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The brain is the most elevated of all the viscera, and the nearest to the roof of
the head ... The senses hold this organ as their citadel; it is in this that are

centered all the veins which spring from the heart; it is here that they
terminate; this is the very culminating point of all, the regulator of the

understanding.

— Pliny the Elder (77 AD)

Nobody understands how the brain works, and everybody knows that.

— Anirban Bandyopadhyay (2022)





S U M M A RY

Our goal is to better understand the working mechanisms of biological
neural systems. To this end, describing neural systems as networks
provides a powerful and widely-used analysis approach. The network
syntax of interacting nodes exhibiting joint dynamics facilitates the
quantitative characterizations of neural systems across scales. More-
over, this approach enables us to construct systematic comparisons of
neural network descriptions across domains.

We aim to identify characterizations of neural network activity that
reflect the underlying connectivity and relate to the network’s abil-
ity to process information. In this context, we explore characteristic
measures from experimental and simulated data sources. Concretely,
we look at cortical activity data from mice and monkeys, from dif-
ferent recording techniques like implanted electrode arrays, laminar
probes, ECoG, and calcium imaging, and further from simulations
of stochastic processes, spiking, and mean-field network models. We
investigate activity measures of different complexity, including mea-
sures on the level of individual neurons, higher-order measures of
coordinated spiking activity, and population-level field potential mea-
sures describing spatial wave patterns. Such activity characterizations
always represent an abstraction, and the right level of detail depends
on the data type and the question of interest. For a given context, the
appropriate abstraction level allows us to integrate and compare data
and models from heterogeneous sources.

Evaluating the similarity between such different network descrip-
tions is a common demand in computational neuroscience. Extending
the concept of validation, we formalize and apply cross-domain com-
parisons in model vs. experiment, model vs. model, and experiment vs.
experiment scenarios. In this framework, we further evaluate and ex-
tend existing statistical testing approaches and look at reproducibility,
sources of variability, and technical limitations.

Through our exploration of network activity characterizations and
their comparability, we evaluate the relationship between network
connectivity, activity, and function. Concretely, over the course of
five research projects, we implement and demonstrate systematic ap-
proaches to validate model simulators, statistically evaluate network
organization, infer network connectivity from activity data, combine
data sources of wave activity, and relate wave activity to external in-
fluences and behavior. With a focus on open and collaborative science
practices, we implement our methodologies as reusable open-source
tools while building upon existing open-source tools and standards.
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Z U S A M M E N FA S S U N G

Das Ziel dieser Arbeit ist es, die Funktionsmechanismen biologischer
neuronaler Systeme besser zu verstehen. Die Beschreibung neurona-
ler Systeme als Netzwerke bietet dafür einen idealen Analyseansatz.
Die Netzwerk Syntax interagierender Knoten, die eine gemeinsame
Dynamik aufweisen, erleichtert die quantitative Charakterisierung
neuronaler Systeme auf verschiedenen Beschreibungsebenen. Darüber
hinaus ermöglicht dies einen systematischen Vergleich von Netzwer-
ken über verschiedene Anwendungsbereiche hinweg.

Wir streben an Charakterisierungen der Aktivität neuronaler Netze
zu identifizieren, die die zugrunde liegende Konnektivität widerspie-
geln und sich auf die Informationsverarbeitungsfähigkeit des Netzes
beziehen. In diesem Zusammenhang untersuchen wir charakteristi-
sche Maße aus experimentellen und simulierten Datenquellen. Kon-
kret betrachten wir kortikale Aktivitätsdaten von Mäusen und Affen,
generiert mit verschiedene Aufzeichnungstechniken wie implantierten
Elektrodenarrays, laminaren Sonden, ECoG, und Kalzium-Imaging,
sowie Daten von Simulationen stochastischer Prozesse, Spiking und
Mean-Field-Netzwerkmodellen. Wir untersuchen verschieden kom-
plexe Aktivitätsmaße, einschließlich Maße auf der Einzelneurone Ebe-
ne, Maße höherer Ordnung der koordinierten Spiking-Aktivität, und
Feldpotentialmaße auf Populationsebene. Solche Aktivitätscharakte-
risierungen stellen immer eine Abstraktion dar, wobei die richtige
Abstraktionsebene es uns ermöglicht, Daten und Modelle aus hetero-
genen Quellen zu integrieren und zu vergleichen.

Die Bewertung der Ähnlichkeit zwischen solchen unterschiedlichen
Netzwerkbeschreibungen ist eine gängige Herausforderung im Bereich
der Computational Neuroscience. Indem wir das Konzept der Validie-
rung erweitern, können wir bereichsübergreifende Vergleiche in den
Szenarien Modell vs. Experiment, Modell vs. Modell und Experiment
vs. Experiment formalisieren und anwenden.

Die Erforschung der Charakterisierung von Netzwerkaktivitäten
und ihrer Vergleichbarkeit ermöglicht uns, die Beziehung zwischen
Netzwerkkonnektivität, Aktivität, und Funktion zu bewerten. Dies
stellen wir konkret anhand von fünf Forschungsprojekten dar: zur
systematischen Ansätzen zur Validierung von Modellsimulatoren,
statistischen Auswertung der Netzwerkorganisation, Ableitung von
Netzwerkkonnektivität aus Aktivitätsdaten, Kombination von Daten-
quellen für Wellenaktivität, und Verknüpfung von Wellenaktivität
mit externen Einflüssen und Verhalten. Im Sinne kollaborativer Wis-
senschaftspraktiken implementieren wir unsere Methoden als frei
nutzbare Open-Source Tools und bauen auf bestehenden Open-Source
Tools und Standards auf.
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Part I

I N T R O D U C T I O N





1
B A C K G R O U N D

1.1 scales of neural organization

Our brain has the relatively fixed and modest size of a clenched fist,
with the additional appendices of the central nervous system reaching
out through our body. This neural system is enormously complex
and intricately structured (Koch and Laurent, 1999), representing
aspects over many orders of magnitude in its neural organization,
from molecular interactions to environmental influences. Although
we use a mammal-centric view here, many of the discussed aspects
also apply to other neural system such as typical model organisms
like C.Elegans (Izquierdo and Beer, 2013) and, in some regards even
artificial neural systems like neuromorphic architectures (Bartolozzi
et al., 2016). All matter is built up from fundamental physical building
blocks, and so are neural systems. However, the specificity to neural
systems begins in most descriptions on the level of molecules and
their interactions (except some hypotheses about the theory of mind,
e.g., Penrose (1999)).

nanometers On the scale of nanometers, there are a wide variety
of molecular processes and interactions happening that are relevant to
the brain and the nervous system. Genes are expressed, proteins are
built acting in and in-between the brain’s cells, e.g., as ion-channels, as
catalysts for the biosynthesis of relevant molecules such as neurotrans-
mitters, and as fluorescent markers in transgenic subjects (Barth et al.,
2004). In contrast, the suppression of specific genes via knock-out can
be used to model neurological disorders (Hall et al., 2009). Further
molecular processes include, for example, the aggregation and fold-
ing of proteins (e.g., beta-amyloids which play a role in Alzheimer’s
disease (Sticht et al., 1995)), molecular transport (e.g., via diffusion,
electrical and chemical gradients, and carrier proteins), and the bind-
ing to receptors (e.g., of neurotransmitters, hormones, caffeine, or
certain trace elements) (Kandel et al., 2001). Many crucial processes in
the nervous system take place around the cell membranes that act as a
mechanical, chemical, and the electrical barrier between the inside and
the outside of the cells. Therefore there is typically a concentration dif-
ferential for many free molecules (including sodium, potassium, and
calcium), resulting in a resting potential of about −70 mV across the
membrane of a nerve cell, i.e., a neuron (Rubinstein, 1990). Facilitated
by trans-membrane ion-pumps and channels, sufficiently depolariz-
ing perturbations of this (Nernst) equilibrium trigger a stereotypical

3



4 background

response of a rapid depolarization and repolarization (within ∼ 2 ms)
of the membrane, called an "action potential" (or "spike" if measured
extracellularly), followed by a hyperpolarization before returning to
the resting potential (after another ∼ 2 ms) (Hodgkin and Huxley,
1952).

