
GRS - 758

Functional and
Structural Extensions
of the AC2 Numerics

Functional and
Structural Extensions
of the AC² Numerics

Funktions- und Struktur-
ausbau der AC²-Numerik

Final Report

Tim Steinhoff
Volker Jacht
Daniel von der Cron
Dandy Eschricht
Markus Junk
Jonas Wack

September 2023

Remark

This report refers to the research pro-
ject RS1593 which has been funded
by the German Federal Ministry for
the Environment, Nature Conversa-
tion, Nuclear Safety and Consumer
Protection (BMUV).

The work was conducted by GRS.

The authors are responsible for the
content of the report.

GRS - 758
ISBN 978-3-910548-49-7

Gesellschaft für Anlagen-
und Reaktorsicherheit
(GRS) gGmbH

Keywords

AC², CI/CD, coupled simulations, differential equations, GitLab, MPI, Numerical Toolkit, NuT, ODEs, PETSc,
software development

Abstract

GRS develops the program package AC2 which is employed for the safety analysis
of nuclear reactors, research reactors and other nuclear facilities. Its field of appli-
cation covers normal operation, transients, and accidents up to severe accidents
with radioactive release at the site boundary. The main components are ATHLET,
ATHLET-CD, and COCOSYS. AC2 also includes the Numerical Toolkit (NuT), which
serves as AC2’s sustainable software component to provide easy access to dedicated
numerical algorithms and data structures.

The focus of this project lay on extending the AC2 architecture to allow for an alternative
and more flexible approach to coupled computations by means of introducing ODE
features to NuT. This was accompanied by work on software-related aspects focusing
on NuT and the development cycle of AC2. Furthermore, ATHLET’s steady state
calculation has been investigated in some detail.

Within the project, the functionality of NuT was extended in order to execute ODE
methods. This was implemented in terms of a per-step logic where a method per-
forms one time integration step per given step size using auxiliary PETSc procedures.
Several ODE methods are now available to NuT. The interfaces for the AC2 codes
ATHLET and COCOSYS (module THY) were implemented and tested successfully.
In verification calculations the correct implementation of these ODE methods for
stand-alone and coupled calculations was demonstrated. In addition, a framework
for thermo-hydraulically coupled calculations between ATHLET and COCOSYS was
facilitated by advanced coupling numerics provided via NuT. Different coupling ap-
proaches were discussed theoretically, and boundary conditions and constraints from
ATHLET and COCOSYS-THY were analyzed. The monolithic coupling approach was
chosen, where the ODE equations from each code are treated within one unified
overall ODE system. NuT was extended to build up the overall Jacobian matrix from
the Jacobians of ATHLET and COCOSYS and from the derivatives that represent the
mutual influences to enable this approach. The consistent treatment of discontinuities
and time step reductions due to code model requirements for the coupled code system
was ensured. Moreover, the AC2 communication architecture was optimized for this
approach. A first functional implementation was achieved, but further work will be
needed to fully establish this method within AC2.

In parallel, the implementation of NuT was checked within the EU-funded project
POP. This showed that NuT’s implementation of its communication structure via MPI

I

is efficient. Additionally, it was found that the instruction scalability of NuT appears to
be weak. This is due to long waiting times for the ATHLET process to send data to
NuT. Consequently, future efforts should be focused on enhancing the speed of the
system code calculations, e. g., by parallel processing via OpenMP.

The second large topic was improving the AC2 development cycle. Importantly,
substantial automation of the AC2 build process within the GRS GitLab infrastructure
was achieved enabling continuous deployment of GRS-internal code versions. In
addition, a structured approach to multi-project developments within the AC2 program
landscape was established, and tools and methods for this approach were provided.

Finally, the steady state calculation of ATHLET was analyzed in depth and documented
accordingly. Based on this work, some improvements could be implemented, e. g.,
the initialization of ATHLET zones with multiple non-condensable gases.

Overall, the main objectives of the project have been achieved. Follow-up work on
improving NuT and the thermal-hydraulic coupling of ATHLET and COCOSYS within
AC2 will be necessary in future project.

II

Kurzfassung

Die GRS entwickelt das Programmpaket AC2 für die Sicherheitsanalyse von Kernkraft-
werken, Forschungsreaktoren und anderen kerntechnischen Anlagen /WEY 23/. Mit
AC2 können der Normalbetrieb, Transienten und Störfälle bis hin zu Unfällen mit
Freisetzung von Spaltprodukten in die Umgebung mit realistischen Modellen simuliert
werden. Zentrale Programme innerhalb von AC2 sind ATHLET (Analysis of THermal-
hydraulics of LEaks and Transients), ATHLET-CD (Core Degradation) und COCOSYS
(COntainment COde SYStem). ATHLET dient der Simulation von Phänomenen im
Primärkreislauf vor Beginn der Kernzerstörung. Mit ATHLET-CD wird dies für die Phä-
nomene und Prozesse bei Kernzerstörung, Schmelzeverlagerung ins untere Plenum
und Freisetzung von Spaltprodukten aus dem Kerninventar erweitert. COCOSYS
ermöglicht die Simulation der Phänomene im Sicherheitsbehälter von Betrieb bis
Unfallszenarien und erlaubt die Analyse des Containmentverhaltens unter Unfallbedin-
gungen bis hin zur Berechnung des freigesetzten Quellterms. Für multi-physikalische
Rechnungen des integralen Anlagenverhaltens bei Stör- und Unfällen und zur realisti-
schen Berücksichtigung der Interaktion der Vorgänge im Kühlkreislauf und Reaktor
können die Programme ATHLET und ATHLET-CD (ATHLET/CD) mit COCOSYS
innerhalb von AC2 gekoppelt werden.

Das Programmpaket wird durch weitere Simulationscodes und Werkzeuge ergänzt.
Eine zentrale Komponente ist hierbei das Numerical Toolkit (NuT), welches für die
AC2-Programme zentral einen einfachen Zugang zu dedizierten numerischen Algo-
rithmen und Datenstrukturen bereit stellt. Intern greift NuT auf Funktionalitäten der
PETSc-Bibliothek zu. PETSc ist eine Open-Source-Bibliothek fürs effiziente Lösen
numerischer Aufgaben, die von einer internationalen Gemeinschaft von Entwicklern
seit vielen Jahren kontinuierlich verbessert wird /BAL 23/.

Die wesentliche numerische Aufgabe in den AC2-Programmen ist die Zeitintegration
für die thermohydraulischen Prozesse, sowohl für die Einzelprogramme als auch im
Rahmen gekoppelter AC2-Simulationen. Für die Lösung der dazugehörigen Differen-
zialgleichungssysteme (DGL-Systeme) wird die GRS-Numerik-Routine FEBE genutzt,
die in den 1970er und 1980er Jahren vor dem Hintergrund der damals verfügbaren
IT-Infrastruktur und Codeanforderungen entwickelt wurde. Da diese Routine nicht
sinnvoll für moderne Aufgaben wie gekoppelte Simulationen erweiterbar ist und auf-
grund der besseren Skalierbarkeit der numerischen Methoden in NuT, soll dieses die
bestehende Numerik schrittweise ersetzen und neue Funktionalitäten ermöglichen.

III

Mit dem Release AC2 2023 kann NuT sowohl im ATHLET/CD-Rechengebiet als
auch im COCOSYS-Rechengebiet für die effiziente und skalierbare Bearbeitung der
zur Lösung der DGL-Systeme gehörenden linearen Algebra eingesetzt werden. Die
Kommunikation zwischen NuT und den AC2-Programmen ist dabei über den Kommu-
nikationsstandard MPI (Message Passing Interface) realisiert. Die Grundlagen für
diese Funktionalitäten wurden in den Vorgängervorhaben RS1530 /STE 17b/ sowie
RS1558 /STE 20/ gelegt.

Hauptziel des vorliegenden Vorhabens RS1593 war es, die Entwicklung des Nume-
rical Toolkits fortzuführen, um weitere numerische Funktionen der AC2-Programme
durch das Toolkit verfügbar zu machen sowie die Code-Performance und Wartbarkeit
zu verbessern. Dieses Hauptziel wurde in drei Einzelziele aufgegliedert, die in den
drei Arbeitspaketen des Vorhabens bearbeitet wurden.

• In Arbeitspaket 1 Erweiterung der DGL-Numerik in AC2 sollte eine zentrale DGL-
Numerik über NuT zur Verfügung gestellt werden. Insbesondere wurde die ther-
mohydraulische Kopplung zwischen ATHLET/CD und COCOSYS betrachtet, für
die eine Zeitintegration als Gesamtsystem ermöglicht werden sollte und für welche
die hierfür notwendigen Datenstrukturen und Algorithmen in NuT implementiert
werden sollten.

• In Arbeitspaket 2 Softwaretechnische Verbesserungen im NuT-Kontext sollte die
weitere Codepflege, das Testen sowie die Optimierung des Programmsystems
umgesetzt werden.

• In Arbeitspaket 3 Konzeptarbeiten zur ATHLET-Startrechnung sollte diese vertieft
untersucht und dokumentiert werden. Des Weiteren sollten Verbesserungspoten-
ziale aufgezeigt werden.

Im Folgenden werden die Ergebnisse des Vorhabens zu den einzelnen Arbeitspunkten
kurz zusammengefasst.

Erweiterungen zur DGL-Numerik in AC2

In diesem Arbeitspunkt wurde NuT derart erweitert, dass es DGL-Methoden ausführen
kann. Dazu wurde eine Einzelschritt-Logik implementiert, mit der eine ausgewählte
Methode einen Zeitschritt für eine gegebene Schrittweite durchführen kann. Die
Implementierung in NuT greift hierzu auf Routinen der PETSc-Bibliothek zu. Die DGL-
Funktionalität wurde anhand einfacher Testfälle verifiziert. Somit stehen unter NuT
nunmehr verschiedene DGL-Lösungsmethoden zur Verfügung. Weiterhin wurde die
Schnittstelle zwischen NuT und den AC2-Programmen ATHLET und COCOSYS (hier

IV

dem Modul THY) so erweitert, dass die DGL-Methoden aus ATHLET bzw. COCOSYS
angesprochen werden können. Weiterhin wurde die Kontrolllogik für die numerische
Zeitintegration in ATHLET und COCOSYS derart ergänzt, dass die Zeitintegration
alternativ mit NuT statt rein mit FEBE durchgeführt werden kann. Damit sind zunächst
Simulationen mit den Einzelprogrammen ATHLET/CD und COCOSYS unter Nutzung
dieser neuen Funktionalität von NuT möglich. Diese wurde anhand von theoretischen
Testfällen verifiziert.

Als nächster Schritt wurde die thermohydraulische Kopplung zwischen ATHLET und
COCOSYS angegangen. Hierfür wurden zunächst die Modellterme (Erhaltungsglei-
chungen und Lösungsvariablen) von ATHLET und COCOSYS und der Einfluss der
ATHLET-Parameter auf die COCOSYS-Parameter an der Kopplungsschnittstelle und
umgekehrt theoretisch untersucht. Auf dieser Grundlage wurden verschiedene mögli-
che Kopplungsansätze diskutiert und ihre Eignung für eine Bestimmung numerisch
konsistente Informationen über die Ableitungsterme an der Kopplungsschnittstelle
bewertet. Dabei stellte sich heraus, dass ein monolithischer Kopplungsansatz für die
Zwecke des Vorhabens geeignet ist. Bei diesem Ansatz werden die DGL-Systeme im
ATHLET- bzw. COCOSYS-Rechengebiet zu einem übergreifenden Gesamtsystem
zusammengefasst. Da in ATHLET bzw. COCOSYS die Ableitungsterme, d. h. die
Jacobi-Matrizen, für das jeweilige Rechengebiet bereits ausgerechnet werden, erfor-
dert dieser Ansatz zusätzlich die Bereitstellung der Ableitungsinformationen, welche
den gegenseitigen Einfluss der Systeme aufeinander charakterisieren. Der wesentli-
che Vorteil dieses Ansatzes ist, dass aus numerischer Sicht ein Gesamtsystem wie
ein Einzelsystem behandelt werden kann und daher die notwendigen Erweiterungen
der Funktionalitäten von NuT überschaubar bleiben. Weiterhin bietet der monolithi-
sche Ansatz eine gute Basis für mögliche zukünftige Verbesserungen. Angesichts der
softwaretechnischen Komplexität der Realisierung einer Kopplungsnumerik wurde
dieser Ansatz für eine Umsetzung im aktuellen Vorhaben ausgewählt.

Entsprechend wurde in NuT die Möglichkeit geschaffen, die Jacobi-Matrix des Gesamt-
systems aus den Einzelmatrizen der Rechengebiete und der Ableitungsinformationen
an der Schnittstelle aufzubauen, zu speichern und für die Ausführung von DGL-
Methoden zu nutzen. Weiterhin wurden die AC2-Programme ATHLET und COCOSYS
so erweitert, dass diese NuT alle Daten für die Jacobi-Matrix des Gesamtsystems
zur Verfügung stellen können. Dazu wurden entsprechende Kommunikations- und
Datenstrukturen in NuT sowie in den AC2-Programmen bereitgestellt und verifiziert.
Weiterhin wurde die Kontrolllogik für die Zeitintegration in einer gekoppelten AC2-

V

Simulation derart erweitert, dass Daten und Zustände zwischen den AC2-Programmen
geeignet synchronisiert werden. Damit ist sichergestellt, dass von NuT genutzte In-
formationen sowie die AC2-Kontrolllogik konsistent sind. Ein weiterer wichtiger Schritt
war die Berücksichtigung von Unstetigkeiten und Schrittweitenbegrenzungen, die
durch Modellanforderungen in den Einzelcodes erforderlich sind. Zusätzlich wurde die
Möglichkeit implementiert, einen gekoppelten Zeitschritt mit reduzierter Schrittweite
konsistent zu wiederholen. Um das Integrationsverfahren effizient zu gestalten, wurde
die Kommunikationsarchitektur innerhalb von AC2 so optimiert, dass der ATHLET-
Prozess und der COCOSYS-THY-Prozess direkt Informationen austauschen können,
ohne die allgemeine Prozess-Steuerung in AC2 nutzen zu müssen.

Dies hat es erlaubt, erste Testrechnungen für einfache gekoppelte Systeme durchzu-
führen. Bei einem Vergleich der Ergebnisse der neuen Kopplungsmethodik mit denen
der vorhandenen Kopplungsmethodik und mit Einzelcode-Ergebnissen zeigte sich,
dass der monolithische Kopplungsansatz deutlich besser mit den Ergebnissen des
Einzelcodes übereinstimmt und damit eine höhere Vorhersagequalität zeigt. Weiterhin
zeigen die Ergebnisse, dass der monolithische Kopplungsansatz bessere numerische
Stabilitätseigenschaften aufweist. Gleichzeitig bleiben die Zeitschrittweiten für den
monolithischen Ansatz auch nach Ende des transienten Prozesses deutlich unter
denen des Einzelcodes und der bisherigen Kopplungsmethodik. Hier besteht Ver-
besserungspotenzial, insbesondere bei der Zeitschrittweitensteuerung für gekoppelte
Simulationen. Des Weiteren wurden im Zuge der Arbeiten einige offene Fragen zur
Konsistenz der thermohydraulischen Modellierung zwischen ATHLET und COCOSYS
identifiziert, die für eine Verbesserung der Kopplung in AC2 weiter bearbeitet und
gelöst werden sollten.

Softwaretechnische Verbesserungen im NuT-Kontext
In diesem Arbeitspaket wurden eine Reihe von Verbesserungen und Optimierungen
an NuT umgesetzt. Um die Nachvollziehbarkeit der von NuT ausgeführten Opera-
tionen während einer Simulation zu erhöhen, wurde das sogenannte Logging, also
das Aufzeichnen von Statusinformationen zur Laufzeit, weiter verbessert. Dies er-
möglicht es Entwicklern und Anwendern, mögliche Probleme bzw. Datensatzfehler
während einer Simulation besser zu identifizieren. Hierbei wurde bereits ausgenutzt,
dass im Rahmen dieses Arbeitspaketes die Kommunikationsschnittstelle von NuT
flexibler gestaltet wurde. Es ist nun möglich, neue Entitäten-Klassen einzuführen,
ohne die grundsätzlichen Mechanismen der Kommunikationsschnittstelle anpassen
zu müssen. Um die Erzeugung von Jacobi-Matrizen in den AC2-Codes effizienter

VI

zu gestalten, wurde das sogenannte Seeding weiter optimiert. Dadurch sind insbe-
sondere bei realistischen Anwendungsrechnungen weniger Funktionsauswertungen
in den AC2-Programmen notwendig, was die Rechenläufe beschleunigt. Zusätzlich
wurde das Speichermanagement von NuT weiter verbessert, um interne Prozesse in
NuT effizienter zu gestalten.

Schließlich hat die GRS hinsichtlich NuT ein Angebot des von der EU geförderten POP-
Vorhabens (Performance Optimisation and Productivity) wahrgenommen. Hierbei
wurde die Effizienz der Implementierung der MPI-basierten Kommunikations- und
Rechenstrukturen in NuT durch die Experten des POP-Vorhabens untersucht und
bewertet. In den Metriken des POP-Vorhabens zeigte sich, dass die Kommunikations-
effizienz von NuT sehr gut mit der Anzahl der Prozesse skaliert. Dies galt allerdings
nicht für die Anzahl der in NuT ausgeführten Anweisungen. Mit steigender Prozess-
anzahl steigt auch die Anzahl der Anweisungen. Dies liegt daran, dass NuT auf
Daten vom Simulationsprogramm – hier ATHLET – warten muss. Dies geschieht über
regelmäßiges Abfragen auf dem Kommunikationskanal pro genutzten Prozess. Im
Rahmen der POP-Metrik gilt dies als zu zählende Operation. Aus diesen Resultaten
lässt sich folgern, dass zur Beschleunigung einer Simulation mit AC2-Programmen
primär die Simulationscodes zusätzliche Rechenressourcen nutzen sollten, und nicht
zusätzliche Rechenressourcen für Aufgaben von NuT zur Verfügung gestellt werden
sollten. Eine weitere Parallelisierung der AC2-Simulationscodes, z. B. unter Nutzung
von OpenMP, ist daher sinnvoll.

Das zweite wichtige Thema in diesem Arbeitspaket war die weitere Verbesserung
des Entwicklungsprozesses für die AC2-Programme. Hierfür wurden Verfahren und
Werkzeuge geschaffen, so dass eine AC2-Distribution automatisiert unter GitLab ge-
neriert, getestet und an die GRS-internen Nutzer verteilt werden kann. Dies erforderte
erhebliche Änderungen an einer Vielzahl von Einzelprogrammen zur Vereinheitli-
chung von softwaretechnischen Abhängigkeiten und Build-Prozessen innerhalb des
AC2-Systems. Dies hat die Voraussetzungen für eine effizientere Nutzung von automa-
tisierten Verfahren zu Regressionstests und Validierungsrechnungen im AC2-Kontext
geschaffen. Dies wird ergänzt durch einen strukturierten Ansatz für die Multi-Projekt-
Entwicklungsarbeiten, die innerhalb von AC2 notwendig sind. Auch hierfür wurden
geeignete Werkzeuge zur Verfügung gestellt. Dabei haben sich die Arbeiten zur Au-
tomatisierung der Build-Prozesse für die AC2-Distribution und die verstärkte Nutzung
der Continuous-Integration- und Continuous-Deployment-Infrastruktur unter GitLab
bereits für den Release von AC2 2023 bewährt.

VII

Konzeptarbeiten zur ATHLET-Startrechnung
In diesem Arbeitspaket wurde die Startrechnung von ATHLET vertieft analysiert. Die
Routinen der Startrechnung und der Datenfluss zwischen ihnen wurden aufgearbeitet
und dokumentiert. Ebenso wurden die in der Startrechnung genutzten Modelle und
Algorithmen untersucht. In diesem Zuge wurden auch Tests der Funktionalität und
Korrektheit der Startrechnung durchgeführt. Dabei konnten einzelne Probleme und
Verbesserungspotenziale identifiziert werden. Eine unmittelbar umgesetzte Maßnah-
me war es, die Möglichkeit zu schaffen, ein Gemisch nicht-kondensierbarer Gase
bereits in der Startrechnung zu initialisieren und bei der Bestimmung des Anfangszu-
stands einer Simulation (der steady state calculation) konsistent zu berücksichtigen.
Diese Verbesserung ist Bestandteil von AC2 2023. Zusätzlich wurden eine Reihe von
Vorschlägen für eine weitere Verbesserung der Startrechnung für ATHLET abgeleitet,
die in zukünftigen Arbeiten aufgegriffen werden können.

Fazit und Ausblick
Insgesamt hat das vorliegende Vorhaben seine Ziele erreicht. In NuT konnten DGL-
Methoden erfolgreich implementiert werden. Weiterhin konnte eine erste funktionie-
rende Implementierung einer konsistenten Kopplungsnumerik über einen monoli-
thischen Kopplungsansatz bereitgestellt werden. Aufgrund der Komplexität dieser
Aufgabe konnten jedoch nicht alle wünschenswerten und ursprünglich anvisierten
Funktionalitäten innerhalb des Vorhabens bereitgestellt werden. Insbesondere fehlen
noch die Möglichkeit zu partiellen Updates der Jacobimatrizen im NuT-DGL-Kontext
sowie ein konsistenter Restart über entsprechende Ausgabedateien von ATHLET
und COCOSYS. Weiterhin sollte auch ein Kontraktivitätstest für den Newton-Prozess
innerhalb des Integrationsverfahrens bereitgestellt werden.

Nachfolgende Arbeiten zur Verbesserung von NuT und der thermohydraulischen
Kopplung zwischen ATHLET und COCOSYS in AC2 sollten insbesondere eine Verbes-
serung der Zeitschrittweitensteuerung anstreben. Dabei sollte vor allem das Problem
gelöst werden, dass sich zurzeit die Zeitschrittweiten nicht wie im Einzelcode nach
Ende eines transienten Prozesses wieder schneller auf ihren ursprünglichen, größeren
Wert erholen. Derzeit sind hier noch die Lösungsvariablen an der Kopplungsschnitt-
stelle limitierend. Weiterhin sollte die Kopplungsschnittstelle ausführlich auf ihre
Robustheit und Leistungsfähigkeit getestet werden. Dies sollte insbesondere auch
mehrfache Kopplungsschnittstellen umfassen, wie sie in realistischen Datensätzen
vorkommen. Zudem sollte die Leistungsfähigkeit und Robustheit für Zwei-Phasen-
Strömungen, auch bei Gegenströmung, und auch in parallel gekoppelten Objekten

VIII

genauer analysiert werden. Weiterhin erfordert das Gemischspiegelmodell in den
Simulationscodes zusätzliche Analysen und Weiterentwicklungen an der Schnittstelle.

Eine weiter anzustrebende Weiterentwicklung ist die Nutzung von sogenannten
Multiraten-Methoden in der Kopplung. Da sich die von ATHLET bzw. COCOSYS
für das jeweilige Rechengebiet vorgeschlagene Zeitschrittweite zum Teil deutlich
unterscheidet und Funktionsauswertungen der Simulationscodes numerisch teuer
sind, wäre es hilfreich, jedes Rechengebiet mit einem eigenen Zeitschritt rechnen
zu lassen. Dies würde eine deutliche Leistungssteigerung für gekoppelte Simulatio-
nen ermöglichen. Die Nutzung von Multiraten-Methoden erfordert sowohl vorherige
theoretische Untersuchungen zu den Grundprinzipien und der Stabilität solcher In-
tegrationsverfahren als auch deutliche Erweiterungen in der Funktionalität von NuT
und den AC2-Programmen.

Hinsichtlich des Softwareentwicklungsprozesses für die AC2-Programme sollten
die Vorgehensweisen und Werkzeuge für die Entwicklungs- und Validierungsarbei-
ten, welche mehrere Projekte gleichzeitig umfassen, unter GitLab weiter verbessert
werden. Dabei sollten auch weitere Optimierungen in der Projektstruktur für die AC2-
Programme untersucht werden. Ein generell wichtiger Punkt ist, dass sichergestellt
und überprüft werden muss, dass Änderungen an einem AC2-Code nicht zu Proble-
men oder zum Verlust der Vorhersagefähigkeit in einem anderen AC2-Code führen
und dass die AC2-Programme als Gesamtsystem weiterhin ablauffähig bleiben.

IX

Contents

Abstract ... I

Kurzfassung ... III

1 Introduction .. 1
1.1 General remarks ... 2

2 WP1 – Extending AC2’s ODE-Numerics................................... 3
2.1 Terminology and basic relations.. 3
2.2 Preparation of ATHLET and THY to establish a physically consistent

coupling within the context of doable numerics 10
2.2.1 Building a Jacobian matrix for the overall system – feasibility con-

siderations ... 10
2.2.2 Derivation of a concept to achieve physical consistency................. 13
2.2.3 Samples for testing the ATHLET-COCOSYS coupling.................... 19
2.3 ODE-numerics for single and coupled systems 26
2.3.1 Establishing a feature in NuT to execute certain ODE-methods 27
2.3.2 Building a Jacobian matrix for the overall system – implementation .. 42
2.3.3 Adapt control logic in ATHLET and THY 49
2.3.4 Running a test case ... 58

3 WP2 – Improving NuT and AC2 on the Level of Software Engi-
neering ... 63

3.1 Reviewing the NuT code regarding the potential for refactoring 63
3.1.1 Software architecture ... 63
3.1.2 Logging ... 64
3.1.3 Maintenance .. 67
3.1.4 CPU affinity .. 69
3.1.5 Refactoring NuT’s documentation ... 69
3.2 Development and automation of CI processes in GitLab for NuT and

AC2 .. 70
3.2.1 Build techniques.. 70
3.2.2 CI/CD ... 73
3.2.3 Code analysis in NuT ... 76
3.2.4 Merge requests workflow .. 78
3.2.5 Project organisation ... 82
3.2.6 Improving software development on the level of AC2 84
3.3 Assessment of the parallel performance of NuT 88

XI

4 WP3 – Reviewing ATHLET’s Steady State Calculation on a Con-
ceptual Level ... 91

4.1 General objective of the SSC ... 91
4.2 Procedure of the SSC .. 91
4.3 Overview of currently used algorithms and thermal-hydraulic models 96
4.3.1 Iteration loops ... 96
4.3.2 Algorithms for the solution of equation systems............................ 100
4.4 Detailed description of relevant algorithms 100
4.4.1 Iteration of enthalpy and mass quality .. 100
4.4.2 Pressure iteration for TFOs with flowing fluid 108
4.4.3 Pressure iteration for TFOs with stagnant fluid 114
4.4.4 Iteration of the pump rotational speed .. 116
4.4.5 Iteration of layer temperatures .. 118
4.5 Comparison of the used methods with state-of-the-art numerical

algorithms.. 128
4.5.1 NuT integration ... 129
4.6 Suggestions for improvement of the SSC 130
4.6.1 Improvements accomplished within the current project 130
4.6.2 Improvements applicable for the current methodology of the SSC.... 131
4.6.3 Improvements that need major modifications of the methodology of

the SSC .. 133
4.6.4 Further suggested modifications ... 137

5 Conclusions and Outlook ... 139

References ... 143

Acronyms ... 149

List of Figures ... 151

List of Tables .. 154

List of Codes... 155

A Appendix on details of WP1 .. 157

B Appendix on details of WP3 .. 161

XII

1 Introduction

GRS develops the program package AC2 which is employed for the safety analysis of
nuclear reactors, research reactors and other nuclear facilities. Its field of application
covers normal operation, transients, and accidents up to severe accidents with ra-
dioactive release at the site boundary. The main components are ATHLET (Analysis
of THermal-hydraulics of LEaks and Transients), ATHLET-CD (Core Degradation),
and COCOSYS (COntainment COde SYStem) /WEY 23/. These can be used in a
coupled way to cover complex simulation scenarios. Also, single code executions are
possible to allow for the investigation of specific phenomena and processes.

The corresponding software suite comes with several further tools and programs to
complement the main components. This includes the Numerical Toolkit (NuT), which
serves as AC2’s sustainable software component to provide easy access to dedicated
numerical algorithms and data structures.

A major application of numerical algorithms in AC2 is the advancement of the time-
integration of the thermo-hydraulic processes, both for single code simulations and
coupled computations. In AC2 2023, NuT can be used to support the linear algebra
operations of the time-integration in ATHLET and in COCOSYS’s thermo-hydraulic
module THY. NuT’s interface is based on the communication standard MPI (Mes-
sage Passing Interface). The fundamentals of this approach were established in
RS1530 /STE 17b/. AC2-wide access and further refinements were taken care of in
RS1558 /STE 20/.

Thermo-hydraulic computations in AC2 are based on classical conservation laws
for momentum, mass, and energy. Using a finite-volume staggered-grid approach
plus further suitable transformations lead to a system of ODEs (Ordinary Differential
Equations) in ATHLET and THY, respectively.

The numerical focus of this project lay on extending the AC2 architecture to allow
for an alternative and more flexible approach to coupled computations by means of
introducing ODE features to NuT. This covers single code simulations too.

The numerically motivated work was accompanied by work on software-related as-
pects focusing on NuT and the development cycle of AC2. With a growing number of
components and interactions between these components the software project AC2

becomes more and more complex. Hence, special emphasis was put on extending
automation means to improve the overall AC2 build process.

1

Furthermore, this project included some conceptual work as well. The compatibility
of thermo-hydraulic modeling within AC2, and also the details of the workflow of
ATHLET’s steady state calculations have been investigated.

Accordingly, the work packages of the project and the corresponding chapters of this
report are given as follows.

• Ch. 2 – WP1 Extending AC2’s ODE-Numerics

• Ch. 3 – WP2 Improving NuT and AC2 on the Level of Software Engineering

• Ch. 4 – WP3 Reviewing ATHLET’s Steady State Calculation on a Conceptual Level

Finally, in Chapter 5 the results of this project are summarized and a brief outlook on
open issues and potential follow-up work is given.

1.1 General remarks

• Not all basic aspects of the discussed numerics or software development processes
can be explained in detail within the constraints of this report. The interested reader
is advised to consult the following sources:

– general and ODE-related numerics
/COR 13/, /HAI 93/, /HAI 96/, /BUT 16/

– software development in C++ and MPI
/LIP 12/, /MAR 17/, /MPI 23/

– software development with GitLab
/GIT 24a/

• Several thousand lines of code were written for this project. These cannot be
reproduced in this report. However, plenty of diagrams and charts are provided to
explain the purpose and structure of the aforementioned changes.

• The refactoring of the NuT code as well as the established AC2 development cycle
as discussed in Chapter 3 were taken into account for the release of AC2 2023.
Especially the substantial CI/CD improvements proved very beneficial for its re-
lease procedure. The ODE-related features require further development and are
scheduled for a future major release of AC2.

2

2 WP1 – Extending AC2’s ODE-Numerics

From a numerical point of view, a thermo-hydraulic coupling between ATHLET/CD and
COCOSYS results in a combined system of ODEs introducing mutual dependencies,
see (2.3) below. In this project, two possible solution approaches were initially
considered: On the one hand, the simultaneous solution of a unified large system
via some (linearly) implicit method – the so-called monolithic approach – and on the
other hand the solution of intertwined subsystems by means of multi-rate methods.
Though multi-rate methods would be the superior approach with regards to numerical
performance, it was decided to implement the monolithic approach – once thermal-
hydraulic investigations confirmed that it is a feasible concept in the given context,
see Section 2.2.1.

The monolithic approach treats the coupled system as one single system. This makes
it numerically easier to handle, but comes with penalties w. r. t. performance (no
tailored step sizes for the subsystems; one large system instead of two small ones
to work with). However, it is a robust approach due to the implicit coupling that is
realized. It is to be expected that this is reflected in the quality of the results as well.
Hence, it is well suited to produce reference solutions for test problems future work
on the coupling can be compared with for the sake of verification.

In order to realize a monolithic approach, several modifications of the existing codes
of ATHLET, COCOSYS, and NuT were required. Details are given in Section 2.3.
Running a test problem is included. Additionally, the coupling was investigated on
the level of modeling. Results are presented in Section 2.2.

First, however, in Section 2.1 some terms are defined which are used in the subse-
quent sections.

2.1 Terminology and basic relations

In this section frequently used terms are described and some basic relations between
solution variables of AC2 simulations are explained. The following sections will make
use of these terms and relations.

COCOSYS and THY
The AC2 program COCOSYS (COntainment COde SYStem) is a code for the sim-
ulation of all relevant processes and plant states during operation, transients up to

3

severe accidents in the containments of light water reactors /KLE 23; ARN 23/. The
code consists of several modules which cover different physical phenomena (such as
fission product behavior or core concrete interaction) and which may run as separate
processes on the computer. THY is the thermo-hydraulic module of COCOSYS. This
means, for example, that the terms thermo-hydraulic ATHLET-COCOSYS coupling
and ATHLET-THY coupling are used synonymously in the text at hand. Furthermore, a
COCOSYS data set contains THY-related input data and the applied thermo-hydraulic
model equations belong to the THY module.

CV, zone, and junction
Both ATHLET and THY use a staggered grid for storing their solution variables and
solving their balance equations. In ATHLET, the scalar solution variables which relate
to mass and energy conservation for the liquid and the vapor phase are stored in
so-called control volumes (CVs) whereas the momentum-related variables are stored
on junctions, which are offset by – roughly said – half a CV. Basically, the same
holds true for THY, just with a few differences: In THY, the CVs are called zones and,
as opposed to their ATHLET counterparts, these zones can be further subdivided
in so-called parts which are either mainly gaseous, liquid or solid. Moreover, while
ATHLET accounts for convective momentum transport through its junctions and
deploys elaborate models for the dynamic calculation of friction and form losses, the
THY junction model is rather simple as it only considers friction loss of laminar pipe
flow and, moreover, does not thoroughly ensure momentum conservation.

Function routines, solution variables, and coupling variables
The mathematical problem to be solved during a stand-alone ATHLET run is the
solution of an initial value problem (IVP) for a large ODE system:

y′ = f(t, y), with initial values y(t0) = y0. (2.1)

In (2.1), y is the solution vector, its elements are the so-called solution variables which
define the state of the simulated system at a given time t. The solution variables of
ATHLET are:

• In CVs: total pressure in CV, liquid temperature, vapor and gas temperature, vapor
mass fraction, ratio of partial pressure of all non-condensable (NC) gases to total
pressure in CV, and mass ratio of one single NC gas component to all NC gas
components in CV.

• On junctions: total mass flow rate (if the five-equation model is applied), or liquid

4

velocity times cross-sectional area of the junction and vapor velocity times cross-
sectional area of the junction (if the six-equation model is applied).

The right-hand-side of the ODEs, i. e. f , is the function routine which contains the
physical models applied in ATHLET. In the source code, f is named AFK.
The mathematical problem for THY is similar. To distinguish it from ATHLET, the THY
IVP is written as

u′ = g(t, u), with initial values u(t0) = u0. (2.2)

The routine name of g in the source code is FKTFE. The solution variables of THY are:

• In NONEQUILIB zones: component masses in the zone parts, temperatures in the
zone parts.

• On junctions of type INST: total mass flow rate.

In coupled calculations, data – coupling variables – have to be exchanged between
both codes at the coupling interface in order to capture the influence one system has
on the other. Denoting by α the data which are derived from THY solution variables
and act as boundary conditions for ATHLET, and – vice versa – denoting by β the data
which are derived from ATHLET solution variables and act as boundary conditions
for THY, the coupled ODE system to be solved looks as follows:

y′ = f(t, y, α)

u′ = g(t, u, β).
(2.3)

The vector α comprises per coupling CV1

• the total pressure,

• the liquid temperature,

• the vapor and gas temperature,

• the ratio of partial pressure of all NC gases to total pressure,

• the mass ratio of each single NC gas component to all NC gas components.

Since these quantities are derived from the solution variables of THY, it holds that

α = α(u). (2.4)

On the other hand, the vector β comprises per coupling junction

• the mass flow rate of each component,
1See the paragraph after the next one for the terms coupling CV and coupling junction.

5

• the energy flow rate of each component.

Since these quantities are derived from the solution variables of ATHLET, this implies

β = β(y) (2.5)

Note that this is a simplified description which aims at clarifying the terminology. Actu-
ally, β = β(y, α) holds true. The implications of this fact are described in Section 2.2.1.

Jacobian information and FTRIX blocks
The initial value problems (2.1) and (2.2) are considered as stiff. See Section 2.3.1
for more details on that topic. A consequence of stiffness is that Jacobian information
∂f/∂y or ∂g/∂u, respectively, has to be available. Consequently, this holds for the
coupled system (2.3) as well, see (2.6) below.

FTRIX is the sparse matrix package used in both ATHLET and THY for handling the
Jacobian. The package exploits the fact that the thermo-hydraulic networks (consisting
of CVs/zones and junctions), which are built-up in the data sets as well as through
the model equations of the codes, usually lead to diagonally dominant Jacobian
matrices (pattern-wise) with lots of zero entries on the off-diagonals. Internally, FTRIX

transforms the structure of the thermo-fluid dynamic network into a so-called block
structure. In ATHLET, for every network element like CV or junction, an FTRIX block
is defined and the solution variables are collected in it. On the contrary, in THY, the
equations of a zone together with those of the junction(s) defined as leaving this zone
are collected in a common FTRIX block. See Fig. 2.1 for a simple explanation of the
differences between the FTRIX blocks in ATHLET and THY.

