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Abstract 

We compare evaluations of employee performance by individuals and groups of 

supervisors, analyzing a formal model and running a laboratory experiment. The model 

predicts that multi-rater evaluations are more precise than single-rater evaluations if groups 

rationally aggregate their signals about employee performance. Our controlled laboratory 

experiment confirms this prediction and finds evidence that this can indeed be attributed to 

accurate information processing in the group. Moreover, when employee compensation 

depends on evaluations, multi-rater evaluations tend to be associated with higher 

performance.  
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1 Introduction and motivation 

Performance evaluations are an important task of human resource management as they are 

the basis for merit pay or promotion decisions. In our study, we develop a theoretical model 

and a laboratory experiment to compare the performance of single-rater and multi-rater 

evaluations. Multi-rater evaluations have become a common tool in companies as a part of 

the formal performance appraisal process. In a survey of large U.S. companies, 54% of the 

respondents with a formal performance evaluation process reported having a calibration or 

group review process (Society for Human Resource Management 2011).  

In this study, we focus on whether multi-rater performance evaluations improve the 

accuracy of ratings and whether they in turn increase performance. We build on the 

framework developed by Prendergast and Topel (1996) to study performance evaluations 

with information aggregation in groups as proposed by Roux and Sobel (2015). In our 

model, multiple supervisors receive different noisy signals about the employee’s 

performance and then give a rating that determines the employee’s payoff. The model 

predicts that through simple Bayesian updating, information aggregation in supervisor 

groups leads to higher evaluation accuracy, and, in turn, to higher performance incentives 

for the employees.  

We then test these predictions in a controlled laboratory experiment that compares a 

baseline setting in which a supervisor receives a noisy signal on the performance of one 

employee who works repeatedly on a real effort task with a setting where there are multiple 

supervisors. In this multi-rater evaluation treatment three supervisors simultaneously 

receive different signals on one employee’s performance. They are made aware that each 

of them receives different information and know the distribution of the respective noise. 

Supervisors then discuss the performance of the employee via chat and collectively decide 

on a rating. The rating process reflects the unanimity rule in that while each supervisor 

independently fills in an assessment, supervisors only receive a payment if their ratings 

match.  

Consistent with our predictions, we find that multi-rater assessments are associated with 

more accurate performance ratings compared to the ratings of individual supervisors. This 
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effect is due to the additional information provided by the signals available to other 

supervisors. That information aggregation plays the crucial role is supported by a further 

treatment, in which one supervisor receives three signals, and thus individually has access 

to the same information structure as the three raters in our group treatment. We find the 

rating accuracy of these individuals is about the same as the accuracy in the treatment with 

three raters. Both of our treatments with more signals also tend to increase employee 

performance in later rounds when agents have experienced the higher rating accuracy. Thus, 

in line with our theoretical predictions, the higher accuracy of ratings based on the 

aggregation of more information can lead to higher powered incentives driving higher 

efforts.  

Theoretical research on subjective performance evaluations in economics has often been 

concerned with evaluations made by firm owners, where a key issue is that employers 

might misrepresent appraisals to save on labor costs (see e.g. Baker et al. 1994, MacLeod 

2003).1 However, most performance evaluations are actually conducted by supervisors who 

do not have to pay the resulting bonuses out of their own pockets. As a classic literature in 

psychology (see e.g., Murphy and Cleveland 1995, and Prendergast 1999 for a survey from 

the economics perspective) has pointed out, supervisors then tend to compress ratings or to 

be too lenient.2 Such settings are captured in the Prendergast and Topel (1996) framework, 

where a supervisor receives a noisy signal about an agent’s performance and has to provide 

a performance rating that trades off a preference for accurate evaluations with favoritism 

 

1 A firm’s commitment to pay a fixed wage sum paired with relative evaluations of employees, such as in 

tournament systems, can mitigate this problem (Prendergast and Topel 1993, Letina et al. 2020). Moreover, 

in relational contracts where firms and employees interact on an ongoing basis and firms aim to motivate 

employees in the future, there is less incentive to negatively distort subjective performance evaluations (see 

Baker et al. 1994, Lazear and Oyer 2012). 
2 Field data from companies and marketplaces (Moers 2005, Bol 2011, Bolton et al. 2013, Breuer et al. 2013, 

Ockenfels et al. 2015, Frederiksen et al. 2017, Bolton et al. 2019) confirm that evaluations tend to be too 

positive (“leniency bias”) and to be compressed around some standard (“centrality bias”). While it is not yet 

fully understood empirically how leniency in evaluations impacts employee performance, several studies 

suggest that the rating compression reduces performance (Engellandt and Riphahn 2011, Bol 2011, Berger 

et al. 2012, Kampkötter and Sliwka 2017, Manthei and Sliwka 2019; Kampkötter and Sliwka 2016 provide 

a survey of subjective performance evaluation practices). 
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towards the agent. Our model abstracts away from the latter and rather focuses on 

information aggregation when there are multiple evaluators.3 

Experimental work on performance appraisals in economics has mostly focused on single 

supervisor settings. Berger et al. (2012) conduct an experiment in which a supervisor rates 

multiple employees and find that forced rankings lead to higher performance but also result 

in more sabotage. Sebald and Walzl (2014) study agents’ reciprocal reactions to subjective 

performance evaluations by a supervisor. Angelovski et al. (2016) find that supervisors 

tend to be biased in favor of their own hires. Marchegiani et al. (2016) show that ratings 

that are too lenient are less detrimental to agents’ performance than ratings that are too 

negative. Bellemare and Sebald (2019) find evidence that workers’ responses to subjective 

performance evaluations are related to agents’ self-confidence levels. Kusterer and Sliwka 

(2023) also experimentally investigate the predictive power of the Prendergast and Topel 

(1996) framework in a single rater setting and find that the model mostly organizes the data 

but also that supervisors’ social preferences are associated with higher rating precision. 

The only laboratory study we are aware of that considers the aggregation of performance 

evaluations in groups is Mengel (2021), who investigates how the deliberation process 

within committees affects subjective evaluations and finds that open deliberation 

introduces a gender bias in subjective assessments. Unlike our design, this study does not 

compare single- and multi-supervisor assessments.  

In general, group evaluations may have potential advantages over single-rater evaluations, 

such as the mitigation of distorted evaluations due to favoritism or biased information 

processing, reducing the risk of collusion between supervisor and employee (as it is more 

difficult for employees to influence multiple raters than single raters), and improving the 

coordination of supervisors on the same evaluation standard. Only a few recent studies 

provide some evidence on multi-rater evaluations based on firm level observational data: 

Grabner et al. (2020), for instance, find that calibration panels tend to discipline supervisors 

 

3 Previous extensions of the Prendergast and Topel (1996) model are Golman and Bhatia (2012), who allow 

for differences in the supervisor’s aversion towards favorable and unfavorable errors, Kampkötter and Sliwka 

(2017), who study bonus dispersion in teams, and Manthei and Sliwka (2019), who investigate performance 

evaluations when agents work on multiple tasks. The latter two also provide evidence for the respective 

implications of the model based on field data. 
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who provide biased information. Demeré et al. (2018) find that calibration committees are 

associated with lower rating leniency but (surprisingly) with higher rating compression. 

Bol et al. (2019) compare initial ratings proposed by supervisors with ratings after 

calibration rounds and find that posterior ratings are more consistent with the rating 

distribution desired by the firm. At the same time they observe evidence for strategic 

behavior of supervisors in the calibration process. Our laboratory experiment provides 

complementing evidence by studying the causal effects of having multiple raters on 

information aggregation and induced employee incentives in a setting in which supervisors’ 

interests are aligned.  

Our paper also links to research on including raters from multiple layers within the 

organization (i.e., also colleagues and subordinates in so-called “360-degree” appraisals), 

which has shown mixed effects. Atkins and Wood (2002) study 360-degree appraisals 

within a firm, showing that feedback information can be significantly distorted depending 

on the source of the information. Carpenter et al. (2010) show that peer evaluations lead to 

workers sabotaging each other under a tournament incentive scheme in the laboratory. 

Corgnet (2012) observes in a real-effort experiment on teams that equal sharing rules may 

outperform peer assessments by co-workers. Carpenter et al. (2018) find that peer reports 

improve performance more strongly under a profit sharing rule than under fixed wages.  

