

Bundesgesetzblatt

Teil I

2024

Ausgegeben zu Bonn am 26. Juni 2024

Nr. 210

Fünfte Verordnung zur Änderung der Anlage des Neue-psychoaktive-Stoffe-Gesetzes*

Vom 21. Juni 2024

Auf Grund des § 7 des Neue-psychoaktive-Stoffe-Gesetzes, der durch Artikel 93 der Verordnung vom 19. Juni 2020 (BGBI. I S. 1328) geändert worden ist, in Verbindung mit § 1 Absatz 2 des Zuständigkeitsanpassungsgesetzes vom 16. August 2002 (BGBI. I S. 3165) und dem Organisationserlass vom 8. Dezember 2021 (BGBI. I S. 5176) verordnet das Bundesministerium für Gesundheit im Einvernehmen mit dem Bundesministerium des Innern und für Heimat, dem Bundesministerium der Justiz und dem Bundesministerium der Finanzen und nach Anhörung von Sachverständigen:

Artikel 1

Die Anlage des Neue-psychoaktive-Stoffe-Gesetzes vom 21. November 2016 (BGBI. I S. 2615), das zuletzt durch Artikel 1 der Verordnung vom 14. März 2023 (BGBI. 2023 I Nr. 69) geändert worden ist, erhält die aus dem Anhang zu dieser Verordnung ersichtliche Fassung.

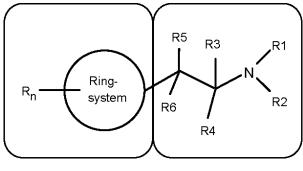
^{*} Notifiziert gemäß der Richtlinie (EU) 2015/1535 des Europäischen Parlaments und des Rates vom 9. September 2015 über ein Informationsverfahren auf dem Gebiet der technischen Vorschriften und der Vorschriften für die Dienste der Informationsgesellschaft (ABI. L 241 vom 17.9.2015, S. 1).

Diese Verordnung tritt am Tag nach der Verkündung in Kraft.
Der Bundesrat hat zugestimmt.
Bonn, den 21. Juni 2024

Der Bundesminister für Gesundheit Karl Lauterbach

Herausgeber: Bundesministerium der Justiz

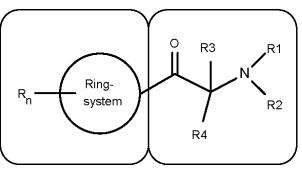
Anhang zu Artikel 1


Anlage

Vorbemerkungen

Die Stoffgruppendefinitionen der Nummern 1 bis 7 schließen alle denkbaren geladenen Formen, Stereoisomere und Salze eines erfassten Stoffes ein. In den Stoffgruppendefinitionen festgelegte Molekülmassenbegrenzungen gelten bei geladenen Formen und Salzen nur für den Molekülteil ausschließlich des Gegen-Ions. Von den Stoffgruppendefinitionen erfasst sind auch sämtliche nach den folgenden Stoffgruppendefinitionen mögliche isotopensubstituierte Verbindungen.

1. Von 2-Phenethylamin abgeleitete Verbindungen


Eine von 2-Phenethylamin abgeleitete Verbindung ist jede chemische Verbindung, die von einer 2-Phenylethan-1-amin-Grundstruktur abgeleitet werden kann (ausgenommen 2-Phenethylamin selbst), eine maximale Molekülmasse von 500 u hat und dem nachfolgend beschriebenen modularen Aufbau aus Strukturelement A und Strukturelement B entspricht.

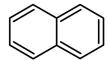
Strukturelement A

Strukturelement B

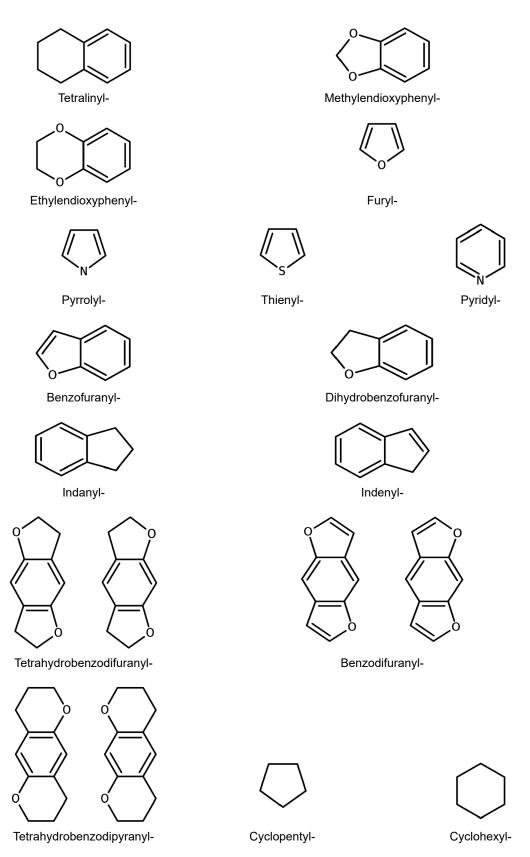
Dies schließt chemische Verbindungen mit einer Cathinon-Grundstruktur (2-Amino-1-phenyl-1-propanon) ein:

Strukturelement A

Strukturelement B


Nicht von der Stoffgruppe Nummer 1 erfasst werden Stoffe, die zwar eine Definition dieser Stoffgruppe erfüllen, jedoch zugleich eine in den Stoffgruppendefinitionen der Nummern 2 bis 7 genannte Kern- oder Grundstruktur besitzen und von der Stoffgruppendefinition der jeweiligen Nummer nicht erfasst werden.

