
Research Software Engineering

RWTH THEMEN
1/2024 Forschungsmagazin

1/
20

24

Matthias Meinke, Wolfgang Schröder
Analyse von Multiphysik-Problemen mit der
Simulationssoftware m-AIA

Daniel Döhring, Michael Schlottke-Lakemper
Höchstleistungsrechnen leicht(er) gemacht
Nachhaltige wissenschaftliche Softwareentwicklung mit Trixi.jl

Marco Davidovic, Fabian Fröde, Michael Gauding,
Terence Lehmann, Heinz Pitsch
Mit CIAO zu effizienten und emissionsarmen
Energiesystemen

Julius Berges, Joerg Berroth, Gregor Höpfner, Georg Jacobs,
Stefan Wischmann
Virtuelle Absicherung von mechatronischen Systemen
Physikalische Verhaltensmodelle und Model-Based Systems
Engineering

Susanne Kunkel, Markus Diesmann
Entwicklung des Research Software Engineering am
Beispiel von NEST
Wissenschaftliche Software ist wissenschaftliche Infrastruktur

Markus Diesmann, Julia Kowalski, Bernhard Rumpe
Research Software an der RWTH Aachen

Robert Speck, Claire Wyatt
Research Software Engineering
Vergangenheit, Gegenwart und Zukunft

Dominik Bongartz, Jannik Lüthje, Alexander Mitsos, Jaromił
Najman, Artur M. Schweidtmann, Clara Witte
Optimierung und maschinelles Lernen
Entwicklung und Anwendungen der deterministischen
globalen Software MAiNGO und der Toolbox MeLOn

Kai-Uwe Schröder, Eike Stumpf, Maurice Zimmnau
Software für eine zukunftsfähige Luftfahrt
Mit UNICADO und ASAMI forschen und lehren

Marek Behr, Norbert Hosters, Fabian Key
In Raum und Zeit durch das Bottleneck
computergestützter Mechanik
Der Multi-Physics-Code XNS

28

32

38

44

50

4

8

10

14

20

Inhalt

2 |

Alexander Kruschewsky, Camelia Oprea, Mark Schoberer,
André Stollenwerk
Software-Toolchain als neues Werkzeug in der Medizin
Komplikationen frühzeitig erkennen

Marc S. Boxberg, Nino Menzel, Florian Wagner
Geophysik lässt tief blicken
Abbildung von Strukturen und Prozessen
im Untergrund mit pyGIMLi

Stefan Blügel, Gregor Michalicek, Daniel Wortmann
Dichtefunktionaltheorie auf dem Weg zum
Exascale-Computing
Entwicklung des FLEUR Community Codes für sukzessive
Generationen von Supercomputern

Pooja Babu, Charl Linssen, Abigail Morrison,
Johanna Senk, José Villamar
NESTML und die Simulation pulsgekoppelter
neuronaler Netze mit NEST GPU
Domänenspezifische Modellierungssprache begünstigt
Hardware-Beschleunigung

54

60

66

70

76

80

84

90

Foto: Peter Winandy

Uwe Naumann, Jens Deussen, Markus Towara
Differenzierbare Forschungssoftware

Gabriele Gramelsberger, David Heyen, Dawid Kasprowicz,
Frederik Kerksieck, Markus Pantsar, Thomas Venator,
Daniel Wenz
Wissenschaftstheoretische Reflexionen zu Research
Software Engineering
Konzeptuelle Analyse von Forschungssoftware

Nico Jansen, Bernhard Rumpe
Kompositionelle Sprachentwicklung mit der Language
Workbench MontiCore
Wiederverwendbarkeit im Software Engineering

Impressum

 | 3

Markus Diesmann, Julia Kowalski, Bernhard Rumpe

Research Software
an der RWTH Aachen

Software nimmt in fast allen Bereichen der
Natur- und Ingenieurwissenschaften eine
Schlüsselrolle ein. Mittlerweile existieren
grundsätzlich verschiedene Software-Arten,
beispielsweise Algorithmen für die Simulation
thermofluid-mechanischer Multiskalenpro-
zesse, Methoden zu Konstruktion und
Optimierung komplexer technischer Systeme,
Skripte zur automatisierten Prozessierung
extrem umfangreicher Datensätze aus Mess-
kampagnen, Algorithmen zur Steuerung und
Regelung komplexer Anlagen und Roboter,
Wissenssysteme zur schnellen Identifikation
von Lösungen bei selten auftretenden Er-
eignissen oder Störungen, Digitale Zwillinge
zur integrierten Verwaltung und Kontrolle
physikalischer, chemischer oder biologischer
Forschungsexperimente, assistierende KI-
basierte Systeme und nicht zuletzt operative
Grundfunktionalitäten in Betriebssystemen,
Datenspeichern und Kommunikationsinfra-
strukturen. Die Verfügbarkeit und eine weit
über den Prototypen hinausgehende Qualität
der Software sind oft Voraussetzung dafür,
aus Ideen Wirkung zu entfalten oder Hypo-
thesen in Erkenntnisgewinn weiterzuentwi-
ckeln, diesen in Anwendungen umzusetzen

In the last ten years, research software en-
gineering has emerged as a crucial capa-
bility to an innovative scientific community.
Efficient development of high-quality software
beyond mere prototypes is often essential
for transforming ideas into impactful results,
translating hypotheses into knowledge, and
implementing this knowledge in applications
for the benefit of society and industry.
Successful and effective research, develop-
ment, and teaching at a university like RWTH
now rely heavily on software development
that is designed for sustainability, efficiency,
and technical compatibility for integrated
research networks. These activities also
require the capabilities to use high-quality
software in a creative, solution-oriented,
and reproducible manner.
Developing high-quality research software is
essential for the success and sustainability of
science and will increasingly impact teaching
and learning as well.

4 |

und damit der Gesellschaft und der Industrie
verfügbar zu machen. Ohne Software würde
es keine Navigation geben, es würde kein
modernes Auto fahren oder gebaut werden
können, keine Wettervorhersage oder Früh-
warnung vor Naturgefahren existieren, keine
moderne medizinische Diagnostik oder Ener-
gieversorgung möglich sein – unser Lebens-
standard würde in dieser Form schlichtweg
nicht existieren.
Erfolgreiche und wirkungsvolle Forschungs-,
Entwicklungs- und Lehrtätigkeit an einer
Universität wie der RWTH Aachen ist daher
ohne eine auf Nachhaltigkeit, Effizienz und
technische Kompatibilität für integrierte For-
schungsverbünde ausgelegte Softwareent-
wicklung, und ohne die Kompetenz zur
kreativen, lösungsorientierten und reprodu-
zierbaren Nutzung hochwertiger Software,
nicht mehr möglich. Offenheit und Zugäng-
lichkeit von Software im Sinne des FAIR Para-
digmas (Findable, Accessible, Interoperable,
Reusable) sind weitere Faktoren, um einen
software-integrierten Innovationsprozess
und wissenschaftlichen Erkenntnisgewinn
zu gewährleisten.

Weil Simulation heute als dritte Säule des
Erkenntnisgewinns neben Experiment und
Theorie etabliert ist und Experimente immer
datenlastiger und rechenintensiver werden,
macht die Bedeutung von Software und ihrer
Entwicklung in den Natur-, Sozial- und Ingeni-
eurwissenschaften derzeit eine ähnliche Ent-
wicklung durch, wie die Softwareentwicklung
im industriellen Kontext in den vergangenen
20 Jahren bereits durchlebt hat: Der Entwick-
lungsbereich eines Automobilherstellers wird
heute von Software dominiert. Der Vorstand
der Volkswagen AG hat beispielsweise Volks-
wagen als Software-Konzern bezeichnet.
Software kann aufgrund ihrer Komplexität
nicht mehr als Beiwerk behandelt werden,
ihre Entwicklung muss organisatorisch durch-
dacht sein sowie technisch unterstützt und
behandelt werden.
Software Engineering wurde bereits 1968 als
wissenschaftliches Forschungsfeld gestartet
und in den nachfolgenden Jahren in allen
Informatik-Ausbildungen etabliert, um Kom-
plexität, Effizienz, Nachhaltigkeit sowie die
Qualitätsanforderungen adäquat zu adressie-
ren. Der mittlerweile gut konsolidierte und in
regelmäßiger Weiterentwicklung befindliche

„Software Engineering Body of Knowledge“
(SWEBOK) unterteilt seine Aktivitäten in 15
Kapitel, die sich mit Anforderungen, Entwurf,
Konstruktion, Testen, Wartung, Konfigurati-
ons- und Engineering Management, Entwick-
lungsprozessen, Modelle und Methoden,
Qualität, Professional Practices, Entwick-
lungsökonomie sowie Computing, mathe-
matischen und Engineering Grundlagen des
Software Engineering beschäftigen. Das
klassische Programmieren gehört zur Kon-
struktion und betrifft daher nur einen kleinen
Teil des Wissens. Viele Innovationen, wie
etwa Wikis, Versionskontrolle, Variantenma-
nagement, Ticketsysteme oder agile Entwick-
lungsmethoden verdanken ihren Ursprung
dem Software Engineering. Um die spezifi-
schen Herausforderungen zur Entwicklung
von Forschungssoftware zu adressieren,
hat sich zunächst in den angelsächsischen
Ländern als Spezialisierung des Software En-
gineering das „Research Software Enginee-
ring“ (RSE) herausgebildet. RSE bezeichnet
ein Fachgebiet, das die Prinzipien des Soft-
ware Engineering mit den Bedürfnissen und
Zielen der natur- und ingenieurwissenschaft-
lichen Forschung vereint. Ähnlich wie andere

 | 5

Spezialisierungen des Software Engineering
(etwa Automotive Software Engineering) ex-
istiert RSE nicht isoliert, sondern kombiniert
seine Methoden und Best Practices, um die
Domänenforschung durch hochwertige Soft-
ware und Softwarekompetenz effektiver und
wirkungsvoller werden zu lassen.
RSE hat sich in den letzten Jahren zu einem
der wichtigsten – jedoch nicht sehr lauten –
Zukunftsthemen in der wissenschaftlichen
Gemeinschaft entwickelt. RSE reicht von der
Entwicklung von „Fire-and-Forget“-Skripten,
die von Einzelpersonen geschrieben werden
und für den einmaligen Gebrauch gedacht
sind, bis hin zu koordinierten, institutions-
übergreifenden Softwareprojekten, die viele
Forscher zusammenbringen, um an einem
gemeinsamen Ziel zu arbeiten. Zunehmend
mutiert dabei Software, die zunächst als
Forschungsgegenstand entwickelt wurde,
zu wiederverwendbarer und damit qualitativ
hochverfügbarer Software als Infrastruktur.
Software bekommt so ein immenses Potenzi-
al, Innovationen und wissenschaftliche Ent-
deckungen schneller voranzutreiben. Aller-
dings ist aus dem Software Engineering be-
kannt, dass Wiederverwendbarkeit vorberei-
tet und organisiert werden muss – und auch
welche Maßnahmen dafür nötig sind.
Ein gemeinsames Merkmal von RSE ist die
Fokussierung auf einen bestimmten Anwen-
dungsbereich und die damit verbundenen
Auswirkungen auf alle Phasen des Software-
Lebenszyklus. Beispielsweise ist der Prozess
der Anforderungserhebung stark mit dem
wissenschaftlichen Forschungsprozess ver-
zahnt und die Korrektheit der Software
relativ zu den veröffentlichten wissenschaft-
lichen Papieren beziehungsweise den darin
enthaltenen Modellen zu sichern. Deshalb
passen klassische Paradigmen des Software

Engineering aus der Industrie oft nicht zur
gelebten Praxis einer auf Forschung und
Innovationsleistung ausgelegten Universität.
Softwareentwicklung muss sich hier naht-
los in die jeweiligen Forschungsprojekte
eingliedern, welche oft von internationalen,
interdisziplinären Kooperationen, hoher
personeller Fluktuation und leider vor allem
fragmentierten Finanzierungskonstrukten
geprägt ist. Gleichzeitig möchte man in der
Forschung, also auch in der damit einher-
gehenden Softwareentwicklung, agil auf
aktuelle Entwicklungen reagieren. Aufgrund
dieser Anforderungen und der zunehmenden
Komplexität der Algorithmen, der Integration
von Datenmengen, KI-Techniken und des
Wunsches nach energetischer Sparsamkeit
rechenintensiver Prozesse ist der Stand der
Praxis im klassischen Software Engineering
für die Bedürfnisse der forschungsorientier-
ten RSE noch deutlich ausbaubar. Wie in
anderen Bereichen auch, passen die beste-
henden Software-Engineering-Methoden,
-Werkzeuge und -Best Practices nicht genau
und müssen angepasst werden, um bessere
Software und damit bessere Forschung zu
ermöglichen.
Die RWTH ist dabei, sich hier noch besser
zu positionieren. So wurde in der ersten gro-
ßen Konferenz am 17. Mai 2023 eine RSE-
Strategie diskutiert. Definiert wurde eine
koordinierte Strategie für Nachhaltigkeit und
Exzellenz in RSE, die aus einer Reihe von
inhaltlichen, organisatorischen, technischen
und auch Ausbildungs-Maßnahmen besteht
und sowohl in Exzellenzclustern als auch
der Gesamtstrategie der RWTH Aachen ein
wichtiger Eckpfeiler sein wird. Zentral ist auch
die stattgefundene Sensibilisierung für das
Thema über die gesamte Universität hinweg.
Ein weiterer Eckpfeiler ist die Etablierung

einer Sammlung an Best Practices der Soft-
wareentwicklung an der RWTH, indem RSE
in die Lehre integriert wird. Darüber hinaus
sind eine institutionelle RSE-Methodik,
Coaching-On-The-Job und Tooling Support
durch Experten, also Software Engineers,
Architekten und Projekt Engineers im Aufbau.
Komplex bleibt die Frage, wie interne und
externe Finanzierungsmöglichkeiten nach-
haltig geschaffen werden können. Hier ist
neben der Universität insbesondere das
Forschungssystem gefragt, um langlebige
Software-Infrastruktur valide und gesund zu
erhalten.
Es ist mittlerweile klar, dass RSE-assoziierte
Herausforderungen die gesamte Wissen-
schaft im globalen Kontext betreffen. Deshalb
ist die RWTH dabei, insbesondere instituti-
onsübergreifend mit der Jülich Aachen Re-
search Alliance (JARA), der Euregio und den
vielen RWTH-nahen Forschungsverbünden
eine gemeinsame RSE-Strategie zu erarbei-
ten und weiterzuentwickeln.

Diese Ausgabe der RWTH THEMEN zeigt
eine Auswahl an Softwareprojekten, welche
RSE-Paradigmen umsetzen. Dies beinhaltet
Beiträge zur Softwareentwicklung selbst, in
Form von Artikeln zur Robustheit numerischer
Modelle gegenüber Parameteränderungen,
der Methodik zur Nutzung expliziter, domä-
nenspezifischer Modellierungssprachen, ge-
nerische Optimierungswerkzeuge, Software
zur Datenintegration unter Wahrung des Da-
tenschutzes und der Nutzung fachübergrei-
fende Softwareumgebungen für spezifische
Modellklassen. Darauf aufbauend werden
Anwendungen für spezifische Fachdomänen,
wie der Neurowissenschaft, der Materialwis-
senschaft, der Geologie bis hin zur Luft-
fahrt beschrieben. Umrahmt werden diese

6 |

Beiträge von dem Artikel „Research Software
Engineering – Vergangenheit, Gegenwart
und Zukunft“, der die mittlerweile zehnjährige
Geschichte und Entstehung des RSE be-
schreibt, siehe Seite 8, und dem Beitrag
„Wissenschaftstheoretische Reflexionen zu
Research Software Engineering – Konzep-
tuelle Analyse von Forschungssoftware“,
der wissenschaftstheoretische Reflektionen
vornimmt, siehe Seite 80.
Die Beiträge zeigen, welche Arten von Soft-
ware an der RWTH entwickelt, gewartet,
aktualisiert und für die Öffentlichkeit bezie-
hungsweise die Fachcommunity frei ver-
wendbar zur Verfügung gestellt wird und
oft zur gemeinsamen Weiterentwicklung und
Integration neuer Forschungserkenntnisse
und Ideen geführt hat. Denn Softwareent-
wicklung in der Wissenschaft kann sich über
Jahrzehnte erstrecken. Sie wandelt sich im
Erfolgsfall typischerweise nach einer initi-
alen, projekt getriebenen Phase von einer
„Fire-and-Forget“-Software zu einer grund-
sätzlichen Infrastruktur, die nicht mehr von
einer einzelnen Gruppe betreut sondern in
Verbünden von universitären Professuren
und Forschenden an nationalen Forschungs-
einrichtungen weiter genutzt und entwickelt
wird. Ist eine Software erfolgreich, mutiert sie
zur Infrastruktur, was einerseits einen Umbau
in Bezug auf Anwendbarkeit und Robust-
heit, methodische Änderungen zur Weiter-
entwicklung im Konsortium erfordert und
andererseits auch eine große Verantwortung
induziert.
Darüber hinaus zeigt diese Ausgabe der
RWTH THEMEN, dass Software nicht nur
zum Treiber der Wissenschaft geworden ist.
Vielmehr sind sich die Forschenden bewusst,
dass Software den wissenschaftlichen Pro-
zess selbst verändert und als dritte Säule

des Erkenntnisgewinns neue Wege induziert,
wie über ein wissenschaftliches Problem
nachgedacht wird.

Im Sinne des institutionsübergreifenden Aus-
tausches sind wir froh, im JARA Center for
Simulation and Data Scienc (CSD) Erfahrun-
gen über die Fachdisziplinen hinweg von
der Großforschung bis zur universitären For-
schung austauschen zu können. So entsteht
ein detailliertes und vollständiges Bild, was
RSE ausmacht, wie es an einer Exzellenz-
universität gelebt, gelehrt und an zukünftige
Generationen weitergegeben werden kann.
Der Erfolg bei der Entwicklung von For-
schungssoftware ist kritisch für den Erfolg
und die Nachhaltigkeit der Wissenschaft
als Ganzes und hat in Zukunft auch noch
deutlich mehr Einfluss auf die Lehre. Wir se-
hen daher ein Zukunft, in welcher RSE nicht
länger als neuartige Entwicklung angesehen
wird, sondern RWTH-weit als gelebte Praxis
in allen Disziplinen selbstverständlich gewor-
den ist.

Autoren
Univ.-Prof. Dr.rer.nat. Markus Diesmann
leitet das Lehr- und Forschungsgebiet
Computational Neuroscience und ist
Leiter des Instituts für Computational
and Systems Neuroscience (IAS-6) am
Forschungszentrum Jülich.
Univ.-Prof. Dr.sc.habil. Julia Kowalski
ist Inhaberin des Lehrstuhls für Methoden
der Modellbasierten Entwicklung in den
Computergestützten Ingenieurwissen-
schaften.
Univ.-Prof. Dr.rer.nat. Bernhard Rumpe
ist Inhaber des Lehrstuhls für Software
Engineering (Informatik 3).

 | 7

Robert Speck, Claire Wyatt

Research Software
Engineering
Did you start off as a researcher and now
spend time developing software to progress
your research? Or maybe you started off from
a more conventional software-development
background and are drawn to research by
the challenge of using software to further
research?
A growing number of people in academia
combine expertise in programming with an
intricate understanding of research, all while
being a researcher. Although this combina-
tion of skills is extremely valuable, these
contributions lack a formal place in the
academic system. There is no easy way to
recognise their contribution, to reward them,
or to represent their views.
Without a job title, it was difficult for people
to rally around a cause and there was no
easy way to recognize their contribution, to
reward them, or to represent their views.
The realisation emerged that the lack of
awareness, recognition and reward of the
skills and contribution or a recognised job
title for research developers was having a
knock on effect making many activities
difficult. Those in the role spoke of how it was
difficult to recruit and difficult for developers
to find a job.
So in 2012 at a workshop in the UK, the term
Research Software Engineer was first coined.

This gave a focus for the next ten years of
support and has enabled developers to find
their tribe online and in-person. The RSE
movement around the world is now working
to raise awareness of the role, bring RSEs
together and advocate for more appropriate
career recognition and promotion. This article
will cover the history of the RSE movement,
the achievements to date around the world,
the goals and aims of the RSE movement
looking to the future.

Die Entwicklung von Forschungssoftware
ist eine wichtige und in fast allen Disziplin-
en genutzte Fähigkeit. Zwei Umfragen aus
den Jahren 2014 und 2017 belegen dies: In
Großbritannien[1] bestätigten 92 Prozent der
Forschenden, dass sie Forschungssoftware
verwenden, und 69 Prozent gaben an, dass
diese für ihre Forschung von grundlegender
Bedeutung ist. Die Umfrage aus den USA[2]
ergab, dass 95 Prozent der Wissenschaft-
lerinnen und Wissenschaftler Forschungs-
software nutzen, und für 66 Prozent der
Befragten war diese für ihre Forschung von
grundlegender Bedeutung. Heute wären die
Zahlen sicherlich höher.
Software ist für die Forschung also von ent-
scheidender Bedeutung. Ihre Entwicklung
sollte daher als Pfeiler der Wissenschaft und

eigenständige Forschungsleistung betrachtet
werden. Die Erstellung guter Codes erfordert
Ausbildung, Erfahrung, Fachwissen sowie
spezielle Kompetenzen. Diese müssten be-
reits im Rahmen des Studiums unabhängig
vom Fach allen Studierenden vermittelt
werden.
Viele der übergeordneten FAIR-Datenprinzi-
pen können direkt auf Forschungssoftware
angewendet werden, wenn man Software
und Daten als vergleichbare digitale For-
schungsobjekte behandelt. Dies bedeutet,
dass die Auffindbarkeit, Zugänglichkeit,
Interoperabilität und Wiederverwendbarkeit
von Forschungssoftware gewährleistet sein
muss.
In einer Welt, in der ein Großteil der Forschung
durch Software vorangetrieben wird, ist die
Anerkennung von Research Software Engi-
neering von zentraler Bedeutung – eine Ein-
sicht, die sich in dem Motto „Better Software,
Better Research“ manifestiert. Dieses wurde
vom Software Sustainability Institute in Groß-
britannien entwickelt und weltweit übernom-
men. Eine gängige Definition von Research
Software Engineering ist „die Anwendung
von Software-Engineering-Verfahren in For-
schungsanwendungen“. Forschungssoftware
reproduzierbar, nachhaltig und wiederver-
wendbar zu machen erfordert ein umfassen-

Vergangenheit, Gegenwart und Zukunft

8 |

des Verständnis von Forschungsmethoden
sowie Erfahrung in der Softwareentwicklung.
Als Forschungssoftware kann „jede Soft-
ware betrachtet werden, die zur Erzeugung,
Verarbeitung und Analyse von Ergebnissen
verwendet wird, die für eine Veröffentlichung
gedacht sind“[3]. Diese Definition mag nicht
unumstritten sein, da sie die Frage aufwirft,
ob Forschungssoftware nur dazu genutzt
werden soll, um Ergebnisse zu erzielen, die
veröffentlicht werden. Argumente gegen die
Definition wären beispielsweise, dass manch-
mal lediglich ein Konzeptnachweis erbracht
oder die Grundlage für einen Förderantrag
erarbeitet wird. Forschungssoftware kann
alles Mögliche sein, von ein paar Codezeilen
bis hin zu einem kompletten Softwarepaket.

Historische Entwicklung
Im März 2012 traf sich eine kleine Gruppe
zu einem „Collaborations Workshop“ am
Software Sustainability Institute des Queen’s
College Oxford. Dort wurde der Begriff
„Research Software Engineer“ als Berufsbe-
zeichnung und „Research Software Enginee-
ring“ für die Praxis der in diesem Bereich Täti-
gen geprägt. Ziel war, über den Mangel an
Karrieremöglichkeiten für Softwareentwickle-
rinnen und -entwickler in der Wissenschaft zu
diskutieren, dem Berufsbild mehr Anerken-

nung zu verschaffen sowie den Mangel an
Karrieremöglichkeiten und Arbeitsplatzsicher-
heit zu. Am ersten RSE-Workshop an der
Universität Oxford 2013 nahmen gerade ein-
mal 56 Personen teil. Nach diesem Workshop
wurde die UK RSE Association gegründet,
wobei das Software Sustainability Institute
(SSI) die noch junge Gemeinschaft vertritt.
Im Jahr 2016 veranstaltete das SSI die erste
RSE-Konferenz und 2017 das erste interna-
tionale Treffen der RSE-Führungskräfte in
Großbritannien. Dies inspirierte die Gründung
der nationalen RSE-Verbände in den USA
und in Deutschland, denen bald weitere
Gruppen in Skandinavien, Australien und
Neuseeland folgten.
Im Jahr 2019 entstand die gemeinnützige
Gesellschaft „The Society of Research Soft-
ware Engineering“, um dem Berufsstand und
der Gemeinschaft eine Organisation als Im-
pulsgeber für die notwendigen Veränderun-
gen zur Seite zu stellen. Aus dieser Kampag-
ne hat sich inzwischen eine internationale
RSE-Gemeinschaft entwickelt; in Deutsch-
land formierte sich 2018 die nationale Gruppe
„de-RSE e.V.“. Ihre Ziele sind vielfältig, die
Mitgliedschaft steht allen Interessierten offen.
de-RSE veranstaltet jährlich eine Konferenz
und bietet im Online-Community-Bereich
Möglichkeiten zur Vernetzung und Austausch.

Eine Vision besteht darin, das Forschungs-
umfeld weiter zu sensibilisieren, so dass die
zentrale Rolle von Software in Forschung
und Wissenschaft noch höhere Anerkennung
erfährt.

 https://www.fz-juelich.de/en/	
	 	 rse/about-rse

Autoren
Dr. Robert Speck ist einer der stellvetreten-
den Institutsleiter des Jülich Supercomputing
Centre und leitet dort die Abteilung
„Mathematik und Ausbildung“.
Claire Wyatt ist RSE Community Managerin
am Forschungszentrum Jülich.

Literatur
[1] Hettrick, S.J., et al, UK Research Software
Survey 2014, DOI:10.5281/zenodo.1183562
[2] Nangia, U., Katz, D. S., Surveying the US
National Postdoctoral Association Regar-
ding Software Use and Training in Research.
(WSSSPE5.1), 2017
[3] UK Research Software Survey 2014, Hett-
rick et al, https://zenodo.org/record/14809

Bild 1: Karte der der weltweiten RSE-Bewegungen, sowie die auf RSE ausgerichtete Podcast-Reihe „Code4Thought“

Quelle: Ian Cosden (Princeton University) und Claire Wyatt (Forschungszentrum Jülich)

 | 9

Dominik Bongartz, Jannik Lüthje, Alexander Mitsos, Jaromił Najman, Artur M. Schweidtmann, Clara Witte

Optimierung und
maschinelles Lernen
Entwicklung und Anwendungen der deterministischen globalen Software
MAiNGO und der Toolbox MeLOn

Mathematische Optimierungsalgorithmen
werden in vielen Bereichen von Wissenschaft
und Technik angewendet. Aber auch im
alltäglichen Leben begegnet uns die Opti-
mierung häufig, zum Beispiel bei der Benut-
zung eines Navigationssystems. Dabei sucht
dieses die schnellste oder auch die umwelt-
freundlichste Route von Punkt A nach B.
Es wird die aktuelle Verkehrssituation berück-
sichtigt, und häufig können die Nutzenden
Vorlieben oder Stopps mit angeben. Unter
Einbeziehung aller Vorgaben schlägt das
Navigationssystem mithilfe von Optimierung
eine Route vor. Ähnliche Aufgabenstellun-
gen ergeben sich auch in der Energie- und
Verfahrenstechnik. Extrem wichtig ist dort
beispielsweise die Optimierung von Prozes-
sen für die Herstellung von Chemikalien oder
für die Energiewandlung, mit dem Ziel diese
effizienter oder kostengünstiger zu gestalten.

Globale Optimierung eines Fließbildes
In der Verfahrenstechnik werden häufig so-
genannte Prozessfließbilder, eine abstrakte
Darstellung einer verfahrenstechnischen An-
lage, genutzt und optimiert. Das Fließbild
enthält dabei verfahrenstechnische Grund-
operationen, wie zum Beispiel Reaktoren
oder Destillationskolonnen. Diese Grundope-
rationen werden durch Stoff- und Energie-
ströme miteinander verbunden und in Be-
ziehung gesetzt. Bei der Optimierung des
Prozessfließbildes werden nun Werte für die
Betriebs- oder Auslegungsvariablen ermittelt,
die eine bestimmte Größe reduzieren soll,
beispielsweise die Betriebskosten oder die
Umweltbeeinträchtigung. Die zu minimierende
Funktion wird auch Zielfunktion genannt. Ein
allgemeines Optimierungsproblem besteht
aus einer Zielfunktion und Nebenbedingun-
gen, welche in Form von Gleichungen und

Mathematical optimization algorithms are
used in many areas of science and engi-
neering. In the field of energy and process
engineering, for example, chemical plants are
optimized to make them more efficient. How-
ever, the optimization of complex processes
is challenging. In particular, the optimization
problems that arise are often nonconvex,
motivating the use of deterministic global
optimization methods. Unfortunately, these
methods are very computationally expensive.
A remedy can be provided by hybrid models,
combining mechanistic equations (in partic-
ular physical laws) with data-driven model
components. For this purpose, the MAiN-
GO software and the MeLOn toolbox were
developed at the Institute of Process Systems
Engineering at RWTH Aachen University.

10 |

Ungleichungen gegeben werden. Physika-
lische Zusammenhänge zur Beschreibung
von Grundoperationen und Flüsse können in
dem Optimierungsproblem als Gleichungen
in den Nebenbedingungen formuliert werden.
Als Ungleichungen tauchen die Grenzen der
Prozessgrößen, beispielsweise die Angabe
eines maximalen Druckes, auf. Des Weiteren
können Ungleichungen benutzt werden, um
gewünschte Eigenschaften des Prozesses
oder des Produktes, etwa maximale Anlagen-
größe oder Produktreinheit, zu garantieren.
Die daraus formulierten Optimierungsproble-
me sind häufig nichtkonvex. Da nichtkonvexe
Optimierungsprobleme oft mehrere lokale
Optima aufweisen, wird die Verwendung
deterministischer globaler Optimierungsme-
thoden angestrebt. Im Gegensatz zu lokalen
und stochastischen globalen Methoden
garantieren deterministische globale Opti-

Bild 1: In der Bioraffinerie der Aachener Verfahrenstechnik wird an Aufschluss und Konversion von Biomasse zu Plattformchemikalien geforscht. Solche Prozesse sind Anwendungsbeispiele für die

Optimierung mittels MAiNGO und MeLOn.

Foto: Peter Winandy

mierungsverfahren ein globales Optimum
in endlicher Zeit innerhalb einer gegebenen
Toleranz. Trotz dieser Garantie gibt es für
die praktische Anwendung solcher Optimie-
rungsverfahren eine große Herausforderung:
die Rechenzeit ist zwar endlich, kann aber je
nach Problem dennoch sehr groß sein und
möglicherweise Jahre betragen. Dadurch ist
bisher der Einsatz dieser Verfahren für viele
praxisrelevante Probleme unmöglich.
Ein Forschungsziel besteht darin, die Re-
chenzeit von deterministischen globalen
Optimierungsmethoden weiter zu reduzieren.
Am Lehrstuhl für Systemverfahrenstechnik
wurde daher die Software McCormick-based
Algorithm for mixed-integer Nonlinear Global
Optimization, kurz MAiNGO, entwickelt.
MAiNGO ist ein deterministischer globaler
Optimierer und basiert auf dem Branch-and-
Bound-Algorithmus. Somit kann die Software

eingesetzt werden, um gemischt-ganzzahlige
nichtlineare Programme, wie auch das oben
genannte Beispiel, zu lösen. Eine algorith-
mische Besonderheit der Software ist die
Durchführung der Berechnung in dem Raum
der ursprünglichen Optimierungsvariablen.
Das bedeutet, dass im Optimierungsprozess
keine Hilfsvariablen eingeführt werden, wie es
bei anderen kommerziellen Lösern gemacht
wird. Dies kann bei einigen Optimierungspro-
blemen zu einer drastischen Reduzierung
der Rechenzeit führen[1, 2].

