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ABSTRACT
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Competitive Search with Private 
Information: Can Price Signal Quality?*

This paper considers competitive search equilibrium in a market for a good whose quality 

differs across sellers. Each seller knows the quality of the good that he or she is offering 

for sale, but buyers cannot observe quality directly. We thus have a “market for lemons” 

with competitive search frictions. In contrast to Akerlof (1970), we prove the existence of 

a unique equilibrium, which is separating. Higher-quality sellers post higher prices, so price 

signals quality. The arrival rate of buyers is lower in submarkets with higher prices, but 

this is less costly for higher-quality sellers given their higher continuation values. For some 

parameter values, higher-quality sellers post the full-information price; for other values 

these sellers have to post a higher price to keep lower-quality sellers from mimicking them. 

In an extension, we show that if sellers compete with auctions, the reserve price can also 

act as a signal.
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1 Introduction

This paper considers competitive search equilibrium in a market for a good whose

quality di↵ers across sellers. Each seller knows the quality of the good that he or

she is o↵ering for sale, but buyers cannot observe quality directly. We thus have

a “market for lemons” (Akerlof, 1970) with competitive search frictions, and the

question we address is whether the price a seller posts can signal quality in this

environment.

Assuming that the value of retaining a high-quality good is greater than that

of retaining a low-quality good,1 we prove the existence of a unique equilibrium.

This unique equilibrium is separating. Higher-quality sellers post higher prices, so

price signals quality. The arrival rate of buyers is lower in submarkets with higher

prices, but this is less costly for higher-quality sellers given their higher continuation

values. That is, sellers can use posted prices as a signaling device.

The existence of (competitive) search frictions is important for our result be-

cause a seller who posts a higher price endogenously has a smaller trading proba-

bility, which is the cost of signaling. In the absence of search frictions, there is no

reason why firms with higher prices meet fewer buyers.

In our benchmark model, we assume that seller types are discrete, and meetings

are bilateral (each agent can meet at most one counterparty). We show that when

the di↵erence between the values of high-quality goods and low-quality goods is

large, high-quality sellers post the full-information price. When the di↵erence is

small, sellers of high-quality goods post a higher price to keep sellers of low-quality

goods from mimicking them. There is an interesting technical challenge in proving

the existence of the unique separating equilibrium, namely, the isoprofit curves in

price - (perceived) quality space are non-monotonic. Nonetheless, we prove single-

crossing.

We then extend our model to the case of a continuum of seller types and show

that the equilibrium can be characterized by a di↵erential equation. In this case,

sellers never post the full-information price. Finally, we relax the assumption that

1Why would the value of retaining the good be higher for high-quality goods? First, in many
markets, the seller continues to consume the good if it is not sold. Second, even if a seller does
not consume the good, a characteristic that is hidden today can become public knowledge in the
future and this makes the continuation value of carrying an unsold high-quality good larger than
that of carrying an unsold low-quality good.
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sellers can meet at most one buyer and allow sellers to meet multiple buyers and

compete with auctions. The separating equilibrium arises again: sellers of higher-

quality goods post higher reserve prices and accept a lower trading probability.

There are several other papers that combine search and information frictions,

but in most of these papers, the terms of trade are posted by agents on the un-

informed side of the market. For example, Guerrieri et al. (2010) show that with

bilateral meetings, when the uninformed party screens the other side by posting

contracts, the unique equilibrium is separating.2 Auster and Gottardi (2019) show

that with many-on-one (urn-ball, specifically) meetings, agents on the uninformed

side all post the same contract, and a pooling equilibrium arises.

The nature of equilibrium when the terms of trade are posted on the informed

side of the market is less well understood. For example, Guerrieri et al. (2010)

conjecture in their conclusion that when the informed party can signal their type

that, as in competitive markets, multiple equilibria exist. Their conjecture is in

line with the literature on adverse selection without search frictions. Wilson (1980)

and Hellwig (1987) show that the predictions of a model with asymmetric informa-

tion and no search frictions depend on details such as the order of decisions and

who posts prices.3 In contrast, in our competitive search setting, we get a unique

separating equilibrium when the informed party sets the terms of trade.

There are also a few papers with search frictions and asymmetric information

in which the informed side posts the terms of trade, but these are based on very

di↵erent models than ours. Introducing search frictions, but using a random search

model, Barsanetti and Camargo (2022) show that the outcome is similar to that

of a frictionless model and that it matters whether the informed (signaling) or

uninformed party (screening) sets the terms of trade. Delacroix and Shi (2013)

analyze a model with competitive search in which all sellers choose between two

qualities and have the same continuation value regardless of the quality of the good

they o↵er. They show that there exists pooling equilibria, some in which all firms

produce the low quality and some in which all produce the high quality. Menzio

(2007), Kim (2012), and Kim and Kircher (2015) assume that the informed side

2Similarly, Inderst and Muller (2002) assume that there exist a large number of market makers
who compete in creating submarkets as in Moen (1997), which, they argue, is equivalent to the
uninformed side posting the prices. Chang (2018) considers a screening model in which the
informed side has two-dimensional private information.

3Absent search frictions, equilibrium need not exist (Rothschild and Stiglitz, 1976).
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announces cheap talk messages about quality. Depending on the details of the

setup, cheap-talk messages can be fully or partially informative.

In finance, there is a substantial literature starting with Leland and Pyle (1977)

that shows that retention, i.e., the fraction of an asset that the seller wants to

retain, can act as a signal for the quality of an asset. In Guerrieri and Shimer

(2014), high-quality assets trade at higher prices but with a lower price-dividend

ratio and a lower probability of trade. However, in these models there are no search

frictions.4

Finally, there are papers that combine signaling and competitive search in which

the uncertainty is not about the quality of the good, e.g., Albrecht et al. (2016)

(uncertainty is about how eager the seller is to sell) and Moon (2023) (uncertainty

is about seller advertising intensity and the corresponding queue length). There are

also competitive models, e.g., Milgrom and Roberts (1986) in which introductory

prices and advertising intensity can, in the presence of repeat sales, signal quality.

The paper is organized as follows. First, in Section 2 we present the model,

define equilibrium and derive the (constrained) e�cient Planner’s solution for the

full-information case. Then, in Section 3, we prove that a unique separating equi-

librium exists and derive conditions under which separation of high-quality sellers

is e�cient. We do this both for a finite number of seller types and for a continuum

of types. In section 3.4, we show that our results also hold for many-on-one meet-

ings in which sellers compete with auctions. In section 4, we discuss why a unique

separating equilibrium exists in our model with search frictions, while absent search

frictions, a separating equilibrium only exists in a very special knife-edge case, and

then only among a continuum of other equilibria. Finally, Section 5 concludes.