Overall, to the best of our knowledge, no previous experimental study has compared single- 

with multi-rater performance evaluations and their impact on employee performance. Thus, 

our study can be seen as a starting point for investigating group evaluation processes in 

more complex settings.  

 

2 Theoretical Framework  

We build on the framework introduced in Prendergast and Topel (1996) and incorporate 

multi-rater performance evaluations. A risk averse agent with constant absolute risk 

aversion 𝑟 > 0 and reservation wage 𝑤𝐴 works for a risk neutral principal who makes a 

take-it-or-leave it contract offer. The agent exerts an effort e at costs 𝑐(𝑒) generating a 
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profit contribution 𝜋 = 𝑒 + 𝑎, where 𝑎 ∼ 𝑁(𝑚, 𝜎𝑎
2) is the agent’s ability which is ex-ante 

unknown to all parties. The agent’s wage is given by  

𝑤 = 𝛼 + 𝛽 ⋅ �̃�, 

where �̃� is a performance assessment. There are 𝑀 supervisors, 𝑗 = 1, . . . , 𝑀 who provide 

this assessment. Each supervisor 𝑗 observes a performance signal 𝑠𝑗 = 𝜋 + 𝜀𝑗  where the 

𝜀𝑗 ∼ 𝑁(0, 𝜎𝜀
2) are independent error terms that capture idiosyncratic views on the agent’s 

performance.4 Assume that the supervisors have a preference to report an accurate estimate 

for the employee’s performance given their noisy joint information. When the supervisors 

use their collectively available information each supervisor’s expected utility is 

−𝐸[(�̃� − 𝜋)2|𝑠1, 𝑠2, … , 𝑠𝑀]. 

Our framework thus captures a setting where supervisors have different perceptions on how 

well the agent performed but are aligned in their view of what constitutes good 

performance, being aware that their own “subjective” perceptions entail errors of 

observation. Because differences in supervisors’ beliefs are captured by the idiosyncratic 

signals that they receive, rational supervisors who were to jointly observe all signals thus 

always agree in their assessment of the agent’s performance. 

The mean of the observed signals �̅� =
1

𝑀
∑ 𝑠𝑗

𝑀
𝑗=1  is a sufficient statistic for 𝜋, and for given 

equilibrium efforts e∗the signal mean �̅� is normally distributed with prior mean 𝑚 + 𝑒∗ and 

variance 

𝑉 [
1

𝑀
∑ 𝑠𝑗

𝑀

𝑗=1

] = 𝑉[𝜋] +
1

𝑀2
𝑉 [∑ 𝜀𝑗

𝑀

𝑗=1

] = 𝜎𝑎
2 +

1

𝑀
⋅ 𝜎𝜀

2. 

The optimal joint evaluation policy �̃�(�̅�, 𝑀) then boils down to computing the least squares 

estimator of 𝜋 based on the signal mean �̅� which is identical to reporting the conditional 

expectation 𝐸[𝜋⌈�̅�] such that 

 

4 One example from practice would be the evaluation processes in a consulting firm where a junior consultant 

works with different senior consultants who observe the junior consultant’s performance in different client 

projects each. Each of the projects gives a signal that will be affected by the junior consultant’s effort and 

ability but also project specific factors uncorrelated to effort and ability. Hence, each of the senior consultants 

will bring a different signal on the agent’s ability to the table. 
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�̃�(�̅�, 𝑀) =

𝜎𝜀
2(m + e∗) + 𝑀𝜎𝑎

2�̅�

𝑀𝜎𝑎
2 + 𝜎𝜀

2
, 

(1) 

where the latter follows from applying a standard result on the conditional expectation of 

normally distributed random variables. Hence, the larger the number of supervisors 𝑀, the 

larger is the weight put on the signal mean �̅� , as this aggregate signal contains more 

information on the true performance. If, however, 𝑀 is small, performance evaluations are 

more compressed towards the prior expectation as information is noisier.  This has several 

implications: 

 

Proposition 1: The larger the number M of supervisors providing signals of performance, 

(i) the stronger do evaluations vary with the signal mean �̅�, i.e.  

𝜕�̃�(�̅�,𝑀)

𝜕�̅�𝜕𝑀
> 0, 

(ii) the higher the efforts exerted by an agent for a given contract, and 

(iii) the larger the principal’s expected profits in an optimal contract. 

Proof:  See Appendix A1.  

Hence, when more supervisors evaluate an agent’s performance, the evaluations are more 

closely linked to the agent’s actual performance. This leads to higher marginal returns to 

effort and thus to higher incentives and performance. Finally, multi-rater evaluations also 

lead to higher profits under optimal contracting: Since the ratings then better reflect true 

performance differences rather than mere noise, this allows to implement higher powered 

incentives for risk averse-agents. We will test the first two of these implications in our 

laboratory experiment. 

3 Experimental Design  

Our experiment builds on the formal framework introduced in Section 2. Each employee 

in the experiment must work for four minutes per round on a tedious real-effort task that 

consists of counting 7-digits in randomly generated blocks of digits. A screenshot of the 

task can be found in the sample instructions in Appendix A4. Upon entering the number of 

7-digits in a given block, the employee is presented a new block and proceeds. The 
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employee can pause the working task at any time during each round. 5 A performance 

evaluation in this setting is an assessment predicting the number of correctly solved blocks 

by the employee in a particular round. Supervisors cannot directly observe an employee’s 

performance, but rather receive noisy signals about the performance at the end of each 

round. Each performance signal is determined by the sum of the employee’s true 

performance and a normally distributed error term with a mean of zero and a standard 

deviation of three blocks.6 Moreover, together with the performance signal(s), supervisors 

are presented the distribution of correctly solved blocks in the same round from an earlier 

experiment in which altogether 40 participants in the roles of employees worked on the 

task under the same piece rate as in part one.7 In line with the incentives postulated by our 

model, we apply a quadratic scoring rule for the supervisor’s payoff that links her 

performance rating to the true performance of the employee. The round payoff for a 

supervisor is determined as follows: 

Payoff supervisor = max{200 ECU – 10 ECU*(rating – true performance in blocks)2, 0}. 

Payoffs for supervisors are maximized if their rating matches the true performance of the 

agent. Yet, if the difference between true performance and estimated performance becomes 

too large, supervisors’ payoffs are fixed at zero to rule out the possibility of losses.8 

Our three experiment treatments systematically vary the number of supervisors who rate 

performance and the number of signals about the employee’s performance that the 

supervisors receive.  

 

5 The employee can click on a “break”-button on the screen and will be forwarded to a pause screen on which 

comics are displayed. 
6 This implies that evaluations in our model are not subjective in the sense that supervisors must generate 

their assessments of performance themselves, which would open up the possibility of further judgment biases 

which we abstract away from. We rather provide our supervisors with exogenously generated and 

individually distorted performance signals and then focus on how these signals are processed and aggregated 

in the evaluation process.  
7 The respective text was: “The distribution of work performance in round X in another experiment had been 

the following:” followed by a histogram of the performance distribution from the prior experiment. When 

testing the differences between the distributions from the pilot with the actual distribution in each of our three 

experimental treatments and separately for each of the 10 rounds with two-sided Mann Whitney U-tests, 29 

of the 30 tests are insignificant and one is weakly significant with a p-value of 0.06. 
8 This payoff rule becomes relevant when the rating deviates from the employee’s true performance by 5 or 

more blocks, which was true for only 6% of the supervisor ratings in the experiment (calculated over all 

treatments). 
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Treatment 1Su1Si: In our baseline condition 1Su1Si (= 1 Supervisor, 1 Signal) one 

supervisor interacts with one employee in each round and receives one noisy signal about 

the performance of the employee before she assigns a performance rating.  

Treatment 3Su3Si: In treatment 3Su3Si, three supervisors assess the performance of one 

employee. Each supervisor receives one individual and private signal about the employee’s 

performance. The noise terms in each of the three signals are independently drawn. The 

task of the supervisors is then to arrive at a joint performance rating for the employee. To 

calibrate, supervisors can discuss the rating of the employee via chat for 150 seconds. After 

the chat, each supervisor individually provides a performance rating. If an agreement is 

reached and all ratings are identical, the payoffs for each supervisor are determined by the 

scoring rule described above. However, if at least two performance ratings differ from each 

other, each supervisor obtains a round payoff of zero9 and the performance rating is then 

randomly drawn from the individual ratings.  

