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by digitizing historical pollution data to show that the policy led to an immediate reduction 

in black smoke concentrations. We then merge data on the exact location, boundary and 

month of introduction of SCAs to individual-level outcomes in older age using individuals’ 

year-month and location of birth. We show that exposure to the programme increased 

individuals’ birth weights as well as height in adulthood. We find no impact on their years 

of education or fluid intelligence.
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1. INTRODUCTION

The early-life environment is crucial in shaping individuals’ outcomes, with potentially life-long,

irreversible impacts in older age. The existing “Developmental Origins” literature has mostly

focused on the long-term impacts of adverse nutritional, health and economic conditions during

the prenatal and early childhood period (for reviews, see e.g., Almond and Currie, 2011; Almond

et al., 2018). There is relatively little empirical evidence however, on the prolonged and cumulative

consequences of early-life pollution exposure, despite the well-known adverse contemporaneous

e↵ects on infants’ health (see e.g., Gra↵ Zivin and Neidell, 2013, for a review). One of the main

reasons for this is a lack of high-quality historical pollution data. Evidence on the long-term e↵ects

however, is important, since ignoring these substantially underestimates the total welfare e↵ects

caused by exposure to environmental toxins.

This paper addresses this directly, estimating the immediate and long-term impacts of a UK

pollution reduction programme introduced in the mid 1950s. We deal with the general lack of

historical pollution data by digitising local monthly measurements of black smoke and sulphur

dioxide for a 20 year period, covering 1954 to 1973. We then exploit the staggered introduction of

so-called “Smoke Control Areas” (SCAs) – i.e., zones introduced by local authorities that banned

smoke emissions from residential as well as non-residential dwellings.

We study both (i) the e↵ect of the introduction of SCAs on local pollution levels, and (ii)

their (long-term) impact on individuals’ human capital and health. The former relies on our digi-

tization of historical monthly pollution measurements. The latter uses UK Biobank data: a large

population-based cohort of approximately 500,000 individuals living in the United Kingdom for

whom we observe their year-month of birth, as well as their eastings and northings of birth. The

data also include rich information on individuals’ later life health and economic outcomes, linked

to administrative records. We focus on those born in England and merge in the exact location,

boundary, and month of introduction of all SCAs introduced in English County Boroughs (CBs),

obtained from Fukushima (2021). CBs are local authorities with administrative autonomy due

to their population size or historical significance (i.e., relatively urban areas). Our identification
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strategy exploits the spatial and time variation in the staggered roll-out of Smoke Control Areas

using an event study approach and we show that our results are robust to using group-time average

e↵ects that account for staggered treatment (Sun and Abraham, 2021; Callaway and Sant’Anna,

2021; Borusyak et al., forthcoming). In other words, we compare measurement stations (individ-

uals) located (born) in or downwind of smoke control areas before and after its creation, relative

to those of a control group of never-treated stations (individuals), whilst controlling for weather

variation, local area-specific trends in the outcomes of interest (and individual-level controls).

With that, we provide one of the first estimates of the dynamic and time-varying impact of

the introduction of Smoke Control Areas in the 1950s and 1960s on local pollution levels. We

also explore the determinants of the timing of SCA introduction, and investigate whether areas

selected to become smokeless were systematically di↵erent from those not selected. We show

that – as expected – more densely populated CBs introduced SCAs earlier. We find no evidence

however, that the timing of SCA introduction is related to the socio-economic composition of local

areas, nor to pre-programme pollution levels, suggesting that the timing of SCA introduction is

largely unrelated to local area characteristics. We do find that areas that were selected to become

smokeless during this period were di↵erent from areas not selected within the same CB, in that

they were slightly less polluted and of higher SES prior to SCA introduction. We describe these

di↵erences in detail and directly account for them in our analyses.

We then examine the immediate as well as long-term impacts of the introduction of Smoke

Control Areas on individuals. Whilst there is a large literature on the contemporaneous e↵ects of

pollution on children’s birth outcomes, we are aware of only a handful of papers that empirically

examine the causal impacts of early-life pollution exposure on outcomes in older age.1 All of these

exploit the 1952 London smog as an exogenous pollution event and show that those exposed to the

smog are less likely to have a degree, work fewer hours, have lower fluid intelligence and are more

likely to have developed respiratory disease (Bharadwaj et al., 2016; Ball, 2018; von Hinke and
1There is also an increasing literature studying the e↵ects of pollution on outcomes in childhood or early adult-

hood, showing negative impacts on e.g., human capital formation, labour force participation and wages (Sanders,
2012; Isen et al., 2017; Bharadwaj et al., 2017; Persico, 2020; Persico and Venator, 2021; Heissel et al., 2022).
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Sørensen, 2023; Martin-Bassols et al., 2024).

Compared to this literature that exploits a single extreme event, we investigate the impact of a

large-scale pollution reduction programme, the aim of which was to improve air quality and with

that, public health. This is similar to Isen et al. (2017), who exploit the introduction of the 1970

Clean Air Act Amendments that forced US counties with pollution levels that exceeded maximum

concentrations to reduce their emissions but left others una↵ected. As we discuss in more detail

in Section 2, the 1956 UK Clean Air Act that allowed for the introduction of SCAs was one of the

most comprehensive and influential pieces of legislation of its time and marked a significant step

in national air pollution control. It was among the first to address industrial as well as domestic

sources of air pollution on a national scale. The introduction of SCAs required all coal burning

to be replaced with smokeless fuels, which was considered an innovative approach to reducing

pollution from residential dwellings; a major source of pollution at the time. The Clean Air Act

was also one of the first pieces of legislation to clearly link air pollution to public health and to

take steps to mitigate its impacts. It subsequently served as a model for other countries to tackle

air pollution and protect public health (e.g., the 1963 US Clean Air Act). We provide the first

empirical analysis of the long-term consequences of the Act.

Our findings show that the roll-out of Smoke Control Areas substantially and persistently re-

duced black smoke emissions for at least five years post-introduction. We find no consistent im-

pacts on sulphur dioxide. This is not surprising since, first, SCAs targeted black smoke only and

second, bituminous coal (the predominant form of heating at the time) and smokeless fuel (its re-

placement) are known to release similar amounts of sulphur dioxide (Mitchell et al., 2016).2 When

studying the impacts on individuals’ health and human capital outcomes, we find that the introduc-

tion of SCAs led to an increase in weight at birth as well as height in adulthood. In contrast, we

find no consistent evidence of impacts on years of education and intelligence, though our results
2The vast majority (>98%) of particles emitted from coal combustion are smaller than 2.5 micrometers in diameter

(also referred to as PM2.5); su�ciently small to penetrate the lung system and reach the blood circulation and is
therefore considered particularly harmful. Black Smoke consists of fine particulate matter and is emitted mainly from
fuel combustion. Since pollution from road tra�c was still minimal at the time, the vast majority of PM2.5 would have
come from coal.
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are suggestive of some heterogeneity by SES, with these outcomes more likely to improve in high

SES areas. These findings are robust to a host of sensitivity checks, but they are in contrast with the

studies above that find long-term deteriorations of human capital in response to pollution exposure.

We highlight two possible reasons for this. First, rather than exploring a huge but transitory

pollution spike (i.e., the London smog), we examine the long-term consequences of smaller but

persistent changes in pollution exposure. It is possible that such di↵erent patterns of exposure

di↵erentially impact individuals’ short as well as longer-term outcomes. Second, the di↵erent

estimates may reflect di↵erences in exposure to specific pollutants. Indeed, the 1952 London smog

dispersed a range of toxins, including tar, carbon monoxide, carbon dioxide and sulphuric acid

(Wilkins, 1954). In contrast, the introduction of SCAs targeted black smoke only, since a reduction

in gaseous pollutants was not considered feasible at the time. The evidence suggests that the main

change in moving from bituminous coal to smokeless fuel is a drop in particulate matter, with no

changes in e.g., nitrogen oxides (including nitrogen dioxide), sulphur oxides (including sulphur

dioxide) and carbon monoxide (Mitchell et al., 2016). Indeed, one of the strengths of this study is

that we directly estimate this “first stage”, showing clear reductions in black smoke concentrations

but not sulphur dioxide. Our findings therefore suggest that pollutants other than black smoke may

be responsible for the adverse e↵ects on human capital, whereas black smoke a↵ects fetal and child

growth.

We explore three sources of heterogeneity in the estimated impact of SCAs. In addition to het-

erogeneity by gender and SES, we examine whether the impact of SCAs varies by individuals’ ge-

netic “endowments”, as measured by one’s polygenic score (also known as a polygenic index) that

is specific to the outcome of interest. We consider genetic heterogeneity for three reasons. First, we

are interested in whether the significant public health investment in smoke control a↵ected genetic

inequalities. Gene-by-environment analysis allows us to explore this empirically. Although we

cannot change our genetic make-up, we can change the environment. Hence, understanding the ex-

tent to which (local) government policies a↵ect population subgroups di↵erently informs us about

potential impacts on inequalities in relevant (health and economic) outcomes. Second, explor-

5



ing gene-by-environment interplay helps us improve our understanding of the health and human

capital production function. This literature emphasizes the role of complementarities between en-

dowments and investments, suggesting that individuals with higher endowments benefit more from

subsequent investments (Becker and Tomes, 1986; Cunha and Heckman, 2007). Muslimova et al.

(2020) suggest the use of genetic information to capture such endowments, exploring its interaction

with (a proxy for) exogenous parental investments.3 We follow this literature, but instead examine

the interplay with public health investments. As such, positive gene-by-environment interactions

are consistent with such complementarities. Third, finding evidence of gene-by-environment inter-

play provides evidence against arguments of genetic or environmental determinism. This in turn is

crucial in the debate about whether one’s success in life is due to e↵orts or circumstance (see e.g.,

Roemer, 1993; Roemer, 1996).

Our genetic heterogeneity analyses provide suggestive evidence that the introduction of SCAs

increased inequalities in population health but not in economic outcomes. Indeed, we find that

the introduction of SCAs led to larger increases in birth weight and height among those with

a high polygenic score for these outcomes. These results are consistent with the existence of

complementarities in the health production function (see also van den Berg et al., 2023), but not

the human capital production function (as in Muslimova et al., 2020).

The rest of the paper is structured as follows. Section 2 provides the background to roll-out of

Smoke Control Areas in England and Section 3 describes the data sources used in our analyses.

We set out the empirical strategy in Section 4, and discuss the results in Section 5. We explore the

sensitivity of our findings in Section 6 and conclude in Section 7.

2. BACKGROUND

One of the oldest accounts on the impact of smoke on health was addressed to King Charles II in

1661 in a treatise called “Fumifugium; or The Inconvenience of the Aer and Smoake of London
3Such complementarity analysis would ideally use parent-child trio or sibling data (as in Muslimova et al., 2020)

to allow one to also isolate exogenous endowments. However, although there are around 40,000 siblings in the UK
Biobank, our analysis sample only contains about 160 sibling pairs, making within-sibling analysis infeasible.
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Dissipated” (Evelyn, 1661). This suggested that smoke pollution shortened the lives of Londoners.

Despite this, the industrial revolution, the massive migration of workers to urban areas, and the

overall increase in population meant that the smoke problem would continue to escalate for many

centuries. Only after the Great London Smog in December 1952, which brought premature death

to thousands of citizens, lawmakers and the public became fully aware of the potential damage of

smoke, which led to the swift passing of the Clean Air Act in 1956 (Clean Air Act 1956).

Before the Clean Air Act, the UK’s primary source of air pollution was emission from burning

bituminous coal, with coal fires being the predominant form of heating in most dwellings far into

the 1960s. The 1956 Clean Air Act consisted of two main parts. In the first part, the Act prohibits

the emission of dark smoke from all buildings. The Act defines smoke as fly ash, grit, and gritty

particles, and the shade of the smoke was determined by comparing the colour of the smoke against

the Ringelmann Chart. The fine for breaching the law was a maximum of ten pounds for a private

dwelling and 100 pounds for all other buildings. While the regulation contributed to improving

the air quality in the nation, many exemptions to the law and generous lead times of up to seven

years for industries hampered its full potential. In contrast, the second part of the law gave local

authorities across the UK the mandate to introduce so-called Smoke Control Areas (SCAs), which

banned any smoke emissions inside the area. At the start, the fine for violating a smoke control

order carried a penalty of up to ten pounds per o↵ense which increased to 20 pounds in the revised

1968 Clean Air Act. It is important to note that, while the Act regulates the emission of smoke,

it does not target gaseous pollutants that are present in coal such as sulfur dioxide (SO2). In fact,

the reason for not targeting SO2 emissions was that its elimination was thought unattainable at the

time since SO2 is equally present in bituminous and smokeless fuel.4

Local authorities had to apply to the Ministry of Housing and Local Government to implement

a Smoke Control Area. This application process had a number of ‘milestone dates’ (National

Society for Clean Air, 1956). First, the local council would survey the area, propose a boundary and
4SO2 is formed by the oxidation of sulfur in fuel combustion. It can cause direct harm to health by damaging the

lung capacity and indirectly as a secondary particulate matter when reacting to other airborne particulate matters.
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operation date, and announce it to the public in a local newspaper as well as in the London Gazette.5

The ‘submission date’ refers to the date on which the proposal was submitted for review to the

Ministry of Housing and Local Government, usually leading to the Ministry confirming, perhaps

with adjustments, the agreed date of operation and boundary for the proposed SCA. The SCA

would then come into e↵ect at the ‘operation date’, after which the monitoring and enforcement

measures would start.

To comply with a smoke control order, the dwelling owner could substitute bituminous coal

for (manufactured) smokeless fuel such as anthracite or gas (if available). For older dwellings, this

typically required owners to adapt their appliances to new fuel types; 70% of the costs associated

with such conversions were reimbursed by the local council, as long as the adjustment work was

done before the ‘operation date’ (National Society for Clean Air, 1958; National Society for Clean

Air, 1960). The local council would in turn receive a 40% (four-seventh of 70%) contribution from

the exchequer to cover these additional costs; the other 30% was borne by the council. The total

costs for these adaptations were not negligible, highlighting the willingness of local authorities and

central government to control pollution levels despite significant expenses associated with them.6

3. DATA AND DESCRIPTIVE STATISTICS

We combine four sources of data for our main analysis: (1) exact locations, boundaries and ‘mile-

stone dates’ for all smoke control areas introduced in County Boroughs between 1957 and 1973,

(2) weather data for the same period, (3) monthly measurements of black smoke and sulphur diox-

ide for the years 1954-1973, and (4) individual-level data from the UK Biobank that includes

residential location at birth as well as individuals’ human capital and health outcomes at older ages

for cohorts born before and after the introduction of smoke control areas. We discuss each of these

in more detail below. To di↵erentiate between the data used to explore the impact on levels of
5Local authorities were free to decide SCA’s boundaries and operation dates but were required to provide a mini-

mum of six months’ notice before operation.
6For example, She�eld local authority spent approximately 2.3 million pounds (26 million pounds in 2023 prices)

on reimbursement of adjustment work to complete the district’s smoke control programme during 1957–1972 (Shaw,
1972).
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pollution and the e↵ect on individual outcomes, we distinguish between the “pollution panel” and

the “individual-level data” respectively.

3.1. Smoke Control Areas

We use the data from Fukushima (2021) that record the exact location, boundaries and year-month

of submission and operation for all 1,027 smoke control areas that were introduced in so-called

County Boroughs (CBs) across England by 1973. These data come from multiple sources: local

historical archives, notices in historical editions of the London Gazette, relevant Medical O�cer

of Health reports, as well as historical issues of “Smokeless Air”; a quarterly publication by the

National Smoke Abatement Society (see, e.g., National Society for Clean Air, 1958). We restrict

our attention to SCAs in CBs only, as these are predominantly residential areas. Indeed, although

they only make up ⇠3% of the total land area, they cover over a third of the English population (35

% according to the 1951 Census).

We further collect data on the universe of SCAs (rather than those in CBs only) introduced from

September 1958 to December 1973. These are reported by National Smoke Abatement Society,

but they are only available at a more aggregate level (year-quarter rather than year-month). More

importantly, they do not provide SCA boundaries, meaning we cannot pinpoint their exact location

and shape within a CB. Our main empirical analysis therefore focuses on the exact boundaries and

year-month of submission and operation of SCAs in County Boroughs only.7 The more aggregated

data however, are useful for descriptive purposes, showing the extent to which local governments

engaged with the new legislation and introduced areas of smoke control. Indeed, Figure 1 uses

these data (Baker et al., 2024b) to present the number of submitted SCAs in England by year.8

This shows a steady increase in the number of SCAs during this time, reaching over 4,000 by

1973. Figure A.1 in Appendix A plots the spatial distribution of SCAs across England in 1973.

Although any local authority could submit an application for a new SCA, the figure shows that
7We use the information on the universe of SCAs in our robustness analysis to identify geographical areas outside

CBs that never introduced any SCA within our period of interest; see Section D.1.
8Although the first smoke control areas were introduced in 1957, shortly after the passing of the 1956 Clean

Air Act, their exact ‘milestone dates’ were not recorded. We therefore only report the number of SCAs from 1958
onwards.
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they are concentrated in and around urban areas such as County Boroughs. While this may suggest

that more densely populated areas were more likely to implement SCAs, and to do so earlier than

other districts, we show in Appendix B that conditional on population density, the timing of SCA

implementation across CBs is not strongly or systematically driven by predetermined district-level

characteristics (i.e., socioeconomic composition), nor by pre-treatment pollution levels.