If support by NuT is activated for ATHLET or THY the Jacobian is stored and set in
NuT. For this, the block structure information is exploited. Setting values is done by a
dedicated host-sided routine that substitutes the default.

Coupling interface
The ATHLET/THY coupling interface is depicted in Fig. 2.2. The figure shows four
zones/CVs, connected by three junctions. The blue-colored CVs and junctions are
dynamically calculated by ATHLET while the green-colored zones and junctions are
calculated by THY. One of the zones is marked as the coupling CV/zone. It is
dynamically calculated by THY, but exists in the ATHLET network as well and its
function is to provide the above mentioned α boundary conditions to ATHLET. The
ATHLET junction entering the coupling CV is the coupling junction which provides the
β boundary conditions to THY. Hence, domain-overlapping as a coupling approach
is utilized within AC2.

6

Fig. 2.1 An arrangement of three CVs/zones and two junctions.
In ATHLET, this would result in five FTRIX blocks.
In THY, this would result in three FTRIX blocks.

Remark 2.1. The definition of coupling interfaces above has already been used
in earlier coupling approaches – such as the one pursued in the project RS1535A
(EASY) /BUC 18/. The basic concept of the approach hasn’t been altered for this
project. However, see Section 2.2 for a discussion on what improvements may prove
beneficial to be introduced in future work.

Overall Jacobian matrix, matrices LL and UR
Considering a monolithic approach, the complete Jacobian matrix of the coupled
ATHLET/THY system must be composed of the "pure" ATHLET and THY Jacobian
matrices plus two off-diagonal matrices that reflect the mutual influences. Following
the notation from (2.3) it holds that

J =
∂f

∂y
∂f
∂u

∂g
∂y

∂g
∂u

 . (2.6)

A demonstration of the general structure is given in Fig. 2.3. As can be seen in the
figure, the matrices of the single systems – as well as the complete Jacobian – are
square matrices whereas the off-diagonal matrices LL and UR are rectangular. The
dimensions of LL and UR are symmetric and determined by the dimensions of A

and T . The UR matrix describes the linear influence of perturbations in the THY
solution variables on the ATHLET system (e. g. ∂f9

∂u3
). Analogously, the UR matrix

represents the linear influence of perturbations in the ATHLET solution variables on
the THY system (e. g. ∂g4

∂y2
). While the "pure" ATHLET and THY Jacobian matrices

are usually diagonally dominant, this is not the case for the LL and UR matrices.

7

Fig. 2.2 ATHLET/THY coupling interface consisting of a coupling CV (zone), which
is modeled both in the ATHLET and COCOSYS input decks, and a coupling
junction, which is modeled in the ATHLET input deck only

Nevertheless, since the number of coupling interfaces is usually small compared
to the total number of computational nodes in the ATHLET and THY domains, LL
and UR are typically sparse. This fact is exploited in the current approach by storing
the non-zero elements (structurally speaking) in the so-called compressed sparse
column (CSC) and compressed sparse row (CSR) formats.

Remark 2.2. For the sake of demonstration, the sketched matrix in Fig. 2.3 is shown in
element format, i. e., each small square inside the matrix represents the dependence
of a function component on a solution variable. However, when collecting information
to build the overall Jacobian matrix as described in the next section, the block format
for the matrix structure is exploited. A block comprises several elements representing
a certain network object within the context of the Jacobian matrix.

Seed matrix
A seed matrix S, also abbreviated as seed, contains elements Si,j ∈ {0, 1} such that
(formally) multiplied with a Jacobian J , i. e. J · S, all non-zero elements of J are
contained in the resulting matrix and no linear combinations of multiple non-zero
elements occur. The trivial seed is given by the identity matrix. The idea of seeding
is to find a matrix S with above properties and with as few numbers of columns as
possible. This is motivated by the fact that the number of columns directly relates to
the number of function evaluations that are required to determine J by means of finite
differences. In order to save computation time fewer evaluations are preferable.

8

Fig. 2.3 Schematic sketch of the Jacobian matrix of the coupled system. The
blue-colored square matrix A belongs to the ATHLET system. The yellow-
colored square matrix T belongs to the THY system. The green-colored
off-diagonal matrices LL (meaning lower left) and UR (meaning upper
right) represent the mutual influences.
The noted derivatives are just illustrating examples of the matrix elements.

9

2.2 Preparation of ATHLET and THY to establish a physically consistent
coupling within the context of doable numerics

This section comprises discussions of two aspects of the coupling between ATHLET
and THY. The first one is related to the feasibility of the monolithic approach in
the given context. This directly translates to the question whether a Jacobian for
the overall system can be made available. Details are given in Section 2.2.1. The
actual implementation is discussed in Section 2.3.2. Furthermore, several samples
for testing the ATHLET-COCOSYS coupling have been developed, see Section 2.2.3.

The second aspect considers the coupling between ATHLET and THY on the level
of thermo-hydraulic modeling. Both in ATHLET and COCOSYS, various models for
CVs/zones and junctions can be applied (dependent on user input). For the coupling
approach pursued within RS1593

• the homogeneous CV model in ATHLET,

• the NONEQUILIB zone model and INST junction model in COCOSYS

were used, because these models are broadly applicable in data sets and seem to
be the best compatible ones. Nevertheless, with regard to further extensions of the
monolithic approach, the coupling of other zone/CV and junction models is expected
to be feasible as well. A discussion on how to improve the AC2-internal coupling is
carried out in Section 2.2.2.

2.2.1 Building a Jacobian matrix for the overall system – feasibility
considerations

Before any work on determining an overall Jacobian matrix could be initiated, the
general feasibility of this endeavor had to be investigated. Specifically, it was an-
alyzed whether the mutual influence of the ATHLET and THY solution variables is
differentiable, which is a necessary prerequisite for constructing a Jacobian matrix
for the unified system.

As it is not unusual in the context of numerical programming, the use of functions like
min, max,

√
·, or |·| as well as the appearance of numerous conditional statements

make it difficult to provide meaningful derivative information. These difficulties are
present in ATHLET’s and THY’s codes as well. To overcome these problems the
so-called internal numerical differentiation, /BOC 83/, /HAI 93, Sec. II.6/, may be
applied to make the desired information available. The basic idea is to follow the same

10

lines of code for actual evaluations of functions as well as for derivative computations.

An analysis of the thermal-hydraulic models implemented in ATHLET and THY re-
vealed that the influence of the ATHLET solution variables on the THY system – as
well as, conversely, the influence of the THY solution variables on the ATHLET system
– cannot be reasonably determined analytically. Hence, finite differences were applied
to receive derivative information as it is done for each single code already.

The concept of finite differences comes with the amiable property to already follow
the lines of code that a usual function evaluation takes, hence, following the idea
of internal numerical differentiation. Corner cases may appear due to the required
perturbations that are added to the input values of a function evaluation. However,
finite differences can be interpreted as approximations to directional derivatives, which
are usually available. As a last resort, both function routines, AFK and FKTFE, can
throw an error if an evaluation of their respective argument is not possible. Fall-back
strategies kick in, see also Section 2.3.3, to overcome these problems.

In order to make the finite difference approach capable of determining a Jacobian
matrix for the unified system, the following tasks had to be taken care of:

• determine suitable perturbation values,

• determine which solution variable has an influence on the other system,

• make perturbation values available to the code that triggers the required function
evaluation.

For this project it was decided that the code, which holds a solution variable, applies
its usual routine to provide a corresponding perturbation value. Hence, the already
existing code could be used. The mutual influence of the systems is directly related
to the structure of the matrices LL and UR in Figure 2.3. How to get hold of the
matrix structure is discussed in the next paragraph. The last bullet point is part of
the discussion given in Section 2.3.2 where the actual computation of the overall
Jacobian matrix and corresponding validations are considered.

Remark 2.3. In the course of the project, another approach was discussed to make
the information of the Jacobian matrix of the coupled system available. That approach
is based on exploiting the chain rule of differentiation to determine the data for UR
and LL. The idea is to split the derivatives ∂f/∂u and ∂g/∂y up, each into a product
of (sub)derivatives where each factor can be calculated locally, either in ATHLET or
THY. The ATHLET/CD-Driver would then combine the (sub)derivatives. However,
that would have come with a significantly more complex implementation than the

11

chosen ansatz. Hence, the chain rule approach was discarded eventually. For a
more detailed explanation see Appendix A.1.

Furthermore, considering the monolithic approach the corresponding quantities and
linear systems to solve scale with the sum of the dimensions of both involved ODE
systems. Regarding the linear systems, an alternative approach was discussed to
solve only systems of dimensions dictated by either of the ODE systems. Unfortunately,
this ansatz becomes quickly inefficient when the number of coupling quantities rises.
Hence, it was discarded as well in favor of the obvious choice to simply solve systems
of the dimension that reflects the overall system. A brief description of the alternative
can be found in Appendix A.2.

Determination of the matrix structure
First, the structure of the complete Jacobian matrix (2.6) was determined in the AC2-
specific block format. As described in Section 2.1, the matrix was decomposed into
four submatrices (A, UR, LL, T), where A and T represent the square Jacobian
matrices of the individual systems, and LL and UR represent the additional matrices
that capture the mutual influences. Thus, the problem of determining the structure of
the overall Jacobian matrix was transferred to the determination of the structure of the
LL and UR matrices. Furthermore, a source code analysis revealed that the matrices
LL and UR are structurally symmetric. Hence, the problem could be reduced to the
determination of the LL matrix structure.

Due to the realization of the coupling interface as described in Section 2.1, an FTRIX

block for the coupling zone is not only created in THY – where the zone is dynamically
calculated – but also in ATHLET. This fact was exploited to determine the position
and size of the nontrivial blocks, i. e., the structure of the LL matrix, using data tables
(ITABs) already available in ATHLET and THY. In order to save memory space, the
structure of the LL matrix is sent to NuT in CSR format by means of suitable routines
provided by NuT’s communication interface, see Section 2.3.2.1. The UR matrix,
which is structurally symmetric to LL, is sent analogously in CSC format to NuT, where
finally the overall Jacobian matrix is assembled from the four individual matrices by
invoking the interface of the corresponding assembling routine from the host side.
This is done in the ATHLET/CD-driver.

Restriction of parallel execution of function evaluations
In order to save computation time, the evaluation of the function routines in ATH-
LET and THY ought to be in parallel as much as possible. As an analysis of the
thermo-hydraulic model equations of both codes revealed, a completely independent

12

evaluation of both routines is not always possible because the exchanged coupling
variables do not necessarily depend on the state of only one system (ATHLET or
THY), but may also be determined by the state of the respective other system. Specif-
ically, using the notation from Section 2.1 the relationship α = α (u) and β = β (y, α)
could be demonstrated. So, while α solely depends on the state u, the input β is
determined not only by y, but – indirectly – by u as well. For a concrete example see
Appendix A.3. From this finding, it was concluded that a partially sequential execution
of the ATHLET and THY function routines is inevitable. This required some specific
means of synchronization. Details are given in Section 2.3.2.

2.2.2 Derivation of a concept to achieve physical consistency

The thermo-hydraulic models applied in ATHLET and THY differ in various aspects.
This is due to the fact that the two codes have been developed with different objectives
and requirements for model and code capabilities and have been independent of
each other for several decades in the past.

By means of reviewing the coupling-related code sections and by consulting the
related literature (especially the models and methods manuals of the codes /KLE 23/,
/SCH 23a/), several tasks have been identified as required to foster a physically
consistent coupling. These tasks are described below and cast into a realization
concept.

Remark 2.4. During the code review, two errors with an impact on physical consistency
were detected. One error concerned the calculation of the component mass fractions.
The other error concerned the transformation of the ATHLET component AIR to the
COCOSYS components N2 and O2. Both errors have been fixed and the fixes are
included in AC2 2023.

Remark 2.5. So far, the monolithic coupling approach has only been applied to a
simple test problem. A description is given in Section 2.3.4. This was done late in
the project timeline due to the time-consuming work regarding the overall Jacobian
matrix and the adaptation of the ODE control logic. Hence, the considerations below
do not include any practical experience based on the new approach. It is expected
that future simulations with the monolithic coupling approach will result in additional
insights which may lead to further improvements fostering a physically consistent
thermo-hydraulic coupling. A set of test cases that would likely provide more insights
is discussed in Section 2.2.3.

13

Fig. 2.4 Comparison of the momentum balances in ATHLET (5-equation model,
upper part) and THY (junction type INST, lower part). Equal terms are
marked with boxes of the same color. Dark blue: Time derivative of the
total mass flow rate; Orange: Inertia term; Yellow: Gradient of static
pressure; Green: Geodetic pressure term; Light blue: Friction and form
losses. References: /SCH 23a/, /KLE 23/.

2.2.2.1 Identification of recommended tasks

It is fundamental to ensure that the balances of the conserved quantities mass, energy,
and momentum are not violated and that the geometry of the coupling zone, see
Fig. 2.2, is the same in both codes.

As opposed to ATHLET, the implementation of the momentum balance in THY is quite
rudimentary and, among other terms, does not consider the convective momentum
flux ∆pMF , as can be seen in Fig. 2.4. If the momentum transport in THY should be
calculated similarly to ATHLET, one would have to extend the momentum equation of
the junction model accordingly. However, as the overlapping domain of both codes
comprises only the coupling CV/zone, but not the coupling junction, see Fig. 2.2, an
extension of the THY momentum equation is not essential to obtain a consistent code
coupling.
Associated with the momentum transport on the junctions, kinetic energy is transported
from one control volume into another (respectively from one zone to another, in
COCOSYS terminology). When a component (such as nitrogen) flows from the
ATHLET into the THY simulation domain, the mass flow rate ṁ is accompanied by
an energy flow rate Ė. The energy flow rate leaving the ATHLET simulation domain
is composed of an enthalpy flow rate Ḣ and a flow of kinetic energy: ĖAT HL =

14

ḢAT HL + 1
2ṁv2

AT HL. However, since the THY zone model NONEQUILIB does not
consider kinetic energy /KLE 23/, the entire inflowing energy for the COCOSYS zone
is treated as enthalpy: ĖAT HL = ĖT HY = ḢT HY . Even though the amount of kinetic
energy flow is usually small compared to that of enthalpy flow rate, it is obvious that
this is an inconsistency which should be corrected by including kinetic energy in the
NONEQUILIB zone model.

In reality, kinetic energy is not completely transported, but also dissipates and leads
thereby to an increase of internal energy. In contrast to this, dissipation is neglected,
both in ATHLET and THY, see for example /SCH 23a/: “in the energy balance
equations, [...] the dissipation energy are neglected”. The latter applies to the
dissipative terms at the phase interface and due to wall friction and form losses.
Thus, both codes are consistent regarding their models, but simplify the physics.
While the contribution of dissipation to the energy balance turned out to be rather
small compared to other terms in the simulations performed up to now, this does not
generally have to be the case. Therefore, fixing this error in the energy balance is
considered a necessary task, although of lower priority.

Another rather minor issue is the diffusive flux of gas mass and energy. Model terms
describing this phenomenon are included in the THY junction model INST by default
whereas they have to be activated for ATHLET by the user via an input under the
control word MISCELLAN in the data set. The task identified here would be to compare
the diffusion models of both codes and unify them if necessary. Nevertheless, this
is not a necessary requirement for preparing a consistent coupling since even if
there are differences between the diffusion models, these will not have an effect on
the coupling itself because the mass and energy flow rates are calculated solely in
ATHLET and are provided to THY as boundary conditions. The same reasoning
applies to other models such as flow regime calculation.

In addition to the correct balancing of the physical conservation quantities, the usage
of uniform fluid properties as well as of uniform numerical values for mathematical
and physical constants in ATHLET and COCOSYS is a fundamental prerequisite to
reach a physically consistent coupling. For example, using different numerical values
for the gravitational acceleration in the two codes could result in artificial pressure
differences and corresponding nonphysical mass flows across the coupling interface.
Using different fluid property correlations could cause errors in the energy balance,
as is shown by the example in Fig. 2.5: The mass flow ṁ which is directed from the
THY into the ATHLET domain is calculated by ATHLET. Associated with this mass

15

Fig. 2.5 Mass and energy flow rates

flow is an energy flow Ė from one domain into the other. Neglecting the kinetic energy
for the sake of simplicity, this energy flow corresponds to an enthalpy flow which can
be expressed as the product of the mass flow and the specific enthalpy h of the fluid
mixture in the upstream zone:

Ė = Ḣ = ṁ · h. (2.7)

In both ATHLET and THY, the specific enthalpy is calculated as a function of pressure
and temperature

h = h (p, T) . (2.8)

If the calculation instructions for h of both codes do not match, i. e. hAT HLET (p, T) ̸=
hT HY (p, T) for a given pair of values (p, T), the simulation will be physically inconsis-
tent because even though the transported energy flow rate is calculated only once
– namely in ATHLET – and is therefore equal for both codes, it does not match the
transported mass flow for one of the codes.

For example, if ATHLET calculates a mass flow rate of 5 kg/s and an accompanying
enthalpy flow rate of Ḣ = 5 kg/s · hAT HLET (10 bar, 80 ◦C) = 5 kg/s · 365 kJ/kg =
1825 kJ/s, obviously 5 kg/s and 1825 kJ/s are withdrawn from the THY domain.2 Now,
if THY uses different fluid property correlations than ATHLET and therefore associates
an enthalpy flow rate of Ḣ = 5 kg/s · hT HY (10 bar, 80 ◦C) = 1820 kJ/s with the given
mass flow rate, too much energy (namely (1825 − 1820) kJ/s = 5 kJ/s) is withdrawn
from the THY domain. The best way to avoid this problem is the usage of a unified
fluid property library.

2The calculated specific enthalpy corresponds approximately to that of nitrogen at 10 bar and 80 °C.

16

2.2.2.2 Realization concept

Based on the tasks from the previous section that were identified as required to
foster a physically consistent coupling within the context of the provided numerical
environment, a concept for their realization was derived. The tasks are sorted by
urgency in descending order and divided into working steps.

An implementation of the concept within the current project was not feasible. Instead,
it is advisable to define it as a separate working package within the framework of a
subsequent project.

Unification of mathematical and physical constants
This is a necessary task to achieve a physically consistent coupling. Working steps
are as follows:

• Identification of all modeling-related constants used by ATHLET and COCOSYS
(this comprises both global module variables and local variables in subroutines)

• Definition and implementation of a container structure for the constants (program-
ming library, plugin, etc.) that can be accessed from ATHLET as well as from
COCOSYS

• Moving the constants from ATHLET and COCOSYS into the container structure

• Code modifications of ATHLET and COCOSYS to use the container structure

• Verification calculations to check the implementation

Current activities within the research project RS1604 (SIWAP) aim for a unification
of the heat transfer models of ATHLET and THY. Since these models also access
physical constants, some constants have already been included in a static program
library (ac2shared) which can be integrated in ATHLET and COCOSYS. Whether the
chosen container structure is ultimately the most suitable one will become clear in
the further course of RS1604. Definitely, there are synergy effects with the working
steps listed here.

Unification of fluid properties
This is a necessary task to achieve a physically consistent coupling. Concerning liquid
water and vapor, physical consistency has already been reached: As an external AC2

developer, the Zittau/Görlitz University of Applied Sciences (HSZG) developed a new
fluid property package based on the Spline-Based Table Look-up (SBTL) method
which can already be included both in ATHLET and COCOSYS in the form of a plugin.
A fluid property plugin for non-condensable gases is currently being worked on by

17

HSZG. Furthermore, HSZG is developing mixing models for real gases and adapting
the ATHLET and COCOSYS implementations accordingly. These developments are
expected to be completed in early 2024. After that, the following work is planned to
be accomplished by GRS:

• Transfer of models from external to internal GitLab server

• Code review and smaller refactoring where necessary

• Transfer of test cases to GitLab CI

• Updating the AC2 model manuals

Consideration of kinetic energy in the NONEQUILIB zone model of THY
In principle, this is a necessary task to achieve a physically consistent coupling, albeit
of rather minor importance since the kinetic energy is usually small compared to
enthalpy (for example, nitrogen that flows with a velocity of 100 m/s at a pressure
of 10 bar and a temperature of 80 °C has a specific kinetic energy of 5 kJ/kg and a
specific enthalpy of 365 kJ/kg). Working steps are:

• Based on the energy balance: Derivation of a THY zone model equation which
includes kinetic energy terms

• Implementation of the derived kinetic energy terms in the zone models

• Verification calculations to check the implementation

• Updating the AC2 model manuals

Consideration of momentum flux in the INST junction model of THY
Including the momentum flux in the INST junction model would lead to a harmonization
of the physical models in ATHLET and THY and, moreover, would enable momentum
transfer from one simulation domain to the other. However, it is not essential for a
physically consistent coupling. Working steps are:

• Based on the momentum balance: Derivation of a THY junction model equation
which includes the momentum flux

• Consideration of additional dependencies by extension of the FTRIX block structure

• Implementation of the momentum flux term

• Verification calculations to check the implementation

• Updating the AC2 model manuals

18

Compared to the other tasks, this is a more complex one which requires a compara-
tively higher amount of resources.

Consideration of dissipation in the energy balances of both ATHLET and THY
Since its absolute value is rather small in many simulation cases, the consideration of
the dissipation in the energy balances of ATHLET and THY is not a high-priority task.
Nevertheless, it is essential for correctly capturing the physics. Working steps are:

• Modification of the ATHLET and THY energy balances to include dissipation terms

• Modeling and implementation of the dissipation terms

• Verification calculations to check the implementation

• Updating the AC2 model manuals

2.2.3 Samples for testing the ATHLET-COCOSYS coupling

Within the framework of this project, various samples for testing the newly developed
thermo-hydraulic ATHLET-COCOSYS coupling have been created. Accompanied
by a description, these samples are stored on the GRS GitLab server for internal
verification purposes. The samples can be subdivided into two types. First, purely
"technical" test cases were developed which can be used for verification of the
coupling. Second, physics-oriented test cases were considered whose results can be
reasonably interpreted (at least qualitatively) and which thus can be used for further
verification of the physics of the coupling, e. g., by comparison with reference runs,
such as ATHLET stand-alone simulations. The focus was on creating samples which
provide the necessary insight while being as simple as possible. Since they are
developed for coupled calculations, each of the samples consists of both an ATHLET
and a COCOSYS data set.
Note that due to the time-consuming work involved in creating the overall Jacobian
matrix, only the simple example described in Section 2.2.3.1 was calculated with the
final program version. The findings and conclusions from the test calculation are
presented in Section 2.3.4.

2.2.3.1 Zone structure samples for verification purposes

Small samples of varying complexity were created, the main purpose of which is to
check the correctness of the identified functional dependencies in the Jacobian matrix

19

of the integral system, i. e., of the combined ATHLET/THY Jacobian matrix. On the
contrary, no emphasis was put on physical significance.

Two of these examples are presented here. One is on the lower end of complexity
while the second one covers the area of high complexity for the purpose of verification.
The others – which are not described here – are in the range between these two.

Simple sample
The simulation domain of the simple sample consists of three thermo-fluid dynamic
objects (TFOs) in the ATHLET data set of the sample. The accompanying COCOSYS
data set defines only one zone for simplicity. The topology of the setup is shown
in Fig. 2.6. The graphic is based on an ATHLET Input Graphic (AIG) of the geometry
defined in ATHLET, i. e. the COCOSYS zone is not shown, but has the same volume
and position as COCOZONE.

COCOZONEPCONNECTPIPE

Fig. 2.6 AIG of the simple sample

The COCOSYS and ATHLET domain are coupled using the external coupling data
interface of ATHLET. The coupling interface for zone quantities (= CV-related quanti-
ties) is the TFO COCOZONE; the interface for flow quantities is the junction connecting
PCONNECT and COCOZONE. Those TFOs which are dynamically calculated in ATHLET
are drawn in black in Fig. 2.6. They are calculated using ATHLET’s 6-equation model.
The coupling TFO COCOZONE (drawn in orange in the figure) is dynamically calculated
by the module THY. Its thermodynamic state is transferred to the ATHLET-CV in
COCOZONE via the coupling interface. The applied zone model in THY is the NONEQUILIB

model.
At the beginning of the simulation, all TFOs and the COCOSYS zone are filled with
a mixture of 10 Vol−% vapor and 90 Vol−% air at 60 °C and 1 bar. The calculation
domain is thus in an equilibrium state. After a short zero-transient phase, vapor of

20

300 °C is injected into the bottom part of object PIPE (the injection point is marked by
the small arrow in Fig. 2.6). This makes the setup leave the equilibrium state as the
pressure rises in the ATHLET part, which leads to a mass flow to COCOZONE.
Simulation results for this configuration can be found in section 2.3.4.

Complex sample
The sample shown in Fig. 2.7 is clearly more complex compared to the previous one.
Instead of one, there are two coupling interfaces for the zone quantities – namely CVs
18 and 33, both drawn in orange color, belonging to the TFOs COCOEXT1 and COCOEXT2,
respectively. These zones as well as the zones and junctions drawn in green color
are dynamically calculated by THY. The objects drawn in black are dynamically
calculated by ATHLET. Junctions 14 , 18 , 23 , 24 , and 22 are the interface junctions
which provide the flow quantities calculated by ATHLET as boundary conditions for
THY. Apart from these thermo-hydraulic linkages of both calculation domains, a
further linkage exists in the sample: As indicated by the red dashed arrow in the
figure, the GCSM controller of the valve on junction 14 is designed in such a way
that the opening degree of the valve is influenced by the thermo-hydraulic state
in CV 4 (which is from a topological point of view rather distant from the coupling
interfaces). The complexity of the sample is further increased by the fact that the
modeled TFOs are initially filled with hydrogen, nitrogen, and helium in varying mixing
ratios. Coupling the ATHLET and THY simulation domains as shown in Fig. 2.7
might be a rare case for the simulation of Gen. II or III light-water reactors. However,
future application of AC2 to advanced reactor concepts, such as SMRs or pool-type
reactors, will presumably lead to even more complex models. In any case, the rather
complex sample is suitable to verify the implementation of the coupling – especially
the calculation of both the Jacobian matrix and the seed matrix of the integral system.

Remark 2.6. In the course of creating the complex sample, a general bug in ATHLET
(which also concerned stand-alone simulations) regarding the FTRIX links of GCSM-
controlled valves was detected and thereafter fixed. The fix has already been included
in AC2 2023.

2.2.3.2 Physics-oriented samples for verification purposes

The main focus of the physics-oriented samples is to obtain reasonable and physically
meaningful simulation results. Especially the second physics-oriented sample (water
pool heat-up, see below) has its focus on the use case of a thermo-hydraulic coupling

21

Fig. 2.7 AIG of the most complex technical sample

of ATHLET and COCOSYS in the atmosphere above a water pool inside a reactor
containment as shown in Fig. 2.8.

Helium injection
This sample is of a simple geometry as shown in Fig. 2.9. The system is initially filled
with pure nitrogen and becomes filled with helium during a transient according to the
characteristic shown in Fig. 2.10. Both, a one-channel and a two-channel model of
the system were prepared, see Fig. 2.11.

• 1-channel model
The ATHLET data set comprises a simple pipe HOMOPIPE with three homogeneous
CVs and a fill at its bottom as well as a branch TFO DOME_ATH. The latter is the
coupling TFO, i. e. it is dynamically calculated by THY.

• 2-channel model
To enable convection loops, both HOMOPIPE and DOME_ATH are subdivided into two

22

Fig. 2.8 ATHLET-THY coupling interface above water pool (as an example, the
INKA flooding pool vessel with emergency condenser (EC) and building
condenser (BC) is shown). Adapted from /BUC 18/.

parallel channels. As indicated by the vertical arrow in Fig. 2.11 (right side), the
helium is injected into the bottom right CV. As a consequence of the subdivision
into parallel channels, two ATHLET-THY interfaces have to be defined as indicated
by the color coding in the figure.

Water pool heat-up
This sample comes with a mixture level in the lower part of the system, see Fig. 2.12.
Initially, there is pure liquid water below the mixture level and a pure nitrogen atmo-
sphere above it. The temperature of the fluids is 20 °C, the initial pressure is at 1 bar.
After a short zero-transient phase of 10 seconds, heat is added to the liquid below
the mixture level in the transient calculation so that the liquid temperature rises and
vapor is produced and released into the atmosphere where it mixes with the nitrogen.
Note: While gas, vapor and liquid water can be transported from one code domain to
the other across the coupling interface (both, one- and two-phase flow is possible),
the mixture level tracking information is not transferred via the interface. Therefore,
the coupling CV/zone has to be always homogeneous; this is ensured by input checks,
if the interface via CW COCOSYS PW COUPLING is used (ATHLET 3.4). For a CW EXT

coupling, this constraint has to be checked by the user; however, this type of interface
will be obsolete soon for ATHLET-COCOSYS couplings.
Again, both a one-channel and a – more realistic but more complex – two-channel
model of the system were prepared. The AIGs of both models are shown in Fig. 2.13.

23

Fig. 2.9 Dimensioned sketch of the helium injection sample

Fig. 2.10 Between 10 s and 35 s, helium is injected at the lower part of the system

24

Fig. 2.11 AIG of the He injection (left: 1-channel model; right: 2-channel model).
Black: Network objects of the ATHLET domain. Orange: Coupling CVs
(dynamically calculated by THY). Gray: Junction of the THY domain.

Fig. 2.12 Dimensioned sketch of the water pool heat-up sample

25

Fig. 2.13 ATLAS picture of the water pool (left: 1-channel model; right: 2-channel
model). Black: Network objects of the ATHLET domain. Orange: Cou-
pling CV (dynamically calculated by THY). Gray: Junction of the THY
domain. In the 2-channel case, heat is added equally to both parallel
"sumps".

2.3 ODE-numerics for single and coupled systems

Establishing a new approach to ODE numerics in AC2 in order to handle single and also
coupled systems via a monolithic ansatz required considerable modifications in the
system codes ATHLET and COCOSYS (module THY) as well as in the ATHLET/CD-
driver and NuT. The approach separates method logic from control logic. Method
logic is handled by NuT whereas the existing control logic in ATHLET and THY
was adapted to work with the new methods. A common endeavor that required the
cooperation of all listed components was the determination of a Jacobian matrix
for the overall system. The accessibility of such Jacobians is key for the monolithic
approach to work. This section gives details on the several implementation tasks.

The implementation was accomplished to a degree that a test problem could be run.
Further modifications are necessary, though. See also the conclusions in Chapter 5
for further information.

26

2.3.1 Establishing a feature in NuT to execute certain ODE-methods

Work for this task was done on two levels. First, NuT was extended internally to
provide the means to store and execute certain ODE methods for a given time-step.
Second, this new ODE logic was incorporated in NuT’s interface architecture to allow
for suitable access.

2.3.1.1 ODE methods in NuT

A monolithic approach to coupled computations interprets the combined subsystems
as one large but single system. Hence, the problem to solve is given in the form
of a classical initial value problem. Considering each subsystem on its own (pure
ATHLET or COCOSYS computations) the corresponding mathematical problem is
also an initial value problem as it is described in Section 2.1. This comes with the
advantage that the implemented logic in NuT to execute certain ODE methods can
be used for single code simulations as well as for coupled computations.

In order to keep the notation simple in this section, a given initial value problem is
denoted by

y′ = f(t, y), y(t0) = y0, (2.9)

may it arise from a monolithic approach to coupled computations or from single code
calculations.

Opting for one-step methods
The methods that can be employed via the new implementations in NuT belong to
the class of so-called one-step methods. This is in line with the default approaches
implemented in ATHLET and THY respectively. The schemes there can be interpreted
as one-step methods as well. For further details, see the paragraph AC2 and the
requirement for implicit methods below.

In the given context of AC2 it makes sense to focus on such methods since the codes
may encounter discontinuities in the right hand side f of the ODE system in (2.9)
during the time integration process. One-step methods, in contrast to multi-step
methods, do not rely on information from previous time steps to ensure a certain order
or degree of stability. Discontinuities require dedicated handling, see Section 2.3.3
below. After this is done, a one-step method can simply proceed as usual whereas
a multi-step method requires a build-up phase since the smoothness assumptions

27

regarding the previous time steps are violated by the discontinuity. The build-up
phase is usually done by means of one-step methods anyway.

Basic Runge–Kutta scheme
The ODE methods that can be invoked via NuT are one-step methods that may be
of different types but they are all derived from the same general Runge–Kutta (RK)
scheme: For a given time step h from some t0 to t0 +h the general s-stage RK scheme
is described via

ki = hf
(

t0 + cih, y0 +
s∑

j=1
aijkj

)
, i = 1, . . . , s, y1 = y0 +

s∑
j=1

bjkj, (2.10)

where the choice of coefficients c := (c1, . . . , cs)T ∈ [0, 1], A := (aij)i,j=1,...,s ∈ Rs×s,
and b := (b1, . . . , bs)T ∈ Rs uniquely determines a specific method. A method is said
to be of order p if for sufficiently smooth f it holds that

y(t0 + h; y0) − y1 ∈ O(hp+1). (2.11)

The ki are called stage derivatives whereas the stage values Yi are defined by

Yi = y0 +
s∑

j=1
aijkj, i = 1, . . . , s. (2.12)

Throughout, it is assumed that ci = ∑s
j=1 aij. Hence, Yi approximates y(t0 + cih; y0) at

least up to order one. Introducing the stage shifts zi = Yi − y0 it obviously holds that

Z = (A ⊗ I)K where Z :=


z1
...
zs

 , K :=


k1
...

ks

 . (2.13)

This relation comes in handy when an implementation of methods is considered, see
the paragraph Working with zi below.

If it holds that aij = 0 for all j ⩾ i the scheme is explicit. Thus, the ki can be computed
directly from (2.10) in a successive manner. If there is an aij ̸= 0 with j ⩾ i the
scheme becomes implicit. In such a case, an implementation has to employ some
Newton-type process in order to determine (approximations for) the stage quantities
in an iterative way.

AC2 and the requirement for implicit methods
As it is described in /SCH 23a, Ch. 6/ ATHLET’s system in (2.9) must be considered
as stiff. In the given case, this is due to the specific structure of the spectrum of the
Jacobian ∂f/∂y. A general consequence of stiff problems is that they lead to poor

28

performance of explicit methods. Hence, some implicit treatment is necessary. See
/HAI 96/ for a thorough discussion on that topic.

To counter stiffness, ATHLET employs an extrapolation ansatz based on the linearly
implicit Euler method, see /SCH 23a, Ch. 6/. Since it is mainly the spectrum of the
Jacobian that is responsible for the stiffness, employing a linearly implicit method is
appropriate, see the discussion on the stability of linearly implicit methods in /HAI 96,
Sec. IV.7/. Linearly implicit methods come with the advantage that the related Newton-
type process is reduced to a single iteration per stage, see (2.15) below. This may
save computational time. On the other hand, the quality of the involved Jacobian
approximation must be monitored closely in order to ensure stability. ATHLET provides
several means to support such monitoring. For further details see Section 2.3.3.

THY uses the same basic ansatz as ATHLET but the order of the extrapolation
can be adapted dynamically during the time integration process up to very high
orders. ATHLET uses a fixed order of three. The decision for the latter is based on
empirical data, providing a compromise between performance and stability. ATHLET’s
fixed order justifies to also work with methods of fixed order in the context of a
monolithic approach to coupled computations. Hence, no extended order adaptions
are considered for the implementations in this project. Exceptions are discussed in
Section 2.3.3.

Types of methods in NuT
In order to be useful within the context of AC2 the framework of ODE methods in NuT
must allow for the execution of (at least) linearly implicit methods. The implementation
goes a step further to cover methods that execute a predefined number of Newton-type
iteration steps where each stage may define its own number which can be greater
than one. Hence, linearly implicit methods are included but more sophisticated ones
are possible as well. The following types of methods are supported:

• Linearly implicit methods – /HAI 96, Sec. IV.7/
These methods are also called Rosenbrock–Wanner (ROW) methods. They are
derived from diagonally implicit RK methods, i. e. in (2.10) the matrix A is a lower
left triangular matrix. Accordingly, the stages are diagonal stages, there is no
dependency on later stages. As mentioned before, a single Newton-type step is
performed per stage. Because of that, initial guesses k0

i come into play for the
definition of the scheme. For i = 1, . . . , s let

γiik
0
i =

i−1∑
j=1

−γij · k1
j , γii := aii, and αij := aij − γij. (2.14)

29

Then one Newton-type step applied to the system (2.9) at (t0, y0) results in

(
I − hγiiJ

)
δk0

i = −k0
i + hf

(
t0 + h ·

i−1∑
j=1

αij, y0 +
i−1∑
j=1

αijk
1
j

)

+ h2 ∂f0

∂t
·

i∑
j=1

γij,

k1
i = k0

i + δk0
i , i = 1, . . . , s,

y1 = y0 +
s∑

j=1
bjk

1
j .

