, and (ii) for the daily SWC values obtained over the entire
modelling period, which spanned 323 days.

The optimization was conducted using the SCE-UA algorithm and Equation 11 as the
cost function, as previously described. Table Appendix B-3 Table B-3.1 presents the results
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of two models, where we compare their R? values. It is evident that the model utilizing
solely GPR days exhibits the most suitable correspondence between synthetic GPR-SWC
data and optimized SWC values (R?=1.0), followed only by the model employing daily SWC
values (R2=0.999). The model with fewer measurement times outperforms the model with
daily measurements. Therefore, the measurements taken throughout the crop growing season
provide sufficient information for executing the sequential hydrogeophysical inversion.

The SCE-UA algorithm tests random values within the search range and calculates
the cost function between the GPR-SWC and the optimized SWC using Equation 5-10.
Figure B-3.1 shows the cost function values and corresponding SHP over the optimization
course, indicating convergence towards the global minimum of the cost function and final set
of SHP (only shown for i) the GPR days. The SHP converge towards the global minimum for
the relatively small search range.

Table B-3.1: Results of the synthetic study. Comparison of the SHP of the forward model and
the synthetic sequential inversion runs. R2 is the variation between the synthetic
GPR-SWC values and the optimized/ modeled SWC values.

Lower boundary Lower boundary forward GiI;{Pdays Daily

05 [em® em™] 0 0.01 0.002 0.006 0.005

0, [cm® cm™] 0.2 0.3 0.25 0.25 0.251

Plow layer « [1 em™| 0.01 0.1 0.0795 0.0749 0.0763
n [-] 1.1 1.3 1.118 1.122 1.122

K [em dY] 180 200 199.57 190.54 192.06

A [-] 4 6 4.59 5.026 5.091

0, [cm® em™] 0 0.01 0.009 0.004 0.005

0, Jem® em®) 0.35 04 0.387 0.388 0.384

Subsoil layer @ [T em™ 0.007 0.1 0.0086 0.0087 0.0085
n [ 11 1.4 1.358 1.351 1.352

K [em dt] 140 180 159.52 159.73 162.52

A [-] -1 0 -0.6 -0.625 -0.498

R? 1.0 0.999
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(a) Comparison optimized HYDRUS 1D model with synthetic GPR data (b) Soil hydraulic parameter vs. cost function during optimization
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Figure B-3.1: Results of the synthetic modeling. The black crosses indicate the synthetic GPR-
SWC values and the blue line represents the SWC optimized by the SCE-UA.
Error Propagation for a.) topsoil and b.) subsoil, for the optimized parameters
individually. The objective function value/ error is represented by the y-axis,
the according value of the optimized parameter is indicated on the y-axis. The
error propagation is shown as a color gradient, where blue colors represent early
runs and yellow colors represents the runs before the termination of the SCE-
UA. The green cross indicates the input hydraulic parameter value (parameter
which originates the synthetic SWC values), the red circle indicates the optimized
hydraulic parameter.
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B-4 Correlation between \ and K for the upscaling results

Regression A & K,
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Figure B-4.1: Correlation between A and K for the upscaling results.
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Appendix C: High resolution

soil-root modeling for crosshole
GPR data

C-1 Feasibility study - petrophysical relationships considering
roots

When a different porosity (¢ = 0.25) is present in the soil, the effect that with a certain
RVF, the water remaining in the soil is 0, is enhanced for especially dry soil conditions. For
a permittivity of e, = 4, a RVF values above 2.7% will lead to a four-phase SWC of 0, while
the three-phase SWC is 0.03. For a soil with &, — 8, the threshold for the RVF, where there
no water left in the soil is RVF = 11.06%.
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a) Three-phase SWC b) Four-phase SWC
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Figure C-1.1: Results of the feasibility study for a) three-phase and b) four-phase CRIM equation
for varying bulk permittivity and root volume fraction (RVF) of the soil-plant
continuum. Porosity was defined as ¢ = 0.25.

C-2 Effects of roots on the GPR signal- depth 0.6 m
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Effects of roots on the GPR signal- depth 0.6 m 159

Depth [m]

Depth [m]

Scenario | (Soil) - 0.6 m depth

a)1ns b) 3 ns c)5ns d) 7 ns
0 0.5 1 15 0 0.5 1 15 0 0.5 1 1.5

Scenario Il (Soil + roots) - 0.6 m depth

g)5ns h)7 ns
0 05 1 15 0 05 1 15 0 2 1.

Distance [m]

-3.0e+01 -20 -10 0 10 20  3.0e+01
_— s
Amplitude [-]

Figure C-2.1: Image plots a)-d) for Scenario | and e)-h) for Scenario Il of the forward modelled
electrical field distributions through the model domain for four time steps when
the Tx and Rx are located at 0.6 m depth in the Ryt with a SWC of 0.1 [em?
cm3].
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C-3 Effects of the measurement frequency on the GPR signal

Frequency spectra 500 MHz - Scenario | & Il

R,; SWC =0.15 [cm® cm~] R, SWC =0.2 [cm® cm~]
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Figure C-3.1: Frequency spectra for 500 MHz data for a SWC of 0.15 cm cm™3] and 0.2 cm?
cm3 for a), ¢) and e) Ryt and b), d) and f) Ryr, respectively. The black and
blue solid line indicates Scenario | and Il, respectively, for the depths 0.2, 0.6, and
1.2 m.
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C-4 Effects of the above-ground shoot on the GPR signal

Table C-4.1: Three-phase SWC for Scenario | and three-phase and four-phase SWC results for
Scenario Il for Ryt & Ryt and different SWC conditions between 0.05 — 0.35. The
[%] misfit between the three- & four-phase SWC is provided in brackets.

Depth Rut Rur }
|m] Scenario IIT Scenario IV Scenario IIT Scenario IV
SWC in HHS 0.15 0.20

three-phase three-phase four-phase three-phase three-phase four-phase

SWC SWC SWC SWC SWC four-phase SWC

Single above-ground shoot
0.1 0.07 0.07 0.04 (-50.68%) 0.08 0.07 0.07 (-10.0)
0.2 0.16 0.16 0.13 (-19.14%) 0.17 0.18 0.18 (-1.68%)
0.4 0.18 0.19 0.16 (-16.40%) 0.20 0.24 0.23 (-1.69%)
0.6 0.18 0.19 0.16 (-15.96%) 0.20 0.25 0.25 (-1.18%)
0.8 0.18 0.18 0.15 (-16.85%) 0.20 0.24 0.24 (-1.65%)
1.2 0.18 0.18 0.15 (-16.67%) 0.20 0.20 0.20 (-1.45%)
Multiple above-ground shoots

0.1 0.8 0.08 0.05 (-43.21%) 0.09 0.09 0.08 (-7.87%)
0.2 0.16 0.17 0.14 (-18.56%) 0.18 0.19 0.18 (-1.62%)
0.4 0.18 0.19 0.16 (-16.40%) 0.20 0.24 0.23 (-1.69%)
0.6 0.18 0.19 0.16 (-15.96%) 0.20 0.25 0.25 (-1.18%)
0.8 0.18 0.18 0.15 (-16.85%) 0.20 0.24 0.24 (-1.65%)
1.2 0.18 0.18 0.15 (-16.67%) 0.20 0.020 0.20 (-1.45%)

July 22, 2024



162

Appendix C

R,; SWC = 0.15 [cm® cm”]
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Frequency spectra 200 MHz - Scenario Ill & IV
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Figure C-4.1: Frequency spectra using 200 MH data for a SWC of 0.15 [ecm cm™3] and 0.2 [cm?

cm3] for a), ) and ) Ryt, and b), d) and f) Ry, respectively. The black and
blue solid line indicates Scenario | and 1, respectively, for depths 0.2, 0.6, and 1.2

m.
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Chapter D

Appendix D: Monitoring Soil Water
Content Using Time-Lapse
Horizontal Borehole GPR Data at
the Field-Plot Scale

Abstract

Ground penetrating radar (GPR) has shown a high potential to derive soil water content
(SWC) at different scales. Here, we combine horizontal GPR measurements with a novel
experimental setup. Multiple horizontal minirhizotubes at different depths are used to inves-
tigate the spatial, and temporal variability of the SWC under cropped plots. Thereby, SWC
data are analyzed for four growing seasons between 2014-2017, two soil types (gravelly and
clayey/silty), two crops (wheat and maize), and three different water treatments: rainfed,
irrigated, and sheltered. We acquired more than 150 time-lapse GPR datasets along 6 m long
horizontal crossholes at six depths. To obtain accurate SWCs from GPR data, we optimized
the calibration and processing steps of the GPR data and developed a processing tool to obtain
SWC for each measurement location. The GPR SWC distributions show distinct horizontal
and vertical heterogeneity and different SWC variabilities for both soil types. A clear change
in porosity and SWC can be observed at both sites between the surface layer (> 0.3 m) and
subsoil. Alternating patches of higher and lower SWC, probably caused by the soil hetero-
geneity, were observed along the horizontal SWC profiles, especially at the site with coarse
soil material. To investigate the changes of SWC over time, GPR and TDR data are averaged
for each depth and compared to changes in temperature and precipitation, treatment and soil
type. The high temporal resolution TDR and the large sampling volume GPR show similar
trends in SWC for both sites, but because of the different sensing volumes different responses
are obtained due to the spatial heterogeneity. Difference in spatial variation of the crosshole
GPR SWC data was detected between maize and wheat. The results for this four-year period
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indicate the potential of this novel experimental setup to monitor spatial and temporal SWC
changes. Such high spatial resolution data can be used to study the soil-plant-atmosphere
interactions of agricultural crops at the field plot-scale.

Adapted from: Anja Klotzsche, Lena Lérm, Jan Vanderborght, Gaochai Cai, Shehan
Morandage, Mirjam Zorner, Harry Vereecken, Jan van der Kruk (2019): Monitoring Soil
Water Content Using Time-Lapse Horizontal Borehole GPR Data at the Field-Plot Scale,
Vadose Zone Journal, 18(1), 190044. 2019, https://doi.org/10.2136/vzj2019.05.0044
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D-1 Introduction

Soil water content (SWC) is an important state variable that is linked to several important
soil functions and strongly depends on the internal organization of the soil-plant system.
Soil water is important for crop growth and food and feed production, can percolate to
deeper layers and replenish aquifers, can carry solutes towards the groundwater, and is
required by micro-organisms that regulate biogeochemical cycles. Soil water and related soil
processes vary considerably in space and time due to spatially variable soil properties and
highly dynamic boundary conditions (e.g., precipitation, evapotranspiration). Understanding
and subsequently predicting soil processes require information of SWC and how it varies in
time and space. SWC can be monitored using in-situ sensors (that can be connected to the
internet and provide seamless data streams of local SWC) and using remote sensing from
satellites (e.g., Simmer et al. (2015a); Vereecken et al. (2016)). In-situ sensors have a small
spatial support so that a large number of sensors would be required to obtain an accurate and
precise estimate over large scales. Another challenge is to infer connected patterns of SWC
that represent preferential flow paths in the soil or landscape with in-situ sensors since they
do not provide a dense spatial coverage. The limitation of satellite SWC products is that they
have a low spatial resolution and most sensors are only sensitive to the SWC in the upper
few centimeters of the soil profile (Garré et al., 2013, 2011). To fill the gap between in-situ
sensors and satellite products, high resolution nondestructive geophysical imaging methods
show an increasing potential to further improve the detection, monitoring, and imaging of
in-situ soil properties at the field-scale. Near surface geophysical methods, such as electrical
resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating
radar (GPR) provide maps of SWC at the field plot scale up to the field and catchment scale
with dense spatial coverage, and can be used to enhance agricultural, environmental and
land surface models (Binley et al., 2015). Several geophysical studies have been performed
to investigate the soil-plant system using time-lapse monitoring data at the laboratory or
field-scale applying mainly ERT, time domain reflectometry (TDR), or EMI tools. For
example, root water uptake was investigated with time-lapse ERT within lysimeters and for
different cropping systems in the field (Garré et al., 2013, 2011). Several other field studies
were performed using a fixed installed ERT monitoring transect to study the soil-plant
interaction of orange trees (Vanella et al., 2022) and crops like wheat (Shanahan et al., 2015)
and maize (Beff et al., 2012, Michot et al., 2003). Even though all these studies successfully
demonstrated the potential to derive soil water and plant interaction, each of the methods
has limitations. For example, TDR provides point information; ERT and EMI are sensitive
to several other factors beyond water content, and EMI provides a good coverage in space
but with limited spatial resolution.

The advantage of GPR in comparison to ERT and EMI is that GPR provides infor-
mation about the relative dielectric permittivity €, of the soil, which is more directly related
to SWC than the electrical conductivity o (Huisman et al., 2003, Klotzsche et al., 2018). Since
the emergence of the field of hydrogeophysics Binley et al. (2015), GPR has shown a high
potential to map, detect and monitor SWC changes to improve the hydrological characteri-
zation of the vadose zone with the highest possible resolution compared to other geophysical
methods because of the use of high frequencies between 25 MHz to 1.6 GHz (Binley et al.,
2002b, Dafflon et al., 2011, Linde et al., 2006, Paz et al., 2017, Steelman et al., 2017). Because
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of the large difference between the relative dielectric permittivity of air £, — 1 and water ¢,
= 80, it can be used to obtain the SWC in the vadose zone. To investigate flow and transport
processes, time-lapse GPR measurements with a high spatial and temporal resolution can
be linked to soil hydrological parameters such as hydraulic conductivity. For example,
Looms et al. (2008b) investigated unsaturated flow and transport processes using crosshole
GPR and ERT in alluvial sandy sediments and estimated hydraulic patterns (Looms et al.,
2008a). Strobach et al. (2014) combined surface and borehole GPR measurements to mon-
itor rainfall infiltration in the vadose zone and to investigate characteristic infiltration regimes.

Allroggen et al. (2015) measured and monitored flow processes in the near subsurface
using 3D surface GPR measurements during rainfall experiments and associated patterns of
travel time changes of GPR signals with SWC variations. To further extend our knowledge
about the relations between GPR data and hydrological parameters, controlled environments
are essential. At the laboratory scale GPR measurements can be performed at lysimeters
(Schmalholz et al.,; 2004, Wijewardana et al., 2017). Klenk et al. (2015) and Jaumann and
Roth (2018) used surface GPR data to study SWC changes during pumping and infiltration
experiments in the ASSESS site of the University of Heidelberg: a 20 m long, 4 m wide and
approximately 1.9 m deep tank in which a known heterogeneous structure of different sand
layers was created. Due to the control of these layers on the spatio-temporal distribution of
SWC, which could be observed with surface GPR, they could infer the hydraulic properties
of the layers. Furthermore, several surface GPR studies have been performed to detect and
characterize the soil-plant systems and the influence of the SWC on plant development. For
example, Rodriguez-Robles et al. (2017) used GPR to map tree roots. Wijewardana and
Galagedara (2010) investigated the spatial and temporal variability of the SWC for different
crop types. Nevertheless, the characterization of the climate-plant-soil interaction at the
plot-scale is very limited until now and long-term monitoring using GPR or other geophysical
methods over serval growing seasons are very sparse in literature (e.g., Jayawickreme et al.
(2010) for 2 year ERT study). The disadvantage of ‘classical’ GPR is that it cannot be used
in an automated monitoring mode and that the interpretation of surface GPR measurements
to derive depth profiles of SWC is not straightforward in the absence of clear reflections
and/or gradients. Cross-borehole GPR can be used to investigate the deeper near subsurface
between boreholes. Borehole GPR measurements can provide higher resolution insights into
the subsurface and are well suited to characterize the vadose zone (Binley et al., 2002a,
Klotzsche et al., 2013) and to monitor infiltration and recharge processes Looms et al. (2008a).
Horizontal cross-borehole acquisitions provide a direct link of SWC variations between the
tubes at certain depth slices and are well suited to investigate how SWC varies both in time
and space at a certain depth due to infiltration, redistribution and plant water uptake at
the plot-scale. Parkin et al. (2000) first applied crosshole GPR measurements in horizontal
tubes below a wastewater trench at 1.2 m depth. Thereby, they applied zero-offset profiling
(ZOP) that provided an average SWC along the tubes, and, multi-offset gathers (MOG) to
estimate a two-dimensional SWC distribution in a horizontal plane. Redman et al. (2000) and
Galagedara et al. (2002) used GPR in horizontal boreholes to study the temporal and spatial
variation of SWC under wetting and drying conditions. These studies indicated the potential
to detect and map zones of higher water content in between tubes that could be linked to
preferential flow paths at the plot-scale that are difficult to obtain using other methods. All
these studies mainly concentrated on water content changes without considering the effect
of plants. Especially the impact of plants has not been investigated so far using horizontal
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borehole GPR data. Thereby, the challenging aspect is that GPR is able to retrieve SWC for
a certain domain, but without further information, it is very difficult to distinguish between
the part of the water in the soil and water related to root zones. For tree roots Al Hagrey
(2007) stated a variation of the permittivity between 4.5 for dry wood up to 22 for wet wood,
which is in a similar range as for example dry and wet sand. Therefore, to differentiate
between soil and finer root effects on the permittivity/SWC long term monitoring that
captures different variations of both are necessary.

In this paper, we used long-term time-lapse horizontal borehole GPR data to monitor
and characterize SWC variation caused by plants for different surface treatments in two
different soil types. The main aim of this study was to investigate how SWC can be observed
at high temporal and spatial resolution. Since boreholes were installed at different depths,
we also tested whether the vertical variations in SWC could be detected with GPR. A special
focus will be to improve the understanding of how small-scale soil changes affect plant growth
at the plot scale (e.g., zones of preferential flow) and how the SWC is changing over several
measurement seasons for different soil and plant types. As part of it, we will characterize the
plot-field-scale soil heterogeneity by capturing the structural organization of soil (layering
and texture) using GPR. Therefore, we compared GPR derived water contents with TDR
measurements and we carried out full wave form simulations to evaluate the effect of the
sharp contrast of dielectric permittivity at the soil surface and the effect of vertical variations
in SWC on the GPR derived vertical water content profiles. By monitoring SWC and its
variation in a field plot over four growing seasons, we investigated the persistency of the
patterns and the magnitude of the spatial SWC variations and distinguished a temporally
stable component from a variable component that is linked to either temporally varying soil
properties or changing rooting patterns between different growing seasons or crops.

D-2 Experimental setup

D-2-1 Test site and instrumentation of the minirhizotrons

Two minirhizotron facilities were installed in 2012 and in 2014 at the Selhausen site, Germany,
which is part of the TERENO-Rur hydrological observatory (Bogena et al., 2018, Weihermiiller
et al., 2007). The field is located at a transition zone between the Upper and Lower Terrace of
the Rhine/Meuse river system (see Figure D.1), which corresponds with a transition between
a soil with a high gravel content and low apparent electrical conductivity in the upper part
of the field and a soil with a clayey and silty texture and a higher electrical conductivity at
the lower part of the field (Rudolph et al., 2015). To cover this variation in soil properties,
one minirhizotron facility was installed in the upper part Ry and the other one in the Lower
Terrace Ryp. The so-called minirhizotron is an installation that allows repeatable and non-
invasive measuring of plant roots and studying, root growth in interaction with changing soil
conditions (Cai et al., 2016). Over the past years several geophysical and hydrological stud-
ies have been performed at this test site (Busch et al., 2014, Huisman et al., 2003, Rudolph
et al., 2015, von Hebel et al., 2014). A weather station is installed by the TERENO project
providing, e.g., precipitation and temperature values (blue dot in Figure D.1). The ground-
water table depth is located between 3 m and 5 m below the surface depending on seasonal
fluctuations.

July 22, 2024



168 Appendix D

Rhizotron locations, soil map and EMI map
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Figure D.1: Location of the minirhizotron facilities indicated on the (EMI) and soil map of
the Selhausen test site. One rhizotron is located in the upper terrace (Ryr) and
one in the lower terrace (Ryr) of the bare-soil field of the test site, and both
are indicated with boxes. The Ryp and Rpp are positioned in lower and higher
apparent conductivity areas, respectively, illustrating the different soil properties of
the terraces. The blue dot indicates the location of the weather station. The map
is modified from Rudolph et al. (2015).

Both facilities are equipped to obtain a full access to the near surface soil volume of 1.2 m
depth by 9 m width by 6 m length. For the monitoring purposes, horizontal tubes with a total
length of 7 m were installed at six different depths between 0.1 m and 1.2 m with 3 replicates
for 3 treatments in both facilities (Figure D.2a, ¢). The boreholes were separated by 0.75 m.
To avoid interferences between the different tubes, the boreholes are shifted horizontally (see
Figure D.2¢). In each facility, three 3 m by 7 m plots that received different water treatments:
rainfed (natural conditions), irrigated, and sheltered. The facilities provide the opportunity to
study at each site spatio-temporal variations of SWC under three different treatments: rainfed
(natural conditions), irrigated, and sheltered (Figure D.2b). The Ry site was excavated in
layers, and after the boreholes where installed, refilled trying to keep the former layering and
compaction of the soil. At Ry a horizontal drilling device was used to install the boreholes,
hence the soil is almost undisturbed. The tubes were drilled with a special tool designed by the
Engineering und Technologie department (ZEA-1) of the Forschungszentrum Jiilich GmbH. A
sensor network with TDR sensors and one tensiometer was installed at each borehole depth
and each treatment plot. For each treatment plot, four TDRs per depth were installed that
measure hourly the SWC (see Cai et al. (2016) for more details). The TDR sensors are a
three-rod system with a rod length of 200 mm and a rod separation of 26 mm. All TDRs are
located 0.75 m away from the facility wall. Note that stones and gravel larger than 60 mm
were removed around the places where the TDR sensors were installed (red dots in Figure
D.2a). Due to compaction and erosion of the soil, the original planned depth of the tubes of
0.1 m - 1.2 m were slightly lowered by 4 cm (manually checked different times per year).
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Figure D.2: (a) Schematic setup of the minirhizotron facility at the Selhausen test site, Germany,
with the location of the horizontal boreholes and the time domain reflectometry
(TDR) sensors indicated with blue and red dots; (b) picture of the facility from
the top during the growing season; (c) picture of the facility inside; and (d) when
measurements are performed; and (e) schematic setup of the zero-offset profile
(ZOP) measurements along tubes at the same depth to obtain depth slices.

In this study, we will concentrate on the growing seasons of 2014, 2015, and 2016, when winter
(Triticum aestivum cv. Ambello) and summer wheat (Triticum aestivum cv. Scirocco) was
sown at both facilities. Subsequently, we present data of 2017, when maize (Zea mays cv.
Zoey) was sown. The wheat was planted in narrow rows with a separation of 12 cm and
the maximum crop height was approximately 0.95 m. The maximum observed rooting depth
for the winter wheat was the same at all three plots at 0.8 m or 1.2 m for Ryp and Ry,
respectively (Cai et al., 2016). The maize was planted with a row separation of 0.75 m and at
the end of the measurement period the plants reached a maximum height of approximately 2.1
m and a maximum rooting depth of around 0.8 m and 1.5 m for Ryp and Rpp was observed,
respectively. The maize plants showed a gradation in height for the different plots (higher
in the irrigated plot). Note that after 2016 no shelter was installed anymore because of the
height of the plants. Instead, two rainfed plots were used. Table D.1 indicates the used plant
type, sowing, emerging, flowering, and harvesting times. After harvest bare soil conditions
were present at the three plots.
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Table D.1: Measurement days for the upper terrace (Ryr) and lower terrace (Rrr) rhizotrons.
Note that for each day, a minimum of one zero-offset profile was measured across
the entire distance per depth.

Year Ryr Rpp Plant sowing emerging flowering harvest
2012 23 - - - - - -

2013 7} - Winter wheat — nkf nk nk nk

2014 19 15 Winter wheat  30-Oct-2013  nk 21-May-2014  17-Jul-2014

2015 17 16 Summer wheat 17-Mar-2015 21-Mar-2015  08-Jun-2015  30-Jul-2015
2016 22 21 Winter wheat — 26-Oct-2015  01-Nov-2015  03-Jun-2016  26-Jul-2016
2017 22 22 Maize 05-May-2017  09-May-2017  14-Jul-2017  16-Sep-2017

1 In October 2013, an infiltration experiment was additionally performed at Ry at the sheltered plot, resulting
in two extra undisturbed measurement days. Normally both facilities were measured on the same day.