Figure 1: Smoke control areas in England by year and status.
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When estimating the impact of the introduction of SCAs, we drop 15 out of the total 85 CBs be-

cause of significant boundary changes during our study period (e.g., total/partial splits and merges

with neighbouring local authorities that make it impossible to consistently observe them over time).

Of the remaining 70 CBs, 55 adopted at least one SCA before 1974, and 15 did not. We refer to

these as “adopting” and “non-adopting” CBs, respectively.9

9The following 15 CBs are dropped due to significant boundary changes: Croydon, Derby, Dudley, East Ham,
Hartlepool, Middlesbrough, Smethwick, Teesside, Torbay, Walsall, Warley, West Bromwich, West Ham, West Hartle-
pool, Wolverhampton . Table A.2 lists the CBs remaining in our analyses by adoption status. The “non-adopting” CBs
include those that either never adopted a SCA or only adopted one in greenfield land areas within their jurisdictions
(i.e., undeveloped land used for agriculture or landscape design).

10



3.2. Weather

Given the importance of the weather for pollution dispersion as well as individuals’ health (see

e.g. Hanlon et al., 2021), we merge in daily data on wind speed, wind direction, precipitation, and

temperature from the ERA5 reanalysis data (Hersbach et al., 2020). These have an approximate

grid resolution of 25km and we assign weather measurements to SCAs, stations, and individuals

by linking them to the nearest grid point. For SCAs, we link to its centroid, while we use the actual

measurement and birth locations for stations and individuals, respectively.

We use these weather data in two ways. First, we directly control for weather conditions in

our analyses, averaging individuals’ exposure to the weather conditions during the prenatal period

and the first two years of life. Second, we use the historical weather data to identify stations that

are downwind from an SCA, and therefore potentially indirectly a↵ected by its introduction. We

discuss this in more detail below.

3.3. Pollution

To construct our “pollution panel”, assessing the impact of the introduction of SCAs on local air

pollution, we digitise six years of monthly pollution measurements and station locations from the

Department of Scientific and Industrial Research (1954–1961).10 We combine these with mea-

surements and station locations for 1961–1973 (DEFRA, 2022), allowing us to construct a panel

of monthly black smoke and sulphur dioxide levels taken at measurement stations across England

between 1954 and 1973. Note that this is an unbalanced panel, with fewer measurement stations

at the start of the observation period and new ones being introduced over time. Indeed, we do not

observe any pollution measurements in non-adopting CBs until 1962 when the first measurement
10The pollution data from 1954-1960 comes from Fukushima (2021); the 1961 pollution data are from Baker et al.

(2024a). The data were collected by the world’s first coordinated national air pollution monitoring network: the UK
Investigation of Atmospheric Pollution, run by the Warren Spring Laboratory. Historically, it monitored and compiled
data on two main pollutants: black smoke and sulfur dioxide. Black smoke was measured using smoke samplers,
drawing 50 cubic meters of air through a white filter paper over 24 hours. The density of the deposit was then
assessed using a reflectometer. Sulphur dioxide was measured by drawing the same sample of air through a chemical
solution that reacts with sulphur dioxide to form sulphuric acid. The measured acidity of the solution was then used
to approximate the concentration of sulphur dioxide in the air sample. Loader (2002) gives a detailed description of
these processes in the context of the monitoring network.

11



stations in these CBs were introduced; we come back to this below.

We assign pollution stations to SCAs as well as CBs by projecting the stations’ locations

onto our digitised SCA boundaries and the 1971 CB boundaries (University of Portsmouth, 2011;

Southall, 2011), respectively. We define stations located inside a SCA as ‘treated’, and stations

in non-adopting CBs as ‘never-treated’ (controls). When a CB is only partly covered by one (or

more) SCA, we add stations that are inside the CB but outside the SCA boundaries to the group

of ‘never-treated’ stations. We show the robustness of our results to dropping these altogether in

Section 6 below.

Starting from 160,833 station-year-month observations for black smoke and 156,395 for sul-

phur dioxide, we restrict our pollution panel as follows. First, since our SCA boundary data are

restricted to stations located in CBs, we drop those located outside CBs, reducing our sample to

52,234 and 50,803 observations for black smoke and sulphur dioxide respectively. Second, we

include only stations in adopting or non-adopting CBs, dropping those with border irregularities

(see Section 3.1). Furthermore, since pollution is not measured in any of the non-adopting CBs

until after 1961, the pollution panel covers 1962 onwards, leaving us with 35,145 station-year-

month observations (401 stations) for black smoke and 34,951 station-year-month observations

(399 stations) for sulphur dioxide.

Figure 2 plots the trends in air pollution during the roll-out of the smoke control programme,

plotting the monthly black smoke (left panel) and sulphur dioxide (right panel) levels as measured

at treated and control stations; that is, stations located respectively inside or outside the exact

boundaries of all smoke control areas in English County Boroughs. The graphs highlight three key

points. First, it shows clear seasonality in pollution, with peaks in both black smoke and sulphur

dioxide during the winter months, and lower levels during the summer. Second, there is a reduction

in air pollution levels measured at both treated and control stations over time, as shown by the

smoothed averages (dashed lines). And third, the decrease in levels of black smoke was larger at

treated stations compared to controls, resulting in the average black smoke levels converging over

time. For sulphur dioxide, the gap between treated and control stations only narrowed slightly,
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suggesting that the adoption of smoke control areas had a smaller impact on levels of SO2.

Figure 2: Historical measurements of pollution (black smoke and SO2) by station treatment status.
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In addition to defining treated pollution measurement stations as those located inside a SCA,

we also construct an indicator for stations that are downwind of a SCA. Using the historical wind

direction data from ERA5, we construct vectors of SCAs’ prevailing wind directions in the two

years prior to their submission, and use them to simulate the boundaries of pollution dispersion

from the SCAs. We then classify as downwind any stations that are located within the dispersion

boundary but outside the boundary of the originating SCA. We detail this procedure, and explore

the robustness of our estimates to alternative approaches, in Appendix C.

3.4. Individuals

To examine the long-term impact of the introduction of SCAs on individuals’ human capital and

health outcomes, we use the UK Biobank: a large prospective, population-based cohort living in

the United Kingdom. Baseline information on approximately 500,000 individuals was collected

between 2006 and 2010, when they were 40–69 years old. Participants are born between 1938
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and 1971, with the majority in the 1940s to mid 1960s. The UK Biobank is not representative,

with individuals being on average healthier and wealthier than the general UK population (Fry

et al., 2017). The data include detailed information on demographics, physical and mental health,

cognition, and economic outcomes, obtained via interviews, questionnaires, and measurements

taken by nurses. The data have also been linked to hospital and mortality records.

We use individuals’ location of birth (i.e., eastings and northings) to assign them to SCAs

and CBs by projecting their birth locations onto our digitised SCA boundaries and the 1971 CB

boundaries, respectively. We classify individuals born in CBs that never introduced an SCA as

‘never-treated’ (controls), and those born inside SCA boundaries as treated, depending on their

dates of birth. Analogous to the sample construction for the pollution panel, when a CB is only

partially covered by one (or more) SCAs, we define individuals born inside the CB but outside the

SCA boundaries as never treated and explore the robustness of our results to dropping the latter

group altogether.

To study the consequences of smoke control on human capital and health production, we focus

on four broad outcomes motivated by the existing literature on the early-life pollution environment.

First, building on the literature on pollution exposure and individuals’ health (see e.g., Currie and

Walker, 2011), we rely on birth weight and adult height as two general indicators of early- and

later-life health and development, allowing us to examine both the short and long-term impacts

of pollution along these dimensions. Second, following the literature on the e↵ects of pollution

exposure and human capital production (see e.g., Isen et al., 2017; Ball, 2018; Persico, 2020; von

Hinke and Sørensen, 2023), we explore individuals’ years of education and fluid intelligence.

Our measure of birth weight is self-reported and therefore likely to be measured with error,

while adult height was measured by a nurse following a standardised protocol.11 We define years

of education using individuals’ qualifications, and measure fluid intelligence using a battery of

questions designed to measure logic and reasoning ability, independent of acquired knowledge.
11Despite birth weight being self-reported at a later age, it has been shown to correlate with a range of covariates

in the expected direction (e.g., with non-singleton pregnancies, gender, maternal smoking) and it has good reliability
(Tyrrell et al., 2013; Zhang et al., 2021).
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We standardise the latter with mean zero and standard deviation one.12

Starting with 444,707 individuals with non-missing data on birth location and year-month of

birth, we restrict our estimation sample as follows. First, we drop individuals who are born before

September 1957, as this coincides with the UK education reform that raised the minimum school

leaving age, a↵ecting individuals’ education, income and potentially health outcomes (Harmon

and Walker, 1995; Clark and Royer, 2013; Davies et al., 2018).13 We also drop the last two birth

cohorts born in 1970 and 1971 as they are more selected and very small compared to earlier cohorts

(van den Berg et al., 2023). This leaves us with 113,704 participants. Second, since we observe

exact Smoke Control Area boundaries in County Boroughs only, we restrict our sample to indi-

viduals born in adopting or non-adopting CBs, reducing our sample to 41,329 individuals. Third,

we restrict our sample to individuals with a precisely measured birth location, leaving 16,573 indi-

viduals.14 Our final sample size then ranges between 5,749 and 16,535 depending on the number

of missing values for our outcome of interest. In the robustness analysis, we also use an auxiliary

sample where we take our data on the universe of SCAs to identify individuals born in districts that

never introduced any SCA and include these participants in the never-treated group, increasing the

sample size to between 9,868 and 25,410 individuals, depending on the frequency of missing data

on the outcome.

Panel A of Table 1 presents the individual-level descriptive statistics from the UK Biobank,

showing that approximately 45% of the sample is male, and individuals have just over 13 years of

schooling, on average. The average birth weight is 3.3 kg, with an average height of 170 cm. We

do not find strong di↵erences between the treated and control groups, defined as individuals born
12Table A.1 shows how we map qualifications to years of education using a definition similar to that of, e.g.,

Rietveld et al. (2013) and Okbay et al. (2022).
13Note that although the pollution analysis is restricted to the years 1962 onwards due to the absence of pollution

data in never-treated CBs pre-1962, we do not apply this restriction to the individual-level analysis. Indeed, we obtain
intention-to-treat estimates for the latter, examining the impact of the introduction of SCAs, as opposed to estimating
the direct e↵ect of a reduction in pollution. Hence, we use those born between September 1957 and the end of 1969
for the individual-level analysis.

14UK Biobank participants who could not report their birth location with any precision (e.g., areas within a larger
town or city) were assigned a catch-all location in the approximate centre of the town or city. We drop these individuals
since we rely on relatively precise birth location reports, e.g., distinguishing between two individuals born in the same
CB but one inside and the other outside an SCA. However, our results are robust to including them in our estimation
sample (see Section D.2). Note that birth locations are reported with 1km resolution.
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Table 1: Descriptives

Full sample Treated Control

Mean SD Obs. Mean SD Obs. Mean SD Obs.

Panel A – Individuals

Male 0.453 0.498 11,974 0.455 0.498 3,968 0.452 0.498 8,006
Birth weight, kg 3.317 0.612 8,528 3.320 0.623 2,883 3.316 0.607 5,645
Adult height, cm 169.919 9.260 11,952 169.918 9.270 3,962 169.919 9.256 7,990
Educational attainment, years 13.235 2.123 11,719 13.124 2.099 3,827 13.289 2.132 7,892
Fluid intelligence, sd 6.233 2.158 4,115 6.140 2.114 1,533 6.288 2.183 2,582

Panel B – Pollution

Black smoke, mcg/m3 103.767 99.870 26,302 110.920 100.874 8,855 100.137 99.162 17,447
Sulphur dioxide, mcg/m3 132.721 90.312 26,195 148.888 94.864 8,804 124.536 86.779 17,391

Panels: (a) descriptives calculated on individual-level data, (b) descriptives calculated on pollution data.

within the SCA boundaries and those outside, respectively.

Panel B of Table 1 presents the descriptive statistics of the pollution measurements, indicating

average black smoke and sulphur dioxide concentrations of 104 mcg/m3 and 133 mcg/m3 respec-

tively. Consistent with Figure 2, pollution measurements are higher in treated compared to control

areas, defined as measurement stations that are located in and outside the SCA boundaries, respec-

tively.

4. EMPIRICAL STRATEGY

The first part of our analysis explores whether smoke control areas served their intended purpose of

reducing air pollution, especially black smoke emissions, by estimating the impact of the introduc-

tion of SCAs on local pollution levels. The second part then explores the long-term consequences

of smoke control on individuals’ human capital and health outcomes. The unit of interest in these

two sections is the pollution station and the individual, respectively. For brevity, this Section refers

to both as ‘unit’. Our identification exploits spatial and time variation in the roll-out of SCAs, com-

paring the outcomes of these ‘units’ (i.e., pollution levels or individual-level outcomes) located in

a SCA before and after its creation, relative to those of a control group of ‘never-treated’ units. In

our main analysis, we define the latter as units in non-adopting CBs as well as units located outside

SCA boundaries but in adopting CBs. Since the latter may be a↵ected by spillover (downwind)
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e↵ects from neighbouring SCAs, we also run our analysis dropping these units altogether and find

very similar results.

Our ‘event’ of interest is the date on which SCAs are submitted to the Ministry. We focus on this

date for two reasons. First, the proposed operation date was published at the time of submission,

indicating when the area is most likely to become smokeless. Second, local councils reimbursed

costs associated with stove conversions only if they were incurred before the operation date (see

Section 2). Hence, households started requesting conversions immediately after the submission

date.

Our identification assumes that, conditional on controls and fixed e↵ects, the timing of the in-

troduction of smoke control areas was random, and that the areas selected to be smokeless were not

systematically di↵erent from those not selected. We explore both of these assumptions in detail

in Appendix B. First, we explore associations between pre-programme CB-level characteristics

(i.e., population density, pollution levels, and socioeconomic composition) and the timing of SCA

implementation, showing that apart from population density, these variables do not explain di↵er-

ences in the timing of SCA introduction, suggesting that the timing was largely random. Second,

we investigate whether stations and individuals inside SCAs were systematically di↵erent from

those outside SCAs, but within the same CB. Although Figure 2 shows that treated stations on

average report higher levels of pollution (i.e., between-CBs), we find that areas that are selected to

become smokeless were slightly less polluted compared to those not selected within the same CB.

Furthermore, our results suggest that residents in areas that were put under smoke control were

of higher socio-economic status compared to those in control areas. To alleviate concerns about

these di↵erences driving our findings, we include station/area fixed e↵ects as well as station/area-

specific trends in our analyses, accounting for systematic di↵erences between areas that did and

did not become smokeless within CBs.
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4.1. Impact on pollution

To estimate the impact of the introduction of SCAs on local pollution levels, we estimate a two-way

fixed e↵ects model of the form:

yst = �s + �t + ⌧st + Dst + ✏st (1)

where yst denotes the average pollution measurement (i.e., black smoke or sulphur dioxide) at

station s in year-month t. The parameters �s and �t denote station and year-month fixed ef-

fects to account for systematic variation in pollution (or population density; see Appendix B)

between stations, across time and for seasonality, and ⌧st denotes station-specific linear trends. We

consider three specifications of the term Dst. First, a dynamic event study specification, where

Dst =
P
⌧2T �⌧ SCA⌧st, and SCA⌧st is an indicator denoting whether station s in year-month t is

⌧ months away from being treated (i.e., submitted to the Ministry) and where the month before

submission (⌧ = �1) is the reference month.15

Second, a static di↵erence-in-di↵erence approach, where Dst = �Adj Insides⇥Adjst+�Post Insides

⇥Postst. We define Insides to be an indicator that is equal to one if the location of the measurement

station is inside the exact SCA boundary, and zero otherwise.16 Adjst is a dummy that is equal

to one when the SCA in which pollution station s is located has been submitted to the Ministry,

but not yet entered operation (we refer to this as the ‘adjustment period’), and zero otherwise. Its

coe�cient �Adj captures any immediate drops in pollution levels following submission of the SCA

as well as gradual reductions in pollution in the period between submission and operation when

appliances were being upgraded to allow for smokeless fuel. Postst is a dummy equal to one when

the SCA in which pollution station s is located started operating, and zero otherwise. Its coe�cient

�Post then captures the overall impact of a fully operating SCA on local pollution levels, relative to

other stations that are not located within an SCA. This specification allows for di↵erential impacts
15We trim our sample to five years (60 months) before and after treatment for each station, though our results are

robust to not trimming the sample or trimming more/fewer years (see Section D.3).
16Note that Insides only enters our specification interacted with other dummies, as the main term would be absorbed

into the station fixed e↵ects that we include in all specifications.
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of the adjustment period and that post-operation.

