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Instrumental variables estimators typically must satisfy monotonicity conditions to be 

interpretable as capturing local average treatment effects. Building on previous research 

that suggests monotonicity is unlikely to hold in the context of school entrance age effects, 

we develop an approach for identifying the magnitude of the resulting bias. We also assess 

the impact on monotonicity bias of bandwidth selection in regression discontinuity (RD) 

designs, finding that “full sample” instrumental variables estimators may outperform RD 

in many cases. We argue that our approaches are applicable more broadly to numerous 

settings in which monotonicity is likely to fail.
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I. Introduction 

The assumption of monotonicity, which implies that an instrument weakly influences treatment 

intensity in the same direction for all members of a population, plays a vital role in the interpretability of 

instrumental variable (IV) and fuzzy regression discontinuity (RD) estimators. Despite its importance, 

few applied researchers assess whether monotonicity holds in practice; Fiorini and Stevens (2021) found 

that among 22 papers using IV or RD methods recently published in the American Economic Review, half 

did not mention monotonicity at all.  

In contrast to the lack of attention paid to monotonicity among empiricists, several recent 

methodological studies have developed approaches to detect violations of monotonicity and to analyze 

conditions under which Local Average Treatment Effects (LATEs) can be identified even in its absence. 

Dahl et al. (2023) introduce the idea of “local” monotonicity, defined over subsets of values of potential 

outcomes. They argue that under certain assumptions, a variant of a LATE can be identified even at 

potential outcome values for which compliers and defiers co-exist. De Chaisemartin (2017) discusses 

scenarios in which monotonicity is likely to fail, including when instruments are based on the widely used 

“judge fixed effects” strategy. Like Dahl et al. (2023), De Chaisemartin argues that identification of well-

defined estimands is still possible under weaker conditions than monotonicity. Similarly, Słoczyński 

(2021), Chan et al. (2022), and Frandsen et al. (2023) describe conditions in which IV estimators 

converge to interpretable estimands under weaker versions of monotonicity than that originally described 

by Imbens and Angrist (1994).  

Our paper extends this existing literature by introducing methods to detect and quantify 

monotonicity bias. We focus primarily on estimators of the effects of school entrance age on student 

outcomes such as test scores and grade retention. Barua and Lang (2016) first raised concerns about 

monotonicity in this setting, especially in the context of the quarter-of-birth instruments used by Angrist 

and Krueger (1991), and Fiorini and Stevens (2021) argue that monotonicity generally does not hold in 

the specifications commonly used in the literature. We propose a procedure to eliminate monotonicity 

bias, which is typically both statistically and economically significant in this setting. We also illustrate the 
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impacts on monotonicity bias of bandwidth choice and of the inclusion of trends in running variables in 

RD designs.  

We emphasize that the failure of monotonicity is not unique to the school entrance age setting, 

but more generally in RD designs when the running variable is measured coarsely, the treatment is 

continuous, and the relevant discontinuity in the treatment variable is of the opposite sign of the gradient 

of the treatment with respect to the running variable. When this “sawtooth” relationship between the 

treatment and the running variable emerges, monotonicity will typically fail in the absence of perfect 

compliance. To illustrate this pattern, Figure 1 shows actual and expected school entrance ages as a 

function of a running variable – the number of days between a child’s birth date and the cutoff date for 

entrance into that year’s first grade class – for a birth cohort of Israeli students, described in more detail 

below. Those who comply with the cutoff law will enter school in the current academic year if they reach 

age six on or before the cutoff date, but they must wait an additional year to start school if they turn six 

afterward. For these compliers, entrance age decreases linearly with the running variable on either side of 

the cutoff, but there is a sharp positive discontinuity at the cutoff point itself. For an example, those born 

14 days before the cutoff date begin first grade at the age represented by point C, while those born 14 

days after the cutoff date must wait until the following year, entering school at the age represented by 

point B.  

In practice, compliance with entrance age requirements is imperfect. Numerous studies have 

shown that children born just before cutoff dates are disproportionately likely to “redshirt” by delaying 

school entry until the following year.1 For these children, the corresponding entrance ages are A and B, 

respectively. Similarly, another group of non-compliers consists of those who would begin first grade in 

the academic year that they turn six, regardless of whether they are born before the entrance cutoff or not; 

for this group, the corresponding entrance ages are C and D, respectively. The sawtooth pattern in the 

 
1 Molnár (2024) documents that in Hungary, the share of children who delay entry increases from 6 percent among 
those born far from the entrance cutoff date to as high as 60 percent for those born in the month immediately before 
the cutoff. Similarly, Elder and Lubotsky (2009) and Dhuey et al. (2019) find that American children born just 
before entrance cutoff dates are disproportionately likely to delay entry. 
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figure is what drives the failure of monotonicity – moving from before the cutoff to afterward increases 

school entrance age for compliers but reduces it for both groups of non-compliers. This pattern appears in 

several other contexts, such as those involving class size caps as exogenous variation in class sizes (see, 

e.g., Figure 1 of Angrist and Lavy, 1999, and Figure 5 of Urquiola and Verhoogen, 2009), mandatory 

insurance deductibles and healthcare expenditures (Figure 2 of Remmerswaal et al., 2023), and asset size 

and corporate governance (Figure 3 of Black et al., 2006).   

In our primary application, we use administrative records from the Israeli Ministry of Education 

that allow us to separately identify biases due to both the failure of monotonicity and the potential non-

random timing of births. Because Israeli entrance cutoff dates are based on the Jewish calendar, which 

does not map one-to-one with the Gregorian calendar, each cohort of Israeli students faces a slightly 

different cutoff date in December. We leverage this variation to control for the timing of births while 

allowing for variation in birth dates relative to the cutoffs. Importantly, we describe how researchers can 

identify the magnitude of monotonicity bias even without this unusually rich data environment. In such 

cases, dichotomizing the treatment variable and rescaling the estimates eliminates monotonicity bias. 

Finally, we show that a “full-sample” IV approach can often lead to lower bias than RD designs; this 

counterintuitive finding arises because the full-sample IV approach allows for the inclusion of linear 

trends in the running variable even when it is measured coarsely, eliminating monotonicity bias. 

II. The Failure of Monotonicity in the School Entrance Age Setting 

To provide more structure on the environment described above, we consider a case in which a 

researcher has access to a student’s month of birth and wishes to estimate the effect of school entrance 

age (SEA) on an outcome Y: 

(1) ௜ܻ = ஼்ߙ + ௜ܣܧ஼்ܵߚ +  ,௜ߝ

where ߚ஼், the coefficient of interest, captures the impact of SEA on Y, the “CT” subscript denotes that 

SEA is a continuous treatment, and i indexes students. For simplicity, we abstract from other observable 

student characteristics. As numerous studies have argued (see, e.g., Bedard and Dhuey, 2006; Elder and 
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Lubotsky, 2009; Dobkin and Ferreira, 2010; Black et al., 2011; Fredriksson and Öckert, 2014; Depew and 

Eren, 2016; Cook and Kang, 2016; Landersø et al., 2017, 2020; Persson et al., 2021), SEA is likely to be 

correlated with ߝ, generating bias in OLS estimates of ߚ஼். As a result, researchers have typically used 

instrumental variables strategies based on the timing of a child’s birth relative to school entry cutoff dates. 

Defining a binary instrument Z that equals 0 if a child is born in the month before the cutoff and 1 

if born in the following month, monotonicity implies that a switch from Z = 0 to Z = 1 influences entrance 

age in weakly the same direction for all children. Below we use data from seven birth cohorts who each 

face different cutoff dates, so for illustrative purposes we assume a hypothetical cutoff date of January 1. 

Among those who comply with the entrance age requirement, those born in December are, on average, 5 

years and 8.5 months old (i.e., roughly 5.71 years old) when they enter first grade on September 1, 

assuming for simplicity that the distribution of birth dates is uniform within a month.2 Those born in 

January are, on average, 6 years and 7.5 months old (6.63 years old) when they begin first grade in the 

following academic year. 

