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Abstract

In the modern era, data has become more complex, posing additional challenges
to conventional data analysis methods. This is where Artificial Intelligence comes
into play, specifically Deep Learning algorithms. These algorithms can analyze
such data automatically, quickly, and accurately. Moreover, they can explore
complex relationships between variables and identify non-linear patterns humans
may not perceive. Leveraging this potential, Deep Learning has recently become
pivotal in analyzing complex data, such as video data, arising from human crowds
to enhance safety. Despite considerable advancements, some challenging problems
in crowd dynamics still need to be solved efficiently and automatically.

One of the eritical challenges is assisting organizers and security forces in mit-
igating the spread of pushing behavior and its risks in dense crowds. In such
crowds, some individuals could start pushing each other to reach their destina-
tions faster, like gaining quicker access to an event. Indeed, such behavior often
increases the crowd’s density, potentially posing a threat not only to people’s
comfort but also to their safety. In response to this challenge, this cumulative
thesis encompasses four publications, each proposing an innovative, automatic,
and intelligent approach to glean vital insights from crowd data. The goal is to
provide organizers and security teams with the necessary knowledge to alleviate
the pushing behavior and its associated risks, thereby enhancing crowd comfort
and preventing potential life-threatening situations.

In publication I, a novel Artificial Intelligence-based approach is proposed to
identify the patches or regions containing persons who engage in pushing within
video recordings of crowds. The approach aims to assist in understanding the
causes and the risks of such behavior on the crowd. This approach combines
a Deep Learning optical flow model, and a Convolutional Neural Network to
annotate the pushing patches in the input video. While the first proposed ap-
proach does not meet real-time detection requirements, publication II introduces
anew cloud-based Artificial Intelligence approach to detect pushing patches within
live camera streams captured from dense crowds. Such approach enables timely
and automatic detection, facilitating early intervention by organizers and secu-
rity forces to prevent situations from escalating dangerously. For this purpose,
the approach utilizes a Convolutional Neural Network, a GPU-accelerated Deep
Learning optical flow model, a cloud computing environment, and live camera
technology.

The first two approaches focus on identifying pushing behavior at the patch
level, while publication III introduces a new Artificial Intelligence-based approach
that detects pushing in dense crowd videos at the level of individuals (microscopic
level). By examining individual interactions more closely, this approach provides
new insights into transferring such behavior to neighbors. The proposed approach
combines a novel Voronoi method with a Convolutional Neural Network to localize
individuals involved in pushing within the given video footage.



Finally, publication IV proposes an intelligent, online, and low-cost GPS-based
data system for real-time visualization of crowd dynamics during open and large-
scale events. Such visualization helps to avoid or mitigate dense crowds, thus
reducing the likelihood of conditions that could increase pushing behavior and its
effect on crowds. For this purpose, the system employs a custom mobile applica-
tion, smartphone GPS receivers, a web-based platform, and advanced visualization
techniques.
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Zusammenfassung

In der heutigen Zeit werden Daten immer komplexer, was konventionelle Daten-
analysemethoden vor zusétzliche Herausforderungen stellt. An diesem Punkt kom-
men kiinstliche Intelligenz und insbesondere Deep Learning Algorithmen ins Spiel.
Diese Algorithmen kénnen Daten automatisch, schnell und akkurat analysieren.
Dariiber hinaus kénnen sie komplexe Strukturen zwischen den Variablen unter-
suchen und nicht-lineare Muster erkennen, die Menschen eventuell nicht wahrnehm-
en. Durch die Nutzung dieses Potenzials ist Deep Learning in jiingster Zeit zu
einem zentralen Element bei der Analyse komplexer Daten aus Menschenmengen
geworden, um die Sicherheit zu verbessern. Trotz des beachtlichen Fortschritts
gibt es im Bereich der Gruppendynamik immer noch einige Schwierigkeiten, die
effizient und automatisch geldst werden miissen.

Eine wesentliche Herausforderung besteht darin, Veranstalter und Sicherheit-
skriifte dabei zu unterstiitzen, die Ausbreitung von Gedringe und die damit ver-
bundenen Risiken in dichten Menschenmengen einzudémmen. In solchen Men-
schenmengen kann es vorkommen, dass einige Personen anfangen, sich gegen-
seitig zu schubsen, um ihr Ziel schneller zu erreichen und sich beispielsweise
schnelleren Zugang zu einer Veranstaltung zu verschaffen. Tatsdchlich erhéht
ein solches Verhalten jedoch oft die Dichte in einer Menschenmenge, was nicht
nur das Wohlbefinden der Menschen beintréichtigt, sondern auch ihre Sicherheit
bedroht en kann. Als Reaktion auf diese Herausforderung umfasst diese kumula-
tive Promotion vier Publikationen, die jeweils einen innovativen, automatischen
und intelligenten Ansatz vorschlagen, um wichtige Erkenntnisse aus Daten von
Menschenmengen zu gewinnen. Das Ziel ist, Informationen fiir Veranstalter und
Sicherheitskrifte bereitzustellen, um Dréingelverhalten und die damit verbunde-
nen Risiken einzuschrinken und so den Komfort fiir die Besucher zu erhéhen und
potenziell lebensbedrohliche Situationen zu verhindern.

In Publikation I wird ein neuer Ansatz basierend auf kiinstlicher Intelligenz
vorgestellt, der in Videoaufnahmen von Menschenmengen Abschnitte oder Bere-
iche identifiziert, in denen Personen dridngeln. Der Ansatz soll Veranstalter dabei
unterstiitzen, zu verstehen, wann, wo und warum Dringeln auftritt, damit sie
Menschenmengen angenehmer und sicherer gestalten und steuern kénnen. Dieser
Ansatz kombiniert ein auf Deep Learning und ein Convolutional Neural Net-
work, um Bereiche in dem Video zu markieren, die Driangelverhalten enthalten.
Da die erste vorgestellte Methode den Anforderungen einer Echtzeit-Erkennung
nicht gerecht wird, befasst sich Publikation II mit einem neuen cloudbasierten
kiinstliche Intelligenz-Ansatz, der Bereiche mit Dréngelverhalten im Kamera-Live-
Stream von dichten Menschenmengen erkennt. Eine solche Methode erméglicht
die rasche und automatische Erkennung sowie ein friithzeitiges Eingreifen von Ve-
ranstaltern und Sicherheitskréften und verhindert so eine gefdhrliche Eskalation
der Situation. Zu diesem Zweck nutzt der Ansatz ein Convolutional Neural Net-
work, ein GPU-beschleunigtes Deep Learning optischer Fluss Modell, eine Cloud-
Computing-Umgebung und eine Live-Kamera-Technologie.
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Die ersten zwei Ansétze zielen darauf ab, Driangelverhalten in definierten Teil-
bereichen zu identifizieren, wihrend Publikation III einen neuen kiinstliche Intellig-
enz-basierten Ansatz einfiithrt, der Driangeln in Videos von dichten Menschenmen-
gen auf Ebene der Individuen erkennt (mikroskopische Ebene). Indem die in-
dividuellen Interaktionen genauer untersucht werden, liefert diese Methode neue
Erkenntnisse zum Verhalten individueller Personen und deren Wirkung auf ihre
néchsten Nachbarn. Der vorgestellte Ansatz kombiniert eine Voronoi Zerlegung
des Bildes anhand der Positionen der Personen mit einem Convolutional Neural
Network um die Individuen, die dréngeln, auf dem Videomaterial zu lokalisieren.

Abschlieflend wird in Publikation IV ein intelligentes, kostengiinstiges, GPS-
basiertes Online-Datensystem fiir die Echtzeit-Visualisierung von Gruppendynami-
ken fiir groBe Veranstaltungen im Freien vorgestellt. Eine solche Visualisierung
tragt dazu bei, dichte Menschenmengen zu vermeiden oder zu entschirfen und
damit die Wahrscheinlichkeit von Zustinden zu verringern, die Dréngelverhalten
und dessen Auswirkungen auf Menschenmengen verstirken kénnten. Zu diesem
kombiniert setzt das System eine selbststindig entwickelte mobile Anwendung,
Smartphone GPS-Empfianger, eine webbasierte Plattform und hochentwickelte Vi-
sualisierungstechniken.
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Chapter 1

Introduction

1.1 Overview

The availability of complex datasets is more widespread than ever, especially that
encompassing images and videos. Efficiently analyzing and interpreting this data
opens up new knowledge and solving many real-world problems. Such data of-
ten involve intricate and non-linear relationships that are difficult to study with
traditional analytical methods. Artificial Intelligence (AI), and more specifically,
Deep Learning (DL), have revolutionized the field of complex data analytics [1].
These advancements are pivotal in developing intelligent and automatic applica-
tions that tackle complex issues in various domains, including finance [2], health-
care [3], transportation [4], agriculture [5], energy [6], education [7], and crowd
safety [8]. Within this broad scope, this thesis focuses on developing an innova-
tive and automatic Al-based framework for analyzing video data captured from
crowds to help improve crowd safety.

1.2 Background and Motivation

With the rapid development of urbanization, crowded places have become com-
mon, such as religious areas, train terminals, concert venues, sports stadiums,
shopping centers, and tourist attractions. In such dense crowds, pushing behavior
could be a safety risk [9, 10, 11]. People may start pushing for different reasons.
1) Saving their lives in emergencies or tense scenarios. 2) Grabbing a limited
resource, such as gaining access to a crowded subway train [12]. 3) Accessing a
venue more quickly; for instance, in crowded event entrances, some pedestrians
start pushing others to enter the event faster [13]. The focus of this thesis is the
pushing that occurs in crowded event entrances due to the availability of public
real-world experiments about such entrances. In this context, Liigering et al. [13]
defined pushing as a behavior that pedestrians use to reach a target (like access-
ing an event) faster. This behavior involves pushing others using arms, shoulders,
elbows, or the upper body, as well as utilizing gaps among neighboring people to
navigate forward quickly.

In faet, such behavior often increases the crowd’s density, potentially posing a
threat not only to people’s comfort but also to their safety [14, 15, 16, 11]. This
is particularly true when numerous individuals engage in pushing. Mitigating the
spread of pushing behavior and reducing the associated risks helps enhance the
comfort and safety of crowds. The following are useful techniques in achieving
this purpose [13, 17]:

1. Understanding pushing dynamics. Identifying such behavior in crowds
can help to know where, when, and why such behavior occurs, as well as

1



1.3. CHALLENGES OF AUTOMATIC PUSHING DETECTION

understanding its impact on the crowd. This knowledge can facilitate the
development of effective crowd management strategies and improve public
space designs, thereby reducing the incidence of pushing and its risks in
dense crowds.

2. Timely pushing identification. Real-time detection of pushing behav-
ior offers a critical advantage. It allows organizers and security forces to
intervene at an early stage before pushing spreads and situations become
dangerous. Mainly when unexpected pushing instances occur, and current
strategies prove insufficient for the current situation.

3. Avoidance of high-density areas. Pushing behavior is more likely to
arise in areas of high density, particularly within moving crowds. Managing
crowds and reducing areas with high density help mitigate the likelihood
of such behavior and the associated risks. Real-time visualization of crowd
evolution is crucial for assisting organizers and security teams in successfully
managing crowds and reducing overcrowded areas.

Recently, some researchers have attempted to understand pushing by manu-
ally observing and identifying such behavior among video recordings of crowded
events. For example, Liigering et al. [13] proposed a manual rating system to un-
derstand when, where, and why pushing appears. The system utilizes two trained
psychologists who manually categorize pedestrian behaviors over time in top-view
videos into two main categories: pushing and non-pushing. However, this manual
rating procedure is time-consuming, tedious, and prone to errors in some scenar-
ios. Additionally, it requires trained observers, which may not always be feasible,
and it does not cope with real-time detection requirements. Therefore, the auto-
matic approaches capable of identifying pushing in video recordings and real-time
camera streams are helpful in many respects.

From a computer science perspective, the visual analysis of the crowd falls
within the realm of computer vision. DL algorithms, particularly Convolutional
Neural Network (CNN) architectures, have demonstrated significant success in
various computer vision tasks, including face recognition [18], object detection [19],
and abnormal behavior detection [20]. Technically, pushing identification is closely
related to the task of abnormal behavior detection in video crowds. Typically, be-
havior is considered abnormal when seen as unusual under specific contexts. This
implies that the definition of abnormal behavior depends on the situation [21]. To
illustrate, running inside a bank might be considered abnormal behavior, whereas
running at a traffic light could be normal [22]. Several behaviors have been au-
tomatically addressed in crowds, including walking in the wrong direction [23],
running away [24], sudden people grouping or dispersing [25], human falls [26],
suspicious behavior, violent acts [27], abnormal crowds [28], hitting, and kick-
ing [29]. To the best of our knowledge, no previous studies have automatically
identified pushing for faster access in human crowds. As a result, this thesis pri-
marily focuses on developing approaches for automatically detecting pushing in
video recordings and live streams of dense crowds.

1.3 Challenges of Automatic Pushing Detection

The automatic detection of pushing behavior in videos or live camera streams of
dense crowds represents a novel research and a demanding task. The challenges
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of automatic pushing detection stem from multiple factors, which are:

1. Diversity in pushing behavior. Such behavior has various forms, varying
in intensity and nature, not just among different individuals but also within
the same person over time. Additionally, the significant similarity and overlap
between pushing and non-pushing behaviors complicate the differentiation
task.

2. Crowd density. In densely crowded scenes such as entrances of large-scale
events, multiple people often overlap, leading to frequent occlusions. Con-
sequently, body parts involved in pushing can become invisible. This makes
the analysis challenging because extracting individual interactions is required
for identifying pushing behavior.

3. Feature representation. One of the main challenges is the lack of knowl-
edge about the relevant features that represent pushing behavior. Without
accurately determining these features, it would be impossible to create reli-
able automatic methods for such detection.

Considering the challenges mentioned above, it’s clear that the primary obstacle
to automating pushing detection is identifying and extracting relevant features of
pushing from dense crowds.

1.4 Preliminary Concepts

This section provides an overview of the fundamental concepts utilized in this
thesis.

Within the rapidly evolving field of AI, which is dedicated to creating systems
that can emulate human intelligence functions such as learning, reasoning, and
problem-solving [30], subfields have arisen, including Machine Learning (ML)
and DL. ML empowers computers to learn and adapt using data, eliminating the
need for explicit programming [31]. In contrast, DL is a specialized branch of ML
that employs artificial neural networks with three or more layers to simulate the
human brain’s structure and function, allowing the learning of complex patterns
from large datasets without needing data pre-processing as classical machine learn-
ing algorithms [32]. Among the various DL techniques, CNN, inspired by the
animal visual cortex organization, achieved remarkable success in vision-related
tasks [33]. This success is attributed to CNNs’ unmatched ability to automati-
cally learn feature representations from data without human supervision [34]. The
relationship between AI, ML, DL, and CNN is shown in Fig. 1.

A typical CNN architecture consists of repeated blocks of convolution and
pooling layers, followed by one or more fully connected layers. The convolution
and pooling layers are responsible for feature extraction. In contrast, the fully
connected layers map the extracted features to the final layer, which contains a
neuron for each potential category in classification [35]. Recently, many advance-
ments have been made in CNN architectures, among which the EfficientNet
family [36, 37] stands out. It encompasses various architectures that outperform
existing CNNs regarding accuracy and efficiency (smaller and faster) across dif-
ferent classification tasks.

Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) is one
of the most powerful DL-based methods for dense optical flow estimation, a task of
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Figure 1: Relationship between AI, ML, DL and CNN.

estimating per-pixel motion between video frames. RAFT, a composition of CNN
and recurrent neural network (a class of DL) architectures, has been trained on the
SINTEL dataset [38], resulting in an efficient and general model to estimate dense
optical flow efficiently. This pre-trained model is a promising for applications in
dense crowds due to its ability to reduce the impact of occlusions on optical flow
estimation [39)].

1.5 State-of-the-Art CNN-based Approaches

As previously discussed, automatic identification of pushing behavior in videos
falls under the domain of computer vision, specifically in the task of abnormal be-
havior detection. The literature presents various automatic approaches to detect-
ing abnormal behavior in videos, categorized into traditional-based and learning-
based methods [40, 41]. The main idea of the first group is to use some measures
to distinguish between normal and abnormal behaviors. For example, a high value
in the entropy [42] or the speed [43] may indicate the presence of abnormal be-
havior in crowds. However, these approaches are inefficient for complex behaviors
due to the difficulty of describing them accurately by rules [41]. To address these
limitations, learning-based approaches, especially those harnessing the power of
CNNs, have been developed. These algorithms learn directly from data, avoiding
manual rule-setting, and have shown notable advancements in the area.

A customized CNN-based method to identify abnormal activities in videos was
presented by Tay et al [21]. The authors trained a customized CNN for feature
extraction and labeling using normal and abnormal samples. In another study,
Alafif et al. [44] proposed two methods of identifying abnormal behaviors in small
and large-scale crowd videos. The first method employs a combination of a CNN
model and a random forest classifier to detect anomaly behaviors at the object
level in a small-scale crowd. In contrast, the second method utilizes two classifiers
to recognize abnormal behaviors in a large-scale crowd. The initial model, finds
the frames containing abnormal behaviors, while the second classifier, You Only
Look Once (YOLOv2), processes those frames to identify abnormal behaviors
exhibited by individuals. The effectiveness of these techniques relies heavily on
utilizing CNNs to learn features from labeled datasets containing both normal and
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abnormal behaviors. A large training dataset of normal and abnormal behaviors
is necessary to create an accurate and adaptable CNN model. However, obtaining
such a dataset is often unattainable for various abnormal behaviors, including
pushing behavior. This challenge arises because labeling data is exceptionally
time-consuming and may require specialized knowledge. Furthermore, securing a
significant number of videos that exhibit these behaviors can be difficult [22].

In order to overcome the shortage of large datasets comprising normal and ab-
normal behaviors, some researchers have utilized one-class classifiers with datasets
consisting only of normal behaviors. It is easier to obtain or create a dataset
that contains only normal behaviors than a dataset that includes both normal
and abnormal behaviors [45, 46]. The fundamental concept behind the one-class
classifier is to exclusively learn from normal behaviors, thereby establishing a
class boundary between normal and undefined (abnormal) classes. For example,
Sabokrou et al. [45] employed a pre-trained CNN for extracting motion and ap-
pearance information from crowded scenes. Subsequently, they utilized a one-class
Gaussian distribution to construct the classifier using datasets comprised of nor-
mal behavior. Similarly, in [46, 47], the authors developed one-class classifiers by
utilizing a dataset of normal samples. In [46], Xu et al. employed a convolutional
variational autoencoder to extract features, followed by the use of multiple Gaus-
sian models to detect abnormal behavior. Meanwhile, in [47], a pre-trained CNN
model was utilized for feature extraction, with one-class support vector machines
being used to identify abnormal behavior. Another study by Ilyas et al. [48]
utilized a pre-trained CNN and a gradient sum of the frame difference to extract
significant features. Following this, three support vector machines were trained on
normal behavior to detect abnormal behaviors. Generally, the one-class classifier
is commonly used when the target behavior class or abnormal behavior is infre-
quent or poorly defined [49]. However, pushing behavior is not rare, particularly
in high-density and competitive situations. Furthermore, this type of classifier
regards new normal behavior as abnormal.

To overcome the limitations of CNN-based and one-class classifier approaches,
several studies have combined multi-class CNN with one or more handcrafted fea-
ture descriptors [48, 20]. As an example, Duman et al. [22] utilized the traditional
Farnebick optical flow method in conjunction with CNN to detect anomalous
behavior. They extracted direction and speed information using the optical flow
method, and CNN and then utilized a convolutional long short-term memory
network to construct the classifier. Similarly, Hu et al. [50] employed a com-
bination of the histogram of gradient and CNN for feature extraction, while a
least-squares support vector was used for classification. Almazroey et al. [51] fo-
cused on utilizing the Lucas-Kanade optical flow method, pre-trained CNN, and
feature selection method (neighborhood component analysis) to extract relevant
features. They then used a support vector machine to generate a trained classifier.
In a different study [52], Zhou et al. introduced a CNN-based method to identify
and locate abnormal activities. This approach integrated traditional optical flow
method with CNN for feature extraction and utilized a CNN for classification. Di-
rekoglu [20] utilized the Lucas-Kanade optical flow method and CNN to extract
relevant features and identify “escape and panic behaviors!'”.

In summary, hybrid-based approaches could be more suitable for automatically
detecting pushing behavior due to the limited availability of labeled pushing data.

'For additional details regarding the term “panic behavior”, please refer to Ref. [53].
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Nevertheless, most of the reviewed hybrid-based approaches for abnormal behavior
detection may be inefficient for detecting pushing, since 1) The descriptors used in
these approaches can only extract limited essential data from high-density crowds
to represent pushing behavior. 2) Some CNN architectures commonly utilized
in these approaches may not be effective in dealing with the increased variations
within pushing behavior (intra-class variance) and the substantial resemblance
between pushing and non-pushing behaviors (high inter-class similarity), which
can potentially result in misclassification.

1.6 Objectives

Given the challenges and motivations previously discussed, this thesis primarily
aims to develop an automatic Al-based framework for detecting pushing behavior
in video recordings and live camera streams of dense crowds. This framework
is based on cutting-edge technologies, including supervised deep learning algo-
rithms, visualization techniques, cloud computing, and the Internet of Things.
The development of the framework consists of three phases:

1. The first phase introduces an approach combining deep learning (DL) and
visualization to identify the regions or patches where pushing occurs in crowd
videos (publication I). Notably, each region covers an area between 1 and 2
square meters on the ground.

2. While the initial approach isn’t designed for real-time detection, the second
phase (publication II) introduces a cloud-based DL approach for real-time de-
tection. This approach aims to annotate regions containing pushing behavior
in live camera streams of dense crowds at an early stage.

3. While the initial phases focus on region-based detection, the third phase
(publication III) introduces a Voronoi-based CNN approach to identify indi-
viduals engaged in pushing within crowds (microscopic level). The approach
leverages video recordings of crowds and pedestrian trajectory data to provide
new insights into the interactions between pedestrians in the crowd.

In addition to the primary objective, this thesis also presents an intelligent,
real-time, online, and low-cost GPS-based data system (publication IV). This
system offers real-time visualization of crowd dynamics in open environments.
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1.7 Contributions

This thesis is based on four publications, where the contributions of each are out-
lined below:

Publication I:

1.

Introducing the first Al-based approach, to our knowledge, dedicated to au-
tomatically identifying pushing regions in video recordings of crowds.

. Integrating EfficientNetV1B0-based CNN [36], RAFT [39], and color wheel

visualization [54, 55] within a unique approach for pushing behavior detec-
tion.

. Proposing a patch-based method to augment data and address the class im-

balance issue in video datasets.

. Generating the first publicly available dataset in this research domain, con-

sisting of pushing and non-pushing patches.

. Introducing a false reduction algorithm to enhance the accuracy of the ap-

proach.

Publication II:

1.

2.

Proposing the first Al-based approach, to our knowledge, for automatic and
early detection of pushing regions in live camera streams of crowds.

Integrating an adapted EfficentNetV2B0 [37], a GPU-accelerated pre-trained
RAFT model [39], the color wheel method [54, 55|, a cloud computing en-
vironment, and live camera technology to develop an approach that capable
for early detection of pushing regions in crowds.

. Creating a novel patch-based pushing dataset that encompasses more com-

plex scenarios.

. Conducting a comprehensive performance comparison across fifteen CNN ar-

chitectures using the generated dataset.

Publication III:

1.

Introducing the first approach, to our knowledge, for automatically identify-
ing pushing in video recordings of crowds at the microscopic level.

2. Presenting a novel feature extraction technique to characterize microscopic

behaviors, especially pushing, in crowd videos.

3. Developing a new dataset with microscopic pushing and non-pushing samples.
Publication IV:

1.

Introducing a system that collects pedestrian trajectories every second, esti-
mating horizontal accuracy to depict the maps accurately.

. Presenting a novel data processing method with temporal storage of current

pedestrian positions to improve the data visualization performance.

. Providing access to online and real-time visualized maps depicting pedestrian

movements and timely heat maps for spotting crowded areas.

. Offering an archive of collected GPS data in various formats (SQL, JSON,

CSV) for interested researchers.
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1.8 Ethical Considerations

1. The videos of experiments utilized for dataset generation: The ex-
periments were conducted according to the guidelines of the Declaration of
Helsinki, and approved by the ethics board at the University of Wuppertal,
Germany. Informed consent was obtained from all subjects involved in the
experiments.

2. A cloud-based AI approach for early detection of pushing at human
crowds: To protect individuals’ privacy, the approach applies a blurring
technique to the annotated frames before storing them in the cloud.

3. An online, intelligent, and low-cost GPS-based data system: To safe-
guard users’ privacy, the mobile application collects only the smartphone’s
latitude and longitude coordinates, associating them with an anonymous ID.

1.9 Thesis Structure

The thesis is organized into two parts, as shown in Fig. 2:

1. First part: consists of three chapters. Chapter 1 provides the background
and motivation, challenges in automatic pushing detection, state-of-the-art
CNN-based approaches, main goal and objectives, ethical considerations, and
contributions. Then, Chapter 2 provides an overview of each publication in
the thesis. Subsequently, Chapter 3 discusses the limitations of the works
presented in this thesis and highlights potential areas for further research
directions in the future.

2. Second part: lists the four research articles in this dissertation’s context.
The publications have been reformatted for consistency with the thesis for-
mat. Importantly, this thesis not only puts forward various novel approaches
but also strongly advocates for Research Software Engineering (RSE) prin-
ciples, emphasizing open-source development, reproducibility, and the FATR
(Findable, Accessible, Interoperable, and Reusable) principles. All method-
ologies developed in this work, alongside the accompanying source codes used
for building, training, and assessing the models, the trained models, and the
datasets, are openly accessible on GitHub at the following links:

Publication I: https://github.con/PedestrianDynamics/DLAPuDe
Publication II: https://github.com/PedestrianDynamics/CloudFast-DL4PuDe
Publication ITI: https://github.com/PedestrianDynanics/VCNNAPuDe
Publication IV: https://github.com/PedestrianDynamics/GPSdataColVis
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Chapter 2

Summary of Publications

In the context of this thesis, which focuses on Al and Video Analytics, four articles
have been published. This chapter offers a summary of the methodologies, objec-
tives, and results delineated in each publication. The full texts of the publications
can be found in subsequent chapters at the end of this thesis.

2.1 Publication I:
A Hybrid Deep Learning and Visualization Framework for Push-

ing Behavior Detection in Pedestrian Dynamics

Within crowded event entrances, pushing behavior can easily arise, potentially
posing a threat not only to people’s comfort but also to their safety, especially
when many people start pushing each other to reach their goals faster [11, 15,
10, 56, 9]. By identifying instances of pushing in crowd videos, a deeper under-
standing of when, where, and why such behavior occurs can be achieved [13].
This knowledge is essential to creating effective crowd management strategies and
better designing public spaces, thus enhancing crowd safety. However, manually
identifying pushing in crowd videos is challenging because it is time-consuming, te-
dious, prone to errors, and needs trained experts [13]. Therefore, this publication
proposed a hybrid deep learning and visualization framework that aims to assist
researchers in automatically identifying pushing behavior in video recordings of
crowds.

The proposed framework comprises two main components: Motion Information
Extraction and Pushing Patch Annotation. The first component combines the
color wheel method [54, 55] and one of the most efficient deep optical flow models
for crowds. Such a combination is responsible for estimating and visualizing the
crowd motion from the input video. The deep optical flow estimator relies on
the pre-trained CPU-based RAFT model [39] to calculate the optical flow vectors
for all pixels between two frames. Then, the color wheel method is used to infer
and visualize the motion information from the estimated optical flow vectors.
Specifically, the color wheel firstly calculates each vector’'s magnitude and direction
at each pixel. After that, it visualizes the calculated information to generate
motion information maps. In these maps, color indicates the direction of pixel
movement, while the color’s intensity denotes the magnitude or speed of that
movement. Furthermore, each map’s pixel position mirrors movement locations
within the crowds, and each map represents a specific time segment from the
input video. Next, each map is divided into several patches to help the framework
identify the regions that contain at least one person to engage in pushing (at the
patch level).

The second component, Pushing Patch Annotation, is responsible for localizing
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2.2. PUBLICATION II: A CLOUD-BASED DEEP LEARNING FRAMEWORK

the patches that contain pushing persons, annotating the patches, and generating
the annotated videos. This component modifies and trains EfficientNetV1B0-
based CNN [36] to build a robust classifier. This classifier identifies relevant fea-
tures from the patches and categorizes them into pushing and non-pushing labels.
Besides the classifier, a false reduction algorithm was designed in the Pushing
Patch Annotation component to enhance the classifier’s predictions. Finally, the
component outputs the annotated video showing the patches containing at least
one person engaged in pushing.

In order to train and evaluate the classifier and the framework, five videos of
real-world experiments, along with their ground truth data of pushing, have been
used to prepare the final dataset. The five videos were selected from the data
archive hosted by the Forschungszentrum Jiilich [57]. These videos are identified
by the experiment numbers 110, 150, 170, 270, and 280. Each experiment’s setup
mimics a straight entrance with a single gate. Firstly, maps are extracted from
the videos. Each map is then divided into several equal patches, and each patch
dimensions on the ground ranged between 1.2 and 1.7 meters. After that, based
on the ground truth data, the patches that contain at least one person engaged
in pushing are classified as pushing; otherwise, they are labeled as non-pushing.
The final dataset includes 2364 pushing patches and 1722 non-pushing patches of
maps.

Finally, experimental results show that the proposed framework achieved 88 %
accuracy.

2.2 Publication II:
A Cloud-based Deep Learning Framework for Early Detection of

Pushing at Crowded Event Entrances

While the earlier framework was designed to identify pushing patches in video
recordings of human crowds, publication II introduced a new cloud-based DL
framework for early identifying pushing patches within such crowds. Automatic
and timely identification of such behavior would help organizers and security forces
intervene at an early stage before situations become dangerous. Furthermore, such
timely identification can aid in assessing the efficiency of implemented plans and
strategies, allowing for early detection of vulnerabilities and potential improve-
ment points.

The architecture of the cloud-based DL framework comprises three major com-
ponents: Preprocessing, Motion Descriptor, and Pushing Detection and Annota-
tion. The first component aims to capture a live camera stream of crowds, process
it, and then display it on a web client in real-time. At the same time, it collects
only the data required for detection purposes from the live stream. Simulta-
neously, the second component, Motion Descriptor, aims to extract the crowds
motion characteristics at the patch level from the collected data. More specifi-
cally, this component estimates the motion direction, magnitude, and associated
spatio-temporal information from the crowds and accordingly visualizes them as
motion maps. This component integrates a robust deep optical flow model (GPU-
based pre-trained RAFT model [39]) with the color wheel method to accurately
and rapidly generate the map patches every two seconds from the live stream.
Finally, the Pushing Detection and Annotation component utilizes the adapted
and trained EfficientNetV2B0-based CNN model [37] to analyze the maps and
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detect pushing patches accurately. Notably, it directly annotates the regions that
contain pushing behavior on the live stream on the web client. Simultaneously,
the component stores the annotated data in the cloud storage, where the stored
data is blurred, ensuring the privacy of individuals is maintained. Moreover, the
framework uses live capturing technology and a cloud environment to provide
more powerful computational resources, help collect video streams of crowds in
real-time, and provide early-stage results.