1 nk, not exactly known for this event.

D-2-2 GPR crosshole measurements and acquisition of time series

To map SWC at several depths and positions on a weekly basis, we used the ZOP technique.
Thereby, the transmitter is positioned in one borehole, while the receiver is located in another
borehole, and, both antennae are moved simultaneously to the next position with a constant
spacing between the measurement points (Figure D.2e). ZOP measurements were performed
using 200 MHz PulseEKKO borehole antennae (Sensors & Software (Figure D.2d, Table D.1)
with a horizontal resolution of 5 cm. Because of the known distance between the transmitter
and receiver, a velocity profile along the boreholes can be calculated assuming that the rays
travel straight between the antennae (Binley et al., 2002b, Looms et al., 2008b). The ZOPs
were measured in horizontal depth slices with a spatial separation of 5 cm with a borehole
separation of (.75 m at all depths and 3 lateral positions representing the different treatments
of the plots. This results in a dataset for each measurement day covering a soil volume of
about 1.2 m depth x 9 m width x 6 m length. In total, around 300 single traces per depth layer
were recorded. Since 2016 additional geophysical measurements such as electrical impedance
tomography (EIT) are performed at Ryp. To avoid interferences between the two techniques,
2 m of the GPR measurements were removed and not further analyzed.

D-3 GPR data analysis

To retrieve quantitative soil properties from the GPR ZOP data, several pre-processing steps
are necessary. First, we applied a dewow filter to reduce low frequency noise in the measured
GPR data. Second, a time-zero correction of the data is applied, which is necessary to account
for time shifts of the data over the measuring period that can be caused by thermal drift,
electronic instability, cable length differences and variations in antennae coupling. A common
method for the time-zero estimation is to record repeated wide-angle-reflection-and-refractions
(WARR) measurements in the air using the borehole antennae to determine an absolute time-
zero and estimate individual time-zeros for each ZOP by time-interpolation. Thereby, the
transmitter antenna is fixed at a certain location, while the receiver antenna is moved step
wise along a profile with a fixed spacing of 0.1 m. Normally, at least three WARRs per
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facility were measured per day. One example of this procedure is shown in Figure D.3, where
four WARRs were measured during the measurement period. For each of these WARRs the
first arrival air wave was picked and the actual time-zero was estimated using the known air
velocity. In this case, the time-zero was around 17 ns and a variation of the time-zero of
approximately 0.35 ns over the measurement period can be noticed. The time-zero estimates
of the different WARRs were linearly interpolated, and the ZOP measurements in between
were corrected using the corresponding time-zero as shown by the blue dots. For example, for
dry (e, = 9) or wet (g, = 24) conditions in the rhizotrones the influence of a time shift of 0.35
ns can result in a difference of up to 1.8% or 2.2% in SWC, respectively. Therefore, to avoid
these errors, detailed and accurate time-zero calibrations are essential.

Time-zero estimates

17.3f .
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Time of day

Figure D.3: Example for the time-zero (t,) estimation obtained from the wide angle reflection
and refraction (WARR) measurements (red) over the measurement period of one
facility and interpolated ¢ for all the measured (ZOPs, blue).

After the GPR data are time-zero corrected, the first breaks of the ZOP data are picked
using an automated user controlled picking routine. This routine was used due to the huge
available amount of data and to avoid inconsistencies in the picking by different users to
ensure constant and precise estimation of the first break. The automatic picking routine is
able to find the maximum of the traces, but not the actual needed first break. Therefore, in
the first step, we defined the time shift between the automatically found overall maximum
of the traces and the actual first break point. This is done for the different measurements
types WARR and ZOP data separately and by hand picking several noise-free traces of the
entire data set per test site and day. These two types of time shifts between the first break
and the first maximum are estimated for each measurement day and facility separately and
it is assumed that these shifts are not changing over the measurement time of one facility.
Note that for all the data analyses presented in this paper the same person defined these
constants to avoid user influences. Second, the automatic picking routine determines the
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overall maximum of all traces and subtracts the predefined constant time shift from the
automatically picked maximum.

Using the known distance between the boreholes of 0.75 m and the first breaks of the
ZOP, the electromagnetic (EM) wave velocity within the medium is calculated, which can be
converted into relative permittivity €, of the soil using:

e = (%) (D-1)

v

where v is the EM velocity, and ¢ the speed of light. Both, WARR analysis for determining
the absolute time-zero and ZOP analysis to obtain GPR travel times depend on an accurate
and precise picking of the first arrival signals, otherwise errors can occur in the permit-
tivity estimates. Normally for GPR applications, far field conditions are assumed, where
no interferences with the antennae are expected, meaning that the antennae separations
should be at least two times larger than the wave length. In the near-field regime (below
one wavelength) the propagation of electromagnetic waves is interfered by the antennae.
Depending on the soil properties, the far field conditions were not always reached for the
borehole separation of 0.75 m and the frequencies of the 200 MHz antennae, which are the
highest of commercially available borehole antennas. This is particularly important for Ry,
where a longer wavelength than in Rp7 can be expected. This should be considered in the
data analysis and picking of the first arrivals. For example, the first break picking in very dry
soil is very difficult because no clear first break point is present in the data (long and slow
raise of the trace). For such days, the time shift for the ZOP data was only defined using
data where a clear point could be chosen (normally deeper depths that were wetter) and was
then applied to all data of this day.

First tests indicated that the permittivities of the uppermost depth slice at 0.1 m
depth are usually underestimated in comparison to GPR data of 0.2 m depth, and showed
significantly lower and unrealistic values compared to the permittivities of the underlying
depth slices. Because of the small distance between the air-soil interface and the shallow
boreholes, an interference of the critically refracted air wave and direct wave is present (more
details in Klotzsche et al. (2016)). Therefore, we investigated the influence of the air and
direct wave interaction on the GPR traces and the retrieved permittivities and water contents
using full-waveform simulations (see Section D-8-1). Summarizing the synthetic studies of
Section D-8-1, using standard travel time picking procedures the travel time of the EM wave
through the soil is underestimated for the shallow boreholes at 0.1 m depth and no reliable
SWC can be obtained. Therefore, these data will not be shown in the following. Note, that
for the depth of 0.2 m also a minor effect can be expected, especially under dry soil conditions.

Furthermore, we investigated the influence of the GPR picked permittivity if gradients
or discontinuities in permittivity depth profiles at layer interfaces are present in the sub-
surface (see Section D-8-2). The standard first break picking approach of the travel times
assumes that the waves travel directly and on a straight line between the transmitter and
receiver antennae. Figure D.13 illustrates using a second synthetic study how strong and
abrupt changes in water contents across layer interfaces or across infiltration or drying fronts,
influence ray-based estimates of SWC. In particular special attention needs to be drawn
towards the interpretation of the topsoil SWC for instance when a wetted soil is overlaying
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drier subsoil. Such a condition could occur during an infiltration event.

D-4 Soil water content derived from GPR and TDR data

To convert the relative permittivity to SWC, appropriate empirical or petrophysical models
are necessary (Huisman et al., 2003, Steelman and Endres, 2011). In general, these relation-
ships can be divided into empirical models, volumetric mixing formulas and effective medium
approximations. Empirical relationships like Topp’s equation Topp et al. (1980) require very
limited information about the soil type. In contrast, volumetric mixing formulae relate the
measured bulk permittivity to the individual components within the system, weighted by their
volume fractions. Effective medium approximations extend this mixing approach by consid-
ering structural and textural contributions to formulate microscale geometric models instead
of a function of only porosity ® and 6. For the right choice of the most appropriate model,
information about the soil is needed. For this study. we used the complex refractive index
model (CRIM) with a geometry factor of 0.5 considering a three-phase system using air, water,
and soil components under consideration of the soil porosity ® (Roth et al., 1990, Steelman
and Endres, 2011):

VE-(1-9)6 -

Vew 1

where £ is the relative bulk permittivity, ® the soil porosity, and &, and e the relative
dielectric permittivity of water and soil particles, respectively. For both facilities Ryr and
Ry, higher porosities of 0.33 and 0.4 were considered for the top soil layer (0 m - 0.3 m ),
and 0.25 and 0.35 for the subsoil, respectively (Weihermiiller et al., 2007). The permittivity
of water at 10°C is ,, = 84 and the permittivity of the soil e; was considered to be 4.7, and
4.0 for Ryr and Rpp, respectively (Robinson et al., 2005). For Rpp, the relations obtained
by the CRIM were very similar to the empirical Topp equation Topp et al. (1980), which was
used by Cai et al. (2016) to derive SWC from TDR measured &. For the stony soil in Ry,
CRIM deviated from Topp’s equation and Cai et al. (2016) used the CRIM model to derive
SWC from TDR measured permittivity.

SWC =

(D-2)

D-5 Comparison of GPR and TDR soil water contents

The TDR sensors have a high temporal resolution, but a limited spatial coverage compared
to the GPR measurements. Several other studies indicate a good correlation between SWC
derived by TDR and surface GPR using the direct groundwave velocity for different soil state
conditions (Huisman et al., 2002). To better quantify the sensing volume of the horizontal
crosshole GPR, we performed a detailed analysis similar to Galagedara et al. (2003) by in-
vestigating the sampling volume for the different soils and states. The sampling zone for
borehole GPR is often defined by the Fresnel zone as a 3D volume (Fresnel volume) and is
depending on the distance between the antennae, center frequency, and permittivity of the
medium. The Fresnel volume is described by an ellipsoid with its foci points at the loca-
tion of the antennae positions. Thereby, the Fresnel zone is considered as an elliptical region
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perpendicular to the ray paths in the center of the ellipsoid. We calculated the sampling vol-
ume SV and the radius of the Fresnel zone of both facilities for minimum, intermediate, and
maximum observed permittivity/SWC (Table D.2). Because of the general lower permittivity
values for Ryp the radius of the Fresnel zone Rpr and SV is larger compared to Rypp. The
radius of the Fresnel zone for average permittivity is 0.39 m and 0.32 m for Ryp and Rpp,
respectively. For very dry conditions, this radius can reach almost 0.5 m for Ryp. Note that
these calculations do not consider inhomogeneity caused by infiltration events, rapid drainage
or medium properties changes. The SV for Ryr and Rpp ranges between 0.26 — 0.53 and
0.17 0.3 m3, respectively. In contrast, the SV of a TDR sensor is approximately 0.005
m3 and much smaller (at least 30 times) than for GPR (Ferré et al., 1998, Hinnell et al.,
2006). To compare GPR SWC with the TDR SWC values between 2014 and 2016, we av-
eraged the horizontal GPR SWC values at each depth for each treatment and measurement
day. A comparison of the mean TDR derived SWC plotted every hour and the GPR SWC
values weekly measured at different depths at the Ryp and Rpp site are shown in Figure
D.4 for the measurement period of 2014 (time series of 2015 and 2016 in Supplemental Figure
S1 and S2 (https://acsess.onlinelibrary.wiley.com/action/downloadSupplement?doi=
10.2136Y%2Fvzj2019.05.0044&f ile=vzj2vzj2019050044-sup-0001.pdf.) and D.14). The
first row in Figure D.4 shows the precipitation and mean daily temperature data acquired at
the weather station close by, whereas the panels below show the mean Ry and Rpp SWC
results for the sheltered, rainfed, and irrigated plots.

Table D.2: Estimated Fresnel zone radius (Rpp) and sampling volume (SV) for the upper terrace
(Ryr) and lower terrace (Rpr) rhizotrons for a range of relative permittivity (&)
values. For all calculations, a center frequency of the measured data ( f.) of 170
MHz was used, and the associated wavelength () was obtained.

Ryr Rpr
conditions e -] AN[m] Rpg[m] SV [m® &[] A[m] Rpgr[m] SV [m?
Dry 4 0.88  0.46 0.53 7 0.67  0.39 0.35
Wet 10 0.56  0.35 0.26 20 0.39  0.29 0.17
Intermediate 7 0.67  0.39 0.35 14 0.47  0.32 0.21
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Figure D.4: Comparison of the temporal and spatial mean soil water content (SWC) of the upper
terrace (Ryr) and the lower terrace (R 1) rhizotrons derived by ground-penetrating
radar (crosses) and time-domain reflectometry (TDR) sensors (solid lines) for 0.2-

and 1.2-m depths using the 2014 data.
derived with the three-phase CRIM model.

Averaged horizontal SWC profiles were
The top row shows the precipitation

data obtained by pluviometer (gray bars) and the mean daily temperature (black
solid line). Sheltered, flowering, and harvest times are marked as violet boxes, purple
dashed lines, and orange dashed lines, respectively. Irrigation events are indicated
with blue arrows with the corresponding amount. Note that the date of the year (x-
axis label) is given with the first and second numbers as day and month, respectively.
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D-5-1 Soil water content time series of 2014 for the upper terrace rhizotron

The averaged horizontal SWC profiles of Ry are clearly showing an increase of SWC for all
depths after major precipitation events such as in June and July 2014. After the rain events,
the change in SWC values for the rainfed and irrigated plot is similar ( 5 Vol % ), but larger
for the rainfed plot (up to 10 Vol %). Note for example the large increase by 18 and 10 Vol. %
at 0.2 and 0.4 m depth, respectively, in GPR SWC after the large rain event in the beginning
of July in the rainfed plot. The irrigated plot had already a higher SWC compared to the
other two plots before the rain event because of two previous irrigations. For the sheltered
plot only a small increase of SWC for the July event can be observed, because of the applied
shelter on top of the plot. Note that one irrigation in the sheltered plot was necessary in the
beginning of June to prevent wilting of the plants. After harvesting of the winter wheat in
mid-July, no shelter and irrigation was applied and the three different plots show a similar
trend and behavior. Analyzing these graphs no immediate relation or dependency between
SWC dynamic and crop stage can be noticed. The impact of the precipitation and drying
events decreased with increasing depth. The changes in weather conditions can be recognized
close to the surface, with increasing depth, the variations are less intense. Special care needs
to be taken by interpreting the variability and the quantification of the GPR SWC at 0.2 m
depth (also compare with the synthetic studies Section D-8-1). Especially for dry conditions,
a possible critically refracted air-direct wave interaction could be present. But generally the
0.2 m depth data follow similar trends as the other depths. Similar observations were made
for 2015 and 2016.

D-5-2 Soil water content time series of 2014 for the lower terrace rhizotron

SWCs in Ry p are generally higher than in Ry, which can be related to a shallower water table
at the lower part of the Selhausen test site and the finer soil texture and lower stone content
at Rpp. For example, the maximum SWC of about 0.4 is obtained for the Rpp irrigated plot,
whereas the maximum for the Ry for the depth between 0.4 -1.2 m was around 0.24. Similar
to the Ryr an increase and decrease of the GPR SWC can be observed in Ry after rain and
dry periods, respectively. An increase of the SWC with increasing depth can be noticed. For
the depth below 0.3 m, the smallest SWC is about 0.17 indicating that the soil hardly dries
out. For the large rain event in July an increase of the SWC for all the depths and plots and
an SWC increase of up to 0.15 can be observed.

D-5-3 Direct comparison between GPR and TDR soil water content results

Figure D.5 shows a cross plot between the mean SWC derived from the horizontal GPR
measurements and the mean of the SWC measured by the TDR. Note that the mean of the
TDR is calculated from the 4 sensors of each depth (see Figure D.2a ) that are closest in time
with the GPR measurements for both sites from 2014 to 2016. Based on these data correlation
coefficients r for Ryr and Ry were estimated for each year separately and for all three years
together and listed in Table D.3, whereas corresponding regression lines are plotted in Figure
D.5. The regression lines for both facilities show that there is a bias between the TDR and
GPR SWCs, with TDR showing larger SWC than GPR, and this bias is larger for smaller
water contents. This bias could have several reasons.
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Figure D.5: Comparison of soil water content (SWC) estimated for both the upper terrace
Ryt and lower terrace Rpr rhizotrons using time-domain reflectometry (TDR)
and ground-penetrating radar (GPR) measurements for 2014 to 2016. Each color
represents a different depth of investigation. Corresponding regression lines for only
Ry, Rpr, and combined Ry and Ry are indicated with a dashed, dotted, and
solid black lines, respectively.

A first explanation could be the different SV of the GPR and TDR measurements.
Since the TDR sensors are always at the same location, the deviation between the
GPR and TDR SWC should reflect a difference due to variations in local soil proper-
ties and local root water uptake which do not lead to complete random deviations over
time. While similar trends over time can be seen (Figure D.4, Supplemental Figure S1
and S2 https://acsess.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.
2136%2Fvzj2019.05.0044&file=vzj2vzj2019050044-sup-0001.pdf), the GPR SWCs show
more variability at deeper depths than the TDR SWCs. For example for the Ry site, except
for the large precipitation event in the middle of July, only minor changes in TDR SWC are
observed in the subsoil below 0.3 m depth, whereas the GPR SWCs react also to smaller rain
events. These reactions could be caused by preferential flow events that are by coincidence
not observed in the small sampling volume of the TDR sensors, but are detected in the larger
GPR sampling volume. In this way, the GPR captures SWC changes that are controlled by
heterogeneous structures at a larger scale, which could also include preferential flow patterns
(indications seen during infiltration experiments) and different local SWC variability (see Fig-
ure D.6). Due to the larger SV, the GPR data can also be affected by shallower SWC changes
that react faster on precipitation events. The difference in SV could also cause a bias when
TDR probes are installed in zones that are consistently wetter or consistently drier than the
soil volume that is sensed by GPR. But, it would be expected that such a bias would be
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random between the different treatment or different soil depths. This hypothesis will be eval-
uated later when the spatial variation of the observed SWCs are discussed. Another reason
for the noise could be the impact of the processing steps of the GPR signals that were adapted
for each measurement day and soil plot. Looking at Figure 4, it seems that the deviations
between GPR and TDR measurements are correlated for a certain observation day and facility
for all depths and treatments. To what extent this is related to the signal processing requires

further investigation.
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Figure D.6: Time-averaged water contents during the winter and summer wheat growing seasons
(1 April-harvest) in 2014, 2015, and 2016 in (a) the upper terrace rhizotron Ry
and (b) the lower terrace rhizotron b) R for different water treatments and depths
derived from time-domain reflectometry (TDR) and ground-penetrating radar (GPR)
measurements and calculated using the additive model.
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Table D.3: Correlation coefficient r between time-domain reflectometry and ground-penetrating
radar derived soil water contents for the upper terrace (Ryr) and lower terrace
(RpT) rhizotrons in 2014 to 2016.

Treatment Ryrp Rir Ryr & Rpr
2014 2015 2016 2014-2016 2014 2015 2016 2014-2016 2014-2016

Sheltered 0.65 0.66 0.19 0.57 0.89 0.82 0.8 0.86 0.91

Rainfed 0.78 0.71 0.59 0.66 0.89 0.80 0.87 0.81 0.88

Irrigated 0.73 0.54 0.30 0.19 0.76 0.72 0.89 0.77 0.85

All plots 0.76 0.68 0.58 0.50 0.77 0.75 082 0.78 0.87

Finally, it needs to be mentioned for the installation of the TDR probes in Ry, the larger
stones (with diameter larger than 30 mm) were excluded from the material that was packed
around the soil sensors whereas the gravimetric fraction of coarse fragments (with diameter
larger than 2 mm) was kept similar to guarantee a good coupling. This could have resulted
in an higher water retention and hence higher SWCs that were measured with TDR than
with GPR (Cai et al., 2016). However, this does not explain the bias that was observed in
Ry where the probes were inserted in the soil.

In order to evaluate the SWC measurements in the different facilities, at the different
depths, and for the different water treatments, we calculated time averages of the measure-
ments over the three wheat growing periods (from April 1 until harvest). A simple additive
model of the water treatment and depth effects was set up:

SWCZJ = SWC, + ASWCu)ate'ri,4 + ASWC.,depthj + Ewateri,depthj (D’3)

where SWC.  is the overall averaged SWC for all depths and water treatments in a given
facility, ASW Cyateri,. is the effect of water treatment ¢ (¢ = sheltered, rain fed or irrigated),
which is calculated from the difference between the average SWC at all depths for treatment ¢
and the overall average, ASWC gepinj is the effect of the depth, which is calculated from the
difference between the average SWC in all treatments at depth j and the overall average, and
Eyateri,depthj 18 an error term that represents the interaction effect between water treatment 4
and depth j, effects of soil heterogeneity, and measurement errors. In the Supplemental Table
S1 (https://acsess.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.
2136%2Fvzj2019.05.0044&file=vzj2vzj2019050044-sup-0001.pdf.), the mean SWC and
the effects are given. In Figure D.6, time averaged SWCs for the different water treatments
and depths in the two facilities that were measured with GPR and TDR and that were
calculated using the additive model are shown. The additive model with error term presumes
that the effect of the water treatment is the same for all depths and that the effect of the
depth is independent of the water treatment. This implies that the SWC profiles with depth
that are predicted by this model shift with a constant value between the different treatments
(see Figure D.6).

The time, depth, and water treatment averaged water contents SWC  indicate that
the TDR measured values are about 6 volume % higher than the GPR measurements in both
facilities. The SWC in the stony soil of the upper facility are on average by 16 volume %
lower than in the silty soil of the lower facility. Looking at the water treatment effects, the
GPR measurements show that in both the upper and lower facility, the sheltered plots are
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drier than the rain fed plots and irrigated plots, as expected. For the upper facility, the TDR
measurements show similar water treatment effects as the GPR measurements. But for the
lower facility, the TDR measurements indicated a wetter soil in the sheltered treatment than
in the other treatments. This indicates a systematic difference in soil properties of the TDR
measurement sites in the sheltered, rain fed, and irrigated plots of the lower facility. The top
soil in the upper facility has a lower stone content than the subsoil, which is reflected in a
higher SWC in the top soil layer (this is further confirmed by the SWCs measured by TDR,
probes at 0.1 m depth which are not shown here). For Rpp, the soil profile is on average
the driest at 0.2 m and the SWC increases with depth. The difference between the additive
model and the time averaged SWC for a certain water treatment and depth correspond with
the interaction-error term E. For Ry, both TDR and GPR measurements show a negative
interaction at 0.2 m depth and a positive one at 1.2 m depth for the sheltered plot and
opposite interactions in the irrigated plot. This demonstrates that root water uptake, which
dries out the soil, and irrigation and rainfall, which wet up the soil, have a stronger impact in
the upper soil layer and a smaller impact in the subsoil. Of note is that both GPR and TDR
show lower SWCs at 1.2 m depth in the irrigated than in the rain fed plots which indicates
the effect of soil heterogeneity on the SWC measurements in these plots. For the lower
facility in the silty soil, the TDR measured SWCs show similar interactions as in the upper
facility, but the GPR measurements show smaller or opposite interaction effects. The reason
for the interactions in the TDR measurements could be the underestimation of the SWC in
the deeper soil layer of the rain fed and irrigated plots by TDR sensors that were installed in
an apparently drier region of the plot (see figure with the SWC along the GPR transect).

Based on these analyses, we can conclude that GPR and TDR measured and time av-
eraged SWC in different soils, at different depths, and for different water treatments were
generally consistent with each other. But, there was a clear bias between both measurements
with TDR giving higher SWCs than GPR. Also inconsistencies could be observed and some
of them could be related to the spatial variability of the soil properties within and between
the plots. Therefore, in the next part we will investigate the behavior of the GPR SWC along
the tubes to analyze the spatial variability in more detail.
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Figure D.7: Horizontal and lateral soil water content (SWC) variability as determined by zero-
offset profile (ZOP) analysis for (a) the upper terrace rhizotron Ry and (b) the
lower terrace rhizotron R;p. Horizontal SWC profiles after CRIM using the 8
May 2014 data for all three treatments: sheltered, rainfed (natural condition), and
irrigated. Each measurement point (5-cm spacing) is color coded with the corre-
sponding SWC. Note the different color bars of the SWC. The black outlined boxes
indicate patches of higher or lower SWC that were consistent with the time during
the 3 yr.
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D-6 GPR soil water content variability

D-6-1 Semi-three-dimensional soil water content images of the rhizotrons

For each measurement day, the SWC values of the GPR measurements are estimated for all
positions (every 5 c¢m) along the horizontal boreholes for five depths and three treatments.
The obtained SWC values are then plotted as slices in between the horizontal boreholes for
each depth level at five depths for the three treatments such that a semi-3D image is obtained
of the volume 1.2 m depth x 9 m width x 6 m length for the Ryp and Ryp. Figure D.7a and b
show the obtained SWC on 08-May-2014 for the Ryp and Rpp, respectively, where the SWC
values located in the first meter close to the trench were excluded because of the presence of
sensors. For this date, an increasing SWC with depth is visible for both facilities except the
irrigated plot at Ryr. It can be noticed that the vertical variability of SWC is significantly
larger than the horizontal although the horizontal SWC variability is still significant at all
depths. Particularly remarkable is the large contrast between the topsoil (uppermost layer)
and the subsoil. As expected, the sheltered plot shows lower SWC values compared to the
rainfed and the irrigated plot, while the irrigated plots show slightly higher SWC than the
rainfed ones.

