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Abstract
Electromagnetic induction (EMI) systems are used for mapping of the soil electri-
cal conductivity in near surface applications. Data measured using EMI systems are
known to be susceptible to measurement influences associated with time-varying ex-
ternal ambient factors. Temperature variation is one of the most prominent factors
causing drift in EMI data, making it challenging to obtain stable and reliable data
from EMI measurements.

To mitigate these temperature drift effects, it is customary to perform a temper-
ature drift calibration of the instrument in a temperature-controlled environment.
This involves recording the apparent electrical conductivity (ECa) values at specific
temperatures and the occuring drift is determined through a static thermal ECa drift
correction. However static drift correction does not account for the delayed thermal
variations of the system components.

In this thesis report, a novel correction method is presented that accounts for delayed
thermal variations of EMI systems components by modelling the dynamic character-
istics of drifts using low-pass filters (LPF) and utilises it for correction. The method
is developed and tested using a customised EMI device with an intercoil spacing of
1.2 m, optimised for low drift and equipped with temperature sensors that simultane-
ously measure the local internal temperature across the device during measurements.
The device is used to perform outdoor calibration measurements over several days for
a wide range of temperature conditions ranging from 10 − 50 °C.

Scenarios with uniform and non-uniform temperature distributions in the measure-
ment device are both considered. To parameterise the proposed correction approaches,
two optimisation algorithms notably the Nelder-Mead simplex method and the Shuf-
fled Complex Evolution (SCE-UA) were used respectively for efficient estimation of
the calibration parameters. The drift model with one LPF is applied in a first sce-
nario to 16 datasets. During the measurements, the temperature distribution in the
device were uniform. Results from the first scenario shows that the measured temper-
ature dependent ECa drift of the system without corrections is approximately 2.27
mSm-1K-1 with a standard deviation (std) of only 30 mSm-1K-1 for a temperature
variation of around 30 K. The use of the novel correction method reduces the overall
root mean square error (RMSE) for all datasets from 15.7 mSm-1 to a value of only
0.48 mSm-1. In comparison, a method using a purely static characterization of drift
could only reduce the error to an RMSE of 1.97 mSm-1.
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In the second scenario, the drift model is extended to two LPFs and applied to 15
datasets. The resulting drift effects were more complex and challenging to correct
as they were acquired when the measurement instrument was partially shaded and
the temperature distribution in the instrument was non-uniform. It is observed from
the results obtained that the arising drifts which could not be corrected by a previ-
ous scenario with one LPF are now corrected satisfactorily with the current method.
Corrections with the presented drift model resulted in a RMSE of <1 mSm-1 for all
15 measurements. This shows that the drift model can properly describe the drift of
the measurement device. Performing a drift correction simultaneously for all datasets
resulted in a RMSE <1.2 mSm-1, which is even significantly better than the RMSE
values of up to 4.5 mSm-1 obtained when using only a single LPF in this scenario to
perform drift corrections.

The results show that modeling the dynamic thermal characteristics of the drift helps
to improve the accuracy in comparison to a purely static characterization. It is con-
cluded that the modeling of the dynamic thermal characteristics of EMI systems is
relevant and effective for mitigating temperature drift effects.

Keywords: electromagnetic induction (EMI); temperature drift correction; low-
pass filter (LPF); geoscience; apparent electrical conductivity (ECa); root mean
square error (RMSE); geophysics.
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Zusammenfassung
Elektromagnetische Induktionssysteme (EMI) werden für die Erfassung der elek-
trischen Leitfähigkeit des Bodens bei bodennahen Anwendungen eingesetzt. Es ist
bekannt, dass die mit EMI-Systemen gemessenen Daten anfällig für Messeinflüsse
sind, die mit zeitlich variierenden externen Umgebungsfaktoren zusammenhängen.
Temperaturschwankungen sind einer der wichtigsten Faktoren, die eine Drift in den
EMI-Daten verursachen, was es schwierig macht, stabile und zuverlässige Daten aus
EMI-Messungen zu erhalten.

Um diese Temperaturdrifteffekte abzuschwächen, ist es üblich, eine Temperaturdrift-
kalibrierung des Geräts in einer temperaturgeregelten Umgebung durchzuführen. Dabei
werden die Werte der scheinbaren elektrischen Leitfähigkeit (ECa) bei bestimmten
Temperaturen aufgezeichnet, und die auftretende Drift wird durch eine statische ther-
mische ECa-Driftkorrektur bestimmt. Die statische Driftkorrektur berücksichtigt je-
doch nicht die verzögerten thermischen Schwankungen der Systemkomponenten.

In dieser Arbeit wird eine neuartige Korrekturmethode vorgestellt, die verzögerte ther-
mische Schwankungen der Komponenten von EMI-Systemen berücksichtigt, indem die
dynamischen Eigenschaften von Driften mit Hilfe von Tiefpassfiltern (TPF) model-
liert und zur Korrektur verwendet werden. Die Methode wurde unter Verwendung
eines benutzerdefinierten EMI-Geräts mit einem Spulenabstand von 1,2 m entwickelt
und getestet, das für eine geringe Drift optimiert wurde und mit Temperatursensoren
ausgestattet ist, die während der Messungen gleichzeitig die lokale Innentemperatur
im Gerät messen. Das Gerät wurde für mehrtägige Kalibrierungsmessungen im Freien
bei einer breiten Spanne von Temperaturen zwischen 10 − 50 °C eingesetzt.

Es werden sowohl Szenarien mit gleichmäßigen als auch mit ungleichmäßigen Temper-
aturverteilungen im Messgerät betrachtet. Zur Parametrisierung der vorgeschlagenen
Korrekturansätze wurden zwei Optimierungsalgorithmen, insbesondere die Nelder-
Mead-Simplex-Methode und die Shuffled Complex Evolution (SCE-UA), für eine ef-
fiziente Schätzung der Kalibrierungsparameter verwendet. Das Driftmodell mit einem
TPF wird in einem ersten Szenario auf 16 Datensätze angewendet. Während der
Messungen war die Temperaturverteilung im Gerät gleichmäßig. Die Ergebnisse des
ersten Szenarios zeigen, dass die gemessene temperaturabhängige ECa-Drift des Sys-
tems ohne Korrekturen etwa 2,27 mSm-1K-1 mit einer Standardabweichung (std) von
nur 30 mSm-1K-1 bei einer Temperaturvariation von etwa 30 K beträgt. Die Verwen-
dung der neuen Korrekturmethode reduziert den mittleren quadratischen Gesamt-
fehler (RMSE) für alle Datensätze von 15,7 mSm-1 auf einen Wert von nur 0,48 mSm-1.
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Im Vergleich dazu könnte eine Methode, die eine rein statische Charakterisierung der
Drift verwendet, den Fehler nur auf einen RMSE von 1,97 mSm-1 reduzieren.

Im zweiten Szenario wird das Driftmodell auf zwei TPFs erweitert und auf 15 Daten-
sätze angewendet. Die daraus resultierenden Drifteffekte waren komplexer und schwieriger
zu korrigieren, da sie bei teilweise abgeschattetem Messgerät und ungleichmäßiger
Temperaturverteilung im Gerät erfasst wurden. Aus den Ergebnissen geht hervor,
dass die auftretenden Driften, die in dem früheren Szenario mit einem TPF nicht kor-
rigiert werden konnten, nun mit der aktuellen Methode ausreichend korrigiert werden
können. Die Korrekturen mit dem vorgestellten Driftmodell ergaben einen RMSE
von <1 mSm-1 für alle 15 Messungen. Dies zeigt, dass das Driftmodell die Drift
des Messgerätes sehr gut beschreiben kann. Die gleichzeitige Durchführung einer
Driftkorrektur für alle Datensätze führte zu einem RMSE von <1,2 mSm-1, was deut-
lich besser ist als die RMSE-Werte von bis zu 4,5 mSm-1, die bei der Durchführung
von Driftkorrekturen in diesem Szenario mit nur einer einzigen TPF erzielt wurden.

Die Ergebnisse zeigen, dass die Modellierung der dynamischen thermischen Eigen-
schaften der Driften zu einer Verbesserung der Genauigkeit im Vergleich zu einer rein
statischen Charakterisierung beiträgt. Daraus wird geschlossen, dass die Modellierung
der dynamischen thermischen Eigenschaften von EMI-Systemen für die Minimierung
von Temperaturdrifteffekten relevant und wirksam ist.

Schlüsselwörter: Elektromagnetische Induktion (EMI); Temperaturdriftkorrek-
tur; Tiefpassfilter (TPF); Geowissenschaften; scheinbare elektrische Leitfähigkeit
(ECa); mittlerer quadratischer Fehler (RMSE); Geophysik.
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1. Introduction

1.1. Background and Motivation
The work presented in this thesis report is focused on the application of research in the
field of agriculture. Specifically, the research targets the development and improve-
ment of measurement instruments and methods for investigating the near-surface soil
layer, which is also known as the vadose zone. This layer is the outermost cultivated
layer of the subsurface that is located above the groundwater table, where the primary
activities of plant roots occur [1]. The near-surface soil layer is of critical importance
because it is the site of most human activities and the exchange of mass and energy
through chemical, biological, and physical processes [2]. Many of these processes
depend on soil water dynamics which also has a direct impact on other geophysical
applications such as environmental protection [3, 4], soil prospecting applications for
various depths of exploration [5, 6] and mineral prospecting [7].

The geophysical methods used to perform these hydrological investigations often use
methods to characterise soil properties that influence the soil electrical conductivity.
Large geographically related datasets that can be associated with the soil character-
istics that either directly or indirectly affect the electrical conductivity of the soil
can be easily collected thanks to geophysical techniques [8], mainly categorised into
contact-base and contact-free measurement methods. These measurement methods
and the accuracy of the electrical conductivity values obtained are influenced by a
variety of factors, including soil type, salt content, temperature variability, and soil
texture [9]. To better understand the effects of these factors on the measurement
devices, it is essential to study them in detail.

The contact-based methods comprise elaborate monitoring set-ups employed in ear-
lier geophysical prospection and requiring calibration with soil samples. The process
of conducting such surveys was laborious, and it was crucial to carefully select rep-
resentative measurement points in order to accurately extrapolate observation data
from a small-scale to larger scales [10]. Furthermore, minimizing soil disturbance is
generally preferred in geophysical applications. In addition to direct soil sampling [11,
12], electrical resistivity methods are common, where the subsurface electric field pro-
duced by external application of electrical current into the soil through an electrode
or soil probe that is galvanically in contact with the soil is measured [13]. Some exam-
ples of contact-based methods include vertical electrical sounding, VES [14, 15, 16],
time domain reflectometry, TDR [17, 18, 19], electrical resistivity tomography, ERT
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[20, 21, 22], capacitance probes [23, 24], spectral induced polarisation, SIP [25, 26],
direct current voltage gradient (DCVG) and close interval potential survey (CIPS)
[27]. These methods can provide accurate data at specific locations but are limited in
terms of sampling volume and mapping speed [28], and are often resource-intensive
and may be invasive for repetitive measurements at the same location [11].

The contact-free methods utilise so-called ground conductivity meters to measure the
electrical conductivity of a bulk soil volume using electromagnetic fields. They offer
the advantage of non-invasive sensing, ease of operation, high mobility and increased
speed of soil mapping thanks to the recent inclusion of georeferencing techniques (e.g.
global positioning systems, GPS). Typical electromagnetic methods include active mi-
crowave, AM [29, 30], passive microwave, PM [31, 32], neutron thermalisation, NT [33,
34], nuclear magnetic resonance, NMR [35], ground-penetrating radar, GPR [36, 37,
38, 39], time-domain transient electromagnetic induction, TEM [40] and frequency-
domain electromagnetic induction (EMI) [41]. Whilst TEM methods have been used
in geophysical applications with several hundreds of meter depths of investigation
[42], EMI methods are more suitable for investigating the upper meters of the soil.

It is in this regard that geophysicists have extensively utilised non-contact frequency
domain EMI systems with small coil separations to map the distribution of soil elec-
trical conductivity. Examples including the use of this technique for research are
found in the work presented by Heil and Schmidhalter [8], Wait [43] and Robinson
et al. [44]. EMI measurements provide a quick and contactless way to measure the
soil apparent electrical conductivity (ECa), which is closely linked to the bulk soil
electrical conductivity and thus to many soil properties like clay content, salinity,
and water content. In this regard, significant advancements have been made in the
development of EMI systems and the interpretation of data, and many researchers
have applied this technique to investigate various applications. Allred et al. [13] has
summarised some of the typical applications of EMI, and Corwin [15], Samouélian et
al. [14], and Corwin and Lesch [45] have presented an extensive review on this topic.
For instance, in the field of agriculture, Schmäck et al. [46] utilised EMI methods
to examine soil bulk density, volumetric soil water content, soil texture, and predict
areas of harmful soil compaction.

Additionally, Gebbers et al. [47] studied the effects of seasonal variations and soil
physicochemical properties on soil electrical conductivity and its relation to agricul-
tural processes. Many studies have also used EMI measurements for soil mapping in
precision agriculture [48, 49, 8, 50]. For instance, Cameron et al. [51], Visconti and
De Paz [52], Corwin and Rhoades [53] found that EMI allows for rapid mapping of
soil to obtain clear delineations of field-scale salinity profiles. Other EMI studies have
aimed to relate EMI measurements to soil water content and groundwater dynam-
ics and to explore their influence on the electrical conductivity data obtained from
measurements [54, 55, 56]. For example, Kachanoski et al. [19] used EMI measure-
ments to demonstrate that bulk soil electrical conductivity accounts for up to 96% of
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the spatial variation of soil water content. Furthermore, Van’t Veen et al. [57] and
Altdorff et al. [56] conducted studies to correlate EMI measurements with soil water
content and water movement in the vadose zone. Additionally, some studies have used
EMI measurements to investigate the impact of soil clay content on the soil electrical
conductivity. For instance, EMI measurements were utilised to characterise soil clay
content in order to examine soil textural heterogeneity [58], as well as to investigate
the vertical variations of magnetic and electrical properties of the subsurface [59].

1.2. Brief Overview of Commercial EMI Devices
In recent years, there has been a significant increase in the number of commercially
available EMI devices used in agriculture and soil prospecting. EMI devices were first
used in agriculture for salinity studies of the soil, [60]. Initially, single-coil, single-
frequency EMI devices like the EM31-MK2 from Geonics and the CMD-1 from GF
instruments (shown in Table 1.1) were used in agricultural applications. However,
these devices were limited in terms of the depth resolution, which led to the develop-
ment of multi-coil devices that operate at a fixed frequency.

Examples of such devices include the EM38-MK2 from Geonics, the CMD-MiniExplorer
and the CMD-Explorer from GF instruments. It was discovered that there are fur-
ther benefits to be gained with these multi-coil EMI instruments, [61, 62, 63]. These
multi-coil EMI instruments enables sensing over different depth ranges. Additionally,
devices were developed that could operate at multiple frequencies with fixed intercoil
spacings. For instance, the GEM-2 from Geophex and the profiler EMP-400 from
Geophysical Survey System, Inc (GSSI) are examples of such devices. These multi-
frequency devices have also become popular in various applications because these also
offer the advantage of sensing over different depth ranges [62, 64, 65].

The next generation of EMI instruments combines multi-coil and multi-frequency
methods for use in further applications [61, 62, 63]. A popular example of these de-
vices is the EM34-3 from Geonics. The up-till-now discussed devices have a coplanar
arrangement between transmitter and receiver coils. Therefore they can only acquire
data in a single dipole orientation at a time, i.e. either the vertical coplanar coil
(VCP), the horizontal coplanar coil (HCP) or the perpendicular coil (PRP) configu-
ration. There are also systems that combine various coil orientations. Examples of
these are dual-dipole devices such as the Dualem-21S and the Dualem-421S. These
devices have coils placed in different dipole configurations (notably the HCP and the
PRP configurations) and operate at a fixed frequency. The combination of various
coil orientation also helps to improve the depth resolution.

The development of these advanced EMI devices allow for non-invasive and efficient
investigations of the subsurface properties of the soil, providing valuable insights
for agricultural applications such as precision farming and crop yield optimisation.
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Table 1.1.: Some commercial EMI devices used in soil prospecting [66, 67, 68, 69]
Device # of Coils Frequency Tx-Rx

(Tx/Rx) (kHz) (m)
EM31-MK2 1/1 9.80 3.66
CMD-1 1/1 10 0.98
EM38-MK2 1/2 14.5 0.5,1
CMD-MiniExplorer 1/3 30 0.32,0.71,1.18
CMD-Explorer 1/3 10 1.48,2.82,4.49
GEM-2 1/1 0.03-93 1.66
Profiler EMP-400 1/1 1-16 1.2
EM34-3 1/3 0.4,1.6,6.4 10,20,40
DUALEM 21s 1/4 9 1,1.1,2,2.1
DUALEM 421s 1/6 9 1,1.1,2,2.1,4,4.1

Additionally, they have proved useful in soil prospecting applications, such as mineral
exploration and geological mapping. Despite all the available commercial devices and
their respective characteristics, more special devices are required for the constantly
developing smart farming applications, with new requirements on the measurement
accuracy.

