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Abstract

We analyze pricing patterns and price level effects of algorithms in the
market segments for OTC-antiallergics and -painkillers in Germany. Based
on a novel hourly dataset which spans over four months and contains over
10 million single observations, we produce the following results. First, price
levels are substantially higher for antiallergics compared to the segment of
painkillers, which seems to be reflective of a lower price elasticity for antial-
lergics. Second, we find evidence that this exploitation of demand character-
istics is heterogeneous with respect to the pricing technology. Retailers with a
more advanced pricing technology establish even higher price premiums for
antiallergics than retailers with a less advanced technology. Third, retailers
with more advanced pricing technology post lower prices which contradicts
previous findings from simulations but are in line with empirical findings if
many firms compete in a market. Lastly, our data suggests that pricing algo-
rithms take web-traffic of retailers’ online-shops as demand side feedback into
account when choosing prices. Our results stress the importance of a careful
policy approach towards pricing algorithms and highlights new areas of risks
when multiple players employ the same pricing technology.

Keywords:Algorithmic pricing, Collusion, Artificial intelligence
JEL Classification:C13, D83 ,L13 ,L41

∗We are thankful to Philipp Thoste for excellent research assistance.
†Email: N.Fourberg@wik.org; Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste

(WIK), Rhöndorfer Str. 68, 53604 Bad Honnef, Germany.
‡Email: K.marques-magalhaes@wik.org; Wissenschaftliches Institut für Infrastruktur und Kommunika-

tionsdienste (WIK), Rhöndorfer Str. 68, 53604 Bad Honnef, Germany.
§Email: L.Wiewiorra@wik.org; Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste

(WIK), Rhöndorfer Str. 68, 53604 Bad Honnef, Germany.

1



1 Introduction

The days in which prices are chosen by humans are over, as more and more data is avail-
able to retailers in the endeavor to gain a competitive edge against rivals. Valuable infor-
mationwhendetermining pricesmay be cost indicators, macro-economic factors, demand
side feedback but most certainly also competitors’ prices. The EU Commission (2017)
notes that a majority of online firms indeed track rivals’ prices and two-thirds derive their
pricing decision based on algorithmic software. This development is thereby not only
limited to e-commerce but is also present in offline contexts as well.1

One the one hand, the automated analysis of these datamay lead tomore efficient pric-
ing, on the other, it bears some risks to the competitiveness of markets, namely tacit col-
lusion. The challenges associated to this have been widely discussed by scholars (Ezrachi
and Stucke, 2016, 2017; Harrington, 2018, 2020; Haucap, 2021) and competition authori-
ties alike (British Competition and Markets Authority, 2018, 2021; Bundeskartellamt and
Autorité de la Concurrence, 2019). The main argument in this is that algorithms enable a
form of commitment on a specific price strategy and prices being chosen in a more pre-
dictive manner. This implies a reduction in feasible strategy sets and can simplify tacitly
collusive outcomes (Byrne and De Roos, 2019).

While studies based on computer simulations (Waltman and Kaymak, 2008; Calvano
et al., 2020) and laboratory experiments (Normann and Sternberg, 2022; Schauer and
Schnurr, 2022) provided a first evidence base in recent years, empirical approaches in
this field are scarce with the notable exceptions being Assad et al. (2020); Wieting and
Sapi (2021) and Brown and MacKay (2021).

In this paper we extend upon this literature and analyze pricing patterns and price
level effects in the market segments for OTC-antiallergics and -painkillers in Germany.
Based on a novel and extensive hourly dataset of over 10 million single observations, we
produce the following results. First, we witness a group of cross-owned retailers who ex-
hibit concerted price choices over a large set of products. Evidence suggests that prices for
these are determined by one centralized algorithm which raises concerns about collusive
outcomes due to an identical pricing technology. Second, price levels are substantially
higher for antiallergics compared to the segment of painkillers, which seems to be reflec-
tive of a lower price elasticity for antiallergics. Furthermore, we find evidence that this
exploitation of demand characteristics is heterogeneous with respect to the pricing tech-
nology. Retailers with a more advanced pricing technology establish even higher price
premiums for antiallergics than retailers with a less advanced technology. Third, retail-
ers with more advanced pricing technology post lower prices. This contradicts numerous
simulation studies (Calvano et al., 2020) but is in line with experimental findings under

1See Assad et al. (2020) and “Why Do Gas Station Prices Constantly Change? Blame the Algorithms”,
Wall Street Journal, 8 May, 2017, available at: https://on.wsj.com/3vRCRo3 (last accessed on 23 December,
2022) for brick-and-mortar gasoline markets. Furthermore, digital price tags in supermarket also facilitate
the application of pricing technology as seen in “Surge Pricing Comes To The Supermarket”, The Guardian,
4 June, 2017, available at: https://bit.ly/3mf9IQp (last accessed on 23 December, 2022).
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mixed algorithmic and human interaction of Brown and MacKay (2021),Werner (2022)
and Schauer and Schnurr (2022). Lastly, our data suggests that pricing algorithms take
web-traffic of retailers’ online-shops as demand side feedback into accountwhen choosing
prices.

The remainder of the paper is structured as follows. Section 2 elaborates on the rele-
vant strands of literature to which we contribute. Section 3 sheds light on our dataset and
provides summary statistics, whereas the analysis in Section 4 produces our main results.
Implications of our findings for welfare and competition policy are discussed in Section
5. Finally, Section 6 concludes.

2 Literature

Our study and findings contribute primarily to the nascent literature on algorithms’ ef-
fect on prices. Contributions in this field investigate algorithmic behavior in settings of
simultaneous price- or quantity-competition except Klein (2021) who studies sequential
actions. Examined algorithms are either of the family of learning algorithms (Waltman
and Kaymak, 2008; Salcedo, 2015; Calvano et al., 2020; Klein, 2021; Werner, 2022; Schauer
and Schnurr, 2022) , prediction algorithms (Miklós-Thal and Tucker, 2019; O’Connor and
Wilson, 2021) or include a tit-for-tat rule (Normann and Sternberg, 2022).2 Common to
all is that they study variations of human and algorithmic interaction and their ability to
tacitly collude in simulation or experimental settings.

The simulation studies of Calvano et al. (2020), Klein (2021) and Waltman and Kay-
mak (2008) find that reinforcement learning algorithms can learn repeated game strate-
gies in a Bertrand setting and tacitly coordinate on supracompetitive prices without being
explicitly trained to do so. These results seem to be robust against variations in marginal
costs, demand functions, number of firms and different forms of uncertainty (Calvano
et al., 2020). In contrast to this,Waltman andKaymak (2008) employed a repeatedCournot
oligopoly framework in their simulations and find that even algorithms which do not
memorize past experiencedprice interactions showa tendency to collusive behavior. Klein
(2021) departs from the previous studies and allows for sequential moves in price setting
and restricts the feasible price set ex-ante. The result is that two algorithms converge to a
stable supra-competitive Edgeworth price cycle. Thus one firm sets a higher price, which
is gradually undercut for each price adaption. On average the asymmetric cycles lead to
higher prices than the competitive outcome.