(2.15)

The matrix J makes the linear system in (2.15) nontrivial, and for the sake of
stability of the above scheme it is crucial that J provides a decent approximation
to the Jacobian ∂f/∂y at (t0, y0). The vector ∂f0/∂t stands for ∂f/∂t at (t0, y0).
Some generous approximation may be used as well. Because usually, ∑i−1

j=1 αij is
close to or equal to ci, and hence ∑i

j=1 γij is close to or equal to zero. Combined
with the factor h2 the impact of ∂f0/∂t on (2.15) is comparatively low.

The default extrapolation ansatz in ATHLET and THY falls into this category of
linearly implicit methods for any fixed extrapolation order. According to the above
discussion on dynamic changes of the order it suffices to support fixed order in the
context of monolithic computations. Hence, by including linearly implicit methods
in NuT the default method in AC2 can be taken into account as well.

• FiterRK methods of high stage order – /STE 17b, Sec. 3.3/
These methods extend the finite iteration idea of ROW methods to RK schemes
that come with a matrix A of the shape

A =



a11 · · · a1m

...
am1 · · · amm

am+1,1 · · · · · · am+1,m+1
... . . .

as1 · · · · · · · · · · · · ass


,

Am: = (aij)i,j=1,...,m,

aii ̸= 0,

i = m + 1, . . . , s.

(2.16)

The block Am allows for taking methods into account that are of high stage order,
i. e. methods for which each stage value Yi, i = 1, . . . , s, fulfills the order condition
(2.11) w. r. t. its corresponding true value y(t0+cih; y0). Such methods do not suffer
from certain order reduction phenomena, see /HAI 96, Sec. IV.15/ and especially
/HUN 03, Sec. II.2/. The benefits of an extension of Am by means of subsequent
diagonal stages are discussed in /BUT 90/. In order to be efficient, a single point

30

spectrum of A and therefore of Am is to be preferred. This can be ensured by
the techniques discussed in /HAI 96, Sec. IV.8/ and /STE 17a/. In order to avoid
linear systems of dimension m-times the dimension of the system in (2.9) a Schur
decomposition of Am is applied. This way, m successive linear systems like in
(2.15) are solved to implement one iteration step for the block stages. A Schur
decomposition is the result of a similarity transformation with orthogonal matrices.
Hence, the transformation is robust and does not introduce any additional error.

The finite iteration idea in this context is based on /STE 17b, Satz 3.26/. Depending
on the quality of the initial guesses k0

i , i = 1, . . . , m, the block stages may require
more than one Newton-type iteration step to produce sufficient results. However,
the required number is still predefined. Also, the subsequent diagonal stages can
usually be computed within a single iteration and still ensure high stage order.

• Explicit RK methods – /HAI 93, Sec. II.1/
Explicit RK methods are naturally supported by the scheme (2.15) via setting
k0

i = 0, J = 0, and discarding the ∂f0/∂t term. The implementation takes care
of the modified linear algebra in a transparent way, see also Fig. 2.17. Though
the systems in AC2 generally require an implicit approach, explicit methods come
in handy for exception handling in case of discontinuities. Details are given in
Section 2.3.3.

Remark 2.7. An implementation of an implicit scheme based on (2.10) also uses a
finite number of iteration steps per stage to produce approximations to the implicitly
defined quantities. However, the number of steps is controlled by an error monitor.
Hence, it is not predefined. Such an approach can be approximated by above method
types by simply raising the number of predefined iteration steps per stage to some
relatively large number like five or six. At the current stage of development this
suffices to get an idea of what an implicit scheme could provide. Further work may
be pursued in later projects if considered suitable. For this project the focus was on
providing linearly implicit methods and as a natural extension to it FiterRK methods
of high stage order. This way, the default method of AC2 can be resembled (for fixed
extrapolation order) and some more complex methods can be tested as well.

Remark 2.8. Technically, it is also possible to execute FiterRK methods of high stage
order in an explicit way. Simply set J = 0 in (2.15) and discard the ∂f0/∂t term if∑i

j=1 γij isn’t zero anyway. The order doesn’t change as long as f stays sufficiently
smooth. In case of discontinuities it makes more sense, though, to switch to a method
of order one, see Section 2.3.3.

31

Working with zi

Regarding an implementation of methods it is advantageous to work with the stage
shifts zi instead of the stage derivatives ki or values Yi. Stage shifts are easy to inter-
pret since they directly reflect the change of solution variables for a given (sub-)time
step. Also, they are less prone to rounding errors than stage values due to their
incremental nature.

Usually, A is nonsingular. In such a case, (2.13) can equivalently be stated as

(A−1 ⊗ I)Z = K.

By means of the above relation, (2.10) can easily be rewritten to work with the stage
shifts zi instead of the derivatives ki. The calculations in (2.15) become

(−h−1a−1
ii I + J)δz0

i = h−1k0
i − f(t0 +

i−1∑
j=1

αijh, y0 + z0
i) − h∂f0/∂t ·

i∑
j=1

γij

z1
i = z0

i + δz0
i , i = 1, . . . , s,

y1 = y0 + (bT A−1 ⊗ I)Z1

(2.17)

where Z1 comprises z1
1 , . . . , z1

s . The stage derivatives k0
i are determined by means of

the previous zj, j < i. In the above description k0
i is used for the sake of a compact

notation. In contrast to (2.13) the linear system already includes a scaling by −h−1a−1
ii .

This saves computation time since J isn’t scaled anymore. Simply its diagonal is
altered by −h−1a−1

ii I.

In case of an explicit first stage, i. e. c1 = 0 and hence z1 = 0, A is singular. However,
the same ideas can be applied if A is substituted by A + e1e

T
1 and z1 by k1 = f(t0, y0)

in (2.13).3

For an explicit RK method A is a strictly lower triangular matrix and therefore singular
too. To work with the stage shifts zi in this case the following trick can be applied:

1. Add some nonsingular diagonal matrix D to A, resulting in a nonsingular matrix.

2. Apply the transformations that lead to (2.17), just like it is done for the regular
nonsingular case.

3. Set J = 0, k0
i = 0, discard ∂f0/∂t, and compute (2.17).

Details on the transformations to get from (2.15) to (2.17) are thoroughly discussed
in /STE 17b, Subsec. 3.3.4/. There, handling of block stages is comprehensively
covered as well.

3The vector e1 denotes the first unit vector in Rs.

32

Remark 2.9. It is part of the implementation that NuT does not determine y1 but
∆y0 := y1 − y0. This comes with the advantage that NuT does not require the
knowledge of y0 to execute (2.17) since f -evaluations are done by the host. It is the
host’s responsibility to calculate the final value y1 by adding ∆y0 to y0.

The pre method concept
In case of FiterRK methods with block stages, i. e. nontrivial Am, it makes sense to
ask for start approximations z0

i , i = 1, . . . , m, better than zero. Setting z0
i = 0 is a valid

and always available option but also requires the most iteration steps. In order to
provide better z0

i , the concept of a pre method was implemented. See also Fig. 2.15.
To be precise, a cascade of pre methods can be used where each pre method feeds
data to its direct successor till finally the actual method receives its data. Practically
though, a single pre method usually suffices.

The implementation is done in a way that any method can be used as a pre method.
The developer decides what combination is suitable. To transfer data from one
method to another, interpolation may become necessary since the ci-values are
not necessarily the same. Currently, linear interpolation of the following kinds is
supported:

• λ · zpre
µ , µ := arg maxi cpre

i , λ ∈ [0, 1],

• zpre
i−1 + λ · (zpre

i − zpre
i−1), i = 1, . . . , spre, zpre

0 := 0, λ ∈ [0, 1].

Such interpolation leads to approximations z0
i of first order. If deemed necessary

more sophisticated interpolation concepts can be added.

Support of host-sided control logic
The implemented ODE feature is focused on executing certain methods. There is
no control logic like step size selection, redoing of steps or error calculation involved.
These are things that are left to the host application(s) since they may include decisions
that are particular to the application. However, support for certain features is provided:

• Error estimation
As it is explained in Remark 2.9 NuT computes ∆y0 = y1 − y0 as an approximation
for y(t0 + h; y0) − y0. Additionally, an error vector errloc

est is determined. Formally,
the latter is constructed like ∆y0 but based on some suitable δb = b − b̂ instead of b.
Via b̂ a method of higher order is realized, based on the same stages as ∆y0. This
way, the error of y1 can be estimated. NuT solely provides the vector information
errloc

est. The host applies an appropriate error norm ∥·∥err to it. See Section 2.3.3
for details.

33

• Contraction checks for the Newton-type process
The supported methods perform a predefined number of Newton-type iteration
steps. Nonetheless, it is a valid question whether the iteration would actually
converge. In this context it appears reasonable to check the iterates for contraction,
i. e., ∥δzℓ+1

i ∥err/∥δzℓ
i ∥err < 1. If such a contraction check fails the host may reduce

the step size and/or update the Jacobian.

NuT comes with the option to provide input vectors δzℓ+1
i and δzℓ

i for a contraction
check to be done by the host. If no stage goes for a second iteration step, e.g. if a
linearly implicit method is considered, an additional iteration step may be defined for
a stage, solely for the sake of producing contraction information. Such a strategy
is also applied in ATHLET’s default algorithm. NuT may provide contraction infor-
mation based on block stages as well. Due to the intertwining of the block stages,
2 · m vectors instead of just two have to be taken into account. In order to process
the information the host must provide a suitably adapted error norm.

• First order approximations
The host may demand some of its solution variables to be computed by a low
approximation scheme. This may be combined with generous error bounds in
order to counteract highly oscillating solution parts. This is a technique which
is applied by the default algorithm in both ATHLET and THY. Accordingly, NuT
supports it as well.

Concrete methods
Several methods were implemented in NuT. All are implicit schemes but can be
executed in an explicit way as well, see Remark 2.8.

• T11 and Tvar

T11 denotes the linearly implicit Euler method. The label T11 is motivated by the
close connection to the extrapolation scheme in Fig. 2.14. Practically, T11 is the
simplest linearly implicit method. Following the notation from (2.17) it can be
written as

(−h−1I + J)δz0
1 = −f(t0, y0) − h∂f0/∂t

z1
1 = δz0

1 , y1 = y0 + z1
1 .

(2.18)

T11 does not serve as a stand-alone method for practical use. But due to its very
simple nature it helped in the development of the code.

Of a more practical use is the extension Tvar which requires a parameter λ ⩾ 1.
For λ ∈ N Tvar resembles Tλ,1, i. e., a λ-time consecutive application of (2.18)

34

for the step size hλ := h/λ. Naturally, this leads to a linearly implicit method with
s = λ stages. The relations in (2.17) become

(−h−1
λ I + J)δz0

i = −f
(
t0 + (i − 1) · hλ, y0 + z1

i−1

)
− hλ∂f0/∂t

z1
i = z1

i−1 + δz0
i , i = 1, . . . , λ, Tλ,1 := y1 = y0 + z1

λ.
(2.19)

Due to its flexibility Tvar is a good candidate to be used as a pre method. Especially
in the context of FiterRK methods of high stage order where A has a single point
spectrum with real eigenvalue γ. The parameter λ should be chosen as λ = γ−1

in that case. This way, Tvar and the main method use the same matrix for the
linear systems. An additional decomposition can be avoided. The method block1

below comes with the option to employ Tvar in the described way.

The eigenvalue γ is not necessarily the reciprocal of a natural number. The choice
λ = γ−1 remains the same but s becomes s = ceil(λ). This leads to a cs > 1.
Therefore, the developer is given the option to compute less than s stages. It is
the developer’s responsibility to tune the methods in a way that less than s stages
still suffices to produce all desired initial guesses for the main method via NuT’s
cross mapping feature, see Fig. 2.15.

• T33

The basic extrapolation ansatz in ATHLET is resembled by T33. This method uses
(2.19) for λi = i, i = 1, 2, 3, generating the corresponding Tλi,1 resulting in six
stages. Approximations of higher order are calculated according to the recursion

Tj,k+1 = Tj,k + Tj,k − Tj−1,k

(λj/λj−k) − 1 , j > k, k ⩾ 1, (2.20)

and as depicted in Fig. 2.14. For any fixed j and k the resulting Tj,k+1 can be
expressed as a linear combination of the z1

λi
values. This is done for T3,3 which

is used to proceed the time integration. For an error estimate either T2,2 or T3,2

is employed. The first one is in line with the basic scheme in THY, whereas the
second one relates to the ATHLET scheme. Adaptive order is not covered by this
method. Extrapolation with adaptive order would require additional development
of the ODE mechanism in NuT.

An extension of T33, i. e., T33extra was created to cover special treatment of
discontinuities in line with the default approach in ATHLET and THY. Details are
covered in Section 2.3.3.

• block1

The method block1 is an FiterRK method of stage order two which is realized by

35

Fig. 2.14 Extrapolation scheme based on the linearly implicit Euler up to order
three. The Tj,k are calculated according to (2.20).

a block of size three using the techniques from /STE 17a/ to ensure a single point
spectrum with eigenvalue γ = 1

2 . It comes with an additional diagonal stage of order
three for the sake of error estimation and local extrapolation. Also, an additional
diagonal stage of order one is provided. Optionally, Tvar can be employed with
λ = γ−1 = 2 to deliver initial guesses of order one for the block stages. The main
purpose of block1 is to test the implementation for block stages and pre methods.
Further, more application related, FiterRK methods can be added later.

Computing initial guesses z0
i

The computations in (2.17) require an initial guess z0
i . Analogously, this holds true

for potential block stages. The implementation of ODE methods in NuT allows for
a variety of options how to provide initial guesses. The main motivation is to avoid
additional f -evaluations wherever possible. Fig. 2.15 gives an overview of the different
options. What option(s) are in use is decided by the developer of a method. It is a
static information that is determined while defining the method.

• The inbox concept
Initial data for a certain stage or a set of block stages may be available or suitable to
compute before the actual stage(s) are considered. Hence, an inbox concept was
implemented. Previous stages or an optional pre method may store the desired
data in the inbox. These data comprise the z0

i -value as well as its related f -
evaluation. When it comes to computing the actual stage(s), the inbox is checked
for valid data. No other stage or other method is allowed to directly write into
variables that belong to a given stage. Initial data are either picked up from
the inbox or they are computed by the stage itself. Thinking of a stage as an
object this encapsulation concept ensures data safety, avoids unnecessary inter-
dependencies, and allows for an easily traceable flow of data. Most of the labels

36

on the inbox side of the graph in Fig. 2.15 are rather self-explanatory. Further
information is given for the following two labels:

– inter-stage

When a stage i triggers an f -evaluation for some input zℓ
i , ℓ ⩾ 0, in order to

get on with its own computations and these are exactly the same data a later
stage j requires, inter-stage mapping to the inbox of j can be used. In the
case of a pre method as source, an intermediate outbox comes into play as an
interface for the actual method to access the data.

– piggyback

Piggyback mapping complements inter-stage mapping. It is the same basic
idea but kicks in when the initial value plus corresponding f -evaluation for a
given stage are set by any external means. Piggyback mapping allows the
same data to be used for any subsequent stages as well and, hence, avoiding
an f -evaluation at exactly the same input data.

• Direct computation
Direct computations are triggered when the inbox for a given stage (or a set of
block stages) is empty. In such a case the stage has to take care of producing
initial data itself. For block stages there’s only the option of a zero guess as
they are the first stages of a method, see (2.16). A diagonal stage i may exploit
information from previous stages. Following the basic relation between the stage
shift and stage derivative quantities as given by (2.15) this is formally done by
means of a linear combination of stage derivatives k

ℓj

j , with ℓj ⩾ 1 for j < i, yielding
z0

i = ∑i−1
j=1 αijk

ℓj

j . This motivates the alpha notation in Fig. 2.15. For the actual
computations, equation (2.13) is exploited once more to express the k

ℓj

j by linear
combinations of z

ℓj

j , j < i. Hence, only a z-quantity (and an accompanying time
value) need to be stored to represent the information of any given stage during
the stage computations of a given method.

The sub-options pick and zero are special cases of alpha in the sense that they
provide shortcuts to avoid calculating a linear combination if it’s clear from the
definition of the method that either a single previous z

lj
j is opted for or that z0

i = 0
holds due to αij = 0 for all j = 1, . . . , i − 1.

Finally, the label expl1st is reserved for the first stage of methods that utilize an
explicit first stage, hence the name. Recall from above that in this case the method
works with k1 = f(t0, y0) instead of z1.

37

Fig. 2.15 Calculation options for z0
i

Process flow of executing an ODE method
In contrast to NuT’s linear algebra features the execution of one step of an ODE
method requires interaction with the host in between the calculations. This is due to
the demand to evaluate f for input values that are generated during the execution
of a method.4 This is not an information that can be given in advance. Hence, the
implementation has to take a state mechanism into account in order to proceed compu-
tations at the correct position after f -evaluations have been processed. Furthermore,
waiting for data from the host should be non-blocking.

Executing a method is handled by an ODE entity, see also Section 2.3.1.2. The above
requirements have been fulfilled by the combination of two means:

• introducing a two-tuple [section, code] which defines the state of the execution
of the method and therefore of the entity,

• providing a main routine compute_stages to be used by the host which triggers or
continues calculations and which tells the host of the entity’s status on return via
the value of code.

It is the host’s responsibility to process the status information given by NuT between
two invocations of compute_stages. NuT provides several further routines to let
the host read or write information. E. g., if the status code that is returned from

4Practically, the only exception is the explicit Euler method y1 = y0 + hf(t0, y0).

38

compute_stages reads as getF, the host can use NuT’s f_get_input routines to
read the input that is required to execute an f -evaluation. Afterwards one of NuT’s
set_f_output routines can be made use of to give NuT the desired data. When
compute_stages is invoked again, NuT assumes (after some internal checks) that
the host provided the requested data. Based on [section, code] NuT can navigate
through the ODE code to resume computations. Since this information is stored in
the ODE entity, NuT is not blocked for requests during the host computations.

The general process flow in NuT is shown in Fig. 2.16. The internal labels re-
fer to the possible values of section (except for proceed which is a possible code

value). Additionally, the tell host labels are covered by code. Final approximations
∆y0 = y1 − y0 are computed in the end section. From a numerical point of view the
implementation is inspired by the Algorithms 3.2-3.4 in /STE 17b/ to handle block
data, diagonal data, and the determination of ∆y0, respectively.

Verification
Implementing the execution of ODE methods of the presented kind including possible
block stages and sophisticated ways to produce initial guesses z0

i was a complex
endeavor. Therefore, verification was done on two levels. Both means also serve as
regression tests for future modifications.

• A significant amount of assert-statements were placed in the corresponding
C++ code to check for valid states and data accessibility. These statements are
processed only if the code is compiled in debug mode. Hence, performance does
not suffer. NuT’s CI takes care of running the code in debug mode as well for
NuT’s default CI pipeline. See also Section 3.2.3.

• The implemented methods were run for a test problem. It reads as

y′
(1) = y(1) · (p1 − p3y(2))

y′
(2) = y(2) · (p2 − p4y(1)),

y(t0) =
y0,1

y0,2

 , (2.21)

where the parameters and initial values are chosen as p1 = 0.08, p2 = −0.2,
p3 = 0.002, p4 = −0.0004 and y(t0) = (400, 5)T , respectively. Above system
describes a classical prey/predator interaction of Lotka-Volterra type /LOT 98/.
Time integration is considered for the interval [0, 500]. Step sizes are fixed and
chosen as h = 0.1. This problem has several amiable properties.

– The problem is small in size but not scalar. Nontrivial matrix and vector opera-
tions occur while running a method for the problem. This helped tremendously
to identify dimension mismatches during development.

39

create entity´

no pre method

pre method

no diag stages

no block stages

diag stages

block stages

start

pre

pre(compute_stages)

diagonal

getF

proceed

diag_contraction

end

block

getF

proceed

block_contraction

post_block

getF

proceed

done

success

internal switch layer tell host

Fig. 2.16 Process flow in NuT while executing an ODE method via invocations of
compute_stages

40

– The problem has a unique solution that is periodic. The periodicity has to be
reproduced by a method up to a certain degree depending on the order of
the method. If a method fails (but others of the same type do not) this is an
indication for erroneous method parameters.

– The problem is not stiff. It is no problem to set J = 0 and check for the correct
execution of explicit type computations.

After running the methods the resulting trajectories were manually checked. If
considered of sufficient quality the final approximation values for y(500) were stored
in the test program to be compared with future computed values. This makes sense
since such values are highly sensitive to any perturbations of the time integration
process. Any modifications that are not supposed to alter the behavior of a certain
method should leave the final approximations unaltered too. This testing concept
came in handy while the handling of block stages was implemented. Diagonal
stages were already implemented at that time. Thus, the behavior of a method
that is solely based on diagonal stages should not change at all.

2.3.1.2 Accessing ODE features via NuT’s interface

The ODE features described in the previous section are encapsulated in an ODE
entity data structure (of the C++ type struct). Each ODE entity serves the execution
of one method. The entity can be accessed without any further means if NuT is linked
directly to a given C++ program. However, in order to make the execution of ODE
methods available in the context of AC2 a wrapper class TS was developed.

Like it was done for other NuT entity structs or classes before, the generator concept
that was introduced in /STE 20/ was employed to create Fortran, C, and C++ interfaces
for the TS class based on a json-input. This includes library and plugin use. Hence,
the MPI communication layer is already covered as well. The generator automatism
helps tremendously to ensure robust and consistent interfaces.

The entity class TS covers access to ODE entities as well as linear algebra entities.
This helps to keep the number of required entity references on the host sides (ATHLET
and THY) small. There is no need for bloated if/else constructs when one reference
can be used for ODE related task or maybe only for linear algebra related ones.

The wrapping TS provides is often simple, forwarding the input parameters to the
invocation of the corresponding ODE or linear algebra procedure, respectively. To
comply to the data types that are supported by the automatically generated interfaces

41

certain data processing may be included too, though.

Another benefit of the TS wrapper is the handling of combining an ODE entity with a
linear algebra entity. This is done in a transparent way. Per se, ODE entities don’t
require access to sophisticated linear algebra. For example, if a method is explicit or
if it is executed with a Jacobian approximation J = 0 the ODE entity’s solve operation
simply performs some scaling. An overview of the NuT internal relationship between
the TS wrapper and the ODE and linear algebra classes are given in Fig. 2.17.

Fig. 2.17 Overview of the relationship between the TS wrapper and the ODE and
linear algebra classes in NuT. The label m_var identifies the object which
is pointed to as a member variable of the higher-level object.

2.3.2 Building a Jacobian matrix for the overall system – implementation

If NuT is activated, both ATHLET and THY handle the determination of Jacobian
information by invoking their respective version of the procedure FMANUT. In case of
ATHLET, an approximation of ∂f/∂y is computed, whereas for THY the derivative
∂g/∂u is approximated. In terms of an overall system, these are the matrices A and T

in Fig. 2.3. For Jacobian information w. r. t. the overall system also the submatrices UR
and LL, i. e. approximations of ∂f/∂u and ∂g/∂y are required. Hence, the FMANUT

routines have been extended by synchronization means and additional code to handle
the calculation of the relevant elements of UR and LL as well.

Since the cross dependencies of the solution variables require the evaluation of the
individual time derivatives in parallel, see Section 2.2.1, the evaluation of f via AFK

and that of g via FKTFE must always be done at the same time. This also holds true
in the context of Jacobian calculations. The necessity to recalculate the Jacobian

42

matrix is flagged by each code individually based on the respective control logic of
the time integration process. Examples for triggering a recalculation are missed error
bounds or an activation or deactivation of equations. The flags used in each code are
synchronized, to make sure that both codes enter their respective FMANUT procedure
when at least one of them requires an update of the Jacobian matrix.

The principal sequence of operations and the exchange of information between the
three participants is given in Fig. 2.18. In general, the determination of the Jacobian
matrix consists of two main parts.

The first main part is the setup phase in which local pattern information about the
equation system is evaluated and transferred to NuT, i.e., the nut_worker process
(steps 1 to 8). In case of an overall system, this step includes updating the structure
of the submatrices UR and LL. Based on the new matrix information, the seed matrix
is determined by NuT and sent to the requesting code (step 9). The sparse matrix
format CSR (Compressed Sparse Row) is used.

The second main part is the processing of the seed matrix which contains the actual
calculation of the elements of the Jacobian matrix. Inside the loop [seed vector],
elements of the seed are processed by both codes in parallel. In each cycle, solu-
tion variables are perturbed, and the resulting time derivatives are calculated. The
Jacobian matrix entries are computed with this information via finite differences for
affected equations and transferred to NuT in steps 21 and 22 in each cycle.

The individual steps in each phase that are required to obtain the elements of the Ja-
cobian matrix in the monolithic approach will be described in the following paragraphs
in detail.

Setup phase
After evaluating its individual pattern information, each code informs the nut_worker

in steps 1 and 2 about the updated shape of the purely local Jacobian information
given by A or T , respectively. This step would also occur when the codes use NuT
individually. The transfer of the submatrices A and T utilizes the extended NuT
functionality as described in Section 2.3.2.1. This also applies to the later transfer
of LL and UR.

Both codes then enter their respective procedure build_matrix_structure() to
determine the submatrices LL and UR. In case of ATHLET this procedure is one of
the procedures imported from the ATHLET/CD-driver, see also Section 2.3.3.3. It first
receives information about the current structure of the matrix T from THY. Combined

43

ramain::FKTFE()athlet::AFK()ramain::FMANUT()athlet::FMANUT()nut_worker

ramain::FKTFE()

athlet::AFK()

ramain::FMANUT()athlet::FMANUT()nut_worker

evaluate local matrix information

determine LL and UR

par [build_matrix_structure]

- apply perturbation to solution vector
- set boundary flags

- solution vector to physical variables
- calculation of depending properties

opt [ath ode needs thy boundary
data]

calculate depending properties

opt [thy ode needs ath boundary
data]

calculation of time derivatives

par [calculation of time derivatives]

break [when ath or thy have HXX]

calculation of Jacobian matrix values

loop [seed vector]

set matrix A
1

set matrix T
2

updated matrix T
3

set LL and UR
4

updated global matrix data
5

active ath equations
6

active thy equations
7

setup master matrix
8

seed matrix
9

seed and ath perturbation vector
10

thy perturbation vector
11

call calculation of time derivative
12

call calculation of time derivative
13

updated thy bc
14

updated ath bc
15

return to athlet::FMANUT()
16

return to ramain::FMANUT()
17

ath evaluation status (HXX)
18

thy evaluation status (HXX)
19

return to calling routine
20

Jacobian matrix values
21

Jacobian matrix values
22

Fig. 2.18 Overview of the Jacobian matrix calculation process

44

with data about the structure of the submatrix A that is directly read from ATHLET, the
new structure of the LL matrix can be determined. The structure of the submatrix UR
then follows from symmetry assumptions as described in Section 2.2.1.

This code section also includes the generation of equation-wise vectors, that store
information about the (mutual) dependence of ATHLET and THY equations. These
vectors are used in the later calls to AFK and FKTFE to determine whether it is necessary
to update boundary conditions.The updated structure of LL and UR is transferred to
the nut_worker process in step 4. The updated information about the global matrix is
shared with THY in step 5 along with the dependency vectors. The inclusion of the
latter ensures that send/receive operations for boundary data are triggered for the
same equations during the seed application.

To finalize the setup of the global matrix, NuT requires the information which equations
are activated. This information is collected by steps 6 and 7 on the ATHLET side and
transferred to NuT in step 8. This finishes the preparation of the global matrix inside
NuT, and in step 9 ATHLET requests and receives the seed matrix. In step 10, the
seed matrix is shared with THY along with the perturbation vector of ATHLET. The
latter is needed in THY to apply the finite difference scheme to ATHLET perturbations
(i. e. ∆pj in eq. (2.22) below). The THY perturbations are needed in ATHLET for the
same reason and thus received by ATHLET in step 11.

Calculation phase
With the setup phase finished, both codes enter the loop [seed vector], in which
one column of the seed matrix S is processed in each loop cycle. The non-zero
elements of the current column define a set of equation numbers S from the global
equation system that are to be perturbed during this cycle. Both codes process all
elements of S. For each element that belongs to the code itself, the corresponding
value from the perturbation vector is added to the solution variable. This leads to the
perturbed solution vectors ũ and ỹ in THY and ATHLET, respectively. The flags that
will trigger exchange of boundary data later in AFK and FKTFE are set according to the
dependency vectors.

The evaluation of the time derivatives is then started in parallel in steps 12 and 13.
ATHLET enters AFK, while THY calls FKTFE. Both codes begin their evaluation by
transferring the values from their solution vector to physical variables. In case of THY
for instance, the solution vector variables associated with the component masses in
the zones are copied to the matching ZMASS(icomp,ipart,izone) to which later eval-
uations inside FKTFE refer. This is followed by the calculation of additional depending

45

variables that are not part of the solution vector, e. g., the calculation of the pressure
in gas zone parts as function of the respective ZMASS values in THY .

Hence, all possible values α(ũ) from equations (2.3) and (2.4) are determined. When
at least one element of S has made the respective boundary flag to be set, the transfer
of boundary data from THY to ATHLET is triggered in step 14. This usually means
that a THY solution variable was perturbed that affects a coupling variable, e. g., the
component mass or temperature of a coupled zone. On the ATHLET side the received
values are applied to the appropriate coupling interface, and depending variables are
calculated, e. g., component mass flow rates, that depend on the solution variable
total mass flow rate (or volume flow rate), and the gas mixture in THY should the flow
direction point from THY to ATHLET. With this, all possible β(ỹ, α(ũ)) are determined.
In this scenario, the boundary values β from eq. (2.3), for instance the component
mass flow rates, are transferred to THY in step 15. There, they can be used in the
further calculation of the time derivatives.

Once all time derivatives are calculated, both processes return to their respective
FMANUT procedure. In case of problems during the calculation of the time derivatives
both AFK and FKTFE set their respective HXX flag to true. These values are exchanged
between the codes in steps 18 and 19, and logically combined with the OR operation.
This ensures that both routines return the same HXX state to the controller which has
to initiate appropriate actions when HXX = true is returned.

When the evaluation of the time derivatives was successful, both codes compute
approximations Jij to the elements of the Jacobian matrix by means of finite differ-
ences. For this purpose, both codes process all elements of S again to determine the
required values.

ATH: Jij = fi(t, ỹ, α(ũ)) − fi(t, y0, α(u0))
∆pj

THY: Jij =
gi

(
t, ỹ, β(ỹ, α(ũ))

)
− gi(t, y0, β(y0, α(u0))
∆pj

with j ∈ S. (2.22)

In the above y0 and u0 denote the unperturbed solution vector of the respective code.
The vectors ỹ and ũ are the perturbed solution vectors, that take the perturbation ∆pj

into account. The value of the latter depends on the physical meaning of equation j

and is maintained by each code. Since these values were exchanged during the
setup phase (steps 10 and 11), both codes can select the value of ∆pj depending on
which system the equation j belongs to.

The elements of S are processed in a loop, processing one j in each cycle. The

46

relevant i, for which eq. (2.22) is to be evaluated, is determined by means of j and
the pattern information of the submatrices A, T , UR, and LL.

Remark 2.10. Considering actual computations and for a given S the perturbed
solution vectors ỹ and ũ take all corresponding perturbations at once into account.
This is a valid approach since the algorithm that generates the seed matrix ensures
that each equation i is only affected by exactly one j from S. Thus the obtained
change in the time derivative for element i can be attributed to the perturbation of
solution variable j with certainty. Hence, the number of required function evaluations,
and therefore, the number of invocations of AFK and FKTFE can be reduced.

The codes collect their calculated matrix entries Jij and transmit them to NuT for
every set S (steps 21 and 22). This limits the size of the vectors that are required
to store the values plus column and row indices of the calculated entries, since the
maximum size of these vectors is the total number of equations belonging to ATHLET
and THY, respectively. This can be deduced from Remark 2.10. The actual transfer
contains the values plus column and row indices whic are collected for the current S.
NuT checks whether the column and row indices of the submitted entries are in line
with the matrix definitions done during the setup phase. This helped a lot to identify
index issues during development.

The loop [seed vector] ends when all columns of the the seed matrix S have been
processed. Both FMANUT routines return to their caller.

2.3.2.1 NuT extensions to handle matrices composed of submatrices

In order to provide NuT with the feature to store and work with a Jacobian of an overall
system of the form (2.6) two mechanisms were implemented:

• create and fill four submatrices organized by index,

• compose the submatrices in a 2 × 2 pattern to create an overall matrix.

With an overall Jacobian at hand, a monolithic approach to handle a coupled system
can make use of the ODE concepts and routines in Section 2.3.1 exactly the same
way as a single system would do. Furthermore, the implementation is done in a way
that the usual linear algebra support for the host codes is still available. Existing
interface routines haven’t changed but were complemented by new ones to handle
the requirements of a unified system.

The overall Jacobian holds information from both involved systems as well as infor-
mation of the mutual impact. Hence, the NuT entity that manages the access to the

47

Jacobian matrix in NuT must be available on both communicators, the one shared
with ATHLET and the one shared with COCOSYS. NuT provides such support by
default. It is only required that the MMA subcommunicators of both communicators
cover the exact same NuTprocesses. This is the default anyway if NuT support for
both codes is considered. No additional settings are required.

As it turned out during the feasibility studies of Section 2.2.1, the structural data
to build the UR submatrix (upper right one, see Fig. 2.3) is given by the hosts in a
way that a column-oriented representation comes natural. This justifies to provide
a corresponding interface routine. Also, the row-oriented version comes in handy.
Hence, the procedures

ts_submaster_setup_bcsc,

ts_submaster_setup_bcsr.

were established. The pattern of the LL submatrix (lower left one) is symmetric
to the one of UR. Exploiting that symmetry plus the fact that the CSR and CSC
formats (compressed sparse row|column) are symmetric to each other too, i. e.
CSR(A) = CSC(AT), the calls of above routines are as follows:

ts_submaster_setup_bcsc(ts_entity, 1, /

ePtrTHY, ePtrATH, colPtr, rowIndx),

ts_submaster_setup_bcsr(ts_entity, 2, /

ePtrTHY, ePtrATH, colPtr, rowIndx).

The indices 1 and 2 identify the UR and LL submatrix, respectively. The arrays colPtr

and rowIndx describe the nonzero block pattern of the matrices UR and LL in com-
pressed form. To map from block pattern to element pattern the arrays ePtrTHY and
ePtrATH are utilized. The procedures are invoked in the ATHLET/CD-driver. There, all
information is available. The patterns of the single system Jacobians are build in each
respective code beforehand via a suitable invocation of ts_submaster_setup_bcsr

each. The pattern of the overall Jacobian matrix is build via the invocation

call ts_master_setup_submaster(ts_entity)

which is done right after building the patterns of UR and LL. There is no specific
parameter beyond the related entity required since NuT’s Linalg class defines a
member variable submaster via

std::vector<Mat> submaster = std::vector<Mat>(4, Mat{context});

48

If a single system is considered, i. e. no coupling, submaster remains in its initial
state. No assignments occur and no memory demands arise. Hence, performance is
not affected.

The actual composition of matrices is done in NuT’s Mat class by means of invoking
the PETSc functions

MatCreateNest,

MatConvert

in a consecutive way. The first function converts an array of matrices to a matrix
of PETSc type MATNEST. To receive a matrix of the default type MATAIJ the second
function is used. Converting the matrix to MATAIJ comes with the benefit that the
existing algorithms for seeding and solving can be applied as usual. For further
information on the PETSc functions and types consult the online manual at /BAL 23/.

2.3.3 Adapt control logic in ATHLET and THY

Background
In ATHLET as well as in THY the Fortran routine FEBE is responsible for executing
one step of the time integration process a simulation run is based upon. FEBE is
invoked in a consecutive manner to get from some tstart to tend via a finite sequence
of discrete time steps {hi}. FEBE implements an extrapolation scheme based on
the Forward Euler / Backward Euler methods. Backward Euler is done in its linearly
implict form (2.18). Forward Euler simply refers to the explicit counterpart. Technically,
there’s the option to split the system in two parts where one is treated explicitly and
the second one linearly implicit. This is a mode, however, that hasn’t seen use in
years, presumably due to performance issues. This wouldn’t be a surprise since
stiffness usually evolves in sub-spaces that are not along the dimensions of Euclidean
space, see /HAI 96, Sec. IV.10/.

The default scheme is implicit in order to tackle the stiffness of the underlying problem.
Explicit calculations come into play when discontinuities are encountered or when
the Jacobian matrix cannot be determined by finite differences or when the implicit
algorithm predicts too small time steps where model problems are encountered. The
flag HXX must be set for one of these exceptions to occur.

While THY-FEBE is still rather close to the description of the algorithm in /BAR 89/,
ATHLET-FEBE deviates from it in some areas. Especially due to extensions like con-
traction checks for the Jacobian, support of partially updating it, or special treatment

49

of the steam and gas quality, which is a solution variable in ATHLET. Also, in both
codes certain components of the solution vectors are (optionally) handled by first
order approximations (e. g. pressure in ATHLET or the mass flow rate in THY). The
idea is to use the damping effect of the linearly implicit Euler method to get rid of
highly oscillating parts of the solution variable.