1.3. Static Drift Correction of EMI Data
To ensure a reliable inversion in EMI imaging, it is crucial to obtain accurate and
quantitative EMI data without any errors or shifts. However, obtaining true absolute
quantitative values of the apparent electrical conductivity is challenging and requires
additional measurements or data processing. Consequently, most EMI systems are
currently used for qualitative analyses such as subsurface pattern imaging [70] and
time-lapse investigations [71]. For EMI systems with coil separations smaller than
2 meters, significant errors of several to dozens of mSm-1 have been observed when
compared with reference data obtained from soil samples or Electrical Resistivity
Tomography (ERT) measurements [72]. This is mainly due to the fact that the mag-
nitude of the electromagnetic response coming from the soil is relatively small for
small coil separations (seen later in Equation 2.3). Therefore, any disturbance or er-
ror can significantly influence the EMI data and lead to inaccuracies in the inversion
process.

Overall for both large and small coil separations and irrespective of the application for
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which EMI instruments are utilised, the accuracy of measurements obtained through
them has been a topic of concern in numerous studies, as these measurements are
vulnerable to systematic errors due to changes in external environmental conditions.
For instance, Minsley et al. [73] and Sudduth et al. [74] have pointed out that the
drift detected in EMI instruments can be attributed to inaccurate calibration and
improper instrument levelling. Nüsch et al. [75] has identified the presence of the
operator and cables situated near the measurement system as other sources of sys-
tematic error. In addition, EMI devices are prone to deviations, commonly referred
to as drifts, which are affected by environmental factors and exhibit unpredictable
variations during measurements over time, as noted by Robinson et al. [76] and Dele-
fortrie et al. [77].

One of the most significant factors affecting the accuracy of EMI instruments is
temperature. Studies have found that the drift of EMI instruments is largely de-
pendent on temperature, and that even slight temperature changes can significantly
affect the accuracy of the measurements obtained [78]. For instance, Huang et al.
[78] and Abdu et al. [79] conducted experiments to examine the impact of different
temperatures on the drifts detected by EMI instruments. Hanssens et al. [80] em-
ployed temperature logging to analyse the drift patterns of various electromagnetic
instruments during static ground measurements. Mester et al. [81] identified various
factors that could affect the properties of the system hardware, including the thermal
drift of coils resulting from local internal temperature variations. Gebbers et al. [47]
exposed the EM38 device to varying temperatures during measurements at a fixed
position and suggested that the drift effects observed were partly caused by changes
in air temperature.

Sudduth et al. [74] investigated the effects of varying external ambient temperatures
on the accuracy of measurements obtained using the EM38 instrument. The study
found that as the temperature increased from 23°C to 35°C over an 8-hour period,
the measured ECa increased from 32.2 mSm-1 to 42.3 mSm-1. This result highlights
the need for careful consideration of temperature conditions when conducting EMI
measurements. Similarly, Huang et al. [78] further demonstrated that the accuracy
of EMI measurements obtained using the DUALEM-41S and DUALEM-21S instru-
ments can also be affected by changes in external ambient temperature. The study
found that temperature changes can result in significant variations in the measured
ECa, further emphasizing the importance of controlling the environmental conditions
when conducting EMI measurements.

The general consensus from all these studies was that it is necessary to find mea-
sures to mitigate temperature drifts in EMI data. Several suggestions have been
made to reduce the effects of temperature drifts on EMI devices. For instance, Abdu
et al. [79] have recommended mapping on cloudy days and that the EMI instruments
be protected from direct sunlight. Furthermore, Huang et al. [78] suggested that the
instrument should be shaded with a non-conductive thermal insulation. Robinson et
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al. [76] attributed the drift effects observed to the differential heating of EMI devices,
which results in a non-uniform temperature distribution, making it problematic to
correct the resulting drifts. They recommended in addition to shading, that the de-
vice should be warmed up for 2 hours prior to data acquisition.

Further attempts to mitigate temperature dependent drifts have utilized local in-
ternal temperature compensation circuits of commercial EMI instruments in combi-
nation with optimisation techniques [79, 74]. However, despite these efforts, the effect
of temperature on measured EMI data has typically not been satisfactorily mitigated.
For example, Robinson et al. [76] found that the internal compensation circuit of the
EM38 instrument was unable to fully compensate for instrument heating at temper-
atures above 40°C, suggesting that drifts are influenced by a combination of factors,
including circuit design and component performance under heating.

In another study, Mester et al. [81] focused on the electronic components of a custom
EMI instrument that has a rigid-boom design. Specifically, they analysed the impact
of temperature drift on the performance of the instrument, by conducting laboratory
analysis, focusing specifically on a frequency of 8 kHz, and discovered that 88 % of the
observed drift in the measured data could be attributed to changes in the impedance
of the electrical Tx coil. The remaining 12 % of the drift was caused by fluctuations in
the inductance and capacitance of the Tx coil, the impedance of the Rx coil, and drifts
in the amplification circuit. They were able to correct for significant drifts in the Rx
coils by using measured temperature dependent coil impedances. However, they did
not carry out a comprehensive correction for all the drifts that may arise from various
system components. Their results suggested that there may be additional sources of
drift that were not accounted for in the analysis.

Overall, the findings of their study highlighted the importance of understanding and
controlling for temperature drift in EMI instruments, particularly in cases where high
accuracy measurements are required. While their study focused on a custom EMI
instrument and a specific set of components, the results have implications for EMI
instruments more broadly and suggest the need for further research in this area. All
of the above-stated studies highlight the complexity of the problem of temperature
related drifts in EMI systems and suggest that a more thorough approach may be
needed to fully address the issue. To improve the accuracy of EMI systems, one
effective method is static drift calibration using a look-up table for the entire EMI in-
strument. This involves heating the measurement system in a temperature-controlled
environment and waiting for it to reach a stable state before taking measurements.

Robinson et al. [76], Abdu et al. [79] and Hanssens et al. [80] performed such
measurements and showed that by establishing a look-up table that relates temper-
ature and drift, it is possible to determine the relationship between signal drift and
external ambient temperature and obtain corrected EMI measurements. However,
this process has some drawbacks. One significant drawback is that deriving such
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look-up tables is a time-consuming and cumbersome task, as it requires not only a
suitable temperature-controlled room but also careful observation of delay times for
attaining steady-state temperatures for each calibration step. Moreover, standard
laboratory rooms are unsuitable for this purpose, as they can be influenced by metals
and electromagnetic interference, which can interfere with the accuracy of the EMI
measurements.

In further attempts to mitigate temperature drift effects, Tan [82] developed a trans-
fer function method that measures the phase response of all circuit components of a
custom EMI instrument and identified two types of temperature drifts notably, drifts
due to slow uniform temperature variations and drifts resulting from fast tempera-
ture variations. The latter type results in different temperature gradients for different
system components, which can be problematic when components react with delayed
response to fast temperature changes. As a solution for drifts due to fast but uni-
form temperature variations, they proposed to measure the temperature dependent
electrical properties of the coils to compensate for drifts due to slow reactions of the
properties to fast temperature changes.

According to Tan [82], a further solution to minimise such drifts during calibration
measurements is to use thermal isolation boxes and cooling systems such as a fan
in outdoor settings. However, achieving a homogeneous temperature with a high
level of accuracy (better than 1 K) in such environments is very challenging. Fur-
thermore, static correcting measurement errors using look-up tables is only effective
when the temperature distribution is stable or changes slowly. When the external
ambient temperature changes rapidly, correcting for drifts is more challenging. They
also demonstrated that there is a delay between instrument temperature and mea-
sured ECa, indicating that using look-up tables alone cannot efficiently correct for
drifts caused by sudden changes in external ambient temperature. Huang et al. [78]
also observed hysteresis effects in temperature dependent drifts, further suggesting
that correcting for drifts caused by abrupt changes in external ambient temperature
using look-up tables alone is not currently feasible. Therefore, it is important to con-
sider other potential solutions to minimise interferences and improve the accuracy of
temperature calibration measurements in outdoor environments.

1.4. Objectives and Outline
The primary objective of this thesis is to create a novel method for correcting temper-
ature dependent drift errors that occur during EMI measurements. These errors are
often caused by rapid changes in external ambient temperature, particularly on bright
and cloud-free days with local internal temperatures reaching as high as 50°C. To ad-
dress this issue, the proposed method involves utilising a phase drift model that uses
information from temperature sensors to replicate the dynamic drift characteristics
of EMI instruments and improve our understanding of how temperature variations
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impact EMI measurements.

Furthermore, this new approach offers a straightforward technique for calibrating
an EMI system through outdoor measurements. The proposed approach is intended
to show that performing a dynamic thermal characterisation of the drift effects will
offer much more improved correction accuracy compared to pure static characteri-
sation. By implementing this method, it is expected that EMI measurements will
become more accurate and reliable, ultimately improving the overall quality of EMI
data.

The thesis is partitioned into five main sections, with the first chapter serving as
an introduction. Here, the background and motivation of this thesis project is dis-
cussed. Next, an overview of some of the available commercial devices and their
applications is provided. The measurement deviations experienced by such devices
and the approaches by some researchers to mitigate them is highlighted.

In the second chapter, the fundamentals of EMI systems are explored and presented.
Here the functional principles, sensitivity estimation and soil electtrical conductivity
calculation are discussed. The chapter serves as a foundation for providing a compre-
hensive understanding of the key principles involved.

In the third chapter of this thesis work, focus is placed on the theory behind EMI
data optimisation techniques, unveiling a set of tools and methodologies to enhance
the quality and accuracy of EMI measurements. This chapter provides the necessary
knowledge to extract meaningful information from EMI data and addresses potential
issues such as drift. The chapter also presents the utilization of digital infinite re-
sponse filters as valuable tools for drift modeling and correction.

In the fourth chapter, the author presents a calibration measurement set-up that
is based on a custom-made multi-coil EMI instrument. This chapter details a model-
based numerical solution that employs one low pass filter (LPF) to model and quantify
the dynamic thermal response of the system components of the EMI instrument to
external ambient temperature variations. Its design is intended for use in rigid-boom
EMI systems with the transmitter and receiver in one enclosure but eventually also for
a modular EMI system in parallel under development, where the transmitter and re-
ceiver are in different enclosures. Additionally, the chapter describes the method that
was utilised to determine the model calibration parameters that are later employed
to correct the EMI data for temperature dependent drifts. This chapter also explains
that, in order to gather the temperature information required for drift correction, the
EMI instrument is equipped with 10 temperature sensors that simultaneously mea-
sure the local internal temperature across the device. As a preliminary analysis, the
investigation initially focuses on temperature drift effects resulting from uniform tem-
perature variations (UTV) in the EMI instrument. The effectiveness of drift correction
with the dynamic model developed is verified by comparing it with drift correction
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using a standard static model based on a look-up table alone. Finally, the main results
are presented and discussed, and conclusions are drawn based on the findings of the
study. Overall, this chapter serves as a comprehensive guide to the EMI instrument
and its calibration process, providing valuable insights into the techniques and tools
used to accurately measure and correct for temperature dependent drifts in EMI data.

Chapter 5 of the thesis report details a modified custom-built EMI instrument with
eight integrated temperature sensors installed. The purpose of this chapter is to im-
prove upon the drift correction method described in chapter 4, which suffered from
inaccuracies resulting from non-uniform temperature variations (NUTV) within the
EMI instrument caused by partial shading of the measurement device. To combat
this issue, the drift model in chapter 5 utilises two low pass filters to effectively model
temperature drift effects. Specifically, these filters account for the impact of NUTV on
the EMI instrument’s temperature and help to calibrate the drift correction model for
optimal performance. This is accomplished through the implementation of a global
optimisation method known as the shuffled complex evolution, which allows for the
identification and modeling of key parameters that are used to calibrate the drift
model. The primary advantage of the improved drift correction method presented
in the fifth chapter is its ability to account for NUTV, a factor that was previously
unaddressed by the previous method outlined in chapter 4. To evaluate the efficieny
of this improved method, it was applied to both datasets with and without uniform
temperature variations. The results showed a significant improvement in drift cor-
rection accuracy when utilising the new method, further validating its effectiveness.
Overall, chapter 5 highlights the significant advancements that have the potential to
effectively improve the accuracy and reliability of EMI measurements.

In chapter 6 of this thesis, the main focus is on summarising the key findings and
goals that have been achieved through the course of the research. Throughout the
thesis, a lot of time and effort has been put into investigating and analysing the var-
ious aspects of temperature drift effects on EMI systems, and this chapter uses the
chance to highlight the major outcomes of that work. In addition to summarising
the key findings of the research, the sixth chapter also presents conclusions that have
been drawn based on the series of analyses. These conclusions offer insights into the
potential implications of the developed method for the broader field of near-surface
geophysics. Furthermore, the chapter provides an outlook for future research and
potential areas for improvement in EMI systems drift analysis.
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2. Fundamentals
The current chapter aims to elaborate on the theory behind EMI systems and dis-
cusses the various coil configurations that are commonly used in EMI surveys, as
well as the local sensitivity model which is used to examine how the sensitivity of
EMI measurements changes in different areas of a subsurface region. In addition, this
chapter will cover the utilization of optimisation tools to identify parameters for drift
correction.

2.1. Principle of EMI
Figure 2.1 shows the principle of an EMI system arrangement. Such EMI systems that
operate in the frequency domain generally have at least one transmitter coil (Tx) and
one or more receiver coils (Rx). The Tx is powered by an sinusoidal current to create
a periodic and time-varying (sinusoidal) primary electromagnetic field that diffuses
into the ground (as shown in Figure 2.1) according to Faraday’s law of induction,

∇×E = −µ ⋅ ∂Hp

∂t
, (2.1)

where Hp is the vector magnetic field strength (Am-1) and t is time (s), E is the
vector electric field strength (Vm-1) and µ is the magnetic permeability (Hm-1). This
equation states that a time-varying magnetic field will produce an electric field whose
curl is equal to the negative of the time derivative of the magnetic field. The elec-
tric field E will generate so-called eddy currents in the conductive subsurface that
are proportional to the soil’s electrical conductivity but are out of phase with the
primary current from the Tx. These eddy currents create a secondary magnetic field
(Hs). The Rx detects the superposition of the primary and secondary magnetic fields
(Hp and Hs), which have an in-phase (real) and quadrature (imaginary) component,
whereby the quadrature component is directly related to the electrical conductivity
of the sensed soil subsurface.

The cumulative response of a certain volume of the underlying subsurface, commonly
referred to as the homogeneous half-space, can be obtained as the average weighted
electrical conductivity values (EC) over the sensed subsurface. This is converted into
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apparent electrical conductivity (ECa) using the low induction number (LIN) approx-
imation

β =
√

ωµ0EC

2 x≪ 1 (2.2)

proposed by McNeill [41], where ω is the angular frequency, µ0 is the permeabil-
ity of free space, and x is the intercoil spacing. This approximation is based on
measurements performed on or above the soil surface, using small intercoil spacings
between the Tx and Rx coils, low soil conductivities, and low frequencies.

Figure 2.1.: Basic set-up of an electromagnetic induction (EMI) system.

The LIN approximation is valid when the soil is homogeneous and the eddy current
penetration depth is small compared to the intercoil spacing [41]. Under the LIN
approximation, the imaginary part of the ratio of the secondary to primary magnetic
fields resulting from the homogeneous halfspace of electrical conductivity EC is [41]:

Im(Hs

Hp

) ≈ ωµ0ECx2

4 , (2.3)

where the ratio of the magnitudes of Hs and Hp is the magnetic field response, x
is the intercoil spacing, µ0 is the permeability of free space and ω is the angular fre-
quency.
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Since the secondary magnetic field strength is out of phase by 90° from the pri-
mary magnetic field strength, the ratio of Im(Hs/Hp), is significant here when it
is relatively small. This corresponds to the phase difference Φ between the induced
phase Φi of the magnetic field (Hp + Hs) at Rx and the phase Φp of the primary field
Hp at Tx. In other words, the ratio can be approximated using the small phase angle
approximation in Equation 2.3 as:

Im(Hs

Hp

) = tan(Φ) ≈ Φ. (2.4)

The equivalent response function obtained for a homogeneous half-space produces
the apparent electrical conductivity (ECa) as per McNeill [41]:

ECa = 4
ωµ0x2 Im(Hs

Hp

). (2.5)

It should be noted that the factor Im(Hs

Hp
) can be very small and therefore difficult to

measure and it’s amplitude depends on various factors such as subsurface electrical
conductivity, intercoil spacing and orientation, and operating frequency. For instance
for a soil EC of 20 mSm-1, intercoil spacing of 1 m, a measurement frequency of 10
kHz, the factor Φ is 390 µrad (Equation 2.4) and the induction number β is always
less than 0.05.

