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ABSTRACT
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Monopsony in Growth Theory
The neoclassical growth model assumes fixed labor supply and competitive labor markets. 

Is it harmless to ignore monopsonistic power in the neoclassical growth model? The 

paper argues that it is not, especially if a growth model needs to be consistent with the 

long-run dynamics of the labor share. This paper solves a minimalist growth model with 

monopsonistic power at the firm level and two production technologies with different 

degrees of efficiency. The paper shows that monopsonistic power by the representative 

firm implies either a “level” or a “growth” effect in the determination of the labor 

share. If the two sectors feature unbalanced growth, the economy converges to a an 

asymptotic balanced growth in which the labor share asymptotically decline, in line with 

secular evidence on labor share dynamics. The paper shows also that the monopsonistic 

equilibrium has sizeable “misallocative” effects, since it implies the use of less efficient 

technologies that are not used by the optimal growth problem. Finally, the paper shows 

that the negative welfare effect of monopsony is larger when the model accounts for 

endogenous labor supply as the redistribution from wages to profits induces a reduction in 

hours worked. The generalized model is also consistent with recent evidence on balanced 

growth with declining labor supply.
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1 Introduction

The neoclassical growth model (NGM) assumes competitive labor markets (Cass, 1965;
Koopmans, 1965; Acemoglu, 2009). Recent research on advanced economies shows that
monopsony power in the labor market is a significant, widespread and sizeable phe-
nomenon (Manning, 2021; Yeh et al., 2022). This paper asks a basic question. Is it
harmless to ignore monopsonistic power in the neoclassical growth model? The paper
argues that it is not, especially if a growth model needs to be consistent with the long-run
dynamics of the labor share (Bergholt et al., 2022; Karabarbounis, 2024).

Classical monopsony needs two key ingredients: i) firm market power in setting
wages and ii) an upward sloping positive relationship between the wage o!ered and the
quantity of labor that the representative firm can hire (Robinson, 1969). To obtain an
upward sloping relationship at the firm level the paper assumes that the representative
agent can arbitrage the total quantity of labor o!ered across two sectors. Beyond the
labor o!ered in a monopsonistic labor market, the agent has access to an alternative less
e”cient sector and technology in which she obtains marginal returns. This paper thus
proposes and solves a minimalist NGM with monopsonistic power at the firm level.

In the model proposed, there are two neoclassical production functions with constant
returns to scale in capital and labor that produce the same identical good. One technol-
ogy is more e”cient than the other one. Unsurprisingly, in a optimal growth problem
the model collapses to a simple NGM that exploits only the superior technology. If the
firm that has access to the superior technology enjoys also monopsonistic power in the
hiring of labor, in the spirit of Robinson (1969), the equilibrium of the model turns out
to be very di!erent. In the decentralized monopsonistic setting, the household enjoys full
marginal returns when she works with the inferior technology. The household allocation
of labor between the two sectors is obtained by a “market hours arbitrage condition”
that implies an upward positive relationship between the wage paid in the sector that
use the superior technology and the quantity of labor hired. Such arbitrage condition
is the key relationship that the representative monopsonistic firm exploits in her profit
maximization problem. While the representative worker takes the firm problem as given,
in equilibrium the profits of the monopsony are ex-post rebated to the consumers.

The decentralized equilibrium with monopsonistic power implies either “growth” or
“level” e!ects in the determination of the labor share. If the exogenous TFP growth
in the two sectors is identical (so that gs = g

i), the model features a balanced growth
path and a constant labor share, but the “level” of the labor share is always lower
than the corresponding value in an e”cient setting with no monopsony and no use
of the inferior technology. If the superior sector features a larger productivity growth
than the inferior sector (so that gs > g

i), the equilibrium of the model takes the form
of an asymptotic balanced growth path at rate g

s with full asymptotic absorption of
labor in the more e”cient sector. In such “unbalanced” equilibrium, the labor share
asymptotically declines.

Since the model is fairly parsimonious, we can quantitatively assess the misallocative
e!ects of monopsony. Our exercise shows that the welfare cost of monopsony can be large



and easily reach output loss of 20 percent if the economy is on balanced growth. In the
case of unbalanced growth there are is no asymptotic welfare loss, yet there is sizeable
transitional output and consumption loss that in our simulations accounts for an average
value of approximately 9 percent of output and more than 5 percent of consumption.

The model can also be generalized to account for balanced growth with endogenous
labor supply and declining hours worked, in line with the recent contribution of Bop-
part and Krussel (2020). We show that the misallocation generated by monopsony is
larger when the model accounts for endogenous labor supply, as the redistribution from
wages to profits induces also a reduction in labor supply. In the extended model with
endogenous choice of labor, the reduction in labor supply induced by monopsony is very
persistent, and survive also when the productivity di!erential between the two sectors
become infinitely large.

The paper is thus related to at least five strands of the macroeconomic and growth
literature. First, the results appear coherent with the recent evidence of historical decline
in the labor share (Karabarbounis and Neiman, 2014; Bergholt et al., 2022; Karabarbou-
nis, 2024), and by papers that study wage stagnation. Second, the paper contributes to
the literature that aim at incorporating monopsony into aggregate growth models (Deb
et al., 2022; Barr and Udayan, 2008) and the general macroeconomic e!cts of monopsony
(Manning, 2021). Third, the model presented is also coherent with the growth litera-
ture on structural change and employment changes across sectors (Ngai and Pissarides,
2007; Acemoglu and Guerrieri, 2008). Specifically, the asymptotic equilibrium in case of
unbalanced growth has various similarities with the model of Acemoglu and Guerrieri
(2008). Fourth, the paper relates to the literature that discusses balanced growth with
long run labor supply (Boppart and Krussel, 2020). Fifth, the paper contributes to
the growing field of factor misallocation in the process of economic growth (Hsieh and
Klenow, 2009)

The paper proceeds as follows. Section 2 reviews the relevant literature in more
details. Section 3 presents our model and shows also how it compares to a simple
optimal growth model with one sector. Section 4 derived the balanced and unbalanced
equilibrium with monopsonistic power. Section 5 discusses the broader implications
of the growth model for the dynamics of the labor share and the misallocative e!ects
induced by monopsony. Section 6 presents the extended model with endogenous labor
supply. Section 7 summarizes and concludes.

2 Literature Review

Macroeconomics of Declining Labor Share

The secular decline in the labor share has been first recognized in the seminal paper by
Karabarbounis and Neiman (2014). Since the latter paper was published, the empirical
literature on the measure of the labor share has been very vivid across sides of the At-
lantic, and in most developing countries (Gilbert Cette et al., 2019; Brooks et al., 2021).
At the empirical methodological level, there is strong debate about measurement issues
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linked to the role of housing, self employment and the role of Government. Atkenson
(2020)- for example- argues that the estimates of the falling labor share are largely due
to changes in measurement details by the Bureau of Labor Statistics. More recently
Karabarbounis (2024) reviews the large work on the decline in the labor share and dis-
cusses the five possible drivers of the secular decline observed not only in the United
States, but in most advanced economies. The possible explanations for the secular fall
are di!erent, and they relate to technology (Acemoglu and Rastrepo, 2022), cost of cap-
ital (Kaymak and Schott, 2023), market power by firms (Autor et al., 2020; Deb et al.,
2022), changes in labor market institutions and firms’ market power (Yeh et al., 2022)
and globalization. While it is di”cult to give weights to the possible concurrent institu-
tions, this paper examines the relationship between balanced growth in consumption and
GDP with a declining labor share and monopsonistic power by firms. In a companion
paper, Garibaldi and Turri (2024) study the e!ects of mark-up by monopolistic firms
on the labor share in a growth model, in the spirit of Autor et al. (2020) and Deb et al.
(2022)

Long Run Hours Worked

Traditional growth theory used to take the long run stability of total labor as a key
stylized fact. In other words, per capita leisure has been traditionally considered con-
stant. Prescott (1986) argues that leisure shows no secular trend while real wage has
grown steadily. In terms of preferences, the stability of leisure has been obtained by rep-
resentative models in which the income and substitution e!ect of wage increase cancel
each other out. Ramey and Francis (2009) provide new empirical evidence on long run
data on work, home production and leisure and partly challenge the traditional result of
Prescott (1986). While the results on total hours is almost confirmed, the evidence on
hours of work provided by Ramey and Francis (2009) is fairly complex and relevant for
the results and topic of this paper. Over the entire 20th century, the amount of leisure
per capita remained roughly constant, while the amount of work of the representative
agent has apparently declined.1 More recently, Boppart and Krussel (2020) argue that
the decline in average hours is robust and show that the income e!ect slightly dominate
the substitution e!ect. Boppart and Krussel (2020) provide also a set of preferences that
is coherent with balanced growth path and declining hours worked. In the paper we do
rely to such set of preferences for studying the model with endogenous labor supply.

Growth and Structural Change

The model we present has two sectors that feature a labor reallocation across sectors
driven by TFP growth di!erential. In this sense, our theory borrows some of the ideas

1Ramey and Francis (2009) argues that the decline in hours worked per person are mainly accounted
for by an increase in schooling by the young workers. Conversely, prime age individuals between the
ages of 25 and 54 are working the same number of hours now as in 1900, as a combination of a rise
in female hours worked and reduction in male hours. Naturally, home production by female workers
declined substantially while it increased by male workers.
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from the structural change literature (Ngai and Pissarides, 2007; Acemoglu and Guer-
rieri, 2008). The long run asymptotic balanced growth path that we obtain when pro-
ductivity growth in the superior sector is larger than productivity growth in the inferior
sector is similar to the long run equilibrium obtained by Acemoglu and Guerrieri (2008).
Di!erently from the demand factors emphasized by Ngai and Pissarides (2007), the
technologies in the two sectors produce the same final consumption good. Further, the
key labor market relationship of our paper- the “market hours arbitrage condition” -
crucially depends on the di!erential TFP productivity among the two sectors typical of
the structural change literature.

Ngai and Pissarides (2008) study the long run e!ects of shifts from home production
to market production as well as the secular trends in leisure in a model with structural
change. With respect to the research in this paper, Ngai and Pissarides (2008) ignore
the e!ects on labor share and do not deal with monopsonistic power in the labor market.

Brigdman (2016) estimates TFP di!erential between the home and the market. He
shows that the level of TFP at home is approximately 70 percent of the level of TFP
in the market, and further TFP at home slowdown significantly from the 70s. Home
productivity grew at a rate similar to that of the market economy in the postwar period
until the 1970s. Home labor productivity grew an average of 2.0 percent a year during
the period 1948-1977, very similar to the 2.1 percent in market. There is a severe
slowdown in home productivity in the late 1970s. Labor productivity was nearly flat,
growing an average of only 0.02 percent from 1978 to 2010. In contrast, market labor
productivity grew 1.6 percent annually. TFP growth at home followed a similar path
to home productivity, and thus such productivity di!erential between market and home
production is in line with one of the key mechanism outlined in the paper.

Monopsony in Growth and Aggregate Labor Markets

The theory of economic growth has paid little attention to the e!ect of labor market
imperfections on growth, even though market failures and monopolistic power has played
an important role in the theory of endogenous growth (Aghion and Howitt, 2009; Romer,
1990). There has been some work on the e!ect of growth on unemployment (Mortensen
and Pissarides, 1998), and more recently on how to integrate constant unemployment
in a balanced growth perspective with declining search friction (Menzio and Martellini,
2020). The research on the e!ects of monopsony in aggregate labor market is vast and
widespread both theoretically and empirically, as documented- among others- by the
the recent survey by Manning (2021). Much less attention has been devoted to the
long run e!ect of monopsony in a long run growth perspective. One exception is the
endogenous growth model proposed by Barr and Roy (2008). In their paper, the supply
of labor is driven by spatial labor mobility costs between an informal sector and a urban
production, and the low wage in equilibrium leads to low human capital accumulation
and slow growth. The resulting endogenous growth is suboptimal. With respect to f
this paper, the research by Barr and Roy (2008) is more a development model in spirit
and there is no e!ort to compare it to the standard neoclassical growth model, as we do
in most of this research. In addition, the model by Barr and Roy (2008) does not link
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monoposny to the dynamics of the labor share.

Misallocation

Jones (2022) in his recent survey on the future of economic growth suggests that the
literature on the misallocation of factors in production will be a key research avenue in
the years to come. The insights of the e!ect of misallocation of inputs into empirical
TFP growth are due in large part to the research of Restuccia and Rogerson (2008)
and Hsieh and Klenow (2009). The intuition is that misallocation at the micro level
aggregate up into TFP di!erences. For example, Hsieh et al. (2022) argues that reduced
misallocation of talent in the US due to a fall in labor market discrimination accounts
for 0.3 of TFP growth in the last 20 years. The research in this paper on labor market
imperfections suggests that the widespread presence of monospony in labor market leads
to misallocation of capital across sectors, since less e”cient capital is used into aggregate
production. The theory of this paper is linked to the growing field of misallocation.

3 A Model of Monopsony and Growth

3.1 The Environment

The environment is coherent with the decentralized setting of the Neoclassical Growth
Model (NGM) à-la Ramsey or Cass-Koopmans, to which we add two important features:
first, in the economy there are both a superior and an inferior technology and - second
- the representative firm that has access to the superior technology has monopsonistic
power in the hiring of labor. The model is also coherent with recent evidence on balanced
growth with long term trend in labor supply proposed by Boppart and Krussel (2020).
The environment is an infinite-horizon economy in continuous time.

We being with the description of technology. In the economy there is a single good
that is potentially produced with two di!erent technologies in two di!erent sectors. We
call them technology s and technology i, where technology s refers to superior and
technology i refers to inferior in a way that we describe below. The superior technology
is indicated with the capital letter F , so that

Y
s
t = F (Ks

t , N
s
t , A

s
t)

where K
s
t and N

s
t are aggregate capital and labor in the superior sector, and A

s
t is

exogenous labor augmenting TFP growth, while Y
s
t is the amount of good produced

using technology s. F has standard neoclassical features, so that it has positive and
diminishing marginal products in K and N and constant returns to scale in (Ks

t , N
s
t ).

Formally, this implies FK > 0, FN > 0 and FKK < 0, FNN < 0. We also assume that F
satisfies standard Inada conditions. F features labor-augmenting technological progress
in line with Uzawa’s theorem for balanced growth, and this is equivalent to F being
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homogeneous of degree one in the pair (Ks
t , A

s
t) as well.

2 TFP in sector s grows at rate
g
s, so that

A
s
t = A

s
e
gst ; g

s → 0 , A
s
> 0 .

