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Welfare is a weighted sum of private utility and public revenue. Earlier outcomes inform 

later policies. Utility is not observed, but indirectly inferred. Response functions are learned 

through experimentation.

We derive a lower bound on regret, and a matching adversarial upper bound for a variant 

of the Exp3 algorithm. Cumulative regret grows at a rate of T2/3. This implies that (i) welfare 

maximization is harder than the multi-armed bandit problem (with a rate of T1/2 for finite 

policy sets), and (ii) our algorithm achieves the optimal rate. For the stochastic setting, if 

social welfare is concave, we can achieve a rate of T1/2 (for continuous policy sets), using a 

dyadic search algorithm.

We analyze an extension to nonlinear income taxation, and sketch an extension to 

commodity taxation. We compare our setting to monopoly pricing (which is easier), and 

price setting for bilateral trade (which is harder).
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1 Introduction

Consider a policymaker who aims to maximize social welfare, defined as a weighted sum

of utility across individuals. The policymaker can choose a policy parameter such as a

sales tax rate, an unemployment benefit level, a health-insurance copay rate, etc. The

policymaker does not directly observe the welfare resulting from their policy choices.

They do, however, observe behavioral outcomes such as consumption of the taxed good,

labor market participation, or health care expenditures. They can revise their policy

choices over time in light of observed outcomes. How should such a policymaker act?

This is the question that we study. To address this question, we bring together insights

from welfare economics (in particular optimal taxation, Ramsey 1927; Mirrlees 1971;

Baily 1978; Saez 2001; Chetty 2009) with insights from machine learning (in particular

online learning and multi-armed bandits, see Slivkins 2019; Lattimore and Szepesvári

2020 for recent reviews, and Thompson (1933); Lai and Robbins (1985) for classic

contributions).

In our baseline model, individuals arrive sequentially and make a single binary de-

cision. In each period the policymaker chooses a tax rate that applies to this binary

decision, and then observes the individual’s response. They do not observe the indi-

vidual’s private utility. Social welfare is given by a weighted sum of private utility and

public revenue. Later, we extend our model to nonlinear income taxation, where wel-

fare weights vary as a function of individual earnings capacity, and sketch an extension

to commodity taxation, where individual decisions involve a continuous consumption

vector.

Our goal is to give guidance to the policymaker. We propose algorithms to maximize

cumulative social welfare, and we provide (adversarial and stochastic) guarantees for the

performance of these algorithms. In doing so, we also show that welfare maximization is

a harder learning problem than reward maximization in the multi-armed bandit setting.

Private utility in our baseline model is equal to consumer surplus, which is given by

the integral of demand. In order to learn this integral, we need to learn demand for

counterfactual, suboptimal tax rates. This drives the di�culty of the learning problem.

Why welfare, why adversarial guarantees? Our algorithms are designed to max-

imize social welfare, which is not directly observable, rather than maximizing outcomes

that are directly observable. The definition of social welfare as an aggregation of indi-

vidual utilities is at the heart of welfare economics in general, and of optimal tax theory
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in particular. The distinction between utility and observable outcomes is important in

practice. To illustrate, consider the example of a policymaker who chooses the level

of unemployment benefits, where the observable outcome is employment. The policy-

maker could use an algorithm that adaptively maximizes employment. The problem

with this approach is that employment might be maximized by making the unemployed

as miserable as possible. This is not normatively appealing. Such an algorithm would

minimize the utility of the unemployed, rather than maximizing social welfare. Similar

examples can be given for many domains of public policy, including health, education,

and criminal justice. In contrast to observable outcomes such as employment, welfare

is improved by increasing the choice sets of those a↵ected, not by reducing these choice

sets.

Our theoretical analysis provides not only stochastic but also adversarial guarantees,

which hold for arbitrary sequences of preference parameters. Adversarial guarantees

for algorithms promise robustness against deviations from the assumption that het-

erogeneity is independently and identically distributed over time. Possible deviations

from this assumption include autocorrelation, trends, heteroskedasticity, more general

non-stationarity, and other concerns of time-series econometrics. In the employment

example, such deviations might for instance be due to the business cycle. One might

fear that adversarial robustness is achieved at the price of worsened performance for

the i.i.d. setting, relative to less robust algorithms. That this is not the case follows

from our theoretical characterizations.

Lower and upper bounds on regret Our main theorems provide lower and upper

bounds on cumulative regret. Cumulative regret is defined as the di↵erence in welfare

between the chosen sequence of policies and the best possible constant policy. We

consider both stochastic and adversarial regret. A lower bound on stochastic regret

satisfies that, for any algorithm, there exists some stationary distribution of preference

parameters for which the algorithm has to su↵er at least a certain amount of regret. An

upper bound on adversarial regret has to hold for a given algorithm and any sequence

of preference parameters.

For a given algorithm, stochastic regret, averaged over i.i.d. sequences of preference

parameters, is always less or equal than adversarial regret, for the worst-case sequence.

A lower bound on stochastic regret (for any algorithm) therefore implies a corresponding

lower bound on adversarial regret, and an upper bound on adversarial regret (for a

given algorithm) immediately implies an upper bound on stochastic regret. When an
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adversarial upper bound coincides with a stochastic lower bound, in terms of rates of

regret, it follows that the proposed algorithm is rate e�cient, for both stochastic and

adversarial regret. It follows, furthermore, that the bounds are sharp.

A lower bound on stochastic regret We first prove a stochastic (and thus also

adversarial) lower bound on regret, for any possible algorithm in the welfare maximiza-

tion problem. Our proof of this bound constructs a family of possible distributions for

preferences. This family is such that there are two candidate policies which are po-

tentially optimal. The di↵erence in welfare between these two policies depends on the

integral of demand over intermediate policy values. In order to learn which of the two

candidate policies is optimal, we need to learn behavioral responses for intermediate

policies, which are strictly suboptimal. Because of the need to probe these suboptimal

policies su�ciently often, we obtain a lower bound on regret which grows at a rate of

T
2/3, even if we restrict our attention to settings with finite, known support for prefer-

ence parameters and policies. This rate is worse than the worst-case rate for bandits of

T
1/2.

A matching upper bound on adversarial regret for modified Exp3 We next

propose an algorithm for the adaptive maximization of social welfare. Our algorithm

is a modification of the Exp3 algorithm (Auer et al., 2002b). Exp3 is based on an

unbiased estimate of cumulative welfare for each policy. The probability of choosing a

given policy is proportional to the exponential of this estimate of cumulative welfare,

times some rate parameter. Relative to Exp3, we require two modifications for our

setting. First, we need to discretize the continuous policy space. Second, and more

interestingly, we need additional exploration of counterfactual policies, including some

policies that are clearly sub-optimal, in order to learn welfare for the policies which are

contenders for the optimum. This need for additional exploration again arises because of

the dependence of welfare on the integral of demand over counterfactual policy choices.

For our modified Exp3 algorithm, we prove an adversarial (and thus also stochastic)

upper bound on regret. We show that, for an appropriate choice of tuning parameters,

worst case cumulative regret over all possible sequences of preference parameters grows

at a rate of T
2/3, up to a logarithmic term. The algorithm thus achieves the best

possible rate. Since the rates for our stochastic lower and adversarial upper bound

coincide, up to a logarithmic term, we have a complete characterization of learning

rates for the welfare maximization problem.
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Improved stochastic bounds for concave social welfare The proof of our lower

bound on regret is based on the construction of a distribution of preferences which

delivers a non-concave social welfare function. If we restrict attention to the stochastic

setting, where preferences are i.i.d. over time, and if we assume that social welfare is

concave, then we can improve upon this bound on regret. We prove a lower bound on

stochastic regret, under the assumption of concavity, which grows at the rate of T 1/2.

We then propose a dyadic search algorithm which achieves this rate, up to logarithmic

terms. This dyadic search algorithm maintains an “active interval,” containing the

optimal policy with high probability, which is narrowed down over time. Only policies

within the active interval are sampled.

Extensions to non-linear income taxation and to commodity taxation Our

discussion up to this point focuses on a minimal, stylized case of an optimal tax prob-

lem, where individual actions are binary, and the policy imposes a tax on this binary

action. Our arguments generalize, however, to more complicated and practically rele-

vant settings. This includes optimal nonlinear income taxation, as in Mirrlees (1971)

and Saez (2001), and commodity taxation for a bundle of goods, as in Ramsey (1927).

For nonlinear income taxation, di↵erent tax rates apply at di↵erent income levels, and

welfare weights depend on individual earnings capacity. In Section 5, we discuss an ex-

tension of our tempered Exp3 algorithm to nonlinear income taxation, and characterize

its regret. For commodity taxation, di↵erent tax rates apply to di↵erent goods, and

consumption decisions are continuous vectors. In Section 6 we sketch an extension of

our algorithm to commodity taxation, but leave its characterization for future research.

Roadmap The rest of this paper proceeds as follows. We conclude this introduction

with a discussion of some related work and relevant references. Section 2 introduces our

setup, formally defines the adversarial and stochastic settings, and compares our setup

to related learning problems. Section 3 provides lower and upper bounds on regret in

the adversarial and stochastic settings. Section 4 restricts attention to the stochastic

setting with concave social welfare, and provides improved regret bounds for this setting.

Section 5 discusses an extension of our baseline model to non-linear income taxation.

Section 6 sketches another extension of our baseline model to commodity taxation.

Section 7 concludes, and discusses some possible applications of our algorithm, as well

as an alternative Bayesian approach to adaptive welfare maximization. The proofs of

Theorem 1 and Theorem 2 can be found in Appendix A. The proofs of our remaining
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theorems and proofs of technical lemmas are discussed in the Online Appendix.

1.1 Background and literature

To put our work in context, it is useful to contrast our framework with the standard

approach in public finance and optimal tax theory, and with the frameworks considered

in machine learning and the multi-armed bandit literature.

Optimal taxation Optimal tax theory, and optimal policy theory more generally, is

concerned with the maximization of social welfare, where social welfare is understood

as a (weighted) sum of subjective utility across individuals (Ramsey, 1927; Mirrlees,

1971; Baily, 1978; Saez, 2001; Chetty, 2009). A key tradeo↵ in such models is between,

first, redistribution to those with higher welfare weights, and second, the e�ciency cost

of behavioral responses to tax increases. Such behavioral responses might reduce the

tax base.

Optimal tax problems are defined by normative parameters (such as welfare weights

for di↵erent individuals), as well as empirical parameters (such as the elasticity of the

tax base with respect to tax rates). The typical approach in public finance uses historical

or experimental variation to estimate the relevant empirical parameters (causal e↵ects,

elasticities). These estimated parameters are then plugged into formulas for optimal

policy choice, which are derived from theoretical models. The implied optimal policies

are finally implemented, without further experimental variation.

Multi-armed bandits The standard approach of public finance, which separates

elasticity estimation from policy choice, contrasts with the adaptive approach that

characterizes decision-making in many branches of AI, including online learning, multi-

armed bandits, and reinforcement learning. Multi-armed bandit algorithms, in partic-

ular, trade o↵ exploration and exploitation over time (Bubeck and Cesa-Bianchi, 2012;

Slivkins, 2019; Lattimore and Szepesvári, 2020). Exploration here refers to the acqui-

sition of information for better future policy decisions, while exploitation refers to the

use of currently available information for optimal policy decisions at the present mo-

ment. The goal of bandit algorithms is to maximize a stream of rewards, which requires

an optimal balance between exploration and exploitation. Bandit algorithms for the

stochastic setting are characterized by optimism in the face of uncertainty: Policies

with uncertain payo↵ should be tried until their expected payo↵ is clearly suboptimal.
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Bandit algorithms (and similarly, adaptive experimental designs for informing policy

choice, as in Russo 2020; Kasy and Sautmann 2021) are not directly applicable to social

welfare maximization problems, such as those of optimal tax theory. The reason is that

bandit algorithms maximize a stream of observed rewards. By contrast, social welfare

as conceived in welfare economics is based on unobserved subjective utility.

Adversarial decision-making Adversarial models for sequential decision-making

find their roots in repeated game theory (Hannan, 1957), while related settings were

independently studied in information theory (Cover, 1965) and computer science (Vovk,

1990; Littlestone and Warmuth, 1994; Cesa-Bianchi et al., 1997). Regret minimization,

also in a bandit setting, was investigated as a tool to prove convergence of uncoupled

dynamics to equilibria in N -person games (Hart and Mas-Colell, 2000, 2001) – the

exponential weighting scheme used by Exp3 is also known as smooth fictitious play

in the game-theoretic literature (Fudenberg and Levine, 1995). Recent works (Seldin

and Slivkins, 2014; Zimmert and Seldin, 2021) show that simple variants of Exp3 si-

multaneously achieve essentially optimal regret bounds in adversarial, stochastic, and

contaminated settings, without prior knowledge of the actual regime. This suggests

that algorithms designed for adversarial environments can behave well in more benign

settings, whereas the opposite is provably not true.

Bandit approaches for economic problems Bandit-type approaches have been

applied to a number of other economic and financial scenarios in the literature where

rewards are observable. These include monopoly pricing (Kleinberg and Leighton, 2003)

(see also the survey den Boer 2015), second-price auctions (Cesa-Bianchi et al., 2015;

Weed et al., 2016; Cesa-Bianchi et al., 2017), first-price auctions (Han et al., 2020b,a;

Achddou et al., 2021; Cesa-Bianchi et al., 2024b)—see also (Kolumbus and Nisan, 2022;

Feng et al., 2018, 2021), and combinatorial auctions (Daskalakis and Syrgkanis, 2022).

Bandit-type approaches have also been applied to some settings where rewards are not

directly observable, including bilateral trading Cesa-Bianchi et al. (2021, 2023, 2024a),

and the newsvendor problem (Lugosi et al., 2023).

Bandit algorithms are widely used in online advertising and recommendation. On-

line learning methods are successfully used for tuning the bids made by autobidders (a

service provided by advertising platforms) (Lucier et al., 2024). While these algorithms

are analyzed in adversarial environments, the extent to which they are deployed in

commercial products remains unclear.
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2 Setup

At each time i = 1, 2, . . . , T , one individual arrives who is characterized by an unknown

willingness to pay vi 2 [0, 1]. This individual is exposed to a tax rate xi, and makes

a binary decision yi = 1(xi  vi). The implied public revenue is xi · yi. The implied

private welfare is max(vi � xi, 0). We define social welfare as a weighted sum of public

revenue and private welfare, with a weight � 2 (0, 1) for the latter. Social welfare for

time period i is therefore given by

Ui(xi) = xi · 1(xi  vi)| {z }
Public revenue

+ � ·max(vi � xi, 0)| {z }
Private welfare

. (1)

After period i, we observe yi and the tax rate xi, but nothing else. In particular, we do

not observe welfare Ui(xi).

We can rewrite social welfare Ui(x) as follows. Denote Gi(x) = 1(vi � x), so that

yi = Gi(xi). This is the individual demand function. Then private welfare can be

written as max(vi � x, 0) =
R 1

x
Gi(x0)dx0

. That is, private welfare is given by integrated

demand.1 This representation of private welfare implies

Ui(x) = x ·Gi(x)| {z }
Public revenue

+ � ·

Z 1

x

Gi(x
0)dx0

| {z }
Private welfare

. (2)

We consider algorithms for the choice of xi which might depend on the observable

history (xj, yj)
i�1
j=1, as well as possibly a randomization device.

Notation For the adversarial setting, we will consider cumulative demand and wel-

fare, denoted by blackboard bold letters, summing across j = 1, . . . , i. In particular,

Gi(x) =
X

ji

Gi(x), Ui(x) =
X

ji

Ui(x), Ui =
X

ji

Uj(xj).

Gi(x) and Ui(x) are cumulative demand and welfare for a counterfactual, fixed policy x.

Ui, without an argument, is the cumulative welfare for the policies xj actually chosen.