The mean and corresponding ST D of each depth and treatment for the data from 2014 to
2016 can be seen in Figure D.8. Every point represents the mean and S7'D of one ZOP
crosshole measurement along a pair of 6 m boreholes during a measurement day. The Ryr
STD reaches maximum values of 0.02 and the mean SWC is mostly below 0.2 (except for 0.2
m depth). Except for the lowest depth in the Ry, the sheltered plots show a smaller ST D
in comparison to the rainfed and the irrigated plots. The Rpp ST D reaches at a maximum
value of 0.03 and for 1.2 m depth even 0.04. The mean R;; SWC shows for depths between
0.4 - 1.2 m minimum values of about 0.1 and maximum values of about 0.4, whereas for the
shallow depth of 0.2 m a minimum values close to zero and maximum values up to 0.25 are
obtained. Overall, more variability and scatter of the relation between the mean and STD of
the SWC for all plots and depths can be observed for all plots and depths for Ry compared
to Ryp. This could be partly due to deviating boreholes present in Rpr.
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Figure D.8: Mean soil water content (SWC) for each depth and the corresponding standard
deviation (SD) for (a) the upper terrace rhizotron (Ryr) and (b) the lower terrace
rhizotron Ry for the time series 2014 to 2016. The different treatments are
indicated with different colors.

D-6-2 Spatial and temporal variability of GPR soil water content after rain
events

For a more detailed illustration and characterization of the spatial and temporal variability
of SWC for the large rain event in July 2014 the rainfed plot is analyzed in more detail
in Figure D.9. The times series between 26-Jun-2014 and the 24-Jul-2014 show the highest
variability of the SWC between dry and wet conditions as a response to the major rain events
that took place between 08 to 10-Jul-2014 (Figure D.9). We observed an increase of 0.1 in
SWC for the subsoil below 0.3 m depth, while for a depth of 0.2 m the increase in SWC is
approximately 0.16, probably due to the higher porosity. For comparison, the mean of four
TDR measurements at the same time as the GPR measurements are plotted. Although, the
absolute values are higher, the general trends of increasing and decreasing SWC are present
for both. Figure D.9b shows for the same dates the vertical SWC profiles over time, where it
clearly can be seen that the rain events cause an increase in SWC for all depths over time,
while in between the rain events the SWC is decreasing (indicated by the arrows on top). In
Figure D.9a, a general increase of the SWC and also an increasing vertical SWC variability can
be observed within the red ellipses for the first three days, which can also clearly be observed
in Figure D.9¢, where the lateral variability for these three days at five depths is shown. Here,
also the consistent patches which remain either wetter or drier during and after the infiltration
event can be identified.
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a) Time series from 26-Jun-24-Jul-2014 b) Vertical soil water content profiles
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Figure D.9: Detailed analysis of the soil water content (SWC) distribution for 26 June to 24 July
2014 for the rainfed plot of the upper terrace rhizotron Ry: (a) daily precipitation,
mean temperature, and time series of the SWC for depths of 0.2, 0.4, 0.6, 0.8, and
1.2 m derived by time-domain reflectometry (TDR) and ground-penetrating radar
(GPR) as crosses and circles, respectively, with the harvest date indicated by the
yellow line (note that the date of the year [x-axis label] is given with the first and
second number as day and month, respectively); (b) vertical GPR SWC for 26 June
to 24 July 2014; (c) horizontal depth slices of the SWC for the 3 d marked in (a) by
the red ellipses showing dry, intermediate, and wet conditions. The black outlined
boxes indicate the SWC patches that were consistent with time (see Figure D.9).
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D-6-3 Spatial variability along the rhizotubes

To investigate the consistency of the lateral SWC variability, we plotted the SWC variability
of the different measurement days in 2014 with gray lines in Figure D.10. After subtracting
the mean SWC at each depth from the individual SWC along the tubes for all measurement
days separately for the three years of investigation, the solid black lines show the mean of all
these gray lines providing a mean horizontal SWC variability for 2014. Similarly, the mean
horizontal SWC variability for 2015 and 2016 are indicated by the red and green lines, respec-
tively. In particular for Ry, the site with the higher gravel content and coarse material, very
clear and consistent patches over the three years can be seen (Figure D.10a, black circles).
Furthermore, these consistent structures over time also indicate the repeatability and repro-
ducibility of the GPR data analysis. This observation suggests that the SWC variability of
Ry is probably controlled by the soil properties rather than root growth of the wheat and
indicates heterogeneity of the soil properties along the tubes. For the Rpp, the site in the
more silty soil, the SWC variability of Ryp for the grey 2014 profiles is showing similar trends
but a much larger spread. Contrary to Ry, the mean Ry SWC curves for 2014, 2015, and
2016 show also larger differences. This could be the result of varying root water uptake along
the tubes during the different years. Note that some results show a clear increasing trend
from low to higher SWC (e.g., 1.2 m of the irrigated and rainfed plot). This might reflect
horizontal variations in SWC and suggests that the TDR sensors in 1.2 m and 0.8 m depth in
the irrigated and rainfed plots are located in a drier part of the plot and might explain why
the TDR sensors in the rainfed and irrigated plots show smaller SWC than in the sheltered
plot of Rpp. But, the persistent increase in SWC along the tubes might also be caused by
the horizontal boreholes having some deviation from the planned 0.75 m distance due to the
horizontal drilling. Since for Ryp the tubes were buried and not drilled such deviations are
not expected in Ryp. The boreholes are straight along the 7 m length (checked after drilling),
but an unknown error in the angle of the tubes can be present. If we consider for example
a maximum deviation away from the 75 c¢m offset from + 5 cm (£ 10 ¢m) at the end of the
tube for averaged soil condition of Rpp (g, = 14), the SWC would vary by + 3 (+ 6) Vol.
% SWC. This makes clear that a very detailed deviation logging needs to be carried out to
investigate this effect on the SWC in more detail especially for Rypr. The reason why the Ryr
shows a small spread and similar trends over the years, whereas Ry shows a larger spread
and different trends of the years is not clear and might be due to the different textures of the
soil material.
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Figure D.10: Detailed analysis for (a) the upper terrace rhizotron (Ryr) nd (b) the lower terrace
rhizotron (Rp7) of the soil water content (SWC) depth slices. The mean SWC of
each depth slice was subtracted from the individual SWC values along the depth
slices. The gray lines represent the individual SWC profiles for all the measurement
days of 2014. The solid black, red, and green lines represent the means of all the
measurement days of the years 2014, 2015, and 2016, respectively. The black
circles indicate the higher and lower SWC patches that were consistent with time

(see Figure D.9) along
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D-7 Water content spatial distribution for different crop types

In 2017 maize, instead of wheat, was sown. The same analysis for the 2017 GPR data was
applied as for the other years of both facilities. While the wheat showed no clear impact on
the GPR recordings, the maize plants showed an impact, especially during dry conditions at
Ry (boxes in Figure D.11). In particular during the growing phase of the plants between
July and August clear patches of where the plants are located can be observed. For example,
for very dry conditions during the growing phase such as at the 27-Jul-2017 a higher SWC
can be seen at the locations of the maize rows (very dry soil) and this contrast decreases with
increasing depth. The measured SWC shows peaks with a separation of about 75 ¢cm, which
equals the distance between the crop rows (Figure D.11 right side). Ten rows are planted
along the rhizotube profiles, of which seven can be detected with the GPR data. After some
rain events at the end of July, the GPR SWC data of 02-Aug-2017 also show patches, but this
time not that clearly. Furthermore, the SWC is lower at the maize plant rows (greatest for
the irrigated plot). Therefore, the ZOP recordings and the interfered SWC variations are not
only influenced by the weather conditions and the soil, but also by the presence of the crop.
This becomes also clear by analyzing the SWC variation along the 7 m long tubes for the
time period from July to August (Figure D.11 left side). For the dry day (cyan line) a very
strong variation is visible with maximum peaks at the plant locations. By comparing these
variations with Figure D.7c, where constant patches over the time for wheat were visible, for
maize these constant patches are overlapped and controlled by the plant presence during the
growing phase and more temporal changes are observed. One explanation could be that for
very dry soil conditions, the SWC below the plant rows was higher than between the rows and
this could be caused by the amount of water in the plant roots in combination with the higher
root density below the plant row. These variations along the depth slices are already visible
in the unprocessed data (not shown). As Figure D.11 indicates the SWC patterns caused by
root zone are only visible in the shallow depths. The roots are very concentrated near the
surface and are more distributed with increasing depths (Figure D.12). This is particularly
true for Ryp with a high root count density is present near to the surface. For Rypp high root
count density values are distributed over the entire depths (patches much harder to identify
in the GPR data, not shown). Note, that the effects of the surface and above ground plant
biomass (see Table D.2 for sensing volume) is currently not clear and needs to be investigated
in future research.
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Figure D.11: etailed analysis for (a) the upper terrace rhizotron Ry for the soil water content
(SWC) in the presence of maize in 2017: weather conditions and the SWC varia-
tions (similar to Figure D.6) at the shallow depths for all three plots for the main
growing period between July to August, with orange lines indicating the position
of the maize plant along the tubes (left) and horizontal SWC profiles after CRIM
for Ry for two example dates during the growing phase for all three treatments:
rainfed | (previously sheltered), rainfed Il, and irrigated (right).

Summarizing, for plants like maize clearly the strength of the GPR SWC estimation is visible
due to its power to sense lateral SWC changes and distribution. We have seen that a clear
link between the SWC of the GPR and the plant location can be made. Such variations could
maybe also have been shown for the upper few centimeters with TDR sensors, but to gain
the same spatial resolution a large number of sensors would need to be installed, which would
disturb the soil conditions. More research is necessary to link the measured SWC from the
GPR to the SWC of the roots itself. Generally, the currently estimated SWC is an averaged
value for a certain domain including all components, e.g., soil, roots, air. Interestingly, other
studies that mainly conducted ERT measurements suggested an opposite row-interrow effect
of the SWC in a maize crop stand with a smaller SWC under the rows (Garré et al., 2013,
Michot et al., 2003). It must be noted that ERT does not measure the permittivity and the
impact of root water content on bulk soil electrical conductivity is not unequivocal.
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D-8 Conclusion and outlook

We used a novel experimental setup to map and monitor soil water content (SWC) variability
and dynamics using horizontal crosshole GPR data in two minirhizotron facilities, Ry,
and Rpr in the upper and lower terrace, respectively. The setup allowed monitoring spatial
and temporal variations in SWC variability caused by precipitation, different treatments
(sheltered, rainfed, and irrigated), crops (wheat and maize), and soil types (gravelly soil
and clayey /silty soil) during four growing seasons and bare field conditions. More than 150
time-lapse GPR days of measurements were performed. We generally found higher SWC
at Rpp values than at Ryr due to the presence of a water table and the finer textured
soil material. At both locations, vertical variability of SWC is significantly larger than the
horizontal one. We observed a clear effect of the treatments on SWC. The sheltered plot
shows lower SWC values compared to the rainfed and the irrigated plot, while the irrigated
plots show slightly higher SWC than the rainfed ones. For Ryr with the higher gravel
and sand content much more horizontal variability in SWC can be noticed compared to
Rpp. Mapping the spatial variability of the SWC along the depth slices along the boreholes
indicated especially for Ryp time alternating patches with lower and higher SWC (£ 0.02).
The cause of these patches needs to be investigated in more detail and might be due to
heterogeneous structures that could be related to preferential flow paths. To better quantify
and illustrate the behavior of the spatial variability and to improve the investigation of
wetting and drying of the identified patches along the depth slices, higher temporal sampled
data of climate dependent GPR measurements are required than the weekly measured data
presented here, especially during major precipitation events.

Comparison of the GPR SWC with TDR SWC values showed similar trends over time
but consistently lower GPR SWC values. These differences between the TDR and GPR
measurements can most likely be explained by different measurement volumes and spatial
heterogeneity. Due to interfering critically-refracted air wave and direct subsurface waves, it
was not possible to map the shallow SWC values at 0.1 m depth with GPR using first break
picking. Here, more sophisticated methods such as full-waveform inversion approaches are
needed that are able to model the entire GPR trace including these interferences (Klotzsche
et al.,, 2016). Further, two uncertainties of the SWC estimates are discussed that could
influence the SWC: 1) a possible deviation of the tubes away from the assumed offset of 0.75
m that is currently not considered (mainly for Rpz) and 2) the assumptions of the CRIM
parameters to calculate the SWC. Further work, needs to involve accurate and detailed
deviation measurements of the boreholes and laboratory studies to better define the CRIM
parameters.

In contrast to TDR, crosshole GPR was able to detect differences in spatial variation
of SWC in horizontal direction between maize and wheat. A major advantage of GPR based
measurements compared to TDR is the fact that it may provide detailed information on the
spatial and temporal variation of SWC in the subsurface. Our crosshole GPR setup in com-
bination with rhizotron facilities allows studying the effect of crop and treatment differences
on the spatial and temporal variation of SWC and may therefore be extremely useful for
investigating root water uptake processes in function of soil and crop type. In addition, the
long-term time-lapse GPR data can be used to derive relevant hydraulic properties such as
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the Mualem-van-Genuchten parameters for both facilities and hence different soil types Busch
et al. (2013), Rossi et al. (2015), where also the influence of the growing plants including roots
can be incorporated. In this way, high spatial resolution investigations can be performed to
study the soil-plant-atmosphere interactions of agricultural crops at the field plot-scale. To
disentangle the SWC estimates from the root-system and the soil properties from the GPR
SWC more research is needed, e.g., bare-soil field conditions can help to investigate the soil
structures before sowing and after harvest. Furthermore, special care needs to be taken by
the data analysis for very dry soil conditions.

Root count density distribution
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Figure D.12: Root count density distribution for maize after the growing phase measured in a
grid of 0.0375 by 0.0375 m for (a) the upper terrace rhizotron Ry nd (b) the
lower terrace rhizotron Ry . The data were acquired by excavating a trench close
to the maize plants and counting the number of roots per grid cell (two replicates
per site).

D-8-1 Synthetic study: GPR wave interference close to surface

We defined a 2-layer 3D model and computed the EM wave using the 3D finite difference time
domain solver gprMax (Warren et al., 2016), where the air layer with permittivity e, — 1 was
overlying a soil layer of &, = 5 (dry sand). We calculated the EM field components for the same
depth positions and spacing of the transmitter and receivers that are present at the rhizotron
facility. For comparison, we also modeled the electrical field in a homogenous medium with
a permittivity of e, = 5 (Figure D.13a). For all the synthetic models the conductivity o was
chosen to be constant with ¢ = 10 mS/m for the soil and as source pulse we used a Ricker
wavelet using a center frequency of 200 MHz. The results indicate that the influence of the
interferences of air and direct wave on the first breaks is largest at 0.1 m and 0.2 m depth
(Figure D.13a and b). With increasing depth the air wave interaction features decrease and
arrives later as the first breaks of the direct wave of the traces and no interference on the first
break is present (Figure D.13a). To investigate the influence of wet and dry soil conditions for
the shallowest borehole pair at 0.1 m depth, the same 2-layered model was used with varying
soil permittivity between 5 (dry sand) up to 20 (wet sand) and shown in Figure D.13b. In
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all the models a phase shift and an influence of the amplitude on the trace can be observed
(Figure D.13b), indicating that first-break picking and ray-based approaches would return
erroneous results. To obtain reliable permittivity and SWC results for the shallow boreholes,
we need to take this refracted airwave and direct wave interference into account and a more
sophisticated analysis approach like full-waveform inversion (Klotzsche et al, 2016) needs to

be used.
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Figure D.13: Comparison of synthetic horizontal borehole traces with a borehole separation of
0.75 m. Traces for a three-dimensional homogenous space with a relative dielectric
permittivity (&,) of 5 in red and traces for the presence of an air layer on top of
the £, = 5 of the two-layered medium in blue: (a) traces for transmitter (Tx) and
receiver (Rx) depths of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.2 m, with the possible ray
paths for a simple two-layered model in the embedded box; and (b) comparison
of synthetic traces at the 0.1-m depth for ¢, values of 5, 8, 10, and 20 for the
homogeneous and two-layered media.

D-8-2 Synthetic study: First break picking close to interfaces and soil water
content gradients

To estimate the error of the travel time picking in the presence of interfaces and gradients
additional synthetic models were investigated. Figure D.14 shows the different models and the
picked permittivities and a detailed comparison between the picked and true values are shown
in Table D-A.1. For model I and II, the first break picking at 0.4 m, and 0.2 m depth shows
the largest deviation with a lower permittivity caused by a refracted wave traveling through
the fastest layer with the lowest permittivity. For the increasing and decreasing gradients
in permittivity (Model TIT and TV), relatively good agreement between the model and the
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picked values were obtained, except for the Model IV topsoil pick at 0.2 m depth. Model V
compromises a high permittivity zone embedded in a lower permittivity medium. Such a layer
can cause a low-velocity waveguide for EM waves showing distinct wave propagating effects.
In previous vertical crosshole studies (Klotzsche et al., 2013) such zones could be related to
zones of higher porosity and zones of preferential flow. The first break picking of the traces
for such a layer indicates the presence of a high permittivity zone but it underestimates the
permittivity and hence SWC (see Table D-A.1).

Model | Model Il Model lll Model IV Model V

o 0, 10
—— Syn. permittvity model
X Picked permitivity
02 gl X 02, 02 X 02 X
08 08 08, 08 08 b |

Depth [m]

1 y SR
BD 5 10 15 25 1 5 20 25‘ u0 5 10 15 20 25' BD 5 10 15 20 251 Bﬂ 5 10 20 2

Permittivity Permlmv‘lfy Permittivity Permitivity Permittivity
Figure D.14: Different synthetic models with varying permittivity for top and sub-soil (solid blue
lines). Synthetic GPR traces were generated with gprMax 3D. The boundary of
top and sub-soil is located at 0.3 m depth. Model Il and Il are modeled with
a linear gradient of the permittivity in the subsoil. Conductivity is constant for
all models with 10 mS/m. For the same depths of the rhizotrones the first arrival
travel times were picked and converted into permittivity (red crosses). Exact values
and corresponding differences are illustrated in Table D-A.1.
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Table D-A.1: Results of the different synthetic models using gprMax. For Models | to V for
each depth between 0.2 and 1.2 m, the relative dielectric permittivity (&,) used in
the model and the handpicked transformed ¢, are shown. The difference between
the modeled and handpicked permittivity values is indicated as Ae,.. The result-
ing differences in SWC were calculated using Topp's equation (Eq. [2]) and are

indicated as Abfpqpy.

Depth [m] &, model &, picked Ag,  Abrgy, [%]
0.2 4.70 4.49 0.21  0.52
0.4 20.00 12.23 707 11.56
Model I 0.6 20.00 20.40 -0.40  -0.49
0.8 20.00 20.29 -0.29  -0.36
1.2 20.00 19.86 0.14  0.17
0.2 20.00 12.12 7.88 11.761
0.4 10.00 10.48 -0.48 -0.932
Model I 0.6 10.00 10.30 -0.30  -0.586
0.8 10.00 10.23 -0.23  -0.438
1.2 10.00 10.30 -0.30  -0.586
0.2 4.70 4.61 0.09 0.23
0.4 9.97 8.77 1.19  2.39
Model IIT 0.6 12.11 12.23 -0.12 -0.21
0.8 14.26 14.36 -0.10  -0.16
1.2 18.56 18.40 0.16 0.21
0.2 20.00 15.60 440  6.05
0.4 19.34 19.90 -0.56  -0.71
Model IV 0.6 17.86 18.60 -0.74  -0.99
0.8 16.38 16.98 -0.60 -0.87
1.2 13.43 13.73 -0.30  -0.50
0.2 9.00 6.69 231 494
0.4 15.00 14.18 0.82 1.31
Model V. 0.6 15.00 15.25 -0.25 -0.39
0.8 25.00 22.78 222 2.29
1.2 15.00 15.31 -0.31  -0.49

July 22, 2024



194 Appendix D

July 22, 2024



Chapter E

Appendix E: Development and
validation of a deep learning based
automated minirhizotron image
analysis pipeline

Abstract

Root systems of crops play a significant role in agro-ecosystems. The root system is essential
for water and nutrient uptake, plant stability, symbiosis with microbes and a good soil struc-
ture. Minirhizotrons have shown to be effective to non-invasively investigate the root system.
Root traits, like root length, can therefore be obtained throughout the crop growing season.
Analyzing datasets from minirhizotrons using common manual annotation methods, with
conventional software tools, are time consuming and labor intensive. Therefore, an objective
method for high-throughput image analysis that provides data for field root-phenotyping is
necessary. In this study we developed a pipeline combining state-of-the-art software tools,
using deep neural networks and automated feature extraction. This pipeline consists of two
major components and was applied to large root image datasets from minirhizotrons. First,
a segmentation by a neural network model, trained with a small image sample is performed.
Training and segmentation are done using "RootPainter". Then, an automated feature
extraction from the segments is carried out by "RhizoVision Explorer". To validate the
results of our automated analysis pipeline, a comparison of root length between manually
annotated and automatically processed data was realized with more than 36,500 images.
Mainly the results show a high correlation (r—0.9) between manually and automatically
determined root lengths. With respect to the processing time, our new pipeline outperforms
manual annotation by 98.1 - 99.6 %. Our pipeline, combining state-of-the-art software tools,
significantly reduces the processing time for minirhizotron images. Thus, image analysis is no
longer the bottle-neck in high-throughput phenotyping approaches.

July 22, 2024



196 Appendix E

Adapted from: Felix Bauer, Lena L&rm, Shehan Morandage, Guillaume Lobet, Jan
Vanderborght, Harry Vereecken, Andrea Schnepf (2022): Development and validation of a
deep learning based automated minirhizotron image analysis pipeline. Plant Phenomics,
2022, https://doi.org/10.34133/2022/9758532.
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E-1 Introduction

Roots are an essential component of the global biosphere. They are mainly responsible
for the acquisition of the resources water and nutrients for the entire plant. In most
ecosystems, these resources are the limiting factors for growth of plant organs and yield
Atkinson (2000). Water and nutrient uptake are directly linked to the parameters defining
the root system, like length, diameter or branching. Therefore, collecting information
about the root system becomes increasingly significant. In order, to improve water and
nutrient uptake of plants for specific soil and climatic conditions, it is essential to obtain
information about the root system architecture of plant species that have been shown to
be beneficial for the given conditions Lynch (2007). For plant breeding, this will help to
develop new genotypes which are able to cope better with e.g. drought-stress and are
more efficient in nutrient uptake Lynch (2013). This will not only help to increase the
cultivated area for certain species, it might also lead to higher yields. Especially this
applies to locations with less suitable environments for a highly productive agriculture. The
negative impact on the soil should be minimized at the same time Bianco and Kepinski (2018).