2 The Model

Agents. We consider a static economy with a continuum of risk-neutral homo-

geneous buyers and heterogeneous sellers. Each seller owns a single unit of an

indivisible good, for which each buyer has unit demand. The good’s quality can

di↵er, and a fraction zi of sellers are of type i, where type refers to the quality of

the good they o↵er. A good with quality i has a value ci to the seller and a value

4Williams (2021) presents a screening model of retention and liquidity (the probability of
selling a security) in which there are search frictions.
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vi = ⌫(ci) to the buyers, where ci 2 [c, c] and c1 < · · · < cI . We assume ⌫ 0(c) > 0

for all c.5 That is, both sellers and buyers prefer the high-quality goods over the

low-quality goods. The quality of the good is a seller’s private information. The

measure of sellers is 1, and the measure of buyers is determined by free entry in

the sense that there is a large measure of buyers each of whom can participate in

the market if and only if they pay a cost k > 0. We denote the gains from trade by

si = vi� ci and assume that si > k for each i, so there are always gains from trade.

Search. In the first stage, each seller posts and commits to a price. After ob-

serving all posted prices, each buyer chooses one seller to visit. We refer to all

buyers and sellers who choose a particular price as a submarket. Within a submar-

ket, meetings are bilateral; that is, a seller meets at most one buyer and a buyer

meets at most one seller. The total number of meetings are given by a constant-

returns-to-scale matching function M(Ns, Nb) where Ns and Nb are respectively

the measures of sellers and buyers within the submarket. Define � = Nb/Ns as the

queue length in the submarket. Then, m(�) ⌘ M(1,�) is the probability that a

seller meets a buyer, and similarly, q(�) ⌘ m(�)/� is the probability that a buyer

meets a seller. We assume that m(�) is strictly increasing and strictly concave,

which implies that q(�) is strictly decreasing.

Payo↵s. Let ⇤(p) be the queue length and �(p) = (�1(p), . . . , �I(p)) be the ex-

pected seller composition in submarket p, where �i(p) is the expected fraction of

type i sellers in the submarket.6 Buyers’ beliefs are then formally represented by

�(p). Note that we require ⇤(p) and �(p) to also be defined for prices that are not

posted in equilibrium.

The problem of a seller with a good of quality i is given by

⇡⇤
i = max

p>ci
m (⇤(p)) (p� ci), (1)

where ⇡⇤
i is the equilibrium payo↵ of type i sellers.

5We assume that ⌫(c) is strictly increasing to simplify the exposition. Our model also allows
for constant ⌫(c). In that case, sellers’ private information is irrelevant for buyers’ decisions,
and the equilibrium is the same as the one with complete information (see Example 1 after
Proposition 1). Note also that in our benchmark model of discrete seller types, the values of ⌫(c)
for c /2 {c1, . . . , cI} are irrelevant. However, later we consider the case of a continuum of seller
types and therefore we introduce the function ⌫(c) from the start.

6Note that �(p) is a probability simplex. That is, �i(p) � 0 and
PI

1 �i(p) = 1.
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Given beliefs �(p), for each price p (both on and o↵ the equilibrium path), the

queue length ⇤(p) is determined by the buyers’ free-entry condition.

k = q (⇤(p)) (
IX

i=1

�i(p)vi � p), (2)

where v̂ =
PI

i=1 �i(p)vi is the expected value of the good associated with price

p. If k � q(0)(
PI

1 �i(p)vi � p), then ⇤(p) = 0. Note that, for a given price, the

queue length is longer if buyers believe that it is more likely that the seller o↵ers a

high-quality good. Similarly, if we fix the buyers’ belief v̂ about the quality of the

good, the queue length is shorter if a seller posts a higher price.

Equilibrium Definition. Let Fi(p) be the distribution of prices posted by sellers

of type i. Since the highest possible price is vI and the lowest possible price is ci,

we have Fi(ci) = 0 and Fi(vI) = 1 for each i.7

We can now formally define a competitive search equilibrium as follows.

Definition 1. A competitive search equilibrium is a tuple (⇤(p),�(p), Fi(p), ⇡⇤
i )

with the following properties:

1. Optimal Search: Given beliefs �(p), for each price p (both on and o↵ the

equilibrium path), the queue length ⇤(p) is determined by equation (2).

2. Profit Maximization: Each p in the support of Fi(p) solves the maximization

problem given in equation (1).

3. Beliefs: For prices that are posted in equilibrium, �(p) is given by Bayes’ rule:

�i(p) =
zidFi(p)PI
i=1 zidFi(p)

,

where the numerator is the measure of type i sellers who post a price equal to

p, and the denominator is the corresponding measure for all sellers.
8

For prices that are not posted in equilibrium, �(p) is such that for each i,

⇡⇤
i � m (⇤(p)) (p� ci), with equality if ⇤(p) > 0 and �i(p) > 0.

7We assume that sellers always choose to be active by posting some price, which is without
loss of generality since posting a price is costless.

8Formally, �i(p) is a Radon–Nikodym derivative.
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Our definition of competitive search equilibrium is standard, except that we

need to impose an additional assumption on how buyers’ beliefs are formed o↵ the

equilibrium path. Note that, given ci, the expected profit of a type i seller who

posts a deviant price p0 depends only on the queue length ⇤(p0). Hence, for each

type of seller there exists a threshold queue length above which posting p0 will yield

a profit strictly higher than their equilibrium payo↵.9 Then �(p0) puts all weight

on the seller type who has the lowest threshold. That is, �◆(p) = 1 if ◆ minimizes

⇡⇤
i /(p

0 � ci) for i 2 {1, . . . , I} with p0 > ci.

Following Guerrieri et al. (2010), we can alternatively think of the following

hypothetical adjustment process, which pins down buyers’ belief �(p0) for some

deviant price p0. Suppose that a measure zero of sellers accidentally post p0 and a

small, positive measure of buyers mechanically join the submarket. Then, we start

with ⇤(p0) = 1. If no seller wants to post a price p0 even with ⇤(p0) = 1 (the most

favorable situation for sellers), then �(p0) is irrelevant. Otherwise, some additional

sellers are willing to join this submarket, which then decreases the buyer-seller

ratio ⇤(p0). As sellers join and ⇤(p0) decreases, some seller types will leave. We

continue this process until only one type of seller is left in this submarket and is

willing to o↵er p0. Hence, this adjustment process ends with a degenerate �(p0).

Loosely speaking, �(p0) puts all the weight on the seller type that can tolerate the

lowest possible queue length at price p0. As noted by Guerrieri et al. (2010), this is

equivalent to the D1 refinement which is commonly used in signaling models (see

Banks and Sobel (1987)).

The Social Planner’s Problem. Before analyzing the decentralized market

equilibrium, we now briefly write down and solve the social planner’s problem. The

planner faces the same coordination frictions (that are standard in competitive

search models) as the market participants but faces no information constraints

about quality. The planner’s problem reduces to choosing an optimal queue length

�p
i for each seller type i taking into account that the buyer participation cost is k.