A new dataset has been created to train and evaluate the classifier and the
overall framework under various scenarios. This dataset was generated using a
new video called Entrance 2 [58], in addition to the previously utilized videos la-
beled 110, 150, 270, and 280 [57]. Notably, Entrance 2 has a setup with a 90°
corner and two gates. Like the prior framework, this dataset contains map patches
categorized as pushing and non-pushing. The final dataset comprises 2,257 push-
ing map patches and 1,684 non-pushing map patches. Additionally, to evaluate
the overall quality of the proposed framework, measuring its computational time
is also required. For this purpose, to simulate acquiring the actual inputs, we
created a live video stream of the crowded event entrances using video recordings
of entrances and a virtual camera on a web client. In this context, we changed
the camera’s input to the video recordings. Then, the cloud-based framework was
executed to display the live camera stream on the web client and directly annotate
pushing patches on the live stream. Simultaneously, the computational time has
been calculated for each component in the framework.

The experimental findings indicate that the proposed framework detected push-
ing patches from the live camera stream of crowded event entrances with 87 %
accuracy rate within a reasonable time delay.

2.3 Publication III:

A Novel Voronoi-based Convolutional Neural Network Frame-

work for Pushing Person Detection in Crowd Videos

While the first two frameworks focused on identifying pushing behavior at the
patch level, publication IIT introduced a novel framework for detecting such be-
havior within video recordings of crowds at the microscopic level. Analyzing the
dynamics of pushing behavior at the microscopic level can yield more precise in-
sights into crowd behavior and interactions, such as knowledge into transferring
such behavior to neighbors. This accurate understanding helps create more effec-
tive crowd management strategies and improves the design of public spaces and
events, leading to safer and more comfortable crowds. Additionally, it can be
asserted that patch-level detection is not facilitative for modeling purposes. For
a model to accurately replicate pushing behavior, it is imperative to comprehend
the phenomena at the individual level. This approach allows for the development
of more reliable and accurate models.

The new framework employs a combination of DL algorithm and Voronoi Di-
agram technique to address the complex task of microscopic-level detection of
pushing behavior in crowd videos. Additionally, it uses pedestrian trajectory
data as an auxiliary input source. The framework comprises two main compo-
nents: Feature Extraction and Labeling. The first component aims to extract
deep features from each individual’s behavior, which the Labeling component can
use to classify pedestrians as pushing and non-pushing. The Feature Extraction
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2.4. PUBLICATION IV: GPS-BASED DATA SYSTEM

component consists of two modules: Voronoi [59]-based local region extraction
and EfficientNetV1B0-based deep feature extraction. In the first module, a new
Voronoi-based method was developed for determining the local regions associated
with each person in the input video over time. Subsequently, these regions are fed
into EfficientNetV1B0-based CNN in the second module to extract the deep fea-
tures of each person. Each local region encapsulates the crowd dynamics around a
single person, reflecting potential interactions between that person and his neigh-
bors. This region plays the primary role in guiding the proposed framework to
focus on microscopic behavior. On the other hand, the second component em-
ploys a fully connected layer with a Sigmoid activation function to analyze the
extracted deep features and annotate the individuals involved in pushing within
the video.

The framework was trained and evaluated on a new dataset created for this
purpose. The dataset consists of a training set, a validation set for the learn-
ing process, and two test sets for the evaluation process. The samples of these
sets are either pushing or non-pushing local regions. In this context, the pushing
region means its pedestrian contributes to pushing, while the non-pushing sam-
ple indicates that its individual follows the social norm or queuing. The dataset
was created from six real-world videos selected from the data archive hosted by
Forschungszentrum Jilich [57, 58]. The training, validation, and the first test set
use five specific videos of experiments (named 110, 150, 270, 280, and Entrance_2)
for generating their samples. Moreover, the second test set employs a video of ex-
periment number 50 [57] for its samples. The final dataset contains 3,384 pushing
local regions and 8,994 non-pushing local regions.

The experimental findings demonstrate that the proposed framework achieved
an accuracy of 85% on the first test set and 82 % on the second test set.

2.4 Publication IV:
On the Exploitation of GPS-based Data for Real-time Visualiza-

tion of Pedestrian Dynamics in Open Environments

In addition to the above studies, publication IV introduced an intelligent and
low-cost GPS-based system for online and real-time visualization of pedestrian
dynamics at open environments using GPS data. This system aims to mitigate
pushing behavior and associated risks by helping reduce dense areas that can
easily lead to pushing, especially in large and open events. It provides real-time
visualized maps that capture ongoing pedestrian movement, as well as heat maps
to track crowded areas. These maps empower event organizers and security teams
to regulate crowd flow effectively, thereby maintaining low-density conditions.
Furthermore, it enables attendees to find less crowded areas, further alleviating
crowd density.

Publication IV introduced the system based on a custom mobile application, a
built-in GPS sensor in smartphones, a web-based system, and visualization tech-
niques. Notably, the organizers, security teams, and attendees can conveniently
view the maps online via a web browser. The system comprises five main compo-
nents:

1. Mobile-based Data Acquisition. A custom mobile application installed
on client smartphones identifies their location using built-in GPS sensors
in their smartphones. The application then transmits this GPS data to a
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dedicated web server in real-time, prioritizing user privacy by only collecting
location data (latitude and longitude) within the event area.

2. Pre-Processing of GPS Data. This component filters incoming location
data based on two criteria: whether the data falls within the event’s geo-
graphical bounds and its accuracy within a five-meter.

3. Data Repository Component. The received data is stored in two separate
database tables (archive and live). The archive table serves as a comprehen-
sive repository for all location data, while the live table maintains only the
current locations for real-time visualization.

4. Post-Processing of GPS Data. This component keeps the live table up-
to-date by storing only the current locations of active attendees. It also
prepares the data in JSON format for the final component.

5. Real-time Visualization. This last component visualizes the real-time
location data on a web browser using point maps and heat maps. Point
maps display the individual current locations of attendees, while heat maps
categorize regions within the event based on crowd density: high, medium,
and low.

To assess the proposed system, a prototype was developed and hosted on a
web server, along with a mobile application developed for Android OS. The pro-
totype was then tested using both real-world and simulation experiments. The
real-world experiment was conducted in an open area of 37,000 square meters, em-
ploying multiple smartphones with the installed application to collect and transmit
real-time pedestrian location data to a web server. The main objectives of this
experiment are to: 1) Evaluate the system’s ability to automatically collect pedes-
trians’ position data. 2) Measure the accuracy of the collected GPS-based data
in open areas. 3) Calculate the computational time of each component within the
prototype. On the other hand, a series of simulation experiments were carried
out to measure the system prototype’s computational efficiency across a range of
position counts, from 100 to 5,000.

The experimental results revealed that the prototype: 1) Successfully captured
98.8% of the pedestrians’ current positions at one-second intervals. 2) Achieved
real-time data collection in an open environment within four meters of horizontal
accuracy, paired with real-time visualization capabilities.

Remarkably, the system offers real-time visualization of crowds in open areas
without requiring specialized equipment or sensors, making it cost-effective and
highly scalable for large venues. This means that the system is an effective solution
for helping manage crowds and minimize pushing behavior and its risks in large
open areas where camera coverage is challenging due to size or obstacles.
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Chapter 3

Discussion and Outlook

Within the scope of this thesis, a cutting-edge Al-based framework has been devel-
oped to analyze video recordings and live streams of crowds, explicitly targeting
the detection of pushing behavior. The progress made in this thesis not only high-
lighted certain limitations of the current work but also introduced open topics and
suggestions for further research directions in the future. This chapter discusses
some of these limitations, topics, and suggested solutions.

The current deep learning models used in the first three publications have
shown encouraging results. However, their training and evaluation relied on lim-
ited datasets collected from a maximum of seven real-world video experiments
captured by static and top-view cameras, potentially leading to an overfitting is-
sue. To enhance the models’ generality, employing transfer learning techniques
and expanding the datasets with additional scenarios could be useful.

In publication III, the proposed Voronoi-based CNN approach currently relies
on pedestrian trajectory data to identify individuals involved in pushing behavior
within the input video. However, such data is often unavailable in real-life sce-
narios. To address this limitation, we plan to integrate YOLOvVS into the existing
approach. This integration requires an annotated dataset for pedestrian heads in
dense crowds to train the YOLOv8 model. Such a model aims to help extract
each individual’s local region within the video, eliminating the need for trajectory
data.

At the same line, the approach presented in publication III currently processes
one frame per second to identify pushing behavior at the microscopic level. Utiliz-
ing a sequence of frames has the potential to capture more comprehensive feature
sets relevant to pushing behavior compared to a single-frame approach. To achieve
this, we plan to integrate YOLOvS, CNN, and Long Short-Term Memory (LSTM)
models into a unified approach. This enhanced approach aims to extract relevant
features from a sequence of frames in the input video, thereby improving the detec-
tion of pushing behavior at the microscopic level. In such a suggested approach,
CNN and LSTM can be trained using the current labeled pushing data, while
YOLOvVS requires an annotated dataset for pedestrian heads in dense crowds.

Deep Learning (DL) algorithms, particularly CNN models, have successfully
detected pushing behavior in crowd videos. However, this detection capability
relies on labeled datasets required for training the models. Manually establishing
ground truths from real-world video experiments for pushing datasets is challeng-
ing. As a solution, we recommend equipping each experiment participant with
specialized sensors to gather data that can aid in generating the ground truths
accurately.

The proposed GPS-based data system in publication IV was designed to work
exclusively with Android-based smartphones. To extend the system’s reach to a
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broader audience using diverse mobile platforms, developing an i0S-based mobile
application is required. Additionally, further experiments are essential to evaluate
the system’s performance. Furthermore, the system has limitations in indoor set-
tings due to the inherent constraints of GPS technology. However, by integrating
this system with Al and video surveillance, we potentially automate and enhance
the identification and visualization of crowd levels in outdoor and indoor areas,
along with pushing detection in those areas.

In general, timely and accurately detecting unmarked pedestrian heads in dense
crowd videos is crucial for practical visual analysis. Therefore, developing pre-
trained, adaptable models for real-life scenarios involving dense crowds is essential.

Real-world experiments of crowds are often conducted to study and understand
crowd behaviors, where it is possible to extract valuable information from crowds
under specific experimental conditions. However, these studies have limitations:
1) The results achieved under experimental conditions might differ from real-life
scenarios. 2) Some real-life scenarios are challenging to carry out experimentally.
3) Real-world experiments can be costly. Given these constraints and the avail-
ability of real-life crowd videos, developing automated methods to glean insights
from real-life crowds that help understand their dynamics would be beneficial.
Additionally, these methods must prioritize and address privacy considerations.
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Abstract Crowded event entrances could threaten the comfort and safety of
pedestrians, especially when some pedestrians push others or use gaps in crowds
to gain faster access to an event. Studying and understanding pushing dy-
namics leads to designing and building more comfortable and safe entrances.
Researchers—to understand pushing dynamics—observe and analyze recorded
videos to manually identify when and where pushing behavior occurs. Despite
the accuracy of the manual method, it can still be time-consuming, tedious, and
hard to identify pushing behavior in some scenarios. In this article, we propose a
hybrid deep learning and visualization framework that aims to assist researchers
in automatically identifying pushing behavior in videos. The proposed framework
comprises two main components: (i) deep optical flow and wheel visualization;
to generate motion information maps. (ii) A combination of an EfficientNet-B0-
based classifier and a false reduction algorithm for detecting pushing behavior at
the video patch level. In addition to the framework, we present a new patch-
based approach to enlarge the data and alleviate the class imbalance problem
in small-scale pushing behavior datasets. Experimental results (using real-world
ground truth of pushing behavior videos) demonstrate that the proposed frame-
work achieves an 86% accuracy rate. Moreover, the EfficientNet-B0-based classi-
fier outperforms baseline CNN-based classifiers in terms of accuracy.

Keywords: Deep Learning; Convolutional Neural Network, EfficientNet-B0-based
Classifier, Image Classification, Crowd Behavior Analysis, Pushing Behavior De-
tection, Motion Information Maps, Deep Optical Flow

1 Introduction

In entrances of large-scale events, pedestrians either follow the social norm of queu-
ing or force some pushing behavior to gain faster access to the events [1]. Pushing
behavior in this context is an unfair strategy that some pedestrians use to move
quickly and enter an event faster. This behavior involves pushing others and mov-
ing forward quickly by using one’s arms, shoulders, elbows, or upper body, as well
as using gaps among crowds to overtake and gain faster access [2, 3]. Pushing
behavior, as opposed to queuing behavior, can increase the density of crowds [4].
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Consequently, such behavior may lead to threatening the comfort and safety of
pedestrians, resulting in dangerous situations [5]. Thus, understanding pushing
behavior, what causes it, and the consequences are crucial, especially when de-
signing and constructing comfortable and safe entrances [6, 1]. Conventionally,
researchers have attempted to study pushing behavior manually by observing and
identifying pushing cases among video recordings of crowded events. For instance,
Liigering et al. [3] proposed a rating system on forward motions in crowds to un-
derstand when, where, and why pushing behavior appears. The system relies
on two trained observers to classify the behaviors of pedestrians over time in a
video (the behavior is classified into either pushing or non-pushing categories).
In this context, each category includes two gradations: mild and strong for push-
ing, and falling behind and just walking for non-pushing. For more details on
this system, we refer the reader to [3]. To carry out their tasks, the observers
analyzed top-view video recordings using pedestrian trajectory data and PeTrack
software [7]. However, this manual rating procedure is time-consuming, tedious,
and requires a lot of effort by observers, making it hard to identify pushing be-
havior, specifically when the number of videos and pedestrians in each video in-
crease [3]. Consequently, there is a pressing demand to develop an automatic
and reliable framework to identify when and where pushing behavior appears in
videos. This article’s main motivation is to help social psychologists and event
managers identify pushing behavior in videos. However, automatic pushing be-
havior detection is highly challenging due to several factors, including diversity
in pushing behavior, the high similarity and overlap between pushing and non-
pushing behaviors, and the high density of crowds at event entrances.

According to a computer vision perspective, automatic pushing behavior de-
tection belongs to the video-based abnormal human behavior detection field [8].
Several human behaviors have been addressed, including walking in the wrong di-
rection [9], running away [10], sudden people grouping or dispersing [11], human
falls [12], suspicious behavior, violent acts [13], abnormal crowds [14], hitting,
pushing, and kicking [15]. It is worth highlighting that pushing as defined in [15]
is different from the “pushing behavior” term in this article. In [15], pushing is a
strategy used for fighting, and the scene contains only up to four persons. To the
best of our knowledge, no previous studies have automatically identified pushing
behavior for faster access from videos.

With the rapid development in deep learning, CNN has achieved remarkable
performance in animal [16, 17] and human [13, 18] behavior detection. The main
advantage of CNN is that it directly learns the useful features and classifica-
tion from data without any human effort [19]. However, CNN requires a large
training dataset to build an accurate classifier [20, 21]. Unfortunately, this re-
quirement is unavailable in most human behaviors. To alleviate this limitation,
several studies have used a combination of CNN and handcrafted feature descrip-
tors [22, 23]. The hybrid-based approaches use descriptors to extract valuable
information. Then, CNN automatically models abnormal behavior from the ex-
tracted information [24, 25]. Since labeled data for pushing behavior are scarce,
the hybrid-based approaches could be more suitable for automatic pushing behav-
ior detection. Unfortunately, the existing approaches are inefficient for pushing
behavior detection [22]. Their main limitations are: (1) their descriptors do not
work well to extract accurate information from dense crowds due to occlusions,
or they cannot extract the needed information for pushing behavior representa-
tion [22, 26]; (2) Some used CNN architectures are not efficient enough to deal with
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the high similarity between pushing and non-pushing behaviors (high inter-class
similarity) and the increased diversity in pushing behavior (intra-class variance),
leading to misclassification [25, 26].

To address the above limitations, we propose a hybrid deep learning and visual-
ization framework for automatically detecting pushing behavior at the patch level
in videos. The proposed framework exploits video recordings of crowded entrances
captured by a top-view static camera, and comprises two main components: (1)
motion information extraction aims to generate motion information maps (MIMs)
from the input video. A MIM is an image that contains useful information for
pushing behavior representation. This component divides each MIM into several
MIM patches, making it easier to see where pedestrians are pushing. For this pur-
pose, recurrent all-pairs field transforms (RAFT) [27] (one of the newest and most
promising deep optical flow methods) and the wheel visualization method [28, 29]
are combined; (2) The pushing patch annotation adapts the EfficientNet-B0-based
CNN architecture (the EfficientNet-B0-based CNN [30] is an effective and simple
architecture in the EfficientNet family proposed by Google in 2019, achieving the
highest accuracy in the ImageNet dataset [31]) to build a robust classifier, which
aims to select the relevant features from the MIM patches and label them into
pushing and non-pushing categories. We utilized a false reduction algorithm to
enhance the classifier’s predictions. Finally, the component outputs pushing the
annotated video showed when and where the pushing behaviors appeared.

We summarize the main contributions of this article as follows:

1. To the best of our knowledge, we proposed the first framework dedicated to
automatically detecting when and where pushing occurs in videos.

2. An integrated EfficientNet-B0-based CNN, RAFT, and wheel visualization
within a unique framework for pushing behavior detection.

3. A new patch-based approach to enlarge the data and alleviate the class im-
balance problem in the used video recording datasets.

4. To the best of our knowledge, we created the first publicly available dataset
to serve this field of research.

5. A false reduction algorithm to improve the accuracy of the proposed frame-
work.

The rest of this paper is organized as follows: Section 2 reviews the related work
of video-based abnormal human behavior detection. In Section 3, we introduce
the proposed framework. A detailed description of dataset preparation is given
in Section 4. Section 5 discusses experimental results and comparisons. Finally,
the conclusion and future work are summarized in Section 6.

2 Related Work

Existing video-based abnormal human behavior detection methods can be gener-
ally classified into object-based and holistic-based approaches [25, 26]. Object-
based methods consider the crowd as an aggregation of several pedestrians and
rely on detecting and tracking each pedestrian to define abnormal behavior [32].
Due to occlusions, these approaches face difficulties in dense crowds [33, 34]. Al-
ternatively, holistic-based approaches deal with crowds as single entities. Thus,
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they analyze the crowd itself to extract useful information and detect abnormal
behaviors [25, 34, 24]. In this section, we briefly review some holistic-based ap-
proaches related to the context of this research. Specifically, the approaches are
based on CNN or a hybrid of CNN and handcrafted feature descriptors.

Tay et al. [35] presented a CNN-based approach to detect abnormal actions
from videos. The authors trained the CNN on normal and abnormal behaviors to
learn the features and classification. As mentioned before, this type of approach
requires a large dataset with normal and abnormal behaviors. To address the lack
of large datasets with normal and abnormal behaviors, some researchers applied
a one-class classifier using datasets of normal behaviors. Obtaining or prepar-
ing a dataset with only normal behaviors is easier than a dataset with normal
and abnormal behaviors [36, 34]. The main idea of the one-class classifier is to
learn from the normal behaviors only; to define a class boundary between the
normal and not defined (abnormal) classes. Sabokrou et al. [36] utilized a new
pre-trained CNN to extract the motion and appearance information from crowded
scenes. Then, they used a one-class Gaussian distribution to build the classifier
from datasets with normal behaviors. In the same way, the authors of [34, 37] used
datasets of normal behaviors to develop their one-class classifiers. Xu et al. used
a convolutional variational autoencoder to extract features in [34]. Then, mul-
tiple Gaussian models were employed to predict abnormal behavior. Ref. [37]
adopted a pre-trained CNN model for feature extraction and a one-class support
vector machines to predict abnormal behavior. In another work, Ilyas et al. [24]
used pre-trained CNN along with a gradient sum of the frame difference to ex-
tract relevant features. Afterward, three support vector machines were trained
on normal behavior to detect abnormal behavior. In general, the one-class clas-
sifier is popular when the abnormal behavior or target behavior class is rare or
not well-defined [38]. In contrast, the pushing behavior is well-defined and not
rare, especially in high-density and competitive scenarios. Moreover, this type of
classifier considers the new normal behavior as abnormal.

In order to overcome the drawback of CNN-based approaches and one-class
classifier approaches, several studies used a hybrid-based approach with a multi-
class classifier. Duman et al. [22] employed the classical Farnebéck optical flow
method [23] and CNN to identify abnormal behavior. The authors used Farnebick
and CNN to extract the direction and speed information. Then, they applied a
convolutional long short-term memory network for building the classifier. In [39],
the authors used a histogram of gradient and CNN to extract the relevant fea-
tures, while a least-square support vector was employed for classification. In a
similar line of the hybrid approaches, Direkoglu [25] combined the Lucas-Kanade
optical flow method and CNN to extract the relevant features and detect “escape
and panic behaviors”. Almazroey et al. [26] employed mainly a Lucas-Kanade
optical flow, pre-trained CNN, and feature selection (neighborhood component
analysis) methods to select the relevant features. The authors then applied a sup-
port vector machine to generate a trained classifier. Zhou et al. [40] presented a
CNN method for detecting and localizing anomalous activities. The study inte-
grated optical low with a CNN for feature extraction and it used a CNN for the
classification task.

In summary, hybrid-based approaches have shown better accuracy than CNN-
based approaches on small datasets [41]. Unfortunately, the reviewed hybrid-based
approaches are inefficient for dense crowds and pushing behavior detection due
to (1) their feature extraction parts being inefficient for dense crowds; (2) The
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reviewed approaches cannot extract all of the required information for pushing
behavior representation; (3) Their classifiers are not efficient enough toward push-
ing behavior detection. Hence, the proposed framework combines the power of
supervised EfficientNet-B0-based CNN, RAFT, and wheel visualization methods
to solve the above limitations. The RAFT method works well for estimating opti-
cal flow vectors from dense crowds. Moreover, the integration of RAFT and wheel
visualization helps to simultaneously extract the needed information for pushing
behavior representation. Finally, the adapted EfficientNet-B0-based binary classi-
fier detects distinet features from the extracted information and identifies pushing
behavior at the patch level.

3 The Proposed Framework

This section describes the proposed framework for automatic pushing behavior
detection at the video patch level. As shown in Figure 1, there are two main
components: motion information extraction and pushing patches annotation. The
first component extracts motion information from input video recordings, which
is further exploited by the pushing patch annotation component to detect and
localize pushing behavior, producing pushing annotated video. The following
subsections discuss both components in more detail.

3.1 Motion Information Extraction

This component employs RAFT and wheel visualization to estimate and visualize
the crowd motion from the input video at the patch level. The component has
two modules, a deep optical flow estimator and a MIM patch generator.

The deep optical flow estimator relies on RAFT to calculate the optical flow
vectors for all pixels between two frames. RAFT was introduced in 2020; it is a
promising approach for dense crowds because it reduces the effect of occlusions
on optical flow estimation [27]. RAFT is based on a composition of CNN and
recurrent neural network architectures. Moreover, RAFT has strong cross-dataset
generalization and its pre-trained weights are publicly available. For additional
information about RAFT, we refer the reader to [27]. This module is based on the
RAFT architecture with its pre-trained weights along with three inputs, which are
a video of crowded event entrances, the rotation angle of the input video, and the
region of interest (ROI) coordinates. To apply RAFT, firstly, we determine the
bounding hox of the entrance area (ROI) in the input video V. This process is
based on user-defined left—top and bottom-right coordinates of the ROI in the
pixel unit. Then, we extract the frame sequence F' = {f; |t =1,2,3,...,T} with
ROI only from V, where f; € R***3 w and h are the f; width and height,
respectively, 3 is the number of channels, t is the order of the frame fin V, and T
is the total number of frames in V. After that, we rotate the frames (based on the
user-defined angle) in F' to meet the baseline direction of the crowd flow that is
used in the classifier, which is from left to right. The rotation process is essential
to improve the classifier accuracy because the classifier will be built by training the
adapted EfficientNet-BO on the crowd flow from left to right. Next, we construct
from F' the sequence of clips C = {¢;|i =1,2,3,...} and ¢; is defined as

i = { flimyx(s—1)+1> Ja—1)x(s=1)42> - - - » Ji—1)x (s=1) 45> (1)
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Figure 1: The architecture of the proposed automatic deep learning framework. n and m are
two rows and three columns, respectively, for patching. Clip size s is 12 frames. MTM: motion
information map. P: patch sequence. L: a matrix of all patches labels. L": an updated L by
false reduction algorithm. V: the input video. ROI: region of interest (entrance area). angle:
the rotation angle of the input video.

where s is the clip size. Finally, RAFT is applied on ¢;, to calculate the dense dis-
placement field d; between f(;_1)x(s—1)+1 and f(i_1)x(s—1)+s- Lhe output of RAFT
of each pixel location (z,y) in ¢; is a vector, as shown in.

(u(z,y)av{z,y})c‘ = RAFT((E-: y)-‘-'d)': (2)

where u and v are horizontal and vertical displacements of a pixel at the {z,y)
location in ¢;, respectively. This means d; is a matrix of the vector values for the
entire ¢;, as desecribed in
(w,h)
= { U )} ®
(zy)=(L,1)

In summary, d; is the output of this module and will act as the input of the
MIM patch generator module.

The second module, the MIM patch generator, employs the wheel visualiza-
tion to infer the motion information from each d;. Firstly, the wheel visualization
calculates the magnitude and the direction of each motion vector at each pixel
(z,y) in d;. Equations (3) and (4) are used to calculate the motion direction and
magnitude, respectively. Then, from the calculated information, the wheel visual-
ization generates MIM;, where MIM; € R**"3_ In MIM, the color refers to the
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motion direction and the intensity of the color represents the motion magnitude
or speed. Figure 2 shows the color wheel scheme (b) and an example of MIM
(MIMs;) (c) that is generated from cgr, whose first and last frames are fig; and
fa0s, Tespectively (a). cs7 is taken from the experiment 270 [42].

0((z,y))e, = 71 arctan(m} (4)
Uiz,y)
mag(<I: y))fs = u%z,.y) + U{Qz,y} (5)

a. First (f3g7) and last (f4gg) frames for clip c37 b. Color wheel scheme.

P1,37 P237  P237

P4.37 Psa7 Ps.a7

c. MiMs7 d. MIM-patches e. Annotated frame (f397)

Figure 2: An illustration of two frames (experiment 270 [42]), color wheel scheme [29], MIM, MIM
patches, and annotated frame. In sub-figure (e), red boxes refer to pushing patches, while green
boxes represent non-pushing patches.

To detect pushing behavior at the patch level, the MIM patch generator divides
each M 1M; into several patches. A user-defined row (n) and column (m) are used
to split MIM; into patches {p; € R@W/mx&/mx3 | — 12 ... nxm }, where k
is the order of the patch in MIM;. Afterward, each p;; is resized to a dimension of
224 x 224 x 3, which is the input size of the second component of the framework.
For example, M IMj; in Figure 2¢ represents an entrance with dimensions 5 x
3.4 m on the ground, and it is divided into 2 x 3 patches {py 37 | k < 6} as given
in Figure 2d. These patches are equal in pixels, whereas the area that is covered
by them is not necessarily equal. The far patches from the camera cover a larger
viewing area compared to close patches; because the far-away object has fewer
pixels per m than a close object [43]. In Figure 2d, the average width and height
of the py 37 are approximately 1.67 x 1.7 m.

In summary, the output of the motion information extraction component can
be described as P = {p;; € RZ*203 | p <p x m & i < |C|}, and will serve as
input for the second component of the framework.

3.2 Pushing Patches Annotation

This component localizes the pushing patches in ¢; € C, annotates the patches in
the first frame (f(;_1)x(s_1)+1) of each ¢;, and stacks the annotated frame sequence
F'={flli=1,2,...,|C|} as a video. The Adapted EfficientNet-B0-based clas-
sifier and false reduction algorithm are the main modules of this component. In
the following, we provide a detailed description.

32



PUBLICATION I

The main purpose of the first module is to classify each pr; € P as pushing
or non-pushing. The module is based on EfficientNet-B0 and real-world ground
truth of pushing behavior videos. Unfortunately, the existing effective and simple
EfficientNet-B0 is unsuitable for detecting pushing behavior because its classifi-
cation is not binary. However, binary classification is required in our scenario.
Therefore, we modify the classification part in EfficientNet-BO to support a bi-
nary classification. The module in Figure 1 shows the architecture of the adapted
EfficientNet-B0. Firstly, it executes a 3 x 3 convolution operation on the input
image with dimensions of 224 x 224 x 3. Afterwards, the next 16 mobile in-
verted bottleneck convolutions are used to extract the feature maps. The final
stacked feature maps € R™7*12%0 where 7 and 7 are the dimensions of each fea-
ture map, and 1280 is the number of feature maps. The following global average
pooling2D (GAP) layer reduces the dimensions of the stacked feature maps into
1 x 1 x 1280. For the binary classification, we employed a fully connected (FC)
layer with a ReLU activation function and a dropout rate of 0.5 [44] before the
final FC. The final layer operates as output with a sigmoid activation function to
find the probability d of the class of each p;; € P.

In order to generate the trained classifier, we trained the adapted EfficientNet-
B0 with pushing and non-pushing MIM patches. The labeled MIM patches were
extracted from a real-world ground truth of pushing behavior videos, where the
ground truth was manually created. In Sections 4 and 5.1, we show how to
prepare the labeled MIM patches and train the classifier, respectively. Overall,
after several empirical experiments (Section 5.2), the trained classifier on MIM
patches of 12 frames produces the best accuracy results. Therefore, our framework
uses 12 frames for the clip size (s). Moreover, the classifier uses the threshold for
determining the label I;; of the input py; as:

I 1 (pushing class) ifd>0.5 ©)
ki 0 (non-pushing class) if § < 0.5

Finally, the output of this module can be described as L = {lx; € 0,1 | k <
nx m & i < |C|} and will perform as the input of the next module.

In the second module, the false reduction algorithm aims to reduce the number
of false predictions in L, which improves the overall accuracy of the proposed
framework. Comparing the predictions (L) with the ground truth pushing, we
notice that the time interval of the same behavior of each patch region could help
improve the accuracy of the framework. We assume a threshold value of % second.
This value is based on visual inspection.