For the stochastic setting, we will analogously consider expected demand and ex-

pected welfare, denoted by boldface letters. The expectation is taken across some

1This reflects the absence of income e↵ects in our model, which implies that private utility, consumer
surplus, compensating variation, and equivalent variation all coincide.
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stationary distribution µ of vi, where vi is statistically independent of xi, and of vj for

j 6= i. In particular,

G(x) = E[Gi(x)], U (x) = E[Ui(x)].

2.1 Regret

The adversarial case Following the literature, we consider regret for both the ad-

versarial and the stochastic setting. In the adversarial setting, we allow for arbitrary

sequences of willingness to pay, {vi}Ti=1. We compare the expected performance of any

given algorithm for choosing {xi}
T

i=1 to the performance of the best possible constant

policy x. This comparison yields cumulative expected regret, which is given by

RT ({vi}
T

i=1) = sup
x

E

h
UT (x)� UT

���{vi}Ti=1

i
. (3)

The expectation in this expression is taken over any possible randomness in the tax

rates xi chosen by the algorithm; there is no other source of randomness.

The stochastic case We also consider the stochastic setting. In this setting, we add

structure by assuming that the vi are i.i.d. draws from some distribution µ on [0, 1],

with implied demand function G(x) = P (vi � x). This demand function is identified

by the regression

G(x) = E[yi|xi = x].

The expectation in this expression is taken over the distribution of vi, which is presumed

to be statistically independent of the tax rate xi. Expected welfare for this distribution

of vi is given by

U (x) = x ·G(x) + �

Z 1

x

G(x0)dx0
.

Cumulative expected regret in the stochastic case equals

RT (G) = sup
x

E [UT (x)� UT ] = T · sup
x

U (x)� E

"
X

iT

U (xi)

#
. (4)

The expectation in this expression is taken over both any possible randomness in the

tax rates xi, and the i.i.d. draws vi.

9



2.2 Comparison to related learning problems

Before proceeding with our analysis of regret, we take a step back, and compare our

learning problem to two related problems that have received some attention in the

literature. The first of these is the adaptive monopoly pricing problem; see for

instance Kleinberg and Leighton (2003). This problem is equivalent to our setting

when we set � = 0, interpret x as a price, and U
MP
i

as monopolist profits (neglecting

production costs):

U
MP
i

(x) = xi · 1(xi  vi) = x ·Gi(x).| {z }
Monopolist revenue

(5)

As in our adaptive taxation setting, the feedback received at the end of period i is

yi = Gi(xi) = 1(xi  vi).

Another related problem is price setting for bilateral trade, see for instance Cesa-

Bianchi et al. (2024a). In this problem, welfare U
BT
i

(x) is given by the sum of seller

and buyer welfare. Trade happens if and only if both sides agree to transact at the

proposed price. Buyer willingness to pay is given by v
b

i
, while the seller is willing to

trade at prices above v
s

i
.

U
BT
i

(x) = 1(vb
i
� x) ·max(x� v

s

i
, 0) + 1(vs

i
 x) ·max(vb

i
� x, 0)

= G
b

i
(x) ·

Z
x

0

G
s

i
(x0)dx0

| {z }
Seller welfare

+ G
s

i
(x) ·

Z 1

x

G
b

i
(x0)dx0

| {z }
Buyer welfare

. (6)

Feedback in this case is a little richer: We observe both whether the buyer b would have

accepted the posted price, and whether the seller would have accepted this price,

y
b

i
= G

b

i
(xi) = 1(xi  v

b

i
) and y

s

i
= G

s

i
(xi) = 1(xi � v

s

i
).

Lipschitzness and information requirements The di�culty of the learning prob-

lem in each of these models critically depends on (i) the Lipschitz properties of the

welfare function, and (ii) the information required to evaluate welfare at a point.

We say that a generic welfare function W : [0, 1] ! R is one-sided Lipschitz if

W (x+ ")  W (x) + " for all 0  x  1 and all 0  "  1� x. One-sided Lipschitzness
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Table 1: Regret rates for di↵erent learning problems

Model Policy space Objective function
Discrete Continuous Pointwise One-sided Lipschitz

Monopoly price setting T
1/2

T
2/3 Yes Yes

Optimal taxation T
2/3

T
2/3 No Yes

Bilateral trade T
2/3

T No No

Notes: This table shows the e�cient rates of regret for di↵erent learning problems. Rates are up to
logarithmic terms, and apply to both the stochastic and the adversarial setting. Regret rates are shown
for the discrete case, where the space of policies x is restricted to a finite set, and the continuous case,
where x can take any value in [0, 1]. The columns on the right describe the properties of the objective
function in each problem, which drive the di↵erences in regret rates.
Rates for the optimal taxation case are proven in this paper. Rates for the continuous monopoly
price setting case are from Kleinberg and Leighton (2003); the discrete case reduces to a standard
bandit problem. Rates for the continuous bilateral trade case are from Cesa-Bianchi et al. (2024a);
the discrete case can be deduced by adapting the arguments in the same paper (for the stochastic i.i.d.
case with independent sellers’ and buyers’ valuations), or by adapting the techniques in Cesa-Bianchi
et al. (2023) (for the adversarial case, allowing the learner to use weakly budget balanced mechanisms).

allows us to bound the approximation error of a learning algorithm operating on a

finite subset of the set of policies. One-sided Lipschitzness is an intrinsic property of

both the monopoly pricing and the optimal taxation problem; it is not an assumption

that is additionally imposed. To see this for monopoly pricing, note that, for ✏ � 0,

U
MP
i

(x+") = (x+") ·1(x+"  vi)  x ·1(x  vi)+" = U
MP
i

(x)+". For social welfare,

Ui(x) = (xi+")·1(xi+"  vi)+�·max(vi�xi�", 0)  x·1(x  vi)+"+�·max(vi�xi, 0) =

Ui(x) + ".

We say that learning W (·) requires only pointwise information if W (x) is a function

of G(x), and does not depend on G(·) otherwise. Pointwise information allows us to

avoid exploring policies that are clearly suboptimal, when we aim to learn the optimal

policy.

Table 1 summarizes the Lipschitz properties and information requirements in each

of the three models; the following justifies the claims made in Table 1:

1. For monopoly pricing, welfare UMP
i

(x) is one-sided Lipschitz and only depends

on Gi(x) pointwise.

2. For optimal taxation, welfare Ui(x) is one-sided Lipschitz and depends on both

Gi(x) at the given x (pointwise), and on an integral of Gi(x0) for a range of values

of x0 (non-pointwise).
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3. For bilateral trade, welfare U
BT
i

(x) is not one-sided Lipschitz and depends on

both G
b

i
(x) and G

s

i
(x) (pointwise), as well as the integrals of Gb

i
(x0) and G

s

i
(x0)

(non-pointwise).

These properties suggest a ranking in terms of the di�culty of the corresponding learn-

ing problems, and in particular in terms of the rates of divergence of cumulative regret:

The information requirements of optimal taxation are stronger than those of monopoly

pricing, but its continuity properties are more favorable than those of bilateral trade.

This intuition is correct, as shown by Table 1. The rates for monopoly pricing and for

bilateral trade are known (or can be easily adapted) from the literature. In this paper

we prove corresponding rates for optimal taxation.

In comparing optimal taxation and monopoly pricing to conventional multi-armed

bandits, it is worth emphasizing that there are two distinct reasons for the slower rate of

convergence. First, the continuous support of x, as opposed to a finite number of arms,

which is shared by optimal taxation and monopoly pricing. Second, the requirement of

additional exploration of sub-optimal policies for the optimal tax problem. As shown

in Table 1, the continuous support alone is enough to slow down convergence, with

no extra penalty for the additional exploration requirement, in terms of rates. If,

however, we restrict our attention to a discrete set of feasible policies x, then monopoly

pricing reduces to a multi-armed bandit problem, with a minimax regret rate of T 1/2.

The optimal tax problem, by contrast, still has a rate of T 2/3, even if we restrict our

attention to the case of finite known support for v and x, as shown by the proof of

Theorem 1 below.

Hannan consistency The cumulative regret of any non-adaptive algorithm neces-

sarily grows at a rate of T . This includes, in particular, randomized experiments where

the policy is chosen uniformly at random, from a fixed policy set, in every period. Al-

gorithms for which adversarial regret (and thus also stochastic regret) grows at a rate

less than T , so that per-period regret goes to 0 as T increases, are known as Hannan

consistent. Non-adaptive algorithms are not Hannan consistent. Table 1 implies that

Hannan consistent algorithms exist in all settings considered, with the exception of

Bilateral trade and continuous policy spaces.
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3 Stochastic and adversarial regret bounds

We now turn to our main theoretical results, lower and upper bounds on stochastic and

adversarial regret for the problem of social welfare maximization. We first prove a lower

bound on stochastic regret, which applies to any algorithm, and which immediately

implies a lower bound on adversarial regret. We then introduce the algorithm Tempered

Exp3 for Social Welfare. We show that, for an appropriate choice of tuning parameters,

this algorithm achieves the rates of the lower bound on regret, up to a logarithmic term.

Formal proofs of these bounds can be found in Appendix A.

3.1 Lower bound

Theorem 1 (Lower bound on regret). Consider the setup of Section 2. There exists

a constant C > 0 such that, for any randomized algorithm for the choice of x1, x2, . . .

and any time horizon T 2 N, the following holds.

1. There exists a distribution µ on [0, 1] with associated demand function G for which

the stochastic cumulative expected regret RT (G) is at least C · T
2/3.

2. There exists a sequence (v1, . . . , vT ) for which the adversarial cumulative expected

regret RT ({vi}Ti=1) is at least C · T
2/3.

The proof of Theorem 1 can be found in Appendix A. The adversarial lower bound

follows immediately from the stochastic lower bound, since worst case regret (over

possible sequences of vi) is bounded below by average regret (over i.i.d. draws of vi),

for any distribution of vi.

Sketch of proof To prove the stochastic lower bound we construct a family of dis-

tributions {µ
✏
}✏2[�1,1] for vi, indexed by a parameter ✏ 2 [�1, 1]. The distributions in

this family have four points of support, (1/4, 1/2, 3/4, 1). The probability of these points

is given by

(a, (1 + ✏)b, (1� ✏)b, 1� a� 2b) .

The values of a and b are chosen such that (i) the two middle points 1/2, 3/4 are far

from optimal, for any value of ✏, and (ii) learning which of the two end points (1/4, 1) is

optimal requires sampling from the middle.2 For each ✏ 2 [�1, 1], denote the demand

2Specifically, a := (1��)·(136�99·�)
2·(4�3·�)·(24�17·�) , and b := 1��

2·(24�17·�) . These two constants are strictly greater
than zero, and satisfy 1� a� 2 · b > 0.
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Figure 1: Construction for proving the lower bound on regret

Notes: This figure illustrates our construction for proving the lower bound on regret. The relative
social welfare of policies 1 and .25 depends on the sign of ✏. The bright line corresponds to ✏ = �1,
the dark, dashed line to ✏ = 1. In order to distinguish between these two, we must learn demand in
the intermediate interval [.5, .75].

function associated to µ
✏ by G✏, and the expected social welfare associated to G✏ by

U ✏. Property (ii) holds because of the integral term
R 1
1
4
G✏(x0)dx0, which shows up in

U ✏(1)�U ✏(1/4). This construction is illustrated in Figure 1. This figure shows plots of

G✏ and of U ✏ for � = .95 and ✏ 2 {±1}.

The di↵erence in welfare U ✏(1)�U ✏(1/4) of the two candidates optimal policies 1/4

and 1 depends on the sign of ✏. In order not to su↵er expected regret that grows as

|✏| ·T , any learning algorithm needs to sample policies from points that are informative

about the sign of ✏. The only points that are informative are those in the region (1/2, 3/4],

where welfare is bounded away from optimal welfare.

More specifically, the learning algorithm has to sample on the order of |✏|�2 times

from the region (1/2, 3/4], to be able to detect the sign of ✏, incurring regret on the order

of |✏|�2 in the process. Any learning algorithm therefore incurs regret on the order of

min
�
|✏|

�2
, |✏| · T

�
, which, for ✏ / T

�1/3), leads to the conclusion.

3.2 An algorithm that achieves the lower bound

We next introduce Algorithm 1, which allows us to essentially achieve the lower

bound on regret, in terms of rates.
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Algorithm 1 Tempered Exp3 for Social Welfare
Require: Tuning parameters K, � and ⌘.
1: Calculate evenly spaced grid-points x̃k = (k � 1)/K,

and initialize bG1k = 0 and bU1k = 0 for k = 1, . . . , K + 1.
2: for individual i = 1, 2, . . . , T do
3: For all k = 1, 2, . . . , K + 1, set {Assignment probabilities}

pik = (1� �) ·
exp(⌘ · bUik)P
k0 exp(⌘ ·

bUik0)
+

�

K + 1
. (7)

4: Choose ki at random according to the probability distribution (pi,1, . . . , pi,K+1).
Set xi = x̃ki , and query yi accordingly.

5: For all k = 1, 2, . . . , K + 1, set {Estimated demand}

bGi+1,k = bGi,k + yi ·
1(ki = k)

pik
. (8)

6: For all k = 1, 2, . . . , K + 1, set {Estimated welfare}

bUi+1,k = x̃k ·
bGi+1,k +

�

K
·

X

k0>k

bGi+1,k0 . (9)

7: end for

Conventional Exp3 Algorithm 1 is a modification of the Exp3 algorithm. Conven-

tional Exp3 (Auer et al., 2002b) is designed to maximize the standard bandit objective,
P

iT
yi. Exp3 maintains an unbiased running estimate of the cumulative payo↵ of each

arm k, calculated using inverse probability weighting, bGi,k =
P

j<i
yi ·

1(ki=k)
pik

. In period

i, arm k is chosen with probability pik = (1��) · exp(⌘·bGik)P
k0 exp(⌘·bGik0 )

+ �

K+1 , where ⌘ and � are

tuning parameters. pik is thus increasing in the estimated average performance
bGi,k

i
of

arm k in prior periods. Because bGi,k is not normalized by the number of time periods k,

more weight is given to the best-performing arms over time, as estimation uncertainty

for average performance decreases. In both these aspects, Exp3 is similar to the pop-

ular Upper Confidence Bound algorithm (UCB) for stochastic bandit problems (Lai,

1987; Agrawal, 1995; Auer et al., 2002a). In contrast to UCB, Exp3 is a randomized

algorithm. Randomization is required for adversarial performance guarantees. This is

analogous to the necessity of mixed strategies in Nash equilibrium for zero-sum games.
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Modifications relative to conventional Exp3 Relative to this algorithm, we re-

quire three modifications. First, we discretize the continuous support [0, 1] of x, re-

stricting attention to the grid of policy values x̃k = (k � 1)/K. Second, since welfare

Ui(x) is not directly observed for the chosen policy x, we need to estimate it indi-

rectly. In particular, we first form an estimate bGik of cumulative demand for each of

the policy values x̃k, using inverse probability weighting. We then use this estimated

demand, interpolated using a step-function, to form estimates of cumulative social wel-

fare, bUik = x̃k ·
bGik +

�

K
·
P

k0>k
bGik0 . Third, we require additional exploration, relative

to Exp3. Since social welfare depends on demand for counterfactual policy choices, we

need to explore policies that are away from the optimum, in order to learn the relative

welfare of approximately optimal policy choices. The mixing weight �, which deter-

mines the share of policies sampled from the uniform distribution, needs to be larger

relative to conventional Exp3, to ensure su�cient exploration away from the optimum.

Theorem 2 (Adversarial upper bound on regret of Tempered Exp3 for Social Welfare).

Consider the setup of Section 2, and Algorithm 1. Assume that (K + 1)⌘ < �.

Then for any sequence (v1, . . . , vT ) expected regret RT ({vi}Ti=1) is bounded above by

⇣
� + ⌘ · (e� 2)K+1

K
·

⇣
2K+1

6 + �
2

�

⌘
+ �

K

⌘
· T + log(K+1)

⌘
. (10)

Suppose additionally that c1, c2, c3 > 0 are constants. Then, there exists a constant c4

such that, if we set � = c1 ·

⇣
log(T )

T

⌘1/3

, ⌘ = c2 · �
2, and K = bc3/�c, the expected regret

RT ({vi}Ti=1) is bounded above by

c4 · log(T )
1/3

T
2/3

. (11)

Corollary 1 (Stochastic upper bound on regret of Tempered Exp3 for Social Welfare).