Globale Optimierung mit eingebetteten
künstlichen neuronalen Netzen
Trotz aktueller Fortschritte in der Entwicklung
deterministischer globaler Optimierungs-
methoden stellen viele Optimierungsproble-
me aus der Verfahrenstechnik weiter eine
Herausforderung dar. Beispiele sind Prozesse

 | 11

wie ein Kraftwerk oder eine Entsalzungsan-
lage, welche detaillierte thermodynamische
Zusammenhänge erfordern. Diese sind häufig
noch zu komplex für die genannten Optimie-
rungsmethoden. Abhilfe kann die Verwen-
dung von hybriden Modellen schaffen. Diese
kombinieren mechanistische Gleichungen,
wie zum Beispiel physikalische Gesetze, mit
datengetriebenen Modellbausteinen aus dem
maschinellen Lernen. In Zusammenarbeit zwi-
schen dem Lehrstuhl für Systemverfahrens-
technik und dem Lehrstuhl für Chemische
Verfahrenstechnik wurde ein solcher hybrider
Ansatz zur Entwicklung eines Membransys-
tems eingesetzt. Dabei wurden experimen-
telle Daten mit etablierten mechanistischen
Transportgleichungen kombiniert. Mithilfe der
Daten wurde ein künstliches neuronales Netz
trainiert. Das aufgestellte hybride Modell
wurde anschließend genutzt, um das Mem-
bransystem zu optimieren und konnte gute
Ergebnisse hinsichtlich Rechenzeit sowie des
optimalen Betriebspunkt erzielen[3, 4, 5].
Um die Entwicklung und Optimierung solcher
hybriden Modelle zu unterstützen, wurde am
Lehrstuhl für Systemverfahrenstechnik die
Toolbox MeLOn (Machine Learning models
for Optimization) entwickelt. MeLOn stellt ne-

ben den künstlichen neuronalen Netzen ver-
schiedene Modelle des maschinellen Lernens
bereit, wie zum Beispiel Gauß-Prozesse oder
Support Vector Machines. Diese Modelle
können über eine Schnittstelle mit bekannten
Werkzeugen wie Keras (Python) oder Matlab
trainiert werden. Für die Lösung der Optimie-
rungsprobleme, in die die Modelle einge-
bettet werden, steht eine Schnittstelle zum
Optimierer MAiNGO zur Verfügung. Dabei
hat sich für künstliche neuronale Netze und
Gauß-Prozesse die Berechnung im Raum
der ursprünglichen Optimierungsvariablen,
ähnlich wie bei der oben beschriebenen
Fließbildoptimierung, als erheblicher Vorteil
gezeigt. Dies kann automatisch in MeLOn
ausgewählt werden und ermöglicht eine effizi-
entere Optimierung[6].

Entwicklung von MAiNGO und MeLOn
MAiNGO und MeLOn wurden am Lehrstuhl
für Systemverfahrenstechnik entwickelt.
Beide Programme sind Open-Source-Soft-
ware, lizenziert unter EPL2.0. Ihr Code ist auf
der GitLab-Instanz der RWTH Aachen für die
Öffentlichkeit zugänglich. MAiNGO ist dabei
ein deterministischer globaler Optimierungs-
löser[7]. MeLOn ist eine Toolbox, die Modelle

Bild 2: Grafische Darstellung eines nichtlinearen, nichtkonvexen Optimierungsproblems und allgemeine mathematische Schreibweise eines Optimierungsproblems.

12 |

Autoren
Univ.-Prof. Alexander Mitsos, Ph.D., ist Inha-
ber des Lehrstuhls für Systemverfahrenstech-
nik, Direktor des Institutsbereichs Energiesys-
temtechnik am Forschungszentrum Jülich
und Projektleiter der Software MAiNGO und
Toolbox MeLOn.
Jannik Lüthje, M.Sc., und Clara Witte, M.Sc.,
sind wissenschaftliche Mitarbeitende am Lehr-
stuhl für Systemverfahrenstechnik. Lüthje ist
Ansprechperson der Toolbox MeLOn, Witte
Entwicklerin der Software MAiNGO.
Ass.-Prof. Dr.-Ing. Dominik Bongartz ist
Hauptentwickler der Software MAiNGO und
Assistant Professor am Lehrstuhl für chemi-
sche und biochemische Reaktortechnik und
-sicherheit der KU Leuven.
Dr.rer.nat. Jaromił Najman ist ehemaliger
Hauptentwickler der Software MAiNGO.
Ass.-Prof. Dr.-Ing. Artur M. Schweidtmann ist
Initiator der Software MeLOn und Assistant
Professor am Lehrstuhl für Verfahrenstechnik
der TU Delft.

des maschinellen Lernens in ein MAiNGO-
Optimierungsproblem integrieren kann[8].
MAiNGO entwickelte sich aus Forschungs-
arbeiten zweier Doktoranden ab dem Jahre
2015. Die Forschungsarbeit eines weiteren
Doktoranden legte zwei Jahre später den
Grundstein für MeLOn. Die Software-Pakete
wurden mit Unterstützung von anderen
Mitarbeitenden und studentischen Hilfskräf-
ten entwickelt sowie implementiert. Ende
2019 wurden beide Softwares über GitLab
veröffentlicht, am Institut für Systemverfah-
renstechnik weiterentwickelt und bei For-
schungs- und Industrieprojekten eingesetzt.
Außerhalb der RWTH werden die Softwares
unter anderem an der KU Leuven (Belgien),
dem Imperial College London (Großbritanni-
en) und dem National Institute of Standards
and Technology (USA) genutzt. Mit dem
Imperial College und der KU Leuven arbeitet
die RWTH inzwischen eng zusammen, um
die Software und die dahinterstehenden ma-
thematischen Methoden weiterzuentwickeln.
MAiNGO und MeLOn wurden auch in einer
aktuellen Veröffentlichung der ETH Zürich
angewendet[9].
Beide Programme sind in C++ implementiert
und plattformübergreifend anwendbar. Die
Software MAiNGO bietet für den Nutzer viel-
fältige Schnittstellen an und kann über C++,
C, Python oder Textdateien angesprochen
werden. Hierzu wird die Hilfsbibliothek libALE
genutzt, um mathematische Texteingaben
für den Nutzer zu vereinfachen. Dabei dient
libALE der Modellierung komplexer Optimie-
rungsprobleme und ist ebenfalls am Lehrstuhl
für Systemverfahrenstechnik entstanden und
wird dort stetig weiterentwickelt. MAiNGO
und MeLOn nutzen zudem umfassend die
Bibliothek MC++, die am Imperial College
London entsteht. In dieser Software sind
Relaxierungen implementiert, welche später
in MAiNGO verwendet werden. Zudem wurde
die MC++ durch die Wissenschaftlerinnen
und Wissenschaftler der RWTH mit spezifi-
schen Funktionen für die Verfahrenstechnik
erweitert. Daneben nutzt MAiNGO eine Reihe
weiterer Bibliotheken wie FADBAD, für die
Berechnung von Ableitungen durch automa-
tische Differentiation, sowie verschiedenste
Löser für lineare sowie nichtlinear Optimie-
rungsprobleme.

Literatur
[1] Bongartz, D., Mitsos, A., Deterministic
global optimization of process flowsheet in a
reduced space using McCormick relaxations,
Journal of Global Optimization, Nr. 69(4), pp.
761-796, 2017a
[2] Bongartz, D., Mitsos, A., Deterministic
global flowsheet optimization: Between
equation-oriented and sequential-modular
methods, AiChE Journal, Nr. 65(3), pp. 1022-
1034, 2019
[3] Rall, D., Menne, D., Schweidtmann, A.,
Kamp, J., von Kolzenberg, L., Mitsos, A.,
Wessling, M., Rational design of ion sepa-
ration membranes, Journal of Membrane
Science, Nr. 569, pp. 209-219, 2019
[4] Rall, D., Schweidtmann, A., Aumeier, B.,
Kamp, J., Karwe, J., Ostendorf, K., Mitsos,
A., Wessling, M., Simultaneous rational
design of ion separation membranes and
processes, Journal of Membran Science, Nr.
600, p. 117860, 2020
[5] Rall, D., Schweidtmann, A., Kruse, M., Ev-
dochenko, E., Mitsos, A., Wessling, M., Mul-
ti-scale membrane process optimization with
high-fidelity ion transport models through ma-
chine learning, Journal of Membrane Science,
p. 118208, 2020
[6] Schweidtmann, A., Mitsos, A., Determini-
stic Global Optimization with Artificial Neural
Networks Embedded, Journal of Optimization
Theory and Applications, Nr. 180, pp. 925-
948, 2019
[7] https://git.rwth-aachen.de/avt-svt/public/
maingo
[8] https://git.rwth-aachen.de/avt-svt/public/
MeLOn
[9] Forster, T., Vázquez, D., Guillén-Gosálbez,
G., Algebraic surrogate-based process op-
timization using Bayesian symbolic learning,
AIChE Journal, Nr. 69(8), 2023

 | 13

Kai-Uwe Schröder, Eike Stumpf, Maurice Zimmnau

Software
für eine
zukunftsfähige
Luftfahrt

Climate impact of aviation has drastically to
be reduced. In order to still close the busi-
ness case for the main air transport stake-
holders, i.e. aircraft manufacturers, aircraft
leasing companies and airlines this requires
aircraft configurations with very low energy
demand and new concepts of operation.
Thus, design environments coping with novel
requirements, design processes and tech-
nologies and delivering the requested kind
of air mobility system have to be developed.
Following this path, at RWTH Aachen Univer-
sity the University Conceptual Aircraft Design
and Optimization environment (UNICADO)
and the Aachen Structural Analysis Multiscale
Integration software (ASAMI) are brought to
life. UNICADO aims at coupling all relevant
aircraft design disciplines and it is developed
jointly together with all German aircraft design
universities as open source software prod-
uct. In contrast, ASAMI bridges the different
scales of modelling during design.

Mit UNICADO und ASAMI forschen und lehren

Die Luft- und Raumfahrtbranche ist dafür be-
kannt, das technisch Machbare auszuloten.
Gleichzeitig ist die Branche aber durchaus
konservativ, da zum einen die Gewinnmargen
überschaubar sind und zum anderen hohe
Sicherheitsanforderungen im Betrieb gestellt
werden.

Herausforderungen durch den Klima-
wandel
Der menschengemachte Klimawandel zwingt
die Branche nun, den evolutionären Entwick-
lungspfad zumindest teilweise zu verlassen
und stattdessen revolutionäre Konzepte in
Betracht zu ziehen. In der Luftfahrt steht aller
Voraussicht nach ein Wechsel des Energie-
trägers – von fossilen Kohlenwasserstoffen
(Kerosin) hin zu Wasserstoff und synthetisch
produzierten Kohlenwasserstoffen (Sustain-
able Aviation Fuel, SAF) – an[1]. Ebenso wird
sich die Auslegung und Konfiguration der
Flugzeuge ändern: Schlanke Flügel mit großer
Spannweite aus Kompositwerkstoffen wer-

den unter anderem in den nächsten Jahren
an einem neuen X-Plane der NASA getestet.
Des Weiteren haben Blended-Wing-Body-
Konfigurationen, kurz BWB, siehe Bild 3,
eine Kombination aus Nurflügler und breitem,
auftriebsproduzierenden Flugzeugrumpf,
sowohl in den USA als auch in Europa wieder
den Weg auf die Forschungsagenda gefun-
den. Eine BWB-Konfiguration ist unter den
geänderten Randbedingungen überaus viel-
versprechend: Sie verbindet den Vorteil einer
deutlich reduzierten umspülten Oberfläche
und damit eines geringeren Reibungswider-
stands (bis zu 30 Prozent weniger umspülte
Oberfläche im Vergleich zu einer klassischen
Konfiguration) mit einem ausreichenden
Platzangebot für die voluminösen Tanksys-
teme für flüssigen Wasserstoff. Auch die
etablierten Betriebskonzepte im Lufttransport
stehen auf dem Prüfstand. So werden bislang
für den zivilen Personentransport noch nicht
zugelassene Abläufe wie Formationsflug und
Luftbetankung untersucht[1]. All diese Ansätze

14 |

Bild 1: Softwareseitige Strömungssimulation bedarf experimenteller Validierung, hier die qualitative Untersuchung des Strömungsverhaltens eines Flügels in Hochauftriebskonfiguration

Foto: Peter Winandy

stellen eine massive Änderung des Status
quo dar. Für keinen dieser Ansätze gibt es
bisher erprobte Entwurfswerkzeuge, keiner
ist umfassend numerisch sowie experimentell
getestet und natürlich hat keiner den Luft-
fahrt-Zertifizierungsprozess durchlaufen. Neu-
land zu betreten ist für Ingenieurinnen und
Ingenieure der Luft- und Raumfahrt an sich
nicht ungewöhnlich, der vorgegebene Zeit-
horizont lässt das Unterfangen aber zu einer
großen Herausforderung werden. Es wurden
allerdings – wenn man an das Apollo-Pro-
gramm mit der bemannten Mondlandung
innerhalb eines Zeitraums von weniger als
zehn Jahren denkt – schon größere Heraus-
forderungen gemeistert, wenngleich damals
mit quasi unlimitiertem Budget. Erklärtes Ziel
ist diesmal der Erstflug eines wasserstoffge-
triebenen Passagierflugzeugs bis 2035[2]

und die reguläre Markteinführung von weitge-
hend klimaneutralen Flugzeugkonfigurationen
und Flugbetriebsprozessen bis 2050. Sollte
die Transformation hin zu einem nachhaltigen

Lufttransportsystem nicht gelingen, wird die
Luftfahrt, aufgrund von absehbaren Reduk-
tionspotenzialen in anderen Branchen, von
einem heute kleinen zum branchenübergrei-
fend größten Emittenten von Treibhausgasen
im Jahr 2050.
Die Neuartigkeit und der Zeitdruck sind bei
dieser Aufgabe Chance und Risiko zugleich.
Das Forschungs- und Entwicklungsrisiko
kann auf der einen Seite zu erheblichen
Mehraufwänden führen und die zeitgerechte
Fertigstellung gefährden. Auf der anderen
Seite kann der Zeitplan nur gehalten werden,
wenn die Möglichkeiten der digitalen Trans-
formation umfassend ausgeschöpft werden.
Dies bedeutet eine große Aufgabe für die
Wissenschaft. Ein zentraler Aspekt ist die
Umsetzung eines digitalen Fadens und eines
digitalen Zwillings schon auf den niedrigen
Technologieentwicklungsstufen (Techno-
logy Readiness Level, TRL) im Bereich der
angewandten Forschung. Der digitale Faden
verbindet chronologisch und virtuell die auf-

einanderfolgenden Stationen der Forschung
und Entwicklung bezüglich eines Produktes
oder einer Dienstleistung entlang des kom-
pletten Lebenszyklus und stellt den Daten-
fluss sicher. Der Vorteil besteht darin, dass
nachgelagerte Prozessschritte vollständig auf
das zuvor spezifisch erzeugte Konvolut aus
Daten, Informationen und Wissen zugreifen
zu können. Anders als heute lassen sich so
die Verluste an den Schnittstellen zwischen
angewandter Forschung und Industrie und
innerhalb der industriellen Entwicklung
zwischen den Fachabteilungen vermeiden
und die Entscheidungen und Festlegungen
im Entwurf (das sogenannte „Design Freeze“)
können später im Prozess auf Basis eines
umfassenderen aufgebauten Wissens getrof-
fen werden. Benötigt wird dafür unter ande-
rem eine möglichst genaue Beschreibung der
Technologie in einer Entwicklungsumgebung.
Die initiale Beschreibung wächst im Zuge der
Forschung und Entwicklung zu einer vollstän-
digen Beschreibung, dem „digitalen Zwilling“,

 | 15

Bild 2: Vor quantitativen Messungen kommen bei der Untersuchung von Strömungszuständen

in der Regel qualitative Visualisierungsverfahren zum Einsatz, welche im Nachgang mit

Strömungssimulationsergebnissen abgeglichen werden.

Foto: Peter Winandy

heran. Befüllt wird der digitale Zwilling im
Bereich der sehr niedrigen TRL vor allem mit
simulationsbasierten Entwurfsergebnissen,
erst in späteren Phasen kommt tatsächlich
Hardware zum Einsatz.
In der Luft- und Raumfahrt beginnt der For-
schungs- und Entwicklungsprozess für ein
neues Vehikel mit der Konzeptfindung. Auf
Basis der Ergebnisse von einfachen Berech-
nungen wird eine geringe Anzahl an Konzep-
ten ausgewählt, die in der Vorentwurfsphase
weiter ausgearbeitet, optimiert und bewertet
werden. Nach der Konfigurationsauswahl
wird im detaillierten Entwurf sukzessive die
Granularität der Simulationen und des Ent-
wurfs gesteigert.
Für die neuen technologischen Ansätze, die
helfen sollen, die ambitionierten Nachhal-
tigkeitsziele zu erreichen, braucht es neue
Softwaremodelle und simulationsbasierte
Entwurfsumgebungen – sowohl für den Vor-
entwurf wie auch den detaillierten Entwurf.
Hierbei spielen die Erkenntnisse und die Pro-
zesse des Research Software Engineering –
wie Versionierung, Softwaretest und -pflege,
Programmiervorgaben – eine maßgebliche
Rolle. Zudem werden Ingenieurinnen und
Ingenieure benötigt, die die neuen Entwurfs-
werkzeuge bedienen und (weiter)entwickeln
können.

UNIversity Conceptual Aircraft Design
and Optimization – UNICADO
Seit den späten 80er-Jahren wird in der
deutschen Forschungslandschaft an soft-

warebasierten Entwurfswerkzeugen für Flug-
zeuge gearbeitet. Am Institut für Luft- und
Raumfahrtsysteme ist dabei die universitäre
Softwareumgebung MICADO (Multidiscipli-
nary Integrated Conceptual Aircraft Design
and Optimization) für den konzeptionellen
Flugzeugentwurf entstanden.
Bei hochmultidisziplinären Problemstellungen
wie dem ganzheitlichen softwaretechnischen
Flugzeugentwurf ist auch der softwareent-
wicklungsseitige Aufwand hoch, entspre-
chend groß müssen die Entwicklerteams
sein. Eine weitere Herausforderung ist, dass
die Fluktuation der wissenschaftlich Mitarbei-
tenden an den Forschungsinstituten unaus-
weichlich einen Verlust von Wissen nach
sich zieht. Um diesen Herausforderungen zu
begegnen, wurde die Initiative UNICADO[2]
(UNIversity Conceptual Aircraft Design and
Optimization) ins Leben gerufen. Hier bündeln
die sechs führenden deutschen Luftfahrt-
Universitäten RWTH Aachen, TU Berlin,
TU Braunschweig, TU Hamburg, TU München
und Universität Stuttgart die Entwicklungs-
und Entwurfskompetenzen der akademi-
schen Forschungslandschaft im Bereich des
Flugzeugentwurfs. UNICADO basiert auf dem
Entwurfstool MICADO des RWTH-Instituts
für Luft- und Raumfahrt, finanziert wird die
Entwicklung durch das Luftfahrtforschungs-
programms der Bundesregierung (LuFo-
Projekte UNICADO I/UNICADO II).
Mit UNICADO soll eine langlebige, wartbare,
robuste und öffentlich zugängliche Software
(Open Source nach GNU General Public

License Version 3.0) für den Flugzeugvor-
entwurf aufgebaut werden, die sich in der
akademischen Forschung und der universi-
tären Lehre als Standard etabliert. Über die
gemeinsame Entwicklung einer Software für
den Flugzeugentwurf wird der Entwicklungs-
aufwand auf die beteiligten Universitäten
verteilt. Die geplante Veröffentlichung der
Software als Open-Source-Produkt poten-
ziert die Anzahl möglicher Nutzender und
Entwickelnder.
Anhand von UNICADO werden künftige
Ingenieurinnen und Ingenieure der Luft- und
Raumfahrt ausgebildet. Darüber hinaus
werden mit UNICADO die Lehrstühle einzeln
und im Verbund dazu befähigt, die Luftfahrt-
industrie hinsichtlich der Erforschung und
Bewertung von innovativen Technologien
auf Gesamtflugzeugebene zu unterstützen.
Letztlich soll mit UNICADO ein wichtiger
Beitrag zur Minimierung der Emissionen der
Luftfahrt auf dem Weg zur Klimaneutralität
geleistet werden.

Kollaborative akademische Software-
entwicklung
Für die Veröffentlichung von UNICADO wur-
den zunächst die Software MICADO von den
Partnern analysiert und Regeln in Bezug auf
Programmiersprache, Programmierstil und
Formatierung definiert. Die Regeln zielen auf
eine Erhöhung der Wartbarkeit, der Verständ-
lichkeit und der Lesbarkeit des Codes sowie
der Erweiterbarkeit der Software. Wie derzeit
in der Softwareentwicklung üblich, wird auf

Bild 3: Entwurfsplattform UNICADO für konventionelle und unkonventionelle Flugzeugkonfigurationen

18 |

die Versionierung der Software durch das
Versionskontrollsystem Git gesetzt. Mit der
steigenden Anzahl an Entwickelnden wurden
Qualitätssicherungsmaßnahmen notwendig,
um eine kontinuierliche Integration von Soft-
wareänderungen zu ermöglichen. Ein erstes
Quality Gate, welches implementiert wurde,
ist ein verpflichtendes Code-Review. Jede
Codeänderung muss überprüft und geneh-
migt werden, bevor die Änderung zurück in
die Codebasis auf dem Server gespielt wer-
den kann. Das im Code-Review üblicherwei-
se verwendete Vieraugenprinzip ist eine erste
Maßnahme, verhindert Fehler aber nicht zu-
verlässig. Daher wurden Softwaretests mit
einer Automatisierung ins Leben gerufen.
Überprüft wird die Software auf unterschied-
lichen Ebenen: von der Funktionseinheit,
die der Entwickelnde geändert hat, über die
Entwurfsdisziplin, an welcher gearbeitet wur-
de (beispielsweise Flügelentwurf), bis hin zur
Gesamtflugzeugebene. Als zweites Quality
Gate wird somit jede Codeänderung durch
dafür geeignete Tests automatisiert überprüft.
An der RWTH wird UNICADO bereits in der
Lehre eingesetzt, beispielsweise in der Ver-
anstaltung „Flugzeugkonzeptstudien“. Hier
sammeln die Studierenden Programmierer-
fahrung, produzieren Entwurfsergebnisse
und liefern der Entwicklergruppe wertvolles
Feedback.
Häufig wird Software an einer Universität
durch einzelne wissenschaftlich Mitarbeiten-
de entwickelt. Selten ist die Software ausrei-
chend kommentiert und dokumentiert. Mit
dem Ausscheiden der Mitarbeitenden ist das
Wissen für den Lehrstuhl dann verloren.
Dies ist im UNICADO-Verbund anders: Über
die Kooperation kann dauerhaft eine „kriti-
sche Masse“ in den universitätsübergreifen-
den Entwicklungsteams erhalten und der
Wissenserhalt sichergestellt werden. Einen
Beitrag dazu leisten zudem die Studierenden
und die Open-Source-Community.

Aachen Structural Analysis Multiscale
Integration – ASAMI
Wird durch die Entwicklung von UNICADO
die Zusammenarbeit zwischen verschiedenen
Disziplinen im Flugzeugentwurf ermöglicht,
greift die Software ASAMI (Aachen Structural
Analysis Multiscale Integration) die skalen-
übergreifende Modellierung auf. Aufgrund
der Komplexität des Systems Flugzeug stellt
die Auslegung von Flugzeugstrukturen eine
Besonderheit im Strukturentwurf dar. Die
Komplexität äußert sich dabei in der Kopp-
lung des Verformungsverhaltens der Bauteile

untereinander. Anders als sonst bei Struktu-
ren technischer Systeme üblich, ist es beim
Flugzeug dadurch kaum möglich, die Bauteile
einzeln zu betrachten, jeweils für sich auszu-
legen und am Ende in die Gesamtstruktur zu
integrieren. Stattdessen wird der Entwurfs-
prozess mit Modellen relativ geringer Granu-
larität gestartet, die das Gesamtverhalten der
Struktur beschreiben und es erlauben, das
Tragkonzept, das Material und die Topologie
des Tragwerks festzulegen sowie erste Ab-
messungen und damit Massen zu bestim-
men. Diese Ebene der Modellierung wird als
Makroebene bezeichnet und befindet sich
in der sogenannten Konzept- und Vorent-
wurfsphase des Entwurfsprozesses. Wichtig
ist hierbei die permanente Einbindung in den
UNICADO-Auslegungsprozess, wodurch die
Konsistenz zu den anderen Disziplinen des
Flugzeugentwurfs hergestellt und sicherge-
stellt wird. Insbesondere die Massen und
ihre Verteilung stellen wesentliche Entwurfs-
parameter für das Gesamtsystem Flugzeug
dar und müssen zu einem frühen Zeitpunkt
bekannt sein.
Nach der Festlegung der Entwurfsvariablen
auf der Makroebene wird die Granularität der
Modellierung erhöht und die Geometrie der
Struktur weiter festgelegt. Hierunter fallen
jetzt die Querschnittsformen und die Abmes-
sungen der Bauteile. Die Herausforderung ist
die Unstetigkeit, die durch den Modellwech-
sel bedingt mit der höheren Detaillierung ein-
hergeht. Dies ist vergleichbar mit einem
Mikroskop, mit dem zunächst die Struktur
untersucht und schließlich der Vergröße-
rungsfaktor erhöht wird. Neue Strukturen
werden sichtbar, diese unterscheiden sich
von gewachsenen Organismen: die detaill-
ierteren Strukturen müssen erst noch ent-
worfen werden. Da die Entwicklung vom
großen zum kleinen Maßstab erfolgt, kann
die Konsistenz der Modelle nicht über eine
Homogenisierung erfolgen. Vielmehr müssen
diese über geeignete Datenstrukturen und
definierte Datenanschlusspunkte sicherge-
stellt werden. Diese Datenstrukturen aufzu-
bauen und die Modelle der unterschiedlichen
Skalen auf Konsistenz zu prüfen beziehungs-
weise entsprechende Randbedingungen für
die unterschiedlichen Skalen abzuleiten, ist
Aufgabe von ASAMI.
Die Entwicklung, Wartung und Pflege der
Software stellen damit das Rückgrat für zu-
künftige Forschungsprojekte in der Struk-
turanalyse dar und verlangen ein professi-
onelles Vorgehen. In der Softwareentwick-
lung werden aus diesem Grund dieselben

Autoren
Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder ist
Inhaber des Lehrstuhls und Leiter des Insti-
tuts für Strukturmechanik und Leichtbau.
Univ.-Prof. Dr.-Ing. Eike Stumpf ist Inhaber
des Lehrstuhls und Leiter des Instituts für
Luft- und Raumfahrtsysteme.
Maurice Zimmnau, M.Sc., ist wissenschaft-
licher Mitarbeiter am Institut für Luft- und
Raumfahrtsysteme.

Prinzipien wie bei UNICADO verfolgt. Sowohl
neue Bauweisen als auch Materialien und
deren Modellansätze aus verschiedenen
Quellen können dann über die Anbindung an
ASAMI in die Gesamtstruktur des Flugzeugs
integriert werden. Dadurch ist es möglich,
Technologiebewertungen schon früh im
Entwurfsprozess vorzunehmen und Optimie-
rungsläufe auf der Ebene der Gesamtstruktur
durchzuführen.

Knowledge. Impact. Networks.
Der Ansatz der großen universitären Kon-
sortien zur Softwareentwicklung im Entwurf
hat sich bewährt. Mit UNICADO und ASAMI
entstehen wegweisende Softwareumgebun-
gen, die das Potenzial haben, die universitäre
Lehre nachhaltig zu verbessern und die
akademische Forschung im Bereich Flug-
zeugentwurf und Technologieintegration und
-bewertung effizient mit den Aktivitäten der
Industrie zu verbinden.

Literatur
[1] Air Transport Action Group, Waypoint
2050 - Balancing growth in connectivity with
a comprehensive global air transport respon-
se to the climate emergency: a vision of net-
zero aviation by mid-century, Genf, 2021
[2] Zimmnau, M., Schültke, F., Stumpf, E.,
UNICADO: multidisciplinary analysis in con-
ceptual aircraft design, CEAS Aeronautical
Journal, Band 14, Heft 1, pp. 75-89, 2022

 | 19

Marek Behr, Norbert Hosters, Fabian Key

In Raum und Zeit
durch das Bottleneck
computergestützter
Mechanik
Der Multi-Physics-Code XNS

Stetiger Fortschritt und höhere Anforde-
rungen in allen technischen Bereichen
führen zu immer komplexeren Produkten.
So erfordern beispielsweise ressourceneffi-
ziente Produkte aufwendiges Design unter
möglichst geringem Materialeinsatz. Dabei
sind für eine Optimierung in Bezug auf den
jeweiligen Anwendungszweck möglichst
akkurate Vorhersagen in allen Stufen des
Entwicklungsprozesses absolut notwendig.
Durch hohen Kostendruck und immer kürzere
Entwicklungszyklen ist der Wunsch nach
hochpräzisen, aber gleichzeitig schnelleren
Vorhersagetools allgegenwärtig. Grundsätz-
lich bieten numerische Simulationsverfahren
ein attraktives Werkzeug, um diesen Heraus-
forderungen gerecht werden zu können. Die
ebenfalls kontinuierlich zunehmende verfüg-
bare Rechenleistung nährt dabei gleichzeitig

methods, these methods not only consider
the spatial dimensions, but also a so-called
space-time continuum. The additional dimen-
sion makes it possible to integrate this into
the partitioning of the problem. A complete
utilization of computing clusters is thus the-
oretically possible. The article discusses the
stated limitations, a solution approach, and
the software development of a corresponding
finite element solver at CATS.

Continuous progress in all technical areas
is leading to ever more complex products.
Predictions that are as accurate as possible
in all phases of the development process are
essential for application-related optimization.
In principle, numerical simulation methods
offer an attractive tool for dealing with these
challenges. At the same time, the constant
increase in available computing power fuels
the hope that the requirements can be fulfilled
without restriction. However, this is only
partially the case, as partitioning is limited to
spatial dimensions. The simulation of dynamic
processes can currently only benefit from the
increase in computing power to a very limited
extent. To address this bottleneck in compu-
tational mechanics, CATS has been working
on the development of space-time methods
since its foundation. In contrast to classical

20 |

die Hoffnung, die Anforderungen uneinge-
schränkt erfüllen zu können. In der Realität
gilt dieser Zusammenhang aber nur bedingt.
Besonders die Simulation dynamischer
Prozesse kann aktuell nur sehr eingeschränkt
von der Zunahme der Rechenressourcen
profitieren. Im Folgenden werden die Gründe
für diese Einschränkungen sowie eine vom
Lehrstuhl für Computergestützte Analyse
technischer Systeme erforschte Methode zur
Lösung vorgestellt. Darüber hinaus wird die
Softwareentwicklung zur Umsetzung dieser
Ansätze präsentiert.

Das Bottleneck computergestützter
Mechanik
Im Gegensatz zu Computeranimationen
in Filmen oder Computerspielen, welche
ausschließlich eine möglichst realistische

Anmutung der dargestellten Physik erzielen
sollen, wird in der computergestützten Me-
chanik versucht, mit Hilfe von Simulationen
möglichst exakt Fragen in Bezug auf tech-
nische Problemstellungen zu beantworten.
Welchen Auftrieb und Widerstand haben neu
entworfene Flugzeugflügel? Wie viel Leistung
kann grundsätzlich aus Windkraftanlagen
gewonnen werden? Welche Eingriffe am Her-
zen sind sinnvoll? Die notwendige Rechenzeit
solcher Simulationen wird von vier Faktoren
bestimmt, welche in Bild 2 schematisch
dargestellt sind. Die Komplexitätszunahme
technischer Anwendungen ist unmittelbar mit
einem Anstieg der Anzahl an Freiheitsgraden
verbunden, deren Bestimmung Ziel der Simu-
lationen ist. Gleichzeitig steigt die Leistungs-
fähigkeit von Hochleistungsrechenzentren
exponentiell an, ablesbar an der Leistung der

schnellsten Hochleistungsrechner. Dies wird
durch zwei Faktoren ermöglicht: Dem Anstieg
der Leistungsfähigkeit einzelner Rechenein-
heiten auf Computerprozessoren und den
komplexeren Infrastrukturen zur effizienten
Integration von immer mehr Prozessoren.
Damit liegt die Folgerung nah, dass die stei-
gende Problemkomplexität mit steigenden
Rechenressourcen kompensiert werden
kann. Der Idee „Divide-and-Conquer“ fol-
gend, können im System vorhandene Frei-
heitsgrade auf eine immer höhere Anzahl
zur Verfügung stehender Recheneinheiten
verteilt werden, der sogenannten Partitio-
nierung. Im Idealfall muss je Recheneinheit
nur ein Freiheitsgrad gelöst werden. Diese
sogenannte ideale starke Skalierbarkeit ist
allerdings in der Praxis nicht umsetzbar.
Die gegenseitige Abhängigkeit der Freiheits-

Bild 1: Mitarbeiter des CATS analysieren Ergebnisse aus der Raum-Zeit Strömungssimulation um eine Herzklappe.