The example in Figure 3 visualizes the {l;; | k < 3 & i < 4} on the first
frame of ¢;, 9, c3, and ¢4 in the video. Each ¢; represents % second. ¢; (Figure
3a) contains one false non-pushing, ps;, while the same region of the patch in
{ca, 3, ¢4} is true pushing (Figure 3b-d). This means, we have two time intervals
for {ps; | i < 4}. The first has one clip (1) (Figure 3a) with a duration of
% second, which is lesser than the defined threshold. The second time interval
contains three clips ({ca, c3,ca}), with durations equal to the threshold. Then
the algorithm changes the prediction of ps; to “pushing”, while it confirms the
predictions of ps 9, po3, and pa 4. Algorithm 1 presents the pseudocode of the false
reduction algorithm. Lines 2-8 show how to reduce the false predictions of the
patches in {¢; | i < |c| —2}. Then, lines 9-16 recheck the first two clips (¢, c2) to
discover the false predictions that are not discovered by lines 2-8. After that, lines
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Algorithm 1 False Reduction

Input:

matriz[N,M] «+ L

Output:

L’

1: fori + 0,1,...,N do

2 for j«0,1,....M -2 do
& Excepting the last two clips
3: if matrix[i, j| # matrix[i, j + 1] then
4: if count(matrix[i, j] in matrix[i, j +2 to j +4]) > 1 then
5: matrix[i, j + 1]+ not matrix[i, j + 1]
6: end if
T end if
8: end for
& Recheck the first two clips
9: if matrix[i, 0 to 2] is not identical then
10: if matrix[i, 1] is not in matrix[i, 2 to 4] then
11: matrix[i, 1]+ not matrix[i, 1]
12: end if
13: if matrix[i, 0] not in matrix[i, 1 to 3] then
14: matrix[i, 0]+ not matrix[i, 0]
15: end if
16: end if
& For the last two clips
17: if matrix[i, M — 1] # matrix[i, M — 2] then
18: if matrix[i, M — 1] # matrix[i, M — 3] then
19: matrix[i, M — 1]+ not matrix[i, M — 1]
20: end if
21: end if
22 if matrix[i,M — 1] # matrix[i,M — 2] then
23: if matrix[i, M — 1] = matrix[i, M — 3] then
24: matrix[i, M — 2|+ not matrix[i,M — 2]
25: end if
26: end if
27 if matrix[i, M — 1] = matrix[i, M — 2] then
28: if matrix[i, M — 1] not in matrix[i, M — 5 to M — 3] then
20: matrix[i, M — 1]+ not matrix[i, M — 1]
30: matrix[i M — 2]+ not matrix[i, M — 2|
31: end if
32: end if
33: end for
34: L' «+ matriz

Figure 3: Examples of the visualized classifier predictions with ground truth pushing. The images
represent the first frames {fi, fia, fos, faa} of {c1,e9,c3,c4} in a video, respectively; the video is
for experiment 110 [42]. Red boxes: pushing patches. Green boxes: non-pushing patches. Blue
circles: ground truth pushing. FNP: false non-pushing. TP: true pushing.
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17-32 focus on the last two clips {c¢|-1, ¢c|}. Finally, the updated L is stored in
L', which can be described as L' = {l},; €0,1 | k<nxm & i < |C|}.

After applying the false reduction,algorithm, the pushing patch annotation
component based on L’ identifies the regions of pushing patches on the first frame
for each c; to generate the annotated frame sequence F'. Finally, all annotated
frames are stacked as a video, which is the final output of the proposed framework.

4 Datasets Preparation

This section prepares the required datasets for training and evaluating our clas-
sifier. In the following, firstly, four MIM-based datasets are prepared. Then, we
present a new patch-based approach for enlarging the data and alleviating the
class imbalance problem in the MIM-based datasets. Finally, the patch-based
approach is applied to the datasets.

4.1 MIM-based Datasets Preparation

In this section, we prepare four MIM-based datasets using two clip sizes, Farnebéck
and RAFT optical flow methods. Two clip sizes (12 and 25 frames) are used to
study the impact of the period of motion on the classifier accuracy. Selecting
a small clip size (s) for the MIM sequence (MIM®%#) leads to redundant and ir-
relevant information, while a large size leads to a few samples. Consequently,
we chose 12 and 25 frames as the two clip sizes. The four datasets can be de-
scribed as RAFT-MIM®:2, RAFT-MIM®%2, Farnebéck-MIM®®2, and Farnebiick-
MIM®2:. For more clarity, the “RAFT-MIM®2” term means that a combination
of RAFT and wheel visualization is used to generate the MIM?%2. As mentioned
before, the EfficientNet-B0 learns from MIM sequences generated based on RAFT.
Therefore, RAFT-MIM®2_based and RAFT-MIM%>-based datasets play the pri-
mary role in training and evaluating the proposed classifier. Moreover, we create
Farnebick-MIM®2-based and Farnebick-MIM%-based datasets to evaluate the
impact of RAFT on the classifier accuracy. The pipeline for preparing the datasets
(Figure 4) is illustrated below.

Data Collection and Manual Rating

1 Pl s iz z
MM .—"""' — B 2 §
n P 83 :
i i z
RAFT and Wheel : :
Visualiza MIM Samples MIM-based Dataset

MIM Labeling and Datasets Creation

Figure 4: The pipeline of MIM-based dataset preparation.
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4.1.1 Data Collection and Manual Rating

In this section, we discuss the data source and the manual rating methodology
for the datasets. Five experiments were selected from the data archive hosted by
the Forschungszentrum Jiilich under CC Attribution 4.0 International license [42].
The experiments mimicked the crowded event entrances. The videos were recorded
by a top-view static camera with a frame rate of 25 frames per second and 1920
x 1440 pixels resolution. In addition to the videos, parameters for video undis-
tortion and trajectory data are available. In Figure 5, the left part sketches
the experimental setup and Table 1 shows the different characteristics of the se-
lected experiments.

¥im
[ERS
- »

-3 -2 -1 0 1 2 3
xim

Figure 5: ROI in the entrance. (Left) experimental setup with the red dot indicating the coor-
dinate origin [42], (right) overhead view of an exemplary experiment. The original frame in the
right image is from [42]. The entrance gate width is 0.5 m. The rectangle indicates the entrance
area (ROI). L: length of ROI in m. According to the experiment, the width of the ROI (w) varies
from 1.2 to 5.6 m.

Table 1: Characteristics of the selected experiments.

Experiment * Width (m) Pedestrians Direction Frames **
110 1.2 63 Left to right 1285
150 5.6 57 Left to right 1408
170 1.2 25 Left to right 552
270 34 67 Right to left 1430
280 34 67 Right to left 1640

* The same names as reported in [42]; ** The number of frames that contain pedestrians in the ROL

Experts performing the manual rating are social psychologists who developed
the corresponding rating system [3]. PeTrack [7] was used to track each pedestrian
one-by-one, over every frame in the video experiments. Pedestrian ratings are
annotated for the first frame when the respective participant becomes visible in
the video. The first rating can be extended to the whole video and every frame
if that pedestrian does not change his/her behavior. If there is a behavioral
change during the experiment, then the rating is also changed. Likewise, it can be
extended to the rest of the frames if there is no additional change in the behavior.
The rating process is finished after every frame is filled with ratings for every
pedestrian. The behaviors of pedestrians are labeled with numbers € {0,1,2}; 0
indicates that a corresponding pedestrian does not appear in the clip, while 1 and
2 represent non-pushing and pushing behaviors, respectively. Two ground truth
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files (MIM®2 and MIM®>) for each experiment were produced for this paper.
Further information about the manual rating can be found in [3].

4.1.2 MIM Labeling and Dataset Creation

Three steps are required to create the labeled MIM-based datasets. In the first
step, we generated the samples from the videos; the samples were: RAFT-MIM®:2,
RAFT-MIM®>, Farnebick-MIM®:?, and Farnebick-MIM?2 sequences. The MIM
represents the crowd motion in the ROI, which is presented by the rectangle
in Figure 5. It is worth mentioning that the directions of the erowd flows in the
videos are not similar. This difference could influence building an efficient classi-
fier because changing the direction is one candidate feature for pushing behavior
representation. To address this problem, we unified the direction in all videos
from left to right before extracting the samples. Additionally, to improve the
efficiency of the datasets, we discarded roughly the first seconds from each video
to guarantee that all pedestrians started to move forward.

Based on the ground truth files, the second step labels MIMs in the four MIM
sequences into pushing and non-pushing. Each MIM that contains at least one
pushing pedestrian is classified as pushing; otherwise, it is labeled as non-pushing.

Finally, we randomly split each dataset into three distinct sets: 70% for train-
ing, 15% for validation, and 15% for testing. The 70%-15%-15% split ratio is
one of the most common ratios in the deep learning field [45]. The information
about the number of pushing and non-pushing samples in the training, validation
and test sets for the four MIM-based datasets is given in Table 2. As can be
seen from Table 2, our MIM-based datasets suffer from two main limitations: lack
of data and a class imbalance problem, since less than 20% of samples are non-
pushing.

Table 2: Number of labeled samples in training, validation, and test sets for each MIM-
based dataset.

Experiment
Dataset 110 150 170 270 280 All
P NP P NP P NP P NP P NP P NP Total
Training 66 16 76 14 28 5 61 20 8 11 3lr 75 302
Validation 132 3 15 3 5 1 13 6 18 2 64 15 79
2 €}
RAFT-MIM®= s 2 3 15 3 5 1 13 6 18 2 6 15 70
Total 92 22 106 20 38 7 8 41 122 15 445 105 550
Training 30 6 35 6 13 1 20 13 40 4 147 30 177
Validation 6 2 7 1 3 1 6 2 8 1 30 7 37
2 €.
RAFT-MIM®: s 6 2 7 1 3 1 6 2 8 1 30 7 7
Total 9 10 490 8 19 3 41 17 56 6 207 44 951

Farnebéick-MIM%:2 It has the same samples as the RAFT?:2 sets while they are generated using Farnebiick.
Farnebick-MIM%% It has the same samples as the RAFT%% sets while they are generated using Farnebick.
P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and

280: names of the video experiments.

4.2 The Proposed Patch-based Approach

In this section, we propose a new patch-based approach to alleviate the limitations
of the MIM-based datasets. The general idea behind our approach is to enlarge
the small pushing behavior dataset by dividing each MIM into several patches.
After that, we label each patch into “pushing” or “non-pushing” to create a patch-
based MIM dataset. The patch should cover a region that can contain a group
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of pedestrians, where the motion information of the group is essential for pushing
behavior representation. Section 5.2 investigates the impact of the patch area
on the classifier accuracy. To further clarify the idea of the proposed approach,
we take an example of a dataset with one pushing MIM and one non-pushing
MIM, as depicted in Figure 6. After applying our idea with 2 x 3 patches on the
dataset, we obtain a patch-based MIM dataset with four pushing, six non-pushing,
and two empty MIM patches. The empty patches are discarded. In conclusion,
the dataset is enlarged from two images into ten images. The methodology of our
approach, as shown in Figure 7 and Algorithm 2, consists of four main phases:
automatic patches labeling, visualization, manual revision, and patch-based MIM
dataset creation. The following paragraphs discuss the inputs and the workflow
of the approach.

3
O oM [}
. hood%
3 |
o 0°
O
a. Pushing MIM b. Non-pushing MIM
Patches
1
| ]
¥ v
1
v
c. Pushing MIM-patches d. Non-pushing MIM-patches

Figure 6: A simple example of the patch-based approach idea. Circles: ground truth pushing.
Red boxes: pushing patches. Green boxes: non-pushing patches.

Our approach relies on four inputs (Algorithm 2 and Figure 7, inputs part):
(1) MIM-based dataset, which contains a collection of MIMs with the first frame
of each MIM; the frames are used in the visualization phase; (2) ROI, n and m,
parameters that aim to identify the regions for patches; (3) Pedestrian trajectory
data to find the pedestrians in each patch; (4) Manual rating information (ground
truth file) helps to label the patches.
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Algorithm 2 Patch-based approach

Inputs:

dataset + collection of MIMs with the first frame of each MIM

ROI + matriz(le ft_top : [r_coordinate, y_coordinate], right_bottom : [r_coordinate, y_coordinate]]

7, m 4 the 1: of rows and col that are used to divide ROI into n % m regions.

trajectory « CBV file, each row represents (orderof frame(fi), pedestrian no., pizel r — coordinate, pirel y — coordinate)
ground_truth « CSV file, each row represents {orderof o or M I M, behavior of pedestrian 1, behavior of pedestrian 2, . . ., behavior
of last pedestrian)

Outputs:

pushing folder, non-pushing_folder

1: region + matriz([]] » Automatic patches labeling

2: pateh_width + (ROI1,0] — ROI,0])/m

3: patch_height + (ROI[1,1] — ROI[0, 1])/n

4: fori+ 0,1,...,n—1do

5: for j« 0,1,....m—1do

6 region.append([ROI[0, 0] + j x patch_width, ROI0, 1] + i x pateh_height, ROI0,0] + (j + 1) x patch_width, ROI0, 1] + (i +
1) x pateh_height])

T end for

8: end for

9: patch_width + (ROI[1,0] — ROID,0])/(m — 1)

10: patch_height + (ROI1, 1] ROID,1])/(n - 1)

11: fori+0,1,...,n—24d

12: l"nrjt—D,l, LT — 2do

13: region.nppend([ROI[D,D] + 7 % pateh_width, ROI0, 1] +i x patch_height, ROI[0, 0] + (j + 1) x patch_width, ROI[0, 1] + (i +

1) % patch_height])
end for

: end for
: file + CSV file
1 for each MIM ¢ dataset do
frame_order +— MIM name
ped + Filter (trajectory. frame_order)[1]
patch_no+— 1
for each patch_region € region do
behavior +— 1 //non-pushing
for each ped € patch_region do
if Filter{ground_truth. frame_order & ped) == 2 then
behavior + 2 [ /pushing
break

end if
end for
record +— [patch_no, frame_order, behavior]
file.write(record)
patch no <+ patchono + 1
end for
. end for

& Visualization
34: for each frame € dataset do
35: frame_order + framename
36: ped + Filter (trajectory. frame_order)[1]
a7 for each person € ped do

38: behavior +— Filter{ground_truth. frame_order & peraon)

39: if behavior ==2 then

39: draw a circle around the position {person[2], person[3]]) of pedestrian person[l] over frame
: end if

42: end for

43: for patch no + 1,2,. .. len(region) do

44: if Filter( file. frm'm: order & patch_ﬂa}[2] ==2 then

45: draw a red le around region[pateh_no — 1] over frame

46: else

AT: draw a green le around r [patch_no — 1] over frame

48: end if

49: end for

50: end for

& Manual revision
51: for each frame € dataset do
52: for each patch_region € region do

53: manusl revision of patch_region in frame

5d: if patch_region contains only a partof one pushing behavior and its labeliz 2 then

55: manually updating the label of the patch_region in file to 6, where 6 means unknown patch
56: end if

5T: end for

58: end for

= Patch-based MIM dataset creation
59: for each MIM & dataset do
60: MIM _order +— MIM name
61: for patch_no + 1,2,. .. len(region) do

62: patch +— MIM [region[patch_no — 1,1] : region|patch_no — 1, 3], [region[patch_noe — 1,0] : region[patchno — 1,2]]
63: if Filter( file MIM order &putch.no)[?] ——2 then

Gd: save patch to pushing folder under name “MIM _order — patch_no”

65: else if Filter(file MIM order & patch_no)[2] == 1 then

G6: save patch to non-pushing folder under name “M IM_order — patch_no”

67: end if

68: end for

69: end for

The first phase, automatic patch labeling, identifies and labels the patches in
each MIM (Algorithm 2, lines 1-33 and Figure 7, first phase). The phase contains
two steps: (1) Finding the regions of the patches. For this purpose, we find the
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Figure 7: The flow diagram of the proposed patch-based approach. n and m: the numbers of rows
and columns, respectively, that are used to divide ROI into n x m regions.

coordinates of the regions that are generated from dividing the ROI area into nxm
parts. The extracted regions can be described as {ax| k = 1,2,...,n x m}, where
ar. Tepresents a patch sequence {py; € R®/m>xh/mx3 15 -1 9 |MIM?|}, w
and h are the ROI width and height, respectively, see Algorithm 2, lines 1-15. We
should point out that identifying the regions is performed on at least two levels; to
avoid losing any useful information. For example, in Figure 8, we first split ROI
by 3 x 3 regions (Algorithm 2, lines 2-8), while in the second level, we reduce
the number of regions (2 X 2) to obtain larger patches (Algorithm 2, lines 9-15)
containing the missing pushing behaviors (pushing behaviors are divided between
the patches) in the first level; (2) Labeling the patches is executed according to
the pedestrians’ behavior in each patch pi;. Firstly, we find all pedestrians who
appear in MIM; (Algorithm 2, lines 18 and 19). Then, we label each p;; as
pushing if it contains at least one pushing behavior; otherwise, it is labeled as
non-pushing (Algorithm 2, lines 20-28). Finally, we store k, i, and the label of p;
in a CSV-file (Algorithm 2, lines 29 and 30).

o
o
5
®
o

a. Firstdevel (3 x 3) b. Second-level (2 x 2)
Figure 8 An example of identifying patches and the visualization process. The original frames are

from [42]. Red boxes: pushing patches. Green boxes: non-pushing patches. White circles ground
truth pushing.
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Despite the availability of the pedestrian trajectories, the automatic patch la-
beling phase is not 100% accurate, affecting the quality of the dataset. The
automatic way fails to label some of the patches that only contain a part of one
pushing behavior. Therefore, manual revision is required to improve the dataset
quality. To ease this process and make it more accurate, the visualization phase
(Algorithm 2, lines 34-50 and Figure 7, second phase) visualizes the ground truth
pushing (Algorithm 2, lines 36-42), and the label of each p;; (Algorithm 2, lines
43-49) on the first frame of M IM;. Figure 8 is an example of the visualization pro-
cess.

The manual revision phase ensures that each p;; takes the correct label by
manually revising the visualization data (Algorithm 2, lines 51-58 and Figure 7,
third phase). The criteria used in the revision are as follows: if pi; only has
a part of one pushing behavior, we change the labels to unknown labels in the
CSV-file generated by the first phase; otherwise, the label of p;; is not changed.
The unknown patches do not offer complete information about pushing behavior
or non-pushing behavior. Therefore, the final phase in our approach will discard
them. A good example of an unknown patch is patch 7, Figure 8a. This patch
contains a part of one pushing behavior, as highlighted by the arrow. On the other
hand, patch 12 in the aforementioned example (b) contains the whole pushing
behavior that we lose in discarding patch 7.

In the final phase (Algorithm 2, lines 59-69 and Figure 7, fourth phase), the
patch-based MIM dataset creation is responsible for creating the labeled patch-
based MIM dataset, containing two groups of MIM patches, pushing and non-
pushing. Firstly, we crop pi; from MIM; (Algorithm 2, line 62). Next, and ac-
cording to the labels of the patches, the pushing patches are stored in the first
group (Algorithm 2, lines 63 and 64), while the second group archives the non-
pushing patches (Algorithm 2, lines 65 and 66).

4.3 Patch-based MIM Dataset Creation

In this section, we aimed to create several patch-based MIM datasets using the
proposed patch-based approach and the MIM-based datasets. The main purposes
of the created datasets are: (1) to build and evaluate our classifier; (2) examine
the influence of the patch area and clip size on classifier accuracy.

In order to study the impact of the patch area on classifier accuracy, we used
two different areas. As we mentioned before, the regions covered by the patches
should be enough to house a group of pedestrians. Therefore, according to the
ROIs of the experiments, we selected the two patch areas as follows: 1 m x (1 to
1.2) m and 1.67 m x (1.2 to 1.86) m. The dimensions of each area refer to the
length x width of patches. Due to the width difference between the experiment
setups, there is a variation in the width between the experiments. Table 1 shows
the width of each experiment’s setup, while the length of the ROI area in all
experiment setups was 5 m (Figure 5, left part). For the sake of discussion, we
name the 1 m x (1 to 1.2) m patch area as the small patch, and 1.67 m x (1.2
to 1.86) m as the medium patch. Moreover, the small and medium patching with
the used levels are illustrated in Figure 9.

The patch-based approach is performed on the RAFT-MIM-based training sets
to generate patch-based RAFT-MIM training sets, while it creates patch-based
RAFT-MIM validation sets from the RAFT-MIM-based validation sets. The cre-
ated patch-based RAFT-MIM datasets with their numbers of labeled samples are
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Figure 9: The visualization of patching for the experiments. Numbers represent the patch order
in each experiment and level.

presented in Table 3. The table and Figure 10 demonstrate that the proposed ap-
proach enlarges the RAFT-MIM-based training and validation sets in both small
and medium patching. The approach roughly duplicates the MIM-based train-
ing and validation sets 13 times in small patching. While in medium patching,
each MIM-based training and validation set is duplicated 8 times. Moreover, our
approach decreases the class imbalance issue significantly.

Table 3: Number of labeled MIM patches in training and validation sets for each patch-based
MIM dataset.

Experiment
Dataset 110 150 170 270 280 All
P NP P NP P NP P NP P NP P NP Total
Training 350 279 523 932 121 97 528 TB4 634 B06 2156 2898 5054

Validation 67 53 89 161 20 21 91 169 108 162 375 566 941
Total 417 332 612 1093 141 118 619 953 742 968 2531 3464 5995

Training 156 124 249 419 53 42 236 379 324 354 1018 1318 2336
Validation 33 26 35 82 9 12 56 53 67 89 200 262 462
Total 189 150 284 501 62 54 202 432 391 443 1218 1580 2798

Training 237 131 298 354 05 38 540 439 698 326 1868 1288 3156
Validation 45 26 55 64 16 8 98 105 126 81 340 284 624
Total 282 157 353 418 111 46 638 544 824 407 2208 1572 3780

14

6

20

Patch-based small
RAFT-MIM&:2

Patch-based small
RAFT-MIM%:=

Patch-based medium
RAFT-MIM@:2

Training 107 58 142 151 42 242 219 338 146 871 585 1459
Validation 22 14 20 ar 8 56 27T 68 32 174 116 290
Total 120 72 162 188 50 208 246 406 178 1045 T4 1749
P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270 and 280: names of the video
experiments.

Patch-based medium
RAFT-MIM@:=

The approach reduces the difference percentage between the pushing and non-
pushing classes in the patch-based MIM training and validation sets as follows:
patch-based small RAFT-MIM®%2, from 62% to 16%. Patch-based medium RAFT-
MIM®:2, from 62% to 17%. Patch-based small RAFT-MIM®2, from 65% to 13%.
Patch-based medium RAFT-MIM@2 | from 65% to 20%.

Despite these promising results, we can only assess the efficiency of our ap-
proach when the CNN-based classifier is trained and tested on our patch-based
RAFT-MIM datasets. For this important process, we generate four patch-based
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RAFT-MIM test sets. The patch-based approach applies the first level of patching
on RAFT-MIM-based test sets (Table 2) to generate the patch-based RAFT-MIM
test sets. We apply the first level in the small and medium patching (because
we need to evaluate our classifier for detecting pushing behavior at the small and
medium patches). Table 4 shows the number of labeled MIM patches in the patch-
based RAFT-MIM test sets and their experiments. In Section 5.3, we discuss the
impact of the patch-based approach on the accuracy of CNN-based classifiers.

6000 4 I Non-pushing

I Pushing
5000 4
2000 1
; l
L i

MIM:.based Patch-based Patch-based MIM%=.based Patch-based Patch-based
small MIM%= medium MIM?:2 small MIM?= medium MIM?=

Training and validation sets

.
8
o

Number of samples
w
8
=1

Figure 10: The visualization of the number of pushing and non-pushing samples for the training
and validation sets.

Table 4: Number of labeled MIM patches in patch-based test sets.

Experiment
Test Set 110 150 170 270 280 All
P NP P NP P NP P NP P NP P NP Total
Patch-based small RAFT-MIM®= test 40 28 47 99 0 13 59 112 61 108 216 360 576
Patch-based small RAFT-MIM®® test 18 15 10 44 7 & 28 54 25 36 07 157 254

Patch-based medium RAFT-MIM92 test 26 16 25 47 8 6 47 41 50 40 156 150 306
Patch-based medium RAFT-MIM%2 test 13 8 8 26 5 5 22 19 20 18 68 76 144

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280:
names of the video experiments.

5 Experimental Results

This section presents the parameter setup and performance metrics used in the
evaluation. Then, it trains and evaluates our classifier and studies the impact
of the patch area and clip size on the classifier performance. After that, we
investigate the influence of the patch-based approach on the classifier performance.
Next, the effect of RAFT on the classifier is discussed. Finally, we evaluate the
performance of the proposed framework on the distorted videos.

5.1 Parameter Setup and Performance Metrics

For the training process, the RMSProp optimizer with a binary cross-entropy loss
function was used. The batch size and epochs were set to 128 and 100, respectively.
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Moreover, when the validation accuracy did not increase for 20 epochs, the training
process was automatically terminated. In the RAFT and Farnebéck methods, we
used the default parameters.

The implementations in this paper were performed on a personal computer
running the Ubuntu operating system with an Intel(R) Core(TM) i7-10510U CPU
@ 1.80GHz (8 CPUs) 2.3 GHz and 32 GB RAM. The implementation was written
in Python using PyTorch, Keras, TensorFlow, and OpenCV libraries.

In order to evaluate the performance of the proposed framework and our clas-
sifier, we used accuracy and F1 score metrics. This combination was necessary
since we had imbalanced datasets. Further information on the evaluation metrics
can be found in [46].

5.2 OQOur Classifier Training and Evaluation, the Impact of Patch Area
and Clip Size

In this section, we have two objectives: (1) training and evaluating the adapted
EfficientNet-B0-based classifier. (2) Investigating the impact of the clip size and
patch area on the performance of the classifier.

We compare the adapted EfficientNet-B0-based classifier with three well-known
CNN-based classifiers (MobileNet [47], InceptionV3 [48], and ResNet50 [49]) to
achieve the above objectives. The classification part in the well-known CNN ar-
chitectures is modified to be binary. The four classifiers train from scratch on
the patch-based RAFT-MIM training and validation sets. Then we evaluate the
trained classifiers on patch-based RAFT-MIM test sets to explore their perfor-
mance.

From the results in Table 5 and Figure 11, it is seen that our trained classifier on
the patch-based medium RAFT-MIM? dataset achieves better accuracy and F1
scores than other classifiers. More specifically, the EfficientNet-B0-based classifier
has 88% accuracy and F1 scores. Furthermore, the medium patches help all
classifiers to obtain better performances than small patches. At the same time,
MIM® is better than MIM®# for training the four classifiers in terms of accuracy
and F1 score.

Table 5: Comparison with well-known CNN-based classifiers on patch-based MIM datasets.

Patch-Based MIM Dataset
CNN-Based  “pro i RAFT-MIM?* Small RAFT-MIM%: Medium RAFT-MIM9= Small RAFT-MIM%=

Classifi
Ace.% F1 Score% Acc.% F1 Score% Acc.% F1 Score% Acc.%  F1 Score%
MobileNet 87 87 79 8 85 85 v 4
EfficientNet-B0 88 88 81 80 87 87 78 78
InceptionV3 85 85 76 75 80 80 6 4
ResNet50 80 80 70 0 74 73 7l 69

Acc.: accuracy. Bold: best results in each dataset. Gray highlight: Best results among all datasets.

The patch area influences the classifier performance significantly. For example,
medium patches improve the EfficientNet-B0-based classifier accuracy and F1
scores by 7% and 8%, respectively, compared to the small patches. On the other
hand, the effect of the MIM sequence (clip size) on the classifier performance
is lesser than the influence of the patch area. Compared to medium MIM®s,
medium MIM%2 enhances the accuracy and F1 score by 1% in the EfficientNet-
B0-based classifier.

In summary, the trained adapted EfficientNet-B0-based classifier on the patch-
based medium RAFT-MIM?:2 dataset achieves the best performance.
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Figure 11: Comparisons of four classifiers over all patch-based RAFT-MIM sets.

5.3 The Impact of the Patch-Based Approach

We evaluated the impact of the proposed patch-based approach on the perfor-
mance of the trained classifiers on patch-based medium RAFT-MIM@® training
and validation sets. To achieve that, we trained the four classifiers on RAFT-
MIM®:2-based training and validation sets (Table 2). Then the trained classifiers
were evaluated on patch-based medium RAFT-MIM®: test sets (Table 4).

Table 6 represents the performance of MIM-based classifiers. The comparison
between patch-based classifiers and MIM-based classifiers is visualized in Figure
12. We can see that the EfficientNet-B0-based classifier (MIM-based classifier)
achieves the best performance, which is a 78% accuracy and F1 score. In compar-
ison, the corresponding patch-based classifier achieves an 88% accuracy and F1
score. This means that the patch-based approach improves the accuracy and F1
score of the EfficientNet-B0-based classifier by 10%. Similarly, in other classifiers,
the patch-based approach increases the accuracy and F1 score by at least 15%
for each.

Table 6: MIM-based classifier evaluation.

Patch-Based Classifier MIM-Based Classifier
CNN-Based Classifier Accuracy% F1 Score% Accuracy% F1 Score%
MohbileNet 87 a7 7l ]
EfficientNet-B0 88 a8 8 T8
InceptionV3 85 a5 51 M
ResNet50 20 a0 51 M

5.4 The Impact of RAFT

In order to study the impact of RAFT on our classifier, we trained it using the
patch-based medium Farneback-MIM@2 dataset. Farnebick is one of the most
popular optical flow methods used in human action detection. Firstly, we created
patch-based medium training and validation and test sets from the Farnebéck-
MIM?:2-based dataset (Table 2). The training and validation sets were used to
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Figure 12: Comparison between MIM-based classifiers and patch-based classifiers.

train the EfficientNet-B0-based classifier (Farnebéck-based classifier), while the
test set was used to evaluate the classifier. Finally, we compared the perfor-
mance of the classifier based on RAFT with the classifier based on Farnebéck. As
shown in Table 7 and Figure 13, we find that RAFT improves the classifier per-
formance in all classifiers compared to Farnebdck. In particular, RAFT enhances
the EfficientNet-B0-based classifier performance by 8%.

Table 7: Comparison between RAFT-based classifiers and Farnebick-based classifiers.

RAFT-Based Classifier Farneback-Based Classifier
Classifier Accuracy% F1 Score% Accuracy% F1 Score%
MobileNet 87 87 81 81
EfficientNet-B0 88 88 80 80
InceptionV3 85 85 79 79
ResNet50 80 80 74 73
87.5 /’\ —s— RAFT-based classifiers
—#— Farneback-based classifiers
B85.01
# 825 \
g —
® —_—
5 BO.O @
< 77.5
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72.5 T T
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85.0 4 —#— Farneback-based classifiers
f B82.51
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L —
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MobileNet EfficientNet-BO InceptionV3 ResNet50

CNN-based classifier

Figure 13: Comparison between the RAFT-based classifier and the Farnebéck-based classifier.
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5.5 Comparison between the Proposed Classifier and the Customized
CNN-Based Classifiers in Related Works

In this section, we evaluate our classifier by comparing it with two of the most
recent customized CNN architectures (CNN-1 [25] and CNN-2 [35]) in the video-
based abnormal human behavior detection field. Customized CNNs have simple
architectures; CNN-1 used 75 x 75 pixels as an input image, three convolutional
layers followed by batch normalization and max pooling operations. Finally, a fully
connected layer with a softmax activation function was employed for classification.
On the other hand, CNN-2 resized the input images into 28 x 28 pixels, then
employed three convolutional layers with three max pooling layers (each max
pooling layer with strides of 2 pixels). Moreover, it used two fully connected
layers for predictions; the first layer was based on a ReLU activation function,
while the second layer used a softmax activation function. For more details on
CNN-1 and CNN-2, we refer the reader to [25, 35], respectively.

The three classifiers were trained and evaluated based on the patch-based
medium RAFT-MIM?2 dataset. As shown in Table 8 and Figure 14, CNN-1 and
CNN-2 obtained low accuracy and F1 scores (less than 61%), while our classifier
achieved an 88% accuracy and F1 score.

Table 8 Comparisons to the customized CNN-based classifiers in the related works.