9Note that if p0 < ci + ⇡⇤
i for some i, then we can set this threshold to infinity for sellers of

type i.
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That is, �p
i , i = 1, . . . , I, solves the following maximization problem:

max
�1,...,�I

IX

i=1

zisim(�i)� k
IX

i=1

zi�i.

Note that the measure of buyers in submarket i is equal to the buyer-seller ratio

times the measure of sellers, zi�i, for each i. Since the above problem is strictly

concave, the following first-order condition is both necessary and su�cient, and

admits a unique solution: for all i,

sim
0(�p

i ) = k.

3 Market Equilibrium

3.1 Competitive Search Equilibrium

We start with a bird’s-eye view of the main force that drives equilibrium. Without

loss of generality, we assume that ⇤(p) is strictly decreasing.10 Furthermore, given

that buyers can only observe prices, it seems natural to require buyers’ beliefs to

be such that ⇤(p) is strictly decreasing, which is also implied by the D1 refinement

on beliefs. The sellers’ problem in equation (1) is supermodular in (p, c), which

implies that sellers of a higher type always choose (weakly) higher prices. Below

we show that sellers of di↵erent types will not choose the same price in equilibrium

and therefore the equilibrium is always separating.

Consider a type i seller who posts a price p. If this seller’s good is believed to

have value v̂, then his or her expected profit is

⇡(ci, p, v̂) = m

✓
q�1

✓
k

v̂ � p

◆◆
(p� ci) (3)

where we used equation (2) to solve for the queue length associated with (p, v̂):

� = q�1( k
v̂�p). Note that here the queue length � is associated with a hypothetical

situation in which the posted price is p and the perceived value of the good is v̂,

and is not related to the equilibrium object ⇤(p). If the seller’s iso-profit curves

satisfy the single-crossing condition in the p-v̂ plane, and if sellers of a higher type

10Suppose pa > pb and ⇤(pa) � ⇤(pb), then no sellers would choose price pb.
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have flatter iso-profit curves, then the least-cost separating equilibriun is the unique

equilibrium and sellers of a higher type post a strictly higher price. 11 The seller’s

profit function ⇡(ci, p, v̂) in equation (3) seems complicated. We now simplify the

seller problem by treating queue length as the choice variable instead of price. For

this purpose, we rewrite ⇡(ci, p, v̂) as a function of ci, �, and v̂,

e⇡(ci,�, v̂) = m(�)(v̂ � ci)� �k, (4)

where we used q(�)(v̂�p) = k andm(�) = �q(�) to substitute out p in equation (2) .

Intuitively, a higher posted price (both on and o↵ the equilibrium path) corresponds

to a shorter queue length. Hence, we can think of sellers choosing queue length as a

signaling device instead of the price. Below, we formally show that both approaches

are equivalent.

To better understand equation (4), it is helpful to contrast it with the case

in which a seller’s type is public information. In that case, equation (4) becomes

m(�)(vi � ci)��k, where the first term is the expected surplus, the second term is

the part of surplus attributed to the buyers (the cost of the queue), and the seller’s

profit is then the di↵erence between the two terms.

When seller type is private information, the seller’s profit in equation (4) has a

similar interpretation. The total gain from trade is v̂ � ci instead of vi � ci since

when the transaction price is p, the seller’s gain is p� ci and the buyer’s perceived

gain is v̂� p. Here the queue only depends on the buyer’s perceived payo↵, not the

actual payo↵.

The seller’s profit e⇡(ci,�, v̂) defined by equation (4) is strictly increasing in v̂,

and is first increasing and then decreasing in �. The slope of e⇡(ci,�, v̂) in the �-bv
plane is given by

�e⇡�(ci,�, v̂)

e⇡v̂(ci,�, v̂)
= �m0(�)(v̂ � ci)� k

m(�)
, (5)

which is strictly increasing in ci. Hence, e⇡(ci,�, v̂) satisfies the single-crossing con-

11That is, the equilibrium in which there is no distortion at the bottom and type i sellers choose
a price to maximize their expected profit under the constraints that i) they are perceived to be
type i sellers, and ii) type i� 1 sellers find it not profitable to mimic type i sellers. In this case,
asymmetric information imposes minimal cost on type i sellers’ expected profit assuming that the
equilibrium is separating.
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dition in the �-bv plane: If e⇡(ci,�a, v̂a) = e⇡(ci,�b, v̂b) for two points (�a, v̂a) and

(�b, v̂b) with �a < �b, then e⇡(cj,�a, v̂a) > e⇡(cj,�b, v̂b) for cj > ci.

Since sellers choose p as the signal instead of �, we still need to show that

⇡(ci, p, v̂) also satisfies the single-crossing condition (in the p-v̂ plane).12 We first

show that the iso-profit curves of a seller are well-defined functions in the p-v̂ plane.

Holding p fixed, ⇡(ci, p, v̂) is strictly increasing in v̂, since a higher v̂ increases �

in equation (3). That is, for a fixed price, a seller’s expected profit is higher,

the greater the likelihood that buyers attach to the seller o↵ering a high-quality

good. Holding v̂ fixed, the price p a↵ects sellers’ expected profit solely through the

queue length � (see equation (4)). Since � is strictly decreasing in p, ⇡(ci, p, v̂) is

first increasing and then decreasing in p. Therefore, the iso-profit curves are first

decreasing and then increasing in p.

Next, we show that ⇡(ci, p, v̂) also satisfies the single-crossing condition in the p-

v̂ plane, which follows simply from the correspondence ⇡(c, p, v̂) = e⇡(c, q�1( k
v̂�p), v̂).

To see this formally, suppose that we have ⇡(ci, pa, v̂a) = ⇡(ci, pb, v̂b) for some

seller type i and two points (pa, v̂a) and (pb, v̂b) with pa < pb. The corresponding

queue lengths are �j = q�1( k
v̂j�pj

) for j = a, b. Since pa < pb, by equation (3)

we must have �a > �b for sellers of type ci to have the same profit between the

two points. Since e⇡(ci,�, v̂) satisfies the single-crossing condition and �a > �b,

e⇡(ci,�a, v̂a) = e⇡(ci,�b, v̂b) implies that e⇡(cj,�a, v̂a) < e⇡(cj,�b, v̂b) for cj > ci. Hence

⇡(cj, pa, v̂a) < ⇡(cj, pb, v̂b). So if seller ci is indi↵erent between v̂a and v̂b with

pa < pb, then seller cj > ci prefers v̂b with a corresponding higher pb and a shorter

queue. Figure 1 illustrates the above results by showing the sellers’ iso-profit curves

in the (p, v̂) plane, when there are just two types of goods: low and high quality.

Note that in the p-v̂ plane, the iso-profit curves of sellers with a higher-quality

product are flatter than the iso-profit curves of sellers with a lower-quality product.