Foto: Peter Winandy

 | 21

durch den beschränkten Skalierungseffekt
kann die Lösungsgeschwindigkeit pro Zeit-
schritt und die resultierende Gesamtlaufzeit
zur Lösung aller Zeitschritte bei Erreichen des
Minimums nur noch durch die Geschwindig-
keit der einzelnen Recheneinheiten beein-
flusst werden. Auch für diesen Fall bedeutet
also eine größere Anzahl an zur Verfügung
stehenden Recheneinheiten zwar die Mög-
lichkeit, größere Probleme berechnen zu
können. Die Rechenzeit zur Lösung einzelner
Zeitschritte bleibt bei konstanter Rechenkern-
leistung allerdings unverändert. Konstant gro-

grade bedingt einen notwendigen Austausch
an Informationen, die resultierende Kommu-
nikation bremst die Lösungsgeschwindig-
keit. Daraus folgt eine minimale Anzahl an
Freiheitsgraden pro Recheneinheit, deren
Unterschreitung zu ineffizienten Lösungs-
verfahren führt. Das feststehende Minimum
hat nun zur Folge, dass die Rechenzeit zur
Problemlösung nur noch durch zunehmende
Prozessorleistungen gesteigert werden kann
und die gegebenenfalls zusätzlich verfügba-
ren Rechenressourcen nicht genutzt werden
können. Für zeitlich un-
veränderliche Probleme ist diese Charakteris-
tik unproblematisch. Vorausgesetzt, dass
das beschriebene Minimum unabhängig von
der involvierten Partitionsanzahl ist, können
größere Probleme einfach auf mehr Parti-
tionen verteilt werden. Problematisch ist
dagegen die Analyse von dynamischen Pro-
blemstellungen, welche einem Großteil der
technischen Systeme entspricht. Beispiele
sind drehende Windkraftanlagen, Böenana-
lysen von Flugzeugen oder die Analyse des
schlagenden Herzes. Hier gilt es, über die
Zeit veränderliche Probleme zu analysieren,
für deren heutige kommerzielle und große
Open-Source-Simulationswerkzeuge auf
semidiskrete Verfahren setzen. Diese lösen
das Problem sequenziell in der Zeit, das heißt
pro definiertem Zeitschritt wird ein räumli-
ches Problem gelöst, unter Verwendung einer
ebenfalls räumlichen Partitionierung. Bedingt

Bild 2: Einflussfaktoren auf die Simulationszeit und Lösungs- beziehungsweise Partitionierungsansätze

ße dynamische Probleme können also eben-
falls nicht von zusätzlichen Recheneinheiten
profitieren. Reduzierungen der Rechenzeit
ergeben sich nur aus der Rechenleistung
neuer Rechenkerngenerationen. Kleine Zeit-
schrittweiten und eine hohe notwendige
Zeitspanne machen deshalb eine Analyse
von vielen dynamischen Problemen mit den
etablierten Ansätzen auf absehbare Zeit
unmöglich und führen damit zum Bottleneck
der computergestützten Mechanik. Dieses
Bottleneck ist nur mit alternativen Methoden
zu bewältigen.

Log (Zeit)

Log (Threads)

Skalierung paralleler Löser

Normalisierte
Performance

Jahre

Single-Threaded Performance

Komplexität

Jahre

Komplexität technischer Probleme

log (FLOPS)

Leistung schnellster Rechencluster

Jahre

Semi-Diskreter Ansatz
Sequentielle Lösung in der Zeit,
räumlich partioniert

Raum-Zeit Ansatz
Direkte Partionierung
des Raum-Zeit-Gebietes

n

n + 1

n + 2

Zeity

x

22 |

Entwickelt neue
· Methoden
· Dokumentation
· Testfälle
· Änderungen am RSE Framework

Diskutiert potentielle Verbesserungen
Begutachtet Änderungen anderer
Entwickler

Veröffentlicht genehmigte Änderungen,
schlägt fundamentale Änderungen vor

Verantwortet spezifische Funktion

Begutachtet final
Änderungsvorschläge der Developer

Organisiert Kommunikation der
genehmigten Änderungen

Berichtet potentiell bedeutende
Änderungen und gegebenenfalls
entstehende Konflikte an
Steering Committee

Dokumentiert Diskussionen öffentlich

Aber: Ist nicht zuständig Fehlerkorrekturen,
Testfälle, Ideen, etc. zu liefern

Behält Übersicht über Funktionalität

Entscheidet langfristige Strategie

Entscheidet über die von Maintainern
berichtete bedeutende Änderungen und
Konflikte

Ernennt Maintainer

Kommuniziert Entscheidungen

Steering Committee

Guidance

Maintainer

Control

Rollenverteilung

Progress

Developer

Bild 3: Übersicht Softwareentwicklung und Statistiken

Beiträge zur Softwareentwicklung

 | 23

Bild 4: Mit Hilfe der 3D-Powerwall können komplexe Ergebnisse visualisiert und diskutiert werden.

Foto: Peter Winandy

Raum-Zeit-Ansatz
Um dem beschriebenen Bottleneck in der
computergestützten Mechanik entgegentre-
ten zu können, beschäftigt sich der Lehrstuhl
für Computergestützte Analyse technischer
Systeme schon seit seiner Gründung mit der
Entwicklung von Raum-Zeit-Verfahren. Diese
betrachten im Gegensatz zu klassischen
Verfahren nicht ausschließlich die räumlichen
Dimensionen, sondern ein sogenanntes
Raum-Zeit-Kontinuum. Wie in Bild 2 illustriert,
ergibt sich für einen drehenden Rotor nicht
mehr eine schrittweise veränderliche Konfigu-
ration, sondern eine kontinuierliche Problem-
beschreibung. Für dynamische Probleme
werden aus zweidimensionalen Problemen im
Raum dreidimensionale Probleme im Raum-
Zeit-Gebiet, aus 3D wird 4D.
Wie kann mit diesem Ansatz nun die Lauf-
zeit von Simulationen signifikant reduziert
werden? Die zusätzliche Dimension erlaubt
es, diese auch in die Partitionierung des
Problems zu integrieren. Einerseits haben
alle Freiheitsgrade eine zusätzliche Zeit-
komponente, zusätzlich ergibt sich durch
die Raum-Zeit-Betrachtung ebenfalls eine
Steigerung der Anzahl der Freiheitsgrade.
Obwohl die zulässige Freiheitsgradean-

zahl pro Partition auch bei diesem Ansatz
beschränkt ist, kann das gesamte Raum-
Zeit-Gebiet dennoch nun in mehr Partitionen
unterteilt werden. Die Vorteile durch das
Prinzip „Divide-and-Conquer“ entsprechen
nun denen von stationären Problemen. Damit
ist die notwendige Rechenzeit zur Lösung
dynamischer Probleme nicht mehr durch die
minimal zulässige Partitionsgröße beschränkt,
sondern durch die Größe des Rechenclus-
ters. Eine vollständige Ausnutzung solcher
Rechencluster ist damit theoretisch denkbar.
Diese theoretische Skalierbarkeit konnte
grundsätzlich demonstriert werden, sie ent-
hält allerdings weiterhin großen Forschungs-
bedarf. Während für die Lösung von Diffusi-
onsgleichungen, zum Beispiel bei Wärmelei-
tungsproblemen, die beschriebenen Über-
legungen bestätigt werden konnten, ist für
Advektions-Diffusions-Probleme, etwa klassi-
sche Probleme aus der Strömungsmechanik,
die theoretische Skalierbarkeit allerdings
schon durch mathematische Nachweise wi-
derlegt. Dennoch kann auch in solchen Fällen
der Raum-Zeit-Ansatz signifikante Beschleu-
nigungen, beispielsweise durch die lokale
Raum-Zeit-Verfeinerung, liefern, welche mit
klassischen Ansätzen nur sehr eingeschränkt

realisierbar sind. Diese Ansätze stehen im
Mittelpunkt von Forschungsarbeiten an un-
strukturierten Raum-Zeit-Finite-Elementen
des Lehrstuhls für Computergestützte Analy-
se technischer Systeme. Weitere Forschungs-
fragen ergeben sich durch Löser, Vernet-
zungsmethoden oder Parallelisierung, welche
am hauseigenen Finite-Elemente-Löser XNS
untersucht werden.

Multi-Physics-Code XNS
Das eingesetzte Simulationsframework ba-
siert auf dem Multi-Physics-Code XNS, wel-
cher schon 1996 von Marek Behr in Minneso-
ta initiiert wurde. Die Abkürzung ergibt sich
dabei aus dem „X“ als damals üblichen Präfix
für ausführbare Dateien und „NS“ für die Na-
vier-Stokes-Gleichungen, deren Lösung zur
Untersuchung von Strömungsphänomenen
ursprüngliches Ziel der Software gewesen
ist. Auch heute noch ist dieser Fortran-Code
für UNIX-basierte Systeme ausgelegt. Nach
einem Refactoring unter Ausnutzung der
maximal möglichen Objektorientierung gilt
mittlerweile der Fortran2008-Standard. Auch
wenn Fortran heutzutage ein sehr angestaub-
tes Image hat, ermöglicht diese Programmier-
sprache einen einfachen und insbesondere

26 |

schnellen Einstieg für eine breite Zielgruppe
möglicher Mitarbeiterinnen und Mitarbeiter
des Lehrstuhls, insbesondere für diejenigen
ohne vertiefte Programmiererfahrung. So ist
gewährleistet, dass diese neue Methoden
schnell realisieren können, welche durch ent-
sprechende Veröffentlichungen gegebenen-
falls dann Berücksichtigung in komplexeren
Softwaresystemen finden.
Das von Beginn an parallelisierte Tool hat sich
über die Jahre zu einem Multi-Physik-Code
entwickelt, dessen Kernentwicklerteam am
Lehrstuhl für Computergestützte Analyse
technischer Systeme angesiedelt ist. Beiträ-
ge des Forschungszentrums Jülich, der TU
Wien, der Chuo University in Tokio, der Seoul
National University, und anderen Forschungs-
gruppen demonstrieren die nationale und
internationale Anerkennung der Softwareent-
wicklung. Um Möglichkeiten zur Zusammen-
arbeit mit anderen Forschungsgruppen zu
schaffen, bietet die Software außerdem ein
Multilinguales Interface zu Fortran, C, Matlab
und Python. Dies erlaubt beispielsweise
durch die mögliche Kopplung mit externen
Strukturlösern die kollaborative Lösung von
Problemen aus dem Bereich Fluid-Struktur-
Interaktion.

Literatur
[1] von Danwitz, M., Karyofylli, V., Hosters,
N., Behr, M., Simplex space-time meshes in
compressible flow simulations. International
Journal for Numerical Methods in Fluids,
91(1), 29-48, 2019
[2] Karyofylli, V., Wendling, L., Make, M.,
Hosters, N., Behr, M., Simplex space-time
meshes in thermally coupled two-phase
flow simulations of mold filling. Computers &
Fluids, 192, 104261, 2019
[3] von Danwitz, M., Antony, P., Key, F., Hos-
ters, N., Behr, M., Four-dimensional elastically
deformed simplex space-time meshes for
domains with time-variant topology. Internati-
onal Journal for Numerical Methods in Fluids,
93(12), 3490-3506, 2021
[4] von Danwitz, M., Voulis, I., Hosters, N.,
Behr, M., Time-continuous and time-dis-
continuous space-time finite elements for
advection-diffusion problems. International
Journal for Numerical Methods in Enginee-
ring, 124(14), 3117-3144, 2023
[5] Behr, M., Simplex space–time meshes in
finite element simulations. International journal
for numerical methods in fluids, 57(9), 1421-
1434, 2008

Autoren
Univ.-Prof. Marek Behr, Ph.D., ist Inhaber des
Lehrstuhls für Computergestützte Analyse
technischer Systeme.
Dr.-Ing. Norbert Hosters ist Oberingenieur
am Lehrstuhl für Computergestützte Analyse
technischer Systeme.
Dr.-Ing. Fabian Key war wissenschaftlicher
Mitarbeiter am Lehrstuhl für Computerge-
stützte Analyse technischer Systeme und
arbeitet als Post-Doc am Institut für Leichtbau
und Strukturbiomechanik der TU Wien.

 | 27

Matthias Meinke, Wolfgang Schröder

Over the past 15 years, the m-AIA (multiph-
ysics Aerodynamisches Institut Aachen) sim-
ulation library has been developed and today
comprises over 400,000 lines of program
code. The framework has been developed in
close collaboration between RWTH’s Institute
of Aerodynamics, Forschungszentrum Jülich,
and the High-Performance Computing Center
(HLRS) at the University of Stuttgart. m-AIA is
a multiphysics simulation code employed in
numerous national and EU-funded projects
to address engineering challenges with the
help of simulations. It includes various solvers
capable of predicting flows, heat conduction,
combustion, aeroacoustics, and fluid-struc-
ture interactions.

Das Aerodynamische Institut und der Lehr-
stuhl für Strömungsmechanik haben um-
fangreiche Erfahrung in der Entwicklung und
Anwendung von numerischen Methoden
unter anderem in den Gebieten der numeri-
schen Strömungsmechanik, Aeroakustik und
Verbrennung. In den vergangenen 15 Jahren
wurde die Simulationsbibliothek m-AIA (mul-
tiphysics Aerodynamisches Institut Aachen)
mit mehr als 400.000 Zeilen Programmcode
erstellt. Das Framework wird in enger Zu-
sammenarbeit mit dem Forschungszentrum
Jülich und dem High Performance Compu-
ting Center (HLRS) der Universität Stuttgart
entwickelt. m-AIA ist ein Multiphysik-Simula-
tionscode, der erfolgreich in zahlreichen nati-
onalen und von der EU finanzierten Projekten
für die Simulation von ingenieurtechnischen
Problemen eingesetzt wurde. Er enthält ver-
schiedene Löser, die für die Vorhersage von
Strömungen, Wärmeleitung, Verbrennung,
Aeroakustik und Fluid-Struktur-Interaktion
verwendet werden können. Die numerischen
Lösungsmethoden umfassen unter anderem:
·	 Finite-Volumen-Methoden zur Vorhersage

von Strömungen und Wärmeleitung
·	 Lattice-Boltzmann-Methoden für Strömun-

gen und Temperaturfelder bei niedriger
Mach-Zahl

·	 Discontinous Galerkin-Methoden zur Vor-
hersage der Ausbreitung von Schallwellen

·	 Finite-Cell-Methoden für Strukturmechanik
·	 Level-Set-Methoden zur Verfolgung von

Oberflächen
·	 Lagrange-Modelle für Spraymodelle und

Verfolgung von Partikeln mit sechs Frei-
heitsgraden

Die meisten Löser sind für kartesische hierar-
chische Gitter formuliert, die den Vorteil einer
vollautomatischen Gittergenerierung auch für
komplexe Geometrien bieten[1]. Ein weiteres

Analyse von Multiphysik-
Problemen mit der
Simulationssoftware m-AIA

Merkmal des Simulations-Frameworks ist die
Fähigkeit, Simulationen mit beliebig beweg-
lichen Objekten durchzuführen. Aufgrund
der adaptiven Gitterverfeinerung, die für eine
genaue Auflösung lokaler Strömungsphäno-
mene bei gleichzeitiger Reduktion der Anzahl
der Gitterzellen essenziell ist, sind dynami-
sche Lastverteilungstechniken erforderlich.
Eine raumfüllende Kurve wird verwendet,
um die Rechenlast auf Hochleistungsrech-
nersystemen gleichmäßig zu verteilen. Ein
integrierter paralleler Gittergenerator erzeugt
automatisch Gitter für Multiphysik-Domä-
nen basierend auf STL-Definitionen der
Domänengrenzen und der eingebetteten
Geometrien. Alle Methoden verwenden eine
hybride OpenMP/MPI-Parallelisierung. In
letzter Zeit wurden Portierungsaktivitäten in
Zusammenarbeit mit NVIDIA durchgeführt,
um das Simulations-Framework mithilfe
der parallelen Standard Template Library in
neueren C++-Standards auf Grafikprozes-
soren zu implementieren. Das Paket m-AIA
wird zukünftig als Open-Source-Software zur
Verfügung gestellt.
Im Folgenden werden einige Lösungen von
m-AIA näher diskutiert. In Bild 1 ist die Geo-
metrie zusammen mit einigen Gitterdetails
einer axialen Turbine mit 1,5 Stufen darge-
stellt[2, 3]. Das Gitter hat etwa 1 Milliarde Zellen
und wird vollautomatisch generiert. Die
Einströmung von heißem Gas in den Radsei-
tenraum zwischen den Rotor- und Stator-
scheiben wird analysiert, was im Hinblick auf
die Lebensdauer und die thermodynamische
Effizienz von axialen Gasturbinen, die in Kraft-
werken oder Flugzeugen verwendet werden,
wichtig ist. Solche Simulationen erfordern
aufgrund der sich zeitlich langsam entwick-
elnden Strömung im Radseitenraum erheb-
liche Rechenressourcen und können nur auf

28 |

Matthias Meinke, Wolfgang Schröder

Hochleistungsrechnersystemen wie dem
HAWK-System am HLRS Stuttgart mit etwa
16.000 CPU-Kernen in einem vertretbaren
Zeitrahmen durchgeführt werden. Um die
Oberflächen der rotierenden Schaufeln zu
verfolgen, wird eine Level-Set-Methode ver-
wendet, bei der eine vorzeichenbehaftete
Abstandsfunktion effizient die Positionen der
im Gitter eingebetteten, rotierenden Ober-
flächen auf parallelen Rechensystemen
bestimmt. Eine Cut-Cell-Formulierung stellt
physikalisch korrekte Bedingungen in den
kartesischen Gitterrandzellen sicher, und
gewährleistet gleichzeitig die Erhaltung von
Masse, Impuls und Energie[4].
Die Kopplung der unterschiedlichen Löser
wird durch den Austausch von Termen inner-
halb verschiedener Teilmengen eines gemein-
samen kartesischen Gitters implementiert.
Dies ermöglicht eine effiziente Kopplung mit

einem Datenaustausch zwischen den Lö-
sungsverfahren ohne zusätzlichen Kommu-
nikationsoverhead auf parallelen Systemen.
Eine solche gekoppelte Methode wird ver-
wendet, um aerodynamisch erzeugten Schall
durch eine direkte hybride Strömungsmecha-
nik/Aeroakustik-Methode vorherzusagen[5].
In diesem Fall wird ein Lösungsverfahren der
Navier-Stokes-Gleichungen mit einer numeri-
schen Methode zur Lösung der akustischen
Störungsgleichungen gekoppelt. Die beiden
Methoden sind durch akustische Quellterme
miteinander verbunden, die aus der Lösung
des turbulenten Strömungsfeldes bestimmt
und in die akustischen Störungsgleichungen
eingefügt werden. Die direkt gekoppelte hyb-
ride Strömungsmechanik/Aeroakustik-Metho-
de erlaubt einen In-Memory-Transfer dieser
Quellterme, sodass kein Disk-IO erforderlich
ist, um die Daten zwischen den Lösungs-

Bild 1: Kartesisches Gitter für eine 1,5-stufige Axialturbine (links) und Eintritt von heißem Gas in den Radseitenraum. Die Farbe zeigt die Konzentration des heißen Gases, wobei die Farbe Rot eine

hohe und Blau eine niedrige Konzentration von Heißgas anzeigt (rechts).

verfahren zu übertragen. Diese gekoppelte
Lösungsmethode wurde um Modellterme
erweitert, um die Strömung in porösen Medi-
en zu beschreiben. Anhand der numerischen
Vorhersage kann das Potenzial von porösem
Material zur Reduktion des an der Hinterkan-
te von Tragflügeln erzeugten Lärms beurteilt
werden.
Ein Beispiel für aerodynamisch erzeugten
Lärm, der in vielen technischen Anwen-
dungen, wie zum Beispiel Flugzeugen oder
Windturbinen, auftritt, ist in Bild 2 dargestellt.
Auf der linken Seite ist die Geometrie der
verzahnten Hinterkante zu sehen, während
auf der rechten Seite das Strömungs- und
das Schallfeld abgebildet sind[6]. Die Lärmre-
duktion durch eine poröse gezackte Hin-
terkante wird anhand der direkten hybriden
Strömungsmechanik/Aeroakustik-Methode
bestimmt. Die Kombination aus gezackter

 | 29

Hinterkante und porösem Material kann ins-
besondere für niedrige und mittlere Frequen-
zen den abgestrahlten Lärm um mehrere
dB reduzieren. Eine Anwendung von m-AIA
für Mehrphasenströmungen wird in Bild 3
dargestellt, wo der Energie- und Impulsaus-
tausch einer großen Anzahl frei beweglicher,

ellipsoider Partikel in isotroper Turbulenz
simuliert wird[7]. Das Verhalten derartiger Par-
tikelgeometrien in turbulenten Strömungen ist
im Kontext der Verbrennung von Biomasse
wichtig, die die klassische Kohle ersetzt. Da
Biomasse größtenteils aus Fasern besteht,
interagiert sie auf unterschiedliche Weise

mit Turbulenz, was in den durchgeführten
Simulationen analysiert wird. Das Ziel dieser
Untersuchungen mit detaillierten Simulatio-
nen besteht darin, reduzierte Modellformulie-
rungen zu bestimmen, die in Vorhersagen für
vollständige Biomasseverbrennungskammern
verwendet werden können.

Bild 2: Aeroakustische Analyse des durch eine poröse zackige Hinterkante eines Tragflügelprofils erzeugten Schallfeldes. Die Geometrie der Hinterkante ist links dargestellt. Rechts erkennt man die

turbulenten Strukturen in der Grenzschicht und die erzeugten Schallwellen in einer Ebene parallel zur Strömungsrichtung.

30 |

Autoren
Dr.-Ing. Matthias Meinke leitet die
Numerische Abteilung des Aerodynamischen
Instituts.
Univ.-Prof. Dr.-Ing. Wolfgang Schröder ist
Inhaber des Lehrstuhls für Strömungslehre
und Leiter des Aerodynamischen Instituts.

Literatur
[1] Lintermann, A., Meinke, M., Schröder, W.,
Zonal Flow Solver (ZFS): A highly efficient
multi-physics simulation framework, Interna-
tional Journal of Computational Fluid Dyna-
mics 34, https://doi.org/10.1080/10618562.20
20.1742328, 2020
[2] Pogorelov, A., Meinke, M., Schröder
W., Cut-Cell Method Based Large-Eddy
Simulation of Tip-Leakage Flow, Phy-
sics of Fluids, 27(7), 075106, https://doi.
org/10.1063/1.4926515, 2015
[3] Hösgen, Th., Meinke, M., Schröder, W.,
Analysis of Single Blade Passage and Full
Circumference Large-Eddy Simulations of
Turbine Rim Seal Flows, Journal of Turbo-
machinery, https://doi.org/10.1115/GT2023-
101688, 2023
[4] Schneiders, L., Günther, C., Meinke,
M., Schröder, W., An efficient conservative
cut-cell method for rigid bodies interacting

Bild 3: Abnahme isotroper Turbulenz mit etwa 60.000 frei beweglichen, vollständig aufgelösten ellipsoiden Partikeln. Die Isoflächen visualisieren die turbulenten Wirbelstrukturen, die farblich mit

der lokalen Mach-Zahl codiert sind. Das adaptiv verfeinerte kartesische Gitter um die Partikel ist in der unteren Hälfte der Abbildung dargestellt.

with viscous compressible flows, Journal of
computational physics, 311:62-86, https://doi.
org/10.1016/j.jcp.2016.01.026, 2016
[5] Niemöller, A., Schlottke-Lakemper,
M., Meinke, M., Schröder, W., Dynamic
Load Balancing for Direct-Coupled Mul-
tiphysics Simulations, Computers & Fluids
199(2):104437, https://doi.org/10.1016/j.
compfluid.2020.104437, 2020
[6] Satcunanathan, S., Meinke, M., Schröder,
W., Impact of porous media on boundary lay-
er turbulence, Fluids 2022, 7(4), 139, https://
doi.org/10.3390/fluids7040139, 2022
[7] Schneiders, L., Fröhlich, K., Meinke, M.,
Schröder, W., The decay of isotropic turbu-
lence carrying non-spherical finite-size par-
ticles, Journal of fluid mechanics, 875:520-
542, https://doi.org/10.1017/jfm.2019.516,
2019

 | 31

Modern scientific software development
faces the challenge of reconciling complex-
ity in models and methods with diversified
high-performance computing hardware.
Heterogeneous supercomputing systems
are crucial for energy-efficient scientific
computing, but challenge the development
process from prototype to production code.
To remedy this, the software package Trixi.jl
aims to strike a balance between user-friend-
liness and high performance. By combining a
modular architecture with the beneficial prop-
erties of the Julia programming language,
it facilitates collaboration and transparency
in the software development process. Such
novel approaches to research software engi-
neering will be essential for a sustainable use
of resources in the future.

Daniel Döhring, Michael Schlottke-Lakemper

Höchstleistungs-
rechnen leicht(er)
gemacht

Wissenschaftliche Softwareentwicklung steht
vor der ständigen Herausforderung, moderne
Simulationsmethoden mit immer größeren
und vielfältigeren Rechnerarchitekturen zu
verknüpfen. Die Komplexität der verwendeten
Modelle zur Beschreibung realer Prozesse in
Physik oder Ingenieurwissenschaften, sowie
die numerischen Verfahren, die zur Lösung
dieser Modelle eingesetzt werden, erfordern
tiefgreifendes Wissen in einer zunehmenden
Zahl von Fachdisziplinen. Dies trifft insbeson-
dere auf die Simulation von Multiphysik-Sys-
temen zu, bei denen mehrere gekoppelte
physikalische Systeme untersucht werden.
Beispiele hierfür sind gasdynamische Prozes-
se unter dem Einfluss von Gravitation, wie sie
in der Astrophysik vorkommen, Plasmasys-
teme im erdnahen Weltraum oder technische
Strömungen, bei denen zudem die Lärment-
wicklung bestimmt werden muss. Gleichzeitig
gewinnen hybride Höchstleistungsrechner im
Vergleich zu klassischen Hardwarekonfigu-

Nachhaltige wissenschaftliche
Softwareentwicklung mit Trixi.jl

rationen zunehmend an Bedeutung. Dabei
kommen zusätzlich zu den Hauptprozessoren
auch besonders spezialisierte Beschleuni-
gungskomponenten wie Grafikkarten zum
Einsatz. Prozessoren und Grafikkarten eignen
sich jedoch unterschiedlich gut für verschie-
dene Problemstellungen. Umfangreiche
Kenntnisse über die jeweiligen Hard- und
Softwaresysteme sowie über die Eigen-
schaften der simulierten Systeme werden
für schnelles und energieeffizientes wissen-
schaftliches Rechnen also immer wichtiger.
Aufgrund dieser Vielzahl an Herausforderun-
gen existiert typischerweise eine deutliche
Lücke im Bereich des wissenschaftlichen
Rechnens zwischen experimentellen Soft-
ware-Implementierungen und Simulations-
programmen für den produktiven Einsatz bei
realen Problemen. Viele kleinere bis mittelgro-
ße Softwareprojekte werden für experimen-
telle Untersuchungen von mathematischen
Modellen oder numerischen Methoden

32 |

erstellt. Diese Codes wurden entwickelt,
um möglichst einfach einzelne Aspekte der
Implementierung zu verändern oder komplett
auszutauschen, etwa um neue Modelle hin-
zuzufügen oder um Methoden zu evaluieren.
Im Gegensatz dazu stehen Forschungscodes
für den produktiven Praxiseinsatz, die einen
Fokus auf schnelle Ausführung und große
Datenmengen legen. Diese Programme ha-
ben typischerweise eine enge Kopplung
zwischen den Modellierungsaspekten, den
Details der numerischen Methoden sowie
den geschwindigkeitsrelevanten Teilen der
Implementierung. Die enge Verzahnung
macht es deutlich aufwendiger, einzelne
Komponenten des Codes auszutauschen
oder mit neuen Verfahren zu experimentie-
ren. Es existiert also auf der einen Seite der
Wunsch nach einfachen Möglichkeiten zur
experimentellen Evaluierung neuartiger Mo-
delle oder Algorithmen, während anderer-
seits die Fähigkeit zur Durchführung groß-

skaliger Simulationen auf komplexen Hard-
waresystemen notwendig ist.
Mit diesen Herausforderungen im Blick ging
2020 das Softwareprojekt Trixi.jl[1-3] an den
Start, welches von rund 20 Wissenschaftle-
rinnen und Wissenschaftlern in Europa und
den USA entwickelt wird. Hierbei ist auch der
Lehrstuhl für Angewandte und Computerge-
stützte Mathematik (ACoM) beteiligt. Trixi.jl
ist ein Software-Framework für die adaptive
numerische Simulation[1, 3, 5] von strömungs-
mechanischen Fragestellungen und Multi-
physik-Systemen, siehe Bild 3. Adaptiv be-
deutet hier, dass die verwendeten Modelle
und Methoden, wie etwa die Auflösung des
Rechengitters, dynamisch während der
Simulation verändert werden, um jederzeit
einen optimalen Ressourceneinsatz sicherzu-
stellen. Trixi.jl wird vor allem für die Forschung
im Bereich neuartiger numerischer Verfahren
und effizienter Algorithmen genutzt[4].

Bild 1: Schnelles Prototyping mit Trixi.jl: Frische Ideen können einfach implementiert und direkt auf dem Hochleistungsrechner zum Einsatz gebracht werden.

Foto: Peter Winandy

Der Hauptfokus bei der Entwicklung von
Trixi.jl liegt auf einer einfachen Verwendungs-
fähigkeit für neue oder unerfahrene Nutzen-
de, während gleichzeitig hohe Rechenleis-
tungen für Produktionssimulationen möglich
sind. Trotzdem erhält Trixi.jl die einfache
Erweiterbarkeit, die erforderlich ist, um neue
Modelle oder Methoden im Rahmen des
Forschungsprozesses schnell umsetzen und
evaluieren zu können. Erreicht werden diese
Ziele vor allem aufgrund der folgenden drei
Maßnahmen: Die Verwendung der modernen
Programmiersprache Julia, eine von Grund
auf modular konzipierte Softwarearchitektur,
ein Entwicklungsprozess, der konsequent auf
einen unkomplizierten Einstieg für unerfahre-
ne Nutzende und die zügige Realisierbarkeit
neuer Projekte ausgerichtet ist.
Die Programmiersprache Julia wurde als
leicht zu erlernende Sprache für wissen-
schaftliche Forschungssoftware konzipiert.
Sie verbindet ein umfangreiches, modulares

 | 33

Bild 2: Brainstorming zu „Continuous Visualization“,

also automatisierte on-the-fly Visualisierung der

Simulationsergebnisse von Trixi.jl.