Capital allocated to production in the sector that uses the superior technology depreci-
ates at an instantaneous rate of ωs ↑ [0, 1].

The inferior technology is indicated with superscript i, and produces Y
i
t according

to the following neoclassical technology

Y
i
t = G(Ki

t , N
i
t , A

i
t)

where Ki
t and N

i
t are aggregate capital and labor used with the inferior technology, and

A
i
t is exogenous labor augmenting TFP growth. Similar to F , also the technology G has

standard neoclassical features, so that it has positive and diminishing marginal products
in K

i and N
i and constant returns to scale. Formally, this implies GK > 0, GN > 0 and

GKK < 0, GNN < 0, as well as the Inada conditions. G is homogeneous of degree one in
(Ki

t , A
i
t) as well. Capital used by the inferior sector depreciates at rate ω

i ↑ [0, 1]. The
exogenous labor augmenting TFP growth in sector i is such that

A
i
t = A

i
e
git ; g

i → 0 , A
i
> 0 .

We assume that sector s is superior in the following sense.

Assumption 1. Initial values of technology A
s and A

i and rates of growth g
s and g

i

are such
A

s → εA
i and g

s → g
i
.

where ε > 0 depends on the parameters of the model and it is specified in Appendix.

The economy is populated by a measure one of identical, infinitely-living (or perfectly
altruistic) agents whose preferences are coherent with the NGM and potentially also
with long run labor supply, and we abstract from population growth. The individual is
endowed with 1 unit of time and we shall indicated with ht ↓ 1 the total hours supplied
by the worker, while we denote consumption by Ct. The instantaneous utility function
reads

U(Ct, ht) = u(Ct)↔ v(ht).

U(Ct, ht) is additive separable in consumption and total hours and features standard
assumption. Thus u(c) is defined on ↗+, it is strictly increasing, concave and twice
di!erentiable, with derivatives u→

> 0 and u
→→
< 0 inside of the domain. v(ht) represents

the dis-utility of labor and is defined on ↗+, it is strictly increasing, concave and twice
di!erentiable, with derivatives v→ > 0 and v

→→
> 0 in its domain.

2Even though thanks to Uzawa’s theorem we could write our production functions as functions of
capital and e!cient units of labor (in this case, As

tN
s
t ) only, we prefer the more abstract notation

provided in the text since the extensive use of second derivatives in the paper would lead to some
ambiguities in the notation.
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In light of the recent contribution of Boppart and Krussel (2020) on long term trend
in hours worked, we will consider the instantaneous utility used by the canonical NGM
that belongs to the CRRA (Constant Relative Risk Aversion) class and was proposed
originally by MaCurdy (1981) .

Assumption 2. The utility function is CRRA in consumption with coe!cient ϑ > 0
and features a constant Frisch elasticity ϖ, so that

u(Ct)↔ v(ht) =






C1→ω
t ↑1
1↑ω ↔ ϱ

h
1+1

ε
t

1+ 1
ε

if ϑ ↘= 1,

logCt ↔ ϱ
h
1+1

ε
t

1+ 1
ε

if ϑ = 1.

(1)

The parameter ϖ is thus the percentage change in hours when the wage is changed
by 1%, keeping the marginal utility of consumption constant. The parameter ϑ is the
inverse of the elasticity of the marginal utility of consumption. To simplify the analysis,
we first present the model without cost of labor (thus ϱ = 0) and we postpone the full
specification of the preferences to Section 6.

The present discounted utility value of a stream {Ct, ht}t↓0 to a household is
∫ ↔

0

e
↑εt [u(Ct)↔ v(ht)] dt

where ς > 0 is the subjective discounting.
Households own all factors of production. Given their time endowment, they supply

labor in quantities ns
t and n

i
t to the firms in both sectors so that

n
i
t + n

s
t = ht,

ht ↓ 1.

Until Section 6, where we develop the model with endogenous hours, total hours worked
equal 1. In sector s factors are organized with formal markets, so that agents save in
safe asset At which gives them a one to one claim to capital used by the superior sector,
while the hiring of labor is monopsonistic. In sector i households have access to the
marginal values of production, possibly without relying on the institutional set up of a
formal market. The generality of this modelling choice allows the inferior sector to be
interpreted as either home production or a second formal sector throughout the paper.

3.2 Firm Intratemporal Problem

The monopsonist produces with the superior technology F and faces a positive rela-
tionship between the wage paid and the supply of labor, which we denote by Wt(N s

t ).
The relationship between the wage paid and the quantity of labor hired comes from
the monopsonist access to three key pieces of information. First, the firm knows that
she is the only buyer of labor N

s
t for using it with the superior technology. Second,
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the firm knows that individuals have access to an alternative technology in quantity
N

i
t = H t ↔N

s
t , where N

s
t is the aggregate amount of labor she hires for use with tech-

nology and H t is taken as given by the firm. Third, the firm knows that the marginal
product of the individuals in their alternative use of time is exactly the marginal prod-
uct GN() of the inferior technology. This implies that the wage schedule faced by the
monopsonistic firm reads

Wt(N
s
t ) = GN(K

i
t , H t ↔N

s
t , A

i
t) , (4)

where K
i
t is taken as given by the monopsonist.3 These three pieces of information and

the wage schedule (4) imply that the total labor costs to the monopsonist are

Wt(N
s
t )N

s
t = GN(K

i
t , H t ↔N

s
t , A

i
t)N

s
t .

The representative firm problem in extensive form is intratemporal and reads

max
Ks,Ns

#(N s
, K;G(·), Rt, A

s
t , A

i
t, H t, K

i
t) = F (Ks

, N
s
, A

s
t)↔GN(K

i
t , H t↔N

s
, A

i
t)N

s↔RtK
s
.

(5)
The choice of quantity of labor4 is a classical monopsonistic problem in the spirit of
Robinson (1969), while the choice of capital is a standard capital demand in a competi-
tive markets. The first order conditions of the firm are

FK(K
s
t , N

s
t , A

s
t) = Rt , (6)

FN(K
s
t , N

s
t , A

s
t) = GN(K

i
t , H t ↔N

s
t , A

i
t)↔GNN(K

i
t , H t ↔N

s
t , A

i
t)N

s
t (7)

While equation (6) is completely standard, the condition in equation (7) is novel in
the NGM, yet it is standard in introductory textbooks of microeconomics. Figure 1
describes the behavior of the monopsonistic firm in a simple static diagram. The dotted
downward sloping line is the marginal product in using the superior technology, or the
left hand side of equation (7). The upward dotted sloping line is the marginal cost of
labor to the firm, or the right hand side of equation (7). The firm hires at the point
where the marginal cost of labor is equal to the marginal revenue in point E1. Yet, the
wage obtained by the worker is determined along the continuous line in Figure 1, and is
indicated by the point E2 in the Figure. The x-value at E1 and E2 is thus the amount
of labor employed with by the sector with superior technology. The y-value at E2 is the
equilibrium wage, while the y-value at E1 is the marginal productivity of labor employed
in the monopsonistic sector. In general equilibrium, the remaining amount of labor will
be supplied and used to firms that use the inferior technology.

Firm optimization has important implications in terms of profits. Since the pro-
duction function has a standard CRS technology and is homogeneous of degree zero in

3The wage schedule - or the fundamental arbitrage condition of the individual- is derived endoge-
nously in the individual maximization problem solved in Section 3.3.

4Notice that di!erently from standard NGM in which the size of the firm is undetermined, the size
of the monopsonist, hence of sector s, is. The inferior sector has instead undetermined size.
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(K,N), Euler theorem applies and combined with the first order condition of the firm
implies

F (Ks
t , N

s
t , A

s
t) = RtK

s
t +

[
GN(K

i
t , H t ↔N

s
t , A

i
t)↔GNN(K

i
t , H t ↔N

s
t , A

i
t)N

s
t

]
N

s
t

so that optimal profits of the superior sector are

#t = ↔GNN(K
i
t , H t ↔N

s
t , A

i
t)(N

s
t )

2
> 0 .

Since individuals own all factor productions, profits are fully distributed period by period
in equal amount to all agents.

( Insert Figure 1 here)

3.3 Household Problem and Budget Constraint

As anticipated, we solve the model first in assuming that agents have a fixed labor
supply of measure one, and utility depends only on consumption. Agents can save in
a safe asset that yields rights to capital in sector s, they own all firms in the economy
and are thus entitled to a rebate of profits from the monopsonistic firm. As anticipated,
in sector i agents have access to the return to capital, so we directly include it in the
budget constraint. Agents can obtain a wage in sector s that we label as ws

t and have
direct access to the marginal product in of labor in the inferior sector that is indicated
by φ

i
t. These amounts, together with rate of returns on capital, are time varying and

taken as given in the maximization problem. We denote the household supply of labor
in sector s at time t by n

s
t . Since households are endowed with one unit of time, and

supply all their labor inelastically, this implies n
i
t = 1 ↔ n

s
t . The total asset holdings

of the representative is the sum of a safe asset At, that yields the instantaneous rate of
return rt, plus the capital in sector i is Ki

t that yields the marginal product ↼it.
The household solves

max
[Ct,At,Ki

t ,n
s
t ,n

i
t]t↑0

∫ ↔

0

e
↑εt

u(Ct)dt

s.t. Ct + Ȧt + K̇
i
t = w

s
tn

s
t + rtAt + #t + φ

i
tn

i
t + ↼

i
tK

i
t

n
s
t + n

i
t = 1 , n

s
t , n

i
t → 0 , At → 0 , K

i
t → 0,

(8)

where #t denotes the profit rebate from the sector s where the monopsonistic firm
operates. The budget constraint in (8) deserves some comments. Factors allocated to
the sector s yield wage income w

s
tnt and capital income rtAt. Indirectly, renting labor

and capital to the formal sector yields also profits #t. Conversely, factors allocated to the
inferior sector yield the marginal return to labor (φi

t) and capital (↼it) of total production
G(Ki

t , (h↔ n
s
t), A

i
t) that can be used to finance consumption and capital accumulation.

The marginal returns are taken as given in the right hand side of the budget constraint
and are indicated with φ

i
t and ↼

i
t. Note also that the budget constraint implies that the

safe assets and the capital in sector i can be converted one to one in consumption. In
order to have finite utility at equilibrium, we need to impose the following parametric
restriction.
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Assumption 3. Parameters are such that ↔ς+ (1↔ ϑ)gs < 0.

In order to write the Hamiltonian, define K̇
i
t = q

i
t, so that we have the states xt =

(At, K
i
t)

→ and the controls zt = (Ct, n
s
t , q

i
t)

→. The current value Hamiltonian reads

Ĥ(At, K
i
t , Ct, n

s
t , q

i
t) = u(Ct)+µ

A
t (↔Ct↔q

i
t+w

s
tn

s
t+rtAt+#t+φ

i
t(1↔n

s
t)+↼

i
tK

i
t)+µ

Ki

t q
i
t

So that for an interior solution with n
s
t ↑ (0, 1)5 we obtain the system

Ċt

Ct
=

rt ↔ ς

ϑ
(9)

w
s
t = φ

i
t (10)

rt = ↼
i
t (11)

Ct + Ȧt + K̇
i
t = w

1
tnt + rtAt + #t + φ

i
t(1↔ n

s
t) + ↼

i
tK

i
t

lim
t↗↔

e
↑εt

u
→(Ct)At = lim

t↗↔
e
↑εt

u
→(Ct)K

i
t = 0

These first order conditions deliver some key features and properties of the monopsonistic
market. Equation (9) is a standard Euler condition for consumption, as in the NGM
literature. The second condition is a key condition for the existence of monopsony in
equilibrium and it implies endogenously the function w

s
t (n

s
t) assumed in the firm problem

of equation (7). Condition (10) is thus a fundamental arbitrage condition in the labor
market. It says that along an equilibrium path the wage obtained in the formal labor
market and paid by the monopsonist must coincide with the marginal productivity of
labor in the second sector that the consumer takes as given. Equation (11) is a similar
condition for capital and can be labelled as fundamental arbitrage condition in the capital
market. The last two conditions are just the budget constraint and the transversality
conditions.

3.4 Characterization of Equilibrium

As we anticipated, the marginal returns to sector i that the individual takes as given
must coincide with returns to using the inferior technology i so that at equilibrium

φ
i
t = GN(K

i
t , H t ↔N

s
t , A

i
t) (12)

↼
i
t = GK(K

i
t , H t ↔N

s
t , A

i
t)↔ ω

i (13)

Equation (12) is the right hand side of the fundamental arbitrage condition and produces
the upward sloping relationship that the representative monopsonistic firm takes as given
in her maximization. In equilibrium, equation (12) plays the same role of the upward
sloping labor supply in traditional monopsonistic models à-la Manning (2021). Equation
(13) implies that the marginal rate of return to capital in the inferior sector must be the
same as the rate return of the investment asset.

5This is true at equilibrium under Assumption 1.
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In a market clearing equilibrium the total claims held by the individual must be equal
to the amount of formal capital. In addition, aggregate employment by the monopsonis-
tic firm must be equal to household labor allocated to the formal sector. Further, since
household assets are the same as the capital stock and capital used in the superior sector
depreciates at rate ωs, the market rate or return must be equal to the cost of capital net
of depreciation. Finally, the wage function of the monopsonistic firm must be coherent
with the wage arbitrage condition of the household. This implies that at equilibrium of
the asset and labor markets the following conditions to prices

rt = Rt ↔ ω
s

w
s
t (·) = GN(K

i
t , H t ↔ (·), Ai

t)

as well as quantities

At = K
s
t

n
s
t = N

s
t

1 = H t

apply.

3.4.1 Dynamic Monopsonistic Equilibrium

We are now in a position to define a dynamic monopsonistic equilibrium. We can also
derive the the equilibrium conditions defined above in a compact form.

Definition 1. Given paths for productivity in the two sectors {As
t , A

i
t}t↓0 a dynamic

monopsonistic equilibrium (with no disutility from labor) is a set of paths for quantities
{Ct, K

s
t , K

i
t , n

s
t , }t↓0, factor prices {ws

t (·), Rt}t↓0, profits {#t}t↓0 and marginal returns
{φi

t, ↼
i
t}t↓0 such that for given initial capital stocks in the two sectors K

s
0 and K

i
0,

1. {Ct, K
s
t , K

i
t , n

s
t}t↓0 solve the consumer problem (8) given {ws

t , Rt↔ω
s
, ↼

i
t,φ

i
t}t↓0 and

{#t}t↓0;

2. {Ks
t , n

s
t}t↓0 solve the monopsonistic firm problem (5) given {Rt, A

s
t , A

i
t, H t = 1, Ki

t}t↓0

and determine {#t}t↓0,

3. {φi
t, ↼

i
t} are the marginal productivities of labor and capital in the inferior sector,

i.e. Equations (12) and (13) hold.