Many CBs introduced multiple SCAs at di↵erent points in time. Although a station can only

be within one SCA, they can be downwind of multiple SCAs given that pollution disperses along

the wind direction vector. To investigate the importance of such spillovers, our third specification

therefore allows for downwind stations to be di↵erentially a↵ected such that Dst = �Adj Insides ⇥

Adjst + �Post Insides ⇥ Postst + �Adj,DW Downwinds ⇥ AdjDW
st + �Post,DW Downwinds ⇥ PostDW

st . The

terms Adjst and Postst are defined in the same way as in the previous specification, and Downwinds

is a dummy for the station being downwind of any SCA. The binary indicator AdjDW
st (PostDW

st ) is

equal to one when the upwind SCA enters the adjustment period (becomes operational) and zero

otherwise.

We estimate Equation 1 using OLS, and – considering the recent literature on staggered treat-

ments (Sun and Abraham, 2021; Callaway and Sant’Anna, 2021; Borusyak et al., forthcoming)

– we also report the group-time average e↵ects in Appendix E, finding very similar results. We

cluster our standard errors by station throughout.

4.2. Individual-level analysis

To estimate the e↵ect of the introduction of SCAs on individual human capital and health out-

comes, we follow an approach analogous to the previous section but at the individual-level:

yi jt = ✓ j + �t + ⌧ jt + Dijt + ⇣xijt + ✏ijt (2)

where yi jt is the outcome for individual i, born in area j in year-month t. The area is defined as [CB

⇥ Inside], allowing for di↵erences in areas that did and did not become SCAs within a CB. Hence,

✓ j are [CB ⇥ Inside] fixed e↵ects, controlling for spatial variation in the outcomes of interest (and

accounting for systematic di↵erences in socio-economic composition of treated and control areas

within a CB; see Appendix B), �t are year-month fixed e↵ects controlling for di↵erences across

cohorts and seasonality, and ⌧ jt are (CB ⇥ Inside)-specific linear (yearly) time trends. The latter

account for di↵erential dynamics in outcomes across CBs, as well as within CBs across areas that
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did and did not become smokeless.17 The vector xi jt denotes additional covariates (sex, ethnicity

and weather conditions in utero and in childhood) capturing further variation within CBs.

We explore two definitions of the term Dijt. First, a dynamic event specification where we set

Dijt =
P
⌧2T �⌧ SCA⌧ijt, and define SCA⌧ijt to be an indicator that is equal to one if the relative number

of six months intervals between conception and SCA submission is equal to ⌧, and the individual

is born within the exact boundaries of an SCA.18 The parameters �⌧ then compare the outcomes

of interest for individuals born in SCAs and conceived at time ⌧ relative to SCA submission,

to those conceived at the same calendar time but outside smoke control areas. For ⌧ < 0 the

parameters �⌧ capture di↵erences in the outcome of interest for individuals conceived prior to

SCA submission. As ⌧ grows in negative direction, individuals are exposed to increasing durations

of pollution exposure in early childhood as they were born before SCA submission. This means

that, depending on the dose-response relationship, as well as the timing of exposure relative to age,

there may be heterogeneity in the estimates across di↵erent (negative) values of ⌧. For positive

values of ⌧, the parameters �⌧ capture post-SCA submission di↵erences in outcomes, relative to

those conceived outside SCAs.

Second, we consider a static di↵erence-in-di↵erence specification where Dijt = �Adj Insideij ⇥

Adjijt + �Post Insideij ⇥ Postijt. We define Adjijt to be a dummy that is equal to one when the SCA

surrounding the individual has been submitted but not yet entered operation (i.e., the ‘adjustment

period’), and zero otherwise. Similarly we define Postijt as a dummy equal to one after the SCA

has started operating, zero otherwise. This allow us to estimate the overall impact of smoke con-

trol on individuals’ outcomes, di↵erentiating between the impact of being conceived during the

adjustment period (when appliances are gradually replaced and pollution declining) captured by

�Ad j, and the impact during the period after SCAs are in operation, captured by �Post.19 We cluster

17We show in Section D.5 that our results are robust to using CB-specific trends or not including a trend. We trim
our sample to birth cohorts within five years (60 months) of treatment to be consistent with the pollution analysis,
though our results are similar to not trimming the sample or trimming more/fewer years (see Section D.3).

18For example, if an individual is conceived in an SCA six months before its submission date, SCA⌧=�1
ijt = 1

with SCA⌧ijt = 0 for all other ⌧. Similarly, if an individual is conceived in an SCA 12 months after its submission,
SCA⌧=2

ijt = 1 and SCA⌧ijt = 0 for all other values of ⌧.
19We do not separately report the estimates for individuals being in and downwind of an SCA. Indeed, as we show

below, we find no strong impact of the introduction of SCAs on pollution measurements in stations that are downwind
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our standard errors by CB; our results are robust to clustering by CB ⇥ Inside.

5. RESULTS

We first use our pollution panel to examine the impact of the introduction of SCAs on local pollu-

tion levels. Next, we use individual-level data to investigate the immediate and long-term e↵ects

on individuals’ health and human capital outcomes.

5.1. Impact on pollution

Figure 3 plots the dynamic event study estimates of �⌧ from Equation 1, showing the time-varying

impacts of the introduction of SCAs on local black smoke (left) and sulphur dioxide (right) levels.

The first vertical line denotes our event of interest: the SCA submission date. The average duration

between submission and operation (what we refer to as the ‘adjustment period’) in our sample is

16 months; this is reflected by the second vertical line (the end of the ‘adjustment period’).20

The figures suggest no evidence of di↵erential pre-trends in pollution levels across treated and

control stations for both black smoke and sulphur dioxide. With the submission of an SCA, we

find an immediate drop in levels of black smoke of about 10 mcg/m3, reducing further over time

and settling at just under 30 mcg/m3. The drop remains visible until at least five years after submis-

sion. The submission (and subsequent operation) of a SCA shows no visible impact on sulphur

dioxide levels. Although this may seem surprising, it is consistent with the descriptive analysis in

Figure 2 as well as with expectations at the time. First, smoke control areas targeted visible (black)

smoke emitted from chimneys rather than specific pollutants such as sulfur dioxide that could only

be observed using suitable instrumentation (and which was not the local government focus). Sec-

ond, traditional and solid smokeless fuels had similar sulfur contents and thereby released similar

amounts of sulphur dioxide when burned.

To quantify the impact on pollution, we also present the di↵erence-in-di↵erence estimates from

from the SCA, suggesting that the introduction of smoke control areas mainly a↵ected local pollution.
20This period di↵ers across SCAs; we plot the distribution of months between the submission and operation date

in our data in Figure A.2.
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Figure 3: Event estimates – Impact on local pollution levels.
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OLS event estimates showing the impact of smoke control on individuals. OLS specification in-
cludes year-by-month and station fixed e↵ects, and includes a station-specific yearly linear time-
trend to capture di↵erences in linear dynamics between stations. Control group consists of never-
treated stations from both adopting and non-adopting county boroughs. Trims the sample to 5
years before and after the SCA submission date, and restricts the sample to pollution data for
years 1962 to 1973. The dashed red lines indicate the average of the pre- and post-adjustment
period estimates, where the former are averaged to zero. The grey part refers to the adjustment
period. Clusters standard errors by station.

Equation 1 with a binary indicator for the pollution station being inside an SCA. Table 2 reports

the OLS estimates of the introduction of SCAs on the local levels of black smoke (Columns 1–2)

and sulphur dioxide (Columns 3–4) aggregated across all post-periods. Note here that the vari-

able Postst is specific to the measurement station (rather than taking the average duration of the

adjustment period of 16 months that is shown in grey in Figure 3). Columns 1 and 3 show that

the submission of SCAs caused black smoke concentrations to drop by 8 mcg/m3 on average, with

no significant changes in levels of sulfur dioxide. Given mean black smoke levels of 104 mcg/m3

prior to the introduction of SCAs, this is an ⇠8% reduction. Black smoke concentrations drop by

approximately 19 mcg/m3 (18%) once the SCA is in operation. Distinguishing between pollution

measurements that are taken inside SCAs and those downwind, Column 2 shows that the treatment

e↵ect for black smoke is primarily driven by the former, with no significant reductions in pollution
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Table 2: Di↵erence-in-di↵erence estimates – Impact on pollution.

Depedent variable:

(1) (2) (3) (4)
Black
smoke

Black
smoke

Sulphur
dioxide

Sulphur
dioxide

Inside ⇥ Adj. �8.053⇤⇤⇤ �7.866⇤⇤⇤ �1.180 �1.148
(3.010) (3.031) (3.740) (3.747)

Inside ⇥ Post �19.737⇤⇤⇤ �19.811⇤⇤⇤ �3.480 �3.677
(4.380) (4.425) (5.337) (5.347)

Downwind ⇥ Adj. �1.032 �6.245
(3.727) (4.743)

Downwind ⇥ Post �8.225 �7.317
(5.631) (6.441)

Observations 26,302 26,302 26,195 26,195
Mean dep. var. 103.767 103.767 132.721 132.721
R2 0.81 0.81 0.79 0.79

Columns: (1-2) level of black smoke, (3-4) level of sulphur dioxide.
Control group conists of never-treated from both adopting and non-
adopting county boroughs. Clusters standard errors by station. Includes
year-by-month and station fixed e↵ects, and includes a station-specific
yearly linear time-trend to capture di↵erences in linear dynamics be-
tween stations. Trims the sample to 5 years before and after the SCA
submission date, and restricts the sample to pollution data for years
1962 to 1973. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

for downwind areas, though the sign of both estimates is negative.21

21Table A.3 in Appendix A explores the robustness of these findings by specifying alternative treatment variables:
(1) the number of square kilometres (km2) of SCA surrounding a pollution station and the number of km2 of SCA
upwind of the station, and (2) the sum of the two. These specifications are likely to be less precise, since the SCA
km2 is not necessarily a good proxy for the number of dwellings a↵ected (and therefore of actual pollution exposure).
While the estimates have large standard errors and are not statistically significant, they suggest that an additional km2

of SCA is negatively related to black smoke concentrations, with more mixed results for sulphur dioxide.
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5.2. Impact on individuals

We next examine how the introduction of smoke control areas and the subsequent reduction in local

pollution translates into individual outcomes by plotting the dynamic event study estimates of �⌧

from Equation 2. Figure 4 shows the impact of smoke control areas on individuals’ birth weight

and adult height, while Figure 5 reports the estimates for years of schooling and (standardised)

fluid intelligence. The red dashed line before and after the adjustment period denotes the average

of the pre- and post-adjustment period estimates.

Figure 4: Event estimates – Impact on individuals.
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OLS event estimates showing the impact of smoke control on individuals. OLS specification in-
cludes year-by-month and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥ Inside)-specific lin-
ear time trends Control group consists of never-treated individuals from both adopting and non-
adopting county boroughs. Trims the sample to 5 years before and after the SCA submission date,
and restricts the sample to birth cohorts in years 1958 to 1969. The dashed red lines indicate the
average of the pre- and post-adjustment period estimates, where the former are averaged to zero.
The grey part refers to the adjustment period. Clusters standard errors by CB.

Figure 4 shows no evidence of trends in birth weight or adult height for individuals conceived

prior to the SCA submission date. This is expected for birth weight, since these children were

only exposed to the SCA in childhood and birth weight cannot be a↵ected by changes in pollution

after birth. Instead, we find that the birth weights of individuals conceived after the SCA operation
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date (therefore experiencing reduced prenatal as well as childhood black smoke exposure) are on

average 70-80g higher than those conceived before. Similarly, they are approximately 1 cm taller

in adulthood.

Figure 5 presents the same estimates but for years of education and fluid intelligence. This

shows no evidence that the introduction of SCAs – whether during the in utero or in childhood

period – impacts on these human capital outcomes, with average estimates around zero.

Figure 5: Event estimates – Impact on individuals.
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OLS event estimates showing the impact of smoke control on individuals. OLS specification in-
cludes year-by-month and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥ Inside)-specific lin-
ear time trends Control group consists of never-treated individuals from both adopting and non-
adopting county boroughs. Trims the sample to 5 years before and after the SCA submission date,
and restricts the sample to birth cohorts in years 1958 to 1969. The dashed red lines indicate the
average of the pre- and post-adjustment period estimates, where the former are averaged to zero.
The grey part refers to the adjustment period. Clusters standard errors by CB.

To further quantify the average impact on individuals’ human capital and health, we also

present the di↵erence-in-di↵erence estimates from Equation 2, using a binary indicator that equals

one if the individual is conceived within the boundaries of an SCA during the adjustment or opera-

tion period, relative to those conceived outside the SCA boundary at these times. Table 3 confirms

the event study estimates, showing that – compared to those who are conceived prior to SCA

submission – the birth weights of those conceived when the SCA is in operation are 60g higher
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(column (1)), and these individuals are just under 1cm taller in adulthood (column (2)).22 Relative

to the average birth weight and adult height in the sample, this corresponds to a 2% and 0.6%

increase, respectively. We again find no impact on years of education, nor on fluid intelligence.23

Table 3: Di↵erence-in-di↵erence estimates – Impact on individuals.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Inside ⇥ Adj. 0.039 0.365 0.040 �0.152
(0.034) (0.343) (0.178) (0.131)

Inside ⇥ Post 0.058⇤⇤ 0.942⇤⇤⇤ �0.025 0.035
(0.027) (0.180) (0.135) (0.065)

Observations 8,510 11,922 11,689 4,106
Mean dep. var. 3.317 169.917 13.236 0.000
R2 0.066 0.543 0.107 0.149

Columns: (1) birth weight in kilograms, (2) adult height in cen-
timeters, (3) years of education, (4) standardised fluid intelligence
score. OLS specification includes year-by-month and (CB ⇥ In-
side) fixed e↵ects, and includes (CB ⇥ Inside)-specific linear time
trends. Controls for sex, ethnicity, and weather in utero and dur-
ing childhood. Control group consists of never-treated individuals
from both adopting and non-adopting county boroughs. Trims the
sample to five years before and after the SCA submission date, and
restricts the sample to birth cohorts in years 1958 to 1969. Clus-
ters standard errors by CB. (*): p < 0.1, (**): p < 0.05, (***):
p < 0.01.

5.2.1. Heterogeneity by gender

The existing literature suggests that males are more susceptible to environmental insults in early

life. Hence, we next explore whether there are gender di↵erences in the impacts of smoke control.

A priori it is not clear whether we would expect to find di↵erent impacts of smoke control for
22In Table A.4 we show the impact on the probability of being born with low birth weight (< 2, 500g). While

these point estimates are negative, suggesting slight reductions in this risk of about 2 percentage points, they are not
significant. This suggest that the impact we find on birth weight is not driven specifically by improvements among low
birth weight individuals, but rather a general shift of the birth weight distribution.

23Table A.5 decomposes the total years of education into binary indicators for specific qualifications. This shows
suggestive evidence that the introduction of SCAs decreased the probability of exiting the education system with lower
secondary qualifications, while it increased the probability of obtaining an upper secondary degree, though the latter
is not significant.
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men and women. On the one hand, if a reduction in pollution has a larger impact on male infant

mortality due to them being weaker on average, it may increase the probability of survival of

weaker boys, leading to a drop in average male birth weights. On the other hand, holding the

survival rate constant, a reduction in pollution may help vulnerable populations more, increasing

male birth weights.

Table 4 shows the estimates when we split the sample by gender. We find that the introduction

of SCAs benefits males’ birth weights more than females’, with the former seeing an increase of

126 grams on average, while females see a modest rise of 21 grams.24 We find no strong gender

di↵erences for adult height with both genders experiencing an average increase of about 1 cm.

Similarly, and consistent with the main analyses, we do not find strong evidence of impacts on

educational attainment and fluid intelligence.

24This is consistent with the above example that holds survival rates constant. To explore this empirically, we
examine the impact of smoke control on the probability of being female, shown in Table A.6. These results indicate
that there are no gender-specific mortality impacts, and therefore provide suggestive evidence that the gender-specific
estimates for our main outcomes are not driven by mortality selection. One plausible explanation for the bigger
increase in male birth weights is therefore that the reduction in pollution disproportionally helps male (as opposed to
female) growth.
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Table 4: Di↵erence-in-di↵erence estimates – Impact on individuals.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Panel A – Female

Inside ⇥ Adj. 0.011 0.618 �0.006 �0.187
(0.037) (0.470) (0.268) (0.158)

Inside ⇥ Post 0.021 1.097⇤⇤⇤ 0.087 0.023
(0.038) (0.309) (0.180) (0.095)

Observations 5,031 6,522 6,390 2,280
Mean dep. var. 3.244 163.845 13.248 0.000
R2 0.079 0.071 0.118 0.213

Panel B – Male

Inside ⇥ Adj. 0.090 0.091 0.120 �0.075
(0.058) (0.591) (0.093) (0.079)

Inside ⇥ Post 0.126⇤⇤ 0.948⇤⇤ �0.138 0.041
(0.050) (0.431) (0.175) (0.069)

Observations 3,479 5,400 5,299 1,826
Mean dep. var. 3.424 177.250 13.221 0.000
R2 0.102 0.092 0.154 0.233

Columns: (1) birth weight in kilograms, (2) adult height in cen-
timeters, (3) years of education, (4) standardised fluid intelligence
score. Panels show estimates using subsamples of (A) females and
(B) males. OLS specification includes year-by-month and (CB ⇥ In-
side) fixed e↵ects, and includes (CB ⇥ Inside)-specific linear time
trends. Controls for sex, ethnicity, and weather in utero and during
childhood. Control group consists of never-treated individuals from
both adopting and non-adopting county boroughs. Trims the sample
to five years before and after the SCA submission date, and restricts
the sample to birth cohorts in years 1958 to 1969. Clusters standard
errors by CB. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

5.2.2. Heterogeneity by individuals’ genetic “endowments”

Next, we examine heterogeneity by individuals’ genetic “endowments”, as measured by one’s

polygenic score (or polygenic index) that is specific to the outcome of interest. As highlighted in

the introduction, this analysis not only sheds light on the impact of smoke control on population

inequalities, but is also informative about the existence of complementarities between endowments

and public health investments and contributes to the debate about the importance of e↵ort and
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circumstance in shaping individuals’ outcomes.