The direct observation of roots is difficult, because the root system is surrounded by
soil, making it challenging to visually measure the roots. To avoid that measurements heavily
disturb the plant and its environment, permanent installed equipment, like rhizotubes, or the
construction of a minirhizotron, are crucial Atkinson et al. (2019). Minirhizotrons are useful
tools to collect data about the root system without disturbing the environment of the roots or
the plant itself. Moreover, they allow root observations over the whole vegetation period at a
high temporal resolution and the comparison of different vegetation periods and crop types.
Transparent rhizotubes, installed below ground, function as a window in the soil. Guided
scanners and camera-systems provide high resolution images of the roots and the surrounding
soil. Consequently, the non-invasive root measurements can be repeated multiple times during
the growing period under in situ conditions. However, large minirhizotron facilities include
tubes in different depth-levels. Measurements in several depths and time lapse observations
result in big datasets that often consist out of 10,000 images and more Cai et al. (2016).
Images provided by minirhizotrons strongly differ from e.g. root scans gained from excavated
and washed roots Zeng et al. (2010). Various soil conditions around the tubes in different
depths lead to a wide range of heterogeneous images with different characteristics. Beside the
actual roots, soil structures and disturbing fragments, including small animals, are depicted.
Different soil conditions in various depths and at varying locations lead to varying color
and light conditions and therefore make the automated processing of minirhizotron-images a
challenging task Vamerali et al. (2011).

To analyze roots mainly two steps are needed, the segmentation of root objects and
the object quantification Leitner et al. (2013). Due to the heterogeneity within minirhizotron
images, the segmentation is very complicated. Different analysis approaches emerged,
represented by a numerous collection of software tools, designed to extract the infor-
mation about the root system Lobet et al. (2013). These tools work manually, or in a
(semi-)automated way. Manual annotation tools for minirhizotron images, like "WinRhi-
z0TRON" (Regent Instruments Incl.), or RhizoTrak Moller et al. (2019) rely on the human
interaction with each individual image taken, to track each root by hand. It requires the
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user to follow every root depicted in the image by hand and mark start, branch and endpoints.

Semi-automated and automated approaches with software-tools exist to facilitate and
speed-up the post-processing of the images Vamerali et al. (2011). Filter algorithms used to
increase the contrast between root and background and to find root structures by typical
geometrical shapes, were proposed by several authors Dowdy et al. (1998), Murphy and
Smucker (1995), Zeng et al. (2010). Semi-automated software like "RootSnap!" (CID
Bioscience) and "Rootfly" Zeng et al. (2008) require a manual annotation, but also provide
root suggestions by a filter created on an initial dataset. Consequently, most of these
programs are strictly limited to certain type of images, like high-contrast root scans Yasrab
et al. (2019). Eventually, this has the consequence that the annotation of the roots in
most minirhizotron images needs to be done almost exclusively manually. Depending
on the number of images taken and the number and length of roots, the manual and
semi-automated analysis can take weeks to years. Previous studies found that the estimated
amount of minirhizotron images, annotated with an annotation software, was between
17 and 38 images h™! Ingram and Leers (2001). Adapted to the working routine with
"Rootfly", it takes 1-1.5 h annotation time for an image area of 100 cm? depicted soil
Smith et al. (2020b). Further, the results underlie the subjectivity of the annotator, be-
cause annotations are done according to personal experiences and knowledge of the annotator.

Deep learning has developed to the Gold Standard of machine learning methods within
the recent years. Deep neural networks are able to learn from big datasets and provide
outstanding results on complex cognitive challenges, even beating human performance in
some application fields Alzubaidi et al. (2021). Convolutional Neural Networks (CNN),
a subclass of deep learning models, have been created to deal with data in the shape of
multiple arrays and are therefore suitable for high-dimensional data like images LeCun et al.
(2015). They have the potential to perform a decent automated detection of regions of
interests within a heterogeneous and noisy dataset Janiesch et al. (2021). Transferred to the
analysis of minirhizotron images, CNNs should have the capability to precisely identify and
segment roots in images, where the roots cannot be segmented sufficiently by e.g. explicitly
programmed thresholds or filter algorithms. CNNs were already used successfully to localize
plant organs, including roots Kamilaris and Prenafeta-Boldi (2018), Keller et al. (2018),
Pound et al. (2017), Santos et al. (2020). However, the use of CNNs has mainly been proven
on data originating from controlled environment, like lab experiments Yasrab et al. (2019).
Furthermore, they are often limited to the use of one or a few fixed pre-trained neural
network models Narisetti et al. (2021), or they are not easily usable for non IT-professionals
Shen et al. (2020). The main reason for this is the required knowledge and competences in
machine learning and programming needed to create a CNN-based system. Especially the
data partition between training and validation, the process of annotation and the setup of
network architecture make the use of CNNs complicated Smith (2018). Although the use of
CNNs is promising for root segmentation and first approaches to use CNNs to segment roots
have been successfully accomplished with e.g. the "SegRoot" networks, it is not subject of
many published studies and not yet widely used as phenotyping tool for root traits Wang
et al. (2019). To make the advantages of CNNs widely utilizable, a software, combining the
annotation, training and segmentation process with CNN together in an interface easy to
handle, is the key for general use of neural networks for automated root segmentation. The
recently published software tool "RootPainter" is one of the most promising approaches for
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this task Smith et al. (2020a).

However, fast and reliable segmentation is only the first step of root analysis. For the
root quantification another tool is required to obtain morphological and topological features
from segmented images. For this task conventional automated root analysis tools, like "Win-
Rhizo" (Regent Instruments Incl.) and "IJ Rhizo" Pierret et al. (2013) can be used. Recent
progress in the development of root-system feature extraction from high-contrast images or
scans have resulted in new software tool with the ability of extracting multiple features with
a high precision. On the front line of current developments is the new software "RhizoVi-
sion Explorer", providing the functions to accurately skeletonize a high-contrast segmented
image, to correct the skeleton and deriving several features from it Seethepalli and York (2020).

The aim of our study is to develop a generally applicable, automated analysis pipeline,
based on state-of-the-art technologies and software to extract root traits from minirhizotron
images. This includes data annotation for neural network training, segmentation and feature
extraction. The automated analysis pipeline has to meet the requirements in 4) availability
and feasibility, 1) accuracy and comparability, #17) speed and efficiency. It was an important
requirement to us that this workflow should be feasible for root scientists, who only have
basic knowledge in programming or computer science. This workflow should make fast root
phenotyping easily accessible for newcomers in root science and lower the time and effort
needed to get into the topic. Therefore, it relies on already published software. This workflow
further should underline the practicability of deep learning phenotyping tools for the scientific
root analysis routine. All software required to use this automated root image analysis pipeline
are freely available and easy to operate. Another key advantage of our study is the scope of
data used for validation and comparison and the concomitant claim to a general validity of
this pipeline. To test and validate the automated analysis pipeline, datasets obtained from
several years and two minirhizotron facilities were processed and compared to previously
manual annotated data Cai et al. (2018a, 2016, 2018b), Morandage et al. (2021). Previous
studies evaluating the results of a CNN-automated image analysis for root images originating
from (mini)rhizotrons used between 40 - 857 images Narisetti et al. (2021), Smith et al.
(2020b), Wang et al. (2019). In our test we evaluated the results of more than 107,000
images of which we used more than 36,500 for a direct one-to-one comparison of manual
human annotation to our automated analysis pipeline. The images represent different in situ
conditions. In this paper we will present the detailed procedure on operating the automated
analysis pipeline and compare its performance to a previously done manual annotation for a
decent evaluation.

E-2 Materials and Methods

E-2-1 Experimental test site

The data used for the automated analysis pipeline were collected at the two minirhizotron
facilities at the Selhausen test site of the Forschungszentrum Jiilich GmbH (50°52’07.8"N,
6°26’59.7"E), Germany Bogena et al. (2018), Weihermiiller et al. (2007). The field, in which
the minirhizotron facilities are located, has a slight incline with a slope of under 4°. The
two minirhizotron-facilities are approximately 150 m apart. The minihizotron facility located
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at the top of the field is hereafter referred to as Ryr (rhizotron upper terrace) and the
minirhizotron at the lower part of the field as Ry (rhizotron lower terrace). The thickness
of the soil layer with silty loam texture varies strongly along the field-slope. While it is not
present at the top, its thickness at the bottom is up to 3 m. At Ryt the gravel content is
60 % while at Ryp it is only 4 %. Both facility contain 54 horizontally installed, transparent
tubes with each a length of 7 m and an outer diameter of 6.4 cm. The tubes are separated
into three plots with each three vertical, slightly shifted (10 cm) rows of six tubes, where
three different treatments can be studied. The tubes in each row are installed in -10 c¢m, -20
cm, -40 cm, -60 cm, -80 cm and -120 cm depth. Past treatments include different irrigation
patterns (sheltered, rainfed, irrigated), different sowing densities and dates (later sowing in
sheltered plot), or cultivar mixtures (two single cultivar treatments and one mixture). The
two minirhizotron facilities were installed in 2012 (Ryr) and 2014 (Ryr), respectively. Further
construction details are explained in Cai et al. (2016).

E-2-2 Data acquisition

Two different camera systems manufactured by Bartz (Bartz Technology Corporation) and VSI
(Vienna Scientific Instruments GmbH) were used to capture the root images in the minirhi-
zotrons. Both camera-systems are designed to be used manually. A regular measurement
produces 40 images per tube. 20 images are taken 80° clockwise and 20 images 80° counter-
clockwise from the tubes top point, see Cai et al. (2016, 2018b), Morandage (2020) and
Appendix D. In this study, the collected images of three crop growing seasons from 2015/16
and 2017 were taken into account. Depending on the year and measurement date either the
Bartz- or the VSI-system was used. The crops cultivated at the test site and used for this
study were Triticum aestivum cv. Ambello in 2015/16 (winter wheat) and in 2017 Zea mays
cv. Zoey. Table E.1 gives an overview on camera system used, the resolution of the images,
measurement years, measured time period and cultivars observed. Depending on crop growing
season, the total amount of measurement dates varied between 21 and 38. The amount of
images, taken at one measurement date, varied according to the amount of tubes measured
at this measurement date (Table E.4). This was depending on the state of vegetation evalu-
ated in field. Over the past years, the root images collected in the minirhizotron facilities in

Table E.1: Overview of the camera-systems and experiment timeline of minirhizotron images

acquisition
camera system Bartz VSI
original resolution [px] 754 x 510 3280 x 2464
converted resolution [px] 1508 x 1020 2060 x 2060
real size [mml]| 16.5 x 23.5 20 x 20
growing season 2015/16 & 2017 2017
culture 2015/16: Triticum aestivum cv. Ambello Zea mays cv. Zoey
2017: Zea mays cv. Zoey
time period 16/11/15 - 23/06/16 08/06/17 - 22/06/17
(dd/mm/yy) 23/06/17 - 12/09/17

Selhausen were analyzed manually, using "Rootfly" as a semi-automated tracking tool for the

July 22, 2024



E-2 Materials and Methods 201

root length and root counts Cai et al. (2018a, 2016, 2018b), Morandage (2020), Zeng et al.
(2008). In this study the images of the years 2015/16 and 2017 were analyzed. The manual
annotation of 2015/16 and 2017 has been already published in Cai et al. (2018b), Morandage
et al. (2021). Further a sub-sample of the root images was manually annotated by two persons
separately in "Rootfly". 1,760 images were used for the comparison between hoth annotators,
and the annotators and the results of the automated analysis pipeline, to test if there are
differences in terms of human subjectivity.

E-2-3 Software tools

Our proposed automated minirhizotron image analysis pipeline is based on two software tools
for the segmentation Smith et al. (2020a) and the automated feature extraction Seethepalli
and York (2020). Furthermore, scripts to convert the segmented images and analyze the
outcome are available. For an easy accessibility all scripts are available together within the
GUI of the executable "RootAnalysisAssistance" (Supplementary Material). The conversion
of the segmented images is also possible within "RootPainter".

Segmentation

"RootPainter", a software tool for the deep learning segmentation of biological images with an
included annotation function provides an interactive training method within a GUI, using a U-
net based CNN. U-net was developed to train with less images for a more precise segmentation
and is therefore suitable when it comes to images where the manual annotation is especially
time and labor consuming Ronneberger et al. (2015), Smith et al. (2020b). "RootPainter"
was developed to make training-data creation, annotation and network-training accessible for
ordinary users. It provides a dataset creation function, which allows an easy selection of
training images and cropping them in multiple tiles and to a suitable size for the interactive
training. The training mode provides an interactive graphical platform to manually annotate a
small part of the dataset and create a neural network model. Further, a mode to segment whole
image directories at once is provided. For training and segmentation a Graphics Processing
Unit (GPU) is required Smith et al. (2020a). However, a full minirhizotron image analysis
is based on two main components, the segmentation and the root trait extraction. Although
"RootPainter" provides an inbuilt function for basic root trait extraction based on the previous
segmented images, it does not provide e.g. a skeleton correction function and a comprehensive
feature extraction including multiple root traits. For our pipeline the feature extraction part
should provide multiple morphological and architectural root features with a high accuracy.
Furthermore, the possibility of a systematic correction function should be implied. Therefore
a platform fulfilling these requirements was used for feature extraction.

Feature extraction

"RhizoVision Explorer" represents the current state-of-the-art technology with a sophisticated
automated root traits extraction from segmented root images, by combining the abilities of
several existing root image analysis platforms. This includes skeletonization of the segments,
filter, filling, smoothing and pruning functions Seethepalli et al. (2021), Seethepalli and York
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(2020). However, like most programs for automated root system analysis it is built for the
use with binary images or high contrast scans and therefore not suitable for minirhizotron
images. The capability of "RhizoVision Explorer" are nevertheless useful when applied to
already segmented minirhizotron images.

E-2-4 Analysis pipeline

The starting point for the automated analysis pipeline is a directory containing the raw images
captured at the minirhizotron facility. The pipeline was run on a GPU-server with 4 Nvidia
GeForce RTX 2080 Ti (NVIDIA Corporation). As client, a computer with an Intel i5-8265U
processor and 24GB RAM, operated on Windows 10, was used. However, it is also possible
to run the pipeline on one machine, if there is a GPU with CUDA available, or to use the
"Google Colaboratory" (Google Colab). An overview of all following steps is explained in
Figure E.1.

small image

sample obtalnl_ng images
from minirhizotron

interactive training
with RootPainter

automatic
neural network segmentation
model with RootPainter

converting
segmented images
to binary

automatic feature RESULTS,
extraction with e.g. root length

RhizoVision Explorer density (RLD)

Figure E.1: Schematic overview of the workflow of the automated analysis pipeline starting with
image acquisition in the minirhizotron facility.

Pre-processing

The first step of the pipeline is the pre-processing of the images. Depending on the image
acquisition system either an up- or down-scaling and a distortion correction is performed
(supplementary data). In the same step a labeling, sorting and registration of the images is
done automatically. If the images are already ready to use, this step can be omitted.
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Training

This step is only needed if no suitable neural network model exists for the targeted dataset.
The process, to train a model for root segmentation starts with the creation of a training
dataset and subsequently a new project in "RootPainter". We highly recommend to balance
the training data according to the factors influencing image visually, in order to maximise the
heterogeneity in the training data. Images with different quantities of roots and various root
types at different locations should be included. In our case the training dataset for one model
contains a balanced amount of images from two different minirhizotron facilities, respectively
soil types, depths, tubes and dates. We used only a small amount of images from all available
images. For each camera system a separate model was trained, because the images of the two
cameras differ significantly. The annotation can be done in the GUI. The roots are annotated
as "foreground", soil and other not root-belonging fragments as "background". After the
training is started, "RootPainter" automatically creates neural network models, depending on
the annotation done previously. The progress can be seen in real time, because "RootPainter"
provides previews of the segmentation done by the actual model. These proposals can be
corrected and supplemented by the user. The training procedure used in this study is the
"corrective training". It is intended for large datasets and therefore suitable for the minirhi-
zotron image data. Essentially this training approach starts with annotating a few images in
detail and then continue with correcting only the false-positive and false-negative suggestions
of the current model. After finishing the interactive annotation the training is completed
automatically. Further details and instructions are explained in Smith et al. (2020a).

Segmentation

The fully-automated segmentation is done with the best model previously trained with a small
selection of images from the corresponding measurements. To perform the fully-automatic
segmentation, all images have to be located in one directory. The segmentation process itself
is started from the "RootPainter" main menu. For each minirhizotron image stored in the
directory, one segmented image will be created (Figure E.2a, Figure E.2b).

Converting

To import the segmented images into "RhizoVision Explorer" in the next step, it is essential
to convert the images to binary, otherwise the images are not loaded properly (Figure E.2¢).
This step is performed by a conversion-script, which converts the mono-colored segmented
images to black and white images and reduces the images information to binary by only giving
information for either black or white pixels. The conversion-script is available as python script
or within the RootAnalysisAssistance-GUI. It is possible to either browse the image-folders to
convert manually, or to process the conversion of a certain image directory in a batch mode.
This option is suitable for fast processing a large amount of segmented images. The conversion
option is also available within the "RootPainter"-GUI.
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Feature extraction

The final step is the feature extraction, performed by "RhizoVision Explorer". This is also
done in batch mode. The threshold of the non-root filter, hole filling, edge smoothing and
pruning was chosen in a standardized way and uniform for each parameter, depending on the
resolution of the image. For the images resulting from the Bartz-system the threshold is 13 px
and for the VSI-system 20 px. This results in filtering parts smaller then 0.2 mm? and filling
holes bigger than 0.2 mm?. To minimize the influence of segmentation mistakes at the border
between root and soil and thus reduce the false detection of non-existent laterals, the minimum
size for a lateral root to be detected as a branching root is the parent roots radius multiplied
with 0.2 mm. The architectural and morphological information are exported as CSV and
the processed segmented images with the calculated skeleton is saved as PNG (Figure E.2.d).
The feature extraction is started from the "RhizoVision Explorer" GUI. Further details and
background information are explained in Seethepalli et al. (2021).

Root analysis

As last step in addition to the feature extraction, the two-dimensional root length density
(RLD) is calculated from the total root length and the window size of the image in the unit
of em ¢cm™2. Furthermore, the number of root tips and branch points, the total root length,
the branching frequency, the network and surface area, the diameter (average, median and
maximal), the perimeter and the volume can be extracted from the "RhizoVision Explorer"
output CSV and applied to spatio-temporal analysis of the root system (Figure E.6 and
supplementary data).

E-2-5 Statistics, data processing and visualization

Python 3.8 with Pandas 1.0.5, Numpy 1.18.5, Matplotlib 3.2.2, Pillow 8.2.0 and SciPy 1.5.0
have been used for statistics, data processing and visualization.

The Fi-score (Equation E-1) is a measure commonly used to evaluate neural network
models Smith et al. (2020a). The F; combines precision and recall and has been designed
to work on imbalanced data. Precision evaluates the percentage of all correct positive
predictions and recall indicates how many positive of all positives the model found. F; values
are bounded between 0 and 1, the highest value is indicating perfect precision and recall.

precision * recall

FR=2sx—" """ E-1

! ¥ precision + recall (E-1)
T

precision = ﬁpr (E-2)
Tp

ll=—+—— E-3

reca Tot P (E-3)

where Tp are the true positive, Fp the false positive and Fy are the false negative pixels.
The Fy-score was calculated during the interactive training. True positive pixels are correct
recognized pixels, where roots are correctly classified as roots. False positive pixels are pixels
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(b)

Detected root-segments from RootPainter exported root-segments from RootPainter

() [ (d) !

\

post-processing result of RhizoVision Explorer

converted segments to binary

Figure E.2: Example for one image processed by the automated root analysis pipeline. (a) The
roots are "detected" by RootPainter according to the previous trained model. (b)
The segmented image is exported and (c) converted to binary. (d) The last step is
the skeletonization and feature extraction with RhizoVision Explorer.
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classified as root, not including a part of a root and false negative pixels are pixels including
parts of a root, but are classified as background.

The outcome of the automated root annotation was compared to the manual annota-
tion by means of the pearson correlation coefficient, both on the data set as a whole as well
as on individual measurement dates for the seasons 2017. For the same season we calculated
the mean of the total root length per image for each measurement date and used a Welch
two-sample t-test to assess whether the differences between automated analysis and manual
annotation of the total root length (ARL) were statistically significant.

Furthermore the normalized root mean squared error (NRMSE) was calculated accord-
ing to Equation E-4.
A

i (yi — y)?
NRMSE =+ " (B-4)

Ymaz — Ymin

where n — sample size, y; is the it" observation of y and gA/ is the predicted y value. Additionally
a linear Model IT regression (ordinary least products) was performed to test for fixed and
proportional bias with the total root length of 2017 data. We choose this type of regression
because the z-values might also be subject to errors Delory et al. (2017), Ludbrook (1997).
For each measurement date and facility, a model was fitted and the 95% confidence interval
(95% CI) of slope and intercept was calculated. We considered a fixed bias if the 95% CI of
the intercept did not include 0 and there was a proportional bias if the 95% CI of the slope

did not include 1.0.

The manual per-image annotation with "Rootfly" of 2015/16 data is no longer available.
However, the images and mean RLD values per tube are available and therefore were used for
comparison. Based on this the RLD resulting from automated and manual analysis methods
was calculated for every minirhizotron tube and measurement date (Figure 5-1) and compared
as a proxy for a common root measurement parameter Zuo et al. (2004). In this analysis, all
growing periods 2015/16, and 2017 were included.

E-3 Results

E-3-1 Neural Network model validation
The Fy for both neural network models trained for each camera-system is high. The F}

for the Bartz-system is 0.78 and 0.81 for VSI-system model. After 60 epochs without any
improvement the neural network training was stopped automatically.

E-3-2 Comparison of automated and manual annotation

Considering all images used for comparison, the overall correlation of total root length between
manual annotation and automated analysis pipeline is very high with r = 0.9.
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Figure E.3: Correlation of automated and manual analyzed root length, obtained from 2017.
Each measurement date is considered separately for Ryt and Ryt. The color repre-
sents the density.

The correlation was performed with 16,599 images taken at Ry and 21,082 images taken
at Rrp. For the data obtained in the growing period 2017, the correlation is high to very
high (r = 0.77 - 0.94) for every measurement date except the first measurement date at
Ryr (r = 0.57) (Figure E.3). Generally, the correlation shows an increasing trend towards
later measurement dates (Table E.2). ARL and NRMSE indicate low values for most
measurements dates at both facilities. Regarding especially the ARL it can be seen, that the
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Figure E.4: Comparison RLD of the data obtained from images originating from two minirhi-
zotrons in the growing season 2015/16 and 2017, separated by plots grown with
different treatments. The images were analyzed by hand (blue: manual) and by the
automated analysis pipeline (red: automated). 2015/16: (a) Ryt manual, (b) Ryt
automated, (c¢) Rt manual,(d) Ryt automated; 2017: (e) Ryt manual, (f) Ryt
automated, (g) Rt manual,(h) Rt automated;
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differences in mean between manual annotation and automated analysis pipeline in 2017 are
very low -0.5 mm (Ryr), -0.77 mm (Rpr). However, the t-test indicates that there are no
significant differences between the mean of total root length except for measurement date 4
at Ryr. The slope of the linear regression models is slightly under one in most cases and the
intercept marginally higher than 0 for all measurement dates. Both fixed and proportional
bias were detected within almost every measurement date (Table E.2).

Regarding the RLD values from 2015/16, one specific difference between manual and
automated analysis is visible. Until the 14" measurement date the RLD is continuously
increasing and then stagnating in the 2015/16 data resulting from manual annotation.
The RLD from the automated analysis follows the same trend but decreases from 14"
measurement date continuously. Beyond this, the RLD curves of both methods are very
consistent (Figure E.4). In 2017 datasets, only negligible differences between manual and
automated analysis method are recognizable, except for the first measurement date at Ryr
(Figure E.4f, Figure E.7b) and first two dates and a small peak at the fourth measurement
at Ryt (Figure E.4h).

The comparison between two human annotators and each annotator and the automated
analysis pipeline separately shows that the correlation between the person 1 and the pipeline
is r = 0.92 and the correlation between person 2 and the pipeline is 7 = 0.79. The correlation
between both persons is the lowest (r = 0.73).
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Table E.2: Overview of the statistical comparison of automated and manual annotation. ARL is
the difference between the mean total root length (mm) obtained from automated and
manual analysis methods, and a Welsch two sample t-test shows whether differences
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are significant (* = p<0.01).