The FEBE routine does not only include the execution of an extrapolation method but
its accompanying controls for step sizes, error handling and Jacobian monitoring as
well. Furthermore, FEBE is embedded in an architecture of supporting routines. Some
of them purely take care of data management, others are responsible for certain
sub-tasks, see Fig. 2.19. Most of the data are represented in terms of global variables
that are stored in Fortran modules.

Adaption
In the given context, it was no easy task to define an alternative ODE control. FEBE’s
control logic and method execution are stored in the same Fortran file and they are
tightly entangled over the length of about one thousand lines of code (THY) or two
thousand lines (ATHLET), respectively. Furthermore, different coding styles, working
with jump labels, anachronistic naming schemes and using global variables to define
the state of the algorithm posed a considerable challenge. A very careful approach
was necessary to adapt the basics in order to make the execution of another method
possible by means of an alternative control logic. First, THY was taken care of due to
its less complicated FEBE version. Then ATHLET followed based on the work done in
THY. Further work on the logic is strongly advised to improve its overall performance
and to better meet the host’s requirements, see also Sections 2.3.3.2 and 2.3.4 below.

Regarding the implementation it was decided to exploit the embedding of FEBE for
the newly developed alternative as well. The new control logic is stored in a separate
Fortran module nut_ts. It is accompanied by several auxiliary routines to make the
embedding work and to improve readability. Details on the embedding for ATHLET
are shown in the lower half of the diagram in Fig. 2.19. For THY an analogous
approach was followed. Still, global variables are in play, but embedding comes with
the advantage that the code beyond the actual ODE logic in nut_ts can behave as
usual. The scope of modifications did not expand to unrealistic levels. Considering the
complexity of the matter at hand it is reasonable to pursue a step-by-step approach
where future work can benefit from the basics that were established in this project.

Since NuT takes care of executing a method, including the necessary linear algebra,
FIMP and FTRIX are mainly used for providing the correct data to build derivatives,

50

Fig. 2.19 Embedding NuT’s ODE feature in ATHLET. The THY case is analogous

mainly the Jacobian which is handled by FMANUT. This is true for single code compu-
tations as well as coupled computations. In the latter case the FMANUT routines from
both codes, ATHLET and THY, are run in parallel. The ATHLET/CD-driver comes into
play as well, see also Section 2.3.2. Like it is done for FEBE, the routine FECK takes
care of exception handling in case of discontinuities. Some minor modifications were
necessary to be compatible to the new approach.

2.3.3.1 Overview of supported control aspects

The following aspects are taken care of by the alternative control logic. If no specific
code is mentioned, ATHLET or THY statements about FEBE are related to both codes.

Execution of single code or coupled simulations
Both codes, ATHLET and COCOSYS-THY, can use NuT’s ODE feature separately
and also together in the context of a monolithic approach to coupled computations.
For the latter case the general flow of execution is the same. Still the time step
procedure of nut_ts is invoked. Additional synchronization measures take care of
the exchange of coupling data. Further details are discussed in Section 2.3.3.3.

Explicit and (linearly) implicit methods
The control logic in nut_ts supports the type of methods discussed in Section 2.3.1.1.
Technically, an arbitrary amount of methods can be initiated. Switching between
methods is possible too. This allows for special treatments, see the paragraph on

51

discontinuities below. When computations are done a single method is in charge.

Error control and step size control
These two control types go hand in hand since the error has a direct impact on the
step size. The implementation of both controls are inspired by the discussion in
/STE 17b, Subsec. 3.5.1/ on that matter. A consistent error norm is used that takes
default absolute and relative tolerances into account. Weights for the relative error
can be computed based on a mix of y0 and y1 but also by resorting to the stage values
Yi, which is a generalization to FEBE’s choice. Also, special error bounds can be
considered as the host sees fit. The default base norm is the maximum norm. This
comes in handy for coupled computations since each code can compute its own part
of the error. The two results are compared to each other by a final max(·, ·) invocation.
This is equivalent to applying the maximum norm to a vector that is related to the
overall system.

For the step size control a correction (when redoing a step) is done by the classical
dead-beat controller H0110 /HAI 96, Sec. IV.8/. FEBE’s step size prediction is based
on this controller as well. The NuT counterpart can offer two additional step size
selections based on control theoretic considerations /GUS 94/, /SÖD 03/. See also
/STE 17b, Tab. 3.18/. Additional absolute and relative limiters are applied. The values
for that are taken from FEBE. Note that especially in ATHLET FEBE sometimes appears
to be inconsistent in measuring the influence of the error for step size control. Further
investigation is required.

Turned-off equations
In both codes the logical array TOP tracks which equations are active (false) and
which are turned-off (true) for the current time step. This control is supported by the
alternative control in nut_ts analogously to FEBE. Explicitly sharing the TOP information
with NuT is only required for constructing the Jacobian matrix. For other parts of
the ODE method calculations it suffices to simply set any component of the function
evaluation to zero that are turned-off according to TOP. A simple induction argument
shows that this is then also true for the stage shifts zi. Hence, no change of the
corresponding components appear.

Calculation of derivatives
As for FEBE this is done by the help of FIMP and FTRIX. The actual routine to calculate
the Jacobian in tandem with NuT is FMANUT. See also Fig. 2.19. Derivatives are
taken care of if implicit calculations are opted for (the default) and right before the

52

stage evaluations by means of NuT are executed. A new Jacobian is evaluated if it
is demanded from outside nut_ts, if a change from explicit to implicit calculations
occurs, or if the age counter exceeds its limit. Partial updates are not supported yet.

Handling of HXX-cases
It is not a rare case that function evaluations report that a HXX-event occurred. To
handle the situation, the routine FECK is invoked, just like it is done for FEBE. The
original idea of FECK is to solely handle discontinuities. Either a switch to explicit
calculations is initiated or a bisection-based algorithm is used to reduce the step size.
This kind of treatment proves beneficial for the other types of HXX-events as well,
hence, the more general application of FECK is given.

Following its original intention, FECK’s bisection ansatz approaches the time value
a discontinuity arises at in an iterative way, since often it is not known in advance.
If a certain tolerance is met, dedicated explicit calculations kick in to bridge the
discontinuity. This is done like in FEBE where a first order explicit Euler scheme with
additional smoothing for the last sub-step is applied. These special computations are
handled by a second TS entity. After the discontinuity is bridged the logic in nu_ts

switches back to the main TS entity that covers working with the actual method.

Handling HXX-events and its aftermath comes with some influence on the step size
selection process. This is adapted from FEBE.

Support of forward flow evaluations in ATHLET
Function evaluations in ATHLET are not to be made in an arbitrary fashion. It matters
at what time value the previous evaluation took place. The diagram in Fig. 2.20 shows
the dos and don’ts. Basically, the flow of evaluations has to be forward and has
to proceed in not too large sub-steps. If an evaluation for an earlier time value is
required, a new flow from the start t0 is initiated. The main motivation for this special
treatment of function evaluations comes from the ATHLET-internal weak coupling
between thermohydraulics and heat transfer: thermohydraulics move forward by a
sub-step and heat transfer calculations catch up. Several other models, including
parts of ATHLET/CD, have similar constraints due to their loose coupling.

The control logic in nu_ts generalizes FEBE’s handling of the situation in accordance
with the dos and don’ts mentioned above. This allows for other methods than Euler
to be executed. However, the given flow constraints can pose a massive limitation
on any method that is not as simple as the Euler method. In any case, it has to be
taken into account when creating new methods. The rather flexible approach to initial

53

Fig. 2.20 f -evaluation paths in ATHLET. Valid choices (green) and to be avoided
ones (red).

guesses z0
i as shown in Fig. 2.15 may help in this regard.

For the flow control the same flag nfkey as in FEBE is used to define the current
evaluation state. In THY such a control logic is not required since the default mode
of computations is given by a strong coupling between thermohydraulics and heat
transfer. Weak coupling is possible too but it is considered a legacy mode. Hence, it
is not taken into account by nu_ts.

Compatibility with ATHLET’s monitor w. r. t. the steam and gas quality
The steam and gas quality is a solution variable in ATHLET. By definition it is a
ratio with values in [0, 1]. Furthermore, it is not allowed to change too drastically
when close to the endpoints of the interval. ATHLET uses the routines DXMLIM and
DXNUPO to monitor the situation and if necessary to apply corrections. Redoing a
step with a smaller step size is an option as well (the HXX flag is set). The two
routines show a close connection to the Euler method that is applied in FEBE. Of
importance are the latest function evaluation and its time value (to give an idea of how
the quality evolves). The same variable as in FEBE is used for the function evaluation.
However, the corresponding time value required adaption, since not necessarily
any given method uses fixed sub-step sizes as it is done by FEBE. Accordingly, the
generalization in nut_ts explicitly sets the time value of the latest function evaluation
according to the method in use. It is to be seen if this suffices. Basic compatibility is
ensured, though.

2.3.3.2 Missing features

In the given context the priority was on establishing the basics of an ODE control
logic which includes support for a monolithic approach to coupled computations. This
endeavor already was of considerable complexity and led to constraints on what

54

could be achieved in this project. The following features in FEBE weren’t taken into
account and may be the content of future tasks.

• Contraction check of the Newton-type process

• Partial updates of the Jacobian, both for single code and coupled computations

• Ensuring consistency for restarts

• Explicit mass correction in ATHLET

• Adaptive order control in THY

2.3.3.3 Add synchronization means in order to handle an overall system

In the COCOSYS context multiple modules exist that communicate with the COCOSYS
main driver. The latter controls the order in which individual modules execute their
part of the computation in the current time step, collects results and plot data and
distributes boundary conditions. The individual module processes communicate
only with the main driver and not among each other for keeping the communication
structure clear and avoiding deadlocks. To minimize the necessity to handle specifics
of the library used for inter-process communication (currently Intel® MPI) within
the main codes, communication is done via functions from the coco_system library.
It provides the means to setup communication via MMA in the beginning of the
calculation and provides functions with minimal interfaces to send, receive and unpack
messages. The receiving functions are specially crafted to allow for a serial execution
of COCOSYS modules. Due to the fact that the typically used MPI-library function
MPI_Receive polls actively for the arrival of a message, a process that has called this
function will require 100% CPU time until the message arrives. A typical COCOSYS
run contains multiple processes that are in this state for a considerable amount of
time until their next task is provided by the main driver. Active polling would make
all these processes stress the CPU while they are not calculating. The receiving
functions inside the coco_system library avoid this by regularly calling MPI_Iprobe

instead. If no message has arrived yet, the processes sleep for small time period and
check again. While sleeping, the processes appear to be idle, i.e., a process will not
require much CPU time while waiting for a message.

This existing communication functionality is not well suited for coupled numeric. While
in a COCOSYS run exchanges occur typically once per time step, the coupled numeric
requires a large amount of exchanges per time step. An exchange of messages

55

between THY and ATHLET via the main driver would introduce an unwanted over-
head. Thus a new set of communication functions was implemented that allow direct
communication between THY and ATHLET. The only additional parameter these
functions require – when compared to the already existing communication functions
– is of a Fortran derived type named t_interface. The parameter contains all the
information required for the communication and makes the new functions usable for
future other module to module communications. A predefined instance of this type
can be accessed by both THY and ATHLET/CD-driver via the coco_system library.

While the MPI_Iprobe mechanism reduces the CPU load during serial execution of
processes, THY and ATHLET will work on the overall numerics in parallel. When a
process enters a message receive function, and the expected message has not yet
arrived, the MPI_Iprobe cycle will enter the sleep state at least once. Entering the
sleep state for numerous messages in a time step would thus introduce a considerable
time delay, especially under Microsoft® Windows, where the minimal sleep time
is 1000 µs (the default sleep time under Linux is set to 50 µs). The new set of
communication functions therefore uses the MPI_Receive and MPI_Send functions
directly to avoid any sleep cycles and process messages as fast as possible.

The ATHLET library itself is not aware of any communication routines. In case of
using NuT these are provided by the NuT plugin. In case of coupling with COCOSYS,
ATHLET calls external procedures from the ATHLET/CD-driver, which are linked
against the coco_system library and thus have access to communication functions.
To be able to call external procedures, ATHLET calls _callHook("<hook-name>")

at specific code locations. External codes can add one of their procedures to the
hook <hook-name> by calling connectCallback(...,"<hook-name>",...). In most
cases, this methodology is used by the ATHLET/CD-driver, for instance to receive
new boundary conditions from COCOSYS at the begin of a time step via the hook
ATRANS_NewTimeStep or, at the end of a time step, to send ATHLET results to CO-
COSYS via the hook ATRANS_ExtDataDone. The external procedures access ATHLET
data by importing pointers from scopes that are exposed by ATHLET.

However, this methodology has certain drawbacks:

• For the coupled numeric numerous exchanges are required, requiring numerous
additional hooks.

• Parameters can not be passed to a hook procedure in a simple manner, making
the reuse of functions difficult.

56

• All ATHLET data accessed by a hook procedure have to be exported via a scope,
making it ambiguous for the developer which values are involved or changed by
the procedure.

• While the developers do see hooks in the main code, it is not immediately clear
which procedure is attached to the hook or whether there is a procedure attached
at all.

Thus, it was decided, not to follow this methodology for the coupled numerics. Instead,
the ATHLET/CD-driver exports a set of procedure pointers with well-defined interfaces
to the ATHLET scope nut_jac once at the beginning of the simulation. ATHLET
imports these pointers and is then able to directly call the procedures while passing
data unknown to the ATHLET/CD-driver. For instance, the procedure sync_real8(r8,

operation) is one of the procedures imported by ATHLET. The procedure parameters
are a floating point number and an operation specifier. The procedure is used in
different contexts during the joint time step integration. It is used for instance before
a check whether the current estimated error in the global solution is acceptable by
providing the maximum of the error norms estimated in each code:

err_norm_ac2 = err_est_norm

if (nut_mode == nut_ode_coupled) then

call sync_real8(err_norm_ac2, ’max’) ! get global error norm

endif

Additionally, it is used in multiple places in the code after new step sizes were
calculated by the individual codes:

if (nut_mode == nut_ode_coupled) then

call sync_real8(step_size_new, ’min’) ! get minimal time step size

endif

Other exported procedures are only called once. They do a specific task at their
call point, usually exchanging multiple data in one message to reduce the number
of messages. The procedure exchange_pre_jac_data(...) for instance is called
when both codes have finished their preparation for the calculation of the Jacobian
matrix and the global seed matrix has been obtained from NuT by ATHLET. From
the ATHLET side the perturbation vector and the seed matrix is sent to THY, while
THY sends the perturbation vector of his equations to ATHLET.

57

2.3.4 Running a test case

Description
To test the new ODE control logic with the overall equation system, the sample
setup Simple Sample was run. For a detailed description of the sample refer to sec-
tion 2.2.3.1 and Fig. 2.6. The results from the coupled run using the overall equation
system and the ODE solver from NuT, applying the method T33, are compared to runs
using the traditional coupling method with two independent equation systems and
using the FEBE/FTRIX package, as well as stand-alone ATHLET calculations applying
the NuT solution methods or the FEBE/FTRIX package.

ATHLET’s external coupling interface is only activated when an external code, here
the ATHLET/CD-driver, sets the necessary flags before ATHLET starts. Input con-
cerning the external coupling interface is otherwise ignored, and ATHLET dynamically
calculates the respective TFOs by itself. This allows us to run the Simple Sample also
uncoupled, i. e., using only ATHLET, for comparison while using the same ATHLET
input file. Since the activation of NuT features can also be achieved with command
line flags, that same ATHLET input file was used for the application of NuT and for
the run using the traditional FEBE/FTRIX package.

When using the traditional coupling method, ATHLET calculates a variable number
of time steps first, then COCOSYS follows and calculates the same time interval.
The maximum number of time steps ATHLET is allowed to do is controlled via the
input. There are means in place that limit the number of steps ATHLET does, which
are based on the amount of mass or energy transferred. The values of the latter
are integrated by the ATHLET/CD-driver for that purpose. For the comparison done
here, the settings are such that ATHLET is allowed to do exactly one time step. This
represents the closest numerical coupling achievable with the traditional coupling
methodology. A time step cycle thus runs as follows. ATHLET can adjust the time
step size for its step according to its own demands. COCOSYS will take over the
time step size used by ATHLET for its own step. When ATHLET has finished the
time step calculation, its results, here mass and energy flow rates for the junction
between PCONNECT and COCOZONE, are transferred to THY, where they are used in
THY calculations for this step. After COCOSYS has calculated its time step, the THY
results of this step, here pressure, temperature and gas mixture, are transferred to
ATHLET, where they are applied at the beginning of ATHLET’s next time step.

The maximum time step size was set to 0.5 s. The injection of steam starts at a time
of 5 s to linearly increase from 0 kg s−1 to 0.1 kg s−1 until 6 s. Then it remains constant.

58

The initial gas mixture in the domain consists of air with a steam fraction of 10 Vol−%.

Results
Some results of the four runs are depicted in Fig. 2.21 and Fig. 2.22. The curves
are named according to the methodology used. The name AC2 is used for coupled
simulations using the traditional coupling methodology using the FEBE/FTRIX package.
AC2+NuT was run with the new ODE capabilities of NuT and the monolithic equation
system. ATHLET and ATHLET+NuT represent stand-alone ATHLET calculations, where
the first uses the traditional FEBE/FTRIX package, and the latter uses the new ODE
capabilities of NuT.

Fig. 2.21 Simple sample: Mass flow rate of non-condensable gases over time

The mass flow rate of non-condensable gases (air) depicted in Fig. 2.21 clearly shows
the onset of the steam injection by a rapid rise of the mass flow rate. The mass flow
rate shown belongs to the ATHLET junction that connects PCONNECT and COCOZONE.
The highest mass flow rate reached is larger than the injected 0.1 kg s−1, since the
injected steam has a lower density than the gas mixture initially present in PIPE and
PCONNECT. And because the volume of the displaced air-steam mixture corresponds
to that of the injected steam, the mass flow rate is larger. As more and more air in
PCONNECT is replaced by the incoming steam, the air mass flow rate decreases until it
reaches about 0 kg s−1 eventually.

While the results for the ATHLET stand-alone calculations and the coupled AC2+NuT

59

agree well with one another, the run using the traditional coupling AC2 shows a
higher peak value of the mass flow rate. The reason can be found in the coupling
methodology applied. ATHLET predicts a rise of the mass flow rate until the pressure
on the opposite side rises, which slows or even reverts the rise. Since the information
about a pressure rise in the COCOSYS domain is only transferred back to ATHLET
at the beginning of a new time step, ATHLET increases the mass flow rate for the
full time step. With a constant pressure as boundary condition, ATHLET sees no
numerical problems, and thus no reason to reduce the time step size any further. The
exact peak value therefore highly depends on where the time step ends in relation
to the end of the mass flow rise in this case. This behaviour illustrates the potential
for numerical instability at the coupling junction, should this overshooting in time
step size and physical quantities (here mass flow) lead to oscillations that cannot
be controlled any more. The coupled calculation AC2+NuT is much more in line with
the stand-alone ATHLET runs and shows much less overshooting, indicating better
stability properties.

Fig. 2.22 Simple sample: Time step size over time

The numerical efficiency of the different methods can be assessed via the time step
sizes of the simulations shown in Fig. 2.22. All simulations run with maximum time
step size until the steam injection starts. While the runs that use the traditional
FEBE/FTRIX package reduce the time step size to around 0.1 s, those runs using the
NuT ODE method go down to about 0.025 s. This means that about 4 times more

60

time steps have to be calculated in the time interval 5 s to 9 s when NuT ODE is used.
The runs that use the FEBE/FTRIX package return to using about the maximum time
step size around a time of 10 s. The runs applying NuT ODE use a smaller time step
size beyond that time. The ATHLET stand-alone run using NuT does only reach the
maximum time step size at around 15 s. The coupled simulation using the monolithic
equation system (AC2+NuT) remains at a time step size below 0.03 s for the rest of the
simulation.

ATHLET reports the equation that limits the current step size of each time step in
its main output file. Here both stand-alone ATHLET simulations report the partial
pressure of non-condensable gases in the time interval from 10 s to 15 s. Since
the state of the solution vector is also similar, the effective time step size should
be similar as well. In case of AC2+NuT, the equation limiting the time step size is
reported to be the volume flow rate equation of the junction connecting PCONNECT and
COCOZONE for all times large than 8.5 s. And thus the very equation that connects the
THY and ATHLET domains. The dependencies considered during the calculation of
the Jacobian matrix were manually checked and found to be as expected. It must
still be concluded that further investigations are needed to check whether the step
size control inside NuT and the determination of the Jacobian matrix values work
adequately and are free of bugs.

61

3 WP2 – Improving NuT and AC2 on the Level of Software
Engineering

This chapter comprises the results of the activities regarding the improvement of
software development in NuT and AC2. Below sections are given according to the
project structure of WP2. All required tasks were taken care of successfully.

A crucial part in the success played the DevOps tool GitLab™ 1 /GIT 24b/. Combined
with appropriate CMake techniques /KIT 23/ a powerful infrastructure was created
which significantly improves the software development process not only for NuT
but the whole of AC2 culminating in a fully automated release pipeline. Details are
given in Section 3.2. The combination of tools came in handy for the refactoring
of NuT’s code as well: Results were easy to verify and the handling of external
numerics was elegantly solved by providing an automatism to build corresponding
binary packages. The refactoring process and its resulting benefits and features are
described in Section 3.1. Further improvements like automated handling of licenses
or support for external developers were developed by means of the established tool
set. Details are given as part of Section 3.2.6.

As planned, a corporation with the POP project /POP 23/ was initiated to assess NuT’s
parallel performance. The results of the assessment are discussed in Section 3.3.

3.1 Reviewing the NuT code regarding the potential for refactoring

Several different activities were considered for the task of refactoring the NuT code.
Refactoring of NuT’s code was done in terms of improvement of architecture, robust-
ness and performance.

3.1.1 Software architecture

While a software project is usually continuously growing and easily getting more
complex, it is important that is doesn’t get unnecessarily complicated to work with.
A possible way to achieve this is to divide it into independent modules, where each
module has only a single purpose that developers can focus on. Furthermore, modules
should be loosely coupled through high level abstract interfaces instead of direct
dependencies. A change in one module should rarely lead to a change in another

1GITLAB is a trademark of GitLab Inc. in the United States and other countries and regions

63

module /MAR 03/ /HUN 00/. This supports local reasoning, which in turn accelerates
further development, code reviews and helps to set up unit testing.

The above described technique was used as guidance for the refactoring that was done
in NuT. Especially the architecture of the communication (COM) module, see Fig. 3.1,
which implements remote method invocation (RMI) was significantly improved. Its
responsibility is to provide the functionality of several high-level base classes via MPI
to other remote processes. The goal is an extensible implementation where neither
the communication module nor the concrete classes "know" about each other, which
means that developers can add new classes for remote access without having to
modify the communication module nor their own classes.

To make this work the communication module waits for a request of a host, which
basically contains an identifier of an object and a respective method it wants to
invoke. With that information it picks the corresponding object from its entity list,
which contains all objects that are available for remote method invocation.

In the next steps NuT should transfer the method specific input parameter values,
invoke the actual method and transfer back possible output parameter values. As
this is all highly specific to the method’s interface, the communication module needs
to delegate those steps through an abstract ’execute’ method, which needs to be
provided by the actual object.

A possible implementation would be that the communication module provides that
abstract interface and uses it as type for its entity list. However, this has the downside
that the underlying classes need to inherit from that, which is invasive and would
tightly couple it to that interface. Polymorphism also requires pointer semantics, which
worsens local reasoning and memory management.

A better approach is that a class can provide the ’execute’ method through a pure
extension. This has been realized by providing an additional concept class that hides
the abstract interface and manages the polymorphic call to the concrete ’execute’
method. With that it is sufficient to provide an overload of the ’execute’ method
outside of the actual class to make it compatible with the communication module.
This concept is also referred to as open-closed principle /MEY 97/.

3.1.2 Logging

Logging is essential to document what a software actually does. Typically, it should
provide functions to make it easy to write various kinds of information to the console

64

PETSc
MUMPS

METIS

Intel® oneMKL

lib_nutcore
lib

p
e
ts

c

ATHLET-CD

plugin

further
COCOSYS

process

further
COCOSYS

process

further
COCOSYS

process
RAMAIN

MMA

ATHLET
(wrapper opt.)

NuT-plugin

NuT
fmods

NuT
fmods

NuT-plugin

utilizes MPI

MPI communication

COCOSYS process groupATHLET process

NuT process group

driver, opt.

initialize

NuT

worker

lib_nutbase
COM

module

Fig. 3.1 NuT-related software architecture within AC2

or a log file, while applying some filters like log levels or automatically add further
information like timestamps.

Logging in NuT version 1.0 was done through PETSc’s own logging functions as they
are already MPI aware and can output extensive information about the state of native
PETSc objects. Over time this approach showed some weaknesses that made it
hard to scale with future developments. Its usage required that PETSc as a library
can be accessed from the respective module and the state of PETSc needed to be
considered, which particularly limited the scope of logging. It was not possible to
log anything in the early and late stages of NuT, when PETSc is either uninitialized
or already finalized. Furthermore, each single entity needed to manage everything
about logging on its own. Though this brought the advantage that entities could write,
for instance, into the same file without file locking or communication, it required the
logging functions to be stateless. While that is quite easy to implement, log files had
to be opened for each logging transaction and closed afterwards, which degrades
performance due to the additional overhead of the filesystem. In addition to that, basic
features like making use of various log levels or automatically adding a timestamp to
the output were missing.

To fix these issues the logging mechanism has been completely redesigned in NuT. A
dedicated logging class contains all basic logging functionality, without dependencies
to PETSc or MPI. It provides a global hash map of logging instances that can be
accessed via a unique string identifier from all parts of the code. Buffered logging via
stream operator is supported. With that, multiple logging instructions can be chained,

65

// Print to console via \Cpp\ standard library

std::cout << "Object state is " << object << std::endl

// Print to console/logfile via \nut{} log library

nut::log() <<<< "Object state is " << object << nut::endl

Fig. 3.2 Printing via C++ standard library and NuT log library in comparison

see Fig. 3.2, which looks very tidy in the source code and is still efficient due to the
underlying buffering. Furthermore, the streaming operator overload is written in a way
that it also accepts output stream objects of the C++ standard library. Consequently,
it accepts all objects that are printable via standard cout function.
Multiple logging entities with different properties can be set up. Thus, entities can
have their private logging instances with individual settings or all share the same. The
configurable properties include settings about the destination of the logging stream,
which can be a file or the console or both. Logging commands can be supplemented
with a verbosity level to differentiate their importance. The lowest verbosity level
in NuT is basically for error events, the highest is used for additional debugging
information for developers. File and console output can be configured for different
maximum verbosity levels.

All logging entries can be provided with the event’s log level or an automatically
generated timestamp as additional meta information. MPI support was provided by a
dedicated class as an optional extension.

To keep support of PETSc logging functions, its default output function PetscVF-

PrintfDefault was replaced by a custom function that intercepts the output and
provides it as a string. This is combined with a generic wrapper function called view

that makes sure that PETSc’s default output function is only replaced during the
logging event and keeps PETSc’s output functions working, if it is used without NuT’s
wrapper class. With that, PETSc viewer functions can still be used easily with the
new logger class by just calling them within the provided view function, see Fig. 3.3.

Fig. 3.4 shows the redirected output of PETSc’s KSPView complemented by the auto-

log() << LogLevel::INFO

<< view(communicator,

[this](PetscViewer viewer) { KSPView(solver, viewer); });

Fig. 3.3 Example of using PETSc viewer functions with NuT’s logging library

66

[2023-10-30T16:03:20][INFO] KSP Object: 1 MPI process

[2023-10-30T16:03:20][INFO] type: gmres

[2023-10-30T16:03:20][INFO] restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement

[2023-10-30T16:03:20][INFO] happy breakdown tolerance 1e-30

[2023-10-30T16:03:20][INFO] maximum iterations=10000, nonzero initial guess

[2023-10-30T16:03:20][INFO] using preconditioner applied to right hand side for initial guess

[2023-10-30T16:03:20][INFO] tolerances: relative=1e-14, absolute=1e-50, divergence=10000.

[2023-10-30T16:03:20][INFO] left preconditioning

[2023-10-30T16:03:20][INFO] using PRECONDITIONED norm type for convergence test

[2023-10-30T16:03:20][INFO] PC Object: 1 MPI process

[2023-10-30T16:03:20][INFO] type: lu

[2023-10-30T16:03:20][INFO] out-of-place factorization

[2023-10-30T16:03:20][INFO] tolerance for zero pivot 2.22045e-14

[2023-10-30T16:03:20][INFO] matrix ordering: qmd

[2023-10-30T16:03:20][INFO] factor fill ratio given 5., needed 1.15789

[2023-10-30T16:03:20][INFO] Factored matrix follows:

[2023-10-30T16:03:20][INFO] Mat Object: 1 MPI process

[2023-10-30T16:03:20][INFO] type: seqaij

[2023-10-30T16:03:20][INFO] rows=6, cols=6

[2023-10-30T16:03:20][INFO] package used to perform factorization: petsc

[2023-10-30T16:03:20][INFO] total: nonzeros=22, allocated nonzeros=22

[2023-10-30T16:03:20][INFO] not using I-node routines

[2023-10-30T16:03:20][INFO] linear system matrix = precond matrix:

[2023-10-30T16:03:20][INFO] Mat Object: 1 MPI process

[2023-10-30T16:03:20][INFO] type: seqaij

[2023-10-30T16:03:20][INFO] rows=6, cols=6

[2023-10-30T16:03:20][INFO] total: nonzeros=19, allocated nonzeros=19

[2023-10-30T16:03:20][INFO] total number of mallocs used during MatSetValues calls=0

[2023-10-30T16:03:20][INFO] not using I-node routines

Fig. 3.4 Example output of PETSc’s KSPView via NuT’s logging library. Timestamp
and log level on left are automatically added.

generated timestamp and log level information on the left of each line.
In addition to refactoring the logging class, the concept of log files was extended
to take the newly established interaction with COCOSYS into account, see WP1.
Instead of a single log file per simulation run, one log file per entity is now written.
Hence, the information about the individual host interactions can be clearly presented
and separated from each other. In order to be able to put the stored time data in
each log file in relation to the total runtime, an entity should only be deleted in the
course of the termination of the associated host application. Such a practice is not
accompanied by any significant performance loss: An entity only consumes tiny CPU
resources when it executes some NuT functionality. No memory issues should arise
either, since the systems considered so far and anticipated can easily be handled
with today’s memory capabilities.

3.1.3 Maintenance

Several NuT-related maintenance tasks were carried out during the project. These
include minor refinements and fixes as well as considerable improvements. The latter
ones are described below.

67

3.1.3.1 Improved seeding and memory management

By means of NuT it is possible to calculate a seed matrix /COL 83/ for the efficient
determination of a Jacobian matrix via finite differences. So far, solely PETSc’s
implementation of the CPR algorithm with incidence degree (ID) ordering was used.
However, PETSc offers two additional suitable heuristics. These are also based on
the CPR algorithm, but the ordering differs – making use of smallest last (SL) and
largest first (LF), respectively.

NuT’s code was extended to run all three variants and to choose the seed that has
the smallest number of seed vectors. This correlates directly with the number of AFK

evaluations needed to determine the Jacobian matrix. Tests have shown that the
calculation of two additional seeds is negligible compared to the total run time. Note
that while different seeds may result in different runtimes, they must provide the exact
same bit values for the corresponding Jacobian matrix. Due to these properties the
performance is unlikely to suffer. Quite the opposite, the performance is likely to
improve. This actually happens if one of the two newly considered heuristics supplies
the seed. ATHLET itself (without NuT) uses an adaptation of the CPR algorithm
with SL ordering. Thus, NuT with the described extensions can never compute a
worse seed for a given Jacobian matrix. From the observations so far it appears that
the ATHLET-NuT tandem requires fewer AFK evaluations to determine the Jacobian
matrices than ATHLET alone. This is directly reflected in better performance.

Furthermore, NuT’s internal memory management was improved by introducing
caches instead of resorting to repeated creation and destruction of temporary objects.
Also, in case of sequential execution some redundant operations were discarded.

3.1.3.2 PETSc

NuT uses the PETSc /BAL 97/ library as backend which provides efficient parallel
implementations of numerical algorithms. PETSc in turn requires a BLAS and LAPACK
/UNI 23a/ compatible library. In the AC2 context the additional solver package MUMPS
/MUM 23/ is considered to be part of the numerical framework. This comes with a
dependency on the graph partitioner METIS /KAR 23/ and on ScaLAPACK /UNI 23b/.

The compilation process of PETSc and its packages can easily take over 30 minutes,
and it was challenging to provide the required UNIX-like compilation environment on
Microsoft® Windows that works for all packages at the same time. Integrating that into
the default AC2 build process would be difficult to maintain, as not all development

68

environments are identical and even a slight difference can make the compilation of
PETSc fail.

As a remedy, GitLab CI was used to prebuild the whole PETSc package for Microsoft®

Windows and Linux in a dedicated PETSc Builder project. The resulting binaries are
uploaded to AC2’s package registry and are automatically downloaded by NuT and
integrated into its build process. Therefore, PETSc can be used for development,
without having to bother about the compilation of PETSc itself.

For the current major release of AC2 in 2023, PETSc was updated to version 3.19.4.
Unfortunately, this led to some problems with the building process of Netlib’s ScaLA-
PACK on Microsoft® Windows. After some testing and comparisons, it was decided
to opt for Intel® oneAPI Math Kernel Library (MKL) /INT 23/ instead. The scripts in the
PETSc Builder project were modified accordingly. Also, all externals are either hosted
as mirrors/forks or provided as binaries on GRS’s internal GitLab instance. This way
the project is less dependent on the availability of external sources. Additionally, it’s
easy to apply small fixes or add additional means to handle things like licenses.

3.1.4 CPU affinity

The general idea of CPU affinity is to (pre)define the CPU cores a given process is
allowed to be executed on. The NuT code was modified to support this concept. This
proves to be beneficial under Microsoft® Windows 10 combined with certain Intel®

CPUs. The motivation is to ensure that simulations including NuT are executed on
so-called Performance-cores of such Intel® CPUs, even if other tasks are pursued
while running simulations. Accordingly, supporting CPU affinity was done for ATHLET
and COCOSYS as well (covered by other projects).

CPU affinity can easily be set for all involved AC2 components at once via the environ-
ment variable AC2_CPU_AFFINITY. Instructions on the usage of the affinity concept in
the AC2 context were compiled and added to the AC2 manual, see /WEY 23, Ch. 3/.

3.1.5 Refactoring NuT’s documentation

In addition to the changes to the NuT code, the structural design of the documentation
was also examined more closely and subjected to a refactoring process. The manual
and the updates document are now based on a self-written class, which encapsulates
external dependencies to other packages as well as definitions and language settings.
Both German and English are supported. This makes the main document considerably

69

shorter and much clearer. Only a minimal number of commands related to the structure
of the document are present. Most things are set by the user to fit his or her needs.
Regarding the automated creation of documents, the make file has been adapted
accordingly. Also, a new job was added to the CI. It can be used to create GitLab-
based releases. The job is executed in addition to the build job if the commit is tagged.
The artifacts are stored in the project’s Releases tab and labeled with the tag.

3.2 Development and automation of CI processes in GitLab for NuT and
AC2

3.2.1 Build techniques

Building a software from source consists of multiple stages and can easily get very
complex on its own. In addition to that, there are several factors like different re-
quirements depending on platforms, compilers, or supplementary libraries that often
require some specific extra treatments that are not portable to other systems. Often
this leads to the practice that native build support for only a small set of build tools like
Microsoft® Visual Studio on Microsoft® Windows and make on Linux is established.
In that case all developers are required to become acquainted with the custom re-
quirements and workflow of the respective build process, while the project’s owner
has additional maintenance effort as each change in the build process needs to
be transferred manually to each build tool in order to retain consistency. Another
disadvantage is that more complex scenarios are practically not feasible to implement.
For instance, this includes downloading additional projects or resources on demand
that are not contained in the original project for technical reasons.

3.2.1.1 CMake

As solution to the above described challenges of building software in a coherent
way the open-source build tool CMake was introduced /KIT 23/. CMake is a cross-
platform tool, including Microsoft® Windows, Linux and macOS2 and supports several
C, C++ and Fortran compilers. The build process works in three stages as shown in
Fig. 3.5. In the first stage, the configuration stage, CMake examines the development
environment and makes sure that all project defined requirements are satisfied. This
includes for instance the installation of a compatible compiler, python or other libraries

2macOS is a trademark of Apple Inc., registered in the U.S. and other countries and regions.

70

like MPI. If true, the second stage generates native build files for the earlier specified
build tool. Following the third stage, the produced build files can be utilized directly by
the respective native build tools or via CMake to build the actual project. Fig. 3.6 shows
the commands to configure, generate and build a project via CMake. Consequently,
the workflow of building a CMake project is highly abstract and almost identical, no
matter which platform or compiler is used. /SCO 20/.

