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A Bird’s-Eye View*

Despite worldwide expansion of higher education, the impact of higher education institutions 

on local economic activity is still poorly understood. We analyze the local economic effects 

of branch campus openings in Tennessee and Texas, two states representative of the 

underlying U.S. enrollment patterns. To overcome the lack of adequate data, we use a 

novel proxy for regional economic activity based on daytime satellite imagery. Applying 

different panel methods—traditional difference-in-differences (DD), heterogeneity-robust 

DD, and instrumental variables—we find positive effects. Independent data show an 

increase in college graduates and employment in the sectors aligned with programs offered 

at branch campuses.
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1. Introduction

For over half a century, nations have heavily expanded higher education institutions

as catalysts for regional or local economic growth and individual returns. Similarly, the

strategic expansion of higher education campuses in the U.S. since the 1980s had two

main goals: (a) fostering regional economic development for generating social returns and

(b) meeting the increased demand for higher education by individuals who expect private

returns. Numerous economic studies from a variety of countries examine individual private

returns to higher education and find positive e↵ects.1

However, evidence on fostering regional, and particularly local, economic growth

remains elusive. Previous literature that studies the e↵ects of higher education expan-

sions at disaggregated levels focuses mainly on college attainment, employment, firm

development, or innovation and patenting.2 The scarcity of evidence on local economic

growth3 results mainly from the lack of appropriate data at su�ciently disaggregated

regional levels and for the required time periods. Measuring the local economic impact

of educational institutions is di�cult as it requires both variation in the availability or

opening of educational institutions and reliable economic data that can accurately capture

the catchment area of a particular institution both before and after its opening. This

is especially di�cult in the U.S., where most four-year colleges have existed well before

1See, for example, Bianchi and Giorcelli, 2020, and Oppedisano, 2014 for Italy; Böckermann and
Haapanen, 2013 for Finland; Currie and Moretti, 2003, Engbom and Moser, 2017, Fortin, 2006, Moretti,
2004a, Mountjoy, 2022, and Oreopoulos and Petronijevic, 2013 for the U.S.; Devereux and Fan, 2011, and
Walker and Zhu, 2018 for the United Kingdom; Jung et al., 2016 for South Korea; Kamhöfer et al., 2019
for Germany; and Katzkowicz et al., 2023 for Uruguay.

2See, for example, Russell et al., 2022 on college attainment; Gagliardi et al., 2023 on employment;
Che and Zhang, 2018, Leten et al., 2014, Moretti, 2004b, Rammer et al., 2020, and Schlegel et al., 2022
on firm development; and Andrews, 2023, Cowan and Zinovyeva, 2013, Fritsch and Slavtchev, 2007,
Ja↵e, 1989, Li et al., 2023, Pfister et al., 2021, and Toivanen and Väänänen, 2016 on innovation and
patenting. Moreover, with some exceptions (Andrews, 2023; Ja↵e, 1989; Moretti, 2004b; Russell et al.,
2022), these findings on higher education expansions come from contexts outside the U.S. and are thus
hardly generalizable to U.S. college branch campuses. The reason is that these campuses focuses on
teaching rather than on innovation, research, and scientific discovery.

3While few studies analyze the e↵ect of higher education institutions on economic growth, these studies
either focus only on specific types of colleges or investigate only rather high levels of aggregation. For
example, Kantor and Whalley (2014) study only research universities in U.S. urban regions; Kantor
and Whalley (2019) and Liu (2015) focus only on U.S. land-grant colleges from a historical perspective;
and Valero and Van Reenen (2019) study economic growth only at highly aggregated subnational levels
(across 78 countries). In addition, Ramey (2011, 2021) discusses regional economic impacts of U.S. overall
government spending in general, but not of college openings in particular.
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systematic data on local economic conditions were accessible.

Our paper provides novel evidence on the local economic impact of the large post-

secondary education expansion that took place in the U.S. since the 1980s. For this

purpose, we construct a new proxy for economic activity from daytime satellite imagery

that is applicable in various contexts beyond studying education expansions. Our analyses

focus on the states of Tennessee and Texas for three reasons. First and foremost, these

states are exemplary of di↵erent types of postsecondary education growth that took place

in that time period more generally across the U.S. As the solid lines in Figure 1 show,

from 1984 through 2020 (the observation period of our empirical analyses), enrollment at

public postsecondary institutions increased by 42.3 percent in Tennessee and by 110.5

percent in Texas.4 The surge in enrollment occurred across the states and overwhelmed

the respective higher education systems. Second, these two states represent two ends

of a spectrum of densely populated states with short travel times and high community

connectivity on the one hand (i.e., Tennessee) and sparsely populated states with long

travel times and low community connectivity on the other (i.e., Texas). Thus, these states

provide a comprehensive view of the varying impacts of new educational institutions in

diverse demographic and geographic contexts across U.S. states. Third, for these two

states, we were able to gather historical data on new college branch campuses, data that

are unfortunately not readily available in administrative databases.5

To accommodate the enrollment surge, Texas and Tennessee, like many other states,

created only very few additional main campuses (dashed lines in figure 1) but, rather,

expanded capacity at existing institutions and established branch campuses at new

locations. Branch campuses are geographically separate from the main campus and

o↵er two- or four-year programs that students can complete fully at the branch campus

location.6 Between 1984 and 2020, the number of public branch campuses (dotted lines in

4According to enrollment data from the National Center for Education Statistics’ Digest of Education
Statistics.

5Even though we can identify the opening of a branch campus, most parent campuses do not distinguish
between branch and main campuses when reporting data at state and national levels.

6We exclude “special purpose” branch campus locations such as high schools (which o↵er a limited
selection of dual enrollment courses that may or may not lead to a degree) and prisons (which o↵er a limited
selection of courses and/or programs to currently incarcerated individuals). In Tennessee, what we refer to
as branch campuses in this paper are called “o↵-campus centers” when they are a�liated with a community
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Figure 1: Growth in Fall Enrollment and Number of College Campuses in Tennessee and
Texas, 1984–2020

Notes: The figure plots the growth in fall enrollment and number of public college campuses in Tennessee
and Texas from 1984 through 2020. We retrieve fall enrollment from the Digest of Education Statistics.
We infer the number of branch campuses from our own data collection of branch campus opening years
(see Section 3) and the number of main campuses from an institution’s first reporting in year in the
Integrated Postsecondary Education Data System (IPEDS). The growth index equals 1 in 1986, because
it is the first reporting year for most institutions in IPEDS.
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figure 1) increased substantially from 35 to 104 (197.1%) in Tennessee and from 71 to 136

(91.5%) in Texas.

This expansion of postsecondary education institutions via branch campuses is the

focus of our research. Specifically, we measure the causal impact of the establishment of

branch campuses on economic growth in the local communities and surrounding regions.

Identifying causal e↵ects of branch campuses is di�cult because their location may

be endogenous to the local economic conditions. For example, states may see a branch

campus as a strategy to revitalize a struggling local economy. Creating a more educated

supply of local labor may attract industry to communities experiencing economic declines.

Alternatively, states and institutions may choose to open branch campuses in communities

already experiencing economic growth and therefore have urgent workforce demands. Both

of these potential endogeneity problems in the site selection process make it di�cult to

assess whether a branch campus opening leads to economic growth in the local area or

vice versa. Our empirical strategy aims to account for such endogeneity.

