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Abstract

We develop a model of digital ecosystems based on the assumption that a multi-
market firm can use a sale in or data from one market to steer users toward its products
in other markets. Due to this “cross-market leverage,” a market leader at an “access
point” (where users begin their online journeys) has a high value from offering ser-
vices in connected markets (where users continue their journeys), and can thus make
profitable takeovers. Indeed, because the firm has the threatening outside option of
acquiring, and steering users toward, its target’s competitor, it can take over the tar-
get at a discount. In contrast, other firms have no or smaller incentives for takeovers,
explaining why ecosystems grow out of market leaders at access points. Conversely,
cross-market leverage also implies that once an ecosystem has grown, it has an in-
creased value of controlling access points, so it may go to great lengths to dominate
these markets.

Our theory’s logic suggests that ecosystems have mixed implications for consumer
welfare. Under plausible assumptions, a to-be ecosystem takes over market leaders,
and this consolidation of good services across markets benefits consumers in the short
run. But an ecosystem’s takeovers and dominance of access points lower incentives for
entry and innovation, and lower the efficiency of access-point markets with superior
alternatives. Hence, the long-run welfare implications of ecosystem growth are often
negative.
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fects, steering.
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1 Introduction

In this paper, we formulate a novel theory of digital ecosystems — firms that offer a wide

range of online services — by connecting two observations that are central in policy reports

as well as academic research about these firms. First, ecosystems aim to keep consumers

through setting defaults, manipulating attention, or employing other means of steering.

Second, ecosystems tend to develop in a major part through takeovers.

Based on the first fact, we make the core assumption that an ecosystem can use a sale in or

data from one market to steer consumers toward its product in another market. For instance,

Google Search preferentially lists videos from Google-owned Youtube and connections from

Google Flights, surely to increase traffic to these services (Schechner et al., 2020). Due to

this “cross-market leverage,” a market leader at an “access point” (where users begin their

online journeys; Google Search in our example) has a high value from offering services users

may want next. As a result, such a firm has an incentive to take over firms in other markets.

Indeed, because the firm has the threatening outside option of taking over and then steering

users toward a competitor, it can obtain a preferred target at a discount. We show that

other firms do not have similar incentives for takeovers, explaining the second observation,

and adding the prediction that ecosystems grow out of firms that control access points.

Conversely, cross-market leverage means that once an ecosystem has grown, it can have an

extremely high value for attracting consumers at access points. It is therefore willing to

spend tremendous resources to steer consumers toward itself in these markets, for instance

by buying the default position there or developing its product to be the first mover.

Our analysis indicates that ecosystems have mixed implications for consumer welfare.

Focusing on services that are socially valuable, we argue that the short-run implications are

often positive, while the long-run implications are often negative. Under plausible assump-

tions, a to-be ecosystem takes over market leaders, and this consolidation of good services

across markets benefits consumers. But the fact that an ecosystem harms existing firms
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through takeovers lowers the incentives for entry and innovation, which in turn often harms

consumers. Furthermore, an ecosystem may stifle superior rivals at a new access point, or

even newly superior rivals at an old access point, again potentially harming consumers.

We introduce our model in Section 2. Consumers use two services, a and b, starting

with the access-point service a. The services are offered by single-market firms and pos-

sibly ecosystems, which all derive a fixed benefit from a service of theirs being used. We

think of a service as “better” than another if it is utility-maximizing for more consumers.

But boundedly rational consumers may fail to choose optimally for themselves, giving rise

to steering effects. Specifically, in each market consumers’ attention is drawn toward one

“default” firm, which obtains an increase in its market share at the expense of other, po-

tentially better firms. In our basic model, the default firm at the access point a is allocated

exogenously; suppose (as we will endogenize below) that it is the best firm in the market.

Default determination in market b, in turn, captures cross-market leverage: if the consumer

bought from an ecosystem in market a, then the ecosystem becomes the consumer’s default

firm in market b. Otherwise, the consumer’s default firm in market b is selected randomly.

For predictions regarding the takeover targets of to-be ecosystems and the short-run welfare

effects of ecosystem growth, we also impose quality-steering complementarity, whereby firms

offering a better service benefit more from the default position.

We discuss several possible microfoundations for the default firm’s benefit, such as pre-

selecting the service in an app or link, including it in the consideration set of consumers

with limited attention, using data from previous interactions to manipulate the consumer’s

attention, or setting one’s product as the consumer’s reference point. While different in the

underlying psychology, the microfoundations have some common qualitative implications

for a firm’s valuation of the default position. Indeed, in Appendix A we identify plausible

conditions under which the microfoundations also satisfy quality-steering complementarity.

In Section 3, we study the emergence of ecosystems from an economy with only single-

market firms. Suppose that a single firmG in market a can make sequential take-it-or-leave-it
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acquisition offers to firms in market b until one accepts or all reject. Because of cross-market

leverage, firm G can direct its users in market a toward an acquired target, so it can make

more profits than the target can by itself. But in addition to this valuation incentive for

growing, firm G also has a strategic advantage in the process. Namely, if a target t rejected

G’s offer, then G would take over a competitor t′ of t, and direct users to t′. Because this

would divert users away from t, it diminishes the position of t. As a result, G can take over

any preferred target t at a discount.

To sharpen our understanding of takeover incentives, we study several alternative games.

Comparing the profits of all cross-market acquisitions, we establish that the takeover in

which the best firm in market a acquires the best firm in market b is the most profitable.

In particular, this forward integration is more profitable than backward integration, where

the leader in market b acquires the leader in market a. The reason is that a firm in market

b cannot steer users away from a firm in market a, so it does not enjoy a takeover discount.

Furthermore, if there are multiple targets, then even the presence of multiple potential

acquirers may fail to protect targets from acquisition at prices below their standalone values.

We demonstrate this in the case where targets are equally valuable. Then, an increase in

the number of potential acquirers can actually worsen the outcome for targets. Intuitively,

the equilibrium price for takeovers is determined by the last target’s value, which can be low

because consumers are steered towards already acquired firms.

Taken as a whole, the above logic yields several conclusions. First and most importantly,

it implies that market leaders at the access point grow into digital ecosystems, and do so

primarily by taking over the best available firms. Second, the logic can explain why it

is increasingly tech firms rather than investors specializing in tech — who do not benefit

from takeover discounts — that make successful takeover offers (Eisfeld, 2024). Third, the

takeover discount suggests that as long as there are available targets, an ecosystem may

prefer to expand through takeovers rather than product development. To mention two of

numerous examples, Google added both YouTube and Google Flights to its services through
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takeovers. Nevertheless, if targets are unavailable, a dominant firm at the access point has an

incentive to develop products for connected markets itself. Because of cross-market leverage,

it still benefits more from the new service than other firms. For example, Microsoft (a leader

in operating systems) spent tremendous resources to develop its browser and search engine.

In Section 4, we return to the beginning of the consumer’s journey, the access-point

market a. We endogenize the determination of the default firm by assuming that an outside

seller auctions off this position to firms in the market. This corresponds to a situation

where an original equipment manufacturer (OEM) like Apple or Samsung sets the default

search engine for a fee. Other negotiation mechanisms, for instance bilateral bargaining,

yield similar qualitative insights. Alternatively, the race to offer a new access product first

may often be seen as an all-pay auction whose winner obtains the default position through

prominence, again yielding similar insights.

As a benchmark, we show that with single-market firms, the best firm wins the auction.

This justifies our assumption above that the best firm in market a becomes the default there,

solidifying its market share and putting it in the best position to grow into an ecosystem.

The situation is different, however, once an ecosystem has developed. An ecosystem G’s

cross-market leverage gives rise to a “default multiplier” in its willingness to pay for the

default position in market a. The willingness to pay can be especially high when there is

a second multi-market firm that may lure the consumer into its own ecosystem, making it

difficult for G to win the consumer back. As a result, payments for the default position

in market a can be extremely high. A striking example consistent with this prediction is

the $18-20 billion annual payment that Google makes for being the default search engine on

Apple devices — which constitutes 36% of its search advertising revenue from these devices.1

1 See, for example, https://t1p.de/r9drd (accessed on June 11, 2024). Google also pays $400-$450
million per year for the default position on Firefox (see https://t1p.de/1gvpq accessed on June 11, 2024).
That capturing the consumer’s attention at access points is a key part of Google’s strategy is clear from
Google’s internal communications as well. For instance: “There’s tremendous power in the default OS
access points but it’s pay to play.... There is no substitute for the default access points: we should continue
to explore broad default access across all OS (including newer and emerging access points)” (see, e.g.,
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In Section 5, we identify what the above positive analysis of ecosystems implies for

welfare and policy. Reflecting the core mechanism of our paper, we focus on interventions

that disrupt the ability of digital ecosystems to steer consumers. These interventions include

“leverage policies” aimed at weakening cross-market leverage, and “access-point policies”

designed to regulate the sale of defaults. An obvious, if extreme and indirect, leverage

policy is to restrict digital firms’ ability to engage in takeovers. But many other policies

are possible, and already in place in the European Union’s Digital Market Act (DMA).

For instance, Articles 6(3) and 6(4), which require that users can easily change default

settings on operating systems, virtual assistants, web browsers, and app stores, can be seen

as access-point policies. Similarly, Articles 6(5) and 6(6), which prohibit access-point firms

from favoring their own products through rankings or impediments to switching, can be seen

as leverage policies.

On the one hand, the development of a digital ecosystem tends to increase short-run wel-

fare by enabling boundedly rational consumers to make better choices. This occurs because

a digital ecosystem consolidates the best services under one umbrella, improving defaults in

all affected markets. The idea that such an arrangement simplifies or improves consumers’

lives explains why many consumers appear to love (steering by) digital ecosystems.2 On

the other hand, the long-run welfare effects of a digital ecosystem are more nuanced and

often negative. First, potential inefficiencies arise as a digital ecosystem is willing to outbid

a better rival at a new access point or a newly superior rival at an old access point. In

such a case, access-point policies raise welfare in these critical markets. Second, our theory

validates recent regulatory concerns about the stifling effects of digital ecosystems on inno-

vation and entry (e.g., Crémer et al., 2019, Scott Morton et al., 2019, Furman et al., 2019).

Because a digital ecosystem often outbids better rivals at the access point and cheaply ac-

quires leaders in other markets, it lowers market “contestability” — the entry capacity of

https://www.justice.gov/d9/2023-09/416682.pdf).
2 See, for example, https://t1p.de/htpki (accessed June 17, 2024).
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non-dominant firms — everywhere. As a result, both access-point and leverage policies can

increase contestability throughout the economy.

We conclude in Section 6 by speculating why ecosystems are less common in offline

settings. While analogues do exist (e.g., tropical hotels with many services), in general

offline firms appear to have less steering ability than their online counterparts.

Related literature Our paper belongs to the quickly growing theoretical literature on

ecosystems and the digital economy. No previous paper, however, analyzes our main ques-

tion, the role of cross-market leverage and steering in the emergence of digital ecosystems.

Indeed, although there are informal accounts (e.g., Eisenmann et al., 2011, Condorelli and

Padilla, 2020), to our knowledge the only existing formal theory applicable to ecosystem

growth is by Chen and Rey (2023). Chen and Rey assume exogenously that consumers

obtain a convenience or bundling benefit from buying from the same firm, which motivates

conglomerate mergers. Our theory also features a consumer benefit from ecosystems, but

this arises endogenously due to the nature of the mergers taking place. Moreover, our micro-

foundation leads to different main predictions. First, while our theory predicts that takeovers

will be initiated by firms at (or closer to) consumers’ access points, Chen and Rey’s theory

makes no prediction in this regard. Second, while our theory predicts that ecosystems will go

to great lengths to secure access points, in Chen and Rey’s model this appears unnecessary.

At the same time, Chen and Rey study pricing implications of ecosystems, which we do not.

In addition, a small recent literature explores the implications of default effects or inertia

in single-market models of the digital economy (Chen and Schwartz, 2023, Ostrovsky, 2023,

Hovenkamp, 2023, Decarolis et al., 2022, Denicolò and Polo, 2024), without analyzing ram-

ifications for ecosystems. Most closely related, Chen and Schwartz (2023) and Hovenkamp

(2023) develop theories based on what we refer to as a switching-cost model of “default

effects.” In line with our benchmark Proposition 4, they show that usually better firms

have a greater willingness to pay for the default position. Finally, recent theoretical research
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also investigates aspects of the digital economy, including pricing (e.g., Jeon et al., 2023),

within-market steering (e.g., Teh and Wright, 2020, Hidir and Vellodi, 2020, Heidhues et al.,

2023b), entry for buyout (e.g., Bryan and Hovenkamp, 2020) or innovation (e.g., Madsen

and Vellodi, forthcoming), that are completely different from our main focus.

Our assumption that there is a default firm that consumers are more likely to choose can

— consistent with our terminology — be seen as incorporating a generalized default effect

into our model. A vast literature in behavioral economics documents that defaults matter

(e.g., Madrian and Shea, 2001, Choi et al., 2004, Johnson and Goldstein, 2003, 2004, Jones,

2012, Chetty et al., 2014, Blumenstock et al., 2018, Jachimowicz et al., 2019, Brown and

Previtero, 2020, Brot-Goldberg et al., 2021) and academics, policymakers, as well as firms

recognize that defaults are equally if not more important in digital settings.3 Furthermore,

it is universally recognized that firms have some control over consumers’ defaults, giving rise

to the steering ability that is central to our model.

2 Basics: Firm Payoffs with Steering

We begin by specifying a model of demand when consumers are susceptible to default effects

and steering. In later sections, we will use this framework to study mergers and competition

for the default position. Because our main interest is therefore not in default effects per se,

but in firm behavior, we specify firm payoffs with defaults in reduced form. In Appendix A,

we provide microfoundations for our assumptions based on the main mechanisms for default

effects described in the literature. These mechanisms presume that consumers compare and

choose between products imperfectly or in a context-dependent way. First, consistent with

3 Among academics, see for instance Johnson et al. (2002), Altmann et al. (2019), Fletcher and Vasas
(2023), and Fletcher et al. (forthcoming). Among policy reports, see Scott Morton et al. (2019) and Furman
et al. (2019). Among firms, extensive Google memos document that default settings “can be a powerful
strategic weapon”; a view that is shared by its competitors, as is evident from the testimony by Neeva,
DuckDuckGo, and Microsoft managers (see https://t1p.de/sco1p). For Google’s own estimates of the
value of defaults see, for example, https://t1p.de/ceovi. Both links accessed July 8, 2024.
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a strict notion of defaults, the consumer may receive the default option unless she actively

avoids it. Then, the default matters because searching for or switching to something else is

costly. Second, in a generalization of default effects, the default option may attract a con-

sumer’s attention. Then, the default matters because it is more likely to enter the consumer’s

consideration set, become her reference point, or be taken by her as a recommendation.

2.1 Setup

Basic Assumptions There are two markets, a and b, served by firms 1 through n. Market

a is an access point, such as a browser, search engine, map, or operating system, or in the

future potentially a service on wearables or self-driving cars. Market b is a follow-on service.

We denote by N s ⊆ {1, . . . , n} the set of firms offering service s ∈ {a, b}, define ns := |N s|,

and assume ns ≥ 2. We call a firm serving one market a single-market firm, and a firm

serving both markets an ecosystem. Prices are fixed at zero, and a firm’s profit equals its

total demand across the two markets.4 We normalize the size of the potential market a to 1.

In each market s, consumers are steered toward the product of one firm, which we call

the default firm. Firm i obtains exogenously given demand qsij ≥ 0 in market s when firm j

is the default in market s. Throughout the paper, we maintain:

Assumption 0 (Steering). For all i and j ̸= i, we have qsii > qsij.

Assumption 0 can be thought of as the definition of steering or default effects in our context:

that having the default position is beneficial for a firm. All of our microfoundations in

Appendix A imply choice behavior satisfying this assumption.

For now, we assume that the default in market a is assigned exogenously, and endogenize

this selection in Section 4. At the same time, we suppose that the default in market b

depends on what happened in market a. Specifically, any ecosystem becomes the default in

4 This is consistent with the common situation in digital markets, where a firm benefits not from direct
sales to consumers, but from collecting data and/or showing ads.
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market b with probability equal to its market-a demand. For the probability that remains

after accounting for the market-a demands of ecosystems, the default position is divided

equally between all firms in market b (including ecosystems). These assumptions capture

the cross-market leverage that results if consumers use service b after service a. If a consumer

used an ecosystem in market a, then the ecosystem sets itself as the default in market b for

that consumer. If, however, the consumer used a single-market firm in market a, then no

firm in market b is systematically favored.

Quality-Steering Complementarity For some of our results, we impose more structure

on the effect of steering on demand. Such structure is not necessary for our main positive

results, that ecosystems grow from leaders at access points through takeovers, and that

they have a high value from controlling access points. The additional structure is necessary,

however, for our predictions regarding the takeover targets of to-be ecosystems and the

short-run welfare effects of ecosystem growth.

Within a market s, we think of a firm i as “better” or “higher-quality” than firm j if∑
ℓ∈N s

qsiℓ >
∑
ℓ∈N s

qsjℓ,

i.e., i’s demand when the default is assigned randomly and with equal probability is strictly

higher than j’s. This definition reflects a common property of all of our microfoundations: if

no firm is favored on average, then demand indicates quality. In that case, even a boundedly

rational consumer is more likely to choose a better option.

Assumption 1 (Quality-Steering Complementarity). Let i, i′, j, j′ ∈ N s.

I. If j is better than j′, then qsij′ ≥ qsij for all i ̸= j, j′.

II. If i is better than i′, then qsii − qsij > qsi′i′ − qsi′j for all j ̸= i, i′.

III. If i is better than j, then qsii − qsij > qsjj − qsji.
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Broadly, Assumption 1 imposes that better firms benefit more from holding the default

position than worse firms. Three specific conditions incorporate this complementarity. A

better default attracts more consumers away from a competitor, lowering the competitor’s

demand (Part I). In addition, a better default attracts more consumers from all options, so

a better firm gains more from replacing a given rival as the default (Part II). And for the

same reason, a better firm benefits more from replacing a worse firm as the default than vice

versa (Part III).