Under the assumptions of Theorem 2, suppose additionally that vi is drawn i.i.d. from

some distribution with associated demand function G. Then expected regret RT (G) is

bounded above by the same expressions as in Theorem 2.

The proof of Theorem 2 can again be found in Appendix A.

Tuning The statement of the theorem leaves the constants c1, c2, c3 in the definition

of the tuning parameters unspecified. Suppose we wish to choose the tuning parameters

so as to optimize the upper bound obtained in Theorem 2. Ignoring the rounding of
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K, an approximate solution to this problem is given by

⌘ = 1/a · (log(T )/T )2/3

� = �

p
(e� 2)/a · (log(T )/T )1/3

K =
p

3�a/(e� 2) · (T/ log(T ))1/3

where

a = (9(e� 2))1/3 (
p
�/3 + �)2/3.

This solution is obtained by taking the upper bound in Equation (10), approximating

(K + 1)/K ⇡ 1 and (2K + 1)/6 ⇡ K/3, and solving the first order conditions with

respect to the three tuning parameters. This approximation, and the tuning parameters

specified above, yield an approximate upper bound on regret of 6 · log(T )1/3T 2/3.

Unknown time horizon Note that the proposed tuning depends crucially on knowl-

edge of the time horizon T at which regret is to be evaluated. In order to extend our

rate results to the case of unknown time horizons, we can use the so-called doubling

trick; cf. Section 2.3 of Cesa-Bianchi and Lugosi (2006): Consider a sequence of epochs

(intervals of time-periods) of exponentially increasing length, and re-run Algorithm 1

for each time-period separately, tuning the parameters over the current epoch length.

This construction converts Algorithm 1 into an “anytime algorithm” which enjoys the

same regret guarantees of Theorem 2, up to a multiplicative constant factor. Another

more e�cient strategy to achieve the same goal is to modify Algorithm 1, allowing the

parameters ⌘ and � to change at each iteration, and splitting each bin associated with

the discretization parameter K whenever more precision is required.

The extra log(T )1/3 term There is a rate discrepancy between our our upper and

lower bounds on regret, corresponding to the log(T )1/3 term in our upper bound. We

conjecture the existence of an alternative algorithm that can eliminate this extra log-

arithmic term, albeit at the cost of reduced computational e�ciency and a less trans-

parent theoretical analysis. Our conjecture is based on known results for the standard

multi-armed bandit problem with K arms. The Exp3 algorithm achieves an upper

bound of order
p

K log(K)T for this problem, which includes an extra logarithmic

term compared to the known lower bound of order
p
KT . Exp3 is an instance of the

Follow-The-Regularized-Leader (FTRL) algorithm with importance weighting and the
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Figure 2: Tempered Exp3 for Social Welfare– Numerical example

Notes: This figure illustrates the performance of our algorithm for the stochastic case, where vi is
drawn uniformly at random from [0, 1] for all i, the weight � equals .7, and the tuning parameters
are K = 20, ⌘ = .025, � = .1. The left plot shows the cumulative average regret of our algorithm,
averaged across 4000 simulations. The right plot shows expected social welfare U(x) as a function of
the policy x.

negative entropy as the regularizer. It is known that using the 1
2 -Tsallis entropy as the

regularizer in the FTRL algorithm with importance weighting results in regret guaran-

tees of order
p
KT for the bandit problem (Lattimore and Szepesvári, 2020). However,

unlike Exp3, the FTRL with Tsallis entropy involves a more complex proof and requires

solving an optimization problem in each period. Analogous statements might be true

for our setting.

Numerical example For illustration, Figure 2 plots the cumulative average regret

of Tempered Exp3 for Social Welfare for the case where vi is sampled uniformly at

random from [0, 1] each time period. Initially, the performance of our algorithm is, by

construction, equal to the performance of choosing a policy uniformly at random. Over

time, however, the average regret of our algorithm drops by more than half, in this

numerical example. Note that the rate at which cumulative regret declines in Figure 2

(for i.i.d. sampling from a fixed distribution) is unrelated to the regret rate of Theorem

2 (for the worst case sequence of vi, for each time horizon T ).
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4 Stochastic regret bounds for concave social wel-

fare

Theorem 1 in Section 3 provides a lower bound proportional to T
2/3 for adversarial

and stochastic regret in social welfare maximization. The proof of this lower bound

constructs a distribution for the vi. This distribution is such that expected social

welfare U (x) is non-concave, as a function of x; two global optima are separated by

a region of lower welfare. In order to learn which of two candidates for the globally

optimal policy is actually optimal, it is necessary to sample policies in between. These

intermediate policies yield lower welfare, and sampling them contributes to cumulative

regret. This construction is illustrated in Figure 1.

Given that the construction relies on non-concavity of expected social welfare, could

we achieve lower regret if we knew that social welfare is actually concave? The answer

turns out to be yes, for the stochastic setting (in the adversarial setting, cumulative

welfare is necessarily non-concave). One reason is that concavity ensures that the

function is unimodal. To estimate the di↵erence in social welfare between two policies

it therefore su�ces to sample policies that lie in the interval between them. These

in-between policies yield social welfare exceeding the minimum of the two boundary

policies. A second reason is that concavity prevents unexpected spikes in social welfare.

This property allows us to test carefully chosen triples of points for extended periods,

to ensure that one of them is suboptimal, without incurring significant regret.

For the stochastic setting with concave social welfare, we present an algorithm that

achieves a bound on regret of order T
1/2, up to logarithmic terms. Before describing

our proposed algorithm, Dyadic Search for Social Welfare, let us formally state the

improved regret bounds. The proofs of these lower and upper bounds can be found in

Online Appendix B.

Theorem 3 (Lower bound on regret for the concave case). Consider the setup of

Section 2. There exists a constant C > 0 such that, for any randomized algorithm for

the choice of x1, x2, . . . and any time horizon T 2 N, the following holds:

There exists a distribution µ on [0, 1] with associated demand function G and con-

cave social welfare function U , for which the stochastic cumulative expected regret

RT (G) is at least C · T
1/2.

Theorem 4 (Stochastic upper bound on regret of Dyadic Search for Social Welfare).

Consider the stochastic setup of Section 2 and time horizon T 2 N. If Algorithm 2 is
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Algorithm 2 Dyadic Search for Social Welfare
Require: A confidence parameter � 2 (0, 1).
1: I1 = [0, 1], t0 = 0, k = 0
2: for epochs ⌧ = 1, 2, . . . do
3: Let c = (sup I⌧ + inf I⌧ )/2, and d = sup I⌧ � inf I⌧ . {Subinterval for sampling}
4: if ⌧ is odd then
5: Let l = c�

1
4d, r = c+ 1

4d.
6: else
7: Let l = c�

1
6d, r = c+ 1

6d.
8: end if
9: for t = t⌧�1 + 1, t⌧�1 + 2, . . . do

10: Select w 2 argmax
w02{l,c,r,(l,c),(c,r)} �t�1(w0), {Sampling}

breaking ties following the order l, c, r, (l, c), (c, r)
11: if w 2 {l, c, r} then
12: Set xt = w.
13: else
14: Set xt = w1+(w2�w1) ·

k+1/2

nt�1(w1,w2)+1 , and k = (k+1) mod nt�1(w1, w2)+1.
15: end if
16: Calculate Jt(l, c), Jt(c, r), and Jt(l, r), as in Equations (15) and (16).

{Inference}
17: if inf

�
Jt(l, c)

�
� 0 or inf

�
Jt(l, r)

�
� 0 then

18: let I⌧+1 = I⌧ \ [l, 1] and t⌧ = t and break {Shrinking the active interval}
19: else if sup

�
Jt(c, r)

�
 0 or sup

�
Jt(l, r)

�
 0 then

20: let I⌧+1 = I⌧ \ [0, r] and t⌧ = t and break
21: end if
22: end for
23: end for

run with confidence parameter � = 1
T 5/2 , and if the social welfare function U is concave,

then, the expected regret RT (G) is of order at most T 1/2, up to logarithmic terms.

Dyadic search Our algorithm is based on a modification of dyadic search, as dis-

cussed in (Bachoc et al., 2022a,b). At any point in time, this algorithm maintains an

active interval I⌧ , which contains the optimal policy with high probability. Only policies

within this interval are sampled going forward. As evidence accumulates, this interval

is trimmed down, by excluding policies that are sub-optimal with high probability.

The algorithm proceeds in epochs ⌧ . At the start of each epoch, a sub-interval

[l, r] ⇢ I⌧ is formed, with mid-point c = (l+r)/2. The points l, c, r are in a dyadic grid,

that is, they are of the form k/2m. After sampling from [l, r], we calculate confidence
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intervals Jt(l, c), Jt(c, r), and Jt(l, r) for the welfare di↵erences �(l, c), �(c, r), and

�(l, r), where �(x, x0) = U (x0)�U (x).

If the confidence interval Jt(l, c) or Jt(l, r) lies above 0, concavity implies that the

optimal policy cannot lie to the left of l; we can thus trim the active interval I⌧ by

dropping all points to the left of l. Symmetrically, if the confidence interval Jt(c, r) or

Jt(l, r) lies below 0, we can trim I⌧ by dropping all points to the right of r.

Confidence intervals for welfare di↵erences This procedure requires the con-

struction of confidence intervals for welfare di↵erences of the form

�(x, x0) = U (x0)�U (x) = x
0
·G(x0)� x ·G(x)� �

Z
x
0

x

G(x00)dx00
. (12)

At time t, we estimate demand G(x), for policies x chosen in previous periods, as3

bGt(x) =
1

nt(x)

X

it

yi · 1(xi = x), nt(x) =
X

it

1(xi = x).

We similarly estimate integrated demand
R

x
0

x
G(x00)dx00 by (x0

� x) times the average

of realized demand yi for observations xi in the open interval (x, x0). We have to be

careful, however, to use a sample of xi that is (approximately) uniformly distributed

over this interval. This can be achieved for our dyadic search procedure, as specified in

Algorithm 2, by truncating the time index used to estimate this average.4 Let

s(x, x0
, t) = max

(
s  t : log2

 
1 +

X

is

1(xi 2 (x, x0))

!
2 N

)
.

We define

bGt(x, x
0) =

1

nt(x, x0) + 1

X

is(x,x0,t)

yi · 1(xi 2 (x, x0)), nt(x, x
0) =

X

is(x,x0,t)

1(xi 2 (x, x0)).

At each round, Algorithm 2 maintains estimates for welfare di↵erences among three

points l, c, r (for left, center and right, respectively). The estimate of the welfare dif-

3We use the convention 0/0 = 0 and a/0 = +1 whenever a > 0. Furthermore, every summation
over an empty set of indices is understood to have value 0.

4The sampling procedure in Algorithm 2 samples sequentially from the dyadic grid in the active
interval, refining the grid in subsequent iterations. s(x, x0, t) provides a truncation of the time index
such that one round of such dyadic sampling has been completed.
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ference between x
0 = c and x = l (or between x

0 = r and x = c) is given by

b�t(x, x
0) = x

0
· bGt(x

0)� x · bGt(x)� � · (x0
� x) · bGt(x, x

0). (13)

while the estimate of the welfare di↵erence between r and l is given by

b�t(l, r) = b�t(l, c) + b�t(c, r). (14)

To construct confidence intervals for �(x, x0), we also need to quantify the uncertainty

of our demand estimates. We use the following interval half-lengths for confidence

intervals for tax revenue at x, and for the private welfare di↵erence between x
0 and x:

�t(x) = x ·

q
1

2nt(x)
log

�
2
�

�
, �t(x, x

0) = � · (x0
� x) ·

 r
1

2
�
nt(x,x0)+1

� log
�
2
�

�
+ 2

nt(x,x0)+1

!
.

Using the shorthand a ± b = [a � b, a + b], our confidence interval for �(x, x0), where

x
0 = c and x = l (or x0 = r and x = c) is given by

Jt(x, x
0) = b�t(x, x

0)± (�t(x
0) + �t(x) + �t(x, x

0)) , (15)

while our confidence interval for �(l, r) is given by

Jt(l, r) = b�t(l, r)± (�t(r) + �t(l) + �t(l, c) + �t(c, r)) . (16)

With these preliminaries, we are now ready to state our algorithm, Dyadic Search for

Social Welfare, in Algorithm 2.

Before concluding this section, we highlight two features of Algorithm 2. First,

two of the three points l, c, r, and the corresponding estimates of demand, are kept

from each epoch to the next. Second, estimation of the integral term is performed by

querying points following a fixed and balanced design on the dyadic grid – instead of,

for example, using a randomized Monte Carlo procedure which may lead to unbalanced

exploration. This implies that the points queried to estimate the integral terms can

be easily reused to obtain other integral estimates from each epoch to the next. These

two features combined ensure that Algorithm 2 recycles information very e�ciently to

prune the active interval as quickly as possible, which leads to better regret.
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5 Income taxation

We discuss two extensions of the baseline model of optimal taxation that we introduced

in Section 2. These extensions incorporate features that are important in more realistic

models of optimal taxation. For both of these extensions, we propose a properly modi-

fied version of Algorithm 1. The first extension, discussed in this section, is a variant of

the Mirrlees model of optimal income taxation (Mirrlees, 1971; Saez, 2001, 2002). The

second extension, discussed in Section 6 is a variant of the Ramsey model of commodity

taxation (Ramsey, 1927).

Our model of income taxation generalizes our baseline model by allowing for het-

erogeneous wages wi, welfare weights !(wi), extensive-margin labor supply responses

determined by the cost of participation vi, and non-linear income taxes xi = x(wi).

Two simplifications are maintained in this model, relative to a more general model of

income taxation. First, only extensive margin responses (participation decisions) by

individuals are allowed; there are no intensive margin responses (hours adjustments).

Second, as in the baseline model of Section 2, there are no income e↵ects. In imposing

these assumptions, our model mirrors the model of optimal income taxation discussed

in Section II.2 of Saez (2002).

Setup At each time i = 1, 2, . . . , T , one individual arrives who is characterized by

(i) a potential wage wi 2 [0, 1], and (ii) an unknown cost of participation vi 2 [0, 1].

This individual makes a binary labor supply decision yi. If they participate in the labor

market (yi = 1), they earn wi, but pay a tax according to the tax rate xi = x(wi) on

their earnings wi. They furthermore incur a non-monetary cost of participation vi.

Their optimal labor supply decision is therefore given by yi = 1(vi  wi · (1� xi)),

and private welfare equals max(wi · (1�xi)�vi, 0). The implied public revenue is equal

to the tax on earnings xi · wi if yi = 1, and 0 otherwise.

We define social welfare as a weighted sum of public revenue and private welfare,

with a weight !(wi) for the latter. Typically, ! is a decreasing function of w, reflecting

a preference for redistribution towards those with lower earnings potential, cf. Saez and

Stantcheva (2016). Social welfare for time period i, as a function of the tax schedule

x(·), is therefore given by

Ui(x(·)) = x(wi) · wi · 1(vi  wi · (1� x(wi)))| {z }
Public revenue

+ !(wi)·max(wi · (1� x(wi))� vi, 0)| {z }
Private welfare

.

(17)
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After period i, we observe yi and the tax schedule xi(·). If yi = 1, we also observe wi.

Nothing else is observed.5

Piecewise constant tax schedules We next construct a generalization of Algorithm

1 based on piecewise constant tax schedules, with tax rates changing at the grid-points

W , where 0 2 W ⇢ [0, 1]. Formally, define bwc = max{w0
2 W : w

0
 w}, rounding

the wage w down to the nearest grid-point in W ,6 Denote H = |W|, and let

XW = {x(·) : 8w 2 [0, 1], x(w) = x(bwc)}.