Treatment 3Su3Si adds communication between supervisors, plus it changes the 

performance information available to the supervisors compared to 1Su1Si, where 

supervisors base their decision on one performance signal instead of three. To control for 

the effect of more precise performance information, eliminating the role of group 

communication, we add treatment 1Su3Si. 

Treatment 1Su3Si: One supervisor interacts with the employee but, in contrast to the 

control condition, she receives three signals about the employee’s performance on which 

she can base her performance rating. Any differences in evaluation patterns between 

treatment 1Su3Si and treatment 3Su3Si can then be attributed to the interaction between the 

supervisors within the calibration panels that goes beyond pure information aggregation.10 

 

9 The aggregation rule matters, as we discuss in our concluding section, and the performance of different 

rules will depend on context. For instance, giving all supervisors veto power when favoritism is an issue, will 

likely complicate negotiations. Because there is no conflict of interest among supervisors in our underlying 

model, and because other aggregating rules such as majority voting create other strategic issues, we decided 

to demand unanimity.  
10 Evidence from several experimental studies suggests that groups may perform better because of the social 

interaction per se (Charness and Sutter 2012 survey the literature). In addition, some evidence suggests that 

groups might under some circumstances exhibit less socially oriented behavior. Taken together, these 

findings would suggest for our setting that groups of supervisors may be influenced to a lesser extent by 

social concerns towards the employee than individual supervisors. 
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Supervisors and employees interact with each other for 10 rounds. Our experiment consists 

of two parts that vary the way how payments for an employee is determined. In the first 

part (rounds 1 to 5), the employee receives a piece rate for each correctly counted block so 

that his payoff is determined as 

Payoff employee in rounds 1 to 5 = Number of correct blocks * 15 ECU. 

The goal of the first part of the experiment is to allow supervisors and employees to gain 

experience with the decision situation, before performance ratings become payoff-relevant 

for the employee. Note that in this part, ratings already determine payoffs for the 

supervisors, providing incentives to evaluate accurately. In the second part (rounds 6 to 10), 

when supervisors are expected to have become experienced with the rating procedure, the 

payoff for the employee is determined by the rating of the supervisor, allowing us to also 

study the incentive effects of ratings in our setting. Employees’ payoffs in the second part 

are calculated as follows: 

Payoff employee in rounds 6 to 10 = Rating supervisor * 15 ECU. 

The piece rate per block remains the same as in the first part of the experiment, but the 

payment is no longer determined by the true performance, but rather by the estimate of the 

supervisor. As a result, distortions in ratings directly affect payments.11  

Supervisors and employees are matched with each other for the entire 10 rounds of the 

experiment (partner matching). In every round, supervisors rate the employee, subject to 

the treatment variations described above. Supervisor learn their signals but not the true 

performance during the experiment. Only at the end of the laboratory session are they 

informed about the number of blocks the employee solved correctly in each of the rounds. 

On the other hand, employees get to know their true performance after each round and thus 

can judge the accuracy of their supervisor(s). We note that while supervisors do not know 

the full distribution of employee performance the information about the distribution of 

 

11 If supervisors submit different ratings in 3Su3Si, one of the performance ratings is randomly picked for the 

employee’s payoff. 



 11 

performance in the pilot experiment should align priors. We will return to this issue when 

we discuss our results. 

Prior to the start of the experiment, participants were assigned the role of either an 

employee or a supervisor. Supervisors and employees were seated in different rooms to 

minimize social interaction. After the 10 rounds of the main experiment, we collected 

measures for inequity aversion (Dannenberg et al. 2007), cognitive reflection (Frederick 

2005), intelligence (with the Raven task) and some basic demographic information about 

the experimental participants.12 We conducted altogether 10 experimental sessions at the 

Cologne Laboratory for Economic Research from October 2016 to April 2017. Participants 

were recruited via the online recruitment system ORSEE (Greiner 2015). The experiment 

code was created with the software z-tree (Fischbacher 2007). We collected data for 

altogether 200 subjects in our experiment.13 Average payments accounted for 26.76 Euro 

(standard deviation 4.52 Euro) including a show-up fee of 4 Euro for sessions that lasted 

between 1.5 to 2 hours. Due to the partners matching in our experiment, we collected 

altogether 22, 24 and 27 statistically independent observations for treatments 1Su1Si, 

1Su3Si and 3Su3Si, respectively.  

 

4 Results 

 

Table 1 displays descriptive statistics of the employees’ performance and the performance 

ratings assigned by the supervisors in the three treatments across the two parts of the 

experiment. 

 

12 We find no sizeable differences in demographics across treatments. We note, however, that the gender 

composition is weakly significantly different (p = 0.052, Chi-Square test; see Table A1 in the Appendix). 
13 In most sessions, the experiment was conducted on two computer servers simultaneously. In one session, 

one of the two servers stopped working so that the experiment had to be stopped for some participants. For 

our analysis, we exclude these additional 8 subjects (treatment 3Su3Si). 
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Table 1: Means (Std. dev.) of performance and ratings 

 Performance Rating  

Treatment Part 1 Part 2 Part 1 Part 2 

1Su1Si 8.51 (3.29) 8.50 (3.50) 8.34 (2.88) 8.73 (2.76) 

1Su3Si 7.47 (2.35) 8.66 (2.71) 7.52 (2.73) 8.54 (2.62) 

3Su3Si 7.53 (3.05) 8.15 (3.85) 7.67 (2.30) 8.40 (3.69) 

The table lists the average number of correctly counted blocks and the average ratings per round, separately for 

each experimental treatment and part. Standard deviations are listed in parentheses.. 

The first thing to note is that in line with the model average ratings match average 

performance (in number of correctly counted blocks per round) quite well. Moreover, in 

our baseline treatment 1Su1Si performance and ratings stay relatively stable across the two 

parts (round 1-5 versus round 6-10), whereas performance tends to increase in the second 

part where ratings become payoff relevant for the employee in the treatments with multiple 

signals/raters. In the following we test the hypotheses implied by the formal model in more 

detail. 

4.1 Evaluations 

Our first key hypothesis is that the increase in the number of evaluators/signals shifts the 

sensitivity of the rating to the signal: By equation (1), the optimal evaluation by supervisors  

𝜎𝜀
2(𝑚+𝑒∗)

𝑀𝜎𝑎
2+𝜎𝜀

2 +
𝑀𝜎𝑎

2

𝑀𝜎𝑎
2+𝜎𝜀

2 �̅�  is linear in the respective signal average �̅� . So, we estimate this 

equation in linear random effects regressions. By part (i) of our proposition, the reported 

performance evaluation is predicted to more strongly depend on observed signals if more 

signals are observed (as 
3𝜎𝑎

2

3𝜎𝑎
2+𝜎𝜀

2 >
𝜎𝑎

2

𝜎𝑎
2+𝜎𝜀

2). On the other hand, the regression intercept is 

predicted to be smaller when there are more signals as  
𝜎𝜀

2(𝑚+𝑒∗)

3𝜎𝑎
2+𝜎𝜀

2 <
𝜎𝜀

2(𝑚+𝑒∗)

𝜎𝑎
2+𝜎𝜀

2  . Also, if 

supervisors follow Bayes’ rule and there are no further group interaction effects, we predict 

that there are no differences in evaluations between treatments 1Su3Si and 3Su3Si.  

To make quantitative predictions for the evaluations, we substitute the expected 

equilibrium performance 𝑚 + 𝑒∗ in Equation (1) with the mean true performance (8.112), 

and 𝜎𝑎 with the standard deviation of the true performance (3.196). By our experiment 
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design, 𝜎𝜀 = 3. The resulting predictions for the constants and slope coefficients for the 

three treatments are reported in Table 2. 