3.4.2 The Fundamental System

Combining firm and household optimality conditions, the equilibrium is described by
the following system of di!erential equations that - once solved - fully characterizes the
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dynamic equilibrium in terms of {Ks
t , n

s
t , K

i
t , Ct}t↓0 given the paths of As

t and A
i
t.

Ċt

Ct
=

FK(Ks
t , n

s
t , A

s)↔ ω
s ↔ ς

ϑ
(14)

FN(K
s
t , n

s
t , A

s
t) = GN(K

i
t , 1↔ n

s
t , A

i
t)↔GNN(K

i
t , 1↔ n

s
t , A

i
t)n

s
t

FK(K
s
t , n

s
t , A

s
t)↔ ω

s = GK(K
i
t , 1↔ n

s
t , A

s
t)↔ ω

i (15)

Ct + K̇
s
t + K̇

i
t = F (Ks

t , n
s
t , A

s
t)↔ ω

s
K

s
t +G(Ki

t , 1↔ n
s
t , A

i
t)↔ ω

i
K

i
t

lim
t↗↔

e
↑εt

u
→(Ct)At = lim

t↗↔
e
↑εt

u
→(Ct)K

i
t = 0

where we use Euler theorem in sectors s and i to introduce F and G in the budget
constraint.

3.4.3 Equilibrium in E!ciency Units

In line with traditional NGM, it is useful to characterize the equilibrium in terms of
variables in e”ciency units. The subtle issue is that in the model there two di!erent
TFP factors and that labor in the superior and inferior sectors (thus ns

t and n
i
t = 1↔n

s
t

respectively) are equilibrium quantities. The capital labor ratio in e”ciency units are
defined as

x
s
t =

K
s
t

A
s
tn

s
t

; and x
i
t =

K
i
t

A
i
t(1↔ n

s
t)

and ct =
C̃t

A
s
tn

s
t

,

where x
s
t and x

i
t are capital labor ratio in e”ciency unit in the superior and inferior

sectors and ct is consumption. We also define the instantaneous rates of growth g
ns

t = ṅs
t

ns
t

and g
ni

t = ṅi
t

ni
t
= ↔ ṅs

t
1↑ns

t
. The equilibrium system in e”ciency units is

ċt

ct
=

FK(xs
t , 1, 1)↔ ω ↔ ς

ϑ
↔ g

s ↔ g
ns

t (16)

A
s
tFN(x

s
t , 1, 1) = A

i
tGN(x

i
t, 1, 1)↔ A

i
tGNN(x

i
t, 1, 1)

n
s
t

1↔ n
s
t

(17)

FK(x
s
t , 1, 1)↔ ω

s = GK(x
i
t, 1, 1)↔ ω

i (18)

ct + ẋ
s
t + ẋ

i
t

A
i
t

A
s
t

1↔ n
s
t

n
s
t

= F (xs
t , 1, 1)↔ (ωs + g

s + g
ns

t )xs
t+ (19)

+
[
G(xi

t, 1, 1)↔ (ωi + g
i + g

ni

t )xi
t

]
A

i
t

A
s
t

1↔ n
s
t

n
s
t

,

were we made extensive use of the homogeneity properties of F and G. As in traditional
NGT it is useful to introduce the concept of balanced growth as a pattern of growth con-
sistent with constant rate of output growth and constant capital-output ratio. Further,
in balanced growth the rental rate of return Rt and the interest rt are also constant, so
as to imply a constant consumption growth. As it turns out, existence and properties of
paths of balanced growth depends on whether the TFP of the two sectors grow at the
same rate. In the paper we thus speak of balanced growth when g

s = g
i and of unbalanced

growth when g
s
> g

i.
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3.5 E!cient Optimal Growth

Before further characterizing the details of the dynamic monopsonistic equilibrium in
case of balanced and unbalanced growth, we solve for the e”cient optimal growth prob-
lem. In a representative framework the optimal growth problem is obtained by maxi-
mizing the utility of the representative agent with respect to consumption and the two
capital subject to an aggregate budget constraint. Since one technology is superior to
the other, it is obvious that the optimal growth problem involves using only the superior
technology, apart from the knife-edge (and trivial case) in which the two technologies
can be used indi!erently.

Lemma 1. Under Assumption 1, sector s operates in the optimal growth problem.

This justifies our calling sector s the superior sector. Notice that the optimal growth
model correspond to the balanced path consumption in a traditional NGM à-la Cass
(1965) and Koopmans (1965), and the model boils down to Ramsey when only one sec-
tor operates with inelastic labor supply, exactly as in specialized textbooks (Acemoglu,
2009). The optimal growth model is thus much simpler than the monopsonistic equilib-
rium. Since only the superior technology operates with employment equal to one, the
system of equations governing the model is

ċt

ct
=

FK(xe
t , 1, 1)↔ ω

s ↔ ς

ϑ
↔ g

s

ct + ẋ
e
t = F (xe

t , 1, 1)↔ (ωs + g
s)xe

t

where xe
t is the e”cient capital allocated to the superior sector, and n

e
t = 1 is employment

allocated to the superior sector, since for now there is no disutility from labor. In an
E”cient Balanced Growth Path (EBGP) x

e = k
e = Ke

t
As

t
is pinned down by the Euler

equation when ċt
ct
= 0 and consumption for the individual reads

C
e
t = A

s
t [F (xe

, 1, 1)↔ ω
s
x
e] = A

s
tc

e = A
s
c
e
e
gst

,

where c
e = F (xe

, 1.1) ↔ ω
s
x
e is consumption in e”ciency units along the EBGP. Since

the welfare theorems apply to the NGM, the e”cient decentralized equilibrium can be
supported by a competitive equilibrium.

Finally, one can also the derive the constant value of the labor share along an EBGP
in which the superior technology is operating as

↽
e
L =

FN(xe
, 1, 1)

F (xe, 1, 1)

As usual, in the case in which F is Cobb-Douglas with capital intensity ↽, the labor
share reads ↽e

L = 1↔ ↽.
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4 Equilibrium Dynamics

We turn to studying the dynamic monopsonistic equilibrium and use the optimal out-
come as a benchmark. In monopsonistic equilibrium also the inferior technology is
exploited. In light of the results from the optimal growth problem there will be unam-
biguous welfare and misallocative e!ects. We look for a balanced growth path solution
to the model.

Definition 2. A monopsonistic balanced growth path (MBGP) is a solution of the model
with monopsony along which the rate of growth of consumption is constant.

As it turns out, a BGP exists in our model if and only there is balanced growth.
If there is unbalanced growth. there is no exact balanced growth path, but only an
asymptotic balanced growth path.

Definition 3. A monopsonistic asymptotic balanced growth path, or monopsonistic un-
balanced growth path (MUGP) is a solution of the model along which the rate of growth
of consumption is asymptotically constant.

4.1 Balanced Growth

In balanced growth case both technologies grow at the same rate so that gs = g
i = g.

A balanced growth solution exists, as the following theorem formally establishes. The
theorem highlights the interaction of the two sectors with the mechanics of balanced
growth paths, and also how and why balanced growth is required for the existence of
MBGP.

Theorem 1. Under balanced growth, there exists a unique MBGP. Along this solution
consumption grows at rate g,

Ċt

Ct
= g .

Both sectors operate in equilibrium, xs
t and x

i
t are constant and pinned down by

FK(x
s
, 1, 1) = ς+ ω

s + ϑg , GK(x
i
, 1, 1) = ς+ ω

i + ϑg.

Labor in the two sectors is constant, and in particular

n
s =

A
s
FN(xs

, 1, 1)↔ A
i
GN(xi

, 1, 1)

AsFN(xs, 1, 1)↔ AiGN(xi, 1, 1)↔ AiGNN(xi, 1, 1)
↑ (0, 1) , n

i = 1↔ n
s
.

This in turn implies that capital in the two sectors grows at rate g as well,

K̇
s
t

K
s
t

=
K̇

i
t

K
i
t

= g .

Finally, the share of total production produced be each sector is constant, as is the risk
free rate of return, wages grow at rate g, and there are positive profits that grow at rate
g as well.
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Proof. First of all, notice that under balanced growth the fundamental system describing
the evolution of the model written in intensive form is time stationary, as A

s
t and A

i
t

only appear in ratios. The Euler equation (14) implies that if the rate of growth of
consumption is constant, then x

s
t must be constant. Then equation (18) implies that xi

t

is constant as well, which in turn implies through equation (17) that ns
t is constant and

positive under Assumption 1. This implies gn
s

t = g
ni

t = 0. But then equation (19) pins
down the rate of growth of consumption to g. Since x

s
t and x

i
t are constant and labor

in the two sectors is constant as well, it must be that capital grows at rate g as well.
Finally, the share of production produced by each sector depends on x

s
t , x

i
t,

ns
t

ni
t
and As

t

Ai
t

only, which are all constant along a MBGP; furthermore the rate of return depends only
on x

s
t , while wages and profits, once x

s
t and x

i
t are constant, grow with A

i
t and A

s
t .

Because of monopsonistic power in the superior sector, at equilibrium both tech-
nologies are up and running. The arbitrage condition in the labor market is binding
and at the marginal amount of labor ns the individual is indi!erent between working in
the market with the superior technology or working with the inferior technology. The
monopsonistic firm - in turn - makes positive profits driven by the wedge between the
marginal product of labor and wage paid to the worker. Even though both technologies
are operated at the MBGP, the more superior (in terms of As

> A
i) sector s is, the

bigger the share of labor it employs, as the following corollary states.

Corollary 1. The following asymptotic result holds.

lim
As

Ai ↗↔
n
s = 1 .

The study of convergence of equilibrium paths toward the the balanced growth path
is traditional in growth theory. The economy starts with a capital allocation K

s
0 > 0

and K
i
0 > 0. Yet, capital is perfectly mobile across sectors and the marginal condition

along the equilibrium path is coherent with an instantaneous reallocation of factors
across sectors. The question is whether such initial allocation converges toward the
balanced growth path characterized in Theorem 1. We are able to establish first of all
that this is the case if the technological ratio is su”ciently high. Then, we derive a
su”cient condition under which the MBGP is saddle path stable under Assumption 1 if
the two sectors operate with Cobb-Douglas production with coe”cient ↽ on capital in
the superior sector and ⇀ in the inferior sector, with obviously ↽, ⇀ ↑ (0, 1)

Theorem 2. If the technological ratio As

Ai is su!ciently high, then the MBGP is locally
saddle path stable. Under the assumption that

F (Ks
t , N

s
t , A

s
t) = (Ks

t )
ϑ(As

tN
s
t )

1↑ϑ

and
G(Ki

t , N
i
t , A

i
t) = (Ki

t)
1↑ϖ(Ai

tN
i
t )

ϖ
,
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if
↽⇀(ωi ↔ ω

s)↔ (1↔ ↽↔ ⇀)(ς+ ω
s + ϑg)

then the MBGP is locally saddle path stable.

The proof is in appendix.

4.2 Unbalanced Growth

We now study a situation of unbalanced growth, in which productivity in the superior
sector grows permanently faster than productivity in the inferior sector. In this case
the equilibrium allocation is called asymmetric balanced growth, in line with the struc-
tural change model of Acemoglu and Guerrieri (2008). In asymptotic balanced growth
there is a permanent transition that converges to a well defined and fully characterized
equilibrium.

Theorem 3. Under unbalanced growth, there exists a unique MUBP. Along this solution,
consumption asymptotically grows at rate g

s,

lim
t↗↔

Ċt

Ct
= g

s
.

Both sectors operate at all times, and the limiting values limt↗↔ x
s
t = x

s and limt↗↔ x
i
t =

x
i are defined by

FK(x
s
, 1, 1) = ς+ ω

s + ϑg
s
, GK(x

i
, 1, 1) = ς+ ω

i + ϑg
s
.

Labor in the superior sector converges to one, and labor in the inferior sector converges
to zero, where

lim
t↗↔

ṅ
i
t

n
i
t

= g
i ↔ g

s
.

This in turn implies that

lim
t↗↔

K̇
s
t

K
s
t

= g
s
, lim

t↗↔

K̇
s
t

K
s
t

= 2gi ↔ g
s
.

Finally, the share of total production by sector s converges to one, while the risk free rate
is asymptotically constant, wages asymptotically grow at rate g

i, while profits asymptot-
ically grow at rate g

s.

The proof is in appendix.
Notice that the rate of growth of capital in the inferior sector, 2gi ↔ g

s can be either
positive or negative depending on model parameters. In the former case, even though
labour in the inferior sector decreases to zero, it is optimal to accumulate capital as the
unbalance between the two sectors is not too big. In the latter case, in the end all capital
is allocated to the superior sector. However this is only a limit result, and both capital
and labor in the inferior sector remain strictly positive at all times.
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Despite a structural productivity gap between the two sectors, the presence of monop-
sonistic power in the superior sector implies that is optimally to keep operating the
inferior sector along a permanent transition, in which only at the limit the superior
sector produces all output. The unbalanced equilibrium has also important implica-
tions for wage dynamics, with a permanent di!erence between the growth of wages and
productivity in the superior sector. This - in turn - has dramatic implications for the
distribution of income between factors of production. There is a permanent fall in the
labor share that tends to zero.

We also study the process of convergence towards the asymptotic path. We establish
that there is saddle path stability for given initial conditions K

s
0 and K

i
0 regardless of

the shape of the production functions.

Theorem 4. The unbalanced growth system is locally saddle path stable.

The proof in in Appendix.

5 The Consequences of Monopsony on Growth

This section focuses on the the relevance of monopsony for economic growth. We high-
light how the macroeconomic predictions of our (asymptotic) balanced growth solutions
di!er from those of the standard NGM. We first highlight the misallocative e!ects of
monoposny, linked to the use of the inferior technology in equilibrium. We then show
that monopsony has an impact on the labor share consistent with recent empirical find-
ings (Karabarbounis, 2024). In section 6 we highlight a further misallocative e!ects of
monopsony when the model account for endogenous labor supply.