1.1 Strukturelement A


Für das Strukturelement A sind die folgenden Ringsysteme eingeschlossen, wobei sich das Strukturelement B an jeder Position des Strukturelements A befinden kann: Phenyl-, Naphthyl-, Tetralinyl-, Methylendioxyphenyl-, Ethylendioxyphenyl-, Furyl-, Pyrrolyl-, Thienyl-, Pyridyl-, Benzofuranyl-, Dihydrobenzofuranyl-, Indanyl-, Indenyl-, Tetrahydrobenzodifuranyl-, Benzodifuranyl-, Tetrahydrobenzodipyranyl-, Cyclopentyl- und Cyclohexylring.

Phenyl-

Naphthyl-

Diese Ringsysteme können an jeder Position mit folgenden Atomen oder Atomgruppen (R_n) substituiert sein: Wasserstoff, Fluor, Chlor, Brom, Iod, Alkyl- (bis C_8), Alkenyl- (bis C_8), Alkinyl- (bis C_8), Alkoxy- (bis C_7), Carboxy-, Alkylsulfanyl- (bis C_7) und Nitrogruppen.

Die aufgeführten Atomgruppen können weiterhin mit beliebigen, chemisch möglichen Kombinationen der Elemente Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Fluor, Chlor, Brom und lod substituiert sein. Die auf diese Weise entstehenden Substituenten dürfen dabei eine durchgehende Kettenlänge von maximal acht Atomen aufweisen (ohne Mitzählung von Wasserstoffatomen). Atome von Ringstrukturen werden dabei nicht in die Zählung einbezogen.

Moleküle, bei denen durch R_n cyclische Systeme entstehen, die an das Strukturelement A anelliert sind, werden von der Stoffgruppendefinition nicht erfasst.

1.2 Strukturelement B

Die 2-Aminoethyl-Seitenkette des Strukturelements B kann mit folgenden Atomen, Atomgruppen oder Ringsystemen substituiert sein:

a) R₁ und R₂ am Stickstoffatom:

Wasserstoff, Alkyl- (bis C_6), Cycloalkyl- (Ringgröße bis C_6), Benzyl-, Alkenyl- (bis C_6), Alkylcarbonyl- (bis C_6), Alkylcarbonyl- (bis C_6), Alkylcarbonyl- (Alkylrest bis C_6), Arylcarbonyl- (Arylrest bis C_{10}), Hydroxy- und Aminogruppen. Ferner sind Stoffe eingeschlossen, bei denen das Stickstoffatom Bestandteil eines nichtaromatischen gesättigten oder ungesättigten cyclischen Systems ist (beispielsweise Pyrrolidinyl-, Piperidinyl-Ringe). Ein Ringschluss des Stickstoffatoms unter Einbeziehung von Teilen des Strukturelements B (Reste R_3 bis R_6) ist möglich. Die dabei entstehende Molekülstruktur muss hinsichtlich der Substituenten auch ohne den erfolgten Ringschluss zum Strukturelement B konform zu Nummer 1.2 Buchstabe a sein. Die dabei entstehenden Ringsysteme können die Elemente Kohlenstoff, Sauerstoff, Schwefel, Stickstoff und Wasserstoff enthalten. Diese Ringsysteme dürfen fünf bis sieben Atome umfassen. Eine Doppelbindung als Brücke zum Strukturelement B ist möglich. Die Reste R_1/R_2 können ausschließlich in dem bei einem Ringschluss mit Teilen des Strukturelements B entstehenden Ringsystem als doppelt gebundener Rest (Iminstruktur) vorliegen.

Ausgenommen von den erfassten Stoffen der Stoffgruppe der von 2-Phenethylamin abgeleiteten Verbindungen sind Verbindungen, bei denen das Stickstoffatom direkt in ein cyclisches System integriert ist, das an das Strukturelement A anelliert ist.

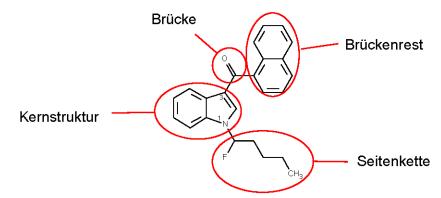
Die Substituenten R_1 und R_2 können (bei Ringschlüssen nur nach dem Ringschluss) weiterhin mit beliebigen, chemisch möglichen Kombinationen der Elemente Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Fluor, Chlor, Brom und Iod substituiert sein. Die auf diese Weise entstehenden Substituenten R_1/R_2 dürfen dabei eine durchgehende Kettenlänge von maximal zehn Atomen aufweisen (ohne Mitzählung von Wasserstoffatomen). Atome von Ringstrukturen werden dabei nicht in die Zählung einbezogen.

b) R_3 und R_4 am C_1 -Atom sowie R_5 und R_6 am C_2 -Atom:

Wasserstoff, Fluor, Chlor, Brom, Iod, Alkyl- (bis C_{10}), Cycloalkyl- (Ringgröße bis C_{10}), Benzyl-, Phenyl-, Alkenyl- (bis C_{10}), Alkinyl- (bis C_{10}), Hydroxy-, Alkoxy- (bis C_{10}), Alkylsulfanyl- (bis C_{10}) und Alkyloxycarbonylgruppen (Alkylrest bis C_{10}), einschließlich der chemischen Verbindungen, bei denen Substitutionen zu einem Ringschluss mit dem Strukturelement A oder zu Ringsystemen, die die Reste R_3 bis R_6 enthalten, führen können. Diese Ringsysteme dürfen vier bis sechs Atome umfassen.

Die aufgeführten Atomgruppen und Ringsysteme können zudem mit beliebigen, chemisch möglichen Kombinationen der Elemente Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Fluor, Chlor, Brom und Iod substituiert sein. Die auf diese Weise entstehenden Substituenten R_3 bis R_6 dürfen dabei eine durchgehende Kettenlänge von maximal zwölf Atomen aufweisen (ohne Mitzählung von Wasserstoffatomen). Atome von Ringstrukturen werden dabei nicht in die Zählung einbezogen.