A second problem with measuring the impact of branch campuses is identifying the

“local” community that likely could be a↵ected and gathering the corresponding economic

indicators for that “local” area. Texas has geographically large counties, and the true

catchment area of a branch campus might represent only a fraction of the economic

volume measured in the typically available administrative data on county-wide economic

indicators. While county-level data are the lowest geographic unit for which annual

administrative data on economic activity are historically available, they may not capture

the true catchment area of a branch campus. We attempt to identify the true catchment

area more precisely by focusing on the much smaller census tracts and their proximity

to new campuses. However, while historical administrative data are available for each

census tract, they are only available once a decade, which is not su�ciently frequent to

college or university. The precise definitions are included in the Tennessee Higher Education Commission’s
Academic Policy for O↵-Campus Instruction A 1.4A (available at https://www.tn.gov/content/dam/tn/th
ec/bureau/aa/academic-programs/program-approv/aca-pol/CC Univ Off Campus Policy Website.pdf,
last retrieved December 23, 2023). In Texas, we include locations that o↵er “o↵ campus face-to-face”
instruction according to the Texas Higher Education Coordinating Board’s Distance Education Program
Inventory (available at https://apps.highered.texas.gov/program-inventory/, last retrieved December 23,
2023).
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study the e↵ect of newly established branch campuses. Additionally, even if we focused on

the county-level, the smallest area covered by administrative data, GDP data would only

be available after 2001, making it di�cult to account for openings of branch campuses

decades earlier.

To solve these problems, we developed a regionally disaggregated metric based on

daytime satellite imagery and use it to study the e↵ects of branch campus openings in this

paper. This metric allows us to create historic, annual economic data at the census tract

level. While recent work in economics and geography has frequently utilized nightlight

satellite imagery as a means for measuring economic conditions (e.g., Bazzi et al., 2016;

Ebener et al., 2005; Henderson et al., 2018; Lee, 2018; Sutton and Costanza, 2002), we

apply a novel approach that uses daytime satellite imagery to proxy economic activity

at a much more disaggregated level by deriving land-cover classifications (Lehnert et al.,

2023). In comparison to other common satellite-based economic proxies (e.g., night light

intensity), our proxy o↵ers higher precision in predicting economic activity at smaller

geographic areas. This property of the proxy allows us to study the e↵ects of branch

campus openings at the level of disaggregation at which the e↵ects are most plausible

based on typical empirical commuting patterns. Moreover, this novel approach o↵ers an

extended, annual time series back until 1984, allowing us to consider a significantly larger

number of historic branch campus openings in our analyses. The level of disaggregation

of daytime satellite imagery allows us for the first time to isolate the economic activity in

close proximity to branch campuses (treated areas) in comparison to other (non-treated)

areas for the period of heavy expansion of branch campuses.

We use multiple empirical strategies to identify the e↵ect of college branch campuses

on local economic growth. First, we exploit the longitudinal structure of our data by

estimating fixed e↵ects (FE) models to determine how the establishment of a branch

campus impacts the local economy. We apply a traditional di↵erence-in-di↵erences (DD)

approach that captures time-invariant unobservable characteristics of census tracts for

both Tennessee and Texas, respectively. Second, we extend our DD model to account for

potential treatment e↵ect heterogeneity (Callaway and Sant’Anna, 2021; Sant’Anna and
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Zhao, 2020). This approach more fully considers both the dynamic nature of the impacts as

well as the staggered treatment timing. Both the traditional and the heterogeneity-robust

DD results suggest a positive association between branch campuses and economic growth.

According to our most conservative estimate from the heterogeneity-robust DD model, a

branch campus opening is associated with a GDP growth of 1.2 percent in Tennessee and

5.0 percent in Texas.

While the DD approaches allow us to understand some di↵erences in outcomes across

di↵erent locations, the assumptions necessary to establish causality in such models may

be di�cult to justify. To better establish causality, we additionally use an instrumental

variable (IV) approach. We were able to construct for Texas an instrument that solves the

problem of endogenous branch campus location decisions. Our instrument exploits regional

di↵erences in the incentives to create new branch campuses based on di↵erences in taxing

rights across campuses. The IV results, which we regard as a more credibly causal estimate,

similarly reveal positive and significant impacts of branch campus openings, amounting

to a local e↵ect on GDP growth of 13.4 percent according to our most conservative

estimate. We also provide suggestive evidence on potential mechanisms. We find that the

increase in the number of degrees produced corresponds to the type of campus created;

moreover, we find that employment in health and education, the most common programs

o↵ered at branch campuses, increases after the establishment of a branch campus. These

improvements suggest that human capital development drives the creation of business

opportunities and jobs.

The paper proceeds as follows. Section 2 outlines the relevant institutional background

on college branch campus openings. Section 3 describes our data and Section 4 our

methods. Section 5 presents our main results, including both the DD and IV specifications.

Section 6 o↵ers various robustness checks that support our main results. Section 7 discusses

the results and concludes.
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2. Institutional Background and Setting

We focus on Texas and Tennessee because their expansion of branch campuses was

similar to national trends. They both substantially expanded branch campuses in the

early 2000s, thus helping accommodate an increase in college enrollment. Programs

commonly o↵ered at branch campuses include health professions, education programs or

computer science, as well as business management and public administration or social

services.7 By o↵ering such programs, branch campuses provide an a↵ordable entry point

into higher education, particularly for the economically disadvantaged students in a region

who are more likely to attend college if a campus is closer to their home. They also

increase the pool of trained skilled workers in a region and thereby create an environment

that is conducive to subsequent economic expansion, often in more knowledge-intensive

jobs, and encourages the emergence of new firms. For example, with computer science

degrees the new graduates may work as computer support specialists or IT technicians

or, if they move on to four-year colleges, they may work in software engineering. With

degrees in health professions, graduates may directly enter the labor market by working

as nursing assistants, or move on to a four-year program and work as a registered nurse, a

healthcare administrator, or a therapist. With education degrees they may directly enter

the public or private labor market by working as teaching assistants, classroom aides, or

early childhood educators, or move on to a four-year program to earn a bachelor’s degree

and become schoolteachers (after an additional certification), educational administrators,

or curriculum developers.

By producing graduates with either two- or four-year degrees, branch campuses help

strengthen the human capital assets of a local economy. As such, the establishment

of a new branch campus can foster local economic growth. Indeed, the rhetoric used

when Texas policymakers announced branch campuses focused on expanding training and

stimulating regional economic development. For instance, when Texas A&M established

a branch campus in Fort Worth, policymakers made claims around establishing “an

7Information on programs in this section only represents Texas and was gathered from the Texas
Higher Education Coordination Board’s program inventory at https://apps.highered.texas.gov/program-
inventory/ (last retrieved December 23, 2023).
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additional talent pipeline,” closing “gaps in city and state’s workforce” in various careers

and creating “growth and opportunity” to the area (Olivares, 2022). When the University

of North Texas opened a branch campus in Frisco, Frisco Mayor Je↵ Cheney made similar

claims (Juarez Monsivais, 2018): “A↵ordable, quality education is an integral part of being

a vibrant, innovative and sustainable community ... It also boosts economic development,

which benefits Frisco and our entire region.” Our research can establish whether such

claims are justified.

3. Data

We construct two novel datasets to be able to study economic e↵ects of campus openings

at a very local regional level. The first dataset focuses on branch campus openings (our

main independent variable). As information on opening dates and specific geographic

locations is not readily available in single administrative databases, we assembled these

data for Tennessee and Texas.8 In Tennessee, we were able to obtain administrative data

on branch campus openings via two separate data requests filled by the Tennessee Higher

Education Commission and Tennessee’s community and technical college system (TBR –

The College System of Tennessee). In Texas, we were able to obtain a list of currently

operating branch campuses from the Texas Higher Education Coordinating Board and

conducted an extensive web search and phone survey to collect the opening dates of each

campus.9 We define a branch campus’ opening date as the date that a campus began

o↵ering classes and enrolling students.10

Our second dataset focuses on regional economic activity as our outcome variable.