This means that the method is only effective in relatively conductive environments
(typically 10 mSm-1 - 100 mSm-1) where the magnetic signals from the subsurface
are not overshadowed by measuremnt errors. Thus, it is crucial to identify the con-
ductivity of the target material and the surrounding environment before using this
technique. In addition to conductivity, the distance x between the Tx and Rx has an
effect on the measured Im(Hs

Hp
) factor. For smaller intercoil spacings x (e.g. less than

2 m), the Im(Hs

Hp
) factor decreases with the square of x, making it more difficult and

uncertain to measure (see Equations 2.4 and 2.5).

2.2. Sensitivity of Common Coil Configurations
EMI measurements can be obtained using different coil configurations, which can re-
sult in variations in the induced eddy currents and the associated secondary magnetic
field. These variations have different soil depth sensitivities. The three most popu-
lar coil configurations used for EMI measurements which can be applied to the EMI
device in this work are the vertical coplanar (VCP), horizontal coplanar (HCP) and
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perpendicular (PRP) configurations.

Figure 2.2.: Vertical coplanar coil (VCP), horizontal coplanar coil (HCP) and perpen-
dicular coil (PRP) configurations.

The diagram in Figure 2.2 depicts the representation of transmitter (Tx) and receiver
(Rx) coils in the vertical coplanar coil, horizontal coplanar coil and perpendicular coil
configurations. The VCP configuration consists of a vertically oriented coil placed
over a coplanar ground plane (the coils are orthogonal to the soil surface and the
magnetic dipole arrow is parallel to the soil [83, 84]), while the HCP configuration
consists of a horizontally oriented coil placed over a coplanar ground plane (the coils
are oriented parallel to the soil with the magnetic dipole arrow in a vertical direc-
tion). The coils in PRP configuration have dipoles (arrows) both perpendicular and
horizontal to the plane of the soil.

The diagramatic representation in Figure 2.3a shows a plot of local-sensitivity curves
as described by McNeill [41] for three coil orientations: HCP, VCP and PRP. Figure
2.3b shows the corresponding cumulative response curve. The depth (h) indicated in
the curve is normalized based on the intercoil spacing (x) between the transmitter
and receiver.

These sensitivity curves show the relative response to the secondary magnetic field
sensed at the receiver from a soil beneath a certain depth (normalised). The curves
indicate that the VCP and PRP configurations are better suited to sensing the shal-
low part of the subsurface, while the HCP configuration is more effective in sensing
the deeper part of the subsurface. This is because the HCP configuration has twice
the exploration depth of the VCP configuration. This can be seen on the curves as
the relative response to the secondary magnetic field of the VCP and PRP configu-
ration is highest at the surface (i.e. smaller normalised depths between 0 and 0.3)
and decreases monotonically as the normalised depth increases (0.5 - 2), whereas the
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sensitivity of the HCP configuration peaks at a depth of 0.4 times the intercoil sep-
aration [41, 46]. Integrating the local sensitivities results in the cumulative response
curves shown in Figure 2.3. It can be seen here that the soil below 0.5 intercoil spac-
ings (normalised depth h/x) contributes 0.3 (30 %), 0.6 (60 %) and 0.7 (70 %) to the
secondary magnetic field sensed at the reciever for the HCP, VCP and PRP modes
respectively.

Figure 2.3.: (a) Plot of local-sensitivity curves. (b) Equivalent cumulative response
curves vs. normalised depth h/x.

2.3. Local-Sensitivity Model
The local-sensitivity model (LS model) or cumulative response model is the most com-
monly used forward model in EMI surveys. This model was introduced by McNeill
[41]. The LS model is a simple and efficient model that assumes that the subsurface is
made up of layers of homogeneous material, having their respective electrical conduc-
tivities EC(h), with h being the depth of the soil layer. Figure 2.4 shows an example
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for the calibration of an EMI instrument with intercoil spacing x, over a three-layered
soil with electrical conductivites EC1, EC2 and EC3, with corresponding depths h1,
h2 and h3 respectively.

The LS model calculates the response of the instrument to each layer and then sums
up the responses to obtain the total response. This is done using cumulative response
functions

CRF V CP (h, x) =
√

4(h
x
)2 + 1 − 2(h

x
) (2.6)

CRF HCP (h, x) = 1√
4(h

x)2 + 1
(2.7)

.

proposed by McNeill [41], which provide a mathematical framework to determine
the contribution for a Tx − Rx separation of x, of each depth h below the sensor and
for the VCP and HCP orientations. These functions take into account the geometry
of the target, the coil, and the receiver, and provide a way to accurately interpret the
measurements obtained from the Rx. The overall ECa is given by

ECa = EC1 ⋅[1−CRF (h1

x
)]+EC2 ⋅[CRF (h1

x
)−CRF (h2

x
)]+EC3 ⋅[CRF (h2

x
)] (2.8)

for the three-layered model in Figure 2.4, where h1 is the thickness of the first layer
with electrical conductivity EC1, h2 − h1 is the thickness of the second layer with
conductivity EC2 and EC3 is the conductivity of the third layer. Equation 2.8 gives
a simple method to calculate the an EMI instrument reading on an arbitrary layered
earth by summing the contribution from each layer.
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Figure 2.4.: Representation of a three-layered soil model for EMI instrument calibra-
tion.

In addition to the depth h and conductivity EC (Equations 2.6 and 2.7), the orien-
tation of the measurement coils relative to the soil surface is a factor in the relative
cumulative response of the electrical conductivity of the soil from various depths [60].
It is important to note that the local sensitivity curves referred to in this context are
only applicable when the instrument is placed on the soil’s surface at zero elevation.
Otherwise an additional air layer with EC = 0 has to be inserted above.

The LS model is widely used because of its simplicity in determining soil depth sensi-
tivity and its accuracy in reconstructing the conductivity of the soil and in predicting
the response of the instrument to the subsurface layers. The model does this by in-
verting the measured ECa values into depth-dependent electrical conductivities. The
most common approach to achieving this is by using an optimisation method that
minimizes the cost function

∆ECa(h) = 1
N

¿
ÁÁÀ N

∑
i=1

(ECams −ECamod)2
(ECams)2

(2.9)

of both the measured ECa data (ECams) and the modelled data (ECamod). This
LS model can now be used to estimate the parameters h1, h2, EC1, EC2 and EC3,
using an optimisation method where the cost function in Equation 2.9 is minimized.
By reconstructing the soil conductivity in this way, researchers and practitioners
can obtain accurate and reliable information about the properties of soil at different
depths, which is important for a range of applications.

In order to determine the depth sensitivity using the above equations, it is neces-
sary to measure with different coil orientations, device elevations and/or Tx − Rx
distances. The more measurements with different parameters (x, h, VCP, HCP as in
Equations 2.6 and 2.7), the better the depth resolution in theory, assuming that the
measurements are error-free. For example as demonstrated by McNeill [41], in the
case of the HCP configuration, approximately 68% of the soil response is influenced
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by the electrical conductivity of the uppermost 1.50 ⋅ x meters of the soil. For the
VCP configuration, the soil response is dependent on the electrical conductivity of
the uppermost 0.75 ⋅ x meters, while for the PRP configuration, the soil response is
influenced by the electrical conductivity of the uppermost 0.50 ⋅ x meters of the soil.
Hence, changing the coil orientation of the EMI device makes it possible to evaluate
soil ECa with depth.

2.4. ECa Calculation
The relationship shown in Equation 2.4 leads to a simplification of Equation 2.5 as:

ECa = 4
ωµ0x2 Φ. (2.10)

where x is the intercoil spacing, µ0 is the permeability of free space, ω is the angular
frequency and Φ is the approximated small phase angle. To estimate the necessary
phase measurement accuracy for the LIN approximation, Equation 2.10 is used. This
equation provides an estimate of the phase shift induced by the soil as a function of
the intercoil spacing and the soil electrical conductivity.

The approximated phase (Φ) increases monotonically as the square of the separa-
tion between the Tx and Rx coils. For instance, in the system illustrated in Figure
4.2, an intercoil spacing of 1.2 m and an ECa of 1 mSm-1 results in very small phase
values of approximately 28 µrad. Achieving such accuracy requires a very precise
measurement which need to include additional drift correction as this is necessary
to compensate for any changes in the EMI instrument’s response over time, such as
temperature variations or instrument drift. Hence by applying drift correction, the
accuracy of the phase measurement can be significantly improved.
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3. Theory on Modelling and
Optimization of EMI Data

3.1. The Nelder-Mead Algorithm
The simplex algorithm by Nelder and Mead [85] (Nelder-Mead approach) is frequently
employed to solve the unconstrained optimisation problem min f(p) where f(p) is
called the cost function and p are the parameters of dimension n. It is an optimisa-
tion approach that does not require knowledge of the function’s derivative or other
properties, making it suitable for functions with complicated or unknown properties.
The algorithm works by iteratively transforming a set of points (called the simplex)
in the n-dimensional space to search for the minimum value of the cost function. At
each iteration, the simplex is transformed using one of the four operations (Figure
3.1): reflection, expansion, contraction, or shrinkage, depending on the value of the
objective function at the simplex vertices.

The algorithm uses a simplex which is a geometric shape that constitutes the convex
envelope of n + 1 vertices. The simplex with vertices x1, x2, ..., xn+1 is represented
by the symbol ∆. The Nelder-Mead approach produces a series of simplices in an
iterative manner to estimate an optimal point for the function f . In every iteration,
the vertices xn+1

j=1 of the simplex are arranged based on their objective function values
as

f(x1) ≤ f(x2) ≤ ⋯ ≤ f(xn+1). (3.1)

The represetantion in Figure 3.1 is that of Nelder–Mead simplices after a reflection,
an expansion, an outside contraction, an inside contraction, and a shrink step. The
original simplex is shown with a dashed line (x1-x2-x3). The vertex with the best
objective function value is referred to as x1, while the vertex with the worst objective
function value is referred to as xn+1. If multiple vertices have identical objective val-
ues, the Nelder-Mead approach necessitates consistent tie-breaking regulations, such
as those described in Lagarias et al. [86], to ensure the method’s proper definition. If
the centroid of the n best vertices is denoted by x [87], then
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x = 1
n

n

∑
i=1

xi. (3.2)

Figure 3.1.: Nelder–Mead approach with original simplex shown with a dashed line
(x1-x2-x3) (adaptation from Lagarias et al. [86]).

The algorithm can be described using the following iterative steps (also described by
Gao and Han [87], Lagarias et al. [86]):

1. Sorting - Compute the function values of f for the n + 1 vertices of the sim-
plex ∆ and sort the vertices so that Equation 3.1 is satisfied.

2. Reflection - Determine the reflection point xr using the following calculation:

xr = x + ρ(x − xn+1). (3.3)

ρ is the reflection coefficient. If f(x1) ≤ f(xr) ≤ f(xn), accept the reflection point by
replacing xn+1 with xr and terminate the iteration.
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3. Expansion - If f(xr) ≤ f(x1), estimate the expansion point xe

xe = x + χ(xr − x) (3.4)

and evaluate f(xe), with χ being the expansion coefficient. If f(xe) ≤ f(xr), accept
the expansion point by replacing xn+1 with xe and terminate the iteration. Otherwise
replace xn+1 with xr and terminate the iteration.

4. Outside contraction - If f(xn) ≤ f(xr) ≤ f(xn+1), evaluate the outside contrac-
tion point

xoc = x + γ(xr − x) (3.5)

and estimate f(xoc). γ is the contraction coefficient. If f(xoc) ≤ f(xr), accept the
expansion point by replacing xn+1 with xoc and terminate the iteration. Otherwise go
to step 6.

5. Inside contraction - If f(xr) ≥ f(xn+1), determine the inside contraction point

xic = x − γ(x − xn+1) (3.6)

and evaluate f(xic). If f(xic) ≤ f(xn+1), accept the expansion point by replacing
xn+1 with xic and terminate the iteration. Otherwise go to step 6.

6. Shrinkage - Estimate f at the n points x′i = x1 + σ ⋅ (xi − x1), i = 2,⋯, n + 1.
σ is the shrinkage coefficient. The unsorted vertices of the simplex at the next itera-
tion are x1, x′1,⋯, x′n+1.

The four parameters of the Nelder-Mead approach determine the size and direction
of the simplex transformation at each iteration. The coefficient of reflection (ρ) con-
trols the magnitude of the reflection operation, which involves reflecting the worst
vertex of the simplex across the centroid of the remaining vertices. The expansion
coefficient (χ) determines the size of the expansion operation, which involves moving
the reflected vertex even further away from the centroid. The contraction coeffi-
cient (γ) determines the size of the contraction operation, which involves moving the
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worst vertex towards the centroid. Finally, the shrinkage coefficient (σ) controls the
magnitude of the shrinkage operation, which involves reducing the size of the simplex.

To ensure the convergence and stability of the algorithm, the four coefficients must
satisfy certain conditions. In particular, the reflection coefficient must be greater
than zero, but less than or equal to one, and the shrinkage coefficient must be less
than one. The expansion and contraction coefficients have more flexible conditions,
but they should be carefully chosen to balance the exploration and exploitation of
the search space. Although the original publication does not explicitly state the
relationship between the parameters χ and ρ, the connection can be inferred from
the algorithm’s terminology and explanation. In practice, the standard Nelder-Mead
approach typically uses the following values for these parameters [86]:

ρ = 1, χ = 2, γ = 1
2 and σ = 1

2 (3.7)

Despite the absence of a satisfactory theory of convergence, the Nelder-Mead ap-
proach is known to effectively solve small-dimensional problems and has consistently
remained as one of the most commonly used direct search methods [87]. It has how-
ever been noted that the Nelder-Mead approach can become highly inefficient when
used to solve problems with a large number of dimensions [86]. This leads to the adap-
tation of the Nelder-Mead approach by some researchers to minimise more complex
problems. Other researchers simply turn towards more global optimisation methods.

3.2. Shuffled Complex Evolution (SCE) Algorithm
Shuffled complex evolution (SCE) is a global optimisation technique (in contrast to
the Nelder-Mead simplex algorithm) that integrates deterministic approaches to di-
rect the search with the addition of random elements, which enhance the algorithm’s
flexibility and resilience [88]. The SCE algorithm has demonstrated its efficacy in
the inversion of EMI data according to von Hebel et al. [89]. In addition, it has
been utilised in the inversion of ground penetrating radar data for various purposes,
including the resolution of water content profiles [90], estimation of subsurface object
radius [91], and acquisition of hydrologic parameters [92].

In the SCE algorithm, a population is dispersed throughout the feasible parameter
space and subdivided into complexes. Each complex provides valuable information
on the number, location, and size of the primary areas of attraction. Additionally,
an implicit clustering strategy concentrates the search in the most promising regions,
enhancing the SCE algorithm’s efficiency and effectiveness [88]. This process ensures
that the algorithm searches the parameter space thoroughly and efficiently, allowing
for a more comprehensive exploration of the parameter space.
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Figure 3.2 illustrates the various steps involved in the SCE algorithm. The first
step involves randomly sampling S points from the parameter space Ω to generate a
set of potential solutions. The number of points sampled is determined by the number
of complexes (c) and the number of parameter sets per complex (p). For instance, if
there are n layers, the number of complexes is determined by

c = 2 × n − 1 (3.8)

and the number of parameter sets per complex should be

p = 2 × c + 1. (3.9)

To find the best possible solution, the algorithm repeats a series of operations on
the generated points, which include sorting them based on their fitness, selecting the
best individuals for reproduction, and performing genetic operations to create new
individuals. The process is then repeated until convergence to the best global mini-
mum is achieved. Extensive tests have shown that when the number of complexes is
equal to the dimensionality of the problem, as is the case with n-layers, the fitting
time is shorter and convergence to the best global minimum is achieved faster. This
demonstrates that the SCE algorithm is a reliable method for exploring the parameter
space and identifying optimal solutions in a variety of applications.

The algorithm operates by first calculating the objective function for each set of
parameters and arranging these sets in ascending order of misfit ∆Error in a matrix
called M . This matrix is then divided into several complexes, Ak, where k ranges from
1 to c. Each complex is treated independently using a systematic approach based on
the competitive complex evolution (CCE) algorithm. The CCE algorithm employs
a triangular probability distribution to ensure that the different populations of pa-
rameters within each complex compete against each other during the search process
[93]. This means that the CCE algorithm explores the parameter space in various
directions, continually sampling new parameter combinations and evolving the pop-
ulation. In this way, the algorithm is able to efficiently search the parameter space
and converge towards optimal parameter values that minimise the misfit between the
observed data and the model predictions.