For w 2 W and any x 2 [0, 1], denote

Gi(w, x) = wi · 1(vi  wi · (1� x)) · 1(bwic = w),

so that yi · wi = Gi(wi,xi(wi)). Gi(w, x) is the individual labor supply function, in

monetary units, interacted with an indicator for whether the wage wi falls into the tax

bracket starting at w. With this notation, we can rewrite

max(wi · (1� x)� vi, 0) =

Z 1

x

Gi(bwic , x
0)dx0

.

For piecewise constant tax rates x(·) we get

Ui(x(·)) =
X

w2W


x(w) ·Gi(w,x(w)) + !(wi) ·

Z 1

x(w)

Gi(w, x
0)dx0

�
. (18)

Cumulative social welfare is given by Ui =
P

ji
Ui(xi(·)), and we correspondingly

define cumulative expected regret, in the adversarial setting, as

RT = sup
x(·)2XW

E

h
UT (x(·))� UT

���{vi}Ti=1, {wi}
T

i=1

i
.

5It should be noted that in this model we take the transfer x0 for individuals without other income
as given. The e↵ective tax owed by an employed individual equals x(wi) ·wi�x0. The “unconditional
basic income” x0 does not a↵ect labor supply, given our assumption that there are no income e↵ects,
and it enters social welfare additively. It is therefore without loss of generality to omit x0 from our
model.

6Here we use slightly non-standard notation, where b·c denotes rounding down to the nearest grid-
point, rather than the nearest integer.
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The supremum here is taken over all tax schedules x(·) that are piecewise constant

between the gridpoints w 2 W .

Algorithm Algorithm 3 generalizes Algorithm 1 to this setting. As before, we form

an unbiased estimate bGi of Gi using inverse probability weighting, map this estimate

into a corresponding estimate bUi of Ui, based on Equation (18), and cumulate across

time periods to obtain bUi. Note that wi is observed whenever yi = 1. This implies that

the estimate bGi is in fact a function of observables, and the same holds for bUi.

Algorithm 3 keeps track of estimated demand and social welfare for each bin (“tax

bracket”), as defined by the gridpoints w 2 W . The algorithm then constructs a

distribution pi(x|w) over tax rates x 2 X given w, using the tempered Exp3 distribution.

The tax schedule x(·) is sampled according to these (marginal) distributions of tax

rates for each bracket. Though immaterial for the following theorem, we choose the

perfectly correlated coupling, across brackets, of these marginal distributions, which is

implemented using the random variable Ai in Algorithm 3.

Theorem 5 (Adversarial upper bound on regret of Tempered Exp3 for Optimal Income

Taxation). Consider the setup of Section 5, and Algorithm 3. Assume that (K+1)⌘ < �,

and that !(w)  1 for all w.

Then for any sequence (v1, . . . , vT ) expected regret RT ({vi}Ti=1) is bounded above by

⇣
� + ⌘ · (e� 2)K+1

K
·

⇣
2K+1

6 + 1
�

⌘
+ 1

K

⌘
· T + H log(K+1)

⌘
. (23)

Suppose additionally7 that K = c1 · (T/H)1/3, � = c2/(K + 1), and ⌘ = c3/(K + 1)2,

for some constants c1, c2, c3. Then expected regret RT ({vi}Ti=1) is bounded above by

c4 ·H
1/3

· log(T )1/3T 2/3
, (24)

for some constant c4.

6 Commodity taxation

In this section, we generalize our baseline model of optimal taxation to a model of com-

modity taxation with multiple goods j 2 {1, . . . , k} and continuous demand functions

7for simplicity, we assume that in the following tuning K is an integer. If not, round K to the
closest integer.
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Algorithm 3 Tempered Exp3 for Optimal Income Taxation
Require: Tuning parameters K, � and ⌘, and set of gridpoints W ⇢ [0, 1].
1: Calculate evenly spaced grid-points X = {0, 1

K
,

2
K
, . . . , 1}.

2: Initialize bG1(w, x) = 0 and bU1(w, x) = 0 for all w 2 X and all x 2 X .
3: for individual i = 1, 2, . . . , T do
4: For all x, w 2 X , set bwc = max{w0

2 W : w
0
 w}, and

{Assignment probabilities}

pi(x|w) = (1� �) ·
exp(⌘ · bUi(x, bwc))P

x02X exp(⌘ · bUi(x0, bwc))
+

�

K + 1
. (19)

5: Draw Ai ⇠ U [0, 1]. For all w 2 [0, 1], set

xi(w) = max

(
x 2 X :

X

x02X ,x0<x

pi(x
0
|w)  Ai

)
, (20)

and query yi accordingly.
6: For all w 2 W and x 2 X , set {Estimated labor supply}

bGi(x, w) = yi · wi ·
1(bwic = w,xi(wi) = x)

pi(x|w)
. (21)

7: For all w 2 W and x 2 X , set {Estimated welfare}

bUi+1(x, w) = bUi(x, w) + x · bGi(x, w) +
!(wi)

K
·

X

x02X ,x0>x

bGi(x
0
, w). (22)

8: end for

yi(x) 2 [0, 1]k, where x 2 [0, 1]k is a vector of tax rates. We again assume that there are

no income e↵ects. Our setup is a version of the classic Ramsey model (Ramsey, 1927).

We propose a generalization of Tempered Exp3 for Social Welfare to this setting. In

the following, we use hx, yi to denote the Euclidean inner product between x and y.

Setup At each time i = 1, 2, . . . , T , one individual arrives who is characterized by a

utility function ui : [0, 1]k ! R. This individual is exposed to a tax vector xi 2 [0, 1]k,

and makes a continuous consumption decision yi. Public revenue is given by hxi, yii.

Private utility is given by ui(yi) plus their consumption of a numeraire good, which has

price normalized to 1 and enters utility additively. The individual consumption choice

yi costs hxi + p, yi, where p is the (exogenously given) vector of pre-tax prices. This
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cost of purchasing yi reduces the consumption of the numeraire good. The optimal

individual decision is therefore given by

yi = Gi(xi) = argmax
y2[0,1]k

[ui(y)� hxi + p, yi] . (25)

The implied private welfare is

vi(x) = v0 + max
y2[0,1]k

[ui(y)� hx+ p, yi] ,

where we have added a constant v0, chosen such that vi(0) = 0; this is just a normal-

ization to simplify notation below.

We define social welfare as a weighted sum of public revenue and private welfare,

with a weight � for the latter. Social welfare for time period i, as a function of the tax

vector x, is therefore given by

Ui(xi) = hxi, yii| {z }
Public revenue

+ � · vi(xi)| {z }
Private welfare

. (26)

After period i, we observe yi and the tax vector xi. Nothing else is observed.

Mapping demand to welfare By the envelope theorem (Milgrom and Segal, 2002),

rxvi(x) = Gi(x).

Let V be the set of di↵erentiable functions v on [0, 1]k such that rxv 2 L
2, and such

that v(0) = 0. Consider the following operator, mapping the demand function G into

the corresponding indirect utility function v.

⇧(G(·)) 2 argmin
v(·)2V

Z

[0,1]k
krxv(x)�G(x)k2 dx (27)

We can think of the operator ⇧ as combining two operators. First, the function G is

projected on the subspace of functions on [0, 1]k which can be written as the gradient

of some function v. Second, the projected G is then integrated to get v(x) for any x.

Integration here is along some curve in [0, 1]k from 0 to x. Given the first projection,

the choice of curve does not matter for the resulting function v. A formal analysis of

Tempered Exp3 for Commodity Taxation would need to prove existence of the projec-
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Algorithm 4 Tempered Exp3 for Commodity Taxation
Require: Tuning parameters K, � and ⌘.
1: Calculate the set of evenly spaced grid-points X = {0, 1

K
, . . . , 1}k

and initialize bG1(x) = 0 for all grid points.
2: for individual i = 1, 2, . . . , T do
3: For all x 2 X , set {Estimated welfare}

bUi(x) = hxi,
bGii+ � · bvi(xi). (28)

4: For all x 2 X , set {Assignment probabilities}

pi = (1� �) ·
exp(⌘ · bUi(x))P
x0 exp(⌘ · bUi(x0))

+
�

(K + 1)k
. (29)

5: Choose xi at random according to the probability distribution pi, and query yi

accordingly.
6: For all x 2 [0, 1]k, set {Estimated demand}

eGi+1(x) = bGi(x) + yi ·
1(xi = bxc)

pi
(30)

bvi+1(x) = ⇧(eGi+1) (31)

bGi+1(x) = rxbvi+1(x). (32)

7: end for

tion. We leave such a formal analysis, including lower and upper regret bounds, for

future research.

7 Conclusion

Possible applications The setup introduced in Section 2 was deliberately stylized,

to allow for a clear exposition of the conceptual issues that arise when adaptively

maximizing social welfare. The algorithm that we proposed for this setup, and the

generalizations discussed later in the paper, are nonetheless directly practically relevant.

They remain appropriate in economic settings that are considerably more general than

the setting described by our model.

The reasons for this generality have been elucidated by the public finance literature,

cf. Chetty (2009), building on the generality of the envelope theorem, cf. Milgrom

and Segal (2002); Sinander (2022). By the envelope theorem, the welfare impact of
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a marginal tax change on private welfare can be calculated ignoring any behavioral

responses to the tax change. This holds in generalizations of our setup that allow for

almost arbitrary action spaces (including discrete and continuous, multi-dimensional,

and dynamic actions), and for arbitrary preference heterogeneity. The expressions for

social welfare that justify our algorithms remain unchanged under such generalizations.

That said, the validity of these expressions does require the absence of income e↵ects

and of externalities. If there are income e↵ects or externalities, the algorithms need to

be modified.

Our approach is motivated by applications of algorithmic decisionmaking for public

policy, where a policymaker cares about welfare, but also faces a government budget

constraint. Possible application domains of our algorithm include the following. In

public health and development economics, field experiments such as Cohen and Dupas

(2010) vary the level of a subsidy for goods such as insecticide-treated bed nets (ITNs),

estimating the impact on demand. Our algorithm could be used to find the optimal

subsidy level quickly and apply it to experimental participants. A term capturing

positive externalities of the use of ITNs could be added to social welfare, leaving the

algorithm otherwise unchanged. In educational economics, many studies evaluate the

impact of financial aid on college enrollment (Dynarski et al., 2023). An adaptive

experiment might vary the level of aid provided, where aid is conditional on college

attendance and conditional on pre-determined criteria of need or merit. In such an

experiment, a variant of our algorithm for optimal income taxation might be used,

where the welfare weights ! are a function of need or merit, and the outcome y is

college attendance. In environmental economics, many experiments (e.g., Lee et al.

2020) study the impact of electricity pricing on household electricity consumption.

Once again, our baseline algorithm (for binary household decisions about connecting to

the grid) or our algorithm for commodity taxation (for continuous household decisions

about consumption levels) could be applied, to learn optimal prices, taking into account

both distributional considerations and externalities.

These examples are all drawn from public policy, where there is an intrinsic concern

for social welfare. This contrasts with commercial applications, where the goal is typi-

cally to maximize (directly observable) profits by monopolist pricing (den Boer, 2015),

or more generally by reserve price setting in auctions (Nedelec et al., 2022). Adaptive

pricing algorithms are used in applications such as online ad auctions. A concern for

welfare might enter in such commercial settings if there is a participation constraint

that needs to be satisfied for consumers. Suppose for example that consumers or service
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providers need to first sign up for a platform, say for e-commerce or for gig work, and

then repeatedly engage in transactions on this platform. To sign up in the first place,

their expected welfare needs to exceed their outside option. This constraint might then

enter the platform provider’s objective, in Lagrangian form, adding a term for welfare,

and leading to objectives such as those maximized by our algorithms.

An alternative approach: Thompson sampling The main algorithm proposed

in this paper, Tempered Exp3 for Social Welfare, is designed to perform well in the

adversarial setting. In the construction of this algorithm, no probabilistic assumptions

were made about the distribution of vi. In the stochastic framework, a sampling distri-

bution is assumed, for instance that the vi be i.i.d. over time. The Bayesian framework

completes this by assuming a prior distribution over the parameters which govern the

sampling distribution.

One popular heuristic for adaptive policy choice in the Bayesian framework is

Thompson sampling (Thompson, 1933; Russo et al., 2018), also know as probability

matching, which assigns a policy with probability equal to the posterior probabil-

ity that this policy is optimal. In our setting, Thompson sampling could be imple-

mented as follows. First, form a posterior for the demand function G(x) = E[y|x],

based on all the data available from previous periods j < i. Sample one draw eG(·)

from this posterior. Map this draw into a draw eU (·) from the posterior for U (·) via
eU (x) = x · eG(x) + � ·

R 1

x

eG(x0)dx0. Find the maximizer xi = argmax
x
eU (x). This is

the policy recommended by Thompson sampling. We conjecture that this algorithm

will outperform random assignment, but will under-explore relative to the optimal algo-

rithm. Adding further forced exploration to this algorithm might improve cumulative

welfare. A formal analysis of algorithms of this type is left for future research.

A natural class of priors forG are Gaussian process priors (Williams and Rasmussen,

2006). If outcomes y are conditionally normal (rather than binary, as in our baseline

model), then the posterior for demand is available in closed form, and the posterior

mean is equal to the best linear predictor given past outcomes yj. Furthermore, since

social welfare is a linear transformation of demand, the posterior for U is then also

linear and available in closed form. For details, see Kasy (2018).

30



References
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A Proofs

A.1 Theorem 1 (Lower bound on regret)

Defining a family of distributions for v Recall that, for each ✏ 2 [�1, 1], the prob-

ability distribution µ
✏ is defined as the probability measure supported on (1/4, 1/2, 3/4, 1)

with masses
�
a, (1 + ✏) · b, (1� ✏) · b, 1� a� 2 · b

�
, where

a :=
(1� �) · (136� 99 · �)

2 · (4� 3 · �) · (24� 17 · �)
, b :=

1� �

2 · (24� 17 · �)
.

Furthermore, for each ✏ 2 [�1, 1], recall that G✏ and U ✏ are respectively the demand

function and the expected social welfare associated to µ
✏ (see Figure 1 for an illus-

tration). Let v1, v2, · · · 2 [0, 1] be the sequence of individual valuations. For each

✏ 2 [�1, 1], consider a distribution P
✏ such that the individual valuations v1, v2, . . .

form a P
✏-i.i.d. sequence (independent of the randomization used by the algorithm)

with common distribution µ
✏.

Explicit lower bound on regret that will be proven Define

c1 :=
�

4
· b , c2 :=

1

8
·

1� �

4� 3 · �
, c3 := b ·

s
2

a · (1� a� 2 · b)
.

We will prove that, for any randomized algorithm and any time horizon T 2 N, there
exists ✏ 2 [�1, 1] such that

RT (G
✏) � C · T

2/3
,

where

C := min

✓
c
2
1 · c

2
3

c2
,
c2

2
,

1

16
·

3

s
c
2
1 · c2

c
2
3

◆
(33)

= min

✓
�
2
· (4� 3 · �)3

8 · (136� 99 · �) · (26� 19 · �)
,
�

2/3
· (1� �)4/3 · (136� 99 · �)1/3 · (26� 19 · �)1/3

128 · (4� 3 · �) · (24� 17 · �)4/3

◆
> 0

Fix a randomized algorithm to choose the policies x1, x2, . . . , and fix a time horizon

T 2 N.
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Number of mistakes and lower bound on regret We need to count the random

number of times the algorithm has played in the regions (1/2, 3/4], [0, 1/2] and (3/4, 1] up

to time T . This can be done relying on the following random variables:

n1 :=
TX

i=1

1(1/2,3/4](xi) , n2 :=
TX

i=1

1[0,1/2](xi) , n3 :=
TX

i=1

1(3/4,1](xi) .