We construct proxies for individuals’ genetic “endowment” by running a Genome-Wide Asso-

ciation Study (GWAS) for each of our main outcomes in the UK Biobank, using only individuals

who are not in (or related to individuals in) our main analysis sample. We then use these summary

statistics to construct polygenic scores (PGS) for each outcome for the individuals in our analysis

sample. We standardise all polygenic scores to have zero mean and unit variance in the analysis

sample. We discuss the polygenic score construction in more detail in Appendix F, and report their

predictive power in Table F.2.

Table 5: Di↵erence-in-di↵erence estimates – Impact on individuals.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Inside ⇥ Adj. 0.039 0.561⇤ 0.050 �0.114
(0.032) (0.294) (0.152) (0.108)

Inside ⇥ Post 0.044⇤ 0.778⇤⇤⇤ �0.011 0.071
(0.025) (0.221) (0.103) (0.077)

Inside ⇥ Adj. ⇥ PGS �0.017 0.574⇤⇤ �0.158⇤ 0.106⇤

(0.040) (0.250) (0.088) (0.056)
Inside ⇥ Post ⇥ PGS 0.043⇤ �0.029 0.033 0.034

(0.025) (0.168) (0.055) (0.060)
PGS 0.102⇤⇤⇤ 3.706⇤⇤⇤ 0.562⇤⇤⇤ 0.236⇤⇤⇤

(0.008) (0.056) (0.020) (0.020)

Observations 7,982 11,108 11,056 3,825
Mean dep. var. 3.323 170.052 13.234 0.000
R2 0.1 0.702 0.177 0.2

Columns: (1) birth weight in kilograms, (2) adult height in centimeters, (3)
years of education, (4) standardised fluid intelligence score. OLS specification
includes year-by-month and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥
Inside)-specific linear time trends. Controls for sex, genetic principal compo-
nents, and weather in utero and during childhood. All covariates have been nor-
malised to mean zero. Control group consists of never-treated individuals from
both adopting and non-adopting county boroughs. Trims the sample to five years
before and after the SCA submission date, and restricts the sample to birth co-
horts in years 1958 to 1969. Clusters standard errors by CB. (*): p < 0.1, (**):
p < 0.05, (***): p < 0.01.

For each outcome, we add interactions between the two variables of interest and the PGS, cap-

turing the extent to which the introduction of SCAs di↵erentially a↵ected individuals with di↵erent

genetic “endowments”.25 Table 5 reports the results. We find that the impact of smoke control on
25Following Keller (2014), we also add interactions between the PGS and all covariates and principal components.
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birth weight is larger for individuals with a high genetic endowment for birth weight, suggesting

that this local government pollution reduction programme exacerbated genetic inequalities in birth

weight. It is also consistent with the existence of complementarities between endowments and

(public health) investments in producing child health: the returns to the investment are larger for

those with higher endowments. For height, we see some evidence of complementarities during

the adjustment period, but little evidence of heterogeneity in the e↵ect size post SCA operation.

Similar to the main analysis, we find no main e↵ect on years of education and intelligence, though

some evidence of genetic heterogeneity during the SCA adjustment period. Although these are of

opposite sign for education and intelligence, they are only marginally significant, with no impacts

post-SCA operation. We are therefore cautious not to overinterpret these.

5.2.3. Heterogeneity by socioeconomic status

Finally, we examine whether the policy had di↵erential impacts on individuals depending on the

socio-economic composition of their local area. Since the UK Biobank does not have information

on the socio-economic status of participants (or their parents), we merge district-level information

on occupation from the UK Census to the UK Biobank to classify CBs as either high or low SES.

To do this, we calculate the share of CB residents that are in professional, managerial, or technical

occupations, and define CBs as high SES if they are above the median share of this distribution

across all CBs, or low if they are below the median.

We estimate our main specification with additional interactions between the variables of interest

and the dummy for being born in a low SES area. The results are presented in Table 6. We do not

find strong evidence of di↵erential e↵ects by SES for birth weight and height. In contrast, the

results suggest that high SES areas experienced an increase in education after SCA submission,

with no impacts for lower SES areas, or even a reduction in intelligence relative to those born in

higher SES neighbourhoods.
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Table 6: Di↵erence-in-di↵erence estimates – Impact on individuals.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Inside ⇥ Adj. 0.059 �0.054 0.304⇤⇤⇤ 0.091
(0.036) (0.314) (0.077) (0.066)

Inside ⇥ Post 0.019 1.025⇤⇤⇤ 0.157 0.045
(0.027) (0.201) (0.101) (0.074)

Inside ⇥ Adj. ⇥ Is low SES �0.028 0.691 �0.477⇤ �0.422⇤⇤⇤

(0.065) (0.609) (0.255) (0.157)
Inside ⇥ Post ⇥ Is low SES 0.070 �0.104 �0.359⇤ �0.035

(0.048) (0.333) (0.196) (0.139)

Observations 8,510 11,922 11,689 4,106
Mean dep. var. 3.317 169.917 13.236 0.000
R2 0.068 0.544 0.109 0.152

Columns: (1) birth weight in kilograms, (2) adult height in centimeters, (3) years
of education, (4) standardised fluid intelligence score. OLS specification includes
year-by-month and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥ Inside)-specific
linear time trends. Controls for sex, genetic principal components, and weather
in utero and during childhood. All covariates have been normalised to mean zero.
Control group consists of never-treated individuals from both adopting and non-
adopting county boroughs. Trims the sample to five years before and after the SCA
submission date, and restricts the sample to birth cohorts in years 1958 to 1969.
Clusters standard errors by CB. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

6. ROBUSTNESS

Our main analysis shows that the the introduction of SCAs substantially and persistently reduced

black smoke emissions, but did not impact local sulphur dioxide concentrations. This in turn

improved child health outcomes (in particular birth weight), with longer-term impacts on adult

height. However, we find no consistent evidence of impacts on economic outcomes, including

years of education and intelligence.

This section highlights that our findings are generally robust to a range of di↵erent specifi-

cations, samples and assumptions. We discuss these sensitivity checks in detail in Appendix D,

but summarise them graphically in Figure 6. The figure shows six panels for our main outcomes

of interest: the two pollution measures and four individual-level outcomes. The dots present the

estimates of the impact of exposure during the ‘adjustment period’; the triangles present the esti-

mates for the SCA being in operation. Both are shown with 95% confidence intervals, with opaque

colours indicating that they are significantly di↵erent from zero. The first row in each panel repli-

31



cates the main specification, showing significant impacts on black smoke concentrations, as well as

birth weight and height (the latter two only for those exposed after the operation date). Each of the

following rows correspond to di↵erent robustness checks, where the row refers to the specific sec-

tion in Appendix D. Rows 2-4 use alternative definitions of the control group (Section D.1). Row

5 is specific to the individual analysis, and uses alternative definitions of the sample depending on

individuals’ geolocation within County Boroughs (Section D.2). Rows 6-8 explore the sensitivity

to di↵erent bandwidths around the event time (Section D.3). Rows 10-17 are specific to the indi-

vidual analysis and show di↵erent restrictions of the relevant birth cohorts (Section D.4). Rows

18-19 show di↵erent specifications of the time trend, specifying no time trend, or allowing for a

CB-specific annual time trend (Section D.5).

The main take-away from Figure 6 is that the estimates are very robust to the use of di↵erent

specifications, samples, or model assumptions. In almost all specifications do we see a reduction

in black smoke concentrations ranging from ⇠10–30 mcg/m3, followed by an approximately 60g

increase in birth weight and 1 cm increase in adult height. We again find no consistent evidence of

impacts on years of education, nor on fluid intelligence.
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Figure 6: Overview of robustness checks.

Black smoke Sulphur dioxide Birth weight (kg) Height (cm) Educational attain. Fluid intelligence
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Restrict cohorts to 1960−−1969, Sec. D.4

Restrict cohorts to 1959−−1969, Sec. D.4

Restrict cohorts to 1958−−1968, Sec. D.4

Restrict cohorts to 1958−−1967, Sec. D.4

Restrict cohorts to 1958−−1966, Sec. D.4

Restrict cohorts to 1958−−1965, Sec. D.4

No trimming, Sec. D.3

Trim to 4 years, Sec. D.3

Trim to 2 years, Sec. D.3

Include catch−all birth locations, Sec. D.2

All non−adopting districts control group, Sec. D.1

Adopting CBs control group, Sec. D.1

Non−adopting CBs control group, Sec. D.1

Main specification

Estimate

Coefficient: Inside x Adj. Inside x Post

Plots the point estimates and their 0.95 confidence bands for our main coe�cients and outcomes across our various robustness checks.
First two columns show estimates from the pollution sample, remaining four columns show estimates from individual sample. For checks
that are specific to the individual analysis, we do not report the estimates for the first two columns, but only in the final four (individual-
level) columns.
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7. CONCLUSION

This paper examines the long-term e↵ects of a national, large-scale pollution reduction programme

that was rolled out in the UK in the late 1950s. We exploit temporal and spatial variation in the

introduction of so-called “Smoke Control Areas” (SCAs); areas that banned all smoke emissions

within its boundaries. Our identification compares pollution measurement stations (individuals)

located (born) in or downwind of SCAs before and after their introduction, relative to those of a

control group of never treated stations (individuals), controlling for weather variation, local area

fixed e↵ects, area-specific trends (and individual-level controls). Our main analysis specifies an

event study approach, but we show that our results are robust to using group-time average e↵ects

that account for staggered treatment.

Using digitised historical pollution measurements, we provide one of the first empirical analy-

ses of the dynamic and time-varying impact of the introduction of SCAs on local pollution levels

(see also Fukushima, 2021). We show that they substantially and persistently reduced black smoke

(but not sulphur dioxide) concentrations for at least five years post-introduction. This, in turn, af-

fected individuals who were born in areas of smoke control, relative to those born elsewhere. We

show that those exposed to SCAs had – on average – 60g higher birth weights and are 1cm taller in

adulthood. Relative to the mean, these represent increases of 2% and 0.6% respectively. In contrast

to much of the existing literature, we find no evidence of impacts on years of education and intel-

ligence, with estimates that are relatively close to zero throughout, though with some suggestive

evidence of heterogeneity by the socio-economic composition of individuals’ district of birth.

We highlight two potential reasons for our null result on education and intelligence. First, we

examine the long-term impacts of small but persistent changes in pollution caused by the phased

introduction of SCAs, whereas the existing literature that investigates the very long-term e↵ects

of pollution exposure have generally examined one large transitory pollution spike: the London

smog. This may suggest that small, permanent reductions di↵erentially impact long-term outcomes

compared to extreme, but one-o↵ events. Although this is possible, it is less likely given that the

existing literature also shows that early life pollution exposure adversely a↵ects human capital and
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labour market outcomes already in early adulthood (e.g., Isen et al., 2017; Persico, 2020). Unless

these individuals catch up later, or those unexposed drop down the distribution, this is perhaps

unlikely to explain our findings.

Second, the fact that we do not find impacts on human capital outcomes may suggest that

these are driven by exposure to pollutants other than those targeted by SCAs. Indeed, the quasi-

experiments exploited in the existing economics literature (the London smog, but also e.g., toxic

release inventory sites, and the US 1970 Clean Air Act Amendments) are likely to have a↵ected

a range of pollutants. In contrast, the introduction of SCAs targeted black smoke only, and

the evidence suggests that moving from bituminous coal to smokeless fuel mainly a↵ects black

smoke/particulate matter, rather than other pollutants such as nitrogen oxides, sulphur oxides and

carbon monoxide (Mitchell et al., 2016). This is also what we find, in that we show reductions

in black smoke concentrations, but not in sulphur dioxide. Hence, this is consistent with the idea

that pollutants other than black smoke are responsible for the adverse e↵ects on human capital,

whereas black smoke reduces fetal as well as child growth. Unfortunately, since black smoke and

sulphur dioxide are the only two pollutants that are measured throughout our observation period,

our data do not allow us to explore this possible explanation in more detail.

We also examine heterogeneity in our estimates by individuals’ genetic “endowments”, ob-

tained from the molecular genetic data available in the UK Biobank. In addition to this shedding

light on whether the introduction of SCAs a↵ected inequalities in our outcomes of interest, it is

also informative about the existence of complementarities between endowments and public health

investments. Our findings suggest that the introduction of SCAs increased inequalities in popu-

lation health but not economic outcomes, with larger increases in birth weight and height among

those with higher “endowments”.

Our analyses estimate intention to treat (ITT) e↵ects, identifying the impact of the introduc-

tion of SCAs on individuals’ outcomes, rather than the impact of pollution. Indeed, the latter is

endogenous, with lower social class individuals more likely to live in highly polluted areas. Given

our newly digitised and rare historical pollution data, one option is to use an instrumental variable
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approach, instrumenting local pollution levels with the phased introduction of SCAs. We are re-

luctant to do so however, since the policy itself may have led councils to change their spending

patterns more generally. For example, by increasing their spending on pollution reduction poli-

cies, they may have had to reduce local expenditures on health and education, with potential direct

impacts on our outcomes of interest.

The 1956 Clean Air Act that allowed for the introduction of SCAs marked a significant step

in the government’s aim to reduce air pollution and improve public health. With its requirement

that coal be replaced with smokeless fuels, it was among the first that aimed to reduce pollution

emitted from residential dwellings, with most previous policies aimed at industrial pollution. The

move to smokeless fuels required adaptations of heating appliances, the cost of which was partially

reimbursed by local authorities, which in turn would receive a contribution from the exchequer. By

1973, over 1,000 SCAs were introduced in English CBs, highlighting the widespread awareness

of the health impacts of pollution as well as willingness to pay to reduce these not only by the

government and local authorities, but also among the population.

This in turn may suggest the presence of selective migration in response to local levels of air

pollution. Indeed, individuals who were living in areas characterised by high levels of pollution

(and little prospect of local authority intervention) may have been more likely to move into less

polluted areas. Such potential avoidance behaviour is a limitation of our research; with no data

on house moves in early life, and a sibling sample that is too small for any within-family analy-

sis (n⇠160), we cannot explore this. However, the existence of such avoidance behaviours would

likely lead to an underestimate of our e↵ect of interest. Indeed, we define individuals who are

conceived in non-SCAs, but who moved during the prenatal period to a SCA, as treated, despite

them being exposed to higher levels of pollution in the early gestational period. Similarly, individ-

uals who were born outside a SCA but who moved into one in early childhood would be defined

as control (since we only observe the location at birth), despite being exposed to less pollution in

childhood. Both cases would lead to underestimating the di↵erence between treated and control

individuals.
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There are other reasons to believe that our coe�cients underestimate the impacts of the intro-

duction of SCAs. First, since pollution is linked to infant mortality and foetal loss, the higher levels

of pollution in non-SCAs may have led to increased mortality (Fukushima, 2021). Assuming that

these individuals were more vulnerable than those who survived, our estimates are likely to be a

lower bound. Similarly, the fact that we only observe UK Biobank participants when they enter

the data collection in 2006–10, we implicitly condition on survival until then. These survivors

are likely to be stronger than those who did not make it, potentially attenuating our estimates of

interest.

Nevertheless, our analysis highlights the importance of a healthy environment in early life,

showing immediate as well as long term impacts on individuals exposed to pollution in the early

childhood period. This has direct implications for policy, suggesting that interventions that aim

to reduce pollution not only have contemporaneous health benefits, but also improve individuals’

outcomes in older age. Ignoring such longer-term e↵ects underestimates the total welfare e↵ects

caused by pollution reduction.

37



REFERENCES
Almond, D and J Currie (2011). “Human capital development before age 5”. In: Handbook of

Labor Economics. Elsevier, pp. 1315–1486.
Almond, Douglas, Janet Currie, and Valentina Duque (2018). “Childhood circumstances and adult

outcomes: Act II”. In: Journal of Economic Literature 56.4, pp. 1360–1446.
Altshuler, David M. et al. (Sept. 2010). “Integrating common and rare genetic variation in diverse

human populations”. In: Nature 467.7311, pp. 52–58.
Baker, Samuel, Stephanie von Hinke, and Emil Sørensen (2024a). HGIS: Atmospheric Pollution

[Dataset]. The Investigation of Atmospheric Pollution. Department of Scientific and Industrial
Research.