Foto: Peter Winandy

Programmteilen beachten zu müssen. Auch
die Integration von bestehenden Software-
modulen, die in anderen Forschungsgruppen
entwickelt wurden, wird so deutlich verein-
facht. Andererseits verbessert die Modulari-
sierung auch die Anwendungsfreundlichkeit
der Software, da nicht verwendete Funkti-
onalitäten zunächst ausgeblendet werden
können.
Als Open-Source-Software ist der Quellcode
sowie der Entwicklungsprozess von Trixi.jl

Datentypensystem mit einer hohen Geschwin-
digkeit, wodurch sie auch für die Ausführung
auf Höchstleistungsrechnern geeignet ist,
siehe Bild 4. Aus diesem Grund lässt sich
Julia von der explorativen Phase bis hin zur
Produktionsphase während des gesamten
Forschungszyklus sinnvoll einsetzen. Damit
können Wissenschaftlerinnen und Wissen-
schaftler fl exibel zwischen den Phasen
wechseln, ohne dass unterschiedliche Soft-
warecodes oder Entwicklungsumgebungen
zum Einsatz kommen müssen. Dies spart
Zeit, vermeidet Fehler bei der Portierung und
führt zu nachhaltigerer Software von höherer
Qualität.
Um die Integration von neuen Fähigkeiten
auch langfristig zu ermöglichen, wurde Trixi.jl
als Programmbibliothek mit weitgehend un-
abhängigen, jedoch zueinander kompatiblen
Bausteinen entworfen. So stellen das physi-
kalische Modell, das numerische Lösungs-
verfahren oder das zugehörige Rechengitter
jeweils eigenständige Komponenten dar.
Neben diesen Grundfunktionen werden auch
fortgeschrittene Features separat betrachtet
und implementiert, wie etwa Dateiausgabe-
routinen, die dynamische Anpassung des
Rechengitters oder die Visualisierung der
Simulationsergebnisse während der Laufzeit.
Dieser konsequente Modularisierungsansatz
ermöglicht es einerseits, dass Entwicklerin-
nen und Entwickler mit geringem Aufwand
neue Funktionen hinzufügen können ohne
zugleich komplexe Interaktionen mit anderen

öffentlich einsehbar. Um Interessierten den
Einstieg so leicht wie möglich zu machen,
werden darüber hinaus Ressourcen für die
unkomplizierte Einbindung neuer Nutzerinnen
und Nutzer mit unterschiedlichem Erfah-
rungsstand oder fachlichem Hintergrund
bereitgestellt. Neben umfangreicher Doku-
mentation, die sowohl technische Aspekte
als auch die zugrunde liegenden Modelle und
Methoden umfasst, stehen Videoanleitungen
zu Verfügung. Ein Katalog von Tutorials er-

Bild 3: Berechnung einer Kelvin-Helmholtz-Instabilität mit Trixi.jl[6]. Dargestellt ist das Dichtefeld der simulierten Strömung (links).

Das Rechengitter wird in Bereichen großer Dichteänderung dynamisch verfeinert (rechts).

Bild 4: Parallele Skalierung einer Trixi.jl-Simulation auf JURECA, einem Hochleistungsrechner am Forschungszentrum Jülich, im

Vergleich zu einem klassischen, in Fortran geschriebenen Simulationscode FLUXO. Höhere Werte zeigen eine bessere Laufzeit-

effi zienz an.

Trixi.jl (134.2 mio. DOFs)
Trixi.jl (16.8 mio. DOFs)
FLUXO (16.8 mio. DOFs)
ideal speedup

36 |

Autoren
Daniel Döhring, M.Sc., ist wissenschaftlicher
Mitarbeiter am Lehrstuhl für Angewandte
und Computergestützte Mathematik.
Prof. Dr.-Ing. Michael Schlottke-Lakemper
war Professurvertreter für Computational
Mathematics an der RWTH Aachen.
Seit 1. Juni 2024 ist er Professor für High-
Performance Scientific Computing an der
Universität Augsburg.

laubt es, sich viele Themen von den Grund-
lagen zur Verwendung bis hin zu fortge-
schrittenen Fragen bei der Weiterentwicklung
anzueignen. Zudem gibt es ein chatbasiertes
Forum, in dem bei der Einarbeitung in die
Software oder bei der Umsetzung von eige-
nen Projektideen unterstützt wird.
Um bei einem heterogenen Entwicklungs-
team dauerhaft eine hohe Qualität der Soft-
ware zu gewährleisten, wird auf ein struktu-
riertes Peer-Review-System gesetzt. Neue
Erweiterungen der Funktionalität werden
zunächst einer Vielzahl automatisierter Tests
unterzogen, um die korrekte Funktionsweise
und die effiziente Ausführung sicherzustellen.
Anschließend werden die Code-Änderungen
begutachtet und mögliche Verbesserungen
gemeinsam mit den Autoren erarbeitet.
Dieser Prozess ermöglicht es auch Wissen-
schaftlerinnen und Wissenschaftlern mit we-
niger Erfahrung, schnell sinnvolle Beiträge zu
liefern. So wurden bereits über 15 Abschluss-
arbeiten – von der Bachelorarbeit bis zur Dis-
sertation – mit Trixi.jl erfolgreich durchgeführt.
Durch die Bereitstellung von entsprechenden
Software-Repositorien wird bei Publikationen
zudem eine einfache und robuste Reprodu-
zierbarkeit der mit Hilfe von Trixi.jl gewonne-
nen Ergebnisse sichergestellt. Dies wiederum
eröffnet neue Möglichkeiten der Kooperation
mit anderen Forschungsgruppen, da es die
Hürden für eine gemeinsame Nutzung von
Softwarepaketen senkt.
Die Kombination von umfassender Erweiter-
barkeit, einfacher Nutzbarkeit und hoher Effi-

zienz stellt eine anspruchsvolle Heraus-
forderung für Forschungssoftware dar.
Gleichzeitig bildet sie jedoch eine wichtige
Voraussetzung dafür, dass trotz steigen-
der Komplexität bei den Modellen und
Methoden die heterogener werdenden
Höchstleistungsrechner für ein breites
wissenschaftliches Publikum nutzbar
sind. Um dieses Ziel zu erreichen, müssen
in der wissenschaftlichen Softwareent-
wicklung neue Wege beschritten und das
Research Software Engineering, also die
professionalisierte Softwareentwicklung
im Forschungskontext, deutlich stärker
in den Vordergrund gerückt werden. Das
Research Software Engineering unterstützt
den nachhaltigen Einsatz von Ressourcen,
indem es eine Brücke schlägt zwischen
dem Expertenwissen in den wissenschaft-
lichen Fachdisziplinen und modernen Soft-
wareentwicklungspraktiken. Die Verbin-
dung von Anwendungsfreundlichkeit und
Spitzenleistung in der wissenschaftlichen
Softwareentwicklung ist dabei ein wichti-
ger Faktor und bleibt ein herausforderndes
Forschungs- und Entwicklungsziel.

Literatur
[1] Schlottke-Lakemper, M., Gassner, G.,
Ranocha, H., Winters, A. R., Chan, J., Trixi.jl:
Adaptive high-order numerical simulations of
hyperbolic PDEs in Julia. Code Repository,
2021, https://github.com/trixi-framework/Trixi.
jl, doi: 10.5281/zenodo.3996439
[2] Schlottke-Lakemper, M., Winters, A. R.,
Ranocha, H., Gassner, G., A purely hyperbolic
discontinuous Galerkin approach for self-gra-
vitating gas dynamics,Journal of Computa-
tional Physics 442, 2021, doi: 10.1016/j.
jcp.2021.110467
[3] Ranocha, H., Schlottke-Lakemper, M.,
Winters, A. R., Faulhaber, E., Chan, J., Gass-
ner, G., Adaptive numerical simulations with
Trixi.jl: A case study of Julia for scientific com-
puting, Proceedings of the JuliaCon Conferen-
ces 1, 2022, doi: 10.48550/arXiv.2102.06017
[4] Ranocha, H., Schlottke-Lakemper, M.,
Chan, J., Rueda-Ramírez, A. M., Winters, A.
R., Hindenlang, F., Gassner, G. J., Efficient
implementation of modern entropy stable
and kinetic energy preserving disconti-
nuous Galerkin methods for conservation
laws,ACM Trans. Math. Softw., 2023, doi:
10.1145/3625559
[5] Ranocha, H., Winters, A. R., Castro, H. G.,
Dalcin, L., Schlottke-Lakemper, M., Gassner,
G. J., Parsani M., On Error-Based Step Size
Control for Discontinuous Galerkin Methods
for Compressible Fluid Dynamics,Commun.
Appl. Math. Comput.,2023, doi: 10.1007/
s42967-023-00264-y
[6] Doehring, D., Schlottke-Lakemper,
M., Gassner, G. J., Torrilhon, M., Multirate
Time-Integration based on Dynamic ODE Par-
titioning through Adaptively Refined Meshes
for Compressible Fluid Dynamics, Submitted
to Journal of Computational Physics, 2024,
doi: 10.48550/arXiv.2403.05144

Bild 5: Modulare Softwarearchitektur von Trixi.jl.

ODE Problem Erweiterungsmodule

Rechengitter

Lösungs-
verfahren

Modell

Anfangs-/
Randwerte

unabhängige Komponenten externe Funktionalität

Legende

ZeitintegrationsverfahrenDaten & Algorithmen
Raumdiskretisierung

Datenein-/
ausgabe

Zeitschritt-
berechnung

Bildschirm-
ausgabe Gitteradaption

Stabilisierung Visualisierung

Semidiskretisierung

Lösung

Zeit-
integration

 | 37

Marco Davidovic, Fabian Fröde, Michael Gauding, Terence Lehmann, Heinz Pitsch

Mit CIAO zu effizienten
und emissionsarmen
Energiesystemen

CIAO is a massive-parallel high-fidelity solver
for the reacting and non-reacting Navier-
Stokes equations. It provides advanced
numerical methods to accurately model
turbulence and chemistry using both direct
numerical and large-eddy simulations. With
exceptional scalability on supercomputers,
CIAO facilitates investigations into turbulent
and laminar flames, multiphase flows, and
nano-particle formation. The code’s versa-
tility extends to simulations in combustion
engines, gas turbines, and industrial burners,
making it a valuable tool for developing novel
combustion models and advancing energy
systems toward carbon-free energy carriers.

Die Navier-Stokes-Gleichungen, die das
Verhalten von Fluidströmungen beschreiben,
spielen eine zentrale Rolle bei der Gestaltung
unseres Alltagslebens. Obwohl diese Glei-
chungen wie ein komplexes mathematisches
Konstrukt erscheinen, zeigt sich ihr Einfluss
in einer Vielzahl praktischer Anwendungen.
Von der Vorhersage von Wettermustern, über
den Blutkreislauf des Körpers bis hin zum
Entwurf effizienter Energie- und Transport-
systeme dienen die Navier-Stokes-Gleichun-
gen als Eckpfeiler für das Verständnis und
die Beeinflussung der Dynamik von Fluiden.
Dieses Verständnis ist für die notwendige
schnelle Transformation von fossilen, hin zu
effizienten, kohlenstofffreien und emissions-
armen Energiesystemen essenziell. Für diese
Problemstellung wird am Institut für Techni-
sche Verbrennung der Simulationscode CIAO
entwickelt. CIAO steht für Compressible/
Incompressible Advanced Reactive Turbulent
Simulations with Overset und ist ein vielsei-

38 |

tiger Navier-Stokes-Löser für die Simulati-
on laminarer und turbulenter reagierender
Strömungen in komplexen Geometrien. Die
Entwicklung erstreckt sich über mehr als ein
Jahrzehnt und wird von einem Team unter
der Leitung von Heinz Pitsch in enger Zusam-
menarbeit mit Expertinnen und Experten an
verschiedenen internationalen Universitäten
vorangetrieben.

Numerische Lösungen der
Navier-Stokes-Gleichungen
Die numerische Lösung der reaktiven Navier-
Stokes-Gleichungen stellt hohe Anforderun-
gen an die verwendeten Methoden. Verschie-
dene Lösungsstrategien haben sich daher
entwickelt, um diesen Herausforderungen
gerecht zu werden. Eine dieser Strategien ist
die direkte numerische Simulation (DNS), die
ohne Modellierung der Turbulenz auskommt.
Sie löst sämtliche relevanten chemischen
und turbulenten Strukturen und Prozesse

unmittelbar auf dem genutzten Rechengit-
ter. Bei reaktiven Strömungen beinhaltet
dies auch die direkte Lösung der Chemie,
die in der Regel mithilfe eines reduzierten
Reaktionsmechanismus dargestellt wird.
Dieser Ansatz ermöglicht eine nahezu exakte
Simulation der Strömung und wird daher
auch als numerisches Experiment bezeich-
net. Die erzielten Daten gewähren einzigar-
tige Einblicke in die physikalischen Prozesse
reaktiver Strömungen und sind unverzichtbar
für die Entwicklung innovativer Verbrennungs-
modelle, insbesondere für die Simulation von
Wasserstoffflammen[1]. Jedoch erfordert die
Durchführung direkter numerischer Simula-
tionen erhebliche Rechenressourcen und ist
selbst für Laborflammen nur auf den leis-
tungsfähigsten Supercomputern unter Einsatz
effizienter Parallelisierungsstrategien möglich.
Gleichzeitig sind präzise und robuste numeri-
sche Lösungsmethoden erforderlich, um die
kleinsten chemischen und turbulenten Struk-

turen genau zu berechnen. Die Herausforde-
rung besteht darin, die numerische Diffusion
zu minimieren, ohne künstliche Oszillationen
der Lösung in Regionen mit hohen Gradien-
ten zu verursachen. Zu diesem Zweck werden
in CIAO Finite-Differenzen-Verfahren höherer
Ordnung und halb-implizite Methoden einge-
setzt. Aus Gründen der Stabilität erfolgt die
Berechnung des nicht-linearen Konvektions-
terms skalarer Größen, wie den Massenbrü-
chen und der Temperatur, mittels gewichteter
wesentlich nicht-oszillierende Verfahren
(WENO)[2].
Eine kostengünstigere Alternative zur direkten
numerischen Simulation stellen skalenauflö-
sende Simulationstechniken, wie zum Beispiel
die Large-Eddy-Simulation (LES) dar. Hierbei
werden die großen Skalen direkt berechnet,
während die kleineren Skalen modelliert wer-
den. Die kleineren Skalen zeigen in turbulen-
ten Strömungen häufig ein universelles Ver-
halten und sind daher durch relativ einfache

Bild 1: Untersuchung zur emissionsarmen Verbrennung: Experimente am Brennerprüfstand des Instituts für Technische Verbrennung.

Foto: Peter Winandy

 | 39

Bild 2: Die Synergie von Simulationen und Experimenten liefert wichtige Einblicke in die Grundlagen der Verbrennung.

Foto: Peter Winandy

Modelle darstellbar. Dieser Ansatz reduziert
die notwendigen Rechenressourcen erheb-
lich und erlaubt die Simulation komplexer
Strömungen[3]. Dennoch sind Large-Eddy-
Simulationen reaktiver Strömungen weiterhin
Gegenstand der aktuellen Forschung. Die
turbulenten Transportprozesse in reaktiven
Strömungen sind hochkomplex und hoch-
gradig nicht-universell, was die Modellierung
erschwert. Bei wasserstoffhaltigen Brenn-
stoffen kann es beispielsweise lokal zu diffe-
rentieller Diffusion kommen, da das Wasser-
stoffmolekül im Vergleich zur Temperatur eine
höhere Diffusionsgeschwindigkeiten aufweist.
Dieser Vorgang hat eine komplexe Abhängig-
keit von der Krümmung und Streckung der
Flammenoberfläche und kann in mageren
Gemischen zu Flammeninstabilitäten führen,
die die Flammenausbreitungsgeschwindig-
keit um ein Vielfaches erhöhen. Neben klassi-
schen LES-Modellen für die turbulente Strö-
mung verfügt CIAO über unterschiedliche
Ansätze zur Modellierung der turbulenten
Verbrennung. Ein weit verbreiteter Ansatz
sind Flamelet-Modelle mit einer Tabellierung
des gefilterten chemischen Quellterms in
Abhängigkeit weniger transportierter Größen.
Damit kann zum einen die Anzahl der zu
transportierenden Skalare reduziert und zum
anderen die Sub-Filter-Verteilung des Quell-
terms berücksichtig werden. Hier verfügt
CIAO über erweiterte Modelle, die differen-
tielle Diffusion und Thermodiffusion mittels
mischungsgewichteter Ansätze berücksichti-
gen und die auf Transportgleichungen für den
Mischungsbruch und der Fortschrittsvariable
basieren. Studien von Wasserstoffflammen
mit unterschiedlicher Krümmung und Stre-
ckung konnten eine exzellente Übereinstim-
mung der Modelle mit Experimenten und
DNS nachweisen.

Massiv-parallele Simulationen mit CIAO
CIAO ist ein massiv-paralleler, hochgenauer
Finite-Differenzen-Code. Im Rahmen des
Codes steht ein vollständig kompressibler
Löser zur Verfügung, der ein explizites fünf-
stufiges Runge-Kutta-Verfahren für die Zeit-
integration verwendet. Für den inkompressi-
blen Löser stehen darüber hinaus eine semi-
implizite Crank-Nicolson-Zeitintegration mit
einem iterativen Prädiktor-Korrektor-Schema
zur Verfügung. Zur Verbesserung der nume-
rischen Genauigkeit werden räumliche
und zeitliche versetzte Gitter eingesetzt. Die
Poisson-Gleichung für den Druck wird mithilfe
des Multi-Grid-HYPRE-Solvers gelöst, wäh-
rend für die Gleichungen für Temperatur und
Spezies ein WENO-Schema verwendet wird,
um Oszillation der Lösung zu verhindern.
Für eine detaillierte Betrachtung der Chemie
wird zusätzlich der symmetrische Operator-
Splitting-Ansatz nach Strang verwendet.
Der chemische Quellterm wird dabei mit dem
Differentialgleichungslöser CVODE gelöst,
der Teil von SUNDIALS ist. Alternativ steht
eine institutseigene Bibliothek zur Lösung des
Quellterms auf Graphikkarten zur Verfügung.
CIAO ist größtenteils in Fortran programmiert,
zur Datenspeicherung kommt HDF5 (Hier-
archical Data Format) als standardisiertes
Dateiformat zum Einsatz. HDF5 nutzt das pa-
rallele Dateisystem und erreicht beispielswei-
se auf dem Supercomputer SuperMUC-NG
am Leibniz-Rechenzentrum der Bayerischen
Akademie der Wissenschaften in Garching
mit 3072 Rechenknoten Lese- und Schreibra-
ten von mehr als 200 GB pro Sekunde.

Unabdingbar für die Simulation von multi-
physikalischen Mehrskalenproblemen ist
eine effiziente Parallelisierung, um moderne
Supercomputer nutzen zu können. CIAO ist
vollständig mittels MPI (Message-Passing
Interface) parallelisiert und hat seine sehr
gute Skalierbarkeit auf den schnellsten tier-0
Supercomputern bewiesen. Die Skalierung
von CIAO für einen exemplarischen Fall einer
turbulenten Wasserstoffflamme ist in Bild 3
gezeigt. Die Operationen mit dem größten
Rechenaufwand ergeben sich aus der Lö-
sung der elliptischen Druckgleichung, dem
Löser für den Skalartransport und dem Löser
für den chemischen Quellterm. Letzterer
macht etwa 75 Prozent der gesamten Re-
chenzeit aus. Da der Chemie-Löser CVODE
keinen Informationsaustausch zwischen Pro-
zessen erfordert, wird dennoch eine gute
Skalierbarkeit beobachtet. Die größten Simu-
lationen mit CIAO von turbulenten vorge-
mischten Wasserstoffflammen umfassen
mehr als 10 Milliarden Gitterpunkten und
nutzen reduzierte kinetische Mechanismen
mit 10 chemischen Komponenten und 21 Re-
aktionen. Die erforderliche Rechenzeit hierfür
beträgt etwa 100 Millionen Core-Stunden,
oder anders formuliert etwa 11.400 Core-
Jahre. CIAO ist Mitglied des High-Q-Clubs,
einer Gruppe von Codes, die für ihre außer-
gewöhnliche Skalierbarkeit auf Supercompu-
tern wie JUQUEEN am Forschungszentrum
Jülich bekannt sind.

Bild 3: Skalierung von CIAO und seiner zentralen Bestandteile auf dem Supercomputer SuperMUC-NG am Leibniz-Rechenzen-

trum der Bayerischen Akademie der Wissenschaften in Garching.

42 |

Literatur
[1] Berger, L., Attili, A., Pitsch, H., Synergistic
interactions of thermodiffusive instabilities
and turbulence in lean hydrogen flames,
Combustion and Flame 244 (2022) 112254
[2] Desjardins, O., Blanquart, G., Balarac, G.,
Pitsch, H., High order conservative finite diffe-
rence scheme for variable density low Mach
number turbulent flows, Journal of Computa-
tional Physics 227 (2008) 7125-7159
[3] Falkenstein, T., Kang, S., Davidovic, M.,
Bode, M., Pitsch, H., Kamatsuchi, T., Nagao,
J., Arima, T., LES of Internal Combustion
Engine Flows Using Cartesian Overset Grids,
Oil & Gas Science and Technology – Rev. IFP
Energies Nouvelles 72 (2017) 36
[4] Chu, H., Berger, L., Grenga, T., Wu, Z.,
Pitsch, H., Effects of differential diffusion on
hydrogen flame kernel development under
engine conditions, Proceedings of the Com-
bustion Institute 39 (2023) 2129-2138
[5] Fröde, F., Grenga, T., Le Chenadec, V.,
Bode, M., Pitsch, H., A three-dimensional
cell-based volume-of-fluid method for con-
servative simulations of primary atomization,
Journal of Computational Physics 465 (2022)
111374

Autoren
Dr.-Ing. Marco Davidovic, Fabian Fröde,
M.Sc., und Terence Lehmann, M.Sc., sind
wissenschaftliche Mitarbeiter am Institut
für Technische Verbrennung.
Dr.-Ing. Michael Gauding ist Oberingenieur
am Institut für Technische Verbrennung.
Univ.-Prof. Dr.-Ing. Heinz Pitsch ist Inhaber
des Lehrstuhls und Leiter des Instituts für
Technische Verbrennung.

Entwicklung neuer Verbrennungs-
konzepte
Das Simulationspaket CIAO kommt aufgrund
seines großen Funktionsumfangs in verschie-
denen Fragestellungen zum Einsatz. Dazu
zählen beispielsweise die Untersuchung von
Flammeninstabilitäten, welche bei der Ver-
brennung von wasserstoffbasierten Kraft-
stoffen auftreten[1, 4]. Die Ergebnisse dieser
Simulationen legen den Grundstein für eine
genaue Modellierung der Verbrennungskon-
zepte und somit die effiziente Entwicklung
neuartiger Brennerkonzepte. Im Bereich der
Mehrphasenströmungen werden mithilfe von
CIAO detaillierte Simulationen des Primär-
zerfalls von Flüssigkeitsinjektionen durchge-
führt[5]. Die Ergebnisse finden ihre Anwen-
dung in der motorischen Verbrennung, aber
auch auf dem Gebiet der Nanopartikelsynthe-
se. Im Bereich der motorischen Verbrennung
bietet die Simulationssoftware die Möglichkeit
einen tiefgreifenden Einblick in die Emissions-
bildung von unterschiedlichen Kraftstoffen in
verschiedenen Motorgeometrien zu erhalten
und somit Emissionen effektiv zu reduzieren.
Hierfür werden mittels Overset-Gitter die Si-
mulation von Strömungen in komplexen und
bewegten Geometrien unterstützt[3]. Exemp-
larische Simulationsergebnisse sind in Bild 4
dargestellt.

Bild 4: Visualisierung einzelner, mit CIAO durchgeführter Simulationen: a) Runde, turbulente Wasserstoff-Freistrahlflamme, b) Detailansicht einer laminaren Flammenausbreitung, c) Primärzerfall

eines koaxialen Zerstäubers, d) Schadstoffentstehung im Motor für unterschiedliche Kraftstoffe.

 | 43

Die Lebenszyklen technischer Produkte
verkürzen sich fortwährend. Im Entwicklungs-
prozess müssen daher in kürzerer Zeit und
unter Minimierung von Kosten und Ressour-
cen Innovationen zur Produktreife gebracht
werden. Gleichzeitig steigt die Komplexität
der Produkte, unter anderem durch zuneh-
mende Integration von Software in vormals
mechanische Systeme. Diesem Zielkon-
flikt zwischen steigender Komplexität und
kürzeren Zyklen kann durch neue Methoden
der virtuellen Produktentwicklung begegnet
werden. Ziel ist, das Verhalten des Produkts
über virtuelle Modelle vorherzusagen und
unter Berücksichtigung der Wechselwirkun-
gen zwischen den regelungstechnischen,
fluidtechnischen, elektrotechnischen, me-
chanischen und Software-Teilsystemen zu
optimieren. Dies gilt insbesondere für frühe
Entwicklungsphasen, in denen Änderungen
schnell und kostengünstig umsetzbar sind
und keine zeit- und kostenintensiven physi-
schen Prototypen verfügbar sind.
Die modellbasierte Produktentwicklung
wird am Institut für Maschinenelemente und
Systementwicklung seit langem erforscht.
Entwicklungs- und Simulationsmethoden
werden über entsprechende Software zur
Verfügung gestellt.

Julius Berges, Joerg Berroth, Gregor Höpfner, Georg Jacobs, Stefan Wischmann

Virtuelle Absicherung von
mechatronischen Systemen

As lifecycles of technical products continue to
decrease, the development process of these
products needs to create innovative, mature
products faster while minimizing costs and
resources. At the same time, the complexity
of technical products increases, mainly driven
by the increasing integration of software,
which in turn is driven by digitalization. In this
context, methods of virtual product develop-
ment, particularly virtual testing, could play a
pivotal role in increasing the efficiency of the
product development process.
Thus, software tools and methods for virtual
product development are developed at the
Institute of Machine Elements and Systems
Engineering. Having started off as simulation

Physikalische Verhaltensmodelle und Model-Based Systems Engineering

software for the design and analysis of the
dynamic behavior of drive trains, today, the
software aims to cover the entire product
development process using Model-Based
Systems Engineering (MBSE) methods. As
a logical next step in product development,
the MBSE-method motego, an innovative
approach that enables clear, interconnected
development across multiple domains, is
being developed at MSE. Motego comprises
virtual models and provides a language profile
allowing for automation, error reduction, and
significant enhancement of efficiency, with
the added benefit of early virtual validation,
all of which are crucial to agile and sustain-
able product development.

44 |

Bild 1: Planung experimenteller Untersuchungen mit strukturdynamischen Modellen in den Software-

methoden des Instituts für Maschinenelemente und Systementwicklung.

Foto: Peter Winandy

Bild 2: Interdisziplinäre Simulation des Verhaltens dynamischer Systeme im DREhschwingungsSimulationsProgramm, kurz DRESP, und der Mehrkörpersimulations-(MKS)-Software SIMPACK

Euro eingefl ossen. DRESP wird über die
Forschungsvereinigung Antriebstechnik (FVA)
bereitgestellt und in mehr als 60 Firmen
genutzt. Dabei wurde der Rechenkern in
Fortran implementiert und über ein graphi-
sches Interface in Java einfach zugänglich
gemacht. Mit zunehmender Ausdetaillierung
der mechanischen Antriebe wird verstärkt
eine Betrachtung der Freiheitsgrade über
den Drehfreiheitsgrad hinaus relevant. Mit
DYLA (Simulationsprogramm zur Ermittlung
der dynamischen Lagerkräfte) wurde eine
Erweiterung in alle sechs mechanischen
Freiheitsgrade erreicht.
Die auf Basis von DRESP entwickelten Be-
rechnungsmodule werden heute für die stark
am Markt vertretene Mehrkörpersimulations-
(MKS)-Software SIMPACK weiterentwickelt
und können als eigenständige Teile einer
Modellbibliothek eingebunden werden[2].
Mit ihrer validierten, hohen Abbildungsgüte
lassen sich so sehr gute Prognosefähig-
keiten des dynamischen und akustischen
Verhaltens mechatronischer Antriebssysteme
realisieren. Der Fokus der Module richtet sich
nach der aktuellen Transition hin zu emissi-

onsfreien Antrieben in der Elektromobilität
und umfasst unter anderem Abbildungen des
Anregungsverhaltens von Verzahnungen und
elektrischen Maschinen sowie des nichtlinea-
ren Übertragungsverhaltens von Fügestellen,
Wälzlagern und Elastomerkupplungen. Somit
wurde eine umfassende Softwarelandschaft
zur physikbasierten Simulation des dynami-
schen Verhaltens mechatronischer Antriebs-
stränge über verschiedene Entwicklungs-
domänen und Zeitpunkte hinweg geschaffen,
siehe Bild 2.

motego – Vernetzung von physikalischen
Verhaltensmodellen
Die Erfahrung mit DRESP, DYLA und der
MKS wird heute genutzt, um den Entwick-
lungsprozess mechatronischer Systeme
mithilfe der Methoden des Model-Based
Systems Engineerings zu virtualisieren und
zu verbessern. Dabei spielt nicht nur die
Integration und durchgängige Nutzung physi-
kalischer Verhaltensmodelle in die modellba-
sierte Entwicklung eine Rolle, sondern auch
die Steigerung der Effi zienz der Anwendung
dieser Modelle durch Wiederverwendung

E-Maschine GetriebeE-Maschine Getriebe

Drehschwingungsmodell

Referenz: Fahrzeug

Drehschwingung Mehrkörpersimulation

· Wälzlager

· Flexible Körper

· Fügestellen

· Elastomerlager &
 -kupplungen

Transferpfad Abstrahlung

· Elektrische
Maschine

· Verzahnung

Anregung

DRESP, DYLA und SIMPACK
Ausgangspunkt waren Methoden zur Vorher-
sage des dynamischen Verhaltens hochbe-
lasteter mechanischer Antriebsstränge im
Rahmen der Maschinendynamik und -akus-
tik. Dabei sind vor allem Untersuchungen der
dynamischen Lasten im Drehfreiheitsgrad
(dynamische Momente und Torsionsschwin-
gungen) für die erste Auslegung relevant.
Diese werden von den angrenzenden Syste-
men anderer Domänen wie Elektromotoren,
Hydraulik und regelungstechnischen Syste-
men stark beeinfl usst. Daher wurde bereits in
den 1980er Jahren mit der Entwicklung einer
effi zienten Simulationssoftware zur Abbildung
der Wechselwirkungen zwischen mechani-
schen Systemen im Drehfreiheitsgrad, elek-
trischen, hydraulischen und regelungstech-
nischen Systemen begonnen, die im DREh-
schwingungsSimulationsProgramm, kurz
DRESP[1], mündete. Mit DRESP können das
Gesamtsystemverhalten frühzeitig bewertet
und potenziell kritische Betriebspunkte in der
Auslegung identifi ziert werden. In die
Module von DRESP sind bis heute 14 Disser-
tationen und Kosten von etwa 2,5 Millionen

46 |

Bild 3: Mechatronisches System modelliert im motego-Sprachprofi l

und das dazu notwendige methodische
Rahmenwerk zur Strukturierung und Klassi-
fi kation der Modelle. Über die Verhaltenssi-
mulation hinaus wird eine modellierte Sys-
temarchitektur in den Mittelpunkt gestellt.
Hierzu bedarf es Modellierungssprachen
und Softwaretools, die die unterschiedlichen
Aspekte eines interdisziplinären Systems in
einer Systemarchitektur abbilden können.
Ein Schritt ist die Entwicklung und Verbrei-
tung von motego, einer Modellierungsmetho-
de mit einem frei verfügbaren Sprachprofi l,
das auf der standardisierten Modellierungs-
sprache für technische Systeme „Systems
Modeling Language“ (SysML) aufbaut[3].
motego ist eine Methode des Model-Based

Systems Engineering, die darauf abzielt, kom-
plexe mechatronische Systeme auf eine klare,
vernetzte und fl exible Weise zu entwickeln.
Die Methode folgt einem Strukturschema,
das sich auf vier Pfeiler stützt: Anforderun-
gen, Funktionen, technische Lösungen und
das Produkt. Jede Säule wird in der motego-
Methode spezifi ziert, um eine einheitliche
digitale Modellierung auf Parameterebene
sicherzustellen. Ein Vorteil von motego liegt
in der durchgängigen Vernetzung sämtlicher
Systemelemente über diese vier Säulen hin-
weg. Dadurch werden komplexe Zusammen-
hänge zwischen den einzelnen Systemele-
menten über das gesamte zu entwickelnde
System hinweg abgebildet. Die motego-Me-

thode zeichnet sich durch ihre systematische
Integration und Vernetzung von physika-
lischen Verhaltensmodellen, modelliert in
CAx-Tools wie DRESP, DYLA, der MKS und
weiteren, aus. So können die entwickelten
Systeme durchgängig virtuell getestet werden.
Über die entstehende Struktur für technische
Lösungen können physikalische Verhaltens-
modelle toolübergreifend verknüpft und in
Modellbibliotheken wiederverwendbar ge-
macht werden. Dies wird über das motego-
Plug-in ermöglicht, welches aktuell für die
Software Cameo Systems Modeler entwickelt
und in Java implementiert ist, siehe Bild 2.
Die Verbindung zu weiteren Tools wird über
die im Cameo Systems Modeler vorhande-

 | 47

nen Schnittstellen zu unter anderem Matlab
implementiert. Die Methode ermöglicht so die
kontinuierliche Erweiterung um zusätzliche
Modelle und erlaubt zudem die Organisation
unterschiedlicher Detailgrade für verschiede-
ne Entwicklungsstadien[4]. Diese Flexibilität
ist entscheidend, um den unterschiedlichen
Anforderungen hinsichtlich erforderlicher und
realisierbarer Modellgüte gerecht zu werden,
die in den verschiedenen Phasen der Pro-
duktentwicklung auftreten können.
Die motego-Methode ermöglicht die Abbil-

dung von automatisierten Workflows, in de-
nen mehrere Modelle hintereinander ange-
sprochen werden, um Aufgaben, wie die
Absicherung eines Antriebsstranges, zu au-
tomatisieren[5]. Durch diese Automatisierung
werden menschliche Fehler minimiert und
die Effizienz im Entwicklungsprozess gestei-
gert. Die Vernetzung von Modellen und die
Automatisierung von Aufgaben ermöglichen
zudem die Arbeit in kurzzyklische Sprints.
In diesen können mechatronische Systeme
frühzeitig auf Grundlage der Modellbibliothe-

ken virtuell abgesichert werden, ein entschei-
dender Fortschritt zu heutigen Produktent-
wicklungsmethoden, da sie Entwickelnden
erlaubt, schnell und effizient auf Probleme zu
reagieren und Anpassungen am System vor-
zunehmen. Mit motego wird die virtuelle Ab-
sicherung und Entwicklung mechatronischer
Systeme am Institut für Maschinenelemente
und Systementwicklung ausgehend von den
einzelnen Berechnungstools aus DRESP,
DYLA und den MKS-Berechnungstools in die
durchgängig vernetzte, virtuelle Produktent-

Bild 4: Die Kombination aus Methoden des Model-Based Systems Engineerings in motego mit validierten physikalischen Modellen und experimentellen Untersuchungen ermöglicht die interdiszipli-

näre Optimierung antriebstechnischer Systeme.