Classifier Accuracy% F1 Score%
EfficientNet-B0 (our classifier) 28 28
CNN-1 [25] 60 54
CNN-2 [35] 54 35
90 4
80 4
701
£ 604
501
404
Ourcléssifier CNi\I-l CNi\I-Z

CNN-based classifier

Figure 14: Comparison between our classifier, CNN-1 [25] and CNN-2 [35] based on the patch-
based medium RAFT-MIM“:2 dataset.

In summary, and according to Figure 15, the reviewed customized CNN ar-
chitectures are simple and not enough to detect pushing behaviors because the
differences between pushing and non-pushing behaviors are not clear in many
cases. To address this challenge, we need an efficient classifier (such as the pro-
posed classifier).
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Figure 15: Confusion matrices for our classifier (a), CNN-1 [25] (b) and CNN-2 [35] (c) based on
the patch-based medium RAFT-MIM®?2 dataset.

5.6 Framework Performance Evaluation

Optical imaging systems often suffer from distortion artifacts [50]. According
to [51], distortion is “a deviation from the ideal projection considered in a pinhole
camera model, it is a form of optical aberration in which straight lines in the scene
do not remain straight in an image”. The distortion leads to inaccurate trajectory
data [52]. Therefore, PeTrack corrects the distorted videos before extracting the
accurate trajectory data, whereas the required information for the correction is
not often available. Unfortunately, training our classifier on undistorted videos
could decrease the framework performance on distorted videos. Therefore, in this
section, we evaluated the proposed framework performance on the distorted videos
and studied the impact of the false reduction algorithm on the framework perfor-
mance. To achieve both goals, firstly, we evaluated the framework’s performance
without the algorithm on the distorted videos. Then, the framework with the
algorithm was evaluated. Finally, we compared both performances.

A qualitative methodology was used in both evaluations; the methodology
consisted of four steps: (1) we applied the framework to annotate distorted clips
corresponding to MIMs in the RAFT-MIM®:2-based test set (Figure 16); the bot-
tom image is an example of an annotated distorted clip; (2) Unfortunately, we
could not visualize the ground truth pushing on the distorted frames because the
trajectory data were inaccurate. Therefore, we visualized ground truth pushing
on the first frame of the corresponding undistorted clips to the distorted clips,
Figure 16, top image. Then, we manually identified pushing behaviors on the dis-
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torted clips based on the corresponding annotated undistorted clips; This process
is highlighted by arrows in Figure 16. (3) We manually calculated the number of
true pushing, false pushing, true non-pushing, and false non-pushing. Note that
the empty patches were discarded. Non-empty patches containing more than half
of the pushing behaviors are labeled as pushing; otherwise, they are labeled as
non-pushing. Half of the pushing behavior means that more than half of the visi-
ble pedestrian body contributes to pushing; (4) Finally, we measured the accuracy
and F1 score metrics.

Figure 16: An example of the used qualitative methodology. (Top) the first frame of an undistorted
clip; (Bottom) the first frame of a distorted clip. White arrows: connecting the pushing locations
in both undistorted and distorted clips. TP: true pushing. FP: false pushing. TNP: true non-
pushing. White circles: ground truth pushing. Red boxes: predicted pushing patches. Green
boxes: predicted non-pushing patches.

From Table 9, we can see that our framework with the false reduction algorithm
can achieve an 86% accuracy and F1 score on the distorted videos. Moreover,
the false reduction improves the performance by 2%.

Table 9: The performance of the framework with and without false reduction on distorted videos.

Framework Accuracy% F1 Score%
Without false reduction 24 24
With false reduction a6 a6

6 Conclusions, Limitations, and Future Work

This paper proposed a hybrid deep learning and visualization framework for au-
tomatic pushing behavior detection at the patch level, particularly from top-view
video recordings of crowded event entrances. The framework mainly relied on the
power of EfficientNet-B0-based CNN, RAFT, and wheel visualization methods to
overcome the high complexity of pushing behavior detection. RAFT and wheel vi-
sualization are combined to extract crowd motion information and generate MIM
patches. After that, the combination of the EfficientNet-B0-based classifier and
false reduction algorithm detects the pushing MIM patches and produces the push-
ing annotated video. In addition to the proposed framework, we introduced an
efficient patch-based approach to increase the number of samples and alleviate the
class imbalance issue in pushing datasets. The approach aims to improve the ac-
curacy of the classifier and the proposed framework. Furthermore, we created new
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datasets using a real-world ground truth of pushing behavior videos and the pro-
posed patch-based approach for evaluation. The experimental results show that:
(1) the patch-based medium RAFT-MIM®: dataset is the best compared to the
other generated datasets for training the CNN-based classifiers; (2) Our classifier
outperformed the baseline well-known CNN architectures in image classification
as well as customized CNN architectures in the related works; (3) Compared to
Farneback, RAFT improved the accuracy of the proposed classifier by 8%; (4) The
proposed patch-based approach helped to enhance our classifier accuracy from
78% to 88%; (5) Overall, the proposed adapted EfficientNet-B0-based classifier
obtained 88% accuracy on the patch-based medium RAFT-MIM?: dataset; (6)
The above results were based on undistorted videos, while the proposed framework
obtained 86% accuracy on the distorted videos; (7) The developed false reduction
algorithm improved the framework accuracy on distorted videos from 84% to 86%.
The main reason behind decreasing the framework accuracy on distorted videos
was training the classifier based on undistorted videos.

The main limitations of the proposed framework cannot be applied in real time.
Additionally, it does not work well with recorded videos from a moving camera.
Moreover, the framework was evaluated only on specific scenarios of crowded
event entrances.

In future work, we plan to evaluate our framework in more scenarios of crowded
event entrances. Additionally, we plan to optimize the proposed framework to
allow real-time detection.
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Abstract Crowding at the entrances of large events may lead to critical and
life-threatening situations, particularly when people start pushing each other to
reach the event faster. Automatic and timely identification of pushing behavior
would help organizers and security forces to intervene early and mitigate danger-
ous situations. In this paper, we propose a cloud-based deep learning framework
for automatic early detection of pushing in crowded event entrances. The pro-
posed framework initially modifies and trains the EfficientNetV2B0 Convolutional
Neural Network model. Subsequently, it integrates the adapted model with an
accurate and fast pre-trained deep optical flow model with the color wheel method
to analyze video streams and identify pushing patches in real-time. Moreover, the
framework uses live capturing technology and a cloud-based environment to col-
lect video streams of crowds in real-time and provide early-stage results. A novel
dataset is generated based on five real-world experiments and their associated
ground truth data to train the adapted EfficientNetV2B0 model. The experimen-
tal setups simulated a crowded event entrance, while the ground truths for each
video experiment was generated manually by social psychologists. Several exper-
iments on the videos and the generated dataset are carried out to evaluate the
accuracy and annotation delay time of the proposed framework. The experimen-
tal results show that the proposed framework identified pushing behaviors with
an accuracy rate of 87% within a reasonable delay time.

Keywords: Artificial Intelligence, Computer Vision, Convolutional Neural Net-
work, Deep Learning, Image Classification, Intelligent System, Machine Learning,
Pushing Behavior Detection

1 Introduction

The entrances of large-scale events such as sport venues, concerts, and religious
gatherings are organized as bottlenecks for access control, ticket validation, or
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security check [1]. In these scenarios, some pedestrians might start pushing each
other to gain faster access to the event. According to Liigering et al. [2], pushing
for forward motion is defined as “a behavior that can involve using arms, shoulders,
or elbows; or simply the upper body, in which one person actively applies force
to another person (or people) to overtake, while shifting their direction to the
side or back, or force them to move forward more quickly.” Additionally, using
gaps in the crowd is considered as a strategy of pushing because it is a form of
overtaking [2]. Indeed, such behavior often increases the crowd’s density [1, 3],
resulting in the lack of comfort zones and, more importantly, can lead to dangerous
situations [4, 5]. In such cases, early pushing detection is essential, as it can
provide valuable information to the organizers and the security team for better
crowd management, thereby ensuring a smoother flow at entrances with higher
safety [6]. Since manual identification of pushing behavior in the early stages
can be complex or impossible, developing an automatic detection framework in
real-time or near real-time is crucial. However, automatic pushing detection is
still a challenging task due to the highly-dense crowds, the diversity of pushing
behavior strategies, and the varying features for pushing behavior representation,
which still requires further investigation and identification [7].

Surveillance cameras have recently been widely integrated with computer vi-
sion techniques to automatically identify abnormal behaviors from crowds [8, 9].
Within the realm of computer vision, pushing behavior can be classified as ab-
normal behavior. Machine learning algorithms, particularly Convolutional Neural
Network (CNN) architectures, have remarkably succeeded in several computer vi-
sion tasks; among these is abnormal behavior detection in crowds [10]. One of the
critical reasons for this success is that CNN can learn the relevant features [11, 12]
and classification automatically from data without human intervention [13, 14].
Although CNN architectures are powerful for modeling human behaviors, building
an accurate model requires a large training dataset [15, 16], which is often unavail-
able. Researchers have developed hybrid-based approaches that integrate CNN
with handcrafted feature descriptors to address this limitation [17, 18]. These ap-
proaches employ descriptors to obtain useful data, which is subsequently used by
CNN to learn and identify abnormal behavior automatically. Due to the limited
availability of labeled data for pushing behavior, hybrid-based approaches may
be more appropriate for automatically identifying pushing behavior. For exam-
ple, Alia et al. [7] proposed a hybrid deep learning and visualization framework
for pushing behavior detection in video recordings of crowded event entrances.
Unfortunately, this framework does not cope with early detection requirements
because it is slow and can not work with the live camera stream. To the best
of our knowledge, despite the numerous computer vision and machine learning
approaches reported in the literature, none of them can detect pushing behavior
in real-time or near real-time from crowds.

In order to address the above limitations, this article introduces a novel cloud-
based deep learning framework for pushing patch detection in live video streams
acquired from crowded event entrances. In this framework, we propose: 1) In-
tegrating a robust deep optical flow model (GPU-based pre-trained Recurrent
All-pairs Field Transforms (RAFT) [19]) with the color wheel method [20, 21] to
accurately and rapidly extract the visual motion information from the crowd. 2)
Adapting and training EfficientNetV2B0-based CNN [22] using visual motion in-
formation to detect pushing patches accurately. 3) Using live camera technology
and a cloud environment to provide more powerful computational resources and
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help to collect and annotate the video stream of the crowd in real-time.
The main contributions of this article are summarized as follows:

1. To the best of our knowledge, we propose the first real-time or near real-
time automatic framework dedicated to early identifying pushing behavior in
human crowds.

2. We introduce a new video analysis and pushing detection approach based on
integrating an adapted version of EfficentNetV2B0, GPU-based pre-trained
RAFT model, and color wheel method.

3. We create a novel dataset for pushing behavior, using five real-world experi-
ments with their associated ground truths. This dataset is not only used as a
training and evaluation resource for our adapted EfficientNetV2BO0, but can
also be a valuable asset for future research in this area.

4. We perform a thorough performance comparison of fifteen CNN architectures
for pushing detection using the generated dataset.

The rest of the paper is organized as follows. Section 2 reviews the related
studies of video-based abnormal human behavior detection. The proposed frame-
work is presented in Section 3. Section 5 discusses the evaluation process and
experimental results. Finally, the conclusion and future work are summarized in
Section 5.

2 Related Work

Generally, identifying pushing behavior in videos falls under the field of com-
puter vision, specifically in the task of abnormal behavior detection. CNNs have
played a crucial role in significant advancements in this area [23]. Consequently,
in this section, our objective is to examine several abnormal behavior detection
approaches that have been developed using CNNs.

A customized CNN-based method to identify abnormal activities in videos was
presented by Tay et al [24]. The authors trained a customized CNN for feature
extraction and labeling using normal and abnormal samples. In another study,
Alafif et al. [18] proposed two methods of identifying abnormal behaviors in small
and large-scale crowd videos. The first method employs a combination of a CNN
model and a random forest classifier to detect anomaly behaviors at the object
level in a small-scale crowd. In contrast, the second method utilizes two classifiers
to recognize abnormal behaviors in a large-scale crowd. The initial model, finds
the frames containing abnormal behaviors, while the second classifier, You Only
Look Once (version 2), processes those frames to identify abnormal behaviors
exhibited by individuals. The effectiveness of these techniques relies heavily on
utilizing CNNs to learn features from labeled datasets containing both normal and
abnormal behaviors. A large training dataset of normal and abnormal behaviors
is necessary to create an accurate and adaptable CNN model. However, obtaining
such a dataset is often unattainable for various abnormal behaviors, including
pushing behavior.

In order to overcome the shortage of large datasets comprising normal and ab-
normal behaviors, some researchers have utilized one-class classifiers with datasets
consisting only of normal behaviors. It is easier to obtain or create a dataset
that contains only normal behavior than a dataset that includes both normal
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and abnormal behaviors [25, 26]. The fundamental concept behind the one-class
classifier is to exclusively learn from normal behaviors, thereby establishing a
class boundary between normal and undefined (abnormal) classes. For example,
Sabokrou et al. [25] employed a pre-trained CNN for extracting motion and ap-
pearance information from crowded scenes. Subsequently, they utilized a one-class
Gaussian distribution to construct the classifier using datasets comprised of nor-
mal behavior. Similarly, in [26, 27], the authors developed one-class classifiers by
utilizing a dataset of normal samples. In [26], Xu et al. employed a convolutional
variational autoencoder to extract features, followed by the use of multiple Gaus-
sian models to detect abnormal behavior. Meanwhile, in [27], a pre-trained CNN
model was utilized for feature extraction, with one-class support vector machines
being used to identify abnormal behavior. Another study by Ilyas et al. [28]
utilized a pre-trained CNN and a gradient sum of the frame difference to extract
significant features. Following this, three support vector machines were trained
on normal behavior to detect abnormal behaviors. Generally, the one-class clas-
sifier is commonly used when the target behavior class or abnormal behavior is
infrequent or poorly defined [29]. However, pushing behavior is well-defined and
not rare, particularly in high-density and competitive situations. Furthermore,
this type of classifier regards new normal behavior as abnormal.

To overcome the limitations of CNN-based and one-class classifier approaches,
several studies have combined multi-class CNN with one or more handcrafted fea-
ture descriptors [28, 10]. As an example, Duman et al. [17] utilized the traditional
Farnebick optical flow approach in conjunction with CNN to detect anomalous
behavior. They extracted direction and speed information using Farnebidck and
CNN, and then utilized a convolutional long short-term memory network to con-
struct the classifier. Similarly, Hu et al. [30] employed a combination of the
histogram of gradient and CNN for feature extraction, while a least-squares sup-
port vector was used for classification. Almazroey et al. [31] focused on utilizing
the Lucas-Kanade optical low method, pre-trained CNN, and feature selection
method (neighborhood component analysis) to extract relevant features. They
then used a support vector machine to generate a trained classifier. In a different
study [32], Zhou et al. introduced a CNN-based method to identify and locate
abnormal activities. This approach integrated optical flow with CNN for feature
extraction and utilized a CNN for classification. Direkoglu [10] utilized the Lucas-
Kanade optical flow method and CNN to extract relevant features and identify
“escape and panic behaviors”.

Most of the hybrid-based approaches for abnormal behavior detection that
were reviewed have limited efficiency in detecting pushing since 1) The descriptors
used in these approaches can only extract limited essential data from high-density
crowds to represent pushing behavior. 2) Some CNN architectures commonly
utilized in these approaches may not be effective in dealing with the increased
variations within pushing behavior (intra-class variance) and the substantial re-
semblance between pushing and non-pushing behaviors (high inter-class similar-
ity), which can potentially result in misclassification. To benefit from the power
of hybrid-based approaches on a small dataset, Alia et al. [7] introduced a hybrid
framework for pushing patech detection in video recordings of crowds. The authors
utilized a robust handerafted feature descriptor and efficient CNN architecture in
this framework. In more details, the framework used a deep optical flow tech-
nique to extract the motion information from the crowds. This information is
then analyzed using an EfficientNetB0-based CNN and false reduction algorithms
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to identify and label pushing patches in the video. However, this framework does
not cope with early detection requirements due to three reasons. First, it can
only handle offline-recorded videos. Second, The deep optical flow technique em-
ployed in motion extraction is slow because it was performed on the CPU. Third,
it needs to identify pushing patches for the whole video before producing the
output. Moreover, as reported by the authors, the accuracy of the framework
decreases with complex scenarios of pushing.

To sum up, the reviewed methods have limitations regarding early pushing de-
tection in crowded human environments. On the one hand, approaches that rely
solely on CNNs for feature extraction require a large dataset containing normal
and abnormal behaviors, which is typically unavailable for pushing scenarios. On
the other hand, one-class classifiers are often used for infrequent or poorly defined
target behavior or abnormal behavior. However, pushing behavior is well-defined
and common, particularly in high-density and competitive scenarios. Addition-
ally, this type of classifier may misclassify new normal behavior as abnormal.
Although hybrid-based approaches may be more suitable for pushing behavior,
existing methods do not meet the requirements for early pushing detection in hu-
man crowds. To overcome these limitations, this article proposes a novel frame-
work that adapts the EfficientNetV2B0 model and integrates it with GPU-based
RAFT, wheel color method and live camera technology on a cloud platform. The
following section provides a detailed discussion of the framework.

3 The Proposed Framework

Inputs Client

i

Camera stream, ROI
coordinates, n, m

[intemet (=~ (&

A frame every two | | Annotation mask Accessing and
seconds, named keyframe | | retrieving

""""""""""""" ! Pushing Detection |
and Annotation |

i Motion Descriptor |

| Cloud-based Framework |

Figure 1: The proposed framework architecture. ROI refers to the entrance area (Region Of
Interest). User-defined row (n) and column (m) are used to split Motion Information Map (MIM)
into n x m patches.

In this section, we describe the proposed framework for early detection of push-
ing within the live camera stream of crowded event entrances, where the camera
is fixed and top-view. Fig. 1 shows the architecture of our framework which
comprises three major components: preprocessing; motion descriptor; and push-
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ing detection and annotation. The first component aims to collect and process
the live camera stream, as well as display the stream on the web client in real-
time. Simultaneously, the second component, the motion descriptor, employs the
GPU-based RAFT model and color wheel method [20, 21] to extract the visual
motion information from the crowd. Finally, the pushing detection and annotation
component utilizes the adapted and trained EfficientNetV2B0 model to analyze
the visual motion information and detect pushing patches. Notably, it directly
annotates the regions that contain pushing behavior on the live stream on the
web client. The following sections provide a more detailed discussion of the three
components.

3.1 Preprocessing

In order to reduce the computational time of the framework without sacrificing
performance, the preprocessing component directly displays the client camera
stream on the web client. At the same time, it collects only the data required
for detection purposes from the live stream. Let {f!} represents the live camera
stream, where t is the time of the frame f in the stream. Firstly, this component
displays the live stream on the web client in real-time without uploading it to the
cloud. Then, a frame f* is collected from the stream every two seconds, hereafter
referred to as keyframe (examples in Fig. 2a). After that, this component utilizes
the user-defined coordinates in pixel units to crop the entrance area ft (ROI
keyframe) from its corresponding keyframe f*. Finally, ft is submitted as an
input to the second component. For the brevity, we name the ROI keyframe
sequence {ft, ft*2, fi*4 ...} as {fi|i = 1,2,3,...}, where i is the order of the
ROI keyframe in the stream, and ¢ is the time in seconds. Fig. 2b displays two
examples of f;.

3.2 Motion Descriptor

Using this component, we aim to extract the crowd’s motion characteristics at
the patch level. More specifically, this component estimates the motion direction,
magnitude, and associated spatio-temporal information from the crowds, and ac-
cordingly visualizes this information. The displayed information includes relevant
features that are important for representing the pushing behavior.

As shown in Fig. 3, the component uses GPU-based pre-trained RAFT model
and color wheel method to achieve its purpose. Unlike the majority of the al-
ready used optical flow methods [34, 35], a GPU-based pre-trained RAFT model
performs well in terms of speed, accuracy, and generality for dense crowds [7, 19].
This model was created by training an ensemble of CNN and recurrent neural net-
works on the Sintel dataset to calculate the optical flow between two images. For
further details about the model, we refer the reader to [19]. Firstly, the compo-
nent uses the pre-trained model to calculate the displacement of each pixel {z,y)
between each pair of f; and f;,1, generating the dense displacement field d;. Each
pixel location (z,y) in d; is presented by a vector, given by

(W) V) fofinr = BAFT((2,9) 7, 5.1)» (1)

where u and v are horizontal and vertical displacements of a pixel at the {z,y)
location between f; and fi, 1, respectively. This implies that d; is a matrix of the

63



PUBLICATION IT

(c) Color wheel scheme (d) MM,

L ~W P

(e) 2 x 4 MIM;-patches (f) Annotation mask

(g) Annotated ROI keyframe ﬁ (h) Annotated frame f‘

Figure 2: An illustration of two keyframes (experiment Entrance 2 [33]), two ROI keyframes,
color wheel schema [21], MIM, 2 x 4 MIM-patches, annotation mask, annotated ROI keyframe
and annotated frame. ¢ is the time of the frame f in the stream. 7 is the order of the ROI keyframe
in the stream. s means second. The red boxes indicate pushing patches, while the green boxes
mean non-pushing patches.
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Inputs Motion Descriptor Outputs

Figure 3: Motion descriptor component pipeline. i is the order of the ROI keyframe in the stream.
d refers to a dense displacement field. MIM represents motion information map.

vectors, as deseribed in

d; = {(H{I,yh U(T‘.S’))fu.ﬁﬂ} ’
(z,y)=(1,1)

where w and h are the f; width and height, respectively.

(w;h)

(2)
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After the estimation of d;, the descriptor applies the color wheel method to
deduce the visual motion information from d;. It begins by calculating the direc-
tion # and magnitude of each vector (u, ,, v, ) in d; using Eq. (3) and Eq. (4),
respectively. The color wheel then visualizes the magnitude and direction informa-
tion to generate MIM; from the calculated information, where MIM; € R®*"*3
and 3 is the number of channels in MIM;. Fig. 2¢ is the color wheel scheme,
and Fig. 2d is an example of MIM; that is generated from the pair of f; and
fis1 (Fig. 2b). According to the wheel schema, the color represents the motion
direction, while the color intensity denotes the motion magnitude or speed.

U T,
0z, Y))ffrr = a1 arctan(—( ) ). (3)
u(r‘.y)
_ 2 2
mﬂ.g((x, y)}f{ - u(z:,ly) + U{I,y} (4)

The motion desecriptor component divides each MIM; into n x m MIM;-patches
to help the framework localizing pushing in ROI. The MIM;-patches can be ex-
pressed as {p;) € R@/m)x(h/m)x3 | 'k — 19 ... nxm}, where k is the order of
the patch in MIM;. For more clarity, MIM; (Fig. 2d) is divided into 2 x 4 MIM-
patches (Fig. 2e). It is worth noting that the patch should cover an area on the
ground that can accommodate a group of pedestrians, as crowd characteristics
are required for representing pushing behavior. To summarize, the MIM-patches
represent the output of the motion descriptor component and the input of the
next component.

3.3 Pushing Detection and Annotation

The primary purpose of this component (Fig. 4a) is to localize the pushing patches
in the live stream, as well as blurring and storing the annotated ROI keyframes in
the cloud storage. Labeling MIM-patches as pushing or non-pushing is the most
important aspect of localizing pushing in the live stream. Therefore, we created
an efficient binary classifier by adapting and training the EfficientnetV2B0 CNN
architecture [22] from scratch, which is then utilized to label the MIM-patches.

3.3.1 Adapted EfficinetNetV2B0 Architecture

EfficientNetV2BO0 is a convolutional neural network belonging to the Effivient-
NetV2 family, designed by the Google Brain team [22]. Such a family outperforms
state-of-the-art accuracy in different classification tasks with a far smaller model
and faster converging speed. EfficientNetV2BO is the smallest model in this family
and achieves high accuracy with minimal computational cost.

Fig. 4b depicts the overall architecture of the modified EfficientNetV2B0, which
firstly performs a 3 x 3 convolution operation on the input image, which has dimen-
sions of 224 x 224 x 3. Then it utilizes a combination of 5 Fused-MBConv (Fused
Mobile Inverted Residual Bottleneck Convolution) [36] and 16 MBConv [37] mod-
ules for extracting the feature maps (7x7x1280) from the input image. The model
then employs a global average pooling layer and a fully connected layer with a
Sigmoid activation function for binary classification. The global average pool-
ing2D layer transforms the dimensions of the stacked feature maps to 1x1x1280
and assigns them to the fully connected layer. Finally, the fully connected layer
with a Sigmoid activation function finds the probability § of the label of the input
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Figure 4: (a) The pipeline of pushing detection and annotation component. (b) Adapted Effi-
cientNet V2B0 Architecture.

MIM-patch. Then, the classifier uses the threshold to determine the class of the
MIM-patch as Eq. (3):

pushing if6 >05
non-pushing if 6§ < 0.5

Class(MIM — patch) = { (5)

It’s important to note that the classification part of this model differs from
the original EfficientNetV2B0, which was designed to classify images into 1,000
categories. However, pushing detection requires labeling the input image into one
of two possible classes.

As mentioned above, the main fundamental blocks in EfficientNetV2B0 for
feature extraction are MBConv and Fused MBConv [22]. As shown in Fig. 5,
MBConv firstly uses a 1 x 1 convolution operation to expand the input activation
maps to increase the depth of the feature maps. Next, 3 x 3 depthwise convolutions
are applied to reduce the computational complexity and the number of parameters.
Then, a Squeeze-and-Excitation (SE) block enhances the representation power of
the architecture. Finally, another 1 x 1 convolution is employed to reduce the
dimensionality of the output feature maps, producing the final output of this block.
Moreover, A residual connection is added to enhance the performance further.
Despite depthwise convolutions having fewer parameters, they can not often fully
utilize modern accelerators. In contrast, the Fused-MBConv tries to solve this
problem by replacing the depthwise and expansion convl x1 in MBConv conv3x3
with a single regular conv3x 3, resulting in a faster training process (see Fig. 5). It
is worth mentioning that using only Fused-MBConv in the architecture increases
parameters while slowing down the training. Therefore, EfficientNetV2B0 applied
a combination of MBConv and Fused-MBConv to improve training speed with a
small overhead on parameters and enhance the feature extraction process [22].

The following subsection will discuss the training process for the adapted Effi-
cientNetV2B0 model to classify MIM patches into pushing and non-pushing.
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Figure 5: Structure of MBConv and Fused-MBConv [22].

3.3.2 Adapted EfficientNetV2B0 Training

To classify the MIM-patches into pushing and non-pushing categories, we trained
the adapted EfficientNetV2B0 model (Fig. 4b) using new training and validation
sets comprising both types of MIM-patches (details about the dataset can be
found in Section 4.1). The model parameters used during the training process are
listed in Table 1, and were chosen based on experimentation to obtain optimal
performance with the given dataset. To prevent overfitting, we halted the training
if the validation accuracy did not improve after 20 epochs.

Table 1: The hyperparameter values used in the training process.

Parameter Value

Optimizer Adam

Loss function Binary cross-entropy
Learning rate 0.001

Batch size 2

Epoch 100

Fig. 4a shows the pipeline of the pushing detection and annotation component.
Firstly, the trained classifier labels MIM-patches p; ; received from the previous
component. Then, the current component displays an annotation mask of the
pushing patches in the live stream on the web client. Simultaneously, it blurs
and annotates the corresponding ROI keyframe f; before saving it in the cloud
storage. Notably, web clients can access this storage via an internet connection.

4 Evaluation and Results

This section introduces the dataset, implementation details, and performance met-
rics utilized in evaluating the proposed framework. The results of various exper-
iments conducted to assess the performance of our classifier and the proposed
framework are also discussed.

4.1 Dataset Preparation

Here, we explain how we prepared the labeled dataset (training, validation, and
test sets) for training and evaluating the adapted EfficientNetV2B0 as well as all
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models used in the evaluation. The dataset contains two classes of MIM-patches,
which are pushing and non-pushing.

4.1.1 Data Collection

In this section, we discuss the data sources used to obtain our dataset. The
sources are mainly based on video experiments of crowded event entrances, tra-
jectory data, and ground truth data for pushing behavior. Five video exper-
iments with their trajectory data are chosen from the data archive hosted by
Forschungszentrum Jiilich under CC Attribution 4.0 International license [38, 33].
Static top-view cameras were used to record the videos with a frame rate of 25
frames per second. It is worth mentioning that the selected experiments contain
varied characteristics, which help to improve the generality of the dataset, as seen
in Table 2. The ground truths for the last data source were manually created by
social psychologists, who established the definition of pushing behavior in forward
motion among crowds [2]. These ground truths indicate whether the behavior of
each pedestrian in every frame is classified as either pushing or non-pushing.

Table 2: Characteristics of the selected video experiments.

. Width . . . n x m
Video Entrance type Gates (m) Ped. Dur. Resolution ROI coordinates (pixel) patches *
110 Straight 1 1.2 63 53 1920 x 1440 (374, 548) , (1382, 864) 1x3
150 Straight 1 5.6 5T 57 1920 x 1440 (364 , 200) , (1378 , 1250) 3 =3
270 Straight 1 34 67 59 1920 x 1440 (374, 330) , (1390, 1070) 2x3
280 Straight 1 34 67 67 1920 x 1440 (374 ,330) , (1390, 1070) 2x3

Entrance 2 90° Corner 2 2 123 125 1920 x 1080 (213, 110) , (1337, 540) 2x4
The video experiments’ names are the same as reported in [38, 33]. “Dur.” means duration. “Ped.” is an abbreviation
for the number of pedestrians. ROI coordinates: left—top and bottom-right coordinates of ROI in the pixel unit. nxm:
number of rows and columns that are used to divide ROI into n » m regions, which are required for dividing MIM;
into n x m MIM;-patches. * These values ensure that the dimensions of each region on the ground are greater than
one meter, which is enough to accommodate a group of pedestrian [7].

4.1.2 Dataset Generation

The methodology of the labeled dataset generation, as seen in Fig. 6, includes three
steps: (1) MIM-patches generation, (2) MIM-patches labeling and (3) Labeled
dataset generation.

In the MIM-patches generation step, the motion descriptor component was
employed (Fig. 3) on the video experiments and their n X m patches (Table 2) to
produce MIM-patches.

b ;
£ ; f .
A} .
[ csv | - L : y | . o | Training
&
Ground truth data Pushing class 15%

- g
csv | I 15%
Trajectory data F MIM-patches [_] Mon-pushing patch Mon-pushing class Test
Inputs. MIM-patches Generation MIM-patches Labeleing Labeled Dataset Generation Sets.

Figure 6: The methodology of the labeled dataset generation.

To increase the number of patches, the component is applied four times for
each video with a different commencement; half a second is the delay duration
of each time compared to the previous time. According to [7], half a second
delay helps to generate diverse MIM-patches, while less than this period may
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result in redundant samples. Based on the trajectory and ground truth data, the
second step labels the patches as pushing and non-pushing. Patches are classified
as pushing if it contains at least one pushing behavior, and non-pushing if no
pedestrians engage in pushing behavior. On the other hand, the patches that only
show a portion of one pedestrian pushing are discarded; because they do not offer
complete information about pushing or non-pushing behavior. According to the
labels of the patches, the last step stores the patches in pushing and non-pushing
directories to create the labeled dataset. At the end, the generated dataset consists
of 2257 pushing and 1684 non-pushing samples. To generate the holdout data,
the produced dataset is randomly divided into three sets: 70% for training, 15 %
for validation, and 15 % for testing. This split ratio is one of the most commonly
used splitting methods in the deep learning field [39]. Table 3 shows the number
of pushing and non-pushing samples in the training, validation, and test sets.