Data on economic activity are not available at small enough local levels and particularly

not for historical time series. As such, we apply Lehnert et al.’s (2023) novel methodology

to construct a proxy based on daytime satellite imagery that measures local economic

8Appendix Figures A1 and A2 show maps of the campus locations in Tennessee and Texas, respectively.
9We leveraged institution websites as well as local news articles to find branch campus opening dates.

10While the major part of the data assembly took place in 2021 with then-available methods, in fall
2023 we were able to use ChatGPT-4 through Bing Chat for an additional search and extended our
database. Our findings are robust to including or excluding the information retrieved from Bing Chat.
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activity. Details are described in the following section. Given that counties are smaller in

Tennessee than in Texas, our choice of states also provides some contrast in the saliency

of our more localized measure of economic activity as compared to county-level economic

variables.

3.1. Construction of Proxy for Local Economic Activity

We construct a proxy for local economic activity that allows us to create annual

economic data for regional levels as small as U.S. census tracts. This methodology uses

a machine-learning algorithm to classify pixels in the satellite data into six di↵erent

land-cover categories—built-up areas, grass, forest, cropland, areas without vegetation

or buildings, and water—based on the spectral reflectance in di↵erent wavelengths. The

variation in this regional land-cover composition explains a significant part of the variation

in regional economic activity.

Lehnert et al.’s (2023) proxy o↵ers two major advantages over other extant metrics.

First, the authors show that it has a high validity for very small regional units (e.g.,

units as small as one square kilometer). Therefore, we can disaggregate our outcome

to regional units smaller than those available in administrative statistics (which have

counties as the smallest regional units). At such disaggregated levels, the proxy also

achieves higher precision in predicting economic activity at disaggregated levels than other

common proxies such as night light intensity. This high validity at disaggregated levels

allows us to identify local developments around newly opened branch campuses, which

we expect to occur within a limited radius of a few dozen miles around it. Thus such

developments may be unobservable at the county level, the most disaggregated metric

available in public data. Second, the proxy o↵ers a consecutive and consistent annual

time series starting in 1984, extending administrative statistics (which start in 2001) and

night light intensity data (which start in 1992).11 This extended time series allows us to

11We follow the suggestion in Lehnert et al. (2023) not to use observations where more than 10 percent
of a region’s area is covered by clouds (i.e., each time that the satellite passed over that particular region,
making it impossible to observe ground cover in those years) and observations where the number of
built-up pixels deviate too strongly from the median number of built-up pixels among all observations
of a region. In Texas, we additionally exclude nine census tracts at the border to Mexico from our
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investigate the regional economic activities around all branch campuses that opened after

1984. With many branch campuses having opened in the 1980s, this increased variation

greatly expands our sample and facilitates our estimations.

To construct the proxy for regional economic activity at the census tract level, we

proceed in two steps. As a first step, we train an OLS model on the land-cover classification

based on daytime satellite imagery for the entire continental U.S. to obtain highly reliable

estimation coe�cients for predicting economic activity at the census tract level. In doing

so, we use county-level GDP data which are available from the Bureau of Economic

Analysis for the years 2001 through 2020.12 In addition, we calculate each county’s area

belonging to one of the six land-cover categories measured as the number of satellite data

pixels per category. We take the natural logarithms of both the GDP and land-cover

measures. Since we intend to use the county-level coe�cients from the predicted model to

predict census-tract level GDP, we standardize all variables before the estimation.13 We

then estimate Equation 1 as follows:14

Yjt = �+ LCjt + ⌫s[j] + ⌧t + µjt (1)

where Y is standardized log GDP for county j in year t, LC is a vector including the six

standardized log pixel counts per land-cover category for county j in year t, ⌫s is a set of

state dummies, ⌧t is a set of year dummies, and µ is the error term.15 The standardization

is necessary to use the obtained coe�cients for predicting GDP at a di↵erent regional

level, in our case the census tracts. The OLS model explains as much as 58.8 percent

analyses, because a visual inspection of the land-cover classification revealed a time-constant pattern of
misclassification. From 1984 through 2020, we thus do not use the land-cover classification for 2.9 percent
of the potential census-tract observations in Tennessee and 3.2 percent of the potential census-tract
observations in Texas. Again following Lehnert et al. (2023), we can impute most of these observations as
we use the three-year moving average of the GDP prediction as dependent variable in our analyses. After
this imputation, we can use 99.5 percent of the potential census-tract observations in Tennessee and 98.8
percent of the potential census-tract observations in Texas.

12Available at https://apps.bea.gov/regional/downloadzip.cfm (last retrieved June 20, 2022).
13We standardize using the mean and standard deviation of county GDP across the entire Bureau of

Economic Analysis sample of counties.
14Appendix Table A1 shows the results of this estimation.
15In addition to this set of explanatory variables, we follow Lehnert et al.’s (2023) suggestion and

include a measure for cloud cover in the satellite data, which a↵ects only very few observations, to further
improve the prediction.
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(adjusted R
2) of the county-level variation in GDP across the entire U.S.16 Additional

validation analyses across states further reveal that the proxy’s validity is even higher

for small regional levels (e.g., 90.6% of the variation in GDP in Tennessee, a state with

small average county size), thus emphasizing its validity as a proxy for census tract-level

economic activity.

As a second step, we use the OLS estimation coe�cients of the variables in LC to

obtain a census tract-level prediction of standardized log GDP. Ideally, we would estimate

the same model as in Equation 1 except that we would like to estimate it at the census

tract level. However, as we cannot observe GDP at the census tract level, we assume that

the land-cover metrics have the same relationship at the census tract level as at the county

level, and given our standardization in Equation 1, we can use the number of pixels per

land-cover category to then predict census tract-level GDP. This procedure thus provides

us with a prediction of standardized log GDP as an annual measure for census tract-level

economic activity starting in 1984. We use these data to estimate the e↵ect of opening

a branch campus on the regional economic activity in a rather precise catchment area

around the new campus.

3.2. Definition of Catchment Areas

To define the radius of impact and thus the catchment area of a new campus, we

make a consideration based on commuting distance. In 2020, the last year within our

study period, the mean one-way commuting time was 25.4 minutes in Tennessee and 26.6

minutes in Texas.17 Therefore, we decide to use a 25-mile radius to correspond with these

commuting times.18 However, in Section 6.1.1 we also perform robustness checks using a

10-mile radius as a very localized lower bound and a 40-mile radius as a geographically

16The percentage of the explained variation in county-level GDP is thus in line with Lehnert et al.’s
(2023) original analysis, which finds that the proxy explains 62.3 percent of this variation in Germany.

17According to data from the American Community Survey available at https://data.census.gov/table?
q=commuting%20distance&g=040XX00US47,48&y=2020 (last retrieved January 2, 2024).

18At an average speed of 62.9 miles per hour on all tra�c roads estimated for 2015 (see De Leonardis
et al., 2018), these numbers correspond to an average commuting distance of 26.6 miles in Tennessee
and 27.9 miles in Texas. Given that the average commuting time has been increasing throughout our
observation period (Burd et al., 2021) and was likely much smaller at the start of our observation period,
we decide to use a slightly smaller radius of 25 miles in our main specifications.
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more widespread upper bound of an approximate commuting zone around the new branch

campus.