Notice that since the intervals (1/2, 3/4], [0, 1/2] and (3/4, 1] form a partition of [0, 1], we

have that

n1 + n2 + n3 = T (34)

For each ✏ 2 [�1, 1], denote by E
✏ the expectation taken with respect to the distri-

bution P
✏. Notice that, for each ✏ 2 [�1, 1], the expected regret when the underlying

distribution is P ✏ equals

RT (G
✏) = T · sup

x2[0,1]
U ✏(x)�

TX

i=1

E
✏
�
U ✏(xi)

�
. (35)

Algebraic calculations show that, for each ✏ 2 [�1, 1]

max
x2(1/2,3/4]

U ✏(x) = U ✏(3/4) , max
x2[0,1/2]

U ✏(x) = U ✏(1/4) , max
x2(3/4,1]

U ✏(x) = U ✏(1) , (36)

and U ✏(1)�U ✏(1/4) = c1 · ✏ . (37)

Further calculations show also that

min
✏2[�1,1]

min
�
U ✏(1/4),U ✏(1)

�
= U 1(1/4) , max

✏2[�1,1]
max

x2(1/2,3/4]
U ✏(x) = U�1(3/4) , (38)

and U 1(1/4)�U�1(3/4) = c2 . (39)

Equations (36), (37), (38), and (39) imply that

sup
x2[0,1]

U ✏(x) = U ✏(1) , if ✏ 2 [0, 1] . (40)
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It follows that, if ✏ 2 [0, 1],

RT (G
✏)

(35)
= T · sup

x2[0,1]
U ✏(x)�

TX

i=1

E
✏
�
U ✏(xi)

�

(40)
= T ·U ✏(1)�

TX

i=1

E
✏

⇣
U ✏(xi) ·

�
1(1/2,3/4](xi) + 1[0,1/2](xi) + 1(3/4,1](xi)

�⌘

(36)

� T ·U ✏(1)�
TX

i=1

E
✏

⇣
U ✏(3/4) · 1(1/2,3/4](xi) +U ✏(1/2) · 1[0,1/2](xi) +U ✏(1) · 1(3/4,1](xi)

⌘

(34)
=

�
U ✏(1)�U ✏(3/4)

�
· E

✏(n1) +
�
U ✏(1)�U ✏(1/4)

�
· E

✏(n2)

(38)

�
�
U 1(1/4)�U�1(3/4)

�
· E

✏(n1) +
�
U ✏(1)�U ✏(1/4)

�
· E

✏(n2)

(39)
= c2 · E

✏(n1) +
�
U ✏(1)�U ✏(1/4)

�
· E

✏(n2)

(37)
= c2 · E

✏(n1) + c1 · ✏ · E
✏(n2) (41)

Notice that inequality (41) quantifies how much regret the algorithm is going to su↵er in

terms of the expected number of times it plays in the wrong regions, when the demand

function is G✏ and ✏ > 0.

In the same way inequality (41) was proven, we can prove that, if ✏ 2 [0, 1],

RT (G
�✏) � c2 · E

�✏(n1) + c1 · ✏ · E
�✏(n3) � c1 · ✏ · E

�✏(n3) , (42)

which again quantifies how much regret the algorithm is going to su↵er in terms of the

expected number of times it plays in the wrong regions, when the demand function is

G�✏ and ✏ > 0.

Intuition for the remainder of the proof At high level, inequalities (41) and (42)

tell us that, if |✏| is not negligible, the algorithm has to play a substantially di↵erent

number of times in the region (3/4, 1], depending on the sign of ✏, not to su↵er significant

regret when the demand function is G✏. The crucial idea is that the only way for the

algorithm to present this di↵erent behavior is by playing in the only informative region

about the sign of ✏, i.e., the region (1/2, 3/4]. However, as shown in (41), selecting policies

in this region comes at a cost in terms of regret. To relate quantitatively the number of

times the algorithm has to play in this costly region with the di↵erence in the expected

number of times the algorithm selects policies in the region (3/4, 1] is the last missing
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ingredient that we can obtain relying on information theoretic techniques: It can be

proved (and a formal proof is provided in the online appendix, in Section B.1) that, for

each ✏ 2 [0, 1],

E
�✏(n3) � E

✏(n3)� c3 · ✏ · T ·

p
E✏(n1) . (43)

Now, if the algorithm is going to su↵er low regret when ✏ > 0, then by (41) we have an

upper bound on the number of times the algorithm plays in the region (1/2, 3/4] and a

lower bound on the number of times it plays in the region (3/4, 1], whenever ✏ > 0. In

turn, by (43), this gives a lower bound on the number of times the algorithm plays in

the sub-optimal region (3/4, 1] when ✏ < 0. Then, relying on (42), we have an explicit

lower bound on how much regret the algorithm is going to su↵er when ✏ < 0. We will

now carry out this plan —and prove the theorem— as follows.

Low regret cannot be achieved for both positive and negative ✏ To get a

contradiction, suppose that

8✏ 2 [�1, 1] RT (G
✏) < C · T

2/3
. (44)

It follows from (41) that, for each ✏ 2 [0, 1],

E
✏(n1)

(41)


RT (G

✏)

c2

(44)


C

c2
· T

2/3
, E

✏(n2)
(41)


RT (G

✏)

c1 · ✏

(44)


C

c1 · ✏
· T

2/3
. (45)

This implies, relying also on (42) and (43), that for each ✏ 2 [0, 1] we have

RT (G
�✏)

(42)

� c1 · ✏ · E
�✏(n3)

(43)

� c1 · ✏ ·
�
E

✏(n3)� c3 · ✏ · T ·

p
E✏(n1)

�

(34)
= c1 · ✏ ·

�
T � E

✏(n1)� E
✏(n2)� c3 · ✏ · T ·

p
E✏(n1)

�

(45)

� c1 · ✏ ·

✓
T �

C

c2
· T

2/3
�

C

c1 · ✏
· T

2/3
� c3 · ✏ · T ·

r
C

c2
· T 2/3

◆

= c1 · ✏ ·

✓
1�

C

c2
· T

�1/3
�

C

c1 · ✏
· T

�1/3
� c3 · ✏ · T

1/3
·

r
C

c2

◆
· T . (46)
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Pick ✏ := T
�1/3

·

qp
C·c2

c1·c3 . First, note that since 0 < C

(33)


c
2
1·c23
c2

we have that ✏ 2 (0, 1].

Plugging this value of ✏ in (46) leads to

C · T
2/3

(44)
> RT (G

�✏)

(46)

�

s
p
C · c2 · c1

c3
·

✓
1�

C

c2
· T

�1/3
� 2 ·

r
c3

c1 ·
p
c2

· C
3/4

◆
· T

2/3

(33)

�
1

2
·

s
p
C · c2 · c1

c3
·

✓
1� 4 ·

r
c3

c1 ·
p
c2

· C
3/4

◆
· T

2/3

(33)

�
1

4
·

s
p
C · c2 · c1

c3
· T

2/3
, (47)

where the second to last inequality follows from C 
c2
2 , while the last inequality follows

from C 
1
16

3

q
c
2
1·c2
c
2
3
. Rearranging inequality (47) leads to the contradiction

C
(47)
>

0

@1

4
·

s
c1 ·

p
c2

c3

1

A
4/3

=
1

8
·

3

s
2 · c21 · c2

c
2
3

>
1

16
·

3

s
c
2
1 · c2

c
2
3

(33)

� C .

Since (44) leads to a contradiction, it follows that there exists ✏ 2 [�1, 1] such that

RT (G
✏) � C ·T

2/3. Given that the time horizon T and the randomized algorithm were

arbitrarily fixed, the theorem is proved.

A.2 Theorem 2 (Adversarial upper bound on regret)

The proof of this theorem builds upon the proof of Theorem 6.5 in Cesa-Bianchi and

Lugosi (2006). Relative to this theorem, we need to additionally consider the discretiza-

tion error introduced by Algorithm 1, and explicitly control the variance of estimated

welfare.

Recall our notation U and U(x) for realized cumulative welfare, and for cumulative

welfare for the counterfactual, fixed policy x. We further abbreviate UTk = U(x̃k).

Throughout this proof, the sequence {vi}
T

i=1 is given and conditioned on in any expec-

tations.

1. Discretization
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Recall that Ui(x) = x · 1(x  vi) + � ·max(vi � x, 0). Let

ṽi = max
k

{x̃k : x̃k  vi}

(this is vi rounded down to the next gridpoint x̃k), and denote

Ũi(x) = x · 1(x  vi) + � ·max(ṽi � x, 0),

Ũi(x) =
X

ji

Ũj(x),

as well as Ũik = Ũi(x̃k). Then it is immediate that Ũi(x)  Ui(x),

sup
x

|Ũi(x)� Ui(x)| 
�

K
,

and argmax
x
Ũi(x) 2 {x̃1, . . . , xK+1}, and therefore

max
k

Ũik � sup
x

Ui(x)� i ·
�

K

2. Unbiasedness

At the end of period i, bGk is an unbiased estimator of
P

ji
1(x̃k  vj) for all k.

Therefore, E
h
bUik

i
= Ũik for all i and k.

3. Upper bound on optimal welfare

Define Wi =
P

k
exp(⌘ · bUik), and qik = exp(⌘ · bUik)/Wi.

It is immediate that,

E[logWT ] � ⌘ · E[max
k

bUTk] � ⌘ ·max
k

E[bUTk] = ⌘ ·max
k

ŨTk.

Furthermore

E[logWT ] =
X

0i<T

E


log

✓
Wi+1

Wi

◆�
+ log(W0).

Given our initialization of the algorithm, log(W0) = log(K + 1).

4. Lower bound on estimated welfare

Denote bUik = x̃k ·
bHk +

�

K
·
P

k0>k
bHk0 , where bHk =

yi

pik
· 1(ki = k),
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so that bUik =
P

j<i
bUjk, and E[bUjk] = Ui(x̃k).

By definition of Wi,

log

✓
Wi+1

Wi

◆
= log

 
X

k

qik · exp(⌘ · bUik)

!
.

Since pk � �/(K + 1) for all k, bUik 2 [0, (K + 1)/�] for all i and k, and therefore

⌘ · bUik  (K+1) ·⌘/�  1 (where the last inequality holds by assumption). Using

exp(a)  1 + a+ (e� 2)a2 for any a  1 yields

exp
⇣
⌘ bUik

⌘
 1 + ⌘ · bUik + (e� 2) ·

⇣
⌘ · bUik

⌘2

.

Therefore,

log

✓
Wi+1

Wi

◆
 log

 
X

k

qik ·

✓
1 + ⌘ · bUik + (e� 2) ·

⇣
⌘ · bUik

⌘2
◆!

⌘ ·

X

k

qik ·
bUik + (e� 2) · ⌘2 ·

X

k

qik ·
bU2
ik

The second inequality follows from log(1 + x)  x.

5. Connecting the first order term to welfare

Note that, by definition, qik =
�
pik �

�

K+1

� �
(1� �). Therefore

X

k

qik ·
bUik =

1

1� �

X

k

pik ·
bUik �

�

(1��)(K+1) ·

X

k

bUik,

and thus

E

"
X

k

qik ·
bUik

#


1

1� �
E

h
Ũi(xi)

i
,

where we have used the fact that 0  Ũk  1 for all k, given our definition of Ũ ,

and the fact that ki is distributed according to pik, by construction.

6. Bounding the second moment of estimated welfare
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It remains to bound the term E

hP
k
qik ·

bU2
ik

i
. As in the preceding item, we have

X

k

qik ·
bU2
ik


1

1� �

X

k

pik ·
bU2
ik
.

We can rewrite

bUik =
�
x̃k · 1(ki = k) + �

K
· 1(ki > k)

�
·
yi

piki

.

Bounding yi  1 immediately gives

Ei

h
bU2
ik

i


x̃
2
k

pik
+
�

�

K

�2
·

X

k0>k

1

pik0
,

and therefore

Ei

"
X

k

pik ·
bU2
ik

#


X

k

x̃
2
k
+
�

�

K

�2
·

X

k

X

k0>k

pik

pik0



X

k

�
k

K

�2
+
�

�

K

�2
·

X

k

pik

X

k0 6=k

K+1
�

= K(K+1)(2K+1)
6K2 + �

2

�

K+1
K

= K+1
K

·

⇣
2K+1

6 + �
2

�

⌘
.

7. Collecting inequalities

Combining the preceding items, we get

⌘ ·

✓
sup
x

U(x)� T ·
�

K

◆

⌘ ·max
k

ŨTk  E[logWT ] (Item 1)

=
X

0i<T

E


log

✓
Wi+1

Wi

◆�
+ log(K + 1) (Item 3)


⌘

1� �
· E

h
Ũ
i
+ (e� 2) ·

⌘
2

1� �

X

1iT

X

k

E

h
pik ·

bU2
ik

i
+ log(K + 1) (Item 4 and 5)


⌘

1� �
· E

h
Ũ
i
+ (e� 2) ·

⌘
2

1� �
T ·

K+1
K

·

⇣
2K+1

6 + �
2

�

⌘
+ log(K + 1). (Item 6)

43



Multiplying by (1� �) and dividing by ⌘, adding � sup
x
U(x) + T

�

K
to both sides

and subtracting E

h
Ũ
i
, bounding sup

x
U(x)  T , and E

h
Ũ
i
 E [U] (from Item

1), yields

sup
x

U(x)� E [U]



⇣
� + ⌘ · (e� 2)K+1

K
·

⇣
2K+1

6 + �
2

�

⌘
+ �

K

⌘
· T + log(K+1)

⌘
. (48)

This proves the first claim of the theorem.

8. Optimizing tuning parameters

Suppose now that we choose the tuning parameters as follows:

� = c1 ·

⇣
log(T )

T

⌘1/3

, ⌘ = c2 · �
2
, K = c3/�.

Plugging in we get

sup
x

U(x)� E [U]



⇣
� + c2 · �

2
· (e� 2)K+1

K
·

⇣
2c3/�+1

6 + �
2

�

⌘
+ � · �/c3

⌘
· T + log(K+1)

c2·�2

= log(T )1/3T 2/3
·

✓
c1 + (e� 2)K+1

K
· c1c2

�
c3
3 + �

2 + �

6

�
+ �

c1
c3
+

log(T 1/3 log(T )�1/3
c3/c1 + 1)

c
2
1 log(T )

◆

= log(T )1/3T 2/3
·

✓
c1 + (e� 2) · c1c2

�
c3
3 + �

2
�
+ �

c1
c3
+

1

3c21
+ o(1)

◆
.

The second claim of the theorem follows.
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B.1 Claim (43) (Relating choice probabilities for positive and

negative ✏)

Proof of Claim (43).

Let w1, w2, · · · 2 [0, 1] be the randomization seeds to be used by the algorithm. In the

light of the Skorokhod representation theorem (Williams, 1991, Section 17.3), we may

assume without (much) loss of generality that, for each ✏ 2 [�1, 1], these seeds form a

sequence of P ✏-i.i.d. [0, 1]-valued uniform random variables. In particular, this implies,

P
✏

(wi)i2N = P
�✏

(wi)i2N
, 8✏ 2 [0, 1] . (49)

Recall that a sequence of functions ↵ := (↵i)i2N is called a randomized algorithm if

↵1 : [0, 1] ! [0, 1] , 8i 2 N, ↵i+1 : [0, 1]
i+1

⇥ {0, 1}i ! [0, 1] .

The feedback function associated to our problem is

' : [0, 1]⇥ {1/4, 1/2, 3/4, 1} ! {0, 1} , (x, v) 7! 1(x  v) .
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Now, a randomized algorithm ↵ generates a sequence of choices x1, x2, . . . using the

randomization seeds w1, w2, . . . and the received feedback z1, z2, · · · 2 {0, 1} in the

following inductive way on i 2 N

x1 := ↵1(w1) , z1 := '(x1, v1) ,

xi+1 := ↵i+1(w1, . . . , wi+1, z1, . . . , zi) , zi+1 := '(xi+1, vi+1) .