Table 3: A number of samples in training, validation, and test sets in the generated dataset.

Video 110 150 270 280 Entrance_2 Total

P 122 182 215 258 BO8 1585

Training NP T2 206 187 182 525 1182
Total 194 388 412 440 1333 2767

P 26 38 45 55 172 336

Validation NP 15 44 42 38 112 251
Total 41 B2 87 93 284 BBT

P 26 38 45 55 172 336

Test NP 15 44 42 38 112 251
Total 41 B2 87 93 284 BBT

All Total 276 552 586 626 1901 3041

“All" refers to all sets. P means pushing. NP is non-pushing.

4.2 Implementation Details and Evaluation Metrics

In this article, all the experiments and implementations were conducted on Google
Colaboratory Pro (with a GPU NVIDIA of 15 GB and system RAM of 12.7 GB),
utilizing JavaScript and Python 3 programming languages along with Keras, Ten-
sorFlow 2.0, and OpenCYV libraries. Furthermore, all models in the experiments
were trained using the same hyperparameter values utilized in the training of our
adapted version of EfficientNetV2B0 (Table 1).

In order to evaluate the performance of our framework, we utilized a combina-
tion of metries, including accuracy, macro Fl-score, and area under the receiver
operating characteristic curve (AUC) over the test set. This set of metrics was
necessary due to the imbalanced nature of our dataset [40]. In addition to these
metrics, computational time was also measured as an essential performance met-
ric. The following provides a detailed explanation of these metrics.

Accuracy: the ratio of successfully classified MIM-patches to the total number
of samples in the test set, and mathematically can be defined as

TP+TN

Y = TP FP+ TN + FN’ ©)
where TP and TN denote correctly classified pushing and non-pushing patches,
respectively. FP and FN represent incorrectly predicted pushing (P) and non-
pushing (NP) samples. Accuracy is not enough to evaluate the classifier’s per-
formance over an imbalanced dataset, such as our used dataset. Therefore, we
used the macro Fl-score and AUC metrics, which are valuable for evaluating
imbalanced classification problems.
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Macro Fl-score: the mean of class-wise F1-scores as described in the formula
below:

F1— P)+ F1— NP
Macro F1 — score = score(P) +2 score( }, (7)

where F'l-score is the harmonic average of precision and recall as described in:

2 x precision x recall

F1 — score =

; (8)

where recall of pushing class is the ratio of correctly classified pushing MIM-
patches to all pushing samples, while precision of pushing class is the ratio of
correctly classified pushing patches out of all the samples labeled as pushing by
the classifier. Recall and precision are defined in Eq. (9) and Eq. (10), respectively.

precision + recall

TP
recall = m, (9)
TP (10)
precision = T_P—l— P

AUC is the area under the Receiver Operating Characteristics (ROC) curve.
ROC is a graph showing the performance of a classification model at all thresholds.
The ROC curve plots the false positive rate on the horizontal axis and the true
positive rate on the vertical axis. The AUC value ranges from 0 to 1, while a
model with an AUC of 1 is considered perfect, while a value of 0.5 indicates that
the model performs no better than random guessing.

Computational time: this metric was employed to calculate how long the pro-
posed framework takes to read, analyze and annotate every input, which is two
seconds of stream. In other words, computational time determines whether our
framework can detect pushing patches within a reasonable time or not.

4.3 Evaluation of Our Classifier Performance

We conducted three main comparative empirical experiments to evaluate the effect
of our modified EfficientNetV2BO0 classifier on the performance of the proposed
framework. The first experiment compared the proposed classifier against eleven
of the most popular CNN architectures. In the second experiment, we compared
it to two custom CNN architectures designed for detecting abnormal behavior.
Lastly, it was compared to CNN architecture used for pushing detection. Our
classifier and all other models were implemented, trained, and assessed utilizing
the same MIM-patches dataset, environment, and settings. Moreover, we utilized
accuracy, F'l-score, and AUC metrics to measure each model’s performance.

4.3.1 A Comparison with Eleven Popular CNNs

Table 4 depicts the popular CNN architectures used in the first experiment, as
well as the comparison results. It is clear that the adapted version of the Effi-
cientNetV2BO0 classifier outperformed the rest of the exploited classifiers. In par-
ticular, the proposed classifier achieved 87 % accuracy and 86 % F1-score, whereas
the second top model in this comparison, DenseNet169, produced an 83 % level
of both accuracy and F1-score. This finding is primarily attributable to Efficient-
NetV2B0’s superior efficiency for feature extraction compared to earlier CNN
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Figure 7: ROC curves of our classifier and eleven popular CNN models.

architectures. The main reason for this efficiency is the combination of MBConv
and Fused-MBConv blocks used in EFficientNetV2B0.

Table 4: Comparison results to the well-known CNN-based classifiers.

CNN Accuracy % Precision % Recall % Fl-score %
Xception [41] 81 81 81 a1
VGGI16 [42] 57 36 29 50
VGG19 [42] 61 61 62 62
ResNet50 [43] 80 il 81 79
ResNet50V2 [44] il 76 il 75
ResNet101 [43] 72 70 72 T0
ResNet101V2 [44] 72 T2 72 71
ResNet152V2 [44] 74 73 73 73
DeenseNet121 [45] i il i 79
DenseNet169 [45] 83 83 83 a3
NASNetMobile [46] 57 56 56 56
Our classifier 87 87 86 86

Furthermore, as shown in Fig. 7, the proposed classifier obtained the high-
est AUC score (93%) among all the models tested, while the next best model
achieving 85 %.

4.3.2 A Comparison with Customized CNNs in Abnormal Behavior Detection

Here, we have two objectives, 1) Evaluating the performance of some existing
CNN models developed to detect abnormal human behavior for pushing detection
purposes. 2) Further evaluation of our classifier. The customized architectures
are CNN-1 [10] and CNN-2 [24]. The first architecture, CNN-1, employed 75 x 75
pixels as an input image. Furthermore, three convolutional layers, batch nor-
malization, and max pooling operations were used for feature extraction. The
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developers of this model utilized a fully connected layer with a softmax activation
function for classification. The second architecture, CNN-2, downsized the input
images to 32 x 32 pixels before employing three convolutional layers with three
max-pooling layers. For classification, it used two fully connected layers, with the
first layer based on a ReLU activation function and the second layer employing a
softmax activation function.

The results in Fig. 8 and Fig. 9 show that our classifier surpassed the two clas-
sifiers in terms of accuracy, F1-score and AUC. Furthermore, as pushing detection
in crowded scenarios is highly complex, CNN-1 and CNN-2’s simple architectures
failed to identify pushing MIM-patches. In particular, CNN-1 outperformed CNN-
2, but it still produced unsatisfactory outcomes with accuracy, F1-score, and AUC

values of 57% , 56 %, and 56 %, respectively.
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Figure 8 Comparison results of our classifier and two customized CNNs.
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Figure 9: ROC curves of our classifier and the two customized CNNs.
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4.3.3 A Comparison with Related Work in Pushing Detection

Here, we compare the proposed classifier with the CNN architecture (Efficient-
NetV1B0) employed in Ref. [7], which is the only published work for detecting
pushing behavior for forward motion. Notably, this work does not meet the early
identification requirements. As demonstrated in Table 5 and Fig. 10, our combi-
nation of adapted EfficientNetV2B0 and MIMs achieved better performance than
integrating EfficientNetV1B0 with MIMs by a margin of at least 3% in accu-
racy and Fl-score. While EfficientNetV1B0 achieved 91% AUC, our classifier
achieved 93 %. This comparison highlights that our hybrid approach surpassed
the state-of-art method in pushing detection regarding the accuracy, Fl-score, and
AUC metries. In Section 4.4.2, we will analyze the computational time of both

approaches.

Table 5: Comparison results to the state-of-art pushing detection approach.

CNN Accuracy %  Precision % Recall % Fl-score %

State-of-art approach [7] 23 83 84 23
Our hybrid approach 87 26 a7 86
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Figure 10: ROC curves of our classifier and EfficientNetV1B0.

To summarize the three comparisons, the new hybrid approach based on adapted
EfficientNetV2B0 and MIMs outperformed all other tested combinations of CNN
models and MIMs in the experiments. This superiority is due to the power of
MBConv and Fused-MBConv blocks used in EfficientNetV2B0 for learning the
features. Based on the experiments, it can be concluded that our classifier en-

hanced the performance of the proposed framework.

4.4 The Overall Framework Evaluation

To evaluate the quality of the proposed framework, we not only evaluated its
accuracy and Fl-score, but also measured the computational time required for

each framework component.
4.4.1 Performance in terms of Accuracy and F1-score

The evaluation methodology used comprises several steps as follows: 1) To simu-
late acquiring the actual inputs, we created a live video stream of crowded event
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entrances using video recordings of entrances (Table 2) and a virtual camera on
a web client. In this context, we changed the camera’s input to the video record-
ings. Moreover, we down-scaled the dimensions of each video to half their original
resolution to reduce the computational time of the framework. 2) We executed
the cloud-based framework to display the live camera stream on the web client,
detect pushing patches and record the predicted labels for the test patches in a
file. 3) We counted the number of true pushing, false pushing, true non-pushing,
and false non-pushing for all videos by comparing the ground truth data with the
predicted labels for the test patches, Fig. 11 exhibits the confusion matrix that
presents them. 4) Finally, we computed the accuracy and Fl-score metrics. After
computing the accuracy and Fl-score metrics from the values in the confusion ma-
trix (as shown in Fig. 11), our proposed framework achieved an accuracy of 87 %,
precision of 87 %, recall of 86 %, and F1-score of 86 %. These results are consistent
with the corresponding quantitative outcomes in our adapted EfficientNetV2B0
classifier over the test set.

Table 6: The computational time of motion descriptor and detection components in our and the
baseline frameworks.

Baseline framework | Our framework

Motion information Detection and

Experiment extraction (s) Detection (s) Motion descriptor (s) annotation (s)
110 19.42 0.15 0.10 0.19
150 19.86 0.47 0.20 0.53
270 19.38 0.32 0.16 0.35
280 19.30 0.30 0.16 0.36
Entrance 2 13.51 0.41 0.11 0.45
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Figure 11: Confusion matrix for the proposed framework on all videos.

4.4.2 Computational Time Analysis

In order to evaluate the overall computational time of the proposed framework,
we computed the required time for each component in the framework. Then,
we compared the results against the corresponding parts in the baseline frame-
work [7]. After running both the proposed and baseline frameworks in the same
environment using twenty inputs, where each input is a two-second video stream,
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we calculated the average run-time of all runs. As mentioned in the previous
paragraph, our framework read the videos using a live camera, while the baseline
framework read the same videos directly. Fig. 12 depicts the time of each com-
ponent in the proposed framework over every experiment. As indicated by the
produced results, the preprocessing component took more than 50 % of the overall
time to collect and process keyframes from the client camera stream. The resolu-
tion of the keyframes primarily determines the time required for this component.
For example, experiments 110, 150, 270, and 280 took roughly the same time
because they have the same resolution, while experiment entrance_2 needed less
time because its resolution is lower. In contrast, the motion deseriptor component
took the least time compared to others, where the ROI resolution plays the most
critical role in this component speed. While in the pushing detection and anno-
tation component, the number of patches affects the computational time of this
component because each patch requires one classification process. Fig. 13 and Ta-
ble 2 display the ROI resolution and the number of patches in each experiment,
respectively.

In general, the computation time increases as the number of patches, frames
resolution, and ROI size increase. Fig. 12 shows that our framework needed less
than two seconds to collect, process, detect and annotate each input from the live
stream camera. This means that our framework can annotate the live camera
stream within 4 seconds; two seconds for the input duration and lower than two
seconds for identifying the pushing patches.
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Figure 12: Computational time of each component of the proposed framework for annotating two
seconds of stream.

The results in Table 6 show the comparisons between the motion descriptor,
and pushing detection and annotation components in our framework with the
corresponding parts in the baseline framework. The motion information extraction
part in the baseline framework is similar to the motion descriptor component
in our framework, whereas the motion information extraction is slow; it needs
more than 13.5 seconds to generate MIM-patches from two seconds of the video
stream. The main reason for this slowness is that it employed CPU-based RAFT
to estimate the optical flow vectors for all pixels in the frame. To address this
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Figure 13: Comparison between frame and ROI resolutions for each experiment.

problem, the motion descriptor in our framework implemented RAFT on GPU
to calculate the optical flow vectors for each pixel in ROIs instead of all pixels in
the frame. As shown in Fig. 13, the number of pixels in ROIs is lesser than 40 %
of the total pixels in the corresponding frames. As a result, the new component
took 0.2 seconds or less to produce MIM-patches from the two seconds of the live
stream. On the other hand, the baseline framework’s detection part is slightly
faster than the detection and annotation component in the proposed framework.
For example, the previous and new components required 0.47 and 0.53 seconds
to work with one input from experiment 150, respectively. It is important to
highlight that the detection part in the baseline framework only finds the labels
of the patches, whereas the component in our framework labels, annotates, blurs,
and stores the inputs.

In summary, the proposed cloud-based framework can annotate the pushing
patches in the live camera stream within four seconds and an accuracy rate of
87%.

5 Conclusion

This paper proposed a novel automatic framework for the early detection of push-
ing patches in crowded event entrances. The proposed framework is based on
live camera streaming technology, cloud environment, visualization method, and
deep learning algorithms. The framework first displays the live camera stream of
the entrances on the web client in real-time. Then, it relies on the color wheel
method and pre-trained RAFT model to extract the visual motion information
from the live stream. After that, the EfficientNetV2B0-based classifier is adapted
and trained to identify pushing patches from the extracted information. Finally,
the framework annotates the pushing patches in the live stream on the web client.
Additionally, it stores the annotated data in the cloud storage, where the stored
data is blurred to protect people’s privacy. In order to train and evaluate the clas-
sifier, a new dataset was generated using five real-world video experiments and
their associated ground truth data. The experimental results show that the frame-
work identified pushing patches from the live camera stream with 87 % accuracy
rate within a reasonable time delay.

One of the current limitations of the proposed framework is that it is only
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compatible with a fixed and top-view camera.

In future, the plan is to develop a new pushing data representation method
for machine learning. This method aims to generate dynamic patches based on
temporal, spatial, and size dimensions, focusing on one pedestrian for labeling
each patch. This could potentially help to generate a large dataset with a more
efficient sample representation.
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Abstract Analyzing the microscopic dynamics of pushing behavior within crowds
can offer valuable insights into crowd patterns and interactions. By identifying
instances of pushing in crowd videos, a deeper understanding of when, where, and
why such behavior occurs can be achieved. This knowledge is crucial to creating
more effective crowd management strategies, optimizing crowd flow, and enhanc-
ing overall crowd experiences. However, manually identifying pushing behavior at
the microscopic level is challenging, and the existing automatic approaches cannot
detect such microscopic behavior. Thus, this article introduces a novel automatic
framework for identifying pushing in videos of crowds on a microscopic level. The
framework comprises two main components: i) Feature extraction and ii) Video
detection. In the feature extraction component, a new Voronoi-based method is
developed for determining the local regions associated with each person in the
input video. Subsequently, these regions are fed into EfficientNetV1B0 Convolu-
tional Neural Network to extract the deep features of each person over time. In
the second component, a combination of a fully connected layer with a Sigmoid
activation function is employed to analyze these deep features and annotate the
individuals involved in pushing within the video. The framework is trained and
evaluated on a new dataset created using six real-world experiments, including
their corresponding ground truths. The experimental findings demonstrate that
the proposed framework outperforms state-of-the-art approaches, as well as seven
baseline methods used for comparative analysis.

Keywords: Artificial Intelligence, Deep Learning, Convolutional Neural Network,
Intelligent Video and Image Analytics, Intelligent Systems, Pushing Detection,
Crowd Dynamics

1 Introduction

With the rapid development of urbanization, the dense crowd has become widespread
in various locations, such as religious sites, train stations, concerts, stadiums,
malls, and famous tourist attractions. In such highly dense crowds, pushing be-
havior can easily arise, which may further increase crowd density. This could pose
a threat not only to people’s comfort but also to their safety [1, 2, 3, 4]. People
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may start pushing for different reasons. 1) Saving their lives in emergencies or
tense scenarios [5, 6, 7]. 2) Grabbing a limited resource, such as gaining access to
a crowded subway train [8, 9]. 3) Accessing a venue more quickly; for instance,
in crowded event entrances, some pedestrians start pushing others to enter the
event faster [10, 11, 12]. The focus of this article is the pushing that occurs in
crowded event entrances due to the availability of public real-world experiments
about such entrances.

In this context, Liigering et al. [10] defined pushing as “a behavior that can
involve using arms, shoulders, or elbows; or simply the upper body, in which
one person actively applies force to another person (or people) to overtake, while
shifting their direction to the side or back, or force them to move forward more
quickly”. Additionally, using gaps in the crowd is considered as a strategy of
pushing because it is a form of overtaking [10]. For more clarity, the definition
of pushing behavior adopted in this article, published in 2022, describes it as a
tactic pedestrians use to move forward more quickly through dense crowds [10],
rather than as a strategy for fighting [13].

Understanding the microscopic dynamics of pushing plays a pivotal role in
effective crowd management, helping safeguard the crowd from tragedies and pro-
moting overall well-being [14, 1, 15, 16, 17]. The study [10] has introduced a man-
ual rating system to understand pushing dynamics at the microscopic level. The
method relies on two trained psychologists to classify pedestrians’ behaviors over
time in a video of crowds into pushing or non-pushing categories, helping to know
when, where, and why pushing behavior ocecurs. However, this manual method is
time-consuming, tedious and prone to errors in some scenarios. Additionally, it
requires trained observers, which may not always be feasible. Consequently, an
increasing demand is for an automatic approach to identify pushing at the mi-
croscopic level within crowd videos. Detecting pushing behavior automatically is
a demanding task that falls within the realm of computer vision. This challenge
arises from several factors, such as dense crowds gathering at event entrances, the
varied manifestations of pushing behavior, and the significant resemblance and
overlap between pushing and non-pushing actions.

Recently, machine learning algorithms, particularly Convolutional Neural Net-
work (CNN) architectures, have shown remarkable success in various computer
vision tasks, including face recognition [18], object detection [19, 20, 21], image
classification [22] and abnormal behavior detection [23]. One of the key reasons for
this success is that CNN can learn the relevant features [24, 25, 26] automatically
from data without human supervision [27, 28]. As a result of CNN’s success in
abnormal behavior detection, which is closely related to pushing detection, some
studies have started to automate pushing detection using CNN models [29, 30, 31].
For instance, Alia et al. [29] introduced a deep learning framework that leverages
deep optical flow and CNN models for pushing patch detection in video record-
ings. Another study [30] introduced a fast hybrid deep neural network model
based on GPU to enhance the speed of video analysis and pushing patch iden-
tification. Similarly, the authors of [31] developed an intelligent framework that
combines deep learning algorithms, a cloud environment, and live camera stream
technology to annotate the pushing patches in real-time from crowds accurately.
Yet, the current automatic methods focus on identifying pushing behavior at the
level of regions (macroscopic level) rather than at the level of individuals (micro-
scopic level), where each region can contain a group of persons. For more clarity,
“patch level” refers to identifying regions that contain at least one person engaged
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in pushing behavior. In contrast, “individual level” refers to detecting the per-
sons joining in pushing. Fig. 1a shows a visualized example that demonstrates
the identification of pushing behavior based on levels of patch and individual. In
other words, the automatic approaches reported in the literature can not detect
pushing at the microscopic level, limiting their contributions to help comprehend
pushing dynamics in crowds. For example, they cannot accurately determine the
relationship between the number of individuals involved in pushing behavior and
the onset of critical situations, thereby hindering a precise understanding of when
a situation may escalate to a critical level.

To overcome the limitations of the aforementioned methods, this article intro-
duces a novel Voronoi-based CNN framework for automatically identifying individ-
uals engaging in pushing behavior in crowd video recordings, using a single frame
every second. It requires two types of input: the crowd’s video recordings and
individuals’ trajectory data. The proposed framework comprises two components:
feature extraction and detection. The first component utilizes a novel Voronoi-
based EfficientNetV1B0 CNN architecture for feature extraction. The Voronoi-
based method [32] integrates the Voronoi Diagram, Convex Hull [33], and a new
dummy point generation technique to identify the local region of each person every
second in the input video. The boundaries of local regions are determined based
on the input pedestrian trajectory data. Subsequently, the EfficientNetV1BO0 (ex-
cluding its original multiclass classification part) model [34] is used to extract
deep features from these regions. In this article, the local region is defined as the
zone focusing only on a single person (target person), including his surrounding
spaces and physical interactions with his direct neighbors. This region is crucial in
guiding the proposed framework to focus on microscopic behavior. On the other
hand, the second component utilizes a fully connected layer coupled with a Sig-
moid activation function to create a binary classification working instead of the
original multi-class classification part in the EfficentNetV1B0. This adaptation is
crucial for processing deep features and effectively differentiating between pushing
and non-pushing behaviors in individuals. Finally, the adapted EfficientNetV1B0
is trained from seratch on a dataset of labeled local regions generated from six
real-world video experiments with their ground truths [35].

The main contributions of this work are summarized as follows:

1. To the best of our knowledge, this article introduces the first framework for
automatically identifying pushing behavior at the individual level in videos
of human crowds. In contrast, previous works in the literature [29, 31, 30]
have focused on detecting such behavior at the patch level. Fig. 1a provides
a visualization of detection methods at individual and patch levels.

2. The framework utilizes a novel Voronoi-based approach with a trained and
adapted EfficientNetV1B0-based CNN model. The novel Voronoi-based ap-
proach incorporates the Voronoi Diagram, Convex Hull, and a new dummy
point generation technique.

3. The article introduces a new dataset comprising both pushing and non-
pushing local regions, derived from six real-world experiments, each with
corresponding ground truths. It is important to note that this dataset differs
from those in previous works [29, 31]. In the current dataset, the samples
consist of local regions. In contrast, in the previous datasets, each sample
represents a visual motion information map of the crowd within a specific
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Figure 1: Illustrated examples: a) Annotated frame with yellow rectangles, each representing a
patch, showing an example of pushing behavior detection at the patch level. Annotated frame
with red squares, illustrating pushing behavior detection at the individual level. b) Examples of
motion information map samples. ¢) Examples of local region samples.

patch — a region ranging from 1.2 to 2.4 m? on the ground — and a specific
duration, Fig. 1b and ¢ show examples of motion information maps and local
region samples. Additionally, the size of the new dataset is three times larger
than that of the previous datasets.

The remainder of this article is organized as follows. Section 2 reviews some
automatic approaches to abnormal behavior detection in videos of crowds. The
architecture of the proposed framework is introduced in Section 3. Section 4
presents the processes of training and evaluating the framework. Section 5 dis-
cusses experimental results and comparisons. Finally, the conclusion and future
work are summarized in Section 6.

2 Related Work

This section begins by providing an overview of Voronoi Diagrams-based Deep
Learning in Computer Vision. Subsequently, it explores CNN-based approaches
for automatic video analysis and detecting abnormal behavior in crowds. The dis-
cussion then shifts to techniques specifically designed for automatically identifying
pushing incidents within crowd videos.

2.1 Voronoi Diagram-based Deep Learning in Computer Vision

A Voronoi diagram partitions a plane into regions based on the distance to a
set of points, known as seeds. Each region is defined by all points closer to its
corresponding seed than any other (for more details about Voronoi diagram, see
Section 3.1.1, direct neighbor identification step). Recently, integrating Voronoi
diagrams with deep learning algorithms has led to the development of efficient
applications in various computer vision tasks. These tasks include visual-query-
based retrieval systems over image datasets [36], object detection [37], synthetic
dataset generation [38], and image classification [39, 40].
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2.2 CNN-based Abnormal Behavior Detection

Typically, behavior is considered abnormal when it is seen as unusual in specific
contexts. This implies that the definition of abnormal behavior depends on the
situation [41]. To illustrate, running inside a bank might be considered abnormal
behavior, while running at a traffic light could be viewed as normal [42]. Sev-
eral behaviors have been automatically addressed in abnormal behavior detection
applications in crowds, including walking in the wrong direction [43], running
away [44], sudden people grouping or dispersing [45], human falls [46], suspicious
behavior, violent acts [47], abnormal crowds [48], hitting, and kicking [13].

Tay et al. [41] developed a CNN-based method for identifying abnormal ac-
tivities from videos. The researchers specifically designed and trained a cus-
tomized CNN to extract features and label samples, using a dataset compris-
ing both normal and abnormal samples. Similarly, study [49] introduced a novel
CNN-based system for detecting abnormal erowd behavior in indoor and outdoor
settings. This system leverages the strengths of pre-trained DenseNet121 and
EfficientNetV2 models, which were fine-tuned for enhanced feature extraction.
Subsequently, the study introduced innovative modifications to multistage and
multicolumn models, specifically tailored to identifying various crowd behaviors,
including sudden motion changes, panic events, and human flock movement. A
new method using CNNs has been developed in [50] for the real-time detection
of abnormal situations, such as violent behaviors. This method comprises the
Convolutional Block Attention Module combined with the ResNet50 architecture
to enhance feature extraction. In [51], the authors proposed a Densely Connected
Convolutional Neural Network (DenseNet121)-based approach to identify abnor-
mal behaviors in surveillance video feeds, achieving near real-time performance.
Almahadin et al. [52] have developed an innovative model to identify abnormal
behaviors in video sequences of crowded scenes. They integrated convolutional
layers, Long Short-Term Memory networks, and a sigmoid-based output layer to
extract spatiotemporal features and detect abnormal behaviors effectively. Never-
theless, constructing accurate CNNs requires a substantial training dataset, often
unavailable for many human behaviors.

To address the limited availability of large datasets containing both normal
and abnormal behaviors, some researchers have employed one-class classifiers us-
ing datasets that exclusively consist of normal behaviors. Creating or acquiring
a dataset containing only normal behavior is comparatively easier than obtain-
ing a dataset that includes both normal and abnormal behaviors. [53, 54]. The
fundamental concept behind the one-class classifier is to learn exclusively from
normal behaviors, thereby establishing a class boundary between normal and un-
defined (abnormal) classes. For example, Sabokrou et al. [53] utilized a pre-trained
CNN to extract motion and appearance information from crowded scenes. They
then employed a one-class Gaussian distribution to build the classifier, utilizing
datasets of normal behavior. Similarly, in [54, 55], the authors constructed one-
class classifiers by leveraging a dataset composed exclusively of normal samples.
In [54], Xu et al. employed a convolutional variational autoencoder to extract
features, followed by the use of multiple Gaussian models to detect abnormal be-
havior. Meanwhile, in [55], a pre-trained CNN model was employed for feature
extraction, while one-class support vector machines were utilized for detecting
abnormal behavior. Another study by Ilyas et al. [56] conducted a separate study
where they utilized a pre-trained CNN along with a gradient sum of the frame dif-
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ference to extract meaningful features. Subsequently, they trained three support
vector machines on normal behavior data to identify abnormal behaviors. In gen-
eral, one-class classifiers are frequently employed when the target behavior class
or abnormal behavior is rare or lacks a clear definition [57]. However, pushing
behavior is well-defined and not rare, particularly in high-density and competitive
situations. Furthermore, this type of classifier considers new normal behavior as
abnormal.

In order to address the limitations of CNN-based and one-class classifier ap-
proaches, multiple studies have explored the combination of multi-class CNNs
with one or more handcrafted feature descriptors [56, 23]. In these hybrid ap-
proaches, the descriptors are employed to extract valuable information from the
data. Subsequently, CNN learns and identifies relevant features and classifications
based on the extracted information. For instance, Duman et al. [42] employed the
classical Farnebick optical flow method [58] and CNN to identify abnormal behav-
ior. They used Farnebdck and CNN to estimate direction and speed information
and then applied a convolutional long short-term memory network to build the
classifier. Hu et al. [59] employed a combination of the histogram of gradient
and CNN for feature extraction, while a least-squares support vector was used
for classification. Direkoglu [23] utilized the Lucas-Kanade optical flow method
and CNN to extract relevant features and identify “escape and panic behaviors”.
Almazroey et al. [60] used Lucas-Kanade optical flow, a pre-trained CNN, and fea-
ture selection methods (specifically neighborhood component analysis) to extract
relevant features. These extracted features were then used to train a support vec-
tor machine classifier. A framework to analyze video sequences in large-scale Hajj
crowds was proposed by Aldayri et al. [61]. It integrates convolution operations,
Convolutional Long Short-Term Memory, and Euclidean Distance to achieve its
objectives.

Hybrid-based approaches could be more suitable for automatically detecting
pushing behavior due to the limited availability of labeled pushing data. Nev-
ertheless, most of the reviewed hybrid-based approaches for abnormal behavior
detection may be inefficient for detecting pushing since 1) The descriptors used in
these approaches can only extract limited essential data from high-density crowds
to represent pushing behavior. 2) Some CNN architectures commonly utilized
in these approaches may not be effective in dealing with the increased variations
within pushing behavior (intra-class variance) and the substantial resemblance
between pushing and non-pushing behaviors (high inter-class similarity), which
can potentially result in misclassification.

2.3 CNN-based Pushing Behavior Detection

In more recent times, a few approaches that merge effective descriptors with robust
CNN architectures have been developed for detecting pushing regions in crowds.
For example, Alia et al. [29] introduced a hybrid deep learning and visualiza-
tion framework to aid researchers in automatically detecting pushing behavior in
videos. The framework combines deep optical flow and visualization methods to
extract the visual motion information from the input video. This information is
then analyzed using an EfficientNetV1B0-based CNN and false reduction algo-
rithms to identify and label pushing patches in the video. The framework has
a drawback in terms of speed, as the motion extraction process is based on a
CPU-based optical flow method, which is slow. Another study [30] presented a
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fast hybrid deep neural network model that labels pushing patches in short videos
lasting only two seconds. The model is based on an EfficientNetB1-based CNN
and GPU-based deep optical flow.

To support the early detection of pushing patches within crowds, the study [31]
presented a cloud-based deep learning system. The primary goal of such a system
is to offer organizers and security teams timely and valuable information that
can enable early intervention and mitigate hazardous situations. The proposed
system relies mainly on a fast and accurate pre-trained deep optical flow, an
adapted version of the EfficientNetV2B0-based CNN, a cloud environment and
live stream technology. Simultaneously, the optical flow model extracts motion
characteristics of the crowd in the live video stream, and the classifier analyzes
the motion to label pushing patches directly on the stream. Moreover, the system
stores the annotated data in the cloud storage, which is crucial to assist planners
and organizers in evaluating their events and enhancing their future plans.

To the best of our knowledge, current pushing detection approaches in the
literature primarily focus on identifying pushing at the patch level rather than
at the individual level. However, identifying the individuals involved in pushing
would be more helpful for understanding the pushing dynamics. Hence, this article
introduces a new framework for detecting pushing individuals in videos of crowds.
The following section provides a detailed discussion of the framework.