Configure Generate
Build tool

project files

Fig. 3.5 Stages of CMake workflow

Stage 1 configuration/generation of build files

cmake -S <source-folder> -B <build-folder>

Stage 2 build project

cmake --build <build-folder>

Fig. 3.6 Sequence of commands to invoke the build process w.r.t. NuT as well as
other AC2 projects from source

Having the same build commands does not only help developers that are not familiar
with the project but supports the automated build process discussed below.

CMake comes with several other useful features. Build files can be placed outside of
the source tree. Consequently, source files and derived build files are well separated,
which makes it easy to clean up a project or to have multiple independent build
configurations at the same time.

Furthermore, CMake can handle a very flexible project structure. Different projects
can be combined in a modular fashion, which is key to setup a dynamic large scale
project hierarchy which is required by AC2. AC2 has a modular structure as it consists
of projects like ATHLET and COCOSYS that used to be developed independently. As
those codes are getting coupled tighter, new issues needed to be addressed. On
one hand, a developer should be able to build all modules and their dependencies at
once. Otherwise, there would be no way that the compiler can verify that the modules

71

have a compatible API and that shared modules are consistent. On the other hand,
it is desired that developers can omit modules that are outside of the scope of their
current work. For instance, it is possible to develop and use ATHLET stand-alone
without loading ATHLET-CD or COCOSYS.

As with most AC2 projects, the repository of NuT only contains the respective source
files and build scripts of NuT alone. It should neither contain any binaries of itself
nor of any other required library. The reason is that binaries are usually derived data,
hard to track and usually increase the size of the repository by a large degree, which
may make it difficult to work with it after some time. Hence, if possible, it is better to
build from sources than to use prebuilt binaries.

NuT depends on multiple other projects: MMA /JAC 23a/ for communication, PETSc
/BAL 23/ as numeric backend and a runtime project that provides runtime libraries to
aid portability of the project.
These external projects are required to build NuT. A naive way to make them available
to the build process would be to merge them directly into NuT’s repository. Hence it
would contain everything needed for compilation. However, that approach would be
more difficult to maintain if those external projects change frequently and it can be
problematic if other projects in the AC2 scope need these dependencies as well.

As solution to these issues, CMake techniques were used that make it possible to
load mandatory and additional modules on demand and dynamically combine them
with the current project. These modules can be either precompiled binary packages,
external libraries or other projects that in turn transitively add their own dependencies.
In order to resolve those dependencies, only the first reference of an external module
is considered, and each module can be loaded only once, but is available to all other
modules. If the same module is referenced by multiple projects, but of a different
version, then the reference stored in the main project is used.

Fig. 3.7 shows targets and their inter-dependencies that are required to build NuT.
While being complex, developers only have to use the respective build commands in
Fig. 3.6 and CMake resolves all dependencies itself and makes sure that all required
targets are built in the right sequence with minimal effort. This approach scales very
well. The AC2 project, which collects, consolidates and builds all projects that are
included in the AC2 distribution has about 200 targets per platform with even more
complex dependencies. However, due to the usage of CMake and the concepts
developed within this project, it doesn’t get more difficult to work with a large project
than with smaller ones.

72

3.2.2 CI/CD

In general, continuous integration (CI) and continuous delivery (CD) are good practices
to improve software quality and reduce maintenance effort. With CI, developers
regularly integrate their work into the main branch opposed to long living development
branches.

3.2.2.1 Concept

Fig. 3.8 shows the task automation that is realized through the GitLab CI/CD concept.
For using it, projects need to provide a gitlab-ci.yml file in the root folder of their
repository. That file defines the jobs needed to be run at configurable events in the
respective project. Events can be manual pipeline triggers or a push of a commit
that makes changes to the project’s code. A collection of jobs triggered by a single
event is called pipeline. A job basically consists of a script that executes a certain
task and contains additional information defining dependencies between jobs and the
environment where they should be executed. After triggering a new pipeline, jobs are
queued until being processed. For that purpose, GitLab provides the GitLab Runner
concept, which is a cross-platform service that pulls pending jobs, runs them and
pushes logs and resulting artifacts back to GitLab. Hence, the runner itself doesn’t
store any permanent data and is practically stateless with respect to the job’s data,
which is an important property for scaling and availability. This allows multiple runners
with identical configuration to form a pool, where pending jobs are distributed among
all available runners. Removing a runner from the pool for maintenance or adding
another runner to increase the computational capacity can be done with less effort.

73

Legend

Executable

Static Library Shared Library Module LibraryCustom Target

Interface Library

Interface

Object Library

Private

Unknown Library

CMI_MPI_C
(CMI::MPI_C)

impi.lib

CMI_MPI_CXX
(CMI::MPI_CXX)

CMI_MPI_F77
(CMI::MPI_F77)

CMI_MPI_F90
(CMI::MPI_F90)

cpu_affinity mma

nut_base

nut_common

nut_core nut_cpu_affinity

nut_generate

nut_generator

petsc

libpetsc.lib petsc_importlibpetsc.liblibpetsc.lib libpetsc.lib

nut_logger

nut_tests

nut_host

nut_host_tests

nut_host_plugin

nut_worker

Fig. 3.7 NuT build dependencies

74

Pipeline Job

Runner

Trigger Stage

Tag Tag/image

Host OS

Script

Matrix Need

run

define contain precede

Life span

ArtifactcreateScript

execute
Artifact

manual,

schedule,

commit

m1 m1
mc

mc

mc

1

mc

1

1 mc

extend

mcmc

User‘s

responsibility

.gitlab-ci.yml

Fig. 3.8 Entity-relationship model of task automation for CI/CD

3.2.2.2 Execution environment

As part of this project, two GitLab Runner servers were deployed using a 32 cores
CPU and 128 GB memory each. Such configuration allows for the parallel execution
of up to 32 jobs concurrently per node. One node runs Microsoft® Windows Server
2019 and the other one Debian 12, hence Linux and Microsoft® Windows jobs are
supported by this configuration.

The GitLab Runner service uses a so-called executor that processes the job and
sets up the environment. The Docker executor was found to provide the developers
with the greatest possible flexibility and was therefore chosen. With this approach,
the developer can set the environment themselves by specifying a Docker image,
which can contain a minimal installation of an operating system, but also a full
custom installation with necessary compilers and tools already available. Docker then
creates a container based on the given image, which executes the job. Compared to
alternatives, this approach has the advantage that developers get a controlled and
well-defined environment like it is given by virtual machines, but without a performance
penalty due to the lightweight isolation opposed to rather heavy virtualization.

Docker images are built by instructions from a Dockerfile. Serving all projects included
in AC2, Dockerfiles for essential tasks were developed and the building of those Docker
images was automatized. These images provide encapsulated environments for the

75

CI to build and test AC2-related code. This includes Docker images for Microsoft®

Windows and Linux, containing essential compilers and tools, and a Docker image
with all tools to build documentations. The implemented mechanism uses GitLab’s
CI capabilities as well but runs on dedicated hardware in order not to interfere with
production runs. The corresponding pipeline consists of two jobs where the first one
builds an actual image and the second one delivers it to a container registry that can
be accessed from within GRS’s GitLab instance. The second job requires manual
activation to make sure that only images are pushed which are tested beforehand.

In summary the overall workflow can be seen in Fig. 3.9. A group of developers
maintain the Docker images by providing and updating Dockerfiles. When a Dockerfile
is changed, the GitLab runner automatically builds a new Docker image from that and
uploads it to the registry. Those images can be used by other projects through the
gitlab-ci.yml file to build applications and run tests by the runners. Built applications
and test reports are uploaded back to GitLab and provided to developers and GRS-
internal users.

Code /
.gitlab-ci.yml

Setup

Windows Compiler

Linux Compiler
Tex

Windows Test Environment

GitLab-
RunnerGitLab-

RunnerGitLab-
RunnerGitLab-

RunnerGitLab-
Runner
Docker

Developer

Dockerfile

Docker Image

Tests

Developer

Developer /
User

GitLab-
RunnerGitLab-

RunnerGitLab-
RunnerGitLab-

Runner
GitLab-
Runner

AC²

CD/CD
GitLab
gitlab.grs.de

Fig. 3.9 CI/CD workflow using GitLab

3.2.3 Code analysis in NuT

Unit tests can be used to verify that critical functions work without side effects and
produce results as specified. A function takes a set of input parameters and produces
a corresponding result as output parameters. For unit testing, multiple sets of input

76

parameters are generated, where the corresponding results are known in advance.
Then, the function to be tested is called with each input set and the result is compared
with the predefined data. If the result is not within a specified error margin, the unit
test failed. Unit tests should be implemented at the same time as the actual function.
This helps the developer to verify that the implementation is correct and makes sure
that possible regressions due to later changes are detected timely. In NuT, unit tests
mainly cover high level functions, as most low level ones are provided by PETSc
which are already tested extensively there.

To ensure that the combinations of unit test cases are sufficiently complete, the
respective code coverage should be tested as well. This was done with GCC and the
gcov tool, which measures which line was executed and how often. After running
all tests, the overall amount of code coverage is determined and a comprehensive
report is created, which shows exactly which lines were covered and which were not.
In this way, code lines that were not covered by the unit tests can be determined and
resolved by adding appropriate test cases.

Several assert-instructions were added to the NuT code to check for certain condi-
tions and states of the code. These instructions are only active if the code is compiled
in debug mode. Hence, the CI-job for building NuT under Linux and Microsoft®

Windows was modified accordingly, giving subsequent test jobs the opportunity to
evaluate the assert-statements. The described procedure complements the unit
testing. Further assert-statements can easily be added if considered suitable.

3.2.3.1 Clang tools

The support for several tools that support static code analysis and maintenance of
code were added. A configuration file for the tool Clang-Format from the LLVM project
/LLVM 23/ was introduced. It defines the formatting style of NuT’s code. The employed
formatting style in NuT is based on well elaborated presets with minimal deviations.
Clang-Tidy is another tool from the LLVM project that is supported by NuT. It is a
comprehensive diagnostics tool that warns about poor coding styles that are known
to be error-prone or to degrade performance. In addition, certain naming conventions
for classes and variables can be enforced, which complements Clang-Format. Both
tools can be employed via the language server ClangD, which applies Clang-Format
automatically and continuously passes the diagnostic information of Clang-Tidy to
IDE, where it is visualized instantly, while the code is written. This standardized way of

77

writing C++ code helps maintenance of the code and supports a better understanding
of the given code lines.

3.2.4 Merge requests workflow

A merge request is a web-based approach to integrate changes done by a developer
in a separate branch into the project’s main branch.

In the given context of a GitLab instance it provides a workflow to support code reviews
and a set of preconfigured rules that need to be satisfied before it can be merged, which
is important for quality assurance. A merge request is usually preceded by an issue
that provides information about what needs to be solved. After assigning a developer
for the issue, a merge request associated with the respective development branch is
created and accompanies the further process. It should contain a description about
why the changes were necessary, how that was implemented and how verification /
validation was done. All staged commits for the merge and their respective changes
and CI status are displayed automatically. There is a summary of all changes, hence
a code reviewer can easily see what the actual changes to the main branches would
be. This is complemented by metrics from the automated code analysis.

The presentation of code coverage by CI tests turned out to be very useful. So far, this
feature was implemented for NuT and ATHLET. Other components may follow. In the
Overview section of a merge request the change in code coverage is shown. Further
detailed information about coverage, line by line, can be found in the Changes section
of the merge request. This makes it easy to see to what extent the new development
is covered by tests. For instance, Fig. 3.10 shows a merge request that adds a
new function to scale a vector. If merged, the proposed change would decrease the
current code coverage to 79%, which is highlighted red. The Changes section of
the merge request, see Fig. 3.11, shows more detailed information about why the
code coverage decreases. New lines of code that are not covered by tests are also
marked with a red line. Fig. 3.12 shows the merge request after adding the respective
unit test for the new function. Consequently, if merged, the code coverage would
improve to 79,09% and therefore marked green. Reviewing the Changes section
again shows the new function, the complete coverage of the new function and the
unit test itself (see Fig. 3.13). This is a great tool to help reviewing the code and
motivates developers to deliver tests for their actual implementations. Depending on
the project, it might be useful to allow only merge requests that do not decrease code
coverage. All proposed changes can be commented and supplemented with code

78

suggestions, which creates new discussion threads that need to be taken care of by
the assigned developer.

After all threads are closed, the reviewer can approve the merge request. Each project
specifies a group of members that must approve the merge request to allow merging
it. With a feature called Code Owners, a set of project members can be defined that
are experts for a specific project path. If a merge request intends to alter related files,
the approval of the code owners is additionally required. Finally, when all necessary
approvals have been given and all rules are satisfied the proposed changes can be
either merged directly or via merge trains.

Merging directly has the advantage that no additional CI pipeline needs to be executed.
However, even if the last commit of the development branch and of the main branch
passed the CI pipeline tests, it doesn’t ensure that the merged result also passes.
Merge trains provide a remedy to that issue. They create an intermediate merged
result commit of main and development branch and trigger a CI pipeline on that.
Merging only happens if that pipeline succeeds. This ensures that not only the last
commit from the development branch complies with all CI tests, but also the final
merge commit.

If multiple merge trains are started concurrently, GitLab accumulates their results.
Consequently, the corresponding pipelines can run in parallel and at the same time
nothing is merged that hasn’t been tested before. Fig. 3.14 shows a merge train with a
queue of three merge requests MR1, MR2 and MR3. Each merge request is merged
if its pipeline completes successfully and all merge requests before it are merged.
With that all three pipelines are executed concurrently. In summary, merge trains
guarantee that only commits can be added to production branches that passed CI
pipeline tests, and the whole procedure is done without compromising performance.

79

Fig. 3.10 Merge request proposing new untested code, decreasing code coverage

Fig. 3.11 Proposed new code lines are not covered by tests and therefore high-
lighted red

80

Fig. 3.12 Merge request proposing tested code and increasing code coverage

Fig. 3.13 Proposed lines are covered by tests and marked green

81

merged result

merge train

master

b325c a47c3da985

Δ1

MR1MR2MR3

only own MR

in add-to-train order

ed489f0cec

Δ1-2Δ1-3

CI-pipelines

Fig. 3.14 Scheme of a GitLab merge train with three queued merge requests

3.2.5 Project organisation

Guidelines for the organization of groups and projects on GitLab were developed. In
general, a group on GitLab can contain multiple projects and (sub)groups. Each of
them has a default visibility which is either private, internal or public.

• Private projects can only be accessed by members that have an explicit role

• Internal projects can be accessed by all logged in members of the GitLab instance

• Public projects can be accessed by everyone that can reach the GitLab instance

Members with roles of reporter, developer, maintainer and administrator can be directly
assigned to a group or project. Direct roles in groups are recursively inherited to
subgroups and included projects. It is not possible to exclude an inherited role from a
subgroup or project.

Fig. 3.15 shows the deployed structure. There is one root group GRS that basically
contains all project groups. Consolidating everything in a common group simplifies
the housekeeping for administrators and allows for greater flexibility when projects
need shared items to work with. Only administrators should be members of the main
GRS group. A project group usually has two members that are in charge for that group
and have owner permissions for it. With that, they can create subgroups and projects
within their project group and grant permissions to other members. As groups are
mostly for organizational purposes and do not include sensitive data, they should be
public by default. This helps new members to get an overview over available project
groups and their members. Furthermore, access requests can be made, which are
handled by the group owners. Project default visibility is set by the project owners

82

A
c
c
e
s
s

GRS

Project Group A

Code A1 Code A2 Group AA

Code AA1

Docs AA2

Project Group B

Code B1

Project Group C

Developer

Reporter

Code C1

Division X Department Y

Members:

Administrators

Owner

Developer

Reporter

Maintainer

public

internal

private

Fig. 3.15 Organisation of groups, projects and members on GitLab

to their needs. Though individual access to single projects can be given, it is not
recommended as this can easily get confusing with larger project groups containing
many projects. Therefore, as far as possible, members should be assigned to the
high-level project groups only, which grants them access to all contained projects
respectively.
Various templates for issues and merge requests were written as part of the NuT
repository. For issues, standard use cases such as bug report, development, dis-
cussion or feature request were considered. Two templates are available for merge
requests. A distinction is made as to whether the merge request acts autonomously
or can be assigned to an issue and thus essential descriptions are already available.
Templates with similar content are also available on the AC2 level. However, these
are rather unsuitable due to certain design decisions. However, the user is free to
choose which template to use. In any case, the user is strongly advised to employ
the GitLab-internal reference system between issues and merge requests to facilitate
navigation and to represent more complex relationships. Such is also explicitly pointed
out in the templates provided by the NuT repository.

Remark 3.1. The established workflows are documented in NuT’s QA documents
/STE 23a/ and in the ATHLET’s progammers manual /JAC 23b, Ch. 4/.

83

3.2.6 Improving software development on the level of AC2

With the tools provided by GitLab the infrastructure for a development cycle for AC2

was established, see Fig. 3.16 and Fig. 3.17. A development starts with epics and
issues to communicate, document and organize the ongoing work. Next, within
the concept of continuous integration, code is developed and tested. After that,
continuous delivery makes sure that the current and tested state of the software can
be distributed and deployed by users and developers. When problems arise, users
can give feedback by creating issues, which closes the development cycle. This
process and its automation support all phases of the development and validation
process. Developers can focus more on their actual work and be more efficient. Also,
the software can be released more frequently as the technical overhead for each
release is reduced by the automation. Everything from planning, through development,
code reviews, testing and building is completely transparent and reproducible which
is key to have fast delivery cycles and high-quality assurance at the same time.

Plan
(Epics)

Develop Test Deliver

Feedback
(Issues)

Continuous Integration (CI)
Continuous

Delivery (CD)

DevCycle

Fig. 3.16 AC2 development cycle

3.2.6.1 CI/CD

Currently, the concept mentioned in 3.2.2.1 has been adapted by over 30 projects
that use CI/CD regularly in the scope of AC2 and since the introduction of GitLab over
440.000 jobs have been processed. It is a key part in the AC2 software life-cycle and
helps to maintain and improve software quality in a transparent way.

Fig. 3.18 shows the pipeline of the AC2 project that creates the AC2 installation
package for later distribution. Jobs in the prepare and build stages collect all required
repositories and compile them on Microsoft® Windows and Linux. The resulting
binaries are used in the run stage to create reference plot data included in the release.
Next, the built binaries and reference data are used to create an installation assistant
and archives. In the last stage, the created archives are used to execute some test

84

• build binaries

• run tests

• define and

provide artifacts

Issue MR CI/CD

Epic Milestone

use

MD

contain

docu

single complex

high-level theme
diverse, common

goal oriented

contain contain

use

MD

relate

aggregation

of issues

merge

commit

high-level

• description

• discussion

• implementation

• detailed code-

related discussion

• can directly be

initiated

easily support your code and project documentation to

comply with TKP 03-05 Softwareentwicklung

c

mc

mc

c

mc

mc

mc

c

MD Markdown text formatting

.gitlab-ci.yml

Fig. 3.17 Entity-relationship model of GitLab tools employed by the AC2 develop-
ment cycle

simulations in different clean stock environments to verify that the core components
work on various platforms. The whole pipeline builds over 400 targets and it takes
approximately 38 minutes to create the installation packages for Microsoft® Windows
and Linux, respectively.

3.2.6.2 Licenses

As a further addendum to the canon of activities it was taken care of establishing tools
for an automatized way of collecting license data within AC2. Tools and scripts are
hosted within a separate repository which makes them easy to include and to maintain.

Fig. 3.18 Pipeline that creates the complete AC2 package for distribution

85

Collecting given license files and their descriptions is covered by CMake techniques.
Processing and converting is done by means of Linux bash tools. Creating a collective
presentation makes use of LATEX. The whole approach is hierarchical. Each project
takes care of its own third-party dependencies. Duplicates may arise which are
discarded by the collection mechanism. Also, a certain order of licenses may be
enforced. Due to the hierarchical nature of the ansatz not only on AC2-level but also
for major single projects automatically created license files are available. The main
repositories of AC2 already support the idea. Accordingly, the new mechanism of
processing licenses was applied for the release AC2 2023.

3.2.6.3 Discarding legacy CI

COCOSYS’s CI no longer involves build and test runs on the legacy Jenkins system
and is now fully integrated into the runner concept based on Docker images. This
comes with the benefit of less maintenance and of more flexible build and testing
environments. With these changes, the whole of AC2 is covered by a Docker-based
GitLab CI.

3.2.6.4 Diff jobs

In order to quickly identify changes made to AC2-related repositories, an auxiliary job
was defined on the AC2 level. Based on the Linux tools rsync, find, and diff the
current build can be compared to a reference build. A list is produced that shows all
changed files. This makes it easy to narrow down the culprit(s) if a new build behaves
erroneously.

3.2.6.5 Supporting external development

GRS not only supplies binary files to end users, but also allows cooperation partners
to work directly with the sources, based on a specific license agreement. To provide
the respective sources per cooperation, a second GitLab instance was made available
by GRS’s IT, which can be accessed from outside GRS. Thus, a concept had to be
developed to synchronize internal repositories with the external GitLab instance.

It is important to note that a repository should not be mirrored 1:1. It was specified
that each time synchronization is triggered, only the current state of certain branches
without the internal commit history should be transferred to the second GitLab instance.
Furthermore, the synchronization should not affect the internal repositories and the

86

build process should be handled in the same way, no matter the context. To meet
these requirements, a sophisticated interaction of GitLab-CI, CMake, and Python
techniques was developed. A new GitLab project was created to store the necessary
scripts for synchronization.

In order to flexibly serve different cooperation projects on the external GitLab instance,
the GitLab-CI concept of so-called environments was used. Environments help to
define where code is delivered. A configuration file to be created beforehand lists the
desired internal repositories and can be addressed in the manual execution of the
synchronization CI via a dedicated variable. The actual synchronization process is
handled in a corresponding CI job via a Python script. In addition to the synchroniza-
tion, a list of deployments to the individual environments (i.e. cooperation projects) is
also provided for the sake of a quick overview of the synchronization history.

To handle the build process on the external server the same way as on the internal
one, certain features of the CMake script library CMakeIt were used. This is another
example that shows the strength of the CMake approach in AC2 to coordinate the build
processes. An additional configuration file is generated in the Python script, which
helps CMake to identify where dependencies are to be found on the external server
during the initialization of a build process. Specifically, this is done by temporarily
redefining CMake variables that are otherwise set in the default CMake configuration
files. This change is done transparently to those default scripts, giving the desired
result of a unified appraoch to the building process. None of the standard scripts
need to be modified. Also analogous to the internal structure, a central package
registry is provided for binary files such as runtime libraries. This registry is regularly
synchronized with the internal one via a schedule job.

3.2.6.6 Knowledge transfer

In order to implement the task of knowledge transfer, two GRS-internal talks on
the use of GitLab were given. The first talk introduced the general systematics of
GitLab and explained essential vocabulary and processes. All members of GRS’s
safety research division were invited to that talk. The second talk focused on the CI
possibilities in GitLab. Since not every developer deals with details in this area, the
audience was kept smaller, but opened up to a GRS-wide audience. This allowed for
more emphasis on details. Both talks are available to any user of the internal GRS
GitLab server. Additionally, peer-to-peer support was provided in various ways to
foster the unified CI/CD approach for AC2.

87

3.3 Assessment of the parallel performance of NuT

In order to obtain a profound evaluation of the HPC performance of NuT, a cooperation
with the EU-funded project POP (Performance Optimisation and Productivity) /POP 23/
was established. Utilizing POP’s expertise is free of charge. However, the cooperation
required some formal preparation in the form of permissions to be given by GRS’s
legal department and export control in order to provide POP with meaningful data.
By design NuT is an autonomous piece of software which does not contain any
information specific to nuclear technology. Though permission was granted to let
POP access NuT’s source code, some further internal discussions led to the decision
that the performance tests will be run by GRS. No code owned by GRS was made
available to members of POP. Furthermore, all of the results of the analyses were
reviewed by GRS’s export control before they were made available to any member of
the POP project.

Tools and setup
To analyse NuT’s performance POP provided the tool Extrae /BSC 23/. This tool
is a dynamic instrumentation package to trace programs compiled and run with the
shared memory model (like OpenMP and pthreads), the message passing (MPI)
programming model or both programming models. Extrae and its prerequisite PAPI
(Performance Application Programming Interface /ICL 23/) were installed on GRS’s
computing cluster manitu.

The analysis of NuT was done in the framework of an interaction with an actual
application, namely ATHLET. The selected ATHLET model was the artificial Cube
case, for the reason that it can easily be scaled. The Cube model, see Fig. 3.19,
consists of a pipe network forming a three-dimensional cube-shaped grid, with a large
number of links between neighboring nodes.

Tests and results
The tests were performed on the GRS computing cluster for different numbers of NuT
processes, and the data collected by Extrae were analyzed by POP, see Tab. 3.1 for
results. The first round of tests led to the following observations:

• NuT shows a very good overall parallel efficiency,

• on the other hand, poor instruction scalability is given.

The latter result made further evaluation necessary. The low value of the instruction
scalability indicates that a significantly higher number of instructions is executed when

88

Fig. 3.19 Visualization of the mass flow in the Cube model, originating from a
source in the center

the number of NuT processes increases. Theoretically, for an ideal code, the number
of useful instructions should be constant. Given only these analysis results, it was
not a priori clear in which part of the code these instructions are executed: in the NuT
code itself, or in the external numerical libraries PETSc and MUMPS. To get further
insight, it was decided by the project partners that additional custom Extrae events
shall be defined, which allow to identify the state of the program and to distinguish
between NuT code and the external libraries. The necessary modifications of the
NuT code were done by GRS, and the analysis was repeated.

Tab. 3.1 POP metrics for the interaction of NuT with ATHLET /ROS 22/. The range
of the metrics is from 0 % to 100 %, with a statistical error of ±1 %. The
metrics are given in a hierarchical order where each value is obtained by
multiplication of the sub-metrics.

Number of NuT processes 1 2 4 8 16

Global efficiency 81.5 63.6 41.8 26.7 12.9
• Parallel efficiency 81.5 88.5 92.1 93.0 93.1
– Load balance 81.5 89.0 93.3 94.6 95.4
– Communication efficiency 99.9 99.5 98.7 98.3 97.6
• Computation scalability 100.0 71.4 45.3 28.7 13.9
– IPC scalability 100.0 98.6 95.8 100.3 100.5
– Instruction scalability 100.0 73.7 48.8 29.8 14.6
– Frequency scalability 100.0 98.8 97.1 96.1 94.8

The corresponding second run of tests revealed that NuT spends a considerable
amount of time waiting for new data from ATHLET, see Fig. 3.20. NuT uses the

89

routine MPI_Iprobe to check each connected communicator for new inquiries. These
executions of MPI_Iprobe are counted by the metrics as useful instructions. Thus,
the number of instructions increases with the number of NuT processes, leading to
the reported bad value of the instruction scalability. Consequently, the values for the
computation scalability and global efficiency are spoiled as well, see Tab. 3.1.

Fig. 3.20 Visualization of tracing with custom events. Color coding only applies
to Thread 1.2-5.1. Top: value 0: transfer from ATHLET to NuT; value
1: call functions; value 3: waiting for ATHLET; value 2: sending data
to ATHLET (not shown since it is negligible). Bottom: value 0: PETSc
start of computation; value 1: PETSc done.

Conclusions
In the given setup of ATHLET and NuT working in tandem, the value of the instruction
scalability can only improve if ATHLET provides its data quicker; it is not an issue
in the design of NuT. The most important finding of the analysis is therefore the
very good value of the parallel efficiency. It confirms that NuT makes good use of
the MPI communication mechanisms. As a consequence of the above results, it is
recommended that available computing resources are first used to speed up ATHLET
by means of its OpenMP version, before the use of additional NuT processes is
considered. In this way, the data delivery of ATHLET can be accelerated, and NuT’s
instruction scalability, and thus its global efficiency, can be improved. Corresponding
recommendations are already included in NuT’s manual, see /STE 23b/.

90

4 WP3 – Reviewing ATHLET’s Steady State Calculation on
a Conceptual Level

In the scope of this project, conceptual work regarding the ATHLET Steady State
Calculation (SSC) was carried out. The investigated ATHLET version is 3.3.0. The
SSC was developed in the 1970s and 1980s; its primary documentation is scarce and
dates back to this time. A high-level description of the SSC is provided in the ATHLET
User’s Manual /SCH 23b/. To facilitate code maintenance and further developments,
one goal of this project was to provide a rather thorough and up-to-date documentation
of the SSC. For this purpose, a re-evaluation of both the thermal-hydraulic models
and the numerical methods used was carried out.
In the following sections, the identified numerical algorithms used in the SSC are
described and discussed in the context of state-of-the-art numerical methods and
software. Furthermore, concepts for improving the SSC are presented.

4.1 General objective of the SSC

The overall goal of the SSC is to initialize the simulation model, which generally
consists of thermo-fluid dynamic objects (TFO), heat conduction objects (HCO),
neutron kinetics, and GCSM signals, with a limited amount of input parameters in
such a way that it is in a steady state, which means that the time derivative of all
solution variables should be (approximately) zero. The advantages of performing
this SSC, compared to making the user solely responsible to define a reasonably
balanced state with input data, are:

• The user input is limited to a manageable amount.

• Inconsistent input is corrected.

• If the SSC is successful, it is ensured that the system is (almost) in a steady state.
This minimizes the occurrence of undesired initial transients, and simulation run
failures at the start of the calculation are mostly averted.

4.2 Procedure of the SSC

A flow chart of the SSC on high abstraction level is shown in Fig. 4.1. All ATHLET
modules, the Thermo-Fluid Dynamic module (TFD), the Heat Conduction and Heat

91

Transfer module (HECU), the Neutron Kinetics module (NEUKIN), and the General
Control Simulation Module (GCSM), are affected by the SSC. The outer iteration
loop is done because changes of a variable in one module may affect variables in
other modules. This mainly concerns changes in the heat flow calculated within the
HECU module which affect variables in the TFD module. Within the outer loop, inner
iteration loops are performed for the modules TFD and HECU. A more detailed flow
chart of the SSC is shown in Fig. 4.2.

Start of SSC

 TFD module SSC

 HECU module SSC

* inner loops within a module

 * fixed convergence criteria

 GCSM module SSC

 NEUKIN module SSC

Convergence?

End of SSC

* outer loop
 (max. 15 iterations)

 * convergence criteria can

 partly be prescribed
 by the user

Fig. 4.1 Flow chart of the SSC on high abstraction level

In Fig. 4.3 and Fig. 4.4 a simplified call graph of the most important routines of the
SSC is visualized. The colors indicate which module a routine belongs to. Gray
means that the routine does not belong to any of the four modules. The routine
HCENBA has two colors as it is relevant for both, TFD and HECU.

Remark 4.1. A short description of the routines mentioned in the flow charts and
call graphs, as well as a list of the global variables used in ATHLET, can be found
in /JAC 23b/.

92

Start
 SSC

i = 0

i++

i <= 15

Pressure and enthalpy iteration
 yes

 no

i >= 2

DFKML

 * Calculate CL from AV

 yes

 no

GCMAIN

 * Calculate GCSM signal

i == 1

GCMAIN

 * Calculate GCSM signal again to consider retroactive effects due to unfavorable signal sequence

 yes

DENTH

 * Calculate distribution of specific energy

 no

SSC of OREST and FIPISO

DQPOLY

 * Consider heat flux from PW HEATADD in QI

KVEN

 * Initialize valve conditions

 For every TF system ISYSO

* Calculate sum of heat fluxes in system ISYSO from QI
 * Signs are considered. Consequently, heat flux residuals are calculated

* Gaussian elimination
 * or SPAMASOL
 * or NuT

DSTAR

 * Calculate in CVs by iteration:
 - mass

 - enthalpy
 - mass quality

 - pressure
 * Calculate ZETA values

 * Adaptation of SEPARATOR-exit mass flow

DQPOLY

 * Empty the array QI
 * Consider heat fluxes from PW HEATADD in QI

Different routines:
 * Calculate the masses in the CVs

 * pump
 * turbine

 * compressor

Newton's method (only pump)

HECU

 * Consider heat fluxes from PW HEATSOURCE in QI
 * SSC for RODs

 * SSC for STEAMGENs
 * Check conservation of energy in the TF systems

Convergence?

 no

 yes

DOSS

 * Last adaptations (e.g. pressure and enthalpy in TDV)
 * Print output in outfile

End

Fig. 4.2 Flow chart of the SSC on a medium abstraction level. The headlines in
the boxes indicate ATHLET subroutines.

93

ATHLET_MAIN

Main routine

ASTART

Starts SSC

DIRDEF

 Overwrite data with data
 from CW REDEFINE

DSTART

Controls SSC

DFKML

Calculate ML

GCMAIN

GCSM signals

DENTH

Calculate distribution of specific energies

DSTAR

Controls TFD calculation

DKPUMP

CW PUMP

HECU

Controlls HECU calculation

DOSS

Last adaptations

Print output to outfile

DSSCON

Check solution of SSC

DTDV

Modification of TDV pressure

Modification of TDV enthalpy

DENTNE

Iteration of mass quality

Iteration of enthalpies

DGGT0

TFOs with flow

Iteration of pressure in CVs

Iteration of pressure in PCs

DGEQ0

TFOs with stagnant flow

Iteration of pressure in CVs

KPUSS

Pump in SSC

SNEWTN

Newton's method for external functions

DFKSHA

Calculates mass flows of the phases (GLJ, GVJ) based on XMGI(ICV-1)

DENTM1

Calculation of enthalpy in homogeneous CVs in thermodynamic equilibrium

DENTM3

Calculation of enthalpy in ML-CVs: Sub-CV below ML

DENTM4

Calculation of enthalpy in ML-CVs: Sub-CV above ML

SNEWTN

Newton's method for external functions

DKORZK

Adaptation of ZETA values

HCSTA

SSC calculation of HECU

Calculate layer temperatures

Calculate heat transfer and conduction

HPMAT

Calculate material properties (e.g. cp) as function of layer temperatures

HCALF

Calculate HTCs

HCRODN

CW ROD

HCSTHE

CW STEAMGEN

Adaptation of heat exchanger power to nominal power (modification of area)

Adaptation of power profile

HCENBA

Energy balance for all TF systems

Adaptation of "Heat Sinks" (e.g. STEAMGEN nominal power QHE_required)

NEUKIN-related

GCSM-related

HECU-related

TFD-related

Fig. 4.3 Simplified call graph of the SSC – left part

94

DTDV

Modification of TDV pressure

Modification of TDV enthalpy

HCENBA

Energy balance for all TF systems

Adaptation of "Heat Sinks" (e.g. STEAMGEN nominal power QHE_required)

HCSTHE

CW STEAMGEN

Adaptation of heat exchanger power to nominal power (modification of area)

Adaptation of power profile

HCRODN

CW ROD

NSET

Interface routine for neutron kinetics

NINTER

Neutron kinetics

HRODEL

SSC calculation of electrical heater quantities

HCALF

Calculate HTCs

HPMAT

Calculate material properties (e.g. cp) as function of layer temperatures

SNEWTN

Newton's method for external functions

KPUFCT

Iteration of pump rotational speed, to match the target value for the pump pressure

DKORZK

Adaptation of ZETA values

SNEWTN

Newton's method for external functions

DENTX1

Iteration of mass quality and enthalpies in thermodynamic non-equilibrium

DENTM4

Calculation of enthalpy in ML-CVs: Sub-CV above ML

DENTM3

Calculation of enthalpy in ML-CVs: Sub-CV below ML

DENTM1

Calculation of enthalpy in homogeneous CVs in thermodynamic equilibrium

DFKSME

Determination of the mass balances of the CVs

Determination of the interphasial mass transfer

DZUK

Calculation of enthalpies

Determination of IEQU (liquid- or vapor-dominant)

DFKSHA

Calculates mass flows of the phases (GLJ, GVJ) based on XMGI(ICV-1)

DFCTXM

DVKR1

Calculation of the evaporation/condensation rate
 by means of the model of Sideman and Plesset-Zwick

DRTMI

Root-finding f_M(x_m) = f(XQM) by means of
 "Müller's method" (modified bisection method)

DFCTXM

Calculation of the relative "error"
 f_M(x_m) in HPKI(ICV)

NPRHO

Point kinetics

Calculate reactivities incl. compensating terms in SSC

NKINTF

1D kinetics

N3INTE

3D kinetics

Fig. 4.4 Simplified call graph of the SSC – right part

95

4.3 Overview of currently used algorithms and thermal-hydraulic
models

To achieve the goals of the SSC listed in Section 4.1, a combination of direct algebraic
solutions and nested iterations is performed in the current implementation. The main
role has the TFD module, in which the 4-equation model is applied during the SSC.
This model solves the equations for conservation of mass in the control volumes (CV)
separately for liquid and vapor phase and conservation of momentum and energy for
the mixture. The solution variables in the SSC are:

• XQM: mass quality of the mixture in a CV

• HDOM: specific enthalpy of the dominant phase in a CV. Here, the model assumption
is that only the dominant phase can deviate from saturation conditions. The other
phase is always at saturation state.