micrometers The action potentials are considered a fundamen-
tal unit in the information transport and processing in the nervous
system. Action potentials propagate along the membranes of the neu-
ronal compartments. Typically on a scale of micrometers, there are
dendritic branches where the input of other neurons is received, and
action potentials are evoked. The action potentials in the dendrites
can interact and are aggregated in the soma where eventually, when
a threshold potential is surpassed at the axon hillock, an outgoing
action potential is created to propagate along the axon to be transmit-
ted to other neighboring neurons via shared synapses, i.e., the neuron
"fires" (Kandel et al., 2001). At the synapses, action potentials trigger
the release of neurotransmitters from the axon of the pre-synaptic
neuron, which are received by the dendrites of post-synaptic neurons,
where then action potentials can again be elicited. The efficiency of
this transmission, also referred to as synaptic weight, is dependent on
multiple aspects such as the number of released neurotransmitters,
the number of synaptic connections, the number of receptors, and
the availability of intracellular ions (e.g., Ca+). Furthermore it, and
is subject to ongoing change as a function of the neuron’s activities,
i.e., "plasticity". While the soma of neurons has a diameter between
a few and a hundred micrometers, the length of the neuron along
its dendrites and axon can stretch up to meters (Niebur, 2008). The
exact dimensions, morphology, electrophysiological properties, and
transcriptomic profile of neurons depend strongly on the neuronal cell
type and the species. Furthermore, there is also a variety of synaptic
types, separating most broadly into electrical and chemical synapses
and chemical synapses further into excitatory and inhibitory synapses.
Transmissions via excitatory synapses stimulate the generation of a
post-synaptic action potential, whereas transmissions via inhibitory
synapses suppress it. According to Dale’s law, each neuron produces
the same types of neurotransmitters at all of its post-synaptic connec-
tions and can therefore be labeled as excitatory or inhibitory (Kandel,
1968). There is a diverse zoo of neuronal cell types that can also differ
across species and brain regions (Tasic et al., 2016; Tasic et al., 2018;
Boldog et al., 2018). This neuron zoo is further complemented by
non-neural glial cells.

millimeters Neurons are highly interconnected, with each one
typically having thousands of synapses, and are organized in various
group structures, like assemblies (Harris, 2005), with their neighbors
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on a scale of millimeters. This interconnection leads to a coordination
of the neurons’ activity and in many cases, a synchronization (Singer,
1999; Ben-Shaul et al., 2001; Sakurai and Takahashi, 2006). Coordinated
firing activity is particularly relevant because synchronized input is
much more likely to trigger a response in the post-synaptic neuron
than asynchronous input (Abeles, 1982; Palm, 1990; König et al., 1996).
The neuronal activity is not solely contained inside the cells. The
depolarization of the cell membranes and the synaptic transmissions
of the electric potentials within a local group of neurons also contribute
to a field potential that propagates in the extracellular medium, the
local field potential (LFP). Therefore, the LFP represents a summed
population activity of a group of nearby neurons, for which the radius
of influence depends on the brain area, species, and spectral frequency
(Pesaran et al., 2018). The relationship between the LFP and the firing
activity of neurons is not unidirectional as the LFP can influence a
neuron’s membrane potential and, therefore, its probability and timing
to fire, in a process called "ephaptic coupling" (Aur and Jog, 2010).

centimeters Neuronal structures in the brain further organize in
structurally and functionally differing areas on the scale of millimeters
to centimeter, depending on the species. Besides many structurally
distinct "deep" brain areas (such as the cerebellum, hippocampus, pons,
or thalamus), the cerebral cortex represents an increasing fraction
of the brain in higher mammals (Hofman, 1988). The cortex has a
relatively consistent, layered structure (Douglas et al., 1989) but still
separates into specific cortical areas that can be associated with specific
functions based on their cytoarchitecture (Brodmann, 1909; Amunts
and Zilles, 2015). The brain areas, and in particular the cortical areas,
are further organized in hierarchical pathways structuring the flow of
processing and integration of information. This complex organization
of neural structures building up the whole brain further gives rise to
characteristic oscillatory behaviors of the field potential, incorporating
many different brain rhythms across a frequency range from < 0.1 Hz
up to 600 Hz (Katz and Cracco, 1971). Different areas in the brain can
differ in their spectral signature due to a multitude of mechanisms
producing the various oscillatory bands (Buzsaki, 2006). Furthermore,
local oscillations interact, resulting in traveling waves in the electrical
potential field that can cover up to an entire hemisphere or the whole
brain (Muller et al., 2016; Hindriks et al., 2014; Burkitt et al., 2000).

meters The brain is not an isolated structure. It connects to the rest
of the central nervous system that stretches out through the whole body,
in some mammals for many meters. The body is an indispensable
aspect in the organization of neural systems, as it represents the inter-
face to perceive and interact with the environment ("embodiment").
Specialized neural structures process the input from the sensory or-
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gans and integrate it with other inputs and existing dynamics. Further,
the nervous system is specialized to command the body’s activity for
homeostasis and behavior (Friston, 2010).

kilometers The influences on neural organization and function
also extend beyond the body, on the scale of kilometers. Brain or-
ganization incorporates the laws and statistics of the environment
where it develops, which is particularly prevalent for the visual cortex
(Switkes et al., 1978; Beaulieu and Colonnier, 1989; Gomez et al., 2019).
Furthermore, as many mammals live in some social structure, their
brains are built to navigate the corresponding social relationships,
including, for example, communication, cooperation, and competi-
tion. Moreover, social constructs like language and culture can shape
perception (Winawer et al., 2007; Goldstein et al., 2009) and more
complex social aspects, like socioeconomic status, can be reflected in
the structure of the brain (Kweon et al., 2022). In fact, the brain is
shaped by its entire surrounding eco-system (on a scale of megameters)
by the adaptive processes of evolution. There is even evidence for
coherence between brain rhythms and the electromagnetic resonance
in the earth’s ionosphere (Saroka et al., 2016).

scales in the focus of this work Consequently, neural sys-
tems incorporate into their organization influences from at least 15

spatial scales of magnitude, and there is active neuroscience research
within and across all these different scales. Additionally, there is at
least as wide of a span of temporal scales involved in the structuring
and function of the brain. In the scope of the present work, we are
particularly interested in the activity and function of neural structures
on a scale reflecting "everyday experiences", agency (Hoel, 2018), and
conscious behavior. This means, in space, we focus on groups of in-
dividual neurons up to cortical areas and hemispheres. In time, we
focus on the scales of milliseconds (the timing resolution of an action
potential) up to a few seconds and minutes (the timing of simple tasks).
These spatiotemporal scales also roughly correspond to a theoretically
postulated maximum of integrated information in the brain, i.e., the
abstract description level with the maximal intrinsic causal power
(Hoel et al., 2016).

1.2 a network view onto neural organization

Networks are an ensemble of connected nodes that interact via edges
and exhibit joint dynamics determining the network activity. This
syntax of networks is immensely powerful for representing a wide
range of systems, from the trivially simple to the highly complex (see,
e.g., Albert and Barabási, 2002). The syntax of networks also lends
itself exceptionally well to the realm of neural systems (Bassett and
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Figure 1.1: Schematic illustration of the ventricular doctrine. The schema
shows five ventricles for the faculties of common sense, imagina-
tion, estimation, cogitation, and memory. The illustration is ac-
companied by a text titled "Qualiter caput hominis situatur" (How
the human head is structured), from a trilingual compendium of
texts on parchment from the first half of the 14th century, England
(Cambridge, Syndics of Cambridge University Library. Photo taken at
the Fondazione Prada, Venice, Italy.)

Sporns, 2017). One of the earliest descriptions of networks used to
explain the brain is the so-called "ventricular doctrine" that originated
from the works of early Christian philosophers Nemesis of Emesa
(350-420) and Augustine of Hippo (354-430) and was further devel-
oped by Avicenna (980-1037), Thomas Aquinas (1225-1274), Albertus
Magnus (1193-1280), and others (Manzoni, 1998; Rose, 2009). The
ventricular doctrine already postulates the existence of functionally
specific units in the brain where the higher faculties of humans reside,
the interactions informing human behavior (Figure 1.1).