Foto: Peter Winandy

48 |

Autoren
Julius Berges, M.Sc., ist Gruppenleiter Sys-
tems Modeling and Optimization am Institut
für Maschinenelemente und Systementwick-
lung.
Dr.-Ing. Joerg Berroth ist geschäftsführender
Oberingenieur Systems Engineering and
Off-Highway am Institut für Maschinenele-
mente und Systementwicklung.
Gregor Höpfner, M.Sc., ist Bereichsleiter
Systems Engineering – Modeling and Simula-
tion am Institut für Maschinenelemente
und Systementwicklung.
Univ.-Prof. Dr.-Ing. Georg Jacobs ist Inhaber
des Lehrstuhls und Leiter des Instituts für
Maschinenelemente und Systementwicklung.
Stefan Wischmann, M.Sc., ist Gruppenleiter
Noise Vibration Harshness am Institut für
Maschinenelemente und Systementwicklung.

Literatur
[1] Jacobs, G., Schelenz, R., Juretzki, B.,
Flock, S., Benutzerhandbuch DRESP 13.0.
(FVA-Forschungsheft 485) Forschungsver-
einigung Antriebstechnik: Frankfurt a.M.,
Aachen, 2012
[2] Jacobs, G., Wegerhoff, M., Andary, F.,
DRESP2SIMPACK II (FVA-Forschungsheft
1176) Forschungsvereinigung Antriebstechnik:
Frankfurt a.M., Aachen, 2016
[3] Spütz, K., Jacobs, G., Zerwas, T. et al.,
Modeling language for the function-oriented
development of mechatronic systems with
motego. Forsch Ingenieurwes 87, 387–398,
2023, https://doi.org/10.1007/s10010-023-
00623-4
[4] Jacobs, G., Konrad, C., Berroth, J. et al,
Function-oriented model-based product
development. In: Krause D, Heyden E (eds)
Design methodology for future products: data
driven, agile and flexible, 1st edn. Springer,
Cham, pp 243–263, 2022
[5] Berges, J.M., Spütz, K., Zhang, Y. et al.,
Reusable workflows for virtual testing of
multidisciplinary products in system models.
Forsch Ingenieurwes 87, 339–351,2023, htt-
ps://doi.org/10.1007/s10010-023-00621-6

wicklung erweitert und so nicht nur ein
effizienter Prozess geschaffen, sondern auch
die Qualität und Nachhaltigkeit der entwickel-
ten Produkte gesteigert. Die Methode schafft
eine Grundlage für eine agile und transparen-
te Produktentwicklung, die den Herausforde-
rungen komplexer mechatronischer Systeme
gewachsen ist. Das Sprachprofil motego wird
als frei zugängliches Plug-in für die MBSE-
Softwareumgebung Cameo Systems Modeler
angeboten. So können Entwicklerinnen und
Entwickler die Methoden in eigene Projekte

integrieren und von den genannten Vorteilen
zu profitieren. Das Sprachprofil kann über die
Website www.motego.info abgerufen werden.
Durch die stetige Weiterentwicklung der
MBSE-Methode motego leistet das Institut für
Maschinenelemente und Systementwicklung
einen entscheidenden Beitrag zur Gestaltung
der zukünftigen modellbasierten Produktent-
wicklung.

		 www.motego.info

 | 49

The scientific software NEST is a simulation
code capable of representing biological
neuronal networks at full density, meaning
with their natural number of contact points,
called synapses, between the nerve cells.
The software scales from laptops to the
largest supercomputers available today and
is the core simulation engine of the European
ICT infrastructure EBRAINS for this level of
description. The code originates from the
middle of the 1990s where it was developed
under the name SYNOD in the context of a
Master’s thesis. At the time, Computational
Neuroscience had already been around for
a decade. From the beginning, a motivation
of the NEST project was to move code devel-
opment in science out of the “dark ages” and
make it a proper part of the scientific method.
Today NEST is governed by a community
organization, and it is used by scientists
around the world to produce and publish new
scientific findings. NEST is used as a simula-
tion engine inside other applications, and,
continuously, peer-reviewed papers are pub-
lished, describing the technological advance-
ments of the tool. Therefore, NEST is well
suited to trace back the evolution of the prac-
tice of Research Software Engineering (RSE)
over the past 25 years.

Susanne Kunkel, Markus Diesmann

Entwicklung des Research
Software Engineering am
Beispiel von NEST
Wissenschaftliche Software ist wissenschaftliche Infrastruktur

Die wissenschaftliche Software NEST dient
der Simulation biologischer neuronaler Netze.
NEST bildet Netzwerke von Nervenzellen mit
all ihren Kontaktstellen, den Synapsen, ab
und ist auch in der Künstlichen Intelligenz und
Robotik relevant. Die Software läuft sowohl
auf einem Laptop als auch auf den größten
heute verfügbaren Supercomputern. NEST
hat sich als leistungsfähiger Simulator in der
Computational Neuroscience etabliert und
wird als zentrale Simulationsmaschine der
europäischen digitalen Infrastruktur EBRAINS
genutzt.
NEST entstand Mitte der 1990er Jahre im
Rahmen einer Diplomarbeit und wurde unter
dem Namen SYNOD veröffentlicht. Zu dieser
Zeit herrschte eine Kultur, in der die Entwick-
lung wissenschaftlicher Software nicht als
Teil der wissenschaftlichen Arbeit angesehen
und systematisch den unerfahrenen Mitarbei-
terinnen und Mitarbeitern aufgetragen wurde.
Oftmals endete mit dem Abschluss der
Diplom- oder Doktorarbeit auch der Code,
und nachfolgende Wissenschaftlerinnen und
Wissenschaftler fingen wieder bei null an.
Obwohl früher gegründet, war die Computa-
tional Neuroscience rückständig im Vergleich
mit jüngeren Wissenschaftsbereichen wie
der Systembiologie. Eric De Schutter vom

Okinawa Institute of Science and Technology
in Japan führte diesen Widerspruch auf die
frühe Gründung zurück. Dadurch wurde die
Wissenschaftspraxis geprägt als die Proble-
matik noch nicht erkannt und eine geeignete
Methodik noch nicht verfügbar war. Schon
am Anfang des NEST-Projekts stand der
Gedanke, die Entwicklung wissenschaftlicher
Software aus den finsteren Zeiten herauszu-
führen und sie zu einem gleichberechtigten
Teil der wissenschaftlichen Methode zu ma-
chen. Offiziell wurde diese Mission 2012 mit
der Gründung der NEST Initiative als Verein.

50 |

Forschungssoftware unterliegt
besonderen Anforderungen
Mit dem Wachsen des Projekts, siehe Bild 1,
stellte sich heraus, dass Software-Entwick-
lung in der Wissenschaft besonderen Be-
dingungen unterliegt, und sich Erkenntnisse
und Methoden aus dem auf die Industrie
ausgerichteten Software-Engineering nur
eingeschränkt übertragen lassen. Die Erstel-
lung wissenschaftlicher Software ist Teil des
Erkenntnisprozesses, einzelne Wissenschaft-
lerinnen und Wissenschaftler verbringen aber
nur zwei bis fünf Jahre in einer Institution.
Sie erfahren dabei Anerkennung für Publi-
kationen in der Fachdomäne, aber nicht für
Qualität und Nachhaltigkeit ihres Codes.
Dies bestärkt sie darin, Software nur für ihren
eigenen unmittelbaren Nutzen zu entwickeln.
Investition und Wissen gehen verloren, so-
bald die Institution verlassen wird. Den Preis
für diesen Mangel an Nachhaltigkeit zahlen
Institution und Gesellschaft. Die Erforschung,
wie gutes Research Software Engineering
aussieht steht noch am Anfang.

Aus der Praxis der NEST-Entwicklung können
folgende Schlüsse gezogen werden:

·	 Iterativer Ansatz
Jede Generation von Forschenden baut auf
den Ergebnissen der vorhergehenden auf.
Wissenschaftliche Software muss dieses
Prinzip unterstützen und zu jeder Zeit ein-
satzbereit sein. Ziel ist deshalb keine per-
fekte Implementation, sondern eine Archi-
tektur, die eine iterative Weiterentwicklung
unterstützt, um weitere Aspekte der Natur
nachbilden zu können, ohne dass es eine
endgültige Funktionsbeschreibung gibt.

·	 Kollaborative Strukturen
Wissenschaft wird heute in über Institutio-
nen und Länder verteilten Teams betrieben.
In einem wissenschaftlichen Code wird
es auch vorkommen, dass verschiedene
Teams unterschiedliche Fähigkeiten des
Codes gleichzeitig weiterentwickeln. Die
Robustheit der Software hängt deshalb von
Entwicklungsprozessen und -infrastruktu-
ren ab, wie zum Beispiel Versionskontrolle
und automatisierten Tests, die gemein-
schaftliches Arbeiten unterstützen.

·	 Open Source
Die Beteiligung mehrerer Institutionen an
einer Software hat den Vorteil, Code in
einem Umfang und in einer Qualität entwi-
ckeln zu können, wie es allein unmöglich

wäre. Die Sichtbarkeit fördert die Nach-
vollziehbarkeit und Reproduzierbarkeit
wissenschaftlicher Resultate. Dabei sichert
eine Lizensierung als Open Source den
Kollaborationspartnern den Zugang zu ei-
nem Instrument, das kritisch für den Erfolg
geworden ist. Die Nutzung eines bekannten
Codes senkt die Hürde den Quellcode
einer wissenschaftlichen Publikation offen
zu legen.

·	 Dokumentation
Wissenschaftlerinnen und Wissenschaftler
sind meist keine ausgebildeten Entwick-
ler, sollen aber in kurzer Zeit in der Lage
sein, mit einer komplexen, gewachsenen
Software zu forschen und diese weiterzu-
entwickeln. Sowohl Anwender- als auch
Entwicklerdokumentation muss dieser
Situation gerecht werden. Mechanismen
zur Erstellung der Dokumentation aus dem
Quellcode motivieren daran zu arbeiten.
Aber eine im wissenschaftlichen Schreiben
ausgebildete Person muss die Übersicht
über die Architektur der Dokumentation
behalten.

·	 Schichtenarchitektur
Bibliotheken für graphische Benutzer-
schnittstellen und interpretierte Program-
miersprachen, beispielsweise zur Simula-
tionssteuerung verwendet, haben sich als
kurzlebig erwiesen. Eine starke Verknüp-
fung mit solcher Fremdsoftware, ist nicht
nur destabilisierend, sondern erschwert
auch die Portierung von Code auf neue
Systeme. Eine Organisation der Software in
Schichten mit wenigen Interaktionspunkten
erleichtert das Loslösen von einer überhol-
ten Fremdsoftware.

·	 Gezielte Objektorientierung
Der Nutzen objektorientierter Programmie-
rung für die Definition klarer Schnittstellen
und damit der Unterstützung kollaborativer
Entwicklung und Wartbarkeit ist unumstrit-
ten. Für einen wissenschaftlichen Code ist
es jedoch entscheidend für Laufzeit und
Speicherverbrauch, nicht einfach die Natur
in Objekten abzubilden, sondern auch die
für Hochleistungsrechner günstigen Daten-
strukturen zu bedenken. Die Kunst besteht
darin, zwischen beiden Welten effiziente
und erklärbare Übergänge zu finden.

·	 Ein Quellcode
Der wissenschaftliche Alltag bietet kaum
die Kapazität zur Pflege mehrerer umfang-

reicher Codes. Zwangsläufig führt die kurze
Lebensdauer von Hardware zur Vermei-
dung von Abhängigkeiten von plattform-
spezifischen Bibliotheken, es sei denn sie
implementieren offene Standards. Und
Anstrengungen in einen einzigen extrem
skalierbaren Code zu investieren, der auf
allen Systemen vom Laptop bis zum Super-
computer effizient läuft, rentiert sich. Eine
neue Herausforderung ist die Verbreitung
von Hardware-Beschleunigern wie Grafik-
prozessoren.

·	 Agiler Ansatz
In der Forschung ändern sich die Anfor-
derungen ständig, und naturgemäß ist
das Verständnis über den Forschungsge-
genstand begrenzt. Versuche, allgemeine
Lösungen zu implementieren, die über
die konkreten Bedürfnisse der Anwen-
der hinaus gehen, aber für die Zukunft
wichtig scheinen, scheitern oft an falsch
eingeschätzten Anforderungen oder
Leistungseinschränkungen. Nur agile
Softwareentwicklung unter Einhaltung
des Minimalprinzips, eine neue Funktion
nur zu implementieren, wenn sie direkt
eine Anwendung findet, ist mit Forschung
vereinbar.

·	 Kostenschätzung
Wie relevant eine neue Fähigkeit für die
Fachdomäne ist, ist meist schwer zu
beurteilen, und die Kosten können erheb-
lich sein, besonders wenn tiefgreifende
Änderungen erforderlich sind. Aufwand
und Nutzen abwägen kann nur eine in Soft-
warearchitektur ausgebildete Person, die
sowohl Code als auch Fachdomäne kennt.
Um die Konsequenzen für Genauigkeit und
Leistungsfähigkeit des Gesamtsystems
und die Kosten einschätzen zu können ist
es für das Research Software Engineering
wichtig, den theoretischen Unterbau und
die Begriffsklärung der Simulationstechno-
logie in einer Fachdomäne voranzubringen.

 | 51

Nachhaltige Forschung braucht
Infrastruktur auf allen Ebenen
Die wachsende Komplexität des Codes
erforderte die Einführung neuer Technologi-
en, siehe Bild 2. Dies gilt, auch um entspre-
chend der beschriebenen Erkenntnisse zum
Research Software Engineering zu handeln.
Diese Fortschritte sind vor dem Hintergrund
der allgemeinen Entwicklung in der Computa-
tional Neuroscience zu sehen. Um die Jahr-
tausendwende wurde klar, dass die Neuro-
wissenschaft sich in einer Software-Krise
befand: die Softwareentwicklung machte
kaum noch Fortschritte und die Reproduzier-
barkeit von Ergebnissen nahm ab. In 2007
wurde schließlich die International Neuroinfor-
matics Coordinating Facility (INCF) gegrün-
det, und heute sind die größten Probleme
überwunden. Nach intensiver Forschung über
ein weiteres Jahrzehnt ist mit dem Abschluss
des Europäischen Human Brain Projects in
2023 und dem Aufbau der Europäischen ICT
Infrastruktur EBRAINS, das Problem eine
Software-Infrastruktur für die Neurowissen-

schaft bereit zu halten, technisch und admi-
nistrativ im Prinzip gelöst. Ob die vorgeschla-
gene Infrastruktur auch dauerhaft finanziert
werden kann, ist eine offene Frage.

Forschungssoftware soll den
Forschergeist wachsen lassen
Simulation hat sich auch in der Computati-
onal Neuroscience als dritte Säule der wis-
senschaftlichen Methode neben Experiment
und Theorie etabliert. Ein wichtiger Schritt
war dabei die formale Trennung konkreter
Modellbeschreibungen neuronaler Netze von
den allgemeinen Algorithmen zur Lösung der
Gleichungen solcher Modelle. Trotz dieser
Entwicklung ist der Wissenschaftsbereich
weiterhin dominiert vom hypothesengetriebe-
nen Ansatz. Immer schon gibt es auch den
technologiegetriebenen Ansatz, bei dem ein
neues Instrument, beispielsweise ein Teles-
kop, eine völlig neue Welt eröffnet, über die
es vorher keine Hypothesen geben konnte.
Die NEST Initiative möchte der Computa-
tional Neuroscience so ein Instrument zur

Verfügung stellen. Sie hat den Anspruch,
Untersuchungen komplexer Netzwerke auf
der Größenskala des Gehirns mit einem
höheren Erklärungswert für die Hirnfunkti-
on zu ermöglichen. Die Arbeit soll dabei so
einfach und schnell sein, dass bestehende
Komplexitätsbarrieren überwunden werden.
Gleichzeitig soll der Austausch von Modell-
beschreibungen eine Kultur etablieren, in der
Neurowissenschaftler auf den Arbeiten ande-
rer aufbauen können, und bewährte Modelle
als Komponenten größere Modelle verwendet
werden können. Oft heißt es: „Auf meinem
Laptop kann ich 10.000 Neuronen mit einem
selbstgeschriebenen Python-Programm
simulieren, mehr brauche ich nicht für meine
Theorie“. Aber wie wahrscheinlich ist es, dass
dieses Programm fehlerfrei und numerisch
genau ist? Und, wenn es die Möglichkeit gibt,
mehrere Millionen Neuronen zu simulieren,
warum nicht die Gültigkeit einer Theorie an
Netzwerken natürlicher Größe überprüfen?

Bild 1: Anzahl der Code-Zeilen der NEST-Software (vertikal) als Funktion der Zeit (horizontal). Der Code hat Anteile mehrerer Programmiersprachen und enthält auch einen eigenen Interpreter für

Simulationsskripte (SLI) sowie die Dokumentation (Legende). Daten liegen seit der Einführung eines Versionskontrollsystems vor (CVS, vergleiche Bild 2).

52 |

Autoren
Dr.rer.nat. Susanne Kunkel ist Abteilungsleiterin
am Institut für Neuromorphic Software Ecosys-
tems (PGI-15) am Forschungszentrum Jülich.
Univ.-Prof. Dr.rer.nat. Markus Diesmann leitet
das Lehr- und Forschungsgebiet Computa-
tional Neuroscience und ist Leiter des Instituts
für Computational and Systems Neuroscience
(IAS-6) am Forschungszentrum Jülich.

Research Software Engineering muss
Teil des Wissenschaftsalltags sein
Research Software Engineering hat zwei As-
pekte. Einerseits erzeugt oder pflegt heute
jede forschende Person Software und sollte
daher entsprechend ausgebildet werden.
Andererseits braucht jeder wissenschaftliche
Code eine zentrale Person, die die Gesamtar-
chitektur im Blick hat. Eine Forschungsgrup-
pe, die Software als Infrastruktur betreibt,
braucht eine Person, die mit tiefem Domänen-
wissen langfristig mit dem Projekt verbunden
bleibt. Hauptaufgabe ist die iterative Verbes-
serung, um die Qualität und Wartbarkeit des
Codes und seiner Architektur aufrecht zu er-
halten. Neue Funktionen können Wissen-
schaftlerinnen und Wissenschaftler zielge-
nauer und aggressiver orientiert an den wirk-
lichen Bedürfnissen entwickeln. Idealerweise
kommt es dabei früh zu einer Interaktion.
Dabei ist es wichtig, dass sich kein Konser-
vatismus ausbreitet, sondern es oberstes
Ziel bleibt, dass der Code wissenschaftliche
Probleme löst.

Wissenschaftliche Software ist
wissenschaftliche Infrastruktur
In der NEST-Entwicklung hat sich aus den
besonderen Bedingungen der Forschung
eine Praxis des Research Software Enginee-
ring herausgebildet. Über die Details der
Methodik und Gewichtung einzelner Aspekte
gibt es in der Community noch keine Einig-
keit. Wie Research Software Engineering
gelehrt werden kann, muss noch erarbeitet
werden und was die optimale Methodik ist,
muss weiter erforscht werden. Die RWTH hat
sich aufgemacht, dieses neue Thema für sich
und ihre Studierenden zu erschließen.
Relevante wissenschaftliche Software hat
alle Eigenschaften traditioneller Forschungs-
infrastruktur aus Stahl und Beton: Sie muss
über Jahrzehnte entwickelt und betrieben
werden, es werden die höchsten Ansprüche
an Qualität und Zuverlässigkeit gestellt und
es bedarf eines Teams von Experten, die sich
um Wartung und Koordination der Entwick-
lung kümmern. Wie bei anderen Infrastruktu-
ren übernimmt ein Standort eine große Ver-

Bild 2: Einführung neuer Software-Technologien in das NEST-Projekt als Funktion der Zeit mit dem Ziel bei steigender Größe des Codes (vergleiche Bild 1) die Qualität und Leistungsfähigkeit

gewährleisten zu können.

antwortung, kann aber auch eine hohe
Bekanntheit erreichen. Diese neue Sicht auf
wissenschaftliche Software wird auch die
Finanzierunglandschaft tiefgreifend umge-
stalten.

 | 53

Alexander Kruschewsky, Camelia Oprea, Mark Schoberer, André Stollenwerk

Software-Toolchain
als neues Werkzeug
in der Medizin
Komplikationen frühzeitig erkennen

Lebensbedrohliche Gesundheitszustände
werden auf Intensivstationen behandelt. Hier
wird Medizintechnik in erheblich größerem
Umfang eingesetzt als in der nicht-intensiven
Krankenversorgung, etwa zur Überwachung
und Visualisierung von Vitalparametern oder
zur Durchführung von Beatmungstherapien.
Während die von den Geräten gelieferten
Daten lange Zeit ausschließlich für Diagnose,
Therapie und Dokumentation eingesetzt
wurden, begünstigt die Digitalisierung der
Patientenversorgung die Zusammenführung
und dauerhafte Speicherung dieser Daten[1].
Die resultierenden Datenbanken ermöglichen

die retrospektive Analyse und insbesondere
den Einsatz von Algorithmen und automati-
sierten Erkennungsverfahren. In interdiszipli-
närer Zusammenarbeit entwickeln Ärztinnen
und Ärzte der Uniklinik RWTH Aachen ge-
meinsam mit Mitarbeitenden des Lehrstuhls
Embedded Software (Informatik 11) Visuali-
sierungs- und Annotationssoftware. Das
medizinische Personal kann hier die Daten-
sätze nicht nur einsehen, sondern auch um
Kommentierungen erweitern. Daraus lassen
sich neue physiologische Muster erkennen
sowie Hypothesen erstellen, die nach der
Identifikation algorithmisch ausgewertet wer-

Digitalization in intensive care opens up new
forms of therapy and enables early diagnostic
support. In interdisciplinary cooperation, a re-
search software was developed that enables
data to be collected and analyzed in compli-
ance with the data protection regulations in
order to address scientific questions based
on it. The intensive collaboration between
medical doctors and computer scientists
made it possible to create research software
which, thanks to its aforementioned capa-
bilities, enables both the early detection of
complications and therapy support.

Bild 1: Prozessablauf einer nachhaltigen Software-Toolchain in der Datenwissenschaft: Zunächst müssen die gesammelten Daten in ein gemeinsames Format gebracht und die Datenqualität

sichergestellt werden. Daraufhin erfolgt eine algorithmische Datenauswertung. Die entstehenden Modelle können mit Modellen aus der Literatur verglichen werden und iterativ zur Verbesserung der

Toolchain beitragen.

Datenaufzeichnung Pseudonymisierung
& Datenextraktion

Datenimport
Weitere

Datenquellen

Datenaufbereitung Modell Evaluation

Weitere Modelle

Datenvisualisierung
& Annotation

Modell Training

54 |

den. Ziel ist unter anderem ein klinisches Ent-
scheidungsunterstützungssystems, welches
als einheitliches System das medizinische
Fachpersonal bei dem beschriebenen Arbeits-
fluss unterstützt. Schwerpunkte einer solchen
Software sind in Bild 1 dargestellt.

Datenaufzeichnung und -extraktion
Die Medizingeräte auf einer Intensivstation
geben in variierenden Frequenzen Werte aus,
diese sind primäre Datenquelle. Zusätzlich
dokumentiert das Pflegepersonal über Tab-
lets klinische Beobachtungen, diagnostische
oder therapeutische Maßnahmen. Diese
werden mit den Primärdaten der Medizinge-
räte zusammengeführt und durch Vernetzung
krankenhausintern in Datenbanken zusam-
mengeführt. Schließlich erfolgt eine externe
Auswertung jenseits der akuten Patientenbe-
handlung. Bei diesem Arbeitsschritt müssen
die Datenschutzrichtlinie und die patientenin-
dividuelle Einwilligung beachtet werden.
Da die vorgabenkonforme Implementierung
der skizzierten Aufzeichnungs- und Extrak-
tionsprozesse aufwändig ist, wird in der
Forschung häufig auf existente, schon veröf-
fentlichte Datensätze zurückgegriffen. Diese
können jedoch in unterschiedlichen Formaten
vorliegen, was einen zusätzlichen Importpro-
zess erforderlich macht. Dafür gibt es zwei
Ansätze. Eine Möglichkeit besteht darin, die

Daten direkt in ein gängiges medizinisches
Datenmodell, beispielsweise OMOP (Obser-
vational Medical Outcomes Partnership), zu
konvertieren[2]. Dies ermöglicht anschließend
einen einheitlichen Importprozess für alle Da-
tensätze. Der Anfangsaufwand ist hier größer,
da die Datenbank, welche häufig mehrere
Tausend Patienten umfasst, in das neue
Format umzuwandeln ist. Alternativ können
maßgeschneiderte Importprozesse für jeden
Datensatz entwickelt und modular integriert
werden. Zwar ist der anfängliche Aufwand
geringer, dennoch ist dieser Weg des Daten-
imports meist aufwendiger.
Allgemein gilt es beim Importprozess zu
beachten, dass verschiedene Datenquellen
unterschiedliche Qualitätsniveaus aufweisen
können[3]. Probleme wie fehlende Werte und
Messfehler sind keine Seltenheit, sie entste-
hen beispielsweise durch verschobene Sen-
soren während pflegerischer Tätigkeiten am
Patienten. Um diesem Problem entgegenzu-
wirken, werden Methoden zur Verbesserung
der Datenqualität genutzt. Diese erkennen
fehlerhafte Werte und können mitunter Da-
tenlücken schließen. Hierbei ist die Unterstüt-
zung durch Ärzte essenziell. Die medizinische
Fachexpertise wird bei der Identifizierung der
genannten Stellen genutzt und die Qualität
der Analysealgorithmen ist so sichergestellt.

Bild 2: Die Digitalisierung von intensivmedizinischer Überwachungs- und Diagnose-Technik liefert kontinuierlich einen großen Datenstrom.

Foto: Uniklinik RWTH Aachen-

 | 55

Bild 3: Über die Sicherheit dieser kleinsten Patienten können außer Menschen und Monitoren auch Algorithmen wachen.

Foto: Uniklinik RWTH Aachen

Datenannotation und visuelle
Bereitstellung
Nach der Extraktion beziehungsweise dem
Import der Daten können diese mittels eines
Visualisierungstools bereitgestellt werden.
Dabei sind das schnelle Laden der unter-
schiedlich aufgelösten Daten und die über-
sichtliche Visualisierung der einzelnen Daten-
typen erheblich. Bei den Datentypen unter-
scheidet man beispielsweise nach der Auf-
lösung: Daten mit Frequenzen von 1-500 Hz,
wie EKG oder Atemkurven sind in einem
Graph dargestellt. Werte, die nur wenige Male
an einem Tag erhoben werden, kommen in
eine gemeinsame tabellarische Darstellung.
Ein wertvolles Merkmal einer Software, die für
die nachträgliche Analyse eingesetzt wird, ist
das Anzeigen von Trenddaten in nutzerdefi-
nierten Zeitrahmen. Dabei ist es für den An-
wender wertvoll, wenn die zeitliche Auflösung
fließend und intuitiv verändert werden kann
und sich gleichzeitig numerische und graphi-
sche Daten sinnvoll zusammenführen lassen.
Hierbei ist ein Datenmodell entscheidend,
welches verschiedene Auflösungen ermög-
licht und dabei das medizinische Fachwissen
berücksichtigt, sodass entscheidende Merk-
male beim Zusammenfassen nicht bezie-
hungsweise möglichst spät verloren gehen.
In der Medizin sind zudem allgemeine Infor-
mationen über den Patienten oft von hohem
Nutzen. Ein schneller Herzschlag mag bei
jungen Menschen normal sein, doch bei Älte-

ren ist er eher ungewöhnlich. Alter, Geschlecht
und Gewicht einer Person können das Risiko
für bestimmte Krankheiten erhöhen oder ver-
ringern[4]. Diese Informationen helfen somit, in
Situationen, in denen die Daten nicht eindeu-
tig sind, die Genauigkeit der nachträglichen
Analyse zu erhöhen und das Krankheitsbild
besser zu verstehen.
Die nachträgliche Kommentierung der Daten
wird durch eine Annotationsfunktion ermög-
licht, die durch kontextsensitive Auswahl-
möglichkeiten, Such- und Filterfunktionen
optimiert ist.
Die Gesundheitsdaten eines einzelnen Patien-
ten können unzählige Informationen enthal-
ten. Es wäre somit äußerst mühsam und zeit-
aufwendig, jeden Datenpunkt auf Fehler oder
Anzeichen von Krankheiten zu überprüfen.
Durch die Eintönigkeit der Aufgabe ist diese
zusätzlich sehr fehleranfällig. Daher wurden
unterstützte Annotationen implementiert[5].
Bei dieser Methode wird ein Algorithmus
trainiert, um selbstständig Datenpunkte zu
erkennen. Die Ärztin beziehungsweise der
Arzt muss dann nur noch bei den Daten-
punkten eingreifen, bei denen der Algorith-
mus unsicher ist. Außerdem stellt eine Über-
sicht die Entscheidungen der Methode dar.
So ist sichergestellt, dass Fehler vermieden
werden. Diese innovative Technik unterstützt
die medizinische Bewertung, indem sie die
Effizienz steigert und die Genauigkeit erhöht,
selbst in komplexen Datenmengen.

Bild 4: Der Algorithmus hat bei einer Evaluation mit verschiedenen Datenquellen erhebliche Schwankungen in der Performance.

Datenauswertung anhand eines
modularen Plugin-Systems
Durch Annotationen entstehen Datensätze
die sich algorithmisch auswerten lassen,
Physiologischen Mustern wird eine „Bezeich-
nung“ zugewiesen, dieser Zusammenhang
zwischen Muster und „Bezeichnung“ kann
von einem Algorithmus erlernt werden. Alter-
native Visualisierungen und weitere Berech-
nungen wie Minimal- oder Durchschnittswer-
te über angegebene Zeitabschnitte im Tool
gehören ebenfalls zum Funktionsumfang.
An dieser Stelle berücksichtigt die For-
schungssoftware ein Plugin-Paradigma, die
einzelnen Features sind in separaten Modulen
verpackt, deren Einsatz unabhängig vonein-
ander erfolgt. Entscheidend ist eine einheit-
liche Schnittstelle für die Module, inklusive
einer einheitlichen Bereitstellung der Daten.
Nur die notwendigen Module werden dann
heruntergeladen und dynamisch nach dem
Start der Applikation eingesetzt. Dement-
sprechend ist eine effiziente Anpassung der
Software auf sich verändernde beziehungs-
weise neu erkannte Bedarfe möglich.
Innerhalb einer Software können aber nicht
nur die Algorithmen zur Auswertung modu-
lar ausgetauscht werden, sondern auch die
genutzten Daten. In der Forschung entsteht
dabei ein Problem: Es ist schwer, Ergebnisse
von Algorithmen und Modellen aus der
wissenschaftlichen Literatur miteinander
zu vergleichen, da es keine einheitlichen

58 |

Bild 4: Der Algorithmus hat bei einer Evaluation mit verschiedenen Datenquellen erhebliche Schwankungen in der Performance.