Sofern die Reste R₃ bis R₆ Bestandteil eines Ringsystems sind, das das Stickstoffatom des Strukturelements B enthält, gelten für weitere Substituenten die Beschränkungen gemäß Buchstabe a.


c) Carbonylgruppe in beta-Stellung zum Stickstoffatom (sogenannte bk-Derivate, siehe Abbildung der Cathinon-Grundstruktur unter Nummer 1: R_5 und R_6 am C_2 -Atom: Carbonylgruppe (C=O)).

2. Cannabimimetika/synthetische Cannabinoide

2.1 Von Indol, Pyrazol und 4-Chinolon abgeleitete Verbindungen

Ein Cannabimimetikum beziehungsweise ein synthetisches Cannabinoid der von Indol, Pyrazol oder 4-Chinolon abgeleiteten Verbindungen ist jede chemische Verbindung, die dem nachfolgend anhand eines Strukturbeispiels beschriebenen modularen Aufbau mit einer Kernstruktur entspricht. Die Verbindung ist an einer definierten Position über eine Brücke mit einem Brückenrest verknüpft und trägt an einer definierten Position der Kernstruktur eine Seitenkette.

Die Abbildung verdeutlicht den modularen Aufbau am Beispiel des 1-Fluor-JWH-018:

1-Fluor-JWH-018 besitzt eine Indol-1,3-diyl-Kernstruktur, eine Carbonyl-Brücke in Position 3, einen 1-Naphthyl-Brückenrest und eine 1-Fluorpentyl-Seitenkette in Position 1.

Kernstruktur, Brücke, Brückenrest und Seitenkette werden wie folgt definiert:

2.1.1 Kernstruktur

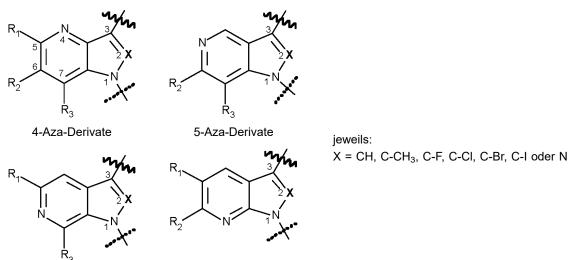
Die Kernstruktur schließt die nachfolgend in den Buchstaben a bis h beschriebenen Ringsysteme ein. Die Ringsysteme der Buchstaben a bis g können an den in den nachfolgenden Abbildungen gekennzeichneten Positionen mit einer beliebigen Kombination der Atome Wasserstoff, Fluor, Chlor, Brom, Iod und Phenyl-, Methoxy- und Nitrogruppen als Atomgruppen (Reste R₁ bis R₃) substituiert sein.

Der Rest R der vom 4-Chinolon abgeleiteten Verbindungen (Buchstabe h) kann aus einem der folgenden Atome oder der folgenden Atomgruppe bestehen: Wasserstoff, Fluor, Chlor, Brom, Iod und Phenylthiogruppe (Anbindung über den Schwefel an die Kernstruktur).

Die Wellenlinie gibt den Bindungsort für die Brücke an. Die durchbrochene Linie gibt den Bindungsort für die Seitenkette an:

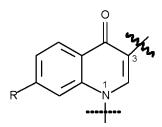
a) Indol-1,3-diyl (X = CH, C-CH₃, C-F, C-Cl, C-Br und C-I) und Indazol-1,3-diyl (X = N) (Bindungsort für die Brücke in Position 3, Bindungsort für die Seitenkette in Position 1)

$$R_1$$
 R_2
 R_3
 R_4
 R_3


6-Aza-Derivate

X = CH, C-CH₃, C-F, C-Cl, C-Br, C-I oder N

b) 4-, 5-, 6- oder 7-Azaindol-1,3-diyl (X = CH, $C-CH_3$, C-F, C-CI, C-Br und C-I) und 4-, 5-, 6- oder 7-Azaindazol-1,3-diyl (X = N)


(Bindungsort für die Brücke in Position 3, Bindungsort für die Seitenkette in Position 1)

7-Aza-Derivate

c) 1H-Indol-2-on-1,3-diyl

- R_1 R_2 R_3
- d) Carbazol-1,4-diyl
 (Bindungsort für die Brücke in Position 4,
 Bindungsort für die Seitenkette in Position 1)
- R₁
 R₂
 R₃
 R₃
- e) Benzimidazol-1,2-diyl-Isomer I
 (Bindungsort für die Brücke in Position 2, Bindungsort für die Seitenkette in Position 1)
- R_1 R_2 R_2 R_3 R_4 R_4 R_5
- f) Benzimidazol-1,2-diyl-Isomer II
 (Bindungsort für die Brücke in Position 1,
 Bindungsort für die Seitenkette in Position 2)
- g) Pyrazol-1,5-diyl
 (Bindungsort für die Brücke in Position 5,
 Bindungsort für die Seitenkette in Position 1)
 und
 - Pyrazol-1,3-diyl
 (Bindungsort für die Brücke in Position 3,
 Bindungsort für die Seitenkette in Position 1)
- R_2
- h) 4-Chinolon-1,3-diyl
 (Bindungsort für die Brücke in Position 3,
 Bindungsort für die Seitenkette in Position 1)
- Pyrazol-1,5-diyl Pyrazol-1,3-diyl

2.1.2 Brücke an der Kernstruktur

Die Brücke an der Kernstruktur schließt die folgenden Strukturelemente ein, die jeweils an der unter Nummer 2.1.1 bezeichneten Stelle an die Kernstruktur gebunden sind:

- a) Carbonyl-, Methylencarbonyl- (CH₂-Gruppe an Kernstruktur geknüpft) und Azacarbonylgruppe,
- b) Carboxamidogruppe (Carbonylgruppe an Kernstruktur geknüpft) unter Einschluss von kohlenstoff- und wasserstoffhaltigen Substituenten am Amidstickstoff, die mit Position 2 der Indolkernstruktur (Nummer 2.1.1 Buchstabe a: X = CH) einen Sechsring bilden, und Methylencarboxamidogruppe (CH₂-Gruppe an Kernstruktur geknüpft),
- c) Carboxyl- (Carbonylgruppe an Kernstruktur geknüpft) und Methylencarboxylgruppe (CH₂-Gruppe an Kernstruktur geknüpft),
- d) direkt an die Kernstruktur angebundene Stickstoffheterocyclen, die auch weitere Stickstoff-, Sauerstoffoder Schwefelatome enthalten können, mit einer Ringgröße von bis zu fünf Atomen sowie einer Doppelbindung zum Stickstoffatom an der Anknüpfungsstelle,
- e) Hydrazongruppe mit Doppelbindung vom Stickstoff zu Position 3 der Kernstruktur zu Nummer 2.1.1 Buchstabe c.

2.1.3 Brückenrest

- a) Der Brückenrest kann Kombinationen der Atome Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Fluor, Chlor, Brom und Iod enthalten, die eine maximale Molekülmasse von 400 u haben und folgende Strukturelemente beinhalten können:
 - aa) beliebig substituierte gesättigte, ungesättigte oder aromatische Ringstrukturen einschließlich Polyzyklen und Heterozyklen, wobei eine Anbindung an die Brücke auch über einen Substituenten möglich ist,
 - bb) beliebig substituierte Kettenstrukturen mit mindestens einem Kohlenstoffatom, die unter Einbeziehung der Heteroatome eine durchgehende Kettenlänge von maximal zwölf Atomen (ohne Mitzählung von Wasserstoffatomen) aufweisen.
- b) Brücken mit der Möglichkeit der Anbindung von mehreren Brückenresten, beispielsweise Brücken zu Nummer 2.1.2 Buchstabe b, d oder Buchstabe e, können auch mehrere Brückenreste gemäß den Definitionen zu Nummer 2.1.3 Buchstabe a Doppelbuchstabe aa und zu Nummer 2.1.3 Buchstabe a Doppelbuchstabe bb tragen. Die Molekülmassenbeschränkung von insgesamt 400 u gilt dann für die Summe der Brückenreste.

2.1.4 Seitenkette

Die Seitenkette kann beliebige Kombinationen der Atome Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Silizium, Fluor, Chlor, Brom und Iod aufweisen, soweit sie nicht gemäß den Buchstaben a und b eingeschränkt werden. Die Seitenkette darf eine maximale Molekülmasse von 300 u aufweisen und muss jeweils an der unter Nummer 2.1.1 bezeichneten Stelle der Kernstruktur angebunden sein. Die Seitenkette kann folgende Strukturelemente aufweisen:

- a) beliebig substituierte Kettenstrukturen mit mindestens einem Kohlenstoffatom, die innerhalb der Kette neben weiteren Kohlenstoffatomen ausschließlich auch Sauerstoff, Schwefel- und Siliziumatome aufweisen können und unter Einbeziehung der Heteroatome eine durchgehende Kettenlänge von drei bis maximal zehn Atomen (ohne Mitzählung von Wasserstoffatomen) aufweisen,
- b) direkt angebundene oder über eine Kohlenwasserstoffbrücke (gesättigt oder einfach ungesättigt, verzweigt oder nicht verzweigt, in Position 2 optional oxo-substituiert) mit insgesamt ein bis vier Kohlenstoffatomen gekoppelte, beliebig substituierte gesättigte, ungesättigte oder aromatische Ringstrukturen mit drei bis sieben Ringatomen einschließlich Polyzyklen und Heterozyklen. Bei den Polyzyklen darf jeder Ring drei bis sieben Ringatome aufweisen. Heterozyklen dürfen neben Kohlenstoff die Atome Sauerstoff, Stickstoff und Schwefel im Ring aufweisen. Eine mögliche freie Valenz eines Stickstoffatoms im Ring kann ein Wasserstoffatom oder einen Methyl- oder Ethylrest tragen.

2.2 Von 3-Sulfonylamidobenzoesäure abgeleitete Verbindungen

Zu dieser eigenständigen Gruppe der Cannabimimetika/synthetischen Cannabinoide, die nicht nach dem unter Nummer 2.1 beschriebenen modularen Aufbau zusammengesetzt ist, gehören die Stoffe, die eine der beiden unter Nummer 2.2.1 beschriebenen Kernstrukturen besitzen, mit den unter Nummer 2.2.2 beschriebenen Substituenten besetzt sein können und eine maximale Molekülmasse von 500 u haben.

2.2.1 Kernstruktur

Die Kernstruktur schließt die nachfolgend in den Buchstaben a und b beschriebenen Moleküle ein. Diese können an den in den nachfolgenden Abbildungen gekennzeichneten Positionen mit den unter Nummer 2.2.2 genannten Atomen und Atomgruppen (Reste R_1 bis R_4) substituiert sein:

a) 3-Sulfonylamidobenzoate

$$R_1$$
 $O = S = O$
 R_3
 R_4

b) 3-Sulfonylamidobenzamide

$$R_1$$
 O
 R_2
 R_3
 R_4

2.2.2 Reste R₁, R₂, R₃ und R₄

- a) Der Rest R₁ kann aus einem der folgenden Atome oder einer der folgenden Atomgruppen bestehen: Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl-, Ethyl- und Methoxygruppe.
- b) Der Rest R₂ kann aus einem der folgenden Ringsysteme bestehen: Phenyl-, Pyridyl-, Cumyl-, 8-Chinolinyl-, 3-Isochinolinyl-, 1-Naphthyl- und Adamantylrest. Diese Ringsysteme k\u00f6nnen weiterhin mit beliebigen Kombinationen der folgenden Atome oder Atomgruppen substituiert sein: Wasserstoff, Fluor, Chlor, Brom, Iod, Methoxy-, Amino-, Hydroxy-, Cyano-, Methyl- und Phenoxygruppen.
- c) Die Reste R₃ und R₄ können aus Wasserstoffatomen, Methyl-, Ethyl-, Propyl- und Isopropylgruppen in beliebiger Kombination bestehen. Die Reste R₃ und R₄ können auch ein gesättigtes Ringsystem bis zu einer Größe von sieben Atomen einschließlich des Stickstoffatoms bilden. Dieses Ringsystem kann die weiteren Elemente Stickstoff, Sauerstoff und Schwefel enthalten und eine beliebige Kombination der Elemente Wasserstoff, Fluor, Chlor, Brom und lod tragen. Für die Substitution des Stickstoffatoms in einem solchen Ring gelten die für die Reste R₃ und R₄ in Satz 1 von Buchstabe c angegebenen Substitutionsmöglichkeiten.

2.3 Von 6H-Benzo(c)chromen-1-ol (6H-Dibenzo(b,d)pyran-1-ol) abgeleitete Verbindungen

Zu dieser eigenständigen Gruppe der Cannabimimetika/synthetischen Cannabinoide, die nicht nach dem unter den Nummern 2.1 und 2.2 beschriebenen modularen Aufbau zusammengesetzt sind, gehören die Stoffe, die eine unter Nummer 2.3.1 beschriebene Kernstruktur besitzen, mit den unter Nummer 2.3.2 beschriebenen Substituenten besetzt sein können und eine maximale Molekülmasse von 600 u haben.

2.3.1 Kernstruktur

Die Kernstruktur schließt folgende von 6H-Benzo(c)chromen-1-ol (6H-Dibenzo(b,d)pyran-1-ol) abgeleiteten Verbindungen ein unabhängig vom Hydrierungsgrad des aromatischen Ringes A und der Position der dabei gegebenenfalls darin verbleibenden Doppelbindungen. Die Verbindungen können an den gekennzeichneten Positionen mit den unter Nummer 2.3.2 genannten Atomen und Atomgruppen (Reste R_1 bis R_5) substituiert sein:

2.3.2 Reste R₁, R₂, R₃, R₄ und R₅

- a) Der Rest R₁ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Hydroxymethylgruppe, Methylgruppe sowie Kohlenwasserstoffkette (gesättigt oder ungesättigt, verzweigt oder nicht verzweigt, bis C₁₀). Die vorgenannten Atomgruppen können mit folgenden Atomen substituiert sein: Wasserstoff, Fluor, Chlor, Brom und Iod.
- b) Die Reste R₂ und R₃ können aus Wasserstoff oder den folgenden Atomgruppen bestehen: Methylgruppen und Alkylketten (verzweigt oder nicht verzweigt, bis C₅). Die vorgenannten Atomgruppen können mit folgenden Atomen substituiert sein: Wasserstoff, Fluor, Chlor, Brom und Iod.
- c) Der Rest R_4 kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Methylgruppe sowie Kohlenwasserstoffkette (gesättigt oder ungesättigt, verzweigt oder nicht verzweigt, bis C_{12}). Die vorgenannten Atomgruppen können mit folgenden Atomen substituiert sein: Wasserstoff, Fluor, Chlor, Brom und Iod.
- d) Der Rest R₅ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Alkylcarbonyl (verzweigt oder nicht verzweigt, Alkylrest bis C₇), Cycloalkylmethylcarbonyl mit drei bis sieben Ringatomen einschließlich Polyzyklen, Arylcarbonyl mit drei bis sechs Ringatomen einschließlich Polyzyklen und Heterozyklen, Arylmethylcarbonyl mit drei bis sechs Ringatomen einschließlich Polyzyklen und Heterozyklen. Bei den Polyzyklen darf jeder Ring jeweils drei bis sieben Ringatome aufweisen. Heterozyklen dürfen neben Kohlenstoff die Atome Sauerstoff, Stickstoff und Schwefel im Ring aufweisen. Eine mögliche freie Valenz eines Stickstoffatoms im Ring kann ein Wasserstoffatom oder einen Methyl- oder Ethylrest tragen.

3. Benzodiazepine

Die Gruppe der Benzodiazepine umfasst 1,4- und 1,5-Benzodiazepine und ihre Triazolo- und Imidazolo-Derivate (Nummer 3.1 Buchstabe a und b) sowie einige speziell substituierte Untergruppen dieser Benzodiazepine (Nummer 3.1 Buchstabe c bis f). Die maximale Molekülmasse beträgt jeweils 600 u.

3.1 Kernstruktur

Die Kernstruktur schließt die nachfolgend in den Buchstaben a bis f beschriebenen Ringsysteme ein. Diese Ringsysteme können an den in den nachfolgenden Abbildungen gekennzeichneten Positionen mit den unter Nummer 3.2 genannten Atomen oder Atomgruppen (Reste R₁ bis R₇ und X) substituiert sein:

a) 1,4-Benzodiazepine

b) 1,5-Benzodiazepine

$$R_{5}$$
 R_{1}
 R_{2}
 R_{6}
 R_{6}
 R_{7}
 R_{6}
 R_{2}
 R_{6}
 R_{7}
 R_{6}
 R_{7}
 R_{6}
 R_{7}
 R_{7}
 R_{2}
 R_{6}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{9}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{4}
 R_{5}
 R_{7}
 R_{7}
 R_{8}