Since then, the network approach has only increased in popular-
ity as a mental and mathematical tool to describe complex systems
such as the brain. The approach offers qualitative and quantitative
descriptions, as the edges can represent measures of the interaction
between the nodes. Notably, as a tool, it can be applied in multiple
different ways (Peel et al., 2022). The different ways of describing a
neural system as a network differ in the scale of the description and
the scale of its granularity: What is the scope of the represented sys-
tem? What do the individual nodes represent? For example, networks



8 background

Figure 1.2: Syntax of networks and their comparison. Here, a network is
an ensemble of neurons. The neurons interact via a connectivity
exhibiting a joint dynamics that is entrained by an input and results
in a corresponding activity. A network or network description
can be derived from experimental measurements or a model imple-
mented with a simulator. Abstractions of the network in the form
of characteristic measures on the connectivity or activity level are
the basis for comparisons between network descriptions.

can describe the interaction of the compartments of a single neuron,
between individual neurons, between brain areas, or between entire
brains. These scales can also be combined: networks of neurons that
entail multi-compartment models (Schemmel et al., 2017; Yang et al.,
2020b), multi-area networks interconnecting networks of individual
neurons (Albada et al., 2019), or multi-brain networks incorporating
networks of brain areas (Yang et al., 2020a).

Although there are multiple ways to describe a neural system in
terms of a network, not all are equally useful. A useful network de-
scription should apply a node definition that reflects a reasonable level
of biophysical segmentation. The abstraction of its scope and granu-
larity should reflect the description level of interest. Therefore, given
the scales of interest within this work identified previously in Sec-
tion 1.1, we use networks to describe groups of neurons (up to cortical
area) where nodes represent individual neurons. See Figure 1.2 for a
schematic overview of the use of the network context within this thesis.
Following the biophysical basis of neural systems, the edges between
the nodes represent the strength of the synaptic connection between
neurons. However, in many practical applications, information about
physical connections may not be directly accessible. Therefore, one
may instead quantify the interaction between the nodes based on
measures derived from the neuron activity (e.g., correlations).

A benefit of describing neural systems as networks is that it enables
systematic approaches to compare descriptions of the neural systems
to each other regardless of whether they are based on experimental
measurements of biological neural systems or computational models.
Such comparisons can either focus on the connectivity level (aspects
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of the network edges) or the activity level (dynamical aspects of the
network nodes). Section 1.3 lays out the basis of measuring properties
of the network activity. Section 1.4 elaborates on the need for compar-
ing networks representing a neural system in contexts of experiments
and models. Section 1.5 further addresses the connectivity level and
activity level of network descriptions have a complex relationship.

1.3 quantitative description of neural data in mea-
sures and models

"To look, to see, to
know" - Ludwik
Fleck

The concept of a quantitative description of the world has a long and
winding history. Aristotle distinguished distinctly between quanti-
ties and qualities. Quantities could only be compared via inequalities,
whereas qualities could only be compared via degrees (Tal, 2020). Over
the centuries, the popular philosophical perspective was developed
towards establishing a relation between quantitative and qualitative
descriptions. Quantity was rather understood as the intensity of a
quality. This change of perspective may seem subtle, but this repre-
sents the logical foundation of the scientific use of measurements. This
development enabled the popularization of the scientific approach of
quantitative measurements and formulations of quantitative laws dur-
ing the 16th and 17th centuries (Grant and Grant, 1996). A prominent
example of this is Galileo Galilei, who employed and advanced this
approach by a combination of experiment and mathematics (Sharratt,
1996).

The apparent conceptual discrepancies between qualities and quan-
tities continued to be re-evaluated, guided by philosophical advances,
as well as advances in measurement techniques and understanding of
physical laws. For example, temperature slowly evolved from a quality
to a measurable quantity (Sherry, 2011). Gottfried Wilhelm Leibniz
further expanded the idea of quantity as the qualitative intensity, stat-
ing that all natural change is continuous, including the intensities of
representational states of consciousness (Jorgensen, 2009). Indeed, the
dichotomy of quality and quantity is still evaluated today. Not all
things can be measured or should be described mathematically. For
example, business math of the type "Experience - Expectation = Satisfac-
tion" (Compeau, 2018) presents an ill-fated attempt to imprint aspects
of quantities onto qualities (Diana, 2019). Besides the enormous effec-
tiveness of quantitative and mathematical approaches (Wigner, 1960),
there are still genuine limits. In the words of Bertrand Russel: "Physics
is mathematical not because we know so much about the physical
world, but because we know so little: it is only its mathematical prop-
erties that we can discover." (Russell, 2009).

Measurements are not a one-to-one mapping of reality (assuming an
objective reality). Measurements are necessarily indirect and abstract-
ing assessments of reality conceptually linked to theory. Measurement
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both requires theory and is a prerequisite for theory. Therefore, one
must avoid potential circular approaches where the theory being tested
is already assumed in the method of measurement (e.g., measuring the
expansion of objects due to temperature with a mercury thermometer
(Franklin et al., 1989)). Consequently, measurements cannot test a
theory in isolation but rather by applying a theoretic assumption that
is only challenged when advancement in the measurement application
unveils discrepancies that require alternative or more refined theories
(Hacking and Hacking, 1983; Kuhn, 1961).

When applying this concept of measurement to the brain, we even-
tually want to measure cognitive processes (e.g., attention, conscious
awareness, memory recall). However, without an underlying theory
of these processes, we must suffice with accessible observables and
proxy measures (cf. outside-in vs. inside-out strategy in Buzsáki, 2019).
Here, we focus only on the network aspects of the neural system and
on measurements of the network activity. Because of the brain’s orga-
nization over multiple spatial and temporal scales (see Section 1.1),
measurement techniques need to have corresponding resolutions. As
mentioned above, measurements are inherently indirect. So, to repre-
sent neural activity, multiple alternative types of signals are used in
different measurement techniques, including electric potential, mag-
netic field strength, fluctuation of calcium concentration, or radiant
isotopes. The type of signal used for the activity measurement also in-
forms the level of abstraction the measurement represents and which
sort of biases the measurement technique might entail (Hong and
Lieber, 2019; Sejnowski et al., 2014). Additionally, in the measurements
of living organisms, there is often a trade-off between the quality of
the measurement and the interference with the organism. On the one
hand, acquiring accurate and prolonged recordings of cell activity
in-vitro is much more tractable than in a living and behaving subject.
Invasive recordings typically give a better resolution than non-invasive
techniques. On the other hand, less interference with the organism
allows for more behavioral flexibility and the natural function of the
neural system. For neural systems, measuring with a "natural" en-
vironment and stimuli is more helpful in acquiring measurements
that give insight into the functional mechanisms of "normal" activity.
(Chamove, 1989; Felsen and Dan, 2005; Bartels and Zeki, 2005). Here,
we primarily focus on the activity in the cerebral cortex, which is
thought to be the leading actor in most higher cognitive functions
in mammals, and conveniently is more accessible than deeper brain
structures.

Measurements abstract the complexity of reality, in some aspects
intentionally and in some aspects accidentally/circumstantial. For
example, we abstract the activity to measure local electrical potentials
with electrode recordings because we assume that they play a rele-
vant role in the communication within and between neurons (e.g., via



1.3 quantitative description of neural data in measures and models 11

voltage-gated membrane dynamics and the transmission of action po-
tentials). However, electrode recordings and others types of recordings
also abstract the network activity by measuring only a subset of neu-
rons in place of the full network of interest. This is due to limitations
of the measurement techniques in covering the space of the network,
discerning the heterogeneous activity within that space (e.g., see the
"dark matter" problem of neuroscience (Shoham et al., 2006)). This con-
siderable degree of undersampling is a general challenge in modern
neuroscience. Even with access to the activity of all neurons, it is not
trivially evident that we could deduce how information processing in
the brain works (Jonas and Kording, 2017).

One approach to reducing the complexity of the electric neural
activity is to separate it into a pulsed binary signal and a continuous
analog signal. The binary signal describes the action potentials of
the neurons, extracellular measured as high-frequency pulses called
spikes. The analog signal describes the lower-frequency components
of the extracellular potential, called local field potential (LFP) (cf. Sec-
tion 1.1). In Chapter 4, Chapter 5, and Chapter 6, we will focus on
the spiking activity description, and in Chapter 7, and Chapter 8, we
will focus on the LFP activity description. Although separating the
types of electrical activity is helpful, the description level is typically
still too complex to derive general mathematical activity descriptions.
Therefore, we further reduce the activity signals to their character-
istic properties. For the spiking activity, these can entail measures
regarding the spike rate, its regularity (over time), its variability (over
neurons), or its coordination (over time and neurons). The LFP stan-
dard measures include amplitude, oscillation phase, spectral power
(w.r.t. to a frequency regime), or coordination (over time and locations).
There is an extensive catalog of characteristic measures derived from
various measurements. However, it is still unclear what precisely the
uniquely relevant measure or combination of measures is to fully
describe/explain/predict the functionality of a neural system.