However, as noted above, many children do not begin school as soon as they are legally eligible. 

Such redshirting behavior reflects parents’ efforts to prevent their children from being among the 

youngest students within a grade, as children near the bottom of the within-grade age distribution have 

substantially increased likelihoods of later grade repetition and of being diagnosed with socioemotional 

disorders such as ADHD (see, e.g., Elder, 2010; Evans et al., 2010; Layton et al., 2018). Among this 

group, the average entrance age is 6.71 if Z = 0 and 6.63 if Z = 1. Among those in the third group, who 

begin school in the academic year that they turn six whether they are born before the entrance cutoff or 

not, the average entrance age is 5.71 if Z = 0 and 5.63 if Z = 1. This latter phenomenon is less prevalent 

than delayed entry because public schools typically will not allow students to enter early, but sufficiently 

motivated families can circumvent entrance cutoff laws (see, e.g., Rinn et al., 2018). 

 
2 Formal schooling in Israel starts in first grade, not in kindergarten, so school entrance laws refer to entry into first 
grade. 
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Panel A of Table 1 illustrates the average entrance ages of the three groups described above, with 

the compliers shown in the upper-right cell, the redshirters in the lower-right, and those who always enter 

in the academic year they turn six in the upper-left. The lower-left cell describes a fourth group: those 

who would enter school a year late if they were born in December (at an average age of 6.71 years) but 

would instead enter a year early if they were born in January (at an average age of 5.63 years). It is 

difficult to conceive of optimizing behavior that would be consistent with this pattern, and we view it as 

sufficiently unlikely that it is ignorable. Nonetheless, even in its absence, monotonicity fails because of 

the existence of the other two groups of non-compliers. 

Although a failure of monotonicity is not necessarily problematic, such as when the returns to 

SEA are homogenous in the population, the bias in this case is potentially large. First, if there is essential 

heterogeneity (see, e.g., Heckman, Urzua, and Vytlacil, 2006), implying that those who delay entry are 

those with the highest return to doing so, then redshirters will have disproportionately high returns to SEA 

compared to compliers. This is likely to be the case, as Heckman, Urzua, and Vytlacil (2006) argue that 

essential heterogeneity is consistent with optimizing behavior in most contexts. Second, as noted above, 

up to 60 percent of children born in the month just before cutoff dates delay their entry to the following 

year, implying that the noncompliers are empirically relevant: Z is positively correlated with SEA for 

many children and negatively correlated with SEA for many other children. As a result, the failure of 

monotonicity is likely to have large impacts in the setting of school entrance age effects. 

III. Eliminating Monotonicity and Selection Biases 

We reemphasize that we are not the first to argue that monotonicity can fail in the context of 

school entrance age effects. Barua and Lang (2016) described the issue in the context of quarter-of-birth 

instruments, and Fiorini and Stevens (2021) developed tools to detect monotonicity using the SEA setting 

as a motivating example. Our contribution is to extend the logic of testing whether monotonicity holds to 

estimating the magnitude of the resulting bias and describing a procedure to eliminate it. To do so, we 

first consider a specification similar to (1), but where we use a binary version of SEA rather than SEA 
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itself. For concreteness, we define this variable as equaling 1 if SEA is greater than 6.2 years and zero 

otherwise:  

(2) ௜ܻ = ஻்ߙ + ௜ܣܧܵ)஻்1ߚ  > 6.2) +  ,௜ߝ

where we now use the “BT” subscript to denote that this model refers to a binary treatment.3 

Panel B of Table 1 illustrates why monotonicity holds here, unlike in specification (1). The 

upper-right cell again corresponds to the compliers: their ܵܣܧ௜ is less than 6.2 when they are born in 

December and greater than 6.2 when they are born in January. The redshirters in the lower-right cell 

always enter school after age 6.2, now corresponding to the traditional characterization of “always-takers” 

because the binary treatment 1(ܵܣܧ௜ > 6.2) equals 1 whether Z = 0 or Z = 1. Similarly, the children who 

always enter in the year they turn six, shown in the upper-left cell, are “never-takers” in that their 

treatment always equals 0 whether Z = 0 or Z = 1. Thus, monotonicity is only violated in this case by the 

“defiers” in the bottom-left cell. This characterization highlights why dichotomizing the treatment 

variable eliminates monotonicity bias: it produces always- and never-takers. In contrast, in the continuous 

treatment model, all children who were not compliers were defiers – no child’s value of ܵܣܧ௜ was 

invariant to the value of Z.  

The drawback of using a binary version of ܵܣܧ௜ is that ߚ஻் cannot be interpreted as the effect of 

a year of entrance age because [ܣܧܵ)ܧ௜|ܵܣܧ௜ > 6.2) െ ௜ܣܧܵ|௜ܣܧܵ)ܧ ൑ 6.2)] < 1. To scale ߚ஻் and 

 ,஼் identically, we first estimate the relationship between the continuous and the binary SEA measuresߚ

௜ܣܧܵ (3) = ଴ߜ + ௜ܣܧܵ)ଵ1ߜ > 6.2) +  ,௜ߟ 

and then calculate the adjusted ߚ஻் coefficient as ߚመ஻்/ ߜመଵ . This coefficient will have the same scale as 

 .஼் but will be free of monotonicity biasߚ

  

 
3 Figure 1 illustrates why we use a value of 6.2 in specification (2): those who always begin school in the year that 
they turn 6 have an entrance age below 6.2 (represented by the horizontal red line in the figure) regardless of where 
their birthdate falls in our estimation samples, and redshirters always enter after age 6.2. Below we use a maximum 
bandwidth of 150 days, as we exclude children born in June due to ambiguity about the cohort to which they should 
be assigned.  
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Selection Bias Due to Nonrandom Distribution of Births 

 Although estimates based on expressions (2) and (3) are free of monotonicity bias, identification 

is threatened by the possibility of births being nonrandomly distributed throughout the year. Previous 

studies have shown that in some settings, children born in December are observably different than 

children born in January, in part due to tax-based incentives (Dickert-Conlin and Chandra, 1999). More 

generally, observable characteristics of children and their parents vary systematically throughout the 

calendar year (see, e.g., Buckles and Hungerman, 2013; Dickert-Conlin and Elder, 2010; Attar and 

Cohen-Zada, 2018), so children born before the cutoff dates may also be different from those born 

afterward on unobservable dimensions.  

To this point, our discussion has used hypothetical cutoffs and data, but we make use of a unique 

setting in our empirical work below. We study Israeli children who began school before 2015, and the 

Israeli school entrance cutoffs during that period allow us to estimate the effect of SEA on outcomes while 

controlling for date of birth. Specifically, the school entry cutoff date was always on the first day of the 

fourth Jewish month of Tevet. Because the Jewish and Gregorian calendars are not identical, this date falls 

on different Gregorian calendar dates in various years, typically in December; for example, in 2022 the 

first day of Tevet was December 25, and in 2023 it was December 13 (see Attar and Cohen-Zada, 2018, 

for further discussion of the variation in cutoffs across years). As a result, we can nonparametrically 

control for unobserved characteristics of students born on different dates of the year by incorporating 

indicators ߢௗ and ߬௖ for each (Gregorian) date of birth, d, and birth cohort, c, respectively: 

(4) ௜ܻௗ௖ = ଴ߙ + ௜ௗ௖ܣܧܵ)஻்1ߚ > 6.2) + ௗߢ + ߬௖ +  .௜ௗ௖ߝ

We next show that when we include these indicators, we obtain identical estimates regardless of 

whether we use a binary treatment, as in (4), or a continuous treatment, as in 

(5) ௜ܻௗ௖ = ஼்ߙ + ௜ௗ௖ܣܧ஼்ܵߚ + ௗߢ + ߬௖ +  .௜ௗ௖ߝ

To see this equivalence, note that for a given date of birth, a student may have only two possible entrance 

ages, where one of them is greater than 6.2 and the other is below 6.2, and the difference between these 
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two entrance ages is exactly one year.4 Thus, we can write the continuous SEA as a linear function of a set 

of indicators ߟௗ for each date of birth and the binary treatment 1(ܵܣܧ௜ௗ௖ > 6.2), where the coefficient on 

the binary treatment equals one: 

௜ௗ௖ܣܧܵ (6) = ௗߟ + ௜ௗ௖ܣܧܵ)1 > 6.2). 