In Appendix A, we identify plausible conditions under which our microfoundations lead

to consumer behavior satisfying Assumption 1. Depending on the microfoundation, this is

either always the case, or if the default effect is sufficiently weak. Intuitively, a better firm

often benefits more from drawing a boundedly rational consumer’s attention, as it induces

the consumer to take into account the firm’s quality in her choice.

Discussion of Setup For transparency and tractability, our model makes some unreal-

istic simplifying assumptions. First, while we have assumed that there is a single service

b that follows the single access point a in consumers’ online journeys, there may be mul-

tiple candidates for both. For example, a consumer may start her search for vacations in

a browser or on a map, after which she may look up flights to or weather at a candidate

location. Similarly, she may be interested in further services after market b. She may, for

instance, use a browser to read news, then perform a search for videos, and then watch

a video. These alternatives do not affect our qualitative prediction that ecosystems grow

from access points toward connected services. But the presence of multiple candidates for

access points and subsequent services does add the obvious and realistic qualification that

ecosystems will consist not just of two, but of potentially many connected services.

Second, while our specification of cross-market leverage implicitly assumes that all con-

sumers move from service a to service b, the sequence of service usage is not always obvious

or uniform across consumers. For instance, some consumers first search and then send an
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email, whereas others proceed in the opposite direction. Nevertheless, our points continue

to hold if there are a few central services — search in this case — that a disproportionate

number of consumers start with.

Third, while we assign the default in market b by dividing consumers that have not used

an ecosystem in market a equally among all firms, it seems plausible that prominent firms

are systematically favored. For example, unless steered by a competitor, consumers may use

the leading search engine simply because its name has become a synonym for search. Our

results continue to hold as long as ecosystems can steer consumers across markets.

Fourth, to focus on the implications of cross-market leverage, our model ignores two

considerations that are commonly considered central for the dominance of large digital firms

(see Calvano and Polo, 2021, for a review): network effects and economies of scope in data.

Network effects — that more users make the service better — apply almost exclusively

within market, and all of our results are driven by cross-market effects. To go further, our

theory shows that economies of scope in data — that combining consumer data from different

markets may increase conversions for advertisers — are unnecessary for digital ecosystems to

emerge. Indeed, the data view does not explain our main results regarding the direction of

ecosystem growth or the tremendous effort ecosystems expend to secure access points. Still,

our findings are not only consistent with, but typically reinforced by within-market network

effects or economies of scope in data, which by definition increase the value of large firms.

2.2 Preliminaries: Default Advantage and Default Externality

As a useful step for our analysis, we decompose steering effects. We define firm i’s default

advantage as its gain in demand when it rather than a randomly chosen firm is the default:

αs
i := qsii −

1

ns

∑
ℓ∈N s

qsiℓ.
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Relatedly, we define firm j’s default externality on firm i as the change in firm i’s demand

when firm j rather than a randomly chosen firm is the default:

ηsij := qsij −
1

ns

∑
ℓ∈N s

qsiℓ.

Using Assumption 0, it is easy to establish that:

Lemma 1 (Default Advantage and Externalities).

I. For any firm i ∈ N s, we have αs
i > 0.

II. For any firm i ∈ N s, there exists another firm j ̸= i, such that ηsij < 0.

III. If all firms in market s are symmetric, then αs
i = (ns − 1)|ηsji| for all i and j ̸= i.

Part I simply restates the premise that the default position is valuable in terms of a firm’s

default advantage. More substantively, Part II says that there must exist a rival of firm i

that imposes a negative default externality on i. Intuitively, if firm i would benefit from

facing everyone of its competitors as the default, the default position would be undesirable,

contradicting Assumption 0. Finally, Part III notes that if all firms are symmetric, firm i’s

default advantage is equal to the corresponding loss in market shares of all its rivals.

3 The Emergence of Ecosystems

In this section, we show that cross-market leverage leads to the emergence of ecosystems

through — primarily — takeovers. Throughout this section, we assume that the default in

market a is exogenously given, and thus suppress the default in a firm’s market-a demand.

3.1 Takeovers in the Shadow of Cross-Market Leverage

We first identify a strategic advantage in making a takeover in the next market, and inves-

tigate which firm has the greatest incentive to make a takeover. As a start, suppose that all
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firms are single-market firms. We consider a simple takeover game: one firm in the access-

point market a, firm G, can make sequential take-it-or-leave-it offers to the firms in market

b until one firm accepts an offer or all firms reject an offer. We look for subgame-perfect

equilibrium outcomes.

As a point of comparison, notice that a target t’s “standalone value,” i.e., its demand in

the absence of a takeover, is

V b
t :=

1

nb

∑
ℓ∈N b

qbtℓ.

Without cross-market leverage, this is how much G would value t, and also how much t

would be willing to sell for. Hence, in that case the profit from a takeover would be zero.

Proposition 1 (Takeover Discounts and Profits).

I. In any subgame-perfect equilibrium of the takeover game, there are t1, t2 ∈ N b such that

(i) firm G takes over t1 at a price V b
t1
− qaG|ηbt1t2 |, thereby making a profit of qaG(α

b
t1
+ |ηbt1t2|);

and (ii) t1 and t2 solve maxt′1,t′2∈N b αb
t′1
− ηbt′1t′2

.

II. Under Assumption 1, t1 and t2 are firms with the best and second-best service b.

The proposition states that G makes a profitable takeover. Its profit is due to two

considerations that arise from cross-market leverage. First, straightforwardly, if G acquires

a target t, then it can use its cross-market leverage to raise t’s demand. Hence, G values any

target above its standalone value. Second, less obviously, G obtains a “takeover discount”

— it pays a price below the target’s standalone value. Intuitively, in equilibrium t knows

that if it did not sell to G, then another target t′ would. In that case, firm G would use its

cross-market leverage to increase the demand of t′ and thereby lower the demand of t. This

threat weakens the bargaining position of t. Furthermore, in equilibrium the firms t and t′

maximize G’s takeover profit.5

5 Our proof establishes the last result by noting that G can first make low-ball offers to all firms but t
and t′, and once these offers are rejected, approach t. Then, t knows that if it rejected the offer, G would
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In general, t and t′ could be any two firms in market b, but under Assumption 1, they

are the best firms in the market. Then, firm G buys the best firm because this firm benefits

the most from the default position, and hence is the most profitable firm to steer consumers

to. In addition, the second-best firm is the best threat because (by Part I of Assumption 1)

making it the default attracts the most consumers away from the best firm.

Having analyzed takeovers by a single firm, and having identified the takeover discount,

we now explore which firm is most likely to initiate a takeover. To do so, we calculate the

expected profit each firm can make in a takeover game of the type above, where it makes

sequential take-it-or-leave-it offers to the firms in the other market. Because a takeover is

costly to prepare and execute, the firm with the most to gain is most likely to undertake the

necessary investment. Alternatively, one may think of a “law firm” or consultancy, which

organizes the acquisition and reaps part of the profits from it. Such an intermediary also

has an interest in bringing about the most profitable takeover.

Proposition 2 (Profits of Forward Integration vs. Backward Integration).

I. Consider any firm i in market b. The highest profit it can earn is through taking over

the leader ℓ in market a. It can do so at a price V a
ℓ , making an additional profit of qaℓα

b
i .

II. Firm ℓ can earn strictly more from a takeover than qaℓα
b
i , and it can earn weakly more

than any other firm j ̸= ℓ in market a.

Part I identifies the profits from “backward integration” — when a firm in market b

expands into market a. Cross-market leverage allows the firm to direct some of the target’s

consumers to itself, so it makes a profit from such a takeover. In doing so, however, the firm

does not obtain a takeover discount. Intuitively, taking over the target’s competitor does

not decrease the target’s demand, so it is not threatening. Accordingly, Part II says that

take over t′. This logic of course relies on the assumption that G cannot approach firms that previously
rejected it. If G had less commitment power regarding which firms it will approach after getting rejected by
t, its profit could be lower, but the qualitative logic of Proposition 1 would still hold; indeed, often there is
also a subgame-perfect equilibrium in which G approaches its preferred target first.
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the profit from backward integration is lower than that from “forward integration” — when

a firm in market a expands into market b. Overall, the firm with the greatest incentive to

make takeovers is the leader in market a.

Propositions 1 and 2 imply that market leaders at access points, like Google or Microsoft,

are prone to growing into ecosystems through profitable mergers. Both specific examples and

general observations are consistent with our story. For instance, Google took over Youtube

and added it to its services, Google took over Where 2 Technologies that became Google

Maps, Google took over ITA Software to create Google Flights, and Microsoft took over

Hotmail and turned it into Outlook.6 More generally, “strategic mergers” are common in

digital markets (Eisfeld, 2024) despite the growing importance of acquisitions by financial

firms elsewhere (e.g., Vild and Zeisberger, 2014, and references therein), and most mergers

between digital firms can be classified as vertical or conglomerate mergers.7 Furthermore, as

we predict, digital firms “tend to acquire companies at lower prices” than financial investors

(Eisfeld, 2024, p. 57).

The logic of our model also allows us to make further observations. First, consider the

possibility that for exogenous reasons firms in market b are not willing to sell. Suppose

furthermore that the leader G in market a can internally develop service b at a cost cint,

whereas an outsider can develop a service with the same market share at a cost cext. For

simplicity, we impose that the outsider makes the development decision first, and if it does not

develop the service, thenG can do so. The outsider develops the service if its standalone value

6 See, for example, https://t1p.de/lsvbk (YouTube), https://t1p.de/86x05 (Google Maps), https:
//t1p.de/aia1s (ITA Software), and https://t1p.de/w3dhr (Hotmail). Other examples include Google
taking over Upstartle and 2Web Technologies to create Google Docs and Google Sheets (https://t1p.de/
med6m); Apple buying the MP3 player SoundJam MP to create iTunes (https://t1p.de/vfuyv); Microsoft
extending its range of services by taking over Skype and LinkedIn (https://t1p.de/1dddj and https:

//t1p.de/g9bwj); Amazon acquiring Audible, LoveFilm (now Amazon Prime Video), and Twitch (https:
//t1p.de/52vaf, https://t1p.de/7cpmu, and https://t1p.de/4p5ue); Meta taking over WhatsApp and
Instagram (https://t1p.de/g98rr). All links accessed on June 6, 2024.

7 The observation that digital ecosystems grow from access points into adjacent markets through takeovers
is not restricted to western societies. The two dominant ecosystems in China, Alibaba and Tencent, grew
out of the Alibaba’s dominant marketplace (Taobao) and Tencent’s dominant social media and messaging
service (WeChat) into ecosystems that offer a broader range of services (Prüfer et al., 2024).
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exceeds cext. Otherwise it does not, in which case G develops the service if the standalone

value plus the default advantage that G can generate exceeds cint. Hence, because of its

ability to steer, firm G may develop the service even if cint > cext. In this sense, G has a

larger incentive than other firms to develop new services in adjacent markets. Without cross-

market leverage, in contrast, G would never be the one developing the service if cint > cext.

Consistent with our prediction, for instance, Microsoft spent tremendous resources to develop

and improve its browser (first Internet Explorer, now Edge), Google developed its email

service Gmail in house, and Uber developed its food delivery service UberEats.8

Notwithstanding its incentive to self-develop service b if necessary, firm G often prefers

to acquire the service through a takeover instead. In particular, suppose that G could hire

a team and self-develop the service, or let the team start a company offering the service

and take over the company. Firm G prefers the takeover if cint is above the takeover price.

Hence, G may use a takeover even if cint is well below the profits it can make with the service.

Again, without cross-market leverage this would never be the case. Note, however, that even

if firm G makes a takeover in equilibrium, its option to self-develop the product remains

relevant. Much like taking over a competitor, this can serve as a threatening outside option

that lowers the preferred target’s takeover price.9

Second, while we simplify things by assuming two markets, the logic of our results applies

equally or even more strongly to the kinds of more complex situations we have mentioned

previously. As one relevant extension, there may be multiple markets that consumers want

to use immediately after the access point. Then, iterated application of Propositions 1

and 2 implies that the leader at the access point takes over firms in each of the other

markets. Alternatively, there may be further services that consumers want to use after

8 See https://t1p.de/l6y2x and https://t1p.de/a5egg (Microsoft), (https://t1p.de/86x05)
(Google), and https://t1p.de/2u84f (Uber). Notably, also Apple and Google developed their own web
browsers (https://t1p.de/pqiz6 and https://t1p.de/69unz). All links accessed June 6, 2024.

9 Relatedly, Katz (1987) argues that large downstream buyers can more credibly threaten to enter an
input market in the presence of scale economies, and hence get offered a lower input price even absent entry.

16



market b. In particular, consider a situation in which the consumer uses another service c

after service b, and for simplicity suppose that market c emerges after markets a and b have

been established.10 Applying Propositions 1 and 2 first to markets a/b says that the leader

in market a takes over a firm in market b. Now applying the same logic to markets b/c says

that if the new ecosystem is the leader in market b, it will take over a firm in market c.

Indeed, the ecosystem will be the leader in market b if cross-market steering is sufficiently

strong, or if it was created through the takeover of a sufficiently good firm in market b.

Under Assumption 1, in particular, the ecosystem merges the best firms in markets a and b

(Proposition 1, Part II), so it will always be the leader in market b. In that case, it expands

further by taking over the leader in market c.

Third, our theory says that if forward integration is not possible (for a reason outside

our model) but backward integration is, then backward integration will occur. Indeed, Part

I of Proposition 2 says that backward integration is profitable due to cross-market leverage,

even if less profitable than forward integration. We expect this type of takeover to occur

when there are already ecosystems in place, and a new access point with small single-market

firms emerges. For practical reasons, such as financing or know-how, it seems implausible

that a small startup would take over an ecosystem like Google or Meta. Hence, in this case

backward integration naturally occurs. Consistent with this prediction, Google took over

Fitbit and Meta acquired Oculus VR.11

While we focus on the emergence of ecosystems through takeovers, as usual in simple

models of vertical relations, contracting solutions can — in theory — substitute for the

merger. The complexity of more realistic settings, however, provides a rationale for why

firms exploit cross-market leverage through takeovers rather than contracting solutions. In

practice, contracting solutions can be difficult to design and enforce, especially in highly

10 The example we have mentioned previously, where the consumer first uses a browser to read news, then
performs a search for videos, and then watches a video, is consistent with such a situation. Video sharing
developed well after browsers and search engines.

11 See https://t1p.de/o9wui (Google) and https://t1p.de/p8kvb (Meta) both accessed June 19, 2024.

17



dynamic digital markets. If steering is based on choice architecture, for example, firms would

have to agree every time the service in market a adapts their customer interface. Similarly,

when improving their service in market b, a firm would face a hold-up problem unless the

steering price is credibly fixed. Furthermore, in the plausible scenario with further markets

following market b, a consumer steered into market b can be steered once more into market c.

In such an environment, finding appropriate contracting solutions will be even more difficult.

And a common approach for advertising — auctioning of a desirable position instantaneously

— is presumably harder to implement for most steering situations. If, for example, consumers

are steered to different services at different times, then even consumers with limited attention

may eventually become aware of these services, decreasing their “steerability.”12

3.2 Multiple Acquirers and Takeover Prices

Our model in the previous subsection assumes that a single firm can make takeover bids,

giving the acquirer substantial bargaining power. A natural conjecture is that the presence

of multiple potential acquirers introduces competition for takeovers and thus protects targets

from being bought below their standalone values. We evaluate this conjecture in a variant

of the above takeover game, and find that it is not generally correct.

Consistent with Proposition 2, we focus on forward integration. A given subset A ⊆ N a

of the firms in market a can make takeovers, and all firms in market b are potential takeover

targets. For expositional purposes, we suppose that all potential targets offer an equally

good service b, and firms in A differ in their market-a demand. We thus drop subscripts

referring to the target (e.g., on standalone values), and denote by Ā(x) the x firms in A with

the highest market-a demand. In every round of the game, one of the remaining targets is

offered for sale, and each potential acquirer that has not yet made a takeover can submit a

takeover offer. The target can accept any offer. The game ends when all potential targets

12 More generally steering to different targets may be less effective in case consumers learn through word
of mouth.
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have been up for sale.

We characterize (subgame-perfect) equilibrium outcomes following the usual convention

that takeover offers are cautious; that is, no offer is above the additional profits a firm

can generate when acquiring the target. Formally, we define (dynamically) cautious offers

recursively: if a subgame following the current round of offers has a unique cautious subgame

perfect equilibrium outcome, we require firms to make cautious offers (i.e., use iteratively

weakly undominated strategies) in the reduced game in which these subgames are replaced

by the corresponding equilibrium payoffs.13

Proposition 3 (Multiple Acquirers). In any equilibrium with cautious offers, firms in Ā(nb),

but no other firms, make a takeover. The equilibrium takeover price is f ∗ < V b. Specifically,

f ∗ =


V b − |ηb|

∑
i∈A qai if nb > |A|,

V b − |ηb|
∑

i∈Ā(nb−1) q
a
i if nb = |A|,

V b − |ηb|
∑

i∈Ā(nb−1) q
a
i + αbmaxj∈A\Ā(nb−1) q

a
j if nb < |A|.

(1)

Proposition 3 says that even with multiple acquirers, the acquirers can always take over

their targets at a price below the targets’ standalone value (in the absence of any takeover).

This means that the possibility of takeovers always harms targets. Intuitively, other acquir-

ers not only introduce competition for an acquiring firm, but also affect the value of targets.

Specifically, on the equilibrium path, the last target taken over is less valuable to an acquirer,

because the ecosystems created in preceding takeovers will steer consumers away. Further-

more, in equilibrium the price of all takeovers is determined by this marginal acquisition,

and hence is low.

The above logic implies that with an abundance of targets (nb > |A|), targets are actually

made worse off with an increase in the number of acquirers. In that case, the abundance

13 Requiring the use of iteratively undominated strategies amounts to ruling out that takeover offers
are driven by the fear that some firm with a low demand in market a bids aggressively above its possible
additional profits.
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of targets means that other acquirers lower a target’s value without inducing competition.