• PRESS: static pressure in a CV

• GJ: mass flow rate of the mixture between CVs

Although the objective of the SSC is to provide stationary conditions, for two-phase
flow small disturbances may occur during the start of the transient simulation. This
is partly due to the fact that in the transient simulation the 5- or 6-equation model
is used and there both phases might deviate from saturation conditions, and partly
due to the fact that in the transient phase the full functionality of the mixture level and
non-condensable gas models as well as GCSM and NEUKIN comes into play.
During the SSC, a large number of thermal-hydraulic models (e. g. for calculation of
heat transfer coefficients) are called. These models are not SSC specific, they are
also used during transient simulation. A detailed description of these models can be
found in /SCH 23a/.

4.3.1 Iteration loops

4.3.1.1 Outer iteration loop

The outer iteration loop includes all ATHLET modules, see Fig. 4.1). The loop is exe-
cuted until the convergence criteria are met, but not for more than 15 iterations. If the
convergence criteria are not met within 15 iterations, the outer iteration loop is exited.
Nevertheless, the transient ATHLET simulation is started even if the convergence
criteria are not met. Higher disturbances can be expected in that case compared to a
converged SSC.

96

Convergence criteria apply to the modules TFD, HECU and NEUKIN, while there
is no convergence criterion for the GCSM module. All of them must be fulfilled to
achieve convergence. The following explicit criteria are used:∣∣∣∣∣∣QH⟨i+1⟩

j − QH⟨i⟩
j

QH⟨i+1⟩
j

∣∣∣∣∣∣ < εQH (4.1a)

∣∣∣∣∣∣QHE⟨i+1⟩
k,req − QHE⟨i⟩

k

QHE⟨i+1⟩
k

∣∣∣∣∣∣ < εQHE (4.1b)

∑
Ėℓ∑∣∣∣Ėℓ

∣∣∣ < εE (4.1c)

∣∣∣∣∣W ⟨i+1⟩
m − W ⟨i⟩

m

W
⟨i+1⟩
m

∣∣∣∣∣ < εPel (4.1d)

In (4.1a) QH⟨i+1⟩
j denotes the heat flow (both QHL and QHR – see Fig. 4.5 for definition)

in the heat conduction volume (HCV) with index j for the current iteration step i + 1.
This criterion is evaluated for every HCV in the simulation domain (in routine HCSTA)
and is related to the HECU module.

Fig. 4.5 Heat flow through a HCV. QHL denotes the heat flow on the left side. QHR

is the heat flow on the right side. In steady state, QHL=QHR.

QHE in (4.1b) denotes the heat flow for the STEAMGEN component (note: the terms
STEAMGEN, HTX, HTEX or heat exchanger are used in ATHLET for the same component;

97

the different designations are historical). Here QHE⟨i+1⟩
k is the calculated heat flow for

iteration i + 1 and QHE⟨i+1⟩
k,req is the heat flow required to be transferred in iteration step

i + 1 for the heat exchanger with index k. Note that this is usually not the same as
the input value QHE0

k,req, as this value is modified during the SSC (in connection with
the heat balance of the overall system and the adjustments of the heat sinks; this
modification takes place in routine HCENBA, see description for (4.1c)). This criterion
is evaluated for every STEAMGEN (routine HCSTHE).

Ėℓ in (4.1c) is the energy flux in the thermo-fluiddynamic system ℓ. Consequently,
the term on the left hand side of (4.1c) denotes an energy residual. This criterion is
evaluated for every modeled thermo-fluiddynamic system in routine HCENBA. Due to
this criterion, TFD properties have an impact on the energy balance, which in turn
affects QHE⟨i+1⟩

k,req and thus the previous convergence criterion.

The convergence criterion (4.1d) applies to electrical heaters. W ⟨i+1⟩
m is the specific

heat generation in layer m. Contrary to the first three convergence criteria, εPel is
fixed, see Section 4.4.5, and cannot be set by the user.

The convergence criterion for neutron kinetics depends on the model. For applications
that use point kinetics, no convergence criterion must be fulfilled, instead the reactivity
is shifted to achieve the specified nuclear power. Using 3D kinetics, the convergence
criterion is defined by an external software that is called via plugin.

The following adjustments are made as part of the outer iteration loop:

• Reactivity coefficients (neutron kinetics)

• Heat exchanger surface and power profile

• Heat sinks (STEAMGEN, condenser and insulation losses)

• Turbine and compressor data

• Exit mass flow of the separator

• Pressure and enthalpy in the TDVs (time dependent volumes); strictly speaking,
these are not modified during, but immediately after the outer iteration loop. These
modifications can be undesired, see Section 4.6.2.

4.3.1.2 Inner iteration loop

Unlike the outer iteration loop, each inner iteration loop has fixed convergence criteria
that cannot be changed by the user. If these criteria are not met within a fixed number

98

of iteration steps, the SSC and consequently the overall ATHLET run is terminated
with an error message. Iterations are not performed for all ATHLET modules:

• The NEUKIN module is called by the SSC and modifications are made (adding
reactivity terms, to keep the reactor critical during SSC), but no inner iteration
takes place.

• The GCSM module is called by the SSC to allow signal updates, but no inner
iteration takes place.

• For the modules TFD and HECU inner iterations are performed.

TFD

Within the TFD module, the following calculations are done as part of the inner iteration
loop:

• Specific energy in the CVs: For this purpose, a system of linear equations is solved
using the Gaussian elimination method or alternatively NuT. The applied method
with NuT depends on the chosen solver preset, see /STE 23b/.

• Enthalpies and mass qualities in the CV: Müller’s method and thereafter the
two-dimensional Newton’s method are applied.

• Pressure in the CV: Pressure is calculated in every CV iteratively using fixed-point
iteration. For a closed loop, the system of equations would be over-determined.
For that reason, the friction coefficients are modified as part of the iteration in the
case of a closed loop. The modification of the friction coefficients is performed
iteratively using the one-dimensional Newton’s method.

As the fluid properties in a CV depend on pressure and enthalpy, these two quantities
are iterated until convergence. Furthermore, the rotational speed of pumps is adapted
in the TFD module in its own inner loop until the target value for the pump pressure is
met, by means of Newton’s method.

HECU

An inner loop takes place within the HECU module to calculate the layer temperatures
of the HCV. These depend, among other things, on material properties like the
thermal conductivity λ, which in turn are temperature-dependent: T

(
. . . , λ (T)

)
. For

that reason, the solution is calculated iteratively using a fixed-point iteration. In case
of poor convergence damping is applied.

99

4.3.2 Algorithms for the solution of equation systems

The following algorithms for the solution of equations and equation systems are used
in the current implementation of the SSC:

• Direct solution of systems of linear equations:

– Gaussian elimination method (specific energy in the CV)

– Alternatively NuT (specific energy in the CV)

– Tridiagonal matrix algorithm (calculation of layer temperatures)

• Iterative solution:

– Müller’s method, a modified bisection algorithm using inverse parabolic inter-
polation (mass quality; routine DRTMI)

– Standard fixed-point iteration (pressure in the CV; routines DGGT0 and DGEQ0)

– Fixed-point iteration with damping in case of poor convergence (layer tempera-
tures; routine HCSTA)

– Newton’s method (pressures and modification of friction coefficients, enthalpies
and mass qualities in the CV, pump rotational speed; routine SNEWTN or directly
implemented in the routines DGGT0 and DSTAR)

– Modified regula falsi is performed for mixture level CV (routine DENTNE)

4.4 Detailed description of relevant algorithms

In the following, a description of the algorithms listed above is given.

4.4.1 Iteration of enthalpy and mass quality

First, the distribution of the specific total energies

e = h + w2

2 (4.2)

is calculated within the outer iteration loop in routine DENTH in all CVs by solving a
system of linear equations. After that, DSTAR is called within the outer iteration loop,
see Fig. 4.2. In DSTAR the calculation of mass qualities and enthalpies takes place
similarly to the pressure iteration at the basal network level: DENTNE, the routine used
for the enthalpy and mass quality iteration, is called individually for each junction,
see Fig. 4.6.

100

DSTAR

 For every PC

For every TFO in the current PC

For every junction in the current TFO

DANF

 * Define target CV IZ and source CV IS

DENTNE

 * Calculate mass quality and enthalpies

DGGT0

 * For TFOs with flow
 * Pressure iteration

 * Adaptation of ZETA values

Newton's method

DGEQ0

 * For TFOs with stagnant flow
 * Pressure iteration

- Only CVs: Fixed-point iteration
- PC: One-dimensional Newton's method

Fixed-point iteration

Return

Fig. 4.6 Flow chart of the SSC in DSTAR

101

The following is an outline of the process of enthalpy and mass quality iteration.
Since it is the most complex one, only the case two-phase flow in thermodynamic
non-equilibrium (i. e. both vapor and liquid are present and both phases have different
velocities and temperatures) is addressed. The process is described below mainly in
text form. A description in equation form can be found in Appendix B.

4.4.1.1 Goal of the iterations

By solving the system of linear equations in DENTH, the specific total energy is known
in every CV, but neither the enthalpy h nor the mass quality xm. However, enthalpy
and mass quality are solution variables in the 4-equation model that is used in the
SSC. For that reason, the goal of the iterations is the determination of the following
variables for every CV:

• mass quality xm,

• enthalpy h,

• the dominant phase (liquid or vapor).

4.4.1.2 Procedure

Basically, Newton’s method (routine SNEWTN) is used to iterate the mass qualities and
enthalpies in the homogeneous CV of the TFO with flow. However, Newton’s method
is preceded by Müller’s method that calculates the initial values for the iteration with
Newton’s method. Müller’s method (= bisection with inverse parabolic interpolation)
is implemented in the routine DRTMI. A more detailed description of Müller’s method
can be found in /POI 78/. Determining the unknowns, the code progressively reduces
constraining conditions:

1. In order to provide initial data for Müller’s method, thermal and mechanical equilib-
rium of liquid and vapor is assumed.

2. During the application of Müller’s method thermal equilibrium is still assumed,
however, mechanical non-equilibrium is possible. The results of Müller’s method
serve as initial values for Newton’s method.

3. For Newton’s method both thermal and mechanical non-equilibrium are allowed.

The following course of actions take place in DENTNE and its auxiliary subroutines.
As DENTNE is called CV by CV, the computations are performed for a single CV. All
mentioned quantities (e. g. e or xh) always refer to the CV under consideration.

102

Preparation of the initial values for Müller’s method
In the Müller iteration, the static vapor quality xm = mvap

mtot
in a CV is the unknown

quantity. Since the iteration is basically a bisection algorithm, a lower bound x⟨0,low⟩
m

and an upper bound x⟨0,up⟩
m have to be provided as initial values.

Regarding the lower bound, x⟨0,low⟩
m = 0 would be the physical limit, however

x⟨0,low⟩
m = 10−12 (4.3)

is chosen in ATHLET (subroutine DZUK). This value seems to be arbitrary and is
possibly used as a very small value close to, but still larger than zero in order to
avoid numerical problems. So far, this choice of the lower bound has proven itself in
practice.
Concerning the upper bound, x⟨0,up⟩

m = 1 would be the physical limit. However,
presumably in order to make the bisection range narrower, a smaller value closer to
x⟨0,low⟩

m is prepared, apparently based on the following reasoning:
Having the equation which is to be iterated in Müller’s method in mind (4.13), it is
clear that

ecur = etar (4.4)

must be fulfilled, with etar being the desired specific total energy (obtained as HPKI via
the solution of a linear equation system as mentioned above), and ecur as the specific
total energy of the current iteration step. The quantity ecur can be expressed as a
function of the mass flow quality ẋm,SR = ṁvap

ṁtot
:

ecur = ẋm,SR · evap + (1 − ẋm,SR) · eliq = etar. (4.5)

The indices vap and liq describe the vapor and liquid phase. Since kinetic energy is
usually small compared to enthalpy, the equation can be approximated by:

ecur = ẋm,SR · hvap + (1 − ẋm,SR) · hliq = etar. (4.6)

Due to the assumption of thermal equilibrium (both phases are at saturation condi-
tions), this becomes

ecur = ẋm,SR · h′′ + (1 − ẋm,SR) · h′ = etar. (4.7)

Re-arranging the equation yields:

ẋm,SR = etar − h′ (p)
h′′ (p) − h′ (p) = etar − h′ (p)

∆hv (p) . (4.8)

103

Since mechanical equilibrium is assumed at this stage (i. e. vapor and liquid have
the same velocity and thus ẋm,SR = xm), one obtains

xm = etar − h′ (p)
∆hv (p) = HPKI − h′ (p)

∆hv (p) . (4.9)

As explained in Appendix B.1.1.1, for co-current two-phase flow in mechanical non-
equilibrium, usually ẋm,SR (xm) > xm holds true which means that (4.9) is not the root
of (4.13), but a reasonable upper bound for Müller’s method:

x⟨0,up⟩ = etar − h′ (p)
∆hv (p) = HPKI − h′ (p)

∆hv (p) . (4.10)

This can be found in the source code in DZUK, see Code 4.1.

Code 4.1 Calculation of (4.10) in routine DZUK

1Y(JH1+I) = HPKI(I)

2XHI = (HPKI(I)-HSWI)/HWDI

Execution of Müller’s method
Performing Müller’s method serves as preparation of Newton’s method. Thermal
equilibrium and mechanical non-equilibrium are assumed for Müller’s method. The
iteration procedure is implemented in DRTMI. The scalar function for which a root is to
be found is implemented in DFCTXM.

Thermal equilibrium is assumed, which means that both phases are at saturation
conditions and xm = xh = h−h′

∆hv
applies. However, mechanical equilibrium is not

assumed anymore, which means that vapor and liquid can have different velocities,
and consequently momentum exchange between the phases can occur. The effect
of xm on the phase slip (slip ratio = vvap/vliq) and consequently on the specific total
energy in the CV is non-trivial. For that reason, an iterative procedure is applied.

1. xm determines the volume fraction α

2. α determines the slip ratio

3. the slip ratio determines the phase velocities and the mass flow quality ẋm,SR (SR
stands for slip ratio)

4. ẋm,SR determines the specific total energy in the CV, see (4.11)

Basically, when performing Müller’s method, xm is iteratively changed within the
previously determined interval limits until the target value in the CV is reached. Here,

104

the target value is the specific total energy etar (= HPKI) that is prescribed in DENTH.

ecur = ẋm,SR ·
(

hvap +
w2

vap

2

)
+ (1 − ẋm,SR) ·

(
hliq +

w2
liq

2

)
. (4.11)

As thermal equilibrium is assumed, the specific enthalpies of both phases can be
considered as saturation enthalpies h′ (liquid) and h′′ (vapor). For that reason, an
iteration must only be performed for xm but not for the enthalpies. Therefore, (4.11)
becomes:

ecur = ẋm,SR ·
(

h′′ +
w2

vap

2

)
+ (1 − ẋm,SR) ·

(
h′ +

w2
liq

2

)
. (4.12)

As already mentioned, the target value of the iteration is etar (= HPKI). The imple-
mentation in DFCTXM determines the deviation etar − ecur relative to the evaporation
enthalpy in the CV:

fM(xm) = etar − ecur

∆hv

. (4.13)

Two convergence criteria must be met. The first one evaluates the endpoints of the
interval for the current iteration step i:

x⟨i,up⟩
m − x⟨i,low⟩

m ⩽ 10−10 · x⟨i,up⟩
m . (4.14)

The second convergence criterion is as follows:

fM

(
x⟨i,up⟩

m

)
− fM

(
x⟨i,low⟩

m

)
⩽ 10−10 · 100. (4.15)

The value 10−10 is hard-coded in DZUK.
After the iteration, in DENTNE/DENTM1/DZUK the information about which phase is
dominant is stored in the global variable IEQU, see Code 4.2.

Code 4.2 Determination of the dominant phase

1IF (AV(I).LE.0.98 D0) IEQU(I)=0

2IF (AV(I).GT.0.98 D0) IEQU(I)=1

AV is the void fraction α = Vvap

Vtot
and determined by the quantities that are calculated

within the Müller iteration. As routine DZUK is called during the SSC within the iterations,
note that it is possible that the dominant phase in a CV changes during an outer
iteration loop.

105

Execution of Newton’s method
For Newton’s method, thermal and mechanical non-equilibrium are assumed. The
goal of Newton’s method is to determine the mass quality xm and enthalpy of the
dominant phase hdom such that the specific total energy in the CV meets the target
value etar (= HPKI) even for thermal and mechanical non-equilibrium. Accordingly, a
system of two equations (one equation for enthalpy and one for mass quality in the
CV) is solved. The initial values of the iteration are the values of thermal equilibrium.

• For enthalpy:

– hdom = h′, if liquid is phase dominant;

– hdom = h′′, if vapor is phase dominant.

• For mass quality: xm equals the root obtained by Müller’s method.

The valid ranges for hdom and xm are given as

• hdom: fluid-specific constant values, see subroutine ALLOCMPR1 for details;

• xm: 0 ⩽ xm ⩽ 0.99.

The system of equations is included in routine DENTX1, which is called by DENTNE

via SNEWTN. In the first equation of the system, i. e. (4.16a), the routine DFCTXM is
called analogously to the procedure of Müller’s method to calculate the slip ratio.
The slip ratio is then used to determine the mass flow quality, which has an effect
on the specific total energy, see (4.11). As no thermal equilibrium is assumed for
the application of Newton’s method, (4.11) cannot be simplified to (4.12). Again,
the target value is the specific total energy etar (= HPKI) that is prescribed in DENTH.
Variable quantities are the mass quality xm and the enthalpy of the dominant phase
hdom, which is either hvap (then hliq = h′) or hliq (then hvap = h′′).
In the second equation of the system, mass conservation is considered. For this
purpose, the routine DFKSME is called, which takes into account convective mass flows
into or out of a control volume. Furthermore, evaporation and condensation rates are
calculated (thermal non-equilibrium; application of the models of Sideman or Plesset
& Zwick) within this routine. The basic idea is:

• ẋm,SR can be expressed as a function of phase mass flows and evaporation or
condensation rate.

• Phase mass flows and evaporation or condensation rates are depending on xm,
hliq, and hvap and consequently on xm and hdom.

106

For Newton’s method the roots of the following equations are searched (more infor-
mation on the specific terms can be found in Appendix B):

fN (xm, hdom) = etar − ecur

∆hv (p) (4.16a)

gN (xm, hdom) = ẋm,SR − xm,MB (4.16b)

The convergence criteria are described in the header of SNEWTN:

Code 4.3 Description of the convergence criteria

1! CONVERGENCE CRITERIA :

2! 1) THE DIFFERENCE BETWEEN THE APPROXIMATIONS X(I,J) OF THE J-TH

3! STEP AND X(I,J -1) OF THE (J -1) -ST STEP IS NOT LARGER (IN

4! ABSOLUTE VALUE) THAN MAX (/X(I,J -1)/ * EPSN ,CLMN(I)) FOR ALL

5! I=1...N.

6! 2) NONE OF THE RESIDUALS Y(I) IS GREATER (IN ABSOLUTE VALUE)

7! THAN FLMN(I)

Both convergence criteria must be met. The hard-coded criteria (defined in DENTNE)
are as follows:

• For the variable quantities:

– EPSN = 10−7

– hdom: CLMN(1) = 1

– xm: CLMN(2) = 10−7

• For the function values:

– fN : FLMN(1) = 1

– gN : FLMN(2) = 10−5

Miscellaneous
• If a state in a CV (characterized by xm, hdom, p and IEQU) is determined by Newton’s

method, this state has an impact on the state of the downstream CV. For that
reason, iterations for enthalpy, mass quality and pressure are performed within a
priority chain CV by CV.

• Mixture level CVs are split into one sub-CV above the mixture level and one below.
For both sub-CVs SNEWTN is not called, but a modified regula falsi iteration is
performed.

107

4.4.2 Pressure iteration for TFOs with flowing fluid

The routine DGGT0 initializes the CV of a priority chain (PC) with physically meaningful
values for the pressure. The pressure p0 in the first CV of a PC that is set by the user
is not modified. It serves as an initial value, and for closed loops also as a target
value, of the pressure iterations. Two pressure iterations must be distinguished:

• Inner iteration on junction / CV level: Iterative determination of the pressure in
every CV separately.

• Outer iteration on PC level: Iterative determination of the pressure in all CVs of a
PC. Note that in the current context the term outer iteration does not refer to the
outer iteration loop described in section Section 4.3.1.

In the inner iteration, the pressure in the subsequent CV is determined successively,
starting from the fixed preset pressure in the first CV. In Fig. 4.7 the pressure is known
for the orange CV. The pressure in the green CV is calculated from the pressure in the
orange CV, the pressure increase caused by the pump, and pressure loss ∆p over
the junction. The pressure loss over the junction depends on material properties (e. g.
density) which in turn are usually temperature and pressure dependent. Regarding
the solution variables of the 4-equation model this means that the material properties
are depending on xm, hdom and p. Both, xm and hdom are already calculated in DENTH

and DENTNE before the call of DGGT0. The inner iteration solves the problem that
p = f

(
. . . , ∆p(p)

)
.

The outer iteration is only necessary for closed loops. In this iteration it comes to
modifications of the form loss coefficients ζ.

Fig. 4.7 Pressure iteration sketch. The pressure in the green CV is calculated
from the pressure of the orange CV, the pressure increase caused by the
pump, and the pressure losses over the junction.

108

DGGT0 is called in DSTAR for CVs with flow after DANF and DENTNE, see Fig. 4.8. In the
figure the outer iteration on PC level that is controlled by the iteration variable IANZ10

is shown. The test whether the pressure iteration was successful for the last junction
of a closed PC also refers to this iteration.

A flow chart of DGGT0 is displayed in Fig. 4.9. The flow chart contains the variable
IANZ, which is initialized in DANF and used in DGGT0. IANZ is the iteration variable of
the inner iteration. Furthermore, compared to the simplified representation in Fig. 4.6,
one recognizes that DENTNE is only called for TFOs with input parameter ICK0 ̸= 0
(input parameter ICK0 = 0 corresponds to single-phase liquid water). This seems to
make sense insofar as for ICK0 = 0 it is always true that xm = 0. Consequently, a
change of xm is not necessary in that case. Interestingly, DENTNE is called for ICK0 = 3
(= only steam/vapor), where a change of xm does not occur as well.

4.4.2.1 Inner iteration

Within the IANZ loop the pressure pj in the target CV is determined. It depends on
the pressure in the upstream CV, i. e. pj−1, and various terms that result in pressure
decrease or increase (∆p...):

pj = pj−1 + (∆pMomFlux + ∆pvrel + ∆pFric + ∆pgrav + ∆pPump) · PITEJj. (4.17)

The parameter PITEJj specifies for every junction whether the TFO is went through
from left to right (PITEJj = 1.0) or from right to left (PITEJj = −1.0). The various terms
that result in pressure decrease or increase are depending on material properties.
The material properties depend on the following three solution variables of the SSC:
XQM, HDOM and PRESS. While hdom and p define the material properties of the single
phases, xm is used to calculate the material properties of the mixture. It generally
applies that p = f (xm, hdom, p). The variables xm and hdom are calculated in DENTH

and DENTNE. Within DGGT0 the pressure PZ is iterated.

The inner iteration is a fixed-point iteration. The previous implementation of the
iteration erroneously used an old pressure value for the calculation of the material
properties, which led to convergence after the second iteration step. The implemen-
tation was therefore revised and corrected as part of this project. However, this had
only a very minor effect on the solution (quasi-identical results).

109

DSTAR

 For every PC

IANZ10 = 1

30

For every TFO in the current PC

For every junction in the current TFO

DANF

 * Define target CV IZ and source CV IS
 * Set PK = Y(IPS)

 * Set IANZ = 0

ICK0(target CV) /= 0?

DENTNE

 * Calculate mass quality and enthalpies:

 x_m = f(x_m, h_dom, p)
 h_dom = f(x_m, h_dom, p)

 yes

 no
Newton's method

DGGT0

 * For TFOs with flow

 * Pressure iteration with adaptation of ZETA values:
 p = f(x_m, h_dom, p)

 * IANZ++

 * Abort if IANZ > 100

Pressure iteration in target CV successful?

Abort with
 COND=16 error

 no

For last junction of a PC:
 Pressure iteration in whole PC successful?

 yes

IANZ10++
 no

 yes

IANZ10 > 10?

 no

 yes

Return

Fig. 4.8 Detailed flow chart of the SSC in DSTAR

110

DGGT0

DKORZK
 Adapts values for LAMBDA and ZETA using correction factor AKM:

 ZETA_new = ZETA_old * AKM

Determine geodetic pressure term DPGEO

Pressure in target CV = pressure in source CV minus previously calculated pressure losses
 PK = Y(IPS) + (DPFRIC + DPKIN + DPGEO + DPVREL + ...)

Convergence?

 no

Relative deviation is considered:
 (PK - PH1) / PRESS(IPSTAR)

 IPSTAR: CV where pressure iteration starts

Is the pressure in the target CV
 defined by superordinate PC?

 yes

PH1 = PK

IANZ++

DZUK
 Calculate enthalpies and mass qualities

 for the target CV

Target pressure met?

ICK0(target CV) /= 1?

 yes

Relative deviation is considered:
 (Y(IPZ) - PK) / DPFRIC

Return:
 Pressure iteration in target CV successful, and

 pressure iteration of PC successful

 yes

ZETA correction
 activated?

 no

Adaption of ZETA correction factor:
 AKM = 1 + DP11 / SAGQ

 yes

Return:
 Pressure iteration in target CV successful, but

 pressure iteration of PC not successful

IANZ > 100

IANZ is initialized in DANF with zero,
 see detailed flow chart SSC in DSTAR

Return:
 Pressure iteration in target CV not successful yes

DROI34
 Calculates densities and mass qualities

 no

Calculation of MF term DPKIN

Calculation of friction and form loss DPFRIC

Calculation of relative velocity term DPVREL

 no

ICK0(target CV) /= 1?

 yes

Return:
 Pressure iteration in target CV successful,

 pressure iteration of PC irrelevant

DZUK
 Calculate enthalpies and mass qualities

 for the target CV

 yes

Fig. 4.9 Simplified flow chart of the SSC in DGGT0

111

4.4.2.2 Outer iteration

The outer iteration is done to avoid a jump of pressure from the last to the first CV in
case of a closed loop. Therefore, the ζ values are modified. This is done in DGGT0,
see Fig. 4.9. If the changes are too significant compared to the previous iteration
step of the outer iteration, DSTAR takes care of continuing the iteration with the next
step, see Fig. 4.8.

The variable quantity in the code is the correction factor AKM, which is used to modify
the ζ values applied in the loop (subroutine DKORZK):
ZFFJ(JGV) = ZFFJ(JGV)*AKM

The SSC starts with the user input of the ζ values (AKM = 1).

Given a closed PC, the pressure in the start CV is to be met after the calculation:

p0︸︷︷︸
pressure

in start CV

−

p0 +
n∑
j

∆ptot,j


︸ ︷︷ ︸

pressure in start CV
after calculation of closed PC

= −
n∑
j

∆ptot,j
!= 0 (4.18)

Here ∆ptot,j denotes the sum of all terms of junction j that result in a pressure increase
(e. g. by a pump) or decrease (e. g. by form losses). Consequently, the sum considers
the pressure losses and increases over all n junctions of the closed PC. The friction
and form losses (combined to ∆pFric,j) can be separated from the other terms (here
called ∆pRest,j):

n∑
j

∆ptot,j =
n∑
j

(∆pMomFlux,j + ∆pFric,j

+ ∆pvrel,j + ∆pgeo,j + ∆pPump,j + . . .)

=
n∑
j

∆pFric,j +
n∑
j

∆pRest,j.

(4.19)

For the sake of clarity, a simplified notation is used in which the summation symbols
are omitted:

∆pFric :=
n∑
j

∆pFric,j,

∆ptot :=
n∑
j

∆ptot,j.

(4.20)

In order to fulfill (4.18), a common correction factor α for the pressure loss due to
friction is applied. It can be interpreted as a correction to the ζ values since

α · ∆pFric =
n∑
j

ρj

2 v2
j (ζj · α). (4.21)

112

The correction factor α appears linear in (4.18). Hence, with an initial value of α⟨0⟩ = 1
this leads to the iteration

α⟨i+1⟩ = α⟨i⟩ − ∆ptot(α⟨i⟩)
∆pFric

. (4.22)

In (4.22) the indices i and i + 1 representing the iteration steps are for clarity written
as superscripts in angle brackets. Thus, if α⟨i⟩ denotes the old correction factor for
the ζj, then α⟨i+1⟩ is the new correction factor at iteration step i + 1. In the current
implementation of the SSC, the correction is determined in terms of a factor β:

α⟨i+1⟩ = α⟨i⟩ · β⟨i+1⟩. (4.23)

Hence, the overall correction factor at the end of the SSC α⟨iend⟩ reads as

α⟨iend⟩ =
iend∏
i=1

β⟨i⟩. (4.24)

Substituting (4.23) into (4.22) yields:

β⟨i+1⟩ = 1 − ∆ptot(α⟨i⟩)
∆pFric · α⟨i⟩

=: 1 − ∆p
⟨i⟩
tot

∆p
⟨i⟩
Fric

(4.25)

The assignment (4.25) is the iteration procedure for the ζ correction factor as applied
in the SSC. In the source code this can be found in the routine DGGT0:

Code 4.4 Iteration procedure of the ζ correction factors

1DP11 = Y(IPZ)-PK

2...

3AKM = 1.D0 + DP11/SAGQ

DP11 is the difference between the specified and calculated pressure in the first CV
and corresponds to the sum of all pressure increases and losses over all junctions
along the PC. SAGQ is the sum of friction and form losses over all junctions along the
PC. AKM corresponds to β in (4.25). The product used in (4.23) and (4.24) can be
found in the code in DKORZK:

Code 4.5 Correction of the ζ values

1SDFJ (JGV) = SDFJ (JGV)*AKM

2ZFFJ (JGV) = ZFFJ(JGV)*AKM

3ZFBJ (JGV) = ZFBJ(JGV)*AKM

The convergence criterion is ∆p
⟨i⟩
tot/∆p

⟨i⟩
Fric < 10−5, which means that β is sufficiently

close to one.

113

4.4.3 Pressure iteration for TFOs with stagnant fluid

The routine DGEQ0 initializes the CVs of a priority chain with stagnant fluid with physi-
cally meaningful values for the pressure. The pressure in the first CV of a PC that
is set by the user is not modified. It serves as an initial value, and for closed loops
also as a target value, of the pressure iterations. Contrary to routine DGGT0, only an
inner iteration must be performed for routine DGEQ0. This iteration is used to iteratively
determine the pressure in each CV separately.

In the inner iteration, the pressure in the subsequent CV is determined successively,
starting from the fixed preset pressure in the first CV. The procedure of the inner
iteration is analog to DGGT0, see Section 4.4.2. However, for a TFO with stagnant fluid
only pressure changes due to hydrostatics and pressure increases caused by pumps
must be considered. The pressure changes caused by hydrostatics are depending on
the fluid density and thus on material properties. The fluid density is temperature and
pressure dependent and consequently depends on the following solution variables
of the 4-equation model: xm, hdom and p. Both, xm and hdom are already calculated
in DENTH and DENTNE before the call of DGEQ0. The inner iteration solves the problem
that p = f

(
. . . , ∆p(p)

)
.

For TFOs with stagnant fluid no outer iteration is considered. Thus, for closed loops
neither geodetic heights nor pump pressure heads are adapted for stagnant fluid.
For that reason, the existence of an activated pump (without mass flow) results in
an inconsistency of pressure between first and last CV of a closed loop. This will be
discussed in more detail at the end of this section.

A flow chart of DGEQ0 is shown in Fig. 4.10. The routine is called in DSTAR for CVs
with stagnant fluid after DANF and DENTNE, see Fig. 4.6.

4.4.3.1 Inner iteration

Within the inner iteration the pressure pj in the target CV is determined. It depends
on the pressure in the upstream CV, i. e. pj−1, the hydrostatic pressure ∆pgrav and (if
existent) the pump head ∆pPump:

pj = pj−1 + (∆pgrav + ∆pPump) · PITEJj. (4.26)

The various terms resulting in pressure decrease or increase depend on material
properties. These depend on the following three solution variables of the SSC:
xm, hdom and p (in ATHLET: XQM, HDOM, PRESS). While hdom and p define the material

114

DGEQ0

Set temperatures in target CV according to input

 TL(IZ) = TV(IZ) = TDOM(IZ) = TU(IZ)

Closed valve?

 no

 yes

PH1 = PK

IANZ ++ IANZ is initialized in DANF with zero,
 see detailed flow chart SSC in DSTAR

IANZ >= 100 Return:
 Pressure iteration in target CV not successful yes

DZUP
 Calculates thermodynamic properties for the target CV

 no

DROI34
 Calculates densities and mass qualities

Calculation of the elevation term DPDZJ

Pressure in target CV = pressure in source CV + possible pressure rise due to pump + geodetic term

 PK = Y(IPS) + (DPPH + DPDZJ)

Convergence?

 no

Absolute deviation is considered:
 PK-PH1 <= 1.D-08?

 yes

Y(IPZ) = PK

PRESS(IZ) = PK

DZUP
 Calculates thermodynamic properties for the target CV

DZUKBW

 Calculation and initialization of values for temperatures, mass and volume fractions, enthalpies and densities for the target CV

Return:
 Pressure iteration in target CV successful

Fig. 4.10 Flow chart of the SSC in DGEQ0

properties of the single phases, xm is used to calculate the material properties of the
mixture. It generally applies that p = f (xm, hdom, p). The variables xm and hdom are
calculated in DENTH and DENTNE. The pressure is iterated in DGEQ0.

The inner iteration is a fixed-point iteration. As convergence criterion the absolute
deviation of the pressure of the current iteration to the previous one is used. The
fixed-point iteration is converged if the absolute deviation is smaller than 10−8.

4.4.3.2 Inconsistency for closed loops

As can be seen on the left side of Fig. 4.11 the calculated pressures of the SSC are
meaningful for a closed loop without a pump. For that case only the geodetic height
affects the pressure, which results in consistent pressures at the start and end of the
closed loop.

115

Start CVEnd CVStart CVEnd CV

Fig. 4.11 Closed loop of a system with stagnant fluid without (left) and with (right)
a pump

If an activated pump is added to the closed loop, it causes a pressure increase. As
for TFOs with stagnant fluid, no further pressure losses occur and geodetic heights
do not have a "compensatory" effect for closed loops. A jump of pressure can be
observed between start and end of the closed loop for this case as can be seen from
see right side of Fig. 4.11.

The described inconsistency does not seem to be problematic for realistic applications.
Nevertheless, it would be desirable to add a check that catches this inconsistency.

4.4.4 Iteration of the pump rotational speed

For pumps that are in operation, the pump input data together with the hydraulic data
coming from the SSC itself lead to an over-determined system. The pump operating
point is completely defined by the homologous head curve, the nominal values of the
pump, and the steady-state pump rotational speed and pressure. The SSC calculates
the local density of the liquid, which together with the steady-state mass flow yields
the steady-state flow rate. All these quantities together will most likely not match to
a sufficient degree to ensure a true steady state. For this reason, the pump speed
is automatically adjusted by the SSC so that the pump pressure corresponds to the
value from the input DPPS.

116

If a pump model is selected in which variations of rotational speed play a role, KPUFCT

is called from Newton’s method SNEWTN in KPUSS, see Fig. 4.12. KPUSS is called by the
SSC (ITRANS = 0) in DKPUMP, see Fig. 4.13. DKPUMP is called in DSTART in a loop over
all objects.

KPUSS

ITYP == 0?

GDHA
 Reads the GCSM signal for the relative pump pressure

 yes

Pump pressure differential from input:
 DPP = DPPS

 no

* Calculation of pump pressure differential
 * Calculation of power to the fluid

Return

ITYP <= 0?

GDHA
 Reads the GCSM signal for the relative rotational speed UREL

 yes

Rotational speed from input: UA = UMNS

 no

* Calculation of the rotational speed UA
 * Calculation of power to the fluid

UREL == 0.0?

Return
 yes no

UA == 0.0?

 no

 yes

SNEWTN
 Execution of Newton's method using subroutine KPUFCT

 The pump rotational speed is varied with the goal to meet the pump pressure differential DPP
 Root-finding for DPP-DP, where DP=f(UA)

ITYP >= 0? yes

 no

Calculation for the dynamic pump model

Return

Fig. 4.12 Flow chart of the SSC in KPUSS

Variation of rotational speed with Newton’s method

For the simplest pump model (differential pressure control), no speed variation needs
to be performed. For the other pump models, the following must be considered: To
ensure that the pump pressure in the SSC corresponds to the value from the input
DPPS, the speed is varied using Newton’s method. Newton’s method is executed in
subroutine SNEWTN for the function defined in KPUFCT. According to /SCH 23a/ the
correlations for the homologous head curve, using the dimensionless variables pump
speed ratio α = n/nR, pump volumetric flow ratio v = Q/QR and pump head ratio
h = H/HR (the subscript R indicates rated values), are for the case α ̸= 0 and
|v/α| < 1:

h

α2 = const.
v

α
= const.