The quantitative description of reality is not only the basis for exper-
imental measurements but also for the creation of executable models.
A conceptual model is a formal description of the system of interest.
In contrast, an executable model is an operational implementation of
the conceptual model that can be simulated and formulate predictions
(Schlesinger, 1979; Thacker et al., 2004). Chapter 4 explores in more
detail the concept of a distinct conceptual model and an executable
model in the domain of computational neuroscience. Models do not
suffer from the same issues of only being accessible via indirect mea-
surements that provide a limited abstraction. All simulated activity
and all network parameters are directly available. Instead, the model
itself is an abstraction of the system they are describing. One might
consider whether it is possible to gain new knowledge about the sys-
tem of interest from its models when the model is just an abstraction
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and inherently can not be entirely valid itself (Balci and Sargent, 1982;
Sterman, 2000). This question is a matter of ongoing philosophical
debate (Oreskes et al., 1994; David, 2009; Irobi et al., 2004). However,
in practice, we are not concerned with a model’s truth value but rather
with its simulations’ testable accuracy. Only the model’s accuracy
relative to the given system justifies its use as the basis for tractable
analysis and prediction-making.

In particular, the field of computational neuroscience is driven by
the development of models describing neuronal activity on different
temporal and spatial scales, ranging from single cell dynamics (e.g.,
Koch and Segev, 2000; Izhikevich, 2004) to spiking activity in meso-
scopic neural networks (e.g., Potjans and Diesmann, 2014; Markram et
al., 2015), to whole-brain activity (e.g., Sanz Leon et al., 2013; Schmidt
et al., 2018). Indeed, there are modeling approaches for most scopes
and granularity levels of neural network descriptions (Section 1.2).
Models employ various strategies in abstracting neural systems, for
example, by reducing the variety of neural cell types, omitting physi-
cal extension of cells, and simplifying complex membrane dynamics
to single differential equations (Teeter et al., 2018). However, even
abstract models can give fairly realistic descriptions of neural sys-
tems and lead to new insights. For example, the Kuramoto model
describes neural networks as a collection of coupled, self-sustained
phase oscillators (Kuramoto, 1975). This abstract model can predict
synchronization over large populations and phase transition of the
network state at a critical coupling strength (Acebrón et al., 2005). In
order to further leverage such insights, models of different description
levels should be combinable, and models of different abstractions
should be comparable (see Section 2.2).

The comparability and combinability of models entail multiple
challenges. One is the heterogeneity of model descriptions, their im-
plementations, and how they are made available. Although there is no
consensus regarding this (Nordlie et al., 2009), several frameworks sup-
port researchers in documenting and implementing models beyond
the level of custom-written code in standard high-level programming
languages. These frameworks include guidelines for reproducible net-
work model representations (Nordlie et al., 2009; McDougal et al.,
2016), domain-specific model description languages (e.g., Plotnikov
et al., 2016; Gleeson et al., 2010), modelling tool-kits (e.g BMTK1,
NetPyNE2), and generic network simulation frameworks (Davison
et al., 2008). To share these models, but also data, with the community,
several databases and repositories have emerged and are commonly
used for this purpose, for example, GitHub3, OpenSourceBrain4, the

1 https://github.com/AllenInstitute/bmtk

2 https://www.netpyne.org

3 https://github.com

4 http://opensourcebrain.org

https://github.com/AllenInstitute/bmtk
https://www.netpyne.org
https://github.com
http://opensourcebrain.org
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Neocortical Microcircuit Collaboration Portal5 (Ramaswamy et al.,
2015), the G-Node Infrastructure (GIN)6, ModelDB7, NeuroElectro8

(Tripathy et al., 2014), or CRCNS 9 (Teeters et al., 2008).
In the following Section 1.4, we elaborate on the quantification of

model accuracy and credibility.

1.4 comparability of measured and modeled neural ac-
tivity data

"What I cannot
create I do not
understand." -
Richard Feynman

The abstraction of neural network descriptions from experimental
measurements and computational models to characteristic measures
provides the foundation for quantitative comparisons. The combina-
tion of quantitative descriptions of (neural)systems and their statistical
evaluation of similarity is conceptually formalized as the process of
validation (Schlesinger, 1979) (Figure 1.3). Validation is essential to
modeling and has an extensive history of research and applications in
many scientific and engineering domains. Many established processes,
insights, and terminologies can be adapted to neuroscience. Although
suggested by the term "validation", the goal of modeling and model
validation is not "validity". Instead, modeling concerns the testable
correctness of its simulated output relative to the system of interest.
Only a model that can accurately predict the behavior of the system
of interest is useful for inferring properties of that system. Validation,
the process of evaluating this accuracy, is an ongoing task (Murray-
Smith, 2015). There is not a single validation test that is sufficient to
evaluate a model in its completeness (Forrester and Senge, 1980), and
the outcome of a validation process is not a definite or binary verdict.
The outcome of a validation process typically comes in the form of a
quantitative score (or scores). The interpretation of whether this score
indicates agreement or discrepancy between the model and the system
of interest depends on the model’s intended application and scope
(Carnap, 1968).

In 1979, the Technical Committee on Model Credibility of the Society
of Computer Simulation established a widely recognized description
of model verification and validation environment. The validation setup
is separated into three basic elements (see Figure 1.3). The system of
interest can be defined as "an entity, situation, or system which has been
selected for analysis" (Schlesinger, 1979), and constitutes the references
against which validations are carried out. Originally referred to as
reality, the term ’system of interest’ better conveys that modeling efforts
always operate within boundaries, for example, in terms of scope and
granularity (Section 1.2). In this modeling environment, separating

5 https://bbp.epfl.ch/nmc-portal

6 https://gin.g-node.org

7 https://senselab.med.yale.edu/modeldb

8 https://neuroelectro.org

9 https://crcns.org

https://bbp.epfl.ch/nmc-portal
https://gin.g-node.org
https://senselab.med.yale.edu/modeldb
https://neuroelectro.org
https://crcns.org
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Figure 1.3: Schematic view of the model simulation environment. In a 1979

report (Schlesinger, 1979), the SCS Technical Committee on Model
Credibility conceptually defined the relationships between the
conceptual model, the executable computerized model, and reality
(later also termed system of interest (Thacker et al., 2004)). These
three entities describe each other via analysis, programming, and
simulation activities (dashed lines). Validation, verification, and
model qualification are defined as the assessment activities (solid
lines) between the entities.

the conceptual model and its executable model implementation is
crucial for the logic of validation and verification. The conceptual
model represents the abstraction and analytic description of reality,
but only the corresponding verified executable model can perform
simulations that can be validated.

This separate consideration of the executable model corresponds
to the increasing efforts to provide model description languages and
simulator engines independent of any concrete conceptual model. For
example, successful simulators with specific but overlapping appli-
cation domains are NEST (Gewaltig and Diesmann, 2007), BRIAN
(Goodman, 2009), and NEURON (Hines and Carnevale, 1997). Ad-
ditional efforts like the modeling languages NESTML (Nagendra
Babu et al., 2021) and PyNN (Davison et al., 2008) further generalize
executable model descriptions so that they are independent of the
simulator choice. These generalization efforts also tend to make the
modeling process more reproducible, and reproducibility is necessary
for comparability. Any model simulation must first reliably reproduce
with the same outcome (preferably independent of the modeling lan-
guage and simulator choice) before it can be reasonably compared to
other data (Goodman et al., 2016).

Although the initial formalism by Schlesinger (1979) was adapted
and refined by many others (e.g., AIAA, 1998; Giannasi et al., 2001;
Thacker et al., 2004; Murray-Smith, 2015; Sargent et al., 2013), the
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definition of the different concepts and terms, like ’verification’ and
’validation’, have been remarkably consistent. However, in practice,
the conceptual steps are likely to be highly intertwined. For exam-
ple, validation indicating a considerable discrepancy may cause a
re-verification of the model implementation. Alternatively, the val-
idation may provoke an iteration and further sophistication of the
underlying conceptual model. When the validation result explicitly
informs a change in the model description, e.g., the change of a pa-
rameter value, then this has to be considered a calibration. Calibration
integrates information from the data, that the model simulation is
compared against, back into the model description. This procedure
naturally improves the agreement with the respective dataset. How-
ever, in contrast to a validation test, the agreement to the calibration
data set is not informative about the model’s predictive power. To
combine calibration and validation in the model development process,
they need to be strictly separated (Thacker et al., 2004). Validation
can only be meaningful when done with previously unseen data. The
independence and power of the validation can further be improved by
comparing measures not used in the calibration.