2017
measurement date Rur Rir
ARL 0.45 0.42
1 NRMSE 0.071 0.077
r 092 0.53
ARL 0.89 1.17
2 NRMSE 0.071 0.053
r 0.78 0.83
ARL 095 0.54
3 NRMSE  0.057 0.052
r  0.83 0.92
ARL 2.94*% 0.65
4 NRMSE  0.051 0.055
r (.88 0.9
ARL 1.36  0.92
5 NRMSE 0.041 0.072
r 0.9 0.87
ARL 1.35 1.7
6 NRMSE 0.044 0.065
r 0.9 0.84
ARL -1.46 1.8
7 NRMSE 0.046 0.058
r 088 093
ARL 0.11 0.55
8 NRMSE 0.045 0.073
r 086 0.89
ARL -1.41 -0.97
9 NRMSE 0.039 0.057
r 088 094
ARL -2.44 -2.89
10 NRMSE 0.039 0.047
r 088 0.92
ARL 0.65
11 NRMSE 0.065
r 0.92
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E-3-3 Time evaluation

The time required to train the neural network model mostly depends on the amount of images
included in the training dataset. Approximately 65 % of the time needed is used for training
of the deep neural network. The annotation takes 40 % of the time, based on a mean of 200
annotated images h™'. The range it took to annotate one image was between 1 and 180 s
per image, depending on the accuracy of the proposed segmentation. The time required for
annotation decreases significantly with increasing training time. The mean time needed by
the network for the training of a dataset of 1,500 images, was approximately bh, excluding the
real-time training during the annotation. This is approximately 25 % of the entire processing
time. Segmentation took around 27 % of the total time. With 4 Nvidia GeForce RTX 2080
Ti GPUs and a batch size of 12 the segmentation took around 0.7 s per image. Converting
the segmented to binary images and the final feature extraction took around 8 % of the time
(Figure E.5).

Annotation
7.5h

Segmentation

12.5h
Training

06h 0

Binary converting
Finish network training
Feature Extraction

Figure E.5: Time requirements to run the automated analysis pipeline for a sample of 25,000
images. Left: All sub-processes together. Right: share of the neural network training,
which is only required when no suitable model is available.

E-4 Discussion

E-4-1 Availability and feasibility

The availability is the parameter for how easily accessible all components of the automated
pipeline are for everyone. The feasibility defines how easy the proposed pipeline and with
that the required software can be operated.

The equipment needed to apply the new workflow requires a computer with a power-
ful GPU, or alternatively a basic computer, an additional server with powerful GPUs and a
network-connection between both. Furthermore, the software packages of "RootPainter" and
"RhizoVision Explorer" are needed and the conversion and analysis script are required. All
this is open-source available Seethepalli and York (2020), Smith et al. (2020b). All software
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can be found in the section "data availability".

The training of the model requires interaction with "RootPainter", if the user wants
to start the training of a new model or corrects a segmentation within the training process.
This step is therefore not fully automated. All other components of the automated analysis
pipeline are automated. The interactive mode of the training represents a major time saving
compared to the conventional separation of the training step and the application step.
Adaptations to the model can be done “on the fly” with little time investment, facilitating
e.g. the adaptation to new types of images. Once the model is trained, the human interaction
needed to apply the pipeline is reduced to a few "clicks". With a suitable model available,
the user has to interact actively three times with the automated pipeline, (1.) to start the
segmentation, (2.) to convert the segments to binary and (3.) to start the feature extraction.
No deeper knowledge in computer science is needed, because all intermediate steps are
available within a GUI. However, the first implementation of the "RootPainter" environment
at the server part of the setup requires basic knowledge in server administration or support.

In contrast to manual or semi-automated operated root analysis programs, like differ-
ent tools based on "Imagel", "DART", "GiA Roots", "SmartRoot", "EZ-Rhizo" or
"Rootfly", the expenses in time, knowledge and experiences required to apply the automated
workflow, are much lower. This is granted due to the very small interactions needed for the
automated analysis pipeline Armengaud et al. (2009), Bot et al. (2009), Galkovskyi et al.
(2012), Lobet et al. (2011), Pierret et al. (2013), Zeng et al. (2008).

E-4-2 Accuracy and comparability

The accuracy evaluates the automated analysis pipeline in terms of reliability and exactness
of the generated data. Comparability is given, if the results of the automated analysis
pipeline can be compared to the outcome of previously evaluated data of the same kind, like
the manual annotation performed with "Rootfly". The most important characteristic of the
automation of plant data analysis is the reliability of the generated datasets. Therefore, the
accuracy of the observed root traits has to be as close to the ground truth as possible Atkinson
et al. (2019). In our study we used the manual annotation of the roots as comparison.
The manual annotation was performed by different persons and over a long time period.
Consequently, a certain subjectivity was included in this process.

Generally, the results for 2017 data analyzed automatically and manually are very
close to each other, indicating a general great fit of the models used for images originating
from 2017. However, there is a fixed and proportional bias between automated analysis and
manual annotation, showing a minor but systematic underestimation of total root length
from the automated analysis (Table 11.2) that increases slightly to the later measurement
dates, see also the negative ARL values in Table 11.2. This originates from the fact that the
neural network model is only able to segment roots, if they are also visible by the human eye.
Rarely, small parts of roots are covered by soil and this can only be compensated to a certain
extend by training the neural network and filling holes with "RhizoVision Explorer" (Figure
E.8). The more roots there are in the images, the more likely this segmentation mistake
occur. Although this is a disadvantage of the automated analysis pipeline, its main purpose
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is to provide reliable and consistent data for a qualitative biological analysis. The known
systematic bias in the method is well predictable in contrast to the bias originating from
different annotators. Consequently, the data obtained from the automated analysis pipeline
are more robust and reliable, which is in advantage for further biological conclusions drawn
from the data.

The consistency of the automated analysis results becomes especially visible regarding
the RLD plots plotted from 2015/16 and 2017 data (Figure E.4). The decrease in 2015/16
RLD profiles that is not monitored in the manual annotation data, originated from the root
senescence (Figure E.9). The senescence could be better evaluated by the neural network than
by the human annotator. In manual annotation the slight, gradual discoloration of the roots
visually revealing the senescence is easy to miss. Furthermore, it is a complicated work step
in "Rootfly" to eliminate already annotated roots at the right point in the timeline. Taking
this into consideration, the results of the method comparison for 2015/16 and 2017 data
shows impressive results, regarding accuracy and comparability of the automated analysis
pipeline.

Regarding the biological conclusions that could be derived from the data, the differences
between the methods are negligible, as we are working with minirhizotron data that cover
a huge spatial and temporal resolution and are measured in heterogeneous conditions.
Especially the consistent low ARL and NRMSE (Table 11.2), as well as the high conformity
of the RLD profiles (Figure E.4) indicate that the qualitative conclusions derived from data
provided by the automated analysis pipeline are at least the same as from manual annotation.
Considering the influence of the human subjectivity on manual annotation, the automated
pipeline additionally provides objectivity that most likely cannot be reached, if more than
one annotator does the manual annotation.

The manual annotation itself requires a certain level of expertise in root phenotyping.
This expertise is gained with a lot of personal experiences Vamerali et al. (2011), Zeng et al.
(2008). Therefore, it can be hypothesized that there is also a significant influence of subjec-
tivity in human annotation. Over the years, different persons annotated the root datasets.
Hence, the impact of differences resulting from varying manual annotation strategies might
influence the results more than the differences between manual and automated analysis. The
direct comparison between two annotators showed a lower correlation between the persons
annotating, than between the automated analysis pipeline and each human annotator.
Consequently, we concluded that the human effect on manual annotation is higher than the
impact of a mistake done by the automated workflow.

The automated analysis pipeline provides a level of objectivity, a human annotator
cannot achieve. Therefore, it is highly probable that with the application of the automated

pipeline associated minimization of the human influence will significantly improve objectivity
and also accuracy of the minirhizotron image analysis.

E-4-3 Speed and efficiency

The speed is the pure amount of time the pipeline requires to analyze a certain amount of
images. Efficiency is defined through the amount of time and labor needed to analyze a
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dataset in contrast to manual annotation. The time required to analyze root images by hand
is enormous. The estimated time to analyze 100 cm? of depicted soil is 1 - 1.5 h Smith et al.
(2020b). This is consistent with the results of other studies, needing approximately 1 h for
annotating 17-38 images manually Ingram and Leers (2001). Intern evaluation reproduced
the same results. To annotate 25,000 images, which is approximately the amount of images
for a shorter growing season, the annotation time needed is 1,000 - 1,500 h. The time needed
to process the same amount of images with the automated pipeline is approximately 19 h,
including the training of the neural network. Without the training, the segmentation and
feature extraction would only take around 6.5 h for all images. The resulting benefits in time
saving are massive (Figure E.5).

Generally, only around 1.2 % - 1.9 % of the time needed for manual annotation is
needed by the automated workflow to process the data, including the training. Excluding
the entire training process, the automated workflow requires only 0.4 % - 0.65 % of the time
needed to annotate the same amount of images manually with e.g. "Rootfly". Regarding the
advantages of time saving, it further has to be taken into account that the time of interaction
with the computer is decimated to almost zero, once the training is completed.

E-4-4 Limitations and further improvement

Although the current automated analysis pipeline does include time series in form of either
root length density depth profiles at different time points or in form of root arrival curves, i.e.,
root length as a function of time at different depths, individual roots and their phenology are
not followed from their birth to their death. This could be of high interest, for example, to
root ecologists. To fully exploit minirhizotron data it would be a significant progress to add a
single root tracking possibility, including root order and status. The implementation of these
functions would improve the pipeline and enhance the use-cases for root ecologists.

E-5 Conclusion

We propose a new approach to analyze large amounts of 2D root image data. This became
necessary with the big amount of data created in experimental field sites such as the
minirhizotron facilities in Selhausen (Germany) as well as others Svane et al. (2019), Ytting
et al. (2014). The automated analysis pipeline illustrated in this study, is a suitable solution
to easily and accurately analyze minirhizotron images in significantly less time.

To the best of our knowledge, we are the first study testing a deep learning and auto-
mated feature extraction combining high-throughput minirhizotron image analysis pipeline
to this extent. The biggest advantage of the automated workflow is the massive saving in
time. Precisely expressed, the required time is reduced by more than 98 % in contrast to
manual annotation, while providing several root traits, including number of root tips, number
of branch points, root length, branching frequency, network area, perimeter, volume, surface
area and diameter on a spatio-temporal scale. The required root traits can be made available
quickly which may speed up further analysis and applications of this type of data. In
conclusion, the automated pipeline outperforms the manual annotation in time requirements
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and information density, while providing reliable data and feasibility for everyone. Tested
with more than 107,000 minirhizotron images, including more than 36,500 images for detailed
comparison, obtained from two growing seasons and different soil types, depths and cultures
our results indicate a high general validity for the presented pipeline. Irregularities in the
match of manual annotation and analysis pipeline can be essentially explained with rarely
occurring missed segmentations of root fragments by the automated analysis pipeline, due to
soil covered roots and mainly by the influence of human subjectivity in manual annotation.
Balanced training datasets and consequent annotation of the training data are the key to
good results. If these facts are considered, the here presented and evaluated pipeline has the
potential to be the new standard method for reliable high-throughput root phenotyping of
minirhizotron images.

Data Availability

e The supplementary data that support the findings of this study and help to operate
the in this work introduced root image analysis pipeline, including an example, are
open available. Furthermore, data and scripts to reproduce the RLD-profiles (Fig-
ure E.4) and RAC-curves (Figure E.7) are open to access with the same identifier:
https://doi.org/10.34731 /pbn7-8g89.

e RootPainter Smith et al. (2020a) is available at:
https://github.com/Abe404 /root painter

e RhizoVision Explorer Seethepalli et al. (2021), Seethepalli and York (2020) is available
at: https://zenodo.org/record /4095629
and https://github.com /rootphenomicslab/RhizoVisionExplorer
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Figure E.6: 3D spatio-temporal distribution of RLD measured in all tubes at one minirhizotron.

Distances between tubes are not to scale. 1-8 represents the time steps.
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Figure E.7: Comparison of root arrival curves of the data obtained from images originating from
two minirhizotrons in the growing season 2017. The images were analyzed by hand
(left: manual) and by the automated analysis pipeline (right: automated). 2017: a)
Ryt manual, b) Ryt automated, ¢) Rt manual,d) Ryt automated.

manual annotation

original image

automated analysis

Figure E.8: Manual vs. automated analysis. The automated analysis misses a small part of the
root and underestimates the total root length slightly.
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original image

segmented and processed image

Figure E.9: Root senescence visible from early to late measurement dates in the growing season
2015/16 and the corresponding segmentation and skeletonization.
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Table E.3: Detailed overview of the images taken at the growing season 2015/16 and 2017

2015/16 2017
measurement no. | facility date images date images
1 Ryt 16/11/15 720 | 08/06/17 480

Rir 16/11/15 720 | 08/06/17 584
9 Rur 26/11/15 1,080 | 29/06/17 1,800
Rrr 26/11/15 1,079 | 22/06/17 1,800
5 Rur 17/12/15 1,800 | 06/07/17 1,800
’ Rrr 17/12/15 1,439 | 29/06/17 2,160
4 Rur 02/02/16 1,520 | 13/07/17 1,800
Rrr 21/01/16 1,800 | 06/07/17 2,160
5 Ryt 12/02/16 1,800 | 20/07/17 1,800
Rir 12/02/16 1,800 | 13/07/17 2,160
6 Rur 26/02/16 1,800 | 27/07/17 1,200
Rir 26/02/16 2,160 | 20/07/13 2,160
7 Rur 14/03/16 1,800 | 02/08/17 1,840
Rir 14/03/16 2,160 | 27/07/17 1,430
8 Rur 26/03/16 1,840 | 10/08/17 1,959
Rrr 24/03/16 2,160 | 02/08/17 2,159
9 Rur 07/04/16 2,160 | 23/08/17 2,120
Rir 07/04/16 2,160 | 10/08/17 2,160
10 Rur 13/04/16 2,160 | 12/09/17 1,800
Rir 13/04/16 2,160 | 24/08/17 2,159
1 Rur 29/04/16 2,160 - -
Rir 29/04/16 2,160 | 12/09/17 2,150
12 Ryt 06,/05/16 2,160 - -
Rrr 06/05/16 2,160 - -
13 Rur 13/05/16 2,160 - -
Rt 13/05/16 2,160 - -
" Rur 20/05/16 2,160 - -
Rir 20/05/16 2,160 - -
15 Rur 27/05/16 2,160 - -
Rir 27/05/16 2,159 - -
16 Ryt 03/06/16 2,160 - -
Rrr 03/06/16 2,159 - -
17 Ryt 09/06/16 2,160 - -
Rir 09/06/16 2,160 - -
18 Rur 16/06/16 2,155 - -
Rir 16/06/16 2,160 - -
19 Rur 23/06/16 2,149 - -
Rir 23/06/16 2,156 - -
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Table E.4: Comparison of the automated analysis pipeline and the manual annotation of the
total root length obtained in the growing season 2017 with a linear regression. The
confidence interval (95%) of the regression coefficient (ordinary least products) are
listed in parenthesis. The bias is fixed if the 95% Cl of the intercept do not include
0 and the bias is proportional if the 95% Cl of the slope do not include 1.

MEASUrement N0 \rp facility  Intercept (95% CI) Slope (95% CI) Ficed I]?;s:)ortional
. Ror 0.26 (0.08, 0.45) 073 (0.71, 0.74) _yes  yes
Rt 1.09 (0.83, 1.36) 0.7 (0.65,0.75)  yes  yes
9 Rur 2.8 (2.16, 3.44) 0.81 (0.78, 0.84)  yes yes
Rir 5 (2.78, 4.23) 0.92 (0.89, 0.94) yes yes
; Ror 3 07 (2.6, 3.69) 8(0.78,0.83)  yes  yes
Rt 3.12 (2.45, 3.79) 0.88 (0.86, 0.89)  yes  yes
) Rur 2.99 (2.28, 3.7) 0.99 (0.97, 1.02)  yes  no
Rt 453 (3.63, 5.43) 0.86 (0.85, 0.88)  yes  yes
5 Rur 2.35 (1.72, 2.97) 0.93 (0.91,0.95) yes  yes
Rir 6.68 (5.65, 8.07) 0.83 (0.81, 0.85) yes  yes
; Rot 2.43 (1.75, 3.11) 0.93 (0.91, 0.95) yes  yes
Rt 8.99 (7.51, 10.48 0.82 (0.8, 0.84)  yes  yes
- Ror 1.55 (0.86, 2.24) 0.81 (0.79, 0.83)  yes  yes
Rt 499 (3.95, 6.03) 0.93 (0.91,0.94)  yes  yes
. Ror 2.37 (1.61, 3.12) 0.85 (0.83, 0.88)  yes  yes
Rt 5.71 (4.38, 7.05) 0.89 (0.87,0.91)  yes  yes
9 Rur 1.18 (0.57, 1.79) 0.82 (0.81, 0.84) yes yes
Rur 3.0 (1.95, 4.05) 0.92 (0.9, 0.93) yes yes
10 Rur 2.31 (1.65, 2.98) 0.72 (0.7, 0.74) yes yes
Rir 3.35 (2.2, 4.5) 0.87 (0.85, 0.88)  yes yes
1 Rur - - -
Rir 3.61 (2.47, 4.75) 0.86 (0.84, 0.87) yes yes
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Appendix F: Sequential and coupled
inversion of horizontal borehole
ground penetrating radar data to
estimate soil hydraulic properties at
the field scale

Abstract

Horizontal borehole ground penetrating radar (GPR) measurements can provide valuable information
on soil water content (SWC) dynamics in the vadose zone, and hence show potential to estimate soil
hydraulic properties. In this study, the performance of both sequential and coupled inversion work-
flows to obtain soil hydraulic properties from time-lapse horizontal borehole GPR data obtained for
an infiltration experiment were compared using a synthetic modelling study and the analysis of field
data. The sequential inversion using the vadose zone flow model HYDRUS-1D directly relied on SWC
profiles determined from the travel time of GPR direct waves using the straight-wave approxima-
tion. Synthetic modelling showed that sequential inversion did not provide accurate estimates of soil
hydraulic parameters due to interpretation errors near the infiltration front and the ground surface.
In contrast, the coupled inversion approach, which combined HYDRUS-1D with a forward model of
GPR wave propagation (gprMax3D) and GPR travel time information, provided accurate estimates
of the hydraulic properties in synthetic modelling. The application of the coupled inversion approach
to measured borehole GPR data also resulted in plausible estimates of the soil hydraulic parameters.
Concluding, that coupled inversion should be preferred over sequential inversion of time-lapse hori-
zontal borehole GPR data in the presence of strong SWC gradients occuring during infiltration.
Adapted from: Yi Yu, Lutz Weihermiiller, Anja Klotzsche, Lena Lirm, Harry Vereecken, Johan
Alexander Huisman (2021): Sequential and coupled inversion of horizontal borehole ground pene-
trating radar data to estimate soil hydraulic properties at the field scale. Journal of Hydrology 296,
https://doi.org/10.1016/j.jhydrol.2021.126010
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F-1 Introduction

Obtaining accurate hydraulic parameters of the vadose zone is important in a wide range
of applications, including modelling of water flow and contaminant transport (e.g., Wagner
(1992);Vereecken et al. (2007)), managing water and soil resources (e.g., Blanco-Canqui and
Lal (2007), Hartmann et al. (2014)), and evaluating climate change effects on forests (e.g.,
Martinez-Vilalta et al. (2002); McDowell and Allen (2015)). Hydraulic parameters can be
determined by different laboratory methods (e.g., McDowell and Allen (2015), Neuzil et al.
(1981)), but this typically leads to hydraulic property estimates that are not representative
of field conditions (Kool et al. (1987)). Therefore, estimation of hydraulic properties at the
field scale is preferred if characterization at this scale is intended (Klute and Dirksen (1986)).

Field-scale estimation of hydraulic properties is commonly based on measurements made
with point-scale sensors, such as the neutron probe (Chanasyk and Naeth (1996)) and time
domain reflectometry (TDR) Robinson et al. (2008). Such methods allow the accurate
determination of soil water content (SWC) dynamics, and therefore have been widely used
for parameterizing hydrological models (e.g., Abbaspour et al. (2000), Katul et al. (1993),
Kumar et al. (2010), Malicki et al. (1992), Nandagiri and Prasad (1996), Steenpass et al.
(2010), Wollschldger et al. (2009)). In some studies, SWC measurements were combined with
matric potential measurements obtained by tensiometers (e.g., Zhang et al. (2003)) in order
to better constrain the hydraulic parameter estimation (Vereecken et al., 2008). A major
disadvantage of using point sensor information to estimate soil hydraulic properties is the
relatively small sensing volume and the resulting limited representativeness for the field-scale
soil states.

In the last decades, many studies reported the potential of using geophysical techniques, such
as electromagnetic induction (EMI) (e.g., Bagnall et al. (2020), Brosten et al. (2011), Manoli
et al. (2015), Moghadas et al. (2017)), electrical resistivity tomography (ERT) (e.g.,Brunet
et al. (2010), Huisman et al. (2010), Manoli et al. (2015), Mboh et al. (2012), Pollock and
Cirpka (2010)) and ground penetrating radar (GPR) (e.g., Hubbard and Rubin (2000),
Looms et al. (2008a), Rossi et al. (2015)), to obtain accurate field-scale estimates of SWC
and soil hydraulic properties. GPR uses the travel time and attenuation of high-frequency
electromagnetic waves travelling through the ground to obtain the dielectric permittivity (¢)
and electric conductivity (o) of the subsurface (e.g., Holliger et al. (2001), Slob et al. (2010)).
Due to the direct relationship between ¢ and SWC (Topp et al., 1980), GPR is the one of
the most promising geophysical methods for SWC estimation (e.g., Huisman et al. (2003),
Klotzsche et al. (2018)); . GPR can rapidly provide surveys for larger scales of interest (1 ~
1000 m profiles) (e.g., Ardekani (2013)), which implies that GPR is capable of characterizing
the spatio-temporal SWC distribution at the field scale (e.g., Steelman et al. (2012)).

In general, GPR measurements can be performed off the ground surface (off-ground GPR)
(e.g.,Lambot et al. (2004), on the soil surface (surface GPR) (e.g., Huisman et al. (2002),
van Overmeeren et al. (1997)) or in vertical or horizontal boreholes (borehole GPR) (e.g.,
Redman et al. (2000)). Off-ground GPR relies on the use of an ultra-wide frequency band
for subsurface investigations, and hence can potentially provide high-resolution information
about the soil states. However, offground GPR measurements are influenced by surface
roughness and only have a limited penetration depth (Lambot et al. (2006)). For surface
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GPR measurements, SWC can be estimated based on the analysis of the direct ground wave
(Grote et al. (2003), Weihermiiller et al. (2007)) or reflected waves (Lunt et al. (2005)). Both
GPR acquisition strategies have been successfully used to monitor water flow dynamics in
unsaturated soil (Allroggen et al., 2015, Mangel et al., 2012, Moysey, 2010). The penetration
depth of surface GPR is limited by the soil characteristics, especially by the bulk electric
conductivity. Furthermore, there is no control on the vertical resolution when using reflected
waves for SWC determination (Huisman et al., 2003). Borehole GPR can overcome these
limitations but requires the availability and accessibility of appropriate boreholes or wells,
and is therefore restricted to specialized test sites and experimental set-ups. Borehole
GPR measurements have also been used to monitor SWC dynamics Looms et al. (2008a).
In addition, Zero-Offset-Profiling (ZOP) measurements between horizontal boreholes have
been used to monitor SWC dynamics, see Cai et al. (2016), Galagedara et al. (2002) and
Appendix D. Due to the good control on the vertical resolution and the improved spatial
representativeness for the field plot scale, this kind of set-up provides detailed information on
the spatial and temporal variation of SWC.