(4.27)

117

DKPUMP

IPUMP == IPU4Q?

KPU4Q
 Creates the 4-quadrant curves and stops the simulation

 yes

Calculation of the conditions in the pump
 - Pressure

 - Density liquid, vapor, and mixture
 - Void fraction

 - Discharge liquid, vapor, and total

 no

ITRANS == 0?

KPUSS
 Calculates the pump parameters for the SSC

 Calculates the pump power to the fluid

 yes

KPUTR
 Calculates the pump parameters for the transient simulation

 Calculates the pump power to/away from the fluid

 no

Add the pump power to the fluid

Return

Fig. 4.13 Flow chart of the SSC in DKPUMP

and else

h

v2 = const.
α

v
= const.

(4.28)

This is used to calculate the pump head HDNP and afterwards the pump pressure DP.
By adjusting the speed, the deviation between the target value for DPP, DPPS, and the
current value DP is minimized using Newton’s method.

Miscellaneous
The simulation is aborted at the end of the SSC if the iterated value deviates more
than 10 % from the value that is defined by the rotational speed from input UMNS and
the GCSM signal SGPUMP.

4.4.5 Iteration of layer temperatures

The iteration of the temperature of HCO layers is performed within routine HCSTA

which is called in the SSC by routine HECU, see Fig. 4.2 and Fig. 4.14.1 Basically, this
routine is used in the SSC to calculate heat transfer and heat conduction. At the end

1In ATHLET 3.4, HCSTA is called by its own wrapper routine HECUSSC with identical functionality.

118

of the SSC, this gives the initialization of the HCV with physically reasonable layer
temperatures as well as the heat flows between CV and HCV. Furthermore, heat
sources, rods and heat exchangers are considered or calculated within this routine.
Two different iterations are performed within HECU in the scope of the SSC:

• Inner iteration over all layers of an HCV for iterative calculation of layer temperatures
in a HCV

• Outer iteration over entire system to meet the user-defined convergence criteria,
see Section 4.3.1

For the inner iteration, the fluid temperatures are used as boundary conditions to
determine the heat transfer. An iterative procedure for the calculation of the layer
temperatures is necessary, as these depend on material properties, such as the
thermal conductivity λ, which in turn is temperature dependent: T

(
. . . , λ(T)

)
. Since

there is an over-determined system of equations due to the user inputs, the heat
exchanger surface is adjusted as part of the inner iteration. However, since the
modification is only performed in the first inner iteration, it actually takes place in the
outer iteration loop.

The outer iteration is performed until the user-defined convergence criteria are met,
with a maximum of 15 iterations being performed. During the outer iteration, all
ATHLET modules (TFD, HECU, NEUKIN, GCSM) are called again because the TFD
and HECU calculations influence each other.

4.4.5.1 Inner iteration

The calculation of the layer temperatures in the inner iteration loop is performed
successively for each HCV. As the calculation of the layer temperatures requires
the thermal conductivity or the heat transfer coefficient at the layer boundaries, in a
first step an iteration loop is performed over all layers to calculate the heat transfer
coefficient and the thermal conductivity. The calculation of the layer temperatures is
then performed in the actual inner iteration loop.

Calculation of layer temperatures
For the calculation of the layer temperatures T a fixed-point iteration is used. An iter-
ative procedure is necessary because the layer temperatures depend on the thermal
conductivity, but the thermal conductivity in turn depends on the layer temperatures:

T = f(λ(T)). (4.29)

119

HCSTA

 For every HCV

Initialization of fluid temperatures TTL/R
 as boundary condition for HECU

HPMAT

 Calculate material properties (e.g. cp) as function of layer temperatures

Iteration loop over all layers for calculation
 of heat transfer coefficient and thermal conductivity

HCALF

 Calculate HTCs

Müller's method for iterative determination
 of critical heat flux temperature in MHTCRI

Modification of STEAMGEN surface
 (adaptation factor for power is 1 in first loop)

 (is only performed on the first run of the inner iteration loop)

Calculate thermal conductivity

Calculate layer temperatures

Calculate QHL/R
 on basis of HTCs and layer temperatures

Convergence criteria for
 layer temperatures met?

 no

Set QHL/R to input parameters, if IQHTX = 0
 in CW STEAMGEN

 yes

Inner iteration loop for
 calculation of layer temperatures

Limit the increment of QHL/R,
 to limit the increment of fluid temperatures

Convergence criterion
 dQH/QH < epsilon_QH met?

Flag for outer iteration loop is set:
 IQSTAF = 0

 (used in DSTART)

 no

 yes

Outer iteration loop over whole system

Consider heat transfer from PW HEATSOURCE in QI

Print output of SSC results

HCRODN

 * Calculate power of RODs
 * Adapt reactivities

Consider power of RODs
 in QHL/R and QI

HCSTHE

 * CW STEAMGEN
 * Calculate adaptation factor for total heat exchanger power

 * Adaptation of heat exchanger power profile
 * Consider adapted heat flows in QI

HCENBA

 * Check of energy balance in a TF system
 * Correction of heat sink powers

 (e.g. STEAMGEN nominal power QHE_required)

Convergence criterion epsilon_QHE

Return

Convergence criterion epsilon_E

Fig. 4.14 Details of the SSC in HCSTA

120

In the numerical treatment, the thermal conductivity is calculated using the layer tem-
peratures from the previous iteration i. The layer temperature for the new iteration i+1
is calculated as follows:

T ⟨i+1⟩ = f(T ⟨i⟩) (4.30)

It is important to notice that T ⟨i⟩ represents the considered layer as well as the neigh-
boring layers. The initialization (value T ⟨0⟩) of the layer temperatures is performed
within the routine HCTINI. If the left or right side is adiabatic, the layer temperatures
are initialized with TTR or TTL, respectively. In case that none of the sides is adiabatic,
a linear distribution from TTL to TTR is used.
For the (general) transient case the layer temperatures are calculated as

dTj

dt
= 1

ρjcp,jVj

·
[

1
Rj

· Tj−1 −
(

1
Rj

+ 1
Rj+1

)
· Tj + 1

Rj+1
· Tj+1 + Wj · Vj

]
. (4.31)

R is the heat transfer resistance, W is the specific volumetric heat generation and j

represents the current layer. The indices j − 1 and j + 1 stand for the neighboring
layers. For the SSC, the time derivative vanishes. Therefore, (4.31) can be simplified
to give the expression

A
⟨i⟩
j T

⟨i+1⟩
j−1 + B

⟨i⟩
j T

⟨i+1⟩
j + C

⟨i⟩
j T

⟨i+1⟩
j+1 = D

⟨i⟩
j . (4.32)

The superscript i is used to show that for the calculation of the coefficients, layer
temperatures from the previous iteration are used (which for simplicity is omitted in
the following). For cases with multiple layers the coefficients in (4.32) are calculated
as follows:

Aj = 1/Rj

Bj = −(1/Rj + 1/Rj+1)

Cj = 1/Rj+1

Dj = −WjVj

(4.33)

For the first layer (j = 1) and the last layer (j = N), the following must be used:

A1 = 0

CN = 0
(4.34)

For the case that only one layer is present the coefficients are calculated as follows:

Aj = 0

Bj = −(1/R1 + 1/R2)

Cj = 0

Dj = −W1V1

(4.35)

121

In this case, no system of equations must be solved and the layer temperature is
calculated as follows:

T
⟨i+1⟩
1 = Dj/Bj. (4.36)

As the layer temperatures of neighboring layers influence each other, a system of
equations has to be solved if several layers are present. It has the form of a tridiagonal
matrix:

B1 C1 0
A2 B2 C2

.
AN−1 BN−1 CN−1

0 AN BN





T
⟨i+1⟩
1

T
⟨i+1⟩
2
...

T
⟨i+1⟩
N−1

T
⟨i+1⟩
N


=



D1

D2
...

DN−1

DN


. (4.37)

Rearranging (4.37), the relation in (4.30) can be written as:

T
⟨i+1⟩
1

T
⟨i+1⟩
2
...

T
⟨i+1⟩
N−1

T
⟨i+1⟩
N


= A(T ⟨i⟩)−1D =



B1 C1 0
A2 B2 C2

.
AN−1 BN−1 CN−1

0 AN BN



−1

D1

D2
...

DN−1

DN


. (4.38)

Method for solving the system of equations
The linear system (4.37) is solved using a tridiagonal matrix algorithm, also known as
Thomas algorithm. It consists of a forward sweep and a backward substitution. In
the forward sweep, the coefficients are modified recursively:

Fj =


C1
B1

if j = 1
Cj

Bj−AjFj−1
if 2 ⩽ j < N

Gj =


D1
B1

if j = 1
Dj−AjGj−1
Bj−AjFj−1

if 2 ⩽ j ⩽ N

(4.39)

The solution of the system of equations is obtained by a backward substitution:

T
⟨i+1⟩
N = GN

T
⟨i+1⟩
j = Gj − FjT

⟨i+1⟩
j+1

(4.40)

Code implementation
In the forward sweep, at the beginning, the first layer is calculated, for which the
following applies regarding the layer temperature and its time derivatives: TT(LAY1) =
Gj and DT(LAY1) = Fj.

122

Code 4.6 Forward sweep for calculation of the layer temperature in first layer

1X = 1.D0 / (YL + YR + YYLO + R2WRL)

2DT (1) = -YR*X

3TT(LAY1) = (YL*TL + ATT(LAY1)*SV(LAY1) + QOXILR (NHV) + QRADL +

YYLO*TTLO) * X

The other layers are calculated using a forward sweep loop:

Code 4.7 Forward sweep loop for calculation of the layer temperatures (except
first layer)

1DO ILAY = 2,NLAY

2IF (ILAY == NLAY) THEN
3! RIGHT END

4X = 1.D0 / (YL+YR + YYRO+R2WRR + YL*DT(ILAY -1))

5TI = YR*TR + YYRO*TTRO + QRADR + QOXILR (NHV+IHV)

6ELSE
7X = 1.D0 / (YL + YR + YL*DT(ILAY -1))

8TI = 0.D0

9DT(ILAY) = -YR*X

10ENDIF
11

12TT(LAY1) = (YL*TT(LAY1 -1) + ATT(LAY1)*SV(LAY1) + TI) * X

13

14LAY1 = LAY1 + 1

15LAY2 = LAY2 + 1

16YL = YR

17

18ENDDO

The backward substitution is performed using a reverse loop:

Code 4.8 Backward substitution

1DO JLAY = 1, NLAYM1

2TT(LAY1) = TT(LAY1)-DT(ILAY)*TT(LAY1 +1)

3LAY1 = LAY1 - 1

4ILAY = ILAY - 1

5ENDDO

Note: Additional terms can be found in the code snippets that are not present in
the above equations. These terms result from oxidation (QOXILR), thermal radiation
(QRADL and QRADR) and the presence of a mixture level (YYLO*TTLO or YYRO*TTRO).

123

Furthermore, the temperature boundary condition of the TFO is considered (YL*TL or
YR*TR). The occurrence of these phenomena makes it necessary to extend (4.31) or
(4.32) for the outer layers. This is not described in /SCH 23a/.

Special characteristic for the execution of the fixed-point iteration
The default fixed-point iteration, as performed within the first 150 iterations, follows the
lines of calculations as shown above (formally, (4.38) is considered). If convergence
has not been achieved by iteration step 150, an additional relaxation (damping) comes
into play, namely,

T ⟨i+1⟩ = T ⟨i⟩ + λ
(
T ⟨i+1⟩ − T ⟨i⟩

)
with λ = 0.5. (4.41)

Code 4.9 Relaxation for calculation of the layer temperatures in case of poor
convergence

1IF (IGL > IGLMA1) THEN
2LAY1 = LAY1SV

3DO ILAY = 1,NLAY

4TT(LAY1)=5.D -1*(TT(LAY1)+TOLD(ILAY))

5LAY1 = LAY1 + 1

6ENDDO
7ENDIF

Convergence criterion
The convergence criterion of the inner iteration is that for every layer in an HCV the
difference between the layer temperature of the current iteration i + 1 and the previous
iteration i is smaller than a threshold εT T :∣∣∣T ⟨i+1⟩

j − T
⟨i⟩
j

∣∣∣ < εT T . (4.42)

The initial threshold is εT T = 10−5. If this value is not met within the first 250 iterations,
the threshold is increased in certain steps. For the case that after 500 iterations the
then given threshold value of εT T = 10 is still exceeded, the simulation is aborted with
an error message.

4.4.5.2 Outer iteration

The checks whether the user-defined convergence criteria (see Section 4.3.1 for a
more detailed description of convergence criteria) are met, are done in the routines
HCSTA (4.1a), HCSTHE (4.1b) and HCENBA (4.1c).

124

The flag IQSTAF is used to control the outer iteration loop. If IQSTAF is set to 0, another
outer iteration is performed. As HCSTA is also responsible for the output of the HECU
results upon successful convergence or reaching the maximum number of 15 outer
iterations, there is another flag JQSTAF. At the beginning of HCSTA, JQSTAF is initialized
to 1. In case that at least in one HCV one convergence criterion from (4.1a) is not
met, JQSTAF is set to 0. This causes IQSTAF to be set to 0 when convergence has
not yet been achieved. This controls the outer iteration loop (in routine DSTART) with
respect to the convergence criterion (4.1a). For the other two convergence criteria,
IQSTAF is set to 0 directly in the routines HCSTHE or HCENBA. If the convergence criteria
are met – that is, if at the end of HCSTA the variables IQSTAF and JQSTAF have the
value 1 – or if 15 outer iterations have already been performed, then in DSTART the
variable IQSTAF is set to 2 and HCSTA is invoked one last time to generate the output
of the HECU calculations.

4.4.5.3 Modification of the heat exchanger surface

Since the user input for heat exchangers result in an over-determined system, the
heat exchanger surface is adjusted by default. This ensures that the correct total
heat flux of the heat exchanger is transferred. The modification of the heat exchanger
surface is controlled by the variable IQHTX. For its default value 1 it is adjusted, while
for values 0 or 2 no adjustment is made. If no heat exchanger surface modification is
allowed, there is a risk that the energy balance will not be met.

The purpose of adjusting the heat exchanger surface is to ensure that the heat flux
QHEk,req to be transferred by the heat exchanger with index k matches the calculated
heat flux QHEk within a user-defined convergence criterion, see (4.1b). At the first
outer iteration, the heat exchanger surface adaptation factor FQ1 has the value 1. The
calculation of the adaptation factor for the new outer iteration takes place at the end of
HCSTA by calling the routine HCSTHE. For the heat exchanger with index k the adaption
factor is calculated via

FQ1⟨i+1⟩
k =

QHE⟨i+1⟩
k,req

QHE⟨i+1⟩
k

. (4.43)

Note that QHE⟨i+1⟩
k,req depends on the outer iteration step i + 1. Thus, a modification

occurs during the SSC in combination with the heat balance of the whole system and
the adjustments of heat sinks. This adjustment takes place in the routine HCENBA.

125

4.4.5.4 Conservation of energy and adaptation of heat sinks

The routine HCENBA has two main purposes:

• Check whether energy is conserved in the TF systems

• Adjustment of heat sinks (heat exchanger, condenser, heat insulation losses)

The check whether the energy is conserved in the TF systems is done by the conver-
gence criterion (4.1c). If the convergence criterion is not satisfied, the heat sinks are
adjusted. The correction factor Fcorr,Q is calculated as follows:

Fcorr,Q = 1 +
∑

Ėℓ

Qout
. (4.44)

The energy flux Qout is composed of the energy fluxes of all heat sinks (heat exchang-
ers, condensers and thermal losses). The adjustment of the correction factor for one
iteration is limited to the range 0.1 ⩽ Fcorr,Q ⩽ 10.0. Finally, all required energy fluxes
(all heat sinks) are adjusted via the correction factor. Thus, among other things, the
heat flow QHEk,req, which is to be transferred for the heat exchanger with index k, is
adjusted as follows:

QHE⟨i+1⟩
k,req = Fcorr,Q · QHE⟨i⟩

k,req. (4.45)

4.4.5.5 Calculation of heat transfer coefficients

The calculation of the heat transfer coefficients (HTC) is done in the routine HCALF.
This routine is called by the SSC as well as by the transient simulation. In the routine,
the models for the calculation of the HTC are applied. Regarding the numerical
methods of the SSC, it is worth mentioning that in the iterative calculation of the
critical heat flux temperature, Müller’s method is used within the routine MHTCRI.

4.4.5.6 Calculation of specific heat generation W

The calculation of the specific heat generation W is done by the routine HCRODN. A
simplified flow chart of HCRODN is shown in Fig. 4.15. Depending on whether electrical
heaters are to be modeled or the heat generation is to take place via neutron kinetics
models, different routines are called. For electrical heaters, the routine HRODEL is
used. Neutron kinetics is calculated by using the routines NSET and NINTER and their
subroutines.

126

HCRODN

Read input and process

Initialization

NELRE > 0 .and. IQF(NRODS+IR) == 4?

HRODEL

 Performs SSC calculation of electrical heater quantities
 * Calculate resistance of one HCVs

 * Calculate heat generation in the layers
 * Calculate rod power

 * Convergence criterion for heat generation in the layers
 (controls outer iterations loop in DSTART)

 yes

 no

LNK > 0?

NSET

 Interface subroutine for neutron kinetics
 * Initialization: Determines volumes of HCV layers and CVs
 * SSC: Calculates layer/CV properties and weighting factors

 yes

 no NINTER

 Interface for:
 * point kinetics
 * 1D kinetics
 * 3D kinetics

 * Fuel-rod model

Calculation of specific heat generation

Return

Fig. 4.15 Simplified flow chart of the SSC in HCRODN

127

Electrical heaters in HRODEL

For electrical heaters, the control of the outer iteration loop is done by the variable
IPOWER, which influences the behavior in DSTART in the same way as IQSTAF. IPOWER is
initialized to 0 and set to 1 when convergence is reached. The convergence criterion
is the following:

max
(∣∣∣∣∣W ⟨i+1⟩ − W ⟨i⟩

W ⟨i+1⟩

∣∣∣∣∣
)
⩽ εPel . (4.46)

By using max, the largest deviation of all layers is considered. For the first 4 outer
iterations the threshold is εPel = 10−4 and εPel = 10−3 afterwards.

Neutron kinetics
For neutron kinetics different models can be applied: point kinetics, 1D kinetics or 3D
kinetics. However, 1D kinetics code is not maintained anymore.2

The control of the outer iteration loop is done by the variable ITNK, which affects the
behavior in routine DSTART in the same way as the variables IQSTAF and IPOWER. In
case of convergence, ITNK is set to 1. For point kinetics, no convergence criterion
has to be met and consequently ITNK is always set to 1. The convergence criterion
of 3D kinetics is specified and controlled by external software. For that reason, the
convergence criterion cannot be described here.

Regarding numerics the only relevant algorithm for neutron kinetics is given in the
routine NKBLOF where a linear system of equations is considered. This algorithm uses
some kind of block factorization, which is probably based on a LU decomposition. As
this algorithm is only needed for 1D kinetics, which currently has no relevance for
ATHLET, it is not described in more detail here.

4.5 Comparison of the used methods with state-of-the-art numerical
algorithms

The analysis of the SSC has shown that many small scale problems (involving one- or
two-dimensional systems) are solved within the SSC. Large systems that would have
a high potential to significantly accelerate simulations by the use of suitable numerical
algorithms, practically do not exist in the SSC. For the solution of the small-scale
systems, depending on the problem, methods of regula falsi type (e. g. Müller’s
method) or Newton’s method are used. Only the applied fixed-point iterations (partly

2In ATHLET 3.4, 1D kinetics is no longer available.

128

with additional damping) have the potential to be replaced by more efficient algorithms.
However, a change, for example to Newton’s method, does not seem practicable,
because this would require information about the derivative in contrast to using simple
fixed-point iteration. It is expected that obtaining the information about the derivative
and doing the necessary implementation work would involve a disproportional amount
of effort. In the given scenario, the use of the secant method may be worth giving a
try, since no derivative information is required.

4.5.1 NuT integration

Apart from the already established NuT support for calculating the specific energy
in the CVs, see p. 99, further application of NuT does not seem promising during
the SSC for the reasons given above. However, NuT may be used for a subsequent
improvement of the approximation ySSC

0 which was obtained in the SSC as an initial
value for the transient phase of the calculations via

y′ = f(y, t), y(t0) = ySSC
0 . (4.47)

It ought to hold that f(ySSC
0) ≈ 0 (which is the whole purpose of the SSC). However,

due to the environment of the transient phase where f = AFK is considered for the
first time, further improvements may be possible.

Using ySSC
0 as a reasonably good starting value, two approaches may be considered

to achieve better approximation:

• Newton-type methods

• Optimization

In the optimization approach, the norm of f is minimized, that is, the problem

min
y

∥f(y)∥ (4.48)

for some suitable norm ∥·∥.

Both methods have to consider additional constraints yi,min < yi < yi,max for certain
solution components yi which apply for physical reasons. Examples are 0 ⩽ xm ⩽ 1
and 0 < p.

The PETSc library provides several optimization algorithms (/BAL 23, TAO: Optimiza-
tion Solvers/) and Newton-type solvers with constraints /BAL 23, SNES: Nonlinear
Solvers/) which could be made available via NuT after some proper modifications.

129

Both Newton-type methods and the optimization approach require information about
the derivative in each step. Thus, the Jacobian must be evaluated repeatedly, which
could make this improvement of the approximation for the steady-state solution
computationally expensive.

4.6 Suggestions for improvement of the SSC

During the re-evaluation and discussion of the methods applied in the SSC, some
potential for improvement was detected. The following subsections contain various
related suggestions. First, suggestions which have already been implemented within
the current project are mentioned. Then, improvements which seem realizable within
the current methodology of the SSC – and therefore would require only relatively
small code modifications – are described. Thereafter, improvements which would
need significant modifications of the methodology of the SSC are presented. Finally,
some further modifications of the SSC are suggested which seem to be rather specific
or of subordinate importance.

4.6.1 Improvements accomplished within the current project

Initialization with multiple non-condensable gases
For simulations with AC2 it can be necessary to consider multiple non-condensable
(NC) gases. Hence, it is necessary to initialize them. In older AC2 versions it was only
possible to initialize one single NC gas. By means of the work done in this project it is
now possible to initialize multiple non-condensable gases. This feature was already
made available for AC2 2023.

The implementation realizes the following ansatz: For the initialization, the handling of
the input data of the mixture is performed by the routine DIMC. The first NC gas is read
in using the pseudo-keyword INITGAS. In this step also the relative gas partial pressure
(variable XQVMCI in the code or Xpg in /SCH 23a/) is read in. The new implementation
now allows the input of further NC gases by using the new pseudo-keyword INITXVNC.
Under this pseudo-keyword, the mass fractions of the additional non-condensable
gases to the total non-condensable gas mass can be input. The mass fraction for the
first gas specified under the pseudo-keyword INITGAS is derived as the remainder to
the summation value 1.0.

Within most of the SSC the material properties of vapor are used and are sufficient.
Only for the density, the NC gases are already taken into account in the SSC, because

130

simulations can be very sensitive regarding density due to its impact on geodetic
pressure while other material properties are typically less problematic. The calculation
of the mixture density is performed by the routine DROI34. Therein, the mixture density
is calculated from the mixture of vapor and NC gases:

ρm = Xpgρg + (1.0 − Xpg)ρv. (4.49)

Note that for user input XQVMCI = 0.0 or 0.0 < XQVMCI < 1.0 with TVS > T0 the partial
pressure must be calculated by the routine MPTS. Otherwise the partial pressure is the
value of XQVMCI from the input file. Further variables in (4.49) are the vapor density
ρv and the density of the NC gases ρg. The latter is calculated from the mass quality
of the single gas components (variable Xgi; vapor is not considered in this variable)
according to equation (2.109) from /SCH 23a/:

ρg = 1∑
Xgi/ρgi

. (4.50)

Note that this procedure uses the closure equations of the non-condensable gas model
for the transient calculation as of ATHLET 3.3 and therefore produces consistent
results. Consequently, its consistency rests on the basic assumption of an ideal
mixture of ideal gases, which underpins the implementation of this model in ATHLET.

4.6.2 Improvements applicable for the current methodology of the SSC

Prevention of undesired modifications of boundary conditions in the SSC
The ATHLET user input can result in an over-determined system of equations. For that
reason, modifications are performed during SSC to solve this problem. However, in the
current implementation there are modifications of the following boundary conditions
that are undesired:

• It may happen that the pressure and specific enthalpy prescribed as boundary
conditions in a TDV are modified. Typically, boundary conditions are well known
and for that reason a modification is undesired. It would be possible to prevent
a modification of the boundary conditions. The methodology would follow the
procedure for closed loops, which means that the friction loss coefficients are
modified in an outer iteration, see Section 4.4.2.2.

• For heat exchangers the surface of the heat exchanger may be modified by the
SSC. This modification is undesired as the heat exchanger surface is a fixed
geometric factor, typically well-known by the user. A better way to deal with the

131

over-determined system of equations would be to leave the heat exchanger surface
as it is and to apply the modifications to the heat transfer coefficient (HTC) which
is usually subject to uncertainty. This solution is feasible because mathematically
heat exchanger surface and HTC are both factors of the same product and the
modifications are just multiplied with this product. Although it does not introduce
any new feature, this small change of the SSC can lead to a behavior which
is much more comprehensible for the ATHLET user. In this case, though, the
changed HTC value should be used for the HECU module output.

Switch off iteration of the pump rotational speed
In some cases it might be beneficial for experienced users to have the possibility
to switch off the iteration of the pump rotational speed, see Section 4.4.4. For the
specific case of a 3-loop facility it was very challenging to properly set specific known
pressure losses. The option to manually set the rotational speed of the pump that is
not overwritten by the iteration would be a good measure for experienced users to
derive a proper simulation setup. For that reason the option to switch off the iteration
of pump rotational speed would be a valuable improvement.

Solve a common system of equations for XQM, HDOM and PRESS

In the current implementation, first xm and hdom are determined iteratively in DENTNE.
After that, the pressure p is determined iteratively in DGGT0. For a two-phase mixture in
the target CV and ICK0 ̸= 1, DZUK/DRTMI is called in DGGT0 after pressure calculation
to determine new values of xm and hdom for the current iterated pressure. One
possible improvement could be to solve a common system of equations for the
solution variables XQM, HDOM and PRESS.

Consider hydraulic connections of currently autonomous systems
Autonomous systems currently have no influence on each other in the SSC (e. g. in
the pressure iteration). However, such autonomous systems are often hydraulically
connected, for example via cross-connection objects (CCO). It could be desirable to
consider such a hydraulic connection and thus prevent disturbances at the beginning
of the transient calculation.

More reliable convergence of the layer temperatures
For some cases, the layer temperatures are not converging, if the heat flux between
fluid and wall changes direction between the iterations. This is often the case for
small mass flows in a TFO (e. g. guide tube). A possible solution might be to increase
the damping in the fixed-point iteration.

132

4.6.3 Improvements that need major modifications of the methodology of
the SSC

4.6.3.1 Modification of friction coefficients

In the current implementation, the modification of friction coefficients depends on the
order of the priority chains. For that reason, the solution of the ATHLET simulation can
depend on user experience. It would be desirable to modify the friction coefficients
independently of the priority chains.

However, to some extent it might be desired to keep the concept of priority chains. At
least for the main priority chain it is often desired to have a higher priority, because
for this priority chain the conditions are often better known than in other parts of the
system. Consequently, it might be beneficial to keep the main priority chain but break
up the priority chain concept for the modification of the friction coefficients for all
subsequent chains.

The following concepts and ideas have been developed in order to improve the
modification of the friction coefficients.

Concept "equal priority chains"
The idea behind this concept is to perform the modification of the friction coefficients
independently of the order of the priority chains. In this case, the modification of
the friction coefficients is not performed sequentially, with the second priority chain
"reacting" to the changed pressures of the first priority chain, to guarantee consistent
pressures at the branches. Instead, for the case of a closed loop, see Fig. 4.16,
the two conditions "pressure at start CV consistent" and "pressure at branch CV
consistent" are satisfied by the two variables fζ,1 (friction coefficient modification
factor in priority chain 1) and fζ,2 (friction coefficient modification factor in priority
chain 2). At least for simple systems this concept seems to result in the same behavior
as the current concept using priority chains. However, if small modifications of the
mass flow are allowed, the concept "equal priority chains" might become relevant.

In the case of a non-closed loop, the condition "pressure at start CV consistent"
could be replaced by the condition that the specified pressure in the TDV – i. e. the
boundary condition – must be satisfied. For this, a friction coefficient modification
would then also have to take place for non-closed loops (not done so far). Thus, it
could be possible to make a contribution to the prevention of undesired modifications
of boundary conditions in the SSC (see above).

133

Condition 1:

Pressure in start CV consistent

Condition 2:

Pressure in branch CV consistent

Fig. 4.16 Conditions for the concept "equal priority chains"

For the described concept, the procedure has to walk through the system in flow
direction. This is not the case for the "voltage concept" (see below).

"Voltage concept"
The idea behind this approach is that in a parallel connection of two resistors in an
electrical circuit the same voltage is applied across the parallel connected power
lines, see Fig. 4.17.

For the friction coefficient modification, this approach no longer considers the concept
of priority chains in their current form. Instead, beginning at the start CV of a thermo-
fluiddynamic system, the next branch, i.e., a branch object or a pipe CV with minor
branching connections, in all possible directions3 is searched, see left part of Fig. 4.18.
From these branches, a subdivision of the simulated system is then automatically
made into individual chains that meet at the branches, see right part of Fig. 4.18.
The friction coefficients of the individual chains are then adjusted so that consistent
pressures are established at the branch CV.

3"Next branch" means the branch which is the least number of junctions away from the start CV.

134

𝐼1 𝐼2

𝑅1 𝑅2 𝑈 = 𝑈1 = 𝑈2

Fig. 4.17 Parallel connection of two resistors

In this concept, only the loss coefficients in chains connected in parallel would have
to be adjusted (e. g. chains 2 and 3 in Fig. 4.18). However, it seems reasonable in
the example to also modify the friction coefficients in chain 1. Here, the additional
condition could be that the modification of the friction coefficients should be as small as
possible. For this approach, it still has to be checked whether this reliably guarantees
that the pressure in the start CV remains the same as the specified value.

As reliable friction losses are not known for all pipe sections, while for other sections
these values are much better known, it would be advisable to additionally include
a reliability factor. This reliability factor could be input by the user to limit friction
coefficient modifications in well known pipe sections. As an alternative to the reliability
factors, the user could read in a range of acceptable values for each pipe section the
iteration procedure may vary the friction and form loss coefficients in.

The described concept will need some further discussion. Open questions are:

• The current concept using priority chains contains some information of the system,
which supports modeling the physics properly. To include this information in the
voltage concept, additional input might be required.

• The development and implementation of the algorithm which would be responsible
for the automatic subdivision of the simulated system into the individual chains
might turn out to be complicated for complex systems.

135

Start CVBranch CV #2

Branch CV #1

Chain #1

Chain #2

Chain #3

Fig. 4.18 Idea for implementation of the "voltage concept"

The proposed concept might be particularly useful for modeling parallel channels with
inhomogeneous power distribution (a problem that currently needs iterative manual
modifications by the user).

Further ideas
Further ideas have been brought up regarding the modification of the friction coeffi-
cients:

• The previously described concepts focus on the modification of the friction coeffi-
cients. However, it would also be possible to allow the modification of the mass
flow rate. As the mass flow rate is approximately known by the user (at least in the
main parts of the system), significant modifications of it should be avoided. For
that reason, one possible concept would be to allow a limited modification of the
mass flow rates and, in addition, to modify the friction loss coefficients. The idea
of a reliability factor (see above) could also be used for the mass flow rate.

• Another concept is to take into account the absolute value of the mass flow rates
in the junctions. The modification of the friction loss coefficients is then weighted
according to the size of the local mass flow rates, e. g., by allowing the largest
percentage modification of the friction loss coefficient in the junction with the lowest
mass flow rate.

• Another option would be to minimize the deviation of all modified friction coefficients

136

from the input values. In this case, however, a reliability factor to steer adaptations
to less well-determined values might be essential.

4.6.4 Further suggested modifications

• Under unfavorable conditions a small input error can lead to an initial condition
that seems completely absurd. In one specific case, the core power was specified
slightly asymmetrically, but the input for steam generator power was not adjusted
accordingly (all steam generators were specified identically). Due to the adjust-
ments made by the SSC and due to the non-mixing of the mass and energy flows
during the SSC (mass flows on the CCOs were specified to be zero), an extremely
asymmetric initial state of the dynamic calculation occurred, which significantly
differed from the specified slightly asymmetric state. Thus, one could criticize an
unexpected behavior of the SSC here which should be remedied.

• One user reported that it would be more comfortable if a priority chain could
contain both, flowing and stagnant fluid. In the specific case, the user wanted
to compare simulation results with experimental data of a T-junction. For most
experiments there was flowing fluid in both pipes behind the T-junction, but for
one experiment one pipe was a dead end with stagnant fluid. For the latter the
data set had to be modified. A more user-friendly implementation would allow to
simulate all experiments with the same data set.

• It would be desirable to intercept the inconsistency in DGEQ0 that for a PC with
stagnant fluid and closed loop the target pressure does not meet the pressure in
the start CV if a pump is present, see Section 4.4.3.

• In routine DENTNE the mass quality xm and the specific enthalpies h in the CV are
determined iteratively. xm and h of the first CV of a fluid dynamic system are fixed
by the user input, where xm must be 1 or 0 for the current implementation. It could
be desirable to allow the user to specify two-phase conditions in the first CV of
a TF system, i. e., an input of 0 ⩽ xm ⩽ 1. The input temperature T0 would then
correspond to the temperature of the dominant phase. However, a disadvantage
is that the user usually does not know the exact two-phase state (xm or T0). The
effort of such a modification of the SSC would probably be too high in relation to
the benefit.

• For parallel channels with different power (e. g. core or steam generator) suitable
mass flows can be determined only iteratively by the user. It would be desirable if

137

the SSC could adapt the parallel channels in a way to avoid that a manual iterative
adaptation is necessary. One possible remedy might be the voltage concept (see
the above discussion on the concept).

138

5 Conclusions and Outlook

The main subject of this project was the further improvement of AC2’s numerical
toolkit, NuT. To this end, firstly the functionality of NuT was extended in order to
execute ODE methods. This was implemented in terms of a per-step logic where a
method performs one time integration step per given step size. The logic required
implementing interface routines to auxiliary PETSc procedures within NuT itself and
verifying them. In addition, a selection of several ODE methods was made available.
An extension of NuT’s interfaces was taken care of to allow for an efficient access of
the new ODE logic. Finally, the interfaces for the AC2 codes ATHLET and COCOSYS
(module THY) were implemented and tested. This required substantial work within
the ATHLET and COCOSYS source code in order to provide an alternative control
logic to the legacy FEBE approach. As a first step, the usage of NuT’s ODE logic was
made available for stand-alone calculations with ATHLET and COCOSYS. This was
tested in verification calculations to check the correct implementation of these ODE
methods and control means.

The next major progress achieved in this project was to establish the framework for
thermo-hydraulically coupled calculations between ATHLET and COCOSYS in AC2

simulations facilitated by advanced coupling numerics provided via NuT. Different
coupling approaches were discussed theoretically, and boundary conditions and
constraints from ATHLET and COCOSYS-THY were analyzed. Due to the complexity
of implementing a coupling for these legacy codes, the monolithic coupling approach
was chosen, where the differential equations from each code are treated within one
unified overall ODE system. This implies the same time step for each code. To make
this approach work, consistent derivative information about the influence of ATHLET
on COCOSYS-THY zone variables at the coupling interfaces and vice versa had to be
made available. To this end, NuT had to be extended to build up the overall Jacobian
matrix from the Jacobians of ATHLET and COCOSYS and from the derivatives that
represent the mutual influences. One major task was implementing a consistent
treatment of discontinuities and time step reductions due to code model requirements
for the coupled code system. Moreover, the AC2 communication architecture had
to optimized for this task. Within this project, a first functional implementation was
achieved, but further work will be needed to fully establish this method for coupled
AC2 simulations. Furthermore, some open issues regarding thermal-hydraulics at the
coupling interface were identified, which will need to be addressed as well.

139

Throughout the project, the code base of NuT was further refined by improving logging,
enhancing the flexibility of the communications interface, and optimizing the seeding
process as well as NuT’s memory and process management. In the course of this,
some refactoring of the code was done. In addition, the implementation of NuT was
checked within the EU-funded project POP. This showed that NuT’s implementation
of its communication structure via MPI is efficient. Additionally, it was found that the
instruction scalability of NuT appears to be weak. This is due to long waiting times
for ATHLET processes to send data to NuT. Consequently, future efforts should be
focused on enhancing the speed of the system code calculations, e. g., by parallel
processing via OpenMP.