5.1 Welfare Loss and Misallocative E”ects

The di!erent structure of the economy between the optimal path and the monopolistic
equilibria (namely, that the inferior sector operates only in the monopsonistic case)
suggests the existence of potentially sizeable allocative e!ect in general equilibrium,
and most likely a welfare loss. Indeed, standard economic theory predicts that in a
single factor market, monopsony involves a static welfare loss in the spirit of Robinson
(1969). Our model extends those prediction to general equilibrium with a representative
agent. Figure 2 provides a graphical visualization of the size of misallocation in a general
equilibrium setting. The figure plots the marginal product of the superior and inferior
sectors (respectively FN(.) and GN(.) with respect to total employment in the economy.
Since the marginal product FN is larger than GN for any employment level, the Figure
shows that a measure of the e”cient allocation is given by the integral below the marginal
product FN over the entire labor force, since only one sector is exploited in equilibrium.
In a monopsonistic equilibrium the size of the superior sector is ns < 1, and thus the
general equilibrium involves also the production obtained with the inferior technology
given by the are below the inferior productivity GN . As a result, the Figure naturally
shows that the misallocation in the trapezoid plotted with horizontal and oblique lines.
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The first e!ect we derive analytically concerns the level of consumption in the bal-
anced equilibrium, as this simple proposition shows.

Proposition 1. Given an initial stock of capital, the level of consumption C
m
t in mono-

posonistic balanced equilibrium (MBGP) is lower than the e!cient level Ce
t at any t,

while their ratio is constant. When As

Ai ≃ ⇐, the level of consumption C
m
t tends to

the e!cient level Ce
t . A monopsonistic unbalanced equilibrium (MUGP) asymptotically

features no consumption loss, as Cm
t

Ce
t
≃ 1.

The proof is in Appendix. While welfare depends only on consumption when hours
worked are fixed, we also study analytically the e!ect of monopsony on the level of GDP.
The appendix shows that -in balanced growth- the ratio of production with monopsony
to production in optimal growth is constant and that when the fraction of the initial
productivity tends to infinity, the fraction of the two GDP tends to one, so that As

Ai ≃ ⇐
implies that Y m

t
Y e
t
= n

s + Ai

As
ni

ns
G(xi,1,1)
F (xs,1,1) ≃ 1. Yet, for low values of the initial productivity

ratio, the fraction of GDP can also be greater than one, because of the curvature of
marginal productivities of capital. Yet, this “production surplus” is depleted in depre-
ciation, leading to the presence of consumption loss as above. In unbalanced growth,
again along any path Y m

t
Y e
t
≃ 1.

While the welfare loss may depends on the actual shape of the utility function, we
have a proposition for the case of CES with parameter ϑ.

Proposition 2. Under Assumption 1 and CES utility with parameter ϑ there is a welfare
loss for any finite ratio As

Ai , so that Um
< U e. However, the welfare loss disappears as

sector s increases its superiority, so that limAs

Ai ↗↔ Um = U e.

This follows immediately from utility depending on consumption only.
While the two propositions on consumption and welfare provide analytical results,

the question of their relevance is a quantitative one. Since the model is parsimonious, it
is possible to provide some basic numerical simulations, using the parameters described
in Table 1. The results of the simulation are reported in Figure 3. The first and the
third panel plot the balanced growth loss of GDP and consumption with respect to the
initial productivity ratio A

s
/A

i. While the results of Proposition 1 suggests that the
consumption loss fall with respect to the initial fraction As

Ai , the quantitative e!ect is
still large. In an balanced growth path consumption is approximately 10 percent lower
than the corresponding value in a Ramsey economy. The loss in GDP is even larger (first
top panel). The top right panel shows also that the loss depends on the employment
share in the superior sector in balanced growth, and the loss is larger the smaller the
share of workers in the monopsonistic sector. The right picture in the bottom panel of
Figure 3, confirms that utility is indeed lower, as suggested by Proposition 2.

While propositions 1 and 2 provide the analytical results in this section with respect
to balanced growth case, it is not possible to derive a closed form expression for welfare
with unbalanced growth. We can instead simulate the dynamic path of a monopsonistic
equilibrium versus an e”cient Ramsey. Some e!ects are worth mentioning, especially
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Parameter/Function Symbol Fixed Labor Supply End. Labor Supply
Bal. Unb. Bal. Unb.

Technology
Sup. Technology F (Ks)ω(AsLs)1→ω

Capital share ω 0.3 0.3 0.3 0.3
Initial Tech Level As 2 2 2 2
TFP growth gs 0.02 0.02 0.02 0.02
Depreciation Rate εs 0.1 0.1 0.1 0.1
Inferior Technology G() (Ki)1→ε(AiLi)ε

Capital Share 1↔ ϑ 0.2 0.2 0.2 0.2
Initial Tech Level Ai 0.6 0.6 0.6 0.6
TFP growth gi 0.02 .005 0.2 0.005
Depreciation Rate εi 0.1 0.1 0.1 0.1

Preferences
Discount Rate ϖ 0.02 0.02 0.02 0.02
CES Parameter ϱ 2 2 2 2
Cost of Labor ς 0 0 1.5 1.5
Frisch Elasticity φ 0 0 2 2

Table 1: Parameter Values Used in Simulations

the dynamics of ns
t toward 1 and the absence of the inferior technology. The simulation

use the shooting algorithm proposed by Sargent and Stachursky (2024) applied to our
model as indicated in Appendix. Figure 6 visualizes the distortion in consumption and
output in unbalanced growth and compares it to the balanced growth case. In the case
of unbalanced growth, the average fall in consumption is around 5 percent while the
average fall in GDP is around 9 percent.

( Insert Figure 2 here)

( Insert Figure 3 here)

( Insert Figure 4 here)

( Insert Figure 5 here)

( Insert Figure 6 here)

5.2 Growth and Level E”ects on the Aggregate Labor Share

The presence of monopsonistic power at equilibrium has also important implications
for the distribution of income between factors of production. We begin our analysis by
characterizing the behavior of the sectoral labor share of the superior sector.

Proposition 3. At time t, the share of production of the superior sector that is paid in
wages (or the sectoral labor share of sector s) is

↽
s
L,t =

w
s
tn

s
t

Y
s
t

=
A

i
tGN(xi

t, 1, 1)

A
s
tFN(xs

t , 1, 1)
.
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The sectoral labor share is constant along a MBGP in balanced growth, and equal to

↽
s
L =

A
i
GN(xi

, 1, 1)

AsF (xs, 1, 1)
,

which is strictly less than the labor share in the e!cient case in which only the superior
sector operates, since

↽
s
L =

A
i

As

Gh(xi
, 1, 1)

F (xs, 1, 1)
<

FN(xe
, 1, 1)

F (xe, 1, 1)
= ↽

e
L .

If there is unbalanced growth, the sectoral labor share along a MUBP asymptotically
decreases to zero and

lim
t↗↔

↽̇
s
L,t

↽
s
L,t

≃ g
i ↔ g

s
.

Thus, along the MBGP of the model with balanced growth wages grow at rate
g, exactly as (exogenously growing) TFP. Yet, the presence of positive profits in the
monopsonistic market implies a permanent change in the allocation of income between
labor and capital with respect to the e”cient equilibrium. This is linked to the fact
that part of the productivity of labor is now accrued to capital in forms of profits. This
downward shift in the labor income is the level e”ect of monopsony on the labor share.
With unbalanced growth, the e!ect becomes even stronger, and the wage share declines
to zero as profits increase to absorb the total value of the marginal productivity of labor.
This is the growth e”ect of monopsony on the labor share.

The labor share has received great attention in macroeconomics in recent years,
notably because of the empirically robust finding of a downward trend in its value
(Karabarbounis, 2024). Proposition 3 can clearly rationalize the recent evidence. Before
proceeding however, we need to acknowledge that while the concept of the labor share
of the sector that use the superior technology is well defined, we still miss a precise
definition of the aggregate labor share. As a result, we need to be precise about what
is e measure of GDP in the model and what is the empirical counterpart of the inferior
sector.

There are two possible interpretations: the inferior technology can either be home
production or a formal producing sector. In presenting the model, we argued that when
the individual operates with the alternative technology, she has direct access to the
marginal products of labor and capital. The home production interpretation appears
thus natural, and in this case the access to the inferior technology does not require formal
markets. In the alternative interpretation, the use of the inferior technology is organized
as a formal sector in which both the labor market and the capital market are competitive.
Also in this case she earns the marginal productivity of production. According to this
alternative interpretation, the aggregate labor share measured in the data should include
also the labor share of the inferior sector. Yet, as we discuss and show in this section,
the growth and level e!ects results are robust to both interpretations.
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Formally, we can always define the notion of a abor share in the inferior sector as

↽
i
L,t =

GN(xi
t, 1, 1)

G(xi
t, 1, 1)

.

Using the definition of ↽i
L,t, alongside the concept of ↽

s
L,t and of the e”cient labor share

from the optimal growth problem ↽
e
L (which is always time independent), and defining

⇁
s
t =

Y
s
t

Y
s
t + Y

i
t

to be the share of total production produced by the sector operating the superior tech-
nology at time t, we have

↽
m
L,t =

{
↽
s
L,t if sector i is home production

⇁
s
t↽

s
L,t + (1↔ ⇁

s
t)↽

i
L,t if sector i is a pure competitive labor market

The following proposition follows.

Proposition 4. In the balanced growth case, the labor share is constant along any
MBGP. If sector i is home production, then the labor share is lower than the share
in the optimal growth problem. If, conversely, sector i is organized as a formal market,
than the labor share is less than the optimal case if the two sectors produce with the same
production function. In general, the labor share is higher as long as the production share
of the superior sector is su!ciently large.

In the unbalanced growth case instead, limt↗↔ ⇁
s
t = 1, so that we have the following.

Proposition 5. In the unbalanced growth case, the wage share of the economy converges
to zero regardless of the organization of sector i.

The results in Propositions 4 and 5 can be illustrated with the help of a simple
diagram, as we do in Figure 7. The top panel plots the evolution of the labor share
along the dynamic equilibrium path in the case of balanced growth. With a simple
Cobb-Douglas production function with a coe”cient ↽ = .3 on capital, the optimal
growth implies a constant labor share at the level ↽e = .7 along the entire path. In the
case of monopsonistic equilibrium, the labor share falls during the transitional dynamics,
but eventually stabilise at a level that is significantly lower than in the e”cient. As
argued above, the actual value of the labor share depends on the interpretation to the
second sector. In the Figure, it is clear that in the interpretation of home production
for the technology i, the level is lower than in the interpretation of the competitive
inferior sector level, but in any case the labor share is simulated approximately appear
50 percent lower than the e”cient case. The bottom chart of Figure 7 plots instead
the dynamics of the labor share in the unbalanced growth equilibrium. The labor share
monotonically tends to zero both in the case of home production as in the case of a
competitive inferior sector.6

6The non-monotonic dynamics close to the end of the time horizon of the simulation is due to the
fact that we perform turnpike simulations at a finite horizon.
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Note also that the unbalanced growth equilibrium is somewhat consistent with the
existing evidence of a TFP di!erential growth between home production and home
production, as documented by Bridgman (2016). In this respect, the empirical findings
of a negative time trend in the labor share- as documented by Karabarbounis (2024)-
appears consistent with our unbalanced monopsonistic equilibrium.

( Insert Figure 7 here)

6 Growth with Endogenous Labor Supply andMonop-
sony

We now study the full model with endogenous labor supply. This extension is important
along three dimensions: first, we show that the monopsonistic model can easily account
for the recent empirical evidence on the long run decline of hours worked; second, we
show that as a consequence of the downward pressure on wages caused by the existence
of monopsony, the model with unbalanced growth can generate declining hours worked
even when income and substitution e!ects cancel each other in the class of preferences in
Boppart and Krusell Boppart and Krussel (2020); third, we highlight a further amplifica-
tion e!ect in the missallocative e!ect of monopsony, since we show that over and beyond
the distrotionary e!ects on factor allocation outlined above, the presence of monopsony
induces also a reduction of labor supply with respect to an optimal growth model.

In the rest of this section we highlight the main innovation in the model when labor
supply is endogenous, and we also look at optimal growth with endogenous labor supply
and declining hours worked as a antural benchmar. The details of the derivation are left
to the appendix.

6.1 Generalized Model

The innovation of the generalized model is that we now work with the intraperiod utility
function specified in equation (1) with ϱ > 0 and the and agents solve

max
{Ct,At,Ki

t ,ht,ns
t ,n

i
t}t↑0

∫ ↔

0

e
↑εt

[
C

1↑ω
t ↔ 1

1↔ ϑ
↔ ϱ

h
1+ 1

ε
t

1 + 1
ϱ

]
dt

s.t. Ct + Ȧt + K̇
i
t = wtnt + rtAt + #t + φtn

i
t + ↼tK

i
t

n
s
t + n

i
t = ht , n

s
t , n

i
t → 0 , ht ↓ 1 , At → 0 , K

i
t → 0

The firm problem is identical to the fixed labor supply case. As before, we define
K̇

i
t = q

i
t in the current value Hamiltonian. The first order condition reads (substituting

out ni
t = ht ↔ n

s
t).
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Ċt

Ct
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rt ↔ ς

ϑ

ψ(ht)
1
ε = C

↑ω
t wt (20)

ψ(ht)
1
ε = C

↑ω
t φt (21)

rt = ↼t

Ct + Ȧt + K̇
i
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s
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s
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i
t
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t↗↔

e
↑εt

u
→(Ct)At = lim

t↗↔
e
↑εt

u
→(Ct)K

i
t = 0

where the new relevant first order conditions are (20) and (21). Along the optimal
path, the agent solves an intratemporal labor supply problem along which the marginal
disutility of labor ψ(ht)

1
ε is equal to the wage in the superior and in the inferior sector.

From equations (20) and (21) it immediately follows that wt = φt, so the fundamental
arbitrage condition in the labor market continues to hold, as well as the condition on
the capital market.

Imposing equilibrium exactly as before, we find the following fundamental system

Ċt
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FK(Ks
t , n

s
t , A

s
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s ↔ ς
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FN(K
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s
t , n

s
t , A

s
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s
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i
t)↔ ω

i
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i
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where (22) is the equilibrium intratemporal labor supply problem. Indeed, the model
has now an additional endogenous variable ht. We can rewrite the system in e”ciency
units as before and find
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n
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Before characterizing the equilibrium, we look again at the optimal growth problem.

24



6.2 Optimal Growth with Endogenous labor Supply

In the optimal growth problem the planner again chooses to operate just with the supe-
rior secotr.

Lemma 2. Under Assumption 1, sector s operates in the optimal growth solution with
endogenous labor supply.