After the initial partitioning of the parameter sets into complexes, the program pro-
ceeds to shuffle and reassign them to the matrix M . This new matrix is then once
again sorted based on the increasing misfit of each parameter set, after which the
complexes are partitioned again. This shuffling and partitioning process is repeated
until one of two general convergence criteria is met. The first criterion is met when the
number of function evaluations reaches the maximum limit of 1000 times n-squared,

23



3. Theory on Modelling and Optimization of EMI Data

where n is the number of parameters being optimised. The second criterion is met
when the improvement in the misfit between the observed data and model predic-
tions becomes smaller than a set percentage within a pre-specified number of rounds
of the CCE loop. The use of competitive complex evolution and shuffling in the SCE
algorithm allows for the exploration of a wide range of parameter combinations and
enhances survivability by promoting the survival of better parameter sets over worse
ones. This results in improved global convergence efficiency, as described in previous
studies by Duan and Gupta [93].
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Figure 3.2.: A diagram outlining the steps of the SCE inversion algorithm used to
process EMI data.
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3.3. Infinite Impulse Response Filter
The objective of the study was to investigate the impact of abrupt variations in ex-
ternal ambient temperatures on the internal temperatures of the EMI measurement
system and its components. In order to accomplish this, a digital low-pass filter
(LPF) was utilised in the time domain to filter input and output signals which in this
case are both temperature signals. The low pass filter of interest for drift analysis in
this work is an infinite impulse response (IIR) filter with a general input and output
relationship where the discrete time index n can be expressed as a difference equation
(e.g. [94], [95], [96]):

y(n) =
M

∑
i=0

bix(n − 1) −
N

∑
i=1

aiy(n − 1), (3.10)

where ai and bi are the filter coefficients. These coefficients determine the behav-
ior of the system. The present and past M input signals are represented by x(n).
These input signals are what drive the system and cause it to produce the output
signals. The past N output signals are represented by y(n) and are the result of the
system’s previous response to the input signals. By using the Z-transform to represent
the input-output relationship of a dynamic system such as given by Equation 3.11,
the system’s behavior in the frequency domain can be analysed. This can provide
valuable insight into the system’s stability, response to different input signals, and
other important characteristics. Here the Z-transform is:

G(z) = Y (z)
X(z) =

∑M
i=0 bi ⋅ z−1

∑N
i=0 ai ⋅ z−1

= b0 + b1 ⋅ z−1 +⋯ + bM ⋅ z−M

a0 + a1 ⋅ z−1 +⋯ + aN ⋅ z−N
(3.11)

where z is the complex Z-transformed variable. In this case, the transfer function
of the filter can be represented by Equation 3.12, whereby, to actually design the
filter, it is customary to use an analog equivalent simple first-order LPF (M = 1 and
N = 1) with a transfer function Ha. This transfer function can be expressed as a
function of the frequency variable s. The transfer function Ha of the analog LPF is
given by:

Ha(s) =
ωc

s + ωc

and ωc =
1
τ

(3.12)

where ωc is the cut-off frequency of the LPF, the subscript a stands for analog, s
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is the Laplace operator, and τ is the time constant of the LPF. The frequency vari-
able s can be related to z by the bilinear transformation [95]. This technique is
used to convert a continuous-time analog filter into a discrete-time digital filter while
maintaining the frequency characteristics of the filter. Therefore by using this trans-
formation, we can design a stable digital filter that mimics the response of an analog
filter. This is done by replacing the Laplace operator s by the term

s = 2
Ts

z − 1
z + 1 (3.13)

where Ts is the sampling period (as per the Nyquist theorem). The first order Z-
transform of the transfer function G(z) for the digital IIR filter is given as

Hd(z) =
b0 + b1 ⋅ z−1

1 + a1 ⋅ z−1 (3.14)

where the subscript d is used to denote that it pertains to digital values. By plug-
ging in the value of s from Equation 3.13 into Equation 3.12 and then comparing
the resulting equation with Equation 3.14, it becomes possible to calculate the filter
coefficients for the first-order digital filter as:

a1 =
1 − Ts

2⋅τ

1 + Ts

2⋅τ
and (3.15)

b0 = b1 =
Ts

2⋅τ

1 + Ts

2⋅τ
. (3.16)

where the values of the filter coefficients a1, b0, and b1 are obtained by taking into
account the cut-off frequency ωc and the sampling period Ts.

The representation in Figure 3.3 shows a signal flow diagram of the first order IIR
filter implemented in MATLAB and used to model the present and past system tem-
perature delay dynamics of the measurement instrument. The inputs are the present
and past values of the effective value of the measured temperature (Teff(n) and
Teff(n − 1)) respectively. The outputs are the present and past values of the mod-
elled temperature (Tmod(n) and Tmod(n− 1)) respectively. a1, b0, and b1 are the filter
coefficients.
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Using the filter coefficients, it was possible to derive a filter function from Equa-
tion 3.10 (also shown in Figure 3.3), where z−1 represents a unit delay block, which
implies that the output of the delay block is equal to the input signal delayed by one
time step. On the input side of the IIR LPF, the product of the effective tempera-
ture’s current value Teff (n) and the filter coefficient b0 are added to the product of the
past value of the effective temperature Teff(n−1) and the filter coefficient b1. This is
then added to the output values consisting of the product of the past modelled tem-
perature value Tmod(n − 1), which ultimately gives the overall modelled temperature
Tmod(n). Hence, the modelled temperature Tmod at the discrete time index n using
the effective input temperature Teff can now be defined as:

Tmod(n) = b0 ⋅ Teff(n) + b1 ⋅ Teff(n − 1) + a1 ⋅ Tmod(n − 1). (3.17)

Figure 3.3.: Signal flow diagram of the first order IIR filter used to model the present
and past temperature delay dynamics of the measurement instrument.

3.4. Phase Value Calculation and Correction
The process of converting a measured temperature into a phase value can be challeng-
ing, particularly when non-linear relationships exist between temperature and phase.
To address this challenge, a cubic spline interpolation method was used, which in-
volves utilizing three reference temperature points and their corresponding reference
phases to determine the modeled phase value for a given modeled temperature Tmod.
The reference temperature points used in this approach are selected based on the
temperature range observed during EMI measurements.

Here, the reference temperature points are Trefmin
= 0.0°C, Trefmid

= 25.0°C, and
Trefmax

= 50.0°C. For each of the reference temperature points, there is a correspond-
ing reference phase value. These values, denoted as ϕrefmin

, Φrefmid
, and Φrefmax

,
respectively, are determined through theoretical means. The cubic spline interpo-
lation method involves fitting a cubic polynomial to the reference temperature and

28



3.4. Phase Value Calculation and Correction

phase data points. Then the resulting polynomial can be used to estimate the phase
value for any modeled temperature within the temperature range. The goal is to
establish a clear relationship between temperature and phase at each reference tem-
perature point. The accuracy of the method depends on the number and spacing of
the reference temperature points, as well as the quality of the reference phase values.

In practice, the modeled temperature Tmod is first determined through a tempera-
ture measurement and a simulation. The Tmod is then used as an input to the cubic
spline interpolation method, which returns the corresponding modeled phase value.
This modeled phase value can then be used to correct the measured phase value,
accounting for any non-linearity in the temperature-phase relationship. The three
phase points are determined based on Φoff , G, and NL. The first calibration point,
which represents the phase offset, is calculated as the phase at 0.0°C:

ϕrefmin
= Φoff (3.18)

The third point of calibration is determined based on the gain value, taking into
account the phase offset:

ϕrefmax
= Φoff +G(Trefmax

− Trefmin
) (3.19)

The middle calibration point is determined from the non-linear term NL:

ϕrefmid
= Φoff +NLG(Trefmid

− Trefmin
) (3.20)

The plot depicted in Figure 3.4 shows cubic spline interpolation using three reference
calibration points across a chosen temperature range spanning from Trefmin

= 0°C to
Trefmax

= 50.0°C. The illustration showcases three distinct scenarios, each represented
by a different colored line. If NL equals 1, it signifies that the behavior is entirely
linear, where the output changes proportionally to changes in the input, as denoted
by the black line. However, when a NL value other than 1 is chosen, it will produce
a non-linear correlation between temperature and phase after spline interpolation,
which will shift the curve upwards or downwards, depending on the specific values of
the NL parameter.
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Figure 3.4.: The provided plot shows cubic spline interpolation using three reference
points within a chosen temperature range.

3.5. Principal Component Analysis
Temperature sensors play a critical role in gathering information on the temperature
distribution within a measurement device while acquiring EMI data. This is because
temperature changes can have a significant impact on the measurement instrument,
which can lead to errors or inconsistencies in the collected data. Therefore, moni-
toring and analyzing the local internal temperature is critical to ensure the accuracy
and reliability of the measurement results. After obtaining the sensor data, it is pos-
sible to analyse the local internal temperature of the measurement instrument. This
analysis can help in simplifying the correction of drift effects on the measured ECa.

To make the correction of drift effects easier, it is initially assumed that the variation
in external ambient temperature within the device is uniform across all components.
This assumption is especially helpful when there is high covariance between tempera-
ture sensors. By relying on just a few temperature components, most drifts caused by
temperature changes can be corrected. This approach is preferred over using multiple
redundant components that carry the same information, as it minimizes the resources
required for correction while maintaining accuracy.

The method of principal component analysis (PCA) is an effective way to address
the issue of multicollinearity in measured data [97, 98]. The PCA method can be
used to identify the underlying relationships among the temperature sensor readings
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and determine which factors contribute most to the observed variance. By doing so,
it is possible to reduce the dimensionality of the data while retaining the most rele-
vant information. The method essentially transforms the data into a new coordinate
system where the new axes, or principal components, represent linear combinations
of the original temperature measurements.

The principal components are then ranked according to their respective contribu-
tion to the variance observed in the data. The first few principal components with
the highest contribution are retained for further analysis, while the remaining com-
ponents can be disregarded as they contain little information. By focusing only on
the most significant principal components, the effects of multicollinearity can be mit-
igated, allowing for more accurate and reliable analysis of the data.

Mathematically, the PCA method, as explained by Jolliffe [99], involves the determi-
nation of the covariance matrix

C = T T
ms ⋅ Tms (3.21)

of the normalised (by
√

n) and mean-centered measured temperature time series Tms,
where n is the number of temperature time series [99]. An eigen decomposition of
this covariance matrix

[Evec, Eval] = eigen(C) (3.22)

transforms the temperature data into eigenvalues Eval with their corresponding linear
independent (orthogonal) eigenvectors Evec [100]. The eigenvalues are an indication
of the magnitude of the respective eigenvectors and a measure of their importance in
explaining variation within the dataset [99]. The principle components

PC = Tms ⋅Evec (3.23)

are estimated as a product of the original temperature data and the eigenvectors.
The mean subtracted from the temperature data at the start of the PCA analysis is
again added to the principal components. The generated principal components

PC = PC +mean(Tms) (3.24)
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are uncorrelated with each other but correlated with the measured data.
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4. Uniform Temperature Drift
Correction

Chapter 2 of this thesis report introduces an important issue related to EMI measure-
ments, whereby it is stated that variations in external ambient temperature causes
drifts on the EMI measured data. In order to address this problem, a novel correction
method is proposed in the current chapter. The method involves using a low-pass
filter (LPF) to model the dynamic characteristics of the drifts and then using this
model for correction purposes. The correction method is developed and tested using
a customised EMI device with an intercoil spacing of 1.2 meters.

The device is optimised for low drift and equipped with 10 temperature sensors that
measure the local internal temperature simultaneously across the device. Outdoor
calibration measurements are conducted over several days, covering a wide range of
temperatures. At the start of the chapter, the internal electronic components of the
EMI circuit are analysed in a signal flow diagram. The argument is made that each
component of the measurement system can be a source of drifts.

Following this, the methodology of the dynamic drift correction model is introduced.
This model takes into account the transient delays of the system components in re-
sponse to external ambient temperature changes. The next step involves the presen-
tation of the temperature correction method, which includes the LPF and a look-up
table (LuT). The LuT converts temperature information into phase. Overall, the
proposed correction method is expected to provide more accurate and reliable EMI
measurements by mitigating the impact of external ambient temperature on the out-
put data.

4.1. Materials and Method

4.1.1. EMI Measurement System with Temperature Sensors
The EMI measurement set-up utilised in this study is a modified version of the set-
up originally developed by Mester et al. [65] and described in detail by Tan [82].
The system is composed of several components, including a transmitting (Tx) coil
and three receiving (Rx) coils, as well as a generator unit (Gen) to power the Tx
coil, a microcontroller (µC) to measure temperatures and for hardware configuration,
an integrated computer (IC) and an analog-to-digital converter (ADC) (Figure 4.1).
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These components work together to accurately measure EMI data at a frequency of
10 kHz. Intercoil spacings for this system are 0.4 m, 0.8 m, and 1.2 m, with a focus
on the intercoil spacing of 1.2 m for this particular study.

Figure 4.1.: (a) Picture of the EMI instrument used to perform measurements. (b)
simplified schematic diagram of the EMI measurement system.

The diagramatic representation in Figure 4.1a depicts a photograph of the instrument
used for EMI measurements and in Figure 4.1b it shows a simplified diagram of the
EMI measurement set-up. The set-up consists of a polyvinyl chloride (PVC) pipe
that holds the transmitter (Tx) coil and three receiver (Rx) coils along with their
respective readout circuits. The data acquisition unit (DAQ) includes the analog-
to-digital converter (ADC), a generator unit (Gen), a microcontroller (µC), and an
integrated computer (IC). The system is powered by an external battery and can be
controlled remotely via WLAN and a personal computer (PC). The set-up includes 10
temperature sensors: sensor 9 measures the temperature of the printed circuit board
(PCB), sensors 3, 4, and 5 monitor the air temperature inside the PVC tube, sensors
1, 2, and 6 measure the PVC temperature, sensor 8 measures the temperature at the
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Tx coil, sensor 7 measures the temperature of the heat sink, and sensor 10 measures
the temperature of the ADC casing.

To power the measurement instrument, an external 12 V DC power source (bat-
tery) is used. The ADC used in the system is a 24-bit sigma-delta ADC (National
Instruments USB-4432), which provides a rated input voltage range of ±10 V and a
high resolution of 0.1 µV/

√
Hz. This ensures that precise and accurate measurements

of the electromagnetic signals are detected by the Rx coils. Each Rx coil is equipped
with a readout circuit that amplifies and transfers the measured signal to the ADC
for processing. The measurement system is controlled by a customised MATLAB
software, which is running on the IC. The software allows to remotely regulate the
measurement program via WLAN from an external notebook (PC). This provides the
flexibility to make adjustments to the measurement program as needed, without the
need of direct physical access to the measurement instrument.

The temperature sensors used for this task were digital thermometers, specifically
the Dallas Semiconductor DS18S20 model [101]. These thermometers are capable of
measuring temperatures within a range of -55°C to 125°C with an accuracy of ±0.5°C
and a 9-bit resolution, making it possible to obtain accurate and comprehensive tem-
perature data throughout the EMI device. Details on the custom EMI measurement
system are shown on the signal flow diagram in Figure 4.2a, which comprises a single
Tx – Rx arrangement and operates based on a series of processes described subse-
quently.

The generator, denoted as Gen, supplies a sinusoidally varying voltage UG at a specific
frequency to the Tx coil. This voltage input results in a sinusoidal primary current,
Ip, flowing through the Tx coil, producing a primary magnetic field, Hp. The current
flowing through the Tx coil is determined through a current measurement circuit, Ims,
which measures the voltage drop, Up, over a resistor that is connected serially to the
Tx coil. Ideally, the phase of Hp and Up is identical (shown in Figure 4.2b) and is
denoted with Φp subsequently.

Once the primary magnetic field, Hp, is produced, it diffuses into the soil and in-
duces eddy currents in the conductive subsurface. These eddy currents generate a
secondary magnetic field, Hs, that is shifted in phase by 90° with respect to Hp at the
position of the Rx coil as stated by the Maxwell equations [102] (section A). Figure
4.2b shows the relationship between the primary, secondary and measured magnetic
fields in a magnitude and phasor diagram. The superposition of the primary and
secondary magnetic fields

Hms =Hp +Hs (4.1)

which is observed at the Rx coil induces a voltage, Ui, with a corresponding phase, Φi.
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The induced voltage signal Ui, together with Up, is then fed to the data acquisition
(DAQ) unit after passing through an amplification circuit (AMP).

Figure 4.2.: (a) The signal flow diagram depicts the EMI measurement system’s set-
up for a single Tx – Rx arrangement. (b) Magnitude and phasor diagram
for the primary, secondary and measured magnetic fields.

It should be noted that each of the system components can cause parasitic phase
drifts and phase offsets, which can affect the accuracy of the measured phase. All the
provided variables in the figure are considered as complex variables. To obtain accu-
rate and reliable measurements, both signals are digitalised by an analog-to-digital
converter (ADC) and further computation is performed to obtain the measured phase,
Φms, which is the difference
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Φms = Φi −Φp (4.2)

between Hms and Hp. This computation assumes that Hp and the reference signal,
Ip, have the same phase, Φp.