The recent laboratory experiments of Normann and Sternberg (2022), Werner (2022)
and Schauer and Schnurr (2022) all study algorithms’ effect on prices in varying combi-
nations of human and algorithmic interaction. Except for Normann and Sternberg (2022)

2A tit-for-tat pricing rule is an algorithm in nature that takes a specified set of inputs (rival’s and own
price) and produces an output (next period’s own price) according to a predefined process. This process is
retaliating if the rival’s price is lower and cooperating if it is equal or higher. After one round of retaliation,
the tit-for-tat rule returns to the cooperation mode which is why it can be considered to be memory-one
comparable to most Q-Learning approaches.
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the studies produce one result in unison. Supracompetitive prices are achieved in any
setting in which algorithms are involved, albeit to a lesser degree compared to pure in-
teractions of only humans or only algorithms. Furthermore, Werner (2022) finds that
conventional negative pricing effects resulting from the number of firms in the market,
are more pronounced in algorithmic interaction. These results offer a contrary view on
algorithms that may also facilitate competition. Subsequently, we briefly summarize the
aforementioned experimental and simulation studies in Table 1.

Table 1: Relevant simulations and laboratory experiments

Study Strategice Timing Algorithm Competitive
choice effect

Waltman and Kaymak (2008) Quantity simultaneous Learning Negative
Calvano et al. (2020) Price simultaneous Learning Negative
Klein (2021) Price sequential Learning Negative
Werner (2022) Price simultaneous Learning Positive
Schauer and Schnurr (2022) Price simultaneous Learning Positive
Normann and Sternberg (2022) Price simultaneous Tit-for-tat Negative

However, empirical evidence on algorithms and their effect on prices is scarce and
the only contributions in this field are Assad et al. (2020), Wieting and Sapi (2021) and
Brown and MacKay (2021), the latter one being the one closest related to ours. Assad
et al. (2020) examine pricing in the German gasoline market based on a high-frequency
dataset of 2,058 over a five year period. They find that AI tools increase profit margins
in competitive and especially duopoly situations. Contrarily, Wieting and Sapi (2021) do
not study brick-and-mortar markets but focus on pricing patterns observed on the Dutch
and Belgian B2C e-commerce platform Bol.com. They find that for a moderate number
of market participants, product prices increase when pricing algorithms compete against
each other. However, using pricing algorithms is not profitable for certain firms if the
number of market participants is sufficiently large. Thus, also pro-competitive effects are
observable and a market efficiency argument can be made.

The empirical part of Brown andMacKay (2021) is the approachwhich is most closely
related to ours. Similar to us, the authors use hourly data from five US online retailers for
a selection of 7 drugs in the segment of antiallergics. They find that retailers which em-
ploy a more advanced pricing technology generally post lower prices. Furthermore, they
witness a heterogeneity in pricing technology among firms which is reflected in price up-
date intervals of different length. We reproduce both of these findings based on our data.
Both our studies and also Klein (2021) demonstrate the importance to take asymmetric
pricing technologies and the resulting sequentiality of actions into account. However, we
expand upon Brown and MacKay (2021) in that we observe a larger amount of retailers
as market size matters (Wieting and Sapi, 2021), and also include products from another
segment of drugs, namely painkillers. Especially the focus on antiallergics restricts the
analysis of Brown andMacKay (2021) to a market segment that exhibits a rather inelastic
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demand. We relax this narrow view and show that firms with more advanced pricing
technologies are able to better exploit segment-specific demand characteristics. Further-
more, to the best of our knowledge, we are the first to complement gathered price data
with web-traffic data of the retailers’ online-shops to examine algorithms’ reaction to traf-
fic feedback as a proxy for demand.

Given thatwe observe heterogeneous price update frequencies amongfirms, our study
also relates to the body of macroeconomic literature on menu costs and sticky prices. Dif-
ferent price update frequencies are well evidenced in offline brick-and-mortar settings
(Nakamura and Steinsson, 2008; Klenow andMalin, 2010), whereas prices in e-commerce
are updated at a higher frequency (Gorodnichenko and Talavera, 2017; Cavallo, 2017).
Price data in these studies is aggregated on higher time intervals (days or weeks) com-
pared to our hourly time frame which allows us to conjecture on the underlying pricing
technology.

3 Data on pricing algorithms

3.1 Pricing algorithms: A short introduction

Algorithms in general can be understood as a programmed set of rules that map a speci-
fied set of inputs in a particular way into an output. In the context of pricing algorithms,
this output would be a price value that applies to one specific product or an entire prod-
uct range. The inputs which feed into the algorithmic procedure can be past or present
data on demand indicators, rivals’ prices or other external factors that are deemed to be
informative for the pricing decision. Usually, the identification of informative parame-
ters for the algorithm’s specific purpose is carried out based on an initial data-set, the so
called “training data”. In this way, pricing algorithms are likely to be initially calibrated
to choose prices which would maximize an own firm’s profit given the historic demand
parameters and price choices in the training data.

In addition to this, some algorithms can be characterized as self-learning , that is, their
functional form allows for an adaption of the mapping process as response to received
data points in the field. The most popular in this regard are those from the family of
"reinforcement learning" of which “Q-learning” is the best known. These procedures ba-
sically exhibit a trade-off which determines whether a specific period is played with the
objective to maximize profits (“exploitation”) given the current optimal mapping, or “ex-
ploration” and choosing a potentially non-optimal price. Gathered data as response to a
non-optimal price may be valuable in improving the current algorithmic procedure but
may involve short term costs since prices may not be optimally set.

During price competition, algorithms affect two features of the underlying economic
theory (Brown and MacKay, 2021). First, they automate the pricing decision and reduce
costs to change prices, that is, menu costs. Calculating prices by software is much more
efficient than a manual upload of a new price list. Especially, over a large set of managed
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products these efficiencies are substantial. Hence, it is intuitive that especially large online
retailers rely on automated pricing of their products.

Second, investment in advanced pricing technology is costly and serves as a commit-
ment device in the short-term.3 This commitment is two-fold with respect to the specific
algorithm applied and to the frequency of running the software. The specific algorithmic
method stipulates a specific way how prices are determined which, in turn, commits the
firm not only to a single price but a whole price strategy or strategy profile. This strategy
profile contains more than one specific price at each point in time, but also best responses
on counterfactual rivals’ prices. Over time these non realized best response prices could
be anticipated by other agents in themarket given enough interactionswith the algorithm.
Thismay lead to a better anticipation of future price changeswith potential effects of equi-
librium price play and the state of competition. These commitment effects differ greatly
from human agents who are typically bound by incentive compatibility constraints ev-
ery time they are faced with a pricing decision and, hence, lack this form of commitment
(Maskin and Tirole, 1988).

The second commitment concerns the frequency at which the algorithmic code runs.
Firms that invest in a better pricing technology or extended computing capacities may be
able to apply pricing scripts in shorter time intervals or keep it running constantly. Very
short intervals of running the pricing algorithm or heterogeneity in price update cycles
generally among firms may have implications for the profitability of specific strategies in
competition, e.g., Edgeworth-Cycles among others. In the extreme, pricing algorithms
can be running continuously and price adaptions as reactions to changes in relevant pa-
rameters can happen in real-time.

One might argue that the technical obstacles to implement such tools make them ex-
clusive to only the technically most advanced companies. However, this is not the case
as commercial solutions are increasingly available which offer automated pricing tools
for a variety of platforms, including the likes of Amazon Marketplace, eBay among many
others (ChannelAdvisor, 2022; Repricer, 2022; IntelligenceNode, 2022).