The system of di!erential equations equations governing the evolution of the model
in e”ciency units simplifies to

ċt

ct
=

FK(xe
t , 1, 1)↔ ω

s ↔ ς

ϑ
↔ g

s ↔ g
h
t (27)

ψ(ht)
1
ε+ω = c

↑ω
t (As

t)
1↑ω

FN(x
e
t , 1, 1) (28)

ct + ẋ
e
t = F (xe

t , 1, 1)↔ (ωs + g
s + g

h
t )x

e
t (29)

Boppart and Krussel (2020) show that this system displays an EBGP solution in which
both consumption and hours worked to grow at constant rates, which are equal to7

g
h =

1↔ ϑ

1
ϱ + ϑ

g
s
, g

C = g
K =

1
ϱ + 1
1
ϱ + ϑ

g
s
.

As Boppart and Krussel (2020) show the EBG requires the coe”cient ϑ be greater than
one.

6.3 Equilibrium Dynamics

We now extend the definitions of balanced growth path and asymptotic balanced growth
path to the case with endogenous labor supply.

Definition 4. A monopsonistic balanced growth path (MBGP) with endogenous labor
supply has constant rates of growth of consumption and hours worked. A monopson-
istic unbalanced growth path (MUGP) with endogenous labor supply has asymptotically
constant growth of consumption and hours worked.

As in the model solved in section 3, a MBGP exists if an only if there is balanced
growth, while in the case of unbalanced growth we can characterize a MUGP. In balanced
growth, we again denote g

s = g
i = g.

7To derive this results, notice that the Euler equation (27) implies xe
t constant (and determines its

value) when Ct grows at a constant rate. Then the budget constraint (29) implies that ct is constant.
Now di!erential with respect to time (28) to find the rate of growth of hours worked. The crucial step
is that ct being constant implies gC = gs + gh, from which we can recover the rate of growth of Ct.
Notice that once xe is pinned down by FK(xe, 1, 1) = ϖ+ εs + ϱgC , ce = F (xe, 1, 1)↔ (εs + gC)xe. In
turn this implies a well defined initial value for ht, he

0 = (ce0)
→ϑ(As)1→ϑFN (xs, 1, 1).

25



Theorem 5. Under balanced growth, there exist a unique MBGP. Along this solution,
the growth rates of consumption and hours worked are

Ċt

Ct
= g

C =
1
ϱ + 1
1
ϱ + ϑ

g ,
ḣt

ht
= g

h =
1↔ ϑ

1
ϱ + ϑ

g .

Both sectors operate: x
s
t and x

i
t are constant and pinned down by

FK(x
s
, 1, 1) = ς+ ω

s + ϑg , GK(x
i
, 1, 1) = ς+ ω

i + ϑg ,

while share of labor employed by the two sectors is constant, and we define
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n
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and ν > 0, so that

n
s
t =

ν

1 + ν
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i
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ht ,

which implies that the growth rate of labor in the two sectors is constant and equal to
that of total hours worked,

g
ns

= g
h
, g

ni
= g

h
.

This in turn implies that capital in the two sectors grows at rate g
C as well,

K̇
s
t

K
s
t

=
K̇

i
t

K
i
t

= g
C
.

Finally, the share of total production produced be each sector is constant, as is the risk
free rate of return, wages grow at rate g, and there are positive profits that grow at rate
g
C.

We illustrate the growth rates in the economy and the dynamics of hours worked in
the two sectors under balanced growth in Figure 8.

( Insert Figure 8 here)

Theorem 6. Under unbalanced growth, there exists a unique MUBP. Along this solution,
the asymptotical growth rates of consumption and hours worked are

lim
t↗↔

Ċt
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s + g
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Both sectors operate at all times, and the limiting values limt↗↔ x
s
t = x

s and limt↗↔ x
i
t =

x
i are defined by
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s
.
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The ratio of labor in the superior sector to labor in the inferior one goes to infinity,
νt ≃ ⇐, so that

n
s
t

ht
≃ 1 ,

n
i
t

ht
≃ 0

and
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t↗↔

ṅ
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s
t
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This in turn implies that
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s
t

= g
C
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t↗↔

K̇
s
t

K
s
t

= g
C
↔ + 2(gi ↔ g

s) ,

so that the rate of accumulation of capital in the inferior sector can be either positive or
negative. Finally, the share of total production produced by sector s converges to one,
while the risk free rate is asymptotically constant, wages asymptotically grow at rate g

i,
while profits asymptotically grow at rate g

C
↔.

Remark 1. Notice that in the model with monopsony and unbalanced growth, hours
worked decline if and only if gi ↔ ϑg

s
< 0, which is a requirement less strict than the

optimal growth case ϑ > 1, so that it is possible that, while it would be optimal to keep
hours worked constant (ϑ = 1) the market equilibrium outcome implies that hours decline
at a constant rate. This is due to the fact that monopsony power keeps wages low, while
the marginal utility of consumption decreases to the presence of profits, generating an
income e”ect that overweights the substitution e”ect.

The results on the labor share derived in the model with fixed labor supply general-
ized straightforwardly to the model with endogenous supply, so that is there is balanced
growth, the labor share is constant and depends in the interpretation of the inferior
sector, be it home production or a formally organized sector. With unbalanced growth,
the labor share declines to zero.

6.4 Misallocative E”ects on Consumption and Hours with En-
dogenous Labor Supply

Similarly to the analysis carried out for the model with exogenous labor supply, we can
now study the misallocative e!ects of monopsony when labor supply is endogenously
determined. In balanced growth the growth rates are the same in the monoposonistic
and in the optimal equilibrium, yet the loss in the levels of GDP and consumption
increases in the ratio of the productivity levels, as the following proposition shows.

Proposition 6. In the balanced growth path with falling hours, the output and con-
sumption losses are constant over time, the consumption loss is always positive, and
both losses tend to one when As

Ai ≃ ⇐. In unbalanced growth, along any path the instan-
taneous losses tend to one.
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The proof is in Appendix. The result of Proposition 6 suggests that in the case of
endogenous labor there is an amplification e!ect with respect to the fixed labor supply
case. This is most likely linked to the e!ect of monopsony on the long run choice of
hours, as we now illustrate.

Proposition 7. Hours worked in the monopsonistic balanced growth path are always
di”erent than the e!cient level, and the distortion increases as the technological ratio
increases. When the utility function is given by equation (1), the welfare loss is increasing
in the productivity ratio A

s
/A

i
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where x
s and x

i are pinned down by the Euler equation. As As

Ai ≃ ⇐, we know
that ν ≃ ⇐. This implies that c

m ≃ c
e, which was is exactly the force behind the

disappearance consumption loss in the fixed supply case. It is also true then that
limAs

Ai ↗↔ C
m
0 = c

e
A

s limAs

Ai ↗↔ h
m
0 . However, hours worked do di!er between the op-

timal and monopsonistic case, and this distortion gets worse as the technological ratio
increases. To see this, consider fixing A

s and let Ai increase. This case is particularly
sharp in that h

e
0 remains constant while h

m
0 shrinks to zero. Alternatively, we can fix

A
i and let As increase, and notice that he

0 changes with (As)
1→ω
1
ε+1 , while hm

0 changes with

(As)
↑ ω

1
ε+1 . The details on the proof on the utlity are left to the Appendix.

The e!ects discussed in this section are illustrated quantitatively in the simulations
performed in Figure 9, which relies on the parameters specified in Table 1. The charts
in the left panels illustrate the results of Proposition 6, and show the sizeable and GDP
and consumption loss that increases with the productivty ratio A

s
/A

i. Interesting, the
second chart in the left shows that the consumption in e”ciency units does converge to
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the corresponding e”cient level, excatly as in the case of fixed labor supply. This clearly
indicate that the total e!ect in the level of GDP and consumption must be associated to
the change in total hours worked. This is illustrated in the right panel of Figure 9. The
total hours in balanced growth fall relative to the Ramsey outcome. The reason for this
e!ect is an income e!ect due to the presence of monoposny and its e!ect on wages. While
it is not possible to obtain closed form expressions for welfare with unbalanced growth.
However, the intuition described above carries through, and welfare loss is greater in the
case of unbalanced growth with endogenous labor supply.

( Insert Figure 9 here)

7 Discussion and Conclusions

The Neoclassical Growth Model is the key workhorse model in macroeconomics and
it is the basic of the contemporary economics of growth. As a natural starting as-
sumption, the model assumes that all products and factor markets are competitive. In
the economics of growth, since the seminal contributions of Romer (1990) and Aghion
and Howitt (1992), the introduction of monopolistic power in the intermediate markets
turned out to be a key factor for understanding endogenous technological progress and
incorporating increasing returns to scale in standard models. In recent years, interest in
long run labor supply has been surging, mostly thanks to the contribution of Boppart
and Krussel (2020) and to the observation that models of balanced growth need to incor-
porate declining hours worked in the long run. Despite this interest in the labor market,
standard growth theory has devoted very little e!ort on labor market imperfections in
the standard growth model.

This paper argued that that ignoring monopsonistic power in the labor market is not
a harmless assumption. The secular decline of the labor share -observed, among others,
by Karabarbounis (2024)- is not easily accounted for by standard models of growth. In
the theory presented, the representative firm hires labor in a classical monopsonistic
market a la Robinson (1969), and set wages to match the marginal productivity in an
alternative use of time available to the representative individual. Even though profits are
ex post rebated to the individuals, the resulting equilibrium allocation has important
positive and normative e!ects. From the positive standpoint, the model can account
for both “level” and “growth” e!ects in the labor share. If productivity growth in the
main superior sector and in the alternative sector are identical, the labor share is still
constant in balanced growth, yet it is permanently lower than the corresponding labor
share level obtained by optimal growth models à la Cass (1965) and Koopmans (1965).
Further, if the productivity of the superior sector grows permanently faster than the
productivity of the inferior sector, the labor share features permanent downward trend
and even tends to zero in the asymptotic balanced equilibrium. These results certainly
depend on the assumption that monopopsny operates in the superior sector. Indeed, if
the monoposnistic market were in the inferior technology, our optimal growth problem

29



suggests that in such case there would not be any monopsony in the economy, as the
superior sector would hire the entire labor force.

From the normative standpoint, the equilibrium n of the monopsonistic long run
equilibrium implies a significantmisallocation of factors of production and welfare loss,
over and beyond the standard short run welfare loss emphasized by the classical textbook
monopsony introduced by Robinson (1969). In response to the presence of monopsony
in the labor market, the economy operates with an inferior technology that would not be
exploited by an optimal growth context. As a consequence, the representative individ-
uals enjoys lower long run consumption level and lower capital accumulation than the
corresponding individual in an optimal growth model. In simple back of the envelope
simulations, the steady state welfare loss and the GDP loss can easily be of the order of
20 percent with respect to a NGM.

Allowing for endogenous labor supply, in line with the long run labor supply regu-
larities pointed out by Boppart and Krussel (2020), opens up further long run e!ects of
monopsony and the basic misallocative results outlined above turns out to be amplified.
Indeed, when monopsony is persistent and long standing, the representative individual
reduces her endogenous work e!ort and her long run labor supply. The e!ects of welfare
become thus even stronger.

While the paper has potentially opened up a new wave of studying the interaction
between imperfect labor markets, capital accumulation and long run growth, much re-
mains to be done. First, it is necessary to provide a quantitative assessment of the long
run model presented. This require tacking a strong stance on what the inferior tech-
nology stands for in real life economies, and whether it represent home production or a
competitive fringe in the formal sector. That was not the goal of this paper. Our styl-
ized theory is compatible with both intepretations. Further, the model can incorporate
many of the insights of modern monopsony, particularly in the age of wage inequality, as
recently surveyed by Manning (2021). Finally, the link between monopoly in endogenous
growth model and monopsony in imperfect labor market is likely to be important. As
mentioned in the literature review, Garibaldi and Turri (2024) take up some of these
issues.
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Appendices

A Assumption 1

Let

ε
1 =

GN(GK(·, 1, 1)↑1(ϑgs + ς+ ω
i), 1, 1)

FN(FK(·, 1, 1)↑1(ϑgs + ς+ ωs), 1, 1)

and

ε
2 =

G(GK(·, 1, 1)↑1(ϑgs + ς+ ω
i), 1, 1)↔ (ωi + g

s)GK(·, 1, 1)↑1(ϑgs + ς+ ω
i)

F (FK(·, 1, 1)↑1(ϑgs + ς+ ωs), 1, 1)↔ (ωs + gs)FK(·, 1, 1)↑1(ϑgs + ς+ ωs)
> 0 .

We define ε = max{ε1
,ε

2}.
The intuitive reason why we need this assumption is to ensure that the superior sector

is operated at an equilibrium featuring monopsonistic power and that a central planner
that can dispose of monopsony would want to operate it. In this sense, Assumption 1
ensures that s is indeed ”superior” and justifies our labelling of the two sectors. In the
special case in which F = G and ω

s = ω
i, then simply ε

1 = ε
2 = 1. The reason why

A
s
> A

i is sometimes needed, or we can at times allow for A
s
< A

i, is that di!erent
depreciation rates or shapes of the production functions are intuitively important as well
as the TFP level when determining which sector is superior.

In practice, the assumption above is not particularly restrictive apart from matching
the superior sector to the one that enjoys monopsony power. If gs = g

i, and A
s
<

max{ε1
,ε

2}Ai we can relabel the two sectors. If gs > g
i, then it is eventually true that

A
s → εA

i whatever the initial values.

B Model with Exogenous Supply in E!ciency Units

In line with traditional NGM it turns out to be simple to characterize the equilibrium
in terms of variables in e”ciency units. The subtle issue is that in the model there two
di!erent TFP factors and that labor in the superior and inferior sector (thus n

s
t and

n
i
t = 1↔ n

s
t respectively) are equilibrium quantities. We thus define

k
s
t =

K
s
t

A
s
t

, k
i
t =

K
i
t

A
i
t

, c̃t =
Ct

A
s
t

,

where capital in the superior sector and total consumption are defined with respect to
TFP in the superior sector, while capital in the inferior sector is defined with respect to
TFP level in the inferior sector.
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The system of equations then becomes

˙̃ct
c̃t

=
FK(ks

t , n
s
t , 1)↔ ω ↔ ς

ϑ
↔ g

s

A
s
tFN(k

s
t , n

s
t , 1) = A

i
tGN(k

i
t, 1↔ n

s
t , 1)↔ A

i
tGNN(k

i
t, 1↔ n

s
t , 1)n

s
t (30)

FK(k
s
t , n

s
t , 1)↔ ω

s = GK(k
i
t, 1↔ n

s
t , 1)↔ ω

i

c̃t + k̇
s
t + k̇

i
t

A
i
t

A
s
t

= F (ks
t , n

s
t , 1)↔ (ωs + g

s)ks
t + [G(ki

t, 1↔ n
s
t , 1)↔ (ωi + g

i)ki
t]
A

i
t

A
s
t

were we made extensive use of the homogeneity properties of F and G.