The opposite is true in the �-v̂ plane, since a higher p corresponds to a lower �.

By the standard logic of signaling models, single crossing of sellers’ iso-profit

curves and the D1 criterion jointly imply that the equilibrium must be least-cost

separating. Furthermore, the sellers of the lowest type c1 choose an optimal price as

12In Appendix A.6. we give a direct, general proof that ⇡(ci, p, v̂) satisfies the single-crossing
condition in the p-v̂ plane. The proof shows that our main result also applies to the case in which
workers are risk-averse. We analyze our model in the �� v̂ plane since the characterization of the
seller problem is easier in this case. See equations (8) and (9) below.
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(a) E�cient equilibrium: � = 0.1
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(b) Ine�cient equilibrium: � = 0.5

Figure 1: Illustration of the competitive search equilibrium with two types of sellers:
m(�) = 1 � e��, k = 0.3, c1 = 0.8, c2 = 1, v1 = 1.5 and ⌫(c) = v1 + �(c � c1). To
help compare figures (a) and (b), we set ĉ instead of v̂ as the y-axis where v̂ = ⌫(ĉ)
so that the positions of the black dashed lines in the two figures are the same.

if their type were publicly observable (no distortion at the bottom), and the sellers

of type ci choose an optimal price subject to the constraint that the sellers of type

ci�1 do not want to mimic them. Since it does not matter whether we assume that

sellers choose p or choose � as the signal, we can adopt the simpler case which is

the latter.

Denote the sellers’ optimal queue length by �⇤
i and their equilibrium payo↵ by

⇡⇤
i for i � 1. Since there are always no distortions at the bottom, the problem of

the sellers with the lowest-quality product is

⇡⇤
1 ⌘ max

�1

s1m(�1)� �1k, (6)

where s1 = v1�c1. The optimal solution �1 is characterized by the FOC: s1m0(�1) =

k, which implies that

�⇤
1 = ⇤o(

k

s1
), (7)

where ⇤o(·) is the inverse function of m0(·) which represents the socially optimal �.

The problem of sellers of type ci with i � 2 is to choose a queue length that

maximizes their profit subject to the constraint that it is not in the interest of
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sellers of type ci�1 to mimic them. That is,

⇡⇤
i ⌘ max

�i

sim(�i)� �ik, (8)

subject to the incentive compatibility constraint (ICC) that �i must be such that

⇡⇤
i�1 = m(�⇤

i�1)(vi�1 � ci�1)� �⇤
i�1k � m(�i)(vi � ci�1)� �ik, (9)

where the right-hand side of (9) is the payo↵ from mimicking for a seller of type

i� 1, which follows from equation (4).

We now analyze the solution to the sellers’ problem above. In typical signal-

ing models, the iso-profit curves of sellers are monotonic and the ICC is binding.

However, in our model the sellers’ iso-profit curves are first decreasing and then

increasing (both in the (p, v̂) plane and the (�, v̂) plane), which implies that there

are two solutions for �i such that the ICC constraint is binding, i.e., such that

equation (9) holds with equality. To see this, note that the payo↵ from mimicking

by sellers of type i � 1, the right-hand side of equation (9), is strictly concave in

�i. When �i = �⇤
i�1, the ICC is violated since vi > vi�1, and when �i = 0 or

greater than (vi� ci�1)/k, the ICC is satisfied trivially. Hence, the smaller solution

is strictly between 0 and �⇤
i�1 and the larger solution is strictly between �⇤

i�1 and

(vi � ci�1)/k. The smaller solution of �i (that corresponds to a higher pi) yields a

higher profit for sellers of type i, since the slopes of their iso-profit curves (in the

�� v̂ plane) are steeper. From now on, we denote by ⇤i
icc the smaller solution such

that the ICC constraint (9) is binding. Then,

m(�⇤
i�1)(vi�1 � ci�1)� �⇤

i�1k = m(⇤i
icc)(vi � ci�1)� ⇤i

icck, and⇤i
icc < �⇤

i�1. (10)

Another consequence of sellers’ iso-profit curves being non-monotonic is that

the ICC constraint may not be violated at ⇤o(
k
si
), the optimal choice of �i under

complete information. That is, ⇤o(
k
si
)  ⇤i

icc (see the proof of Proposition 1 for

more details). In this case, �⇤
i is simply ⇤o(

k
si
).

To sum up, the solution to the problem of sellers of type i is given by

�⇤
i = min{⇤o(

k

si
),⇤i

icc}. (11)
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Figure 1 illustrates the above issues in the p-v̂ plane (instead of in the �-v̂ plane)

with two types of sellers (I = 2). The two intersections between the blue line and

the black dashed line are the two prices where the ICC constraint is binding. In

Figure 1a, the ICC constraint is not violated even when high-type sellers choose

their unconstrained optimal value (�⇤
2 = ⇤o(

k
s2
)). In Figure 1b, the opposite is true,

and �⇤
2 = ⇤2

icc, which corresponds to a price equal to 1.23 (the larger intersection

point). Note also that the larger solution of �2 for which the ICC constraint is

binding corresponds to a price equal to 0.98 (the smaller intersection point), which

will yield a negative profit for the high-type sellers since c2 = 1.

Thus, the sellers’ problem can be solved recursively, starting from the prob-

lem of c1 sellers where �⇤
1 = ⇤o(k/s1). This can be summarized by the following

proposition.

Proposition 1. There exists a unique equilibrium, which is separating. In equilib-

rium, all sellers of type i post the same price p⇤i and attract queue length �⇤
i with

�⇤
1 > · · · > �⇤

I > 0 and p⇤1 < · · · < p⇤I , where �⇤
1 is given by equation (7), �⇤

i is

recursively determined by equation (11) for 2  i  I, and p⇤i = vi � k/q(�⇤
i ).

Proof. See Appendix A.1.

Signaling versus screening. Instead of having the informed side post prices to

signal their quality, Guerrieri et al. (2010) analyze the case in which the uninformed

side post contracts to screen di↵erent types of sellers. In the classic asymmetric

information literature without search frictions, equilibrium outcomes can depend on

which side posts trading arrangements. Notably, there is no separating equilibrium

in the Akerlof (1970) lemons model. Thus, it is surprising that prices and allocations

in equilibrium are the same in our signaling model and the screening model of

Guerrieri et al. (2010).13 Hence, in competitive search models, it does not matter

whether buyers, sellers, or some third party (market makers) post the prices; the

equilibrium outcomes are the same.