‚Vergleichsdatensätze‘ gibt[6]. Die Auswirkun-
gen der Vielfalt der eingesetzten Datensätzen
werden in Bild 4 deutlich.
Der dargestellte Plot zeigt die Anwendung
desselben Algorithmus auf zufällig ausge-
wählten Daten aus drei Datenbanken. Die
Erkennungsrate ergibt erhebliche Unterschie-
de. Diese Erkenntnis führte dazu, dass ein
modulares Benchmarking-System imple-
mentiert wurde. Damit können Daten aus
verschiedenen Datenbanken parallel verwen-
det sowie Algorithmen und Modelle aus der
Literatur auf denselben Daten getestet und
vergliechen werden.
Die einheitlichen Schnittstellen der Algorith-
men bieten noch weitere allgemeine Vorteile:
Mehrere Nutzende arbeiten gleichzeitig an
eigenen Algorithmen und Modellen. Darüber
hinaus können die Datenverarbeitung und
-annotation iterativ verbessert werden. Die
Plugin-Architektur ermöglicht an dieser Stelle
die nahtlose Integration von optimierten Me-
thoden zur Fehlererkennung in den Daten.
Dieser modulare Ansatz fördert die Zusam-
menarbeit und trägt dazu bei, die Qualität
und Vergleichbarkeit der Forschungsergeb-
nisse zu verbessern.

Frühgeborene mit Atemproblemen
profitieren
Die zuvor beschriebene Toolchain wird seit
2017 erfolgreich mit verschiedenen Partnern,
unter anderem in der Uniklinik RWTH Aachen
eingesetzt. Die Methoden zur Erkennung von
Krankheiten und Komplikationen konnte be-
reits erfolgreich vorangetrieben werden.
Im Schnitt arbeiten aktuell sieben Personen
an der Weiterentwicklung der Software. Auf-
grund ihrer Arbeit konnten Ansätze zur Erken-
nung von akutem Lungenversagen, basierend
auf Sensordaten und Röntgenbildern, sowie
zur Beatmung von Frühgeborenen auf der
Intensivstation, untersucht und vergleichen
werden. Ein Fokus liegt auf der Beatmung
von Frühgeborenen. Das Beatmungsgerät
misst Atemfluss- und Atemdruckkurven in
einer Auflösung von 125Hz, hieraus wird in
einem Modul der Forschungssoftware unter
Berücksichtigung der Messungenauigkeiten
das Atemvolumen abgeleitet. Außer der Be-
stimmung des Atem-Zeit-Volumens ist die
Identifikation von einzelnen Atemzügen aus
den Fluss- und Druckkurven relevant. Durch
festgelegte Regeln werden die einzelnen
Atemzüge getrennt und annotiert beziehungs-
weise zur weiteren Annotation durch das me-
dizinische Personal vorbereitet. Ein Beispiel
hierfür ist die Erkennung von Asynchronitäten

zwischen dem Bedarf der Frühgeborenen
und der von der Maschine gelieferten Beat-
mungsunterstützung. Die frühe Erkennung
von Asynchronitäten kann den Behandlungs-
stress für die Frühgeborenen reduzieren.
Mithilfe von manuell annotierten Atemzügen,
wurde eine KI-basierte Methode entwickelt,
die zur automatisierten Erkennung der Kom-
plikation genutzt wird.
Da die Ethik in der Medizininformatik eine ent-
scheidende Rolle spielt, wurden die Daten in
Übereinstimmung mit ethischen Standards,
nach Zustimmung durch die jeweiligen Ethik-
kommissionen verwendet[7] und unter ande-
rem pseudonymisiert. Ein weiteres Anliegen
ist die Vermeidung von Vorurteilen. Daher ist
es erklärtes Ziel medizinische Entscheidungs-
unterstützungssysteme fair und gerecht zu
gestalten. Vorurteile in den Daten und Algo-
rithmen sollen daher erkannt und eliminiert
werden, um sicherzustellen, dass die Mo-
delle für alle Patientengruppen zuverlässig
funktionieren beziehungsweise ausreichend
ausdifferenziert sind.

Literatur
[1] Johnson, A., Bulgarelli, L., Pollard, T.,
Horng, S., Celi, L. A., Mark, R., MIMIC-IV,
2022, https://doi.org/10.13026/rrgf-xw32
[2] Maier, C., Lang, L., Storf, H., Vormstein,
P., Bieber, R., Bernarding, J., Herrmann, T.,
Haverkamp, C., Horki, P., Laufer, J., Berger,
F., Höning, G., Fritsch, H. W., J. Schüttler,
Ganslandt, T. P. H. U., Sedlmayr, M., Towards
Implementation of OMOP in a German Uni-
versity Hospital Consortium, Applied Clinical
Informatics, Bd. 9, Nr. 1, pp. 54-61, 2018
[3] Wang, X., Wang, C., Time Series Data
Cleaning: A Survey, IEEE Access, Bd. 8, pp.
1866 - 1881, 2019
[4] Kompaniyets, L., Goodman, A. B., Belay,
B., Freedman, D. S., Sucosky, M. S., Lan-
ge, S. J., Gundlapalli, A. V., Boehmer, T. K.,
Blanck, H. M., Body mass Index and risk for
COVID-19–Related hospitalization, intensive
care unit admission, invasive mechanical ven-
tilation, and death — United States, March–
December 2020. Morbidity and Mortality
Weekly Report, morbidity and mortality weekly
report, Bd. 70, Nr. 10, p. 355–361, 2021
[5] Budd, S., Robinson, E. C., Kainz, B., A
survey on active learning and human-in-the-
loop deep learning for medical image analysis,
Medical Image Analysis, Bd. 71, 2021
[6] Kelly, C. J., Karthikesalingam, A., Suley-
man, M., Corrado, G., King, D., Key challen-
ges for delivering clinical impact with artificial
intelligence, BMC medicine, Nr. 17, pp. 1-9,
2019
[7] Reinhart, L., Strathmann, M., Ethische KI:
Ein Leitfaden für verantwortungsvolle KI-Ent-
wicklung, Heise Medien, 22 11 2023, https://
heise.de/-9312403

Autoren
Alexander Kruschewsky, M.Sc., Camelia
Oprea, M.Sc., und Dr.-Ing. André Stollenwerk
sind wissenschaftliche Mitarbeitende am
Lehrstuhl Embedded Software (Informatik 11).
Privatdozent Dr.med. Mark Schoberer ist
Oberarzt der Klinik für Kinder- und Jugend-
medizin (Sektion Neonatologie und Pädi-
atrische Intensivmedizin) der Uniklinik RWTH
Aachen.

 | 59

Wo befinden sich Grundwasser-, Erdwärme-
und Lithiumressourcen? Wo lassen sich
radioaktive Abfälle und Kohlenstoffdioxid
langfristig sicher speichern und wie kön-
nen diese Speicher verlässlich überwacht
werden? Wie wirken sich Extremwetterereig-
nisse auf die Hangstabilität in Bergregionen
aus? Zahlreiche drängende Fragen unserer
Zeit erfordern ein verbessertes Verständnis
des Untergrunds. Die Wissenschaftlerinnen
und Wissenschaftler des im Februar 2023
gegründeten Lehr- und Forschungsgebiets
Geophysikalische Bildgebung und Prozess-
beobachtung entwickeln dazu geophysikali-
sche Messverfahren und Softwarelösungen,
um Strukturen und Prozesse im Untergrund
mit hoher räumlicher und zeitlicher Auflösung
abzubilden.

Einblick ohne Eingriff
Die Geophysik benutzt und entwickelt dabei
Methoden, die in ähnlicher Form aus der Me-
dizin bekannt sind. Bis zur Entdeckung von
Wilhelm Conrad Röntgen im Jahr 1895 und
den darauffolgenden Entwicklungen in der
medizinischen Tomographie musste man den
menschlichen Körper chirurgisch öffnen, um
ihn zu untersuchen. Analog dazu erlaubt auch

Marc S. Boxberg, Nino Menzel, Florian Wagner

Geophysik lässt
tief blicken

A better understanding of the world below
our feet is key to answer many pressing
topics of our time, such as the localization
of groundwater, geothermal and lithium re-
sources, safe and long-term storage of radio-
active waste and carbon dioxide, as well as
reliable monitoring of these storage facilities.
The scientists at the Teaching and Research
Unit Geophysical Imaging and Monitoring
are developing geophysical measurement
methods and software solutions to image
structures and processes in the subsurface
at high spatial and temporal resolution.
By means of a combination of different geo-
physical methods, subsurface structures and
properties can be imaged more clearly and
with less ambiguity in their interpretation.
The open-source software pyGIMLi is an
essential tool for this purpose. It enables the
numerical solution of equations that describe
the physics of various geophysical measure-
ment methods as well as the estimation of
subsurface structure and physical properties
from data measured at the Earth’s surface.
It also provides capabilities to visualize and
interpret the generated images and is widely
used in geophysical research and education.

Abbildung von Strukturen und Prozessen im Untergrund mit pyGIMLi

60 |

Bild 1: Professor Florian Wagner mit Studierenden des Master-

studiengangs „Applied Geosciences“ bei der Qualitätskontrolle

während einer geoelektrischen Messung.

Foto: Peter Winandy

meinsamen Auswertung zu kombinieren[2].
In Ergänzung zu geoelektrischen Verfahren
können seismische Wellen angeregt und
die dadurch erzeugten Bodenbewegungen
aufgezeichnet werden. Da sich seismische
Wellen in Eis deutlich schneller ausbreiten
als in Luft, kann in dem zuvor genannten
Beispiel durch die Kombination der beiden
Methoden die Abschätzung von Eis-, Wasser-
und Luftanteilen im Porenraum des Gesteins
verbessert werden[3]. Dies ist unter anderem
für die Abschätzung von Georisiken und
die zukünftige Wasserversorgung in alpinen
Regionen im Hinblick auf steigende Tempera-
turen relevant.

Geophysik braucht Software
Der Einsatz von Computern hat die klassi-
sche Röntgentomographie in der Medizin
revolutioniert und zu der leistungsfähigeren
Computertomographie geführt. Auch die
dreidimensionale Abbildung des Untergrunds

die geophysikalische Tomographie Einblicke
in den Untergrund ohne invasive Eingriffe wie
kostenintensive Bohrungen. Dabei werden
beispielsweise elektrische Ströme gezielt an
der Erdoberfläche angeregt, siehe Bild 2.
Deren Ausbreitung im Untergrund ist abhän-
gig von den elektrischen Eigenschaften der
Gesteinsschichten, insbesondere von den in
Poren und Klüften des Gesteins befindlichen
Flüssigkeiten und Gasen. Sobald bei der
Beobachtung klar wird, wie der Untergrund
auf die angeregten Felder reagiert, in diesem
Fall durch die Messung resultierender elek-
trischer Spannungen an der Erdoberfläche,
kann die räumliche Verteilung physikalischer
Gesteinseigenschaften abgebildet werden.
Durch Wiederholung solcher Messungen zu
späteren Zeitpunkten lassen sich auch Ver-
änderungen im Untergrund, beispielsweise
aufgrund von Fließ- und Transportprozessen
in durchlässigen Gesteinsschichten, detek-
tieren und lokalisieren. Ein Beispiel ist die in

Bild 3 gezeigte Zunahme des elektrischen
Widerstands aufgrund der Ausbreitung von
Kohlenstoffdioxid im Speichergestein am
ehemaligen Pilotstandort für CO

2-Speiche-
rung in Ketzin, Brandenburg[1].

Viel Physik hilft viel
Ein häufig auftretendes Problem bei geo-
physikalischen Untersuchungen besteht
darin, dass die gewonnenen Abbildungen
Unschärfe aufweisen und diese in der Regel
mit der Tiefe zunimmt. Darüber hinaus ist die
Interpretation der Abbildungen oftmals mehr-
deutig. Ist der Porenraum des Gesteins mit
Luft oder Eis gefüllt? Beides würde sich im
Vergleich zu einer Füllung mit Wasser in einer
geringeren elektrischen Leitfähigkeit wider-
spiegeln. Ein effektiver Ansatz, um geophy-
sikalische Abbildungen zu verbessern und
Mehrdeutigkeiten bei deren Interpretation
zu reduzieren, besteht darin, verschiedene
geophysikalische Messverfahren in einer ge-

Bild 2: Veranschaulichung der geoelektrischen Untergrundabbildung. Unten rechts: Vereinfachtes geologisches Schichtmodell

durch das ein elektrischer Strom fließt (schwarze Linien) und ein daraus resultierendes elektrisches Potentialfeld (graue Linien),

welches an der Erdoberfläche mit Elektroden gemessen wird. Aus diesen Messungen lässt sich ein Abbild des Untergrunds

rekonstruieren (unten links).

62 |

mit verschiedenen geophysikalischen Verfah-
ren wäre ohne leistungsfähige Computer und
vielseitige Softwarelösungen nicht denkbar.
Denn es bedarf dazu unter anderem (1) der
numerischen Lösung mathematischer Gleich-
ungen, welche die zugrundeliegenden physi-
kalischen Prozesse wie den Stromfl uss oder
die Ausbreitung von Wellen in porösen Medi-
en beschreiben[4], (2) Inversionsalgorithmen,
um aus den gemessenen Daten Untergrund-
modelle abzuschätzen, welche die erhobenen
Daten im Rahmen ihrer Messfehler erklären
können und (3) Werkzeugen zur Visualisie-
rung und Interpretation der erzeugten Abbil-
dungen. Diese Arbeitsschritte ermöglicht die
Forschungssoftware pyGIMLi[5].

Bild 3: Geophysikalisch bestimmte Änderung des elektrischen Widerstands im CO
2
-Speicher am ehemaligen Pilotstandort in Ketzin, Brandenburg.[1]

Bild 4: Struktur und Inhalt des Softwarepakets pyGIMLi[5], das am Lehr- und Forschungsgebiet

Geophysikalische Bildgebung und Prozessbeobachtung mitentwickelt wird.

a)

Introduction of
structural constraints

b)
c)Constrained

inversion

Application level

Frameworks

Modelling level Utilities

· Data management
· Import/export
· Petrophysics
· Viewer interface
· Geometry management

C++ core library

· Mesh managment
· Element base functions
· Numerical integration
· Matrix and vector algebra
· Inverse solvers

External dependencies

· Viszualization
(e.g. VTK, matplotlib)

· Mesh generation
(Triangle, Tetgen, Gmsh)

· Linear solvers
(e.g. SuiteSparse)

Equation level

Method managers

pyGIMLi
Geophysical Inversion & Modelling Library

 | 63

beispielsweise zur Datenverarbeitung und
-visualisierung, ergänzt. Da Python im Ge-
gensatz zu C++ zur Laufzeit interpretiert wird
und keine vorherige Kompilierung benötigt,
lassen sich geophysikalische Arbeitsabläufe
schnell und einfach umsetzen.
Die Software ist in drei Zugangsebenen ge-
gliedert, siehe Bild 4. Die meisten Nutzer-
innen und Nutzer arbeiten auf der Anwen-
dungsebene (Application level), die soge-
nannte Methodenmanager für alle gängigen
geophysikalischen Verfahren bereitstellt. Dies
sind Klassen, die alle Arbeitsschritte vom Ein-

pyGIMLi – Eine quelloffene Bibliothek
zur Modellierung und Inversion
pyGIMLi erlaubt die Auswertung und Kombi-
nation zahlreicher geophysikalischer Mess-
daten. Zeit- und speicherintensive Prozesse,
wie das Lösen großer Gleichungssysteme,
werden aus Effizienzgründen in einer in C++
geschriebenen Kernbibliothek abgedeckt.
Darauf fußt eine Python-Bibliothek, die den
Nutzerinnen und Nutzern über entsprechen-
de Schnittstellen die gesamte Funktionalität
der Kernbibliothek in Python zur Verfügung
stellt und diese um weitere Funktionalität,

Bild 5: Studierende des Bachelorstudiengangs „Angewandte Geowissenschaften“ bei einer magnetischen Messung im Rahmen

einer Geländeübung im April 2024.

Foto: Peter Winandy

lesen und Prozessieren der Messdaten bis
hin zur Erstellung und Visualisierung eines
Untergrundmodells durchführen können.
Fortgeschrittene können auf der Modellie-
rungsebene (Modelling level) Funktionen
nutzen, die verschiedene geophysikalische
Prozesse modellieren und so eigene Aus-
werteverfahren, beispielsweise zur Kombi-
nation von mehreren Methoden, entwickeln.
Erfahrene Nutzerinnen und Nutzer können
auf der Gleichungsebene (Equation level)
verschiedene partielle Differentialgleichungen
auf beliebigen Geometrien lösen, was nicht

64 |

Literatur
[1] Bergmann, P., Diersch, M., Götz, J., Ivan-
dic, M., Ivanova, A., Juhlin, C., Kummerow, J.,
Liebscher, A., Lüth, S., Meekes, S., Norden,
B., Schmidt-Hattenberger, C., Wagner, F. M.,
Zhang, F., Geophysical Monitoring of CO2
Injection at Ketzin, Germany, In Geophysical
Monitoring for Geologic Carbon Storage
(pp. 403–438), 2022, Wiley. https://doi.
org/10.1002/9781119156871.ch23
[2] Wagner, F. M., Uhlemann, S., An over-
view of multimethod imaging approaches
in environmental geophysics. Advances
in Geophysics, Vol. 44., 2021, https://doi.
org/10.1016/bs.agph.2021.06.001
[3] Wagner, F. M., Mollaret, C., Günther, T.,
Kemna, A., Hauck, C., Quantitative imaging
of water, ice and air in permafrost systems
through petrophysical joint inversion of seis-
mic refraction and electrical resistivity data.
Geophysical Journal International, Vol. 219(3),
2019, https://doi.org/10.1093/gji/ggz402
[4] Boxberg, M. S., Prévost, J. H., Tromp, J.,
Wave Propagation in Porous Media Saturated
with Two Fluids, Transport in Porous Media,
Vol. 107(1)., 2015, https://doi.org/10.1007/
s11242-014-0424-2
[5] Rücker, C., Günther, T., Wagner, F. M.,
pyGIMLi: An open-source library for model-
ling and inversion in geophysics, Computers
& Geosciences, Vol. 109., 2017, https://doi.
org/10.1016/j.cageo.2017.07.011

Autoren
Dr.rer.nat. Marc S. Boxberg ist wissenschaft-
licher Mitarbeiter und stellvertretender Leiter
des Lehr- und Forschungsgebiets Geophy-
sikalische Bildgebung und Prozessbeobach-
tung.
Nino Menzel, M.Sc. ist wissenschaftlicher
Mitarbeiter am Lehr- und Forschungsgebiet
Geophysikalische Bildgebung und Prozess-
beobachtung.
Univ.-Prof. Dr.sc. Florian Wagner ist Leiter des
Lehr- und Forschungsgebiets Geophysikali-
sche Bildgebung und Prozessbeobachtung.

nur für die Geophysik nützlich sein kann.
Die Software ist für alle gängigen Plattformen
frei verfügbar und unter www.pygimli.org
dokumentiert. Sie wird daher auch an vielen
Standorten in der geophysikalischen Hoch-
schullehre eingesetzt. Seit der Publikation
der Version 1.0 im Jahr 2017[5] wurde die Soft-
ware über 25.000-mal heruntergeladen und
von einer breiten und internationalen Nutzer-
gemeinschaft in rund 100 wissenschaftlichen
Publikationen verwendet. Der Quellcode ist
offen und unterstützt so Forschende dabei,
reproduzierbare Wissenschaft zu betreiben

und damit den Weg von gemessenen Daten
bis hin zu den gewonnenen Untergrundmo-
dellen nachvollziehbar zu machen. Dies dient
nicht nur der Transparenz, welche insbe-
sondere bei der Endlagersuche von großer
Bedeutung ist, sondern beschleunigt auch
den wissenschaftlichen Fortschritt.

		 www.pygimli.org

 | 65

The continuous development of simulation
software in materials physics and science is
an essential requirement for technological
progress in many fields relevant to enabling
the transformation, safety, health and pros-
perity of our societies. In particular, sustaining
the functionality provided by software over
long periods of time while at the same time
adopting new functionalities and adapting to
new computer architectures, is a key chal-
lenge in research software engineering. Using
the example of the FLEUR code, developed
at Forschungszentrum Jülich, we discuss
some aspects of this task and highlight the
specific redesign needed to make it ready for
use on the Exascale computer JUPITER to be
installed at Forschungszentrum Jülich.

Stefan Blügel, Gregor Michalicek, Daniel Wortmann

Dichtefunktionaltheorie
auf dem Weg zum
Exascale-Computing
Entwicklung des FLEUR Community Codes für
sukzessive Generationen von Supercomputern

Computersimulationen sind eine unverzicht-
bare Methodik in der modernen Wissenschaft
geworden. Eine besondere Stellung nehmen
dabei solche Simulationen ein, die nicht nur
der Analyse, der Charakterisierung oder dem
Verständnis des zu beschreibenden Systems
dienen, sondern die auch die Vorhersage
von gegebenenfalls nützlichen Eigenschaften
unter bestimmten Bedingungen gestatten.
Im Bereich der Physik der Materialen sind
dies vor allem die sogenannten ab-initio
Simulationen, die nur auf der Grundlage
der fundamentalen Gesetzmäßigkeiten der
Quantenmechanik und ohne die Verwendung
von empirischen Modellen komplexe Materi-
aleigenschaften beschreiben. Diese Simu-
lationen ermöglichen so die gezielte Suche
nach Materialen für gewünschte Funktiona-
litäten und Anwendungen. Die erfolgreichste
Methode hierbei ist die sogenannte Dichte-
funktionaltheorie. Mit dieser relative jungen
Methodik kann die elektronische Struktur,
also die fundamentale Wechselwirkung der
vielen Elektronen eines Materials beschrieben

66 |

werden. Auf dieser Grundlage lassen sich
dann sowohl makroskopische Materialeigen-
schaften, etwa Härte, elastisches Verhalten
oder Leitfähigkeit und Farbe berechnen, oder
auch komplexere Quanteneffekte in funktio-
nalen und exakt definierten Nanostrukturen,
beispielsweise kleinste magnetische Objekte
oder Grenzflächen simulieren[1]. Solche Quan-
teneffekte sind die Grundlage neuer tech-
nologischer Entwicklungen. Hierzu gehören
Quantenmaterialien, Quantencomputer oder
energieeffizientere Elektronik. Materialen, die
entsprechende Effekte zeigen, sind die Bau-
steine zukünftiger Assistenzsysteme, Internet-
oder Energieinfrastruktur.
Dichtefunktionaltheorie wird in vielfältiger Wei-
se in Software oder, präziser gesagt, in Soft-
ware-Infrastrukturen umgesetzt. Die Nutzung
von Linearized Augmented Plane Waves, kurz
LAPWs, zur Darstellung der quantenmecha-
nischen Wellenfunktionen ermöglicht es, mit
wenigen und zudem kontrollierbaren Nähe-
rungen bei der Implementierung auszukom-
men. Der quelloffene Code FLEUR[2] gehört

auf dieser Basis zu einem der präzisesten
Simulationsprogramme für Grundzustandsei-
genschaften von dreidimensionalen Kristallen,
zweidimensionalen Filmen und Oberflächen[3].
FLEUR wird insbesondere für die Forschung
an komplexen, nichtkollinearen magnetischen
Strukturen, sowie der Auswirkungen der
Spin-Bahn-Wechselwirkung auf Material- und
Transporteigenschaften genutzt. Zum Einsatz
kommt der Code auf vielfältiger Computer-
hardware von Notebooks bis hin zu Super-
computern.

Nachhaltigkeit in der Softwareentwick-
lung
Eine der Herausforderungen wissenschaftli-
cher Softwareentwicklung ist die Notwendig-
keit, das entstehende Programm nachhaltig
zu gestalten. Die Entwicklung von FLEUR
erfolgt seit über 30 Jahren in Fortran und
basierte zunächst auf einem Vorgängerpro-
gramm. Solch eine lange Nutzungs- und Ent-
wicklungszeit ist in einer Welt ständiger Inno-
vationen im Bereich der Softwareentwicklung

ungewöhnlich. Der Hauptgrund hierfür liegt in
der Komplexität der verwendeten Methoden,
die jede Weiterentwicklung zu einer eigen-
ständigen Forschungsarbeit auf dem Niveau
einer Doktor- oder Masterarbeit macht. Es ist
nicht möglich, ein derartig komplexes Simula-
tionsprogramm schnell neuzuschreiben oder
massiv zu verändern. Gleichzeitig ist es aber
notwendig, mit den massiven Änderungen
des Kontextes, in dem Software existiert,
schrittzuhalten. Über einen Entwicklungszeit-
raum von mehreren Jahrzehnten ändern sich
beispielsweise die Computerarchitekturen,
es kommen neue Programmierparadigmen
auf und die Anforderungen der Nutzerinnen
und Nutzer an die Software wandeln sich.
Nachhaltige Softwareentwicklung muss der-
artige Einflüsse aufnehmen und so umsetzen,
dass die Funktionalität der Software erhalten
bleibt, neue Fragestellungen behandelt und
die Weiterentwicklungen der Hardware ge-
nutzt werden können.

Bild 1: Links: Darstellung der simulierten elektronischen Struktur eines magnetischen Materials. Rechts: Komplexe magnetische Nanostruktur, ein Skyrmion, mit speziellen topologischen Eigen-

schaften wie sie auf Supercomputern und dem kommenden Exascale Rechner mit FLEUR simuliert werden können.

 | 67

So ist die typische Architektur der schnellsten
verfügbaren Rechner, der Supercomputer,
wie sie sowohl an der RWTH als auch am
Forschungszentrum Jülich betrieben wer-
den, einem stetigen Wandel ausgesetzt.
Während vor über 30 Jahren diese Rechner
ihre Rechenleistung noch wenigen extrem
leistungsfähigen Prozessoren verdankten,
wurden schon in den 1990er-Jahren Rechner
eingeführt, die hunderte solcher Prozessoren
nutzen. Diese konzeptionelle Änderung erfor-
dert eine massive Anpassung der Software,
denn zur Nutzung solcher Computer mit
vielen Recheneinheiten ist es nötig, das zu
lösende Problem in entsprechend viele Un-
terprobleme zu zerlegen. Diese sogenannte
Parallelisierung erfordert also viele Aufgaben,
die gleichzeitig und möglichst unabhängig
voneinander bearbeitet werden können. Hier
erforderte die nachhaltige Weiterentwicklung
von FLEUR nicht nur eine entsprechende
Anpassung, sondern auch die Wahl ent-
sprechender Software-Bibliotheken und die
Verwendung möglichst offener Standards
der parallelen Programmierung. Einerseits
kann so von der rasanten Hardwareentwick-
lung profitiert werden, andererseits aber
ergibt sich keine Abhängigkeit von einer be-
stimmten, üblicherweise schnell überholten,
Hardwarearchitektur.
Heute stehen die Supercomputer an der
Schwelle zum sogenannten Exascale-Com-
puting, diese Rechner können 1018 Rechen-
operationen pro Sekunde ausführen. Dies
wird in einem Zusammenschluss von meh-
reren tausend Rechenknoten erreicht, bei
dem jeder mehrere, ebenfalls hochparallele

Grafikprozessoren bereitstellt. Im Vergleich zu
vorherigen Supercomputern ist insbesondere
die Einbeziehung der Grafikprozessoren eine
fundamentale Neuerung, die die Parallelität
auf den einzelnen Rechenknoten nochmals
auf ein anderes Niveau bringt. Während
konventionelle Prozessoren in Supercompu-
tern einige zehn Rechenkerne enthalten, sind
in Grafikprozessoren über tausend parallel
verfügbare Recheneinheiten vorhanden.
Die Nutzung der Parallelität auf den verschie-
denen Stufen der Supercomputerhardware
erfordert eine mehrstufige, hybride Paralle-
lisierung der Software, die auf die jeweilige
Hardware abzielt. Eine Parallelisierung über
viele Rechenknoten wird in der Software
zum Beispiel anders erreicht als eine Paral-
lelisierung über mehrere Rechenkerne auf
einem Prozessor oder eine Parallelisierung
auf einem Grafikprozessor. Insbesondere in
Bezug auf Grafikprozessoren gibt es bei der
Entwicklung unterschiedliche Möglichkeiten,
um die Software von der Hardware profitieren
zu lassen. So gibt es explizite Programmier-
sprachen, die einen hochkontrollierten Zu-
gang zur Grafikhardware ermöglichen. Diese
sind allerdings herstellerspezifisch und somit
würde es eine Duplizierung von Programm-
code erfordern, um die Software auf unter-
schiedliche Architekturen zu portieren. Eine
andere und nachhaltigere Möglichkeit stellt
die Verankerung von Zusatzinformationen
im Quellcode der Software dar, die von den
Compilern genutzt werden können, um direkt
ein ausführbares Programm für die jeweils
verfügbare Grafikhardware zu erstellen. In
der Entwicklung von FLEUR wurde dieser

nachhaltigere Weg sowohl für die Nutzung
von Grafikprozessoren, als auch für die Nut-
zung mehrerer Rechenkerne in konventionel-
len Prozessoren gewählt[4].
Mit der sich entwickelnden Computerhard-
ware und den mitziehenden Entwicklungen
in der Software ist es einerseits möglich,
komplexere, früher unerreichbare wissen-
schaftliche Simulationsfragestellungen zu be-
wältigen, andererseits lassen sich im Rahmen
von Hochdurchsatzstrategien große Parame-
terräume von ganzen Materialfamilien abtas-
ten, beispielsweise um eine Datenbasis für
inverses Materialdesign aufzubauen. Für eine
solche multidimensionale Nutzung ergeben
sich vielfältige Herausforderungen, die durch
entsprechende Softwareentwicklung ange-
gangen werden müssen. So erfordert das
Hochdurchsatzschema eine enorme Resilienz
der Simulationswerkzeuge bezüglich großer
Parameterräume der Rechnung sowie die Or-
ganisation von großen Datenströmen. Große
Datenmengen werden zur Eingabe genutzt
und es entstehen auch große Datenmengen
als Ausgabe des Programms. Eine Verarbei-
tung dieser ist im Gesamten nur automatisiert
machbar und erfordert statistische Methoden
und den Einsatz künstlicher Intelligenz. Daher
wurde in FLEUR die Ein- und Ausgabe der
Daten mittels eines formalisierten, erweiterba-
ren Dateiformats nachhaltig maschinenlesbar
umgestaltet, zudem wurde eine Anbindung
des Programms an das Automatisierungsfra-
mework AiiDA implementiert[5]. Sowohl die
Arbeit an wenigen, aber sehr komplexen
Simulationsaufgaben, als auch die Arbeit an
vielen kleinen, verhindert durch den Arbeits-

68 |

Autoren
Dr.rer.nat. Gregor Michalicek und Dr.rer.nat.
Daniel Wortmann sind wissenschaftliche
Mitarbeiter am Peter Grünberg Institut im
Forschungszentrum Jülich.
Univ.-Prof. Dr.rer.nat Stefan Blügel ist Inhaber
des Lehrstuhls für Theoretische Physik sowie
Leiter des Peter Grünberg Instituts im For-
schungszentrum Jülich.

aufwand das explizite manuelle Einstellen
der Parametrisierung der Rechnungen. Ein
Augenmerk wurde deshalb darauf gerichtet,
ein automatisiertes Rezept zum Einstellen
dieser Parametrisierungen zu entwickeln, um
stabil ein genaues Simulationsergebnis zu
erhalten[6].
Zusammenfassend erfordert die langfristi-
ge Entwicklung einer komplexen Software
immer wieder Anpassungen aufgrund der
sich wandelnden Realität bezüglich Compu-
terhardware, Softwareentwicklungsmethodik
und Nutzung. Diese Anpassungen müssen
nachhaltig gestaltet sein. In der FLEUR Ent-
wicklung wird der Nachhaltigkeitsaspekt
fokussiert angegangen. Ein Großteil der Ent-
wicklungsarbeit zielt allerdings nur indirekt
auf wissenschaftliche Fragestellungen ab
und ist somit keine Aufgabe für Master- oder
Doktorarbeiten, daher kommen dedizierte
wissenschaftliche Softwareentwickler zum
Einsatz.