Table 1 shows the distribution of treated units in Tennessee and Texas under the 25-

mile treatment radius definition during our estimation period (1984–2020). In Tennessee,

we observe 69 branch campus openings, resulting in 1,481 of 1,701 (87.1%) census tracts

treated in any year of the sample and 25,084 of 62,630 (40.0%) of the observations in our

regression sample representing treated observations. In Texas, these numbers amount to

65 branch campus openings, 4,536 of 6,875 (66.0%) census tracts treated in any year of

the sample, and 64,940 of 251,680 (25.8%) treated observations. Tables A2 and A3 in the

Appendix show this distribution for the alternative 10- and 40-mile radii.

4. Methods

We apply three di↵erent econometric methods to estimate the impact of branch campus

openings on local economies. First, as a baseline model we use a DD empirical strategy

to estimate the e↵ects, applying the treatment radius of 25 miles:

cYit = ↵ + �BranchCampusOpenit�4 + �i + �t + ✏it (2)

cYit is our proxy for GDP in tract i in year t obtained through the procedure described

in Section 3.1. BranchCampusOpenit�4 is a binary indicator equal to 1 for the tracts

within the specified radius in the year a branch campus opens and each subsequent year

(i.e., the indicator remains equal to 1 in all years after the campus opens). We lag this

variable by four years to account for the time until the first cohort of students graduates

from a newly opened campus and subsequently potentially contributes to local economic

activity if they work near that campus. With an average duration of almost 3.5 years for

completing an associate degree (Shapiro et al., 2016) and a minimum time of four years

for completing a bachelor’s degree, a lag of four years is the most conservative lag we

can choose. �i represents tract-level FE, and �t represents year-level FE. By including

tract-level FE, we ensure that our identification relies on new branch campus openings
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Table 1: Branch Campus Openings, Treated Census Tracts, and Treated
Observations in Tennessee and Texas, 1984–2020

Tennessee Texas

N % N %
(1) (2) (3) (4)

Branch campus openings (after 1984) 69 65

Census tracts 1,701 100.0 6,875 100.0
Treated census tracts 1,481 87.1 4,536 66.0

Census tract year-observations 62,630 100.0 251,680 100.0
Treated census tract-year observations 25,084 40.1 64,940 25.8

Notes: Table presents descriptive statistics for a treatment radius of 25 miles.
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throughout the period we analyze. We estimate our model with standard errors clustered

at the census tract level (✏it).

Second, we apply Callaway and Sant’Anna’s (2021) heterogeneity-robust DD estimator

(henceforth CS-DD). While the above DD model deals with time-invariant regional

characteristics that potentially influence branch campus location decisions, it does not

consider (a) that the impact of a branch campus might not be inherently constant over

time and (b) that di↵erences and treatment timing might bias the results by attaching

di↵erent weights to each campus opening (for a survey of the corresponding literature, see

de Chaisemartin and D’Haultfœuille, 2023); the CS-DD estimator addresses both these

issues.

Third, as neither conventional DD nor CS-DD may fully solve endogeneity problems,

we also estimate the impact of branch campuses using an instrumental variables strategy.

However, this is only possible for Texas due to its unique institutional setting. We develop

a new instrument based on the existence or non-existence of institutionalized incentives

to create additional branch campuses that are exogenous to the colleges. Although

branch campuses may often target campus locations based on economic characteristics

of the nearby community, there is an important exception that provides the basis for an

alternative identification strategy in Texas.

To understand this exception, we review the two ways in which Texas allows for the

creation of community colleges. The first way relies on the state. The Texas Higher

Education Coordinating Board can unilaterally create a community college. Community

colleges created in this way rely on state appropriations for financing and have no local

taxing authority. The second way to create a community college relies on a set of school

districts joining forces. Multiple districts can join to form a community college district.

The school districts have taxing authority, and they can grant some of that taxing authority

to the community college district that they formed. These community college districts

(and their boundaries) were largely formed over 50 years ago. About 30 percent of counties

in Texas have a community college district with taxing authority, and the location of
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these districts is shown in Figure 2, where the shaded areas denote taxing districts.19

Community colleges with taxing authority charge in-district and out-of-district (higher)

tuition rates. Out-of-district tuition rates are on average 56 percent higher than in-district

rates,20 and these community colleges have incentives to establish branch campuses near

the borders of their taxing district to “capture” out-of-district enrollments that strengthen

their revenue or to “protect” potential enrollment loss to other community college districts.

We assume that the additional out-of-district tuition price exceeds the marginal cost of

educating a student, so that the district has a stronger incentive to establish a branch

campus.

Over the time period that we study in our paper, changes in the taxing authority of any

community college districts did not occur; however, as new branch campuses are created

both inside and outside of community college districts, the incentives for subsequent

creation of branch campuses are subject to change. As such, we create instruments based

on the interaction between a taxing district (time invariant) and the proximity of the

census tract to existing branch campuses (time variant). More specifically, our set of

instrumental variables comprises the log distance from a census tract (centroid) to the

closest branch campus outside of its natural commuting zone (lagged by nine years)21 and

the interaction of this log distance with a dummy for whether the county in which a tract

is located has a community college district with taxing authority.

To understand the instrument, consider Figure 3 as an example that visually explains

the logic of our IV. Suppose that leaders are considering whether or not to establish a

campus in the hypothetical location marked by the blue cross in panel A. This location is

situated in a non-taxing district, with its catchment area of a 25-mile radius indicated by

the light-blue shade in a stylized manner. If they were to establish a campus and assume

this likely catchment area, its viability as a site would depend on whether it can attract

19As geographic data delineating the exact taxing district borders are not available anywhere, we
manually reproduce the taxing district borders in ArcGIS using a PDF map provided by the Texas
Association of Community Colleges as a basis (available at https://tacc.org/sites/default/files/documen
ts/2018-10/17r0057 taxing districts.pdf, last retrieved December 10, 2022).

20See http://www.collegeforalltexans.com/apps/collegecosts.cfm?Type=1&Level=2 (last retrieved
May 7, 2024).

21The nine-year lag in the instrument corresponds to a five-year lag respective to the campus opening,
because we lag the campus opening by another four years as explained in Equation 2.
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Figure 2: Texas Community College Taxing Districts
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market share based on nearby competitors. As the distance to existing branch campuses

located inside the catchment area of the hypothetical branch campus location (indicated

by the dotted arrow) a↵ects the treatment status of the census tract in which the campus

would be located, we do not consider the distance to these campuses in constructing

our instrument. Instead, we measure the distance to the nearest campus outside of

its catchment area (indicated by the solid arrow) to proxy for such considerations on

competition. However, this distance by itself is not enough. It may not fully satisfy the

exclusion restriction if the distance is related to economic growth. We need an exogenous

source of variation.

This is where the taxing districts have importance. In a taxing district, there is an

incentive to establish the campus closer to its border. For the hypothetical branch campus

location in panel B, which is situated within a taxing district, competitors matter but the

financial incentives (56% higher tuition) for students outside the district make it so that

the distance to the nearest competitor loses importance as there are incentives to create

campuses within the taxing district anyway. Put di↵erently, the distance to potential

competitors plays a smaller role for the hypothetical branch campus location in panel

B than for that in panel A because of the additional financial incentive due to higher

tuition fees. Therefore, the establishment of a branch campus is more likely in the location

indicated in panel B than in the location indicated in panel A. Empirically, to model this

mechanism we interact our distance measure with a dummy variable indicating whether

the census tract is located inside a taxing district or not.