In order to derive soil hydraulic parameters from time-lapse GPR data, two types of
inversion strategy can be used. The first type is commonly called sequential inversion and
consists of three steps (Hinnell et al., 2010, Huisman et al., 2010). First, the dielectric
permittivity € is determined from the first arrival time of a GPR measurement using a
straight-ray approximation (e.g., Galagedara et al. (2002)) or a full-waveform inversion
(e.g.,Appendix D). Second, a petrophysical relationship is used to convert e to SWC using
the empirical Topp’s equation(Topp et al., 1980) or a more advanced dielectric mixing model
Roth et al. (1990). Third, the obtained timelapse SWC data are used in combination with a
hydrological model to estimate soil hydraulic parameters using inverse modelling. However,
the use of a sequential inversion strategy may cause errors in the estimated soil hydraulic
parameters when errors due to simplified geophysical data interpretations propagate into
the estimated soil hydraulic parameters. An example of a potential source for such errors is
the use of the straight-wave approximation for the travel path of the electromagnetic waves
(Rucker and Ferré, 2004). To overcome this problem, a coupled inversion strategy can be
used (Hinnell et al., 2010, Lambot et al., 2006). In contrast to sequential inversion, a coupled
inversion links a hydrological model directly with a forward model of the geophysical data,
and the mismatch between measured and modelled geophysical response is minimized (i.e.
first arrival time or even the full waveform in the case of GPR). In doing so, the soil hydraulic
parameters used in the hydrological model can be optimized, while error propagation is
avoided. The coupled inversion approach relies heavily on an accurate forward hydrological
model. A wrong conceptualization of the subsurface in terms of layering or processes not
adequately captured by the hydrological model (e.g., dual porosity or macropore flow) will
introduce errors that propagate into the estimated parameters.

A range of studies have employed off-ground GPR, surface GPR, and vertical borehole
GPR measurements for estimating soil hydraulic properties from time-lapse SWC information
by using either a sequential or a coupled inversion approach (e.g., Busch et al. (2013), Chen
et al. (2001, 2004), Jadoon et al. (2012), Jaumann and Roth (2018), Jonard et al. (2015),
Kowalsky et al. (2005), Lambot et al. (2009), Rucker and Ferré (2004)). Compared to these
GPR acquisition strategies, horizontal borehole GPR measurements have several advantages

to reveal the temporal and spatial SWC variations at the field plot scale. Firstly, horizontal
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borehole GPR measurements can provide SWC information at specific depths and thus have
larger penetration depth and better control on vertical resolution compared to off-ground
and surface GPR. Secondly, horizontal borehole GPR measurements provide a higher lateral
spatial representativeness of the field plot compared to vertical borehole GPR measurements.
However, no studies have been conducted yet that use horizontal borehole GPR measurements
to parameterize a hydrological model. In this study, the performance of both sequential and
coupled inversion workflows to obtain soil hydraulic properties from time-lapse horizontal
borehole GPR data obtained during an infiltration event will be compared. To systematically
study the differences between the two inversion approaches, a synthetic modelling experiment
will be presented first. In a second step, actual horizontal borehole GPR measurements will
be inverted using a coupled inversion approach. The resulting estimates of the hydraulic
parameters will be compared to available independent hydraulic property estimates obtained
from TDR measurements.

F-2 Material and methods

F-2-1 Test site and GPR data acquisition

An infiltration experiment was carried out on a bare soil plot at a rhizotron facility in Sel-
hausen, Germany. In this facility, three plots (7 x 3 m) were established with different
treatments (natural rain, rainsheltered, and irrigated). GPR access tubes of 7 m length were
horizontally installed at 0.1, 0.2, 0.4, 0.6, 0.8, and 1.2 m depth across the entire length of
the plot. The soil in the facility originates from fluvial gravel deposits from the Rur river
system and is characterized as an Orthic Luvisol with high stone content (>50%) and a loamy
texture (Table F.1). Due to tillage activity, soil porosity ¢ changes from 0.33 cm® cm™
the surface to approximately 0.25 cm® cm™ below 0.3 m depth. In order to install the GPR
access tubes, the entire plot was dug out and refilled layer-wise. Therefore, no pedogenetic
horizons are detectable anymore below the plough horizon. No clear pedogenetic layers are
detectable in the gravely layers of the natural soil either. For more information about the
rhizotron facility, the reader is referred to Cai et al. (2016) and Appendix D. The infiltration

near

Table F.1: Soil texture of fine soil, mass fraction of stones and porosity of the field according to
Cai et al. (2016).

Depth ¢m Sand Mass % Silt Clay Stones Porosity cm® cm™
Topsoil (0-30) 35 52 13 50 0.33
Subsoil (30 120) 37 47 16 69 0.25

experiment consisted of five infiltration events that were carried out at the rain-sheltered plot
during a 4-day period Kelter et al. (2018). The experimental set-up, GPR. data acquisition,
and GPR data analysis were reported in (Yu et al., 2020) in detail. Therefore, only a short
summary is provided here. Water was infiltrated using a drip irrigation system that was sup-
plied by water from an underground tank at a constant rate (0.03 cm min'. Approximately
2.7 cm of water was applied for each infiltration event of 90 min (Figure F.1a). ZOP surveys
were made using a GPR system (PulseEKKO, Sensors & Software, Canada) with 200 MHz
borehole antenna. GPR measurements were made at six depths (0.1, 0.2, 0.4, 0.6, 0.8 and
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1.2 m) before and after infiltration events. During the infiltration events, GPR measurements
were restricted to the boreholes at 0.1, 0.2 and 0.4 m depth as the SWC was expected to
increase mainly at shallow depths at the beginning of each infiltration event. For each ZOP
survey, the transmitter and receiver were first pushed to the end of the borehole (7 m) and
then pulled simultaneously throughout the boreholes in 0.05 m steps. The survey ended at 1.5
m distance from the access trench to avoid that reflections from the trench wall and installed
sensors interfered with the direct waves.

a)
004 T T T T
£ [ Infiltration event
g 0.03 .
2
S 002 -
=4
o
£ oot .
£
- 0 1 1 1 1 1
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Figure F.1: (a) Schedule and amount of irrigated water for the five infiltration events and (b)
GPR travel time data measured at 6 different depths during the infiltration experi-
ment. The timing of the infiltration events was indicated by light green background.
The spatial variation of the travel times along the 5.5 m borehole tube is indicated
by the error bars. Note that different y-axis scales are used for the results of differ-
ent depths. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

The development of the mean GPR travel time at different depths is shown in Figure F.1b.
To determine the GPR travel time from the ZOP data, the time-zero offset (T0) and first
arrival time () of the direct wave were determined using the strategy proposed in Appendix
D. In this strategy, TO was determined from wide angle reflection and refraction (WARR)
measurements with the borehole antennae in air and t,,s was manually picked for each trace.
GPR travel times measured at 0.1 and 0.2 m depth increased after the first infiltration
event. In response to the second infiltration event, travel times up to a depth of 0.8 m
responded to the infiltration. After the third infiltration event, the travel times increased at
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all depths. The standard deviation of the travel times is also shown in in Figure F.1b, which
illustrates the spatial variability along the 5.5 m borehole tubes that were generated by the
expected differences in the irrigation rate of the used dripping system and smallscale lateral
water content variations caused by the heterogeneity of the soil. Based on the straight-ray
approximation and independent of SWC, the observed + 0.5 ns for the standard deviation of
the travel time would lead to an uncertainty of £ 0.025 cm®cm 3 for SWC.

Based on the known distance between the horizontal boreholes (d = 0.75 m), a 1D di-
electric permittivity profile (e°®) can be calculated from the measured GPR. travel times
using:

€% = (70 . (tOb;) — To>2 (F-1)

where ¢ is the speed of light in vacuum (0.3 m ns!). SWC (fu,) was calculated from g%

using the complex refractive index model (CRIM) (Roth et al., 1990):

Vedbs — (1 - @) /e; — @
VEw —1

where &, is the permittivity of water (84 at 10°C), ® is the porosity of the respective layer, and
€5 is the permittivity of the solid soil fraction, which was assumed to be 4.7 for this facility,
as considered in Appendix D. This value was also suggested by Robinson et al. (2005) for soil
with high quartz content, as is the case for this facility.

aobs _

(F-2)

F-2-2 Hydrological modelling

Vertical SWC dynamics during the infiltration experiment were simulated using HYDRUS
1D Simiinek et al. (2008), which calculates one-dimensional variably-saturated water flow by

solving the Richards equation:
o0 0 Oh
5% =5 {K(h) (—az + 1)} (F-3)

where h is the pressure head (cm), 6 is the volumetric water content (cm3 cm™), t is time (min),
z refers to the positive upward spatial coordinate (cm), and K is the hydraulic conductivity
(em min'!) as a function of h. @(h) is the water retention function described by the van
Genuchten model Van Genuchten (1980):

0s—0,
H(h): ar—"m 7h<0
0 s h=>0

S

where 0, is the residual water content (cm3 cm™), 6, is the saturated water content (cm3
cm-3), a (cm™!) is the inverse of the air-entry value, n is the pore-size distribution index (-)
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and m is related to n by m—1-1/n . The unsaturated hydraulic conductivity K, (h) is given
by:

K, (h) =K, S {1 - (1 - sﬁ) )m r (F-5)

0—0,

05 — 0,
where K (cm min™') is the saturated hydraulic conductivity, Se (-) is the effective saturation
governed by Eq. 6 and 1 (-) is the tortuosity, which is generally set to 0.5 but can also
be estimated for individual soils (e.g., Schaap and Leij, 2000). Using this Mualem — van
Genuchten parameterization (Mualem, 1976, Van Genuchten, 1980), the soil hydraulic
properties are described by five parameters (i.e. K, 05, 0,, o, and n).

Se =

(F-6)

For the simulation of vertical SWC dynamics, the model domain was set to be 150 cm
deep and was discretized with 151 nodes with an equal spacing of 1 ¢cm. Simulations were
initialized using linearly interpolated SWC estimates from measured permittivity obtained
from borehole GPR data acquired prior to the first infiltration event. Evaporation and root
water uptake were both neglected in the simulation, as evaporation was low with respect to
the amount of infiltrated water and the soil was bare. An atmospheric boundary condition
with surface run-off was used to represent the irrigation events at the upper boundary of
the domain. At the lower boundary of the domain, a seepage face (h — 0) was used. The
use of a seepage face was required to match SWC observations and avoid excessive drainage
out of the profile, which occurred when a free drainage boundary condition was used. A
physical explanation for the need to use a seepage face may be the presence of a compacted
soil layer directly below the rhizotron facility caused by the construction of the facility. As
an alternative to the use of a seepage face, a longer soil profile with a dense layer with
low K could have been used. However, this would have made the hydrological simulations
computationally more demanding, especially in the case of the coupled inversion.

F-2-3 GPR modeling

The gprMax3D model was used to simulate GPR wave propagation with a Finite-Difference
Time-Domain (FDTD) numerical method Giannopoulos (2005), Warren et al. (2016). The size
of the simulation domain for the gprMax3D simulation was set to 2 x 1.1 x 2.2 m, including a
soil of 1.5 m thickness below an air layer of 0.7 m. The 3D domain was discretized with nodes
with 0.02 m spacing and perfectly matched layers (PML) were used at the boundaries of the
model domain (Berenger, 1994). The center frequency of the antenna was set to 200 MHz
(i.e. the center frequency of the antenna) and the first derivative of a Gaussian waveform was
selected as the excitation function for the current source. As we only considered the velocity
information for the GPR data interpretation, the electric conductivity of the soil was assumed
to be zero.

F-2-4 Set-up for sequential and coupled inversion

To estimate hydraulic parameters from horizontal borehole GPR measurements, both sequen-
tial and coupled inversion strategies were used. The general set-ups of the two inversion
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strategies are illustrated in Figure F.2a and Figure F.2b. A key difference between the two
approaches is that the sequential inversion approach directly optimizes the misfit between the
SWC obtained from the GPR measurements (6°°°) and the simulated SWC (§™°?) provided by
HYDRUS-1D, whereas the coupled inversion optimizes the misfit between the travel time of
the measured GPR data (t°°°) and the simulated travel time (#™°?) obtained with gprMax3D
using SWC information (6™°?) provided by HYDRUS-1D. The misfits for the sequential and
coupled inversions were described using cost functions based on the root-mean-square error
(RMSE) between observed and simulated data:

n mod __ nobs 2

C]\/[VG(O) _ \/Zzl (01 nd aib ) (F—7)
n mod __ tobs 2

CMVG(t) _ \/Zzl (tz - ti ) (F—S)

where n is the number of GPR measurements.

In order to minimize these cost functions, the Shuffled Complex Evolution (SCE-UA)
algorithm introduced by Duan et al. (1993) was used. SCE-UA is a global optimization
algorithm that not only has been widely used in hydrological research (e.g., Chu et al. (2010),
Thyer et al. (1999)) but also in geophysical applications (e.g., Liu et al. (2018), Mangel
et al. (2017)). The SCE-UA algorithm requires the specification of parameter bounds for
each parameter considered in the optimization. The optimization includes several steps.
First, different sets of hydraulic parameters are randomly created in the feasible parameter
space and the cost function value for each of these parameter sets is calculated. Second, the
parameter sets are sorted in order of their cost function value and distributed into several
complexes that are subsequently evolved using the competitive complex evolution (CCE)
algorithm (Duan et al., 1994). After this first loop of evolution, the complexes are merged
again into a single population, which again is sorted in order of increasing cost function value
and divided into complexes for the next optimization loop. The algorithm is considered to
be converged if the cost function valued reaches a specified value (i.e. the known error of
the data) or if the improvement in the best model is below 0.01% in the last 10 evolution loops.

Since no GPR measurements were made in dry soil conditions, the inversion is not ex-
pected to be sensitive to .. In order to build an independent hydrological model based on
GPR measurement, 6, was fixed it to 0 for the inversion and only K, 6, o, and n were
estimated. K was inverted by using its log-transform (log(Ky)). The algorithms for both
sequential and coupled inversion were coded in GNU Octave (Eaton, 2012).
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Figure F.2: Flow charts of (a) sequential inversion and (b) coupled inversion.
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F-2-5 Set-up for synthetic infiltration experiments
Set-up for a 1-layer soil profile

Synthetic model experiments were performed to gain further insight into the feasibility of
obtaining plausible parameter estimates from sequential and coupled inversion of time-lapse
borehole GPR data. In a first model experiment, a 1-layer soil profile was considered. We used
the soil hydraulic parameters for the top soil (0 - 30 ¢cm) determined by Cai et al. (2018b),
which were estimated from TDR measurements at the same depths as the GPR access tubes
(Table F.2). In order to generate synthetic data for the model experiments, five infiltration
events were simulated with an infiltration rate of 0.03 ¢m min™', which corresponds with
the infiltration rate used in the actual field experiment. Since the 1-layer soil profile was
constructed using the hydraulic parameters of the topsoil (higher 65), the amount of applied
water was increased in the synthetic modelling experiment. In particular, the first three
irrigation events now lasted 400 min whereas the last two infiltration events still lasted 90
min. After obtaining the SWC profile (6,,04) from HYDRUS-1D, a dielectric permittivity
profile (%) was calculated using the rearranged form of the CRIM model given in Eq. 2:

gmod _ (@—1).em0d+(1—¢)-\/a+¢2 (F-9)

This dielectric permittivity profile was then used to simulate GPR measurements for the six
depths using gprMax3D.

Table F.2: Soil hydraulic parameters according to Cai et al. (2018) for the rhizotron facility.

Depth 0, 0 « n K l
cm em?em ? emPem ™ emt - c¢m min! -
0-30 0.043 0.326 0.036 1.386 0.057 1.47
30 - 120 0.053 0.229 0.050 1.534 0.00047; 0.0411 -2.78

The K, value of subsoil estimated by Cai et al. (2018).

The K, value used for synthetic study of 2-layer soil profile.

Set-up for a 2-layer soil profile

A synthetic modelling experiment with a 2-layer soil profile was also performed. Sequential and
coupled inversions for the 2-layer soil profile were conducted based on the infiltration schedule
of the actual experiment (Figure F.1a). The hydraulic parameters in this second experiment
were also based on Cai et al. (2018b) However, the saturated hydraulic conductivity of the
subsoil (K4) was changed from 0.0004 cm min™' reported by Cai et al. (2018b) to 0.04 cm
min™, because it had to be larger than the infiltration rate of 0.03 cm min™* to avoid ponding
of water at the layer interface. For a more realistic synthetic modelling study, Gaussian noise
with zero mean and a standard deviation of 0.1 ns and 0.01 cm3 cm-3 was added to the
synthetic travel times and SWC data, respectively, for both the 1-layer and the 2-layer model.
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Automatic picking of the first arrival time

The implementation of the coupled inversion approach requires an automatic picking of the
first arrival time. For the simulated GPR data, the first arrival time can be automatically
determined using an amplitude threshold. To obtain this threshold, the excitation moment
(Ts) of the simulated data was determined from the onset of the source wavelet. The source
wavelet is defined as the first derivative of the Gaussian waveform:

I= -2 62%674@7)()2(15 - x) (F-10)

where ¢ = 2r2f% and x = 1/f, I is the electric current density (A m™), e is the natural
logarithm, and f is the center frequency of the antenna (200 MHz). From this source wavelet,
a Ts of 1.62 ns was manually determined (Figure F.3a). Subsequently, an air wave was
simulated using antennas positioned at 0.1 m above the ground surface (Figure 3b). With
the known propagation velocity in air (0.3 m ns™!) and the antenna separation (0.75 m), the
true travel time of the air wave is 2.5 ns. The appropriate amplitude threshold (0.0158 V
m™!) was then determined from the amplitude of the simulated air wave at the travel time of
4.12 ns, which is the sum of T (1.62 ns) and true travel time of the air wave (2.5 ns).

To verify the robustness of the automatic first arrival time determination, a synthetic
infiltration-induced SWC profile was generated by HYDRUS-1D (Figure F.3c) and ZOP
measurements were simulated using gprMax3D at different depths. The amplitude threshold
of 0.0158 V m™! was used to determine the first arrival time (Figure F.3d). It was found that
the amplitude of the traces rapidly increased after the determined first arrival time, which
confirms the robustness of automatic procedure for the determination of the first arrival time.
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Figure F.3: (a) The source wavelet. (b) A synthetic trace of air wave generated by gprMax3D.
(c) A synthetic vertical SWC profile generated by HYDRUS-1D. (d) Six synthetic
GPR traces obtained using the synthetic vertical SWC distribution shown in (c).
The red crosses indicate the first arrival time of the GPR traces. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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F-2-6 Uncertainty Analysis

Proper quantification of uncertainty in the estimated soil hydraulic parameters is of great
importance given that the information content of soil water content measurements for the
estimation of soil hydraulic properties depends on the initial and boundary conditions during
the experiment (Mboh et al., 2011). In this study, we used both response surface analysis
Toorman et al. (1992) and a simple first-order approximationKool and Parker (1988), Kuczera
and Mroczkowski (1998), Vrugt and Dane (2005) to investigate the uncertainty of the inverted
hydraulic parameters.

Response surfaces provide a 2D view of the cost function distribution obtained with a
grid search. In order to obtain such surfaces, two hydraulic parameters (e.g., a and n) are
varied between defined bounds, whereas the other hydraulic parameters (e.g., log(K) and 6;)
are fixed at their true (or optimized) value. Response surfaces are a robust method to visualize
parameter uncertainty and the minimum of the cost function. However, they commonly
require a high computational effort, especially in the case of many model parameters (i.e. the
2-layer model). Therefore, this method was only used for the synthetic model study with a
1-layer soil profile.

A classic first-order approximation of parameter uncertainty was also used (Vrugt and
Dane, 2006). Tt is based on the covariance matrix (C) of the optimized hydraulic parameters,
which is calculated by:

-1

C=s(J") (F-11)

where s2 is the error variance between simulated and observed data and J is the Jacobian
matrix. The Jacobian matrix is the first-order partial derivative of the cost function for
each inverted hydraulic parameter and was obtained using a finite difference approach. The
marginal posterior distribution of the estimated hydraulic parameters (mes) is assumed to be
a multivariate normal distribution (N(meg, C)). The uncertainty of the estimated hydraulic
parameters can be approximated by the confidence interval for a given level (i.e. 99%) of
significance calculated from the diagonal elements of C. A matrix (A) that provides the corre-
lation between the estimated hydraulic parameters can be obtained by dividing the elements
of C with the square root of the diagonal elements of C:

Cy

1/2 1/2
Cu‘/ ij/

Ay = (F-12)

This first-order approximation is an efficient way for estimating the uncertainty of the esti-
mated hydraulic parameters for linear or nearly linear hydrologic models and the correlation
matrix is a useful indicator of parameter correlation (Zhu and Mohanty, 2003). If the hydro-
logical model is highly non-linear, the first-order approximation may be unreliable. Therefore,
we only focus on A;; values larger than 0.6 in our analysis.
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F-3 Results and Discussion

F-3-1 Synthetic infiltration experiments

The simulated vertical SWC profiles at times where GPR measurements were obtained are
shown in Figure F.4 for the synthetic modelling study with a 1-layer soil. It can be seen
that the infiltration front moved down to 0.6 and 1.2 m depth after the first and second
infiltration event, respectively. After the third infiltration event, the entire soil profile was
saturated. Because of the high saturation after the third infiltration event, the infiltration
front moved rapidly downward through the entire soil profile during infiltration events 4 and
5. The SWC estimates obtained from the first-arrival time of simulated horizontal borehole
GPR measurements using a straight-wave approximation are also shown in Figure F.4b. It
was found that SWC estimates obtained from GPR measurements at shallow depth (0 0.2 m)
and near the infiltration front underestimated the actual SWC (Figure F.4b and F.4c). This
is attributed to the interference of the direct wave with critical refractions generated at the
air — soil interface and the infiltration front where the dielectric permittivity changes sharply
(Rucker and Ferré, 2004a). For this reason, horizontal borehole GPR measurements at 0.1
m depth were previously not considered for SWC estimation (Appendix D). In the synthetic
study, these data were also not used in the sequential inversion to reduce this interpretation
error. Unfortunately, errors in SWC estimates near the infiltration front cannot be simply
identified and eliminated and thus are expected to affect the estimated hydraulic parameters
obtained with the sequential inversion approach. For the coupled inversion, the effect of the
air-soil interface is considered in the simulation of GPR wave propagation and therefore there
is no need to remove the measurement at 0.1 m depth. However, the information content
with respect to the soil hydraulic properties is expected to be limited for these measurements
because of the limited travel path length in the topsoil.
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(a) Schedule of the synthetic infiltration events and synthetic GPR measurements.
(b) Synthetic vertical SWC profiles from HYDRUS-1D (solid lines) and synthetic
vertical SWC profiles estimated by GPR data (dashed lines) based on the vertical
water content distribution used as inputs in gprMax3D. The colors indicate different
measurement times. The GPR estimated SWCs at 0.2 — 1.2 m depth were inverted
using a sequential inversion approach to estimate the hydraulic parameters for the
1-layer soil. (c) Differences between GPR-estimated and simulated HYDRUS-1D
SWCs. The timing of the infiltration events is indicated by the light green back-
ground. Note that different y-axis scales are used for the results of different depths.
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Response surfaces for the 1-layer soil profile

Figure F.5a presents the response surface based on true SWC data that would be obtained
using point measurements (i.e. TDR) at the same depth as the borehole GPR measurements.
The corresponding response surfaces for the noise-free coupled inversion of the synthetic GPR
data are shown in Figure F.1b. It can be seen that the cost functions for point and GPR
measurements have a very similar misfit distribution. This is not unexpected given that
point and GPR measurements provide a similar type of information, albeit with a different
sampling volume (Appendix D). The response surfaces can be used to gain insight in the
expected parameter uncertainty. In the case of the a parameter, the response surfaces for
n- «, 0,-a, and fs-« indicate that changes in the cost function are parallel to the « axis.
This suggests that the o parameter is independent from the other parameters. Although a
clear minimum in the cost function value can be observed in these three surfaces, it is also
elongated in the direction of the « axis suggesting that the o parameter is expected to be less
constrained in the inversion results compared to the other model parameters. According to the
response surfaces for fs-n and 6,- log(K), estimates of 65 are expected to be correlated with
the estimates of n and log(K;). In the vicinity of the global minimum, the response surface
is almost perpendicular to the 6, axis and steep, which suggests that 65 estimates are well-
constrained during inversion. The global minimum in the response surface between log(Kj)
and n is positioned in an elongated valley. A strong negative correlation between the parameter
estimates for log(K) and n is thus expected, which implies that the GPR measurements may
not contain sufficient information to simultaneously constrain both log(X;) and n.