c) Loprazolam-Abkömmlinge

d) Ketazolam-Abkömmlinge

$$R_5$$
 R_4
 R_2
 R_7
 R_7
 R_4
 R_3
 R_7

e) Oxazolam-Abkömmlinge

$$\begin{array}{c|c}
R_5 & X \\
N_1 & 2 \\
R_2 & 3 \\
R_3 & R_3
\end{array}$$

$$\begin{array}{c|c}
R_4 & R_3 \\
R_7 & R_7
\end{array}$$

$$R_5$$
 N
 N
 N
 R_4
 R_3
 R_7

$$R_5$$
 R_5
 R_4
 R_3
 R_7

f) Chlordiazepoxid-Abkömmlinge

$$R_{5}$$
 X
 R_{1}
 X
 R_{2}
 X
 R_{4}
 R_{3}
 R_{4}

$$R_5$$
 N
 1
 2
 R_4
 R_3
 R_4
 R_5
 N
 R_5
 N
 R_7

3.2 Reste R₁ bis R₇ und X

 a) Der Rest R₁ schließt eines der folgenden an die Siebenringe der Kernstrukturen anellierten Ringsysteme ein:

Phenyl-, Thienyl-, 4,5,6,7-Tetrahydrobenzo[b]thienyl-, Furanyl- und Pyridylring; die Heteroatome im Thienyl-, Furanyl- und Pyridylring können an jeder beliebigen Position außerhalb des Siebenringes der Kernstruktur stehen.

Der Rest R₁ kann weiterhin mit einem oder mehreren der folgenden Atome oder Atomgruppen in beliebiger Kombination und an beliebigen Positionen außerhalb des Siebenringes substituiert sein: Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl-, Ethyl-, Nitro- und Aminogruppen.

b) Der Rest R2 schließt eines der folgenden Ringsysteme ein:

Phenyl-, Pyridyl- (mit Stickstoffatom an beliebiger Position im Pyridylring) und Cyclohexenylring (mit Doppelbindung an beliebiger Position im Cyclohexenylring).

Phenyl- und Pyridylring können einen oder mehrere der folgenden Substituenten in beliebiger Kombination und an beliebiger Position tragen: Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl-, Ethyl-, Nitro- und Aminogruppen.

- c) Der Rest R₃ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Hydroxy-, Carboxyl-, Ethoxycarbonyl-, (N,N-Dimethyl)carbamoyl-, Succinyloxy- und Methylgruppe.
- d) Der Rest R₄ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen:
 Methyl- und Ethylgruppe.
- e) Die Reste R₃ und R₄ können auch gemeinsam eine Carbonylgruppe (C=O) bilden.
- f) Der Rest R₅ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Methyl-, Ethyl-, (N,N-Dimethylamino)methyl-, (N,N-Diethylamino)methyl-, (N,N-Dimethylamino)ethyl-, (N,N-Diethylamino)ethyl-, (Cyclopropyl)methyl-, (Trifluormethyl)methyl-, Hydrazidomethyl- und Prop-2-in-1-ylgruppe.
- g) Der Rest R₆ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Hydroxy- und Methylgruppe.
- h) Der Rest R₇ kann aus Wasserstoff oder einer der folgenden Atomgruppen bestehen: Methyl- und Ethylgruppe.
- i) Die Reste R₆ und R₇ k\u00f6nnen bei den 1,5-Benzodiazepinen auch gemeinsam eine Carbonylgruppe (C=O) bilden.
- j) Bei den 1,5-Benzodiazepinen kann statt R₂ und R₇ auch eine mit R₆ substituierte Doppelbindung zum 5-Stickstoff-Atom vorliegen.
- k) Der Rest X schließt eines der folgenden Atome oder eine der folgenden Atomgruppen ein: Sauerstoff, Schwefel, Imino- und N-Methyliminogruppe. Wenn R₃, R₄ oder R₅ aus Wasserstoff besteht, können als tautomere Formen auch die entsprechenden Enole, Thioenole oder Enamine vorliegen.

4. Von N-(2-Aminocyclohexyl) amid abgeleitete Verbindungen

Eine von N-(2-Aminocyclohexyl)amid abgeleitete Verbindung ist jede chemische Verbindung, die von der nachfolgend abgebildeten Grundstruktur abgeleitet werden kann, eine maximale Molekülmasse von 500 u hat und mit den nachfolgend beschriebenen Substituenten besetzt sein kann.

$$R_5$$
 $(CH_2)_{\Pi}$
 R_4
 R_1
 R_2

Die Grundstruktur N-(2-Aminocyclohexyl)amid kann an den in der Abbildung gekennzeichneten Positionen mit einer beliebigen Kombination der folgenden Atome, verzweigten oder nicht verzweigten Atomgruppen oder Ringsystemen (Reste R_1 bis R_6) substituiert sein:

a) R₁ und R₂:

Wasserstoff und Alkylgruppe (bis C_7).

Ferner sind Stoffe eingeschlossen, bei denen das Stickstoffatom Bestandteil eines cyclischen Systems ist (z. B. Pyrrolidinyl-).

Der Rest R_1 oder R_2 kann auch an die Bindungsstelle der NR_1R_2 -Gruppe am Sechsring anknüpfen (unter Bildung einer sogenannten Spiroverbindung). Diese stickstoffhaltigen Ringe dürfen eine Ringgröße von drei bis sieben Atomen aufweisen (ein Stickstoffatom und zwei bis sechs Kohlenstoffatome).

b) R₃:

Wasserstoff und Oxaspirogruppe (Ringgröße von drei bis acht Atomen einschließlich des Sauerstoffatoms).

c) R₄:

Wasserstoff und Alkylgruppe (bis C₅).

d) R₅ und R₆:

Der Phenylring kann an den Positionen 2, 3, 4, 5 und 6 beliebige Kombinationen folgender Substituenten enthalten: Wasserstoff, Brom, Chlor, Fluor, Iod und Trifluormethylgruppe.