Table 2: Rational evaluations as a function of performance signal 

 Treatment Treatment Treatment 

 1Su1Si 1Su3Si 3Su3Si 

Predicted slope 0.53 0.77 0.77 

Predicted constant 3.80 1.84 1.84 

 

To test the predictions, we estimate the following simple specification separately for each 

of the three treatments: 

𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡 = 𝛼 + 𝛽 ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑡 + 𝜖𝑖𝑡, 

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡 is the rating of subject 𝑖 in period 𝑡, and 𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑡 is the (aggregated) signal 

observed by the supervisors in the respective treatment (i.e. the average of the signals in 

treatments 1Su3Si and 3Su3Si). The results reported in Table 3 confirm the first part of our 

proposition: The signal is positively and highly significantly correlated with the 

performance ratings that employees received in all specifications. In line with our 

prediction, we find that the coefficient size for the signal is larger in treatments 1Su3Si and 

3Su3Si than in the control condition. Hence, supervisors indeed react more sensitively to 

the signals here. At the same time, the size of the coefficients is similar for treatments 

1Su3Si and 3Su3Si, showing that the group interaction during the calibration process in 

treatment 3Su3Si does not further increase the sensitivity of supervisors to the performance 

signals.  
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Table 3: Signals and supervisor decisions 

 (1) (2) (3) (4) 

Dependent Variable Rating 

1Su1Si 

Rating 

1Su3Si 

Rating 

3Su3Si 

Rating All 

Signal 0.469*** 0.708*** 0.648*** 0.471*** 

 [0.076] [0.053] [0.065] [0.076] 

1Su3Si    -2.144*** 

    [0.715] 

Signal × 1Su3Si    0.241*** 

    [0.094] 

3Su3Si    -1.331* 

    [0.785] 

Signal × 3Su3Si    0.178* 

    [0.101] 

Constant 4.356*** 2.231*** 3.013*** 4.334*** 

 [0.589] [0.414] [0.528] [0.583] 

     

Observations 220 240 270 730 

Chi2-value 37.94 178.1 97.97 314.4 

Standard errors clustered on the level of supervisors in 1Su1Si and 1Su3Si (on the level of supervisor groups in 

3Su3Si) are given in brackets. *** p<0.01, * p<0.1. The table reports the results of linear regression models with 

random effects on the level of supervisors (supervisor groups in 3Su3Si). The variable “Signal” refers to the 

performance signal in treatment 1Su1Si and the average of the three performance signals in treatments 1Su3Si and 

3Su3Si. 

A similar conclusion is reached from the model in column (4) focusing on the interaction 

terms of the treatment dummies with the signal. Both interaction variables Signal x 1Su3Si 

and Signal x 3Su3Si are positive and (marginally) significant, showing a stronger 

correlation between the signal and the performance rating in these treatments.14 At the same 

time, the interaction terms are not significantly different from each other (p = 0.457, two-

sided Wald test).15 Moreover, in line with the predictions, the coefficients of 1Su3Si and 

3Su3Si are negative and (marginally) significant in Model 4, indicating smaller constants 

in these treatments relative to the baseline condition.  

 

14 In a single-rater setting Kusterer and Sliwka (2023) also find that more accurate signals lead to a stronger 

signal sensitivity of ratings. 
15 If we estimate Model 4 reported in Table 3 separately for the first and the second half of the experiment 

(see Table A2 in the Appendix), we find a stronger response of supervisors to signals in the treatments mainly 

for the second half. Hence, it appears that supervisors (groups) require some time to learn how to properly 

use the performance signals in our setting. 
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Figure 1 shows scatterplots for the observed (aggregated) signals and evaluations for the 

three treatments separately. The grey line shows the pattern predicted by Bayes’ rule (i.e., 

using the respective intercept and slope reported in Table 2) and the black line shows the 

fitted OLS estimates. The data appear to be mostly well organized by the predictions 

implied by rational Bayesian updating, especially in the treatments with one supervisor. 

The fit is somewhat weaker in the three-supervisor treatment but the qualitative treatment 

differences appear to be well in line with the key predictions of the model. 

 Figure 1: Predicted and Fitted Performance Evaluations 

 

All in all, the experimental results appear to be broadly consistent with the Bayesian 

rational model under the assumption of common priors among supervisors.  

  

4.2 Evaluation Accuracy 

A further prediction of our model is that ratings in 1Su3Si and 3Su3Si are more accurate. 

Table 4 lists the mean deviation of the evaluation from the employee’s true performance 
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(measured in absolute values) separately for the three treatments and the two parts of the 

experiment.  

Table 4: Average supervisor accuracy per treatment 

Treatment Deviation rating from true performance 

  (absolute values) 

  Part 1  Part 2 

1Su1Si 2.12 2.37 

1Su3Si 1.73 1.52 

3Su3Si 1.94 1.75 

Our model suggests that the precision of ratings is higher in treatment 3Su3Si than in 

1Su1Si. We find that although the between-treatments difference in absolute deviations 

between ratings and the employee’s true performance is not significant for the first part of 

our experiment (p = 0.960), it is strong and statistically significant for the second part (p = 

0.013, two-sided MWU test): The calibration process within the group leads to more 

accurate performance ratings. Also, as predicted, treatment 1Su3Si achieves a similar 

degree of accuracy as the group evaluation treatment 3Su3Si in both parts of the experiment 

(p = 0.214 for part 1 and p = 0.634 for part 2, respectively, two-sided MWU tests).16 This 

supports the view that the superiority of the group evaluation in our setting can be attributed 

to the additional performance signals which make it easier for the supervisors to arrive at 

an appropriate evaluation, but that the communication and interaction process within the 

group per se does not have a sizeable impact. Moreover, we find virtually no conflict 

between the supervisors in treatment 3Su3Si: Calculated over all rounds of the experiment, 

supervisor teams reached an agreement (i.e. the same performance rating) in 269 out of 

270 cases, mirroring the strong incentives to arrive at a joint rating in our setting.  

Table 5 below reports the results of simple regressions of the deviation between the rating 

and the true performance on treatment dummies for each part (columns (1) and (2)). These 

regressions indicate that there are learning effects as the availability of more signals 

significantly increases the accuracy in the second but not the first part of the experiment. 

 

16 Mirroring the differences between 3Su3Si and the control condition, comparing treatments 1Su3Si and 

1Su1Si yields significant differences for part 2 (p = 0.003), but not for part 1 (p = 0.223). 
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Moreover, as in the previous descriptive analyses, we do not find differences between 

treatments 1Su3Si and 3Su3Si in any of the models (all respective two-sided Wald tests 

yield significance levels above 0.1).17 

Table 5: Deviation between rating and true performance 

 1 2 

Dependent variable Deviation  

Part 1 

Deviation 

Part 2 

Signal 0.050 0.006 

 [0.047] [0.033] 

1Su3Si -0.310 -0.856*** 

 [0.235] [0.283] 

3Su3Si -0.106 -0.619** 

 [0.231] [0.312] 

Constant 1.667*** 2.316*** 

 [0.344] [0.340] 

Observations 365 365 

Chi2-value 2.73 9.37 

Standard errors clustered on the level of supervisors in 1Su1Si and 1Su3Si (on the level of supervisor 

groups in 3Su3Si) are given in brackets. *** p<0.01, ** p<0.05, * p<0.1. The reference category in the 

models is treatment 1Su1Si. Model 1 (2) refers to the first (second) part of the experiment. The table 

reports the results of linear regression models with random effects on the level of supervisors 

(supervisor groups in 3Su3Si). The variable “Signal” refers to the performance signal in treatment 

1Su1Si and the average of the three performance signals in treatments 1Su3Si and 3Su3Si. 