Even if there are more acquirers than targets (nb < |A|), the decrease in value due to other

takeovers outweighs the price-increasing effect of competition. If a target refuses to sell,

it expects to obtain little demand due to successful acquirers steering consumers to all its

rivals. While there is also competition for targets, the former effect dominates. This is

because targets are identical and potential acquirers compete for the extra demand they can

create through steering. Because unsuccessful acquirers have fewer consumers to steer than

successful ones, they could create only less extra demand. Hence, unsuccessful acquirers are

not willing to pay enough for a takeover to compensate a target for the loss in demand due

to its rivals being taken over by acquirers with more consumers to steer.

4 Default Setting at the Access Point

Having established that cross-market leverage leads to ecosystems, we investigate the im-

plications of ecosystems for steering incentives in the access point market a. Our analysis

is motivated by the high-stakes practice of default setting on digital devices. As in the

case of Google’s astronomical payment to Apple mentioned in the introduction, such set-

tings are often negotiated between the original equipment manufacturer (OEM) and digital

firms.14 Going further, for commonly used Android devices, Google enforces its default po-

sition through a nexus of usage contracts for the operating system (i.e., Google Android)

and “must-have” apps (e.g., Google Play Store or Google Maps).15 The obvious aim of such

arrangements is to induce the owner to use Google services when she first picks up her device.

While acquiring the literal default position is our main motivation, there are other plau-

14 Chris Barton (Google): “We need to incentivize carriers to ship Google by using the same approach
we at Google have used for many years: ’We will pay you revenue share in return for exclusive default
placement.’ This contract is an exchange.” (internal email, April 2011, https://www.justice.gov/d9/
2023-09/416302.pdf).

15 See Heidhues et al. (2023a) for a discussion of how Google locks in its default position through inter-
locking contracts.
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sible ways of steering or getting a consumer at the access point. These will be especially

pertinent in the near future, when new products with access-point services, such as self-

driving cars or smart wearables (e.g., fitness tracking smart watches), become widely used.

For example, a firm may spend extra resources to plant a position at a new access point

by developing the product, such as the operating system of a self-driving car, even if other

providers are better positioned for the innovation. A first-mover advantage may then benefit

the firm for an extended period.

Formally, we assume that the default position in market a is sold through a sealed-bid

second-price auction. Other negotiation mechanisms, for instance bilateral bargaining, yield

similar qualitative insights. We look for cautious Nash equilibria in which all firms use a

weakly undominated strategy.16 For stating our results, we define ∆a
ij := qaii − qaij ∈ (0, 1),

which is a single-market firm i’s willingness to pay to replace j as the default in market a.

4.1 Benchmark: Single-Market Firms

As a benchmark, we suppose that all firms are single-market firms.

Proposition 4 (Superior Defaults). If Assumption 1 holds, then a firm i ∈ N a that offers the

best service a wins the auction for the default position, and it pays at most maxj∈Na\{i}∆
a
ji.

Proposition 4 says that with only single-market firms, at least under Assumption 1, a top-

quality firm becomes the default. Upon winning the default position, such a top-quality firm

attracts away most consumers from all other options, and it thus values the default position

the most. Chen and Schwartz (2023) and Hovenkamp (2023) establish similar results in

slightly different settings.

16 It is well-known that the second-price sealed-bid auction has a continuum of equilibria in weakly domi-
nated strategies both with independent private values as well as known values (Blume and Heidhues, 2004).
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4.2 Ecosystems and Access Points

We turn to our main interest, how ecosystems value and bid for access points. For simplicity,

we suppose that there are two firms in market a, G and M , of which G is an ecosystem, and

M may be a single-market firm or an ecosystem.

Proposition 5 (Potential for Inferior Defaults).

I. Suppose that M is a single-market firm. Then, if ∆a
GM

(
1 + αb

G

)
> ∆a

MG, firm G wins

the auction for the default position with probability 1, and pays ∆a
MG.

II. Suppose that M is an ecosystem, and let ηbGM , ηbMG < 0. Then, if

∆a
GM

(
1 + αb

G + ηbMG

)
> ∆a

MG

(
1 + αb

M + ηbGM

)
,

firm G wins the auction for the default position with probability 1, and pays

∆a
MG

(
1 + αb

M

)
+∆a

GM |ηbMG|.

As in the case of single-market firms (Proposition 4), the winner and payment in the

auction are determined by firms’ valuations of the default position in market a. In the case of

ecosystems, however, cross-market leverage means that this valuation includes considerations

from market b. By Part I, when firm G competes against a single-market firm, then its

willingness to pay to replace firm M as the default in market a is
(
1 + αb

G

)
∆a

GM . When

replacing firm M as the default in market a, firm G’s demand for this service increases by

∆a
GM . Because of cross-market leverage, this increase in demand for service a translates

into a higher probability of becoming the default in market b, which comes with a default

advantage of αb
G. Hence, when replacing firm M as the default in market a, firm G earns

an additional profit of ∆a
GMαb

G in market b. In the extension of our model in which firm

G offers services in many markets, it can monetize a sale at the access point in even more

ways. We can capture such a situation in reduced form by assuming that firm G’s default
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advantage αb
G is large, leading to a large “default multiplier” 1 + αb

G.
17

By Part II, when G competes against another ecosystem, its willingness to pay to obtain

the default position is even higher. Intuitively, facing a multi-market competitor adds the

additional concern that if the competitor wins the default position, its cross-market leverage

makes it more difficult to attract the consumer in market b. More precisely, since firm M

exerts a default externality of ηbGM on firm G in market b, firm G’s willingness to pay is

∆a
GM

(
1+αb

G

)
+∆a

MG|ηbGM |. Firm M ’s valuation, which determines firm G’s payment in case

it wins, is determined analogously.

Proposition 5 has two economically important implications. First, even under Assump-

tion 1, an ecosystem may obtain the default position in market a when it does not offer the

better service there. Recall that under Assumption 1, ∆a
GM > ∆a

MG if and only if firm G has

the better product. Against a single-market firm (Part I), firm G may win with an inferior

product if it has a sufficiently large default multiplier. Against an ecosystem (Part II), it

may win with an inferior service a if it offers a better product in market b18 or — considering

17 More concretely, consider the extensions discussed in Section 3.1. Suppose that, in addition to the
access point, there are markets b1, . . . , bS , and the multi-market firm G is active in all of these markets.
First, suppose that each consumer wants to use exactly one service bs upon leaving the access point, but
different consumers demand different services. For example, some consumers search for vacation spots
(market a) and book a flight afterwards (market b1) while others search for yesterday’s game (market a) to
watch its highlights (market b2). Let wi ∈ (0, 1) be the share of consumers interested in service bi. Firm G’s
willingness to pay for the default position in market a then is(

1 +

S∑
s=1

wsα
bs
G

)
∆a

GM .

Second, suppose that upon leaving the access-point market all consumers want to use all other services
in a (for simplicity) fixed and identical sequence. For example, a consumer might search for an interview
about yesterday’s game (market a) that she translates to her mother-tongue (market b1) and upon reading
it (market b2) emails the translation to a friend (market b3). In this case, firm G’s willingness to pay for the
default position in market a is (

1 +

S∑
s=1

s∏
m=1

αbm
G

)
∆a

GM .

Either way, firm G’s willingness to pay for the default strictly increases in the number of services it offers.
18 Under Assumption 1 (Part III), qbGG − qbGM = αb

G − ηbGM > αb
M − ηbMG = qbMM − qbMG if and only if G

offers a better product than M . Hence, G needs to offer a better service than M for αb
G+ηbMG > αb

M +ηbGM .
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the extension to many markets discussed above — is active in more markets.

Second, Proposition 5 implies that firm G may make an extremely large payment for

the default position. When competing against a single-market firm, this is the case if the

competitor is very good. When competing against an ecosystem, the same is the case also

if cross-market steering is very effective. These results, especially the latter one, explain

the great lengths to which Google goes for securing the default position in the market for

search (e.g., by outbidding Microsoft for being the default search engine on iOS devices).19

Similarly, Google appears to be spending tremendous resources to develop a self-driving

car, which is considered a major new access point in the making.20 Note that theories of

conglomerates based on consumer-side complementarities, such as one-stop-shopping benefits

(Chen and Rey, 2023), predict that such measures are unnecessary. If consumers had an

inherent preference to use the services of a multi-market firm, then they should flock to

Google without Google having to spend a lot to steer them in its direction.

Proposition 5 analyzes what happens when firmG competes either against a single-market

firm or against an ecosystem. An interesting additional issue arises when firm G competes

against both types of firms at the same time. Then, the fact that firm G’s willingness to

pay for the default position is higher when competing against another ecosystem can lead

to multiple equilibria. This can happen when the single-market firm offers the best service

a. In one equilibrium, the ecosystems bid high in an effort to prevent the other ecosystem

from winning. Then, an ecosystem wins and pays a lot. In the other equilibrium, the single-

market firm wins, and the ecosystems bid less aggressively exactly because they are not

worried about the other ecosystem winning. In this case, the winner pays a lower amount.

The above logic implies that despite having no direct interest in either market, an OEM

19 See, for example, https://t1p.de/r9drd (accessed June 7, 2024).
20 See, for example, https://t1p.de/uo5sm. Other examples include Google developing — partly, through

takeovers — a smart TV platform that “amalgamates various streaming services, live TV, and a plethora
of apps, all accessible through a single, user-friendly interface” (https://t1p.de/1aetd and https://t1p.

de/khbht). All links accessed July 3, 2024.
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may want to exclude good single-market competitors from bidding for the default position at

the access point.21 By doing so, the OEM guarantees that the ecosystems compete against

each other, ensuring itself the profits from the better equilibrium above.

5 Welfare and Policy Implications

Following a number of high-profile policy reports (Scott Morton et al., 2019, Furman et al.,

2019, Crémer et al., 2019) in the US, UK, and EU respectively, policymakers recently have

proposed a variety of laws with the aim to curb the power of “big tech.” The market power

of big tech raises at least two policy concerns. One is that due to their entrenched market

position, entry of new competitive firms in their established markets has become infeasible

to the long-run detriment of consumers. Another is that digital ecosystems can leverage

their market power from some core platform into other complementary markets — including

through the use of what we refer to as steering — thereby forestalling competition and making

the economy less dynamic. As a response to these concerns, the European Union passed the

Digital Market Act (DMA) with the aim of increasing “fairness” and “contestability” in the

digital economy.22

For example, Articles 6(5) and 6(6) of the DMA prohibit ecosystems (referred to as

gatekeepers) from giving their own complementary services preferential treatment through

ranking or other means. Such “leverage policies” — weakening cross-market leverage — are

meant to open up these services to “fair” competition and complement a variety of other

21 See Ostrovsky (2023) for how an auction designer who does have a vested interest in the access-point
market can subtly manipulate the auction to generate more desirable outcomes.

22 Contestability is defined in Recital 32 of the DMA as “[...] ability of undertakings to effectively overcome
barriers to entry and expansion and challenge the gatekeeper on the merits of their products and services.”
This recital and others argue that there is weak contestability in the digital sector. Recital 33 defines the
lack of fairness as a situation in which a “gatekeeper obtains a disproportionate advantage” and its business
users do not “capture the benefits resulting from their innovative or other efforts.”
Reflecting the widespread policy concern regarding big tech’s market power, similar laws were introduced

but not passed in the US congress (Crémer et al., 2021). Furthermore, the UK and Germany have recently
introduced new laws and regulations that also aim to limit ecosystems’ market power.
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laws that limit the steering of consumers in the EU.23 In addition, Articles 6(3) and 6(4)

of the DMA necessitate that users can easily change default settings on operating systems,

virtual assistants, web browsers, and app stores. Such “access-point policies” — regulating

the sale of default positions — limit the ability to use defaults to steer demand in access-

point markets. Indeed, in response EU consumers now often see a choice screen when, for

example, first using a browser on a new mobile device. Going beyond the above mentioned,

and already implemented, leverage policies, there has been also some discussion of either

breaking up big tech or limiting the ability of big tech firms to engage in further takeovers.24

Motivated by these policy ideas, we discuss welfare and policy implications of our theory,

focusing on interventions that interfere with steering by ecosystems.

In doing so, we restrict attention to valuable services, such as search, maps, or the

operating system of a self-driving car, where it is optimal for the consumer to find and use

the provider that gives her the highest utility. Our analysis does not apply to services such

as social networks that a person may overconsume,25 potentially even more so with a better

default option. We suspect that in such situations regulating the harm directly is a natural

policy prescription.

Going further, we assume that in our online setting with many low-stake decisions, con-

23 The steering of consumers is also restricted through various other EU regulations including the EU’s
Digital Service Act (e.g., Art. 25), Data Act, AI Act, as well as the Unfair Commercial Practices Directive
(for an overview see Busch and Fletcher, 2024), with the aim of protecting consumers from “dark patterns”
or online choice architecture that misleads or otherwise induces the consumer to act in the firm’s rather than
their own interest. Going beyond forbidding to mislead or pressure consumers, the DMA as well as various
competition cases are explicitly concerned about ecosystems’ ability to distort competition through defaults,
rankings, and other design choices. See, for example, the European Commission’s Google Shopping decision
(https://t1p.de/e1g1a) or the US and Plaintiff States versus Google LLC case (https://t1p.de/65om).
Both links accessed July 4, 2024. Similarly, China’s drafted guidelines that, if adopted, restrict its dominant
ecoystems’ ability to self-preference, thereby limiting cross-market leverage (Prüfer et al., 2024).

24 The proposal to break up big tech companies has been, for example, a central part of Senator Warren’s
campaign for US President (see, e.g., https://t1p.de/rtm8k, accessed July 5, 2024). Scott Morton et al.
(2019) argue for scrutinizing big tech acquisitions more heavily. On this topic, see also Cabaral et al. (2021).

25 See Allcott et al. (2020) for empirical evidence that the average user spends too much time on Facebook,
and Bursztyn et al. (2024) for experimental evidence suggesting that a large share of TikTok and Instagram
users would be better off if these platforms did not exist.
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sumers (on average) benefit from a better default. This rules out situations in which a

product’s default status creates “as-if switching costs” (Goldin and Reck, 2022), making it

optimal for a policymaker to force active choice through selecting a bad default.26 When

forced choice is indeed desirable, policies such as choice screens that induce choice already

benefit consumers in the short run, and will have the same long-term welfare benefits as

those we discuss below.27 Finally, once we impose that consumers benefit from a better de-

fault, our microfoundations also suggest quality-steering complementarity (Assumption 1),

and hence we impose it to simplify our discussion.

Given our assumptions on the nature of products being sold and the properties of default

effects, the short-run welfare effects of the development of a digital ecosystem are positive.

Propositions 1 and 2 imply that the best firm in the access-point market takes over the

best firms in successive markets; and Proposition 5 implies that if the default position in

the access-point market is sold through an auction, an ecosystem that has grown in this

way acquires that position too. As a result, the probability that the best firm becomes the

default increases in each market, benefiting consumers. Accordingly, both leverage policies

and access-point policies lower welfare.

The long-run welfare effects of digital ecosystems, however, are more complex and often

negative. As an immediate caveat to the short-run effects, Proposition 5 implies potential

inefficiencies at a new access point, or when another firm becomes better at an existing access

point. In that situation, an ecosystem may be willing to outbid others despite having a worse

product. Hence, both leverage and access-point policies can improve welfare in the access-

point market. If the ecosystem still has the best products in connected markets, however,

such a policy does come at the cost of lowering welfare there. Since the ecosystem cannot

26 All but one — namely, defaults as reference points — of our microfoundations imply that a better
default increases consumer welfare (see Appendix A for details).

27 To work well, forced choice policies require the consumer to become informed and deliberately select
from the available options. In many online settings, the effort this requires may not be desirable from a
consumer’s perspective.
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steer the consumer to itself at the access point, its ability to do so in other markets is also

reduced.

The logic of the development of digital ecosystems also implies several barriers to the

contestability of markets — the ability of non-dominant firms to overcome barriers to entry.

To identify entry incentives, we assume that there is a single ecosystem G, which in line with

Propositions 1 and 2 offers the best existing services in both markets, and consider a single-

market potential entrant e into a given market. Furthermore, to focus on contestability by

socially valuable firms, we assume that the entrant e has a better product than G.

We start by studying incentives to enter the access-point market. As an immediate

corollary to Proposition 4, firm G is the highest bidder absent entry. Straightforwardly,

leverage policies lower firm G’s bid in the auction, thereby increasing contestability of the

access-point market. To illustrate this especially clearly, consider the extreme case in which

G is initially a monopolist and the policy alleviates any cross-market leverage. Such a policy

ensures that the entrant wins the auction and even if the entrant won anyways, it now pays

less due to the policy.28 More subtly, we argue that access-point policies raise contestability

unless an entrant has a significantly better product than G. First, consider an entrant who

would not win the auction upon entering the market. In this case, firm G obtains the default

position, and because it offers the best service a, this reduces the entrant’s demand compared

to a randomly assigned default.29 Hence, auctioning off the default position makes entry less

profitable. Even if e wins the auction upon entering, it benefits from the default being

auctioned off only if the default advantage αa
e compensates for the required payment. This

necessitates that the entrant offers a product that is drastically better than the previously

best product in the market. The product must not only be sufficiently good for e to outbid

G (and other firms), but also that the auction leaves e with sufficient surplus.

28 By Proposition 5, absent the policy, G wins the auction against a superior entrant if ∆a
Ge(1+αb

G) > ∆a
eG.

And if the entrant wins the auction absent the policy, it will have to pay ∆a
Ge(1+αb

G) for the default position.
29 The last part follows from Part II of Lemma 1 in combination with Part I of Assumption 1.
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Somewhat counterbalancing the above negative effect is that the presence of G can in-

crease entry incentives in a new access-point market in which it is not yet present. As we

have discussed in Section 3.1, G has a strong incentive to acquire such firms through back-

ward integration, so an entrant may be able to sell expensively. Once G is present at the

access point, however, the above logic implies that it reduces further entry incentives.