C Proofs

C.1 Proof of Theorem 2

Proof. We first of all prove that the system is saddle path stable under general technology if the
technological ratio is su”ciently high.

For sake of readability, we suppress the time index and let F and its derivatives be evaluated at
(xs, 1, 1) and G and its derivatives be evaluated at (xi, 1, 1).

Using the intratemporal labor and capital arbitrage equations (17) and (18) (notice that (17) is
independent of time as it depends on the technological ratio only), we can use the Implicit Function
Theorem to express ns and xi as functions of xs. In fact write

#(xs, ns, xi) =

(
AsFN ↔Ai


GN ↔ ns

1→nsGNN



FK ↔ εs ↔GK + εi



Then the Jacobian with respect to (ns, xi) is

J̃! =

(
1

(ns)2GNN ↔Ai

GNK ↔ ns

1→nsGNNK



0 ↔GKK



so that detJ̃! ↘= 0 for all values of parameters and thus we can apply the Implicit Function Theorem.
Then we get

↼xi

↼xs
=

FKK

GKK

and

↼ns

↼xs
=

1↔ ns

GNN


(1↔ ns)

As

Ai
FNK ↔ FKK

GKK
((1↔ ns)GNK ↔ nsGNNK)


=

=
1↔ ns

GNN
[(1↔ ns)GN ↔ nsGNN ]


FNK

FN
↔ FKK

GKK



Now notice that ϖns

ϖxs ≃ 0 as ns ≃ 1, which is implied by As

Ai increasing. Also notice that

ẋi =
↼xi

↼xs
ẋs , ṅs =

↼ns

↼xs
ẋs ,

32



so that we can write the dynamical system

(
ċ
ẋs

)
=

(
$1(c, xs)
$2(c, xs)

)
=

(
c
[
FK→ϱs→ς

ϑ ↔ gs ↔ 1
ns

ϖns

ϖxs (1 + X (xs))→1
]
(↔c+ ↽(xs))

(1 + X (xs))→1(↔c+ ↽(xs))



where

X (xs) =
1

ns

↼ns

↼xs
+

1↔ ns

ns

Ai

As

(
↼xi

↼xs
↔ 1

1↔ ns

↼ns

↼xs

)
,

and

↽(xs) = F ↔ (εs + gs)xs +
Ai

As

1↔ ns

ns
[G↔ (εi + gi)xi] .

Notice that X (xs) ≃ 0 as ns ≃ 1. We now want to study stability around the point (c↑, xs,↑) where
xs,↑ = FK(·, 1, 1)→1(ϱgs + εs + ϖ) and c↑ = ↽(xs,↑). Then the Jacobian of the system reads

J”(c
↑, xs,↑) =

(
↔ 1

ns
ϖns

ϖxs (1 + X (xs))→1 c→

ϑ FKK ↔ c
ns

ϖns

ϖxs (1 + X (xs))→1↽↓(xs)
↔(1 + X (xs))→1 (1 + X (xs))→1↽↓(xs)

)

so that

detJ”(c
↑, xs,↑) = (1 + X (xs))→1

(
c↑

ϱ
FKK ↔ (1 + c↑)

1

ns

↼ns

↼xs
(1 + X (xs))→1↽↓(xs)

)

But clearly

detJ”(c
↑, xs,↑) ≃ c↑

ϱ
FKK < 0

as ns ≃ 1, so that if the technological ratio is high enough, the system is saddle path stable.
We now turn to saddle path stability under Cobb-Douglas production functions. In this case it is

simpler to use the model equations in terms of ks and ki that we defined in Appendix B. Under the
Cobb-Douglas assumption, from (15) we have

ki

1↔ ns
=

(
1↔ ϑ

ω

ns

ks

1→ω ↔ εs + εi

 1
ω

.

Then (30) can be rewritten as

(1↔ ns)
As

Ai
(1↔ ω)

(
ks

ns

)ω
(
ω

ns

ks

1→ω ↔ εs + εi

1↔ ϑ

 1↑ω
ω

↔ ϑ(1↔ ϑns) = 0

Notice that the derivative with respect to ns of the equation above is

ϑ(1↔ ϑns)

ns

[
↔ω+

(1↔ ω)(1↔ ϑ)

ϑ

ω

ns

ks

1→ω

ω

ns

ks

1→ω ↔ εs + εi
↔ ns

1↔ ns

1↔ ϑ

1↔ ϑns

]
,

and that by substituting that at a BGP ω


ns,→

ks,→

1→ω
= εs+ϖ+ϱg we have by the su”cient condition in

the statement of the Theorem that this derivative is negative. Then by the Implicit Function Theorem
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we have

↼ns

↼ks
= ↔

ϑ(1↔ ϑns)


ω
ks ↔ 1

ks
(1→ω)(1→ε)

ε

ω(ns

ks )
1↑ε

ω(ns
ks )1↑ε→ϱs+ϱi



ε(1→εns)
n


↔ω+ (1→ω)(1→ε)

ε

ω(ns
ks )1↑ε

ω(ns
ks )1↑ε→ϱs+ϱi

↔ ns

1→ns
1→ε

1→εns

 =

=
ns

ks

ωϑ↔ (1↔ ω)(1↔ ϑ)
ω(ns

ks )
1↑ε

ω(ns
ks )1↑ε→ϱs+ϱi

ωϑ↔ (1↔ ω)(1↔ ϑ)
ω(ns

ks )1↑ε

ω(ns
ks )1↑ε→ϱs+ϱi

+ ϑ ns

1→ns
1→ε

1→εns

so that at BGP values

↼ns

↼ks
(ks,↑, ns,↑) =

ns,↑

ks,↑
ωϑ(εi ↔ εs)↔ (1↔ ω↔ ϑ)(ϖ+ εs + ϱg)

ωϑ(εi ↔ εs)↔ (1↔ ω↔ ϑ)(ϖ+ εs + ϱg) + (ϖ+ εi + ϱg)ϑ ns,→

1→ns,→
1→ε

1→εns,→

.

Derive with respect to time the two intratemporal equations to get k̇h = K(ks)k̇s for

K(ks) =
FKK
GKK

↔ FKN+GKN
GKK

FKN
FN

(GN ↔ nsGNN )

1↔ FKN+GKN
GKK

,

and notice that K(ks) > 0. Now write the dynamic system x = (c, k)↓ with ẋ = $(c, k) where

$(c, k) =

(
$1(c, k)
$2(c, k)

)
=

=




c
[
FK(ks,ns(ks),1)→ϱs→ς

ϑ ↔ g
]


1 +K(ks)A

i

As

→1 [
↔c+ F (ks, ns(ks), 1)↔ (εs + g)ks + [G(ki(ks), 1↔ ns(ks))↔ (εi + g)ki(ks)]A

i

As

]





which is an autonomous system. We can then write the Jacobian

Jφ(c
↑, ks,↑) =




0 c→

ϑ

[
FKK + FKN

ϖns

ϖks

]

↔

1 +KAi

As

→1
ϖ”2
ϖks





The system is saddle path stable if there are two eigenvectors of opposite sign, i.e. if the determinant
of the Jacobian is negative. But

detJ” =

(
1 +KAi

As

)→1
c↑

ϱ


FKK + FKN

↼n

↼k



which is negative if and only if
↼n

↼k
(k↑) <

↔FKK

FKN
=

ns,↑

ks,↑
,

which is true under the su”cient condition in the statement of the Theorem.

There is an interesting interplay between the su”cient condition for stability in the Cobb-Douglas
case and Assumption 1. In Assumption 1, As > ⇀1Ai ensures the existence of an interior solution to
the monopsonistic problem in which the superior sector is operated. Then As > ⇀2Ai ensures that it is
indeed optimal to operate sector s in the optimal growth case. In general we need to require both, but
it turn out that As > ⇀1Ai and ωϑ(εi ↔ εs)↔ (1↔ω↔ ϑ)(ϖ+ εs + ϱg) imply As > ⇀2Ai, so that if there
exists an interior solution that is stable, the interior solution delivers higher utility than operating the

34



inferior sector alone. From numerically analysing our model, we observed that there are indeed cases
in which there is a MBGP with ns ↑ (0, 1), which is suboptimal compared to operating sector i only,
but these cases turn out to not to satisfy stability and hence can be unstable, thus not solutions of the
model we might wish to consider.

C.2 Proof of Theorem 3

Proof. Notice first of all that the definition of MUGP and the Euler equation (14) imply that xs
t is

asymptotically constant and determined by the equation in the statement and denote limt↔↗ xs
t = xs.

Then by (18) xi
t converges to a constant as well and denote limt↔↗ xi

t = xi, which is pinned down by

the condition in the statement. Now notice that (17) depends on time through the ratio As
t

Ai
t
and that

ns
t must converge to one, implying gn

s

t ≃ 0, while the growth rate of ni
t, which converges to zero, is

pinned by rewriting (16) as

ni
t = 1↔ ns

t =
↔Ai

tGNN (xi
t, 1, 1)n

s
t

As
tFN (xs

t , 1, 1)↔Ai
tGN (xi

t, 1, 1)

which implies
ṅi
t

ni
t

= gn
i

t ≃ gi ↔ gs .

Then (19) implies that ct is constant where

c = F (xs, 1, 1)↔ (εs + gs)xs ,

which in turn implies that the unique MUGP is such that

lim
t↔↗

Ċt

Ct
= gs .

Since xs
t =

Ks
t

As
tn

s
t
and xi = Ki

t

Ai
tn

i
t
, using the result on gn

i

t above we have

lim
t↔↗

K̇s
t

Ks
t

= gs , lim
t↔↗

K̇i
t

Ki
t

= gi + lim
t↔↗

gn
i

t = 2gi ↔ gs ,

which can be either positive or negative.
To conclude, note that

Y s
t

Y s
t + Y i

t

=
As

tn
s
tF (xs

t , 1, 1)

As
tn

s
tF (xs

t , 1, 1) +Ai
t(1↔ ns

t )G(xi
t, 1, 1)

≃ 1 ,

that rt = FK(xs
t , 1, 1)↔ εs ≃ ϖ+ ϱgs. Also recall that wt = Ai

tGN (xi
t, 1, 1), so that

lim
t↔↗

ẇt

wt
= gi ,

while since %t = ↔Ai
t(n

s
t )

2

1→ns
t
GNN (xi

t, 1, 1)

lim
t↔↗

%̇t

%t
= gi ↔ lim

t↔↗
gn

i

t = gs .
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C.3 Proof of Theorem 4

Proof. For sake of readability we suppress the time index and in the remainder of the proof we leave
implicit that F and its derivatives be evaluated at (xs, 1, 1) and G and its derivatives are evaluated at
(xi, 1, 1). To begin, notice that (18) defines implicitly xi = xi(xs) and we can di!erentiate it to obtain

ẋi =
FKK

GKK
ẋs .

Now di!erentiate with respect to time (17) and get

ṅs = (1↔ ns)Ñ (c, xs, ns, ẋs) ,

for

Ñ (c, xs, ns, ẋs) =
1

GNN


(gi ↔ gs)((1↔ ns)GN ↔ nsGNN )+

+ ẋs


FNK

FN
((1↔ ns)GN ↔ nsGNN )↔ FKK

GKK
((1↔ ns)GNK ↔ nsGNNK)



Now use (19) to obtain

ẋs = (1 + X (xs, ns))→1

[
↔c+ F ↔ (εs + gs)xs +

1↔ ns

ns

FN

GN ↔ ns

1→nsGNN
[G↔ (εs + gi)xi]

]

for

X (xs, ns) =
FKK

GKK

1↔ ns

ns

FN

GN ↔ ns

1→nsGNN
+

(
1↔ ns

ns

1

GNN
+

1↔ ns

ns

1

GNN

FN

GN ↔ ns

1→nsGNN


·

·
(
FNK

FN
((1↔ ns)GN ↔ nsGNN )↔ FKK

GKK
((1↔ ns)GNK ↔ nsGNNK)

)
,

so that we can substitute back ẋs = ẋs(c, xs, n)s and get

ṅs = (1↔ ns)N (c, xs, ns) = (1↔ ns)Ñ (c, xs, ns, ẋs(c, xs, ns))

Now observe that we want to study stability around the point (c↑, xs,↑, 1) where xs,↑ = FK(·, 1, 1)→1(ϱgs+
εs + ϖ) and c↑ = F (xs,↑, 1, 1)↔ (εs + gs)xs,↑ and that

X (c↑, xs,↑, 1) = 0 , N (c↑, xs,↑, 1) = gs ↔ gi .

Write the dynamical system




ċ
ẋs

ṅs



 =




$1(c, xs, ns)
$2(c, xs, ns)
$3(c, xs, ns)



 =





c
[
FK+ϱs+ς

ϑ ↔ gs ↔ 1→ns

ns N (c, xs, ns)
]

(1 + X (xs, ns))→1


↔c+ F ↔ (εs + gs)xs + 1→ns

ns
FN

GN→ ns
1↑ns GNN

[G↔ (εs + gi)xi]



(1↔ ns)N (c, xs, ns)





so that the Jacobian is

J”(c
↑, xs,↑, 1) =





0 c→

ϑ FKK(xs,↑, 1, 1) gs ↔ gi

↔1 ϖ”2
ϖxs (c↑, xs,↑, 1) ϖ”2

ϖns (c↑, xs,↑, 1)

0 0 gi ↔ gs




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Saddle path stability is ensured by the presence of two negative eigenvectors and one positive eigenvector
(since we have to state variables, xs and ns). The determinant of the Jacobian is

detJ”(c
↑, xs,↑, 1) =

c↑

ϱ
FKK(xs,↑, 1, 1)(gi ↔ gs) > 0 .