Neuroscience works with models on different scales like single-
neuron, microcircuit, or multi-area models. Further, these models
can incorporate elements from different scales, for example, receptor
models being part of neuron models or neuron models being part
of microcircuit models (Section 1.2). This layered complexity allows
for different strategies to model validation. Multifaceted validation
approaches to complex systems are not exclusive to neuroscience (For-
rester and Senge, 1980). A common approach is to start from the level
of the smallest elements. Considering our network-level approach, this
corresponds to validating single neuron responses or synapse behavior
to experimental data (see, e.g., Markram et al., 2015; Reimann et al.,
2015). This kind of single-cell validation suggests that when the basic
building blocks of a system are validated, the entire system should
perform appropriately. Validation of the entire system follows only
when all the sub-elements have passed their validation with reasonable
agreement (Thacker et al., 2004). However, the relation between the
smallest elements’ functionality and the composite systems’ emergent
dynamics is intrinsically complex. Indeed, the relations across scales
in biological arrangements are often unknown and itself part of the
modeling (Noble, 2008).

Nonlinear effects and sensitivity of individual network elements to
minute changes (Marder and Taylor, 2011) often prevent extrapolating
the behavior of the complete network. Moreover, when shifting the
focus to the global features of the network dynamics, the individual
neurons or sub-circuits in the model may be abstracted (e.g., the corti-
cal microcircuit model (Potjans and Diesmann, 2014), multi-area model
(Schmidt et al., 2018), or mean-field approaches (Barabási et al., 1999;
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Helias and Dahmen, 2020; Layer et al., 2022)). Simplified neuronal
dynamics models have the advantage that they can be mathemati-
cally approximated and facilitate an understanding of the governing
mechanisms (Schuecker et al., 2015; Bos et al., 2016; Litwin-Kumar
and Doiron, 2012; Renart et al., 2010; Ostojic et al., 2009). Despite
abstract neuron models not sufficing to the same validated accuracy as
more biologically realistic neuron models, the corresponding network
models are able to reproduce many dynamical features observed in
experimental data (Shadlen and Newsome, 1998; Renart et al., 2010;
Potjans and Diesmann, 2014). In such cases, a bottom-up validation ap-
proach is not suitable. A top-down, network-level validation approach
represents a complementary approach focusing on collective network
dynamics. Network-level validation allows for a direct comparison of
population activity features independent of the abstraction level of the
neurons (e.g., spiking or rate-based neuron models).

Classical validation is concerned with comparing models to experi-
mental observations. However, the same process can also be applied
to compare model vs. model. These could be alternative model de-
scriptions, versions, implementations, or simulations (see Chapter 4).
Although there is no affirmation concerning the biological system of
interest, model vs. model comparisons can also improve confidence
in a model. Model vs. model comparisons can be validated by proxy
when one of the models is already validated against experimental
data (Martis, 2006). Further, they can evaluate the sensitivity with
respect to input and parameter changes (De Schutter and Bower, 1994;
Saltelli, 2002; Marino et al., 2008; Zi, 2011; Borgonovo and Plischke,
2016; Tennøe et al., 2018). Given the scarcity and specificity of available
experimental data, model vs. model comparison also allows testing
a more extensive dynamical regime that available data would not
necessarily cover.

1.5 relationships between connectivity, activity, and

function of neural networks

"Computation,
intelligence and

consciousness are
patterns in the

spacetime
arrangement of

particles that take on
a life of their own,

and it’s not the
particles but the

patterns that really
matter! Matter

doesn’t matter." -
Max Tegmark

The function of neural networks is expressed via its activity, and
network activity is mediated by network connectivity. Thus, there
are functional aspects engrained in network connectivity. Korbinian
Brodmann performed a prominent study of brain structures at the
beginning of the 20th century. He used staining techniques to make
neurons visible in human brain preparations. By distinguishing the
cellular structures, he segmented the cortex into 52 distinct areas
(Figure 1.4A). Prior works hypothesized the localization of cognitive
functions in the brain based on the effects of localized brain lesions
and external electrical stimulations (Ferrier, 1874; Swedenborg, 1882).
However, Brodmann’s works provided the basis for linking the local
differences in brain anatomy to corresponding functionality. For ex-
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ample, after his descriptions of the cortical cytoarchitecture, it was
found that Brodmann area 4 is the motor cortex that controls voluntary
movement, and Brodman area 17 is the primary visual cortex that
receives and processes signals from the retina. However, it was, and
still is, generally unclear which details of the cortical network connec-
tivity provoke which activity signatures to encode the expression of a
corresponding function.

Throughout history, theories explaining the function of the nervous
system were often linked to the technologies and beliefs of the time.
The Greek physician Galen (129 - 210) formulated the first prominent
theory involving a sort of neural network. The so-called "balloonist"
theory describes mechanisms in the body as hydraulic, where pres-
surized air or liquid transported within hollow neurons inflates the
muscles (Pearn, 2002). This theory survived for about 1500 years, with
famous supporters like Rene Descartes (Descartes, 1662), until it was
finally completely refuted in the late 17th century (Cobb, 2002). About
a century later, at the beginning of experimentation around electricity,
Luigi Galvani found that electrical charges (the "animal spirits") trans-
mitted in the body caused muscle movement (Galvani, 1792). With the
technological advances over the next century (Figure 1.4B), in 1924,
Hans Berger was able to make the first in-vivo electrocorticogram
(EEG) recording of the ongoing electrical activity in the human cortex
(Figure 1.4C, Berger (1929)). More recently, the brain’s functionality
is often conceptualized via the analogy to a computer (Chirimuuta,
2021; Brette, 2022). Correspondingly, the means of communication
within the brain is referred to as neural code (Quiroga and Panzeri,
2013; Brette, 2019), which should represent the activity signatures that
are responsible for the function of a neural system.
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Figure 1.4: A) Segmentation of the human cerebral cortex into 52 (not all
visible here) areas by Korbinian Brodmann in 1909. The area
definitions are based on the cytoarchitectural organization of neu-
rons made visible by cell staining. The figure shows a medial
view of the human cerebral cortex (amended from Brodmann
(1909) displayed in Kandel et al. (2001)). B) Max Kohl loop gal-
vanometer for measuring brain waves. This type of recording
device was used in the early 20th century for measuring small
voltages (Friedrich-Schiller-Universität Jena, Collection of scientific
and technical devices for physics. Photo taken at the Fondazione Prada,
Venice). C) Using a device similar to the one depicted in panel B,
Hans Berger recorded the first EEG signal 1924. The figure shows
an oscilloscope trace of a derivation from the cortex of the left
frontal and right parietal lobes (within ∼ 0.1 s) (Berger, 1929).

Even without the direct analogy to a conventional computer, we can
examine our network view on the brain towards the eventual units
of computation (MacLennan, 2004; Horsman et al., 2014; Wood, 2019;
Papadimitriou et al., 2020). What are the network activity features
used in the function of the brain? What are the strategies for how
the digital and analog signals in biological neural networks represent
and operate on information? Narrowing down the basic units of
computations by identifying irrelevant network activity aspects is very
difficult, as nearly every aspect seems to have at least some relevance.
The most familiar abstraction of neural network activity represents the
characteristic shape of spikes or action potentials only by their spike
times. However, even this basic abstraction might discard relevant
aspects of the network activity, as there are arguments that variations
in the spike shapes play a role in computation (Juusola et al., 2007;
Ramezani and Akan, 2018).

In contrast to trying to identify non-relevant aspects, machine learn-
ing demonstrates impressive results in replicating functionalities based
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on model descriptions of very simplified abstraction levels. A multi-
layer perceptron architecture with binary neurons (Rosenblatt, 1958)
and backpropagation (Rumelhart et al., 1985; LeCun et al., 1988) can
already successfully perform a variety of classification and regression
tasks (Murtagh, 1991; Verma and Kumar, 2020). Deep convolutional
neural network models demonstrate a similar dynamic to the hierarchi-
cal processing in visual cortical areas (Yamins and DiCarlo, 2016). The
machine learning approach explicitly optimizes only for functionality
and typically not for a connectivity architecture or network activity
that describes biological neural networks. Whereas neuroscience is
concerned with identifying the attributes of the observed connectivity
and activity that initiate a function. Albeit their different objectives,
there is a long-lasting synergetic exchange between machine learning
(or computer science in general) and neuroscience and continuous
work to close the gap between biological realism and functional opti-
mization. One might argue that in network architecture design, form
follows function, and there are claims that the brain also performs
function optimizations (e.g., for mutual information (Friston, 2010)).
However, results from machine learning, for example, that rate-based
neural networks currently still outperform spiking networks (Nunes
et al., 2022), provide only circumstantial evidence for a purely rate-
coding mechanism in biological neural networks. In Section 1.3, we
already posed the question about functionally relevant aspects of net-
work activity. More precisely, to link network activity to function, we
are interested in the abstract activity features that contain the same or
similar amount of information concerning a given function.