3.2 Data

Our data consists of 39 online retailers that offer over-the-counter (OTC) drugs in the
categories of antiallergics and painkillers in Germany. We accounted for 236 different
products that where offered by the set of retailers in the two categories and consist of
the best selling drugs in the two specified categories. Specifically, we consider a single
product to be a drug-brand-form-(variant-)size combination, such as “Ceterizin-Hexal-
Tablets-20”.

We collected hourly data for these products and retailers from the price comparison
3The commitment is only valid for a limited amount of time which is defined by the update cycle of the

algorithmic programming code. Those programs are typically updated at a lower frequency than they are
used to set prices. Thus, in between updates to its algorithm, the firm commits to price changes which are
determined according to a fixed set of rules.
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website of Billiger.de (2022) which aggregates all available offers for the products in ques-
tion. Retailers and Billiger.de are connected via APIs that ensure a fast updating of relevant
data on the comparison website.4 Since we are interested in pricing behavior in a com-
petitive environment and want to observe a wide range of price signals as potential input
variables, wemonitor price choices of a high number of competing retailers instead of only
focusing on large players. Relying in this regard on a price comparison website offers the
advantage that web-scraping scripts do not need to be set up and maintained individu-
ally for each retailer but only once. This less error-prone approach resulted in almost no
scraping downtime and a near complete hourly time series of data.

The observational period of our sample spans over more than four months from Au-
gust 3rd to November 11th of 2022. Accounting for all products, this amounts to 10.220.147
single observations for every variable in the price data-set which makes it the largest and
most comprehensive so far compared to previous empirical studies in this field. The fol-
lowing Subsection 3.3 elaborates on all gathered indicators and provides summary statis-
tics on included retailers and products.

Auxiliary to the price data set is traffic data sourced from the commercially available
web-traffic database of Similarweb (2022). These indicators serve as proxy variables for
consumers’ demand since actual purchasing data is only available to the retailers them-
selves. Under the assumption, that conversion rates from visiting a website to a successful
purchase are not structurally different between retailers, traffic data is a good approxima-
tion.5 Traffic data in general is alwaysmeasured in relation to a specific url or webpage. In
our case these are the respective root-url pages of the online retailers and include any traf-
fic from subsequent urls in the website tree. Hence, our traffic data-set is aggregated on
retailer level and is measured daily in contrast to our hourly product level price data. Nat-
urally, this implies the assumption that traffic of the entire online retailer is representative
of individual product page traffic. We are confident, that there is no structural hetero-
geneity between retailers in that some are able to direct root traffic over-proportionally
to specific products than others. Although individual fluctuations may exist, the overall
traffic level should be a good indicator for the traffic level of individual product pages.
Section 3.3 offers summary statistics also on available traffic variables and retailers.

4We are not concerned that sourcing from a third-party website leads to a structural selection bias of
our data. Retailers have to fulfill certain quality criteria in order to be listed on Billiger.de, but these are
comparable to other listing sites and are easy to satisfy even for smaller players. This includes even some
small drug stores that primarily operate a brick-and-mortar store and just sell their excess inventory online.
Additionally, we do not miss any large online retailers for considered drugs that may be not be listed for some
reason.

5We are not aware of studies that focus on web-traffic data quality in this regard, but one can argue that
intermediate to larger retail platforms are able to maintain higher conversion rates than small ones. This may
be due to a larger product portfolio that enables “one-stop-shopping” behavior, a more efficient web-design
or professional customer service. We can control for some of these additional quality dimensions, but of
course cannot rule out all of them. However, the availability of reliable web-traffic data is skewed towards
the larger platforms anyhow. Sparse traffic data is frequent for smaller retailers which restricts associated
analyses on larger ones for which these concerns are less pressing.
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3.3 Summary statistics

The 236 products offered by the 39 retailers in our sample translate to 6426 uniqueproduct-
retailer combinations. Naturally, this number is product from the depth of retailers’ prod-
uct portfolios. More than half of the retailers in our sample offer 85% or more of the prod-
ucts. Table 2 displays this for a selection of the most popular retailers in Germany. The
heterogeneity in the depth-ratio of offeredproducts becomes evident: While the drugstore
chain Rossmann offers only one product of the selected medications,Medpex has over 97%
of the investigated products in store. However, the number of available products cannot
be used to infer the size of the retailer as a whole, since the product selection in our study
is restricted and chosen ex-ante. A full list of the product range for each shop is provided
in the Appendix, see Table 8.

Table 2: Retailers’ product portfolio depth - Selection

Retailer No. of products Depth-ratio
Rossmann 1 0.42 %
Shop Apotheke 65 27.43 %
Amazon Marketplace health & Personal Care 94 39.66 %
DocMorris Apotheke 222 93.67 %
Medpex 232 97.89 %

Summary statistics for the hourly price data is presented in Table 3. Sparseness of the
hourly price data is rather limited except for indicators concerning shop ratings as these
are only available for approximately half the retailers in the sample. Retailers for whom
this information is available are rather well rated. Shop_Rating exhibits a range from 55

to 100, with a mean rating of 87. The No_Shop_Ratings varies from one to 155 ratings
being placed by customers.

Data on price variables are complete. The average product Price in the sample is
8.74e with a minimum value of only 0.01e. Products which post a very cheap head-
line price are often accompanied by rather high Shipping_Cost such that the range of
Total_Price is narrower.6 The cost of delivery is on average 3, 66 e, with free shipping
being also widely available in the data. The Availability of a product is measured as
the number of working days which are approximately needed for the delivery, with the
maximum value simple being non-availability of the product. Given this, delivery of the
average product takes slightly more than two working days.

While the aforementioned variables are directly sourced from Billiger.de, the indicator
ofPricechange_dummy is self-calculated. This dummyvariable takes the value 1 if a price
change occurred compared to the previous hour of the sameproduct-retailer combination.
On can see from Table 3 that the average likelihood of a price change of a given product-
retailer combination is 0.6% per hour.

6The strategic substitution between headline prices and shipping costs is also reflected in a correlation
coefficient of −0.27. Figure 5 in Appendix B displays a correlation matrix for a selection of main variables.
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Table 3: Summary statistics - hourly price data

Variable Mean Std.Dev. Min. Max. No.Obs. Measurement
Shop_Rating 87 13.596 55 100 5,026,745 Integer ∈ [0, 100]
No_Shop_Ratings 30 42.958 1 155 5,026,745 Count
Price 8.735 7.701 0.01 76.40 10,220,147 Value in e
Shipping_Cost 3.662 1.334 0 5.00 10,220,147 Value in e
Total_Price 12.40 7.430 0.57 76.40 10,220,147 Value in e
Package_Size 33.8 30.938 1 129 9,903,548 Count
Pricechange_dummy 0.006 0.080 0 1 10,213,721 Binary {0, 1}
Availability 2.127 3.476 0 - 10,220,147 Count

Category 0.457 0.498 0 1 10,220,147 Binary {0, 1}

Month 9.26 - 8 11 10,220,147 Integer ∈ [1, 12]
Day 14.82 - 1 31 10,220,147 Integer ∈ [1, 31]
Hour 11.76 - 0 23 10,220,147 Integer ∈ [0, 23]
Minute 24.54 - 0 59 10,220,147 Integer ∈ [0, 59]
Days_passed 50.48 - 0 102 10,220,147 Count
Hours_passed 1,210 - 0 2,458 10,220,147 Count
Weekday 4.097 - 1 7 10,220,147 Integer ∈ [1, 7]
Hour_of_week 87.09 - 1 168 10,220,147 Integer ∈ [1, 168]

Ptech 2.38 - 1 4 10,132,663 Integer ∈ [1, 4]

Whether a specific product is a painkiller or an antiallergic is indicated by Category.
This variable takes the value 0 for painkillers and 1 if a given product is an antiallergic.
Themeanvalue of 0.457directly indicates the relative proportion between the twoproduct
groupswhich is rather balanced. For completeness Table 3 includes time related variables
whose interpretation is rather straightforward.7

Analogously, summary statistics for the daily web-traffic data is presented in Table 4.
Data for these variable ismore sparse as not all the retailers’ websites are large enough and
receive enough traffic to be consistently gathered by our provider Similarweb (2022). All
web-traffic data are count variables apart from Avg_V isit_Duration which is measured
in seconds and the fractional indicators of Bounce_Rate and Desktop_Share.