Substituting (6) into (5) yields  

(7) ௜ܻௗ௖ = ஼்ߙ + ௗߟ]஼்ߚ + ௜ௗ௖ܣܧܵ)1 > 6.2)] + ௗߢ + ߬௖ + ௜ௗ௖ߝ = 

           = ஼்ߙ + ௜ௗ௖ܣܧܵ)஼்1ߚ > 6.2) + ߮ௗ + ߬௖ +  ,௜ௗ௖ߝ

where ߮ௗ =   .ௗߟ஼்ߚ+ௗߢ

Comparing expressions (4) and (7) implies ߚ஼் =  ஼் is free of monotonicity bias.5ߚ ஻், so thatߚ

Moreover, both estimates are free of selection biases because the cohort and date-of-birth indicators 

control for nonrandom selection on birth dates. Specifically, unlike typical RD specifications, which rely 

on the assumption that within a narrow bandwidth, children born on different dates do not systematically 

differ on unobserved dimensions, expression (7) instead relies on the weaker assumption that such 

differences may exist but are constant across birth cohorts. We denote these unbiased estimates as כߚ. It is 

important to note that one can estimate the magnitude of monotonicity bias even without including the 

cohort and date-of-birth indicators by comparing estimates of ߚ஼் from expression (1), which incorporate 

both selection and monotonicity biases, to those of ߚ஻் / ߜଵ based on (2) and (3), which incorporate only 

selection bias. The resulting estimate of monotonicity bias is the sample analog of ߚ஼் െ  .(ଵߜ/஻்ߚ)

 
4 In our empirical results below, consistent with Table 1, we include students who enter school either “on time” or 
one year later if they are born before the cutoff date, and who enter either “on time” or one year earlier if born after 
the cutoff date; these restrictions eliminate only 1.6% of the students who enter school at ages below 5.2 and above 
7.2 years. We do so because these children, by definition, are not compliers, in that they do not enter school as soon 
as legally eligible, so they do not contribute to LATEs. Second, in the Israeli case (and we suspect in most others), 
these children are systematically unrepresentative of the population. See Section IV below for more details.  
 
5 Panel C of Table 1 further illustrates why monotonicity holds when date-of-birth indicators are included. Consider 
the lower-right cell, which again corresponds to redshirters who would enter late if they were born before the cutoff 
date and on time if born afterward. Because both circumstances correspond to the same birth date (we chose 
December 15 for illustrative purposes in the table), the child enters school at 6.71 years of age regardless of whether 
the cutoff date is before or after December 15. Similar logic holds for the “always enter before age 6” group 
represented in the upper left of the table: those children begin school at age 5.71 if they are born on December 15, 
regardless of whether that date occurred before the entrance cutoff date or afterward. 
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IV. Data and Empirical Results 

IV.1 Data Creation 

We use administrative records from the Israeli Ministry of Education, spanning 2002 to 2006 and 

covering fifth- and eighth-grade students in Jewish localities. Each record includes a child’s exact birth 

date, school entry year, gender, parental education, number of siblings, parental birthplaces, an indicator 

for whether the child was born in Israel, and indicators for whether the student attended a religious or 

secular public school.  

These administrative records were merged with data from the Growth and Effectiveness 

Measures for Schools (GEMS), a nationally administered Israeli examination for fifth- and eighth-grade 

students. This dataset includes math and Hebrew test scores and the years that the exams were taken, 

allowing us to identify those who repeat grades before fifth and eighth grades. We standardized raw 

scores within grade-subject-year cells, setting mean scores to zero and standard deviations to one. 

We define a cohort based on an academic year’s entrance cutoff, including children born on June 

15 six years prior to the beginning of the academic year up through the following June 14. This approach 

positions December at the midpoint of each birth cohort. In our analyses, we exclusively consider cohorts 

in which we have data for students on both sides of the entrance cutoff; for example, when estimating 

models of fifth grade test scores (starting in 2002), the first birth cohort we consider is those students born 

from June 15, 1991, to June 14, 1992. In total, our dataset includes 128,695 observations for fifth graders 

and 128,818 for eighth graders.6  

From the remaining observations, we excluded 3,815 students (1.49 percent) with entrance ages 

above 7.2 years and 274 observations (0.11%) with entrance ages below 5.2 years, resulting in sample 

sizes of 126,234 for fifth graders and 125,413 for eighth graders. Importantly, many of these students 

 
6 As in Attar and Cohen-Zada (2018), we found that roughly 2.5 times as many children are reported to have been 
born on January 1 compared to the average daily number of births on other dates throughout the year. Given that 
none of our cutoffs fall on this date, we suspect that births coded on January 1 include those in which actual birth 
dates are unknown; for example, 937 births coded on January 1 correspond to children who are new immigrants 
from Ethiopia, compared to roughly 4.3 births per day on all other days of the year. We thus removed all January 1 
births 1,777 observations from the dataset, leaving us with 127,987 fifth graders and 127,749 eighth graders. 
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with entry ages above 7.2 or below 5.2 are not typical, in that many of them are immigrants who likely 

delayed school entry due to language issues; immigrants make up roughly thirteen percent of the students 

in the 5.2-7.2 age range, but 59.1 percent of the students who fall outside that range.  

We have access to data on school entry year for approximately 93.5 percent of students, enabling 

us to determine if they repeated or skipped grades. The rate of grade retention from first grade to fifth 

grade is 1.52 percent, and the rate of grade skipping is 0.19 percent. Similarly, from first grade to eighth 

grade, the grade retention rate is 2.65 percent, and the grade skipping rate is 0.28 percent. Because these 

rates are relatively low, and to avoid introducing sample selection bias, we retain the 6.5 percent of 

students for whom we cannot observe the year of school entry. We estimate their entrance age based on 

their observed age at the beginning of the school year during which they were tested, under the 

assumption that they neither repeated nor skipped grades. This approximation is expected to introduce 

error in roughly 0.19 percent of the total observations (= 0.065 × (0.0265 + 0.0028) × 100); we include an 

indicator in our estimated models for whether entrance age is observed or approximated. 

We primarily use an RD approach below, focusing on an interval of +/-28 days around the cutoff 

points. This results in a sample of 19,758 fifth graders and 18,770 eighth graders. Of these students, 

18,566 fifth graders were tested in math and 18,152 in Hebrew, and 16,912 eighth graders were tested in 

math and 16,973 in Hebrew. In addition, we observe whether 19,029 fifth graders and 17,023 eighth 

graders repeated a grade. We present summary statistics from this discontinuity sample in Table 2.7 

IV.2 Baseline Estimates Based on Monthly Data 

In Table 3, we present fuzzy regression discontinuity estimates of the effects of SEA, using the 

+/- 28-day discontinuity sample. We use a binary measure of whether a student is born before the cutoff 

as the excluded instrument. Column (1) shows the unbiased estimate כߚ, obtained from specification (4) 

 
7 Below we also analyze specifications based on full-year samples, although we exclude children born in June due to 
ambiguity about which cohort to assign them. Specifically, we use a bandwidth of 150 days around the cutoff point, 
including 104,249 fifth-grade students and 102,863 eighth-grade students. 
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(or, equivalently, specification (7)). In columns (2)-(4) we report the estimates ߚመ஼், ߚመ஻், and ߚመ஻்/ ߜመଵ 

from expressions (1), (2), and (3) above, respectively.  