Our first-stage estimates (appendix table A4, column 1) confirm this mechanism and

are thus in line with our expectations. Being in a taxing district changes the relationship

with distance making it so that the added incentives to establish a branch campus reverse

the distance relationship. Put di↵erently, the closer the distance to competitors, the less

likely that a branch campus forms nearby; however, for taxing districts, the role of the

distance to competitors is o↵set due to the taxing authority and hence has a smaller

influence on campus location decisions. Thus, our instrument captures incentives for

branch campus creation that result from both the regional necessity of college provision
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(a) Outside taxing district (b) Inside taxing district

Figure 3: Hypothetical College Branch Campus Locations as Example for IV Logic

Notes: The maps show an area in the southeast of Dallas, with the blue crosses indicating hypothetical
branch campus locations, one outside a taxing district (panel A) and one inside a taxing district (panel
B). The areas shaded light blue highlight census tracts within the catchment area of the hypothetical
branch campus locations. The dotted arrows indicate the distance to existing branch campuses inside the
hypothetical catchment area, which we do not consider in constructing our instrument. The solid arrows
indicate the distance from the border of the hypothetical catchment area to the closest existing branch
campus outside it, which we use in in constructing our instrument.
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(if other branch campuses are located only far away) and the possibility to generate

taxing revenue (if a college has taxing authority in a region). The identifying assumption

underlying this IV approach is that these incentives influence the location decisions for

branch campuses independent of economic development.

5. Results

Table 2 presents our estimates of the e↵ect of branch campus openings on economic

activity in Tennessee (columns 1 and 2) and Texas (columns 3 through 5) with our 25-mile

radius of impact. Columns 1 and 3 present the traditional DD estimates, columns 2 and

4 the CS-DD estimates,22 and column 5 the IV estimates, which are available only for

Texas. The indicator for the branch campus equals one in the year of a branch campus

opening within the catchment area and in all subsequent years, with a four-year time lag.

We see consistently positive and statistically significant estimates, suggesting that

local economies with a branch campus opening see larger increases in GDP than local

economies without a branch campus opening. The smaller magnitude of the estimates

for Tennessee compared to Texas may come from the fact that Tennessee’s expansion of

branch campuses outpaced the growth in enrollment (as Figure 1 indicates), and that

by the end of our observation period relatively few census tracts in Tennessee remain

untreated (as Table 1 indicates). Tennessee created branch campuses that continued to

lower average enrollment across all campuses. By contrast, enrollment in Texas kept pace

with the expansion of branch campuses. The generally larger coe�cients in Texas may

indicate that the branch campus openings are just responsive to population growth in

Texas but not providing disproportional supply of new branch campuses. Population

growth appears to spur the state or institution to open a branch campus, and increasing

access to higher education enhances economic growth in locations with population growth.

The coe�cients obtained through CS-DD estimation (columns 2 and 4) are only roughly

22We use the csdid package in Stata to implement this estimator (described in Callaway and Sant’Anna,
2021 and Sant’Anna and Zhao, 2020) following Roth et al.’s (2023) guidance for DD designs with staggered
treatment timing.
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Table 2: Estimates of Branch Campus E↵ect on Economic Activity in Tennessee and
Texas, 1984–2020

Tennessee Texas

DD CS-DD DD CS-DD IV
(1) (2) (3) (4) (5)

Branch campus 0.039⇤⇤⇤ 0.035⇤⇤⇤ 0.160⇤⇤⇤ 0.141⇤⇤⇤ 0.361⇤⇤⇤

(0.008) (0.011) (0.007) (0.007) (0.119)

Observations 62,630 62,581 251,680 251,641 251,680

Number of census tracts 1,701 1,701 6,875 6,875 6,875

Within-R2 0.207 n/a 0.191 n/a 0.166

Notes: The dependent variable is the predicted standardized natural logarithm of GDP. In the DD
and IV models, the treatment variable is lagged for four years so that we estimate the economic
impact of a branch campus four years after its opening date. The treatment radius is 25 miles. All
models include constant, census tract FE, and year FE. The CS-DD models use fewer observations
because they consider only observations with pair balance. Standard errors clustered at the census
tract level in parentheses.
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ten percent smaller in magnitude compared to the coe�cients obtained through traditional

DD (columns 1 and 3) in both Tennessee and Texas, suggesting that not accounting

for di↵erences in treatment timing leads to only a very moderate overestimation of the

branch campus e↵ect. In comparison, the coe�cient obtained through IV estimation

in Texas (column 5) is more than twice as large as the coe�cient obtained through

CS-DD estimation (column 4). We interpret this larger magnitude of the coe�cient as

resembling a local average treatment e↵ect, that is, the e↵ect of opening a branch campus

in regions that comply to the incentive structure to open a branch campus provided by

our instrument. The compliers are likely to be in the catchment area of college campuses

in regions that are relatively underdeveloped. As such, the relative growth compared to

the baseline could indeed be that much larger.

Transforming the coe�cients into interpretable metrics requires some reverse engi-

neering. We are predicting standardized growth across regions, and the impacts are in

standard deviation units within the respective census tract over time. So, for example,

the estimated e↵ect of 0.160 in column 3 for Texas corresponds to an increase in economic

activity of 0.160 standard deviations of predicted log GDP on average once a campus

opens. For Tennessee, this e↵ect amounts to 0.039 standard deviations. To translate this

e↵ect into a more interpretable metric, i.e., GDP growth, we can do back-of-the-envelope

calculations based on a few reasonable assumptions. When we outlined our prediction

models for economic growth, we standardized the dependent and independent variables

across the U.S. distribution. To move our estimates in Table 2 to be GDP numbers, we

have to find a way to decompose the county-level GDP into the census-tract GDP. To

do this, we try two assumptions. One is that economic activity is uniformly distributed

across all census tracts. While this distribution is likely infeasible, it provides a lower

bound for the estimates. Second, we make the more feasible assumption that economic

activity is distributed according to built-up area. This provides a second, likely more

realistic bound for the estimates. In each case, we can then mathematically reverse our

standardization.

Under these assumptions, we produce a lower bound and a more realistic estimate of
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the growth in GDP associated with a branch campus opening. For Texas, the traditional

DD coe�cient in column 3 translates into a cumulative increase relative to the baseline

of 5.8 percent in GDP under the lower-bound assumption during our observation period

(1984–2020) and a 14.1 percent increase under the more realistic assumption. For Tennessee,

the traditional DD coe�cient in column 1 represents a lower-bound increase in GDP of

1.4 percent and a more realistic increase of 3.3 percent. For the CS-DD results, these

estimated coe�cients correspond to a conservatively (realistically) estimated e↵ect of

5.0 (12.4) percent in Texas and of 1.2 (2.9) percent in Tennessee. The IV estimate in

Texas corresponds to a conservatively (realistically) estimated e↵ect of 13.4 (34.9) percent.

While the e↵ects are larger in Texas than in Tennessee, they are economically significant,

even when following the more conservative approach. In relation to the mean annual

GDP growth of 4.9 percent in the U.S. in our observation period (1984–2020),23 branch

campuses make a sizeable contribution to economic growth in addition to the general

trend.

6. Robustness Checks

We provide a number of robustness checks to further validate the baseline model. These

include estimating the baseline model using alternative specifications on the treatment

radius and examining other potential exclusion zones. Moreover, we analyze potential

e↵ect heterogeneities for two- and four-year branch campus openings and discuss the

time trends of the treatment e↵ect in an event study. Finally, to provide evidence on

the potential mechanisms of the branch campus e↵ect on GDP growth, we estimate the

branch campus impact on education and employment levels. Unfortunately, this education

and employment information is available only for a contracted sample for few very recent

time periods. Nevertheless, our estimations provide suggestive evidence.