Inversion results for the 1-layer soil profile

Sequential and coupled inversions were performed using noisy simulated GPR measurements
for the 1-layer soil profile. In the case of the sequential inversion, the fitted SWC data showed
a large misfit with the expected SWC (Figure F.6a), particularly for the shallow depths (0.2
m). This is also reflected in the large cost function value (0.05 cm3 em™) for the optimized
parameters, which is much higher than the added uncertainty in the SWC data (0.01 ¢m3
cm?). Additionally, the SWC profiles simulated by using the estimated parameters from the
sequential inversion showed large deviation with the SWC profiles from the true forward model
(Figure F.7a). Due to the poor fit to the data, the hydraulic parameters were not accurately
estimated by the sequential inversion (Table F.2). In particular, 65 was strongly underesti-
mated and this resulted in a large mismatch between the inverted and true water retention
curves (Figure F.8a). Moreover, the estimated value for K was at the lower boundary of the
feasible parameter space (0.035 cm min!), which is almost equal to the infiltration rate. The
n and « parameters were also overestimated, which resulted in a large difference between the
inverted and true relative hydraulic conductivity function (Figure F.8b). As detailed above,
sequential inversion of ZOP data may lead to erroneous estimates of hydraulic parameters if
strong vertical gradients in SWC are present (e.g. infiltration-induced gradients).
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Response surfaces from true SWC data
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Figure F.5: Response surfaces for different pairs of hydraulic parameters obtained using (a) true
SWC data simulated by HYDRUS-1D and (b) noise-free synthetic GPR travel times.
The cost function values are shown in logarithmic scale. Blank spaces indicate
that the hydrological model did not converge for the selected parameters. The
global minimum of the cost function is shown by the red cross. Also note that the
cost functions of sequential and coupled inversion (Cyv(0) and Chrrv(t) ) have
different units (cm3cm™3 and ns, respectively).
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In the case of the parameters estimated from coupled inversion, the simulated travel time fitted
the known travel time from the true model well (Figure F.8b) as expressed by the low RMSE
of 0.1 ns. Also, the simulated SWC profiles matched well the SWC profiles from the true
model (Figure F.7a). It should be noted that the coupled inversion was ended when the cost
function value decreased to the standard deviation of the Gaussian noise (0.1 ns) (Table F.3)
to avoid overfitting. Therefore, the data simulated with the inverted model parameters have
the same RMSE as the noise-free data and the simulated travel times based on the inverted
parameters also match well with the noise-free data.

Table F.3: Inverted results of noisy synthetic data.

True value Bounds Inverted results

Sequential inversion Coupled inversion

homogenous soil profile

Os(cm3em™) 0.326 0.25-0.40 0.290 0.326 £+ 0.0017
alem™) 0.036 0.030-0.125 0.106 0.036 £ 0.003
n (-) 1.386 1.1-2.8 1.431 1.358 + 0.016
log(K) (cm min™!) -1.244 -1.456 -0.276 -1.456 -1.168 + 0.038
Cost-function - - 0.05 0.1

2-layer soil profile

Bs1(cmiem ) 0.326 0.30-0.40 0.345 0.324 £ 0.007
ai(em™) 0.036 0.030-0.125 0.036 0.036 £ 0.004
ni(—) 1.386 1.1-2.8 1.506 1.312 £ 0.024
log(Ks1) (cm min™') -1.244 -1.456 -0.276 -0.276 -0.996 + 0.048
Osa(em®em™) 0.229 0.15-0.30 0.300 0.240 =+ 0.007
az(em™) 0.050 0.030-0.125 0.038 0.045 £ 0.004
na(—) 1.534 1.1-2.8 1.696 1.431 £ 0.020
log(K2) (cm min™) -1.398 -1.456- -0.276  -1.456 -1.108 + 0.048
Cost-function - - 0.01 0.1

The values indicated the 99% confidence interval based on the first-order approximation.

The values for ; and « were accurately estimated by coupled inversion (Table F.3). However,
the estimated values for n and log(K;) showed a slight deviation from the true model, likely
because of the strong correlation between these two parameters. The accurate estimation
of the hydraulic parameters is also reflected in the good match between the estimated and
known water retention and relative hydraulic conductivity function (Figure F.8a, F.8b). The
first-order uncertainty estimates for the coupled inversion are presented in Table F.3 and the
associated correlation matrix of the estimated hydraulic parameters is given in Table F.4. The
results indicate a strong negative correlation for log(K) - n and weak correlations between
other pairs of hydraulic parameters. This is consistent with the results of the response surface
analysis and confirms that the first-order approximation provides a meaningful assessment of
parameter uncertainty.

July 22, 2024



240 Appendix F

Table F.4: Correlation matrix of the estimated hydraulic parameters for the homogeneous profile.

@ n logK s 0

em? - em min! emPem 3
n -0.335 1
logKs 0.233  -0.6947 1
0 -0.086  0.256 0.186 1

The values indicated the pairs of parameters showing strong correlation.

Inversion results for the 2-layer soil profile

In a next step, the synthetic modelling study for the two-layer soil profile was analyzed. As
expected from the results of the 1-layer soil profile, the parameters estimated using sequential
inversion deviated considerably from the true hydraulic parameters (Table F.3) and the
estimated and true water retention (Figure F.8¢, F.8¢) and relative hydraulic conductivity
functions did not match well (Figure F.8d, F.8f). Hence, sequential inversion will not be
considered for the analysis of the actual field measurements.

The results of the coupled inversion for the 2-layer soil profile generally were consis-
tent with the results of the 1-layer profile, despite the dimensional expansion of the search
space from four to eight parameters. Again, the estimated travel times from coupled inversion
results nicely fitted the noisy synthetic travel time series (Figure F.9) and the vertical
SWC profiles from the true model (Figure F.7b). In addition, accurate hydraulic parameter
estimates were obtained (Table F.3), as also confirmed by the minor differences in estimated
and true water retention (Figure F.8¢, F.8¢) and relative hydraulic conductivity functions
(Figure F.8d, F.8f).
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simulated by using the true model (black solid line), parameters estimated from the
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Water retention functions
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Figure F.9: Coupled inversion results of noisy GPR travel time data for 2-layer profile.
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F-3-2 Inversion of experimental GPR data

Coupled inversion was used to estimate the hydraulic parameters from the measured horizon-
tal borehole GPR data shown in Figure F.10. The resulting fit to the measured data is also
shown in Figure F.10 and the estimated soil hydraulic parameters are provided in Table F.5.
For comparison, the simulated data using the hydraulic parameters of Cai et al. (2018b) are
also provided, which are based on long-term TDR measurements also made during vegetation
periods. The comparison between measured and simulated travel times showed a good corre-
spondence at 0.1 m depth both for the inverted hydraulic parameters and the parameters from
Cai et al. (2018b) (Figure F.10). For 0.2 m depth, the measured GPR travel times steadily
increased during the entire infiltration experiment, whereas the simulated travel times using
both sets of hydraulic parameters remained constant after the second infiltration event be-
cause the soil reached saturation. This can be explained by the heterogeneous nature of the
topsoil, which is supported by the large spatial variation of the GPR travel time data. For
the subsoil, the key features of the measured time-lapse GPR data were well captured by the
coupled inversion, also considering the spatial variability in the measured GPR data. The
simulated travel time data based on the hydraulic parameters of Cai et al. (2018b) did not
match the observed GPR data well in the subsoil (i.e. at 0.6, 0.8, and 1.2 m depth). This is
attributed to the small Ko used in Cai et al. (2018b), which results in a slow movement of the
infiltration front in the subsoil (Figure F.11), and therefore, a reduced variation in simulated
water content at large depths.
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Figure F.10: Figure 10. Coupled inversion results of measured GPR travel time data at different

depths. Simulated travel time using the hydraulic parameters of Cai et al. (2017)
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timing of infiltration events is indicated by the light green background. Please note
that different y-axis scales are used for the results at different depths.
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Table F.5: Inverted Soil hydraulic parameters for the rhizotron facility from measured GPR data.

Depth 0, O « n logK s 1
cm cm’cm # cm®em P cm™! - cm min! -
[cost-function = 0.32 (ns)]

0 30 0 0.328 + 0.011F  0.032 + 0.011  1.125 + 0.028 -0.983 + 0.266 0.5
30 120 0 0.196 £ 0.009  0.038 £ 0.015 1.202 £+ 0.054 -1.022 £ 0.349 0.5

t The values indicated the 99% confidence interval based on the first-order approximation.

Measured and inverted GPR travel time data are directly compared in Figure F.12. The use of
the hydraulic parameters from Cai et al. (2018b) clearly resulted in a systematic underestima-
tion of the measured data and a relatively high RMSE of 0.43 ns. The hydraulic parameters
obtained using coupled inversion better matched the measured travel time data, as indicated
by the lower RMSE (0.32 ns) and a higher R2 value (0.90). Nevertheless, the RMSE between
inverted and measured GPR data is still relatively large. This is partly attributed to the
heterogeneity of the topsoil, as the measurements at 0.2 m depth make up a considerable part
of the observed misfit. Furthermore, there is uncertainty in the initial SWC profile, which
is solely based on GPR measurements at six different depths. Here, extrapolation from the
shallowest borehole to the soil surface is problematic, and may have introduced some degree
of uncertainty. Finally, there is intrinsic uncertainty in the field GPR measurements and data
processing, such as the uncertainty in the position of the horizontal boreholes and the uncer-
tainty in the determination of the time-zero or first arrival time of measured GPR data. These
issues obviously did not affect the coupled inversion in the synthetic case study but they are
highly relevant for the inversion of actual field measurements.
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Figure F.12: Linear regression between measured and GPR travel time data obtained using the
inverted hydraulic parameters (black squares) and the hydraulic parameters of Cai
et al. (2017) (blue crosses). The 1:1 line is indicated by the dashed red line.

Table F.6: Correlation matrix of the inverted hydraulic parameters for the 2-layer model.
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The values indicated the pairs of parameters showing strong correlation.

The results of the first-order uncertainty estimation of the inverted hydraulic parameters are
provided in Table F.5. The uncertainty of a and 5 are comparable for the top- and subsoil,
whereas n and log(K) showed a larger uncertainty for the subsoil. This can be explained by
the strong negative correlation (A — -0.615) between ny and log(Kso) (Table F.5). All other
pairs of hydraulic parameters did not show strong correlations. Figure F.13 presents the water
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retention and relative hydraulic conductivity functions obtained using coupled inversion. The
associated uncertainty was obtained by randomly plotting 100 sets of hydraulic parameters
drawn from the uncertainty bounds provided in Table F.5. As can be seen from the uncertainty
bounds, 6, is associated with a relatively low uncertainty, whereas the n value is associated
with a larger uncertainty as indicated by the increasing spread of the functions at lower
pressure heads. Furthermore, uncertainty in the water retention function is similar for the
top- and subsoil (Figure F.13a, F.13c). For comparison, the functions based on the hydraulic
parameters of Cai et al. (2018b) were also provided. The water retention function obtained
using coupled inversion clearly deviated from that of Cai et al. (2018b), which showed a faster
decrease of water content with matric potential due to the larger n value. Additionally, a
lower 05 was estimated by the coupled inversion.

Topsoil:
a) b)
0.35

Possible inverted model
—Caietal. (2017)
—Best op i model

0.3

0.25

0.2

0.15

0

0.05
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10° 102 10* 108
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8(h) (cm’cm’)
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Figure F.13: Water retention 6(h) and relative hydraulic conductivity K,.(h) function from 100
possible inverted hydraulic parameter sets (dark lines), the hydraulic parameters of
Cai et al. (2018b) (blue line) and the hydraulic parameters with the best fit (red
line) for the (a, c) top soil and (b, d) subsoil.

The hydraulic conductivity functions obtained using coupled inversion also showed a similar
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uncertainty for the top- and subsoil (Figure F.13b, F.3d). For the topsoil, the hydraulic
conductivity function obtained using coupled inversion corresponded well with the function
obtained in Cai et al. (2018b). This is at least partly due to the similarity in the inverted K
obtained in this study and in Cai et al. (2018b). However, there are obvious differences in the
hydraulic conductivity functions for the subsoil due to differences in estimated K. There is a
range of possible explanations for the observed differences. First, the estimation of K is known
to be scale-dependent. For example, laboratory methods using small sample volumes often
lead to lower K compared to estimates from in-situ measurement from a larger soil volume
(Busch et al., 2013, Rovey and Cherkauer, 1995). The results of Cai et al. (2018b) were based
on TDR measurement that only cover a small areal fraction of the rhizotron facility, whereas
the GPR measurements represent a larger volume (Appendix D). Thus, a higher K is perhaps
expected for the GPR measurements since the importance of preferential flow in macropores
likely increased from the TDR to the GPR scale. The analysis presented here also indicated
potential parameter correlations between K¢ and n. Since larger n values were reported by
Cai et al. (2018b), this may explain the small K values. It is also important to note that
Cai et al. (2018b) estimated hydraulic parameters with a more complex model set-up that
considered root water uptake. In particular, root water uptake parameters were estimated
alongside the hydraulic parameters, which might have hampered the correct estimation of
the soil hydraulic parameters and likely increased the uncertainty in the estimated hydraulic
parameters obtained by Cai et al. (2018b). Finally, it is important to note that Cai et al.
(2018b) assumed free drainage as a lower boundary condition whereas a seepage face was used
in this study.

F-4 Summary and Conclusions

In this study, we used both sequential and coupled inversion strategies to estimate hydraulic
parameters from horizontal borehole GPR measurements during an infiltration experiment.
First, a synthetic modelling study was set-up to compare the two inversion approaches
independent of measurement and model errors. In a noise-free synthetic study using a 1-layer
soil profile, a response surface analysis was used to evaluate correlation between hydraulic
parameters. The results showed that the hydraulic parameters n and log(Ky) were strongly
correlated, which implies that the GPR measurements were not able to simultaneously
constrain log(Ks) and n. In a next step, synthetic SWC and travel time data with added
noise were used to estimate hydraulic parameters using sequential and coupled inversion
approaches, respectively. It was observed that a sequential inversion approach relying on the
conventional straight-ray approximation to estimate SWC did not provide accurate hydraulic
parameter estimates if strong vertical gradients in SWC were present due to infiltration. The
coupled inversion approach, which combined 3D modelling of GPR measurements with a 1D
vadose zone flow model, was able to provide accurate estimates of the hydraulic parameters
both for a 1-layer and a 2-layer soil profile because interpretation errors associated with
the straight-ray approximation were avoided. In a final step, horizontal borehole GPR
measurements made during an infiltration experiment were inverted using a coupled inversion
approach. The estimated hydraulic parameters were reasonably consistent with water
retention and relative hydraulic conductivity functions reported by Cai et al. (2018b) for the
same site.
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In conclusion, the coupled inversion of horizontal borehole GPR measurements pro-
vided accurate field-scale estimates of soil hydraulic parameters. Because of the larger
sampling volume compared to point sensors, the estimated hydraulic parameters are expected
to have an improved field representativeness. In future studies, coupled inversion of horizontal
borehole GPR data may be used to estimate 2D and perhaps even 3D distributions of soil
hydraulic parameters by considering all measured travel times over the profile, although
this will obviously be associated with a higher computational effort. A disadvantage of
the proposed approach is that GPR measurements are still taken manually and are thus
time-consuming, whereas point sensors often allow automated data acquisition. As an
alternative to GPR, other geophysical methods such as ERT can also be employed to estimate
hydraulic parameters. ERT can investigate the subsurface with high resolution, and data
acquisition can be automated. However, the electrical conductivity distribution obtained
with ERT is not only sensitive to SWC but also depends on several other factors (e.g., clay
content, pore water salinity) (Binley et al., 2015). This can complicate vadose zone model
parameterization using ERT measurements considerably. It would be interesting to extend
coupled inversion by considering the full GPR waveform instead of solely using travel time
information, as was recently proposed for seismic data by Li et al. (2020). It is expected that
this would increase the information content of the GPR measurements in the inversion, and
therefore reduce uncertainty in the estimated hydraulic parameters and provide chances to
estimate hydraulic properties of multi-layer soils.
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AIC
BC
CF
CMP
CNN
COP
CRIM
DC

EF
EIT
EM
EMI
ERT
ERT
ET

FB

FC
FDEM

Akaike Information Criteria
Boundary condition

Cost function

Common midpoint profiling
convolutional neural network
Common offset profiling
Complex refractive index model
Direct Current

Evoporation

extra field

electrical impedance tomography
Electromagnetic
Electromagnetic induction
Electrical resistivity tomography
Electrical resistivity tomography
Evopatranspiration

first break

field capacity

frequency domain electromagnetics

Abbreviations
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GHG greenhouse gas

GPR Ground penetrating radar

GS growing season

HCC hydraulic conductivity characteristics

HHS homogeneous half space

INRES Institute of Crop Science and Resource Conservation
IP induced polarization

LAI Leaf area index

LAI leaf area index

MOG Multi offset gathers

MR Minirhizotron

MRI magnetic resonance imaging

MVG Mualem-van-Genuchten

NMR Nuclear magnetic resonance

PAW plant available water

PDR probability density function

PWP permanent wilting point

RLT Lower Terrace rhizotron facility

RUT Upper Terrace rhizotron facility

RCD root count density

RL root length

RLD root length density

RMSE root mean square error

RMSE Root mean square error

RVF volumetric root volume fraction

Rx Receiver antennae

SCE-UA Shuffled complex evolution developed by the University of Arizona
SD Standard deviation

sEIT spectral electrical impedance tomography
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SHP
SIP
SSR
A%
SWC
SWP
SWR

T

TDR
TERENO
Tx
UAV
VRP
WARR
Z0P

soil hydraulic properties
spectral induced polarization
sum of squared residuals
sensing volume

Soil water content

soil water potential

soil water retention
Transpiration

Time domain reflectometry
TERrestrial ENvironmental Observatories
Transmitter antennae
unmanned aerial vehicle
vertical radar profiling

Wide angle reflection refraction

Zero offset profile
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Root image measurement are acquired using camera system attached to an
index handle. d) Sensor location for one exemplary plot. . . . . . . ... ..
Overview of the experimental timeline including cultivars and management
actions, such as sowing, harvest, pesticide applications and irrigation.

GPR processing steps . . . . . . ..o
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a) Overview of the minirhizotron (MR) facilities. At each of the plots, dif-
ferent agricultural treatments were applied for the different crop growing
seasons. The direction of the crop rows was perpendicular to the direc-
tion of the rhizotrubes (red arrow). The measurements were carried out
within an access trench. b) Overview of one representative plot within
the MR facilities with the horizontal crosshole ground-penetrating radar
(GPR) zero-offset-profiles (ZOP) measurement setup. Transmitter and re-
ceiver antennae are labeled Tx and Rx, respectively. Root images were
acquired using a camera system attached to an index handle. . . . . . . ..

a) Root image locations within rhizotubes, with the location of the above-
ground crop rows in comparison to the image locations. The upper rhi-
zotube illustrates the positions of the time-lapse root images, the middle
rhizotube illustrates the positions of the high spatially resolute root image
measurement in 2020, the lower rhizotube illustrates the section where the
ground-penetrating radar (GPR) zero-offset-profiles (ZOP) measurements
were acquired. b) Root image angles within the rhizotubes, ¢) representa-
tive root image, d) corresponding segmented root image after an automatic
image analysis pipeline, developed by Bauer et al. (2022)/ Appendix E.

a) Images of both minirhizotron (MR) facilities during the 2017 crop grow-
ing season. (b) Overview of the maize vegetation stages and the correspond-
ing dates for the crop growing seasons. (¢) Root images of July 27, 2017 for
different depths for both MR facilities. *For Plot 1 at Ry , a later sowing
date is applied. Hence, the respective dates for the different crop growing
stages vary. . . . . ..o L e s e e e

Root arrival curves in root volume fraction (RVF) for 2017 for the three
plots for Ryt and Ry, left and right, respectively. The root images were
measured within the same rhizotubes where the ground-penetrating radar
(GPR) antennae was placed. The colored triangles represent the RVF over
time, which were median-filtered over 3 measurement days. The colors
indicate the different depths. Tasseling and silking are indicated by the
vertical lines. Note the different y-axes scales for Plot 1 in comparison to
Plots2and 3. . . . . . . . ..

Root volume fraction (RVF) depth profiles of 2017 for Ryt a), ¢), and e)
and Ry b), d), and f). The colored triangles represent the RVF values for
the different depths, where the different colors represent the measurement
date over the crop growing season. Note the different x-axis for Ryr and
Rrr below all plots and a separate axis for Plot 1 of Ry and a depth 0.1
m of Plot 1 of RUT shown on top of the figure. . . . . . ... ... ... ..
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Comparison of the weather data and permittivity for Ryt during the 2017
crop growing season. a) Weather data: the solid red line represents the
daily temperature values, and the light blue bars represent the daily pre-
cipitation values. The dark blue irrigation values are only valid for Plot 3.
Mean permittivity per depth for Plots 1 3 are shown in b) and d). The
colored circles with the error bars indicate the permittivity mean along the
rhizotube with its standard deviation as error bars. The colored solid lines
connect the individual measurement days. The horizontal lines represent
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Comparison of the weather data and permittivity for Ryt during the 2017
crop growing season. a) Weather data: the solid red line represents the
daily temperature values, and the light blue bars represent the daily pre-
cipitation values. The dark blue irrigation values are only valid for Plot 3.
Mean permittivity per depth for Plots 1-3 are shown in b) and d). The
colored circles with the error bars indicate the permittivity mean along the
rhizotube with its standard deviation as error bars. The colored solid lines
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venience, the approximate soil water content (SWC) values were added on
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Processing steps to derive the trend-corrected spatial permittivity deviation
of the vegetated field for Ry Plot 2, depth 0.8 m. The different colors
represent the measurement dates. a) Daily permittivity profile e, along
the rhizotubes for all dates during the measurement season 2017. b) Daily
spatial permittivity deviation of the vegetated field EM'J'/ . The green bars
indicate the root volume fraction (RVF) derived from root images for the
different measurement positions. c¢) Daily spatial permittivity deviation for

the bare-field sme-l. The dashed black line represents the mean of the
2017. d) Trend-corrected spatial permittivity deviation of the vegetated
field AEM'J/ .....................................

Trend-corrected spatial permittivity deviation AETM/ of the vegetated field,
along the rhizotubes over the different plots & depths, for Ryt and Rip
in 2017. The colored solid lines represent different dates during the crop
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Parameters for the hydrogeophysical sequential inversion with (a) daily pre-
cipitation (blue bars) and reference grass evapotranspiration (red line). (b)
leaf area index (LAT) (grey solid line) and the rooting depth (black dashed
line) (c) crop coefficient (black dashed line) and rescaled potential transpi-
ration (grey solid line). d) mean GPR-derived soil water content (SWC)
(colored dashed lines) (e) soil water potential (SWP) at 140 cm depth (black
dots). The vertical solid black line indicates Sowing date, the vertical dot-
ted black indicates Flowering date and vertical dashed black line indicates
Harvest date. The grey dashed frames indicate the GPR-derived SWC,
which are shown in more detail in Figure 5-5. . . . . .. ... .. ... ...

Results for the inversion of the horizontally averaged GPR-derived SWCs.
The uppermost plots show the atmospheric conditions followed by the differ-
ent SWC measurement depths. The solid lines indicate the modeled SWC
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mean SWCs . . . . . L.
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the crop growing season: (a) 28" of April, (b) 20" of June, and (c) 1%
of August 2016.GPR-derived soil water contents (SWC) for three selected
dates during the crop growing season: (a) 28" of April, (b) 20t" of June,
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Soil water retention (a &b) and relative hydraulic conductivity function (¢ &
d) for the plow and subsoil layer respectively. The different colors represent
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a) and b) show the upscaling results for the plow layer and the subsoil
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Comparison of the weather data and permittivity for Ryt during the 2018
crop growing season. a) weather data: the solid red line represents the daily
temperature values and the light blue bars represent the daily precipitation
values. The dark blue irrigation values are only valid for Plot 3. b)-d)
show mean permittivity per depth for Plot 1 2 & 3. The colored circles
with the error bars indicate the permittivity mean along the rhizotube with
its standard deviation as error bars. The colored solid lines connect the
individual measurement days. The horizontal lines represent the dates for
the vegetation stages and sowing and harvest dates. For convenience the
approx. SWC values were added on the right-hand axis for b)-d) using the
three-phase complex refracted index model (CRIM). . . . . .. ... .. ..