To get the soil electrical response during an EMI measurement, it is often more
realistic to determine the transfer impedance (Z) of the system than the Rx voltage
Ui shown in Figure 4.2. This parameter is a measure of the effectiveness of the sys-
tem in transferring electromagnetic energy from the transmitter to the receiver. The
transfer impedance hereby represents the ratio of the voltage induced at the receiver
(Ui) to the current at the transmitter (Ims) as:

Z = Ui

Ims

. (4.3)

It is also interesting to note that in the context of the system description depicted in
Figure 4.2, the transmitter voltage Up can be represented in terms of Z and Ims as:

Im(Hs

Hp

) = Im( Ui

Z ∗ Ims

). (4.4)

4.1.2. Temperature Drift

In order to investigate the impact of variations in external ambient temperature on the
measured phase and the occurrence of temperature drifts, a series of measurements
were conducted using the previously presented measurement system. Throughout
the acquisition of electromagnetic interference (EMI) data, the temperature sensors
(section 4.1.1) were utilised to record the local internal temperature within the device
using temperature sensor 3 (Figure 4.1) which measures the air temperature. The
results of these measurements are depicted in Figure 4.3, which indicates that over a
30-hour period, the local internal temperature varied from 10°C to 40°C.
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Figure 4.3.: The left axis shows the time series of the measured phase (black broken
line). The right axis shows time series of the local internal (air) temper-
ature (red solid line) from sensor 3.

This was accompanied by a corresponding change in the measured phase from 3 to
5.5 mrad. It should be noted that the device was placed at an elevation of 0.7 m to
minimize the effects of soil properties on the measurement data. A correlated relation
was observed between the phase drift and the external ambient temperature, despite
the attempts to minimize soil influence. This is an indication that the thermal ef-
fect of the EMI system components cannot be neglected and thereby emphasizes the
importance of correcting these drifts to achieve accurate and stable EMI data. This
is particularly necessary in situations where no temperature stabilisation circuit is
implemented in the measurement system hardware.

However, it should be noted that the drift of the phase signal is delayed in rela-
tion to the external ambient temperature due to the heat capacity of the system
components. As a result, the components heat up is delayed compared to the air
temperature sensor. The observed thermal drifts are complex and are influenced by
both the instantaneous external ambient temperature and the thermal history of the
EMI system components. This complexity arises from the fact that different electrical
components possess varying thermal capacities, resulting in different thermal decay
trends and a thermal legacy that cannot be monitored solely by measuring the instant
(static) external ambient temperature [82]. A method is therefore required that can
correct the temperature drifts by monitoring thermal dynamics of the EMI system.
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4.1.3. Phase Drift Model
To model the temperature drift characteristics for EMI measurements, the phase drift
model in Figure 4.4 is proposed. The diagram depicts an infinite impulse response
(IIR) low pass filter, LPF (section 3.3) that takes the effective temperature (Teff )
of measured temperatures (Tobs1 to TobsN) as input. The LPF output is a modeled
temperature (Tmod), which is used to determine a phase (Φmod) through spline inter-
polation with three reference points. The measured phase (Φms) is then corrected by
subtracting Φmod to obtain the corrected phase (Φcorr), which is converted to ECa
using the McNeill [41] approximation. The model also includes a parameter (Φoff ) to
account for system offsets. The model consists of two paths: a dynamic phase drift
model and a static phase drift model. The dynamic phase drift model, represented
by the blue path in Figure 4.4, applies a low pass filter, (LPF) to the input, allowing
the model to determine the delayed response of the local internal temperature of the
system components to external ambient temperature changes. The LPF can be by-
passed for static modeling (red path) where phase calibration is done using a look-up
table alone.

Figure 4.4.: Schematic representation of the phase drift model with static modeling
(red path) and dynamic modeling (blue path) options.

This model also utilises a look-up table with cubic spline interpolation to facilitate
the interpretation of temperature information in terms of phase values (section 3.4).
In more detail, the dynamic phase drift model consists of two components: the LPF
and the look-up table. The LPF is responsible for modeling the temperature response
of the system’s components to changes of the external ambient temperature.

The look-up table, on the other hand, is used to convert the temperature information
into phase values. These two components work together to form a complete dynamic
phase drift model. The static phase drift model, represented by the red path in Fig-
ure 4.4, bypasses the LPF and converts measured temperatures into modeled phase
values using directly the look-up table. This model assumes that the temperature
drift is constant over time and does not change with temperature fluctuations. Both
models are controlled by calibration parameters, including the time constant τ of the
LPF, the phase offset Φoff of the system, the gain G, and a non-linear term NL.
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These parameters are important for accurately modeling the temperature drift and
predicting the system’s phase response under different temperature conditions.

4.1.4. Effective Temperature Variation
The process of determining the effective temperature variation (Teff ) inside an EMI
device involves careful evaluation and selection of temperature sensors to obtain a
representative value of the local internal temperature. This is achieved by selecting
sensors that have both fast response times to external ambient temperature changes
and are distributed throughout the device’s length. By doing so, a mean value of
various temperatures across the instrument is obtained, which is representative of the
local internal temperature.

However, it is important to note that local heating or cooling can result in deviating
temperatures in certain sensors. Therefore, it is necessary to identify and exclude
those sensors and only consider the ones that provide reliable readings. This ensures
that the selected sensors are representative of the overall temperature inside the de-
vice. To obtain an effective time series of the temperature for the phase drift model,
the average value over the selected sensors is used. This approach is more accurate
than relying on individual sensor readings, as the mean value provides a more statis-
tically reliable representation of the local internal temperature.

To ensure that the temperature uniformly changes throughout the device, the corre-
lation coefficients of the selected temperature time series are calculated. This helps
determine whether the selected sensors change identically with the external ambient
temperature. If they do, then the condition for a representative temperature signal
applies to the entire interior of the device. This is crucial information to be considered
when building the drift model.

4.1.5. Drift Calibration Measurements
In order to determine the calibration parameters of the phase drift model, it is nec-
essary to perform calibration measurements. However, it is important to minimise
the influence of soil on the system’s thermal drift, as this can affect the accuracy of
the measurements. Additionally, the calibration method should be practical to carry
out in the field. To meet these requirements, the EMI instrument was mounted on a
wooden rack and raised to a height of 0.70 m in a garden near Niederzier, Germany,
in July 2020. Great care was taken to ensure that there were no nearby power lines
that could interfere with the measurements.

To investigate the impact of temperature on the measurement system, sixteen sets of
ECa measurements were taken in VCP configuration over a period of 30 hours. This
corresponded to 16 day and night cycles, allowing for a thorough examination of the
effects of temperature on the instrument’s performance. By conducting these mea-

40



4.1. Materials and Method

surements, it was aimed to determine the most accurate calibration parameters for
the phase drift model. During the measurements using the custom EMI instrument,
the temperatures recorded ranged from approximately 25°C to 58°C.

To ensure that the data collected were as accurate as possible, while minimizing
the impact of soil conditions, a height of 0.70 m was chosen for the measurements.
This height was deemed to be a reasonable compromise between experimental conve-
nience and accuracy. To further ensure the accuracy of the measurements, calibration
measurements were conducted using the VCP configuration (section 2.2). This con-
figuration was found to be the least affected by changes in soil properties such as
temperature and water content for the specified height, as reported by Robinson et
al. [76].

After the measurements were conducted, model parameters were calculated for each
of the 16 datasets. These parameters allow for a thorough analysis of the collected
data and provide valuable insights into the underlying soil properties. The calibra-
tion parameters m = (Φoff , τ , G, NL) of the phase drift model, were determined
by finding appropriate values that minimised the discrepancy between the measured
phase Φms and the modeled phase Φmod. To achieve this, an objective function was
utilised, with the L2-norm [103] as the method for determining the misfit between the
measured and modeled phase:

L2(m) = ∣∣Φms −Φmod(m)∣∣2 = ∣∣Φc(m))∣∣2 (4.5)

The L2-norm is a mathematical function that measures the distance between two
vectors, in this case, Φms and Φmod. The objective function was designed to minimise
this distance by adjusting the calibration parameters until the discrepancy between
the measured and modeled phases was as small as possible. In this process, the cali-
bration parameters were optimised to accurately describe the behavior of the system
being studied. This allowed for more accurate predictions and greater understanding
of the system’s behavior.

The objective function was minimised using the Nelder-Mead simplex algorithm [85]
(section 3.1), which is a widely used optimisation algorithm for finding the optimal
solution to a problem. This algorithm iteratively searches for the best set of calibra-
tion parameters that minimises the objective function. To initiate the optimisation
process, starting values for the minimisation were calculated by fitting a linear model
to the phase and temperature data. This provided initial values for Φoff and G, which
were used to begin the Nelder-Mead simplex algorithm.

The time constant τ was assigned an initial value of 1 s, which was deemed suit-
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able for the system under consideration. The non-linear term NL was also assigned
an initial value of 1, as it was assumed that it would not have a significant effect on
the system’s behavior. To evaluate the optimisation process, the root mean square
error

RMSE =
√
(Φc −mean(Φc))2 (4.6)

was calculated as a measure of the accuracy of the calibration parameters. A smaller
RMSE indicates a better fit between the measured and modeled values, and thus a
more accurate set of calibration parameters.

4.1.6. Effect of Soil Conductivity Changes on the Calibration
The influence of the soil on instrument calibration is a topic of great importance in
the field of geophysics and soil science. Soil properties can in general significantly
affect the accuracy of measurements obtained by geophysical instruments as the elec-
trical conductivity values measured will vary with changing soil properties like water
content and salt concentration. As a result, it is essential to investigate and under-
stand the impact of soil properties on instrument calibration and performance. A
two layer synthetic soil model was used to investigate the influence of soil on instru-
ment calibration. The first layer of the set-up represents air, which has a thickness
equivalent to the height of the instrument (h = 0.7m) from the ground. Since the
VCP configuration senses mostly the shallow part of the soil (section 2.2), elevating
the instrument to a height of 0.7 m further decreases the device’s sensitivity to soil
influence. To check this the electrical conductivity of the first layer is set to a value
EC1. The second layer represents a homogeneous soil volume with infinite thickness,
and the electrical conductivity of this layer EC2 was varied to model the effect of the
system’s sensitivity.

The choice of EC values for the two layers is critical for the success of the synthetic
analysis and is selected based on the typical range of soil electrical conductivities
found in the soil at the measurement location. The sensitivity of the measurement
system is modelled using the cumulative response function in Equation 2.6. By vary-
ing the conductivity of the homogeneous half space and running the response function,
the influence of the soil on the calibration is estimated. The ECa is the sum of the
product of the CRF for each layer and the electrical conductivity of the various layers
which is calculated for the VCP coil configuration as

ECa = EC1 ⋅ (1 −CRF V CP ) +EC2 ⋅CRF V CP . (4.7)
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4.2. Results and Discussions
4.2.1. Measured Temperature Distribution
The results of the exemplary calibration measurement #16 are presented in Figure
4.5, displaying the measured temperature values (Tms) for all 10 sensors. The tem-
perature values were obtained using 10 temperature sensors that were distributed
throughout the EMI instrument to measure temperature variation within the device
(section 4.1.1). The temperature variations across the sensors appear to be similar,
with the exception of sensors 7, 9, and 10, which demonstrate higher overall tem-
perature values. The elevated temperatures of these 3 sensors can be attributed to
local self-heating of the modules (Heatsink, transmitter PCB and ADC respectively)
to which they are attached.

As a result, these sensors are not considered representative of the uniform local in-
ternal temperature of the device and are therefore excluded from drift correction.
Moreover, the temperature curves for sensors 1 and 3 indicate delayed reaction times,
as evident from their temperature curves. This suggests that these sensors are also
not suitable for the analysis and consequently were excluded from the study to en-
sure that the results obtained are accurate and representative of the local internal
temperature of the device.

Figure 4.5.: Time series of measured temperature values, Tms for calibration measure-
ment #16.
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Finally, the effective time series for the model was obtained using sensors 2, 4, 5, 6,
and 8 for all measurements. In order to ensure that these sensors provide consistent
readings, the correlation coefficients between the selected temperatures were calcu-
lated to determine if the temperature variations were uniform throughout the entire
device. The results showed that the smallest correlation coefficient obtained among
the selected temperature curves of all 16 measurements was never less than 0.994.
This indicates that the temperature inside the system is uniform, as all the selected
sensors consistently measured temperature variations that are highly correlated with
each other. Therefore, it can be concluded that sensors 2, 4, 5, 6, and 8 are reliable
for calculating the effective time series for the model and can be used with confidence
in subsequent analyses.

4.2.2. Performance of Calibration
To assess the reliability and robustness of the calibration method, the 16 calibration
measurements were analysed individually. The results of fitting each individual mea-
surement are presented in Table 4.1, along with the corresponding root mean square
error (RMSE1) of the ECa values. The RMSE1 values (obtained from correcting
measured datasets with calibration parameters obtained from fitting the respective
datasets) varied across the 16 datasets, ranging from 0.31 mSm-1K-1 to 0.56 mSm-1K-1,
with a mean value of 0.42 mSm-1K-1 (equivalent phase of about 11.9 µradK-1). The
results obtained suggest that the calibration method is relatively robust, as the vari-
ation in RMSE1 values across the different datasets is relatively small.

Moreover, the mean RMSE1 value of 0.42 mSm-1K-1 (equivalent phase of 0.012
mradK-1) indicates that the calibration method is able to estimate ECa values with
a high degree of accuracy, as this value is relatively small compared to the range of
measured ECa values. The calibration measurements showed that the values of the
calibration parameters, namely τ , G and NL, were consistent across all measure-
ments. This suggests that the calibration method and approach were reliable. The
parameter τ is an important measure of the response time of the various components
of the measurement system to temperature changes.

A higher value of τ indicates that the components of the system take longer to re-
spond to changes in temperature. In this case, the mean value of τ was approximately
1107 seconds, which translates to around 18 minutes. This means that it takes ap-
proximately 18 minutes for the components of the measurement system to respond to
changes in internal measured temperature. This delay is most likely due to the coils
of the system, which have a large thermal inertia as indicated by previous studies
[13,15]. Thermal inertia here refers to resistance to temperature change, and in the
context of the measurement system, it represents the time it takes for the coils to
adjust to temperature changes.
The value of G, which represents the drift in ECa, was determined and found to vary
slightly around a mean value of 2.27 mSm-1K-1 with a phase of approximately 64.5
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Table 4.1.: The calibration parameters: time constant (τ), gain (G which is converted
to ECa), and non-linear term (NL) were determined from fitting the 16
datasets. The corresponding RMSE1 (from correcting each individual
dataset with its own fitted calibration parameter) and RMSE2 (from the
evaluated mean of all 16 calibration parameters which is applied for cor-
rection of each individual dataset) were also determined. The mean and
standard deviation (std) of the calibrated parameters based on the 16
measurements were also calculated.

Data τ G NL RMSE1 RMSE2

(s) (mSm−1K−1) (mSm−1K−1) (mSm−1K−1)
1 1201.10 2.27 1.17 0.36 0.37
2 1176.82 2.36 1.05 0.39 0.42
3 1038.07 2.25 1.18 0.40 0.47
4 968.33 2.23 1.22 0.40 0.64
5 1198.90 2.25 1.18 0.41 0.46
6 1076.17 2.25 1.19 0.31 0.32
7 1121.04 2.25 1.08 0.31 0.42
8 1038.55 2.24 1.24 0.44 0.59
9 1147.57 2.28 1.25 0.39 0.48
10 1154.75 2.26 1.16 0.56 0.61
11 1122.22 2.26 1.21 0.39 0.39
12 1041.29 2.26 1.22 0.37 0.47
13 1152.85 2.25 1.18 0.55 0.57
14 1007.87 2.29 1.25 0.37 0.41
15 1177.05 2.32 1.29 0.53 0.63
16 1104.52 2.26 1.20 0.48 0.49
mean 1107.94 2.27 1.19
std 71.78 0.03 0.06

µradK-1. The accurate determination of G was found to be crucial for correcting
the drift. The standard deviation of the fitted ECa drift was only 0.03 mSm-1K-1,
indicating that it is relatively low compared to the mean value of G. The non-linearity
factor (NL) varied around a mean value of 1.19, which means that the phase values
were non-linearly related to temperature (as principally shown in Figure 3.4).
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Figure 4.6.: (a) Uncorrected ECa values for calibration measurement #16. (b) Cor-
rected ECa values for measurement #16. ECa values were shifted to have
a zero mean.

This non-linear term was therefore deemed essential for correcting the drift effects.
The study also investigated the effect of setting NL to 1.0 (i.e., a linear model).
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The results showed that by doing so, the mean of the RMSE1 increased from 0.42
mSm-1K-1 to 1.2 mSm-1K-1. The mean of all 16 calibration parameters τ , G and NL
from Table 4.1 (i.e. 1107.94 s, 2.27 (mSm-1K-1), 1.19 respectively) where now applied
for correction on each individual dataset 1 - 16. This process produced an additional
16 root mean square error (RMSE2) values, which were slightly higher than the orig-
inal RMSE1 values. The mean RMSE2 value, calculated using the single set of mean
calibration parameters, was found to be 0.48 mSm-1K-1.