4 Data analysis

4.1 Frequency of pricing decisions

Previous work of Brown and MacKay (2021) showed that the frequency of price changes
is one dimension which is indicative of the underlying pricing technology being used.
In this sense, the more frequent price changes are, the higher the likelihood that these
are carried out automatically. They find for their limited data-set of five retailers and 59

7Please note that the variable of Ptech is a categorial variable developed as part of analyses to the ob-
served frequencies of price updates in Section 4.1. We include it here for completeness but postpone its
discussion to the aforementioned section.
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Table 4: Summary statistics - daily web-traffic data

Variable Mean Std.Dev. Min. Max. No.Obs. Measurement
Unique_Visitors 41,716 53,642.61 5,008 350,514 123,285 Count
Visits 45,241 61,406.83 5,003 403,919 128,636 Count
Page_Views 106,918 233,575.9 232 2,609,576 273,784 Count
Pages_per_Visit 4.628 3.34 1 56 273,784 Count
Bounce_Rate 0.53 0.179 0.04 1 272,327 Ratio
Avg_Visit_Duration 185.0 165.099 0 3,288 307,006 Seconds
Desktop_Share 0.37 0.135 0.07 1 258,623 Ratio

products three distinct pricing patterns of constant, daily and weekly price updates.
Generally, we reproduce these results also based on our data as the selection of retail-

ers in Figure 1 indicates.8 Among the retailers in our data, we find update frequencies
which are consistent with hourly or a constant update process, a daily and weekly cy-
cle and those that do not exhibit any structural pattern. In the extreme case of products
sold by Amazon on its own Marketplace (Retailer-15170), during every hour of the week,
prices of more than 10% of the entire product portfolio changed. A prime example for a
daily update pattern isMedpex.de (Retailer-762) which is the largest retailer in the sample
based on web-traffic parameters. Figure 1 displays in the third tile that price changes for
this retailer occur mainly every weekday between 6:00 to 12:00 a.m. CET. A weekly pric-
ing interval is observed by usually intermediate to small retailers of which Beraterapotheke
(Retailer-14695) has a very distinct pattern. Almost all price changes are implemented on
Tuesdays between 6:00 and 10:00 a.m. CETwhich affect approximately 7% of the retailer’s
offered products. Finally, update frequencies of a large number of retailers do not follow
any systematic pattern, which is exemplarily shown forMediherz.de (Retailer-3622). Those
retailers change prices only for a small subset of their offered products and they do so at
different times within a week.

Establishing a very high frequency of price updates necessitates amore advanced tech-
nology that both calculates new prices and also implements them on the retailer’s plat-
form. Given this, one can generally deduce from the observedprice frequencies the degree
of automation and the advancement of the pricing technology. We assign, therefore, all
retailers of the sample to one of four categories with respect to their pricing technology
(“Ptech”). This Ptech variable takes the value 1- for constant or hourly price frequencies,
2 - daily , 3 - weekly and 4 - no regularity in price changes. 9 Table 5 summarizes this and
displays the distribution of retailers in our sample across these categories.

8The selection of retailers in Figure 1 highlights the most distinct pricing patterns to visualize different
underlying pricing technologies. The selection is not misleading since there are numerous other retailers that
exhibit similar patterns to those included in the figure. Price frequency plots for all retailers of the sample
are displayed in Figure 6 in the Appendix.

9Please note that the hourly update frequency in category (Ptech = 1) is only limited by the gathering
frequency of our web-scraping script and could actually be even more frequent. For instance, if a retailer
would update prices every 15 minutes, we would just observe the last price which is posted after 60 minutes.
Faster update intervals are, hence, not observable.
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Figure 1: Frequency of price changes

Table 5: Pricing technology category

Update frequency No. Observations
Ptech=1 Hourly (or faster) 7

Ptech=2 Daily 8

Ptech=3 Weekly 12

Ptech=4 No Pattern 11

11



We formulate our findings concerning the observed update frequencies as a first styl-
ized fact.

Stylized Fact 1: Online retailers of the sample differ with respect to their price update intervals.
We observe distinct patterns of no systematic update frequency, weekly, daily and hourly intervals.

4.2 Collusive price patterns

Collusion through price algorithms is a major concern among practitioners and scholars
alike. The degree of collusion is regularly assessed through analyzing price levels, which
we will also tackle subsequently in Section 4.3. However, another indication of this con-
duct is also concerted price actions. Firms which increase and decrease prices at the same
points in time could point to some form of communication taking place. Such pricing
patterns may be different to the overall market’s price level and do not necessarily involve
all market participants. Hence, it seems promising to us to take on a more explorative
approach to the pricing data initially before analyzing price level effects.

For this purpose Figure 2 displays the time series of selling prices for the product of
Ceterizin-Hexal-Juice (Product-82268966) over the course of each hour of the observational
period. Excluded are prices of retailers who kept their price constant during this time
frame. Although we only include time-variant price curves, only few retailers change
prices regularly for this exemplary product and price levels range from 2e to 5e.

Figure 2: Time series of prices - Product: 82268966
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Furthermore, what appears to be a bold line at the bottomof the pricing range in Figure
2 are actually price curves of retailers that are almost identical and behave in a concerted
fashion. These for retailers consist of apo.com (Retailer-26948), apolux.de (Retailer-27349),
deutscheinternetapotheke.de (Retailer-27347) and juvalis.de (retailer-27345). The subsequent
Figure 3 highlights this inmore detail as price curves from the upper-left panel are filtered
for the aforementioned retailers in the upper-right panel.

Figure 3: Concerted price actions - Product: 82268966

This produces two key features of the pricing behavior of these retailers. First, price
changes in both directions occur either within the same hour or are delayed by only a
few. Secondly, if prices are constant for a period of time, there is a clear ordinal sequence
starting with Retailer-26948 pricing highest to Retailer-27349 charging the lowest price. In
conjunction with this, prices of Retailer-26948 are significantly cross correlated for every
retailer pair. This applies to present day price values but also lagged and leaded values of
up to 30 days after or prior. The bottompanel in Figure 3 exhibits that the cross-correlation
coefficients exceed 0.8 for every Retailer-26948 pair. This concerted pattern is not exclu-
sive to the highlighted Product-82268966, but is observable for the largest proportion of
products commonly offered by the retailers. Figure 7 in the Appendix shows this for an-
other example (Product-82250331) in similar detail, whereas Figure 8 displays concerted
price curves for a wider selection of products.