— (2024b). HGIS: Smoke Control Areas [Dataset]. Clean Air Yearbook. National Society for
Clean Air.

Ball, A (2018). “The long-term economic costs of the Great London Smog”. In: Birkbeck Working
Paper 1814.

Becker, Gary S and Nigel Tomes (1986). “Human capital and the rise and fall of families”. In:
Journal of labor economics 4.3, Part 2, S1–S39.

Bharadwaj, Prashant et al. (2016). “Early-life exposure to the great smog of 1952 and the devel-
opment of asthma”. In: American Journal of Respiratory and Critical Care Medicine 194.12,
pp. 1475–1482.

Bharadwaj, Prashant et al. (2017). “Gray matters: Fetal pollution exposure and human capital
formation”. In: Journal of the Association of Environmental and Resource Economists 4.2,
pp. 505–542.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess (forthcoming). “Revisiting Event Study Designs:
Robust and E�cient Estimation”. In: Review of Economic Studies.

Callaway, Brantly and Pedro H.C. Sant’Anna (2021). “Di↵erence-in-Di↵erences with multiple
time periods”. In: Journal of Econometrics 225.2. Themed Issue: Treatment E↵ect 1, pp. 200–
230. issn: 0304-4076. doi: https://doi.org/10.1016/j.jeconom.2020.12.001.

Clark, Damon and Heather Royer (2013). “The e↵ect of education on adult mortality and health:
Evidence from Britain”. In: American Economic Review 103.6, pp. 2087–2120.

Clean Air Act (1956). https://www.legislation.gov.uk/ukpga/Eliz2/4-5/52/enacted.
Cunha, Flavio and James Heckman (2007). “The technology of skill formation”. In: American

economic review 97.2, pp. 31–47.
Currie, Janet and Reed Walker (2011). “Tra�c congestion and infant health: Evidence from E-

ZPass”. In: American Economic Journal: Applied Economics 3.1, pp. 65–90.
Davies, Neil M et al. (2018). “The causal e↵ects of education on health outcomes in the UK

Biobank”. In: Nature human behaviour 2.2, pp. 117–125.
Department for Environment, Food, Rural A↵airs (DEFRA), and the Devolved Administrations.

(Dec. 2022). UK-AIR data. url: https://uk-air.defra.gov.uk/.
Department of Scientific and Industrial Research (1954–1961). The Investigation of Atmospheric

Pollution. London: Her Majesty’s Stationery O�ce.
Elsworth, BL et al. (2019). MRC IEU UK Biobank GWAS pipeline version 2. MRC IEU, University

of Bristol. url: https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi.
Evelyn, John (1661). Fumifugium; or, The Inconvenience of the Aer and Smoake of London Dissi-

pated. London: W. Godbid.

38

https://doi.org/https://doi.org/10.1016/j.jeconom.2020.12.001
https://www.legislation.gov.uk/ukpga/Eliz2/4-5/52/enacted
https://uk-air.defra.gov.uk/
https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi


Fry, Anna et al. (Nov. 2017). “Comparison of Sociodemographic and Health-Related Characteris-
tics of UK Biobank Participants With Those of the General Population”. In: American Journal
of Epidemiology 186.9, pp. 1026–1034. issn: 0002-9262. doi: 10.1093/AJE/KWX246.

Fukushima, Nanna (2021). “The UK Clean Air Act, Black Smoke, and Infant Mortality”. PhD
thesis. PhD thesis.

Gra↵ Zivin, Joshua and Matthew Neidell (2013). “Environment, health, and human capital”. In:
Journal of Economic Literature 51.3, pp. 689–730.

Hanlon, W Walker, Casper Worm Hansen, and Jake Kantor (2021). “Temperature, disease, and
death in London: analyzing weekly data for the century from 1866 to 1965”. In: The Journal
of Economic History 81.1, pp. 40–80.

Harmon, Colm and Ian Walker (1995). “Estimates of the economic return to schooling for the
United Kingdom”. In: The American Economic Review 85.5, pp. 1278–1286.

Heissel, Jennifer A, Claudia Persico, and David Simon (2022). “Does pollution drive achievement?
The e↵ect of tra�c pollution on academic performance”. In: Journal of Human Resources 57.3,
pp. 747–776.

Hersbach, Hans et al. (2020). “The ERA5 global reanalysis”. In: Quarterly Journal of the Royal
Meteorological Society 146.730, pp. 1999–2049. doi: https://doi.org/10.1002/qj.3803.

Isen, Adam, Maya Rossin-Slater, and W Reed Walker (2017). “Every breath you take—every
dollar you’ll make: The long-term consequences of the clean air act of 1970”. In: Journal of
Political Economy 125.3, pp. 848–902.

Keller, Matthew C (Jan. 2014). “Gene÷Environment interaction studies have not properly con-
trolled for potential confounders: The problem and the (simple) solution”. In: Biological Psy-
chiatry 75.1, pp. 18–24. doi: 10.1016/j.biopsych.2013.09.006.

Loader, Alison (2002). Instruction manual: UK Smoke and Sulphur Dioxide Network. AEA Tech-
nology for Department for Environment, Food, and Rural A↵airs (DEFRA).

Loh, Po-Ru et al. (Mar. 2015). “E�cient Bayesian mixed-model analysis increases association
power in large cohorts”. In: Nature Genetics 47.3, pp. 284–290.

Martin-Bassols, Nicolau et al. (2024). “E↵ect of In utero Exposure to Air Pollution on Adulthood
Hospitalizations”. In: Journal of Urban Health 101.1, pp. 92–108.

Mitchell, EJS et al. (2016). “The impact of fuel properties on the emissions from the combustion
of biomass and other solid fuels in a fixed bed domestic stove”. In: Fuel processing technology
142, pp. 115–123.

Muslimova, Dilnoza et al. (2020). “Nature-nurture interplay in educational attainment”. In: arXiv
preprint arXiv:2012.05021.

National Society for Clean Air (1956). Smokeless Air. London: National Society for Clean Air.
— (1958). Smokeless Air. London: National Society for Clean Air.
— (1960). Smokeless Air. London: National Society for Clean Air.
Okbay, Aysu et al. (2022). “Polygenic prediction of educational attainment within and between

families from genome-wide association analyses in 3 million individuals”. In: Nature Genetics
54.4, pp. 437–449.

Persico, Claudia (2020). “Can Pollution Cause Poverty? The e↵ects of pollution on educational,
health and economic outcomes”. In: Health and Economic Outcomes (February 12, 2020).
American University School of Public A↵airs Research Paper Forthcoming.

Persico, Claudia L and Joanna Venator (2021). “The e↵ects of local industrial pollution on students
and schools”. In: Journal of Human Resources 56.2, pp. 406–445.

39

https://doi.org/10.1093/AJE/KWX246
https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.biopsych.2013.09.006


Privé, Florian, Julyan Arbel, and Bjarni J Vilhjálmsson (2020). “LDpred2: better, faster, stronger”.
In: Bioinformatics 36.22-23, pp. 5424–5431.

Purcell, Shaun M. et al. (2009). “Common polygenic variation contributes to risk of schizophrenia
and bipolar disorder”. In: Nature 460.7256, pp. 748–752. doi: 10.1038/nature08185.

Rietveld, Cornelius A et al. (Nov. 2013). “GWAS of 126,559 Individuals Identifies Genetic Vari-
ants Associated with Educational Attainment”. In: Science 340.6139, pp. 1467–1471. doi: 10.
1257/jep.25.4.57.

Roemer, John E (1993). “A pragmatic theory of responsibility for the egalitarian planner”. In:
Philosophy & Public A↵airs, pp. 146–166.

— (1996). Theories of distributive justice. Harvard University Press.
Sanders, Nicholas J (2012). “What doesn’t kill you makes you weaker prenatal pollution exposure

and educational outcomes”. In: Journal of Human Resources 47.3, pp. 826–850.
Seigneur, Christian (2019). Air pollution: Concepts, theory, and applications. Cambridge Univer-

sity Press.
Shaw, Cli↵ord H. (1972). Annual Report on the health of the City of She�eld 1972. She�eld:

Medical O�cer of Health.
Southall, Humphrey (2011). “Rebuilding the Great Britain Historical GIS, Part 1: Building an

indefinitely scalable statistical database”. In: Historical Methods: A Journal of Quantitative
and Interdisciplinary History 44.3, pp. 149–159.

Sun, Liyang and Sarah Abraham (2021). “Estimating dynamic treatment e↵ects in event stud-
ies with heterogeneous treatment e↵ects”. In: Journal of Econometrics 225.2. Themed Issue:
Treatment E↵ect 1, pp. 175–199. issn: 0304-4076. doi: https://doi.org/10.1016/j.
jeconom.2020.09.006.

Tyrrell, Jessica S et al. (2013). “Parental diabetes and birthweight in 236 030 individuals in the UK
Biobank study”. In: International journal of epidemiology 42.6, pp. 1714–1723.

University of Portsmouth (2011). Great Britain Historical GIS Project. https://www.visionof
britain.org.uk/.

van den Berg, Gerard J, Stephanie von Hinke, and Nicolai Vitt (2023). “Early life exposure to
measles and later-life outcomes: Evidence from the introduction of a vaccine”. In: arXiv preprint
arXiv:2301.10558.

von Hinke, Stephanie and Emil N Sørensen (2023). “The long-term e↵ects of early-life pollution
exposure: Evidence from the London Smog”. In: Journal of Health Economics 92, p. 102827.

von Hinke, Stephanie and Nicolai Vitt (2024). “An analysis of the accuracy of retrospective birth
location recall using sibling data”. In: Nature Communications 15.1, p. 2665.

von Hinke, Stephanie et al. (2023). “The prevalence, trends and heterogeneity in maternal smoking
around birth between the 1930s and 1970s”. In: medRxiv, pp. 2023–10.

Wilkins, ET (1954). “Air pollution and the London fog of December, 1952”. In: Journal of the
Royal Sanitary Institute 74.1, pp. 1–21.

Zhang, Yi et al. (2021). “Birth weight and adult obesity index in relation to the risk of hypertension:
a prospective cohort study in the UK Biobank”. In: Frontiers in Cardiovascular Medicine 8,
p. 637437.

40

https://doi.org/10.1038/nature08185
https://doi.org/10.1257/jep.25.4.57
https://doi.org/10.1257/jep.25.4.57
https://doi.org/https://doi.org/10.1016/j.jeconom.2020.09.006
https://doi.org/https://doi.org/10.1016/j.jeconom.2020.09.006
https://www.visionofbritain.org.uk/
https://www.visionofbritain.org.uk/


ONLINE APPENDIX

A. ADDITIONAL TABLES AND FIGURES

Figure A.1: Number of smoke control areas in operation in England by 1973.
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Shows the spatial distribution of smoke control areas in operation in England by the end of 1973.
The bold outlines indicate the boundaries of county boroughs.

41



Figure A.2: Waiting times from submission to operation.
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Histogram of the waiting times between submission and operation dates. Only shows waiting times
for smoke control areas in which we have at least one station in our pollution analysis. The average
waiting time is 16.2 months.

Table A.1: Mapping between qualifications and years of education.

Qualifications Years of education

College or university degree 16
A/AS levels + NVQ/HND/HNC 14
A/AS levels + Other professional qualifications 15
NVQ/HND/HNC 13
Other professional qualifications 12
A/AS levels 13
CSEs, GCSEs, or O levels 11
No qualifications 10

Columns: (1) the qualifications recorded in the UK Biobank, (2) the
assigned years of education. A plus indicates that the individual must
hold both of the specified qualifications simultaneously.
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Table A.2: County boroughs – Smoke control area adoption status.

County boroughs

Adopting Barnsley, Birkenhead, Birmingham, Blackburn, Bolton, Bootle, Brad-
ford, Bristol, Burnley, Burton Upon Trent, Bury, Canterbury, Coven-
try, Darlington, Dewsbury, Doncaster, Exeter, Gateshead, Glouces-
ter, Halifax, Huddersfield, Kingston Upon Hull, Leeds, Leices-
ter, Lincoln, Liverpool, Luton, Manchester, Newcastle Upon Tyne,
Northampton, Norwich, Nottingham, Oldham, Oxford, Portsmouth,
Preston, Reading, Rochdale, Rotherham, Salford, She�eld, Solihull,
South Shields, Southampton, Southport, St Helens, Stockport, Stoke
on Trent, Sunderland, Tynemouth, Wakefield, Wallasey, Warrington,
Wigan, York .

Non-adopting Barrow-in-Furness, Bath, Blackpool, Bournemouth, Brighton,
Carlisle, Chester, Eastbourne, Great Yarmouth, Grimsby, Hastings,
Ipswich, Plymouth, Southend-on-Sea, Worcester .

Dropped Croydon, Derby, Dudley, East Ham, Hartlepool, Middlesbrough,
Smethwick, Teesside, Torbay, Walsall, Warley, West Bromwich, West
Ham, West Hartlepool, Wolverhampton

County boroughs used in our analyses by SCA adoption status by end of 1973. Also lists the county
boroughs dropped from the analyses due to border irregularities (see Section 3.3).

Table A.3: Di↵erence-in-di↵erence estimates with continuous treatments – Impact on pollution.

Depedent variable:

(1) (2) (3) (4)
Black
smoke

Black
smoke

Sulphur
dioxide

Sulphur
dioxide

Area, surrounding + upwind, km2 �0.432 �0.412
(0.535) (0.566)

Area, surrounding, km2 �0.575 0.251
(0.562) (0.564)

Area, upwind, km2 �0.229 �1.359
(0.901) (1.088)

Observations 26,302 26,302 26,195 26,195
Mean dep. var. 103.767 103.767 132.721 132.721
R2 0.81 0.81 0.79 0.79

Columns: (1-2) level of black smoke, (3-4) level of sulphur dioxide. Control
group consists of never-treated stations from both adopting and non-adopting
county boroughs. Includes year-by-month and station fixed e↵ects, and in-
cludes a station-specific yearly linear time-trend to capture di↵erences in linear
dynamics between stations. Trims the sample to 5 years before and after the
SCA submission date, drops always treated stations, and restricts the sample to
pollution data for years 1962 to 1973. Clusters standard errors by station. (*):
p < 0.1, (**): p < 0.05, (***): p < 0.01.
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Table A.4: Di↵erence-in-di↵erence estimates – Impact on individuals.

Dependent variable:

(1)
Low

birth weight

Inside ⇥ Adj. �0.018
(0.019)

Inside ⇥ Post �0.024⇤
(0.013)

Observations 8,510
Mean dep. var. 3.317
R2 0.051

Columns: (1) binary indicator of
whether birth weight is low, that is,
under 2,500 grams. OLS specifi-
cation includes year-by-month and
(CB ⇥ Inside) fixed e↵ects, and in-
cludes (CB ⇥ Inside)-specific linear
time trends. Controls for sex, ethnic-
ity, and weather in utero and during
childhood. Control group consists of
never-treated individuals from both
adopting and non-adopting county
boroughs. Trims the sample to five
years before and after the SCA sub-
mission date, and restricts the sam-
ple to birth cohorts in years 1958 to
1969. Clusters standard errors by
CB. (*): p < 0.1, (**): p < 0.05,
(***): p < 0.01.
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Table A.5: Di↵erence-in-di↵erence estimates – Impact on individuals.

Exits with highest qualification:

(1) (2) (3) (4)
Degree Upper secondary Lower secondary None

Inside ⇥ Adj. 0.004 0.018 �0.020 �0.003
(0.036) (0.024) (0.023) (0.013)

Inside ⇥ Post �0.006 0.033 �0.039⇤ 0.012
(0.033) (0.028) (0.021) (0.011)

Observations 11,689 11,689 11,689 11,689
Mean dep. var. 0.306 0.399 0.243 0.052
R2 0.105 0.042 0.051 0.047

Columns: (1) exits with university/college, (2) exits at upper secondary
level (A/AS-levels, professional/vocational training), (3) exits at lower
secondary level (CSEs, GCSEs, O-levels), (4) exits with no qualifications.
OLS specification includes year-by-month and (CB ⇥ Inside) fixed ef-
fects, and includes (CB ⇥ Inside)-specific linear time trends. Controls for
sex, ethnicity, and weather in utero and during childhood. Control group
consists of never-treated individuals from both adopting and non-adopting
county boroughs. Trims the sample to five years before and after the SCA
submission date, and restricts the sample to birth cohorts in years 1958 to
1969. Clusters standard errors by CB. (*): p < 0.1, (**): p < 0.05, (***):
p < 0.01.
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Table A.6: Di↵erence-in-di↵erence estimates – Impact on the probability of being born female.