Literatur
[1] Heinze, S., von Bergmann, K., Menzel, M.,
et al., Spontaneous atomic-scale magnetic
skyrmion lattice in two dimensions, Nature
Phys 7, 713, (2011), https://doi.org/10.1038/
nphys2045
[2] The FLEUR project: https://www.flapw.de;
Wortmann, D., Michalicek, G., et al., https://
doi.org/10.5281/zenodo.7576163
[3] Lejaeghere, K., Bihlmayer, G., Björkman
T., et al., Reproducibility in density functional
theory calculations of solids. Science 351,
aad3000, (2016), https://doi.org/10.1126/
science.aad3000
[4] Redies, M., Michalicek, G., Bouaziz, J.,
et al., Fast All-Electron Hybrid Functionals
and Their Application to Rare-Earth Iron
Garnets. Front. Mater. 9 (2022), https://doi.
org/10.3389/fmats.2022.851458
[5] Automated workflows for computational
science: https://www.aiida.net ; Pizzi, G., et
al. Comp. Mat. Sci. 111, 218-230 (2016), htt-
ps://doi.org/10.1016/j.commatsci.2015.09.013
[6] Bosoni, E., Beal, L., Bercx, M., et al., How
to verify the precision of density-functio-
nal-theory implementations via reproducible
and universal workflows. Nat. Rev. Phys. 6,
45 (2024), https://doi.org/10.1038/s42254-
023-00655-3

 | 69

Pooja Babu, Charl Linssen, Abigail Morrison, Johanna Senk, José Villamar

NESTML und die Simulation
pulsgekoppelter neuronaler
Netze mit NEST GPU
Domänenspezifische Modellierungssprache
begünstigt Hardware-Beschleunigung

The complex nature of the brain has led to a
rich landscape of computational models in
neuroscience, ranging from detailed models
of individual neurons and synapses to large
network models of simplified, interconnect-
ed cells. The diversity of models entails a
diversity of simulation approaches and, con-
sequently, a variety of simulation tools with
different foci have been established.
The NEural Simulation Tool (NEST), for exam-
ple, has been in continuous development for
over 25 years. In addition to the complexity
of the models themselves, the range of hard-
ware used to execute them is highly diverse,
ranging from laptops to supercomputers and
general-purpose compute architectures to
FPGAs (Field Programmable Gate Arrays)
and biologically inspired neuromorphic hard-
ware.
When all these aspects are considered, a
multi-dimensional challenge arises for com-
putational neuroscientists who have to deal
with different model definitions, simulation
backends, and hardware platforms.
To solve this, the NESTML toolchain provides
an accessible, yet powerful, modeling lan-
guage to define neuron and synapse models
with varying levels of detail while remaining
agnostic of both simulation backend and
hardware platform. Model definitions are
then used to automatically generate code
specific to the targeted simulation backends
and hardware platforms for optimum perfor-
mance.

Das Gehirn ist ein äußerst komplexes System.
Strukturelle Phänomene umfassen räumliche
Skalen von einigen zehn Nanometern bis zu
einigen Dezimetern und dynamische Phäno-
mene ereignen sich auf Skalen von Bruchtei-
len von Millisekunden bis hin zu Jahren. Folg-
lich müssen Modellierungswerkzeuge für die
Neurowissenschaften flexibel sein und es den
Wissenschaftlerinnen und Wissenschaftlern
ermöglichen, ohne viel Aufwand Modelle mit
einer völlig neuen oder von früheren Model-
len angepassten Dynamik zu definieren. Im
Bereich pulsgekoppelter neuronaler Netze
sind die Nervenzellen, die sogenannten Neu-
ronen, und ihre Verbindungspunkte, die Sy-
napsen, diejenigen Komponenten, die bei der
Modellierung am häufigsten verändert wer-
den. Darüber hinaus ist die Simulation des
Gehirns sehr rechenintensiv: Eine Simulation
auf Zellebene von nur einem Kubikmillimeter
menschlicher Hirnrinde umfasst etwa
100.000 Neuronen und eine Milliarde Syn-
apsen. Die gewünschte Flexibilität darf also
nicht auf Kosten der Recheneffizienz
gehen. Es wird ein Ansatz benötigt, der bei-
den Anforderungen gerecht wird.

Eine Standardsprache für
Neuronen- und Synapsenmodelle
Für diese Herausforderung wird die domä-
nenspezifische Sprache NESTML[1] entwi-
ckelt. Sie ermöglicht es Forschenden ihre
Modelle ohne eine Ausbildung in Software-
entwicklung zu beschreiben. Aus der Be-

schreibung in NESTML wird automatisch
ausführbarer Code erzeugt: So können die
Modelle sofort in Simulationen verwendet
werden. Dies gilt selbst auf Hochleistungs-
rechnern. Durch die Beseitigung der Einstiegs-
hürde von Programmierkenntnissen wird die
Computersimulation als Forschungsinstru-
ment einem viel größeren Kreis von Neuro-
wissenschaftlerinnen und Neurowissen-
schaftlern zugänglich gemacht. NESTML hat
eine an die Mathematik angelehnte Syntax,
wie sie die Wissenschaftlerinnen und Wissen-
schaftler gewohnt sind, und verwendet Kate-
gorien und Begriffe aus der Neurowissen-
schaft. Die Sprache erlaubt die direkte Einga-
be von gewöhnlichen Differentialgleichungen
und Faltungen, die Beschreibung von Zufalls-
prozessen, aber auch die Formulierung von
ereignisgetriebenen Veränderungen der Zu-
standsvariablen der Modellkomponenten.
Statt einer rein deklarativen Syntax sind auch
Anweisungen im Stil der iterativen Program-
mierung möglich, die in einem regelmäßigen
Zeitraster oder durch ein beliebiges Ereignis
ausgelöst werden können. NESTML ist also
auf dynamische Systeme ausgelegt, die wie
das Gehirn eine kontinuierliche Dynamik mit
diskreten Ereignissen kombinieren. Die De-
signprinzipien basieren auf MontiCore[2], einem
Programmiergerüst für domänenspezifische
Sprachen, das am Lehrstuhl für Software
Engineering (Informatik 3) entwickelt wird.
Bei Modellbeschreibungen gibt es viele Grenz-
fälle zu berücksichtigen, so dass eine präzise

70 |

und eindeutige Semantik aller Sprachkon-
strukte wichtig ist. Aus diesem Grund ist es
sinnvoll, auch bei scheinbar einfachen Model-
len standardisierte Beschreibungsformate zu
verwenden. Simulation sollte ein zuverlässiges
Forschungsinstrument sein, das die Repro-
duzierbarkeit wissenschaftlicher Ergebnisse
gewährleistet. Wiederholte Simulationen des-
selben Modells müssen bei Verwendung
derselben Simulationsplattform identische
Ergebnisse liefern. Die Verwendung von de-
terministischen Pseudo-Zufallszahlengenera-
toren ermöglicht stochastisches Verhalten
und erlaubt gleichzeitig eine perfekte Repli-
zierbarkeit. Im Gegensatz dazu kann die
Simulation desselben Modells auf einer ande-
ren Plattform oder unter Verwendung eines
anderen numerischen Gleichungslösers oder
einer anderen Simulationsauflösung die Er-
gebnisse verändern, insbesondere bei Netz-
werkmodellen mit chaotischer oder instabiler
Dynamik. Kleine numerische Unterschiede
können selbst auf statistisch sehr robuste
Messwerte gravierende Auswirkungen haben.
Jüngste Arbeiten zum Vergleich numerischer

Ergebnisse verschiedener Simulationswerk-
zeuge unterstreichen die Notwendigkeit einer
sorgfältigen Zusammenstellung an Tests.
NESTML enthält weit über hundert hierar-
chisch organisierter Tests, die überprüfen,
ob durch geeignete Fehlermeldungen eine
konsistente Modellbeschreibung eingefordert
wird und ob aus abstrakten Modelldefinitio-
nen der entsprechende Code erzeugt wird.
Numerische Ergebnisse detaillierter Simula-
tionsläufe werden zudem mit bekannten
Referenzwerten abgeglichen.
Die Reproduzierbarkeit von Ergebnissen setzt
voraus, dass die ursprüngliche Software –
einschließlich verwendeter Bibliotheken und
anderer Abhängigkeiten – und gegebenen-
falls die ursprüngliche Modellbeschreibungen
in Form einer Spezifikation oder eines wissen-
schaftlichen Artikels in natürlicher Sprache
verfügbar sind. NESTML vereinfacht die Re-
produzierbarkeit durch die formale Trennung
der Beschreibung eines konkreten Modells
von allgemeinem Simulationscode.

Effiziente großskalige Simulationen
Definitionen von Neuronen- und Synapsen-
modellen sollen generisch sein, das heißt
unabhängig von der Simulationsplattform,
formuliert werden können. Umgekehrt sollen
auch Simulationsplattformen generisch sein,
also eine breite Palette von Modellen unter-
stützen. Die am häufigsten verwendeten
Simulationsplattformen unterscheiden sich
jedoch nicht nur in ihrem neurowissenschaft-
lichen Fokus, sondern auch in ihrer Schnitt-
stelle zur Definition ausführbarer Modellbe-
schreibungen sowie ihrer Soft- und Hardware.
Der Simulator NEST[3] eignet sich gleicherma-
ßen für die Simulation kleiner Netzwerke mit
einigen tausend Neuronen auf einer Laptop
CPU (Central Processing Unit), als auch
für große Netzwerke mit Millionen von Neuro-
nen parallel auf vielen CPUs eines hochmo-
dernen Supercomputers wie den Maschinen
des Jülich Supercomputing Centres am For-
schungszentrum Jülich. Es ist wichtig, groß-
skalige neuronale Netzwerkmodelle mit realis-
tischen Dichten von Neuronen und Synapsen
simulieren zu können, da herunterskalierte

Bild 1: Neuronen- und Synapsenmodelle, die in der Standardsprache NESTML ausgedrückt sind, können mithilfe eines Code-Generierungsansatzes auf verschiedenen Rechnerarchitekturen simu-

liert werden: zum Beispiel auf CPUs oder GPUs über den Simulator NEST oder sogar auf der neuromorphen Hardware SpiNNaker.

Foto: Peter Winandy

 | 71

Bild 2: Das NEST-Team diskutiert darüber, wie man Benutzerfreundlichkeit, Flexibilität und Recheneffizienz kombinieren kann.

Foto: Peter Winandy

Netzwerke keine realistische Aktivität wie-
dergeben können. Wegen der benötigten
Systemressourcen übersteigt der Energiebe-
darf für die Simulation von Gehirnaktivitäten
den von natürlichen Gehirnen um mehrere
Größenordnungen. Um gleichzeitig den Res-
sourcenverbrauch zu senken und schneller
zu Simulationsergebnissen zu gelangen,
wird eine möglichst effiziente Ausnutzung
der Maschinen angestrebt. Die meisten der
Top-500-Computersysteme und alle kom-
menden Exascale-Maschinen verwenden ne-
ben CPUs auch GPUs (Graphics Processing
Units). Daher arbeitet die NEST-Entwickler-
gemeinschaft an einer Version mit für GPUs
optimierten Algorithmen[4]. Ziel ist, dass die
Nutzer in naher Zukunft über eine einheitliche
Python-Benutzeroberfläche sowohl CPUs als
auch GPUs ohne Änderung der Modellbe-
schreibung nutzen können.

Code-Generierung für verschiedene
Rechnerarchitekturen
Der für die Ausführung auf CPUs und GPUs
erforderliche Code ist unterschiedlich, was

die Gefahr von Doppelarbeit, höheren War-
tungskosten und abweichendem Verhalten
auf verschiedenen Architekturen birgt. Diese
Risiken können durch die Erweiterung des
Anwendungsbereichs von NESTML deutlich
reduziert werden. Die NESTML-Toolchain
analysiert und prüft die Korrektheit des Mo-
dells, bevor sie automatisch Code für eine
bestimmte Simulationsplattform generiert.
Der Code wird in verschiedenen Sprachen
erzeugt, die auf unterschiedliche Plattformen
und APIs, sogenannten Schnittstellen zur
Programmierung von Anwendungen, ab-
zielen: Für die Version des NEST-Simulators,
die auf CPU-basierter Hochleistungsrechner-
hardware läuft, wird beispielsweise C++-
Code generiert; für die Version des NEST-
Simulators, die auf GPUs läuft, muss CUDA-
C++-Code generiert werden. Der generierte
Code wird dann kompiliert oder dynamisch
in die Simulationsumgebung geladen, in der
die neu erstellten Modelle instanziiert werden
und die Simulation ausgeführt wird. Mit der
Unterstützung der GPU-Code-Generierung in
NESTML können die bestehenden Modelle,

die in der NESTML-Sprachsyntax geschrie-
ben sind – derzeit eine Datenbank mit über
zwei Dutzend Neuronenmodellen und synap-
tischen Plastizitätsregeln – auch für GPU-ba-
sierte Simulationen verwendet werden. Dies
reduziert den Aufwand für die Neurowissen-
schaftlerinnen und Neurowissenschaftler
und hilft Simulationen durchzuführen, ohne
bestehende Modelle an neue Plattformen
anpassen zu müssen. Die Erweiterung von
NESTML für diese neue Simulationsplattform
wird in Zusammenarbeit des NESTML-Teams
mit den Entwicklern der GPU-fähigen Version
von NEST durchgeführt.
Neben der oben beschriebenen Simulation
auf CPUs und GPUs kann derselbe Code-
Generierungsansatz auch auf exotischeren
Plattformen angewandt werden, zum Beispiel
auf biologisch inspirierter neuromorpher
Hardware, wie dem SpiNNaker-Projekt der
Universitäten Manchester und Dresden oder
dem FPGA-basierten neuroAIx-Cluster der
RWTH. Solche Systeme sind vielverspre-
chend, haben aber auch ihre Grenzen. Für
die Entwicklung dienen die NEST-Simulatio-

Bild 3: Modellierung und Simulation des kortikalen Netzwerks. Illustration des Netzwerkmodells[6], Bild eines Hochleistungsrechners des Forschungszentrums Jülich und neuronale Aktivität als

Simulationsergebnis. Entsprechender NESTML- und PyNEST-Programmcode im Hintergrund.

74 |

Autoren
Pooja Babu und Charl Linssen sind wissen-
schaftliche Mitarbeitende am Simulation and
Data Laboratory des Jülich Supercomputing
Centres am Forschungszentrum Jülich.
Univ.-Prof. Dr.rer.nat. Abigail Morrison leitet
das Lehr- und Forschungsgebiet Neural
Computation und ist Leiterin der Gruppe
Computation in Neural Circuits am Institut für
Computational and Systems Neuroscience
(IAS-6) am Forschungszentrum Jülich.
Dr.rer.nat. Johanna Senk ist Lecturer an der
University of Sussex in Großbritannien
und Leiterin des Teams Future Simulation
Architectures am Institut für Computational
and Systems Neuroscience (IAS-6) am For-
schungszentrum Jülich.
José Villamar ist wissenschaftlicher Mitarbei-
ter am Institut für Computational and Sys-
tems Neuroscience (IAS-6) am Forschungs-
zentrum Jülich.

nen als Referenz für Simulationsergebnisse
und Energieverbrauch[5]. Dafür wird ein neuro-
wissenschaftlich relevantes Modell als ge-
meinsamer Test auf allen Plattformen ausge-
führt. Eine spezielle Hardware ist nur sinnvoll,
wenn sie in irgendeiner Eigenschaft im Sinne
einer Validierung überlegen ist.
Zusätzlich zur Auswahl einer Simulationsplatt-
form können während der Code-Generierung
optional mehrere Optimierungen vorgenom-
men werden, um die Simulationsleistung
(Laufzeit oder Speicherverbrauch) zu verbes-
sern. Zum Beispiel werden abhängig von den
Modellgleichungen und der Wahl der Para-
meter mehrere numerische Gleichungslöser
getestet, und der optimale Löser für ein be-
stimmtes dynamisches System wird automa-
tisch ausgewählt. NESTML kombiniert eine
Modellierungssprache und eine Code-Gene-
rierungsfunktion und bietet daher den Vorteil,
dass beides parallel entwickelt werden kann.
Die Vereinheitlichung von Modelldefinitionen
durch eine spezielle Modellierungssprache
hilft der Forschung, indem sie Programmier-
barrieren beseitigt und die Interoperabilität
zwischen verschiedenen Soft- und Hardware-
plattformen durch Code-Generierung ermög-
licht. Das gegenseitige Verständnis eines Mo-
dells fördert die Zusammenarbeit zwischen
Wissenschaftlerinnen beziehungsweise Wis-
senschaftlern und ihren Forschungsberei-
chen, was den Forschungsprozess entschei-
dend beschleunigt. Durch die Etablierung ei-
nes benutzerfreundlichen Standards und die
Ausweitung auf neue Plattformen ermöglicht
NESTML etablierten Nutzerinnen und Nut-
zern, ihre Arbeit zukunftssicher zu gestalten,
und gewährt neuen Nutzerinnen und Nutzern
einen schnellen Zugriff auf die umfangreiche
Datenbank mit bestehenden Modellen. Mit
dem Aufkommen neuromorpher Hardware
und der zunehmenden Konzentration von
Hochleistungsrechenzentren auf Graphikpro-
zessoren entwickelt sich die Simulationstech-
nologie stetig weiter, um sich an die verschie-
denen Plattformen anzupassen und diese
optimal zu nutzen.

Literatur
[1] NESTML-Dokumentation: https://nestml.
readthedocs.io
[2] Hölldobler, K., Kautz, O., Rumpe, B.,
MontiCore Language Workbench and Library
Handbook: Edition 2021. Aachener Informa-
tik-Berichte, Software Engineering, Band 48,
ISBN 978-3-8440-8010-0, Shaker Verlag,
2021
[3] NEST-Website: https://www.nest-simula-
tor.org
[4] Golosio, B., Villamar, J., Tiddia, G., Pasto-
relli, E., Stapmanns, J., Fanti, V., Paolucci, P.
S., Morrison, A., Senk, J., Runtime Construc-
tion of Large-Scale Spiking Neuronal Network
Models on GPU Devices. Applied Scien-
ces. 13(17):9598. https://doi.org/10.3390/
app13179598, 2023
[5] van Albada, S. J., Rowley, A. G., Senk,
J., Hopkins, M., Schmidt, M., Stokes, A.
B., Lester, D. R., Diesmann, M., Furber, S.
B., Performance Comparison of the Digital
Neuromorphic Hardware SpiNNaker and the
Neural Network Simulation Software NEST
for a Full-Scale Cortical Microcircuit Mo-
del. Frontiers in Neuroscience. 12:291. doi:
10.3389/fnins.2018.00291, 2018
[6] Potjans, T. C., Diesmann, M., The Cell-Ty-
pe Specific Cortical Microcircuit: Relating
Structure and Activity in a Full-Scale Spiking
Network Model, Cerebral Cortex. 24(3)785–
806. doi:10.1093/cercor/bhs35, 2014

 | 75

We argue that differentiability of research
software must become a fundamental re-
quirement in Research Software Engineering.
Error analysis and -control, calibration of free
parameters, optimization of the simulated
(continuous) real-world scenarios as well as
reduction of simulation cost in the context of
future-proof high-performance computing
rely on methods that are based on first and
possibly higher derivatives of the simulation.
The crucial co-design of mathematical and
software models benefits tremendously from
the availability of derivative information.
Algorithmic differentiation is usually the
method of choice for computing derivatives
both accurately and efficiently. Its systematic
inclusion into the Research Software Engi-
neering process is expected to facilitate the
development of more robust and sustainable
research software. Ultimately, novel differen-
tiable model design patterns and program-
ming languages need to be developed. The
Jülich Aachen Research Alliance provides
an ideal ecosystem for making valuable con-
tributions to this field.

Uwe Naumann, Jens Deussen, Markus Towara

Differenzierbare
Forschungssoftware

Auf mathematischer Modellbildung basieren-
de numerische Simulation ist eine etablierte
Methode für vertieftes Verständnis relevan-
ter Probleme in den Natur-, Lebens- und
Ingenieurwissenschaften. Entsprechende
Softwarelösungen ermöglichen die quan-
titative Evaluation der Modelle mithilfe von
Computern. Die zugrundeliegende numeri-
sche Simulationssoftware ist typischerweise
mathematisch und algorithmisch anspruchs-
voll, rechenintensiv, sowie approximativ und
parametrisiert. Daraus folgt eine Reihe von
Anforderungen sowohl an die mathematische
Modellierung als auch an den (idealerweise
simultan ablaufenden) Entwicklungsprozess
für entsprechende Forschungssoftware, wel-
che in der etablierten Softwareentwicklung
eine meist weniger zentrale Rolle einnehmen.
„Wie stark ändert sich das Resultat meiner
Simulation bei Variation der Werte bestimmter
freier (Eingabe-)Parameter?“ „Wie sensitiv
ist diese Änderung bezüglich Variation von
Werten potenziell anderer Parameter?“ Ana-
loge Fragen stellen sich Anwenderinnen und
Anwender numerischer Simulationssoftware

76 |

Differenzierbare
Forschungssoftware

regelmäßig. Zahlreiche numerische Methoden
basieren auf der Verfügbarkeit dieser Infor-
mationen. Letztere übersetzt sich in Ableitun-
gen erster, zweiter und gegebenenfalls auch
höherer Ordnung der simulierten Größen
bezüglich der Parameter.
Dieser Artikel stellt Differenzierbarkeit und
die Berechnung entsprechender Ableitungen
numerischer Simulationssoftware als Anfor-
derung im Research Software Engineering
in den Mittelpunkt. Der Fokus liegt dabei auf
kontinuierlichen – in Gegensatz zu diskreten –
Simulationen. Die zentralen Aussagen gelten
sowohl für mechanistische Modelle als auch
für rein datengetriebene Ansätze des maschi-
nellen Lernens inklusive hybrider Szenarien,
in welchen beide Methoden zu einer Gesamt-
lösung kombiniert werden. Auf nichtfunktio-
naler Ebene ermöglichen Ableitungen Feh-
leranalyse und -kontrolle, Kalibrierung sowie
robustere Softwaretests. Die in vielen Fällen
essenzielle Transition von reiner Simulation
der zugrundeliegenden Systeme hin zu deren
(ableitungsbasierter) Optimierung ist oft zen-
traler Bestandteil der funktionalen Anforde-

rungen. Die Grenze zwischen Funktionalität
und Nichtfunktionalität von Differenzierbarkeit
als Anforderung verschwimmt zusehends
im Kontext digitaler Zwillinge, welche unter
anderem Fehlerkontrolle in Echtzeit zum Ziel
haben können. In jedem dieser Fälle muss die
numerische Simulation differenziert werden.
Dafür unterscheidet man grob zwischen zwei
Ansätzen. Beim symbolischen Differenzieren
werden Ableitungen des mathematischen
Modells analytisch hergeleitet. Zumeist han-
delt es sich dabei um eine anspruchsvolle
manuelle Tätigkeit. Die Lösung des differen-
zierten Modells muss anschließend nume-
risch approximiert und somit in Form von
Forschungssoftware implementiert werden.
Die numerische Approximation der Ableitung
entspricht meist nicht der korrekten Ableitung
der numerischen Approximation des Original-
modells, was eine Reihe von Komplikationen
bei der Verwendung dieser Werte im Rahmen
von numerischen Methoden nach sich ziehen
kann.

Bild 1: Sensitivität des zu minimierenden Strömungswiderstands eines solarbetriebenen Sonnenwagen 1, www.sonnenwagen.org. Blau dargestellt ist die Expansion, rot die Kompression. Die

Resultate wurden von Lennart Moltrecht im Rahmen seiner Masterarbeit mithilfe der algorithmisch adjungierten Version der Strömungssimulation OpenFOAM generiert[3]. Diese wurde am Lehr- und

Forschungsgebiet Software und Werkzeuge für Computational Engineering entwickelt und ist als Open-Source-Software verfügbar.

 | 77

Algorithmisches Differenzieren, kurz AD,[1,2]
umgeht das oben skizzierte Problem durch
Differenzieren des numerischen Simulations-
programms mittels Kombination bekannter
Ableitungen für dessen Elementarfunktionen
gemäß der Kettenregel. Dieser Prozess kann
zu großen Teilen automatisiert werden und ist
somit auch auf sehr komplexe Simulations-
software anwendbar. Die unter Ausnutzung
von Assoziativität der Kettenregel generierten
adjungierten Programme stellen Verallgemei-
nerungen der im Rahmen des maschinellen
Lernens essenziellen backpropagation dar.
Somit lassen sich erste Ableitungen skalarer
Zielgrößen bezüglich einer potenziell sehr
großen Anzahl freier Parameter effizient
berechnen. Formoptimierung mittels nume-
rischer Strömungsmechanik zählt zu den
zahlreichen Anwendungen für adjungierte
Methoden, siehe Bild 1.
Im Folgenden soll Differenzierbarkeit im
Kontext der zuvor genannten fundamentalen
Eigenschaften numerischer Simulationssoft-
ware positioniert werden. Es ergeben sich so-
wohl Möglichkeiten als auch Herausforderun-
gen für das Research Software Engineering.
Numerische Simulationssoftware ist mathe-
matisch und algorithmisch anspruchsvoll.
Sie basiert meist auf Dekaden von Forschung
und Entwicklung ganzer Wissenschaftsbe-
reiche. Ein signifikanter Teil menschlicher
Expertise ist in ihr „verborgen“. Das zentrale
Ziel von Research Software Engineering
muss daher die Sicherung nachhaltiger Ver-
fügbarkeit dieses „Schatzes“ inklusive seiner
zukünftigen Erweiterungen sein. Dazu gehört

nicht zuletzt auch der möglichst effektive und
effiziente Einsatz der „Ressource Mensch“
mittels weitestgehender Formalisierung und
Optimierung des Entwicklungsprozesses.
Jedoch stellen sich bereits die Übersetzung
der zugrundeliegenden mathematischen
Modelle in numerische Methoden und ent-
sprechende Softwareentwürfe, algorithmi-
sche Details, Test- und Evolutionsstrategien
als höchst anspruchsvoll dar. Eine rigorose
Anforderungsanalyse ist ohne fundiertes
Verständnis des modellierten Sachverhalts,
der Mathematik inklusive assoziierter Nume-
rik, der Simulationsumgebung bestehend
aus Systemhardware und -software, sowie
von Methoden der Softwareentwicklung bis
hin zur eigentlichen Programmierung nicht
möglich. Die Option einer hinreichenden
Konzentration dieser Expertise in Individuen
darf bezweifelt werden. Konsequenzen für
die interdisziplinäre Lehre sollten abgeleitet
werden. Zudem stellen sich weitergehende
Herausforderungen an die Validierung von
Konsistenz des mathematischen Modells
und der zugehörigen numerischen Simulati-
onssoftware sowie der Korrektheit letzterer.
Zusätzlich zu den Resultaten der Simulation
können hier Werte von Ableitungen als weiter-
gehende Evidenz sehr hilfreich sein. Ableitun-
gen können und sollten entsprechende Soft-
waretest- und kontinuierliche Integrationsstra-
tegien erweitern. Mit jeder Ableitungsordnung
wächst potenziell die Robustheit der Validie-
rung. Zu diesem Zweck muss die numerische
Simulationssoftware ausreichend oft differen-
zierbar sein sowie differenziert werden.

Numerische Simulationssoftware ist
rechenintensiv
Ein signifikanter Teil der Entwicklungsarbeit
fließt traditionell in die Minimierung der durch
numerische Simulationen benötigten Res-
sourcen. Oft agieren diese Simulationen am
Rande der Leistungsfähigkeit der jeweils
aktuell verfügbaren Computerinfrastruktur mit
dem Ziel vertretbarer Laufzeiten bei zulässi-
gem Speicherbedarf. Effektive Vektorisierung,
Parallelisierung und/oder Beschleunigung
gehören zu den fundamentalen Vorausset-
zungen für eine effektive Nutzung des moder-
nen IT-Ökosystems. Letzteres unterliegt einer
Entwicklungsdynamik, welche die zentrale
Rolle von Nachhaltigkeit beim Entwurf und
der Umsetzung von numerischen Simulatio-
nen sowie von deren Ableitungen nochmals
unterstreicht. Seit einigen Jahren und nicht
zuletzt getrieben durch ressourcenhungrige
Anwendungen des maschinellen Lernens
rückt auch die Minimierung des Energiebe-
darfs immer mehr in den Fokus der Aufmerk-
samkeit. Zahlreiche Methoden zur Reduktion
der Komplexität numerischer Simulationen
bei idealerweise nur geringfügigen Abstrich-
en in deren Aussagekraft basieren auf Ab-
leitungen der zu simulierenden Größen be-
züglich einer meist sehr großen Anzahl an
Zwischenwerten. Vernachlässigbare Sensi-
tivität über Teilen des Definitionsbereiches
erlaubt Modellreduktion mittels Spezialisie-
rung der Originalsoftware. Wenig signifikante
Variablen werden zu Konstanten. Etablierte
Datenflussanalysen entfernen infolgedessen
nicht mehr benötige Teilrechnungen. Die nu-

78 |

Autoren
Univ.-Prof. Dr.rer.nat. Uwe Naumann leitet das
Lehr- und Forschungsgebiet Software und
Werkzeuge für Computational Engineering.
Dr.rer.nat. Jens Deussen und Dr.rer.nat.
Markus Towara sind wissenschaftliche
Mitarbeiter am Lehr- und Forschungsgebiet
Software und Werkzeuge für Computational
Engineering.

Literatur
[1]	Griewank, A., Walther, A., Evaluating
Derivatives. Principles and Techniques of Al-
gorithmic Differentiation. Society for Industrial
and Applied Mathematics, 2008
[2]	Naumann, U., The Art of Differentiating
Computer Programs. An Introduction to Al-
gorithmic Differentiation. Society for Industrial
and Applied Mathematics, 2012
[3]	Towara, M., Naumann, U., A discrete
adjoint model for OpenFOAM. Procedia Com-
puter Science 18, 429-438, 2013
[4]	Towara, M., Schanen, M., Naumann, U.,
MPI-parallel discrete adjoint OpenFOAM.
Procedia Computer Science 51, 19-28, 2015
[5]	Naumann, U., Adjoint code design pat-
terns. ACM Transactions on Mathematical
Software 45(3), 1-32, 2019

merische Simulationssoftware muss dafür
nicht nur differenziert werden. Es muss auch
eine Globalisierung der Ableitungsinformation
ermöglicht werden. Intervallarithmetik oder
komplexere Relaxationen kommen dafür zum
Einsatz.

Numerische Simulationssoftware ist
approximativ und parametrisiert
Dem britischen Statistiker George Box wird
die auch heute noch in weiten Teilen gülti-
ge Aussage „Alle Modelle sind falsch, aber
einige sind nützlich“ zugeschrieben. „Alle
numerischen Simulationen sind falsch“ folgt
unmittelbar. Die „Nützlichkeit einiger“ ist
jedoch kein Automatismus. Gerade vor dem
Hintergrund der Lösung potenziell schlecht
konditionierter Probleme mittels möglicher-
weise nicht uneingeschränkt stabiler numeri-
scher Algorithmen stellt sich die Frage nach
dem „Wie falsch?“ Zahlreiche Verfahren zur
numerischen Fehleranalyse und -kontrolle
basieren wiederum auf Ableitungen der simu-
lierten Größen bezüglich der zumeist mit
substanziellen Unsicherheiten belegten Ein-
gabedaten und -parameter. Relaxation dieser
Ableitungen erlaubt die meist höchst wün-
schenswerte Globalisierung der zunächst
nur lokal gültigen Werte. Adaptivität in nu-
merischen Verfahren beruht ebenfalls auf oft
hochdimensionalen und damit notwendiger-
weise adjungierten Ableitungen der jeweiligen
Zielgrößen bezüglich Variablen aus deren
Definitionsbereichen. Diese resultiert zum
Beispiel in lokaler Verfeinerung der Auflösung
von Rechengittern oder in der Konzentration

der Datengenerierung auf besonders sen-
sitive Teile des Definitionsbereiches beim
Training von Surrogatmodellen mit Methoden
des maschinellen Lernens. Letzteres ist ein
Spezialfall der Kalibrierung – einer potenziell
enormen Anzahl – freier Parameter von For-
schungssoftware. In jedem dieser Szenarien
muss zu diesem Zweck (potenziell adjungiert
sowie relaxiert) differenziert werden.
Die Entwicklung differenzierbarer mathemati-
scher Modelle sowie deren Implementierung
in Form von differenzierbarer Forschungs-
software stellt ein höchst anspruchsvolles
interdisziplinäres Thema an der Schnittstelle
von Mathematik, Informatik und einer Vielzahl
von Anwendungsgebieten dar. Tendenziell
wird diese Tatsache im Rahmen von Rese-
arch Software Engineering zu neuen diffe-
renzierbaren Modellierungstechniken und
entsprechenden Softwareentwurfsmustern[5]
für die konsistente simultane Entwicklung von
mathematischen, numerischen beziehungs-
weise algorithmischen und Softwaremodellen
führen müssen. Ultimativ werden neue massiv
parallele und differenzierbare Programmier-
sprachen und Softwarebibliotheken benötigt.
Die Jülich Aachen Research Alliance, ein
Verbund der RWTH mit dem Forschungszen-
trum Jülich, bietet die ideale Umgebung für
entsprechende substanzielle Beiträge.

 | 79

At the RWTH Computational Science Studies
Lab (CSS-Lab), philosophers of science
and technology explore the transformation
of science into computational sciences. In
particular, the CSS Lab is concerned with
how research software can be conceptually
analyzed from a philosophical perspective.
Against this backdrop, we are developing
software tools that enable easier access to
software projects.