The relevance of action potentials is undisputed, as they repre-
sent the primary communication signal within and between neurons.
However, different aspects of the spiking activity have been demon-
strated to provide specific indications of neural function. The primary
relevance of the firing rates is, for example, suggested by the exper-
imental evidence of tuning curves (Seung and Sompolinsky, 1993),
receptive fields (Hubel and Wiesel, 1959), and place cells (O’Keefe and
Dostrovsky, 1971). Whereas the relevance of precise spike timing is,
for example, suggested by the extremely fast observed reaction times
(Kempter and Gerstner, 1995; Thorpe et al., 1996; Butts et al., 2007),
and the observed prominent role of synchrony in neural networks
(Grün et al., 2002; Abeles, 1991; Kreiter and Singer, 1996). Despite
the apparent conflict between the spike-rate and spike-time coding
paradigms, they are not necessarily mutually exclusive (Perkel and
Bullock, 1968; Brette, 2015; Kiselev, 2016). Furthermore, there are as-
pects of the coordination of activity with a population of neurons
that are sought to represent relevant abstraction levels. For example,
the projection of activity onto low-dimensional manifolds (Semedo
et al., 2019; Gallego et al., 2017), the organization of spiking activity
into spatio-temporal patterns (Ikegaya et al., 2004; Quaglio et al., 2017;
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Stella et al., 2022), or the selective locking of spike times to phases
of the LFP (Vinck et al., 2010; Denker et al., 2010). The LFP itself is
an abstraction of the combined activity of nearby neurons, mainly
their postsynaptic potentials. However, many aspects contribute to the
formation of the LFP, including the connectivity and morphologies of
the neurons (Pesaran et al., 2018).

Analogous to the aspect of the spiking activity that it shows a spatial
organization in the form of spatio-temporal patterns, the LFP also
shows a spatial coordination of its local oscillation phases. This spatial
coordination often forms patterns of traveling waves that can be ob-
served across brain areas, brain states, measurement techniques, and
frequency bands. It has been shown that the formation of waves can re-
sult from the underlying connectivity (Davis et al., 2021; Sanchez-Vives
et al., 2017). Thinking of waves emerging from interacting nodes in a
network and the generality of the network description (Section 1.2), it
should not be surprising that we observe wave phenomena all around
us. They are present in diverse physical contexts and are frequently
associated with informative content: electromagnetic waves are the
carriers of radiant energy and information, waves in compressible
mediums enable sound transmission, gravitational waves in space-
time tell us about astronomical events , and waves in the oceans attract
surfers. This ubiquity of waves stems from the fact that waves are, in
principle, substrate-independent. They have distinct properties like
frequency, amplitude, propagation velocity, and dispersion and can
be mathematically described independently from the type of medium.
Similarly, computation and even consciousness can be thought of as
substrate-independent10. This analogy is not a direct argument for the
relevance of waves in the brain, but it represents an intriguing perspec-
tive on the eventual role of waves in neural systems. Although their
functional role is not yet fully understood (Wu et al., 2008), multiple
works link properties of neural wave activity to function.

At the low end of the frequency spectrum < 1 Hz, oscillatory activity
is often associated with rest and sleep (Amzica and Steriade, 1998).
In particular, propagating transitions between low and high activity
states called slow waves (Steriade et al., 1993; Contreras et al., 1996;
Achermann and Borbély, 1997; Sanchez-Vives and McCormick, 2000)
are consistently observed in states of NREM sleep and anesthesia.
Slow waves were functionally associated with regulating or indicating
the degrees of consciousness (Tononi and Massimini, 2008; Massimini
et al., 2009; Massimini et al., 2012; Camassa et al., 2021) as well as
memory formation and learning (Hanlon et al., 2009; Watrous et
al., 2015; Wei et al., 2016; Schonhaut et al., 2020; Tukker et al., 2020;
Capone et al., 2019a; Pazienti et al., 2022; Tonielli et al., 2022). In higher

10 see the response of Max Tegmark to the question "What scientific term or concept
ought to be more widely known?" (2017) https://www.edge.org/response-detail/
27126

https://www.edge.org/response-detail/27126
https://www.edge.org/response-detail/27126
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frequencies, oscillatory wave activity can be observed in the alpha,
beta, and gamma domains in various experiments of awake, behaving
animals (Senseman and Robbins, 2002; Petersen et al., 2003; Wu et al.,
2008; Keane and Gong, 2015; Greenwood et al., 2015; Townsend and
Gong, 2018; Denker et al., 2018b; Roberts et al., 2019; Liang et al., 2021).
There, the wave activity has been linked to functional aspects in visual
performance (Freeman and Barrie, 2000; Gabriel and Eckhorn, 2003;
Vinck et al., 2010; Davis et al., 2020; Townsend et al., 2017), motor tasks
(Rubino et al., 2006; Balasubramanian et al., 2019; Heitmann et al.,
2015), and has been the object of postulations of how computation
may incorporate the wave activity (Gong and Leeuwen, 2009; Qi et al.,
2015; Muller et al., 2018; Halgren et al., 2018; Heitmann et al., 2012).





2
T H E S I S S TAT E M E N T

2.1 principles of how connectivity provokes activity

provokes function

There are still many known unknowns about the specific working
mechanisms of neural systems (see for example van Hemmen and
Sejnowski, 2005). Given the complexity and lack of understanding
of even small neural systems (e.g. Sarma et al., 2018), any single re-
search project in unlikely to completely unravel the mysteries of the
brain. Fundamental scientific progress requires insights from many
disciplines addressing research questions on many scales, from molec-
ular interactions to social and environmental interactions (Section 1.1).
Such progress is likely the result of slow but steady, iterative research
endeavors from many different approaches. There is a real benefit in
the variance of approaches, measurement techniques, and analysis
methods. On the one hand, this poses an excellent opportunity to cre-
ate an evaluation of neural networks and their function from multiple
viewpoints yielding a more comprehensive and robust understanding
(see e.g. Botvinik-Nezer et al., 2020). On the other hand, additional
challenges exist to put the individual pieces of insight together to
build a cumulative understanding of biological neural network mech-
anisms. In order to effectively build on each other’s work, we face
non-trivial difficulties, for example, to find, access, reproduce, reuse,
and combine the heterogeneous ensemble of previously published
data, results, and methods from different sources.

The goal of this thesis is to propose, implement, and demonstrate
systematic approaches to quantitatively evaluate neural network ac-
tivity and measure its relation to the underlying connectivity and its
eventual functional purpose. Concretely, we aim to characterize neu-
ral network activity on a meaningful description level to study how
activity features, like coordinated spiking or traveling cortical waves,
emerge from network connectivity and how they relate to network
functionality (Section 1.5). We approach these research questions by
performing comparisons of network descriptions from experimental
recordings and computational models. Therefore, our analyses need to
integrate data and models of heterogeneous sources and make them
quantitatively comparable.

23



24 thesis statement

2.2 systematic quantitative comparisons of neural sys-
tems

Today’s research landscape excels in an unprecedented richness of
experimental data and methodologies. However, different recording
techniques differ considerably in how they capture neural activity.
These differences include the type of signal (e.g., electric activity, mag-
netic fields, fluctuation of calcium concentration, or radiant isotopes)
and the signal’s scale in terms of temporal resolution (sub-milliseconds
to seconds), spatial resolution (micrometer to centimeters), and spa-
tial extent (single electrode to the whole brain) (Hong and Lieber,
2019; Sejnowski et al., 2014). The complementarity of the different
experimental approaches, each focusing on specific aspects or features,
enables a deeper understanding of the various neuronal phenomena.
However, each recording technique has its trade-off (e.g., spatial vs.
temporal resolution, latency, artifacts, and biases). Combining dif-
ferent measurements can also validate findings independently of a
particular measurement device. It further informs the creation of more
detailed brain dynamics and function models. To properly exploit
the richness of the available data and translate it to the richness of
analysis results, it becomes necessary to develop strategies to combine
the heterogeneity in experimental measurements and model simula-
tions. In this context, data integration and comparison are two sides
of the same coin, as some data measures are to be grouped while oth-
ers are to be contrasted, depending on the application. Applications
include the calibration and validation of models, the quantification
of biological variability for reaching a higher level of abstraction in
describing phenomena, and measuring the effects of various influ-
ences on network activity, such as external stimuli in an experiment or
parameter changes in a model description. However, performing such
comparisons is not a trivial task and, so far, only rarely addressed.