 

4.3 Impact on Performance 

Claim (ii) of our proposition predicts that performance is higher when it is assessed by 

more supervisors or when more performance signals are available: When more signals are 

available, supervisors should put more weight on the (aggregate) signals, which in turn 

leads to steeper incentives as performance ratings depend to a stronger extent on observed 

signals. And indeed, as we have seen in Figure 1 and Table 2, the corresponding slopes are 

higher in the experiment. As a result, marginal returns to effort are higher in treatments 

 

17 As Bayesian updating requires cognitive capabilities, we also explore the potential role of supervisors’ 

cognitive abilities for the evaluations. We do so by integrating the supervisors’ score in the Cognitive 

Reflection test (CRT, Frederick 2005) elicited after the main part of the experiment in the model (Table A3 

in the Appendix lists the results). In treatments 1Su1Si and 1Su3Si, the CRT score refers to the score of the 

individual supervisor; in treatment 3Su3Si it stands for the average CRT score of the three supervisors per 

matching group. In both parts, supervisor (groups) with higher CRT scores achieve a higher accuracy. 
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1Su3Si and 3Su3Si as compared to 1Su1Si. If employees correctly anticipate this, or learn 

about the relationships between effort and compensation ‘on the job’, work efforts should 

be higher in the second part of the experiment (periods 6 to 10) in which the payoff for the 

employee is determined by the supervisors’ evaluation. To test this, we regress employee 

performance in part 2 on treatment dummies and prior performance. We use the 

performance in number of correctly solved blocks in a given round as the dependent 

variable. We control for the employee’s prior performance using the average performance 

in blocks per round in the first part of the experiment where employees work under piece 

rate incentives and thus are not affected by the evaluations of the supervisors. To study 

whether agents learn over time that incentives are steeper in the treatments where more 

signals are available we also investigate the treatment effects only in the final two rounds 

of the experiment. Table 6 presents the respective regression results. 

We find in both specifications that performance is significantly higher in treatment 1Su3Si 

where one principal receives three signals. The point estimate for the treatment 3Su3Si is 

also positive but much smaller in magnitude and not significantly different from 

performance in 1Su1Si in Model 1 that includes all observations from the second part. 

Model 2 from Table 6 that includes only observations from rounds 9 and 10 supports the 

view that employees needed time to learn about the improved accuracy in 3Su3Si. In this 

model, the dummy variable 3Su3Si is larger and marginally significant, indicating higher 

performance in this treatment relative to the control condition at the end of the experiment.18 

Hence, employees seem to initially underestimate the reliability of group evaluations, yet 

gradually learn about higher evaluation accuracy as the labor relationship progresses. The 

observation that multiple signals induce stronger performance incentives for the employees 

particularly towards the end of the experiment (Model 2), when subjects may be more tired 

or less concentrated, tends to strengthen our conclusion. 

 

18 Comparing the estimated coefficients for the treatment dummies with two-sided Wald tests does yield 

significant differences (p = 0.102 for Model 1 and p = 0.729 for Model 2). 
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Table 6: Effects on employee performance 

 1 2 

Dependent Variable Performance 

Part 2 

Performance 

Part 2, last rounds 

   

1Su3Si 1.197** 1.221** 

  [0.478] [0.606] 

3Su3Si 0.628 1.064* 

  [0.489] [0.583] 

Avg. performance (Part 1) 0.996*** 0.981*** 

 [0.115] [0.100] 

Constant 0.021 0.019 

 [0.786] [0.818] 

   

Sample Part 2 Rounds 9 and 10 

Observations 365 146 

R-squared 0.519 0.499 

Standard errors clustered on the level of experimental employees are given in brackets. *** p<0.01, ** 

p<0.05, * p<0.1. The reference category in the models is treatment 1Su1Si. The table reports the results of 

OLS regressions. The variable “Average performance (Part 1)” refers to the average round performance per 

employee calculated over the first five periods of the experiment. 

 

5 Conclusion 

Our model predicts, and our laboratory experiment confirms that collective evaluations by 

multiple raters can be more accurate than assessments by a single rater. This improvement 

is a result of the aggregation of scattered information from different supervisors. In addition, 

our model and experiment show that multi-signal performance ratings tend to positively 

affect employee performance, as the higher rating accuracy strengthens the generated 

incentives – although we note that this effect appears only in later rounds, when agents 

have experienced the higher rating accuracy.  

Our model and laboratory setting can be extended to investigate the role of several 

complexities in the evaluation process that may be of additional importance in real-world 

settings. For example, it is straightforward to investigate the role of the number of 

supervisors involved in the group evaluation: The principal’s profits are concave in the 

number of evaluators in our model, because the marginal informational value of each 

further signal is decreasing. Thus, when there is a fixed cost for each individual evaluation, 
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one can compute an optimal number of evaluators. There may also be other „diseconomies 

of scale“ due to cost of communication and coordination arising in larger groups that may 

be explored through extensions of our theoretical and laboratory models.  

The scope of the framework could also easily be extended by varying the difficulty of 

evaluating performance. In the language of our model, the difficulty of judging 

performance is captured by the variance of the idiosyncratic error terms. From this 

perspective, group evaluations would become more beneficial for tasks that are more 

difficult to evaluate, as the marginal information value of additional signals increases.  

Our setting minimizes the scope for biases in the rating process such as employee 

favoritism or stereotyping of particular demographic groups, as all interactions are 

anonymous. Supervisors who are inclined to bias evaluations in order to promote certain 

employees can substantially complicate information aggregation, both in theory and in the 

laboratory.19 We hypothesize that under such conditions, group communication will play 

an even more crucial role in mitigating bias, adding a further benefit to the informational 

advantage demonstrated in our study. Generally, groups tend to make fewer mistakes than 

individuals (Charness and Sutter 2012), and norm-setting, confronting biased colleagues, 

and moderator intervention are all potentially useful group mechanisms in such scenarios 

(e.g., Johnson and Johnson 2009, Kahneman et al. 2021).  

Another potential extension is to allow for one supervisor to have access to more precise 

information than the others, such as a line manager who observes her employee more 

closely than others. A simple way to incorporate this into our framework is to assume that 

one supervisor observes a more precise signal or, equivalently, multiple signals of a given 

precision. If the joint objective is to maximize accuracy, this does not change the basic 

mechanics of the model. This would lead the group to give more weight to that supervisor’s 

information, and this should improve information aggregation when there is no conflict of 

interest. However, supervisors who work more closely with the agent being evaluated may 

also have closer social ties, which could lead to favoritism. Then there is a trade-off 

 

19 For instance, when one supervisor is biased and the others are aware of this bias, they may want to counter 

the bias by distorting their ratings in the other direction.  
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between the better information of this supervisor and potential bias due to favoritism. In 

such cases, it may be preferable to disregard the input of supervisors with vested interests, 

e.g., by using majority voting rather than unanimity, by excluding supervisors with a 

conflict of interest from group discussions, or by establishing a more hierarchical 

communication structure with a group moderator who has the power to weight the input of 

group members. Other potentially interesting factors may include supervisors’ 

personalities, which may influence the frequency and quality of their contributions to the 

deliberative process, with, for instance, more extroverted supervisors potentially having a 

stronger influence on evaluations.  

We are confident that such research, including under the controlled conditions of the 

economic laboratory, will help to complement field studies in ways that will prove useful 

in designing institutions for more successful and more accurate performance evaluations.  
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Appendix 

A.1 Proof 

Proof of Proposition 1:  Claim (i) follows from computing the cross derivative. To 

establish claim (ii), first note that the variance of the ratings is 
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By the envelope theorem this is strictly increasing in 𝑀.  ∎  
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A2. Additional results 

Table A1: Demographic backgrounds of participants 

Variable   

Comparison 

treatments 

Comparison 

sessions Test 

    (p-value) (p-value)   

Gender (share in %)         

Female 59.80       

Male 40.20       

    0.052 0.448 Chi-Square test 

          

Age (in years) 24.98       

    0.343 0.687 Kruskal-Wallis test 

          

Student in Management, Economics, and Social Sciences  

(share in %)   

Yes 43.22       

No 56.78       

    0.599 0.135 Chi-Square test 
The table reports the results of non-parametric tests comparing the distributions of demographic variables across 

treatments or experimental sessions. p-values refer to the test listed in the respective row.   
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Table A2: Signals and supervisor decisions, separately for each experimental part 

 1 2 

Dependent variable Rating All Rating All 

Part 1 Part 2 

   

Signal 0.462*** 0.476*** 

 [0.102] [0.085] 

1Su3Si -1.865* -2.603*** 

 [1.015] [0.791] 

Signal × 1Su3Si 0.230* 0.270*** 

 [0.132] [0.097] 

3Su3Si -0.733 -1.550 

 [0.981] [0.969] 

Signal × 3Su3Si 0.096 0.208* 

 [0.119] [0.119] 