The second large topic in this project was improving the AC2 development cycle,
where substantial improvements could be realized. This includes particularly the
automation of the AC2 build process within the GRS GitLab infrastructure, facilitating
not only continuous integration testing but also enabling continuous deployment
of GRS-internal code versions. In addition, a structured approach to multi-project
developments within the AC2 program landscape was established, and tools and
methods to apply this approach for development, testing and validation tasks were
provided.

Finally, the steady calculation of ATHLET was analyzed in depth and documented
accordingly. Based on this work, some improvements could be implemented, e. g.,
the initialization of ATHLET zones with multiple non-condensable gases. In addition,
proposals and recommendations were derived for further improvements of the steady
state calculation.

Overall, the main objectives of the project have been achieved. However, the work
regarding coupled computations in AC2 by means of a NuT-driven monolithic approach
was found to be more challenging and thus took longer than initially anticipated, limiting
the features of the current implementation. Missing features include partial updates
of the Jacobian, ensuring consistency during restarts and contraction checks for
Newton-type processes.

Follow-up work on improving NuT and the thermal-hydraulic coupling of ATHLET and
COCOSYS within AC2 should include the optimization of the time step control to allow
for larger time steps. This should particularly address the recovery of time step sizes,
which is currently limited by coupling quantities, after fast transient processes are
over. Additionally, the robustness of the coupling interface in case of multiple coupling
locations needs to be thoroughly tested in settings relevant for reactor calculations.

140

This should include coupling interfaces with two-phase flow, including counter-current
flow conditions. Moreover, the presence of mixture-level models at the coupling
interface should be investigated. For making use of the different time step sizes
preferred by the ATHLET and COCOSYS calculation domain, consistent multi-rate
methods should be developed and made available via NuT.

With regard to the AC2 software development, further work should be done on estab-
lishing an improved infrastructure within the GRS GitLab instance for handling code
changes affecting multiple code projects. This aims at verifying that code changes in
one code project do not lead to problems or regression with regard to another code
within AC2.

141

References

/ARN 23/ Arndt, S. et al. COCOSYS 3.2.0 – User Manual. GRS-P-3 / Vol. 1.
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH. Nov.
2023 (cit. on p. 4).

/BAL 23/ Balay, S. et al. PETSc Web page. 2023. url: https://petsc.org/

(visited on 2023-10-18) (cit. on pp. III, 49, 72, 129).

/BAL 97/ Balay, S., Gropp, W. D., Curfman McInnes, L., and Smith, B. F. “Efficient
Management of Parallelism in Object Oriented Numerical Software
Libraries”. In: Modern Software Tools in Scientific Computing. Ed. by
Arge, E., Bruaset, A. M., and Langtangen, H. P. Birkhäuser Press,
1997, pp. 163–202 (cit. on p. 68).

/BAR 89/ Barcus, M. Beschreibung und Diskussion des FEBE-Algorithmus. Tech.
rep. TN-BAM-89-01. Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, June 1989 (cit. on p. 49).

/BOC 83/ Bock, H. G. “Recent Advances in Parameteridentification Techniques
for O.D.E”. In: Numerical Treatment of Inverse Problems in Differential
and Integral Equations. Ed. by Hairer, E. and Deuflhard, P. Springer
eBook Collection Mathematics and Statistics. Boston, MA: Birkhäuser
Boston, 1983, pp. 95–121 (cit. on p. 10).

/BSC 23/ Barcelona Supercomputing Center. Extrae. 2023. url: https://tools.

bsc.es/extrae (visited on 2023-10-10) (cit. on p. 88).

/BUC 18/ Buchholz, S. et al. EASY Integrale experimentelle und analytische
Nachweise der Beherrschbarkeit von Auslegungsstörfällen allein mit
passiven Systemen. German. GRS 527. Köln; Garching b. München;
Berlin; Braunschweig: Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH, Aug. 2018 (cit. on pp. 7, 23).

/BUT 16/ Butcher, J. C. Numerical Methods for Ordinary Differential Equations.
3rd ed. John Wiley & Sons, Ltd., 2016 (cit. on p. 2).

143

https://petsc.org/
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae

/BUT 90/ Butcher, J. C. and Cash, J. R. “Towards Efficient Runge-Kutta Methods
for Stiff Systems”. In: SIAM J. Numer. Anal. 27.3 (June 1990), pp. 753–
761 (cit. on p. 30).

/COL 83/ Coleman, T. F. and More, J. J. “Estimation of Sparse Jacobian Matrices
and Graph Coloring Problems”. In: SIAM J. Numer. Anal. 20 (1983),
pp. 187–209 (cit. on p. 68).

/COR 13/ Corless, R. M. and Fillion, N. A graduate introduction to numerical
methods: From the viewpoint of backward error analysis. Mathematics.
New York, NY and Heidelberg: Springer, 2013 (cit. on p. 2).

/GIT 24a/ GitLab Inc. GitLab Docs. 2024. url: https://docs.gitlab.com/ee

(visited on 2024-02-29) (cit. on p. 2).

/GIT 24b/ GitLab Inc. GitLab Web page. 2024. url: https://about.gitlab.

com/ (visited on 2024-02-29) (cit. on p. 63).

/GUS 94/ Gustafsson, K. “Control theoretic techniques for stepsize selection in
implicit Runge-Kutta methods”. In: ACM Trans. Math. Softw. 4 (1994),
pp. 496–517 (cit. on p. 52).

/HAI 93/ Hairer, E., Nørsett, S. P., and Wanner, G. Solving Ordinary Differential
Equations I: Nonstiff Problems. 2nd ed. Vol. 8. Springer Series in
Computational Mathematics. Springer Berlin Heidelberg, 1993 (cit. on
pp. 2, 10, 31).

/HAI 96/ Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems. 2nd ed. Vol. 14. Springer
Series in Computational Mathematics. Springer Berlin Heidelberg,
1996 (cit. on pp. 2, 29 sqq., 49, 52).

/HUN 00/ Hunt, A. and Thomas, D. The Pragmatic Programmer: From Journey-
man to Master. USA: Addison-Wesley Longman Publishing Co., Inc.,
2000 (cit. on p. 64).

144

https://docs.gitlab.com/ee
https://about.gitlab.com/
https://about.gitlab.com/

/HUN 03/ Hundsdorfer, W. and Verwer, J. G. Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations. Vol. 33. Springer Series in
Computational Mathematics. Springer Berlin Heidelberg, 2003 (cit. on
p. 30).

/ICL 23/ Innovative Computing Laboratory, University of Tennessee, Knoxville.
Performance Application Programming Interface (PAPI). 2023. url:
https://icl.utk.edu/papi (visited on 2023-10-10) (cit. on p. 88).

/INT 23/ Intel Corp. Developer Reference for Intel® oneAPI Math Kernel Library
for C. 2023 (cit. on p. 69).

/JAC 23a/ Jacht, V. MMA – MPI for Multiple Applications. 2023. url: https:

//gitlab.com/nordfox/mma (visited on 2023-10-19) (cit. on p. 72).

/JAC 23b/ Jacht, V., Scheuer, J., Schöffel, P., and Wielenberg, A. ATHLET 3.4.0
– Programmer’s Manual. GRS-P-1 / Vol. 2 Rev. 11. Gesellschaft für
Anlagen- und Reaktorsicherheit (GRS) gGmbH. Nov. 2023 (cit. on
pp. 83, 92).

/KAR 23/ Karypis, G. and Kumar, V. Metis Web page. 2023. url: http://glaros.

dtc.umn.edu/gkhome/metis/metis/overview (visited on 2023-10-20)
(cit. on p. 68).

/KEI 99/ Keil, F., Mackens, W., Voß, H., and Werther, J., eds. Scientific Com-
puting in Chemical Engineering II: Simulation, Image Processing, Opti-
mization and Control. Springer Berlin Heidelberg, 1999 (cit. on p. 158).

/KIT 23/ Kitware. CMake Web page. 2023. url: https://cmake.org/ (visited
on 2023-02-02) (cit. on pp. 63, 70).

/KLE 23/ Klein-Heßling, W. et al. COCOSYS 3.2.0 – Models and Methods. GRS-
P-3 / Vol. 2. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)
gGmbH. Nov. 2023 (cit. on pp. 4, 13 sqq.).

/LIP 12/ Lippman, S., Lajoie, J., and Moo, B. C++ Primer. 5th. Addison-Wesley
Professional, 2012 (cit. on p. 2).

145

https://icl.utk.edu/papi
https://gitlab.com/nordfox/mma
https://gitlab.com/nordfox/mma
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://cmake.org/

/LLVM 23/ The LLVM Team. LLVM Clang Web page. 2023. url: https://clang.

llvm.org/ (visited on 2023-12-14) (cit. on p. 77).

/LOT 98/ Lotka, A. J. Analytical Theory of Biological Populations. The Springer
Series on Demographic Methods and Population Analysis. Boston,
MA: Springer, 1998 (cit. on p. 39).

/MAR 03/ Martin, R. C. Agile Software Development: Principles, Patterns, and
Practices. USA: Prentice Hall PTR, 2003 (cit. on p. 64).

/MAR 17/ Martin, R. C. Clean Architecture. Harlow: Pearson Education, 2017
(cit. on p. 2).

/MEY 97/ Meyer, B. Object-Oriented Software Construction. 2nd ed. USA: Prentice-
Hall, Inc., 1997 (cit. on p. 64).

/MPI 23/ Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 4.1. Nov. 2023. url: https://www.mpi-forum.org/

docs/mpi-4.1/mpi41-report.pdf (cit. on p. 2).

/MUM 23/ Mumps Technologies. MUMPS Web page. 2023. url: http://mumps-

solver.org (visited on 2023-10-20) (cit. on p. 68).

/POI 78/ Pointner, W. Startrechnung für den Blowdowncode DRUFAN. Tech. rep.
TN-POI-78. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)
gGmbH, Dec. 1978 (cit. on p. 102).

/POP 23/ POP Centre of Excellence. POP Web page. 2023. url: https://pop-

coe.eu (visited on 2023-10-09) (cit. on pp. 63, 88).

/ROS 22/ Rose, M. NuT – performance audit: (POP2_AR_162). 2022 (cit. on
p. 89).

/SCH 23a/ Schöffel, P. et al. ATHLET 3.4.0 – Models and Methods. GRS-P-1 /
Vol. 4 Rev. 8. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)
gGmbH. Nov. 2023 (cit. on pp. 13 sqq., 28 sq., 96, 117, 124, 130 sq.).

146

https://clang.llvm.org/
https://clang.llvm.org/
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
http://mumps-solver.org
http://mumps-solver.org
https://pop-coe.eu
https://pop-coe.eu

/SCH 23b/ Schöffel, P. et al. ATHLET 3.4.0 – User’s Manual. GRS-P-1 / Vol. 1
Rev. 11. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Nov. 2023 (cit. on p. 91).

/SCO 20/ Scott, C. Professional CMake : A Practical Guide. 7th ed. 2020. url:
https://crascit.com/professional-cmake/ (visited on 2020-10-23)
(cit. on p. 71).

/SÖD 03/ Söderlind, G. “Digital filters in adaptive time-stepping”. In: ACM Trans.
Math. Softw. 29 (2003), pp. 1–26 (cit. on p. 52).

/STE 17a/ Steinhoff, T. “Providing a Single Point Spectrum for Runge-Kutta Schemes
of High Stage Order Based on Perturbed Collocation”. In: AIP Confer-
ence Proceedings. Vol. 1863. July 2017 (cit. on pp. 31, 36).

/STE 17b/ Steinhoff, T. and Jacht, V. Ausbau und Modernisierung der numerischen
Verfahren in den Systemcodes ATHLET, ATHLET-CD, COCOSYS
und ASTEC. German. GRS 469. Köln; Garching b. München; Berlin;
Braunschweig: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)
gGmbH, July 2017 (cit. on pp. IV, 1, 30 sqq., 39, 52).

/STE 20/ Steinhoff, T. and Jacht, V. Weiterentwicklung und Ausbau numerischer
Strukturen in den AC2-Programmen ATHLET und COCOSYS. Ger-
man. GRS 600. Köln; Garching b. München; Berlin; Braunschweig:
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Aug.
2020 (cit. on pp. IV, 1, 41).

/STE 23a/ Steinhoff, T. QA plan for NuT. Gesellschaft für Anlagen- und Reaktor-
sicherheit (GRS) gGmbH, Dec. 2023 (cit. on p. 83).

/STE 23b/ Steinhoff, T. and Jacht, V. NuT 2.0.2 Numerical Toolkit – User’s Manual.
GRS-P-10 / Vol. 1 Rev. 7. Gesellschaft für Anlagen- und Reaktorsicher-
heit (GRS) gGmbH. 2023 (cit. on pp. 90, 99).

/UNI 23a/ Univ. of Tennessee, Univ. of California, Berkeley, Univ. of Colorado
Denver, and NAG Ltd. LAPACK. 2023. url: https://www.netlib.

org/lapack (visited on 2023-10-17) (cit. on p. 68).

147

https://crascit.com/professional-cmake/
https://www.netlib.org/lapack
https://www.netlib.org/lapack

/UNI 23b/ Univ. of Tennessee, Univ. of California, Berkeley, Univ. of Colorado
Denver, and NAG Ltd. ScaLAPACK. 2023. url: https://www.netlib.

org/scalapack (visited on 2023-10-17) (cit. on p. 68).

/WEY 23/ Weyermann, F. et al. AC2 2023.0 – User Manual. GRS-P-15 / Vol. 1
Rev. 1. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH.
Dec. 2023 (cit. on pp. III, 1, 69).

148

https://www.netlib.org/scalapack
https://www.netlib.org/scalapack

Acronyms

AIG ATHLET input graphics

BC Building condenser

CD Continuous delivery
CI Continuous integration
CSC Compressed sparse column
CSR Compressed sparse row
CV Control volume

EC Emergency condenser

FiterRK Finite iteration Runge–Kutta [method/scheme]

GCSM General control simulation module within ATHLET

HCV Heat conduction volume
HECU Heat conduction module within ATHLET
HSZG Zittau/Görlitz University of Applied Sciences

INKA Integralteststand Karlstein
IVP Initial value problem

MPI Message passing interface

NC Non-condensable
NEUKIN Neutron kinetics module in ATHLET

ODE Ordinary differential equation

PC Priority chain
PETSc Portable, Extensible Toolkit for Scientific Computation

149

RK Runge–Kutta [method/scheme]
ROW Rosenbrock–Wanner [method/scheme]

SBTL Spline-based table look-up
SIWAP Verbesserungen der Simulation von Siedevorgängen in AC2 bei

lokalem Eintrag von Wärme in Wasserpools
SSC Steady state calculation

TDV Time dependent volume
TFD Thermo-fluid dynamics module within ATHLET
TFO Thermo-fluid dynamic object

150

List of Figures

Fig. 2.1 Difference between FTRIX blocks in ATHLET and THY 7

Fig. 2.2 ATHLET/THY coupling interface ... 8

Fig. 2.3 Schematic sketch of the Jacobian matrix of the coupled system 9

Fig. 2.4 Comparison of the momentum balances in ATHLET and THY......... 14

Fig. 2.5 Mass and energy flow rates ... 16

Fig. 2.6 AIG of the simple sample .. 20

Fig. 2.7 AIG of the most complex technical sample.................................. 22

Fig. 2.8 ATHLET-THY coupling interface above water pool 23

Fig. 2.9 Dimensioned sketch of the helium injection sample 24

Fig. 2.10 Helium injection rate .. 24

Fig. 2.11 AIG of the Helium injection .. 25

Fig. 2.12 Dimensioned sketch of the water pool heat-up sample 25

Fig. 2.13 ATLAS picture of the water pool.. 26

Fig. 2.14 Extrapolation scheme up to order three 36

Fig. 2.15 Calculation options for z0
i .. 38

Fig. 2.16 Process flow in NuT while executing an ODE method.................... 40

Fig. 2.17 Overview of the relationship between the TS wrapper and the ODE
and linear algebra classes in NuT ... 42

Fig. 2.18 Overview of the Jacobian matrix calculation process..................... 44

Fig. 2.19 Embedding NuT’s ODE feature .. 51

Fig. 2.20 f -evaluation paths in ATHLET .. 54

Fig. 2.21 Simple sample: Mass flow rate of non-condensable gases over time 59

Fig. 2.22 Simple sample: Time step size over time.................................... 60

Fig. 3.1 NuT-related software architecture within AC2 65

Fig. 3.2 Printing via C++ standard library and NuT log library in comparison . 66

Fig. 3.3 Example of using PETSc viewer functions with NuT’s logging library 66

Fig. 3.4 Example output of PETSc’s KSPView via NuT’s logging library 67

Fig. 3.5 Stages of CMake workflow .. 71

Fig. 3.6 Sequence of commands to invoke build processes from source 71

151

Fig. 3.7 NuT build dependencies ... 74

Fig. 3.8 Entity-relationship model of task automation for CI/CD 75

Fig. 3.9 CI/CD workflow using GitLab ... 76

Fig. 3.10 Merge request proposing new untested code 80

Fig. 3.11 Proposed new code lines are not covered by tests........................ 80

Fig. 3.12 Merge request proposing tested code .. 81

Fig. 3.13 Proposed lines are covered by tests .. 81

Fig. 3.14 Scheme of a GitLab merge train ... 82

Fig. 3.15 Organisation of groups, projects and members on GitLab 83

Fig. 3.16 AC2 development cycle ... 84

Fig. 3.17 Entity-relationship model of GitLab tools..................................... 85

Fig. 3.18 Pipeline that creates the complete AC2 package for distribution....... 85

Fig. 3.19 Cube model ... 89

Fig. 3.20 Visualization of tracing with custom events 90

Fig. 4.1 Flow chart of the SSC on high abstraction level 92

Fig. 4.2 Flow chart of the SSC on a medium abstraction level 93

Fig. 4.3 Simplified call graph of the SSC – left part 94

Fig. 4.4 Simplified call graph of the SSC – right part 95

Fig. 4.5 Heat flow through a HCV .. 97

Fig. 4.6 Flow chart of the SSC in DSTAR... 101

Fig. 4.7 Pressure iteration sketch ... 108

Fig. 4.8 Detailed flow chart of the SSC in DSTAR 110

Fig. 4.9 Simplified flow chart of the SSC in DGGT0 111

Fig. 4.10 Flow chart of the SSC in DGEQ0... 115

Fig. 4.11 Closed loop of a system with stagnant fluid 116

Fig. 4.12 Flow chart of the SSC in KPUSS... 117

Fig. 4.13 Flow chart of the SSC in DKPUMP ... 118

Fig. 4.14 Details of the SSC in HCSTA ... 120

Fig. 4.15 Simplified flow chart of the SSC in HCRODN 127

Fig. 4.16 Conditions for the concept "equal priority chains" 134

Fig. 4.17 Parallel connection of two resistors ... 135

152

Fig. 4.18 Idea for implementation of the "voltage concept" 136

Fig. B.1 ẋm,SR over xm for various slip ratios ... 162

153

List of Tables

Tab. 3.1 POP metrics ... 89

154

List of Codes

Code 4.1 Calculation of (4.10) in routine DZUK... 104

Code 4.2 Determination of the dominant phase... 105

Code 4.3 Description of the convergence criteria....................................... 107

Code 4.4 Iteration procedure of the ζ correction factors 113

Code 4.5 Correction of the ζ values.. 113

Code 4.6 Forward sweep for calculation of the layer temperature in first layer . 123

Code 4.7 Forward sweep loop for calculation of the layer temperatures 123

Code 4.8 Backward substitution .. 123

Code 4.9 Relaxation for calculation of the layer temperatures in case of poor
convergence... 124

155

A Appendix on details of WP1

A.1 Applying the chain rule for calculating the derivatives in (2.6)

Considering the notation from Fig. 2.3 the matrices A and T are easy to come by since
these are the matrices that the codes are able to determine anyway for their single
code computations. The problem to be solved is the calculation of the matrix values
of the off-diagonal submatrices LL and UR. The finally implemented procedure for
this purpose is described in Section 2.2.1. However, prior to this implementation, a
different approach was pursued, namely the application of the chain rule for calculating
the matrix values. Details of the idea behind this approach and why it was discarded
eventually are briefly discussed in the following.
For the sake of simplicity, the focus is on the UR matrix as the LL matrix can be build
analogously. The UR matrix describes the first order influence of perturbations in the
THY solution variables on the ODEs of the ATHLET system:

UR = ∂f

∂u
.

Applying the chain rule, it can be expressed as

∂f

∂u
= ∂f

∂αAT H

· ∂αAT H

∂αT HY

· ∂αT HY

∂u
≈ ∆f

∆αAT H

· ∆αAT H

∆αT HY

· ∆αT HY

∆u
. (A.1)

Note that all factors of the product are matrices. The quantities f , u, and α are
defined as in Section 2.1. For (A.1), α is further partitioned into αT HY (the coupling
variables as they are provided by THY) and αAT H (the coupling variables as they are
accepted and used by ATHLET). Between both of them exists a – simple or complex
– transformation function.
Regarding the determination of the three factors in (A.1), it can be stated that

• the first factor ∆f
∆αAT H

can be completely calculated in the ATHLET process,

• the last factor ∆αT HY

∆u
can be completely calculated in the THY process,

• the calculation of the central factor ∆αAT H

∆αT HY
needs information from both processes.

In an early stage of the project, this approach was partially implemented in ATHLET
and COCOSYS development branches. However, for the calculation of the difference
quotient ∆αAT H

∆αT HY
, knowledge of the internals of the transformation function is needed.

It finally turned out that the approach of calculating the derivatives by combining
the idea of internal numerical differentiation with finite differences – as described in
Section 2.2.1 – is simpler in that respect and therefore favorable.

157

A.2 Linear systems in a monolithic approach by means of a TBN ansatz

The Tangent Block Newton (TBN) ansatz discussed in /KEI 99/ may be applied to
the linear systems that arise in a monolithic approach. The idea is to solve the linear
systems related to the single ODE systems as usual and then to apply a correction
to reflect the influence of the overall system. Still, the full Jacobian information is
required but no system of the dimension of the overall system needs to be solved.

The drawback, however, is poor scalability since the number of required linear systems
to solve is proportional to the number of coupling quantities in α and β of (2.3)
combined. With nc denoting the number of coupling interfaces the number of coupling
quantities is in the range of O(10 · nc). This is considerable and impacts performance.
Furthermore, after establishing the composition of a matrix out of four submatrices
in NuT, see Section 2.3.2.1, the linear systems to solve can be treated exactly the
same way as before.
In summary, the drawbacks of a TBN approach makes it inferior to the implemented
logic. Hence, the idea was not pursued any further.

A.3 On the dependency of coupling variables

An example is given to illustrate the fact that the coupling input β from (2.3) does not
solely depend on y, but also on α.
Given the situation that a mixture of NC gases and vapor is flowing from the THY into
the ATHLET simulation domain, the component enthalpy flow rates – such as the
vapor enthalpy flow rate Ḣvapor – on the coupling junction are calculated by ATHLET
and provided to THY as boundary conditions; obviously, Ḣvapor is a component of β.
For the sake of simplicity, let

β = Ḣvapor.

Since ATHLET applies an upwind (a. k. a. donor cell) scheme for the determination
of flow quantities, among other things, Ḣvapor depends on the specific enthalpy of
vapor in the coupling CV:

β = Ḣvapor (hvapor) .

The specific vapor enthalpy is calculated as a function of temperature and partial
vapor pressure in the coupling CV:

β = β
(
hvapor (Tcopl, pvapor,copl)

)
.

158

The functional dependency hvapor (Tcopl, pvapor,copl) is evaluated in ATHLET by a non-
trivial fluid property subroutine. The partial vapor pressure is calculated from the
static pressure in the coupling CV and the volume fraction of vapor:

β = β
(
hvapor (Tcopl, pcopl, xvapor,copl)

)
= β (Tcopl, pcopl, xvapor,copl) .

The quantities Tcopl, pcopl, and xvapor,copl are all provided by THY and are therefore
components of α. Tcopl is a component of u, too, and xvapor,copl can be simply derived
from u. The quantity pcopl, however, is calculated in THY as the sum of all partial pres-
sures, which in turn depend on u, but in a non-trivial way (the non-trivial dependency
is implemented in a THY fluid property subroutine). This yields:

β = β (Tcopl, pcopl, ...) = β
(
Tcopl,

∑
ppart (u)︸ ︷︷ ︸

non-trivial dependency,
calculated in THY

, ...
)
.

And this means

β = β (α) .

Of course, β = Ḣvapor depends not only on hvapor, but on ṁ, the total mass flow rate
on the junction, too. Since ṁ is a component of y, one obtains

β = β (ṁ, hvapor) = β (y, α) .

159

B Appendix on details of WP3

The iteration of enthalpy and mass quality is described in Section 4.4.1. Here, the
focus is on the discussions of the functions roots are sought for. It is pointed out again
that xm, hdom, p and ṁ are the solution variables of the 4-equation model that is used
in the SSC.

B.1 Müller’s method

Müller’s method is used to iteratively find the roots of an equation. Thermal equilibrium
is assumed as well as that both phases (liquid and vapor) have saturation conditions.
The variable quantity for Müller’s method is xm. The value xMüller

m that is found by the
method is afterwards used as initial value for Newton’s method.

B.1.1 Initial value

Müller’s method is a modified bisection method. Initial values are the endpoints of
the interval x⟨0,low⟩

m and x⟨0,up⟩
m :

x⟨0,low⟩
m = 10−12, (B.1a)

x⟨0,up⟩
m = etar − h′ (p)

∆hv (p) . (B.1b)

B.1.1.1 Why is x⟨0,up⟩
m a reasonable initial value for the upper bound?

In Section 4.4.1 it is shown that

ẋm,SR (xm) = etar − h′

h′′ − h′ = etar − h′

∆hv

(B.2)

would be a root of the function (B.6). Furthermore, it is claimed that usually ẋm,SR (xm) >

xm holds true so that (B.1b) is not a root of (B.6), but an upper bound. Below, it is
briefly demonstrated why this claim is usually true (and in which cases it is not).
In mechanical non-equilibrium, the vapor and liquid phases usually do not have the
same flow velocities. The ratio of vapor velocity compared to liquid velocity is called
the slip ratio SR:

SR = vvap

vliq
. (B.3)

161

The slip ratio has to be taken into account when formulating the flow quality as a
function of the static void fraction α:

ẋm,SR = 1
1 + ρliq

ρvap
· 1−α

α
· 1

SR
. (B.4)

A slip ratio of 1 corresponds to mechanical equilibrium so that the flow quality equals
the static quality:

ẋm,SR (SR = 1) = xm = 1
1 + ρliq

ρvap
· 1−α

α

. (B.5)

Usually, the velocity of the vapor is higher than that of the liquid which means that
the slip ratio is larger than one, which again means that ẋm,SR > xm, as can be seen
in (B.4) or, graphically represented, in Fig. B.1.

0.0 0.2 0.4 0.6 0.8 1.0
xm ()

0.0

0.2

0.4

0.6

0.8

1.0

x m
,S

R
(

)

Slip Ratio = 1.0
Slip Ratio = 2.0
Slip Ratio = 5.0
Slip Ratio = 0.5

Fig. B.1 ẋm,SR over xm for various slip ratios. Note that the slip ratio is typically
larger than one. Vapor and liquid density were chosen as steam/water
properties at 100 °C and saturation pressure.

This in turn means that if xm = etar−h′

∆hv
as given in (B.1b), the corresponding ẋm,SR(xm)

will usually be larger, thus yield an ecur > etar, and serve as an upper bound for the
bisection.

162

Of course, problems are expected in the case of counter-current flow (SR < 0) or if the
liquid flows faster than the vapor (SR < 1). Apparently, the ATHLET developers tried
to deal with this issue in the past as can be concluded from deactivated code lines in
the respective routines DSLIP and DFCTXM. The way the SSC in its current state treats
these cases (which it obviously does successfully), needs more investigation.

B.1.2 Function fM (xm)

The root of the following function is searched for:

fM (xm) = etar − ecur

∆hv (p) . (B.6)

With

etar = HPKI(I) (B.7)

from DENTH (resulting there from the solution of a system of linear equations) and

ecur =ẋm,SR · [h′′ (p) + ekin (ṁ, p, ẋm,SR)] +

+ (1 − ẋm,SR) · [h′ (p) + ekin (ṁ, p, ẋm,SR)] .
(B.8)

(B.6) becomes

fM (xm) = HPKI (I) − ẋm,SR · [h′′ (p) + ekin (ṁ, p, h′ (p) , ẋm,SR)]
∆hv (p) +

+(1 − ẋm,SR) · [h′ (p) + ekin (ṁ, p, h′ (p) , ẋm,SR)]
∆hv (p) .

(B.9)

Here, ẋm,SR (SR stands for slip ratio) is no ATHLET solution variable and depends in
a non-trivial way on xm:

ẋm,SR = ẋm,SR (xm, SR)

= ẋm,SR
(
xm, SR (xm, p, h′ (p) , h′′ (p) , ṁ)

)
.

(B.10)

The quantity ṁ is the mass flow out of a CV. It is, contrary to the other quantities,
junction related, not CV related. The junctions are staggered to the CV.
Note: If CC > 0.0 is set in the ATHLET input under the control word MISCELLAN,
the calculation of SR does not only depend on the conditions of the donor CV but
also on the conditions of the downstream CV. This results in even more complex
dependencies compared to (B.9). Furthermore, due to the successive procedure "CV
by CV", quantities are used for the calculation of SR that have not yet been updated.
For the sake of simplicity, only the donor cell mode CC = 0.0 is treated here.

163

B.2 Newton’s method

The system under consideration consists of two scalar functions, namely, fN (xm, hdom)
and gN (xm, hdom). Newton’s method is applied together with the 4-equation model,
which means that one phase has saturation conditions and the other phase (the
dominant phase) may deviate from saturation conditions. For simplicity, it is assumed
here that the liquid phase is the dominant phase. For systems with dominant vapor
phase the procedure is analogous. The variable quantities for Newton’s method are
xm and hdom.

B.2.1 Initial values

The initial values of Newton’s method are as follows:

• x⟨0⟩
m = xMüller

m ,

• h
⟨0⟩
dom = h′ (if liquid phase dominant; else h

⟨0⟩
dom = h′′).

B.2.2 Function fN (xm, hdom)

The root of the following function is searched for:

fN (xm, hdom) = etar − ecur

∆hv (p) . (B.11)

Contrary to the definition in (B.8) ecur now also depends on hdom:

ecur =ẋm,SR · [h′′ (p) + ekin (ṁ, p, hdom, ẋm,SR)]

+ (1 − ẋm,SR) · [hdom + ekin (ṁ, p, hdom, ẋm,SR)] .
(B.12)

With (B.7), (B.11) becomes:

fN (xm, hdom) = HPKI (I) − ẋm,SR · [h′′ (p) + ekin (ṁ, p, hdom, ẋm,SR)]
∆hv (p) +

+(1 − ẋm,SR) · [hdom + ekin (ṁ, p, hdom, ẋm,SR)]
∆hv (p) .

(B.13)

Note the similarity of (B.13) and (B.9). As for Newton’s method, thermal equilibrium
is not assumed and one phase (here the liquid phase) may deviate from saturation
conditions, h′ has become hdom.
ẋm,SR is still no ATHLET solution variable and depends in a non-trivial way on xm and
hdom:

ẋm,SR = ẋm,SR (xm, SR)

= ẋm,SR
(
xm, SR (xm, p, hdom, h′′ (p) , ṁ)

)
.

(B.14)

Regarding ṁ, note the comment in Section B.1.2.

164

B.2.3 Function gN (xm, hdom)

The root of the following function is searched for:

gN (xm, hdom) = ẋm,SR − xm,MB. (B.15)

Here ẋm,SR denotes the mass flow quality of the junction with outflow of the considered
CV. The mass flow quality results from the drift model and its calculation is according
to (B.14). xm,MB is the mass quality of the considered CV, which results from mass
balance. For mass balance the model equations of Sideman and of Plesset & Zwick
are applied for the calculation of evaporation or condensation rate. The calculation of
xm,MB in CV I is as follows:

xm,MB (I) = ṁevap +∑
ṁin,vap∑

ṁin,vap +∑
ṁin,liq

= ṁevap (xm, hdom, p) +∑
ṁin,vap∑

ṁin

= ṁevap (xm, hdom, p) +∑
ṁin · ẋm,SR (K)∑

ṁin

=
ṁevap (xm, hdom, p) +∑

ṁin · ẋm,SR
(
xm (K) , hdom (K)

)
∑

ṁin
.

(B.16)

As can be seen from (B.14) and (B.16), the used models (evaporation or condensation
rate and drift) are functions of xm and hdom.
If the dependencies are shown in a very simplified way, (B.15) becomes

gN (xm, hdom) = ẋm,SR (xm, hdom)

− xm,MB
(
xm, hdom,

∑
xm (K) ,

∑
hdom (K)

)
.

(B.17)

Here, xm and hdom are abbreviated forms for xm (I) and hdom (I) and stand for the
mass quality or specific enthalpy of the dominant phase in the considered CV I, while
xm (K) and hdom (K) are the corresponding physical quantities from all junctions that
are connected with CV I and that are located upwind of that CV. These values are
not changing within Newton’s iteration for CV I, but during the outer iteration loop of
the SSC.

165

92

Schwertnergasse 1
50667 Köln
Telefon +49 221 2068-0
Telefax +49 221 2068-888

Boltzmannstraße 14
85748 Garching b.München
Telefon +49 89 32004-0
Telefax +49 89 32004-300

Kurfürstendamm 200
10719 Berlin
Telefon +49 30 88589-0
Telefax +49 30 88589-111

Theodor-Heuss-Straße 4
38122 Braunschweig
Telefon +49 531 8012-0
Telefax +49 531 8012-200

www.grs.de

Gesellschaft für Anlagen-
und Reaktorsicherheit
(GRS) gGmbH

ISBN 978-3-910548-49-7

	Abstract
	Kurzfassung
	1 Introduction
	1.1 General remarks

	2 WP1 – Extending AC2's ODE-Numerics
	2.1 Terminology and basic relations
	2.2 Preparation of ATHLET and THY to establish a physically consistent coupling within the context of doable numerics
	2.2.1 Building a Jacobian matrix for the overall system – feasibility considerations
	2.2.2 Derivation of a concept to achieve physical consistency
	2.2.3 Samples for testing the ATHLET-COCOSYS coupling

	2.3 ODE-numerics for single and coupled systems
	2.3.1 Establishing a feature in NuT to execute certain ODE-methods
	2.3.2 Building a Jacobian matrix for the overall system – implementation
	2.3.3 Adapt control logic in ATHLET and THY
	2.3.4 Running a test case

	3 WP2 – Improving NuT and AC2 on the Level of Software Engineering
	3.1 Reviewing the NuT code regarding the potential for refactoring
	3.1.1 Software architecture
	3.1.2 Logging
	3.1.3 Maintenance
	3.1.4 CPU affinity
	3.1.5 Refactoring NuT's documentation

	3.2 Development and automation of CI processes in GitLab for NuT and AC2
	3.2.1 Build techniques
	3.2.2 CI/CD
	3.2.3 Code analysis in NuT
	3.2.4 Merge requests workflow
	3.2.5 Project organisation
	3.2.6 Improving software development on the level of AC2

	3.3 Assessment of the parallel performance of NuT

	4 WP3 – Reviewing ATHLET's Steady State Calculation on a Conceptual Level
	4.1 General objective of the SSC
	4.2 Procedure of the SSC
	4.3 Overview of currently used algorithms and thermal-hydraulic models
	4.3.1 Iteration loops
	4.3.2 Algorithms for the solution of equation systems

	4.4 Detailed description of relevant algorithms
	4.4.1 Iteration of enthalpy and mass quality
	4.4.2 Pressure iteration for TFOs with flowing fluid
	4.4.3 Pressure iteration for TFOs with stagnant fluid
	4.4.4 Iteration of the pump rotational speed
	4.4.5 Iteration of layer temperatures

	4.5 Comparison of the used methods with state-of-the-art numerical algorithms
	4.5.1 NuT integration

	4.6 Suggestions for improvement of the SSC
	4.6.1 Improvements accomplished within the current project
	4.6.2 Improvements applicable for the current methodology of the SSC
	4.6.3 Improvements that need major modifications of the methodology of the SSC
	4.6.4 Further suggested modifications

	5 Conclusions and Outlook
	References
	 Acronyms
	List of Figures
	List of Tables
	List of Codes
	A Appendix on details of WP1
	A.1 Applying the chain rule for calculating the derivatives in (2.6)
	A.2 Linear systems in a monolithic approach by means of a TBN ansatz
	A.3 On the dependency of coupling variables

	B Appendix on details of WP3
	B.1 Müller's method
	B.1.1 Initial value
	B.1.2 Function fM (xm)

	B.2 Newton's method
	B.2.1 Initial values
	B.2.2 Function fN (xm, hdom)
	B.2.3 Function gN (xm, hdom)