Gabriele Gramelsberger, David Heyen, Dawid Kasprowicz, Frederik Kerksieck, Markus Pantsar, Thomas Venator, Daniel Wenz

Wissenschaftstheoretische
Reflexionen zu Research
Software Engineering
Konzeptuelle Analyse von Forschungssoftware

Wissenschaftstheorie setzt sich mit der Me-
thoden- und Konzeptentwicklung in der Wis-
senschaft auseinander, analysiert die The-
orienbildung und den Erkenntnisfortschritt
in den verschiedenen Disziplinen sowie die
Verfahren des Forschens. Mit dem Wandel
der Wissenschaft in digitale Wissenschaft
verändert sich auch das Themenfeld der
Wissenschaftstheorie, denn der zunehmen-
de Einsatz von Computern ab den 1970er
Jahren transformiert die wissenschaftlichen
Methoden der Erkenntnisgenerierung[1].
Zu den klassischen Methoden des Experi-
ments, der Beobachtung und der Theoriebil-
dung, treten nun die Computermodellierung
und -simulation, die massive Datenerhebung
(Big Data) sowie Datenanalytik hinzu. Seit
einiger Zeit kommen Methoden der Künstli-
chen Intelligenz, insbesondere des Maschi-
nellen Lernens (ML), zum Einsatz. Was all
diese neuen Methoden vereint, ist, dass sie
softwarebasiert sind. In einem Bericht des
US-amerikanischen President’s Information
Technology Advisory Committee hieß es
bereits 1999: „Software is the new physical
infrastructure of [...] scientific and technical
research.“ Wissenschaftlerinnen und Wissen-
schaftler müssen heutzutage programmieren
oder mit Software-Programmen und -Tools

80 |

avanciert umgehen können, doch wissen-
schaftliches Programmieren ist zumeist kein
zentrales Studienfach für natur- und technik-
wissenschaftliche Disziplinen. Dies gilt umso
mehr für Philosophen und Philosophinnen.
In der digitalen Wissenschaft bedeutet es je-
doch, sich ausschließlich auf die Entwicklung
und Programmierung von Simulationsmo-
dellen, von Algorithmen für die Datenanalyse
und -evaluation verlassen zu müssen. Dies
wird oft als „Service“ missverstanden und
auch in wissenschaftlichen Forschungsan-
trägen nicht goutiert. Sich professionell mit
Research Software Engineering zu befassen,
ist daher überfällig.

Mit GICAT Softwareprojekte strukturell
analysieren
Am Computational Science Studies Lab des
Lehrstuhls für Wissenschaftstheorie und
Technikphilosophie wird seit 2018 erforscht,
wie wissenschaftliche Software zugänglich
und analysierbar sein kann. Im Mittelpunkt
steht die Genealogie, also die Entwicklung
von Softwareprojekten wie Klimamodelle,
Analysesoftware astronomischer Daten oder
geologische Visualisierungsmodelle über
Jahre[2]. Zum einen, um die konzeptuelle Ent-
wicklung, die in die Software implementiert
ist, nachvollziehen zu können. Zum ande-
ren, um den Einfluss der Programmierung
auf die wissenschaftlichen Konzepte selbst
zu verstehen. Denn die unterschiedlichen
Softwareprojekte der Wissenschaften sind
in verschiedenen Programmiersprachen und
Frameworks verfasst: von Fortran über C++,
Python bis hin zu TensorFlow. Um Zugang
zu dieser, mittlerweile sehr unübersichtlichen
Landschaft an Programmiersprachen, Tools,
Libraries, oder Plug-ins für Laien zu erhalten,
wird seit 2020 die Analysesoftware GICAT
(General Isomorphic Code Analysis Tool)
entwickelt, die Mitte 2024 open source ver-
fügbar sein wird. GICAT soll die unterschied-
lichen, wissenschaftlichen Softwareprojekte
strukturell analysieren[3]. Dabei geht es dar-

um, wie bestimmte wissenschaftliche Kon-
zepte in Software umgesetzt werden, welche
Parametrisierungen verwendet wurden oder
wie die Softwarearchitektur mit der zugrun-
deliegenden, wissenschaftlichen Theorie
korrespondiert. In einem Forschungsprojekt
mit dem Lehrstuhl für Software Engineering
(Informatik 3) wird aktuell untersucht, ob sich
wissenschaftlicher von technischem Code
unterscheiden lässt. Gelingt es, hier ein Un-
terscheidungskriterium zu finden, würde dies
die Analyse erleichtern. Es würde aber auch
im Research Software Engineering das Quali-
tätsmanagement einfacher gestalten.
Da Software die neue Infrastruktur der For-
schung ist, wird in immer mehr wissenschaft-
lichen Communities über Formen des Code
Review diskutiert, dieses gilt zunehmend als
qualitativer Nachweis für wissenschaftliches
Arbeiten. Zeitschriften müssen folglich über
die Ausarbeitung sogenannter „Code Poli-
cies“ und ihre Verbindlichkeit nachdenken[4].
Git-Repositories dienen nicht nur als eine
zusätzliche Quelle für das Peer-Review, son-
dern müssen bestimmten Coding-Standards
entsprechen, damit die Forschungsergebnis-
se veröffentlicht werden können. Durch diese
Spannung aus normativen Ansprüchen an
wissenschaftliche Praktiken und den pro-
grammiertechnischen Herausforderungen,
eben diese Ansprüche in die wissenschaftli-
che Praxis zu integrieren, entsteht im Rese-
arch Software Engineering ein Wissen, das
auch für die Wissenschaftstheorie zentrale
Bedeutung hat. Wird es je nach Disziplin
spezifische Verfahren der Codierung von
computergestützten Modellen geben, oder
werden sich Metamodelle aus dem Rese-
arch Software Engineering durchsetzen, die
das Prädikat „lesbarer Code“ vergeben?
Wird es Disziplinen geben, die sich solcher
Tendenzen entziehen können, da sich ihre
Modelle allein durch erfolgreiche Anwendbar-
keit legitimieren? Und nicht zuletzt: Welche
Computermodelle und -simulationen werden
nicht zugänglich sein, da die Software urhe-

 | 81

berrechtlich geschützt ist, wie im Falle der
Pharma- oder Automobilindustrie?[5]
Es ist anzunehmen, dass diese Fragen nicht
nur die Praktiken der wissenschaftlichen For-
schung, sondern auch die der Lehre nach-
haltig verändern werden. Bis heute sind Pub-
likationen wie „A Primer on Scientific Pro-
gramming with Python“ eine Seltenheit – ein
Lehrbuch, das von Hans Petter Langtangen,
einem norwegischen Experten für Research
Software Engineering, verfasst und inzwi-
schen mehrfach wieder aufgelegt wurde.
Wenn also die Infrastruktur der Forschung
nicht mehr ausschließlich im Labor, sondern
in zunehmendem Maße in der Software liegt,
dann muss die Wissenschaftstheorie hier
sowohl die Forschungs- als auch die Lehr-
praktiken in den Fokus nehmen. Dabei die-
nen Tools wie GICAT auch dazu herauszufin-
den, welche externe Wissensquellen in die
Ausführungen der Software einbezogen
wurden, beispielsweise durch Libraries oder
anderweitige Packages. So wird heute kaum
eine programmierende Wissenschaftlerin
oder ein programmierender Wissenschaftler
die Eulerschen Gleichungen für Rotations-
matrizen selbst berechnen, sondern sich
einer Library bedienen, die solche Kalkula-
tionen nach den gewünschten Koordinaten
vornimmt. Mit einem entsprechenden Filter
ermöglicht GICAT das Abrufen von Libraries
sowie den genauen Zeitraum ihrer Verwen-
dung. Zukünftig wird es zu den Herausforde-
rungen der Wissenschaftstheorie gehören,
sowohl die Transition von analogen in digitale
Modelle anhand ihrer Software nachzuzeich-
nen als auch die Infrastruktur aufzuzeigen,
aus der die jeweiligen Forschungsprakti-
ken ihr Wissen beziehen. Es handelt sich
also um interne und externe Komponenten
der Wissensproduktion, die selbst neuer
Forschungstools bedürfen, um jenseits der
Bildschirmoberfläche analysierbar zu bleiben.

Grundlegend philosophische Fragen der
Softwarekultur
Ein weiterer Schwerpunkt des Computational
Science Studies Labs ist die Erforschung des
Einsatzes automatisierter Beweisverfahren.
Eines der ersten Systeme Künstlicher Intelli-
genz ist der 1956 entwickelte Logic Theorist,
ein Programm zur Führung logisch-mathe-
matischer Beweise. Solche heute unter dem
Namen „Theorem Prover“ geführten Pro-
gramme können als eine der ältesten Formen
des Research Software Engineering bezeich-
net werden. Denn neben der Anwendung
in der mathematischen Forschung werden
Theorem Prover als Mittel zur Verifikation von
Soft- und Hardware eingesetzt. Analog etwa
zur Abfrage, ob eine bestimmte mathema-
tische Struktur eine bestimmte Eigenschaft
aufweist, kann durch sie überprüft werden,
ob ein Programm oder eine Komponente der
Hardware die gewünschten Spezifikationen
erfüllt. Dieses Nachweisen ist im Bereich
der Soft- und Hardwareentwicklung zumeist
unbedenklich. Es kann jedoch im Kontext der
auf Wissen und Verstehen ausgerichteten
Disziplinen problematisch werden[6]. Exem-
plarisch ist der Einsatz des automatisierten
Beweisens in der Mathematik selbst. Gilt die
Mathematik gemeinhin als die Disziplin, bei
der (in den meisten Fällen) Beweisen und
Verstehen zusammenfallen, so scheint sich
hier mit dem Einsatz zum Teil sehr komplexer
oder auch genuin opaker Software etwas zu
verschieben: Es kann etwas bewiesen wer-
den, ohne dass es verstanden wird.
Neben diesen potenziell problematischen
Auswirkungen automatisierter Beweisverfah-
ren werden am Computational Science Stu-
dies Lab auch die konstruktiven und trans-
formativen Aspekte ihres Einsatzes in den
Wissenschaften eingeordnet: Handelt es sich
nur um ein neues Handwerkszeug, oder wird
die jeweilige Disziplin in ihrer generellen Aus-

82 |

Autoren
Univ.-Prof. Dr.phil. Gabriele Gramelsberger ist
Inhaberin des Lehrstuhls für Wissenschafts-
theorie und Technikphilosophie.
Gastprofessor Dr. Markus Pantsar, Dr.phil.
Daniel Wenz, Dr. Dawid Kasprowicz,
Ph.D., Thomas Venator, M.Sc., sind wissen-
schaftliche Mitarbeiter am Lehrstuhl für
Wissenschaftstheorie und Technikphilosophie.
Frederik Kerksieck und David Heyen sind
studentische Hilfskräfte aus der Informatik,
die die Tools softwaretechnisch umsetzen.

Literatur
[1] Hocquet, A., Wieber, F., Gramelsberger,
G., et al., Software in science is ubiquitous
yet overlooked. In: Nature Computational
Science 4(6), 2024
[2] Schüttler, L., Kasprowicz, D., Gramelsber-
ger, G., Computational Science Studies. A
Tool-Based Methodology for Studying Code.
In: Getzinger, G., Jahrbacher, M., Hrsg., Cri-
tical Issues in Science, Technology, and So-
ciety Studies, Conference Proceedings STS
Conference Graz 2019, 385-401, Graz: Verlag
der Technischen Universität Graz, 2019
[3] Gramelsberger, G., Wenz, D., Kasprowicz,
D., Understanding and Analyzing Science’s
Algorithmic Regimes: a Primer in Computa-
tional Science Code Studies. In: Jarke, J.,
Prietl, B., Egbert, S., Boeva, Y., Heuer, H.,
Arnold, M., Hrsg., Algorithmic Regimes, 57-
78. Amsterdam: Amsterdam University Press,
2024
[4] Thimbley, H., Improving Science That
Uses Code. In: The Computer Journal, 1-24,
2023doi.org/10.1093/comjnl/bxad067
[5] Zum Verhältnis der Computational
Chemistry und der Entwicklung von Soft-
ware-Packages für Pharmaunternehmen:
Hocquet, A., Wieber, F., “Only the Initiates
Will Have the Secrets Revealed”: Com-
putational Chemists and the Openness of
Scientific Software. In: IEEE Annals of the
History of Computing, 39(4), 40-58. 2017, doi.
org/10.1109/MAHC.2018.1221048
[6] Wenz, D., Künstliche Intelligenz in ma-
thematischen Beweisen und das Problem
der Erklärbarkeit. In: Strasser, A., Sohst, W.,
Stapelfeldt, R., Stepec, K., Hrsg., Künstliche
Intelligenz - Die große Verheißung, 145-168.
Berlin: Xenomoi,2021.

richtung dadurch verändert? Werden durch
den Einsatz von Verfahren der automatisier-
ten Beweisführung lediglich alte Bereiche
besser handhabbar, oder erschließen sie der
jeweiligen Disziplin neue Bereiche? In diesem
Zusammenhang sind auch die klassischen
Probleme bezüglich der Reproduzierbarkeit
computergestützter Forschung zu beachten.
So ist etwa der Code für einen durch einen
Theorem Prover geführten Beweis oft an die
Versionsnummer des Programms gebun-
den. Damit ist die Reproduzierbarkeit des
Beweises neben der oft je versionsspezifi-
schen technischen Umsetzung der einge-
setzten Verfahren auch von der jeweiligen
Notation abhängig. Demgegenüber steht das
Bestreben, große Archive an formalisierten
Beweisen anzulegen (etwa Mizar) und der
Allgemeinheit zur Verfügung zu stellen. So
kann hier von einer Art Data-Mining bezüglich
bestehender Beweise gesprochen werden.
Neue, bisher nicht ‚sichtbare‘ Beweise und
Informationen können durch Techniken der
Datenanalyse aus einem Stock an bereits
geführten Beweisen extrahiert werden. Auch
solche Vorgehensweisen, die sich nicht
durch die klassischen Kategorien der Wis-
senschaftstheorie erfassen lassen, werden
am Computational Science Studies Lab
analysiert.

		 https://www.css-lab.
		 rwth-aachen.de

 | 83

MontiCore is a state-of-the-art language
workbench for designing and implementing
domain-specific languages. It is an open-
source research project, continuously devel-
oped since 2004, fostering open collabora-
tion and innovation.
MontiCore’s research is focused on gener-
ation technology and the provision of gener-
ative practices. The language workbench is a
pioneer in language composition and comes
with a large library of reusable language
components. MontiCore’s development and
application is a successful research soft-
ware engineering endeavor with numerous
offsprings in both academia and industry.
MontiCore has a lasting relevance in software
language engineering, documented in multi-
ple publications and dissertations, and plays
a fundamental role in innovating advanced
technologies and development practices.

Nico Jansen, Bernhard Rumpe

Kompositionelle
Sprachentwicklung
mit der Language
Workbench MontiCore

Software hat einen großen Einfluss in In-
dustrie, Gesellschaft und Forschung. Viele
Produkte, Produktionsanlagen oder auch
Forschungsunterfangen werden stark durch
Software getrieben oder unterstützt. Dies
erfordert effiziente und qualitativ hochwer-
tige Softwarelösungen. Explizite Modellie-
rungssprachen, wie die Unified Modeling
Language, kurz UML, erlauben Architektur
und Verhalten von Software zu beschrei-
ben. Domänenspezifische Sprachen, DSLs
für Englisch Domain-Specific Languages,
ermöglichen es Expertinnen und Experten
aus den jeweiligen Disziplinen, Lösungen
innerhalb ihrer Expertise zu modellieren,
indem Modellierungssprachen präzise auf
die Terminologie der Domänen zugeschnitten
werden.
Die reduzierten, aber problemangepassten
Modellierungstechniken erlauben die automa-
tisierte Verarbeitung der Modelle in Form von
hochwertigen Analysen sowie die Synthese
vollständiger Softwaresysteme weit jenseits
des puren Ausführens von Simulationen.
Modellierungssprachen schließen damit die
Lücke zwischen Problem- und Lösungs-
domäne. Dies bedeutet, dass Menschen
ohne weitreichende Programmierkenntnisse
die Kontrolle über die Softwareentwicklung
übernehmen können. Die Erstellung und

Wiederverwendbarkeit im Software Engineering

Bereitstellung von DSLs ist daher von großer
Bedeutung in Forschung und Industrie.
Modellierungssprachen sind aber selbst
Forschungsgegenstand, weshalb Forscher-
gruppen einschließlich des Lehrstuhls für Soft-
ware Engineering (Informatik 3) an der Lan-
guage Workbench MontiCore[1] gleichzeitig
als Forschungssoftware und als Werkzeug
zur Erstellung anderer Forschungssoftware
arbeiten. MontiCore ist damit primär ein
Meta-Werkzeug, das es ermöglicht, schnell
Software-Werkzeuge zu erstellen, die ihrer-
seits die eigentliche Softwareentwicklung
unterstützen.
Die Workbench erlaubt es komplexe, textuelle
DSLs aus Bausteinen sowie darauf aufbau-
ende Analyse- und Synthese-Werkzeuge zu
erzeugen. Damit dient MontiCore als Basis
für laufende Forschung in der modellgetrie-
benen Softwareentwicklung und unterstützt
eine kompositionelle Entwicklung von DSLs
für agile Projekte. Das Prinzip der Modellbib-
liothek wurde systematisiert; angeboten wird
auch eine Bibliothek an Kernsprachen, die für
die Zusammenstellungen eigener, domänen-
spezifischer Modellierungssprachen geeignet
sind. Beispiele hierfür sind etwa NESTML[2]
für biologische neuronale Netze, SpesML[3]

für das Systems Engineering, Statecharts für
die Möglichkeit explizit Unterspezifikation und

84 |

Kompositionelle
Sprachentwicklung
mit der Language
Workbench MontiCore

Bild 1: Praxisorientierte Forschung und Lehre am Lehrstuhl für Software Engineering (Informatik 3)

Foto: Peter Winandy

Nichtdeterminismus in die Modellierungs-
techniken einzubringen, Ontologie-Sprachen
in zahlreichen Varianten oder Modellierungs-
techniken für digitale Zwillinge[4].
Die entwickelten Konzepte und Sprachen
verbessern den Software-Engineering-Pro-
zess nachhaltig. Sie erleichtern die Erstellung
hochwertiger, individueller DSLs. Die Modelle
dieser Sprache können wiederverwendbaren,
domänenspezifischen Analysen unterzogen,
aber auch als Zwischenschritt zwischen dem
wissenschaftlich erklärenden Papier und dem
finalen Code genutzt werden und unterstüt-
zen so eine effiziente, evolutionäre Weiter-
entwicklung. So lassen sich zum Beispiel
Statecharts darauf vergleichen, ob eine Ver-

feinerungsbeziehung in Bezug auf das Verhal-
ten herrscht und damit die Substituierbarkeit
möglich ist. Auch können mit semantikba-
sierten Differenzverfahren Varianten einer
Ontologie hinsichtlich ihrer unterschiedlichen
Objektstrukturen geprüft werden.
Für die technische Umsetzung basiert Monti-
Core auf Grammatiken zur Sprachbeschrei-
bung und synthetisiert daraus Infrastruktur
für die Modellverarbeitung. Dazu gehören ein
Modelloader, Infrastruktur für Wohlgeformt-
heitsregeln (Kontextbedingungen) und das
Management von Symboltabellen[5]. Basie-
rend auf der Modellierungssprache werden
außerdem eine zugehörige Augmentation-
Sprache (Tagging) und eine Transformations-

sprache synthetisiert, die die Modellnutzung
und Übersetzung deutlich vereinfachen.
Weitere Technologien bieten die Einbettung
in Entwicklungsumgebungen, eine flexibel
anpassbare Template-basierte Code-Ge-
nerierung, und eine Übersetzung in Model
Checking- und Verifikationsumgebungen.
MontiCore zeichnet sich durch die adäquate
Anwendung bewährter Entwurfsmuster der
Softwaretechnik aus, erweitert diese und
hat darüber hinaus eigene Muster für die
Entwicklung von DSLs realisiert[6]. So wird
beispielsweise die effiziente Traversierung
von Objektstrukturen mithilfe des generierten
Visitor Patterns und mittels Template-Hook
und RealThis Pattern der kompositionelle

Bild 2: Modellgetriebene Analyse und Simulation einer Demofabrik

Foto: Peter Winandy

86 |

Aufbau von Datenstrukturen und Analyse-/
Synthese-Algorithmen ermöglicht. Dies ist
eine Kernkonstruktion zur nachhaltigen und
flexiblen Wiederverwendung von DSL-Kom-
ponenten in verschiedenen Sprachen und
damit Werkzeugen. Maßgeschneiderte
Werkzeuge können so schnell und effizient
entstehen.

Wiederverwendbarkeit auf Sprachebene
Wiederverwendbarkeit ist im Software
Engineering von entscheidender Bedeutung,
da sie die Effizienz von Entwicklungsprozes-
sen, sowie die Qualität und Wartbarkeit der
Software erheblich verbessert. MontiCore ist
ein Pionier auf dem Gebiet der Sprach- und

der Werkzeugkomposition und stellt vielfältige
Mechanismen zur Erweiterung, Einbettung
und Aggregation von DSLs zur Verfügung,
um Wiederverwendbarkeit auf Sprachebe-
ne zu ermöglichen. Mehrere Mechanismen
umfassen sowohl eine technische Umsetzung
als auch eine methodische Beschreibung,
welche dabei unterstützen, neue DSLs aus
existierenden Komponenten zu entwerfen.
Eine aggregierende Kopplung von Modellen
(auch verschiedener Sprachen) wird über die
Technologie der Symboltabellen realisiert,
welche Elemente zwischen Modellen nutzbar
machen und so eine Gesamtbeschreibung
von Systemen ermöglichen. Eine Variante ist
die konservative Erweiterung einer Sprache,

bei der die Modelle der ursprünglichen DSL
gültig bleiben sowie modular definierte
Analyse- und Synthese-Algorithmen eben-
falls weiter eingesetzt werden können. Das
unterstützt die Agilität der Spracherweiterung
passend zu den ergänzten Anforderungen.
Die Einbettung von Sprachkomponenten er-
möglicht deren Wiederverwendung und Inte-
gration in einer Gesamtsprache. Ein Beispiel
ist die Einbettung verschiedener Sprachkom-
ponenten für mehrere Arten von Expressions,
Statements, Typdefinitionen oder Literalen in
eine Hostsprache. Dadurch wird der Aufbau
von Sprachbibliotheken für die modulare
Komposition erst möglich wodurch DSLs ge-
meinsame Sprachkonzepte teilen und so den

 | 87

Bild 3: Bibliothek von wiederverwendbaren Sprachkomponenten in MontiCore

Bild 4: Bibliothek von Software-Modellierungssprachen und ihre Verwendung

Nutzern schnellere Einarbeitung und besse-
res Wiedererkennen ermöglichen. MontiCore
bietet dafür eine weitreichende Bibliothek mit
gebräuchlichen Sprachkomponenten[7].
Bild 3 zeigt den modularen Aufbau dieser
Sprachbibliothek. Die verschiedenen Kompo-
nenten repräsentieren Ausbaustufen dedizier-
ter Sprachkonzepte. Je nach Anwendungsfall
können beim Design einer DSL beispielswei-
se nur einfache Datentypen (z.B. int, String)
oder auch physikalische Typen, also SI-Units
(z.B. 3m/s, 220VA) typsicher in eine Sprache

eingebracht werden, sodass sich die inte-
grierte Werkzeuginfrastruktur automatisch
um die Korrektheit der Konversionen küm-
mert. Darauf aufbauend hat MontiCore eine
weitere Bibliothek an Sprachkomponenten
von Modellierungstechniken für Automaten,
Sequenzdiagramme, Klassendiagramme,
Ontologien oder Prozessmodelle, die den
agilen, modellbasierten Entwicklungsprozess
unterstützen.
Die Language Workbench wird als For-
schungssoftware seit 2004 kontinuierlich

entwickelt und hat im Bereich Software
Language Engineering viele neue Konzepte
hervorgebracht, welche industrielle Frame-
works nachhaltig inspirierten. MontiCore hat
sich als stabiles und erweiterbares Projekt
erwiesen und gleichzeitig den Grundstein für
viele weitere Forschungsvorhaben gelegt. Die
Workbench ist öffentlich auf GitHub verfüg-
bar, was die Zusammenarbeit mit Industrie
und Forschung vorantreibt und Innovation
fördert. Durch kontinuierliche Integration und
automatisierte Tests, die die Konsistenz und

Legend:
optional feature

88 |

Autoren
Nico Jansen, M.Sc., ist wissenschaftlicher
Mitarbeiter am Lehrstuhl für Software
Engineering (Informatik 3).
Univ.-Prof. Dr.rer.nat. Bernhard Rumpe
ist Inhaber des Lehrstuhls für Software
Engineering (Informatik 3).

Bild 5: Abhängigkeitsgraph zusammenhängender Artefakte im Software-Engineering-Prozess

Literatur
[1] Hölldobler, K., Kautz, O., Rumpe, B.,
MontiCore Language Workbench and Library
Handbook: Edition 2021, Aachener Informa-
tik-Berichte, Software Engineering, Band 48,
ISBN 978-3-8440-8010-0, Shaker Verlag,
May 2021
[2] Plotnikov, D., Blundell, I., Ippen, T., Eppler,
J. M., Morrison, A., Rumpe, B., NESTML: a
modeling language for spiking neurons, in:
Modellierung 2016 Conference, Volume 254,
pp. 93-108, LNI, Bonner Köllen Verlag, Mar
2016
[3] Gupta, R., Jansen, N., Regnat, N., Rumpe,
B., Implementation of the SpesML Work-
bench in MagicDraw, in: Modellierung 2022
Satellite Events, pp. 61-76, Gesellschaft für
Informatik, Jun 2022
[4] Dalibor, M, Heithoff, M., Michael, J., Netz,
L., Pfeiffer, J., Rumpe, B., Varga, S., Wort-
mann, A., Generating Customized Low-Code
Development Platforms for Digital Twins, in:
Journal of Computer Languages (COLA),
Volume 70, Art. 101117, Elsevier, Jun 2022
[5] Butting, A., Michael, J., Rumpe, B.,Lan-
guage Composition via Kind-Typed Symbol
Tables, Journal of Object Technology (JOT),
October 2022
[6] Drux, F., Jansen, N., Rumpe, B., A Catalog
of Design Patterns for Compositional Langua-
ge Engineering, Journal of Object Technology
(JOT), October 2022
[7] Butting, A., Eikermann, R., Hölldobler,
K., Jansen, N., Rumpe, B., Wortmann, A., A
Library of Literals, Expressions, Types, and
Statements for Compositional Language De-
sign, in: Journal of Object Technology (JOT),
October 2020
[8] Haber, A., Ringert, J. O., Rumpe, B.,
MontiArc - Architectural Modeling of Interac-
tive Distributed and Cyber-Physical Systems,
RWTH Aachen, AIB-2012-03, Technical
Report, Feb 2012
[9] Michael, J., A Vision Towards Generated
Assistive Systems for Supporting Human
Interactions in Production, in: Modellierung
2022 Satellite Events, pp. 150-153, Gesell-
schaft für Informatik e.V., Jul 2022
[10] Greifenberg, T., Hillemacher, S., Höll-
dobler, K., Applied Artifact-Based Analysis for
Architecture Consistency Checking,in: Ernst
Denert Award for Software Engineering 2019,
pp. 61-85, Springer, Dec 2020

Zuverlässigkeit der Software prüfen, wird
fortlaufend eine hohe Qualität sichergestellt.
Insgesamt waren an der Weiterentwicklung
über 40 Personen in mittlerweile 100 Perso-
nenjahren beteiligt.

MontiCore als Meta-Werkzeug
Als Meta-Werkzeug hat MontiCore zahlreiche
Ableger, also konkrete Werkzeuge für Auf-
gaben in unterschiedlichen technologischen
Bereichen. Eine Architekturbeschreibungs-
sprache[8] erlaubt die Kontrolle von Soft-
warearchitekturen speziell für die automati-
sierte Synthese komplexer cyberphysischer
Systeme, Infrastrukturen im Bereich Internet
of Things und auch Digitaler Zwillinge.
Assistenzsysteme im privaten Umfeld oder
im Produktionsbereich[9], Robotersteuerun-
gen, autonome Fahrinfrastrukturen, Verbes-
serung der Mensch-Maschine-Interaktion
durch abstrakte Nutzerführungsmodelle, eine
erste Modellierungssprache für Modelbasier-
tes Machine Learning und vieles mehr wur-
den so realisiert. Modellbasierte Artefaktana-
lysen helfen in Software- und Systems-En-
gineering-Projekten die Projektlandschaft
zu verstehen, Abhängigkeiten zu erkennen,
Konflikte aufzudecken und die Prozessper-
formance zu evaluieren[10]. Bild 5 zeigt einen
Abhängigkeitsgraphen von Entwicklungs-
artefakten und verdeutlicht, wo sogenannte
Spagetti-Klumpen die Modularität zerstören.
MontiCore ist in die internationale Forschungs-
kollaboration GEMOC Initiative integriert, um

Software Language Engineering nachhaltig
voranzubringen und so die modellbasierte
Software- und Systementwicklung weiter in
die Praxis zu bringen. Zahlreiche Publikatio-
nen belegen die Relevanz von MontiCore in
Software Language Engineering, die aber
auch durch industrielle Verwendungen nach-
gewiesen ist. Neuere Forschungsaktivitäten
dienen dem Ausbau der Language Work-
bench als Infrastruktur für Forschungssoft-
ware anderer Domänen, um zum Beispiel
Forschungssoftware präziser mit den ab-
strakten, oft mathematischen Modellen in
Physik, Chemie, oder anderen Fachberei-
chen zu verzahnen, Datenmengen und ihre
Meta-Daten effektiv zu managen und gleich-
zeitig stringente Nachvollziehbarkeit der For-
schungsergebnisse und Weiterentwicklungen
der Software sicherzustellen.

 www.se-rwth.de/research/

 | 89

Impressum

Herausgegeben im Auftrag des Rektors
der RWTH Aachen
Dezernat 3.0 – Presse und Kommunikation
Templergraben 55
52056 Aachen
Telefon +49 241 80 - 93687
pressestelle@rwth-aachen.de
www.rwth-aachen.de

Titelbild: Qualitative Untersuchung des Strö-
mungsverhaltens eines Flügels in Hochauf-
triebskonfiguration mithilfe einer Rauchlanze
im Unterschall-Windkanal
Peter Winandy, Aachen

Fotografie:
Peter Winandy, Aachen

Gestaltung:
Kerstin Lünenschloß, Aachen

Druck:
image Druck + MEDIEN GmbH, Aachen

Nachdruck einzelner Artikel, auch auszugs-
weise, nur mit Genehmigung der Redaktion.

Für den Inhalt der Beiträge sind die Autoren
verantwortlich.

ISSN-Nummer 0179-079X

90 |

Foto: Peter Winandy