3 Proposed Framework Architecture

This section describes the proposed framework for automatic pushing person de-
tection in videos of crowds. As depicted in Fig. 2, there are two main components:
feature extraction and detection. The first component extracts the deep features
from each individual’s behavior. In contrast, the second component analyzes the
extracted deep features and annotates the pushing persons within the input video.
The following sections will discuss both components in more detail.

3.1 Feature Extraction Component

This component aims to extract deep features from each individual’s behavior,
which can be used to classify pedestrians as pushing or non-pushing. To accom-
plish this, the component consists of two modules: Voronoi-based local region
extraction and EfficientNetV1B0-based deep feature extraction. The first module
selects a frame from the input video every second and identifies each person’s lo-
cal region based on the pedestrian trajectory data within those extracted frames.
Subsequently, the second module extracts deep features from each local region
and feeds them to the next component for pedestrian detection. Before diving
into these modules, let us define the local region term at one frame.

A frame f; is captured every second from the input video. Here, ¢ represents
the timestamp, in seconds, since the start of the video and can range from 1 to T,
where T is the total duration of the video in seconds. We can analyze individual
pedestrians within each of these frames, such as f;. The positions are given by
discrete trajectories that assign a position (z,y); to each person i at frame fi:
({[i,t,z,y]}1;). Let N; denote the set of pedestrians whose Voronoi cells are
adjacent to that of pedestrian i. Specifically, pedestrian j belongs to A if and
only if their Voronoi cells share a boundary. The local region for pedestrian
at f;, L;, forms a two-dimensional closed polygon, defined by the positions of all
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Figure 2: The architecture of the proposed framework. In f;, f signifies an extracted frame, while
t indicates its timestamp in seconds, counted from the beginning of the input video (with ¢ taking
values like 1,2, 3,...). For a target person ¢ at f,, £;(f,) denotes the local region, while N;(f;)
represents the direct neighbors of i at f;. The input trajectory data denoted by tr assists the
Voroni-based local region extraction method in identifying the boundaries of each £;(f;). The
term tr_dummy refers to the data that includes the generated dummy points and those in tr. FC
stands for fully connected layer, while GAP refers to global average pooling.

Pushing examples Mon-pushing examples

Figure 3: An illustration of direct neighbors (a) and examples of local regions (b). The red circles
represent individuals engaged in pushing, while the green circles represent individuals not involved
in pushing. Direct neighbors j of a person 7 are indicated with blue circles.

pedestrians in A;. As illustrations, Fig. 3a provides examples of both N (left
image) and £; (right image).

The region £; encapsulates the crowd dynamics around individual i, reflecting
potential interactions between ¢ and its neighbors A;. Notably, the characteristics
around a pushing individual might diverge from those around a non-pushing one, a
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Figure 4: An illustration of the effect of dummy points on creating the local regions, as well as
a sketch of the dummy points generation technique. a) La; and L3 without dummy points. b) a
sketch of the dummy points generation technique. ¢) £ar and £3 with dummy points. The white
polygon represents the border of the local regions. Yellow small circles refer to the generated
dummy points, while black points in b denote the positions of pedestrians. r is the dimension of
each square.

distinction pivotal for highlighting pushing behaviors. Fig. 3b showecases examples
of such £; regions for pushing and non-pushing individuals. The following section
introduces a novel method for extracting LC;.

3.1.1 Voronoi-based Local Region Extraction

This section presents a novel method for extracting the local regions of pedes-
trians from the input video over time t. Besides the input video recordings, this
method requires trajectory data {[i,t,z,y]}L; to determine the coordinates (z, y);
at frame f;, which aids in identifying the corners of the polygonal local region L;
at f;. The technique consists of several steps: frame extraction, dummy points
generation, direct neighbor identification, and local region extraction.

Based on the definition of £; presented earlier, the determination of each i’s re-
gional boundary is contingent upon N; at f; (MV;(f:)). Nonetheless, this definition
might not always guarantee the inclusion of every i within their respective local
region. This can be particularly evident when i at f; lacks neighboring points
from all directions, exemplified by person 37 in Fig. 4a. To address this issue, we
introduce a step to generate dummy points. This involves adding points around
each i at f; in areas where they lack direct neighbors. This ensures every i remains
encompassed within their local regions, as illustrated by person 37 in Fig. 4¢. For
this purpose, as depicted in Fig. 4b and Algorithm 1, firstly, this step involves
reading the trajectory data of i that corresponds to f; (Algorithm 1, lines 1-
8). Concurrently, the area surrounding every ¢ is divided into four equal square
regions, each can accommodate at least one ¢ (Algorithm 1, lines 9-17). The lo-
cation (z,y); corresponds to the first 2D coordinate of each region (Algorithm 1,
lines 12-13). In contrast, the remaining 2D coordinates ({z1,y1),(z2,y2),(z3, y3),
(r4,y4)) required for identifying the regions can be determined by:

(zlyl) ={z—ry+r)
(z2,92) = (z +ry+r1)
(z3,y3) = (z+ry—r)
(z4,y4) = (z —ry—r1),

(1)
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Algorithm 1 Pseudo code for generating dummy points.
Inputs:

tr= {rowy, rows, rows, ...}, // A file of pedestrian trajectory data

where each row =[pedestrian Id, frame order in the corresponding video, x-coordinate of pedestrian
Id, y-coordinate of pedestrian Id]

fps: the frame rate in the corresponding video

r: the dimension of each square region in pixel unit
Outputs:

// A file of pedestrian trajectory data with dummy points

tr_dummy=trU {row,rows,rows, ...}

where row =[“dummy point”, frame order in the corresponding video, x-coordinate of the dummy
point, y-coordinate of the dummy point]

: file + open(tr)

: file_dummy + open(tr_dummy)

: while not EOF( file) do

rec +— read( file)

if rec[1]% fps = 0 then
write(rec) to file_dummy

end if

: end while

9: regions + [[]]

10: while not EOF( file_dummy) do

11:  rec + read(file_dummy)

12: T + rec[2]

13: y + rec[3]

14: append ([z —r, y + r]) to regions

15: append ([z +r, y + r]) to regions

16: append ([z +r, y —r]) to regions

17: append ([z —r, y — r]) to regions

18: while corner in regions do

19: if empty(area([z, y], corner]) then

20: dummy_point + H—mzmﬂ s MQ“L“'

21: dumy_rec + [0, rec[0], dummy_point[0], dummy_point[1]]
22: append (dumy_rec) to file_dummy

23: end if

24: end while
25: end while

26: tr.close()

27: tr_dummy.close()

where r is the dimension of each square region. Subsequently, each region is
checked to verify if it has any pedestrians. In case a region is empty, a dummy
point in its center is appended to the input trajectory data. Fig. 4b illustrates an
example of four regions surrounding person 37 and two dummy points (yellow dots
in first and second empty regions), see Algorithm 1, lines 18-24. After generating
the dummy points for all 7 at f;, the trajectory data is forwarded to the next step,
direct neighbor identification. Fig. 4c shows a crowd with dummy points in a
single f;.

The third step, direct neighbor identification, employs a combination of Voronoi
Diagram [32] and Convex Hull [33] to find N;(f;) from the input trajectory data
with dummy points. A Voronoi Diagram is a method for partitioning a plane into
several polygonal regions (named Voronoi cells Vs) based on a set of objects/points
(called sites) [32]. Each V contains edges and vertices, which form its boundary.
Fig. 5a depicts an example of a Voronoi Diagram for 51 Vs of 51 sites, where
black and yellow dots denote the sites. In the same figure, the set of sites contains
(z,y); (dummy points are included) at a specific f, then each V; includes only
one site (z,y);, and all points within V; are closer to site (z,y); than any other
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Figure 5: a) Example of a simple Voronoi decomposition. b) Example of bounded Voronoi decom-
position. Both are constructed using 30 pedestrian points and 21 dummy points.

sites (z,y),. Where ¢ € all 7 at that f;, and ¢ # 4.

Furthermore, V; and V), at f; are considered adjacent if they share at least one
edge or two vertices. For instance, as seen in Fig. 5, V4 and Vi are adjacent,
while V4 and Vs are not adjacent. Since the Voronoi Diagram contains unbounded
cells, determining the adjacent cells for each V; at f; may yield inaccurate results.
For instance, most cells of yellow points, which are located at the scene’s borders,
are unbounded cells, as depicted in Fig. 5a. For further clarity, Vi(f;) becomes
unbounded when i is a vertex of the convex hull that includes all instances of 7
at fi. As a result, the Voronoi Diagram may not provide accurate results when
determining adjacent cells, which is a crucial factor in identifying A;(f;). To over-
come such limitation, Convex Hull [33] is utilized to finite the Voronoi Diagram
(unbounded cells) as shown in Fig. 5b. The Convex Hull is the minimum convex
shape that encompasses a given set of points, forming a polygon that connects the
outermost points of the set while ensuring that all internal angles are less than
180° [62]. For this purpose, the intersection of each V;(f;) with Convex Hull of
all 7 at f; is calculated, then the V;(f;) in the diagram are updated based on the
intersections to obtain the bounded Voronoi Diagram of all 7 at f; (Algorithm 2,
lines 5-12). In more details, the Convex Hull of all ¢ at f; is measured (Algo-
rithm 2, line 8). After that, the intersection between V;(f;) and the Convex Hull
at f; is computed. And finally, we update the Voronoi Diagram at each f; us-
ing the calculated interactions to obtain the corresponding bounded one as shown
in Fig. 5b (Algorithm 2, lines 8-11). After creating the bounded Voronoi Diagram,
individuals in the direct adjacent Voronoi cells of Vi(f;) are N(f;), (Algorithm 2,
lines 12-20). For example, in Fig. 5b, direct adjacent Voronoi cells of Vs at f; are
{Va, Vaa, Vas, V15,V }, and N3 = {2,22,35,15,7}.

The last step, local region extraction, aims to extract the local region of each i
at f;, where ¢ ¢ dummy points. The step firstly finds £;(f;) based on each (z,y};,
where j € Ni(f), Fig. 4c. Then, £;(f;) are cropped from corresponding f; and
passed to the next module, which will be discussed in the next section. Fig. 3b
displays examples of cropped local regions.
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Algorithm 2 Pseudo code of direct neighbor identification step
Inputs:

tr_dummy={rowy, rows, rows, ...},

where each row =[dummy point or pedestrian Id, frame order in the corresponding video,
x-coordinate point, y- coordinate]
Outputs:

direct_neighbor={row,, rows, rows, ...},

where each row =[frame order in the corresponding video, pedestrian Id, [direct neighbors (Ids) of
pedestrian Id] |

1: file + open(tr_dummy)

2: file_dn + open(direct_neighbor)

3: data + load(file)

4: frames + unique(datal:, 0])

5: while fr in frames do

6: data_fr + filter(data , fr)

T vor_diagram + Voronoi(data_fr[:, 2 : 4])

8 CH + ConvexHull(data_fr[:,2 : 4])

9 for each region € vor_diagram.regions do
10: vor_diagram.region + vor_diagram.region N CH

11: end for

12: cells + vor_diagram.regions

13: while i in data_fr[:,0] do

14: cell + cells[i)

15: dn_cells + find_direct_neighbor_cells (cell)
16: dn_i + dn_cells.sites

17: rec + [fr,i,dn_i]

18: write (rec) to file_dn

19: end while

20: end while

21: file.close()
22: file_dn.close()

3.1.2 EfficientNetV1B0-based Deep Feature Extraction

To extract the deep features from each individual’s behavior, the feature extraction
part of EfficientNetV1BO0 is used over their local regions £;(f;). EfficientNetV1B0
is a CNN architecture that has gained popularity for various computer vision
tasks due to its efficient use of resources and fewer parameters than other state-
of-the-art models [34]. Furthermore, it has achieved high accuracy on multiple
image classification datasets. Additionally, the experiments in this article (Sec-
tion 5.2) indicate that combining EfficientNetV1B0 (without local classification
part) with local regions yields the highest accuracy compared to other popular
CNN architectures integrated with local regions. Therefore, EfficientNetV1B0's
feature extraction part is employed to find more helpful information from each
individual’s behavior.

The architecture of the efficientNetV1B0-based deep feature extraction model
is depicted in Fig. 2. Firstly, it applies a 3 x 3 convolution operation to the in-
put image, a local region with dimensions of 224 x 224 x 3. Following this, 16
mobile inverted bottleneck convolution (MBConv) blocks [63] are employed to ex-
tract deep features (feature maps) € R™ ™ from each £;(f;). In more detail,
the MBConv blocks used consist of one MBConvl, 3 x 3, six MBConv6, 3 x 3,
and nine MBConv6, 5 x 5. Fig. 6 illustrates the structure of the MBConv block,
which employs a 1 x 1 convolution operation to expand the depth of feature maps
and capture more information. A 3 x 3 depthwise convolution follows this to
decrease the computational complexity and number of parameters. Additionally,
batch normalization and swish activation [64] are applied after each convolution
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operation. The MBConv then employs a Squeeze-and-Excitation block [65] to en-
hance the architecture’s representation power. The Squeeze-and-Excitation block
initially performs global average pooling to reduce the channel dimension. Then
it applies an excitation operation with Swish [64] and Sigmoid [66] activations
to learn channel-wise attention weights. These weights represent the significance
of each feature map and are multiplied by the original feature maps to generate
the output feature maps. After the Squeeze-and-Excitation block, another 1 x 1
convolution with batch normalization is used to reduce the output feature maps’
dimensionality, resulting in the final output of the MBConv block.

‘Squeeze-and-Excitation block

Figure 6: The architecture of MBConv block.

The main difference between MBConv6 and MBConv1 is the depth of the block
and the number of operations performed in each block; MBConv6 is six times
that of MBConvl. Note that MBConv6, 5 x 5 performs the identical operations
as MBConv6, 3 x 3, but MBConv6, 5 x 5 applies a kernel size of 5 x 5, while
MBConv6, 3 x 3 uses a kernel size of 3 x 3.

3.2 Detection Component

The primary objective of the detection component is to analyze the feature maps
generated by the previous component and categorize individual behaviors as ei-
ther pushing or non-pushing. This task requires a binary classification followed by
an annotation process. Unfortunately, the classification part of the original Effi-
cientNetV1BO0 architecture is not designed for binary tasks and is thus unsuitable
for identifying pushing behavior. Consequently, we have adapted the classifica-
tion part of EfficientNetV1B0 to support binary classification. In addition to
extracting deep features in the preceding component, this modification allows the
EfficientNetV1BO0 to classify individual behaviors as pushing or non-pushing in
the detection component. To perform the binary classification task, we combine
a 1 x 1 convolution operation, 2D global average pooling, a fully connected layer
with a single neuron, and a Sigmoid activation function. Fig. 2 shows the classi-
fier. To gain more information by increasing the number of channels in feature
maps, the 1 x 1 convolutional operation is used. The new dimension of feature
maps for each £;(f;) is 7 x 7 x 1280. After that, the global average pooling2D is
utilized to transform the feature maps to 1 x 1 x 1280 and feed them to the fully
connected layer with one neuron, which produces an output z € R. Subsequently,
the Sigmoid function ¢ is applied to z, transforming it into a value between 0
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and 1. The sigmoid function, commonly used in binary classification, is defined
as Eq. (2):

1
1 + e—z’ (2)

where o(z) represents the probability of the pushing label for the corresponding i
at fi, and e denotes the mathematical constant known as Euler’s number. Finally,
the classifier uses a threshold value to identify the class of i at f; as Eq. (3):

a(z) =

Class(i, f,) = {pushing . ?f o(z) > threshold 3)
non-pushing if o(z) < threshold

By default, the threshold value for binary classification is configured to 0.5,
which is suitable for datasets exhibiting a balanced distribution. Unfortunately,
the new pushing dataset created in Section 4.1 for training and evaluating the
proposed framework is imbalanced. As such, using the default threshold may
lead to poor performance of the introduced trained classifier on that dataset [67].
Therefore, fine-tuning the threshold in the trained classifier becomes essential for
improving accuracy across both pushing and non-pushing classes. The methodol-
ogy for finding the optimal threshold for the classifier will be explained in detail
in Section 4.3. Following training and adjusting the classifier’s threshold, it can
categorize individuals i as pushing or non-pushing. At the same time, the anno-
tation process draws a red rectangle around the head of each pushing person in
the corresponding frames f; (see Fig. 7) and finally generates an annotated video.

Figure 7: A visualized example of a sequence of frames annotated with red rectangles highlighting
the individuals participating in pushing. The original frames were taken from [35].

The following section will discuss the training and evaluating processes of the
proposed framework.
4 Training and Evaluation Metrics

This section introduces a novel labeled dataset, as well as presents the parame-
ter setups for the training process, evaluation metrics, and the methodology for
improving the framework’s performance on an imbalanced dataset.

4.1 A Novel Dataset Preparation

Here, it is aimed at creating the labeled dataset for training and evaluating the
proposed framework. The dataset consists of a training set, a validation set for
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the learning process, and two test sets for the evaluation process. These sets
comprise £;(f;) labeled as pushing or non-pushing. In this context, each pushing
L;(f:) means i at f; contributes pushing, while every non-pushing £;(f;) indicates
that i at f; follows the social norm of queuing. The following will discuss the data
sources and methodology used to prepare the sets.

The dataset preparation is based on three data sources: 1) Six videos of real-
world experiments of crowded event entrances. 2) Pedestrian trajectory data. 3)
Ground truths for pushing behavior. Six video recordings of experiments with
their corresponding pedestrian trajectory data are selected from the data archive
hosted by Forschungszentrum Jiilich [35, 68]. This data is licensed under CC Attri-
bution 4.0 International license. The experimental situations mimic the crowded
event entrances, and static top-view cameras were employed to record the exper-
iments with a frame rate of 25 frames per second. For more clarity, Fig. 8 shows
overhead views of exemplary experiments, and Table 1 summarizes the various
characteristics of the chosen experiments. Additionally, ground truth labels con-
structed by the manual rating system [10] are used for the last data source. In
this system, social psychologists observe and analyze video experiments frame-by-
frame to manually identify individuals who are pushing over time. The experts
use PeTrack software [69] to manage the manual tracking process and generate
the annotations as a text file. For further details on the manual system, readers
can refer to Ref. [10].

Figure 8: Overhead view of exemplary experiments. a) Experiment 270, as well as Experiments
50, 110, 150, and 280 used the same setup but with different widths of the entrance area ranging
from 1.2 to 5.6 m based on the experiment [35]. b) Experiment entrance_2 [68] The entrance gate’s
width is 0.5 m in all setups.

Table 1: Characteristics of the chosen experiments.

Video experiment * Width (m) Pedestrian Number of gates Duration (s) Resolution

50 4.5 42 1 37 1920 x 1440
110 1.2 63 1 53 1920 x 1440
150 5.6 57 1 57 1920 x 1440
270 34 67 1 59 1920 x 1440
280 34 67 1 67 1920 x 1440
Entrance_2 34 123 2 125 1920 = 1080

*The same names as reported in [35, 68]. m stands for meter, and s refers to
second.

Here, the methodology used for papering the dataset is described. As shown
in Fig. 9, it consists of two phases: local region extraction; and local region
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labeling and set generation. The first phase aims to extract local regions (samples)
from videos while avoiding duplicates. To accomplish this, the phase initially
extracts frames from the input videos second by second. It employs After that
the Voronoi-based local region extraction module to identify and crop the samples
from the extracted frames based on the trajectory data. Table 2 demonstrates
the number of extracted samples from each video, and Fig. 3b shows several
examples of local regions. Preventing the presence of duplicate samples between
the training, validation, and test sets is crucial to obtain a reliable evaluation for
the model. Therefore, this phase removes similar and slightly different samples
before proceeding to the next phase. It involves using a pre-trained MobileNet
CNN model to extract deep features/embeddings from the samples and cosine
similarity to find duplicate or near duplicate samples based on their features [70].
This technique is more robust than comparing pixel values, which can be sensitive
to noise and lighting variations [71]. Table 2 depicts the number of removed
duplicate samples.

Data Sources Local Region Extraction Lecal Region Labeling and Set Generation
@ wigeo 50 | [ 110, 150, 270, 280 and Entrance2
(1) 6 video experiments — . . . | = | | ! 4
= nn.lsn.m 280 - - - &) & | | == 2 =
Test2 Testl Vlidation Training
L;Tmemrdata 100% 19 1% %
Local region  Duplicates. Local !
3 Ground truth: Set Ge =]
@ = = . G " Labeling neration y,

Figure 9: Pipeline of dataset preparation. In the part ‘Local Region Labeling and Set Generation’,
red refers to the pushing class and pushing sample, while the non-pushing class and non-pushing
sample are represented in green. The local region extraction component uses trajectory data to
determine the coordinates of each person.

Table 2: Summary of the prepared sets.

Number of samples Labeled dataset Training set  Validation set  Test setl Tost set2
Video Original Deleted Distinct P NP P NP P NP P NP P NP
110 1046 1 1045 548 497 365 331 99 84 24 82
150 1469 70 1309 625 774 455 547 83 113 87 114
270 1627 11 1616 577 1039 401 727 84 161 92 151
280 1822 44 1778 287 1491 213 1104 44 181 30 206
Entrance 2 6204 325 5879 1030 4849 726 3403 156 715 148 731
Total 12168 451 11717 3067 82650 2160 6112 466 1254 441 1284
50* nv 344 317 344

* Video 50 is used exclusively for the evaluation process, while the remaining video experiments will be
employed for both training and evaluation.

On the other hand, the local region and set generation phase is responsible for
labeling the extracted samples and producing the sets, including one training set,
one validation set, and two test sets. This phase utilizes the ground truth label of
each i at f; to label the samples (£;(f;)). If 7 at f; contributing to pushing, £;(f:)
is categorized as pushing; otherwise, it is classified as non-pushing. Examples of
pushing samples can be found in Fig. 3b. The generated labeled dataset from all
video experiments comprises 3384 pushing samples and 8994 non-pushing samples.
The number of extracted pushing and non-pushing samples from each video is
illustrated in Table 2. After creating the labeled dataset, the sets are generated
from the dataset. Specifically, the second phase randomly divides the extracted
frames from video experiments 110, 150, 270, 280, and Entrance_2 into three sets:
70%, 15%, and 15% for training, validation, and test sets, respectively. Then,
using these sets, it generates the training, validation, and test (test set 1) sets from
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the labeled corresponding samples (£;(f;)). Another test set (test set 2) is also
developed from the labeled samples extracted from the complete video experiment
50. Table 2 shows the summary of the generated sets.

To summarize, four labeled sets were created: the training set, which con-
sists of 2160 pushing samples and 6112 non-pushing samples; the validation set,
which contains 466 pushing samples and 1254 non-pushing samples; the test set
1, which includes 441 pushing samples and 1284 non-pushing samples; and the
test set 2, comprising 317 pushing samples and 344 non-pushing samples. It's
crucial to emphasize two key aspects where the new dataset significantly deviates
from the datasets outlined in References [29] and [31]. First, the samples in the
introduced dataset capture the crowd’s appearance surrounding each pedestrian 7
(Li(f:)). This contrasts with samples from previous datasets, which represent the
visual motion information within a region ranging from 1.2 to 2.4 square meters
on the ground. While the previous datasets were focused on analyzing behavior
at a patch level, the new dataset is better suited for studying pushing behavior at
an individual level. Fig. 1b and ¢ provide examples of motion information maps
and local region £; samples, respectively. Second, the new dataset is significantly
larger, containing 12,378 samples, compared to 3,780 and 3,941 samples in the
datasets reported in References [29] and [31], respectively. In other words, con-
sidering the local region around a person also results in a larger dataset than the
patch approach.

4.2 Parameter Setup

Table 3 shows parameters used during the training process. The default values for
the learning rate and batch size that are typically used in training CNN architec-
tures on ImageNet in Keras were selected. Additionally, other parameters were
fine-tuned through experimentation to achieve optimal performance with the new
dataset. To prevent overfitting, the training was halted if the validation accuracy
did not improve after 20 epochs.

Table 3: The hyperparameter values used in the training process.

Parameter Value

Optimizer Adam

Loss function Binary cross-entropy
Learning rate 0.001

Batch size 32

Epoch 100

4.3 Evaluation Metrics and Performance Improvement

This section will discuss the metrics chosen for evaluating the performance of the
proposed framework. Additionally, it will explore the methodology employed to
enhance the performance of the trained imbalanced classifier, thereby improving
the overall effectiveness of the framework.

Given the imbalanced distribution of the generated local region dataset, the
framework exhibits a bias towards the majority class (non-pushing). Conse-
quently, it becomes crucial to employ appropriate metrics for evaluating the per-
formance of the imbalanced classifier. As a result, a combination of metrics was
adopted, including macro accuracy, True Pushing Rate (TPR), True Non-Pushing
Rate (TNPR), and Area Under the receiver operating characteristic Curve (AUC)
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on both test set 1 and test set 2. The following provides a detailed explanation
of these metrics.

TPR, also known as sensitivity, is the ratio of correctly classified pushing sam-
ples to all pushing samples, and it is defined as:

TP
TP+ FNP’ @
where TP and FNP denote correctly classified pushing persons and incorrectly
predicted non-pushing persons.
TNPR, also known as specificity, is the ratio of correctly classified non-pushing
samples to all non-pushing samples, and it is described as:

TPR

TNP
TNPR=55p PP )
where TNP and FP stand for correctly classified non-pushing persons and incor-
rectly predicted pushing persons.

Macro accuracy, or balanced accuracy, is the average proportion of correct
predictions for each class individually. This metric ensures that each class is given
equal significance, irrespective of its size or distribution within the dataset. For
more clarity, it is just the average of TPR and TNPR as:

Macroaccuracy = — (6)
a)
1.0 —
a//
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a//
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Figure 10: ROC curves for the introduced framework. a) ROC curve with an optimal threshold
on the validation set. b) ROC curves with AUC values on test set 1 and test set 2. TPR stands
for true pushing rate, while FPR refers to false pushing rate.

AUC is a metric that represents the area under the Receiver Operating Char-
acteristics (ROC) curve. The ROC curve illustrates the performance of a clas-
sification model across various threshold values. It plots the false positive rate
(FPR) on the horizontal axis against the true positive rate (TPR) on the vertical
axis. AUC values range from 0 to 1, where a perfect model achieves an AUC of
1, while a value of 0.5 indicates that the model performs no better than random
guessing [72]. Fig. 10a shows an example of a ROC curve with AUC value.

As mentioned above, the binary classifier employs a threshold to convert the
calculated probability into a predicted class. The pushing class is predicted if
the probability exceeds the threshold; otherwise, the non-pushing label is pre-
dicted. The default threshold is typically set at 0.5. However, this value leads
to poor performance of the introduced framework because EfficientNetV1B0 and
classification were trained on imbalanced dataset [67]. In other words, the default
threshold yields a high TNPR and a low TPR in the framework. To address the
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imbalance issue and enhance the framework’s performance, it becomes necessary
to determine an optimal threshold that achieves a better balance between TPR
and FPR (1-TNPR). To accomplish this, the ROC curve is utilized over the valida-
tion set to identify the threshold value that maximizes TPR and minimizes FPR.
Firstly, TPR and TNPR are calculated for several thresholds ranging from 0 to
1. Then, the threshold that yields the minimum value for the following objective
function (Eq. (7) is considered the optimal threshold:

Objective function = |TPR — TNPR). (7)

As shown in Fig. 10a, the red point refers to the optimal threshold of the
classifier used in the proposed framework, which is 0.038.

5 Experimental Results and Discussion

Here, several experiments were conducted to evaluate the performance of the
proposed framework. Initially, the performance of the proposed framework itself
is assessed. Subsequently, It is compared with five other CNN-based frameworks.
After that, two customized CNN architectures in the abnormal behavior detection
field were used for further evaluation of the proposed framework. The influence
of the deep feature extraction module on the proposed framework’s performance
is also investigated. Subsequently, the manuscript explores the impact of dummy
points on the framework’s performance. This is followed by a comparison with two
state-of-the-art approaches for pushing behavior detection. All experiments and
implementations were performed on Google Colaboratory Pro, utilizing Python
3 programming language with Keras, TensorFlow 2.0, and OpenCV libraries. In
Google Colaboratory Pro, the hardware setup comprises an NVIDIA GPU with
a 15 GB capacity and a system RAM of 12.7 GB. Moreover, the framework and
all the baselines developed for comparison in the experiments were trained using
the same sets (Table 2) and hyperparameter values (Table 3).

5.1 Performance of the Proposed Framework

The performance of the proposed framework was evaluated using the generated
dataset (Table 2) and various metrics, including macro accuracy, TPR, TNPR,
and AUC. We first trained the proposed framework’s EfficientNetB0-based deep
feature extraction module and detection component on the training and validation
sets. Subsequently, the framework’s performance on test set 1 and test set 2 were
assessed.

Table 4: Performance of the proposed framework on both test sets.

Test st 1 (%) Test st 2 (%)
Threshold Macro accuracy TNPR TPR  (TPR-TNPR) Macro accuracy  TNPR - TPR  (TPR-TNPR)
Default: 0.5 83 02 74 18 82 88 76 12
Optimal: 0.038 85 84 86 2 82 81 83 2

TNPR and TPR are true non-pushing rate and true pushing rate, respectively.

Table 4 shows that the introduced framework, with the default threshold, ob-
tained macro accuracy of 83 %, TPR. of 74%, and TNPR. of 92% on test set 1.
On the other hand, it achieved 82 % macro accuracy, 88 % TNPR, and 76 % TPR
on test set 2. However, it is clear that the TPR is significantly lower than the
TNPR on both test sets, see Fig. 11a and ¢. To balance the TPR and TNPR
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Figure 11: Confusion matrix of the proposed framework on a) Test set 1 with default threshold.
b) Test set 1 with the optimal threshold. c¢) Test set 2 with default threshold. d) Test set 2 with
the optimal threshold.

and improve the TPR, the optimal threshold is 0.038, as shown in Fig. 10a. This
threshold increases TPR by 12% and 7% on test set 1 and test set 2, respectively,
without affecting the accuracy, see Fig. 11b and d. In fact, the framework’s ac-
curacy improved by 2% on test set 1. The ROC curves with AUC values for the
framework on the two test sets are shown in Fig. 10b, with AUC values of 0.92
and 0.9 on test set 1 and test set 2, respectively.

To summarize, with the optimal threshold, the proposed framework achieved
an accuracy of 85 %, TPR of 86 %, and TNPR. of 84 % on test set 1, while obtain-
ing 82 % accuracy, 81 % TPR, and 83% TNPR on test set 2. The next section
will compare the framework’s performance with five baseline systems for further
evaluation.

5.2 Comparison with Five Baseline Frameworks based on Popular
CNN Architectures

In this section, the results of further empirical comparisons are shown to evaluate
the framework’s performance against five baseline systems. Specifically, it ex-
plores the impact of the EfficientNetV1B0-based deep feature extraction module
on the overall performance of the framework. To achieve this, EfficientNetV1B0
in the deep feature extraction module of the proposed framework was replaced
with other CNN architectures, including EfficientNetV2BO0 [73] (baseline 1), Xcep-
tion [74] (baseline 2), DenseNet121 [75] (baseline 3), ResNet50 [76](baseline 4),
and MobileNet [77] (baseline 5). To ensure fair comparisons, the five baselines
were trained and evaluated using the same sets, hyperparameters, and metrics as
those used for the proposed framework.