13Guerrieri et al. (2010) noted in their conclusion that “It may also be interesting to study the
case opposite to the one analyzed here, where the informed instead of the uninformed parties post
contracts.” One reason that the equivalence between the two models is not trivial a priori may
be a technical one. To establish separating equilibrium in a large class of models, Guerrieri et al.
(2010) adopted a sorting condition, which is di↵erent from the standard single-crossing condition
used in our paper. One consequence of this di↵erence is that their characterizations are less sharp:
the constraint faced by type i sellers in their model is that all lower types (from type 1 to i� 1)
will not mimic; in our model we only need to check that type i� 1 sellers will not mimic.
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When is the ICC binding? We present two special cases to illustrate the issues

at stake. In the first example, the ICC constraint is never binding while in the

second example, it is always binding. In both examples, we fully characterize the

equilibrium.

Example 1: Constant vi. Things are particularly simple in the extreme case

where vi is constant.14 Then, buyers’ values are the same across all sellers regardless

of their ci, making buyers’ beliefs about sellers’ types irrelevant. Sellers who post

the same price will have the same expected queue length, regardless of their types.

The model is equivalent to the standard competitive search equilibrium without

private information, where sellers can buy queues in a competitive market at a

price equal to k. This implies that sellers of type i�1 will not mimic sellers of type

i when the latter choose their unconstrained optimal price. To see this formally,

consider the ICC constraint (9). Assume that �⇤
i�1 = ⇤o(k/si�1), so sellers of type

i� 1 reach their unconstrained maximum profit. Then, the left-hand side of (9) is

always greater than the right-hand side since vi = vi�1, i.e., the ICC constraint is

always satisfied. By continuity, the same conclusion holds when vi’s are su�ciently

close. Figure 1a illustrates this scenario for the case of two seller types.

Example 2: Weakly increasing si. Suppose that the surplus from trade is

weakly increasing in the type of sellers: s1  · · ·  sI . Consider the ICC con-

straint (9) and assume that �⇤
i = ⇤o(k/si). The right-hand side of (9) can be

rewritten as

(m(�⇤
i )si � �⇤

i k) +m(�⇤
i )(ci � ci�1) > max

�
m(�)si�1 � �k

where the strict inequality follows from i) the first term on the left-hand side cor-

responds to max� m(�)si � �k and si � si�1, and ii) ci > ci�1. Therefore, the ICC

constraint (9) is violated at �i = ⇤o(k/si), which implies that the ICC constraint

is always binding and �⇤
i = ⇤

i
icc in equation (11).

14This example is similar to the model of Albrecht et al. (2016) in which there are two types of
sellers; low c (or high s) sellers, who are labeled motivated, and high c (or low s) sellers, and the
value of the good to the buyers is independent of seller type.
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3.2 The Case of Two Seller Types

We now characterize in detail the equilibrium for the case of two seller types (I = 2).

A byproduct of this analysis is that the ICC constraint is binding in equilibrium

when c2 is su�ciently close to c1, which greatly simplifies the analysis for the case

of a continuum of seller types in the next subsection.

Below we solve the model by comparing ⇤o(k/s2) and ⇤2
icc. Assume s1 > s2,

since for the other case s1  s2, the ICC constraint is always binding (see Example

2 in the previous subsection). The proposition below confirms the insights from

the two special examples above. For low-type sellers, the gain from mimicking

high-type sellers is v2 � v1, while the cost is a lower matching probability. Hence,

if v2 � v1 is small, the ICC constraint is not binding. Sellers’ private information

then does not matter, and the equilibrium is the same as the case without private

information and is socially e�cient. On the other hand, if v2 � v1 is large, the ICC

constraint is binding. In this case, high-quality sellers must charge a higher price

than in the full-information case to distinguish themselves from low-quality sellers,

resulting in a shorter queue length, i.e., �⇤
2 < ⇤o(k/s2). The following proposition

presents the formal statement of the above results.

Proposition 2. Assume I = 2 and s1 > s2, where si = vi � ci for i = 1, 2. Define

 (k, s1, s2) ⌘
Z s1

s2

✓
m(⇤o(k/s))

m(⇤o(k/s2))
� 1

◆
ds. (12)

If v2 � v1   (k, s1, s2), then in equilibrium �⇤
2 = ⇤o(k/s2); otherwise, �⇤

2 <

⇤o(k/s2).

Proof. See Appendix A.2.

The definition of  (k, s1, s2) seems complicated. However, it reduces to simple

expressions for common meeting technologies. Normalize s1 = 1. When m(�) =

1 � e��,  (k, 1, s2) =
k

s2�k (1 � s2 + s2 log s2). Similarly, when m(�) = �/(1 + �),

 (k, 1, s2) = (1 � p
s2)2/(

p
s2/k � 1). Note that  (k, s1, s2) is homogeneous of

degree 1, since doubling both the cost k and the match values s1 and s2 naturally

double  , the threshold of the value di↵erence (see Appendix A.2 for a detailed

argument).

15



Next, we analyze what happens when seller types become arbitrarily close. Let

c2 = c1 +�c and s2 = s1 ��s. Since s1 > s2 and v2 � v1 = �c��s > 0, we have

0 < �s < �c. As �s ! 0 (because �c ! 0), the integrand on the right-hand side

of (12) approaches zero, which implies that

lim
�s!0

 (k, s1, s2)

�s
= lim

�s!0

m(⇤o(k/es)))
m(⇤o(k/s2))

� 1 = 0

where the first equality follows from the mean value theorem with some es 2 [s2, s1],

and the second from continuity. As an example, letm(�) = 1�e��. Then (k, 1, 1�
�s) ⇡ k

2(1�k)�s2 (second-order approximation), where we normalize s1 = 1.

The above result has a striking consequence. For the equilibrium to be e�cient

(non-binding ICC), we need �v   (k, s1, s1 ��s), which implies that �v/�c 
 (k, s1, s1 � �s)/�c   (k, s1, s1 � �s)/�s ! 0. Hence, for the ICC constraint

to be non-binding when �c is su�ciently small, �v must be an order smaller than

�c, which then contradicts ⌫ 0(c1) > 0. The following proposition summarizes this

result.

Proposition 3. Assume I = 2 and let c2 = c1 + �c. When �c is su�ciently

small, then the ICC constraint is binding for the high-type sellers, and hence the

equilibrium is not socially e�cient.

Proof. See the above discussion.

Next, we analyze how the equilibrium varies with buyers’ entry cost k. Figure 2

shows ⇤o(k/s2) (red solid line) and ⇤2
icc (black dashed line) for the parameter values

of Figure 1, except now we let k vary (x-axis). Note that ⇤o(k/s) crosses ⇤2
icc exactly

once and from above. That is, when k is small, ⇤o(k/s2) > ⇤2
icc (the ICC constraint

is binding) and the opposite holds when k is large. Note that when k = 0.3 (the

value in Figure 1), ⇤o(k/s2) < ⇤2
icc in Figure 2a and the opposite holds in Figure 2b.

Thus, the equilibrium corresponds to the full-information equilibrium in Figure 1a

and is ine�cient in Figure 1b.