We analyze fifth-grade Hebrew scores in the top row of the table. The unbiased estimate כߚ 

implies that a one-year increase in SEA increases average Hebrew scores by 0.268 standard deviations. 

The estimate of ߚ஼் is 0.329, implying that its estimated bias – which includes both selection and 

monotonicity biases – is 0.061 (= 0.329 – 0.268). Similarly, ߚመ஻்/ ߜመଵ is 0.288, so the estimated 

monotonicity bias in ߚመ஼் is 0.041 (= 0.329 – 0.288) and the estimated selection bias in ߚመ஼் is 0.020. 

Columns (5)-(7) show the estimates of these combined, selection, and monotonicity biases, along with 

their standard errors (which we estimate via 500 bootstrap replications clustered on date of birth).8 The 

final column lists the magnitude of the monotonicity bias as a proportion of the estimate of כߚ; for 

Hebrew scores, the monotonicity bias is 15.3 percent of the magnitude of the unbiased estimate. 

 The remaining rows of the table present analogous estimates for 5th grade math scores, Hebrew 

and math scores in 8th grade, and indicators of grade repetition by 5th and 8th grades. In all cases, 

monotonicity biases are both statistically and practically significant, ranging from roughly 13 to 16 

percent of the unbiased estimates of 9.כߚ Notably, the estimates of monotonicity biases are also larger in 

absolute value than those of selection biases in five of the six cases, with 8th grade math scores being the 

lone exception. 

 All estimates in Table 3 were based on +/- 28-day discontinuity samples. To assess how 

monotonicity biases vary with bandwidth, Figure 2 shows the estimated absolute values of monotonicity 

bias for additional bandwidths in multiples of 28 days. For all six outcome variables, the estimated biases 

increase as the bandwidth expands; they are roughly twice as large using bandwidths of 140 days 

compared to bandwidths of 28 days. This phenomenon occurs because, as bandwidth increases, the 

 
8 In all cases here and in the tables below, first-stage F-statistics are larger than 270, implying that inference based 
on t-statistics is valid without the adjustments proposed in Lee et al. (2022).  
9 We use students’ exact dates of birth to calculate the estimates in Table 3. In Appendix Table A1, we instead use a 
value of SEA based on the assumption that all births in a fictional month of 28 days take place at the midpoint of that 
month. This captures the likely approach that empiricists would use when they only have access to month of birth. 
For all six outcomes, the resulting estimates are similar to those shown in Table 3. 
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magnitude of the violation of monotonicity for a given noncomplier increases. For example, for a 28-day 

bandwidth, the redshirters born before the cutoff are roughly 28 days older at school entry, on average, 

than redshirters born after the cutoff (as shown in Panel A of Table 1). Using a 140-day bandwidth, this 

average age difference is 140 days. Thus, each redshirter contributes more bias due to the failure of 

monotonicity as the size of the bandwidth grows.10  

 As additional evidence on the potential violation of monotonicity, we also consider the stochastic 

dominance test of Angrist and Imbens (1995). The intuition of that test in the SEA case is that if 

monotonicity holds, the CDFs of SEA for those born before and after cutoff dates cannot cross. Using the 

+/- 28-day discontinuity sample, we show the CDFs for those born before and after cutoff dates in the top 

panel of Appendix Figure A1. The figure shows that the CDFs cross twice, with the noticeable 

intersection at entrance ages between 6.5 and 6.75 reflecting the empirical relevance of delayed entry, 

which causes some students who are born before the cutoff to have higher entrance ages than those born 

after the cutoff. As argued above, this type of violation likely appears in many other settings in which the 

relationship between the average treatment and a running variable has a sawtooth pattern.  

To illustrate this phenomenon in an additional setting, in Panel B we show an analogous figure 

for the case of Maimonides’ Rule and class sizes. Maimonides Rule imposes a maximum class size of 40 

students, which Angrist and Lavy (1999) use to generate an IV strategy to estimate the effects of class 

size on student outcomes. We use Angrist and Lavy’s (1999) estimation sample for fifth grade test scores 

(posted at https://economics.mit.edu/people/faculty/josh-angrist/angrist-data-archive), and include schools 

with enrollments between 36 and 45 students to focus on the discontinuity between 40 and 41. Again, the 

CDFs intersect, reflecting that some schools with enrollments below 41 open multiple classrooms even 

though Maimonides’ Rule does not require them to do so. Such schools have smaller class sizes when 

 
10 An opposing effect tends to reduce monotonicity bias as bandwidth grows: the proportion of redshirters in the 
estimation sample decreases. As noted above, those born in the last month before a cutoff date are disproportionately 
likely to delay entry, and this phenomenon weakens as the distance between the birth and cutoff dates increase. 
Thus, there are proportionately fewer redshirters in a five-month estimation window than in a one-month window. 
The findings in Figure 2 imply that this opposing effect is dominated by the primary effect described above: that the 
magnitude of the violation of monotonicity for each noncomplier increases with bandwidth. 
 

https://economics.mit.edu/people/faculty/josh-angrist/angrist-data-archive
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school enrollments are below 41 than when enrollments are 41 or above, resulting in a failure of 

monotonicity.  

IV.3 Monotonicity Bias and Trends in the Running Variable 

To this point, we have assumed that researchers only have access to monthly data to estimate ߚ஼் 

and ߚ஻் (although we used information on exact date of birth to estimate כߚ in Table 3). We next 

consider settings in which researchers observe exact birth dates. We define a running variable RC as the 

number of days that a child’s birth date falls relative to the cutoff date, which is negative for children born 

before the cutoff and positive for those born afterward. Previous authors such as Fiorini and Stevens 

(2021) have argued that the inclusion of a linear trend in RC eliminates monotonicity bias if that trend is 

correctly specified.11 We can strengthen this argument in the school entrance age context: including linear 

trends will eliminate monotonicity bias regardless of whether the trend is correctly specified in the model 

of outcomes. To see why, note that a child’s actual SEA is a linear function of RC: 

௜ܣܧܵ (8) = ଴ߛ െ ௜ܥଵܴߛ + < ௜ܣܧܵ)1 6.2), 

where ߛ଴ is the SEA (in years) for a child born on the cutoff date who entered school in that year. For 

example, if the entrance cutoff is December 1, the first day of school is September 1, and the child was 

born on November 28, then ܴܥ௜ = െ3 and ߛ଴ = 5.75. Among compliers, ܵܣܧ௜ varies one-for-one with 

௜ܥܴ ௜, so that children born on November 27 haveܥܴ = െ4 and are one day older when they begin first 

grade than children born on November 28. Because ܵܣܧ௜ is measured in years, ߛଵ =  ଵ
ଷ଺ହ.ଶହ . Moreover, 

the slope on ܴܥ௜ is identical on either side of the cutoff, allowing us to write the ܵܣܧ௜ as an additively 

separable linear function of ܴܥ௜ and 1(ܵܣܧ௜ > 6.2). If a child instead delays entry, ܵܣܧ௜ increases by 

one year, as represented by the 1(ܵܣܧ௜ > 6.2) term. Note that expression (8) is an identity, rather than an 

estimating equation like (3) above. 