This value was only marginally higher than the mean value of the RMSE1 values
(0.42 mSm-1K-1) calculated using individual calibration parameters. Considering the
fact that the results obtained using both individual and mean calibration parameters
over the course of 16 days were similar suggests that the calibration parameters are
reproducible and the system is capable of long-term calibration. Therefore, it was
concluded that the calibration method is reliable and can be used for extended peri-
ods of time without significant degradation in accuracy.

To demonstrate the effectiveness of the drift correction and the calibratability of
this process, the time series of ECa values were analysed. Specifically, by comparing
the uncorrected and corrected ECa values of measurement #16 using both individual
calibration parameters and mean calibration parameters, it was possible to determine
the efficiency of the drift correction method. These values are presented in Figure
4.6a and Figure 4.6b, respectively. In Figure 4.6a, the uncorrected data shows a peak-
to-peak ECa value of approximately 62 mSm-1, while the corrected data (using the
mean of all calibrated parameters) in Figure 4.6b displays an ECa value of around
3 mSm-1. This strong contrast indicates that the drift correction process is highly
effective in reducing temperature drifts.

Furthermore, Figure 4.6b shows that the ECa values for both individual and mean
calibration parameters are similar, which suggests that the drift correction method is
adjustable and can be applied to a variety of different calibration parameters with-
out significantly affecting the results. In terms of quantifying the effectiveness of
the correction method, the RMSE of the corrected ECa values is 0.48 mSm-1K-1

for individually calibrated parameters and 0.49 mSm-1K-1 for the mean calibration
parameters. These values indicate that the drift correction process is highly effective
at reducing the error associated with ECa measurements. Note that in order to focus
on the changes in ECa rather than absolute values, the ECa values shown in Figure
4.6a and Figure 4.6b were shifted to have a zero mean.

4.2.3. Advantage of Implementing the LPF in the Drift
Correction Model

This section aims to demonstrate the advantages of using dynamic correction with
a LPF in comparison to static correction of temperature drift without a LPF. The
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figure presented in Figure 4.7 displays the measured ECa values (in pink), the ECa
values generated through dynamic modeling (in black), and the ECa obtained through
static modeling (in red) (all adjusted to have a mean of zero to indicate ECa differ-
ences rather than absolute values). These values are plotted as a function of effective
temperature Teff calculated from the mean of all measured temperature values. The
figure reveals the emergence of temperature dependent hysteresis loops that result
from the fluctuations in the local internal temperature of the measurement device.
These hysteresis loops represent the accumulation of previous and current warming
and cooling cycles, a phenomenon that has been previously reported by Huang et al.
[78].

The static correction approach is not sufficient to accurately analyse the measure-
ment device’s drift properties over time since it fails to replicate the hysteresis loops
observed in the data. However, the dynamic approach, which incorporates a LPF,
can effectively reproduce these hysteresis effects. The dynamic approach uses a feed-
back loop that adjusts the correction based on the current and past measurements,
providing a more accurate and reliable analysis of the measurement device’s drift
properties over time. Therefore, the results from Figure 4.7 highlight the importance
of using dynamic correction with a LPF for a more accurate analysis and correction
of temperature dependent drift effects.

Figure 4.7.: Plot for calibration measurement #16 showing ECa as a function of tem-
perature.

In order to demonstrate the importance of implementing a LPF, the effects of both
static (Figure 4.8a and dynamic (Figure 4.8b correction approaches on the time se-
ries data of measurement #16 were analysed. Additionally, the RMSE for single
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parameter correction in both cases were calculated (in both plots, the ECa values
have been adjusted to a mean of zero to better focus on changes in ECa rather than
their absolute values). The analysis has shown that when using static correction, the
peak-to-peak range of ECa values is approximately 4 times higher than that obtained
with dynamic correction. Furthermore, the RMSE1 value increases significantly to
1.94 mSm-1K-1 when the LPF is not employed, compared to a significantly lower value
of 0.42 mSm-1K-1 obtained with dynamic correction. This lower RMSE1 value ob-
tained with the LPF indicates that the predicted ECa values of the phase drift model
(section 4.1.3) are closer to the actual ECa values measured.

This highlights the critical role played by the LPF in minimizing the impact of tem-
perature drift on measurement accuracy. The results of this analysis underscore that
without the LPF, the static correction method is insufficient for achieving the level
of advanced accuracy necessary. On the other hand, the dynamic approach with
LPF implementation can successfully capture and correct for temperature-induced
hysteresis effects, providing significantly more precise measurements with minimal
error.
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Figure 4.8.: (a) Plot of static drift correction (without LPF) and (b) Plot of dynamic
drift correction (utilizing LPF). ECa values were shifted to have a zero
mean.
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4.2.4. Effect of Soil Conductivity Changes on the Calibration

To explore the potential impact of changes in soil properties due to temperature vari-
ations on the calibration of the measuring instrument, a two-layer model was utilised
(shown in Figure 2.4). The first layer, which had a thickness of 0.70 m (section 4.1.6),
was assumed to be composed of air and was assigned a conductivity of 0 mSm-1. The
second layer was considered to be a homogeneous soil layer of infinite thickness. To
model the sensitivity of the measurement system, the cumulative response function
(CRF) presented by McNeill [41] was used. Through this analysis, it was observed
that a 1 mSm-1 increase in the electrical conductivity of the soil in the first few meters
resulted in a 0.37 mSm-1 increase in the measured ECa for the VCP configuration
with an intercoil spacing of 1.20 m at a height of 0.70 m.

Assuming now that the soil conductivity changes by approximately 2 % per K, as
reported by Corwin and Lesch [48], it can be inferred that the expected drift in ECa
due to changes in soil temperature is approximately 0.74 % per K. However, it is
important to note that this value represents a worst-case scenario since the soil does
not heat up immediately. Assuming that the soil has a typical electrical conductivity
of 10 mSm-1 and taking into consideration that the relative change in ECa due to
soil temperature is less than 0.74 % per K (i.e. 0.37 mSm-1 x 0.02 K-1 x 100) of the
soil EC, it can be concluded that the expected worst-case change in ECa due to soil
temperature is around 0.07 mSm-1K-1. This value is much smaller than the system
drift of 2.27 mSm-1K-1, indicating that changes in soil electrical conductivity during
calibration measurements will have a negligible effect.

Therefore, for an intercoil spacing of 1.2 m, it can be concluded that the effect of
changes in soil electrical conductivity due to temperature during calibration measure-
ments will not significantly impact the accuracy of the calibration measurements, and
thus, can be disregarded. As the intercoil spacing decreases, the impact of soil on the
accuracy of the measurements also decreases. For instance, if the intercoil spacing is
reduced to 0.4 m, it is estimated that the expected change in ECa due to soil temper-
ature changes would be only around 0.003 mSm-1K-1, while the expected system drift
would be approximately 20.4 mSm-1K-1, assuming that the measured phase values of
the system drifts are independent of the intercoil spacing.

On the other hand, when the intercoil spacing is increased, the effect of soil on the
accuracy of the measurements becomes more significant. For example, at an intercoil
spacing of 6 m, the anticipated ECa change due to soil temperature variation would
be approximately 0.015 mSm-1K-1, while the expected system drift would only be
around 0.09 mSm-1K-1. This is because as the intercoil spacing is increased, the sens-
ing depth also increases, making the system more sensitive to the electrical properties
of the underlying soil. However, it should be noted that these estimates represent
worst-case scenarios, as they assume that the temperature of the soil changes uni-
formly throughout the entire sensing volume. In reality, only the temperature of the
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topsoil changes, which could lead to more localised and less significant changes in the
electrical properties of the soil.

In summary for this part of the thesis report, a new technique has been introduced
for correcting drifts in EMI measurements that are temperature dependent and takes
into account the response of system components to varying external ambient tem-
peratures. This technique involves using a low pass filter (LPF) model to replicate
the dynamic characteristics of the measured drifts. The parameters that control the
model are the time constant (τ) from the LPF, the gain (G), and the non-linear
variable (NL) of the LuT, as well as the system phase offset (Φoffset). To validate
the effectiveness of the correction method, a customised EMI instrument was used to
measure the apparent electrical conductivity (ECa) and local internal temperature at
10 locations simultaneously. The instrument was positioned at a height of 0.70 meters
above the ground. The EMI measurement system used in the study was optimised
for low drift, but did not have internal drift correction circuitry.

In this study, a total of 16 measurements was conducted, each lasting 30 hours, which
were then evaluated. The results showed that the mean drift was approximately
2.27 mSm-1K-1, with a standard deviation of 30 µSm-1K-1 across the different mea-
surements. These drift values could significantly affect the accuracy of the measure-
ments, especially when taken at varying outdoor temperatures. To mitigate this issue,
commercial EMI systems typically include internal correction circuits or additional
correction tables. Without such corrections, the measurements would be considered
inaccurate and unreliable. The findings presented here suggest that despite some
drifts in the data, they remain stable with only a 30 µSm-1K-1 variation, and can be
largely corrected using the proposed correction method. After applying the correction
method to the 16 calibration datasets with the mean value of all calibration param-
eters, the mean root mean square error (RMSE) of all datasets is only 0.48 mSm-1K-1.

This correction method improves the observed ECa values by a factor of 30 when
compared to raw observed data. The study also found that the dominant drift source
exhibited a delayed response of approximately 18 minutes to internal temperature
changes. Taking this delay into account proved to be crucial, as comparison with
static modeling and correction resulted in a higher RMSE value, with a mean of 1.94
mSm-1K-1. These results demonstrate the effectiveness of the proposed dynamic cor-
rection method and emphasise the importance of considering time-delay effects when
modeling and correcting ECa data.
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In the previous chapter, the impact of temperature drift on EMI measurements was
explored, and a new correction method was proposed. However, this method was de-
veloped under the assumption that the temperature distribution in the measurement
device is uniform. In real-world scenarios, the temperature distribution may not be
uniform, especially if the instrument is partially shaded. Therefore, it is necessary to
investigate further advanced approaches.

This chapter presents an improved temperature drift correction method that miti-
gates drift effects due to non-uniform temperature distributions. The chapter begins
by introducing a modified EMI measurement instrument and providing a detailed de-
scription of its features. The new correction method is then presented, which utilises
two low-pass filters (LPFs) to model the system delays caused by non-uniform tem-
peratures. These delays are then applied for drift correction.

The proposed correction method is expected to be more effective in scenarios where
the temperature distribution is not uniform. By using two LPFs to model the system
delays, the method is able to correct for temperature drifts caused by both uniform
and non-uniform temperature distributions. Overall, the new correction method is ex-
pected to provide more accurate and reliable EMI measurements under more complex
conditions.

5.1. Materials and Method

5.1.1. Measurement System
The system depicted in Figure 5.1 uses a modified version of a measurement system
that has been previously developed and explained by Mester et al. [65] and described
in detail by Tan et al. [82] as well as Tazifor et al. [104] and Tazifor et al. [105]. The
measurement system is comprised of a generator unit (Gen) that supplies the Tx with
AC current at a frequency of 10 kHz, a transmitter coil (Tx), and three receiver coils
(Rx1, Rx2 and Rx3), which are spaced at a distance (x) of 0.4 m between each coil.
Additionally, the data acquisition unit (DAQ) contains various components including
a 24-bit analog-to-digital converter (ADC), a microcontroller (µC) used to control the
hardware, an integrated computer (IC) containing the measurement software based on

53



5. Non-uniform Temperature Drift Correction

MATLAB and 9 temperature sensors distributed throughout the measurement device.

These parts are all enclosed within a polyvinyl chloride pipe (PVC). Specifically,
temperature sensors 2 and 6 monitor the PVC temperature, while sensors 3, 4, and
5 measure the air temperature. Sensor 7 records the heat sink temperature, sensor 8
measures the temperature of the transmitter coil, and sensor 9 records the tempera-
ture of the printed circuit board (PCB) of the transmitter coil. Temperature sensor 1
was defective and therefore excluded from analysis. The system is powered by a 12 V
battery and has a length of 243 cm and a width of 16 cm. In this study, the analysis
is centered on Rx3, which is situated 1.2 m away from the Tx. An external personal
computer operates the entire set-up using wireless local area network (WLAN).

Figure 5.1.: (a) Photo of the modified custom EMI instrument; (b) Simplified
schematic representation of the measurement system.

The measurement system described in this study was utilised to conduct 21 calibration
measurements at different locations within the Research Center Jülich (Forschungszen-
trum Jülich GmbH), Germany. The primary objective of developing this system was
to explore modular and scalable system concepts and to examine the effects of in-
terference such as system drifts. The measurements were taken during the summer
periods of 2021 and 2022, during which the temperature ranges and variations varied.
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The temperature sensors embedded in the measurement system recorded tempera-
tures ranging from approximately 10°C to 50°C during the calibration measurements.

To minimise soil effects, the measurement device was also raised 0.7 m above the
ground using wooden supports, and data was collected in the VCP configuration. In
a previous study by Tazifor et al. [104] (chapter 4), it was demonstrated that for a
measurement taken at a height of 0.7 m and an inter-coil spacing of 1.2 m, the ex-
pected ECa change due to soil temperature changes is approximately 0.07 mSm-1K-1

(worst-case). This value is relatively low compared to the expected system drift,
which is greater than 1 mSm-1K. Therefore, to perform an effective temperature drift
analysis, only temperature data with a range of at least 10 K were considered. As a
result of this criterion, only 15 datasets were ultimately used in the study. Addition-
ally, only measured data collected after a warm-up time of 2 hours were considered
to ensure the accuracy of the measurements.

5.1.2. Drift Correction Model
A model for phase drift is presented in Figure 5.2, wherein pre-selected measured tem-
peratures denoted as Tms are utilised as inputs and used to model the temperature
dependent dynamic characteristics of the measurement system using two low-pass
filters (LPF1 and LPF2) respectively. The LPFs are used to estimate the delayed
response of the local internal temperature of the system components to external am-
bient temperature variations.

The LPF generates the modelled temperatures Tmod1 and Tmod2 as outputs. To facil-
itate the conversion of modelled temperature information into modelled phase values
Φmod1 and Φmod2 respectively, a look-up table (LuT) with cubic spline interpolation
is used (section 3.4). The combination of the two LPFs and the LuT constitute the
complete phase drift model, which is described in more detail subsequently.

The calibration parameters that control the phase drift model are the time constant
(τ) from the LPF, the gain (G), and the non-linear variable (NL) of the LuT, as well
as the system phase offset (Φoffset). The offset (Φoffset) is not determined in this
work, rather it can be determined after drift correction based on a method proposed
by Tan et al. [106]. Their method simultaneously determines calibration parameters
including multiplicative and additive factors for different coil configuration, as well as
an inverted 1D horizontally layered subsurface model consisting of electrical conduc-
tivity values and the corresponding thicknesses for each layer.

Other methods for offset calibration have also been implemented by von Hebel et
al. [107] who used electrical resistivity tomography with Dipole-Dipole and Schlum-
berger electrode arrays and vertical electrical soundings. All three methods obtained
robust calibration results. The drift model is based on the infinite impulse response
(IIR) filter function described in detail by Tazifor et al. [104] and Tazifor et al. [105]
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(section 3.3). The inputs for the drift model are pre-selected measured temperatures
Tms, which are transformed in a delayed response Tmod using the time constant pa-
rameter τ and the Tmod of the previous time step (Equation 3.17. Here, the filter
coefficients a1, b0 and b1 are also determined using Equations 3.15 and 3.16 respec-
tively.

The LuT has a temperature range from 0°C to 50°C, which is determined based
on the measured temperature range. To construct the LuT, three reference tempera-
ture points are established, namely Trefmin

= 0.0°C, Trefmid
= 25.0°C, and Trefmax =

50.0°C as described in section 3.4. These reference points serve as the basis for deter-
mining the corresponding reference phases, denoted as Φrefmin

, Φrefmid
, and Φrefmax ,

respectively, using the parameters G and NL.

Figure 5.2.: Representation of the phase drift model for temperature drift correction.

By using the LuT and cubic spline interpolation, the modelled temperatures Tmod1
and Tmod2 for the 2 LPFs are converted into modelled phases Φmod1 and Φmod2 respec-
tively (chapter 3). The corrected phase Φc was then calculated from Φmod1 and Φmod2
as

Φc = Φms −Φmod1 −Φmod2. (5.1)

and can be converted to ECa values using the approximation in Equation 2.5.

5.1.3. Selection of Temperature Sensors
Determining the optimal placement of temperature sensors on an EMI device can be
a challenging task. This is because different components within the device will react
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to external ambient temperature changes with different delays. As such, there is a
question of whether the sensors should be placed on components with large thermal
capacities, such as coils, which react slowly to temperature changes, or simply in the
air, which reacts more quickly. To address this issue in our specific case, it is assumed
that the components that are susceptible to drift are located in two regions of the
EMI device, notably, the Tx coil and Rx coil regions, with an inter-coil spacing of 1.2
m where the entire electronics are located for this coil spacing.