Below we show that the above results are true in general: The ICC constraint

is binding if and only if k is small (so there are many buyers). For this we need to

impose an assumption on the meeting technology, which is equivalent to assuming

that  (k, s1, s2) is strictly increasing in k.
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Figure 2: Illustration of ⇤o(k/s2) and ⇤2
icc as functions of k; note ⌫(c) = v1+�(c�c1)

Assumption 1. The ratio "m(�)/"2(�) is strictly decreasing in �, where "m(�) =

�m0(�)/m(�) and "2(�) = ��m00(�)/m0(�), which is the absolute value of the elas-

ticity of m0(�).

For common meeting technologies, "2(�) is strictly increasing. For example,

when m(�) = 1 � e�� (urn-ball), "2(�) = �; when m(�) = �/(1 + �) (geometric),

"2(�) = 2�/(1 + �). Since "m(�) is strictly decreasing for these common meeting

technologies, the above assumption holds trivially.

Proposition 4. Under Assumption 1,  (k, s1, s2), which is defined by equation (12),

is strictly increasing in k with limk!0 (k, s1, s2) = 0 and limk!s2  (k, s1, s2) = 1.

Proof. See Appendix A.3.

Together with Proposition 2, the above result implies that the equilibrium is

e�cient if and only if k is above a certain threshold. Intuitively, when k is large,

there are relatively few buyers. The queue length in the high-quality submarket is

already small under full information, so low-quality sellers will choose not to join.

3.3 Continuum of Seller Types.

We now consider the case of a continuum of seller types and show that the equilib-

rium can be characterized as a di↵erential equation. Define s(c) = ⌫(c)�c (surplus)

with c 2 [c, c], �vi = vi � vi�1, and ��⇤
i = �⇤

i � �⇤
i�1. Finally, set ci � ci�1 = �c

(equal distance).
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The ICC constraint (9) is satisfied if and only if

m(�⇤
i�1)�vi  ���⇤

i

�
m0(�⇤

i�1)si�1 � k
�
,

where we applied a first-order approximation to the right-hand side of the ICC

constraint (9). Dividing both sides above by �c and letting �c ! 0 yields

m(�(c))⌫ 0(c)  ��0(c) (m0(�(c))s(c)� k) , (13)

where �(c) is the equilibrium queue length of type c sellers and ��⇤
i /�c ! �0(c)

as �c ! 0. If the ICC constraint is not binding for sellers of type c, then

m0(�(c))s(c) = k, and the right-hand side above is zero. Therefore, if ⌫ 0(c) > 0,

then the ICC constraint is always binding, which we already saw for the case of two

seller types. Since the ICC is always binding, (13) holds with equality, which yields

equation (14) below, a di↵erential equation for �(c). We thus have the following

proposition.

Proposition 5. Consider the case of a continuum of seller types. Define s(c) =

⌫(c)� c (trade surplus). The equilibrium queue length �(c) is uniquely determined

by the following di↵erential equation

�0(c) = � m(�(c))⌫ 0(c)

m0(�(c))s(c)� k
, (14)

with m0(�(c))s(c) < k and the initial condition �(c) = ⇤o(k/s(c)).

Proof. See Appendix A.4.

In the special case where s(c) = s0 (a constant) or equivalently ⌫(c) = c + s0

and the meeting rate is Poisson, m(�) = 1�e��, we can solve the above di↵erential

equation analytically. In this case, the right-hand side of equation (14) depends

only on �(c). We then use the inverse function of �(c): c(�) (note c0(�) = 1/�0(c)).

Solving the above di↵erential equation yields

c(�) = c+ k�� (s0 � k) log(1� e��)� s0 log
s0

s0 � k
+ k log

k

s0 � k
. (15)

The corresponding equilibrium price is then p(c) = ⌫(c) � k/q(�(c)). Figure 3
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below compares the equilibrium prices (blue sold line) to the optimal prices, i.e.,

the prices that generate the socially optimal queue lengths (red dashed line). We

see that there is no distortion at the bottom and that the distance between the

market price that needs to satisfy the ICC and the socially optimal price under full

information is increasing in seller type c.

Figure 3: Comparison between equilibrium and socially optimal prices: s(c) = 0.7
for c 2 [0, 1], k = 0.3, and m(�) = 1� e��

3.4 Competing Auctions

In some markets, like the housing market, it is more reasonable to allow sellers to

use auctions rather than posted prices, since sellers can gather multiple buyers. We

now show that our insights and analysis continue to hold in this environment.

Assume that the probability that a seller meets n buyers is Pn(�) for n � 0.

Again let m(�) = 1� P0(�), the probability that a seller meets at least one buyer.

We assume that each seller posts a second-price auction with a reserve price r (since

revenue equivalence holds, the exact format of the auction is irrelevant).

First, consider the counterpart of equation (3). The payo↵ of a seller who posts

a reserve price r and is perceived to have value v̂ is then

⇡(ci, r, v̂) = P1(�)(r � c) + (m(�)� P1(�)) (v̂ � c). (16)

With probability P1(�), the seller meets exactly one buyer, and the product is sold
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at the reserve price r; with probability m(�)� P1(�), the seller meets two or more

buyers and the product is sold at price v̂. Note that since in this section all buyers

are homogeneous, only m(�) � P1(�) matters; the individual values of Pn(�) for

n � 2 are irrelevant here.

The (expected) queue length � faced by the above seller is determined by the

buyers’ indi↵erence condition

k =
P1(�)

�
(v̂ � r). (17)

A buyer obtains a positive payo↵ if and only if this buyer is the only bidder in the

auction, which happens with probability P1(�)/�.

Combining the above two equations yields again equation (4). Hence the previ-

ous analysis of sellers’ choice in the �-v̂ plane is unchanged. Our previous analysis

shows that we only need to show that the sellers’ iso-profit curves are well-defined

in the r-v̂ plane. For this we need the following assumption.

Assumption 2. P1(�)/� is strictly decreasing, and P1(�)/m(�) is weakly decreas-

ing.

The above assumption states that when � is higher, the probability that a buyer

is the only bidder becomes smaller, and a seller is more likely to meet multiple

buyers conditional on meeting at least one buyer.

By equation (4), ⇡(c, r, v̂) is first increasing and then decreasing in r. However,

the e↵ect of v̂ on ⇡(c, r, v̂) is not clear immediately, since equation (16) is more

complicated than equation (3). The following lemma shows that ⇡(c, r, v̂) is strictly

increasing in v̂ so that the sellers’ iso-profit curves are well-defined in the r�v̂ plane.

Lemma 1. Under Assumption 2, ⇡(c, r, v̂) is strictly increasing in v̂.

Proof. See Appendix A.5.

Therefore, ⇡(c, r, v̂) satisfies the single-crossing condition. The equilibrium fea-

tures least-cost separation, and the allocation of buyers and sellers is exactly the

same as before. The equilibrium queue lengths are determined recursively by equa-

tions (7) and (11).