 
11 Specifically, Fiorini and Stevens write that to best approximate the trend in the model of outcomes, “[a]n ideal 
fuzzy RD design would have data relying on date rather than month of birth, use a small bandwidth and include a 
trend using local linear regression that is allowed to be different on each side of the threshold. That is possibly a 
robust solution in the school entry age setting…” (p. 1512). 
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To see how including a linear running variable eliminates monotonicity bias in this setting – and 

more generally, when the slope of the treatment among compliers with respect to the running variable is 

identical on either side of a cutoff – recall that there is no monotonicity bias in the binary specification 

given by (2) above. This is also the case if we include a linear running variable in that specification:  

(2') ௜ܻ = ஻்ߙ + ௜ܣܧܵ)஻்1ߚ  > 6.2) + ௜ܥܴ߮ +  ,௜ߝ

using the same arguments as in the context of Table 1, Panel B. Rearranging expression (8) and 

substituting into (2') yields 

(9) ௜ܻ = ஻்ߙ + ௜ܣܧܵ]஻்ߚ  െ ଴ߛ + [௜ܥଵܴߛ + ௜ܥܴ߮ +  ௜ߝ

                    = ஻்ߙ] െ [஻்ߚ଴ߛ + ௜ܣܧ஻்ܵߚ + ଵߛ஻்ߚ] + ௜ܥܴ[߮ +  .௜ߝ

Thus, the coefficient on ܵܣܧ௜ in the second line of (9) is identical to the coefficient on 

௜ܣܧܵ)1 > 6.2) in (2'), and because the latter coefficient is free from monotonicity bias, so is the former.12 

In other words, including a linear trend in a model that uses the continuous treatment variable ܵܣܧ௜ 

eliminates monotonicity bias, and this equivalency holds regardless of whether the outcome model is 

correctly specified. It also holds for any choice of bandwidth and regardless of whether one follows 

typical practice by allowing for different slopes on the running variable on either side of the cutoff date. 

We again emphasize that this finding is specific to settings, like the school entrance age case, in which the 

treatment is a linear and additively separable function of the running variable. 

We present estimates based on specifications that include a linear running variable in Table 4. As 

in Table 3, column (1) shows the estimates of כߚ. As expected, and unlike in Table 3, here the estimates 

from models that use continuous (column (2)) and binary (column (3)) measures are equivalent and free 

of monotonicity bias in all six cases. Column (4) presents estimates of selection bias, given by the 

 
12 Relatedly, when one includes linear controls for ܴܥ௜ in a specification using the binary treatment variable, there is 
no need to rescale the estimate of ߚ஻் . To see why, note that after conditioning on ܴܥ௜, expression (3) becomes 
௜ܣܧܵ = ଴ߜ + ௜ܣܧܵ)ଵ1ߜ > 6.2) + ௜ܥଶܴߜ +  ଵ in that model isߜ ௜. Expression (8) implies that the coefficientߟ
identically one, so that the “adjusted” ߚ஻்/ߜଵ = ஻்ߚ . In Appendix A, we show that even if ߜଵ is not identically equal 
to 1, including a linear function of the running variable will eliminate monotonicity bias as long as the gradient of 
the treatment variable with respect to the running variable is identical on either side of a discontinuity for compliers. 
This result again holds regardless of whether the outcome model is correctly specified. 
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difference between the estimates in columns (2) (or (3)) and (1), and column (5) presents the magnitude 

of that bias as a fraction of כߚ. Note that these estimates are not identical to those in Table 3 because the 

inclusion of the running variable changes the point estimates of selection bias. Finally, in Appendix Table 

A2 we present analogous estimates from specifications that allow for different slopes on the running 

variable on either side of the cutoff dates. In all six cases, the point estimates are nearly identical to those 

in Table 3, with minor differences stemming from modest variation in the estimates of selection bias. 

 

IV.4 Additional Options when Researchers Have Access to Only Coarse Measures of Running Variables 

As we argued above, it is common for researchers to only have access to data on month of birth, 

rather than exact birth date. In the case of estimating SEA effects, a simple solution for eliminating 

monotonicity bias involves dichotomizing the ܵܣܧ௜ variable, but in other contexts it might not be possible 

to apply this solution. We next consider two approaches that researchers have typically taken when they 

only have access to a coarse running variable (such as month of birth). First, one can use RD designs 

using data from a month or set of months surrounding the cutoff date, where the excluded instrument is an 

indicator for whether the birth falls after the cutoff. These are the designs described in Section IV.2, and 

the resulting estimates are generally biased due to both selection and the failure of monotonicity. Second, 

one can use a full-sample IV approach, which uses data from the entire year and controls for monthly (as 

opposed to daily) trends in the running variable ܴܥ௜. In these models, the first stage is 

௜ܣܧܵ (10) = ଴ߛ + ௜ܥܴ)ଵ1ߛ > 0) + ௜ܥଶܴߛ + ௜ܥܴ]ଷߛ × ௜ܥܴ)1 > 0)] + ߫௜, 

where ܴܥ௜ is now measured as distance in months from the cutoff date, and 1(ܴܥ௜ > 0) is an indicator 

equal to 1 if the birth is after the entrance cutoff and 0 otherwise.  

 We suspect that most researchers would prefer the RD design a priori, based on the idea that 

identification is likely to be “cleanest” in models that use only those born in the neighborhood of a 

discontinuity point. Although this preference seems reasonable, there is a distinct advantage to using the 

full-sample IV model: it will generally satisfy monotonicity, unlike the RD design. To see why, recall that 

specifications using linear trends in the running variable are free of monotonicity bias in the SEA case 
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(and in other settings involving identical gradients of the expected treatment with respect to a running 

variable on both sides of a discontinuity point). This argument did not depend on the units of 

measurement of the running variable, so even a monthly measure of ܴܥ௜ will eliminate monotonicity. On 

the other hand, the full-sample specification may be especially susceptible to selection bias due to 

nonrandom sorting of births across months and seasons; for example, Buckles and Hungerman (2013) 

present compelling evidence that observable characteristics of mothers and children vary across birth 

months in the US, suggesting that unobservable characteristics might follow the same pattern.  

To assess the tradeoffs between these two options, in Table 5 we present estimates from full-

sample IV specifications that include all births within 150 days of the entrance cutoff date. We measure 

 ௜ as distance in months from the cutoff, treating each 30-day window as a fictional “month”. We defineܥܴ

-௜ based on the midpoint of that fictional “month”, assigning this value to all children born in the 30ܣܧܵ

day window. Columns (2) and (3) show that the estimates are identical regardless of whether SEA is 

measured as a binary or multinomial variable, consistent with both specifications being free of 

monotonicity bias. Column (4) shows the estimated selection bias, and column (5) shows the magnitude 

of that selection bias as a proportion of the estimate כߚ. In three of the six cases, the selection bias is less 

than 10 percent of כߚ and is smaller than the analogous monotonicity bias in the RD specifications shown 

in Table 3. Taken together, these estimates suggest that full-sample IV performs no worse than the RD 

specifications.13 

We present additional evidence about the relative performance of the two options in Figure 3. In 

each panel, we show the variation across bandwidth (in months) in the absolute value of the estimated 

monotonicity bias in RD designs using a continuous SEA measure with no trend in the running variable, 

analogous to the estimates in Table 3, along with the selection bias in models that include the monthly 

running variable. In most cases, the monotonicity bias in the former model is larger than the selection bias 

 
13 In Appendix Table A3, we show point estimates and standard errors for analogous models that allow the monthly 
trends in ܴܥ௜  to differ before and after cutoff dates. The estimates are similar in magnitude to those shown in Table 
5, although in the case of “held back prior to 8th grade” the estimated selection bias is slightly larger and marginally 
statistically significant in Table A3. 
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in the latter model. The estimated monotonicity bias grows as the bandwidth increases (as shown in 

Figure 2 above), while there is no clear pattern across outcomes in the effect of bandwidth on the 

estimated selection bias in models including ܴܥ௜. Researchers using models with no monthly trend would 

likely use the one-month bandwidth, but even those estimates have larger monotonicity biases than the 

selection biases in the full-sample models using 5-month bandwidths models for 5th grade Hebrew scores, 

held back prior to 5th grade, and held back prior to 8th grade.  

Finally, in Appendix Table A4 we include a summary of the monotonicity and selection biases (in 

absolute value) for three different specifications: RD models using the +/- 28-day discontinuity sample 

without trends in the running variable, similar RD models that add trends (either linear or piecewise) in 

the running variable, and the +/- 5-month “full-sample” specification that includes monthly trends in the 

running variable. The monotonicity biases in the first model, shown in column (3), are larger than the 

selection biases in columns (7) and (8) for three of the six outcomes, again implying that specifications 

including data far from cutoffs may perform as well or better than those using only months straddling the 

cutoff.   