If we recall the two features of this behavior, that is, a clear ordinal structure of prices
and simultaneous adaption of prices, one can deduce that it is highly likely the group
of retailers use the identical pricing algorithm. Prices have to be determined by the same
processwhich reacts to external parameters in the same fashion. All retailers of this group
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share the same understanding when prices need to be updated, in which direction and
while keeping the ordinal structure intact. Furthermore, the simultaneity of price changes
implies that the update frequency has to be identical. Given that all observe an external
shock in one relevant parameter at the same time, only a commonupdate frequencywould
lead to simultaneous price changes as response.

The main explanation for this concerted pricing behavior is, however, that the entire
group of retailers is cross-owned by one parent entity ofApoGroup (2022)which operates
multiple online retail pharmacies in the German market. Hence, it is safe to assume that
observed prices are not the result of independent but identically calibrated algorithms
but only one which determines some form of core price. Individual retailer prices are
then derived from this price via a retailer-specific linear weighting factor which perfectly
explains the ordinal structure.10

Although this may alleviate the concerns about illegal collusive activity among the
group, it nevertheless showcases pricing behavior that may result if competing market
players use identical pricing technology. Given that commercial offers of these software
are already available this may be worrisome and could pose a threat to competitiveness
of markets. The same pricing software can easily be sold to multiple firms who may be
competitors. A harmful harmonization of prices does not have to be the result of algo-
rithms learning to do so, but because identical automated pricing solutions will react in
a similar fashion to common shocks. We summarize this as our second stylized fact and
discuss potential implications for competition policy in Section 5.

Stylized Fact 2: An identical pricing algorithm is used by a group of cross-owned retailers. This
common algorithm leads to a concerted price level and simultaneous price updates. A harmoniza-
tion of prices does not have to be the result of self-learning algorithms but may also result from
identical pricing solutions, which are commercially available.

4.3 Price level effects

While the analysis of the hourly price data already provided insights on concerted price
actions, a market’s degree of collusion is usually assessed with respect to its price level.
To analyze effects on prices we combine the hourly price data and the daily web-traffic
data. Naturally, to align the different aggregation levels of both data sets, we build daily
product-retailer specific averages of all price related variables. Consequently, the previ-
ously reported 10.220.147 observable price points reduce by approximately 23

24 .
10In our opinion, such near identical price curves as observed for Product-82268966 are highly unlikely the

result of two or more independent algorithms, even if they are of the same functional form and are calibrated
on the identical set of training data. The main reason for this is, that rival’s prices would most likely be an
important input parameter. These values differ dependent onwhich retailer’s perspective is taken and, hence,
would lead to a different optimal price. Furthermore, if we assume that maximizing revenue or profits is part
of the algorithm’s objective function, it may not be optimal for Retailer-26948 to constantly price highest given
that all run at the same high frequency.
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Estimation of price level effects rests on our linear model specification that is charac-
terized by the following Equation 1.

log(Priceijt) = β1Xijt + β2Wjt + β3Ci + β4Tj + γi + γt + ϵijt (1)

We include log(Priceijt) as dependent variable and regress this on Xijt as the vector of
product-retailer-day specific variables from the price data. These consist of Shop_Rating

and Shipping_Cost. Wjt is the vector of relevant web-traffic indicators which are retailer-
day specific and include theUnique_V isitors of the online retailer, theAvg_V isit_Duration

and total Page_V iews. Depending on the specification,Wjt includes also lagged versions
of the aforementioned variables. Ci includes only a product specific Category variable
which distinguishes between antiallergics and painkillers. Tj includes retailer specific
information and currently includes only the Ptech variable stemming from analyses in
Section 4.1. In addition, we include also γi to account for product specific fixed effects
that influence different levels in price. This is complemented by the inclusion of time-
varying fixed effects γt to filter out non-observable time trends that are common to all
retailers and products. Hence, regression coefficients can be interpreted as the relative
impact on the price level within a specific product-day combination.11

Web-traffic variables of Wjt serve as a proxy for general demand that the retailers of
our sample are facing. Usually, the inclusion of both price and demand indicators raise
valid concerns about the endogeneity assumption of the model being violated due to the
reverse causality that exist between the two. However, we do not share these concerns in
this particular case for two reasons. First, we are not includingproduct demands, e.g., pur-
chased units, directly as they are simply not available but only traffic which includes also
non-purchasing interactions. Second, prices are product-retailer-time specific (Priceijt)
whereas web-traffic is only on retailer level (Wjt). The overall traffic a retailer’s website
receives probably influences the pricing decision of single products, but not that a single
product pricemay have influence on aggregate visits or visit duration. To put it differently,
traffic of one product site enters on average only with a factor of 1

n−1 into total web-traffic,
with n being the total set of web-pages under the root url. Given large product portfo-
lios of the retailers, also outside of our sample, n is easily in the thousands or tens of
thousand for some of them. Hence, we are confident that the direction of influence from
retailer specific web-traffic to product-retailer specific prices is unidirectional.

Table 6 presents the estimation results from our specification in (1). In the left base-
line specification which includes no lagged variables, a retailer’s rating enables him to
charge 4.01% higher price for 10 additional rating points.12 There seems to be an inverse
relationship with respect to the charged shipping costs as 1e higher costs results on av-

11Given our log-level structure, estimated regression coefficients can be translated into percentage
marginal effects according to %∆Price = 100 ·

(
expβ −1

)
. However, for values of −0.1 < β < 0.1 this

can be approximated to be %∆Price = 100 · β.
12The variable Shop_Rating takes on values from 0 to 100. Furthermore, Tables 3 and 4 present informa-

tion on units of measurement for all variables of the data set.

15



erage to price cut of 2.86%. Probably, it is a strategic decision to put different weight on a
lower headline price and consequently charge shipping costs accordingly. The strongest
marginal effect on the price level is exerted by the categorydummyvariable. SinceCategory =

1 for antiallergics, the 1.469 log point increase translates to antiallergics being priced
higher by a substantial margin of 334.49%. Given that we already account for product
FE, we suspect that this finding is indicative of structural differences in the elasticity of
demand between the two market segments. Naturally, a lower price elasticity for antial-
lergics implies a larger pricing power for retailers in this segment, consistent with Lerner
(1934) and his seminal index as measure of market power. We provide a discussion on
this interpretation in Appendix A .

Another important result from the baseline model is that a more advanced pricing
technology leads to lower prices on average. Recall that retailers with slower or unstruc-
tured update cycles are in groups with higher values of Ptech. Hence, starting from the
fastest price technology, each group comparison beyond the first exhibits prices which
are higher by 6.18% (0.060 log points).13 Hence, this result does not support the fear of
a higher price level due to algorithmic pricing that may be comparable to collusion. Fur-
thermore, this aligns with the only other empirical finding of Brown and MacKay (2021)
who show this for a smaller subset of products and retailers in the US. We summarize
previously stated findings as our first set of main results.

Result 1: The price level depends positively on the retailer’s rating, and negatively on shipping
costs. Prices are substantially higher for antiallergics, which seems to be reflective of a lower price
elasticity and higher market power of retailers in this segment compared to painkillers.

Result 2: Retailers with a faster, probably more advanced pricing technology post lower prices.
Price differences between each of the pricing technology groups are on average 6.18%. We find no
support for a more collusive price level due to pricing algorithms.