When the meeting technology is urn-ball where Pn(�) = e���n/n!, as is well-

known in the literature, without private information sellers always post a reserve
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price equal to their reservation value ci. 15 With private information, when the ICC

constraint is not binding, the equilibrium has r⇤i = ci, otherwise r⇤i > ci.

Instead of allowing the informed side (sellers) to post, Auster and Gottardi

(2019) assumes that the uninformed side (buyers) can meet multiple counterparties

and post general trading mechanisms. They find that all buyers post the same

mechanism, resulting in a pooling equilibrium. When adverse selection is severe

(the ICC is binding), the equilibrium mechanism is ine�cient, meaning that trade

is not realized even when a buyer is in contact with one or more sellers. In contrast,

this type of ine�ciency never arises in our model since sellers post auctions, which

are always e�cient ex post. However, the ine�ciency in our model is ex ante: the

queue lengths attracted by high-type sellers are ine�ciently low.

4 Understanding the role of search frictions

In order to understand the role of search frictions, in this section, we compare our

results with the case in which search frictions are absent. Suppose that sellers can

post prices and that the measure of buyers is greater than that of sellers so that

a buyer’s payo↵ is zero in equilibrium. Following Akerlof (1970), in the absence

of search frictions, the most natural equilibrium is the single-price equilibrium in

which supply equals demand.

However, there also exists a continuum of other equilibria in which sellers of type

c post a price p = p(c) and a seller who posts price p is accepted with probability

↵(p). Since a buyer’s payo↵ is always zero, buyers are indi↵erent across all ↵(p)

between zero and one. In particular, we can construct an ↵(p) such that sellers of

type c find it optimal to post p = ⌫(c)� k. 16

We consider this to be an uninteresting equilibrium because there is no reason

for buyers to choose ↵(p) 2 (0, 1) when their payo↵ is zero anyway, let alone the

↵(p) that generates a separating equilibrium. Furthermore, it is unclear how to set

up the (Walrasian) market so that sellers who post price p trade with probability

↵(p). The least unreasonable case is when there is only one seller and one buyer,

15See, for example, McAfee (1993), Albrecht et al. (2014), and Cai et al. (2023).
16The seller’s problem is maxp (p�c)↵(p), and the corresponding FOC is (p�c)↵0(p)+↵(p) = 0.

Since we require p = ⌫(c)�k in equilibrium, the FOC can be rewritten as (p�⌫�1(p+k))↵0(p)+
↵(p) = 0, from which we can solve ↵(p). Note that ↵(p) is not uniquely determined; we can
multiply it by a scalar smaller than 1, and the same result holds.
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where the buyer accepts the good with probability ↵(p) even though this is still

arbitrary. This case is analyzed by Kreps (2023, pp. 115–117), who constructs an

example with a continuum of seller types in which trade surplus ⌫(c)�c is constant

in c. Kreps (2023) also argues that there is no good reason why in this case the

separating equilibrium would be selected out of the continuum of equilibria. In

contrast, in the competitive search equilibrium of the previous section, it follows

from buyers’ optimal search that a higher price corresponds to a shorter buyer

queue so that a unique ↵(p) arises endogenously.

Similar to Kreps (2023), Cai et al. (2007) studies a stand-alone auction with one

seller and n buyers in which the seller posts a reserve price. However, they assume

that each buyer has some idiosyncratic preference for the product, i.e., the value

of a product with type i for buyer j is vi + "j where i = 1, . . . , I (as in our model)

and j = 1, . . . , n. The idiosyncratic part "j is iid across buyers. If the dispersion of

the idiosyncratic part is large enough, then the sellers’ optimal reserve price under

complete information induces a trading probability strictly smaller than 1. Under

asymmetric information, high-type sellers increase their reserve price even further

so that low-type sellers will not mimic. Hence, the tradeo↵ is again that a higher

reserve price leads to a lower trading probability (as in our model). However, their

result depends crucially on the dispersion of the idiosyncratic part. If it is small,

then their model is equivalent to the one in Kreps (2023), and there does not exist

a separating equilibrium. With search frictions, there always is a probability that

sellers do not sell and a separating equilibrium always exists even when buyers have

no idiosyncratic preferences for the good.

5 Conclusion

In this paper, we consider a market for a good whose quality di↵ers across sellers

and in which there is competitive search. There is asymmetric information in the

sense that each seller knows the quality of the good that he or she is o↵ering for

sale, but buyers cannot observe quality directly. In other words, we have a “market

for lemons” with competitive search frictions.

We prove the existence of a unique equilibrium, which is separating unlike the

case in (Akerlof, 1970). Price serves as a signal of quality in that higher-quality

sellers post higher prices. This is shown in a market with a discrete number of
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sellers and also for one with a continuum of seller types. Finally, we also show that

our model has a separating equilibrium in a market in which the sellers can post

auctions.

Our results are in stark contrast with those of frictionless asymmetric informa-

tion models. In those models, an equilibrum sometimes does not exist, or multiple

equilibria can exist with properties that depend on the details of the model such

as the order of decisions.

Appendix A Proofs

A.1 Proof of Proposition 1

Denote by ⇤
i
icc the larger solution of �i for which the ICC constraint (9) is binding.

Then we have ⇡⇤
i�1 = e⇡(ci�1,⇤i

icc, vi) = e⇡(ci�1,�⇤
i�1, vi�1) = e⇡(ci�1,⇤

i
icc, vi) with

⇤i
icc < �⇤

i�1 < ⇤
i
icc (see the discussions before Proposition 1). Because the slope of

the iso-profit curve of sellers with a higher type is steeper, we have e⇡(ci,⇤i
icc, vi) >

e⇡(ci,�⇤
i�1, vi�1) > e⇡(ci,⇤

i
icc, vi).

If the maximum of e⇡(ci,�i, vi) were reached on the right-hand side of ⇤
i
icc, i.e.,

⇤o(
k
si
) � ⇤

i
icc, then we would have e⇡(ci,⇤i

icc, vi) < e⇡(ci,⇤
i
icc, vi), since e⇡(ci,�i, vi)

is strictly concave in �i. This is a contradiction so we have ⇤o(
k
si
) < ⇤

i
icc. The

ICC (9) implies that the sellers of type i need to choose �i  ⇤i
icc or �i � ⇤

i
icc. If

⇤o(
k
si
)  ⇤i

icc, then �⇤
i = ⇤o(

k
si
); while if ⇤o(

k
si
) 2 (⇤i

icc,⇤
i
icc), then �⇤

i = ⇤
i
icc. Thus,

�⇤
i is given by equation (11), which implies �⇤

i > 0. Moreover, since ⇤i
icc < �⇤

i�1,

we have �⇤
i < �⇤

i�1. Finally, if p
⇤
i  p⇤i�1, then sellers of type i would strictly prefer

posting p⇤i�1 since �⇤
i < �⇤

i�1, which contradicts the fact that the equilibrium is

separating. Hence we have p⇤i > p⇤i�1.