23As indicated in World Bank national accounts data and OECD National Accounts data files available
at https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (last retrieved December 13, 2023).
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6.1. Alternative Specifications

6.1.1. Changes in Treatment Radius

We start with alternative specifications on the treatment radius. In our baseline

specification, we focused on a 25-mile radius because it captures the typical commuting

distance to work in the states we study (see section 3.2). To evaluate whether our results

are robust to alternative specification of the branch campuses’ radii of impact, we repeat

our estimations with radii of 10 and 40 miles. We present the results of these estimations

in Table 3.

These alternative specifications show that our results hold for the larger radius of 40

miles and mostly also for the smaller radius of 10 miles. For both Tennessee and Texas, we

find the same patterns of the e↵ects when applying the 40-mile radius as in our preferred

25-mile specifications in Section V with the exception of the IV result for Texas. The

estimated coe�cient when applying the 40-mile radius in the IV specification becomes

statistically insignificant. With such a large radius, the first-stage estimation likely does

not capture the relevant density in the college distribution anymore as, particularly in

rural areas, it builds on the distance to campuses that may be too far away to influence

the decision of opening a branch campus, thus leading to the insignificant estimate of

the local average treatment e↵ect in the second stage. Considering the 10-mile radius,

the direction and significance of the coe�cients for Texas also align with those for the

25-mile radius across the di↵erent estimators we use but are smaller in magnitude. For

Tennessee, however, the traditional DD estimate turns insignificant when applying the

10-mile radius and heterogeneity-robust DD estimate even turns negative and significant

at the ten-percent level. We argue that in Tennessee, which is far more densely populated

than Texas, 10 miles seems to be too small a radius because census tracts in the control

group likely also experience a treatment e↵ect when using such small radii. That is, results

have a downward bias because control regions (e.g., 15 miles from a campus) profit from

the branch campus opening as well and potentially even draw away economic activity

from census tracts within 10 miles of the campus.
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Table 3: Estimates of Branch Campus E↵ect on Economic Activity in Tennessee and
Texas, 1984–2020, 10-Mile and 40-Mile Treatment Radii

Tennessee Texas

DD CS-DD DD CS-DD IV
(1) (2) (3) (4) (5)

Panel A: 10-mile treatment radius

Branch campus 0.003 –0.016⇤ 0.029⇤⇤⇤ 0.024⇤⇤⇤ 0.362
(0.011) (0.009) (0.010) (0.008) (0.253)

Observations 62,630 62,600 251,680 251,632 251,680

Number of census tracts 1,701 1,701 6,875 6,875 6,875

Within-R2 0.204 n/a 0.175 n/a 0.137

Panel A: 40-mile treatment radius

Branch campus 0.043⇤⇤⇤ 0.074⇤⇤⇤ 0.198⇤⇤⇤ 0.170⇤⇤⇤ –0.072
(0.006) (0.020) (0.007) (0.008) (0.136)

Observations 62,630 62,506 251,680 251,649 251,680

Number of census tracts 1,701 1,700 6,875 6,875 6,875

Within-R2 0.207 n/a 0.175 n/a 0.153

Notes: The dependent variable is the predicted standardized natural logarithm of GDP. In the DD
and IV models, the treatment variable is lagged for four years so that we estimate the economic
impact of a branch campus four years after its opening date. The treatment radius is 10 miles in
panel A and 40 miles in panel B. All models include constant, census tract FE, and year FE. The
CS-DD models use fewer observations because they consider only observations with pair balance.
Standard errors clustered at the census tract level in parentheses.
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6.1.2. Changes in the Definition of Treatment or Control Group: Donut

Estimations

Next, we consider two di↵erent exclusion zones to account for two potential short-

comings of our estimation strategy. First, we produce an “outer donut” estimate of our

results, that is, we exclude all census tracts located between 25 and 40 miles to a newly

opened branch campus. This specification changes the control group and accounts for a

potential zero-sum game in economic development. Suppose, for example, that a business

would have settled in the 25–40 mile radius around the campus but now moves within 25

miles of the nearest campus. In our estimation strategy, the census tracts in the 25-40

mile radius lose economic activity (causing our control groups not to stay constant) and

our treatment areas within 25 miles of a branch campus increase economic activity but

only at the cost of the reduced control group e↵ect. These zero-sum games might cause

us to overstate the impact of the branch campus opening. Therefore, we use a donut

estimation model and exclude census tracts in the 25–40 mile radius from our estimations,

thus taking only regions with a distance of at least 40 miles to a newly opened campus

as control group. Panel A of Table 4 shows the results of this outer donut estimation,

which reveals estimated treatment e↵ects very similar to those obtained from our main

specification in Table 2. These robust results thus rule out the zero-sum e↵ect as an

alternative explanation.

Second, we produce an “inner donut” estimate of our results, that is, we exclude the

census in which the branch campuses themselves are located. This alternative exclusion

zone changes the treatment group and focuses on whether the increase in economic activity

results from only the campus itself. A large, sprawling campus would significantly increase

new buildings in the satellite data and thus our proxy for GDP. If this is the only source

of physical growth, then it may not have spurred nearby economic activity. To account for

such potential problems in the treatment group, we restrict the treatment group to census

tracts located 25 miles from a newly opened branch campus but that do not themselves

contain the campus. Panel B of Table 4 shows the results of this inner donut estimation,

which again are very similar to our main results. Therefore, the branch campus creation
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Table 4: Donut Estimates of Branch Campus E↵ect on Economic Activity in
Tennessee and Texas, 1984–2020

Tennessee Texas

DD CS-DD DD CS-DD IV
(1) (2) (3) (4) (5)

Panel A: Outer donut estimates

Branch campus 0.018⇤⇤ 0.059⇤⇤⇤ 0.156⇤⇤⇤ 0.138⇤⇤⇤ 0.327⇤⇤⇤

(0.008) (0.018) (0.008) (0.007) (0.093)

Observations 56,208 56,159 229,418 229,379 229,418

Number of census tracts 1,526 1,526 6,271 6,271 6,271

Within-R2 0.202 n/a 0.204 n/a 0.186

Panel B: Inner donut estimates

Branch campus 0.040⇤⇤⇤ 0.034⇤⇤⇤ 0.160⇤⇤⇤ 0.141⇤⇤⇤ 0.350⇤⇤⇤

(0.008) (0.011) (0.007) (0.007) (0.117)

Observations 60,229 60,180 249,338 249,303 249,338

Number of census tracts 1,636 1,636 6,811 6,811 6,811

Within-R2 0.206 n/a 0.192 n/a 0.169

Notes: The dependent variable is the predicted standardized natural logarithm of GDP. In the DD
and IV models, the treatment variable is lagged for four years so that we estimate the economic
impact of a branch campus four years after its opening date. The estimations in panel A exclude
census tracts located between 25 and 40 miles from a branch campus. The estimations in panel
B exclude the census tracts in which the branch campuses themselves are located. The treatment
radius is 25 miles. All models include constant, census tract FE, and year FE. The CS-DD models
use fewer observations because they consider only observations with pair balance. Standard errors
clustered at the census tract level in parentheses.

27



alone is not the driver of the economic e↵ects.

6.2. E↵ect Heterogeneity

6.2.1. Two-Year Vs. Four-Year Branch Campuses

To analyze potential e↵ect heterogeneity, we first investigate two-year and four-year

branch campuses separately. As these two types of campuses o↵er slightly di↵erent

programs, they might have di↵erential impacts on the local economy. At two-year branch

campuses, the most frequently o↵ered programs were mainly health professions, computer

and information science and support programs, liberal arts types of general programs, and

education programs (i.e., teaching and other school-based professions).24 These programs

provide training that enables graduates to either directly enter the local labor market

or to transfer to four-year colleges. At four-year branch campuses, the most frequently

o↵ered programs were education programs, health professions, computer and information

science programs, business management, and public administration and social services

programs. They directly increase the highly skilled workforce in a local region and create

an environment that is conducive to economic expansion in more knowledge-intensive

jobs.