Before delving into the comparison of the results, it is essential to know that
CNN models renowned for their performance on some datasets may perform poorly
on others [78]. This discrepancy becomes more apparent when datasets differ in
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several aspects, such as size, clarity of relevant features among classes, or overall
data quality. Powerful models can be prone to overfitting issues, while simpler
models may struggle to capture relevant features in complex datasets with in-
tricate patterns and relationships. Therefore, it’s crucial to carefully select or
develop an appropriate CNN architecture for a specific issue. For instance, Effi-
cientNetV2B0 demonstrates superior performance compared to EfficientNetV1B0
across various classification tasks [73], including the ImageNet dataset. Moreover,
it surpasses the previous version in identifying regions that exhibit pushing persons
in motion information maps of crowds [29, 31]. These remarkable outcomes can
be attributed to the efficient blocks employed for feature extraction, namely the
Mobile Inverted Residual Bottleneck Convolution [63] and Fused Mobile Inverted
Residual Bottleneck Convolution [79]. Nevertheless, it should be noted that the
presence of these efficient blocks does not guarantee the best performance in iden-
tifying pushing individuals based on local regions within the framework. Hence,
in this section, the impact of six of the most popular and efficient CNN archi-
tectures on the performance of the proposed framework was empirically studied.
For clarity, EfficientNetV1B0 was used within the framework, while the remaining
CNN architectures were employed in the baselines.

a) Testset 1
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Figure 12: Comparison between the framework (based on EfficientNetV1B0) with the baseline
frameworks based on other popular CNN architectures.

The performance results of the proposed framework, as well as the baselines,
are presented in Table 5 and visualized in Fig. 12. The findings indicate that
EfficientNetV1B0 with optimal threshold leads the framework to achieve superior
macro accuracy and AUC with balanced TPR and TNPR compared to CNNs used
in baselines 1-5. This can be attributed to the architecture of EfficientNetV1B0,
which primarily relies on the Mobile Inverted Residual Bottleneck Convolution
with relatively few parameters. As such, the architectural design proves to be
particularly suited for the generated dataset focusing on local regions. The visu-
alization in Fig. 13 shows the optimal threshold values for the baselines. These
thresholds, as shown in Table 5 and Fig. 12, mostly improved the macro accuracy,
TPR, and balanced TPR and TNPR in the baselines. For example, baseline 1 with
optimal threshold achieved 84 % macro accuracy, roughly similar to the proposed
framework. However, it fell short of achieving a balanced TPR and TNPR along
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Table 5: Comparative analysis of the developed framework and the five CNN-based frameworks.

Test set 1 (%) Test set 2 (%)
Framework Threshold M. ace. TNPR TPR |TPR-TNPR| M.acc. TNPR TPR | TPR-TNPR |
The framework Defanlt: 0.5 823 92 T4 18 82 88 76 12
Optimal: 0.038 85 84 86 2 82 &1 83 2
Baseline 1 Defanlt: 0.5 823 a1 T4 17 80 a1 69 22
Optimal: 0.167 24 88 &0 8 81 £9 T4 15
Baseline 2 Defanlt: 0.5 ™ a1 67 24 T 90 G4 26
Optimal: 0.062 81 80 81 1 T8 76 7 3
Baseline 3 Defanlt: 0.5 T 92 62 30 4 £9 ] 3
Optimal: 0.038 81 (i 84 7 Th 70 83 13
Baseline 4 Defanlt: 0.5 T 92 49 43 75 &7 G4 23
Optimal: 0.024 7 &1 69 12 ™ 88 T 1
Baseline 5 Defanlt: 0.5 ™ 94 i) 29 T 92 62 30
Optimal: 0.076 823 83 84 1 80 £0 9 1
M. acc means macro accuracy. TNPR and TPR are true non-pushing rate and true pushing rate, respectively.
a) Baseline 1 (based on EfficientNetv2B0) b) Baseline 2 (based on Xception)
0.2 - — ROC curve 4 — ROCcurve
—8— Optimal threshold = 0.16733 —#— Optimal threshold = 0.06236
0.0+ T T T T T T T T T T
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Figure 13: ROC curves with optimal thresholds for the baselines over the validation set. TPR
stands for true pushing rate, while FPR refers to false pushing rate. ROC stands for Receiver
Operating Characteristics.

with improving TPR on both test sets as effectively as the framework. To provide
further clarity, baseline 1 achieved 80 % TPR with 8% as the difference between
TPR and TNPR, whereas the proposed framework attained an 86 % TPR with
2% as the difference between TPR and TNPR on test set 1. Similarly, on test set
2, the framework achieved 81 % TPR, while baseline 1 achieved a TPR of 74 %.
Compared to other baselines that utilize optimal thresholds on test set 1, the
proposed framework outperformed them regarding maecro accuracy, TPR, and
TNPR. Similarly, on test set 2, the framework surpasses all baselines except for
the ResNet50-based baseline (baseline 4). However, it is essential to note that this
baseline only achieved better TNPR, whereas the introduced framework excels in
macro accuracy and TPR. As a result, the framework emerges as the superior
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Figure 14: ROC curves with AUC values on the test set 1. Comparison between the introduced
framework (based on EfficientNetV1B0) with five baselines based on different CNN architectures,
as well as the one baseline without the deep feature extraction module (baseline 6). TPR stands
for true pushing rate, while FPR refers to false pushing rate.
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Figure 15: ROC curves with AUC values on the test set 2. Comparison between the framework
(based on EfficientNetV1B0) with five baselines based on different CNN architectures, as well as
the one baseline without the deep feature extraction module (baseline 6). TPR stands for true
pushing rate, while FPR refers to false pushing rate.

choice on test set 2. To alleviate any confusion in the comparison, Fig. 14 shows
the ROC curves with AUC values compared to its baselines on test set 1. Like-
wise, Fig. 15 depicts the same for test set 2. The AUC values show that the
proposed framework achieved better performance than the baselines on both test
sets. Moreover, they substantiate that EfficientNetV1B0 is the most suitable CNN
for extracting deep features from the generated local region samples.

In conclusion, the experiments demonstrate that the proposed framework, uti-
lizing EfficientNetV1BO0, achieved the highest performance compared to the base-
lines relying on other CNN architectures on both test sets. Furthermore, the
optimal thresholds in the developed framework and the baselines resulted in a
significant improvement in the performance across both test sets.
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5.3 Comparison with Customized CNN Architectures in Abnormal
Behavior Detection Field

Here, there are two objectives: 1) Evaluating the performance of some existing
CNN models developed to detect abnormal human behavior for pushing detection
purposes. 2) Further evaluation of the trained binary classifier (EfficientNetB0
with fully connected layer and Sigmoid activation function). The customized
architectures are CNN-1 [23] and CNN-2 [41]. The first architecture, CNN-1,
employed 75 x 75 pixels as an input image. Furthermore, three convolutional
layers, batch normalization, and max pooling operations were used for feature
extraction. The developers of this model utilized a fully connected layer with a
softmax activation function for classification. The second architecture, CNN-2,
downsized the input images to 32 x 32 pixels before employing three convolutional
layers with three max-pooling layers. For classification, it used two fully connected
layers, with the first layer based on a ReLU activation function and the second
layer employing a softmax activation function.

Table 6: Comparison to CNN-1 and CNN-2.

Test set 1 (%) Test set 2 (%)
Framework Optimal threshold Macro accuracy TNPR  TPR  Macro accuracy TNPR  TPR
The framework 0.038 85 84 a6 82 a1 23
CNN-1 0.23 73 71 75 64 40 28
CNN-2 0.0076 71 71 71 ki1 66 85

TNPR and TPR are true non-pushing rate and true pushing rate, respectively.

TPR
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—— CNN-2, AUC = 0.78
e --— Random guesses, AUC = 0.5
0.0 : - . T T
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Figure 16: ROC curves of our classifier and the two customized CNNs on test set 1.

The results in Table 6 and Fig. 16 demonstrate that our classifier surpassed
CNN-1 and CNN-2 by at least 11 % in all metrics, including macro accuracy, TPR,
TNPR, and AUC on test set 1. In contrast, on Test Set 2, the developed classifier
achieved a macro accuracy of 82 %, significantly outperforming CNN-1 and CNN-
2, which attained 40 % and 66 %, respectively. Furthermore, the two customized
CNN architectures exhibited high False Pushing Rates (FPR) of over 34 %, while
the proposed classifier’'s FPR was 19%. Additionally, as shown in Fig. 17, the
AUC of our classifier stands at 90 %, in comparison to CNN-1 and CNN-2, which
achieved 74 % and 83 %, respectively.
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Figure 17: ROC curves of our classifier and the two customized CNNs on test set 2.

To sum up, the proposed binary classifier has demonstrated significant supe-
riority over CNN-1 and CNN-2 across both test sets. Given the high complexity
of pushing detection in crowded environments, the simple architectures of CNN-1
and CNN-2 fall short of effectively identifying pushing MIM-patches.

5.4 Impact of Deep Feature Extraction Module

This section aims to investigate how the deep feature extraction module affects
the framework’s performance. For this purpose, a new baseline (baseline 6) is
developed, incorporating a Voronoi-based local region extraction module and de-
tection component. In other words, the deep feature extraction module is removed
from the proposed framework to construct this baseline.

Table 7: Performance results of the baseline 6.

Test set 1 (%) Test set 2 (%)
Threshold Macro accuracy  TNPR  TPR  Macro accuracy TNPR  TPR
Default: 0.5 50 a7 18 58 50 57
Optimal: 0.342 67 91 44 50 38 ki

TNPR and TPR are true non-pushing rate and true pushing rate, respectively.

Table 7 demonstrates that the baseline exhibited poor performance, with macro
accuracy of 67% on test set 1 and 59% on test set 2. Additionally, Fig. 14
and Fig. 15 illustrate AUC values of 72% on test set 1 and 61 % on test set 2
for baseline 6. Comparing this baseline with the weakest baseline in Table 5,
which utilizes ResNet50, it is evident that deep feature extraction leads to macro
accuracy improvement of at least 8 % on test set 1 and at least 20 % on test set 2.
Similarly, deep feature extraction enhances AUC values by at least 11 % on test
set 1 and more than 24% on test set 2.

In summary, the deep feature extraction module significantly enhances the
performance of the framework.

5.5 Impact of Dummy Points

This section aims to evaluate the impact of adding dummy points on the perfor-
mance of the proposed framework. For this purpose, a new dataset, identical to
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the original (Table 2) but without dummy points, was prepared. The new dataset
was then used to train and evaluate the framework (named baseline 7). Fig. 18,
on the right in a, b, ¢, and d, displays several examples of local regions generated
without using dummy points.

“ Local fegions " Carrasponding Iocal Tegions
with dummy points without dummy points

Figure 18: Examples of local regions with dummy points (left samples) and without dummy points
(right samples). The white circle represents the target person 7 in the local region £;.

Table 8 Comparison to baseline 7.

Test set 1 (%) Test set 2 (%)
Framework Optimal threshold Macro accuracy TNPR  TPR  Macro accuracy TNPR  TPR
The framework 0.038 85 84 a6 82 a1 23
Baseline 7 0.030 80 79 a1 62 57 66

TNPR and TPR are true non-pushing rate and true pushing rate, respectively.

In the proposed framework, the local region is erucial in assisting it to identify
the behavior of each individual i. This is because the local region encompasses
the crowd dynamics around i, thereby reflecting potential interactions between
i and its neighbors. It is clear that £ of person i located at the borders of
crowds when dummy points are not added, fail to encompass the crowd dynamics
surrounding 7 (e.g., samples on the right side in Fig. 18a, b, and ¢). This leads
to losing valuable information about the i’s behavior, decreasing the framework’s
performance. Meanwhile, the examples on the left (Fig. 18a, b, and c¢) illustrate
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Figure 19: ROC curves of the proposed framework and baseline 7 on test set 1.
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Figure 20: ROC curves of the proposed framework and baseline 7 on test set 2.

how the dummy point technique helps form £; that encompasses the space around
i. Moreover, Fig. 18d illustrates that the dummy point technique is not applied
to ¢ who is surrounded by neighbors in all directions.

As Table 8 illustrates, incorporating dummy points enhanced the performance
of the proposed framework on both test sets, improving the macro accuracy, TPR,
and TNPR by 5%. In contrast, the framework without the dummy points tech-
nique (baseline 7) achieved lower performance, with a macro accuracy of 62 %,
a TNPR of 57%, and a TPR of 66 %, compared to the developed framework.
Moreover, the dummy point technique increased AUC in the framework by 3%
and 26 % over test set 1 and test set 2, respectively.

5.6 Performance Evaluation Against Existing Pushing Detection Ap-
proaches

The primary aim of this section is to assess the performance of the proposed frame-
work by comparing it with existing automatic approaches for detecting pushing
behavior in dense crowds.
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Figure 21: Visual Examples of patches and MIM-patches in related Works [29, 31]: a) A 2 x 4
patch array with a MIM-patch generated by related works. b) Two examples of square patches
(highlighted in white) and their corresponding MIM-patches created by DL4PuDe and Cloud-
DL4PuDe. The numbers 53, 63, and 55 denote the IDs of three pedestrians. Moreover, in b), the
dark gray color aims to give readers an overview of the square patches created by the enhanced
patch identification strategy while ensuring that the original frame remains visible. In the notation
fi, f signifies a frame at timestamp ¢ in seconds s. MIM stands for Motion Information Map.

As mentioned in the literature, two main approaches have been published [29,
31], along with a more concise method referenced in [30], which is part of Ref. [29)].
This comparison will focus on the primary approaches detailed in [29] and [31]. It
is noteworthy that these approaches employ a patch-based methodology, targeting
the identification of patches containing at least one individual engaged in pushing.
Each patch typically encompasses an area ranging from 1.2 to 2.55 square meters
on the ground. To clarify, both approaches employ a similar strategy for patch
identification. They start by extracting Motion Information Maps (MIM) from
consecutive frames of video or live streams that capture dense crowds. Every
MIM, along with its initial corresponding frame, is then divided into a grid of
MIM-patches, arranged into rows and columns as defined by the user. Fig. 21a
displays an example with 2 x 4 patches on the left side and a single MIM-patch
on the right side. This patch identification strategy enables the trained classifiers
in both approaches to mark pushing patches within the erowd. The red rectangle
in Fig. 21a highlights an example of such annotated pushing patches.

Table 9: Comparison to state-of-the-art automatic pushing detection Approaches.

Test set 1 (%) Test set 2 (%)
Framework Optimal threshold Macro accuracy TNPR  TPR  Macro accuracy  TNPR  TPR
The framework 0.038 45 84 86 82 81 83
DL4APuDe 0.023 7 6 8 62 4 80
Cloud-DL4PuDe 0.04 il ki1 8 61 48 4

TNPR and TPR are true non-pushing rate and true pushing rate, respectively.

It is evident that current approaches cannot detect individuals who join in
pushing, a capability offered by the proposed framework. Consequently, compar-
ing these approaches directly with the developed framework would be unfair, as
they serve different purposes. To facilitate a fair and effective, the patch identi-
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fication strategy in both existing approaches has been modified to operate at a
microscopic level, as opposed to the patch level. The enhanced patch identification
strategy employs the input trajectory data to find a square patch for each person
(), with ¢’s position serving as the center of the patch. The dimensions of this
patch are approximately 75 em on the ground. This dimension was chosen after
observing various dimensions in video experiments of entrances employed in this
work. We found that this particular dimension ensures the patch not only covers
individual ¢ but also captures the surrounding crowd dynamics, thereby providing
insight into the interactions between individuals ¢ and their direct neighbors(A;).
For instance, as illustrated in Fig. 21b, the patches for individuals numbered
53 and 66 are marked with white squares, along with the corresponding MIM-
patches for the areas surrounding individuals 53 and 66. For the sake of clarity
and ease of discussion, the first [29] and second [31] approaches with enhanced
patch identification strategy shall henceforth be referred to as “DL4PuDe” and
“Cloud-DL4PuDe,” respectively.
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Figure 22: Confusion Matrices for the Proposed Framework, DL4PuDe, and Cloud-DL4PuDe with
the optimal threshold: a) Proposed Framework on Test Set 1, b) Proposed Framework on Test
Set 2, ¢) DL4PuDe on Test Set 1, d) DL4PuDe on Test Set 2, e) Cloud-DL4PuDe on Test Set 1,
f) Cloud-DL4PuDe on Test Set 2.

To compare DI4PuDe and Cloud-DL4PuDe approaches with the proposed frame-
work, it is necessary to train and evaluate them using a dataset that includes both
pushing and non-pushing square MIM-patches. Furthermore, the setup of param-

112



PUBLICATION III

TPR

0.2 ‘,/ —— The framework, AUC = 0.92
DL4PuDe, AUC = 0.84
—— Cloud-DL4PuDe, AUC = 0.85
00 // --— Random guesses, AUC = 0.5
“o0 02 04 06 0.8 10

FPR

Figure 23: ROC curves and AUC values for Test Set 1: A comparison between the introduced
framework, DL4PuDe, and Cloud-DL4PuDe.

TPR

0.2 o —— The framework, AUC = 0.90
i DL4PuDe, AUC = 0.68
‘/’ —— Cloud-DLAPuDe, AUC = 0.68
d --— Random guesses, AUC = 0.5
00+t . . . . T
0.0 0.2 0.4 0.6 0.8 1.0

FPR

Figure 24: ROC curves and AUC values for Test Set 2: A comparison between the introduced
framework, DL4PuDe, and Cloud-DL4PuDe.

eters, as outlined in Table 3, will be used in the training process. For this purpose,
we created such a dataset using the same video experiments, trajectory data, and
ground truth data employed in preparing the dataset for the proposed framework.
Initially, MIMs are extracted from the video experiments using a combination of
deep optical flow and color wheel methods, similar to the previous approaches.
For more information, we refer the reader to Ref. [31], specifically Section IV.A.2.
Next, the improved patch identification strategy is employed to extract patches
from those MIMs. Afterward and based on the ground truth data, MIM-patches
containing a person i engaged in pushing are labeled as pushing; otherwise, they
are labeled non-pushing. For more clarity, in Fig. 21b, the MIM-patch for in-
dividual 53 is categorized as pushing due to the pushing behavior of person 53.
Conversely, the MIM-patch for individual 66 is non-pushing, given that person
66 does not join in such behavior. Finally, the same splitting technique used
to generate the dataset for training and evaluating the proposed framework was
also employed to create the new dataset for DL4PuDe and Cloud-DL4PuDe ap-
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proaches.

Table 9 displays the comparison results between the proposed framework and
the enhanced DL4PuDe and Cloud-DL4PuDe approaches. The results indicate
that the proposed framework significantly outperformed both approaches on both
test sets. On test set 1, the proposed framework achieved a minimum 8 % improve-
ment in macro accuracy, TPR, and TNPR compared to the related approaches. In
contrast, on test set 2, DL4PuDe and Cloud-DL4PuDe exhibited high false pos-
itive rates (FPR) with 62 %and 61 % macro accuracy, respectively. Meanwhile,
the framework achieved an 82 % macro accuracy on test set 2. Fig. 22 presents
the confusion matrices for each approach on both test sets. Moreover, as shown
in Fig. 23 and Fig. 24, the framework consistently outperformed the other ap-
proaches in terms of the AUC metric. It achieved an improvement of at least
7% on test set 1 and 22 % on test set 2. These results can be attributed to the
fact that square patches may contain both pushing and non-pushing behavior si-
multaneously. This can lead the CNN classifier to learn irrelevant features from
the patches. For more clarity, the patch of person 66 in Fig. 21b is classified as
non-pushing because person 66 is not engaged in pushing behavior, even though
person 63 within the same patch is involved in pushing.

In summary, our developed framework achieved superior performance, demon-
strating improvements of at least 8 % in macro accuracy, TPR, TNPR, and AUC
on both test sets compared to the enhanced DL4PuDe and cloud-DL4PuDe ap-
proaches. Furthermore, both approaches experience overfitting when attempting
to detect pushing behavior at the microscopic level. This serves as evidence that
our novel approach, used in our framework to identify the local regions of each
person, efficiently assists EficientNetV1B0-based CNN in learning the relevant
features for pushing behavior.

6 Conclusion and Future Work

This article introduced a new framework for automatically identifying pushing at
the microscopie level within video recordings of crowds. The proposed framework
utilizes a novel Voronoi-based method to determine the local region of each person
in the input video over time. It further applies EfficientNetV1B0 to extract deep
features from these local regions, capturing valuable information about individual
behavior. Finally, a fully connected layer with a Sigmoid activation function is
employed to analyze the deep features and annotate the pushing persons over time
in the input video. To train and evaluate the performance of the framework, a
novel dataset was created using six real-world experiments with their trajectory
data and corresponding ground truths. The experimental findings demonstrated
that the proposed framework surpassed state-of-the-art approaches, as well as
seven baseline methods in terms of macro accuracy, true pushing rate, and true
non-pushing rate.

The proposed framework has some limitations. First, it was designed to work
exclusively with top-view camera video recordings that include trajectory data.
Second, it was trained and evaluated based on a limited number of real-world ex-
periments, which may impact its generalizability to a broader range of scenarios.
Our future goals include improving the framework in two key areas: 1) Enabling
it to detect pushing persons from video recordings without the need for trajectory
data as input. 2) Improving its performance in terms of macro accuracy, true
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pushing rate, and true non-pushing rate by: a) Enlarging the dataset by utiliz-
ing additional videos from real-world experiments. These videos will encompass
various scenarios. b) Employing transfer learning and data augmentation tech-
niques. ¢) Processing a sequence of frames instead of a single frame, to extract
more valuable features.
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Abstract Over the past few years, real-time visualization of pedestrian dynam-
ics has become more crucial to successfully organize and monitor open-crowded
events. However, the process of collecting, efficiently handling and visualizing
a large volume of pedestrians’ dynamic data in real time is challenging. This
challenge becomes even more pronounced when pedestrians move in large-size,
high-density, open and complex environments. In this article, we propose an
efficient and accurate approach to acquire, process and visualize pedestrians’ dy-
namic behavior in real time. Our goal in this context is to produce GPS-based
heat maps that assist event organizers as well as visitors in dynamically finding
crowded spots using their smartphone devices. To validate our proposal, we have
developed a prototype system for experimentally evaluating the quality of the
proposed solution using real-world and simulation-based experimental datasets.
The first phase of experiments was conducted in an open area with 37,000 square
meters in Palestine. In the second phase, we have carried out a simulation for 5000
pedestrians to quantify the level of efficiency of the proposed system. We have
utilized PHP scripting language to generate a larger-scale sample of randomly-
moving pedestrians across the same open area. A comparison with two well-known
Web-based spatial data visualization systems was conducted in the third phase.
Findings indicate that the proposed approach can collect pedestrian’s GPS-based
trajectory information within four meters horizontal accuracy in real time. The
system demonstrated high efficiency in processing, storing, retrieving and visual-
izing pedestrians’ motion data (in the form of heat maps) in real time.

Keywords: Real-time Visualization, Pedestrian Dynamics, Crowd Management
System, GPS Data, Heat Map Visualization.

1 Introduction

With the rapid growth of population along with the increasing number of impor-
tant events, dynamically finding less-crowded areas within large-scale events is a
major challenge for visitors as well as event organizers [1, 2]. As reported in [3],
inefficient crowd management affects pedestrians’ safety, their movement decisions
and behaviors, and may also lead to increasing the efforts and costs required to
efficiently monitoring events with large numbers of pedestrians [4]. In order to
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organize successful events, organizers need to understand the visitors’ movement
characteristics and behavior over time at an early stage [5]. Accordingly, greater
attention has been given to study crowded events with huge numbers of pedestri-
ans using a variety of tools and applications, such as pedestrians’ devices that are
used to collect their trajectories in an attempt to efficiently identify crowd density
along events [6]. These approaches can be divided into three main categories [6]:
crowd video analysis [7, 8], crowd social media analysis [9, 10, 11], and crowd
spatio-temporal analysis [12, 13, 14].

Developing systems under the first category plays an important role in analysing
crowded event videos as they collect data about the movement features of pedes-
trians and assist in identifying abnormal behaviors during events [3, 15]. How-
ever, the large-size areas of crowded events and high-density of pedestrians in
such events makes it difficult for such approaches to accurately respond in real
time, and leads to producing a large fraction of false positive results [16]. In
addition, the presence of obstacles, such as walls, trees and human bodies can
block cameras from capturing and identifying correct abnormal behaviors or even
true pedestrian objects [17]. Moreover, the cost and setup of cameras using this
approach are normally high as reported in [6]. On the other hand, approaches
that fall under the second category use social media content, in addition to other
important data, such as locations of user check-ins as their data source to study
human movement behavior [18]. Using such data sources, these approaches gen-
erate spatio-temporal data points and location details that can be used to analyze
crowds in large areas in cities, suburbs and urban areas [19, 20]. However, it
is important to point out that approaches of this category can not make use of
real-time collected data because the extraction of useful information from social
media content is a very complex task [21]. In addition, social media data does not
give information about human movement characteristics continuously at regular
time intervals. For example, sharing check-ins allows users to mark and discuss
places they visited (e.g., eating at local restaurants, shopping, visiting popular
areas) as part of their social interaction online [3, 11]. As such, we can con-
clude that approaches that fall under the first two categories may not generate
sufficient information about human movement characteristics during high-density
large-scale events in real time [22, 23]. Acknowledging these drawbacks, crowd
spatio-temporal analysis approaches have proved to be an effective solution for
collecting pedestrian data continuously during large-area events [5].

To efficiently achieve their goal, these approaches have utilized Global position
system (GPS) as their source of trajectory data points acquisition [24]. It indeed
offers real time response, easy and cheap to navigate feature, and has a good
accuracy in outdoor areas [25]. All of these features contribute to making GPS
an efficient option for real time data collection about human movements in open
areas and environments [24, 26]. Recently, smartphones’ built-in GPS receivers
have been one of the most promising and convenient GPS devices, especially, as
they are widely used worldwide. The expected number of smartphones in 2020
is 2.5 billions [27]. Also, smartphones can receive real-time data based on the
current position of pedestrian’s body at regular time intervals with good accuracy
in outdoor areas [25]. As such, GPS and smartphones have allowed researchers
to explore, investigate, and monitor pedestrians’ movement characteristics in out-
door areas more accurately and less invasively compared to other conventional
approaches. In recent years, researchers have used mobile applications along with
existing GPS data and web servers to develop real time visualization systems that
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can monitor pedestrian movement scenarios in open events [28, 29]. However, ex-
isting visualization approaches suffer from a number of drawbacks and limitations
as follows. First, with the increasing number of pedestrians in the same area, their
performance degrades failing to cope with the real time visualization requirement.
Second, the accuracy of the collected trajectories as well as visualizing tools is not
tested under real-world conditions or using real-world scenarios. Third, using
paid services or libraries increases system development costs. To address these
limitations, we propose developing an efficient and low-cost system for online and
real time visualization of pedestrian dynamics at open events/areas using GPS
data. The system is aimed to be installed on users’ smartphone devices to track
pedestrian movements, collect and send GPS data to a web server in real time.
Unlike existing approaches, the developed system is characterized by its efficiency
in terms of the following aspects:

1. The system collects pedestrians’ trajectory data every second and estimates
their horizontal accuracy to accurately depict the maps.

2. New data processing with temporal storage of current pedestrian positions is
used to improve the data visualization performance.

3. The system provides access to an online real time visualized maps that depict
pedestrian movements along with real time heat maps for spotting ecrowded
areas.

4. The system exploits efficient free/open source software to reduce the cost of
practically deploying the developed application.

5. An archive of collected GPS data with multiple formats (SQL, JSON, and
CSV) is provided for researchers interested in further developing and improv-

ing the current version of the proposed system !.

The rest of this paper is organized as follows. In section 2 we explore and discuss
a number of research works that are related to our proposed approach. Section
3 presents the proposed system and highlights its main components. In section
4, we provide details on the experimental setup phase. Experimental results are
then discussed in section 5. Finally, section 6 concludes this article and discusses
the future extensions of our work.

2 Related Work

Accurate real time acquisition, processing, analysis and visualization of pedestrian
trajectory data during crowded events are the most crucial challenges for existing
approaches that attempt to investigate and identify the most influential factors on
pedestrians’ dynamics and their movement behavior and characteristics [30, 31, 28,
29]. Addressing these challenges helps event organizers make immediate decisions
to avoid crowd accidents, and ensures proper monitoring and administration of
event operations [3]. With the recent developments of smartphone industry, the
possibility of tracking human positions via their GPS-enabled devices has been
achieved, providing a good opportunity for developing low cost and real time data
processing and visualization techniques that can assist in better understanding
pedestrian dynamics at open areas that are characterized by their complex and

!The system's prototype and data sets can be accessed athttps://github.com/PedestrianDynamics/
GPSdataColVis
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irregular nature. Among the research works that were carried out in this domain is
the work proposed by Waga et al in [30] where the authors developed a system to
track pedestrians using their smartphones. The collected tracking data was stored
and visualized using google maps. In particular, they sent GPS tracking details
to a web server every 30 seconds where they were stored using MySQL database
management system. Then, to speed up the visualization component, tracking
data was updated into files every 24 hours in worst case, depending on the users
and the time range of tracks. Due to the time interval for updating files (which
are the data source for the visualization component), the system’s visualization
component was inefficient in producing maps for the current collected GPS points
at real time in the same manner as performed in [31]. In addition to that, [30] and
[31] did not incorporate heat maps as part of the visualization module, causing
the visualizing to be less effective and user friendly as we propose in our work.

Another visualization technique was described in [28] to study the behavior of
crowds in a large festival (in 2013 at Zurich city in Switzerland) over a period of
three days. A mobile application was developed in this context to collect users’
locations continuously, and visualize their presence during the festival. To do this,
the researchers collected users’ GPS data and sent it to a server every 2 seconds
to be stored in a database. The stored data was processed at an interval of 2
minutes to be visualized in the form of maps. The authors experimentally tested
the accuracy for several locations, and they obtained an accuracy between 150 to
500 meters. According to the authors, the proposed approach was not developed
for real time pedestrian tracking and visualization.

In [29] a festival’s crowd conditions (crowd density, crowd turbulence, crowd
velocity and crowd pressure) were visualized in real time using pedestrians’ GPS
location traces. To carry out this task, a mobile application was used to collect
GPS locations and send them periodically after processing to a server which stores
them in a database. In its heat map visualization component, multiple mathe-
matical models and methodologies were used to generate four different heat maps
to infer four crowd conditions at specific time point. The main drawback of this
approach is the computational complexity required to build the heat maps. In
addition, the proposed system did not aim to detect the crowd conditions during
the event, but only at specific time point.

In a similar line of research, Yun et al. [32] analyzed tourists’ spatio-temporal
behavior at the rural festival in South Korea for five days. The authors developed
a mobile application and a simple questionnaire to track the festival visitors and
collect accurate spatio-temporal information about them. The questionnaire was
conducted to know the visitors’ socio-economic characteristics in addition to week
day and weather to determine the effects of these characteristics on the crowd. In
this context, each participant installed the mobile application to record his/her
track, and received a personally administered questionnaire. At the end of the
experiments, participants reported back their data by submitting the question-
naires, in addition to uploading their tracking records (to a web server) in order
for the researchers to depict and analyse the produced heat maps. However, the
proposed approach did not collect and visualize the GPS tracks in real time, and
the accuracy issue was not addressed by the researchers.