Comparison of the weather data and permittivity for Ry during the 2018
crop growing season. a) weather data: the solid red line represents the daily
temperature values and the light blue bars represent the daily precipitation
values. The dark blue irrigation values are only valid for Plot 3. b)-d)
show mean permittivity per depth for Plot 1 2 & 3. The colored circles
with the error bars indicate the permittivity mean along the rhizotube with
its standard deviation as error bars. The colored solid lines connect the
individual measurement days. The horizontal lines represent the dates for
the vegetation stages and sowing and harvest dates. For convenience the
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values. The dark blue irrigation values are only valid for Plot 3. b)-d)
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with the error bars indicate the permittivity mean along the rhizotube with
its standard deviation as error bars. The colored solid lines connect the
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Daily spatial permittivity deviation for the bare-field E,J:E”Fiﬁj, along the rhi-
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Trend-corrected spatial permittivity deviation Aeri’j’ of the vegetated field,
along the rhizotubes over the different plots & depths, for Ryr and Rpp
in 2018. The colored solid lines represent different dates during the crop
growing season. The data gap of Ryt at 0.2 m depth is caused by the
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Probability density function (PDF) of the trend-corrected spatial permittiv-
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Probability density function of the trend-corrected spatial permittivity de-
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by the SCE-UA. Error Propagation for a.) topsoil and b.) subsoil, for the
optimized parameters individually. The objective function value/ error is
represented by the y-axis, the according value of the optimized parameter is
indicated on the y-axis. The error propagation is shown as a color gradient,
where blue colors represent early runs and yellow colors represents the runs
before the termination of the SCE-UA. The green cross indicates the input
hydraulic parameter value (parameter which originates the synthetic SWC
values), the red circle indicates the optimized hydraulic parameter. . . . . .
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Results of the feasibility study for a) three-phase and b) four-phase CRIM
equation for varying bulk permittivity and root volume fraction (RVF) of
the soil-plant continuum. Porosity was defined as ¢ = 0.25. . . . .. . . ..
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ground-penetrating radar (crosses) and time-domain reflectometry (TDR)
sensors (solid lines) for 0.2- and 1.2-m depths using the 2014 data. Averaged
horizontal SWC profiles were derived with the three-phase CRIM model.
The top row shows the precipitation data obtained by pluviometer (gray
bars) and the mean daily temperature (black solid line). Sheltered, flow-
ering, and harvest times are marked as violet boxes, purple dashed lines,
and orange dashed lines, respectively. Irrigation events are indicated with
blue arrows with the corresponding amount. Note that the date of the year
(x-axis label) is given with the first and second numbers as day and month,
respectively. . . . . L L.

Comparison of soil water content (SWC) estimated for both the upper ter-
race Ryr and lower terrace Rpr rhizotrons using time-domain reflectome-
try (TDR) and ground-penetrating radar (GPR) measurements for 2014 to
2016. Each color represents a different depth of investigation. Correspond-
ing regression lines for only Ryp, Rpr, and combined Ryp and Rpp are
indicated with a dashed, dotted, and solid black lines, respectively. . . . . .

Time-averaged water contents during the winter and summer wheat growing
seasons (1 April-harvest) in 2014, 2015, and 2016 in (a) the upper terrace
rhizotron Ryp and (b) the lower terrace rhizotron b) Ry for different water
treatments and depths derived from time-domain reflectometry (TDR) and
ground-penetrating radar (GPR) measurements and calculated using the
additive model. . . . . .o o

Horizontal and lateral soil water content (SWC) variability as determined
by zero-offset profile (ZOP) analysis for (a) the upper terrace rhizotron
Ry and (b) the lower terrace rhizotron Rpp. Horizontal SWC profiles
after CRIM using the 8 May 2014 data for all three treatments: sheltered,
rainfed (natural condition), and irrigated. Each measurement point (5-cm
spacing) is color coded with the corresponding SWC. Note the different
color bars of the SWC. The black outlined boxes indicate patches of higher

or lower SWC that were consistent with the time during the 3 yr. . . . . . .

Mean soil water content (SWC) for each depth and the corresponding stan-
dard deviation (SD) for (a) the upper terrace rhizotron (Ryr) and (b) the
lower terrace rhizotron Rpp for the time series 2014 to 2016. The different
treatments are indicated with different colors. . . . . . . . ... ...

July 22,

2024



298

LIST OF FIGURES

D.9

D.13

July 22, 2024

Detailed analysis of the soil water content (SWC) distribution for 26 June
to 24 July 2014 for the rainfed plot of the upper terrace rhizotron Ryr:
(a) daily precipitation, mean temperature, and time series of the SWC for
depths of 0.2, 0.4, 0.6, 0.8, and 1.2 m derived by time-domain reflectometry
(TDR) and ground-penetrating radar (GPR) as crosses and circles, respec-
tively, with the harvest date indicated by the yellow line (note that the date
of the year [x-axis label] is given with the first and second number as day
and month, respectively); (b) vertical GPR SWC for 26 June to 24 July
2014; (c¢) horizontal depth slices of the SWC for the 3 d marked in (a) by
the red ellipses showing dry, intermediate, and wet conditions. The black
outlined boxes indicate the SWC patches that were consistent with time
(see Figure D.9). . . . . . . ..

Detailed analysis for (a) the upper terrace rhizotron (Ryr) nd (b) the lower
terrace rhizotron (Rzr) of the soil water content (SWC) depth slices. The
mean SWC of each depth slice was subtracted from the individual SWC
values along the depth slices. The gray lines represent the individual SWC
profiles for all the measurement days of 2014. The solid black, red, and
green lines represent the means of all the measurement days of the years
2014, 2015, and 2016, respectively. The black circles indicate the higher
and lower SWC patches that were consistent with time (see Figure D.9)
along the horizontal slices. . . . . . . . . .. .. ... . 0 .

etailed analysis for (a) the upper terrace rhizotron Ry for the soil water
content (SWC) in the presence of maize in 2017: weather conditions and the
SWC variations (similar to Figure D.6) at the shallow depths for all three
plots for the main growing period between July to August, with orange
lines indicating the position of the maize plant along the tubes (left) and
horizontal SWC profiles after CRIM for Ry for two example dates during
the growing phase for all three treatments: rainfed I (previously sheltered),
rainfed II, and irrigated (right). . . . . . . ... .. ... o L.

Root count density distribution for maize after the growing phase measured
in a grid of 0.0375 by 0.0375 m for (a) the upper terrace rhizotron Ry nd
(b) the lower terrace rhizotron Ryp. The data were acquired by excavating
a trench close to the maize plants and counting the number of roots per
grid cell (two replicates per site). . . . . . . ... L L.

Comparison of synthetic horizontal borehole traces with a borehole sepa-
ration of 0.75 m. Traces for a three-dimensional homogenous space with a
relative dielectric permittivity (g,) of 5 in red and traces for the presence
of an air layer on top of the &, = 5 of the two-layered medium in blue: (a)
traces for transmitter (Tx) and receiver (Rx) depths of 0.1, 0.2, 0.4, 0.6,
0.8, and 1.2 m, with the possible ray paths for a simple two-layered model
in the embedded box; and (b) comparison of synthetic traces at the 0.1-m
depth for ¢, values of 5, 8, 10, and 20 for the homogeneous and two-layered

184

190



LIST OF FIGURES 299

D.14

E.1

E2

E.3

E.4

E.5

E.6

E.7

ES8

E9

Different synthetic models with varying permittivity for top and sub-soil
(solid blue lines). Synthetic GPR traces were generated with gprMax 3D.
The boundary of top and sub-soil is located at 0.3 m depth. Model IT and
III are modeled with a linear gradient of the permittivity in the subsoil.
Conductivity is constant for all models with 10 mS/m. For the same depths
of the rhizotrones the first arrival travel times were picked and converted
into permittivity (red crosses). Exact values and corresponding differences
are illustrated in Table D-A.1. . . . . . . .. ..o 192

Schematic overview of the workflow of the automated analysis pipeline start-
ing with image acquisition in the minirhizotron facility. . . . .. .. .. .. 202

Example for one image processed by the automated root analysis pipeline.
(a) The roots are "detected" by RootPainter according to the previous
trained model. (b) The segmented image is exported and (c) converted to
binary. (d) The last step is the skeletonization and feature extraction with
RhizoVision Explorer. . . . . . . .. .. ... oo 205

Correlation of automated and manual analyzed root length, obtained from
2017. Each measurement date is considered separately for Ryt and Ryr.
The color represents the density. . . . . . ... ... ... ... L. 207

Comparison RLD of the data obtained from images originating from two
minirhizotrons in the growing season 2015/16 and 2017, separated by
plots grown with different treatments. The images were analyzed by hand
(blue: manual) and by the automated analysis pipeline (red: automated).
2015/16: (a) Ryr manual, (b) Ryr automated, (¢) Ryp manual,(d) Ry
automated; 2017: (e) Ryt manual, (f) Ryt automated, (g) Ryp manual,(h)
Ry automated; . . . . . ..o 208

Time requirements to run the automated analysis pipeline for a sample of
25,000 images. Left: All sub-processes together. Right: share of the neural
network training, which is only required when no suitable model is available.211

3D spatio-temporal distribution of RLD measured in all tubes at one
minirhizotron. Distances between tubes are not to scale. 1-8 represents
the time steps. . . . . . . . 216

Comparison of root arrival curves of the data obtained from images originat-
ing from two minirhizotrons in the growing season 2017. The images were
analyzed by hand (left: manual) and by the automated analysis pipeline
(right: automated). 2017: a) Ryt manual, b) Ryr automated, ¢) Rip
manual,d) Ryp automated. . . . . . ... L 217

Manual vs. automated analysis. The automated analysis misses a small
part of the root and underestimates the total root length slightly. . . . . . . 217

Root senescence visible from early to late measurement dates in the growing
season 2015/16 and the corresponding segmentation and skeletonization. . . 218

July 22, 2024



300

LIST OF FIGURES

F.1

F.2
F.3

F4

F.5

F.6

F.7

FS8

July 22, 2024

(a) Schedule and amount of irrigated water for the five infiltration events
and (b) GPR travel time data measured at 6 different depths during the
infiltration experiment. The timing of the infiltration events was indicated
by light green background. The spatial variation of the travel times along
the 5.5 m borehole tube is indicated by the error bars. Note that different
y-axis scales are used for the results of different depths. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.) . . .. . ... o 0L o
Flow charts of (a) sequential inversion and (b) coupled inversion. . . . . . .
(a) The source wavelet. (b) A synthetic trace of air wave generated by
gprMax3D. (c) A synthetic vertical SWC profile generated by HYDRUS-
1D. (d) Six synthetic GPR traces obtained using the synthetic vertical SWC
distribution shown in (¢). The red crosses indicate the first arrival time of
the GPR traces. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.) . . . . . . .
(a) Schedule of the synthetic infiltration events and synthetic GPR mea-
surements. (b) Synthetic vertical SWC profiles from HYDRUS-1D (solid
lines) and synthetic vertical SWC profiles estimated by GPR data (dashed
lines) based on the vertical water content distribution used as inputs in
gprMax3D. The colors indicate different measurement times. The GPR
estimated SWCs at 0.2 — 1.2 m depth were inverted using a sequential in-
version approach to estimate the hydraulic parameters for the 1-layer soil.
(c) Differences between GPR-estimated and simulated HYDRUS-1D SWCs.
The timing of the infiltration events is indicated by the light green back-
ground. Note that different y-axis scales are used for the results of different
depths. . . . .
Response surfaces for different pairs of hydraulic parameters obtained using
(a) true SWC data simulated by HYDRUS-1D and (b) noise-free synthetic
GPR travel times. The cost function values are shown in logarithmic scale.
Blank spaces indicate that the hydrological model did not converge for the
selected parameters. The global minimum of the cost function is shown by
the red cross. Also note that the cost functions of sequential and coupled
inversion (Cpyg(0) and Cuye(t) ) have different units (cm3cm™ and ns,
respectively). . ..o
(a) Sequential inversion results of noisy GPR SWC estimations. (b) Cou-
pled inversion results of noisy GPR travel time data. SWC data at 0.1 m
depth was not used for sequential inversion. The timing of the infiltration
events is indicated by the light green background. Note that different y-axis
scales are used to show the results for different depths. . . . . . . . . . . ..
Vertical SWC profiles of the (a) 1-layer and (b) 2-layer soil profile, which
were simulated by using the true model (black solid line), parameters es-
timated from the coupled inversion (purple dashed line) and sequential in-
version (yellow dashed line) at four different measurement times. Note that
the different background indicates the different layers. . . . . .. .. .. ..
Figure F.8. Water retention §(D) and relative hydraulic conductivity K, (h)
function for the (a,b) synthetic homogeneous soil profile, and the (c,d) top-
soil and (e,f) subsoil of the 2-layer profile.. . . . . . . . .. .. ... ... ..

225
229

237



F.9

F.10

F.13

Coupled inversion results of noisy GPR. travel time data for 2-layer pro-
file. The timing of the infiltration events is indicated by the light green
background. Please note that results for different depths are shown with
difference range of y-axis scale. . . . . . ... ... 243

Figure 10. Coupled inversion results of measured GPR travel time data at
different depths. Simulated travel time using the hydraulic parameters of
Cai et al. (2017) and inverted model are shown in blue and black dashed
lines, respectively. The timing of infiltration events is indicated by the light
green background. Please note that different y-axis scales are used for the
results at different depths. . . . . . . ... oo 0oL 245

Vertical SWC profiles simulated by using hydraulic parameters from the
inversion of measured data (black lines) and Cai et al. (2018b) (blue lines).
Note that the different backgrounds indicate the different soil types. . . . . 246

Linear regression between measured and GPR travel time data obtained
using the inverted hydraulic parameters (black squares) and the hydraulic
parameters of Cai et al. (2017) (blue crosses). The 1:1 line is indicated by
the dashed red line. . . . . . ... oo 247

Water retention 6(h) and relative hydraulic conductivity K,(h) function
from 100 possible inverted hydraulic parameter sets (dark lines), the hy-
draulic parameters of Cai et al. (2018b) (blue line) and the hydraulic pa-
rameters with the best fit (red line) for the (a, ¢) top soil and (b, d) subsoil. 248

List of Tables

2-1

2-2

2-3

2-4

3-1

3-2

3-3

Detailed overview of the GPR data acquired during growing season 2016, 2017,

2018, 2020 and 2021. . . . . . . 26
Overview of the camera-systems and experiment timeline of minirhizotron im-
ages acquisition . . . . . ..o 28

Detailed overview of the images taken at the growing season 2016, 2017, 2018,
2020 and 2021. . . ..o 31

Overview of the repository content and data labelling. The labels always con-
tain the facility name (Ryror Ryr) and the year the data haven been obtained.
For the root images, each image is also labeled according to exact date (year
(YYYY), month (MM) , day (DD)), tube and position it was taken. . . .. .. 34

Overview of the crop growing seasons used in this study, including the different
agricultural practices, the maize growing stages, and number of measurement
days. . ..o 47
Comparison of the root volume fraction (RVF) and the root length density
(RLD) as minimum, maximum and mean for Ry and Ry in 2017, respectively. 49

Coefficient of determination between the root volume fraction and the SD for
Rut and Ryr for both years 2017 and 2018. . . . . . . . . ... ... ... ... 67

July 22, 2024



302

LIST OF TABLES

4-1 Overview of the different model input parameters to calculate the SWC related
to the three-phase and four-phase CRIM. Note that a homogeneous soil was
assumed and no differentiation between top and subsoil was included. . . . . .

4-2  Permittivity results for the two-dimensional study for Scenario I & II for Ryt
& Ry, for different SWC conditions. The misfit between the picked travel time
permittivity and the permittivity of the HHS is provided in brackets below the
values. Note the ¢, of the HHS is considered as the true value. . . .. ... ..

4-3 Differences between the travel times of the maximum amplitude between Sce-
nario [ and II, for Ryp and Ryp. . . 0 o o 0 0 00000

4-4  Three-phase soil water content (SWC) for Scenario I and three-phase and four-
phase SWC results for Scenario II for Ryt & Rrr and different SWC conditions
between 0.05 — 0.35. The [%] misfit between the three- & four-phase SWC is
provided in brackets. . . . ... oo L

4-5 Sensing volume (SV) for the different SWC and different frequencies for Ryr

4-6 Permittivity results for the two-dimensional study for Scenario III & IV for Ryt
& Rir, for different SWC conditions. The misfit between the picked travel time
permittivity and the permittivity of the HHS is provided in brackets below the
values. Note the r of the HHS is considered as the true value. . . . . . . . . ..

5-1 Overview crop management and measurements for the crop growing season 2016.103

5-2  Results for the inversion of the horizontally averaged GPR-derived SWCs, with
boundaries set in the SCE-UA optimization and the optimized SHP values for
the different models. For the selection of the best model, the R? and AIC were
calculated for each soil layer individually and over all depths. . . . . . . .. ..

A-3.1Irrigation amounts applied on Ryt in 2017, 2018 & 2020. . . . . . . .. .. ..
A-3.2Trrigation amounts applied on Ry in 2017, 2018. . . . . . . . . ... ... ...
A-3.3Comparison of the root volume fraction (RVF) and the root length density
(RLD) as minimum, maximum and mean for Ryt and Ry in 2018, respectively.
The RLD was calculated using the total (root) length and the median diameter,
per root image. The total (root) length is an additional output of RhizoVision,
which not further used on this study. . . . . . . .. .. ... ... .. ... ..
A-3.4Comparison of the root volume fraction (RVF) and the root length density
(RLD) as minimum, maximum and mean for Ryp in 2020, respectively. The
RLD was calculated using the total (root) length and the median diameter, per
root image. The total (root) length is an additional output of RhizoVision,
which not further used on this study. . . . . . ... ... ... 0.

B-3.1Results of the synthetic study. Comparison of the SHP of the forward model
and the synthetic sequential inversion runs. R? is the variation between the
synthetic GPR-SWC values and the optimized/ modeled SWC values. . . . . .

C-4.1Three-phase SWC for Scenario I and three-phase and four-phase SWC results
for Scenario II for Ryt & Ryt and different SWC conditions between 0.05

134

0.35. The [%] misfit between the three- & four-phase SWC is provided in brackets. 161

July 22, 2024



LIST OF TABLES 303

D.1

D.2

D.3

Measurement days for the upper terrace (Ryr) and lower terrace (Rpp) rhi-
zotrons. Note that for each day, a minimum of one zero-offset profile was
measured across the entire distance per depth. . . . . . ... .. .00 170
Estimated Fresnel zone radius (Rpg) and sampling volume (SV) for the upper
terrace (Ryr) and lower terrace (Rpr) rhizotrons for a range of relative per-
mittivity (e,) values. For all calculations, a center frequency of the measured
data (f.) of 170 MHz was used, and the associated wavelength (\) was obtained.174
Correlation coefficient r between time-domain reflectometry and ground-
penetrating radar derived soil water contents for the upper terrace (Ryr) and
lower terrace (Rpr) rhizotrons in 2014 to 2016. . . . . . .. . .. . ... . ... 179

D-A.Results of the different synthetic models using gprMax. For Models I to V for

E.1

E.2

E.3
E4

F.1
F.2
F.3
F4
F.5

F.6

each depth between 0.2 and 1.2 m, the relative dielectric permittivity (&,) used
in the model and the handpicked transformed e, are shown. The difference
between the modeled and handpicked permittivity values is indicated as Aeg,.
The resulting differences in SWC were calculated using Topp’s equation (Eq.
[2]) and are indicated as Aoy . . . .o 193

Overview of the camera-systems and experiment timeline of minirhizotron im-
ages acquisition . . . . . ... e 200
Overview of the statistical comparison of automated and manual annotation.
ARL is the difference between the mean total root length (mm) obtained from
automated and manual analysis methods, and a Welsch two sample t-test shows
whether differences are significant (* = p<0.01). . ... ... ... .. .. ... 210
Detailed overview of the images taken at the growing season 2015/16 and 2017 219
Comparison of the automated analysis pipeline and the manual annotation
of the total root length obtained in the growing season 2017 with a linear
regression. The confidence interval (95%) of the regression coefficient (ordinary
least products) are listed in parenthesis. The bias is fixed if the 95% CI of the
intercept do not include 0 and the bias is proportional if the 95% CI of the

slope donot include 1. . . . . . . . . .. .. 220
Soil texture of fine soil, mass fraction of stones and porosity of the field according
to Caiet al. (2016).. . . . . . . . .. 224
Soil hydraulic parameters according to Cai et al. (2018) for the rhizotron facility.230
Inverted results of noisy synthetic data. . . . ... .. .. ... ... ... ... 239
Correlation matrix of the estimated hydraulic parameters for the homogeneous
profile. . . . . 240
Inverted Soil hydraulic parameters for the rhizotron facility from measured GPR
data. . . . oL 246

Correlation matrix of the inverted hydraulic parameters for the 2-layer model. . 247

July 22, 2024






Schriften des Forschungszentrums Jilich
Reihe Energie & Umwelt / Energy & Environment

Band / Volume 629

Structure and properties of electrochemical interfaces
from first principles simulations

R. Tesch (2024), xvi, 161 pp

ISBN: 978-3-95806-753-0

Band / Volume 630

Elucidation of Barocaloric Effect in Spin Crossover Compounds
H. Shahed (2024), x, 261 pp

ISBN: 978-3-95806-758-5

Band / Volume 631

Computational Investigation of Solvation Phenomena
at Metal-Electrolyte Interfaces

O. Cheong (2024), xvii, 142 pp

ISBN: 978-3-95806-759-2

Band / Volume 632

Senkung zukiinftiger Stickoxid- und Partikelemissionen in Nordrhein-
Westfalen durch den Einsatz alternativer Energietrager und Antriebe
J. L. Breuer (2024), vii, 339 pp

ISBN: 978-3-95806-760-8

Band / Volume 633

Development of Model-Based Correction Methods for Temperature-
Dependent Electromagnetic Induction (EMI) Measurement Errors in Soil
Conductivity Estimations

T. M. Tchantcho Amin (2024), xx, 100 pp

ISBN: 978-3-95806-761-5

Band / Volume 634

Investigation and implementation of improved and degradation-tolerant
fuel electrodes for solid oxide cells

A. Schwiers (2024), VI, 163, XIll pp

ISBN: 978-3-95806-762-2

Band / Volume 635

In Situ Time Calibration for Stationary Multichannel
GPR Monitoring Systems

L. Steinbeck (2024), xvi, 98, xxxi pp

ISBN: 978-3-95806-767-7



Schriften des Forschungszentrums Jilich
Reihe Energie & Umwelt / Energy & Environment

Band / Volume 636

Erneuerbares Methanol als Ausgangsstoff fiir die Bereitstellung
von fliissigen Kraftstoffen fiir den Transportsektor

F. Schorn (2024), VI, 275 pp

ISBN: 978-3-95806-769-1

Band / Volume 637

Investigation of Lower Boundary Conditions of Brominated
Very Short-lived Species (VSLS)

S. Zheng (2024), 2, iii, 160 pp

ISBN: 978-3-95806-770-7

Band / Volume 638

Modellgestiitzte Analyse zukiinftigen Mobilitatsverhaltens
J. P. Reul (2024), XVI, 291 pp

ISBN: 978-3-95806-771-4

Band / Volume 639

Insights into Mechanisms of Secondary Organic Aerosol Formation:
Approaching Atmospherically Relevant Conditions

in an Atmospheric Reaction Chamber

Y. Baker (2024), XVII, 122 pp

ISBN: 978-3-95806-776-9

Band / Volume 640

Advancing the representation of agricultural systems
in Land Surface Models: systematic model evaluations
and technical model developments

T. S. Boas (2024), xxi, 145 pp

ISBN: 978-3-95806-777-6

Band / Volume 641

Imaging spatial and temporal soil water content variations of the soil-plant
continuum using ground penetrating radar

L. Larm (2024), xii, 303 pp

ISBN: 978-3-95806-778-3

Weitere Schriften des Verlags im Forschungszentrum Jiilich unter
http://wwwzb1.fz-juelich.de/verlagexterni/index.asp







Energie & Umwelt/Energy & Environment
Band/Volume 641
ISBN 978-3-95806-778-3

IJ JULICH

Mitglied der Helmholtz-Gemeinschaft Forschungszentrum