Constant 4.176*** 4.534*** 

 [0.844] [0.684] 

   

Observations 365 365 

Chi2-value 184.2 356.7 

Standard errors clustered on the level of supervisors in 1Su1Si and 1Su3Si (on the level of supervisor groups 

in 3Su3Si) are given in brackets. *** p<0.01, * p<0.1. The table reports the results of linear regression models 

with random effects on the level of supervisors (supervisor groups in 3Su3Si). The variable “Signal” refers to 

the performance signal in treatment 1Su1Si and the average of the three performance signals in treatments 

1Su3Si and 3Su3Si. Part 1 (part 2) refers to rounds 1 to 5 (6 to 10). 
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Table A3: Deviation between rating and true performance 

 1 2 

Dependent variable Deviation 

Part 1 

Deviation 

Part 2 

Signal 0.056 0.011 

 [0.045] [0.032] 

1Su3Si -0.267 -0.813*** 

 [0.221] [0.261] 

3Su3Si -0.030 -0.528* 

 [0.216] [0.285] 

CRT score -0.204** -0.256** 

 [0.094] [0.114] 

Constant 1.913*** 2.645*** 

 [0.318] [0.375] 

   

Observations 365 365 

Chi2-value 5.36 12.26 

Standard errors clustered on the level of supervisors in 1Su1Si and 1Su3Si (on the level of supervisor groups in 

3Su3Si) are given in brackets. *** p<0.01, ** p<0.05, * p<0.1. The reference category in the models is treatment 

1Su1Si. Models 1 (2) refers to the first (second) part of the experiment. The table reports the results of linear 

regression models with random effects on the level of supervisors (supervisor groups in 3Su3Si). The variable 

“Signal” refers to the performance signal in treatment 1Su1Si and the average of the three performance signals in 

treatments 1Su3Si and 3Su3Si. The variable “CRT score” is the number of correct answers in the three questions 

of the cognitive reflection test. In treatments 1Su1Si and 1Su3Si, CRT score refers to the score of the individual 

supervisor; in treatment 3Su3Si stands for the average CRT score of the three supervisors per matching group. 
 

A4. Experiment Instructions  

Below you find the instructions from the 3Su3Si treatment, first in English, then in German 

(the original language). Instructions for the other treatments were formulated in a very 

similar way. 

Instructions 

 

General Information 

Welcome to our experiment. Please read the following instructions carefully. If you have 

any questions, please raise your hand; we will then come to you and answer your 

questions. Communication with other participants before and during the experiment is not 

allowed. If you violate these rules, we must exclude you from the experiment and all 

payouts.  

 

All participants will receive 4 Euros, which will be paid to them regardless of the 

decisions made in the experiment. In addition, you may receive payouts that depend on 

your decisions and the decisions of other participants. How this works is described in 

more detail below. 
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The experiment consists of three parts. The following instructions refer to the first part. 

At the end of each part of the experiment, you will receive instructions for the next part 

of the experiment.  

 

The currency used in the experiment is ECU. At the end of the experiment, the ECU 

payments of all participants in both parts20 are added up, converted into Euro and paid out 

in cash. The exchange rate is 100 ECU = 1 Euro.  

 

None of the participants receives information about the identity of the other participants 

or about their payouts during or after the experiment. 

 

Information - First part of the experiment 

 

There are two types of participants in this experiment: employees and evaluators. These 

types are assigned randomly and are fixed for the whole experiment. You will be told 

which type you are at the beginning of the experiment.  

 

Before the experiment begins, three evaluators are randomly assigned to one employee. 

This assignment is fixed for the entire experiment.  

 

The first part of the experiment consists of 5 rounds, each lasting 4 minutes. In each 

round the employee has the task of counting how often the number 7 occurs in a block of 

randomly generated numbers (see the screenshot below). Once an employee has counted 

the 7 digits in a block of numbers, s/he enters the number in the input field highlighted in 

blue and confirms her/his entry by clicking on the red button "Enter/Continue". After the 

employee has confirmed her/his input, a new block of numbers is displayed on the screen.  

 

In each of the 5 rounds the employee receives an amount of 15 ECU for each correctly 

counted block as payment for the work task.  

 

 

20 Here, there was a mistake in the original German instructions that refer to payments of “both parts” whereas 

the experiment consisted of three parts, as described in the previous paragraph of the instructions. Payments 

in the experiment were correctly calculated as the sum of all three parts and paid out to the participants. 
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The employee has the option to interrupt his work on the block of numbers during a 

round. By clicking on the grey "Break" button, s/he is directed to a pause screen where 

cartoons are shown. For as long as the employee interrupts her/his work, the time of the 

round in question continues to run. As soon as the employee wants to end her/his break, 

s/he can return to the work task by clicking on "End break".  

 

Before the experiment starts, employee and evaluator go through a short trial round to 

familiarize themselves with the work task. 

 

The evaluators cannot observe the work performance directly, but only a possibly 

distorted signal. The task of the three evaluators is to estimate as accurately as possible 

how many blocks the employee has correctly counted in a round and to arrive at a joint 

estimate of the employee's work performance.  

 

At the end of each round, each of the three evaluators receives a signal independently of 

each other about how many blocks of numbers the employee has correctly counted in that 

round. The signal is equal to the actual number of correctly counted blocks plus a random 

disturbance term. The rounded probabilities for the possible values of the disturbance 

term are illustrated in the following figure: 
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The disturbance term follows a normal distribution with an expected value of 0 and a 

standard deviation (dispersion) of 3 and can therefore have positive values, negative 

values or the value 0. In this distribution, with a probability of about 70%, the signal does 

not deviate from the actual work performance by more than 3 blocks. 

 

Please note that each evaluator receives her/his own signal independently of the other 

evaluators and that the disturbance terms are drawn independently. It is therefore likely 

that each evaluator will receive a different signal.  

 

After the three evaluators have each received their signal, they have two and a half 

minutes to discuss the estimate in a chat. The aim of the chat discussion is that the three 

evaluators agree on a joint estimate.  

 

After the chat discussion, all three evaluators must independently enter the joint estimate 

on the screen.  

 

If all three evaluators enter the same estimate after the chat discussion, they will receive a 

payout for the round, which is determined as follows: 

 

200 ECU - 10*(estimate - number of correctly counted blocks)2 * ECU (but at least 0 

ECU). 

 

Thus, the closer their joint estimate is to the real work performance of the employee, the 

higher the pay of the evaluators. Deviations of the joint estimate from the actual work 

performance are punished. The evaluators receive their maximum payment (200 ECU) if 

their estimate matches the employee’s actual work performance. The payment to the 

evaluators cannot be negative. 
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The figure below shows the evaluators' payment in ECU for different values of the 

deviation of their estimate from the employee's actual work performance, provided that 

all three have entered the same estimate: 

 

 
 

If the three evaluators enter different estimates after the chat discussion, they will receive 

a payment of 0 ECU for that round. 

 

The payouts for employees and evaluators in each round are therefore calculated as 

follows: 

 

Payment employee = number of correctly counted blocks * 15 ECU 

 

Payment evaluator = 200 ECU - 10*(estimate - number of correctly counted  

blocks)2 * ECU [if the three evaluators have given the same 

estimate], 

   but at least 0 ECU  

 

    0 ECU  

    [if the three evaluators have different estimates] 

 

After each round, the employee is informed about her/his actual work performance and 

the evaluators' estimate. The evaluators are not informed about the employee's actual 

work performance during the 5 rounds. Only at the end of the experiment are they 

informed about the employee's actual work performance and the resulting payments for 

all rounds. 

 

This is the end of the instructions for the first part. If you have any questions, please raise 

your hand. If there are no more questions, the experiment will begin shortly. 
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Information - Second part of the experiment 

 

In the second part of the experiment, the same three evaluators and employee remain 

assigned to each other. The second part also consists of 5 rounds of the previous work 

task.  

 

The decision situation proceeds as in the first part of the experiment. The only difference 

is the payment of the employee. In the second part, this depends no longer on her/his 

actual work performance, but on the estimation of the evaluators. For each estimated 

block of the three evaluators, the employee receives an amount of 15 ECU. For the 

evaluators, the payment continues to depend on the accuracy of the joint estimate of the 

employee's actual work performance. 