We now move on to entry into the non-access-point market b. Consider a leverage policy

that lowers the probability that G sets the default in market b. Since G offers the best

existing service b, any such policy raises an entrant’s profit conditional on entering market b

and thus makes the market more contestable. In the extension of our model where additional

markets are connected to market b, this logic has further implications. Since the ecosystem

derives a default advantage αb
G > 0 in market b, a leverage policy also lowers the probability

that it sells in a connected market. By the same argument, therefore, the policy encourages

entry also in connected markets.

The above argument assumes a single potential entrant, so it ignores that a policy that

makes entry in market b more likely may actually result in a firm entering this market,

which in turn affects incentives to enter other markets. If the entrant offers a sufficiently

good service in market b, however, the ecosystem loses demand upon entry. This in turn

reduces the probability with which the ecosystem can set the default in connected markets.

Thus, entry into these other markets becomes more likely. Combining these arguments, we

conclude that there is a “double dividend” to encouraging good entry into markets that form

a key part of digital ecosystems.

Finally, we discuss entry incentives for market b, or markets connected to it, in which

the ecosystem firm G is not yet active. Consider an entrant e that decides whether or not

to enter the market before G can take over one of the then existing firms. By Proposition

1, the ecosystem takes over the entrant conditional on entry, and secures a discount that is

increasing in its leverage from market a. Hence, any leverage policy raises contestability.
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6 Conclusion

Given our results, the obvious question arises: would the same forces not generate ecosystems

in the offline world, just like they do in the online world? While we do not have a fully

precise answer, several observations may be helpful for answering the question. For starters,

in some settings offline ecosystems do emerge. For example, tropical hotels often feature an

array of services, including airport transfers and a selection of water sports and tours, that

keep travelers from looking for other options. Nevertheless, such arrangements do seem less

dominant in offline settings. Unlike tropical hotels, for example, hotels in Paris or London

are usually not part of an ecosystem. A simple explanation may be that offline sellers

are less able to steer consumers than online firms. Even if a hotel in Paris recommends a

particular restaurant to a traveler, she may be tempted by the many other restaurants she

encounters. Since takeovers are costly, they may make sense only if steering by the acquirer

can substantially increase a target’s market share, and this is simply not the case in most

offline settings. Tropical hotels are arguably in a unique position to steer because many

travelers are reluctant to venture outside due to their lack of knowledge about the culture

or environment. We have, however, not evaluated this hypothesis systematically, and doing

so is an important topic for future research.

References

Allcott, Hunt, Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow, “The
Welfare Effects of Social Media,” American Economic Review, 2020, 110 (3), 629–676.

Altmann, Steffen, Armin Falk, Paul Heidhues, Rajshri Jayaraman, and Mar-
rit Teirlinck, “Defaults and Donations: Evidence from a Field Experiment,” Review of
Economics and Statistics, 2019, 101 (5), 808–826.

Blume, Andreas, “Bertrand without Fudge,” Economics Letters, 2003, 78 (2), 167–168.

and Paul Heidhues, “All Equilibria of the Vickrey Auction,” Journal of Economic
Theory, 2004, pp. 170–177.

30



Blumenstock, Joshua, Michael Callen, and Tarek Ghani, “Why Do Defaults Affect
Behavior? Experimental Evidence from Afghanistan,” American Economic Review, 2018,
108 (10), 2868–2901.

Brot-Goldberg, Zarek, Timothy Layton, Boris Vabson, and Adelina Yanyue
Wang, “The Behavioral Foundations of Default Effects: Theory and Evidence from Medi-
care Part D,” 2021. Working Paper.

Brown, Jeffrey R. and Alessandro Previtero, “Saving for Retirement, Annuities, and
Procrastination,” 2020. Working Paper.

Bryan, Kevin A. and Erik Hovenkamp, “Antitrust Limits on Startup Acquisitions,”
Review of Industrial Organization, 2020, 56, 615–636.

Bursztyn, Leonardo, Benjamin R Handel, Rafael Jimenez, and Christopher
Roth, “When product markets become collective traps: The case of social media,” 2024.

Busch, Christoph and Amelia Fletcher, “Harmful Online Choice Archtecture,” Tech-
nical Report, Centre on Regulation in Europe May 2024.
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A Behavioral Foundations of Default Effects

We provide a series of microfoundations for default effects. We consider a single representa-

tive consumer who values service s ∈ {a, b} offered by firm i ∈ N s at vsi , which is drawn from

a distribution with continuous CDF F s
i . (Alternatively, we can think of a mass of ex-ante

homogeneous consumers.) The consumer’s valuations are drawn independently across firms

and markets. Within market s, the value distributions can be ranked in terms of (weak) first-

order-stochastic dominance (FOSD) and have common support. These rankings correspond

to the “better than” quality rankings that we have introduced in the text. Throughout, we

assume that the consumer chooses a service s based on within-market considerations only.

All results generalize, however, to a forward-looking consumer who understands, and takes

into account, the steering by ecosystems.

A.1 Overview

Technically Unsavvy Consumer Consider, for example, a consumer who is assigned a

default product and does not know that this default can be changed or, alternatively, believes

that doing so is prohibitively costly. If the value of the default product is above some critical

threshold v ∈ R, the consumer uses the default service. Otherwise, the consumer refrains

from using any service in market s (i.e., she selects some outside-option activity). This

model of a technically unsavvy consumer satisfies Assumption 0 if and only if F s
i (v) < 1 for

all i ∈ N s, and it further satisfies Assumption 1 if and only if F s
i (v) ̸= F s

j (v) whenever F
s
i

first-order stochastically dominates F s
j . Moreover, for valuable services, consumer welfare is

higher with a better default.

Switching costs In a less extreme version of the above model, the consumer incurs phys-

ical switching costs of γ > 0 when switching away from the default product. To simplify

notation, we assume that the consumer uses one of the services. This model generally sat-
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isfies Assumption 0. To also establish Assumption 1, we strengthen our assumptions on the

distributions of values: all distributions have full support on R, and can be ranked in terms

of their reversed hazard rates.30 Then, if ns ≥ 3 and switching costs are small enough, this

model also satisfies Assumption 1.31 Under the same distributional assumptions, consumer

welfare is higher with a better default.

Sequential Search A consumer observes the value (but not the identity) of the default

for free and can then search for other products at an increasing cost. For simplicity, search

costs increase sufficiently fast for the consumer to search at most once. A searching consumer

draws one of the non-default products at random (i.e., search is non-directed). The model

implies Assumption 0, and it satisfies Assumption 1 if and only if ns ≥ 3 and F s
i (v) ̸= F s

j (v)

for small enough v whenever F s
i first-order stochastically dominates F s

j . Consumer welfare

is higher with a better default.

Consideration Sets The consumer considers only ks ∈ {1, . . . , ns− 1} offers in market s,

which comprise her consideration set. The consideration set includes the default product with

certainty, and any non-default product with probability (ks−1)/(ns−1). From her consideration

set, the consumer selects the product with the highest realized value vsi (as in Lleras et al.,

2017). This model can be thought of as a simultaneous search model in which the consumer

(perhaps optimally) chooses the size of her consideration set before her attention is drawn to

the default product. For example, we can think of a consumer who considers products based

on her “mood,” and of the default firm as the only one being able to predict the consumer’s

mood (e.g., using data from past interactions) and tailor its product accordingly.32 The

30 We provide a formal definition of “dominance in reversed hazard rates” in Appendix A.3. A sufficient
condition for dominance in reversed hazard rates is that the two distributions satisfy the monotone likelihood
ratio property.

31 The literal cost of switching to another option are arguably small; in particular, in the digital context
we consider.

32 Specifically, the consumer starts considering products that fit her mood, and then fills her consideration
set by randomly selecting among other, non-mood-congruent products.
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model implies Assumption 0, and it satisfies Assumption 1 if and only if ns ≥ 3 and ks ≥ 2.

Consumer welfare is higher with a better default.

Loss Aversion Suppose that the default acts as a reference point, and the consumer

dislikes falling short of this reference point. Each product i is defined by a pair (vsi , d
s
i ) with

vsi ∼ Gs and dsi ∈ R>0. We think of dsi as an app-design dimension affecting the consumer’s

utility in an additively separable way (as in most applications of Kőszegi and Rabin, 2006).

Let F s
i (u) = Gs(u− dsi ) be the distribution of vsi + dsi . We assume that, if the consumer uses

the product of firm j instead of the default product offered by firm i, she experiences a loss

of λdi (with λ > 1) because she cannot enjoy firm i’s proprietary design features, and a gain

of dj from using firm j’s product instead. In addition, the consumer has some reference point

in the service dimension, and we think of the distribution Gs as being “gain-loss adjusted.”

The model satisfies Assumption 0. To establish also Assumption 1, we again assume that

any F s
i and F s

j can be ranked in terms of their reversed hazard rates. With this, Assumption

1 holds as long as the consumer is not too loss averse. But, when gain-loss utility is not

welfare relevant, which seems plausible for the digital goods we have in mind, a better default

does not necessarily improve consumer welfare (see also Goldin and Reck, 2022).

Other Models of As-If Switching Costs Our loss-aversion based model of default ef-

fects is mathematically equivalent to a model of product-specific switching costs. Similarly,

other mechanism give rise to “as if” switching costs, with similar positive and normative im-

plications.33 The consumer may, for example, (mis)interpret the default status of a product

as a recommendation, indicating high quality and thereby introducing non-physical switching

costs. Or a consumer may want to procrastinate on making a choice, which again introduces

33 Non-physical switching costs are arguably higher than the physical costs of switching, which makes the
restriction to small switching costs for some of our results stronger. At the same time, models of non-physical
switching costs often impose more structure on how switching costs are tied to values, which can help with
satisfying Assumption 1.
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non-physical switching costs.

A.2 Technically Unsavvy Consumer

Consider market s, and let ns ≥ 2. The consumer is assigned a default service i, which she

uses if its value vi is above a threshold v ∈ R. Otherwise, the consumer refrains from using

service s.

Lemma 2 (Technically Unsavvy Consumer).

I. Assumption 0 holds if and only if F s
i (v) < 1 for all i.

II. Assumption 1 holds if and only if F s
i (v) < 1 and F s

i (v) ̸= F s
j (v) for all i and all j ̸= i.

Proof. Part I. The consumer never uses a non-default product. Hence, for any i and j ̸= i,

qsii − qsij = 1− F s
i (v).

Hence, Assumption 0 holds if and only if F s
i (v) < 1. This proves Part I.

Part II. Part I of Assumption 1 holds because for any i and j ̸= i, we have qsii =

1− F s
i (v) ≥ 0 and qsij = 0. Next, we observe that for any i, i′, and j ̸= i, i′,

(qsii − qsij)− (qsi′i′ − qsi′j) = F s
i′(v)− F s

i (v) = (qsii − qsii′)− (qsi′i′ − qsi′i)

which is positive if and only if F s
i′(v) > F s

i (v). Because any two distribution F s
i and F s

i′

can be ranked in terms of FOSD, Parts III and IV of Assumption 1 thus hold if and only if

F s
i (v) ̸= F s

i′(v) for all i and i′ with i ̸= i′. This completes the proof of Part II.

Consumer Welfare Suppose F s
i (v) ̸= F s

j (v) for all i and all j ̸= i, and in line with

Section 5, let v ≥ 0; that is, the service is valuable in that the consumer “buys reasonably”

(Heidhues et al., 2023b). If i is the default, consumer welfare is
∫∞
v

v dF s
i (v). Since all F s

ℓ

have the same support,∫ ∞

v

v dF s
i (v)−

∫ ∞

v

v dF s
j (v) = v

(
F s
j (v)− F s

i (v)
)
+

∫ ∞

v

F s
j (v)− F s

i (v) dv.
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Because F s
i (v) ̸= F s

j (v) and v ≥ 0, the above is positive if F s
i first-order stochastically

dominates F s
j . Hence, for valuable services expected consumer welfare is higher with a

better default.

A.3 Switching Costs

Consider market s, and let ns ≥ 2. We study a slightly more general model than the one

described in Section A.1 by allowing for product-specific switching costs. Specifically, we

assume that the consumer observes the value of all products, but incurs a switching cost

γi > 0 when firm i’s product is the default and the consumer chooses the product of firm

j ̸= i. Moreover, we assume that, if F s
i first-order stochastically dominates F s

j , then γi ≥ γj.

The consumer uses one service.

Lemma 3 (Switching Costs: Steering). Assumption 0 holds.

Proof. When firm i’s product is the default, it is chosen if and only if vi+γi ≥ maxℓ∈N s\{i} vℓ.

This happens with probability

qsii =

∫ ∏
ℓ∈N s\{i}

F s
ℓ (v + γi) dF

s
i (v).

When firm j’s product is the default, the consumer buys the product of firm i with probability

qsij =

∫
F s
j (v − γj)

∏
ℓ∈N s\{i,j}

F s
ℓ (v) dF

s
i (v).

We obtain

qsii − qsij =

∫
F s
j (v + γi)

∏
ℓ∈N s\{i,j}

F s
ℓ (v + γi) dF

s
i (v)−

∫
F s
j (v − γj)

∏
ℓ∈N s\{i,j}

F s
ℓ (v) dF

s
i (v)

>

∫ (
F s
j (v + γi)− F s

j (v − γj)

) ∏
ℓ∈N s\{i,j}

F s
ℓ (v) dF

s
i (v),

which is positive because γi, γj > 0. This completes the proof.
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To also establish Assumption 1, we impose more structure on the values distributions.

First, we assume that all distributions have full support on R, which implies that any F s
i

admits a density f s
i .

34 Second, we assume that any two distributions can be ranked in

terms of their reversed hazard rates, which is stronger than imposing a ranking in terms of

first-order stochastic dominance. Formally, F s
i dominates F s

j in the reversed hazard rate if

fs
i (v)/F s

i (v) > fs
j (v)/F s

j (v) for all v ∈ R.

Lemma 4 (Switching Costs: Quality-Steering Complementarity). Suppose that F s
i domi-

nates F s
j in the reversed hazard rate for all j ∈ N s. Then, for any ns ≥ 3 and any such

{F s
ℓ }ℓ∈N s, there exists some γ̄ > 0, such that for any γi < γ̄, Assumption 1 holds.

Proof. First, consider j and j′ ̸= j, with F s
j dominating F s

j′ in the reversed hazard rate.

Then,

qsij′ − qsij =

∫ (
F s
j′(v − γj′)F

s
j (v)− F s

j (v − γj)F
s
j′(v)

) ∏
ℓ∈N s\{i,j,j′}

F s
ℓ (v) dF

s
i (v)

≥
∫ (

F s
j′(v − γj)F

s
j (v)− F s

j (v − γj)F
s
j′(v)

) ∏
ℓ∈N s\{i,j,j′}

F s
ℓ (v) dF

s
i (v),

where the inequality follows from γj ≥ γj′ and F s
j′ being increasing. Moreover, because F s

j

dominates F s
j′ in the reversed hazard rate, we have

∂

∂v

F s
j (v)

F s
j′(v)

∝ f s
j (v)F

s
j′(v)− f s

j′(v)F
s
j (v) > 0.

This implies, in turn, that

F s
j (v)

F s
j′(v)

>
F s
j (v − γj)

F s
j′(v − γj)

or, equivalently, F s
j′(v − γj)F

s
j (v)− F s

j (v − γj)F
s
j′(v) > 0. (2)

Hence, qsij′ > qsij, which means that Part I of Assumption 1 holds.

34 If vsi has full support on R, then F s
i is strictly increasing and thus almost everywhere differentiable.
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Second, consider i and j ̸= i, with F s
i dominating F s

j in the reversed hazard rate. To

verify Part III of Assumption 1, we define Gs(v) :=
∏

ℓ∈N s\{i,j} F
s
ℓ (v) and observe

qsii − qsij =

∫
F s
j (v + γi)G

s(v + γi) dF
s
i (v)−

∫
F s
j (v − γj)G

s(v) dF s
i (v)

= 1−
∫

F s
i (u− γi)G

s(u) dF s
j (u)−

∫
F s
j (u)F

s
i (u− γi) dG

s(u)

−
(
1−

∫
F s
i (u+ γj)G

s(u+ γj) dF
s
j (u)−

∫
F s
j (u− γj)F

s
i (u) dG

s(u)

)
=

∫ (
F s
i (u+ γj)G

s(u+ γj)− F s
i (u− γi)G

s(u)

)
dF s

j (u)

+

∫ (
F s
j (u− γj)F

s
i (u)− F s

j (u)F
s
i (u− γi)

)
dGs(u)

= qsjj − qsji +

∫ (
F s
j (u− γj)F

s
i (u)− F s

j (u)F
s
i (u− γi)

)
dGs(u)

≥ qsjj − qsji +

∫ (
F s
j (u− γj)F

s
i (u)− F s

j (u)F
s
i (u− γj)

)
dGs(u),

where the inequality follows from γi ≥ γj and F s
i being increasing. Hence, by (2), it follows

that qsii − qsij > qsjj − qsji and thus Part III of Assumption 1.

Third, consider i and i′ ̸= i, with F s
i dominating F s

i′ in the reversed hazard rate, and

denote as G̃s(v) :=
∏

ℓ∈N s\{i,i′,j} F
s
ℓ (v). Then, since F s

i (v) and F s
i′(v) admit a density by

assumption,

(qsii − qsij)− (qsi′i′ − qsi′j) =

∫
F s
j (v + γi)G̃

s(v + γi)F
s
i′(v + γi)f

s
i (v) dv

−
∫

F s
j (v + γi′)G̃

s(v + γi′)F
s
i (v + γi′)f

s
i′(v) dv

−
∫

F s
j (v − γj)G̃

s(v)

[
F s
i′(v)f

s
i (v)− F s

i (v)f
s
i′(v)

]
dv

≥
∫

F s
j (v + γi)G̃

s(v + γi)

[
F s
i′(v + γi)f

s
i (v)− F s

i (v + γi)f
s
i′(v)

]
dv

−
∫

F s
j (v − γj)G̃

s(v)

[
F s
i′(v)f

s
i (v)− F s

i (v)f
s
i′(v)

]
dv,

where inequality follows from γi ≥ γi′ , and F s
j , F

s
i′ and G̃s being increasing.
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We distinguish two cases. First, let γj = γi + ϵ for some ϵ > 0. Then, at γi = 0, the

above is ∫
G̃s(v)

[
F s
j (v)− F s

j (v − ϵ)

][
F s
i′(v)f

s
i (v)− F s

i (v)f
s
i′(v)

]
dv > 0,

where the inequality follows from ϵ > 0 and F s
j having full support, and F s

i and F s
i′ satisfying

the reverse hazard rate. By continuity, there exists some constant γ̄ii′j > 0, such that for

any γi < γ̄ii′j, we have qsii − qsij > qsi′i′ − qsi′j. Note that the constraint is getting tighter for

smaller ϵ.