Dependent variable:

(1)
Pr(Female)

Inside ⇥ Adj. �0.009
(0.019)

Inside ⇥ Post 0.019
(0.016)

Observations 11,944
Mean dep. var. 0.453
R2 0.031

Columns: (1) impact on probability
of being born female. OLS speci-
fication includes year-by-month and
(CB ⇥ Inside) fixed e↵ects, and in-
cludes (CB ⇥ Inside)-specific linear
time trends. Controls for sex, ethnic-
ity, and weather in utero and during
childhood. Control group consists of
never-treated individuals from both
adopting and non-adopting county
boroughs. Trims the sample to five
years before and after the SCA sub-
mission date, and restricts the sam-
ple to birth cohorts in years 1958 to
1969. Clusters standard errors by
CB. (*): p < 0.1, (**): p < 0.05,
(***): p < 0.01.
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B. RANDOMNESS IN TIMING AND SELECTION OF SMOKELESS AREAS

Our identification makes two assumptions. First, it assumes that the timing of the introduction of

smoke control areas is random. Second, that conditional on controls and fixed e↵ects, the areas

selected to be smokeless were not systematically di↵erent from those that were not selected. We

explore both of these assumptions below.

Timing. To investigate determinants of the timing of SCA implementation, we construct a time

index that counts the number of months elapsed since 1 January 1950 and define our dependent

variable as the indexed time when 10% of the CB’s area was under smoke control. We then plot

and regress this variable against CB-level pre-SCA characteristics to examine whether the timing

is systematically related to such pre-programme covariates. Hence, this analysis relies on between-

CB variation in timing and covariates.

As the 1952 smog in the capital was the driver of the Clean Air Act, we first explore the

relationship between the timing of SCA introduction and population density, where we expect

more densely populated cities to implement SCAs earlier than less densely populated cities. To

do this, we merge in CB-level population counts from the 1951 UK Census. Figure B.1 plots the

time to reach 10% coverage against the population density, showing that more densely populated

areas such as Manchester, Birmingham and Liverpool implemented SCAs earlier than less densely

populated areas.26 Column 1 in Table B.1 quantifies these estimates, showing that 1, 000 more

residents per km2 is associated with reaching the 10% coverage approximately half a year earlier.27

Although this is an interesting observation, it is not a problem for our analyses, since we control

for station and CB ⇥ Inside fixed e↵ects as well as station and CB ⇥ Inside-specific annual trends

in the pollution and individual-level analysis respectively.

We next turn to pre-programme CB-level characteristics obtained from the 1951 UK Census as
26We focus on the time associated with a 10% coverage rate rather than the time of (e.g.) the first SCA because

almost 75% of all adopting CBs implement their first SCA within the same 2-3 years (i.e., between 1957-1960).
However, we show robustness of these analysis to di↵erent thresholds in Table B.2 below.

27We focus only on treated CBs in this analysis, and we drop 3 CBs (Norwich, Portsmouth, Southport ) that do not
reach the 10% milestone by the end of our sampling window.
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Figure B.1: Population density and time till 10 pct. of district area covered
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Plots districts’ population per sq. km in 1951 against the time when they reached 10 pct. of area
covered by smoke control areas.

well as our historical pollution data to explore the extent to which these variables explain the timing

of SCA introduction. To account for the fact that larger cities implement SCAs earlier than smaller

ones, the following analyses all control for population density. First, using the CB-level shares

of residents by socio-economic class in the 1951 census, we see no strong relationship between

CBs’ socio-economic composition and the timing of SCA implementation (see columns (2) and

(3) of Table B.1). Second, using average CB-levels of black smoke and sulphur dioxide over the

period 1954–1956, we find that pre-programme pollution levels have negligible associations with

SCA timings. This suggests that CBs that were more polluted prior to 1957 did not adopt SCAs

systematically earlier compared to less polluted CBs (see columns (4) and (5) of Table B.1).

These analyses compare across CBs and support the assumption that the timing of SCA intro-

duction is largely unrelated to CB-level pre-programme characteristics. We next explore the timing

of SCA introduction within CBs to investigate whether the timing of one SCA is correlated to its

pre-programme characteristics relative to another SCA within the same CB. To do this, we con-

struct a sample of CBs with at least two pollution stations located in di↵erent SCAs. In Table B.3,

we then regress the pre-treatment black smoke and sulphur dioxide concentrations on the time in-
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Table B.1: OLS estimates – Pre-treatment characteristics and timing of implementation.

Specification

(1) (2) (3) (4) (5)
10%

covered
10%

covered
10%

covered
10%

covered
10%

covered

Population per sq. km �0.007⇤⇤ �0.008⇤⇤ �0.009⇤⇤ �0.008 �0.006
(0.004) (0.004) (0.004) (0.005) (0.005)

Pct. low SES in 1951 0.488
(0.972)

Pct. high SES in 1951 �1.396
(1.420)

Pre-1957 black smoke �0.016
(0.063)

Pre-1957 sulphur dioxide �0.018
(0.087)

Observations 50 50 50 20 18
R2 0.079 0.084 0.097 0.166 0.122

Dependent variable is the time index when 10 % of the district was covered by SCAs.
The time index starts at one on 1 January 1950 and increases by one unit per month. SES
and population data are from the 1951 census (i.e. prior to the SCA programme) and
pollution levels are the average from 1954-1956 (i.e. prior to the SCA programme) using
our pollution panel. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

dex, conditional on CB fixed e↵ects (all columns) and year fixed e↵ects (Columns 2 and 4). This

suggests that within a CB, stations in SCAs that were introduced earlier (i.e., with a ‘lower’ time

of submission) had significantly higher levels of black smoke pre-programme. However, this rela-

tionship disappears when we account for time fixed e↵ects. In summary, these analyses therefore

support the assumption that the timing of the introduction of SCAs is as good as random.
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Table B.2: OLS estimates – Pre-treatment characteristics and timing of implementation.

Specification

(1) (2) (3) (4) (5)
Time Time Time Time Time

Panel A – Time till first SCA

Population per sq. km �0.002 0.000 �0.003 0.000 0.007
(0.004) (0.005) (0.005) (0.006) (0.006)

Pct. low SES in 1951 �0.767
(1.085)

Pct. high SES in 1951 �1.344
(1.504)

Pre-1957 black smoke 0.015
(0.085)

Pre-1957 sulphur dioxide �0.178⇤

(0.093)
Observations 53 53 53 21 19
R2 0.003 0.013 0.018 0.002 0.197

Panel B – Time till 10% coverage

Population per sq. km �0.007⇤⇤ �0.008⇤⇤ �0.009⇤⇤ �0.008 �0.006
(0.004) (0.004) (0.004) (0.005) (0.005)

Pct. low SES in 1951 0.488
(0.972)

Pct. high SES in 1951 �1.396
(1.420)

Pre-1957 black smoke �0.016
(0.063)

Pre-1957 sulphur dioxide �0.018
(0.087)

Observations 50 50 50 20 18
R2 0.079 0.084 0.097 0.166 0.122

Panel C – Time till 25% coverage

Population per sq. km �0.013⇤⇤⇤ �0.013⇤⇤⇤ �0.015⇤⇤⇤ �0.013⇤⇤ �0.008
(0.004) (0.005) (0.005) (0.005) (0.006)

Pct. low SES in 1951 �0.077
(1.200)

Pct. high SES in 1951 �1.481
(2.156)

Pre-1957 black smoke �0.008
(0.073)

Pre-1957 sulphur dioxide �0.070
(0.102)

Observations 45 45 45 18 16
R2 0.183 0.183 0.192 0.298 0.251

Panel D – Time till 50% coverage

Population per sq. km �0.002 �0.002 �0.002 0.000 0.003
(0.004) (0.005) (0.005) (0.005) (0.005)

Pct. low SES in 1951 �0.043
(1.579)

Pct. high SES in 1951 �0.048
(2.519)

Pre-1957 black smoke �0.041
(0.090)

Pre-1957 sulphur dioxide �0.109
(0.131)

Observations 20 20 20 10 9
R2 0.011 0.011 0.011 0.028 0.112

The time index starts at one on 1 January 1950 and increases by one unit per month. SES and
population data are from the 1951 census (i.e. prior to the SCA programme) and pollution levels
are the average from 1954-1956 (i.e. prior to the SCA programme) using our pollution panel. (*):
p < 0.1, (**): p < 0.05, (***): p < 0.01.
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Table B.3: OLS estimates – SCA-level pre-treatment pollution levels and timing of implementa-
tion.

Dependent variable:

(1) (2) (3) (4)
Black
smoke

Black
smoke

Sulphur
dioxide

Sulphur
dioxide

Time of submission, years �12.556⇤⇤⇤ �1.935 �4.032 1.321
(2.771) (2.553) (3.963) (3.692)

Observations 3,269 3,269 3,264 3,264
CB FE Yes Yes Yes Yes
Year FE No Yes No Yes
R2 0.283 0.309 0.311 0.329

Columns: (1-2) level of black smoke in mcg/m3, (3-4) level of sulphur
dioxide in mcg/m3. Regresses outcomes onto the time of submission of the
stations’ SCAs and fixed e↵ects. Time of submission is measured as years
elapsed from 1 January 1950 until the submission date. Restricts sample to
measurements from stations in SCAs taken prior to the submission date, and
at most 5 years before. Restricts the sample to pollution data for years 1962
to 1973. Clusters standard errors by station. (*): p < 0.1, (**): p < 0.05,
(***): p < 0.01.

Selection of areas. The second identifying assumption is that, conditional on our controls and

fixed e↵ects, the areas within CBs that were selected to be smokeless were not systematically

di↵erent from those that were not selected. Hence, this assumption is also based on within-CB

variation, distinguishing between areas that became smokeless and areas that did not within the

same CB. To examine this, we regress a set of pre-determined characteristics onto an indicator that

is equal to one if the station (individual) was located (born) inside a smoke control area, and zero

otherwise.

We start by using pre-treatment pollution levels.28 Table B.4 reports the results, showing that

prior to the introduction of SCAs, areas selected to become SCAs were slightly less polluted com-

pared to those not selected within the same CB. In particular, selected areas had on average about

12 mcg/m3 lower pre-treatment levels of black smoke, and 9 mcg/m3 lower levels of sulphur diox-

ide, compared to areas that were not selected, though only the former di↵erence is statistically
28Note that this is slightly di↵erent from above, where we use pre-1957 pollution levels. This is because for a

given CB, either all stations are inside or all stations are outside SCA boundaries prior to 1957, meaning there is no
within-CB variation. Hence, we cannot compare pre-programme pollution levels for stations located inside vs outside
SCAs within a CB; we can only make this comparison using pre-treatment (i.e., introduction of SCA) pollution levels.
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significant.

Table B.4: OLS estimates – Associations between station being located in a SCA and pollution
levels.

Dependent variable:

(1) (2)
Black
smoke

Sulphur
dioxide

Inside �12.419⇤⇤ �9.277
(5.908) (8.748)

Observations 17,097 17,037
Mean dep. var. 113.565 140.585
R2 0.745 0.698

Columns: (1) level of black smoke
in mcg/m3, (2) level of sulphur diox-
ide in mcg/m3. Includes year-by-month
and CB fixed e↵ects, and includes CB-
specific yearly trends. Restricts sam-
ple to stations in adopting CBs only,
and only includes pre-treatment obser-
vations up to 5 years before SCA sub-
mission only. Restricts the sample to
pollution data for years 1962 to 1973.
Clusters standard errors by station. (*):
p < 0.1, (**): p < 0.05, (***): p <
0.01.

Second, using the individual-level UK Biobank data, we focus on three pre-determined vari-

ables aiming to proxy socio-economic status: maternal smoking status around birth, whether one

was breastfed, and the polygenic score for education.29 Table B.5 reports the results. We find

negative associations with maternal smoking, and positive associations with breast feeding and the

polygenic score for educational attainment. This implies that individuals born in areas that would

become smokeless were less likely to have a mother that smoked around birth, and more likely to

have been breastfed and have a higher genetic “predisposition” for educational attainment. Taken

together, this suggests that individuals conceived in areas that would become smokeless were gen-

erally of higher socio-economic status, compared to those conceived outside but in the same CB.

To alleviate concerns about these di↵erences driving the results in our main analysis, we include
29von Hinke et al. (2023) highlights the social gradient in maternal smoking that appears in the UK after WWII

using the UK Biobank. The proportion of UK Biobank participants that report to have been breastfed is higher in high
SES areas, and the polygenic score for education is highly correlated with educational outcomes (see e.g. Section 5.2).
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station fixed e↵ects and station-specific annual trends in our pollution analysis, and (CB ⇥ Inside)

fixed e↵ects and (CB ⇥ Inside)-specific trends in our individual-level analysis. The latter accounts

for systematic di↵erences in means as well as trends between areas that did and did not become

smokeless within a CB.

Table B.5: OLS estimates – Associations between being born inside a SCA boundary and individ-
ual pre-determined characteristics.

Dependent variable:

(1) (2) (3)
Maternal
smoking Breastfed

PGS
Educ. attain.

Inside �0.049⇤⇤ 0.038⇤⇤ 0.056⇤
(0.021) (0.015) (0.029)

Observations 9,056 8,586 9,258
Mean dep. var. 0.349 0.562 0.000
R2 0.051 0.075 0.054

Columns: (1) whether mother was smoking around
time of birth, (2) whether individual was breastfed,
(3) standardised PGI for eductional attainment. OLS
specification includes year-by-month and CB fixed ef-
fects, and includes CB-specific linear time trends. Con-
trols for sex, ethnicity, and weather in utero and during
childhood. Trims the sample. Restricts samples to indi-
viduals born in adopting CBs. Clusters standard errors
by CB. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

53



C. CONSTRUCTION OF DOWNWIND VARIABLES

To explore potential downwind e↵ects of new smoke control areas, we identify stations that are

downwind of each SCA. We do this in three alternative ways, each of which exploiting the wind

direction data from Hersbach et al. (2020) to estimate the geographic boundaries of downwind

areas and then identifying all stations within these boundaries. We describe these below, and

examine the robustness of our results to the method used. Our preferred method, used in our main

analysis, is the first of the following three.

Figure C.1: Illustrations of the downwind definitions.

 5 km

 5 km

 5 km 45°

 22.5°

 22.5°

Panel C — Scaled polygonPanel B — Basic trianglePanel A — Simulated

The three definitions of being downwind of a smoke control area. The smoke control area boundary
is shown as the polygon filled with gray and the centroid of the boundary is marked by a black dot.
The red arrow shows the wind vector. The green points show the units classified as ‘downwind’,
while the red points represent units classified as not being downwind.

Simulated. Panel A of Figure C.1 illustrates the first, and preferred, method where we use a

basic Gaussian dispersion model to estimate the boundary of the pollution plume for each SCA.

Since we do not have data on actual emissions, the model does not give us concentrations that we

can interpret in an absolute sense. We can however use the model to assess the approximate shapes

of SCAs’ pollution plumes and with that identify ‘downwind’ pollution stations. We assume that

the emission S SCA of a SCA is proportional to the SCA’s area relative to the surrounding CB’s area

times the total population of the CB in 1951. This is a strong assumption as population density is
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not uniformly distributed within CBs. We place a number nc of ‘chimneys’ in a uniform grid across

the SCA and set the emission of each chimney to S = S SCA/nc. Based on the Gaussian dispersion

model in Seigneur (2019, Chp. 6), the pollution concentration C at ground level at location (x, y)

downwind from a 4.5 meter tall chimney located at origin (0, 0) is then calculated as:

C(x, y) =
S

2⇡u�y(x)�z(x)
exp

 
� y2

2�y(x)2 �
4.52

2�z(x)2

!
,

where u is the wind speed in meters per second in the direction of x (illustrated by the red arrow

in Figure C.1, we get this from our weather data), and (�z,�y) are the Pasquill-Gi↵ord dispersion

coe�cients:

�z(x) = exp
⇣
az + bz ln(x) + cz ln(x)2

⌘
, �y(x) = exp

⇣
ay + by ln(x) + cy ln(x)2

⌘
.

We set az = �2.341, bz = 0.9477, cz = �0.0020, ay = �2.054, by = 1.0231 and cy = �0.0076,

corresponding to wind regime C in Table 6.1 in Seigneur (2019). To calculate the pollution con-

centration at a point (x, y) downwind from the SCA, we take the sum of the concentrations at (x, y)

across all chimneys in the SCA. We then set a concentration threshold and use this to trace out the

contour of the SCA’s dispersed pollution.

Basic triangle. Panel B of Figure C.1 illustrates the second method which constructs isosceles

triangles (’basic triangle’) aligned to SCAs’ predominant wind directions. We draw each triangle

such that the symmetry axis (dotted line) is parallel to the SCA’s average wind vector (red arrow,

the wind vector is averaged component-wise over the two years prior to the SCA’s submission

date), and the apex (black dot) is at the SCA’s centroid. We set the height of the triangle to five

kilometers and the vertex angle to 45 degrees.

Scaled polygon. Panel C of Figure C.1 shows the third method, constructing polygons scaled to

the size of the SCA (‘scaled polygon’). For each SCA, we calculate its average wind vector (red

55



arrow), find an orthogonal vector (green arrow), and project the SCA’s boundary polygon onto the

axis identified by the orthogonal vector to determine two anchor points (black dots). To construct

the downwind polygon (solid black lines) we (1) connect the anchor points with a line segment,

(2) at each anchor point draw line segments 5 km in length and with an angle of 22.5 degrees

relative to the wind vector, and (3) close the polygon by connecting the endpoints of these two line

segments. This procedure scales the downwind polygons to account for the dimensions of SCAs.