Web-traffic’s effect on the price level seems to be twofold. On one side the actual num-
ber of visitors to a retailer’s online shop is negatively associated to the price level. On the
other, however, measures of the intensity of visits, that is, how long visitors have stayed
(Avg_V isit_Duration) and howmany total pages (Page_V iews) have been viewed in the
process, have a positive impact on prices. In this context we want to emphasize the inter-
pretation of theAvg_V isit_Duration as likelihood that a given visit ends with a purchase
decision. Naturally, the longer a visitor interacts with an online shop, the more likely it is
she found products to her liking, the more products are in her shopping cart, and simply
more sunk cost have been paid during the shopping process.14 Given that visit duration

13This implies the assumption that price level effects between different values of Ptech are linear which
does not necessarily have to be the case. However, in alternative specifications that include dummy variables
of Ptech ∈ {1, 2, 3}, we do not find qualitatively different results. Hence, for the sake of better readability of
regression tables, we opt for the current representation.

14There are some aspects that would also result in higher visit duration but could potentially reduce the
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Table 6: Price level effects

Dependent variable:
log(Price)

(1) (2)
Shop_Rating 0.004∗∗∗ 0.002∗∗∗

(0.0001) (0.0001)

Shipping_Cost −0.029∗∗∗ −0.030∗∗∗

(0.001) (0.001)

Ptech 0.060∗∗∗ 0.032∗∗∗

(0.002) (0.003)

Category 1.469∗∗∗ 1.461∗∗∗

(0.022) (0.023)

Unique_Visitors −0.00000∗ −0.00000∗∗∗

(0.00000) (0.00000)

Avg_Visit_Duration 0.0001∗∗∗ 0.00004∗∗∗

(0.00001) (0.00001)
Avg_Visit_Duration_lag1 0.00004∗∗∗

(0.00001)
Avg_Visit_Duration_lag2 0.00003∗∗∗

(0.00001)
Avg_Visit_Duration_lag3 0.00003∗∗∗

(0.00001)
Avg_Visit_Duration_lag4 0.00004∗∗∗

(0.00001)
Avg_Visit_Duration_lag5 0.0001∗∗∗

(0.00001)
Avg_Visit_Duration_lag6 0.0001∗∗∗

(0.00001)

Page_Views 0.00000∗∗∗ 0.00000∗∗∗

(0.000) (0.000)
Page_Views_lag1 0.00000∗∗∗

(0.000)
Page_Views_lag2 0.00000∗∗∗

(0.000)
Page_Views_lag3 0.000

(0.000)
Page_Views_lag4 0.000∗∗

(0.000)
Page_Views_lag5 0.000

(0.000)
Page_Views_lag6 0.00000∗∗∗

(0.000)
Constant −0.526∗∗∗ −0.378∗∗∗

(0.028) (0.030)

Product FE Yes Yes
Period (Day) FE Yes Yes
Observations 81,291 72,645
Log Likelihood 26,931.820 24,374.050
Akaike Inf. Crit. -53,229.640 -48,104.110

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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is measured in seconds, the marginal effect of a 100 seconds longer visit would equate to
a price increase by 1.01%.

The first baseline specification in Table 6 only considers traffic data of the same day
to explain effects on the price level. However, from our Stylized Fact 1 in Section 4.1 we
know that update cycles are heterogeneous among retailers. Only retailers who run their
pricing algorithm on an constant or hourly basis (Ptech = 1) can reliably incorporate
traffic feedback into prices the same day. Consequently, for all other retailers, traffic of the
previous day or multiple days still contains unused and informative feedback which has
not been transformed into price updates yet. To account for this, we also include lagged
versions of the intensive margin traffic indicators in the second specification of Table 6.
Specifically, we include historic values of up to 6 days prior, such that we capture effect
from web-traffic of an entire week. This aligns with the longest regular (weekly) update
frequency which we have observed in the sample.

While effects of non-traffic variables remain qualitatively unchanged, it becomes clear
that historic values of Avg_V isit_Duration have a significant positive effect on prices.
This applies especially to lags of 5 and 6 days prior as their marginal effects are 2 to 3
times larger than those of more recent points in time. We summarize these findings as
our second main result.

Result 3: The price level depends negatively on extensive margin of web-traffic (users) whereas the
intensive measures have a positive impact. Especially historic values of users’ average visit duration
from 5 to 6 days prior, have a significant impact as these align with weekly update cycles of retailers.

Hitherto, the analysis developed the price level effects based on the full sample. To
qualify our results further, we look for heterogeneity of in these effects with respect to
different factors. Among the first which come to mind is the retailers’ pricing technol-
ogy.15 We have seen that more advanced pricing leads generally to a lower price level, but
how other channels are affected by it remains unclear. For this, we conduct our specifi-
cation from Equation 1 separately for subsamples of Ptech ∈ {1, 2, 3}. Regression results
for all three models are displayed in Table 7. 16

The first noteworthy heterogeneous effect is present with respect to the price differ-
ence between antiallergics and painkillers (Category). While the baseline effect of a price

likelihood of a purchase. Consider a retailer’s website that is poorly structured and desired products are
not easy to find. Then it would be possible that a longer visit duration is indicative of a lower probability
of a purchase. However, retailers’ websites in the sample are structured similarly and we found the time
investment to find test products to be comparable. Hence, we feel confident in ruling out this aspect.

15We have also looked at effect heterogeneity with respect to the different product categories of antialler-
gics and painkillers. However, subsample regressions do not produce qualitatively different results. Table 9
in Appendix B displays these estimation results.

16We exclude retailers with irregular and most likely non-automated price updates (Ptech = 4) from
this analysis. These retailers are also comparably small and exhibit web-traffic that is consistently below the
threshold to be tracked by our data provider Similarweb (2022). We do not find any heterogeneous effects
with respect to non-traffic variables for these retailers. Similarly, we have only few retailers with the fastest
pricing technology in the sample (Ptech = 1) for which traffic data is largely sparse.
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Table 7: Price level effects - pricing technology subsamples

Dependent variable:
log(Price)

(Ptech=1: Hourly) (Ptech=2: Daily) (Ptech=3: Weekly)
Shop_Rating 0.016∗∗∗ −0.0001

(0.0002) (0.0001)

Shipping_Cost −0.317∗∗∗ 0.008∗∗∗ −0.021∗∗∗

(0.017) (0.001) (0.001)

Category 1.722∗∗∗ 1.421∗∗∗ 0.762∗∗∗

(0.068) (0.022) (0.019)

Unique_Visitors −0.00004 −0.00000∗∗∗ −0.00000
(0.0001) (0.00000) (0.00000)

Avg_Visit_Duration 0.00001 0.00002
(0.00002) (0.00001)