Here, we formalize the approach of cross-domain comparisons
based on the general concept of validation. In particular, we adapt the
concept for comparison on the network-activity level in contrast to
bottom-up validation. Besides the model vs. experiment validation,
we extend the application to model vs. model and experiment vs.
experiment applications (Section 1.4). For comparing two networks,
this concept entails the quantitative characterizations of the network
activities on a common description level, an assessment of similarity
(in most cases based on statistical testing), and the interpretation of
the level of resulting agreement in the context of the comparison. In
this context, we evaluate and extend existing statistical testing ap-
proaches. Furthermore, we explore additional aspects of comparability,
such as ensuring the reproducibility of results, identifying and sep-
arating sources of variability, evaluating technical limitations (e.g.,
given by simulators, measurements, or algorithms), and discussing the
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convergence of network activity from different sources to a common
description level.

2.3 characterization of neural systems on a meaning-
ful level of abstraction

Arguably not every aspect of the activity of biological neural networks
is of equal relevance for its function. In most cases, the abstraction of
spike waveforms to spike times is useful. In some cases, further ab-
straction to rates can be useful (Mazurek and Shadlen, 2002). In other
cases, the precise spike timing is relevant, but only for some (combina-
tion of) spikes and up to a certain precision (Reich et al., 1997; Gutkin
et al., 2003; Gütig, 2014). Similarly, for the local field potential (LFP) it
depends on the context which frequency components are regarded as
relevant and which attributes are considered "noise" (Knoblauch and
Palm, 2005). Furthermore, we can see neural network activity only
through the lens of measurements that filter and distort the activity or
via simplified recreations in the form of models (Section 1.3). On this
basis, we aim to find meaningful quantitative characterizations of neu-
ral network activity that carry sufficient information to, for example,
understand its functionality better, infer aspects of the connectivity,
or distinguish it from another network activity. Besides meaningful
characterizations, we are further concerned with the appropriate level
of abstraction on which we can compare two network activity char-
acterizations. What this constitutes depends on the respective data
modality and the scientific questions to be addressed. Similar data
modalities can have more immediate commonalities, whereas very
different ones may only be compared via a more abstract description.
Generally, comparing two networks benefits from having a common
description level, corresponding characterizations, and equivalent or
at least comparable methods for extracting these characterizations.

Having the above considerations in mind, we here explore differ-
ent measures of neural network activity. On the level of the spiking
activity neurons, we look at measures of different complexity in the
sense of neuron-wise, pair-wise, and other higher-order measures.
Toward population measures, we further investigate measures of con-
tinuous representations of network activity, such as the LFP. There,
we particularly characterize the attributes of spatially propagating
wave patterns. We derive these measures from different measurement
techniques (multielectrode arrays, laminar probes, ECoG, and calcium
imaging) and different model descriptions and implementations (e.g.
spiking networks, mean-field networks, stochastic processes, network
realizations on neuromorphic hardware).
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2.4 thematic threads

Based on the preceding overview in Chapter 1, we outlined challenges
to the advancement of understanding of biological neural networks
that we aim to address in with this work. We started from the scientific
question of how the activity of biological neural networks is produced
from its underlying connectivity and how it implements functions
Section 2.1. We then traced back the requirements of how to get
there via an approach of systematic network comparisons Section 2.2
and corresponding characterizations of network activity Section 2.3.
From this assessment, we segment our approach of comparing neural
networks to analyze their dynamics into three steps that illustrate the
key aspects of the different comparison scenarios presented in the
Results Chapters of this work. Therefore, these three steps represent
the thematic threads that run through this thesis:

1 Characterization of neural data: which characteristic measures
represent the relevant aspects of neural networks for a given
application?

2 Modality of comparison: in which relation are the two networks
to be compared?

3 Interplay of connectivity, activity, function: what insights can
the systematic comparisons of networks provide regarding the
networks’ dynamics?
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The central part of the thesis progressively follows the three thematic
threads that were introduced in the previous Chapter 2. In five re-
search applications, we explore different aspects of neural network
comparability, outlined in Figure 3.1.

network level validation & reproducible simulations

In Chapter 4, we set up a formal framework for performing validation
tests of neural network models based on univariate measures on the
network activity level. Building on the classical validation scenario
of model vs. experiment, we introduce analogous practices of how
models can be validated (or ’substantiated’ to specify the terminology)
without experimental data by comparing different model instances.
We apply this framework to a particular comparison case with the
two model instances that only differ in their respective simulation
engine. The approach of comparing model vs. model across simulators
presents a formal approach to evaluate the quantitative agreement
between simulators. Furthermore, it evaluates the consistency of the
network activity w.r.t simulator differences, helping to differentiate activity
features that are artifactual from robust expressions of the network
model.

statistical comparison of network activity and connec-
tivity via eigenvector angles In Chapter 5, we construct a
statistical test for comparing the structure of pairwise measures of neural
activity and connectivity between two network realizations. In particular,
it can evaluate the structural similarity between matrices containing
the Pearson correlations between spike trains or matrices containing
the synaptic connection strength between neurons. We demonstrate
the test with stochastic, simulated, and experimental data scenarios.
Furthermore, we create synaptically rewired variations of a network
model and compare model vs. model across connectivity realizations w.r.t
their connectivity structure and the activity correlation structure. This
approach enables us to quantitatively link changes of the connectivity to
changes in the activity in that network model.

activity-driven microconnectome estimation In Chap-
ter 6, we approach the question of how much the columnar structure
of the canonical cortical microcircuit varies across different cortical
areas. To this end, we look at the estimated microscale connectivity
within cortical areas. To differentiate spiking activity across functional ar-
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Figure 3.1: Thematic outline of the thesis chapters. Towards the goal of
better understanding the networks of the brain, we identify three
steps (columns) in our approach that run as common thematic
threads through the five Results chapters (rows). Chapter 4 is
based on the publications (Gutzen et al., 2018b; Trensch et al.,
2018), Chapter 5 is based on (Gutzen et al., 2022), Chapter 6 is
based on (Morales-Gregorio et al., 2022), Chapter 7 is based on
(Gutzen et al., 2024; Capone et al., 2023), Chapter 8 is based on
an ongoing research project.
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eas, we create a multivariate characterization based on multiple network
activity measures. With this characterization, we perform pairwise
comparisons experiment vs. experiment across areas with spiking activity
data from multiple datasets. Furthermore, we lay out and test a model
vs. experiment calibration/validation workflow to optimize the connectiv-
ity parameters of a microcircuit model, effectively inferring connectivity
from activity.

slow wave analysis across heterogenous datasets In
Chapter 7, we introduce an adaptable analysis pipeline for analyzing
cortical slow wave activity and realizing comparisons of experiment vs.
experiment across data sources based on traveling wave characterizations.
We demonstrate the pipeline implementation by performing a meta-
study across multiple electrocorticography and wide-field calcium
imaging datasets of anesthetized mice, evaluating the influence of
experimental parameters on slow wave activity. Furthermore, by evaluating
model simulation data with the analysis pipeline, we enable experiment
vs. model calibration approaches and additionally support inferring
connectivity from wave activity.

cortical wave dynamics in behaving monkeys In Chap-
ter 8, we reuse our adaptable analysis pipeline for the traveling wave
characterization of oscillatory LFP waves. The LFP activity is measured
with multielectrode arrays in the visual cortex in awake monkeys per-
forming a hand-eye coordination task. We analyze the wave activity
from four different cortical areas along the visual pathway and four
distinct frequency regimes stretching from 1 to 90 Hz. By comparing
the recordings in a scheme experiment vs. experiment across areas, fre-
quencies, and behavioral events, we identify wave attributes specific for
the individual areas and frequency bands. Furthermore, by cutting,
filtering, and aligning the trial structure of the behavioral task, we
relate patterns of the wave activity to behavioral events.
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4.1 introduction

quantitative and reproducible validation practices

Building models of systems that we observe in the real world and
predicting their behavior is a constructive approach to developing
an understanding of these systems. However, measuring how well
simulations describe the system of interest is generally not straight-
forward. Validation formalizes the evaluation of models regarding
predictive accuracy. However, as outlined in Section 2.2, the statistical
validation of models lacks a standardized approach and supporting
software tools. Thus, it is usually up to the individual researcher to
define how much the simulation outcome is supposed to match the
experimental data. Consequently, we identify three difficulties with
published model descriptions:

1. Models are only tested qualitatively instead of quantitatively.
For example, the spike trains resulting from the simulation are
visually classified (e.g., Voges and Perrinet, 2012), but without
calculating specific statistics to quantify the features of the activ-
ity. This lack of concrete numbers and detailed records of how
the numbers are calculated prevents a direct comparison to other
models. This is a specific case of a general theme outlined in
Section 2.3.