A.2 Proof of Proposition 2

Since the decentralized equilibrium is unique, we can first assume that the equilib-

rium is e�cient and then check for the configurations in which the low-type sellers

do not have an incentive to mimic the high-type sellers.

The ICC constraint (9) is satisfied if and only if

v2 � v1 
⇡⇤
1 � ⇡⇤

2

m(�⇤
2)

� (s1 � s2). (18)
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Define e⇡(s) = max�(sm(�)� �k). Since the equilibrium is assumed to be e�cient,

⇡⇤
i = e⇡(si) and �⇤

i = ⇤o(k/si) for i = 1, 2. By the envelope theorem, e⇡0(s) =

m(⇤o(k/s)), which implies that ⇡⇤
1 � ⇡⇤

2 can be rewritten in the integral form:
R s1
s2

m(⇤o(k/s))ds. Substituting this for ⇡⇤
1 � ⇡⇤

2 in the above inequality yields the

expression for  in equation (12). Finally, note that doubling k, s1, and s2 will

double ⇡⇤
1 and ⇡⇤

2 without a↵ecting �⇤
2 on the right-hand side of (18), which implies

that  is also doubled. Hence,  (k, s1, s2) is homogeneous of degree 1.

A.3 Proof of Proposition 4

Given the integral form of equation (12), we just need to show thatm(⇤o(k/s))/m(⇤o(k/s2)),

or equivalently logm(⇤o(k/s)) � logm(⇤o(k/s2)), is strictly increasing in k. Note

that

@

@k
[logm(⇤o(k/s))� logm(⇤o(k/s2))] =

Z s

s2

@2 logm(⇤o(k/s̃))

@k@s̃
ds̃

Hence,m(⇤o(k/s))/m(⇤o(k/s2)) is strictly increasing in k if and only if logm(⇤o(k/s̃))

is strictly supermodular. Next, we have

@ logm(⇤o(k/s̃))

@k
=

m0(⇤o(k/s̃))

m(⇤o(k/s̃))
⇤0

o(k/s̃)
1

s̃
=

m0(⇤o(k/s̃))

m(⇤o(k/s̃))

m0(⇤o(k/s̃))

m00(⇤o(k/s̃))

1

k

where for the last equality, we used s̃m0(⇤o(k/s̃)) = k, which defines ⇤o(k/s̃).

Hence, m(⇤o(k/s))/m(⇤o(k/s2)) is strictly increasing in k if and only if the last

term on the right-hand side is strictly decreasing in s, i.e., Assumption 1 holds.

Recall that on the right-hand side of equation (18), ⇡⇤
i = max�(sim(�) � �k)

and �⇤
i is the optimal solution for this maximization problem. When k ! 0, �⇤

1 and

�⇤
2 both converge to 1, and ⇡⇤

1 and ⇡⇤
2 converge to s1 and s2, respectively. Thus,

 (k, s1, s2), the right-hand side of equation (18) converges to zero. When k ! s2,

we have �⇤
2 ! 0 and �⇤

1 converges to some finite limit since s1 > s2, which implies

that the right-hand side of equation (18),  (k, s1, s2), converges to 1.

A.4 Proof of Proposition 5

The derivation of equation (11) follows from the discussion before Proposition 5.

We still must show that a unique solution �(c) to equation (11) exists. Since

the right-hand side of equation (11) is continuous, existence and uniqueness follow
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from the Picard-Lindelöf theorem (see Theorem 1.3.1 of Coddington and Levinson

(1955)). There is, however, one issue in applying the theorem, At the initial point

�0(c) = �1. To address this, we apply the Picard-Lindelöf theorem to its inverse

function c(�), which is well-defined since �(c) is strictly decreasing. At the initial

point, c0(�(c)) = 0 (thus bounded), so a unique function c(�) exists around the

initial point �(c), i.e., defined in [�(c),�(c) � "] with c + "0 = c(�(c) � "). From

c+"0 onwards, we can apply the Picard-Lindelöf theorem to the di↵erential equation

of �(c).

A.5 Proof of Lemma 1

First, di↵erentiating equation (17) with respect to v̂ yields,

�v̂ =
�P1(�)

(v̂ � r) (P1(�)� �P 0
1(�))

Note that the denominator is strictly positive since P1(�)/� is strictly decreasing.

Di↵erentiating equation (4) with respect to v̂ and substituting the above equa-

tion into the resulting equation yields

⇡v̂(c, r, v̂) = m(�) +
P1(�) ((v̂ � c)�m0(�) + (r � v̂)P1(�))

(v̂ � r) (P1(�)� �P 0
1(�))

where we used equation (17) to substitute out k. Note that the above equation

is strictly increasing in r (keeping v̂ and � fixed). Since the smallest possible r is

r = c � m(�)�P1(�)
P1(�)

(v̂ � c) at which ⇡(c, r, v̂) = 0, ⇡v̂(c, r, v̂) > 0 if ⇡v̂(c, r, v̂) � 0,

which is given by

⇡v̂(c, r, v̂) = m(�)

✓
1� P1(�)2 (m(�)� �m0(�))

m(�)2 (P1(�)� �P 0
1(�))

◆
� 0

where the inequality follows from i) m(�) � P1(�), and ii) 1 � �P 0
1(�)/P1(�) �

1� �m0(�)/m(�), which is equivalent to P1(�)/m(�) being weakly decreasing.

A.6 Direct Proof of Single-Crossing in the (p, v̂) Plane

Suppose that the queue length associated with (p, v̂) is denoted by the func-

tion e�(p, v̂). Note that in our model, e�(p, v̂) = q�1( k
v̂�p). Since ⇡(c, p, v̂) =
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m(e�(p, v̂))(p� c),

@

@c

✓
�⇡p(c, p, v̂)

⇡v̂(c, p, v̂)

◆
= � m(e�(p, v̂))

(p� c)2m0(e�(p, v̂))e�v̂(p, v̂)
,

which implies that the single-crossing condition holds whenever e�(p, v̂) is strictly

increasing in v̂, i.e., e�v̂(p, v̂) > 0.

Risk-averse Buyers. Suppose that buyers are risk averse and all have utility

function u(·) with initial wealth W0. Then e�(p, v̂) is given by the following equation

q (�) (u(v̂ � p+W0 � k)� u(W0 � k)) = u(W0)� u(W0 � k)

where u(W0 � k) is the payo↵ from entering the market and failing to trade, and

u(v̂ � p+W0 � k) is the utility from entering the market and purchasing the good

with quality v̂ and price p. Clearly, e�(p, v̂) is again strictly increasing in v̂. Hence,

the equlibrium is again separating with risk-averse buyers.
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