Tennessee and Texas di↵er in the percentage of branch campus openings after 1984

that belong to two-year and four-year colleges. In Tennessee, with 59 out of 69 openings,

the majority belong to two-year colleges. In Texas, branch campus openings are more

evenly distributed between the two types of institutions, with 26 two-year branch campus

openings and 39 four-year branch campus openings. Applying the treatment radius of

25 miles, we observe in Tennessee that 1,422 out of 1,701 census tracts (83.6%) are

treated by two-year branch campuses, 722 (42.4%) by four-year branch campuses, and

663 (39.0%) by both types of branch campuses. In Texas, these numbers amount to 2,610

out of 6,875 census tracts (38.0%) treated by two-year branch campuses, 3,865 (56.2%)

24Information on programs in this section only represents Texas and was gathered from the Texas
Higher Education Coordination Board’s program inventory at https://apps.highered.texas.gov/program-
inventory/ (last retrieved December 23, 2023).
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treated by four-year branch campuses, and 1,939 (28.2%) treated by both types of branch

campuses. Appendix Table A5 includes an overview of the descriptive statistics, including

the treatment variables in the regression sample.

To estimate the particular e↵ects of two-year versus four-year campuses, we re-estimate

our DD model with separate treatment indicators for each type of campus.25 Table 5

shows the results of this estimation, repeating for comparison the pooled DD results in

columns 1 and 3 and showing the separated DD results in columns 2 and 4. The findings

reveal positive and significant coe�cients for both types of campuses in Texas (column

4). In Tennessee, the overall estimate in column 1 appears driven by the positive and

significant estimates for two-year branch campuses in column 2. However, we cannot

rule out that four-year branch campuses might also have a positive e↵ect given that we

lack power with only ten four-year branch campuses openings in Tennessee during our

observation period (see appendix table A5).

6.2.2. Timing of the E↵ects

Second, we use the CS-DD estimation results to investigate the timing of the e↵ects.

The event-study plot in Figure 4 shows the results from 10 years prior to treatment to

10 years after treatment and yields three important insights: (1) The estimates are flat

and near zero in the years leading up to treatment, thus indicating parallel pre-treatment

trends in both treatment and control groups. (2) They confirm the results from the

conventional DD estimates, with positive and significant point estimates in Texas and in

Tennessee. (3) Tennessee and Texas di↵er in the timing of the treatment e↵ects. While

the point estimates increase and stay significant in all post-treatment periods in Texas,

the treatment e↵ect takes about five years to appear in Tennessee. More importantly,

the estimated impacts in Table 2 hide important heterogeneity where impacts tend to

increase over time after the establishment of a branch campus. In sum, the findings from

the heterogeneity-robust DD estimates align with our intuition that it takes a few years

25Note that we cannot re-estimate the CS-DD and IV models when separating between two- and
four-year campuses. The CS-DD estimator does not allow modelling di↵erent types of treatment. For the
IV strategy, we would require two independent instruments, one for each type of campus.
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Table 5: DD Estimates of Two-Year and Four-Year Branch Campus E↵ect
on Economic Activity in Tennessee and Texas, 1984–2020

Tennessee Texas

(1) (2) (3) (4)

Any branch campus 0.039⇤⇤⇤ 0.160⇤⇤⇤

(0.008) (0.007)

Two-year branch campus 0.049⇤⇤⇤ 0.052⇤⇤⇤

(0.008) (0.010)

Four-year branch campus –0.003 0.133⇤⇤⇤

(0.011) (0.008)

Observations 62,630 62,630 251,680 251,680

Number of census tracts 1,701 1,701 6,875 6,875

Within-R2 0.207 0.208 0.191 0.188

Notes: The dependent variable is the predicted standardized natural logarithm of GDP.
The treatment variables are lagged for four years so that we estimate the economic impact
of a branch campus four years after its opening date. The treatment radius is 25 miles.
All models include constant, census tract FE, and year FE. Standard errors clustered at
the census tract level in parentheses.
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Figure 4: Event-Study Plot for CS-DD Estimates of Branch Campus E↵ect on Economic
Activity in Tennessee and Texas, 1984–2020

(a) Tennessee

(b) Texas

Notes: The figure plots the point estimates and their 95% confidence intervals. The treatment radius is
25 miles.
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for the impact of a branch campus to be realized.

6.3. Potential Mechanisms

Our final specification focuses on potential mechanisms that may have driven the

observed di↵erences in GDP growth. To do so, we use alternative outcome metrics

which, however, are available only for the most recent years in Tennessee and Texas.

This additional evidence helps us verify whether the establishment of branch campuses

increased the size of the skilled labor force in the surrounding areas as one potential

mechanism for increases in GDP. We use annual census tract-level data (5-year estimates)

from the American Community Survey (ACS) from 2009 to 2020. While the ACS does

not measure economic activity, it does provide estimates of the number of people who

have attained di↵erent education levels for a subset of (i.e., the most recent) years in

our main analysis. Specifically, we use three di↵erent outcome variables: the number

of people with (1) some college or higher, (2) a (two-year) associate degree or higher,

and (3) a (four-year) bachelor’s degree or higher. As these variables equal zero for a few

observations and as we want to estimate the growth in these variables associated with a

branch campus opening, we use their inverse hyperbolic sine transformation as dependent

variables in our regressions.

Using our same DD and CS-DD specifications from Table 2 and Equation 2, we report

the estimated changes in these levels of education after the establishment of a branch

campus in Table 6.26 As panels A through C in Table 6 demonstrate, we do see the

expected increase in skilled labor in this shorter ACS sample (2009–2020). According

to the CS-DD estimates in columns 2 and 4, we observe an increase of roughly seven to

eight percent in Tennessee in the numbers of individuals with some college or higher, the

number of individuals with a two-year degree or higher, and the number of individuals

26We do not report the corresponding IV results for two reasons. First, given the shorter observation
period of the ACS data, the IV approach could rely only on much smaller variation in the distance
to other branch campuses outside census tracts’ potential catchment areas, thus limiting the strength
of the instrument. Second, our argument that regional taxing authority of colleges is unrelated to
regional economic activity might not hold for educational attainment overall, which we measure in these
estimations.
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with a four-year degree or higher. In Texas, the increase in the number of people with

di↵erent educational levels ranges from roughly five to seven percent. These results are

suggestive only but support our assertion that these colleges are teaching colleges focused

on increasing the supply of skilled workers near the new branch campuses. As branch

campuses are created, we see systematic increases in the number of educated workers

nearby.

Panel D of Table 6 uses the same ACS data to examine growth in specific occupations.

While our satellite-based proxy does not allow us to distinguish economic growth for

specific sectors, the more recent data on branch campuses suggest that two of the most

prominent programs at branch campuses are in health and education fields. The ACS

tracks the overall employment in these two professions combined. Therefore, we examine

whether branch campus openings increase employment in these industries, again using the

inverse hyperbolic sine transformation of the employment numbers as dependent variable

and reporting the DD and CS-DD estimates. The DD estimates in columns 1 and 3 suggest

that employment in health and education increases by roughly five percent in Tennessee

and by roughly two percent in Texas after a branch campus opens. However, this finding

does not hold in the CS-DD estimates (columns 2 and 4), which show a negative coe�cient

that is significant at the ten-percent level for Tennessee and an insignificant coe�cient

for Texas. The findings on employment in health and education are thus inconclusive.