V. Discussion and Conclusions 

This paper makes three primary contributions. First, we show that when researchers have access 

to relatively coarse measures of a running variable, the typical practice of including only those located in 

the closest neighborhood possible to discontinuity points (in the school entrance age case, this 

corresponds to those born in the months straddling the cutoff date) can yield empirically relevant 

monotonicity biases. For each of the six outcomes we study, the estimated monotonicity biases are 

roughly one-sixth of the magnitude of the corresponding unbiased point estimates. We show that using a 

dichotomized version of the treatment variable eliminates monotonicity bias even when researchers do 

not have access to our rich data environment. This dichotomization strategy is a general solution, in that it 

will deliver estimates free of monotonicity bias in the prototypical case in which the relationship between 

the expected value of a treatment and a running variable has a sawtooth pattern. 
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Relatedly, we also consider the relative performance of options available to empiricists when they 

only have access to coarse running variables. We show that the commonly-used design – again, using 

only births in months that straddle school entrance cutoffs – does not lead to systematically lower bias 

than an alternate strategy of including births in all months in a cohort, which eliminates monotonicity 

biases by allowing for the inclusion of monthly trends in the running variable. We suspect that many 

applied researchers view selection bias as a more salient threat to identification than violations of 

monotonicity, but our findings suggest that this view in not always justified. 

Finally, we show that including linear functions of running variables eliminates monotonicity bias 

in the school entrance age context, as well as in other settings in which the average value of the treatment 

among compliers is a linear function of a running variable with identical slopes on either side of a 

discontinuity point. Remarkably, this result holds regardless of whether the outcome model is 

misspecified, such as when the true model is a complex nonlinear function of the underlying running 

variable. Although this finding is less general than those described above, it highlights the broader point 

that prior knowledge of how the treatment is determined may be sufficient to eliminate monotonicity bias 

even if researchers must be agnostic about the functional form of outcome models. 

Taken together, our findings extend the recent literature by emphasizing the potential gains to 

developing estimation strategies that are robust to violations of monotonicity. They also imply that 

monotonicity should play a role in future methodological work on optimal bandwidth selection in RD 

designs, as the empirical relevance of monotonicity depends critically on the choice of bandwidth.   
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Figure 1: Expected and Actual School Entrance Ages for a Cohort of Israeli Students 
 

 
 
Notes: The solid black line in the figure denotes actual school entrance ages among one cohort of Israeli children who fully comply with the school entrance cutoff (i.e., 
those children who enter first grade as soon as legally eligible to do so), with the X-axis measuring their birth date relative to the cutoff. This representative cohort, born 
between July 1, 1994, and May 31, 1995, faced a cutoff date of December 3. A complier whose birthday is November 19, 14 days before that cutoff date, entered first 
grade on September 1, 2000, at an age of 5.79 years, as represented by point “C” in the figure.  
 
  



Figure 2: Monotonicity Biases Based on Monthly Data with No Included Trends in the Running Variable 
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Figure 3: Selection and Monotonicity Biases as a Proportion of כࢼ across Various Specifications

 
 



Table 1: Actual and Counterfactual Entrance Ages in Different Specifications 

Panel A: Actual and Counterfactual Entrance Ages for a Child Born in December Compared to 
January (RD Design) 

  Born After Cutoff 

  Enter Early Enter On time 

Born Before 
Cutoff 

Enter On 
time  (5.71, 5.63)  (5.71, 6.63) 

Enter Late Unlikely  (6.71, 6.63) 

 

Panel B: Actual and Counterfactual Entrance Ages for a Child Born in December Compared to 
January (RD Design) Using a Binary Treatment Variable 1(ܵܣܧ > 6.2) 

  Born After Cutoff 

  Enter Early Enter On Time 

Born Before 
Cutoff 

Enter On 
time  (0,0) (0,1) 

Enter Late Unlikely (1,1) 

 

Panel C: Actual and Counterfactual Entrance Age for a Child Born on December 15 (including 
date-of-birth indicators) 

  Born After Cutoff 

  Enter Early Enter On Time 

Born Before 
Cutoff 

Enter On 
time  (5.71, 5.71) (5.71, 6.71) 

Enter Late Unlikely (6.71, 6.71) 
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Table 2: Summary Statistics for RDD Sample (±28 Days) 

The number of observations for the outcome variables are lower than the number reported in the table. 
Specifically, 18,566 fifth graders were tested in math and 18,152 in Hebrew, 16,912 eighth graders were 
tested in math and 16,973 in Hebrew, and we observe whether 19,029 fifth graders and 17,023 eighth 
were retained in a grade.  

 5th Grade 
(n=19,758) 

8th Grade 
(n=18,770) 

Outcome Variables Mean SD Mean SD 
Retained in school prior to GEMS exam 0.017 0.129 0.037 0.190 
Normalized Hebrew score  0.041 0.983 0.031 0.989 
Normalized Math score  0.029 0.988 0.021 0.996 
Age Variables     
After cutoff 0.490 0.500 0.483 0.500 
Entrance age 6.406 0.444 6.397 0.444 
Background Variables     
Father education (0-8 Years) 0.037 0.190 0.043 0.203 
Father education (9-11 Years) 0.129 0.335 0.145 0.352 
Father education (12 Years) 0.380 0.485 0.356 0.479 
Father education (13-16 Years) 0.235 0.424 0.249 0.433 
Father education (17+ Years) 0.110 0.312 0.107 0.310 
Mother education (0-8 Years) 0.029 0.168 0.033 0.179 
Mother education (9-11 Years) 0.102 0.302 0.116 0.320 
Mother education (12 Years) 0.400 0.490 0.388 0.487 
Mother education (13-16 Years) 0.274 0.446 0.282 0.450 
Mother education (17+ Years) 0.097 0.296 0.104 0.305 
Number of siblings (0-1) 0.328 0.469 0.309 0.462 
Number of siblings (2) 0.340 0.474 0.281 0.449 
Number of siblings (3+) 0.208 0.406 0.190 0.392 
Male 0.496 0.500 0.493 0.500 
Attended secular public school 0.755 0.430 0.795 0.404 
Father born in Asia or Africa 0.228 0.420 0.283 0.451 
Father born in Americas 0.078 0.268 0.091 0.288 
Father born in Israel 0.575 0.494 0.585 0.493 
Mother born in Asia or Africa 0.214 0.410 0.258 0.437 
Mother born in Americas 0.089 0.284 0.093 0.291 
Mother born in Israel 0.603 0.489 0.639 0.480 
Student born in Israel 0.895 0.306 0.843 0.363 



Table 3: Assessment of the Monotonicity and Selection Biases for a Discontinuity Sample (±28 days) with No Trend in the Running 
Variable (and SEA Based on Exact Birth Dates) 

Notes: Standard errors based on 500 bootstrap replications and clustered at the date of birth level are shown in parentheses. In all models, we control for the 
children’s background characteristics described in the text. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively. 