Ferner sind Stoffe eingeschlossen, bei denen R_5 und R_6 gemeinsam an benachbarten C-Atomen ein Ringsystem (bis C_6) unter Einbeziehung von Heteroatomen (Sauerstoff, Schwefel, Stickstoff) bilden. Im Fall eines Stickstoffs in diesem Ringsystem darf dieser die Substituenten Wasserstoff und Methylgruppe tragen.

Die Anzahl (n) der Methylengruppen (CH₂)_n zwischen dem Phenylring und der Carbonylgruppe in der Kernstruktur kann null oder eins betragen.

5. Von Tryptamin abgeleitete Verbindungen

5.1 Indol-3-alkylamine

Eine von Indol-3-alkylamin abgeleitete Verbindung ist jede chemische Verbindung, die von der nachfolgend abgebildeten Grundstruktur abgeleitet werden kann, eine maximale Molekülmasse von 500 u hat und mit den nachfolgend beschriebenen Substituenten besetzt sein kann. Ausgenommen hiervon sind Tryptamin, die natürlich vorkommenden Neurotransmitter Serotonin und Melatonin sowie deren aktive Metaboliten (z. B.: 6-Hydroxymelatonin).

$$\begin{array}{c|c}
R_1 \\
N - R_2 \\
R_3 \\
R_1 \\
R_3 \\
R_4 \\
R_5 \\
R_5 \\
R_5 \\
R_5 \\
R_7 \\
R_8 \\
R_8 \\
R_8 \\
R_9 \\
R_9$$

Die Grundstruktur Indol-3-alkylamin kann an den in der Abbildung gekennzeichneten Positionen mit den folgenden Atomen, verzweigten oder nicht verzweigten Atomgruppen oder Ringsystemen (Reste R_1 bis R_5 und R_n) substituiert sein:

a) R₁ und R₂:

Wasserstoff, Alkyl- (bis C_6), Cycloalkyl- (Ringgröße bis C_6), Cycloalkylmethyl- (Ringgröße bis C_6) und Allylgruppen.

Ferner sind Stoffe eingeschlossen, bei denen das Stickstoffatom Bestandteil eines Pyrrolidinyl-Ringsystems ist.

b) R₃:

Wasserstoff und Alkylgruppe (bis C₃).

c) R₄:

Wasserstoff und Alkylgruppe (bis C₂).

d) R₅:

Wasserstoff, Alkyl- (bis C_3), Alkylcarbonyl- (bis C_{10}), Cycloalkylcarbonyl- (Ringgröße C_3 bis C_6), Cycloalkylmethylcarbonyl- (Ringgröße C_3 bis C_6), Cycloalkylpropylcarbonyl- (Ringgröße C_3 bis C_6), und Benzylcarbonylgruppe.

e) R_n:

Das Indolringsystem kann an den Positionen 4, 5, 6 und 7 mit folgenden Atomen oder Atomgruppen substituiert sein: Wasserstoff, Fluor, Chlor, Brom, Iod, Alkyl- (bis C_4), Alkyloxy- (bis C_{10}), Benzyloxy-, Carboxamido-, Methoxy-, Acetoxy-, Hydroxy- und Methylthiogruppen, an Position 4 darüber hinaus mit Dihydrogenphosphat.

Ferner sind Stoffe eingeschlossen, bei denen durch R_n zwei benachbarte Kohlenstoffatome der Positionen 4, 5, 6 und 7 mit einer Methylendioxygruppe überbrückt werden.

5.2 $\Delta^{9,10}$ -Ergolene

Eine von $\Delta^{9,10}$ -Ergolen abgeleitete Verbindung ist jede chemische Verbindung, die von der nachfolgend abgebildeten Grundstruktur abgeleitet werden kann, eine maximale Molekülmasse von 600 u hat und mit den nachfolgend beschriebenen Substituenten besetzt sein kann.

Die Grundstruktur $\Delta^{9,10}$ -Ergolen kann an den in der Abbildung gekennzeichneten Positionen mit den folgenden Atomen, verzweigten oder nicht verzweigten Atomgruppen oder Ringsystemen (Reste R_1 bis R_4) substituiert sein:

a) R₁:

Der Rest R_1 kann aus beliebigen Kombinationen der Atome Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Fluor, Chlor, Brom und lod bestehen, soweit sie nicht gemäß den Doppelbuchstaben aa und bb eingeschränkt werden. Der Rest R_1 darf eine maximale Molekülmasse von 300 u und folgende Strukturelemente aufweisen:

- aa) Wasserstoff oder beliebig substituierte Kettenstrukturen mit mindestens einem Kohlenstoffatom, die innerhalb der Kette neben weiteren Kohlenstoffatomen ausschließlich auch Sauerstoff- und Schwefelatome aufweisen können,
- bb) direkt angebundene oder über eine Kohlenwasserstoffbrücke (gesättigt oder einfach ungesättigt, verzweigt oder nicht verzweigt mit insgesamt ein bis fünf Kohlenstoffatomen) oder eine Carbonylgruppe oder eine Alkylcarbonylgruppe (Alkylrest bis C4, Bindung der Carbonylgruppe an den Stickstoff des Ergolens) oder eine Alkyloxycarbonylgruppe (Alkylrest bis C4, Bindung der Carbonylgruppe an den Stickstoff des Ergolens) oder eine Sulfonylgruppe gekoppelte, beliebig substituierte gesättigte, ungesättigte oder aromatische Ringstrukturen mit drei bis sieben Ringatomen einschließlich Polyzyklen und Heterozyklen. Bei den Polyzyklen darf jeder Ring drei bis sieben Ringatome aufweisen. Heterozyklen dürfen neben Kohlenstoff die Atome Sauerstoff, Stickstoff und Schwefel im Ring aufweisen. Eine mögliche freie Valenz eines Stickstoffatoms im Ring kann ein Wasserstoffatom oder einen Methyl- oder Ethylrest tragen.

b) R₂:

Wasserstoff, Alkyl- (bis C₄), Allyl- und Prop-2-in-1-yl-Gruppe.

c) R₃ und R₄:

Wasserstoff, Alkyl- (bis C₅), Cyclopropyl-, 1-Hydroxyalkyl- (bis C₂) und Allylgruppen.