For each a 2 [0, 1], fix a binary representation 0.a1a2a3 . . . and define ⇠(a) := 0.a1a3a5 . . .

and ⇣(a) := 0.a2a4a6 . . . . Notice that ⇠, ⇣ : [0, 1] ! [0, 1] are independent with respect

to the Lebesgue measure on [0, 1] and that their (common) distribution is a uniform

on [0, 1]. For each x 2 [0, 1], define  x : [0, 1] ! {0, 1}, u 7! 1[0,1/4](x) + 1(1/4,1/2](x) ·

1[0,1�a](u)+1(3/4,1](x) ·1[0,1�a�2·b](u). Define by induction on i 2 N the following process

x̃1 := ↵1

�
⇣(w1)

�
,

z̃1 := '

⇣
x̃1, x̃1

�
⇠(w1)

�⌘
,

x̃i+1 := ↵i+1

�
⇣(w1), . . . , ⇣(wi+1), z̃1, . . . , z̃i

�
,

z̃i+1 :=

8
<

:
'(x̃i+1, vi+1), x̃i+1 2 (1/2, 3/4]

'

⇣
x̃i+1, x̃i+1

�
⇠(wi+1)

�⌘
, otherwise.

Since, for each ✏ 2 [�1, 1] and each i 2 N,

P
✏(zi = 1 | xi) =

8
>>>>>><

>>>>>>:

1 xi 2 [0, 14 ]

1� a xi 2 (14 ,
1
2 ]

1� a� (1 + ✏) · b xi 2 (12 ,
3
4 ]

1� a� 2 · b xi 2 (34 , 1]

,

P
✏(z̃i = 1 | x̃i) =

8
>>>>>><

>>>>>>:

1 x̃i 2 [0, 14 ]

1� a x̃i 2 (14 ,
1
2 ]

1� a� (1 + ✏) · b x̃i 2 (12 ,
3
4 ]

1� a� 2 · b x̃i 2 (34 , 1]

it follows that, for each ✏ 2 [�1, 1] and each i 2 N, the random variable x̃i has the

same distribution as the random choice xi made by the randomized algorithm ↵ at time

i when the underlying distribution is P ✏, i.e.,
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P
✏

x̃i
= P

✏

xi
. (50)

As with the process x1, x2, . . . , we have to count the number of times the process

x̃1, x̃2, . . . lands in the regions (1/2, 3/4], [0, 1/2] and (3/4, 1] up to the time T . This can

be done relying on the following random variables

ñ1 :=
TX

i=1

1(1/2,3/4](x̃i) , ñ2 :=
TX

i=1

1[0,1/2](x̃i) , ñ3 :=
TX

i=1

1(3/4,1](x̃i) .

Since, for each ✏ 2 [�1, 1] and each j 2 {1, 2, 3},

E
✏(ñj) =

TX

i=1

P
✏

xi

�
(1/2, 3/4]

� (50)
=

TX

i=1

P
✏

x̃i

�
(1/2, 3/4]

�
= E

✏(nj) ,

to prove the claim (43), it is enough to prove that, for each ✏ 2 [�1, 1],

E
�✏(ñ3) � E

✏(ñ3)� c3 · ✏ · T ·

p
E✏(ñ1) .

We first prove the result when the sequence of randomization seeds is fixed, i.e., we

suppose first that w̄1, w̄2, . . . are such that w1 = w̄1, w2 = w̄2, . . . . For each ✏ 2

[�1, 1], we consider the associated probability distribution Q
✏, defined as the conditional

probability distribution P
✏(· | w1 = w̄1, w2 = w̄2, . . . ). For each t 2 N, let It :=

�
i 2

{1, . . . , t} | x̃i 2 (1/2, 3/4]
 
, and for each s 2 {1, . . . , t}, let

Zt,s :=

8
<

:
; if s /2 It ,

1(1/2 < vs) if s 2 It .

Notice that for each t1, t2 2 N and each s 2 {1, . . . ,min(t1, t2)}, we have that Zt1,s =

Zt2,s. Then, for each s 2 N, it is well defined the random variable Zs := Zt,s, where

t 2 N is any number t � s. Define, for each t 2 N, the random vector Z̄t := (Z1, . . . , Zt).

Notice that, given that the sequence of randomization seeds is fixed and that, for each

s 2 N, we have that vs 2 {1/4, 1/2, 3/4, 1} (hence, for each x 2 (1/2, 3/4], it holds that

1(1/2 < vs) = 1(x = vs)), the random vector (x̃1, . . . , x̃T ) is measurable with respect to

the �-algebra generated by Z̄T�1. Hence, for each ✏ 2 [0, 1] and each i 2 {1, . . . , T}, we
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can deduce from Pinsker’s inequality (see, e.g., (Tsybakov, 2008, Lemma 2.5)) that

Q
✏
�
x̃i 2 (3/4, 1]

�
 Q

�✏
�
x̃i 2 (3/4, 1]

�
+

r
1

2
DKL

�
Q

✏

Z̄T�1
|| Q

�✏

Z̄T�1

�
, (51)

where DKL is the Kullback-Leibler divergence. Now, for each t 2 N and each ✏ 2 [0, 1],

by the chain rule for Kullback-Leibler divergence (see, e.g., (Cover and Thomas, 2006,

Theorem 2.5.3)), we have

DKL

�
Q

✏

Z̄t+1
|| Q

�✏

Z̄t+1

�
= DKL

�
Q

✏

(Z̄t,Zt+1)
|| Q

�✏

(Z̄t,Zt+1)

�

= DKL

�
Q

✏

Z̄t
|| Q

�✏

Z̄t

�
+

X

(z̄,z)2{;,0,1}t⇥{;,0,1}

log

✓
Q

✏(Zt+1 = z | Z̄t = z̄)

Q�✏(Zt+1 = z | Z̄t = z̄)

◆
·Q

✏
�
Z̄t = z̄ \ Zt+1 = z

�
.

(52)

Notice that, for each t 2 N and each ✏ 2 [0, 1] we have

X

(z̄,z)2{;,0,1}t⇥{;,0,1}

log

✓
Q

✏(Zt+1 = z | Z̄t = z̄)

Q�✏(Zt+1 = z | Z̄t = z̄)

◆
·Q

✏
�
Z̄t = z̄ \ Zt+1 = z

�

=
X

(z̄,z)2{;,0,1}t⇥{;,0,1}
t+12It+1

log

✓
Q

✏(Zt+1 = z | Z̄t = z̄)

Q�✏(Zt+1 = z | Z̄t = z̄)

◆
·Q

✏
�
Z̄t = z̄ \ Zt+1 = z

�

=

0

BB@
X

z̄2{;,0,1}t
t+12It+1

Q
✏(Z̄t = z̄)

1

CCA ·

X

z2{0,1}

log

 
Q

✏
�
1(1/2 < vt+1) = z

�

Q�✏
�
1(1/2 < vt+1) = z

�
!

·Q
✏(1(1/2 < vt+1) = z)

= Q
✏
�
x̃t+1 2 (1/2, 3/4]

�
·

X

z2{0,1}

log

 
Q

✏
�
1(1/2 < vt+1) = z

�

Q�✏
�
1(1/2 < vt+1) = z

�
!

·Q
✏(1(1/2 < vt+1) = z) .

(53)
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Algebraic calculations show that, for each t 2 N and each ✏ 2 [0, 1],

X

z2{0,1}

log

 
Q

✏
�
1(1/2 < vt+1) = z

�

Q�✏
�
1(1/2 < vt+1) = z

�
!

·Q
✏(1(1/2 < vt+1) = z)

= log

 
Q

✏
�
1
2 < vt+1

�

Q�✏
�
1
2 < vt+1

�
!

·Q
✏

✓
1

2
< vt+1

◆
+ log

 
Q

✏
�
1
2 � vt+1

�

Q�✏
�
1
2 � vt+1

�
!

·Q
✏

✓
1

2
� vt+1

◆

= log

✓
1� a� (1 + ✏) · b

1� a� (1� ✏) · b

◆
·
�
1� a� (1 + ✏) · b

�
+ log

✓
a+ (1 + ✏) · b

a+ (1� ✏) · b

◆
·
�
a+ (1 + ✏) · b

�


4 · b2 · ✏2�

1� a� (1� ✏) · b
�
·
�
a+ (1� ✏) · b

� 
4 · b2 · ✏2

a · (1� a� 2b)
= 2 · c23 · ✏

2
.

(54)

Putting (52), (53) and (54) together, we obtain that, for each t 2 N and each ✏ 2 [0, 1],

DKL

�
Q

✏

Z̄t+1
|| Q

�✏

Z̄t+1

�
 DKL

�
Q

✏

Z1
|| Q

�✏

Z1

�
+ 2 · c23 · ✏

2
·

tX

s=1

Q
✏
�
x̃s+1 2 (1/2, 3/4]

�
. (55)

With the same technique used above, for each ✏ 2 [0, 1], we can prove that

DKL

�
Q

✏

Z1
|| Q

�✏

Z1

�
 2 · c23 · ✏

2
·Q

✏
�
x̃1 2 (1/2, 3/4]

�
. (56)

For each t 2 {1, . . . , T}, putting (55) and (56) together, we obtain

DKL

�
Q

✏

Z̄t
|| Q

�✏

Z̄t

� (55)+(56)

 2 · c23 · ✏
2
·

tX

s=1

Q
✏
�
x̃s 2 (1/2, 3/4]

�

 2 · c23 · ✏
2
· E

✏
�
ñ1 | w1 = w̄1, w2 = w̄2, . . .

�
. (57)

Now, (51) and (57) imply that, for each ✏ 2 [0, 1] and each i 2 {1, . . . , T},

Q
✏
�
x̃i 2 (3/4, 1]

�
 Q

�✏
�
x̃i 2 (3/4, 1]

�
+ c3 · ✏ ·

q
E✏
�
ñ1 | w1 = w̄1, w2 = w̄2, . . .

�
. (58)
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Taking the sum of (58) over i 2 {1, . . . , T}, we obtain that for each ✏ 2 [0, 1],

E
�✏
�
ñ3 | w1 = w̄1, w2 = w̄2, . . .

�

� E
✏
�
ñ3 | w1 = w̄1, w2 = w̄2, . . .

�
� c3 · ✏ · T ·

q
E✏
�
ñ1 | w1 = w̄1, w2 = w̄2, . . .

�
.

(59)

Now, since the sequence w̄1, w̄2, . . . of randomization seeds has been arbitrarily chosen,

for each ✏ 2 [0, 1], using the fact that P
✏

(wt)t2N
= P

�✏

(wt)t2N
and Jensen’s inequality, we

have that

E
�✏(ñ3) =

Z

[0,1]N
E

�✏
�
ñ3 | w1 = w̄1, w2 = w̄2, . . .

�
dP�✏

(wt)t2N
(w̄1, w̄2, . . . )

(49)
=

Z

[0,1]N
E

�✏
�
ñ3 | w1 = w̄1, w2 = w̄2, . . .

�
dP ✏

(wt)t2N(w̄1, w̄2, . . . )

(59)

�

Z

[0,1]N
E

✏
�
ñ3 | w1 = w̄1, w2 = w̄2, . . .

�
dP ✏

(wt)t2N(w̄1, w̄2, . . . )

� c3 · ✏ · T ·

Z

[0,1]N

q
E✏
�
ñ1 | w1 = w̄1, w2 = w̄2, . . .

�
dP ✏

(wt)t2N(w̄1, w̄2, . . . )

(by Jensen) �

Z

[0,1]N
E

✏
�
ñ3 | w1 = w̄1, w2 = w̄2, . . .

�
dP ✏

(wt)t2N(w̄1, w̄2, . . . )

� c3 · ✏ · T ·

sZ

[0,1]N
E✏
�
ñ1 | w1 = w̄1, w2 = w̄2, . . .

�
dP ✏

(wt)t2N
(w̄1, w̄2, . . . )

= E
✏(ñ3)� c3 · ✏ ·

p
E✏(ñ1) .

B.2 Theorem 3 (Lower bound on regret for the concave case)

Defining a family of distributions for v Define h̄ := 1�
p
1��

2 and notice that

0 < h̄ <
1
2 . Define ⌘̄ :=

�
h̄ · (1� h̄)1��

· (1� �)
��1

and ✏̄ := 1
2 ·min(⌘̄, 23 · 2

��). For each

✏ 2 (�✏̄, ✏̄) and each x 2 [0, 1], define

f
✏(x) := c̄·

✓�
22��

� 8 · h̄ · ✏)
�
· x · 1[0, 12 )

(x) +
1

x2��
· 1[ 12 ,1�h̄](x) + (⌘̄ + ✏) · 1(1�h̄,1](x)

◆
,

where c̄ is such that
R 1

0 f
0(x)dx = 1. For each ✏ 2 (�✏̄, ✏̄), note that f

✏ is a density

function on [0, 1], i.e., a non-negative function whose integral is 1. For each ✏ 2 (�✏̄, ✏̄),

let µ
✏ be the probability measure whose density is f

✏, and define G✏ and U ✏ as the
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Figure 3: Construction for proving the lower bound on regret for the concave case

demand function and the expected social welfare associated to µ
✏, respectively (see

Figure 3 for an illustration).

Properties of U Define also x̄ := 1
2 ·
�
1
2 + (1� h̄)

�
= 3

4�
h̄

2 and m̄ := 1�
p
1��

8 ·(1��)3/2.

Notice that, for all ✏ 2 (�✏̄, ✏̄), we have:

• U ✏ is continuous and concave.

• U ✏ is strictly increasing in [0, 12 ], linear in [12 , 1� h̄] with slope (1� �) · h̄ · ✏, and

strictly decreasing on [1� h̄, 1], which in particular implies that the maximum of

U ✏ is at 1� h̄ if ✏ > 0, and at 1
2 if ✏ < 0.

• If ✏ > 0, then U ✏(1� h̄)�maxx2[0,x̄] U
✏(x) = m̄ · |✏| = U�✏(12)�maxx2[x̄,1] U

�✏(x).

Now, consider the sequence of individual valuations v1, v2, · · · 2 [0, 1], and assume that,

for each ✏ 2 (�✏̄, ✏̄), when the underlying distribution is P
✏, this sequence is i.i.d.

(independent of the randomization used by the algorithm) with common distribution

µ
✏. The previous list of properties implies that, for each ✏ 2 (0, ✏̄) (resp., ✏ 2 (�✏̄, 0)),

when the underlying distribution is P ✏, the expected instantaneous regret at time t is at

least m̄ · |✏| if the learner plays in the region Ī := [0, x̄] (resp., in the region J̄ := (x̄, 1]).

It follows that, in order not to su↵er linear regret, the learner has to discriminate the

sign of ✏.
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Intuition for the proof Now, the high-level idea is that in order to discriminate the

sign of ✏, the learner needs on the order of 1
✏2

observations. Therefore, for a number of

periods on the order of 1
✏2
, the algorithm is playing “in the dark,” and thus su↵ers an

expected regret on the order of ✏ · T , or, equivalently, on the order of
p
T , when the

underlying distribution is between P
✏ or P�✏.

Defining constants We now formalize this idea. Let

� :=

 Z 1/2

0

✓
16h̄

22�� � 8h̄✏̄

◆2

f
�✏̄(x)dx+

Z 1

1�h̄

✓
2

⌘̄ � ✏̄

◆2

f
✏̄(x)dx

!1/2

> 0

Let M̄ > 0 such that 2 ·
qp

2
3 ·

�·M̄
m̄

= 1. Let M 2 (0, M̄) such that

k :=

vuut
M

m̄p
2
3 · �

< ✏̄ .

From now on, fix a time horizon T 2 N and let ✏ := kp
T
. In the following we use

the notation E
✏ (resp., E�✏) to denote the expectation with respect to the probability

measure P
✏ (resp., P�✏). Let x1, x2, . . . be the policies chosen by the algorithm. Note

that, since the algorithm bases its decision at time t only on the (partial) knowledge of

v1, . . . , vt�1 and some independent randomization, there exists a (measurable) function

't : [0, 1]t�1
! [0, 1] such that

E
✏
�
1(xt 2 Ī) | v1, . . . , vt�1

�
= 't(v1, . . . , vt�1) = E

�✏
�
1(xt 2 Ī) | v1, . . . , vt�1

�
.