Avg_Visit_Duration_lag1 0.00002 0.00003∗∗

(0.00002) (0.00001)
Avg_Visit_Duration_lag2 0.00000 0.00005∗∗∗

(0.00001) (0.00001)
Avg_Visit_Duration_lag3 0.00001 0.00004∗∗

(0.00001) (0.00001)
Avg_Visit_Duration_lag4 0.00001 0.0001∗∗∗

(0.00001) (0.00001)
Avg_Visit_Duration_lag5 0.00000 0.0002∗∗∗

(0.00002) (0.00001)
Avg_Visit_Duration_lag6 −0.00000 0.0001∗∗∗

(0.00002) (0.00001)
Page_Views 0.00000∗∗ 0.00000∗∗

(0.000) (0.00000)
Page_Views_lag1 0.000 0.000

(0.000) (0.000)
Page_Views_lag2 0.000 −0.000

(0.000) (0.000)
Page_Views_lag3 −0.000∗ 0.000

(0.000) (0.000)
Page_Views_lag4 0.000 −0.000

(0.000) (0.000)
Page_Views_lag5 −0.00000 0.000 −0.000

(0.00002) (0.000) (0.000)
Page_Views_lag6 0.00000∗∗∗ 0.000

(0.000) (0.000)
Constant 1.042 −1.614∗∗∗ 1.023∗∗∗

(0.826) (0.035) (0.032)

Product FE Yes Yes Yes
Period (Day) FE Yes Yes Yes
Observations 424 42,917 29,304
Log Likelihood 688.387 19,048.530 14,842.330
Akaike Inf. Crit. -946.774 -37,455.050 -29,066.670

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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premium still persists for all pricing technologies, it becomes more pronounced the more
advanced the technology is. Retailers of group Ptech = 3 post antiallergics prices which
are, on average, higher by 114.26% (0.762 log point). This price premium extends for re-
tailerswith daily update frequencies (Ptech = 2) to 314.13% (1.421 log point) and reaches
its pinnacle for the fastest technology at 459.57% (1.722 log point). This differentiated ef-
fect suggests that more advanced pricing technology not only enables faster update cycles
and shorter reaction times, but that the calculation of prices takes demand characteristics
better into account. Whether algorithms calculate price elasticities of market segments
explicitly or just evaluate demand-side indicators that are reflective of the concept, is not
assesable to us. Regardless of how opportunities of pricing power are identified, it just
matters that they are. A stronger exploitation of positions of market power due to algo-
rithms, naturally raises questions of expected rent allocations and, lastly, welfare implica-
tions. We address these in the discussion in Section 5. Subsequently, we summarize and
formulate our fourth main result.

Result 4: Price premiums for antiallergics are differentiated with respect to the pricing technology.
Retailers with the fastest technology establish premiums of 459.57% compared to only 114.26% for
retailers with weekly cycles. This suggests that more advanced algorithms are better able to asses
and exploit underlying demand characteristics of market segments when choosing prices.

Web-traffic’s baseline effect showcases the importance of historic values for the price
level. However, if we consider price technology subsamples, this effect becomes more nu-
anced. Given that web-traffic data is too sparse for retailers with the fastest technology,
we restrict the analysis to the comparison between retailers with daily and weekly up-
date frequencies. For retailers that change prices daily, only traffic of the given day exert
a significant influence. This is an intuitive result as the maximum delay with which traf-
fic feedback is translated into prices is one day. Information from historic traffic values
which are older than one day are already outdated and have already been accounted for
in previous price updates. The same intuition holds true for retailers who update prices
weekly (Ptech = 3). For those, traffic data of the entire prior week is significantly influen-
tial, perfectly aligning with their update schedule. The largest marginal effect is exerted
by lags of order 5 or higher such that, for instance, a 100s longer average visit duration 5
days prior is associated with a higher price level by 2.00% at a given day. We summarize
this as our last main result.

Result 5: The effect of the average visit duration on prices is heterogenous in the pricing technol-
ogy. The influence of historic traffic values coincides with the frequency of the update schedule.
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5 Discussion of Results

Our second result does not support collusion fears and stands in contrast to the findings
of simulation studies of Waltman and Kaymak (2008) and Calvano et al. (2020). How-
ever, it aligns with results of experimental approaches of mixed human and algorithmic
interactions (Werner, 2022; Schauer and Schnurr, 2022) and empirical investigations so far
(Brown and MacKay, 2021). Although prices of retailers with a more advanced pricing
technology are not elevated, concerns about collusive outcomes still persist. Nurtured are
these fears by our second stylized fact and the witnessed concerted pricing behavior of a
group of cross-owned retailers. Prices of these retailers follow a clear ordinal pattern and
price changes occur simultaneously as response to a common shock in input parameters.
Given that all retailers are owned by the same company, it is likely that one identical algo-
rithm determines prices for all retailers of the group which dismisses suspicions of illegal
conduct. However, we see this development as problematic for two reasons.

First, if prices of multiple market participants behave near identical, the predictability
of the general price level within a market increases. This predictability of price reactions
can be crucial in establishing tacitly collusive agreements in the long run. Normann and
Sternberg (2022) show in their treatment variations on different uncertainties regarding
employed algorithmic structures, that these indeed affect cooperation rates and price lev-
els. If one considers a learning algorithm in such an environment, a higher predictability
of rivals’ price responses should lead to a lower attractiveness of the exploration state
compared to exploitation. Exploration is simply not as necessary if a multitude of market
participants behave similarly due to the same price technology. Consequently, learning
algorithms would converge faster to a purely exploitative play, which constitutes a faster
path to potentially higher prices as simulation studies suggest (Waltman and Kaymak,
2008; Calvano et al., 2020).

The second concern is about pricing technology being increasingly available on a com-
mercial basis. In this study we witnessed centralized algorithmic price setting only for a
group of cross-owned retailers. However, the commercial distribution of these tools could
create a similar situation in which retailers employ the same pricing technology, only now
with the exception that they are independent entities and potentially competitors. Sell-
ers of pricing technology could, therefore, become a de-facto facilitator of concerted price
reactions loosely comparable to industry associations as collusive ringleader-platforms.
However, more evidence on the behavior of commercially available price technology is
needed to qualify this concern.

Based on our fourth result one can carefully conjecture on welfare effects and implica-
tions for rent allocation. Our finding suggests that retailers with more advanced pricing
technology seem to be better in assessing demand characteristics of market segments and
exploiting them. Economically, it is irrelevant whether algorithms are able to calculate
concepts such as price elasticities explicitly. It suffices if they derive comparable conclu-
sions from simpler demand side indicators. These conclusions could be that consumers
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in specific demand segments have only few other product alternatives or cannot post-
pone their consumption to a later point in time. According to classical welfare theory of
Hotelling (1938), Hicks et al. (1986) and Schwartzman (1960), higher prices in cases of
rather inelastic demand (such as antiallergics) imply lower welfare losses, since demand
reactions are muted. As Worcester (1975) puts it: “The lower the elasticity, the smaller
the output distortion and the smaller the welfare loss for a given [...] price mark-up.” Al-
though losses in welfare may not be substantial if algorithms exploit inelastic demands,
the distortion in the allocation of rents is. Large price premiums, as evidenced in this
study, lead to a very asymmetric distribution of rents, with consumers getting the short
end of the deal. However, further empirical research based on real demand data is war-
ranted to solidify these conjectures.

6 Conclusion

In this paper we analyze pricing patterns and price level effects of algorithms in two mar-
ket segments of OTC drugs in Germany. Based on a novel and extensive hourly dataset
of over 10 million single observations we discover the following stylized facts on pric-
ing behavior. First, retailers differ significantly with respect to the frequency with which
they update prices. Distinct patterns are that of constant updating, daily, weekly and
non-regular updating cycles (Brown and MacKay, 2021). Second, we witness a group of
cross-owned retailers that exhibit concerted price choices over a large set of products. Ev-
idence suggests that prices for these are determined by one centralized algorithm which
raises concerns about collusive outcomes due to identical pricing technology.