 

In each round of the second part, the employee’s payment is therefore determined as 

follows: 

 

Payment employee = joint estimate of the evaluators * 15 ECU  

[if the three evaluators have given the same estimate], 

 

    A random estimate by the evaluators * 15 ECU  

    [if the three evaluators have given different estimates] 

 

As in the first part of the experiment, the payouts of the evaluators in each round are 

determined as follows: 

 

Payment evaluator = 200 ECU - 10*(estimate - number of correctly counted  

blocks)2 * ECU 

[if the three evaluators have given the same estimate], 

    but at least 0 ECU  

 

    0 ECU  

    [if the three evaluators have given different estimates] 

 

This is the end of the instructions for the second part. If you have any questions, please 

raise your hand. If there are no more questions, the second part of the experiment will 

begin shortly. 
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Information - Third part of the experiment 

 

The third part of the experiment consists of two decision situations and the completion of 

a questionnaire. Both the decisions and the questionnaire have nothing to do with the first 

two parts of the experiment.  

 

All participants of the experiment, regardless of whether they were evaluators or 

employees in the first or second part, first go through the decision situations and then the 

questionnaire. 

 

In each of the two decision situations there are two players: Player 1 and Player 2. Who is 

assigned the roles of Player 1 and Player 2 is determined randomly after the experiment. 

All participants first indicate their decision in the role of Player 1. 

 

For each decision situation, Player 1 is presented with a list of 22 payout combinations. 

For each payout combination there are two alternatives (Alternative I and Alternative II), 

between which Player 1 must choose. These alternatives assign a payout in ECU to 

Player 1 and Player 2. Player 1 selects the desired alternative by clicking on it.  

 

After the experiment, two participants are randomly assigned to each other. Then it is 

randomly determined to whom from this pair of participants the roles of Player 1 and 

Player 2 are assigned. Finally, a payout combination is randomly selected from one of the 

two decision situations of the respective Player 1, which is paid out. 

 

After the two decision situations, a questionnaire is displayed to all participants. The 

questionnaire has a total of 13 questions. The questions are displayed one after the other 

on the screen. Participants have 60 seconds to answer each question. For each question 

that is answered correctly, the participants receive a payment of 50 ECU. 

 

After the third part the experiment is finished. 

 

This is the end of the instructions for the third part. If you have questions, please raise 

your hand. If there are no more questions, the third part of the experiment will begin 

shortly. 
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Original German version 

 

Instruktionen 

 

Allgemeine Informationen 

 

Herzlich willkommen zu unserem Experiment. Bitte lesen Sie die folgenden Instruktionen 

sorgfältig durch. Falls Sie eine Frage haben, heben Sie bitte die Hand. Wir werden dann zu 

Ihnen kommen und Ihre Frage beantworten. Kommunikation mit anderen Teilnehmern vor 

und während des Experiments ist nicht erlaubt. Wenn Sie gegen diese Regeln verstoßen, 

müssen wir Sie vom Experiment und allen Auszahlungen ausschließen.  

 

Alle Teilnehmer erhalten 4 Euro, die ihnen unabhängig von den Entscheidungen im 

Experiment ausgezahlt werden. Zusätzlich können Sie Auszahlungen erzielen, die von 

Ihren Entscheidungen und den Entscheidungen anderer Teilnehmer abhängen. Wie dies 

funktioniert, wird im Folgenden genauer beschrieben. 

 

Das Experiment besteht aus drei Teilen. Die folgenden Instruktionen beziehen sich auf den 

ersten Teil. Nach Beendigung eines Experiment-Teils erhalten Sie jeweils die Instruktionen 

für den nächsten Experiment-Teil. 

 

Im Experiment wird als Währung ECU verwendet. Am Ende des Experiments werden die 

ECU-Auszahlungen aller Teilnehmer in beiden Teilen addiert, in Euro umgerechnet und in 

bar ausgezahlt. Der Umrechnungskurs ist dabei 100 ECU = 1 Euro.  

 

Keiner der Teilnehmer erhält während oder nach dem Experiment Informationen über die 

Identität der anderen Teilnehmer oder über deren Auszahlungen. 
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Informationen - Erster Teil des Experiments 

 

In diesem Experiment gibt es zwei Typen von Teilnehmern: Arbeitnehmer und Beurteiler. 

Diese Typen werden zufällig zugeteilt und stehen für das ganze Experiment fest. Welcher 

Typ Sie sind, wird Ihnen zu Beginn des Experiments mitgeteilt.  

 

Bevor das Experiment beginnt, werden jeweils drei Beurteiler einem Arbeitnehmer per 

Zufall zugeordnet. Diese Zuordnung bleibt für das gesamte Experiment bestehen.  

 

Der erste Teil des Experiments besteht aus 5 Runden, die jeweils 4 Minuten dauern. In 

jeder Runde hat der Arbeitnehmer die Aufgabe, zu zählen, wie oft die Ziffer 7 in einem 

Block mit zufällig generierten Zahlen vorkommt (siehe die Abbildung des Bildschirms 

unten). Hat ein Arbeitnehmer die 7er-Ziffern in einem Zahlenblock gezählt, trägt er die 

Anzahl in das blau unterlegte Eingabefeld ein und bestätigt seine Eingabe mit einem Klick 

auf den roten Button „Eingabe/Weiter“. Nachdem der Arbeitnehmer seine Eingabe 

bestätigt hat, wird ein neuer Zahlenblock auf dem Bildschirm angezeigt.  

 

In jeder der 5 Runden erhält der Arbeitnehmer einen Betrag von 15 ECU für jeden korrekt 

gezählten Block als Bezahlung für die Arbeitsaufgabe.  

 

 
 

Der Arbeitnehmer hat die Möglichkeit, während einer Runde die Arbeit an den 

Zahlenblöcken zu unterbrechen. Durch den Klick auf den grauen Button „Pause“ gelangt 

er auf einen Pausen-Bildschirm, wo ihm Cartoons angezeigt werden. Solange der 
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Arbeitnehmer die Arbeit unterbricht, läuft die Zeit der betreffenden Runde weiter. Sobald 

der Arbeitnehmer seine Pause beenden möchte, gelangt er durch einen Klick auf „Pause 

beenden“ wieder zurück zur Arbeitsaufgabe.  

 

Bevor das Experiment startet, durchlaufen Arbeitnehmer und Beurteiler eine kurze 

Proberunde, um sich mit der Arbeitsaufgabe vertraut zu machen. 

 

Die Beurteiler können die Arbeitsleistung nicht direkt beobachten, sondern nur ein 

möglicherweise verzerrtes Signal. Die Aufgabe der drei Beurteiler ist es, möglichst genau 

zu schätzen, wie viele Blöcke der Arbeitnehmer in einer Runde korrekt gezählt hat, und zu 

einer gemeinsamen Schätzung der Arbeitsleistung des Arbeitnehmers zu kommen.  

 

Am Ende jeder Runde erhält jeder der drei Beurteiler unabhängig voneinander ein Signal 

darüber, wie viele Zahlenblöcke der Arbeitnehmer in dieser Runde korrekt gezählt hat. Das 

Signal ist gleich der tatsächlichen Zahl korrekt gezählter Blöcke plus eines zufälligen 

Störterms. Die gerundeten Wahrscheinlichkeiten für die möglichen Werte des Störterms 

sind im folgenden Bild illustriert: 

 

  
Der Störterm folgt einer Normalverteilung mit Erwartungswert von 0 und einer 

Standardabweichung (Streuung) von 3 und kann also positive Werte, negative Werte oder 

den Wert 0 annehmen. Bei dieser Verteilung weicht mit einer Wahrscheinlichkeit von 

ungefähr 70% das Signal nicht mehr als 3 Blöcke von der tatsächlichen Arbeitsleistung ab. 

 

Bitte beachten Sie, dass jeder Beurteiler unabhängig von den anderen Beurteilern ein 

eigenes Signal erhält und die Störterme unabhängig gezogen werden. Es ist also 

wahrscheinlich, dass jeder Beurteiler ein anderes Signal erhält.  