Then, for each time t, it holds

��E✏
�
1(xt 2 Ī)

�
� E

�✏
�
1(xt 2 Ī)

��� =
��E✏

�
't(v1, . . . , vt�1)

�
� E

�✏
�
't(v1, . . . , vt�1)

���



����
t�1O

s=1

µ
✏
�

t�1O

s=1

µ
�✏

����
TV

= (?)

Relating choice probabilities for positive and negative ✏ By Pinsker’s inequal-

ity and the fact that the Kullback-Leibler divergence is upper bounded by the �2-
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divergence, it follows that

(?) 

s
DKL

�N
t�1
s=1 µ

�✏,
N

t�1
s=1 µ

✏
�

2
=

r
(t� 1) · DKL (µ�✏, µ✏)

2


r
(t� 1) · D�2 (µ�✏, µ✏)

2

=

s
t� 1

2

Z 1

0

����
f ✏(x)

f�✏(x)
� 1

����
2

f�✏(x)dx = (??)

Now, noticing that

Z 1

0

����
f
✏(x)

f�✏(x)
� 1

����
2

f
�✏(x)dx =

Z 1/2

0

✓
16h̄✏

22�� + 8h̄✏

◆2

f
�✏(x)dx+

Z 1

1�h̄

✓
2✏

⌘̄ � ✏

◆2

f
�✏(x)dx



 Z 1/2

0

✓
16h̄

22�� � 8h̄✏̄

◆2

f
�✏̄(x)dx+

Z 1

1�h̄

✓
2

⌘̄ � ✏̄

◆2

f
✏̄(x)dx

!
· ✏

2

= �
2
· ✏

2
,

it follows that

(??)  � · ✏ ·

r
t� 1

2
.

Summing over t = 1, 2, . . . , T , we obtain

�����E
✏

 
TX

t=1

1(xt 2 Ī)

!
� E

�✏

 
TX

t=1

1(xt 2 Ī)

!����� 
p
2

3
· � · ✏ · T

3/2 =

p
2

3
· � · k · T .

Upper bound on regret for ✏ > 0 implies lower bound on regret for �✏.

Now, suppose that in the scenario determined by P
✏ the algorithm su↵er a regret

R
✏

T
 M ·

p
T . Then

M ·

p

T � R
✏

T
� m̄ · ✏ ·

TX

t=1

E
✏
�
1(xt 2 Ī)

�
= m̄ ·

k
p
T

·

TX

t=1

E
✏
�
1(xt 2 Ī)

�
.

and rearranging
TX

t=1

E
✏
�
1(xt 2 Ī)

�


M · T

m̄ · k
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It follows that the expected number of times the algorithm plays in the (correct) region

I when the underlying scenario is determined by P
�✏ is

TX

t=1

E
�✏
�
1(xt 2 Ī)

�
=

 
TX

t=1

E
�✏
�
1(xt 2 Ī)

�
�

TX

t=1

E
✏
�
1(xt 2 Ī)

�
!

+
TX

t=1

E
✏
�
1(xt 2 Ī)

�



 p
2

3
· � · k +

M

m̄ · k

!
· T

The last inequality implies that the expected number of times that the algorithm plays

in the (wrong) region J = I
c when the underlying scenario is determined by P

�✏ is

lower bounded by

TX

t=1

E
�✏
�
1(xt 2 J̄)

�
=

TX

t=1

E
�✏
�
1(xt /2 Ī)

�
�

 
1�

 p
2

3
· � · k +

M

m̄ · k

!!
· T ,

which implies that the regret the algorithm su↵ers in the scenario determined by P
�✏

is lower bounded by

R
�✏

T
� m̄ · ✏ ·

TX

t=1

E
�✏ (1(xt 2 J)) = m̄ ·

k
p
T

·

TX

t=1

E
�✏ (1(xt 2 J))

� m̄ ·
k

p
T

·

 
1�

 p
2

3
· � · k +

M

m̄ · k

!!
· T = m̄ · k ·

0

@1� 2

s
p
2 · � ·M

3 · m̄

1

A ·

p

T .

Putting everything together, any algorithm su↵ers at least min

✓
M, m̄ · k ·

✓
1� 2 ·

qp
2·�·M
3·m̄

◆◆
·

p
T regret, in at least one scenario between the ones determined by P

✏ and P
�✏. Re-

calling that our choice of M implies 1� 2
qp

2·�·M
3·m̄ > 0, the conclusion follows.

B.3 Theorem 4 (Stochastic upper bound on regret of Dyadic

Search for Social Welfare)

For the sake of simplicity, we assume that U admits a unique maximizer x
?
2 [0, 1]

(the other cases can be treated similarly and, actually, they ended up having better

constants in the final regret guarantees).

For each epoch ⌧ = 1, 2, . . . , we refer to the three current l (left), c (center) and r

(right) points of the corresponding epoch ⌧ using l⌧ , c⌧ and r⌧ , respectively. For any
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time t, the epoch to which the time t belongs is denoted ⌧t. The length of an interval

J is denoted |J |, while the number of elements in a finite set A is denoted #A.

Consider a family (vx,i)x2[0,1],i2N of random variables such that, for each x 2 [0, 1],

the sequence (vx,i)i2N is i.i.d. with the same distribution as (vi)i2N. With these random

variables, we can define the auxiliary family (yx,i)x2[0,1],i2N :=
�
1(x  vx,i)

�
x2[0,1],i2N. We

assume that, whenever we select a policy x 2 [0, 1] at time t, we observe 1(x  vx,nt(x))

(recall that nt(x) =
P

t

s=1 1(xs = x)) instead of 1(x  vt). This does not change

anything in expectation, but will be useful in what follows.

The next lemma states that Algorithm 2 maintains confidence intervals containing

the di↵erences of the welfare function (among left, center and right points) with high

probability.

Lemma 1 (Confidence intervals contain true welfare di↵erences with high probability).

There exists a constant C̃ 2 (0, 20] such that, for every time horizon T and any � 2

(0, 1), if the learner runs Algorithm 2 with confidence parameter �, then the probability

of the event

E :=
T\

t=1

⇣�
U (c⌧t)�U (l⌧t) 2 Jt(l⌧t , c⌧t)

 
\
�
U (r⌧t)�U (c⌧t) 2 Jt(c⌧t , l⌧t)

 
\
�
U (r⌧t)�U (l⌧t) 2 Jt(r⌧t , l⌧t)

 ⌘

is lower bounded by 1� C̃ · T
2
· � .

The proof of this lemma can be found in B.3.1.

The following lemma establishes the rate of shrinking of the length of the confidence

intervals as the length of an epoch increases.

Lemma 2 (Confidence intervals shrink with epoch length). For any � 2 (0, 1), if the

learner runs Algorithm 2 with confidence parameter � then, for any time t,

max
���Jt(l⌧t , c⌧t)

��,
��Jt(c⌧t , r⌧t)

��,
��Jt(l⌧t , r⌧t)

���  c̃�
p
t� t⌧t�1

, (60)

whenever t� t⌧t�1 � ñ, where ñ = 10 and c̃� = 72 ·
p
10 ·

⇣p
2 log(2/�) + 4

⌘
.

The proof of this lemma can be found in B.3.2.

Lemma 1 and Lemma 2 allow us to prove Theorem 4, which closely follows the proof

given in (Bachoc et al., 2022b).
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B.3.1 Lemma 1 (Confidence intervals contain true welfare di↵erences with

high probability)

Proof. For each n 2 N, let Dn := {k · 2�n
| k 2 Z}, let D

?

n
:= {xn,1, . . . , xn,10} ⇢ Dn

such that

xn,1 < · · · < xn,5  x
?
 xn,6 < · · · < xn,10

and xn,j+1 � xn,j  2�n, for all j 2 {1, . . . , 9}. Define D :=
S

T

n=1 D
?

n
\ (0, 1). Consider

the following events

E
0 :=

\

n,t2{1,...,T}
j2{1,...,10}

(�����
1

t

tX

s=1

yxn,j ,s �G(xn,j)

����� 

s
1

2t
log

✓
2

�

◆)

E
00 :=

\

n2{1,...,T}
m2{1,...,blog2(T )c}

j2{1,...,9}

(�����
1

2m

2m�1X

i=1

y
xn,j+

i
2n+m ,1 �

1

xn,j+1 � xn,j
·

Z
xn,j+1

xn,j

G(x)dx

����� 

s
1

2 · 2m
log

✓
2

�

◆
+

2

2m

)

and note that E ⇢ E
0
\E

00, since, in the event E 0
\E

00, Algorithm 2 will query only points

in D
?, given that it uses only a subset of the estimates in the definition of E 0 and E

00

to build its own estimates (in particular, due to the ties breaking rules, to estimate the

integral terms it will only use the first query of the relevant dyadic points). Now, notice

that for each n 2 {1, . . . , n}, each m 2 {1, . . . , blog2(T )c} and each j 2 {1, . . . , 9} we

have

(�����
1

2m

2m�1X

i=1

y
xn,j+

i
2n+m ,1 �

1

xn,j+1 � xn,j

·

Z
xn,j+1

xn,j

G(x)dx

����� >

s
1

2 · 2m
log

✓
2

�

◆
+

2

2m

)

⇢

(�����
1

2m

2m�1X

i=1

y
xn,j+

i
2n+m ,1 �

1

2m

2m�1X

i=1

G

✓
xn,j +

i

2n+m

◆����� >

s
1

2 · 2m
log

✓
2

�

◆)

[

(�����
1

2m

2m�1X

i=1

G

✓
xn,j +

i

2n+m

◆
�

1

xn,j+1 � xn,j

·

Z
xn,j+1

xn,j

G(x)dx

����� >
2

2m

)

=

(�����
1

2m

2m�1X

i=1

y
xn,j+

i
2n+m ,1 �

1

2m

2m�1X

i=1

G

✓
xn,j +

i

2n+m

◆����� >

s
1

2 · 2m
log

✓
2

�

◆)
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Algorithm 5 Index selection
1: for s = 1, 2, . . . do
2: Let ks = min

�
argmax

k2[5] fk
�
mk(s� 1)

��

3: mks(s) = mks(s� 1) + 1
4: for i 2 [5]\{ks} do
5: mi(s) = mi(s� 1)
6: end for
7: end for

where the last equality follows from

�����
1

2m

2m�1X

i=1

G

✓
xn,j +

i

2n+m

◆
�

1

xn,j+1 � xn,j

·

Z
xn,j+1

xn,j

G(x)dx

�����



2m�1X

i=1

Z
xn,j+

i
2n+m

xn,j+
i�1

2n+m

✓
G(x)�G

✓
xn,j +

i

2n+m

◆◆
dx+

1

2m



2m�1X

i=1

Z
xn,j+

i
2n+m

xn,j+
i�1

2n+m

✓
G

✓
xn,j +

i� 1

2n+m

◆
�G

✓
xn,j +

i

2n+m

◆◆
dx+

1

2m


1

2m
· (G (xn,j)�G (xn,j+1)) +

1

2m


2

2m

By De Morgan’s laws, a union bound and Hoe↵ding’s inequality, we have P (Ec) 

P
�
(E 0)c

�
+ P

�
(E 00)c

�
 20 · T 2

· �.

B.3.2 Lemma 2 (Confidence intervals shrink with epoch length)

We break the proof of Lemma 2 in several steps. Let d1, d2, d3, d4, d5 > 0 be constants.

For each k 2 {1, 2, 3}, define

fk : {0, 1, 2, . . . } ! [0,+1], n 7!
dk
p
n

and for each k 2 {4, 5} define

fk : {0, 1, 2, . . . } ! [0,+1], n 7!
d4

p
2blog2(n+1)c � 1

+
d5

2blog2(n+1)c ,

with the usual convention that a/0 = +1, for any a > 0. Suppose thatm1(0),m2(0),m3(0),

m4(0),m5(0) 2 {0, 1, 2, . . . } and consider Algorithm 5.

The following lemma holds.
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Lemma 3. Consider Algorithm 5 and the notation defined therein. For each s 2 N
there exists an index i 2 [5] for which mi(s) � ds/5e.

Proof. Let s 2 N and suppose by contradiction that for each k 2 [5] it holds that

mk(s) < s/5. Then

s 

5X

k=1

mk(s)  5 ·max
k2[5]

mk(s) < 5 ·
s

5
= s ,

which is a contradiction. It follows that there exists k 2 [5] for which mk(s) � s/5,

which also implies mk(s) � ds/5e. Given that s was arbitrarily chosen, the conclusion

follows.

Notice that, for each n 2 {0, 1, 2, . . . }, we have

d4
p
n


d4
p
2blog2(n+1)c � 1


2d4
p
n

and

0 
d5

p

2blog2(n+1)c


2d5
n

,

which implies that, for each k 2 [5] and each n 2 {0, 1, 2, . . . }

dk
p
n
 fk(n) 

Dk
p
n

where D1 = d1, D2 = d2, D3 = d3, D4 = D5 = 2(d4 + d5).

The following lemma holds.

Lemma 4. Consider Algorithm 5 and the notation defined therein. For any i, j 2 [5]

and any s 2 N it holds

mi(s) �

✓
di

Dj

◆2

(mj(s)� 1) .

Proof. Let i, j 2 [5]. Suppose by contradiction that the conclusion does not hold. Then

there exists a smallest s 2 {0, 1, 2, . . . } for which

mi(s) <

✓
di

Dj

◆2

(mj(s)� 1) ,
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which we call s0. Notice that s0 6= 0. Then, the fact that

mi(s0 � 1) �

✓
di

Dj

◆2

(mj(s0 � 1)� 1) ,

implies that at time s0 the algorithm selected ks0 = j, which in turn implies that

mi(s0 � 1) = mi(s0) and mj(s0 � 1) = mj(s0)� 1. It follows that

✓
di

Dj

◆2

mj(s0 � 1) =

✓
di

Dj

◆2 �
mj(s0)� 1

�
> mi(s0) = mi(s0 � 1) ,

Rearranging, we get

mj(s0 � 1) >

✓
Dj

di

◆2

mi(s0 � 1) .

from which it follows that

fj

�
mj(s0 � 1)

�


Djp
mj(s0 � 1)

<
dip

mi(s0 � 1)
 fi

�
mi(t0 � 1)

�
.

This last inequality implies that at time s0 the algorithm should have chosen the index

i and not the index j, which is a contradiction.

Combining the last two lemmas we can prove the following result.

Lemma 5. Consider Algorithm 5 and the notation defined therein. Then, for any s � 5

it holds that

max
k2[5]

fk

�
mk(s)

�


D
p
s� 5

where D =
p
5 ·

�
maxj2[5] Dj

�
·
�
maxk2[5]

Dk
dk

�
.

Proof. Let s � 5. Pick j 2 [5] such that mj(s) � ds/5e (which does exist by Lemma

3). Then, by Lemma 4

max
k2[5]

fk

�
mk(s)

�
 max

k2[5]

Dkp
mk(s)

 max
k2[5]

Dkr⇣
dk
Dj

⌘2 �
mj(s)� 1

�

= Dj ·max
k2[5]

✓
Dk

dk

◆
1p

mj(s)� 1
 Dj ·max

k2[5]

✓
Dk

dk

◆
1p

ds/5e � 1


D
p
s� 5

.