Though, it fails in a number of edge cases, e.g., if the SCA is long and narrow, which is why we

prefer the simulated downwind boundary in Panel A.

Robustness. To assess the sensitivity of our results, we use our pollution panel to estimate our

main specification separately for each ‘downwind definition’ and report the results in Table C.1.

Panel A replicates our preferred specification from Table 2, showing an immediate reduction in

levels of black smoke during the adjustment period, which increases 2-3 fold when the SCA is in

operation. We find no impact on stations that are downwind of the SCA. Our estimates are very

similar when we use the two alternative definitions, again showing large impacts on stations inside

SCAs during and after the adjustment period, but no impacts for those downwind. We find no

evidence of any e↵ects on level sof sulphur dioxide. Taken together, these results suggest that our

main estimates are robust to the downwind definition used.
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Table C.1: Di↵erence-in-di↵erence estimates – Impact on pollution. Robustness to choice of
downwind definition.

Specification:

(1) (2)
Black
smoke

Sulphur
dioxide

Panel A – Simulated:

Inside ⇥ Adj. �7.866⇤⇤⇤ �1.148
(3.031) (3.747)

Inside ⇥ Post �19.811⇤⇤⇤ �3.677
(4.425) (5.347)

Downwind ⇥ Adj. �1.032 �6.245
(3.727) (4.743)

Downwind ⇥ Post �8.225 �7.317
(5.631) (6.441)

Panel B – Basic triangle:

Inside ⇥ Adj. �8.172⇤⇤⇤ �1.031
(3.017) (3.750)

Inside ⇥ Post �19.950⇤⇤⇤ �3.231
(4.383) (5.315)

Downwind ⇥ Adj. �0.982 0.118
(3.473) (5.716)

Downwind ⇥ Post �4.096 3.594
(5.400) (7.543)

Panel C – Scaled polygon:

Inside ⇥ Adj. �8.030⇤⇤⇤ �1.182
(3.000) (3.751)

Inside ⇥ Post �19.766⇤⇤⇤ �3.506
(4.387) (5.346)

Downwind ⇥ Adj. 3.143 2.630
(3.339) (4.567)

Downwind ⇥ Post �1.189 0.536
(5.392) (5.594)

Observations 26,302 26,195
Mean dep. var. 103.767 132.721
R2 0.81 0.79

Columns: (1) black smoke, (2) sulphur dioxide. Pan-
els show the di↵erent definitions of ‘being down-
wind’. Panel A is our main specification. Control
group includes never-treated from both adopting and
non-adopting county boroughs. Clusters standard er-
rors by station. Includes year-by-month and station
fixed e↵ects, and includes a station-specific yearly
linear time-trend to capture di↵erences in linear dy-
namics between stations. Trims the sample to 5 years
before and after the SCA order date, and restricts the
sample to pollution data for years 1962 to 1973. (*):
p < 0.1, (**): p < 0.05, (***): p < 0.01.
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D. ROBUSTNESS TO SAMPLE SELECTION AND MODEL

SPECIFICATION

This Appendix shows the robustness of our main findings to di↵erent sample selection criteria,

assumptions, and model specifications. We explore the sensitivity of our results to alternative def-

initions of the control group (Section D.1), alternative definitions of the sample depending on how

individuals are geolocated within county boroughs (Section D.2), to the use of di↵erent bandwidths

(Section D.3), birth cohorts (Section D.4), and the specification of time trends (Section D.5).

D.1. Definition of control group

Our main analysis specifies the control group as units located in CBs that never applied for an

SCA (i.e., the non-adopting CBs), as well as units located outside SCAs, but inside CBs that

introduced other SCAs (i.e., within adopting CBs). First, we investigate the sensitivity of our

findings to omitting either group. Table D.1 reports the results for pollution. Panel A replicates

our main estimates, Panel B drops stations outside SCA boundaries but inside adopting CB, and

Panel C drops stations in non-adopting CBs. This shows that the e↵ects on black smoke and

sulphur dioxide concentrations are similar across the alternative definitions of the control group,

and close to our main estimates. Similarly, for the impacts on individuals, Panels B and C of

Table D.2 show negligible di↵erences in the estimates that specify alternative control groups when

comparing to our main estimates in Panel A.

Second, we explore the robustness of our results to increasing the never-treated group by in-

corporating data on the universe of SCAs in England and Wales (see Section 3.1), considering all

units located in areas that never applied for a smoke control area.30 This increases the number of

observations by a factor of ⇠1.7 for the pollution analysis, and over 2 for individuals. We report the

estimates for pollution and individuals using this alternative control group in Panel D of Table D.1

and Table D.2, respectively. This again shows very similar estimates to those reported in our main
30Since we do not observe the boundaries and shapes of SCAs outside CBs, we cannot identify whether units (i.e.,

stations or individuals) are inside or outside an SCA in other (non-CB) adoption areas. We can, however, identify
districts that never introduced any SCAs and add the units located in these districts to the control group.
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analysis.

Table D.1: Di↵erence-in-di↵erence estimates – Impact on pollution. Robustness to choice of
control group.

Specification:

(1) (2)
Black
smoke

Sulphur
dioxide

Panel A – Main sample:

Inside ⇥ Adj. �8.053⇤⇤⇤ �1.180
(3.010) (3.740)

Inside ⇥ Post �19.737⇤⇤⇤ �3.480
(4.380) (5.337)

Observations 26,302 26,195
Mean dep. var. 103.767 132.721
R2 0.81 0.79

Panel B – Control group from non-adopting CBs only:

Inside ⇥ Adj. �8.821⇤⇤⇤ �1.694
(3.088) (3.852)

Inside ⇥ Post �19.467⇤⇤⇤ �3.198
(4.512) (5.498)

Observations 12,474 12,422
Mean dep. var. 97.096 128.629
R2 0.813 0.796

Panel C – Control group from adopting CBs only:

Inside ⇥ Adj. �7.594⇤⇤ �0.507
(2.992) (3.775)

Inside ⇥ Post �19.557⇤⇤⇤ �2.633
(4.418) (5.377)

Observations 22,683 22,577
Mean dep. var. 110.228 141.276
R2 0.811 0.783

Panel D – Control group from all non-adopting districts:

Inside ⇥ Adj. �11.228⇤⇤⇤ �4.034
(3.400) (3.806)

Inside ⇥ Post �20.710⇤⇤⇤ �6.233
(4.752) (5.485)

Observations 44,565 42,679
Mean dep. var. 55.611 81.000
R2 0.795 0.778

Columns: (1) black smoke, (2) sulphur dioxide. Panel A repli-
cates our main estimates, while the remaining panels show
three alternative control groups. Includes year-by-month and
station fixed e↵ects, and includes a station-specific yearly lin-
ear time-trend to capture di↵erences in linear dynamics be-
tween stations. Trims the sample to 5 years before and after
the SCA submission date, and restricts the sample to pollution
data for years 1962 to 1973. Clusters standard errors by sta-
tion. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.
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Table D.2: Di↵erence-in-di↵erence estimates – Impact on individuals. Robustness to choice of
control group.

Specification:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Panel A – Main sample:

Inside ⇥ Adj. 0.039 0.365 0.040 �0.152
(0.034) (0.343) (0.178) (0.131)

Inside ⇥ Post 0.058⇤⇤ 0.942⇤⇤⇤ �0.025 0.035
(0.027) (0.180) (0.135) (0.065)

Observations 8,510 11,922 11,689 4,106
Mean dep. var. 3.317 169.917 13.236 0.000
R2 0.066 0.543 0.107 0.149

Panel B – Control group from non-adopting CBs only:

Inside ⇥ Adj. 0.044 0.424 0.027 �0.165
(0.032) (0.355) (0.166) (0.120)

Inside ⇥ Post 0.060⇤⇤ 0.927⇤⇤⇤ �0.063 0.023
(0.028) (0.196) (0.129) (0.066)

Observations 4,076 5,653 5,515 2,225
Mean dep. var. 3.329 170.256 13.444 0.000
R2 0.091 0.56 0.121 0.172

Panel C – Control group from adopting CBs only:

Inside ⇥ Adj. 0.041 0.393 0.054 �0.152
(0.035) (0.346) (0.176) (0.133)

Inside ⇥ Post 0.058⇤⇤ 0.951⇤⇤⇤ �0.021 0.045
(0.027) (0.180) (0.134) (0.068)

Observations 7,312 10,223 9,993 3,410
Mean dep. var. 3.313 169.730 13.079 0.000
R2 0.066 0.537 0.083 0.142

Panel D – Control group from all non-adopting districts:

Inside ⇥ Adj. 0.035 0.325 0.046 �0.181
(0.037) (0.351) (0.170) (0.116)

Inside ⇥ Post 0.058⇤⇤ 0.896⇤⇤⇤ �0.028 0.016
(0.026) (0.194) (0.134) (0.063)

Observations 18,511 25,410 25,199 9,868
Mean dep. var. 3.351 170.776 13.805 0.000
R2 0.118 0.565 0.15 0.214

Columns: (1) birth weight in kilograms, (2) height in centimeters, (3)
years of education, (4) standardised fluid intelligence score. Panel A
replicates our main estimates, while the remaining panels show three
alternative control groups. OLS specification includes year-by-month
and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥ Inside)-specific
linear time trends. Controls for sex, ethnicity, and weather in utero
and during childhood. Trims the sample to five years before and after
the SCA submission date, and restricts the sample to birth cohorts in
years 1958 to 1969. Clusters standard errors by CB. (*): p < 0.1,
(**): p < 0.05, (***): p < 0.01.
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D.2. Precision of birth locations

Our identification exploits the fact that variation in individuals’ birth locations induces spatial

variation in their exposure to smoke control. To assign treatment, we project individuals’ birth

locations over the SCA boundaries and define the treated group as those born within the SCA

boundaries. As smoke control areas are geographical partitions of CBs, we must be able to reliably

geolocate individuals within CBs.

The UK Biobank collects birth locations from all participants who indicated they were born

in England, Wales or Scotland by asking “What is the town or district you first lived in when you

were born?” The interviewer selected the corresponding place from a detailed list of place names,

which were converted to north and east coordinates with a 1km resolution. However, in cases

where the participant was not su�ciently specific, their birth location was assigned to a catch-

all location roughly in the center of the town/district. For individuals assigned to such locations,

we can therefore not reliably distinguish whether they were born in- or outside a SCA within a

CB.31 We drop these individuals from our main analysis since including them is likely to introduce

substantial measurement error, but explore the robustness of this selection criteria here.

Dropping the catch-all locations reduces our estimation sample by a factor of 0.32-0.38, de-

pending on the outcome, indicating that the catch-all birth locations account for a large number of

births. Panel A of Table D.3 replicates our main estimates for comparison, while Panel B includes

all individuals. As expected, including a large number of individuals for whom their birth location

is measured with error reduces the point estimates for birth weight and height. The estimate for

birth weight reduces from 58 grams to 29 grams, and the impact on height decreases to about 0.4

cm. We do not find impacts on educational attainment and fluid intelligence.

Across all estimates, the standard errors are 1.15-1.5 times larger in our estimation sample

compared to the sample that does not drop the catch-all birth locations. Given the reduction in
31This issue plays much less of a role when defining individuals’ CB of birth, as only 6% of CBs in the UKB are

estimated to be incorrectly reported (von Hinke and Vitt, 2024); it is more important within CBs. Furthermore, this
is relevant only for adopting CBs, since within-CB variation in birth location is irrelevant in non-adopting CBs. This
issue also does not apply to the pollution analysis, as there is no measurement error in the location of the pollution
station. We therefore only explore the robustness of the individual-level estimates.
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Table D.3: Di↵erence-in-di↵erence estimates – Impact on individuals. Robustness to catch-all
birth locations.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Panel A – Main sample

Inside ⇥ Adj. 0.039 0.365 0.040 �0.152
(0.034) (0.343) (0.178) (0.131)

Inside ⇥ Post 0.058⇤⇤ 0.942⇤⇤⇤ �0.025 0.035
(0.027) (0.180) (0.135) (0.065)

Observations 8,510 11,922 11,689 4,106
Mean dep. var. 3.317 169.917 13.236 0.000
R2 0.066 0.543 0.107 0.149

Panel B – Main sample as well as births at catch-all locations

Inside ⇥ Adj. �0.001 0.094 0.071 �0.076
(0.020) (0.165) (0.085) (0.057)

Inside ⇥ Post 0.029 0.395⇤⇤ 0.043 �0.016
(0.018) (0.156) (0.091) (0.057)

Observations 22,381 32,195 31,892 12,567
Mean dep. var. 3.315 169.892 13.278 0.000
R2 0.041 0.524 0.058 0.098

Columns: (1) birth weight in kilograms, (2) height in centimeters,
(3) years of education, (4) standardised fluid intelligence score. Pan-
els: (A) main sample, (B) main sample as well as individuals born at
catch-all birth locations. OLS specification includes year-by-month
and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥ Inside)-specific
linear time trends. Controls for sex, ethnicity, and weather in utero
and during childhood. Control group consists of never-treated indi-
viduals from both adopting and non-adopting county boroughs. Trims
the sample to five years before and after the SCA submission date, and
restricts the sample to birth cohorts in years 1958 to 1969. Clusters
standard errors by CB. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.

sample size by a factor of 0.32-0.38 when dropping the catch-all locations, the standard errors

should generally be about 1.6 times larger in our estimation sample purely due to the n�1/2 scale

factor. As the standard errors increase by a factor less than 1.6, it suggests that the noise in our

estimates have generally reduced by dropping the catch-all locations.

62



D.3. Trimming of samples

We next explore the sensitivity of our estimates to di↵erent bandwidths around the SCA submission

date, trimming the sample to those exposed up to two or four years before and after the introduction

of the SCA, as well as to not trimming the sample at all.

Table D.4 presents the results for pollution, showing four di↵erent bandwidths with Panel A

replicating our main estimates where we trim to five years before and after. Panels B and C reduce

the bandwidth to 4 and 2 years respectively, highlighting that our estimates are stable across nar-

rower bandwidths, though with larger standard errors. Panel D reports the results when we do not

trim the sample, showing similar results to the other panels.

Table D.5 analogously reports the estimates for individuals. Trimming to 4 years, as shown

in Panel B, produces estimates similar to our main specification. Further trimming to 2 years, as

in Panel C, reduces our sample size and increases the standard errors, and cuts our post operation

estimates to about half for birth weight and adult height. This attenuation may be due to the trim-

ming being defined relative to the submission times of SCAs rather than operation times, whereby

narrower bandwidths potentially trim o↵ SCAs with longer waiting times between submission and

operation. As shown in ??, a non-negligible share of SCAs have waiting times longer than two

years. Finally, in Panel D we report the estimates without trimming of the sample, showing that

the estimate for height is similar to the main specification, while the estimate for birth weight is

reduced to about half compared to the main specification.
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Table D.4: Di↵erence-in-di↵erence estimates – Impact on pollution. Sentivity to trimming around
the event time.