As we have highlighted in the above-mentioned discussion and to the best of
our knowledge, the coupling of GPS data acquired using users’ smartphones and
heat maps for real time visualization purposes to understand the dynamics of
pedestrians moving in large-scale open environments has been very little. Never-
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theless, we can summarize the main drawbacks of existing approaches that have
attempted to employ visualization approaches and techniques for investigating the
pedestrians’ trajectory data as follows:

e Low accuracy of visualization: The lack of accuracy measurements for col-
lected positions has led to lowering the accuracy of heat map visualization. In
general, smartphones are typically accurate within a 4.9 m radius under open
sky and with normal conditions, however, their accuracy can degrade based
on signal blockage, atmospheric conditions and GPS receiver quality [33, 34].
Therefore, it is necessary not to submit positions with low horizontal accu-
racy for heat map visualization. Most of the existing approaches collected
and provided the positions to the visualization component regardless of their
accuracy.

e High computational cost: Some of the existing approaches used all or a large
portion of the collected data to visualize the crowd density of active pedes-
trians which resulted in increasing the required time to visualize the maps
[35].

e Inefficient storage and retrieval of GPS data points: losing the newly collected
GPS points in heat map visualization degrades the quality of the produced
maps. Some approaches attempted to address this drawback by selecting the
required GPS points only for visualization without searching in all data, but
they did not apply this protocol automatically along with each process of
data collection which led to losing current pedestrians’ positions needed for
heat map visualization in real time.

e Real time: some approaches did not process data in all their components in
real time which led to an inefficient real time approach.

In the next section, we introduce the architecture of our proposed approach and
detail the methods and techniques that we employ to address the challenges of
coupling GPS data points and heat map visualization techniques.

3 Architecture of the Proposed System

In this section, we first present the overall architecture of the proposed system.
As depicted in Figure 1, data about each user’s position is acquired every second
and gets transferred to a dedicated web server for further processing, storage and
visualization. To do this, the system employs several components and modules as
detailed below:

Mobile-based Data Acquisition: We have deployed the developed appli-
cation on client smartphone devices for tracking their positions and sending this
data to the web server for further processing. In particular, the application uses
the smartphone’s GPS sensor to determine users’ positions while they are mov-
ing in an open space. After the user starts the application and agrees to use its
associated GPS data collector for research purposes, the application starts col-
lecting the current position of pedestrians moving at open events continuously
(every second), and directly transfers the obtained GPS data over an active in-
ternet connection to the web server. The application remains active unless it is
explicitly closed by the user. To ensure protecting users’ privacy, the application
does not collect any private information about the smartphone, as it just collects
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Figure 1: Overall architecture of the proposed system.

the positions (latitude and longitude) that are spotted inside the event’s area to
be visualized later in the form of heat maps. To further clarify this method, we
present the algorithmic steps that we perform to carry out this task. As we can
see in Algorithm 1, Lines 2 to 6 show how we acquire the GPS data which contains
the latitude, longitude and horizontal accuracy.

Pre-processing of GPS Data: This component is employed for real time
processing of GPS data obtained from the mobile application as we described in
the previous step. Algorithm 2 illustrates the methods that we utilize to carry
out this step.

As we can see in Algorithm 2, the input is received in the form of the current
user’s position that is located within the event area. This data gets accordingly
stored in two database tables (Archive and Live Tables, respectively) depending
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Algorithm 1 Android-based mobile GPS data collection application.
Output:
record + array(
[“latitude”]: latitude of the user’s position,
[“longitude”]: longitude of the user’s position,
[*accuracy”]: horizontal accuracy of the user’s position,
[“mobileld”]: an identifier for the user’s mobile )
& confirmation message for storing the record into the web server

conMsg + NULL
Require: internet connection
1: while Application is running do
2 Location + Call requestLocationUpdates(GPSprovider)
3 record.latitude + Location.getLatitude
4: record.longitude + Location.getLongitude
5: record.accuracy + Location.get Accuracy
6: record.mobilel d + get aplication Id
7 Print record
& create HttpPOST Connection with the web server
9: open HttpPOSTConnection
10: submit record over HttpPOSTConnection
11: conMsg + read HTTP response message
12: Prompt conMsg
13: if close button is clicked then

14: disconnect HttpPOST Connection
15: break

16: end if

17 wait a second

18: end while

Algorithm 2 Pre-processing of GPS Data.
Input:
//submitted record from mobile application
record + array(
[“latitude”]: latitude of the user’s position,
[“longitude”]: longitude of the user’s position,
[*accuracy”]: horizontal accuracy of the user’s position,
[“mobileld”]: an identifier for the user’s mobile )
//Event area boundary
minLatitude + 32.22677
mazLatitude +— 32.22055
minLongitude + 35.21962
mazLongitude + 35.22494
//Minimum accepted collected position accuracy for visualization
minAccuracy + 5
Output: msg + NULL
1: if record.latitude > minlatitude and record.latitude < maxlatitude and record.longitudey > minLongitude and
record.longitude < maxlongitude then

2 connect to database
3 ArchivelnsertSQL + insert record into Archive Table
4: if execute(ArchivelnsertSQL) is successful then
5: msg + record is Archived
6: else
7 msg + record is not Archived
8 end if
9: if record. Accuracy <minAccuracy then
10: if Live Table contains record from the same mobile then
11: execute(delete the record from the Live Table)
12: end if
13: livelnsertSQL + insert record into Live Table
14: if execute(livelnsertSQL) then
15: msg + msg + and is ready for visualization
16: end if
17: end if

18: Print msg
19: disconnect from database
20: end if

on different criteria as follows: In the Archive Table, processed user positions are
always stored for data archival purposes. For all users’ positions that are within
a “five meters” accuracy interval are dynamically transferred and stored in the
Live Table after deleting the user’s previous position from the table, more details
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about these tables is provided in the Data Repository Component.

Data Repository Component: This component is employed as a reference
data repository for the collected positions of pedestrians inside the event. It
namely consists of two relational database tables: 1) an Archive Table that works
as a repository for all collected positions of moving pedestrians, and 2) a Live
Table which is a storage for the current positions of the pedestrians for real time
visualization. In other words, the Live Table helps the proposed system to achieve
real time visualization of the current users’ positions as it contains a small number
of positions which are equal to the number of current pedestrians. This means,
the computational time required for retrieving and processing GPS data from the
Archive Table will be increasing over time while using the system. Therefore, using
only one table for archiving and visualizing is inefficient for real time visualization,
because it retrieves all the previous/historical and current positions to return the
current positions. The structure of the Archive and Live tables is presented in
Table 1. Finally, this component can provide the GPS datasets in different formats
(SQL, CSV and JSON) to enable further processing of the produced data using a
variety of tools and techniques.

Table 1: Data structure of archive and live tables.

Field Description

id A unique identifier for the position
mobileld An identifier for the mobile

latitude latitude of the user’s position

longitude longitude of the user’s position
timestamp Date and time for the obtained position
accuracy horizontal accuracy of the user’s position

Post-processing of GPS Data: This component assists the visualization
component to keep the Live Table up to date and retrieve and return the con-
tent of the Live Table in JSON format. As we discussed before, the Live Table
aims to store the current positions of active pedestrians only during the event,
pre-processing of GPS data component updates the pedestrians’ positions contin-
uously, but it can not remove the last position of each pedestrian who has left the
event from Live Table. As demonstrated in Algorithm 3 in lines 8-12, the post-
processing of GPS Data component removes the old positions before retrieving.

Real-time Data Visualization: The main goal of this component is visu-
alizing pedestrians’ trajectory data at real-time through normal/point map and
heat map formats. It receives the current positions for all available pedestrians
in the event from the post-processing, and visualizes them on a web browser.
Normal map is used to represent the current position of each pedestrian as a
point (Longitude and Latitude) on the map, while current pedestrian positions
get automatically updated every second on the map. In this context, points on
the map will be updated automatically without updating the map in the back-
ground. On the other hand, we use heat maps (one of the most commonly used
methods for visualizing extensive point data sets) to continuously visualize and
analyze large data sets and identify data clusters. The types of maps have proved
to be helpful in obtaining an overview of the current crowd density at a glance
[38]. In this context, a heat map is graphically-depicted to represent spatial data
where regions are colored depending on measurement values found at the specific
location [29]. In our work, the heat map represents hot and cold areas on the
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Algorithm 3 Post-processing and visualization.
Input:
//normal map or heat map
mapType + normal or heat
//map updating interval time in second
updatingDuration + 1
//close the visualization

Output: normal map or heat map

1: importing leaflet libraries [36]

2 //Create an initial map of the center of the event

3: map + Call create map (Default Map center [32.227956522256136,35.22212731651962], Default Zoom: 18)
4: Leaflet-providers« Call OpenStreetMap layer;

5: previewing the initial map

6: connect to database

7: while request updates every second do

& execute(delete records from Live Table where  timeStamp=currentTime-2seconds)
9: data + array()()

10: while record«fetch record from Live Table do

11: data.push(record.latitude, record.longitude)

12: end while

13: data+json.encode(data)

14: reset map

15: if mapType = normal then

16: for i=0;ijlength(data);i++ do
17 marker(datali]).addTo(map)
18: end for

19: else

20: layer + heatLayer(data)[37]
21: addLayerTo(map)

22: end if

23: if map is closed then

24: break

25: end if

26: end while

27: disconnect from database

basis of pedestrians’ movement densities [39]. The hot areas (red areas) are re-
gions where the density of pedestrians is high (more than 65%, see [40] and [37]),
the cold areas (blue areas) are regions where the pedestrians density is low (less
than 40%, see [40] and [37]), and the yellow colored areas are with densities in
between. Figure 2 shows an example of a normal map and a heat map that are
obtained from real experiments that we have conducted at the open theater at An
Najah National University. In Algorithm 3, lines 1-4, we detail the steps that are
required to initialize the maps of the event, both normal and heat maps. In line
7, it requests the new positions from the Post-processing of GPS Data component
and convert them into JSON format in line 13. Then it updates the normal map
(lines 15-18), and also updates the heat map in lines 20-21. Algorithm 3 explains
Post-Processing and Visualization components in details.

4 Experimental Setup

In this section, we present the setup and details of our experiments. In order to
evaluate the performance of the proposed system, we have examined the following
aspects:

1. Efficiency of data collection module: Our goal in this context is to evaluate
the system’s ability of automatically collecting pedestrians’ trajectory data
at every second, in addition to the accuracy of the collected GPS-based data
at open areas.

2. Real time data visualization: Our aim here is to measure the run-time of
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Figure 2: Screenshots of a visualization snapshot. Left: normal map. Right: heat map (High
density: red, low density: blue, between low and high: yellow)

the proposed system’s prototype, by calculating the computational time for
every component of the system, in addition to calculating the Web page’s
loading time for the visualization process for both normal and heat maps.

To do this, we take an empirical approach to develop a prototype of the pro-
posed system, conducting three types of experiments:

1. A real-world experimental scenario where we used pedestrians’ smartphone
devices to collect their trajectory data at open areas (see Figure 3) and sub-
mit it to a web server. The main goal of this experiment is to evaluate the
efficiency of the data collection module and study the system’s accuracy in
collecting GPS-based trajectory data positions at open events/areas, as well
as measuring the computational time of each component of the system’s pro-
totype. The real-world experiment was conducted at several open areas at
the new campus at An Najah National University in Palestine. The focus
was on the open theater area. The area of the new campus is about 137.000
square meters, and its bounding box is identified by the following latitude
and longitude: (32.22682, 35.22493), (32.2294, 35.2196). Both an open area
with no high buildings and another open area that is surrounded by high
buildings were selected. Figure 3 shows the open areas and the main routes
of the tracked pedestrians. Nine users with different types of android-based
smartphones have installed the application and participated in this exper-
iment. They were divided into three groups. Each group started walking
normally from different points as shown in Figure 3.

2. A simulation experiment where we replaced pedestrians’ smartphones with a
PHP script to randomly generate a variable number of positions and submit
them to the web server in an attempt to evaluate the server’s computational
time taken by the visualization process for both normal and heat maps with
more auto-generated trajectory data.

3. A page loading time experiment where we compared the page loading time
of the developed system’s prototype with two well known web-based spatial
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data visualization systems in an attempt to evaluate the performance of the
real time visualization component of our system.
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Figure 3: Real experiment area and the plan of pedestrians’ movements.

We would like to point out that one of the main objectives of the proposed
system is to be of low cost and efficient. Therefore, the developed prototype only
exploited efficient free/open source software in the same manner as reported in
[41]. In this context, we developed the android-based mobile application using
Java and XML. To implement the data processing components, we used PHP,
JavaScript and JSON. In addition, we used MySQL as our database engine and
PHP to implement the data repository component. For the data visualization
component, we employed Leaflet library [36], which is one of the most well known
and efficient open source JavaScript libraries for visualizing normal and heat maps.
In particular, the heat map used Leaflet.heat plugin [37] which uses a simple-heat
visualization algorithm [40] that is combined with point clustering technique to
form a performance grid [37]. The Simple-heat is a super-tiny JavaScript library
for drawing heat maps on canvas focusing on simplicity and performance [40].
Here, the grid is colored with hot color(red) when multiple points are close to each
other and with cold color (blue) when dispersed. The current system'’s prototype
is hosted on a server with one core, Intel(R) Xeon(R) Silver 4214 CPU 2.20GHz
and 256 MB RAM. It can be accessed easily by any Android-based device with
an internet connection. The android-based mobile application is installed on dif-
ferent types of android-based mobile phones. Figure 4 shows a screenshot of the
android-based mobile application and a screenshot of the home page of the sys-
tem’s prototype. All client implementations were run on a personal computer
running Windows 10 with (i5) 2.4 GHZ processor, 8GB memory and Chrome
browser.

5 Ewvaluation and Results

5.1 Real-World Scenario Experimental Results

This section aims to evaluate the efficiency of the data collection part by measuring
the smartphone’s GPS horizontal accuracy for collecting trajectory data positions
at open event, and the required server computational time of each component in
the proposed system’s prototype.
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Figure 4: Screenshots: Left. Android-based mobile application. Right. Home page of the system’s
prototype

5.1.1 Data Collection

The efficiency of the data collection part is discussed in this section, As shown
in Table 2, 14184 positions were collected in this experiment on Mar 4, 2020,
the experiment started at 11:27:40 and ended up at 11:56:54 based on local time
of Palestine as illustrated in Figure 6. In Table 2 we also show a summary of
the collected positions. The delay in connection to the internet and giving the
permission to the android application by the user to start collecting the current
position as well as the end permission caused a difference in the start and end
times between the users, especially at the start time.

Table 2: Summary of the collected positions

User No. Start time End time Duration (second) No. of positions Success %

1 9:27:40 AM  9:56:43 AM 1743 1644 94,32
2 9:28:03 AM  9:56:53 AM 1730 1724 99.65
3 9:28:12 AM  9:56:54 AM 1722 1722 100.00
4 9:29:47 AM  9:56:48 AM 1621 1581 97.53
5 9:31:44 AM  9:56:54 AM 1510 1510 100.00
6 9:30:19 AM  9:55:55 AM 1536 1534 99.87
7 9:28:13 AM  9:56:53 AM 1720 1695 98.55
8 9:29:32 AM  9:56:52 AM 1640 1632 99.51
9 9:37:47T AM  9:56:52 AM 1145 1142 99.74

The duration column in Table 2 shows the experiment’s duration in seconds
for each user. It is an indicator for the expected number of collected positions,
where each second means one collected position for each user. Users 2, 3, 5- 9
achieved more than 99.5% of expected number of collected positions, while users
1 and 4 collected 94.32% and 97.53%, respectively from the expected collected
positions. One reason for the failure in collecting one position at one second is the
weak internet connection. Figure 5 presents comparisons between the collected
positions and the expected number of collected positions for each user. Also, the
average of collected positions is 98.8% at different circumstances such as: open
area, open area surrounded by high building, different types of android-based
smartphones and poor internet connection sometimes. As a result, the android-
based mobile application and the pre-processing of GPS data components were
98.8% efficient in collecting the current positions of pedestrians regularly at every
one second.
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Figure 5: Comparison between the number of collected positions and the number of expected
positions.

5.1.2 Accuracy Evaluation

In this section, our goal is to study and measure the horizontal accuracy of the
collected GPS data (latitude and longitude) by the android-based smartphones
(smartphones’ GPS horizontal accuracy); to see if they can collect trajectory
positions with good horizontal accuracy.

In our prototype, we used the android location service to find the current po-
sition with its estimated horizontal accuracy. In this context, the term horizontal
accuracy is defined as the radius (in meter) of 68% confidence [42]. In other
words, if we draw a circle centered at this position’s latitude and longitude, and
with a radius equals to the accuracy value, then there is a 68% probability that
the true location is inside the circle. Signal blockage, atmospheric conditions,
and receiver design features/quality are the main local factors that affect GPS
positioning accuracy [43, 34]. Therefore, in the real experiment, we took these
factors into consideration to simulate real-world scenarios. The area of the ex-
periment is divided into two parts. The first area is the open theater area with
no high building, see Figure 6.b. Figure 6.c presents the second area which con-
tains high buildings. The goal of this division is to measure the accuracy at the
open area with no buildings as well as the area with high buildings using various
android-based smartphone types, see Figure 6.

Table 3: Summary of the collected positions’ accuracy.

| The open theater (Area b) Area c
Accuracy (meter) Accuracy (meter)

User No. Positions Average Best ‘Worst Positions Average  Worst Best

1 532 7.43 7.2 7.6 1112 7.48 9.7 T

2 931 2.87 1.5 7.5 793 4.03 12.5 1.5

3 922 3.78 3 9.5 800 4.49 24 2

4 a00 4.92 2.5 9 681 6.01 14 2

5 558 2.47 1 3.4 952 2.52 4.1 1

6 1134 3.22 3.22 3.22 400 5.46 10.5 3.22

T 909 3.77 2 9 T86 7.19 34.5 2.5

8 557 3.56 2 6 1075 4.24 17 2

9 557 6.86 5 9.5 585 8.15 20 5

The results in Table 3 show the number of collected positions, expected average,
the best and the worst horizontal accuracy measures for each user in both areas
b and ¢. The total number of collected positions in the two areas is roughly
the same (area b: 7000, area c: 7184). The average of the horizontal accuracy
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Figure 6: The real experiment area. a. All area of experiment. b. The open theater area which
does not contain high buildings. ¢. This area is open with high buildings.
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Figure 7: Locations of positions with accuracy grater than 10 meters.

for all users in area b was within four meters, while in area ¢, it was less than
5.18 meters. These results show that the accuracy is affected by the presence
of high buildings. To guarantee the accuracy of our system, the post-processing
component only processes the accurately (within 5 meters) collected positions for
visualization component. Figure 7 explains the locations of the collected positions
that have more than 10 meters as an accuracy, where all of them were located
near to high buildings.

Many of the open and large important crowded events are organized at open
environment with very little signal blockage as the open theater area in our study.
Therefore, we are highlighting the results that were collected from the open theater
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area. The significant difference in the average of accuracy between the users is
depicted in Figure 8. As show in this figure, The lowest accuracy value was
recorded for User 1 with 7.43 meters offset, while the highest accuracy value was
marked for user 5 with 2.47 meters. The accuracy measures for six other users (2,
3,5, 6, 7, 8) were less than 4 meters. We have considered the the same area (area
b) and the same weather conditions for all users, however, the quality of installed
GPS sensors on the used smartphone devices was different, which explains the
variance in accuracy measures.

1 2 3 4 5 6 7 8 9

Smartphone Number

7

@

w

Accuracy (Meter)
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-

Figure 8: The average of accuracy for each user in the open theater area (area b).

Table 3 shows that the collected positions by user 1 and 9 are with more than 5
meters accuracy. Meanwhile, other users collected positions with better accuracy.
The main reason for that is the quality of the GPS sensor used by users 1 and 9
which is less efficient compared to others [33]. As a result, modern android-based
smartphones have a good ability to collect positions in open area with no high
buildings within 4 meters accuracy or less. In comparison with iPhone 6-based
Avenza software for capturing horizontal positions at open area that is reported
in [44], our system achieves better accuracy which is within 4 meters, while the
other system’s accuracy is within 7-13 meters.

5.1.3 Server Computational Time

The section aims to evaluate the server computational time of the proposed sys-
tem’s prototype based on the real experiment. In addition to accuracy aspects of
the proposed system, in these experiments we have also considered another im-
portant aspect that plays a crucial role on the overall’s quality of the system. Our
aim in this context is to evaluate the server's computational time of each of the
various components of our proposed system’s prototype. As we can see in Table
4, the GPS data pre-processing component took 18.8 milliseconds on average to
pre-process each submitted position from the 14184 positions and to store this
into the two tables of the repository component. On the other hand, the compu-
tational time for post-processing the received GPS data and further visualizing it
in the forms of normal and heat maps for the nine users who were moving con-
currently was recorded by the system. The total number of runs recorded in each
component was 1130 times. The average computational time for post-processing
GPS data (to process and retrieve the current positions) and send them to the
visualization component for all runs was 0.43 milliseconds. For the visualization
component, the average computational times needed to visualize normal maps and
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heat maps were 12.34 milliseconds and 8.8 milliseconds, respectively. The compu-
tational time difference between both techniques increases significantly when they
are applied on more data points. See Figure 9 and table 4. In the next section
5.2, we demonstrate the impact of increasing the number of data points on the
required time for visualizing both types of maps.

Table 4: The computational time of each component is based on the real-world experiment.

Component Number of runs Computational time (millisecond)
Pre-Processing 14184 18.793446
Post-Processing 1130 0.42608
Visualization-Normal Map 1130 12.34
Visualization-Heat Map 1130 8.8
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Figure 9: The computational time of the main components.

The post-processing component took less time compared to the visualization
component for all runs. The main reason is because the pre-processing component
(which is responsible for storing only the accurate positions within the specified
area in a separate table) deletes the previous position of the same user from the
data archiving table.

Based on the real-world experiment, the results show that the system’s pro-
totype can process, store and visualize the nine pedestrian positions in less than
35 milliseconds.On the other hand, post-processing with normal map visualization
and post-processing with heat map visualization required about 41% and 34%, re-
spectively of the computational time required by the pre-processing and repository
components which needed more than 50% of the computational time. However,
these percentages will change when applied to larger datasets of trajectory points
because every request in the pre-processing component is applied on one position
(it processes multiple requests at the same time in parallel), while every request
in the post-processing and visualization components is applied on all current po-
sitions. This means that the total computational time of post-processing and
visualization components increases when the number of the current positions in-
creases. Therefore, the real-world experiment that was conducted to evaluate the
system’s prototype was not sufficient to evaluate the computational time of the
post-processing and visualization components. Therefore, in next section, we test
the post-processing and visualization components over more positions.
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5.2 Simulation-based Experimental Results

In this section, we evaluate the server’s computational time required by the post-
processing and visualization components over a greater number of positions. As
we have pointed out in the previous section, the number of positions that can be
handled by the post-processing and visualization components affects the compu-
tational time of these components. In an attempt to demonstrate this effect, we
have replaced the real-world android-based mobile application with a PHP script
that generated a greater number of positions randomly within the area of the open
theater and submitted them to a web server. To do so, nineteen experiments that
started from 100 positions and finished with 5000 positions were conducted to
evaluate the computational time for the employed components over different data
sizes. Table 5 shows the results of this step. To reduce the effects of fluctuations
in the computational time, each experiment was run twenty times, and we took
the average of all times for each run.

Table 5: Computational time of post-processing normal and heat maps

Computational time (milliseconds)
Case Positions num. Post-Processing Normal visualization Heat visualization

1 100 0.99 136.55 120.2
2 200 14 158.2 119.2
3 400 1.956 211.56 122.7
4 600 2.698 256 125

5 800 3.262 311.86 146.2
6 1000 3.79106 356.8 155.2
7 1200 4.952 391 159.7
8 1400 4.99786 409 161.2
9 1600 5.8075 451 161.8
10 1800 6.74 504 161.9
11 2000 6.7908 553 163.6
12 2200 7.4439 571 163.4
13 2600 B.8449 655 175.4
14 3000 10.3908 822.63 184.8
15 3400 11.9399 883 205

16 3800 13.009082 1050 226.6
17 4200 13.8375 1140 2342
18 4600 14.8353 1294 2454
19 5000 16.479 1470 260.4

The results in Table 5 and Figure 10 show that the computational time for post-
processing and normal and heat maps visualization components increases when
the number of positions increases. Figure 10 presents the computational time
needed to visualize the current positions in heat map and normal map formats
for 19 cases. Each visualization process consists of two components, retrieving
current positions (Live Table) by post-processing component and visualizing them
by visualization component based on the map’s format. The obtained results show
that the post-processing component took very short computational time compared
to the map visualization component. And the computational time needed for
visualizing all positions in the largest case (5000 positions) in normal and heat
maps were 1487 milliseconds and 277 milliseconds, respectively. The main reason
of the difference in time between them are the leaflet plugins that are used by the
system. Normal visualization used marker plugin [36] while heat map visualization
used heat map plugin [37]. The representation of each point with icon in marker
plugin [36] increases the computational time for loading and rendering, while the
heat map plugin does not use any icon for representation [45]. In addition to
that, Leaflet.heat plugin [37] used a simple-heat algorithm [40] that is very fast.
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In Figure 10, normal map is affected significantly by increasing the amount of
data. The time in normal map is duplicated 11 times while it is duplicated twice
in heat map from the first case until the last case. Leaflet.heat plugin achieves
much lower rendering times than the normal map (points map). According to
[45], the leaflet.heat plugin rendered a maximum of three million points in 16,313.7
milliseconds, while normal maps [36] rendered a maximum of 100,000 points. This
means, the heat map visualization is more suitable for visualizing a large amount
of data in real time than normal maps. In addition to that, normal maps cover
an entire map area, making each feature impossible to be identified [45].

__ 1600
2 1400

8888288

0 +—o—0 -

S E \5§§) '\,"'@ \P@ »“’@ \‘3’@ '15#) '»'”@ 'Lép %Q@ 'h°5§) %‘b@ & tnép

Number of Positions

Computational Time (milliseco

=== Noramal Visulization Heat Visulization = Post-Processing

Figure 10: Computational time for post-processing and visualizing normal and heat maps over
different numbers of Positions.

5.3 Page Load Time Experimental Results

In this section, we evaluate the performance of the real time visualization module
of the proposed system’s prototype. In particular, we compare the execution
(a.k.a. Page Loading) time required by the proposed system’s prototype, Maptive
[46] and eSpatial [47] systems to load and display both normal and heat maps
over 13 GPS data sets which are generated randomly. A Page loading time in
this context is defined as the average amount of time it takes for a page to show
up on a client device screen, and it is calculated from the moment at which the
user clicks on a page link or types in a Web address until the page is fully loaded
on the client’s browser [48]. This comparison criterion is highly variable due to
different factors, such as client devices, network connection, in addition to other
technical specification as reported in [48]. Therefore, to make a fair comparison, we
have used the same internet connection, client device, client browser and Chrome
DevTools to measure the web page loading time. Both Maptive and eSpatial are
efficient, available online and well-known real time web-based spatial visualization
systems that support the visualization of both normal and heat maps. To carry out
the experiment, we used Chrome DevTools [49] to measure the web page loading
time at each run. Each experiment was run twenty times, and we calculated the
average results produced per each run.

Table 6, Figure 11 and Figure 12 show the experimental results of web page
loading time for the proposed system’s prototype, Maptive and eSpatial web-based
systems. As the results demonstrate, using the proposed system, we were able to
achieve the best web page loading time required to visualize both normal and heat
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Table 6: Web page loading time required by our proposed system against Maptive and eSpatial
systems.

Data set Positions num. Maptive eSpatial The proposed system
Normal map Heat map Normal map Heat map Normal map Heat map
1 5000 9,204 9,708 4,968 5,856 4,458 0,847
2 4600 8,678 9,506 4,808 5,686 4,254 0,6062
3 4200 8,626 9,312 4,306 5,344 38 0,589
4 3800 8,50 9,224 3,712 5,262 32 0,5388
5 3400 8412 9,132 3,538 5,164 3,018 04702
[H 3000 8,114 9,07 3,468 4,824 2,516 0,3944
T 2600 7,994 8,878 3,186 4,156 2,344 0,3902
8 2200 T84 8,502 3,154 3,938 1,856 0,387
9 1800 7,722 8432 3,07 3,824 1,51 0,3666
10 1400 7.6 8,204 2,994 3,704 1,342 0,3544
11 1000 7,58 8,192 2,922 3,604 1,092 0,3438
12 600 7,566 8,166 2,828 3,618 0,79 0,3386
13 200 7,468 8,00 2,66 3,584 0,502 0,3382
&ﬁ 8,11 8,82 3,51 451 2,36 0,47
10
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Figure 11: Web page loading time of normal map visualization over a different number of Positions.
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Figure 12: Web page loading time of heat map visualization over a different number of Positions.

maps over all data sets. On average, the proposed system took 0.71% and 0.33%
less than Maptive and eSpatial web-based system respectively, to visualize the
normal map. Moreover, it needed 0.05% and 0.1% from the web page loading time
that are needed in Maptive and eSpatial to visualize heat maps. In other words,
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our system’s prototype visualized 5000 data points in heat map representation in
less than a second while Maptive and eSpatial costed 5.8 seconds and 9.2 seconds
respectively. The main reason for these results is the efficiency of the Leaflet
libraries for depicting the maps that are used in our system [45]. In particular,
we use a high performance heat map visualization algorithm combined with point
clustering techniques to draw heat maps that are characterized by their simplicity
[40]. In other words, The efficiency of the simple-heat algorithm makes the heat
map visualization fast [40].

6 Conclusions and Future Work

The wide usage of smartphones in Palestine and in the world motivates us to
utilize smartphones to track and explore pedestrian dynamics at open events; to
avoid potential crowd movement related incidents. In this article, we have pro-
posed a real time visualization system for pedestrian dynamics at open events.
The proposed system integrated smartphone’s GPS sensor, web server and open
source/free software to provide an efficient, online, accurate and low cost real
time system for collecting, storing and visualizing the pedestrian movements. In
addition, this paper presented the first smartphone-based GPS accuracy study in
open events/areas in Palestine. To evaluate our approach, a prototype was devel-
oped and tested using a real-world experiment at different open areas, nineteen
simulation experiments, and 13 web page loading time experiments. The results
demonstrated that our system collected the positions of pedestrians in open envi-
ronment in real time and within an accuracy of 4 meters. Moreover, it processed
and stored the collected position in 18.8 milliseconds, while retrieval and visual-
ization of heat maps for 5,000 users took around 0.277 seconds. Also, the web
page loading time in the developed system’s prototype for heat map visualizing
for 5,000 users was less than a second compared to Maptive and eSpatial which
were 5.8 seconds and 9.2 seconds respectively.

Based on the system’s prototype implementation and initial results, our pro-
posed system showed promising results. It is expected to track the pedestrian and
vehicles in real time at open and large areas efficiently. Therefore, in the future
work, we plan to develop an iOS-based mobile application to cover a larger-scale
portion of pedestrians who use various mobile platforms, and conduct extensive
real experiments using both android and iOS applications. We plan in this content
to investigate the efficiency of our system on real large GPS data sets. In addi-
tion, we plan to develop a new neural network approach to predict pedestrians’
movement behavior, and detect abnormal events at real time that may occur in
large open events.
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