We are now ready for the proof of Lemma 2.
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Proof of Lemma 2. It is enough to notice that Algorithm 2 with confidence parameter

� 2 (0, 1) relies, inside each epoch, on the same routine given by Algorithm 5 with d1 =

l ·

q
log(2/�)

2 , d2 = c ·

q
log(2/�)

2 , d3 = r ·

q
log(2/�)

2 , d4 = � ·(c� l) ·
q

log(2/�)
2 , d5 = 2 ·� ·(c� l),

with the convention that l correspond to 1, c corresponds to 2, r corresponds to 3, (l, c)

corresponds to 4 and (c, r) corresponds to 5, the correspondence between times is given

by s = t� t⌧t�1, and, for each s 2 {0, 1, 2, . . . }, m1(s) = ns+t⌧t�1(l), m2(s) = ns+t⌧t�1(c),

m3(s) = ns+t⌧t�1(r), m4(s) =
P

is+t⌧t�1
1
�
xi 2 (l, c)

�
, m5(s) =

P
is+t⌧t�1

1
�
xi 2

(c, r)
�
. With these conventions, in Lemma 5 we have thatD  9·

p
5·
⇣p

2 log(2/�) + 4
⌘

and, for example (the other cases can be proved analogously)

��Jt(l⌧t , r⌧t)
��  2 · (�t(r) + �t(l) + �t(l, c) + �t(c, r))  2 · 4 ·max

k2[5]
fk

�
mk(s)

�

 8 ·
D

p
t� t⌧t�1 � 5


c̃�
p
2
·

1
p
t� t⌧t�1 � 5


c̃�

p
t� t⌧t�1

where in the last inequality we used the fact that t� t⌧t�1 � 10.

B.3.3 Theorem 4 (Completing the proof)

Proof of Theorem 4. Define ⌧T as the last epoch, t0 = 0 and (if not already defined)

t⌧T = T .

Due to Lemma 1, we may (and do!) assume that for each t 2 {1, . . . , T} it holds

�
U (c⌧t)�U (l⌧t) 2 Jt(l⌧t , c⌧t)

�
^
�
U (r⌧t)�U (c⌧t) 2 Jt(c⌧t , l⌧t)

�
^
�
U (r⌧t)�U (l⌧t) 2 Jt(r⌧t , l⌧t)

�
.

This is because, given our choice � = 1
T 5/2 , assuming these conditions costs us in the

expected regret a further additive term which is no greater than T · C̃ ·T
2
· � = C̃ ·

p
T .

Under these assumptions, notice that for each ⌧ 2 [⌧T ] we have that x
?
2 I⌧ . In

fact, if the confidence intervals are guaranteed to contain the corresponding di↵erences

in the expected welfare, every time Algorithm 2 shrinks the active interval is because

all the discarded points are guaranteed to be suboptimal.

For each epoch ⌧ 2 {1, . . . , ⌧T}, define

B⌧ := (t⌧ � 1)� t⌧�1 .
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Now, for each epoch ⌧ 2 {1, . . . , ⌧T} if B⌧ � ñ, then

max
x2[l⌧ ,r⌧ ]

�
U (x?)�U (x)

�
 2 · c̃� ·

r
1

B⌧

.

In fact, assume that x
?
> r⌧ (the other cases have similar proofs). Then, leveraging

concavity, and recalling that inf
�
Jt⌧�1(l⌧ , r⌧ )

�
< 0 and that x

?
2 I⌧ (which implies

x
?�l⌧

r⌧�l⌧
 2), we have

max
x2[l⌧ ,r⌧ ]

�
U (x?)�U (x)

�
= U (x?)�U (l⌧ ) =

U (x?)�U (r⌧ )

x? � r⌧
(x?

� r⌧ ) +U (r⌧ )�U (l⌧ )


U (r⌧ )�U (l⌧ )

r⌧ � l⌧
(x?

� r⌧ ) +U (r⌧ )�U (l⌧ ) =
x
?
� l⌧

r⌧ � l⌧
·
�
U (r⌧ )�U (l⌧ )

�

 2 ·
�
U (r⌧ )�U (l⌧ )

�
 2 · sup(Jt⌧�1(l⌧ , r⌧ ))  2 · |Jt⌧�1(l⌧ , r⌧ )|

 2 · c̃� ·

r
1

B⌧

,

where the final inequality follows by Lemma 2.

Let ⌧ ? be the first epoch from which it holds x?
2 [l⌧ , r⌧ ]. If ⌧ ? � 2, then for each

⌧ 2 {2, . . . , ⌧ ? � 1} it holds that

max
x2[l⌧ ,r⌧ ]

�
U (x?)�U (x)

�


3

4
· max
x2[l⌧�1,r⌧�1]

�
U (x?)�U (x)

�
.

In fact, either for all ⌧ 2 {1, . . . , ⌧ ?�1} it holds that r⌧ < x
?, or for all ⌧ 2 {1, . . . , ⌧ ?�1}

it holds that l⌧ > x
?. In the first case, for all ⌧ 2 {1, . . . , ⌧ ? � 1}, leveraging concavity

and recalling that x?
2 I⌧ (which implies x

?�l⌧
x?�l⌧�1


3
4), we have

max
x2[l⌧ ,r⌧ ]

�
U (x?)�U (x)

�
= U (x?)�U (l⌧ ) =

U (x?)�U (l⌧ )

x? � l⌧
· (x?

� l⌧ )


U (x?)�U (l⌧�1)

x? � l⌧�1
· (x?

� l⌧ )


3

4
·
�
U (x?)�U (l⌧�1)

�

=
3

4
· max
x2[l⌧�1,r⌧�1]

�
U (x?)�U (x)

�
,

while the second case can be deduced analogously.

For each m 2 N, let Am :=
�
x 2 (0, 1) : 9k 2 {1, . . . , 2m � 1}, x = k/2m

 
be the
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dyadic mesh in (0, 1) of index m. For any epoch ⌧ 2 N, let m⌧ := � log2(c⌧ � l⌧ ) be the

index of the dyadic mesh in (0, 1) at epoch ⌧ of Algorithm 2 (note that m⌧ � 2 for all

⌧ 2 N because Algorithm 2 begins with a step-size of 1/4).

Let m
? := min

�
m 2 N : #

�
Am \ (0, x?]

�
� 4 and #

�
Am \ [x?

, 1)
�
� 4

 
be the

smallest index of the dyadic mesh in (0, 1) such that there are at least 4 points of

the dyadic mesh in (0, 1) to the right and to the left of x?. For each m � m
? let

x
m

1 < x
m

2 < x
m

3 < x
m

4  x
? be the four points of Am \ (0, x?] closest to x

? and

x
?
 x

m

5 < x
m

6 < x
m

7 < x
m

8 be the four points of Am \ [x?
, 1) closest to x

?. Observe

that, for all epochs ⌧ � ⌧
? + 3, Algorithm 2 selects policies only in the closed interval

[xm⌧
1 , x

m⌧
8 ]. Observe further that, for each m � m

? + 1, it holds

max
x2[xm

1 ,x
m
8 ]

�
U (x?)�U (x)

�


4

7
· max
x2[xm�1

1 ,x
m�1
8 ]

�
U (x?)�U (x)

�
.

In fact, either maxx2[xm
1 ,x

m
8 ]

�
U (x?)�U (x)

�
= U (x?)�U (xm

1 ) or maxx2[xm
1 ,x

m
8 ]

�
U (x?)�

U (x)
�
= U (x?) � U (xm

8 ). In the first case, leveraging concavity and observing that
x
?�x

m
1

x?�x
m�1
1


4
7 , we have

max
x2[xm

1 ,x
m
8 ]

�
U (x?)�U (x)

�
= U (x?)�U (xm

1 ) =
U (x?)�U (xm

1 )

x? � x
m

1

· (x?
� x

m

1 )


U (x?)�U (xm�1

1 )

x? � x
m�1
1

· (x?
� x

m

1 ) 
4

7
·
�
U (x?)�U (xm�1

1 )
�


4

7
· max
x2[xm�1

1 ,x
m�1
8 ]

�
U (x?)�U (x)

�
.

The second case can be worked out similarly.

Define ⌧# :=
⌅
4 + 2 log4/3(

p
T )
⇧
so that

✓
3

4

◆
�

⌧#�1
2

⌫

=

✓
3

4

◆
6664

⌅
4+2 log4/3(

p
T )

⇧
�1

2

7775



✓
3

4

◆log4/3(
p
T )

=
1

p
T

.

Assume that ⌧# < ⌧
? and ⌧

? + 2 + ⌧
#

< ⌧T (the other cases can be treated analo-

gously, omitting terms which are not there anymore). Then, the expected regret can
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be decomposed as follows:

TX

t=1

�
U (x?)�U (xt)

�
=

⌧
#X

⌧=1

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
+

⌧
?�1X

⌧=⌧#+1

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�

+
⌧
?+2X

⌧=⌧?

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
+

⌧
?+2+⌧

#X

⌧=⌧?+3

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
+

⌧TX

⌧=⌧?+3+⌧#

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
.

We analyze these five terms individually.

For the first one, we further split the sum into two terms, depending on whether

or not B⌧ := t⌧ � 1 � t⌧�1 � ñ. Recalling that for each ⌧ 2 {1, . . . , ⌧T} and for each

t 2 {t⌧�1 + 1, . . . , t⌧} Algorithm 2 selects the policy xt in the closed interval [l⌧ , r⌧ ], we

have that

⌧
#X

⌧=1
B⌧�ñ

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�


⌧
#X

⌧=1
B⌧�ñ

(B⌧ + 1) · max
x2[l⌧ ,r⌧ ]

�
U (x?)�U (x)

�



⌧
#X

⌧=1
B⌧�ñ

(B⌧ + 1) · 2 · c̃� ·

s
log(2/�)

B⌧

 4 · c̃� ·
⌧
#X

⌧=1
B⌧�ñ

p
B⌧  4 · c̃� · ⌧

#
·

p

T .

On the other hand, we also have that

⌧
#X

⌧=1
B⌧(ñ�1)

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
 (ñ� 1)

1X

⌧=0

�
3/4
�⌧

= 4 · (ñ� 1).

Thus, the first term is upper bounded by 4 · c̃� · ⌧# ·
p
T + 4 · (ñ� 1).

For the second term, leveraging the definition of ⌧#, we obtain

⌧
?�1X

⌧=⌧#+1

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�


⌧
?�1X

⌧=⌧#+1

t⌧X

t=t⌧�1+1

�
3/4
�⌧�1


�
3/4
�⌧#�1

·

⌧
?�1X

⌧=⌧#+1

t⌧X

t=t⌧�1+1

1


�
3/4
�⌅ ⌧#�1

2

⇧
·

⌧
?�1X

⌧=⌧#+1

t⌧X

t=t⌧�1+1

1 

p

T .
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For the third term, we further split the sum into two terms, depending on whether or

not B⌧ � ñ. Proceeding exactly as for the first term, we obtain

⌧
?+2X

⌧=⌧?

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
 3 · 4 · c̃� ·

p

T + 3 · (ñ� 1).

For the fourth term, we split again the sum into two terms, depending on whether or

not B⌧ � ñ. If B⌧ � ñ, proceeding exactly as for the corresponding part of the first

term, we obtain

⌧
?+2+⌧

#X

⌧=⌧
?+3

B⌧�ñ

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
 4 · c̃� · ⌧

#
·

p

T .

Instead, if B⌧  (ñ� 1), we get

⌧
?+2+⌧

#X

⌧=⌧
?+3

B⌧(ñ�1)

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�
 (ñ� 1) ·

⌧
?+2+⌧

#X

⌧=⌧
?+3

B⌧(ñ�1)

max
x2[l⌧ ,r⌧ ]

�
U (x?)�U (x)

�

 (ñ� 1) ·
⌧
?+2+⌧

#X

⌧=⌧
?+3

B⌧(ñ�1)

max
x2[xm⌧

1 ,x
m⌧
8 ]

�
U (x?)�U (x)

�

 2 · (ñ� 1) ·
1X

⌧=0

�
4/7
�⌧


14

3
· (ñ� 1) .

For the last term, we have

⌧TX

⌧=⌧?+3+⌧#

t⌧X

t=t⌧�1+1

�
U (x?)�U (xt)

�


⌧TX

⌧=⌧?+3+⌧#

t⌧X

t=t⌧�1+1

max
x2[xm⌧

1 ,x
m⌧
8 ]

�
U (x?)�U (x)

�



⌧TX

⌧=⌧?+3+⌧#

t⌧X

t=t⌧�1+1

�
4/7
�j ⌧�(⌧?+3)�1

2

k


�
3/4
�
�

⌧#�1
2

⌫
⌧TX

⌧=⌧?+3+⌧#

t⌧X

t=t⌧�1+1

1 

p

T .

Putting everything together, and recalling the definition of ⌧#, the conclusion follows.
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B.4 Theorem 5 (Upper bound on regret of Tempered Exp3

for Optimal Income Taxation)

We prove this result by reduction to our baseline model, as analyzed in Section

3. Assume that W = {w
1
, . . . , w

H
} with 0 = w

1
< w

2
< · · · < w

H
 1. For each tax

bracket [wh
, w

h+1), Tempered Exp3 for Optimal Income Taxation essentially reduces to

a separate instance of Tempered Exp3 for Social Welfare. Denote

U
h

i
(x(·)) = Ui(x(·)) · 1(bwic = w

h), Uh

i
(x(·)) =

X

ji

U
h

j
(x(·)),

Uh

i
=
X

ji

U
h

j
(xj(·)), T

h =
X

iT

1(bwic = w
h),

R
h

T
= sup

x(·)2XW

E

h
Uh

T
(x(·))� Uh

T

���{vi}Ti=1, {wi}
T

i=1

i
.

It is immediate that

RT =
X

h

R
h

T
, and T =

X

h

T
h
.

Assume for a moment that the upper bound on regret of Theorem 2 (with �

replaced by 1) applies to each instance (tax bracket) h, separately. That is, assume

that

R
h

T


⇣
� + ⌘ · (e� 2)K+1

K
·

⇣
2K+1

6 + 1
�

⌘
+ 1

K

⌘
·Th + log(K+1)

⌘
.

Then it follows that

RT 

⇣
� + ⌘ · (e� 2)K+1

K
·

⇣
2K+1

6 + 1
�

⌘
+ 1

K

⌘
·T+ H·log(K+1)

⌘
,

and the claims of Theorem 5 are immediate.

It remains to show that indeed the upper bound on regret of Theorem 2 applies to

each instance (tax bracket) h. For any given pair of sequences {vi}Ti=1, {wi}
T

i=1, consider

the subsequence of observations i for which bwic = w
h. Along this subsequence, the

policy choice reduces to the choice of a tax rate xi = xi(wh) 2 X , and the algorithm

Tempered Exp3 for Optimal Income Taxation reduces to an instance of the algorithm

Tempered Exp3 for Social Welfare, with the following modifications:

65



Online Appendix B ADDITIONAL PROOFS

1. Estimated demand bGi(x, wh) is multiplied by an additional factor wi 2 [0, 1].

2. Estimated social welfare bUi+1(x, wh) is updated with a term for private welfare

that includes a time-varying welfare weight !(wi)  1, rather than a fixed weight

�.

We need to verify that, with these modifications, the following key claims in the proof

of Theorem 2 continue to hold:

1. Unbiasedness: bUi(x, wh) is an unbiased estimator of Ũi(x, wh), for a suitably

discretized version of cumulative social welfare. (Step 2 of the original proof.)

In the present setting, discretization requires substituting ṽi for vi, where ṽi =

min{x 2 X : wi(1� x) � vi}.

2. Bounded support: bUi(x, wh) < K+1
�

, where

bUi(x, w
h) = x · bGi(x, w

h) +
!(wi)

K
·

X

x02X ,x0>x

bGi(x
0
, w

h).

(Step 4 of the original proof.)

3. Bounded second moment of bUi(x, wh):

Ei

h
bUi(x, w

h)2
i


x
2

pi(x|wh)
+

✓
1

K

◆2

·

X

x02X ,x0>x

1

pi(x0|wh)
,

(Step 6 of the original proof.)

Unbiasedness follows as before. To show bounded support, as well as the bound on the

second moment, note that we can rewrite

bUi(x, w
h) =

✓
x · 1(xi = x) +

!(wi)

K
· 1(xi > x)

◆
·

yi · wi

pi(xi|w
h)
.

Recall that x,!(wi), wi, and yi are all bounded above by 1, and that pi(x|wh) � �

K+1 .

Bounded support and the bound on the second moment follow. The remaining steps of

the proof are as before.
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