Then either all eigenvectors are positive or they are one positive and two negative. To see that the
latter is the case, notice that the eigenvectors solve

0 = det





↔⇁ c→

ϑ FKK(xs,↑, 1, 1) gs ↔ gi

↔1 ϖ”2
ϖxs (c↑, xs,↑, 1)↔ ⇁ ϖ”2

ϖns (c↑, xs,↑, 1)

0 0 gi ↔ gs ↔ ⇁




= (gi ↔ gs ↔ ⇁)det



↔⇁ c→

ϑ FKK(xs,↑, 1, 1)

↔1 ϖ”2
ϖxs (c↑, xs,↑, 1)↔ ⇁





so that one of the eigenvectors equals gi ↔ gs < 0 and thus saddle path stability is proved.

D The Allocative E”ects on GDP and Consumption

GDP loss We start our analysis from the balanced growth case g
s = g

i = g. In
order to discuss the e!ects of monopsony on total production comparing to the optimal
growth outcome, notice first of all that balanced growth values are such that x

e = x
s

where FK(xe
, 1, 1) = ϑg + ω

s + ς. Also consider as usual GK(xi
, 1, 1) = ϑg + ω

i + rho.
Production in the optimal growth problem (where the solution of interest is always an
exact balanced growth path) is

Y
e
t = F (Ke

t , 1, A
s
t) = A

s
tF (xe

, 1, 1) ,

while for monopsony we have

Y
m
t = F (Ks

t , n
s
t , A

s
t) +G(Ki

t , n
i
t, A

i
t) = A

s
tn

s
F (xs

, 1, 1) + A
i
tn

i
G(xi

, 1, 1)

where labor employed by the two sectors is again constant along a MBGP. Then we have

Y
m
t

Y
e
t

= n
s +

A
i

As

n
i

ns

G(xi
, 1, 1)

F (xs, 1, 1)
,

so that the ratio of production in the monopsonistic equilibrium to production in optimal
growth is constant along an exact balanced growth path. Notice that for low values of
this ratio can be greater than one (hence no loss, but a surplus) because of the curvature
of marginal productivities of capital. This surplus is however wasted in depreciation, as
we will see in the consumption loss section.

Notice also that
Y

m

Y e
,

A
s

Ai
≃ ⇐ .

So that if the level of productivity of the superior technology is higher, production is
very close.

In the unbalanced growth case, we have instead that the ratio is time varying, and
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that along any path
Y

m
t

Y
e
t

≃ 1 .

Consumption loss In order to study consumption, start again from the balanced
growth case and recall that

C
e
t = c

e
A

s
t = A

s
t [F (xe

, 1, 1)↔ (ωs + g)xe] ,

and that

C
m
t = c

m
A

s
tn

s
t = A

s
tn

s[F (xs
, 1, 1)↔ (ωs + g)xs] + A

i
tn

i[G(xi
, 1, 1)↔ (ωi + g)xi] .

But notice that assumption 1 implies thatAs
t [F (xs

, 1, 1)↔(ωs+g)xs] < A
i
t[G(xi

, 1, 1)↔
(ωi + g)xi], so that Cm

t < C
e
t at all times.

Again Cm
t

Ce
t
is constant in balanced growth and with the property that Cm

t ≃ C
s
t when

As

Ai ≃ ⇐.

In the unbalanced growth case, Cm
t

Ce
t
is time varying and along any path C

m
t ≃ C

s
t .

E Simulation Algorithm

This section describes in details the algorithm we use to simulate our economy in the
case of exogenous labour supply. The simulation use the shooting algorithm proposed
by Sargent and Stachursky (2024) applied to our model. The complicated part is solving
e”ciently the intratemporal side of the economy with the optimal allocation of factors
of production between sectors, which we describe below.

We discretize time with steps dt and index steps by m, so that time at iteration m

is t = mdt, and our model equations to obtain the following.

AmFN(K
s
m, n

s
m, A

s
m) = A

i
mGN(K

i
m, 1↔ n

s
m, A

i
m)↔ n

s
mGNN(K

i
m, 1↔ n

s
m, A

i
t)

FK(K
s
m, n

s
m, A

s
m)↔ ω

s = GK(K
i
m, 1↔ n

s
m, A

i
m)↔ ω

i

Cm+1 ↔ Cm = Cm
FK(Ks

m, n
s
m, A

s
m)↔ ω

s ↔ ς

ϑ
dt

K
s
m+1 +K

i
m+1 = K

s
m +K

i
m +

[
↔Cm + F (Ks

m, n
s
m, A

s
m)↔ ω

s
K

s
m +G(Ki

m, 1↔ n
s
m, A

i
m)↔ ω

i
K

i
m

]
dt

Define technology at iteration m as

A
s
m = A

s
e
gsmdt

, A
i
m = A

i
e
gimdt

Notice that in continuous time and with no bounds on derivatives, Ks and K
i are

optimally allocated at each instant, so we define ▷ = K
s + K

i as the variable to be
carried between periods.

The simulation algorithm proceeds as follows.

38



1. Take as inputs ▷m and Cm.

2. Solve the intratemporal system

K
s
m +K

i
m = ▷m

FN(K
s
m, n

s
m, A

s
m) = GN(K

i
m, 1↔ n

s
m, A

i
m)↔ n

s
mGNN(K

i
m, , 1↔ n

s
m, A

i
t)

FK(K
s
m, n

s
m, A

s
m)↔ ω

s = GK(K
i
m, 1↔ n

s
m, A

i
m)↔ ω

i

subject to K
s
m → 0, Ki

m → 0 and n
s
m ↑ [0, 1], for Ks

m, K
i
m and n

s
m.

3. Obtain

Cm+1 = Cm


1 +

FK(Ks
m, n

s
m, A

s
m)↔ ω

s ↔ ς

ϑ
dt



▷m+1 = ▷m +
[
↔Cm + F (Ks

m, n
s
m, A

s
m)↔ ω

s
K

s
m +G(Ks

m, 1↔ n
s
m, A

s
m)↔ ω

i
K

i
m

]
dt

4. Check whether mdt = T , if not update to m+1 carrying forward Cm+1 and ▷m+1.

We then obtain the optimal C0 via a shooting algorithm using the terminal condition.
There are two transversality conditions in the model with two types of capital in

finite time
µ
A
TK

s
T = 0 , µ

Ki

T K
i
T = 0

where µ
A is the Lagrange multiplier of the budget constraint and µ

Ki
is the multiplier

of K̇i
t = q

i
t. But since the two multipliers must be equal along the solution path and

since K
s → 0 and K

i → 0, we have

µ
A
T (K

s
T +K

i
T ) = 0 ,

so that the transversality condition we use in the solution algorithm is

µ
A
T▷T = 0 .

For the shooting algorithm we also need an upper bound on the initial value of
consumption, which is not trivial since the maximum productivity of the economy is the
result of solving the system of three equations. To find an upper bound for given ▷0,
solve

K
s
0 +K

i
0 = ▷0

FN(K
s
0 , n

s
0, A

s
0) = GN(K

i
0, 1↔ n

s
0, A

s
0)↔ n

s
0GNN(K

i
0, 1↔ n

s
0, A

i
t)

FK(K
s
0 , n

s
0, A

s
0)↔ ω

s = GK(K
i
0, 1↔ n

s
0, A

i
0)↔ ω

i

Then the upper bound is

C
max
0 =

▷0

dt
+ F (Ks

0 , n
s
0, A

s
0)↔ ω

s
K

s
0 +G(Ki

0, 1↔ n
s
0, A

i
0)↔ ω

i
K

i
0 .
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However, solving numerically a system of three equations in three unknowns (subjects
to four inequality constraints) can be costly and lead to errors, so we here derive one
equation in one unknown and bounds that are su”cient to obtain all intertemporal
values, under the Cobb-Douglas production assumption.

For sake of clarity, we suppress the index m. Denote F (K,N,A) = K
ϑ(AN)1↑ϑ and

G(K,N,A) = K
1↑ϖ(AN)ϖ. Define x

s = Ks

Asns and x
i = Ki

Ai(1↑ns) . Then our system reads

x
s
A

s
n
s + x

i
A

i(1↔ n
s) = ▷

AFN(x
s
, 1, 1) = A

i
GN(x

i
, 1, 1)↔ n

s

1↔ ns
A

i
GNN(x

i
, 1, 1)

FK(x
s
, 1, 1)↔ ω

s = GK(x
i
, 1, 1)↔ ω

i

subject to x
s
> 0, xi

> 0, ns ↑ (0, 1).
Notice that the third equation gives us x

i as a function of xs and we will denote
x
i = x

i(xs). The explicit expression is

x
i(xs) =

(
1↔ ⇀

↽(xs)ϑ↑1 ↔ ωs + ωi

) 1
ϑ

.

To simplify our algebra, define ν = ns

1↑ns (and notice n
s = ϱ

1+ϱ and 1↔ n
s = 1

1+ϱ ) so
that ϖ ↑ (0,⇐) and we just need to impose ϖ > 0 together with x

s
, x

i(xs) > 0.
We can rewrite the first equation as

ϖx
s
A

s + x
i(xs)Ai = ▷(1 + ϖ)

so that

ϖ(xs) =
▷↔ x

i(xs)Ai

xsAs ↔ ▷

and we are left to solve

A
s
FN(x

s
, 1, 1) = A

i
GN(x

i(xs), 1, 1)↔ ϖ(xs)Ai
GNN(x

i(xs), 1, 1) ,

which is one equation in one unknown. What are the right bounds? We need ti impose

x
s
> 0

x
i(xs) > 0 ⇒⇑





x
s
<


ϑ

ς↑ςh

 1
1→ϖ

ω > ω
h

x
s
< ⇐ otherwise

ϖ(xs) > 0

The last constraint, being ϖ a ratio, is positive if numerator and denominator are of the
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same sign, this happens if

x
s
A

s
> ▷ > x

i(xs)Ai =

(
1↔ ⇀

↽(xs)ϑ↑1 ↔ ωs + ωi

) 1
ϑ

A
i
, (31)

or

x
s
A

s
< ▷ < x

i(xs)Ai =

(
1↔ ⇀

↽(xs)ϑ↑1 ↔ ωs + ωi

) 1
ϑ

A
i
.

At all times, only one of the two chain of inequalities can be satisfied. In particular (31)
is the one to consider if

▷

As
<



 ↽

(1↔ ⇀)


Ai

φ

ϖ

+ ωs ↔ ωi





1
1→ϖ

Hence Step 2 in the algorithm above is to be replaced with

2’ Check if

▷m

As
m

<



 ↽

(1↔ ⇀)


Ai
m

φm

ϖ

+ ωs ↔ ωi





1
1→ϖ

is satisfied.

a) If so, look for the zero of

A
s
m(1↔ ↽)(xs)ϑ ↔ A

h
m⇀(x

i(xs))1↑ϖ(1 + ϖ(xs)(1↔ ⇀)) = 0

in the interval

x
s ↑




▷m

As
m

,



 ↽

(1↔ ⇀)


Ai
m

φm

ϖ

+ ωs ↔ ωi





1
1→ϖ



 .

b) If it is not satisfied, look for the zero of

A
s
m(1↔ ↽)(xs)ϑ ↔ A

h
m⇀(x

i(xs))1↑ϖ(1 + ϖ(xs)(1↔ ⇀)) = 0

in the interval

x
s ↑







 ↽

(1↔ ⇀)


Ai
m

φm

ϖ

+ ωs ↔ ωi





1
1→ϖ

,
▷m

As
m



 .

2” Recover the values of Ks
m, K

i
m and n

s
m from x

s
m, x

i
m and ϖm.
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F Growth with Endogenous Labor Supply

This appendix presents the model of monopsonistic growth with endogenous labour
supply in details.

Setting The representative agent solves

max
{Ct,At,Ki

t ,ht,ns
t ,n

i
t}t↑0

∫ ↔

0

e
↑εt

[
C

1↑ω
t ↔ 1

1↔ ϑ
↔ ψ

h
1+ 1

ε
t

1 + 1
ϱ

]
dt

s.t. Ct + Ȧt + K̇
i
t = wtnt + rtAt + #t + φtn

i
t + ↼tK

i
t

n
s
t + n

i
t = ht , n

s
t , n

i
t → 0 , ht ↓ 1 , At → 0 , K

i
t → 0

In order to write the Hamiltonian, again define K̇
i
t = q

i
t, so that we have the states

xt = (At, K
i
t)

→ and the controls zt = (Ct, n
s
t , ht, q

i
t)

→. The current value Hamiltonian reads

Ĥ(At, K
i
t , Ct, n

s
t , q

i
t) =

C
1↑ε
t

1↔ ς
+µ

A
t (↔Ct↔q

i
t+w

s
tn

s
t+rtAt+#t+φ

i
t(1↔n

s
t)+↼

i
tK

i
t)+µ

Ki

t q
i
t

We maximise the Hamiltonian with two multipliers, but because of the FOC with
respect to i

h
t we have that they must be equal, so that we obtain the system

Ċt

Ct
=

rt ↔ ς

ϑ

ψ(ht)
1
ε = C

↑ω
t wt

ψ(ht)
1
ε = C

↑ω
t φt

rt = ↼t

Ct + Ȧs
t + Ȧi

t = wtn
s
t + rtAs

t + #t + (ht ↔ n
s
t)φt + ↼tAi

t

lim
t↗↔

e
↑εt

C
↑ω
t As

t = lim
t↗↔

e
↑εt

C
↑ω
t Ai

t = 0

from which it immediately follows that

wt = φt .