Second, let γj = γi − ϵ for some ϵ ∈ [0, γi]. Hence, if γi = 0, then also γj = 0. It

follows that qsii − qsij = qsi′i′ − qsi′j if γi = 0. We now take, for a fixed ϵ, the partial derivative

of the lower bound on (qsii − qsij) − (qsi′i′ − qsi′j) derived above with respect to γi. Clearly,

both integrands are bounded from above and from below. Hence, by Lebesgue’s dominated

convergence theorem, we can exchange differentiation and integration. This implies that this

partial derivative is given by∫ [
F s
i′(v + γi)f

s
i (v)− F s

i (v + γi)f
s
i′(v)

]
∂

∂γi

(
F s
j (v + γi)G̃

s(v + γi)

)
dv

+

∫ [
f s
i′(v + γi)f

s
i (v)− f s

i (v + γi)f
s
i′(v)

]
F s
j (v + γi)G̃

s(v + γi) dv

+

∫
f s
j (v − γj)G̃

s(v)

[
F s
i′(v)f

s
i (v)− F s

i (v)f
s
i′(v)

]
dv.

Evaluating this partial derivative at γi = 0, we obtain∫ [
F s
i′(v)f

s
i (v)− F s

i (v)f
s
i′(v)

](
2f s

j (v)G̃
s(v) + F s

j (v)g̃(v)

)
dv,

which is strictly positive by the reversed hazard rate condition. Together with qsii − qsij =

qsi′i′ − qsi′j at γi = 0, this implies that again, there exists some γ̄ii′j > 0, such that for any

γi < γ̄ii′j, we have q
s
ii−qsij > qsi′i′−qsi′j. Here, the constraint is getting tighter as ϵ gets bigger.

Further noticing that there are only finitely many combinations of i, i′, and j, we conclude

that γ̄ := mini,i′,j∈N s γ̄ii′j > 0. Hence, if γi < γ̄ for all i, also Part II of Assumption 1 holds.

This completes the proof.

42



Consumer Welfare Suppose that switching costs are independent of the default: γℓ ≡ γ

for all ℓ ∈ N s. Denote as νs
i the value (net of switching costs) of the product chosen by

the consumer when product i is the default. The value νs
i is drawn from the cumulative

distribution function

P[νs
i ≤ v] = F s

i (v)
∏

ℓ∈N s\{i}

F s
ℓ (v + γ).

Notice that

P[νs
i ≤ v]− P[νs

j ≤ v] =

[
F s
i (v)F

s
j (v + γ)− F s

i (v + γ)F s
j (v)

] ∏
ℓ∈N s\{i,j}

F s
ℓ (v + γ).

Hence, if F s
i dominates F s

j in the reversed hazard rate, νs
i first-order stochastically dominates

νs
j . As a result, expected consumer welfare is higher with a better default.

Large Switching Costs To see that the restriction to small enough switching costs has

bite, let ns = 3, γi = γ, and assume that vsi is drawn from a normal distribution with a

mean µi and a variance of 1. As illustrated in Figure 1 for the case of µ1 =
1
2
, µ2 = 0, and

µ3 = −1
2
, Part II of Assumption 1 does not hold in general. In this particular example, the

upper bound on the switching cost γ for Assumption 1 to hold is given by γ̄ ≈ 2.15.

0

0.0 2.5 5.0 7.5 10.0
γ

∆12
s − ∆32

s ∆13
s − ∆23

s ∆21
s − ∆31

s

Figure 1: Violation of Assumption 1 (Part II) with normal values. Note: ∆s
ij = qsii − qsij.
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A.4 Sequential Search

Consider market s, and let ns ≥ 2. We assume that the consumer observes the value, but

not the identity of the default product for free and can then search at a cost. The first

search costs c1 > 0, the second search costs c2 ≥ c1, and the kth search costs ck ≥ ck−1. For

simplicity, we set c2 = ∞, thereby effectively limiting the consumer’s behavior to searching

at most once. If the consumer searches for another product, she randomly draws one of the

non-default products.

To get started, suppose that firm i’s product is the default. The consumer decides to

search if and only if the realized value vsi lies below some cutoff v̂si ∈ R. Moreover, because

the consumer does not learn the identity of the default firm, she does not learn anything

about the quality of the non-default firms and thus about the value of search. Formally, the

cutoff satisfies v̂si = v̂s. Then:

Lemma 5 (Sequential Search).

I. Assumption 0 holds.

II. Assumption 1 holds if and only if ns ≥ 3 and for all i, i′ ∈ N s, there exists some

v ≤ v̂s, such that F s
i′(v) ̸= F s

i (v).

Proof. Preliminaries. First, suppose i’s product is the default. Firm i’s profit in market s

then is

qsii = P
[
vsi > v̂s

]
+ P

[
vsi ≤ v̂s

] 1

ns − 1

∑
ℓ∈N s\{i}

P
[
vsi > vsℓ |vsi ≤ v̂s

]
= P

[
vsi > v̂s

]
+

1

ns − 1

∑
ℓ∈N s\{i}

{
P
[
vsi > vsℓ

]
− P

[
vsi > v̂s

]
P
[
vsi > vsℓ |vsi > v̂s

]}

=
1

ns − 1

∑
ℓ∈N s\{i}

{
P
[
vsi > vsℓ

]
+ P

[
vsi > v̂s

](
1− P

[
vsi > vsℓ |vsi > v̂s

])}

=
1

ns − 1

∑
ℓ∈N s\{i}

{
P
[
vsi > vsℓ

]
+ P

[
vsi > v̂s

]
P
[
vsi ≤ vsℓ |vsi > v̂s

]}
︸ ︷︷ ︸

=: Aiℓ

,

(3)
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where the second equality holds by the law of total probability.

Second, suppose firm j’s product is the default. Firm i thus makes a sale only if the

consumer decides to search and firm i is the random firm that she finds. Firm i’s profit in

market s then is

qsij =
1

ns − 1
P
[
vsj ≤ v̂s

]
P
[
vsi > vsj |vsj ≤ v̂s

]
=

1

ns − 1

{
P
[
vsi > vsj

]
− P

[
vsj > v̂s

]
P
[
vsi > vsj |vsj > v̂s

]}
︸ ︷︷ ︸

=: Bij

, (4)

where the second equality again follows from the law of total probability.

Third, suppose that the default is determined at random. Using Eq. (3) and (4), we

conclude that firm i’s profit in market s is then given by

1

ns(ns − 1)

∑
ℓ∈N s\{i}

{
Aiℓ + Biℓ

}
.

Fourth, we express the probabilities above in terms of the underlying CDFs. We observe

P
[
vsi > vsℓ

]
=

∫ ∞

−∞
F s
ℓ (v) dF

s
i (v),

and

P
[
vsi > v̂s

]
P
[
vsi ≤ vsℓ |vsi > v̂s

]
= P

[
vsi ≤ vsℓ , v

s
i > v̂s

]
= 1− F s

i (v̂
s)−

∫ ∞

v̂s
F s
ℓ (v) dF

s
i (v).

This implies that

Aiℓ = P
[
vsi > vsℓ

]
+ P

[
vsi > v̂s

]
P
[
vsi ≤ vsℓ |vsi > v̂s

]
=

∫ v̂s

−∞
F s
ℓ (v) dF

s
i (v) + 1− F s

i (v̂
s)

= 1− F s
i (v̂

s) + F s
ℓ (v̂

s)F s
i (v̂

s)−
∫ v̂s

−∞
F s
i (v) dF

s
ℓ (v),

(5)
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where the last equality follows from integration by parts, as well as

Bij = P
[
vsi > vsj

]
− P

[
vsj > v̂s

]
P
[
vsi > vsj |vsj > v̂s

]
=

∫ ∞

−∞
F s
j (v) dF

s
i (v)−

(
1− F s

j (v̂
s)−

∫ ∞

v̂s
F s
i (v) dF

s
j (v)

)
= 1−

∫ ∞

−∞
F s
i (v) dF

s
j (v)− 1 + F s

j (v̂
s) +

∫ ∞

v̂s
F s
i (v) dF

s
j (v)

= F s
j (v̂

s)−
∫ v̂s

−∞
F s
i (v) dF

s
j (v),

(6)

where the second equality again follows from integration by parts.

Finally, we define

Cij := Aij − Bij

= 1− F s
i (v̂

s)−
∫ ∞

v̂s
F s
j (v) dF

s
i (v) + 1− F s

j (v̂
s)−

∫ ∞

v̂s
F s
i (v) dF

s
j (v)

= 2− F s
i (v̂

s)− F s
j (v̂

s)−
(
1− F s

j (v̂
s)F s

i (v̂
s)
)
+

∫ ∞

v̂s
F s
i (v) dF

s
j (v)−

∫ ∞

v̂s
F s
i (v) dF

s
j (v)

= 1− F s
i (v̂

s)
(
1− F s

j (v̂
s)
)
− F s

j (v̂
s),

(7)

where the second equality follows from integration by parts. This also means that Cij = Cji.

Part I. Subtracting (4) from (3) gives

qsii − qsij =
1

ns − 1

(
Cij +

∑
ℓ∈N s\{i,j}

Aiℓ

)
.

Because all F s
ℓ have common support, we have Aiℓ, Cij > 0. Hence, Assumption 0 holds.

Part II. Suppose F s
i first-order stochastically dominates F s

j . Since Cij = Cji,

(qsii − qsij)− (qsjj − qsji) =
1

ns − 1

∑
ℓ∈N s\{i,j}

{
Aiℓ −Ajℓ

}
.

Using Eq. (5), we conclude

Aiℓ −Ajℓ =
(
F s
j (v̂

s)− F s
i (v̂

s)
)(
1− F s

ℓ (v̂
s)
)
+

∫ v̂s

−∞

(
F s
j (v)− F s

i (v)
)
dF s

ℓ (v) ≥ 0,
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holding with a strict inequality if and only if F s
i′(v) ̸= F s

i (v) for some v ≤ v̂s. Moreover,

if ns = 2, then clearly qsii − qsij = qsjj − qsji. Combining both, we conclude that Part III of

Assumption 1 holds if and only if ns ≥ 3 and for all i, i′ ∈ N s, there exists some v ≤ v̂s, so

that F s
i′(v) ̸= F s

i (v).

Next, consider three firms i, i′, and j ̸= i, i′. We have

(qsii − qsij)− (qsi′i′ − qsi′j) =
1

ns − 1

(
Cij − Ci′j + Aii′ −Ai′i +

∑
ℓ∈N s\{i,i′,j}

{
Aiℓ −Ai′ℓ

})
.

To verify Part II of Asssumption 1, let F s
i first-order stochastically dominate F s

i′ . Then, by

(7),

Cij − Ci′j =
(
F s
i′(v̂

s)− F s
i (v̂

s)
)(
1− F s

j (v̂
s)
)
≥ 0,

holding with a strict inequality if and only if F s
i′(v̂

s) > F s
i (v̂

s). Moreover, by (5), we obtain

Aii′ −Ai′i = F s
i′(v̂

s)− F s
i (v̂

s) +

∫ v̂s

−∞
F s
i′(v) dF

s
i (v)−

∫ v̂s

−∞
F s
i (v) dF

s
i′(v) ≥ 0,

holding with a strict inequality if and only if F s
i′(v) ̸= F s

i (v) for some v ≤ v̂s. Finally, by the

same argument as above, we have Aiℓ ≥ Ai′ℓ, holding with a strict inequality if and only if

F s
i′(v) ̸= F s

i (v) for some v ≤ v̂s. Hence, Part II of Assumption 1 holds if and only if for all

i, i′ ∈ N s, there exists some v ≤ v̂s, so that F s
i′(v) ̸= F s

i (v).

Finally, for any j, j′, and i ̸= j, j′, we obtain

qsij′ − qsij =
1

ns − 1

(
Cij − Cij′ +Aij′ −Aij

)
.

If F s
j first-order stochastically dominates F s

j′ , then, by (7),

Cij − Cij′ =
(
1− F s

i (v̂
s)
)(
F s
j′(v̂

s)− F s
j (v̂

s)
)
≥ 0,

holding with a strict inequality if and only if F s
j′(v̂

s) > F s
j (v̂

s). Similarly, by (5),

Aij′ −Aij =

∫ v̂s

−∞

{
F s
j′(v)− F s

j (v)
}
dF s

i (v) ≥ 0,

holding with a strict inequality if and only if F s
j′(v) ̸= F s

j (v) for some v ≤ v̂s. Hence, Part I

of Assumption 1 holds if and only if F s
j′(v) ̸= F s

j (v) for some v ≤ v̂s.
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Consumer Welfare If product i is the default product, then consumer welfare equals

P
[
vsi ≥ v̂s

]
E
[
vsi ≥ v̂s|vsi ≥ v̂s

]
+
(
1− P

[
vsi ≥ v̂s

]) 1

ns − 1

∑
ℓ∈N s\{i}

E
[
max{vsi , vsℓ} − c1|vsi ≤ v̂s

]
=

∫ ∞

v̂s
v dF s

i (v) +
1

ns − 1

[ ∫ ∞

−∞
v − c1 dGs

ij(v) +
∑

ℓ∈N s\{i,j}

∫ ∞

−∞
v − c1 dGs

iℓ(v)

]

=
ns − 2

ns − 1

∫ ∞

v̂s
v dF s

i (v) +
1

ns − 1

[ ∫ ∞

v̂s
v dF s

i (v) +

∫ ∞

−∞
v − c1 dGs

ij(v) +
∑

ℓ∈N s\{i,j}

∫ ∞

−∞
v − c1 dGs

iℓ(v)

]
,

where Gs
iℓ is the CDF of max{vsi , vsℓ}. Because vsi and vsℓ are independent, we have

Gs
iℓ(v) = P

[{
max{vsi , vsℓ} ≤ v

}
∪
{
vsi ≤ v̂s

}]
=

F s
i (v)F

s
ℓ (v) if v < v̂s,

F s
i (v̂

s)F s
ℓ (v) if v ≥ v̂s,

and the corresponding density is given by

gsij(v) =

f s
i (v)F

s
j (v) + F s

i (v)f
s
j (v) if v < v̂s,

F s
i (v̂

s)f s
j (v) if v ≥ v̂s.

First, we observe that, for any ℓ ̸= i, j,

Gs
iℓ(v)−Gs

jℓ(v) =


(
F s
i (v)− F s

j (v)
)
F s
ℓ (v) if v < v̂s,(

F s
i (v̂

s)− F s
j (v̂

s)
)
F s
ℓ (v) if v ≥ v̂s.

Hence, if F s
i first-order stochastically dominates F s

j , then Gs
iℓ first-order stochastically dom-

inates Gs
jℓ for all ℓ ̸= i, j, and as a consequence, also∫ ∞

−∞
v − c1 dGs

iℓ(v) >

∫ ∞

−∞
v − c1 dGs

jℓ(v) for all ℓ ̸= i, j.

Second, we observe that∫ ∞

−∞
v − c1 dGs

ij(v)−
∫ ∞

−∞
v − c1 dGs

ji(v)

= F s
i (v̂

s)

∫ ∞

v̂s
v − c1 dF s

j (v)− F s
j (v̂

s)

∫ ∞

v̂s
v − c1 dF s

i (v)

= F s
i (v̂

s)
(
1− F s

j (v̂
s)
)
E
[
vsj − c1|vsj ≥ v̂s

]
− F s

j (v̂
s)
(
1− F s

i (v̂
s)
)
E
[
vsi − c1|vsi ≥ v̂s

]
,
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and thus(∫ ∞

v̂s
v dF s

i (v) +

∫ ∞

−∞
v − c1 dGs

ij(v)

)
−
(∫ ∞

v̂s
v dF s

j (v) +

∫ ∞

−∞
v − c1 dGs

ji(v)

)
=

(
1− F s

i (v̂
s)
)(
1− F s

j (v̂
s)
)(

E
[
vsi ≥ v̂s|vsi ≥ v̂s

]
− E

[
vsj ≥ v̂s|vsj ≥ v̂s

])
+ c1

(
F s
j (v̂

s)− F s
i (v̂

s)

)
.

Notice that

P[vsi ≤ v|vsi ≥ v̂s] =


F s
i (v)

1−F s
i (v̂

s)
if v ≥ v̂s

0 otherwise.

Hence, for any v ≥ v̂s, if F s
i first-order stochastically dominates F s

j , then

P[vsi ≤ v|vsi ≥ v̂s]− P[vsj ≤ v|vsj ≥ v̂s]

=
1(

1− F s
i (v̂

s)
)(
1− F s

j (v̂
s)
)[F s

i (v)− F s
j (v) + F s

i (v̂
s)F s

j (v)− F s
j (v̂

s)F s
i (v)

]
≤ 1(

1− F s
i (v̂

s)
)(
1− F s

j (v̂
s)
)[F s

i (v)− F s
j (v) + F s

i (v̂
s)F s

j (v)− F s
i (v̂

s)F s
i (v)

]
= −

F s
j (v)− F s

i (v)

1− F s
j (v̂

s)
,

where the inequality follows from the fact that F s
j (v) ≥ F s

i (v). We conclude that the

dominance relation is preserved when truncating the distributions of vsi and vsj at v̂s. This,

in turn, implies that if F s
i first-order stochastically dominates F s

j , then E
[
vsi ≥ v̂s|vsi ≥ v̂s

]
≥

E
[
vsj ≥ v̂s|vsj ≥ v̂s

]
.