 ࢀ࡮ࢼ    ࢀ࡯ࢼ    כࢼ 
Adjusted  

 ࢀ࡮ࢼ   
 (ଵߜ/஻்ߚ )

Combined 
Bias 

(2) - (1) 

Selection 
Bias 

(4) - (1) 

Monotonicity 
Bias 

(2) - (4) 

࡮ࡹ
 כࢼ   

 (1) (2) (3) (4) (5) (6) (7) (8) 
Hebrew score in 5th grade         
School Entrance Age 0.268*** 0.329*** 0.275*** 0.288*** 0.061 0.020 0.041*** %315.  
N=18,152 (0.099) (0.039) (0.033) (0.035) (0.089 ) (0.089 ) (0.005 )  
Math score in 5th grade         
School Entrance Age 0.205** 0.263*** 0.219*** 0.229*** 0.058 0.025 0.033*** %116.  
N=18,566 (0.082) (0.038) (0.031) (0.031) (0.074 ) (0.074 ) (0.005 )  

Held back prior to 5th grade         

School Entrance Age -0.039*** -0.041*** -0.034*** -0.036*** -0.002 0.003 -0.005*** %8.12  
N=19,029 (0.012) (0.005) (0.004) (0.004) (0.012 ) (0.012 ) (0.001)  
Hebrew score in 8th grade         
School Entrance Age 0.183 0.206*** 0.171*** 0.179*** 0.023 -0.004 0.027*** %8.14  
N=16,973 (0.117) (0.033) (0.027) (0.028) (0.109 ) (0.109 ) (0.005 )  
Math score in 8th grade         
School Entrance Age 0.250* 0.239*** 0.197*** 0.207*** -0.010 -0.043 0.032*** %8.12  
N=16,912 (0.133) (0.041) (0.034) (0.035) (0.123 ) (0.123 ) (0.006 )  
Held back prior to 8th grade         
School Entrance Age -0.123*** -0.127*** -0.106*** -0.111*** -0.004 0.012 -0.016*** %0.31  
N=17,023 (0.022) (0.006) (0.005) (0.006) (0.021 ) (0.021 ) (0.001)  
Date-of-year fixed effects Yes No No No     
Controls Yes Yes Yes Yes     
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Table 4: Assessment of Selection Biases for a Discontinuity Sample (±28 days) with Linear Daily Trends in the Running Variable 

Notes: Standard errors based on 500 bootstrap replications and clustered at the date of birth level are shown in parentheses. In all models, we control for the 
children’s background characteristics described in the text. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively. 

 ࢀ࡮ࢼ    ࢀ࡯ࢼ    כࢼ 
Selection 

Bias 
(3) - (1) 

࡮ࡿ
 כࢼ   

 (1) (2) (3) (4) (5) 
Hebrew score in 5th grade      
School Entrance Age 0.268*** 0.297*** 0.297*** 0.029 10.9% 
N=18,152 (0.099) (0.091) (0.091) (0.042)  
Math score in 5th grade      
School Entrance Age 0.205** 0.254*** 0.254*** 0.049 23.9% 
N=18,566 (0.082) (0.077) (0.077) (0.049)  
Held back prior to 5th grade      
School Entrance Age -0.039*** -0.044*** -0.044*** -0.005 12.6% 
N=19,029 (0.012) (0.011) (0.011) (0.006)  
Hebrew score in 8th grade      
School Entrance Age 0.183 0.068 0.068 -0.115 -63.0% 
N=16,973 (0.117) (0.096) (0.096) (0.060)  
Math score in 8th grade      
School Entrance Age 0.250* 0.193* 0.193* -0.057 -22.7% 
N=16,912 (0.133) (0.101) (0.101) (0.071)  
Held back prior to 8th grade      
School Entrance Age -0.123*** -0.127*** -0.127*** -0.004 3.0% 
N=17,023 (0.022) (0.019) (0.019) (0.010)  
Date-of-year fixed effects Yes No No   
Linear trend of RC No Yes Yes   
Controls Yes Yes Yes   
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Table 5: Assessment of Selection Biases for a Bandwidth of 150 days with a Linear Monthly Trend in The Running Variable (Treating 
Each 30 days as a Fictional Month and Assigning All Children in That Month the Same SEA) 

Notes: Standard errors based on 500 bootstrap replications and clustered at the date of birth level are shown in parentheses. In all models, we control for the 
children’s background characteristics described in the text. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively.

 ࢀ࡮ࢼ    ࢀ࡯ࢼ    כࢼ 
Selection 

Bias 
(3) - (1) 

࡮ࡿ
 כࢼ   

 (1) (2) (3) (4) (5) 
Hebrew score in 5th grade      
School Entrance Age 0.326*** 0.300*** 0.300*** -0.026 -8.1% 
N=96,001 (0.084) (0.027) (0.027) (0.078)  
Math score in 5th grade      
School Entrance Age 0.194*** 0.255*** 0.255*** 0.060 31.0% 
N=97,888 (0.057) (0.028) (0.028) (0.054)  
Held back prior to 5th grade      
School Entrance Age -0.036*** -0.039*** -0.039*** -0.002 6.3% 
N=100,609 (0.009) (0.004) (0.004) (0.010)  
Hebrew score in 8th grade      
School Entrance Age 0.208** 0.171*** 0.171*** -0.037 -18.0% 
N=93,213 (0.084) (0.024) (0.024) (0.080)  
Math score in 8th grade      
School Entrance Age 0.297*** 0.202*** 0.202*** -0.095 -32.3% 
N=92,738 (0.107) (0.028) (0.028) (0.098)  
Held back prior to 8th grade      
School Entrance Age -0.115*** -0.110*** -0.110*** 0.005 -4.2% 
N=93,000 (0.014) (0.008) (0.008) (0.014)  
Date-of-year fixed effects Yes No No   
Linear trend of RC No Yes Yes   
Controls Yes Yes Yes   



Figure A1: Stochastic Dominance Tests of Angrist and Imbens (1995) for the School Entrance 
Age and Maimonides Rule Cases 
 

 

 
 
Notes: The top panel displays Angrist and Imbens’s (1995) stochastic dominance test using the +/- 28-day 
discontinuity sample described in the text. The bottom panel displays the test using data from Angrist and Lavy 
(1999), focusing on schools with enrollment in the [36,45] window. 
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Appendix A 
 

Here we prove that including linear slopes in the running variable eliminates 

monotonicity bias when the gradient of the treatment with respect to the running variable is 

identical on either side of a discontinuity. First, we assume that we can write the outcome of 

interest as a function of the dichotomized treatment ܤ ௜ܶ = ܥ)1 ௜ܶ >   :is a constant ߣ where ,(ߣ

(A1) ௜ܻ = ஻்ߙ + ܤ஻்ߚ ௜ܶ + + ௜ܥܴ߶  . ௜ݑ

We further assume that we can write the continuous treatment as 

(A2)  ܥ ௜ܶ = ଴ߛ + ௜ܥଵܴߛ + ܥ)ଶ1ߛ ௜ܶ >  ,(ߣ

where ߣ is such that for all compliers, ܥ ௜ܶ > ܥ for those to the right of the cutoff and ߣ ௜ܶ <  for ߣ

those to the left of the cutoff, and such a value of ߣ exists for at least some value of the 

bandwidth. Note that there is no error term in equation (A2), as it is deterministic. Rearranging 

(A2) using the fact that ܤ ௜ܶ = ܥ)1 ௜ܶ >  ,and substituting into (A1) (ߣ

(A3) ௜ܻ = ஻்ߙ + ஻்ߚ ቂ
஼்೔ିఊబିఊభோ஼೔

ఊమ
ቃ + + ௜ܥܴ߶   ௜ݑ

= ஻்ߙ]  െ
଴ߛ஻்ߚ
ଶߛ

] + ஻்ߚ
ܥ ௜ܶ

ଶߛ
+ [߶െ

஻்ߚଵߛ
ଶߛ

+ ௜ܥܴ[  . ௜ݑ

Thus, in this model of ௜ܻ as a function of ܥ ௜ܶ and ܴܥ௜, the population coefficient on ܥ ௜ܶ is 
ఉಳ೅
ఊమ

.  

Recalling that we need to rescale the parameter ߚ஻் to make it comparable to a 

continuous model, a generalization of expression (3) in the main text is  

(A4)  ܥ ௜ܶ = ଴ߜ + ܤଵߜ ௜ܶ + ௜ܥଶܴߜ +  .௜ߟ

Comparing (A4) to (A2) implies ߜଵ =  ଶ, so that the rescaled parameter of the binary treatmentߛ

ؠ ఉಳ೅
ఋభ

= ఉಳ೅
ఊమ

; thus, the population slope on ܥ ௜ܶ in a continuous treatment model is identical to the 

rescaled parameter from the binary treatment model. Note that this is a generalization of the 

ଶߛ ௜ case in the main text in that it relaxes the assumption thatܣܧܵ = 1. 