The firm problem is the same as in the case with exogenous labour supply. The
maximisation problem in extensive form is intratemporal and again reads

max
Ks,Ns

#(N s
, K

s;G(·), Rt, A
s
t , A

i
t, H t, K

i
t) = F (Ks

, N
s
, A

s
t)↔GN(K

i
t , H t↔N

s
, A

i
t)N

s↔RtK
s
.
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The first order conditions of the firm are

FK(K
s
t , N

s
t , A

s
t) = Rt

FN(K
s
t , N

s
t , A

s
t) = GN(K

i
t , H t ↔N

s
t , A

i
t)↔GNN(K

i
t , H t ↔N

s
t , A

i
t)N

s
t

Equilibrium and the Fundamental System Imposing Rt = rt ↔ ω the firm’s FOC
are

FK(K
s
t , n

s
t , A

s
t) = rt ↔ ω

s
,

FN(K
s
t , n

s
t , A

s
t) = GN(K

i
t , ht ↔ n

s
t , A

i
t)↔GNN(K

i
t , ht ↔ n

s
t , A

i
t)n

s
t

and we also impose

φt = GN(K
i
t , n

i
t, A

i
t) = GN(K

i
t , ht ↔ n

s
t , A

i
t)

↼t = GK(K
i
t , n

i
t, A

i
t)↔ ω

i = GK(K
i
t , ht ↔ n

s
t , A

i
t)↔ ω

i

The Fundamental system is

Ċt

Ct
=

FK(Ks
t , n

s
t , A

s
t)↔ ω

s ↔ ς

ϑ

FN(K
s
t , n

s
t , A

s
t) = GN(K

i
t , ht ↔ n

i
t, A

i
t)↔GNN(K

i
t , ht ↔ n

i
t, A

i
t)n

s
t

FK(K
s
t , n

s
t , A

s
t)↔ ω

s = GK(K
i
t , ht ↔ n

i
t, A

i
t)↔ ω

i

Ct + K̇
s
t + K̇

i
t = F (Ks

t , n
s
t , A

s
t)↔ ω

s
K

s
t +G(Ki

t , ht ↔ n
i
t, A

i
t)↔ ω

i
K

i
t

ψ(ht)
1
ε = C

↑ω
t A

i
tGN(K

i
t , ht ↔ n

i
t, A

i
t)

We now derive the system in e”ciency units. Again define

x
s
t =

K
s
t

A
s
tn

s
t

, x
i
t =

K
i
t

A
i
tn

i
t

=
K

i
t

A
i
t(ht ↔ n

s
t)

, ct =
Ct

A
s
tn

s
t

and we also define some growth rates

g
h
t =

ḣt

ht
, g

ns

t =
ṅ
s

ns
, g

ni

t =
ṅ
i

ni
=

g
h
t ht ↔ g

ns

t n
s
t

ht ↔ n
s
t

.

The fundamental system in e”ciency units for the model with endogenous labour supply
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is the following.

ċt

ct
=

FK(xt, 1, 1)↔ ω
s ↔ ς

ϑ
↔ g

s ↔ gns,t

A
s
tFN(x

s
t , 1, 1) = A

i
tGN(x

i
t, 1, 1)↔ A

i
t

n
s
t

ht ↔ n
s
t

GNN(x
i
t, 1, 1)

ψ(ht)
1
ε = c

↑ω
t

A
i
t

(As
tn

s
t)ω

GN(x
i
t, 1, 1)

FK(x
s
t , 1, 1)↔ ω

s = GK(x
i
t, 1, 1)↔ ω

i

ct + ẋ
s
t + ẋ

i
t

A
i
t(ht ↔ n

s
t)

A
s
tn

s
t

= F (xs
t , 1, 1)↔ (ω + g

s + gns,t)x
s
t +

[
G(xi

t, 1, 1)↔ (ω + g
i + gni,t)x

i
t

] Ai
t(ht ↔ n

s
t)

A
s
tn

s
t

Proof of Theorem 5 We look for a MBGP in which Ċt
Ct

and ḣt
ht

are constant.

Proof. First of all notice that Ċt
Ct

being constant implies x
s must be constant, which

through (25) implies xi is constant, and both are determined according to the equation
in the statement of the Theorem. But then (23) implies that ν = ns

t
ht↑ns

t
is constant as

well and

ν =
GN(xi

, 1, 1)↔ As

AiFN(xs
, 1, 1)

GNN(xi, 1, 1)
,

and we can rewrite (24) as

ψ(ht)
1
ε = c

↑ω
t

A
i
t

(As
tht)ω

(
1 + ν

ν

)ω

GN(x
i
, 1, 1) .

But since also ḣt
ht

must be constant, and ṅs
t

ns
t
= ḣt

ht
= ṅi

t

ni
t
must be constant as well, the

budget constraint (26) implies that c is constant. This implies that we need to solve for
g
C and g

h using

ψ(ht)
1
ε = c

↑ω
t

A
i
t

(As
tht)ω

(
1 + ν

ν

)ω

GN(x
i
, 1, 1)

and
Ct

A
s
tn

s
t

= c

and by di!erentiating with respect to time we find
{

1
ϱ + ϑ


g
h = (1↔ ϑ)g

g
C ↔ g ↔ g

h = 0

which implies

g
C =

1
ϱ + 1
1
ϱ + ϑ

g , g
h =

1↔ ϑ

1
ϱ + ϑ

g .
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Since x
s and x

i are constant, it follows that K
s and K

i grow at rate g
C as well. The

share of total production produced by sector s is

Y
s
t

Y
s
t + Y

i
t

=
A

s
tn

s
tF (xs

, 1, 1)

A
s
tn

s
tF (xs

, 1, 1) + A
i
tn

i
tG(xi

t, 1, 1)
=

F (xs
, 1, 1)

F (xs, 1, 1) + Ai

As↼G(xi, 1, 1)

hence constant, the risk free rate of return is function of xs hence constant as well, wages

w
s
t = A

i
tGN(x

i
, 1, 1)

grow at rate g while profits

#t = ↔GNN(x
i
, 1, 1)νAi

tn
s
t

grow at rate gC . Notice that the labour share is constant since total wages grow at rate
g + g

h = g
C .

Proof of Theorem 6 We look for a MUGP in which Ċt
Ct

and ḣt
ht

converge to constants.

Proof. Notice that Ċt
Ct

converging to a constant implies that x
s
t converges to some x

s.
Through (25) this implies that also x

i
t converges to an appropriate x

i. But then (23)
implies that ns

t
ht↑ns

t
≃ ⇐ or equivalently ns

t
ht

≃ 1, and that

lim
t↗↔

ṅ
s
t

n
s
t

= g
h
↔ , lim

t↗↔

ṅ
i
t

n
i
t

= g
h
↔ + g

i ↔ g
s
.

We can then write in the limit

ψ(ht)
1
ε+gamma = c

ω
t

A
i
t

(As
t)ω

GN(x
i
, 1, 1)

and then the budget constraint implies

ct ≃ F (xs
, 1, 1)↔ (ωs + g

s + g
h
↔)xs

so that ct converges to a constant c. This implies that we need to solve for gC↔ and g
h
↔

using

ψ(ht)
1
ε+ω = c

↑ω A
i
t

(As
t)ω

GN(x
i
, 1, 1)

and
Ct

A
s
th

s
t

= c
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and by di!erentiating with respect to time we find

g
h
↔ =

g
i ↔ ϑg

s

1
ϱ + ϑ

, g
C
↔ =

1
ϱg

s ↔ g
i

1
ϱ + ϑ

.

Since x
s
t ≃ x

s, gK
s

t ≃ g
s + g

h
↔ = g

C
↔ and since x

i
t ≃ x

i, gK
i

t ≃ g
i + g

h
↔ + g

i ↔ g
s =

g
C
↔ + 2(gi ↔ g

s) . The share of production produced by sector s is

Y
s
t

Y
s
t + Y

i
t

=
A

s
tn

s
tF (xs

, 1, 1)

A
s
tn

s
tF (xs

, 1, 1) + A
i
tn

i
tG(xi

t, 1, 1)
≃

and the risk free rate is asymptotically constant as it is a function of xs
t . Wages

w
s
t = A

i
tGN(x

i
t, 1, 1)

asymptotically grow at rate g
i, while profits

#t = ↔GNN(x
i
, 1, 1)Ai

t

(ns
t)

2

n
i
t

grow at rate g
i + 2gh↔ ↔ g

h
↔ ↔ g

i + g
s = g

C
↔. Notice that the wage share goes to zero as

total wages asymptotically grow at rate g
i + g

h
↔ < g

C
↔.

G Allocative E”ects with Endogenous Labor Supply

GDP Loss As usual define x
e = x

s such that FK(xe
, 1, 1) = ϑg

s + ω
s + ς and x

i such
that GK(xi

, 1, 1) = ϑg
i + ω

i + ς. Start from the balanced growth case g
s = g

i = g.
Production in the optimal growth problem is

Y
e
t = F (Ke

t , ht, A
s
t) = A

s
th

e
tF (xe

, 1, 1)

while with monopsony

Y
m
t = F (Ks

t , n
s
t , A

s
t) +G(Ki

t , n
i
t, A

i
t) = A

s
tn

s
F (xs

, 1, 1) + A
i
tn

i
G(xi

, 1, 1) =

=
ν

1 + ν
A

s
th

m
t F (xs

, 1, 1) +
1

1 + ν
A

i
th

m
t G(xi

, 1, 1) ,

where recall ν = ns
t

ni
t
. This implies

Y
m
t

Y
e
t

=
ν

1 + ν

h
m
t

h
e
t


1 +

A
i

Asν

G(xi
, 1, 1)

F (xs, 1, 1)


.
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Notice that in balanced growth h
e
t and h

m
t grow at the same rate so that Y m

t
Y e
t

is constant
and equal to

Y
m
t

Y
e
t

=
ν

1 + ν

h
m
0

h
e
0


1 +

A
i

Asν

G(xi
, 1, 1)

F (xs, 1, 1)


.

Now h
e
0 = (ce)↑ω(As)1↑ω

FN(xe
, 1, 1) where c

e = F (xe
, 1, 1) ↔ (ωs + g)xe, while h

m
0 =

(cm)↑ω Ai

(As)ω (
1+↼
↼ )ωGN(xi

, 1, 1) where cm = F (xe
, 1, 1)↔ (ωs+g)xs+ Ai

As↼ [G(xi
, 1, 1)↔ (ωi+

g)xi]. This implies

Y m
t

Y e
t

=

[
ϱ

1 + ϱ
+

Ai

As

1

1 + ϱ

G(xi, 1, 1)

F (xs, 1, 1)

]
hm
0

he
0

=

=

[
ϱ

1 + ϱ
+

Ai

As

1

1 + ϱ

G(xi, 1, 1)

F (xs, 1, 1)

]
(cm)↑ϑ Ai

(As)ϑ
( 1+ϖ

ϖ )ϑGN (xi, 1, 1)

(ce)↑ϑ(As)1↑ϑFN (xe, 1, 1)
=

=

[
ϱ

1 + ϱ
+

Ai

As

1

1 + ϱ

G(xi, 1, 1)

F (xs, 1, 1)

]
(
F (xe, 1, 1) → (ςs + g)xs + Ai

Asϖ [G(xi, 1, 1) → (ςi + g)xi]

)↑ϑ
Ai

(As)ϑ
( 1+ϖ

ϖ )ϑGN (xi, 1, 1)

(F (xe, 1, 1) → (ςs + g)xe)↑ϑFN (xe, 1, 1)
=

=
Ai

As

(
1 + ϱ

ϱ

)ϑ
[

ϱ

1 + ϱ
+

Ai

As

1

1 + ϱ

G(xi, 1, 1)

F (xs, 1, 1)

]
(
F (xe, 1, 1) → (ςs + g)xs + Ai

Asϖ [G(xi, 1, 1) → (ςi + g)xi]

)↑ϑ
GN (xi, 1, 1)

(F (xe, 1, 1) → (ςs + g)xe)↑ϑFN (xe, 1, 1)
︸ ︷︷ ︸

<1

but we have no way to bound the left part of the expression above, so it can be that
instead of an output loss there is an output surplus, yet this brings anyway a consumption
loss under assumption 1 because of depreciation. However, di!erently from the fixed
labour supply case, when As

Ai ≃ ⇐, we have

Y m
t

Y e
t

=
Ai

As
︸︷︷︸
↓0

(
1 + ϱ

ϱ

)ϑ

︸ ︷︷ ︸
↓1

[
ϱ

1 + ϱ
+

Ai

As

1

1 + ϱ

G(xi, 1, 1)

F (xs, 1, 1)

]

︸ ︷︷ ︸
↓1

(
F (xe, 1, 1) → (ςs + g)xs + Ai

Asϖ [G(xi, 1, 1) → (ςi + g)xi]

)↑ϑ

(F (xe, 1, 1) → (ςs + g)xe)↑ϑ
︸ ︷︷ ︸

↓1

GN (xi, 1, 1)

FN (xs, 1, 1)

so that the output loss goes to one because the presence of monopsony distorts the
overall labor supply from agents.

Consumption Loss First of all notice that in unbalanced growth consumption growth
at a faster rate in the optimal Ramsey problem, so that the Cm

t /C
e
t ≃ 0 along any path.

In balanced growth consumption grows at the same rate in monopsonistic and optimal
problem, so the ratio is constant an equal to time zero. Now

C
e
0 = c

e
h
e
0A

s = A
s
h
e
0[F (xe

, 1, 1)↔ (ωs + g)xe]

and

C
m
0 = c

m
A

s
n
s
0 = A

s
n
s
0[F (xs

, 1, 1)↔ (ωs + g)xs] + A
i
n
i
0[G(xi

, 1, 1)↔ (ωi + g)xi]
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so that

C
m
t

C
e
t

=
A

i

As

↗0

(
1 + ν

ν

)ω

  
↗1


ν

1 + ν
+

A
i

As

1

1 + ν

G(xi
, 1, 1)↔ (ωi + g)xi

F (xs, 1, 1)↔ (ωs + g)xs



  
↗1

F (xe
, 1, 1)↔ (ωs + g)xs + Ai

As↼ [G(xi
, 1, 1)↔ (ωi + g)xi]

↑ω

(F (xe, 1, 1)↔ (ωs + g)xe)↑ω

  
↗1

GN(xi
, 1, 1)

FN(xs, 1, 1)
=

=
A

i

As


ν

1 + ν
+

A
i

As

1

1 + ν

G(xi
, 1, 1)↔ (ωi + g)xi

F (xs, 1, 1)↔ (ωs + g)xs

1↑ω
GN(xi

, 1, 1)

FN(xs, 1, 1)

but this is less than one as all terms in the multiplication above are less than one. This
implies that Cm

Ce ≃ 0 as As

Ai ≃ ⇐, so that the consumption loss goes to one again because
of monopsony distorting the total amount of labor employed in production.

Notice that for low values of this ratio can be greater than one (hence no loss, but a
surplus) because of the curvature of marginal productivities of capital. But this is not
what is relevant, what is relevant is consumption loss
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A Figures

Figure 1: Monopsonistic Labor Market with the Superior Technology
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Figure 2: Illustration of misallocation
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Figure 3: Misallocative E!ects in Monopsonistic Balanced Growth Path with respect to
Optimal Growth
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Figure 4: Simulation of path outside MBGP with balanced growth
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Figure 5: Simulation of path outside MBGP with balanced growth, continued
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Figure 6: Consumption And Output in Monopsony versus Consumption and Output in
Optimal Growth. Balanced and Unbalanced Path
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Figure 7: Growth and Level E!ects on the Aggregate Labor Share
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Figure 8: A Balanced Growth Path with Declining Hours Worked
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Figure 9: Welfare Loss and Labor Supply in Monopsonistic Equilibrium With Declining
Hours Worked
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