Combining both observations, if F s
i first-order stochastically dominates F s

j , then con-

sumer welfare increases by more than

ns − 2

ns − 1

[
P
[
vsi ≥ v̂s

]
E
[
vsi ≥ v̂s|vsi ≥ v̂s

]
− P

[
vsj ≥ v̂s

]
E
[
vsj ≥ v̂s|vsj ≥ v̂s

]]
> 0

if product i replaces product j as the default. Hence, a better default improves consumer

welfare.
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A.5 Consideration Sets

Consider market s, and let ns ≥ 2. The consumer considers ks ∈ {1, 2, . . . , ns − 1} offers,

and selects the one with the highest realized value vsi among the offers in her consideration

set. The consumer considers the default product with certainty. Any non-default product

enters the consideration set with the same probability of (ks−1)/(ns−1); that is, attention to

non-default products is random.

Lemma 6 (Consideration Sets).

I. Assumption 0 holds.

II. Assumption 1 holds if and only if ns ≥ 3 and ks ≥ 2.

Proof. Preliminaries. Consider some firm i offering service s, and refer to rsii ∈ [0, 1] as its

(average) “conversion rate” conditional on being in the consideration set and facing ks − 1

random competitors. This is exactly what we call in the main text the firm’s demand

conditional on being the default.

To see how the conversion rate depends on the value that firm i and its rivals offer, we

denote as N s(x) a subset of x ≥ 1 firms that are active in market s. We introduce the CDF

qN s(x)(v) :=
∏

ℓ∈N s(x)

F s
ℓ (v);

that is, the probability that the products of all firms in the set N s(x) have a realized value

less or equal to v. Using this notation, we can write the conversion rate of firm i as

rsii =
∑

N s(ks−1): i/∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v). (8)

When firm i is in the consideration set, all ns−1 rivals are equally likely to be drawn into one

of the ks−1 remaining spots. Hence, there are
(
ns−1
ks−1

)
different sets of potential competitors,

each of which occurs with probability 1/(n
s−1

ks−1). Fixing a set of competitors N s(ks − 1), the

consumer uses the service of firm i if and only if it offers the highest value; that is, vsi > vsj
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for all j ∈ N s(ks − 1). This happens to be the case with probability
∫
qN s(ks−1)(v) dF

s
i (v).

Because all distributions F s
j have common support, we have rsii > 0. By the same argument,

we get rsii < 1 if and only if ks ≥ 2.

Now consider firms i and j with F s
i first-order stochastically dominating F s

j . Then,

rsii − rsjj ∝
∑

N s(ks−1): i,j /∈N s(ks−1)

{∫
qN s(ks−1)(v) dF

s
i (v)−

∫
qN s(ks−1)(v) dF

s
j (v)

}
+

∑
N s(ks−1): i/∈N s(ks−1),

j∈N s(ks−1)

∫
qN s(ks−1)(v) dF

s
i (v)−

∑
N s(ks−1): j /∈N s(ks−1),

i∈N s(ks−1)

∫
qN s(ks−1)(v) dF

s
j (v)

≥
∑

N s(ks−1): i,j /∈N s(ks−1)

{∫
qN s(ks−1)(v) dF

s
i (v)−

∫
qN s(ks−1)(v) dF

s
j (v)

}

+
∑

N s(ks−1): i/∈N s(ks−1),
j∈N s(ks−1)

{∫
qN s(ks−1)(v) dF

s
i (v)−

∫
qN s(ks−1)(v) dF

s
j (v)

}

≥ 0,

where the first inequality holds because F s
j (v) ≥ F s

i (v) and the second one follows from the

fact that qN s(ks−1)(v) is increasing in v together with F s
i first-order stochastically dominating

F s
j . Moreover, whenever ks ≥ 2, the second inequality is strict, which in turn implies rsii > rsjj.

Similarly, in this subsection, we refer to rsij ∈ [0, 1] as the (average) conversion rate of

firm i conditional on being in the consideration set and facing firm j as well as ks − 2

random competitors. Notice that this conversion rate is not the same as the demand of firm

i when firm j’s product is the default. Using the same notation as above, we can write this

conversation rate as

rsij =
∑

N s(ks−1): i/∈N s(ks−1),
j∈N s(ks−1)

1(
ns−2
ks−2

) ∫ qN s(ks−1)(v) dF
s
i (v). (9)

This implies, in particular, that

rsij − rsij′ =
∑

N s(ks−2): i,j,j′ /∈N s(ks−2)

1(
ns−2
ks−2

) ∫ qN s(ks−2)(v)
[
F s
j (v)− F s

j′(v)
]
dF s

i (v).
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Hence, if F s
j first-order stochastically dominates F s

j′ and ks ≤ ns − 1, then rsij < rsij′ .

Part I. For any i and j ̸= i, we have

qsii − qsij = rsii −
k1 − 1

n1 − 1
rsij =

∑
N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v). (10)

Since all F s
ℓ have the same support, the above is postive. Hence, Part Assumption 0 holds.

Part II. Suppose F s
j first-order stochastically dominates F s

j′ . Then,

qsij′ − qsij =
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

−
∑

N s(ks−1): i,j′ /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

=
1(

ns−1
ks−1

) ∑
N s(ks−1): i,j /∈N s(ks−1),

j′∈N s(ks−1)

∫ (
F s
j′(v)− F s

j (v)
) ∏
ℓ∈N s(ks−1)\{j′}

F s
ℓ (v) dF

s
i (v) > 0,

where the second equality follows from the definition of qN s(ks−1)(v) and the inequality holds

(weakly) as F s
j first-order stochastically dominates F s

j′ . The inequality is strict since all F s
ℓ

have no mass points and common support. Hence, if ks ≥ 2, Part I of Assumption 1 holds.

Next, consider firms, i and i′, with F s
i first-order stochastically dominating F s

i′ . Then,

(qsii − qsij)− (qsi′i′ − qsi′j) =
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

−
∑

N s(ks−1): i′,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i′(v)

≥
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

−
∑

N s(ks−1): i′,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

=
1(

ns−1
ks−1

) ∑
N s(ks−1): i,j /∈N s(ks−1),

i′∈N s(ks−1)

∫ (
F s
i′(v)− F s

i (v)
) ∏
ℓ∈N s(ks−1)\{i′}

F s
ℓ (v) dF

s
i (v)

≥ 0,
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where the first inequality follows from the fact that qN s(ks−1)(v) monotonically increases

in v and F s
i first-order stochastically dominates F s

i′ while the second one simply follows

from first-order stochastic dominance. Whenever ks ≥ 2, the inequalities are strict because

the distributions have no mass points and common support. Hence, if ks ≥ 2, Part II of

Assumption 1 holds.

Finally, let F s
i first-order stochastically dominate F s

j , and observe that

(qsii − qsij)− (qsjj − qsji) =
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

−
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
j (v)

≥
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

−
∑

N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

) ∫ qN s(ks−1)(v) dF
s
i (v)

= 0,

where the inequality follows from qN s(ks−1)(v) being increasing and F s
i first-order stochasti-

cally dominating F s
j , and it is strict if ks ≥ 2. Hence, if ks ≥ 2, Part III of Assumption 1

holds.

Consumer Welfare Denote as νs
i the value of the product chosen by the consumer when

product i is the default. The value νs
i is drawn from the cumulative distribution function

P[νs
i ≤ v] = F s

i (v)
∑

N s(ks−1): i/∈N s(ks−1)

1(
ns−1
ks−1

)qN s(ks−1)(v).

Notice that

P[νs
i ≤ v]− P[νs

j ≤ v] =

(
F s
i (v)− F s

j (v)

) ∑
N s(ks−1): i,j /∈N s(ks−1)

1(
ns−1
ks−1

)qN s(ks−1)(v).

Hence, if F s
i first-order stochastically dominates F s

j , ν
s
i first-order stochastically dominates

νs
j , and expected consumer welfare is higher with a better default.
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A.6 Loss Aversion

Consider market s, and let ns ≥ 2. Suppose that each product i is defined by a pair

(vsi , d
s
i ) with vsi ∼ Gs and dsi ∈ R>0. We think of dsi as an app-design dimension, which

affects the consumer’s utility in an additively separable way. Let F s
i (u) = Gs(u− dsi ) be the

distribution of vsi + dsi . We assume that, if the consumer uses the product of firm j instead

of the default product i, she experiences a loss of λdi (with λ > 1) because she cannot enjoy

firm i’s proprietary design features, and a gain of dj from using firm j’s product instead. In

addition, the consumer has some reference point in the service dimension, and we think of

the distribution Gs as being “gain-loss adjusted.”

Lemma 7 (Loss Aversion).

I. Assumption 0 holds.

II. For any ns ≥ 3 and any {F s
ℓ }ℓ∈N s that can be ranked in terms of the reversed hazard

rate, there exists some λ̄ > 1, such that for any λ ∈ (1, λ̄), Assumption 1 holds.

Proof. We simply show that model is mathematically equivalent to the switching-cost model

in Section A.3. Suppose that product i is the default. Because we think of vsi as being

gain-loss adjusted, and we assume that the reference point in this dimension is independent

of a product’s default status, the consumer chooses the product of firm i over that of a rival

j if and only if

vi > vj + dj − λdi or, equivalently, vi + di > vj + dj − (λ− 1)di︸ ︷︷ ︸
=: γi

.

The claim now follows immediately from Lemmas 3 and 4.

Consumer Welfare In the context of digital markets, it seems plausible to assume that

gain-loss utility is not welfare relevant. From a normative perspective, our model of loss-

aversion based default effects is therefore different from the switching-cost model in Section

A.3. In fact, with loss aversion, a better default product does not necessarily improve
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consumer welfare (see also Goldin and Reck, 2022). To see this most clearly, suppose that

there exists a product w ∈ N s with

P[vw + dw + γw < vj + dj] ≈ 1.

for all j ̸= w. Then, if w is the default, the consumer makes an active choice with almost

probability 1, and thus almost certainly chooses the welfare-maximizing option. Hence, with

loss-aversion based default effects it can be optimal to force choice by setting a bad default.

B Proofs

B.1 Preliminaries

Proof of Lemma 1. Part I. By Assumption 0, we immediately have

αs
i =

1

ns

∑
ℓ∈N s

(qsii − qsiℓ) =
1

ns

∑
ℓ∈N s\{i}

(qsii − qsiℓ)︸ ︷︷ ︸
>0

> 0.

Part II. Let i ∈ N s, and for the sake of a contradiction, suppose ηsij ≥ 0 for all j ̸= i.

Then,

αs
i =

1

ns

∑
ℓ∈N s\{i}

(qsii − qsiℓ) =
1

ns

∑
ℓ∈N s\{i}

(αs
i − ηsiℓ) ≤

1

ns

∑
ℓ∈N s\{i}

αs
i =

ns − 1

ns
αs
i < αs

i ,

where the strict inequality follows from αi > 0; a contradiction.

Part III. Suppose all firms are symmetric, and denote by q a firm’s demand when being

the default and by q a firm’s demand when one of the rivals is default. By Assumption 0,

we have q > q, and by symmetry,

αs
i =

ns − 1

ns
(q − q) and ηsij = − 1

ns
(q − q).

Hence, (ns − 1)|ηsij| = αs
i .
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B.2 The Emergence of Ecosystems

Proof of Proposition 1. Part I. We solve the game backwards. If firm G takes over a target

t, it earns an additional gross profit of V b
t + qaGα

b
t , which by Part I of Lemma 1, is greater

than t’s standalone value V b
t . Standard ultimatum-bargaining game analysis, hence, implies

that in any subgame in which there is a single target t left, G must offer V b
t and t always

accepts that offer.

Now consider any subgame in which a target t′ receives an offer and there is one remaining

target t ̸= t′ left thereafter. By subgame perfection, t′ accepts the offer only if it is greater

than V b
t′ + qaGη

b
t′t, and whenever it accepts the offer in equilibrium, by standard arguments,

the offer cannot be strictly greater than V b
t′ +qaGη

b
t′t. When an offer of V b

t′ +qaGη
b
t′t is accepted,

G earns net profits of qaG(α
b
t′ − ηbt′t) while otherwise it earns qaGα

b
t . Hence, G earns at most

qaGmax{αb
t′ − ηbt′t, α

b
t}. Similarly, if firm G instead approached t first, it would earn at most

qaGmax{αb
t − ηbtt′ , α

b
t′}. Therefore, in any subgame with just two targets left, G earns at most

max
t1,t2∈N b

qaG
(
αb
t1
−min

{
0, ηbt1t2

})
= max

t1,t2∈N b
qaG

(
αb
t1
− ηbt1t2

)
≡ π′, (11)

where the equality follows because by Part II of Lemma 1, for every t1 there exists some t′2

such that ηbt1t′2
< 0. Because we have a finite number of targets, the maximum in (11) exists.

Next, we observe that in any subgame with two or more remaining targets in which t

accepts G’s offer, G must offer at least V b
t + qaGmint′∈N b\{t}min{0, ηbtt′}; for otherwise the

target is better of rejecting the offer no matter what happens in later subgames. This,

however, implies that G’s profits from the takeover in any subgame are at most

max
t′∈N b

qaG
(
αb
t −min

{
0, ηbtt′

})
≤ max

t1,t2∈N b
qaG

(
αb
t1
−min

{
0, ηbt1t2

})
= π′.

Finally, let t′1 and t′2 be targets for which the maximum in (11) is attained. By standard

arguments, in any subgame with only t′1 and t′2 left, G’s offer must be accepted by the

target it first approaches. By approaching all targets other than t′1 and t′2 beforehand and

offering them zero, which must be rejected, G can induce the subgame in which only t′1
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and t′2 remain. In the subgame-perfect equilibrium of this subgame, G earns π′ from the

takeover. Since G cannot earn more than π′ in any other subgame, offering zero to all

other targets first and playing a subgame-perfect equilibrium strategy when only t1 and t2

remain is part of a subgame-perfect equilibrium strategy for G. Since doing so is always a

possible deviation, furthermore, G must earn π′ from the takeover in any subgame-perfect

equilibrium. Existence of a subgame perfect equilibrium follows from standard arguments.

Since G must offer any target t at least V b
t +qaGmint′∈N b\{t} η

b
tt′ , for G to earn π′, it must take

over a target t1 from a pair t1, t2 that attains (11) at the price specified in the proposition.

Part II. We show that under Assumption 1, (t1, t2) ∈
{
arg maxt′1,t′2∈N bαb

t′1
−ηbt′1t′2

}
implies

t1 and t2 offer the best and second-best service b, respectively. For any t1 and t2, we have

αb
t1
− ηbt1t2 = qbt1t1 − qbt1t2 .

By Part I of Assumption 1, for any t1 the right-hand side is larger for a better t2. Fixing t2,

by Part II of Assumption 1, the right-hand side is greater for a better t1. Hence, t1 and t2

must belong to the firms offering the two best services. Focusing on the best two firms, by

Part III of Assumption 1, the right-hand side is maximized if t1 is one of the best firms.

Proof of Proposition 2. Part I. Suppose that firm i ∈ N b plays the takeover game. Suppose

i wants to take over a firm j ∈ N a. Because firm i can not direct consumers into market

a, it has to pay firm j’s standalone value for j to accept the offer. Upon taking over firm

j, however, firm i can direct j’s consumers in market a to its own product in market b,

generating a default advantage αb
i . Hence, firm i earns additional profits of qajα

b
i > 0 from

taking over firm j. By definition, these profits are highest when taking over the market

leader ℓ because qaℓ ≥ qak for all k ∈ N a.

Part II. By Proposition 1, the market leader ℓ in market a earns additional profits of

qaℓ
(
αb
i + |ηbii∗|) > qaℓα

b
i
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from taking over firm i in market b (where i∗ is i’s strongest rival). By definition, the market

leader ℓ generates more profits from taking over i than any other firm j ∈ N a does.

Proof of Proposition 3. Since all targets are identical, for any t1, t2 ∈ N b, we write ηb instead

of ηbt1t2 . Similarly, for any t ∈ N b, we write αb and V b instead of αb
t and V b

t . For any round of

bidding, we distinguish between a bidding subgame in which all remaining acquirers decide

what bid to submit, and an acceptance subgame in which the target that is currently up for

sale decides whether to accept one of the bids. We will subsequently derive the equilibrium

takeover price in the following three cases: (a) nb < |A|, (b) nb = |A|, and (c) nb > |A|.

Case (a). Let nb < |A|. We solve the game backwards and proceed by induction over the

number of remaining targets.

Induction hypothesis: Consider any bidding subgame with k ≥ 1 remaining targets. De-

note as A(k) ⊆ A the set of potential acquires in this subgame that have not yet taken over

a target, and note that |A(k)| ≥ k+1 because there are more potential acquirers than targets

(i.e., nb < |A|). (In slight abuse of notation, we suppress the dependence of this subgame on

the prior history, which determines the identity of potential acquirers. This is without loss

of generality because these identities are fixed from this point onward.) Denote by ℓi ∈ A(k)

the potential acquirer with the ith highest market share in market a among the firms in A(k).

Define as Ā(k, x) := {ℓ1, . . . , ℓx} the set of the x firms with the highest market shares in

A(k), and set Ā(k, 0) = ∅. We hypothesize that all firms in Ā(k, k) take over one of the

remaining targets at a price

f ∗(k) := V b − |ηb|
( ∑

i∈A\A(k)

qai +
∑

i∈Ā(k,k−1)

qai

)
+ qaℓk+1

αb. (12)

Induction anchor: Consider any bidding subgame with a single target left (i.e., k = 1).

We write f ∗ = f ∗(1). The induction hypothesis states that ℓ1 takes over the last target at a
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price of

f ∗ = V b −
∣∣ηb∣∣ ∑

i∈A\A(1)

qai + qaℓ2α
b. (13)

We verify the induction hypothesis in two steps.

1. Step: equilibrium construction. We construct a cautious equilibrium in which ℓ1 takes

over the last target at a price of f ∗. Denote the target’s adjusted standalone value by

ν := V b −
∣∣ηb∣∣ ∑

i∈A\A(1)

qai .

and the takeover revenue of a potential acquirer j ∈ A(1) by

πj := ν + qajα
b.