Dependent variable:

(1) (2)
Black
smoke

Sulphur
dioxide

Panel A – Main sample:

Inside ⇥ Adj. �7.928⇤⇤⇤ �1.139
(2.994) (3.749)

Inside ⇥ Post �19.604⇤⇤⇤ �3.323
(4.407) (5.370)

Observations 26,128 26,045
Mean dep. var. 103.887 132.660
R2 0.81 0.789

Panel B – Trim to 4 years before and after:

Inside ⇥ Adj. �7.975⇤⇤⇤ �0.498
(3.024) (3.385)

Inside ⇥ Post �21.277⇤⇤⇤ �3.148
(5.051) (5.218)

Observations 24,288 24,206
Mean dep. var. 102.700 130.642
R2 0.809 0.788

Panel C – Trim to 2 years before and after:

Inside ⇥ Adj. �8.187⇤⇤ �3.826
(3.786) (4.356)

Inside ⇥ Post �16.707⇤⇤⇤ �4.254
(6.316) (6.951)

Observations 20,801 20,739
Mean dep. var. 101.587 127.765
R2 0.809 0.792

Panel D – No trimming:

Inside ⇥ Adj. �4.783 �0.125
(3.180) (4.096)

Inside ⇥ Post �19.473⇤⇤⇤ �0.649
(4.398) (4.898)

Observations 34,574 34,420
Mean dep. var. 102.647 137.406
R2 0.811 0.791

Columns: (1) black smoke, (2) sulphur dioxide. Pan-
els show di↵erent intervals of trimming of observations
around the SCA submission date. Panel A is our main
sample, trimming to 5 years on both sides of the submis-
sion date. Control group includes never-treated from both
adopting and non-adopting county boroughs. Clusters
standard errors by station. Includes station fixed e↵ects,
and includes a station-specific yearly linear time-trend to
capture di↵erences in linear dynamics between stations.
Restricts the sample to pollution data for years 1962 to
1973. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.”
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Table D.5: Di↵erence-in-di↵erence estimates – Impact on individuals. Sentivity to trimming
around the event time.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Panel A – Main sample:

Inside ⇥ Adj. 0.039 0.365 0.040 �0.152
(0.034) (0.343) (0.178) (0.131)

Inside ⇥ Post 0.058⇤⇤ 0.942⇤⇤⇤ �0.025 0.035
(0.027) (0.180) (0.135) (0.065)

Observations 8,510 11,922 11,689 4,106
Mean dep. var. 3.317 169.917 13.236 0.000
R2 0.066 0.543 0.107 0.149

Panel B – Trim to 4 years before and after:

Inside ⇥ Adj. 0.049 0.368 0.044 �0.179
(0.038) (0.308) (0.181) (0.135)

Inside ⇥ Post 0.067⇤⇤ 0.926⇤⇤⇤ 0.015 0.040
(0.026) (0.181) (0.126) (0.066)

Observations 8,017 11,235 11,022 3,858
Mean dep. var. 3.317 169.919 13.248 0.000
R2 0.068 0.542 0.111 0.153

Panel C – Trim to 2 years before and after

Inside ⇥ Adj. 0.057 0.295 �0.076 �0.187
(0.053) (0.374) (0.205) (0.183)

Inside ⇥ Post 0.031 0.480 �0.071 �0.021
(0.040) (0.432) (0.229) (0.129)

Observations 6,855 9,643 9,489 3,238
Mean dep. var. 3.314 169.914 13.265 0.000
R2 0.072 0.548 0.124 0.174

Panel D – No trimming

Inside ⇥ Adj. 0.019 0.373 0.111 �0.139
(0.033) (0.292) (0.176) (0.105)

Inside ⇥ Post 0.033 0.931⇤⇤⇤ 0.120 0.087
(0.025) (0.232) (0.130) (0.056)

Observations 11,076 15,572 15,247 5,263
Mean dep. var. 3.318 169.806 13.169 0.000
R2 0.051 0.537 0.093 0.13

Columns: (1) birth weight in kilograms, (2) height in centimeters,
(3) years of education, (4) standardised fluid intelligence score. Pan-
els shows di↵erent bandwidths of trimming of observations around
the SCA submission date. Panel A is our main specification. OLS
specification includes year-by-month and (CB ⇥ Inside) fixed e↵ects,
and includes (CB ⇥ Inside)-specific linear time trends. Controls for
sex, ethnicity, and weather in utero and during childhood. Control
group consists of never-treated individuals from both adopting and
non-adopting county boroughs. Restricts the sample to birth cohorts
in years 1958 to 1969. Clusters standard errors by CB. (*): p < 0.1,
(**): p < 0.05, (***): p < 0.01.
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D.4. Choice of birth cohorts

Our main sample for the individual analysis includes all birth cohorts born after the Raising of

the School Leaving Age (RoSLA) and until 1969. Here we investigate alternative choice of birth

cohorts. Figure D.1 shows the adjustment (red) and post operation (blue) estimates and their 95%

confidence intervals for the di↵erent choices of birth cohorts shown on the horisontal axis. Each

panel corresponds to one of our four outcomes, and we mark our main estimates with a triangle.

Panel A shows positive post operation impact of smoke control on birth weight across all

choices of birth cohorts, though with a slightly larger e↵ect for earlier cohorts. The adjustment pe-

riod impact is insignificant throughout, though larger in positive direction for later cohorts. Panel B

highlights that the impacts on height are positive and stable across cohorts, except for a reduced

post operation estimate for the earliest choice of cohorts (1958–1965). Panel C shows that our

null findings for educational attainment are generally stable, and we see no statistical significant

impact across any of the cohort choices. We do however find that for early cohorts the post opera-

tion estimates move downward in negative direction, while the adjustment period estimates move

slightly in positive direction. Panel D confirms that our null finding for fluid intelligence score is

stable across cohorts, with all estimates being statistically insignificant. However, we do see larger

negative estimates for the adjustment period for later cohorts compared to earlier.
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Figure D.1: Di↵erence-in-di↵erence estimates – Impact on individuals. Sensitivity to choice of
birth cohorts.

(C) Educ. attain. (D) Fluid intelligence
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Shows the Inside ⇥ Adj. (red) and Inside ⇥ Post (blue) estimates and 0.95 confidence intervals
across outcomes and di↵erent choices of birth cohorts. Our main specification is marked with a
triangle, which uses all the available cohorts between 1958 and 1969. OLS specification includes
year-by-month and (CB ⇥ Inside) fixed e↵ects, and includes (CB ⇥ Inside)-specific linear time
trends. Controls for sex, ethnicity, and weather in utero and during childhood. Trims the sample
to five years before and after the SCA submission date. Clusters standard errors by CB.

D.5. Time trends

Our main specification includes station-specific and CB ⇥ Inside-specific linear trends for the

pollution and individual analysis respectively, allowing for di↵erential linear dynamics in outcomes

across space. We next explore the robustness of our findings with respect to alternative trend

specifications.

Table D.6 replicates the pollution estimates for our main specification in Panel A, that is, with

station-specific time trends. Panel B reports the results with CB-specific trends and Panel C drops

the trends altogether (i.e., including only year-month fixed e↵ects). This shows the largest esti-

mates when omitting the trend, with a reduction of 30 mcg/m3 post-adjustment period for black
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smoke and 9.4 mcg/m3 for sulphur dioxide. Adding either CB-specific or station-specific trends

reduces these estimates, suggesting that there are indeed spatial di↵erences in pollution trends.

Table D.7 presents the analysis at the individual-level, with Panel A presenting our preferred

estimates with (CB ⇥ Inside)-specific time trends, controlling for CB-specific trends in Panel B,

and not controlling for any trend in Panel C (i.e., only including year-month fixed e↵ects). This

indicates largely similar estimates across the alternative specifications.
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Table D.6: Di↵erence-in-di↵erence estimates – Impact on pollution. Robustness to choice of time
trend.

Specification:

(1) (2)
Black
smoke

Sulphur
dioxide

Panel A – Main specification:

Inside ⇥ Adj. �8.053⇤⇤⇤ �1.180
(3.010) (3.740)

Inside ⇥ Post �19.737⇤⇤⇤ �3.480
(4.380) (5.337)

R2 0.81 0.79

Panel B – CB-specific trends:

Inside ⇥ Adj. �2.399 �0.558
(2.933) (3.739)

Inside ⇥ Post �8.832⇤⇤ 2.906
(3.727) (4.455)

R2 0.799 0.777

Panel C – No trend:

Inside ⇥ Adj. �14.679⇤⇤⇤ �8.203⇤⇤
(4.101) (3.948)

Inside ⇥ Post �29.976⇤⇤⇤ �9.402⇤⇤
(5.663) (4.717)

R2 0.778 0.759

Observations 26,302 26,195
Mean dep. var. 103.767 132.721

Columns: (1) black smoke, (2) sulphur
dioxide. Panels show di↵erent choices of
time trends. Panel A is our main spec-
ification with station-specific time trends.
Control group includes never-treated from
both adopting and non-adopting county bor-
oughs. Clusters standard errors by station.
Includes year-by-month and station fixed ef-
fects. Trims the sample to 5 years before and
after the SCA submission date, and restricts
the sample to pollution data for years 1962
to 1973. (*): p < 0.1, (**): p < 0.05, (***):
p < 0.01.
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Table D.7: Di↵erence-in-di↵erence estimates – Impact on individuals. Robustness to inclusion of
time trend.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

Panel A – Main specification:

Inside ⇥ Adj. 0.039 0.365 0.040 �0.152
(0.034) (0.343) (0.178) (0.131)

Inside ⇥ Post 0.058⇤⇤ 0.942⇤⇤⇤ �0.025 0.035
(0.027) (0.180) (0.135) (0.065)

R2 0.066 0.543 0.107 0.149

Panel B – CB-specific yearly trend

Inside ⇥ Adj. 0.029 0.334 0.007 �0.156
(0.031) (0.319) (0.156) (0.135)

Inside ⇥ Post 0.046⇤ 0.853⇤⇤⇤ �0.031 0.027
(0.027) (0.181) (0.119) (0.081)

R2 0.062 0.542 0.104 0.142

Panel C – No time trend

Inside ⇥ Adj. 0.040 0.359 �0.009 �0.178
(0.031) (0.329) (0.147) (0.128)

Inside ⇥ Post 0.055⇤⇤ 0.845⇤⇤⇤ �0.056 �0.015
(0.025) (0.177) (0.103) (0.076)

R2 0.055 0.539 0.1 0.122

Observations 8,510 11,922 11,689 4,106
Mean dep. var. 3.317 169.917 13.236 0.000

Columns: (1) birth weight in kilograms, (2) height in centimeters,
(3) years of education, (4) standardised fluid intelligence score. Pan-
els show di↵erent choices of time trend. Panel A is our main spec-
ification which includes (CB ⇥ Inside) fixed e↵ects. Controls for
sex, ethnicity, and weather in utero and during childhood. Control
group consists of never-treated individuals from both adopting and
non-adopting county boroughs. Trims the sample to five years before
and after the SCA submission date, and restricts the sample to birth
cohorts in years 1958 to 1969. Clusters standard errors by CB. (*):
p < 0.1, (**): p < 0.05, (***): p < 0.01.
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E. ACCOUNTING FOR STAGGERED TREATMENT

The recent literature on the staggered introduction of treatment has shown that standard OLS esti-

mates in event and di↵erence-in-di↵erence specifications can be arbitrarily biased (Sun and Abra-

ham, 2021; Callaway and Sant’Anna, 2021; Borusyak et al., forthcoming). To alleviate concerns

about such biases impacting our main estimates, we use the estimation approach by Callaway and

Sant’Anna (2021) to obtain robust estimates (group-time average e↵ects, GTA) of, respectively,

the dynamic (Figure E.1) and the overall (Table E.1) impacts of introducing a SCA on pollution.

The dynamic estimates in Figure E.1 are largely similar for the GTA and OLS estimates, with

the former showing slightly more pronounced di↵erences in pollution between treated and control

stations, in particular for the period long (4–5 years) before SCA submission. The GTA point esti-

mate for black smoke (Table E.1) is larger than the OLS estimate, suggesting a stronger reduction

in black smoke following the introduction of a SCA, while the robust estimate for sulphur dioxide

is close to the OLS estimate, showing no evidence of an e↵ect on sulphur dioxide. In summary,

our analyses suggest that the OLS estimates are comparable to those obtained using the Callaway

and Sant’Anna (2021) approach.

Table E.1: Group-time average e↵ects – Impact on pollution.

Specification:

(1) (2)
Black
smoke

Sulphur
dioxide

ATT �19.173⇤⇤⇤ �0.731
(6.331) (6.216)

Observations 24,675 24,593
Mean dep. var. 102.022 130.446

Columns: (1) black smoke, (2) sulphur dioxide. Shows the group-
time average e↵ects of the overall impact of being inside a smoke
control area in the first 5 years after the introduction. Control group
includes never-treated stations from both adopting and non-adopting
county boroughs. Clusters standard errors by station. Trims the sam-
ple to 5 years before and after the SCA submission date, drops always
treated stations, and restricts the sample to pollution data for years
1962 to 1973. (*): p < 0.1, (**): p < 0.05, (***): p < 0.01.
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Figure E.1: OLS and group-time average e↵ect estimates – Impact on local pollution levels.
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OLS specification includes year-by-month and station fixed e↵ects, and includes a station-specific
yearly linear time-trend to capture di↵erences in linear dynamics between stations. Control group
consists of never-treated stations from both adopting and non-adopting county boroughs. Clusters
standard errors by station. Trims the sample to 5 years before and after the SCA order date, and
restricts the sample to pollution data for years 1962 to 1973.
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F. GENETICS

Every human cell, except for sex cells, contains 46 chromosomes. These chromosomes are ar-

ranged in pairs, with each pair containing one maternal and one paternal copy, and consist of

double-stranded deoxyribonucleic acid (DNA) with a large number of base pairs. The sequence

of base pairs, built from the nucleotides adenine (A) binding with thymine (T), and guanine (G)

binding with cytosine (C), form the human genome. Across a population there will be variation

in the base pairs at specific locations. Such variation is called a single nucleotide polymorphism

(SNPs) and it is one of the most commonly studied types of genetic variation. In cases where there

are two possible base pairs at a given location (i.e., two alleles), the more frequent base pair is

referred to as the major allele, while the less frequent pair is called the minor allele. Since humans

possess two copies of each chromosome, an individual can have zero, one, or two copies of the

minor allele at a given location.

Genome-Wide Association Studies (GWAS) aim to identify SNPs that robustly associate with

particular outcomes of interest. As GWAS samples typically contain many more SNPs than indi-

viduals, multivariate regression models cannot jointly identify the SNP e↵ects. Instead, a GWAS

conducts univariate regressions of the outcome on each SNP. GWASes have revealed that many

outcomes of interest in the social sciences are ‘polygenic’, meaning they are influenced by nu-

merous SNPs, each with a small e↵ect size. Thus, to enhance the predictive power of SNPs with

respect to an outcome, it is custom to aggregate the individual SNPs into polygenic scores (PGS).

These scores, Gi, are linear combinations of SNPs, where the weights (� j) are obtained from a

GWAS:

Gi =
X

j

� jXi j

where Xi j denotes the minor allele count (0, 1, or 2) at SNP j for individual i. This approach is

motived by an additive genetic model where each SNP contributes additively to an individual’s

overall genetic predisposition (see e.g., Purcell et al., 2009).

We run a Genome-Wide Association Study (GWAS) for each of our outcomes to estimate the
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SNP e↵ect sizes. To avoid overfitting when we later construct our PGSes, we run the GWASes

on a hold-out sample consisting of individuals not in our analysis sample. That is, we partition

the UK Biobank into two non-overlapping samples: a GWAS discovery sample, and the analysis

sample. We use the former to run our GWASes and construct polygenic scores for the individuals

in the latter that capture their genetic endowments with respect to each of our outcomes. The anal-

ysis sample is described in Section 3, while the GWAS discovery sample contains all individuals

born prior to 1957, and thus not in the analysis sample. Table F.1 reports descriptives statistics and

sample sizes for the GWAS discovery samples. Our GWASes include controls for sex, genotyping

array, first 20 genetic principal component, and cubic polynomials in year of birth by sex, allow-

ing for sex-specific outcome dynamics over time. We quality control the genetic data following

Elsworth et al. (2019), removing genetic outliers and ensuring genotypes are well-measured. We

use BOLT-LMM (Loh et al., 2015) to run the GWASes, which is a linear mixed model approach

that allows for some degree of relatedness among individuals and less restrictions on genetic an-

cestry (i.e., European ancestry instead of white British individuals only).

Instead of directly using the GWAS e↵ect size to construct polygenic scores, we use them as

inputs to LDPred2 (Privé et al., 2020), a bayesian method adjusting for linkage disequilibrium

(SNP correlations). We assume an infinitesimal model, where all SNPs are causal, and consider

only the subset of 1.6 million SNPs that are in Hapmap3 (Altshuler et al., 2010). We also filter the

SNPs using a minor allele frequency threshold of 0.01 and an info score threshold of 0.97.

We standardise the polygenic scores to zero mean and unit standard deviation in the analysis

sample. In Table F.2 we use our analysis sample to test the predictive power of the polygenic

scores for their target outcomes. The regressions control for sex and the first 12 genetic principal,

and we report the estimates together with the incremental R2, defined as the increase in R2 when

the polygenic score is included as a covariate. Taken together, the results show that the polygenic

scores are highly predictive of their respective outcomes, with incremental R2 between 3% and

16%.
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Table F.1: GWAS samples – Descriptives

(1) (2) (3)
Obs. Mean Std. dev.

Birth weight 173,367 3.317 0.669
Adult height 331,004 168.071 9.182
Educational attainment 328,277 12.903 2.362
Fluid intelligence 120,453 0.042 0.987

Columns: (1) Number of observations in the GWAS sam-
ple. (2) Sample mean in the GWAS sample. (3) Sample
standard deviation in the GWAS sample. Fluid intelligence
is standardised but during the GWAS routine a small number
of individuals are discarded from the sample and this causes
the mean and variance to di↵er slightly from zero and unity
above.

Table F.2: OLS estimates – Predictive power of polygenic scores for outcomes.

Dependent variable:

(1) (2) (3) (4)
Birth

weight
Adult
height

Educ.
attain.

Fluid
intelligence

PGS 0.170⇤⇤⇤ 0.402⇤⇤⇤ 0.303⇤⇤⇤ 0.600⇤⇤⇤

(0.011) (0.005) (0.009) (0.033)

Observations 8,204 11,494 11,439 3,993
R2 0.055 0.684 0.098 0.104
Incremental R2 0.029 0.158 0.090 0.076

Columns: (1) birth weight in kilograms, (2) adult height in centimeters, (3)
years of education, (4) standardised fluid intelligence score. Controls for
sex and the first 12 genetic principal components. Uses same sample as in
main analysis, that is: Control group consists of never-treated individuals
from both adopting and non-adopting county boroughs. Trims the sample
to five years before and after the SCA submission date, and restricts the
sample to birth cohorts in years 1958 to 1969. (*): p < 0.1, (**): p < 0.05,
(***): p < 0.01.
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