Ferner sind Stoffe eingeschlossen, bei denen das Amid-Stickstoffatom Bestandteil eines Morpholino-, Pyrrolidino- oder Dimethylazetidid-Ringsystems ist.

6. Von Arylcyclohexylamin abgeleitete Verbindungen

Eine von Arylcyclohexylamin abgeleitete Verbindung ist jede chemische Verbindung, die von der nachfolgend abgebildeten Grundstruktur abgeleitet werden kann, eine maximale Molekülmasse von 500 u hat und mit den nachfolgend beschriebenen Substituenten besetzt sein kann.

$$\begin{array}{c}
R_{3} \\
N - R_{2} \\
R_{n_{5}}
\end{array}$$

Die Grundstruktur Arylcyclohexylamin kann an den in der Abbildung gekennzeichneten Positionen mit den folgenden Atomen, verzweigten oder nicht verzweigten Atomgruppen oder Ringsystemen (Reste R_1 bis R_3 und R_n) substituiert sein:

a) R_1/R_2 :

Wasserstoff, Alkyl- (bis C_6), Cycloalkyl- (Ringgröße bis C_6), Alkenyl- (bis C_6) und Alkinylgruppen (bis C_6). Die aufgeführten Atomgruppen können weiterhin mit beliebigen chemisch möglichen Kombinationen der Elemente Kohlenstoff, Wasserstoff, Stickstoff und Sauerstoff substituiert sein. Die auf diese Weise entstehenden Substituenten R_1/R_2 dürfen dabei eine durchgehende Kettenlänge von maximal neun Atomen (ohne Mitzählung von Wasserstoffatomen) aufweisen. Atome von Ringstrukturen werden dabei nicht in die Zählung einbezogen.

Zudem gehören Stoffe dazu, bei denen das Stickstoffatom Bestandteil eines cyclischen Systems ist (beispielsweise Pyrrolyl-, Pyrrolidinyl-, Piperidinyl-, Morpholino-Reste). Diese Ringsysteme dürfen im Ring die Elemente Kohlenstoff, Sauerstoff, Schwefel und Stickstoff aufweisen und eine Ringgröße bis zu sieben Atomen aufweisen. Die Ringsysteme können an jeder Position mit folgenden Atomen oder Atomgruppen substituiert sein: Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy-, Alkyl- (bis C_6) und Phenylgruppen.

b) R₃:

Alkyl- (bis C_6), Alkinylgruppe (bis C_6) oder eines der folgenden Ringsysteme: Phenyl-, Pyrrolyl-, Pyridyl-, Thienyl-, Furanyl-, Methylendioxyphenyl-, Ethylendioxyphenyl-, Dihydrobenzofuranyl- und Benzothiophenyl-Reste.

Die Ringsysteme können an jeder chemisch möglichen Position als R_3 an die Kernstruktur angebunden sein und an beliebiger Position mit folgenden Atomen oder Atomgruppen substituiert sein: Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy-, Thiol-, Alkyl- (bis C_6), Alkoxy- (bis C_6), Alkylsulfanyl- (bis C_6) und Aminogruppen, einschließlich der chemischen Verbindungen, bei denen Substitutionen oder eine direkte Anbindung zu einem Ringschluss mit dem Cyclohexylring führen. Diese Ringsysteme dürfen eine Ringgröße von vier bis sechs Atomen aufweisen.

c) R_n:

Das Cyclohexylringsystem kann an den Positionen zwei bis sechs mit folgenden Atomen oder Atomgruppen substituiert sein: Wasserstoff, Alkyl- (bis C_6), Alkoxy- (bis C_6), Hydroxy-, Phenylalkylgruppen (in der Alkylkette C_1 bis C_4) und Oxo-Gruppen (=O, doppelt gebundenes Sauerstoffatom am Ring).

7. Von Benzimidazol abgeleitete Verbindungen

Eine von Benzimidazol abgeleitete Verbindung ist jede chemische Verbindung, die von der nachfolgend abgebildeten Grundstruktur abgeleitet werden kann, eine maximale Molekülmasse von 500 u hat und mit den nachfolgend beschriebenen Substituenten besetzt sein kann:

$$R_1$$
 R_2
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_7

Die Grundstruktur kann an den in der Abbildung gekennzeichneten Positionen mit den folgenden Atomen, verzweigten oder nicht verzweigten Atomgruppen oder Ringsystemen (Reste R_1 bis R_4 und R_n) substituiert sein:

a) R₁ und R₂:

Wasserstoff, Alkylgruppen (bis C₃).

Ferner sind Stoffe eingeschlossen, bei denen das Amin-Stickstoffatom Bestandteil eines Morpholino-, Pyrrolidino- oder Piperidinyl-Ringsystems ist.

b) R₃ und R₄:

Wasserstoff, Nitro-, Trifluormethyl-, Methoxy-, Trifluormethoxy-, Cyanogruppen, Fluor, Chlor, Brom und Iod.

c) R_n:

Der Phenylring kann an den Positionen zwei bis sechs mit folgenden Atomen oder Atomgruppen substituiert sein: Wasserstoff, Alkyl- (bis C_6), Alkoxy- (bis C_5), Trifluormethoxy-, Acetoxy-, Alkylsulfanyl- (bis C_5), Trifluormethyl-, Hydroxy-, Cyanogruppen, Fluor, Chlor, Brom und Iod.