We now argue that the target accepting any highest bid at or above ν (breaking ties ran-

domly), firm ℓ1 bidding f
∗, firm ℓ2 submitting a bid by uniformly randomizing over [f ∗−ϵ, f ∗],

and any other firm j ̸= ℓ1, ℓ2 bidding ν is a cautious equilibrium of this subgame for small

enough ϵ.35

We first verify that the above is a subgame perfect equilibrium. If the target rejects the

highest bid, it earns ν. Hence, it is optimal to accept any highest bid at or above ν.

Firm ℓ1 has no incentive to bid more than f ∗ as then it would take over the target at a

strictly higher price, and it does not want to bid less than f ∗ − ϵ as then it would lose and

earn nothing in market b instead of
(
qaℓ1 − qaℓ2

)
αb > 0. If firm ℓ1 deviates to f ∈ (f ∗ − ϵ, f ∗),

it earns at most
f − (f ∗ − ϵ)

ϵ

(
ν + qaℓ1α

b − f

)
. (14)

At f = f ∗, the profit in (14) equals
(
qaℓ1 − qaℓ2

)
αb; that is, the candidate equilibrium profit.

Moreover, the derivative of (14) with respect to f is

1

ϵ

(
ν + qaℓ1α

b − f

)
−

(
1− f ∗ − f

ϵ

)
>

1

ϵ

(
ν + qaℓ1α

b − f

)
− 1 >

(
qaℓ1 − qaℓ2

)
αb

ϵ
− 1 > 0,

35 The equilibrium we construct is inspired by Blume (2003).
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which holds for all f ∈ (f ∗ − ϵ, f ∗) if ϵ is small enough. Hence, firm ℓ1 has no incentive to

deviate. In fact, for ϵ small enough bidding f ∗ is firm ℓ1’s strict best reply.

Finally, no firm j ̸= ℓ1 has an incentive to bid above f ∗ — a bid the target would accept —

as then they would earn negative profits from the takeover, and they are indifferent between

all bids (weakly) below the takeover price because independently of the size of such a bid

they will lose for certain and earn zero profits in market b. Hence, no firm j ̸= ℓ1 has an

incentive to deviate.

It remains to be shown that all firms play iteratively weakly undominated strategies in

the reduced bidding game in which all acceptance subgames with a unique equilibrium payoff

are replaced by the corresponding equilibrium payoffs. This follows from the lemma below.

Lemma 8 (Iteratively Weakly Undominated Strategies).

I. Bidding ν is iteratively weakly undominated for any potential acquirer.

II. For any potential acquirer ℓj ̸= ℓ1, bidding f ∈ (ν, πℓj) is iteratively weakly undomi-

nated, and for firm ℓ1, bidding f ∈ (ν, πℓ2) is iteratively weakly undominated.

III. For firm ℓ2, any mixed strategy with support in (ν, πℓ2) = (ν, f ∗) and a continuous

CDF is iteratively weakly undominated.

IV. For firm ℓ1, bidding πℓ2 = f ∗ is iteratively weakly undominated.

Proof. Preliminary. Note that all acceptance subgames following multiple highest bids at or

above ν do not have a unique equilibrium payoff, as the equilibrium payoffs depend on whom

the target selects, and are thus identical in the original and the reduced game; that is, the

reduced game is still an extensive-form game. In particular, for any j making a highest bid,

the target accepting j’s bid with probability 1 is an equilibrium of the acceptance subgame.

Part I. We argue that in the reduced bidding game, for any potential acquirer, it is

iteratively weakly undominated to bid ν. We do so by induction over the rounds of elimina-

tion of weakly dominated strategies. Bidding ν is trivially undominated in the first round

of elimination; for example, it is the strict best reply to every rival bidding strictly below
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ν. Now suppose that ν is weakly undominated for all potential acquirers after k rounds of

elimination, and consider round k + 1. For every potential acquirer j, bidding ν is a strict

best response to all its rivals bidding ν and the target accepting j’s offer with probability

one. Hence, for every potential acquirer, bidding ν is weakly undominated in the (k + 1)th

round of elimination. This proves the claim.

Part II. Again, we proceed by induction, starting with the potential acquirer ℓj ̸= ℓ1 that

has the lowest demand in a. Suppose that after k rounds of elimination, bidding f ∈ (ν, πℓj)

is iteratively weakly undominated for all ℓj′ with j′ ≤ j, and note this is trivially true after

zero rounds of elimination. We now argue that it then is also weakly undominated to bid

f ∈ (ν, πℓj) after k + 1 rounds of elimination for all potential acquirers ℓj′ with j′ ≤ j.

By Part I, it is iteratively weakly undominated to bid ν for all acquirers, and from now on

presume that all potential acquirers ℓj′′ with j′′ > j do so. For any potential acquirer j′ ≤ j,

bidding f is a strict best response to all rivals with an index weakly below j bidding f and

the target accepting j′’s offer with probability one. Hence, for any j′, bidding f is weakly

undominated in the (k + 1)th round of elimination.

Part III. Suppose that firm ℓ1 bids f ′ ∈ [ν, πℓ2) and all firms j ̸= ℓ1, ℓ2 bid ν, which

is weakly undominated by Parts I and II. Now consider two (potentially) mixed strategies

of firm ℓ2 with support in (ν, πℓ2), and denote the corresponding CDFs as G and H with

G ̸= H. Assume that G is continuous. When bidding according to G, firm ℓ2’s additional

profits in market Ŝ are

(
1−G(f ′)

)(
πℓ2 − EG[f |f ≥ f ′]

)
=

(
1−G(f ′)

)
πℓ2 −

∫ πℓ2

f ′
f dG(f).

Similarly, when bidding according to H, firm ℓ2 earns additional profits of

(
1−H(f ′)

)(
πℓ2 − EH [f |f ≥ f ′]

)
=

(
1−H(f ′)

)
πℓ2 −

∫ πℓ2

f ′
f dH(f).

For the sake of a contradiction, suppose that the (potentially) mixed strategy with CDF

H weakly dominates the mixed strategy with CDF G. Then, it follows from the last two
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equations that for any f ′ ∈ [ν, πℓ2),(
G(f ′)−H(f ′)

)
πℓ2 −

∫ πℓ2

f ′
f dH(f) +

∫ πℓ2

f ′
f dG(f) ≥ 0. (15)

Integration by parts implies that (15) is equivalent to

−
(
H(f ′)−G(f ′)

)
(πℓ2 − f ′) +

∫ πℓ2

f ′
H(f)−G(f) df ≥ 0. (16)

We derive a contradiction in three steps. First, evaluating (15) at f ′ = ν, we conclude

that

EH [f ] ≤ EG[f ].

Hence, H cannot first-order stochastically dominate G, so that G(f) < H(f) for some

f ∈ [ν, πℓ2). Define f̄ := sup{arg sup H(f)−G(f)}, and notice that H(f̄)−G(f̄) > 0.

Second, becauseH is right-continuous andG is continuous, alsoH−G is right-continuous.

This in turn implies that the left-hand side of (16) is right-continuous. Hence, if f̄ < πℓ2 ,

−
(
H(f̄)−G(f̄)

)
(πℓ2 − f̄) +

∫ πℓ2

f̄

H(f)−G(f) df ≥ 0.

Third, to establish a contradiction, we distinguish the following two cases: f̄ < πℓ2 and

f̄ = πℓ2 . If f̄ < πℓ2 , H(f) − G(f) cannot be constant on (f̄ , πℓ2). Hence, there exists some

f̂ ∈ (f̄ , πℓ2) and some ζ > 0, such that supf∈(f̂ ,πℓ2
)H(f)−G(f) < H(f̄)−G(f̄)− ζ. It thus

follows that

−
(
H(f̄)−G(f̄)

)
(πℓ2 − f̄) +

∫ πℓ2

f̄

H(f)−G(f) df

< −
(
H(f̄)−G(f̄)

)
(πℓ2 − f̄) +

∫ πℓ2

f̄

H(f̄)−G(f̄) df −
∫ πℓ2

f̂

ζ df

= −ζ(πℓ2 − f̂)

< 0;

a contradiction. If f̄ = πℓ2 , H(f) must jump at f = πℓ2 . Since H is right-continuous and

does not first-order stochastically dominate G, and since G is continuous, there exists f s < f̄ ,
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so that H(f s) = G(f s) and H(f) < G(f) for all f ∈ (f s, πℓ2). At f
′ = f s, the left-hand side

of (15) is

(
G(f s)−H(f s)

)︸ ︷︷ ︸
=0

πℓ2 −
∫ πℓ2

fs

f dH(f) +

∫ πℓ2

fs

f dG(f) = EG[f |f ≥ f s]− EH [f |f ≥ f s] < 0,

where the inequality holds as H first-order stochastically dominates G on (f s, πℓ2); a con-

tradiction.

Part IV. Suppose that all of ℓ1’s rivals bid according the candidate equilibrium strategies,

which are weakly undominated by Parts I and III. Then, as we have argued above, bidding

f ∗ is firm ℓ1’s strict best reply and thus weakly undominated.

2. Step: unique equilibrium outcome. We show that ℓ1 takes over the last target at f ∗

in any cautious equilibrium. First, we argue that in any cautious equilibrium the infimum

f of the highest equilibrium takeover bid is at least f ∗. Suppose not, i.e. f < f ∗. We show

that then both firms ℓ1 and ℓ2 bid weakly above f with probability one. If one of them

does not, it must in equilibrium with positive probability submit bids below f ∗ that loose

with probability one. This firm could then deviate and move this probability mass to a

bid (f + f ∗)/2 and win with positive probability thereby earning positive expected profits.

Furthermore, if the distribution of the highest equilibrium takeover bid has no mass point at

f , both ℓ1 and ℓ2 must bid above f + ϵ′ for some ϵ′ > 0 with probability one; for otherwise,

the expected profits as f → f from above approach zero while those of deviating and bidding

(f + f ∗)/2 do not; a contradiction. This, however, contradicts that f is the infimum of the

highest bid. Thus, with positive probability both ℓ1 and ℓ2 bid f , and win when doing so.

But since they earn strictly positive profits when winning at this price, either of them would

be better of moving the probability mass from f to f + ϵ′′ for some small enough ϵ′′ > 0. We

conclude that the infimum of the highest equilibrium bid is at least f ∗.

Second, we argue that the supremum of the highest equilibrium bid in a cautious equi-

librium is f ∗. Bidding at or above f ∗ is weakly dominated for all firms other than ℓ1. Hence,
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firms other than ℓ1 must bid strictly below f ∗ with probability one. Thus, firm ℓ1 wins with

probability one when bidding f ∗, and hence cannot bid strictly above f ∗ either. We conclude

that the highest equilibrium bid must be f ∗ in any cautious equilibrium with probability

one. Furthermore, it must be submitted by ℓ1, and thus ℓ1 wins with probability one in any

cautious equilibrium.

Induction step: Suppose that the induction hypothesis holds for any bidding subgame

with k ≥ 1 remaining targets. Consider a bidding subgame with k + 1 remaining targets,

and note that there are at least k + 2 remaining acquirers. Define A(k + 1) and Ā(k + 1, x)

analogously to the above.

The induction step follows in five steps: in steps one to four, we verify that the induction

hypothesis must hold in any cautious equilibrium of a bidding subgame with k+1 remaining

targets; in step five, we then construct a cautious equilibrium of this bidding subgame.

1. Step: no firm ℓj ∈ A(k + 1) with j ≥ k + 2 takes over the current target. Recall

that we rank acquirers in terms of their market shares in market a, with a lower index j

indicating a higher market share. Let ℓw be the firm buying target k + 1, and let πj(w)

be firm j’s additional subgame perfect equilibrium profit in the bidding subgame with k

remaining targets as a function of w.

For the sake of a contradiction, suppose firm ℓj with j ≥ k + 2 takes over the current

target with positive probability. Then, by the induction hypothesis the remaining targets

are acquired the firms in Ā(k + 1, k). Hence, ℓj’s gross profits in market b are

πj(j) = V b − |ηb|
( ∑

i∈A\A(k+1)

qai +
∑

i∈Ā(k+1,k)

qai

)
+ αbqaℓj .

Using the induction hypothesis, we construct a reduced game by replacing any continuation

subgame following the current acceptance subgame (i.e. following the target’s acceptance

decision) by its unique equilibrium payoffs, and replacing all possible acceptance subgames

in which the target is not indifferent (between accepting and rejecting some offer) by its

unique equilibrium payoffs.
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If ℓj does not take over the current target, it will not make a takeover; thus, its profits

from the takeover market will be zero. If it takes over the current target, its profits will

be πj(j). In the reduced game, thus, it is weakly dominated for firm ℓj to bid at or above

πj(j). Hence, because ℓj takes over the current target with positive probability, and because

it plays a weakly undominated strategy in any cautious equilibrium, the infimum f of the

highest bid must be strictly below πj(j).

We next argue that any firm ℓj′ ∈ Ā(k+1, k) makes greater profits when taking over the

current target at f than when not doing so, irrespective of which rival ℓw would take over

the current target otherwise. To see why, let f ∗ = f ∗(k+1), and consider three cases. First,

if w ≤ k, by the induction hypothesis, any firm ℓj′ ∈ Ā(k + 1, k) takes over a remaining

target at a price

f ∗ = V b − |ηb|
( ∑

i∈A\A(k+1)

qai +
∑

i∈Ā(k+1,k)

qai

)
+ αbqaℓk+2

≥ πj(j),

and following the takeover in market b earns additional gross profits of

πj′(w) = V b − |ηb|
( ∑

i∈A\A(k+1)

qai +
∑

i∈Ā(k+1,k+1)\{ℓj′}

qai

)
+ αbqaℓj′ .

This implies additional net profits of αb(qaℓj′ − qaℓk+2
)+ |ηb|(qaℓj′ − qaℓk+1

) > 0. If instead firm ℓj′

takes over the current target at f , by the induction hypothesis, it earns additional profits of

πj′(j
′)− f = πj′(w)− f > πj′(w)− πj(j) ≥ πj′(w)− f ∗ = αb(qaℓj′ − qaℓk+2

) + |ηb|(qaℓj′ − qaℓk+1
),

where the first equality follows from the fact that ℓw would take over one of the remaining

targets.

Second, if w = k + 1, then by the induction hypothesis any firm ℓj′ ∈ A(k + 1, k) takes

over a remaining target at a price

f ′ = V b − |ηb|
( ∑

i∈A\A(k+1)

qai
Ŝ +

∑
i∈Ā(k+1,k−1)

qai + qaℓk+1

)
+ αbqaℓk+2

> f ∗,
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and earns additional gross profits of πj′(k + 1) = πj′(j
′). The additional net profits are

πj′(j
′) − f ′. If ℓj′ takes over the current target at f , by the induction hypothesis, it earns

additional profits of

πj′(j
′)− f ≥ πj′(j

′)− πj(j) > πj′(j
′)− f ∗ > πj′(j

′)− f ′.

Third, if w ≥ k + 2, then by the induction hypothesis a firm ℓj′ ∈ A(k + 1, k) takes over

a remaining target at a price

f ′′ = V b − |ηb|
( ∑

i∈A\A(k+1)

qai +
∑

i∈Ā(k+1,k−1)

qai + qaℓw

)
+ αbqaℓk+1

,

and earns additional gross profits of

πj′(w) = V b − |ηb|
( ∑

i∈A\A(k+1)

qai +
∑

i∈Ā(k+1,k)\{ℓj′}

qai + qaℓw

)
+ αbqaℓj′ .

and additional net profits of

πj′(w)− f ′′ = αb
(
qaℓj′ − qaℓk+1

)
+ |ηb|

(
qaℓj′ − qaℓk

)
.

If ℓj′ takes over the current target at f , by the induction hypothesis, it earns additional

profits of

πj′(j
′)− f ≥ πj′(j

′)− πj(j) > πj′(j
′)− f ∗ = αb(qaℓj′ − qaℓk+2

) + |ηb|(qaℓj′ − qaℓk+1
).

Hence, because

αb(qaℓj′ − qaℓk+2
) + |ηb|(qaℓj′ − qaℓk+1

) > αb
(
qaℓj′ − qaℓk+1

)
+ |ηb|

(
qaℓj′ − qaℓk

)
,

firm ℓj′ strictly prefers winning at f also in this last case.

Observe that there are at least two firms in Ā(k + 1, k). Because any firm ℓj′ ∈ Ā(k +

1, k) strictly prefers winning to loosing when bidding f , by a similar argument than in the

induction anchor (2. Step), it cannot be the case that two or more firms in Ā(k+ 1, k) have
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a mass point at f . Furthermore, if no rival has a mass point at f , as the bid of a firm

ℓj′ approaches f from above its profits approach those of losing for certain. In that case,

however, by a similar argument than in the induction anchor, there exists an ϵ′ > 0 such

that firm ℓj′ is strictly better of moving any probability mass from below f + ϵ′ to f + ϵ′.

Hence, any firm in Ā(k + 1, k) has an incentive to bid strictly above f with probability one.

In this case, however, firm ℓj′ lowest bid is bounded below by f + ϵ′, contradicting that f

is the infimum of the highest bid. Hence, a firm in A(k + 1, k + 1) takes over the current

target.

2. Step: the infimum f of the highest equilibrium bid for the current target is weakly

above f ∗. Suppose otherwise. By bidding in the interval (f, f ∗), firm ℓk+2 can earn positive

profits. Hence, in equilibrium, firm ℓk+2 must win with positive probability, contradicting

the first step above.

3. Step: the supremum f̄ of the highest equilibrium bid for the target currently on sale

is weakly below f ∗. Suppose otherwise. First, recall that bidding at or above f ∗ is weakly

dominated for every firm ℓj with j ≥ k + 2. Eliminating bids weakly above f ∗ for all

j ≥ k + 2, we now argue that it is weakly dominated to bid above f ∗ also for firm ℓk+1. To

see why, notice that if firm ℓk+1 bids above f ∗ it either wins or looses to a firm j ≤ k. In

either case, by the induction hypothesis, the remaining k+1 targets are bought by the firms

Ā(k + 1, k + 1). Furthermore, if ℓk+1 looses, by the induction hypothesis, it pays f ∗. Hence,

when bidding f ∗ firm ℓk+1 always earns αb(qaℓk+1
− qaℓk+2

), and bidding strictly above f ∗ is

weakly dominated for firm ℓk+1 in the reduced bidding game.