For the investigation of price level effects, we combine our hourly price level data with
daily web-traffic from the retailers’ online shops. Based on this evidence we produce the
following main results. First, price levels are substantially higher for antiallergics com-
pared to the segment of painkillers, which seems to be reflective of a lower price elasticity
for antiallergics. Furthermore, we find evidence that this exploitation of demand charac-
teristics is heterogeneous with respect to the pricing technology. Retailers with the fastest
update cycles establish even higher price premiums for antiallergics than retailers with a
less advanced technology. Second, retailers with more advanced pricing technology post
lower prices. This contradicts numerous simulation studies (Calvano et al., 2020) but is in
linewith experimental findings undermixed algorithmic andhuman interaction of Brown
andMacKay (2021),Werner (2022) and Schauer and Schnurr (2022). Lastly, our data sug-
gests that pricing algorithms take web-traffic as demand side feedback into account when
choosing prices. Intuitively, historic values of web-traffic are important which align with
the update cycle of the respective pricing technology. Our results have implications for
competition policy and qualify the concerns on algorithmic collusion.
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Appendix A: Demand characteristics antiallergics & painkillers

This study focuses on online retailers in the OTC market, in which demand is considered
to be non-urgent. In case of severe pain or allergic symptoms, consumers would almost
certainly visit the next brick-and-mortar apothecary or drug store. The online demand for
OTC drugs are therefore of more forward-looking consumers.

Nevertheless, demand patterns seem to be different between the two segments of an-
tiallergics and painkillers due to seasonality effects. While painkillers are in rather con-
stant demand throughout the year, there is a distinct allergy season. Especially, consumers
who suffer from a pollen or grass allergy are battling symptoms mainly from March
through September, depending on their specific allergens. Based on this, consumers in
the segment of antiallergics should know when they are going to need their medication
and shop in advance. However, it seems that only a minority will do so, which can be
derived from Figure 4. The displayed website visits are from the respective allergy and
painkiller subpages of themost frequented online retailer in the data setMedpex (Retailer-
762).

Figure 4: Web Visits of category subpages - Medpex (Retailer-762)

For the months of March through August of last year, website visits are clearly el-
evated aligning with the most common allergy seasons of pollen and grasses in Ger-
many. Apparently a significant portion of consumers act myopic in their consumption
timing in the sense of Gabaix and Laibson (2006) which has also been evidenced in nu-
merous other contexts (Poterba, 1988; Busse et al., 2013; Williams, 2016). Consequently,
consumers in the segment of antiallergics are less able to postpone their purchase because
they know that they are going to need theirmedication soon. The economic interpretation
of this would be a less price elastic demand function compared to the demand segment of
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painkillers which exhibits no seasonality and a rather constant interest over a yearly time-
frame. Naturally, a less elastic demand implies that firms do not loose as much demand
in response to a potential price increase. This implies a larger market power for sellers
according to Lerner (1934). In the context of price algorithms, it should be rather undis-
puted that some demand side parameters of specific products enter into the calculation
process of prices. However, it is less clear to which extent more profound demand charac-
teristics of whole market segments or even price elasticities are identified and exploited.
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Appendix B: Additional graphics and tables

Table 8: Retailers’ product portfolio depth

Retailer No. of products Depth-ratio
fixmedika.de 1 0.42
Rossmann 1 0.42
Schwabenpillen.de Versandapotheke 1 0.42
Elisana - Meine Stammapotheke im Internet 2 0.84
internet-apotheke-freiburg 4 1.69
Meine-Nicolai-Apotheke 20 8.44
Shop Apotheke DE 47 19.83
Amazon Marketplace Health & Personal Care 92 38.82
Parfümerie Douglas GmbH 126 53.16
arzneidoc.de 127 53.59
mediherz.de 129 54.43
Volksversand Versandapotheke 138 58.23
Paul-Pille 156 65.82
apo-mathildenhoehe 163 68.78
ahorn24.de 178 75.11
aposalis 185 78.06
Preisapo 187 78.90
Eurapon 198 83.54
Beraterapotheke 205 86.50
Bodfeld-Apotheke 205 86.50
apodiscounter.de 206 86.92
SANICARE 207 87.34
apotheke4you 208 87.76
deutscheinternetapotheke.de 212 89.45
apotheke.de 214 90.30
DocMorris Apotheke 214 90.30
juvalis.de 214 90.30
apo.com 216 91.14
apolux.de 216 91.14
versandapo.de 216 91.14
Disapo 218 91.98
Medicaria Apotheke 219 92.41
Sanicare Apotheke 220 92.83
Aliva Apotheke 221 93.25
fliegende-pillen.de 221 93.25
vitenda.de 221 93.25
UnserekleineApotheke 226 95.36
Medpex.de 231 97.47
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Figure 5: Correlation matrix of selected variables
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Figure 6: Frequency of price changes - all retailers
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Figure 7: Concerted price patterns - Product:82250331
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Figure 8: Concerted price patterns - Product Selection
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Table 9: Subsamples Category

Dependent variable:
log(Price)

(Category=1: Painkillers) (Category=2: Allergy)
Shop_Rating 0.004∗∗∗ 0.001∗∗∗

(0.0001) (0.0002)

Shipping_Cost −0.021∗∗∗ −0.038∗∗∗

(0.001) (0.001)

Ptech 0.046∗∗∗ 0.017∗∗∗

(0.003) (0.004)

Unique_Visitors −0.00000∗∗∗ −0.00000∗∗∗

(0.00000) (0.00000)
Avg_Visit_Duration 0.00004∗∗∗ 0.00005∗∗∗

(0.00001) (0.00002)
Avg_Visit_Duration_lag1 0.00004∗∗∗ 0.00004∗∗

(0.00001) (0.00002)
Avg_Visit_Duration_lag2 0.00003∗∗ 0.00004∗∗

(0.00001) (0.00002)
Avg_Visit_Duration_lag3 0.00003∗∗ 0.00004∗∗∗

(0.00001) (0.00002)
Avg_Visit_Duration_lag4 0.00002∗∗ 0.0001∗∗∗

(0.00001) (0.00002)
Avg_Visit_Duration_lag5 0.0001∗∗∗ 0.0001∗∗∗

(0.00001) (0.00002)
Avg_Visit_Duration_lag6 0.00003∗∗∗ 0.0001∗∗∗

(0.00001) (0.00002)
Page_Views 0.00000∗∗∗ 0.00000∗∗

(0.000) (0.00000)
Page_Views_lag1 0.00000∗∗∗ 0.00000∗

(0.000) (0.000)
Page_Views_lag2 0.00000∗∗∗ 0.00000∗∗

(0.000) (0.000)
Page_Views_lag3 0.000 0.000

(0.000) (0.000)
Page_Views_lag4 0.00000∗∗ 0.000

(0.000) (0.000)
Page_Views_lag5 0.000∗ 0.000

(0.000) (0.000)
Page_Views_lag6 0.00000∗∗∗ 0.00000∗∗∗

(0.000) (0.000)
Constant 1.512∗∗∗ 2.708∗∗∗

(0.017) (0.032)

Product FE Yes Yes
Period (Day) FE Yes Yes
Observations 39,232 33,413
Log Likelihood 19,041.940 6,992.347
Akaike Inf. Crit. -37,665.870 -13,588.690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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