 

Nachdem die drei Beurteiler jeweils ihr Signal erhalten haben, haben sie zweieinhalb 

Minuten Zeit, die Schätzung in einem Chat zu diskutieren. Ziel der Chat-Diskussion ist es, 

dass sich die drei Beurteiler auf eine gemeinsame Schätzung einigen.  
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Nachdem die Chat-Diskussion beendet ist, müssen alle drei Beurteiler unabhängig 

voneinander die gemeinsame Schätzung auf dem Bildschirm eingeben.  

 

Geben alle drei Beurteiler nach der Chat-Diskussion die gleiche Schätzung ein, erhalten 

sie eine Auszahlung für die Runde, die folgendermaßen bestimmt wird: 

 

200 ECU - 10*(Schätzung - Anzahl der korrekt gezählten Blöcke)2 * ECU (aber mindestens 

0 ECU) 

 

Die Auszahlung der Beurteiler ist also umso höher, je näher ihre gemeinsame Schätzung 

an der wahren Arbeitsleistung des Arbeitnehmers liegt. Abweichungen der gemeinsamen 

Schätzung von der wahren Arbeitsleistung werden bestraft. Ihre maximale Auszahlung 

(200 ECU) erhalten die Beurteiler dann, wenn ihre Schätzung der tatsächlichen 

Arbeitsleistung des Arbeitnehmers entspricht. Die Auszahlung der Beurteiler kann nicht 

negativ werden. 

 

Das vorliegende Bild zeigt die Auszahlung der Beurteiler in ECU für verschiedene Werte 

der Abweichung ihrer Schätzung von der wahren Arbeitsleistung des Arbeitnehmers, 

sofern sie alle drei die gleiche Schätzung eingegeben haben: 

 

 
Geben die drei Beurteiler nach der Chat-Diskussion unterschiedliche Schätzungen ein, 

erhalten sie eine Auszahlung von 0 ECU für die Runde. 

 

Die Auszahlungen für Arbeitnehmer und Beurteiler in jeder Runde werden also wie folgt 

berechnet: 

 

Auszahlung Arbeitnehmer =  Anzahl der korrekt gezählten Blöcke * 15 ECU 

 

Auszahlung Beurteiler =  200 ECU -  
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    10*(Schätzung - Anzahl der korrekt gezählten Blöcke)2 * 

ECU     [falls die drei Beurteiler die gleiche Schätzung 

    abgegeben haben], 

    aber mindestens 0 ECU 

 

    0 ECU  

    [falls die drei Beurteiler unterschiedliche Schätzungen 

    abgegeben haben] 

 

Nach jeder Runde wird der Arbeitnehmer über seine tatsächliche Arbeitsleistung und über 

die Schätzung der Beurteiler informiert. Die Beurteiler werden während der 5 Runden nicht 

über die tatsächliche Arbeitsleistung des Arbeitnehmers informiert. Erst am Ende des 

Experiments werden ihnen die tatsächliche Leistung des Arbeitnehmers und die daraus 

resultierenden Auszahlungen für alle Runden angezeigt. 

 

Dies ist das Ende der Instruktionen für den ersten Teil. Wenn Sie Fragen haben, heben Sie 

bitte die Hand. Wenn es keine Fragen mehr gibt, wird das Experiment in Kürze beginnen. 
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Informationen - Zweiter Teil des Experiments 

 

Im zweiten Teil des Experiments bleiben die gleichen drei Beurteiler und der gleiche 

Arbeitnehmer einander zugeordnet. Der zweite Teil besteht ebenfalls aus 5 Runden der 

bisherigen Arbeitsaufgabe.  

 

Die Entscheidungssituation läuft wie im ersten Teil des Experiments ab. Der einzige 

Unterscheid besteht in der Auszahlung des Arbeitnehmers. Diese hängt im zweiten Teil 

nicht mehr von seiner tatsächlichen Arbeitsleistung, sondern von der Schätzung der 

Beurteiler ab. Für jeden geschätzten Block der drei Beurteiler erhält der Arbeitnehmer 

einen Betrag von 15 ECU. Bei den Beurteilern hängt die Auszahlung weiterhin von der 

Genauigkeit der gemeinsamen Schätzung über die tatsächliche Arbeitsleistung des 

Arbeitnehmers ab. 

 

Die Auszahlung des Arbeitnehmers bestimmt sich in jeder Runde des zweiten Teils also 

wie folgt: 

 

Auszahlung Arbeitnehmer =  Gemeinsame Schätzung der Beurteiler * 15 ECU   

    [falls die drei Beurteiler die gleiche Schätzung 

    abgegeben haben] 

 

    Eine zufällig ausgewählte Schätzung der Beurteiler * 15 

ECU  

    [falls die drei Beurteiler unterschiedliche Schätzungen 

    abgegeben haben] 

 

Wie im ersten Teil des Experiments bestimmen sich die Auszahlungen der Beurteiler in 

jeder Runde wie folgt: 

 

Auszahlung Beurteiler =  200 ECU -  

    10*(Schätzung - Anzahl der korrekt gezählten Blöcke)2 * 

ECU     [falls die drei Beurteiler die gleiche Schätzung 

    abgegeben haben], 

    aber mindestens 0 ECU  

 

    0 ECU  

    [falls die drei Beurteiler unterschiedliche Schätzungen 

    abgegeben haben] 

 

Dies ist das Ende der Instruktionen für den zweiten Teil. Wenn Sie Fragen haben, heben 

Sie bitte kurz die Hand. Wenn es keine Fragen mehr gibt, wird der zweite Teil des 

Experiments in Kürze beginnen. 
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Informationen - Dritter Teil des Experiments 

 

Der dritte Teil des Experiments besteht aus zwei Entscheidungssituationen und der 

Beantwortung eines Fragebogens. Sowohl die Entscheidungen als auch der Fragebogen 

haben inhaltlich nichts mit den ersten beiden Teilen des Experiments zu tun.  

 

Alle Teilnehmer des Experiments, unabhängig davon, ob sie im ersten oder zweiten Teil 

Beurteiler oder Arbeitnehmer waren, durchlaufen erst die Entscheidungssituationen und 

dann den Fragebogen. 

 

In jeder der beiden Entscheidungssituationen gibt es zwei Spieler: Spieler 1 und Spieler 2. 

Wem die Rolle von Spieler 1 und Spieler 2 zugewiesen wird, wird nach dem Experiment 

per Zufall bestimmt. Alle Teilnehmer geben zunächst ihre Entscheidung in der Rolle von 

Spieler 1 an. 

 

Pro Entscheidungssituation wird Spieler 1 eine Liste mit insgesamt 22 

Auszahlungskombinationen vorgelegt. Für jede Auszahlungskombination gibt es zwei 

Alternativen (Alternative I und Alternative II), zwischen denen Spieler 1 wählen muss. 

Diese Alternativen weisen Spieler 1 und Spieler 2 jeweils eine Auszahlung in ECU zu. 

Spieler 1 wählt die gewünschte Alternative durch Anklicken der jeweiligen Alternative aus.  

 

Nach dem Experiment werden zwei Teilnehmer einander zufällig zugeordnet. Dann wird 

per Zufall bestimmt, wem aus diesem Teilnehmerpaar die Rolle von Spieler 1 und von 

Spieler 2 zugeordnet wird. Als letztes wird eine Auszahlungskombination aus einer der 

beiden Entscheidungssituationen des betreffenden Spielers 1 zufällig ausgewählt, die 

ausgezahlt wird. 

 

Nach den beiden Entscheidungssituationen wird allen Teilnehmern ein Fragebogen 

angezeigt. Der Fragebogen umfasst insgesamt 13 Fragen. Die Fragen werden nacheinander 

auf dem Bildschirm angezeigt. Für die Beantwortung jeder Frage haben die Teilnehmer 

jeweils 60 Sekunden Zeit. Für jede korrekt beantwortete Frage erhalten die Teilnehmer 

eine Auszahlung von 50 ECU. 

 

Nach dem dritten Teil ist das Experiment beendet. 

 

Dies ist das Ende der Instruktionen für den dritten Teil. Wenn Sie Fragen haben, heben Sie 

bitte die Hand. Wenn es keine Fragen mehr gibt, wird der dritte Teil des Experiments in 

Kürze beginnen. 

 

 

 