Now consider a firm that attains the supremum; that is, a firm that bids in ((f̄+f∗)/2, f̄ ]

and wins with positive probability. If the firm moves the probability mass from ((f̄+f∗)/2, f̄ ]

to (f̄+f∗)/2 instead, it either wins at a lower price or looses to another firm in Ā(k+1, k) and,

by the induction hypothesis, takes over another target at f ∗. In either case it earns higher

profits, and hence has an incentive to deviate; a contradiction.

4. Step: firm ℓk+1 cannot take over the current target with positive probability. Suppose
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it does. Then, it must bid f ∗ with positive probability, since f = f̄ = f ∗. By the induction

hypothesis, if ℓk+1 takes over the current target, in the following subgame the firms in

Ā(k+1, k) take over the remaining targets at a price of f ′ > f ∗, and hence earn strictly less

than when taking over the current target at f ∗. But if a firm in Ā(k + 1, k) deviates and

bids f ∗ + ϵ′ for any ϵ′ > 0, it wins for certain, which is a profitable deviation for sufficiently

small ϵ′ > 0.

5. Step: equilibrium construction. We sketch a cautious equilibrium of the bidding

subgame with k+1 remaining targets in which all firms in Ā(k+1, k+1) take over a target

at f ∗. Using the induction hypothesis, following the current round of bidding a cautious

equilibrium with the desired properties exist for any bidding subgame with k remaining

targets. We thus specify behavior only in the current round of bidding. By an argument

analogous to that in the induction anchor (1. Step and in particular, Lemma 8), the current

target accepting any highest bid above

V b − |ηb|
( ∑

i∈A\A(k)

qai +
∑

i∈Ā(k,k−1)

qai

)
with probability one (breaking ties randomly), every firm in Ā(k+1, k) bidding f ∗, firm ℓk+1

uniformly randomzing over (f ∗− ϵ, f ∗) for small enough ϵ > 0 , and any other firm j bidding

V b − |ηb|
( ∑

i∈A\A(k)

qai +
∑

i∈Ā(k,k−1)

qai

)
is a weakly undominated equilibrium of the reduced game in which all subgames with a

unique equilibrium outcome are replaced by the corresponding equilibrium payoffs. Hence,

it is part of a cautious equilibrium of this subgame.

Finally, we argue that f ∗ < V b. Let q := maxj∈A\Ā(nb−1) q
a
j . By definition, for any

i ∈ Ā(nb − 1), we have qai > q. Thus, because all targets are symmetric, we have

f ∗ = V b − |ηb|
∑

i∈Ā(nb−1)

qai + αb max
j∈A\Ā(nb−1)

qaj < V b − q

(
|ηb|(nb − 1)− αb

)
︸ ︷︷ ︸
= 0 by Part III of Lemma 1

= V b.
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Case (b). Let nb = |A|. We solve the game backwards. Consider first any subgame with one

potential acquirer j and one target, which implies that all other firms in A have taken over

another target before. Since j makes a take-it-or-leave-it offer, it must offer the amount at

which the target is indifferent between accepting and rejecting, and since there is a strictly

positive gain of trade the target must accept in equilibrium. Hence, the takeover price is

V b −
∣∣ηb∣∣ ∑

i∈A\{j}

qai .

We proceed by induction over the number of remaining targets, focusing on subgames in

which there are as many targets as potential acquirers. (Notice that we can use Case (a) to

deal with subgames in which there are more acquirers than targets.)

Induction hypothesis: Consider any subgame in which there are k ≥ 2 potential acquirers

and k targets left. Let ℓk be the potential acquirer with the lowest market share in market

a among the k remaining potential acquirers. Then, in any cautious equilibrium of this

subgame, a potential acquirer other than ℓk takes over the current target at a price of

f ∗(k) := V b −
∣∣ηb∣∣ ∑

i∈A\{ℓk}

qai .

Induction anchor: Consider any subgame with two potential acquirers ℓ1 and ℓ2 and two

targets. Let qaℓ1 > qaℓ2 . We have to show that ℓ1 takes over the current target at a price

f ∗ = f ∗(2).

First, we observe that if the current target is not taken over, then by Case (a), firm ℓ1

takes over the remaining target in the next round. Anticipating this takeover, the current

target’s anticipated standalone value is f ∗. Hence, the current target accepts any highest

bid strictly above f ∗, and rejects any highest bid strictly below f ∗; at f ∗ the current target

is indifferent.

Second, we show that the infimum f of the highest equilibrium bid is at least f ∗. Suppose

not. Then, by our first observation, with positive probability, the current target is not taken
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over. Anticipating that ℓ1 would take over the last remaining target in the following subgame,

ℓ2 could earn net profits of qaℓ2α
b from taking over the current target at f ∗. Hence, for small

enough ϵ′ > 0, shifting probability mass from (f, f ∗) to f ∗ + ϵ′ is a profitable deviation for

ℓ2; a contradiction.

Third, we argue that in any cautious equilibrium the supremum f̄ of the highest equi-

librium bid is at most f ∗. Suppose otherwise. Because the target accepts all bids above f ∗,

both ℓ1 and ℓ2 must attain f̄ for otherwise the firm attaining f̄ would have an incentive to

lower f̄ . To establish a contradiction, we observe that for firm ℓ2 it is weakly dominated to

assign positive mass to bids in ((f∗+f̄)/2, f̄ ]. If ℓ1 submits a bid weakly below (f∗+f̄)/2, then

firm ℓ2 is strictly better of bidding (f∗+f̄)/2 with probability one, as this way it pays a lower

price, both when losing and taking over the last target at f ∗ or when winning at this price.

If firm ℓ1 submits a bid above (f∗+f̄)/2, firm ℓ2 is (weakly) better of bidding (f∗+f̄)/2 with

probability one and losing for certain, in which case it takes over the remaining target at

f ∗ in the following subgame. Hence, assigning positive mass to bids in ((f∗+f̄)/2, f̄ ] is weakly

dominated for ℓ2 in the reduced bidding game; a contradiction.

Fourth, we show that firm ℓ1 takes over the current target with probability 1. Note that

firm ℓ2 cannot take over the current target with positive probability. Suppose it does. Then,

it must bid f ∗ with positive probability. If ℓ2 takes over the current target, in the following

subgame ℓ1 takes over the remaining target at a price of f ′ > f ∗, and hence earns strictly

less than when taking over the current target at f ∗. But if ℓ1 deviates and bids f ∗ + ϵ′ for

any ϵ′ > 0, it wins for certain, which is a profitable deviation for sufficiently small ϵ′ > 0.

Similarly, the target must accept a bid of f ∗ by firm ℓ1 with probability 1, for otherwise ℓ1

could profitably deviate to a slightly higher bid.

Fifth, we construct a cautious equilibrium consistent with the induction hypothesis.

Again, we specify behavior only in the current round of bidding. Since if ℓ2 takes over

the current target ℓ1 pays a strictly higher price in the next round, similar arguments as in

Case (a) imply that firm ℓ1 bidding f ∗ and firm ℓ2 uniformly randomizing over (f ∗ − ϵ, f ∗)
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is part of a cautious equilibrium of this subgame for small enough ϵ > 0.

Induction step: Suppose the induction hypothesis holds for any subgame with k ≥ 2

remaining targets and potential acquirers. Consider a subgame with k+1 remaining targets

and acquirers. As before, we denote f ∗ = f ∗(k + 1). We follow the same five steps as in the

induction anchor.

First, we observe that if the current target is not taken over, by Case (a), all firms except

for ℓk+1 take over one of the remaining targets in the following rounds. Anticipating this,

the current target’s anticipated standalone value is f ∗. The current target thus accepts any

highest bid strictly above f ∗, and rejects any highest bid strictly below f ∗; at f ∗ the current

target is indifferent.

Second, we show that the infimum f of the highest equilibrium bid is at least f ∗. Suppose

not. Then, with positive probability, the current target is not taken over. Anticipating that

it would not make a takeover otherwise, firm ℓk+1 could earn net profits of qaℓk+1
αb from

taking over the current target at f ∗. Hence, for small enough ϵ′ > 0 shifting probability

mass from (f, f ∗) to f ∗ + ϵ′ is a profitable deviation for ℓk+1; a contradiction.

Third, we argue that in any cautious equilibrium the supremum f̄ of the highest equilib-

rium bid is at most f ∗. Suppose not. Because the target accepts all bids above f ∗, at least

two firms must attain f̄ for otherwise the only firm attaining f̄ would have an incentive to

lower f̄ . Notice that, by the same argument as in the induction anchor, assigning positive

probability mass to bids above (f∗+f̄)/2 is weakly dominated for ℓk+1, so it cannot be ℓk+1

that attains f̄ . Now consider two firms ℓi and ℓj with i, j ̸= k + 1 that attain f̄ . Both firms

have an incentive to shift probability mass from ((f∗+f̄)/2, f̄ ] to (f∗+f̄)/2 because they either

win at a lower price or — by the induction hypothesis — take over one the remaining targets

at f ∗ in the following rounds; a contradiction.

Fourth, we show that the current target is taken over with probability 1 by a firm other

than ℓk+1. Note that ℓk+1 cannot take over the current target with positive probability.
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Suppose it does. Then, it must bid f ∗ with positive probability. If ℓk+1 takes over the

current target, in the following subgame the remaining acquirers take over the remaining

targets at a price of f ′ > f ∗, and hence earn strictly less than when taking over the current

one at f ∗. If either of these firms deviates and bids f ∗+ ϵ′ for any ϵ′ > 0, it wins for certain,

which is a profitable deviation for sufficiently small ϵ′ > 0; a contradiction. Similarly, the

target must accept an equilibrium bid of f ∗ with probability 1, for otherwise a firm other

than ℓk+1 could profitably deviate to a slightly higher bid.

Fifth, we construct a cautious equilibrium consistent with the induction hypothesis.

Again, we specify behavior only in the current round of bidding. By similar arguments as in

Case (a), firm ℓ1, . . . , ℓk bidding f ∗ and firm ℓk+1 uniformly randomizing over (f ∗ − ϵ, f ∗) is

part of a cautious equilibrium of this subgame for small enough ϵ > 0.

Case (c). Let nb > |A|. We solve the game backwards, and begin by solving subgames with

one more acquirer than targets. (Other relevant subgames are captured by (a) and (b).)

Induction hypothesis: Consider a subgame with k ≥ 1 remaining potential acquirers and

k + 1 remaining targets. The current target is taken over at a price of

f ∗ := V b −
∣∣ηb∣∣∑

i∈A

qai .

Induction anchor: Let k = 1, so that there are one acquirer ℓ and two targets left. If the

current target is not taken over, by Case (b), ℓ takes over the last remaining target at a price

f ′ = V b −
∣∣ηb∣∣ ∑

i∈A\{ℓ}

qai .

The current target’s profits in that case are f ∗. Thus the target must reject any bid strictly

less than f ∗, and accept any bid strictly above f ∗. Hence, firm ℓ has a strict incentive to

lower any bid strictly above f ∗. For the sake of a contradiction, suppose the target rejects

f ∗. Then, ℓ pays f ′ > f ∗ for the takeover, and thus has an incentive to deviate by bidding

(f∗+f ′)/2, a bid that the current target accepts. Hence, ℓ takes over the current target at f ∗.
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Induction step: Suppose that the induction hypothesis holds for k remaining acquirers

and remaining k + 1 targets. Now consider a subgame with k + 1 remaining acquirers and

k + 2 targets. Let ℓk be the remaining acquirer with the lowest market share in market a.

First, if the current target is not taken over, by Case (b), all remaining targets are bought

at

f ′′ = V b −
∣∣ηb∣∣ ∑

i∈A\{ℓk}

qai .

The current target’s profits in that case are f ∗. Thus, the current target must reject any

bid strictly less than f ∗, and accept any bid strictly above f ∗; at f ∗ the current target is

indifferent.

Second, we argue that the supremum f̄ of the highest equilibrium bid is at most f ∗.

Suppose not. Since the target accepts all bids above f ∗, at least two firms must attain f̄

for otherwise the only firm attaining f̄ would have an incentive to lower f̄ . Either firm has

an incentive to shift probability mass from ((f∗+f̄)/2, f̄ ] to (f∗+f̄)/2 since they either win at a

lower price or by the induction hypothesis, take over a remaining target at f ∗ in the following

rounds; a contradiction.

Third, we show that the target accepts a bid of f ∗. Suppose otherwise. Then, by Case

(b), all potential acquirers take over one of the remaining targets at a price f ′′. Hence, for

small enough ϵ′ > 0, by bidding f ∗ + ϵ′ for the current target, each potential acquirer could

make a takeover at a lower price; a contradiction.

Fourth, by an argument similar to Lemma 8 (Part I), bidding f ∗ is weakly undominated

for every potential acquirer. Hence, every potential acquirer bidding f ∗ is part of a cautious

equilibrium.

We finally argue that any acquirer takes over a target at price f ∗ in any subgame with k ≥ 1

remaining potential acquirers and k+x remaining targets for any x ≥ 2. First, we note that

no target would sell strictly below f ∗ because even if all acquirers buy a rival it earns f ∗

upon rejecting an offer. Hence, no target can be bought at a price strictly below f ∗. Second,
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we observe that no acquirer would bid more than f ∗ because such an acquirer could deviate

and not bid until a subgame is reached in which there are k′ acquirers and k′+1 targets left.

In such a subgame, it can take over a target at f ∗. Hence, in equilibrium an acquirer takes

over a target at f ∗.

B.3 Access-Point Markets

Proof of Proposition 4. Let firm 1 offer the best service a. We first observe that for every

firm j ̸= 1, bidding strictly above ∆a
j1 is weakly dominated. By Part I of Assumption 1,

∆a
jj′ = qajj − qajj′ ≤ qajj − qaj1 = ∆a

j1.

To see that bidding b > ∆a
j1 is weakly dominated by bidding ∆a

j1, we consider three cases.

First, in case the highest rival bid is strictly above b or below ∆a
j1, both bids obtain the

same payoff. Second, in case the highest rival bid lies in (∆a
j1, b], bidding ∆a

j1 yields a strictly

higher payoff because j strictly prefers to lose the auction at any price strictly above ∆a
j1,

no matter who obtains the default. Third, in case the highest bid is ∆a
j1, bidding ∆a

j1 yields

a strictly higher payoff if the highest rival bid is made by a firm other than 1 and the same

payoff when the highest rival bid is made by firm 1. This also establishes that if firm 1 wins

the auction, it pays at most maxj ̸=1∆
a
j1.

Now suppose that, for the sake of a contradiction, a firm j ̸= 1 that does not offer the

best service in market a, wins with positive probability. Hence, there exists some interval

of bids (b, b] in which firm j bids with positive probability and conditional on doing so wins

the auction. Since bidding above ∆a
j1 is weakly dominated for firm j, we must have

b ≤ ∆a
j1 = qajj − qaj1 < qa11 − qa1j = ∆a

1j, (17)

where the strict inequality follows from Part III of Assumption 1. Because firm j wins with

positive probability either firm 1 bids below b with positive probability or both firms have a

mass point at b in their bid functions. We next argue that in either case, firm 1 can profitably
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move the probability mass in its bid function from weakly below b to ∆a
1j. In case firm 1

would have won the auction with its original bid this does not affect the allocation and hence

does not affect firm 1’s payoff. Similarly, if firm 1 still loses the auction when bidding ∆a
1j

the allocation is unaffected. If, however, firm 1 wins the auction, it must replace some other

bidder j′ (not necessarily equal to j). Because also j′ must bid below ∆a
j′1, we have that the

winning bid firm 1 replaces satisfies

b′ ≤ ∆a
j′1 < ∆a

1j′ . (18)

Conditional on replacing the winning bid b′, firm 1 thus gains at least ∆a
1j′−∆a

j′1 > 0. Finally,

because prior to the deviation winning bids fall in the interval (b, b] with positive probability,

the latter happens with positive probability. Hence, firm 1 has a strictly profitable deviation;

a contradiction. Hence, a firm offering the best service a wins with probability 1.

Proof of Proposition 5. It is well-known that with two bidders i ∈ {G,M}, it is weakly

dominant for i to bid its value (for the default). Hence, to prove the claim, we simply

calculate these values.

Part I. Suppose firm M is a single-market firm. Hence, firm M ’s willingness to pay to

replace G as the default is ∆a
MG. When firm G replaces M as the default in market a, it earns

additional profits of ∆a
GM in that market and it increase the probability of being the default

in market b by ∆a
GM . Hence, G values the default position in market a at ∆a

GM(1+αb
G). The

claim follows.

Part II. Suppose M is an ecosystem. We start by deriving G’s willingness to pay to

replace M as the default in market a. When firm G is the default in market a, it makes

profits of

qaGG+qaGGq
b
GG+qaMGq

b
GM+(1−qaGG−qaMG)

1

nb

∑
ℓ∈N b

qbGℓ = qaGG+qaGGα
b
G+qaMGη

b
GM+

1

nb

∑
ℓ∈N b

qbGℓ.
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When firm M is the default in market a, firm G earns

qaGM+qaGMqbGG+qaMMqbGM+(1−qaGM−qaMM)
1

nb

∑
ℓ∈N b

qbGℓ = qaGM+qaGMαb
G+qaMMηbGM+

1

nb

∑
ℓ∈N b

qbGℓ.

Using qaGG − qaGM = ∆a
GM and −(qaMM − qaMG) = −∆a

MG, we obtain

WTPGM = ∆a
GM(1 + αb

G)−∆a
MGη

b
GM = ∆a

GM(1 + αb
G) + ∆a

MG|ηbGM |,

where the last equality follows from the fact that ηbGM < 0. Similarly, because ηbMG < 0,

WTPMG = ∆a
MG(1 + αb

M) + ∆a
GM |ηbMG|.

The claims follows by observing that

WTPGM > WTPMG if and only if ∆a
GM(1+αb

G+ηbMG) > ∆a
MG(1+αb

M+ηbGM).
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