Table A1: Assessment of the Monotonicity and Selection Biases for a Discontinuity Sample (±28 days) with No Trend in the Running 
Variable (All Children Born in the Same Side of the Cutoff Are Assigned the Same SEA Based on the Middle of that Fictional Month)  

Notes: Standard errors based on 500 bootstrap replications and clustered at the date of birth level are shown in parentheses. In all models, we control for the 
children’s background characteristics described in the text. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively.  

 ࢀ࡮ࢼ    ࢀ࡯ࢼ    כࢼ 
Adjusted  

 ࢀ࡮ࢼ   
 (ଵߜ/஻்ߚ )

Combined 
Bias 

(2) - (1) 

Selection 
Bias 

(4) - (1) 

Monotonicity 
Bias 

(2) - (4) 

࡮ࡹ
 כࢼ   

 (1) (2) (3) (4) (5) (6) (7) (8) 
Hebrew score in 5th grade         
School Entrance Age 0.268*** 0.335*** 0.275*** 0.288*** 0.066 0.019 0.047*** 17.5% 

N=18,152 (0.099) (0.040) (0.033) (0.032) (0.092 ) (0.093 ) (0.006 )  

Math score in 5th grade         
School Entrance Age 0.205** 0.267*** 0.219*** 0.229*** 0.062 0.024 0.038*** 18.3% 

N=18,566 (0.082) (0.038) (0.031) (0.033) (0.079 ) (0.078 ) (0.006 )  

Held back prior to 5th grade         

School Entrance Age -0.039*** -0.042*** -0.034*** -0.036***  -0.003 0.003 -0.006*** 14.6% 
N=19,029 (0.013) (0.005) (0.004) (0.004) (0.012 ) (0.012 ) (0.001)  

Hebrew score in 8th grade         
School Entrance Age 0.183 0.209*** 0.171*** 0.179*** 0.026  -0.005 0.031*** 16.8% 
N=16,973 (0.117) (0.033) (0.027) (0.029) (0.109 ) (0.110 ) (0.005 )  

Math score in 8th grade         

School Entrance Age 0.250* 0.243*** 0.197*** 0.207***  -0.007  -0.043 0.036*** 14.6% 
N=16,912 (0.133) (0.042) (0.034) (0.037) (0.131 ) (0.132 ) (0.007 )  

Held back prior to 8th grade         
School Entrance Age -0.123*** -0.129*** -0.106*** -0.111***  -0.006 0.012  -0.018*** 14.5% 
N=17,023 (0.022) (0.006) (0.005) (0.005) (0.021 ) (0.022 ) (0.001)  

Date-of-year fixed effects Yes No No No     
Controls Yes Yes Yes Yes     
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Table A2: Assessment of the Selection Bias for a Discontinuity Sample (±28 days) with Piecewise Linear Trend in the Running 
Variable 

Notes: Standard errors based on 500 bootstrap replications and clustered at the date of birth level are shown in parentheses. In all models, we control for the 
children’s background characteristics described in the text. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively. 

 ࢀ࡮ࢼ    ࢀ࡯ࢼ    כࢼ 
Selection 

Bias 
(3) - (1) 

࡮ࡿ
 כࢼ   

 (1) (2) (3) (4) (5) 
Hebrew score in 5th grade      
School Entrance Age 0.268*** 0.294*** 0.294*** 0.026 9.8% 
N=18,152 (0.099) (0.091) (0.091) (0.043)  
Math score in 5th grade      
School Entrance Age 0.205** 0.254*** 0.254*** 0.049 24.0% 
N=18,566 (0.082) (0.077) (0.077) (0.050)  
Held back prior to 5th grade      
School Entrance Age -0.039*** -0.044*** -0.044*** -0.005 13.1% 
N=19,029 (0.012) (0.011) (0.011) (0.007)  
Hebrew score in 8th grade      
School Entrance Age 0.183 0.069 0.069 -0.114 -62.4% 
N=16,973 (0.117) (0.095) (0.095) (0.059)  
Math score in 8th grade      
School Entrance Age 0.250* 0.185* 0.185* -0.065 -26.1% 
N=16,912 (0.133) (0.096) (0.096) (0.081)  
Held back prior to 8th grade      
School Entrance Age -0.123*** -0.128*** -0.128*** -0.005 3.8% 
N=17,023 (0.022) (0.019) (0.019) (0.011)  
Date-of-year fixed effects Yes No No   
Linear trend of RC No Yes Yes   
Controls Yes Yes Yes   
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Table A3: Assessment of the Selection Bias for a Bandwidth of 150 days with a Piecewise Linear Monthly Trend of the Running 
Variable (Treating Each 30-day Period as a Fictional Month, while SEA is Based on the Exact Date of Birth) 

Notes: Standard errors based on 500 bootstrap replications and clustered at the date of birth level are shown in parentheses. In all models, we control for the 
children’s background characteristics described in the text. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively. 
 

 ࢀ࡮ࢼ    ࢀ࡯ࢼ    כࢼ 
Selection 

Bias 
(3) - (1) 

࡮ࡿ
 כࢼ   

 (1) (2) (3) (4) (5) 
Hebrew score in 5th grade      
School Entrance Age 0.326*** 0.297*** 0.297*** -0.029 -8.9% 
N=96,001 (0.084) (0.025) (0.025) (0.077)  
Math score in 5th grade      
School Entrance Age 0.194*** 0.247*** 0.247*** 0.053 27.2% 
N=97,888 (0.057) (0.025) (0.025) (0.054)  
Held back prior to 5th grade      
School Entrance Age -0.036*** -0.034*** -0.034*** 0.002 -6.4% 
N=100,609 (0.009) (0.003) (0.003) (0.010)  
Hebrew score in 8th grade      
School Entrance Age 0.208** 0.166*** 0.166*** -0.043 -20.6% 
N=93,213 (0.084) (0.022) (0.022) (0.077)  
Math score in 8th grade      
School Entrance Age 0.297*** 0.190*** 0.190*** -0.107 -36.1% 
N=92,738 (0.107) (0.026) (0.026) (0.098)  
Held back prior to 8th grade      
School Entrance Age -0.115*** -0.092*** -0.092*** 0.022* -19.5% 
N=93,000 (0.014) (0.004) (0.004) (0.013)  
Date-of-year fixed effects Yes No No   
Linear trend of RC No Yes Yes   
Controls Yes Yes Yes   
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Table A4: Summary of Monotonicity and Selection Biases for Various Specifications 

 
 
 
 
 
 

 RDD Sample (±28 Days) Full year (±5 months) 

 No Trend Linear 
Trend 

Piecewise 
Linear 
Trend 

Linear 
Monthly 

Trend 

Piecewise 
Linear 
Trend 

Bias as proportion of כࢼ  Combined 
Bias 

Sum of 
Biases 
(Abs) 

Monotonicity 
Bias 

Selection 
Bias 

Selection 
Bias 

Selection 
Bias 

Selection 
Bias 

Selection 
Bias 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Hebrew score in 5th grade 22.8% 22.8% %315.  7.5% 10.9% 9.8% 8.1% 8.9% 

Math score in 5th grade 28.3% 28.3% 16.1% 12.2% 23.9% 24.0% 31.0% 27.2% 

Held back prior to 5th grade 5.1% 20.5% %8.21  7.7% 12.6% 13.1% 6.3% 6.4% 

Hebrew score in 8th grade 12.6% 16.9% %8.41  2.2% 63.0% 62.4% 18.0% 20.6% 

Math score in 8th grade 4.0% 30.0% %8.12  17.2% 22.7% 26.1% 32.3% 36.1% 

Held back prior to 8th grade 3.3% 22.8% 13. %0  9.8% 3.0% 3.8% 4.2% 19.5% 