In the Rx region, two sensors are used to measure the air and PVC temperatures
(sensors 3 and 2, respectively). These measurements are then compared to determine
which sensor is better suited for drift correction. Similarly, in the Tx region, four sen-
sors are used to measure the PVC, heat-sink, Tx coil, and PCB temperatures (sensors
6, 7, 8, and 9, respectively). These measurements are then compared to determine
which sensor is better suited for drift correction. Suitable sensors for drift correction
were identified by modeling the delayed responses of all 8 measured temperature time
series. To achieve this, the first part of the drift correction model in Figure 5.2 is used
(excluding the G and NL calibration parameters), which consists solely of low-pass
filters (LPFs).

The primary aim of this analysis is to determine whether temperatures that respond
quickly can be used to model temperatures with delayed responses, and thus, replace
them. Furthermore, this approach is also used to evaluate the ability of the LPFs
to accurately model the system component delays. To facilitate comparison between
modeled and measured temperatures and to simplify analysis, the root mean square
error (RMSE) of the difference between the modeled and measured temperatures is
calculated for each combination of the two after fitting the optimal value for the time
constant (τ). The RMSE values obtained will help provide valuable insights into
the effectiveness of the LPFs in modeling system component delays and identifying
suitable sensors for drift correction.

5.1.4. Assessment of Spatial Temperature Variation
To evaluate whether temperature drift correction with two LPFs allows to correct for
fast non-uniform temperature variations, it is of interest to determine the tempera-
ture distribution within the measurement device. Here the 2 regions described in the
previous section are considered, where the drifts are expected to occur. In the first
case, the 2 regions of interest (Tx and Rx regions) could have similar temperature
variations. With reference to Tazifor et al. [104] (chapter 4), it is assumed that a
model with only one LPF will suffice to correct the drift effects.

In a second case, the temperature time series in the 2 regions may have different
temperature variations. Here a model with two LPFs will be required to correct the
drifts. Therefore to have a better understanding of the effect of uneven temperature
variation on the drifts, two types were identified, notably, uniform temperature varia-
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tion (UTV) and non-uniform temperature variation (NUTV). UTV describes the case
where there is only one dominant temperature component which describes most of
the variability in the temperature data measured.

In the case of NUTV, there are multiple significant temperature components that
contribute to the variability of measured temperature data which must all be con-
sidered for drift modelling and correction. As an universal quantitative method to
differentiate UTV and NUTV datasets with temperatures of two or more relevant
regions, the principal component analysis (PCA) of the measured temperature data
was used (section 3.5). After calculation of the eigenvalues from PCA, they were
normalised with the sum of all eigenvalues. These normalised eigenvalues (Eval,N)
facilitate the comparison of different temperature time series with respect to their
homogeneity.

The more uniform the temperature variation in a dataset, the closer the magnitude
of the first normalised eigenvalue Eval,1N is to 1. Here, a threshold value denoted
Vth was used to differentiate between UTV and NUTV datasets. All temperature
datasets with Eval,1N greater than or equal to Vth were considered UTV data and
all datasets with Eval,1N less than Vth were considered NUTV datasets. It is worth
noting that in the case of UTV data, it is also possible that a model with two LPFs
may be better to correct temperature drift effects. This is the case where there are
electronic components which contributes to drift effects with different reaction times
to temperature changes. In contrast to the phase drift model proposed by Tazifor et
al. [104] (section 4.1.3), it may be useful to use a model with more than one LPF
with the same input temperature.

5.1.5. Determination of the Representative Calibration
Parameters

To estimate the calibration parameters m=(τ1, G1, NL1, τ2, G2, NL2) for the two
LPFs, the misfit between the measured phase Φms and the modelled phase Φmod was
calculated using the objective function

RMSE =
√
∣∣Φc −mean(Φc)∣∣2 (5.2)

based on the L2-norm. Here, the objective function RMSE is used for optimisa-
tion without the offset (mean value). It should be noted that the drift model is not
limited to only two LPFs but can be adapted to 3 or more as per requirement. In this
case, 3 more parameters are added for every additional LPF. Initial tests with local
search algorithms showed that the optimisation results were affected by local minima
in the objective function, as indicated by different results for different starting values
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of the calibration parameters.

For this reason, a global optimisation method named shuffled complex evolution [93]
was used to minimise the objective function (section 3.2). In this work, the optimi-
sation search with this algorithm was stopped when the objective function value did
not improve by more than 1% in the last 20 loops.

Since a suitable set of calibration parameters should be able to correct all datasets, it
is assumed that the intrinsic drift parameters are stable over longer periods of months
or years, and do not vary with time. If this would be the case, it would be highly chal-
lenging to calibrate the system for drift. Therefore, all datasets were simultaneously
fitted. Preliminary analysis showed that the models with more than one LPF showed
strong dependencies between individual parameters. For example, it is possible to
obtain the same overall G for several combinations of G1 and G2 when using two
LPFs. It is therefore required to set adequate boundaries for the parameter space.
To obtain such boundaries, the range of τ1, G1, τ2, G2 were determined for a linear
version of the drift model by removing the NL term (i.e. setting NL1 and NL2 to
1). Wide boundaries were used for the remaining parameters: 0 s ≤ τ1, τ2 ≤ 4000 s,
−e−4 radK-1 ≤ G1, G2 ≤ e−4 radK-1.

To only consider data with approximately linear behaviour, the calibration for the
initial ranges considered only a subset of the data. In particular, only data were con-
sidered in a reduced temperature range around the mean temperature with a range of
10 K. Furthermore, only NUTV datasets were used to reduce the degree of dependence
between the parameters because it is anticipated that the NUTV datasets need two
LPFs for drift modelling. The range of the respective calibration parameters across
all NUTV datasets were used to estimate new and smaller boundaries for the feasi-
ble parameter space. In the final step, the new boundaries were used to calibrate all
datasets using the non-linear drift model and the full temperature range (0°C - 50°C).

In the following, three types of calibrations were performed (named A, B and C)
to evaluate the performance of drift models with one and two LPF. In type A cali-
brations, all datasets were individually fitted with the objective function RMSE in
Equation 5.2, using temperature measurement from sensors 3 and 9 and two LPFs.
Type A calibrations are expected to provide the lowest fitting error and will serve as a
reference. In type B calibration, all datasets were simultaneously fitted with the same
temperature sensors and two LPFs. Finally, type C calibration only considered one
LPF and the mean of temperature sensors 3 and 9 to perform simultaneous fitting on
all datasets and using the initial wide boundaries for the parameter space.
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5.2. Results and Discussion
5.2.1. Selection of Temperature Sensors
The 8 temperature sensors were fitted with each other using the LPF part of the drift
model to identify the most relevant temperature sensors suitable for drift correction.
The plot in Figure 5.3 shows the RMSE value between modelled and measured tem-
peratures to identify representative temperature sensors suitable for drift correction.
The colour bar shows the RMSE between modelled and measured temperatures (in
Kelvin). An error value of 0 indicates that one sensor can perfectly replace another
temperature sensor.

It can be seen that the temperature sensors 2 and 3 in the Rx region (Figure 5.1)
result in a small RMSE (less than 0.5 K), whereby, sensor 3 models sensor 2 with
a delay τ of 336 s. Furthermore it can be seen that sensors 6, 7, 8 and 9 in the Tx
region result in a small RMSE (less than 0.45 K), whereby, sensor 9 models sensor 8
with a delay τ of 337 s. Sensor 7 is placed on the heat-sink also showed a small error
(less than 0.35 K), but was not considered because the self-heating may not always be
representative of the temperature in this region. Temperature sensor 4 in the middle
region is more similar to the sensors in the Tx region whereas the temperature sensor
5 is more similar to the Rx3 region.

Figure 5.3.: Representation of root mean square error (RMSE) between modelled and
measured temperatures.

However, there are no drift-relevant components in this middle region that have an
influence on the drift behaviour for the intercoil spacing of 1.2 m. The results show
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that slow reacting sensors placed on system components with large heat capacities
such as the Tx coil (measured by temperature sensor 8), can be modelled sufficiently
well by sensors with a fast response. On the other hand, it is difficult to model sensors
with a fast response using sensors with a slow response. Based on this analysis,
temperature sensors 3 and 9 were selected as to be representative for the Tx and Rx3
regions, respectively. These sensors are the fastest sensors which can properly model
other sensors, and can therefore be used to replace them.

5.2.2. Assessment of Spatial Temperature Variation
Principal component analysis (PCA) was applied to the time series of the selected
temperature sensors 3 and 9 and used to identify UTV and NUTV datasets. The first
eigenvalues for respective datasets were obtained after PCA. The residual eigenvalues
were evaluated by subtracting the first eigenvalues from a maximum value of one
(1 −Eval,1N). The results of plotting the residual eigenvalues for respective datasets
is depicted in Figure 5.4.

The red bars in the plot represent datasets recorded with uniform temperature distri-
butions and the blue plots represent datasets recorded with non-uniform temperature
distributions. It can be seen that 1 −Eval,1N ranges from 0.0013 to 0.03. The small-
est values are associated with measurements on cloudy days, whereas larger values
are associated with sunny days. In the latter case, there was partial shading on the
measurement device that moved with time during the calibration measurements.

Figure 5.4.: Plot of the first eigenvalue for all datasets obtained from principal com-
ponent analysis (PCA) on time series of temperature sensors 3 and 9.
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It can further be observed from the figure that there is a spring in the eigenvalues
between dataset 10 and 11. This is the boundary were a differentiation is made
between UTV and NUTV datasets. Based on this, the measurements #1 to #10
were UTV datasets, whereas measurements #11 to #15 were classified as NUTV
datasets (Figure 5.4). It should be noted that the PCA method applied here was
designed to cover more than two temperatures for future outlooks.

5.2.3. Estimation of Calibration Parameter Boundaries
In order to show the strong dependence between individual calibration parameters,
an optimisation (with calibration strategy type A) was done with the correlation test
parameter boundaries shown in Table 5.1. The results from evaluating the correlation
between the calibration parameters G1 and G2 for dataset #10 shows a lot of possible
solutions (parameter combinations) where the error is less than 1 mSm-1 as shown in
Figure 5.5. This is obtained from fitting dataset #10 with the initial boundaries. For
a range of −0.06 mradK-1 < G1 < 0.06 mradK-1 and 0 mradK-1 < G2 < 0.1 mradK-1,
the same minimal fitting errors were obtained. This therefore demonstrates the need
to constrain the parameters.

Figure 5.5.: Correlation between the calibration parameters G1 and G2 showing all
parameter combinations for RMSE values less than 1 mSm-1.

To determine appropriate boundaries for the calibration parameters G and τ , the
NUTV datasets were used with a reduced temperature range and a linear drift cor-
rection model using a broad feasible parameter space (Table 5.1). After fitting, the
minimum and maximum values of G1, G2, τ1, τ2 were determined and used as the
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Table 5.1.: Boundary for the time constant (τ) and gain (G) calibration parameters
before and after fitting

Parameters Bounds G1 G2 τ1 τ2 NL1 NL2

(mradK-1) (mradK-1) (s) (s)
Correlation Test Lower -0.1 -0.1 0 0 0 0

Upper 0.1 0.1 4000 4000 2.5 2.5
Initial Lower -0.1 -0.1 0 0 1 1

Upper 0.1 0.1 4000 4000 1 1
Constrained Lower -0.06 0.05 0 500 0 0

Upper -0.005 0.1 1000 4500 2.5 2.5

new boundaries of the feasible parameter space for the final calibration (Table 5.1).
It was found that G1 is always negative and G2 is always positive, with an overall
sum of 0.033 mradK-1.

5.2.4. Determination of the Representative Calibration
Parameters

The reduced feasible parameter space was used to compare the calibration results for
calibration strategies A, B and C. The time series variation of measured and modelled
ECa for calibration strategy type A as well as the corrected ECa values estimated for
the three calibration strategies are depicted in Figure 5.6 and Figure 5.7 respectively.
To focus on the changes in ECa rather than absolute values, the ECa values shown
in Figure 5.6 were shifted to have a zero mean. The plot in Figure 5.7 shows the root
mean square errors (RMSE) from fitting with temperature sensors 3 and 9 using
calibration strategy types A-C (black, red and blue bars, respectively).

The black bars show the results of drift correction with calibration parameters ob-
tained from fitting individual measurements. The red bars show the correction with
the calibration parameters obtained from simultaneously fitting all datasets. The
blue bars are the correction results with parameters obtained from simultaneous fit-
ting with one LPF and the mean of temperature sensors 3 and 9. The first 10 datasets
on the plot are UTV datasets and the remaining 5 are NUTV datasets. The results
for calibration strategy A where all parameters were calibrated individually for each
dataset show that this strategy provides the best calibration results. The resulting
mean RMSE over all datasets is 0.46 mSm-1.

However, the resulting fitted parameters may not be representative of the entire sys-
tem drifts because each dataset typically covers a limited temperature range. There
is thus a risk that this calibration strategy results in overfitting of the data by ac-
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counting for specific pecularities in each dataset. The results for calibration strategy
B which involves simultaneous data fitting with two LPFs showed an overall increase
in RMSE values compared to type A.

The outcome of calibration strategy B gave a representative parameter set with a
mean error of 0.8 mSm-1 over all datasets. The results show that strategy B corrects
UTV and NUTV datasets with similar accuracy (Figure 5.7). The results for cali-
bration strategy C which involves simultaneous data fitting using only a single LPF
gave a mean error of 2.4 mSm-1. This shows that the drift correction with one LPF
provides a lower accuracy in comparison with two. This is particularly visible in the
last 3 NUTV datasets (13, 14, 15) where the RMSE values are larger than 4 mSm-1

(Figure 5.7) when a single LPF is used.

With regard to the UTV datasets, fitting with one LPF offers less accurate results
than expected with a mean error of 1.8 mSm-1. This is also less accurate in comparison
to the results in Tazifor et al. [104] (chapter 4) where the mean error is 0.49 mSm-1.
This is because the 1−Eval,1N values from the first part of this work in chapter 4 are
mostly less than 0.0028 across all measurements, which is extremely small in relation
to the more complicated datasets in this part. The calibration parameters obtained
from the less obvious calibration strategy type B and type C are shown in Table 5.2
(Calibration strategy type A is not shown as it will obviously always offer the best
result by default since the parameters obtained from individual measurements are
used to correct the same measurements).

It can be seen from the table that when the optimisation is done with calibration
strategy type B involving two LPFs, two different gains are obtained, one being neg-
ative and the other positive. This implies that the system gains (G1 and G2) partly
compensate each other, but only if the times constants (τ1 and τ2) are equal. However,
the table shows different time constants, where LPF1 has no delay with a correspond-
ing time constant τ1 of 0.002 s and LPF2, has a time constant τ2 of 1033 s.
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Figure 5.6.: Time series of measured apparent electrical conductivity (ECams) and
modelled apparent electrical conductivity (ECamod) for 15 datasets. ECa
values were shifted to have a zero mean.

Furthermore it can be seen the LPF1 has a strong non-linearity NL with a value of
0.29 whereas the second LPF is linear with a value of 1.02. This shows that it is
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important to consider this different gains and time constants when fast temperature
changes or non-uniform temperature changes occur. Also, the system’s non-linearities
must be considered.

Figure 5.7.: Root mean square errors (RMSE) from fitting with temperature sensors
3 and 9 using calibration strategy types A-C.

For calibration strategy type C, the gain is around the sum of the G1 and G2 of
calibration type B and NL is 1.48 and the time constant for type C is greater than
those in type B. The differences in parameter values between type B and C are
likely explained by the fact that the datasets with the large non-uniform temperature
distributions can not be properly fitted by calibration type C. The corresponding
gains as ECa values for type B were G1 = −0.804 mSm-1K-1, G2 = 2.159 mSm-1K-1 and
for type C was G1 = 1.7 mSm-1K-1.
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Table 5.2.: Calibration parameters obtained with calibration strategy B and C.
Calibration Strategy G1 G2 τ1 τ2 NL1 NL2

(mradK-1) (mradK-1) (s) (s)
Type B -0.022 0.061 0.002 1033 0.291 1.02
Type C 0.048 - 2057 - 1.48 -

Figure 5.8.: Modelled apparent electrical conductivity and measured apparent elec-
trical conductivity versus the mean of temperatures 3 and 9 for type A.
ECa values were shifted to have a zero mean.
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Other approaches for temperature drift mitigation rely on the typical static correc-
tion methods (without a LPF) where only look-up tables are used to establish unique
relationships between temperature and phase. In comparison to these methods, the
results in Table 5.2 show a higher fitting accuracy when LPFs are considered, as also
confirmed by Tazifor et al. [104] (chapter 4).