However, in combination with the results on educational attainment, we argue that one

mechanism through which the construction of branch campuses contributes to economic

growth is the provision of an improved human capital pool and thereby a potential for

increased employment in the particular industries that the branch campuses emphasize.

7. Conclusion

This paper contributes to identifying the regional economic e↵ects of educational

expansions that policymakers worldwide have been using to stimulate regional growth. In

the U.S., these expansions manifested as a surge in newly established branch campuses of
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Table 6: Estimates of Branch Campus E↵ect on Educational Attainment
and Employment in Education and Health in Tennessee and Texas,

2009–2020

Tennessee Texas

DD CS-DD DD CS-DD
(1) (2) (3) (4)

Panel A: People with some college or higher

Branch campus 0.045⇤⇤⇤ 0.069⇤⇤ 0.029⇤⇤⇤ 0.052⇤⇤⇤

(0.015) (0.034) (0.008) (0.013)

Within-R2 0.140 n/a 0.143 n/a

Panel B: People with an associate degree or higher

Branch campus 0.058⇤⇤⇤ 0.080⇤⇤ 0.043⇤⇤⇤ 0.061⇤⇤⇤

(0.018) (0.035) (0.010) (0.016)

Within-R2 0.184 n/a 0.152 n/a

Panel C: People with a bachelor’s degree or higher

Branch campus 0.052⇤⇤ 0.081⇤⇤ 0.052⇤⇤⇤ 0.071⇤⇤⇤

(0.021) (0.038) (0.013) (0.019)

Within-R2 0.132 n/a 0.106 n/a

Panel D: Overall employment in health and education

Branch campus 0.053⇤⇤⇤ –0.099⇤ 0.024⇤⇤ 0.031
(0.018) (0.056) (0.012) (0.022)

Within-R2 0.467 n/a 0.380 n/a

Observations 15,022 4,643 43,850 21,404

Number of census tracts 1,296 400 3,767 1,833

Notes: Dependent variables are transformed by the inverse hyperbolic sine function. In
the DD models, the treatment variable is lagged for four years so that we estimate the
economic impact of a branch campus four years after its opening date. The treatment
radius is 25 miles. All models include constant, census tract FE, and year FE. The
CS-DD models use fewer observations because they consider only observations with
pair balance. Standard errors clustered at the census tract level in parentheses.
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higher education institutions. We construct two novel datasets to study the relationships

for Tennessee and Texas as two exemplary cases of the U.S. expansion. First, we collect

historical data on the opening dates and locations of branch campuses. Second, we

construct a regionally disaggregated proxy for economic activity based on a procedure that

Lehnert et al. (2023) developed using daytime satellite imagery. The new satellite-based

proxy o↵ers three primary advantages: (1) it can be disaggregated at the sub-county level;

(2) it is available from as early as 1984 onwards; and (3) it is available annually. All these

three characteristics are necessary to investigate regional e↵ects of new branch campuses.

Combining the two datasets enables us to estimate the impact of branch campus openings

on regional economic activity.

We use three di↵erent methods to estimate the e↵ects. Overall, we find positive and

statistically significant e↵ects for both states in all estimations. First, the traditional DD

approach that captures time-invariant unobservable regional characteristics shows positive

e↵ects of branch campus openings on economic activity that, in our most conservative

estimate, amount to about 1.4 percent in Tennessee and about 5.8 percent in Texas.

This e↵ect is driven by two-year branch campuses in Tennessee and by both two- and

four-year branch campuses in Texas. Second, the heterogeneity-robust DD estimations

account for potential treatment e↵ect heterogeneity and show that the e↵ects increase over

time. Third, the IV approach that we were able to construct for Texas exploits regional

di↵erences in taxing regulations to deal with the potential endogeneity in branch campus

locations. Its results again show significant positive and even stronger e↵ects. We also

provide suggestive evidence on potential mechanisms by using educational attainment

and employment statistics which, however, begin only in 2009. We find clear suggestive

evidence that the increase in human capital and employment followed the same patterns as

the increase in GDP after the opening of two- and four-year branch campuses. This finding

indicates that regional improvements in human capital created better hiring and business

opportunities, thereby also helping create new jobs for the graduates of the newly opened

higher education institutions. Thus our results provide clear evidence that widely used

educational expansion policies are able to meet their goals of improving regional economic
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outcomes by economically relevant magnitudes. The e↵ect can be diluted, however, when

the pace of branch campus construction outpaces the growth in enrollment.

Though our work contributes important novel results to the existing literature on

higher education’s impact on regional economies, additional work remains to be done.

Our analysis includes only two states of the U.S., which is due to a lack of publicly

available data on branch campus locations and opening dates. Expanding this analysis

to include additional states in di↵erent regions of the U.S. or in countries around the

world with di↵erent political and economic contexts can help bolster the external validity

and generalizability of our results. Furthermore, additional data on (branch) campus

locations (e.g., enrollment and graduate counts, information about programs and classes

o↵ered, counts of faculty, sta↵, or resources) would provide valuable additional insights

into the role of particular campus characteristics within the larger higher education

system. Unfortunately, such data are currently not available or cannot be disaggregated

between branch and parent campuses, which calls for a better and harmonized statistical

documentation of higher education data in the future.
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Appendix

Figure A1: Campus Locations in Tennessee
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Figure A2: Campus Locations in Texas
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Table A1: OLS Results for
Constructing Proxy for Regional
Economic Activity, County Level,

2001–2020

(1)

ln(built-up + 1) 1.398⇤⇤⇤

(0.011)

ln(grass + 1) –0.038⇤⇤⇤

(0.007)

ln(crops + 1) –0.232⇤⇤⇤

(0.008)

ln(forest + 1) –0.035⇤⇤⇤

(0.005)

ln(no vegetation + 1) –0.828⇤⇤⇤

(0.008)

ln(water + 1) 0.115⇤⇤⇤

(0.004)

% cloud cover 0.002
(0.002)

Observations 60,572

Adj. R2 0.588

Notes: The dependent variable is the nat-
ural logarithm of GDP. All variables, both
dependent and independent, are standard-
ized. The model includes county and year
FE. Sample comprises data from all conti-
nental U.S. states. Robust standard errors
in parentheses.
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Table A2: Branch Campus Openings, Treated Census Tracts, and Treated
Observations in Tennessee and Texas, 1984–2020, 10-Mile Treatment Radius

Tennessee Texas

N % N %
(1) (2) (3) (4)

Branch campus openings (after 1984) 69 65

Census tracts 1,701 100.0 6,875 100.0
Treated census tracts 844 49.6 2,131 31.0

Census tract-year observations 62,630 100.0 251,680 100.0
Treated census tract-year observations 10,489 16.7 22,947 9.1

Note: Table presents descriptive statistics for a treatment radius of 10 miles.
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Table A3: Branch Campus Openings, Treated Census Tracts, and Treated
Observations in Tennessee and Texas, 1984–2020, 40-Mile Treatment Radius

Tennessee Texas

N % N %
(1) (2) (3) (4)

Branch campus openings (after 1984) 69 65

Census tracts 1,701 100.0 6,875 100.0
Treated census tracts 1,662 97.7 5,132 74.6

Census tract-year observations 62,630 100.0 251,680 100.0
Treated census tract-year observations 35,046 56.0 82,489 32.8

Note: Table presents descriptive statistics for a treatment radius of 40 miles.
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