In addition to the total error after data correction, the individual measured and
modeled data are compared in Figure 5.8, 5.9 and 5.10 for calibration strategies A,
B and C, respectively. All ECa values are mean-centered and represented as ECa
changes. It is evident that calibration strategy A and B results in accurate fits of the
drift model to the measured ECa for datasets with both uniform and non-uniform
spatial temperature variations. The hysteresis loops in the relationship between mea-
sured ECa values and temperature, which were also reported by Huang et al. [78]
and Tazifor et al. [104], are a result of the dynamic heating and cooling history of
the system components. They were accurately reproduced by the drift model.

The results obtained from calibration strategy C with only one one LPF are shown
in Figure 5.10. By comparing the ECamod values with the ECams values, it can be
seen that the hysteresis effects were best modelled for data set 6, and that the results
are worst for datasets 13, 14 and 15, which are the most complicated NUTV datasets
with strong partial shading effects. It is seen clearly here that a drift model with only
one LPF can only fit some of the measured data. Overall, the results show that it
is possible to correct drift effects resulting from the occurrence of non-uniform tem-
perature variations in measurement systems during EMI data acquisition when two
LPFs and two drift-sensitive temperatures are used.
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Figure 5.9.: Modelled apparent electrical conductivity and measured apparent elec-
trical conductivity versus the mean of temperatures 3 and 9 for type B.
ECa values were shifted to have a zero mean.

In summary advanced dynamic drift correction method was presented that uses
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2 low-pass filters (LPF) to model the transient response of electromagnetic induc-
tion (EMI) instruments to non-uniform temperature variations. The parameters that
control the model are the time constant (τ) from the LPF, the gain (G), and the
non-linear variable (NL) of the LuT, as well as the system phase offset (Φoffset). In
this study, an EMI instrument was used to perform 15 measurements on different
days and at different locations. 8 temperature sensors spread across the device si-
multaneously measured the ambient internal temperature varying between 10 °C −
50 °C. To develop a drift correction method, it is necessary to place the temperature
sensors in the best positions where sources of drift are expected.

The problem here is that the system components have different thermal delays to
external ambient temperature change, which leads to the question if localised tem-
perature sensors are required to correct the drifts that arise. This study showed that
the fastest reacting sensors can nicely model the thermal delays of the system compo-
nents with slower reaction times. It is therefore sufficient to place the sensors in air or
on other fast reacting components like the PCB where the drifting electronic compo-
nents are assumed to be. For the EMI system used here, there are two drift-sensitive
regions, notably, the transmitter region and the receiver region for an inter-coil spac-
ing of 1.2 m. For these two regions, the temperature sensors 3 and 9 with a quick
response were selected.

For a drift model with two or more LPFs, it is difficult to determine calibration pa-
rameters through fitting because they are strongly correlated with each other. This
creates on the one hand the need for an optimisation method that searches the global
minimum. To address this, the shuffled complex evolution (SCE-UA) method was
used to estimate optimal calibration parameters. On the other hand, the parameter
boundaries must be selected carefully since narrow boundaries may lead to a sub-
optimum solution and too wide boundaries may lead to convergence problems and a
very large computation time. To address this, an initial optimisation run was per-
formed by individually fitting each dataset in a linear region. Based on these initial
runs, relatively narrow boundaries were derived.

Using these constrained boundaries, the correction with parameters from simulta-
neously fitting all datasets offered satisfactory results with a mean RMSE of 0.8
mSm-1 across all datasets, showing that the parameters obtained are characteristic
for the system drifts and that the system can be temperature-calibrated. The final
calibrated parameters were G1 = −0.804 mSm-1K-1, G2 = 2.159 mSm-1K-1, τ1 = 0 s and
τ2 = 1030 s, NL1 = 0.291, NL2 = 1.02. Here, it should be noted that both positive and
negative gains were obtained, which is particularly problematic for drift correction.
For slow uniform temperature changes, the gains compensate each other.
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Figure 5.10.: Modelled apparent electrical conductivity and measured apparent elec-
trical conductivity versus the mean of temperatures 3 and 9 for type C.
ECa values were shifted to have a zero mean.

However, for fast temperature changes and different time constants, or for non-uniform
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temperature changes, the presence of both positive and negative gains results in large
drift errors if the two different gains are not considered. This implies that it is very
important to estimate these gains. The strong non-linearity of NL1 shows that a linear
model is not sufficient for drift correction, which leads to an increase of dependency
between the calibration parameters, so that for each LPF, the NL parameter must
also be considered and fitted. The correction with calibration parameters obtained
from using only one LPF by simultaneously fitting all datasets showed that the drift
correction was generally less accurate than for the case where two LPFs were used.
Due to the non-uniformity of the temperature distribution in the device, the drift
model needs more than one temperature sensor for the correction.
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The use of EMI systems has become increasingly popular in subsurface electrical con-
ductivity surveys in recent decades. However, studies in the literature have shown
that acquiring error-free data using these systems can be challenging. This thesis
aims to improve the performance of EMI systems and provide stable and quantitative
data for geophysical subsurface investigations. To achieve this goal, two approaches
were taken.

The first approach involved investigating the effect of external ambient temperature
variations on the internal temperature of the measurement device. It was assumed
that a uniform temperature distribution scenario existed. The aim was to understand
the impact of these variations on the EMI system’s performance and investigate ap-
proaches to correct the corresponding drifts. For this, temperature information from
10 sensors spread across 10 locations on the device were used.

The second approach aimed to extend the proposed method to real-life scenarios
where the measurement device may have non-uniform internal temperature distribu-
tions due to partial shading. The goal of these investigations was two folds: firstly
to improve the accuracy of the EMI system’s measurements by developing correction
methods for the non-uniform internal temperature distribution scenario and secondly
to better understand drift effects by determine the fastest temperature sensors in
order to know what the best location to place the temperature sensors is. Detailed
investigations were carried out, including theoretical analyses, developments of drift
correction and calibration methods, and corresponding synthetic model simulations.

6.1. Uniform Temperature Distributions
The results presented in this part demonstrated that the novel model-based dynamic
drift correction method using LPF is significantly more accurate than static correc-
tion, providing up to four times higher accuracy in drift correction. This approach
has proven to be reliable in mitigating temperature drift effects in EMI data, even
when there are rapid temperature changes occurring during typical field measure-
ments. Furthermore, the model-based calibration method presented in this part of
the study no longer necessitates stable temperature levels, as is the norm for calibra-
tion in thermostatically controlled rooms. This makes the calibration process more
practical and efficient in field settings, where it can be challenging to maintain stable
temperature conditions.
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The new correction method requires minimal effort to implement. For calibration,
outdoor measurements with sufficient temperature time series ranges are more than
enough. Commercial EMI systems can benefit from this novel correction method with
the help of manufacturers. In this case, the correction method can be easily applied
by installing temperature sensors on the instruments and using the dynamic correc-
tion method to improve the accuracy of temperature related drift correction in EMI
systems compared to standard static correction. This correction method is relevant
in several agricultural settings that require near surface ECa measurements.

6.2. Non-uniform Temperature Distributions

In this part of the thesis, it could be shown for data with extreme non-uniform tem-
perature variations that the ECa error after drift correction with one LPF was very
large ( 4.5 mSm-1). This situation typically arises when partial shading is experienced
during measurements. In order to recognize these situations, it is useful to evaluate
the uniformity of temperature variation with principal component analysis (PCA).
It is of course also possible that at least two dominant temperature components are
present in the system with different time constants τ and non-linearities NL, which
can not be modelled with only one LPF.

In summary, the dynamic drift correction model with two LPFs provides a reliable
solution for removing the effects of temperature related drifts in a wide range of appli-
cations involving near-surface EMI systems. This dynamic correction approach can
be subsequently extended to commercial devices by integrating the required temper-
ature sensors, since air temperature sensors are sufficient for the proposed correction
method. These sensors can be easily integrated through holes on the devices’ surface.
In view of our modular and scalable EMI system under development, only air tem-
perature sensors will be considered for the development.

A simple method to calibrate the EMI devices is to perform outdoor measurements.
The drift of individual electrical components can be measured in temperature cham-
bers by manufacturers. This however does not hold true for the coils and for the entire
system since such measurements need a metal-free and low noise environment. Typi-
cally, laboratories are not adequate for this. Contrary to the measurement of the drift
of single components, the proposed approach is intended to consider the device as an
integral drifting system. By incorporating temperature sensors into the instruments
and using the new drift correction technique, it is possible to enhance the precision of
temperature related drift correction in EMI systems beyond the level achievable with
traditionally used correction techniques. The new method has potential applications
in various agricultural scenarios where accurate near-surface ECa measurements are
required.
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6.3. Outlook
The thesis began with the identification of various major objectives, which were suc-
cessfully achieved. However, there were limitations encountered during the course of
the research. Hence, this section presents potential future directions for further devel-
opment. One of the significant accomplishments of this study was the dynamic drift
correction approach presented. This approach paves the way for the construction of
a novel EMI system that can provide quantitative ECa measurements by correcting
for temperature variations.

Chapter 4 of the thesis explains the drift model, which involved using several tem-
perature sensors placed randomly on various components. Chapter 5 highlights the
reduction of sensors by identifying the best drift-sensitive locations. In future mod-
ular EMI systems, it is crucial to apply this methodology by placing sensors at the
identified sender and receiver regions in each module to improve the system’s drift
performance.

In addition, using two temperature sensors to separately monitor the transmitter
and receiver regions provides a more flexible EMI system compared to the conven-
tional rigid-boom EMI system. The use of modular tubes in this system increases
transportation efficiency but also creates different thermal conditions that can be
monitored. Considering the accuracy of drift correction achieved with the custom
rigid-boom EMI system, the application of this novel method to modular EMI systems
has significant potential for quantitative geophysical and agricultural applications. To
improve the accuracy and reliability of the modular EMI system, further research is
required, particularly in real-world scenarios like the towing behind tractors for fast
mapping. It is essential to test this new correction method on such modular systems.
Addressing these limitations will allow the creation of an EMI system that can provide
reliable data for subsurface investigations.
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A. Overview of the Maxwell’s
Equations

The phenomenon of electromagnetic induction follows the principles outlined in Maxwell’s
equations [109], which provide a comprehensive framework for understanding the gen-
eration of electric and magnetic fields through charges, currents, and variations in the
fields themselves. In the time domain, the differential form of these equations can be
expressed as follows [110]:

∇ ⋅D = q Gauss′ law for electric fields (A.1)

∇ ⋅B = 0 Gauss′ law for magnetic fields (A.2)

∇×E = −∂B

∂t
Faraday′s law (A.3)

∇×H = J + ∂D

∂t
Ampère −Maxwell′s law (A.4)

where D represents the dielectric displacement, which is measured in units of Coulombs
per square meter (Cm-2), B stands for the magnetic flux density, also known as mag-
netic induction, and is measured in Tesla (T), E represents the electric field intensity
and is measured in volts per meter (Vm-1), H denotes the magnetic field intensity and
is measured in Amperes per meter (Am-1), J represents the electric current density,
measured in Amperes per square meter (Am-2) and q represents the electric charge
density, measured in Coulombs per cubic meter (Cm-3). The divergence and curl
operators are denoted by ∇⋅ and ∇×, respectively. The dielectric displacement D, the
magnetic flux density B and the electric current density J can be described by the
following constitutive laws:
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A. Overview of the Maxwell’s Equations

D = ϵE (A.5)

B = µH (A.6)

J = σE (A.7)

where ϵ corresponds to the dielectric permittivity, measured in farads per meter
(Fm-1), µ represents the magnetic permeability, measured in henries per meter (Hm-1)
and σ represents the electric conductivity, measured in siemens per meter (Sm-1).
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B. Static and Dynamic Drift
Correction

One of the key challenges in using these meters is dealing with the non-linear re-
lationship between temperature and phase, which can have a significant impact on
measurement accuracy. To address this challenge, researchers have developed mod-
eling techniques to capture the non-linear behavior of these meters. One popular
approach involves using lookup tables, which provide a static way to represent the
non-linear relationship between variables without the need for complex equations.

This is because lookup tables allow for fine-grained control of gradients and inter-
polating coefficients, which can be adjusted to optimize system modeling. In order
to implement a lookup table, it is necessary to determine the control points that de-
fine the non-linear relationship between temperature and phase [108]. This can be
achieved using a gradient-based algorithm, which allows for the efficient and accurate
determination of control points.

Once the control points have been determined, they can be used to create a lookup
table that represents the non-linear behavior of the electromagnetic induction soil con-
ductivity meter. The diagram in Figure 4.4 shows the optimisation model whereby
only the red path involving the look-up table is used. The parameters that control the
model are the gain G and non-linear term NL of the look-up table and the system off-
set. G and NL are obtained using cubic spline interpolation as discussed in section 3.4.

The objective function defined in Equation 4.5 was used to determine the param-
eters that minimize the model by evaluating the root mean square error, RMSE. The
Nelder-Mead optimisation method was used and the model was applied to a series of
16 temperature data (Tms) measured with the set-up in Figure 4.1.

The plots in Figure B.1 show the measured ECa values over a period of 30 hours
for the 16 datasets. To focus on the changes in ECa rather than absolute values, the
ECa values were shifted to have a zero mean. It can be seen that across most datasets,
the ECa values has a peak to peak value of about ± 20 mSm-1. These measurements
were then corrected with the static drift model and the results are depicted in Figure
B.2. The ECa values shown were shifted to have a zero mean to focus on the changes
in ECa instead of the absolute values.

The optimisation results show the corrected ECa values obtained after static drift
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B. Static and Dynamic Drift Correction

correction with a look-up table. It is observed that the ECa value is usually about ±
5 mSm-1. Overall it can be seen that the correction with a static model corrects the
measured ECa by a factor of four. The 16 datasets are again fitted, this time with
the dynamic drift model with the low pass filter, LPF, (blue path) in Figure 4.1 and
using the mean temperature value.

Figure B.1.: Plot of uncorrected ECa over time for 16 datasets.
It is seen from the results in shown in Figure B.3 that the dynamic correction with
the LPF offers much improved results. To emphasize the fluctuations in ECa rather
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than the exact values, the ECa values presented were adjusted to have an average of
zero. Here the corrected ECa values generally have an ECa value of about ± 2 mSm-1

across all datasets. These results show that although the typically used look-up table
method corrects for static (present) temperature-dependent drift characteristics in
EMi devices, the dynamic model based on the LPF offers more accurate results as
this takes into account the dynamic (past and present) thermal behaviour of the
device.

Figure B.2.: Plot of corrected ECa over time for 16 datasets after static correction.
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Figure B.3.: Plot of corrected ECa over time for 16 datasets after dynamic correction.
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C. Data Optimisation and Parameter
Calculation

The 16 datasets in chapter 3 were filtered using the method described in section 5.1.4
to evaluate the the residual eigenvalues 1−Eval,1N . The plot in Figure C.1 shows that
all 16 datasets here have a residual eigenvalue less than 0.0028 which in comparison
to the 15 datasets in chapter 4 only correspond to dataset #1.

Figure C.1.: Plot of the residual eigenvalues (1−Eval,1N) for all datasets obtained from
principal component analysis (PCA).

Therefore the temperature data (#2 - 9) classified as UTV datasets in chapter 4 can be
considered in reality to have some relative degree of non-linearity in their distribution.
This was tested by applying the drift correction model with one LPF introduced in
chapter 3 to dataset #5 in Figure 5.4, using the initial calibration parameters in
Table 5.1. The results obtained from a simultaneous fit are shown in Figure C.2. In
order to place emphasis on the fluctuations of ECa rather than the absolute values,
a zero mean was applied to shift the ECa values. The corrected ECa has a value of
10 mSm-1. This indicates that the optimisation with the simplex method does not
offer satisfactory results, even for only small degrees of non-linearities in the internal
temperature distribution of the EMI system.
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C. Data Optimisation and Parameter Calculation

Figure C.2.: Corrected ECa obtained through simplex fitting with 1 LPF.

The 1 LPF drift model is again used to simultaneously fit the same data, with the SCE
optimisation this time. The results obtained in Figure C.3 shows that the corrected
ECa has a value of 8 mSm-1. This signifies that even with a global optimisation
algorithm like the SCE, it is not possible to fit the data, even with the slight non-
uniform temperature distribution present.

Figure C.3.: Corrected ECa obtained through SCE fitting with 1 LPF.
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Next it was tested to see how the 2 LPF drift model in combination with the Nelder-
Mead optimisation algorithm now perform with the same dataset. The results were
identical to those in Figure C.3 with a corrected ECa value of 10 mSm-1. This
confirms the already known fact that when the number of calibration parameters
used increases due to addition of a LPF, the Nelder-Mead optimisation gets lost in a
local minimum during the fitting run and does not find the global solution. Based on
this results, it was concluded that the SCE was the best choice and this was later on
confirmed as seen from the results discussed in chapter 4.
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