2. The information provided in a publication on the details of how
the specific statistical analysis is performed and, thus, how a
model is validated is insufficient to reproduce the validation
scenario.

3. Models are only compared to a single experimental data set
using a specific statistical measure. Moreover, the choices of data
sets and measures are biased to address specifically the scientific
aim of the publication. However, the absence of a standardized
procedure to base the validation on a broad set of data sets
and statistical measures limits the degree to which confidence
in the model is quantified in a context detached from the re-
search conducted in the publication. Moreover, it prevents the
direct comparison between published models and their re-use in
related studies.

single-cell vs . network-level validation These issues are
particularly prevalent for network models of neural systems. Valida-
tion in computational neuroscience is often just applied to the single
neuron level (e.g. Markram et al., 2015). The advantage of single-cell
validation is that the cellular activity, e.g., the response to current
input, can be measured in different labs and even under different
experimental conditions. Network-level validation, on the other hand,
is more demanding. Experimentally, network dynamics can usually
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only be measured in-vivo, involving more sophisticated experiments.
Moreover, there can be a considerable variability between measured
systems, e.g., different subjects. All these aspects need to be considered
in a corresponding network-level validation approach. We further elab-
orate on the concept of validation, and its application to network-level
and model vs. model approaches in Section 1.4.

prior work and outline Prior work on overcoming the listed
issues and formalizing the validation process include the development
of the Python module SciUnit (Omar et al., 2014; Sarma et al., 2016),
and the description of workflows for the validation of models (Senk et
al., 2017; van Albada et al., 2018; Kriegeskorte and Douglas, 2018). Fur-
thermore, the work presented in this chapter builds on and progresses
the work of Robin Gutzen’s master thesis. There, we explored differ-
ent statistical tests to compare network activity measures in a model
vs. model approach. We applied this to the comparisons of activity
correlations in a cortical microcircuit model (Potjans and Diesmann,
2014) implemented with the Nest simulator and on the neuromorphic
hardware SpiNNaker (Furber et al., 2013). Furthermore, this previous
work features an early version of the NetworkUnit Python module.

Here, we continue these efforts by refining and extending the vali-
dation test methodology, terminology, and implementation. Moreover,
we investigate a new validation test use-case, developing and evalu-
ating a model realization of the Izhikevich’s polychronization model
(Izhikevich, 2006) on the SpiNNaker system. We demonstrate a quan-
titative assessment of the SpiNNaker model via validation tests on a
multiple network-level activity characterizations. Finally, we discuss
the conditions under which the models are in acceptable agreement.
We further discuss the applicability of the proposed workflow for
other validation scenarios.

4.2 methods

4.2.1 Terminology

model verification and validation Modeling is about rep-
resenting a system with a desired level of accuracy. Evaluating the
modeling effort is a non-trivial exercise that requires a rigorous vali-
dation process. The terms verification and validation may have different
meanings in different contexts. For example, in software engineering
verification and validation is the objective assessment of products and
processes with the purpose is to support the quality of the developed
product (Bourque and Fairley, 2014). In the development of computer-
ized models, verification and validation are processes that accumulate
evidence of a model’s correctness regarding a specific application con-
text (Thacker et al., 2004). The Society for Computer Simulation (SCS)
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Figure 4.1: Interrelationship of the basic elements for modeling and sim-
ulation. The terminology introduced by Schlesinger (1979) (cf.
Figure 1.3) describes the modeling and simulation processes in
generic terms. For numerical models for neural network simu-
lations, we propose the presented terminology, which we have
adapted slightly from Thacker et al. (2004). The model distin-
guishes between modeling/simulation activities (solid black ar-
rows), and assessment activities (dashed red arrows).

formulated a standard terminology to facilitate the communication
between model builders and model users and establish credibility
in computer simulations (Schlesinger, 1979). Their general definition
may not do justice to a particular modeling domain. Thus, there are
domain-specific adaptations that may specify the components by do
not change the basic meanings. For neural network modeling, we pro-
pose the terminology displayed in Figure 4.1, amended from Thacker
et al. (2004). The authors use the terms reality of interest, conceptual
model, and computerized model. We prefer the terms system of interest,
mathematical model, and executable model, as they are more explicit in
expressing the underlying intent. Abstracting the neurobiological real-
ity poses various empirical challenges (Section 1.3). Therefore, spiking
neural network models are often not based on a specific biological
ground truth from which a stereotypical behavior can be recorded.
The term ’system of interest’ recognizes that the modeling and sim-
ulation process can be applied to systems without concrete physical
counterparts.

The System of interest is an “entity, situation, or system which has been
selected for analysis". The precise description of the modeler’s intention
is formulated via a analysis and modeling process in the mathemat-
ical model as a “verbal description, equations, governing relationships,
or natural laws that purport to describe reality or the system of interest”
(Schlesinger, 1979). The applicability of the model description is moti-
vated by a confirmation process. However, the mathematical model
alone cannot simulate the system of interest. By applying software
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engineering efforts, it has to be implemented as an executable model.
By separating the model into a mathematical and an executable entity,
the terminology emphasizes the difference between verification and
validation (Section 1.4). Model verification is the assessment of model
implementation. Neural network models are mathematical models
written down in source code as numerical algorithms. Therefore, the
verification activities should be further specified:

• Verification describes the process of ensuring that the executable
model appropriately represents the mathematical model and
improving this fit.

• Source code verification tasks confirm that the functionality it
implements works as intended.

• Calculation verification tasks assess the level of error that arises
from various sources of error in numerical simulations as well
as to identify and remove them (Thacker et al., 2004).

Only when the executable model is verified can it be reasonably
validated.

• The validation process evaluates the consistency of the predictive
simulation outcome with the system of interest.

This evaluation further considers the domain of the models’ in-
tended application and expected level of agreement. Since modeling
abstracts the system of interest, it is only expected to match its refer-
ence to a certain degree and for certain prescribed conditions.

model verification and substantiation For neural net-
work simulations, the system of interest can be represented by empiri-
cal measurements, for example, multi-unit spiking activity acquired
with electrophysiological recordings. However, this data may prove
inadequate for validation. Depending on the specific system of interest,
adequate data can be scarce and typically represents a substantial un-
dersampling of neural network activity. Furthermore, the constraints
of recording with biological organisms do not always allow for the re-
quired control to isolate the phenomenon that a model aims to describe.
Consequently, in many neuronal network modeling applications, the
available experimental data is just used to check for consistency in-
stead of a complete validation process. However, the credibility and
consistency of a model can be further increased by circumstantial
evidence by comparing models against other model variations (e.g.,
a second implementation) (Thacker et al., 2004; Martis, 2006). Such
a technique accumulate evidence for a model’s plausibility even if
the models are not formally validated. To avoid ambiguity with the
existing model verification and validation terminology, we propose
the term ’substantiation’.
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System of Interest 

Mathematical
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Analysis & Modeling

Verification

Executable
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Implementation
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Implementation

Figure 4.2: Model verification and substantiation workflow. The schematic
workflow merges two separate model verification and validation
processes (cf. Figure 4.1) without the backward reference to the
system of interest. This concept evaluates the consistency of two
executable models that share the same mathematical model. We
term this assessment activity ’substantiation’. Solid black arrows
indicate modeling and simulation activities; dashed red arrows
indicate assessment.

• Substantiation describes the process of evaluating and quantify-
ing the level of agreement of two executable models.

Thus, Model verification and substantiation are processes that accumu-
late circumstantial evidence of a model’s correctness or accuracy by a
quantitative comparison of the simulation outcomes from validated or
non-validated model implementations. The modeling, simulation, and
assessment interrelationships are shown in Figure 4.2. In this chapter,
we will demonstrate the usefulness of this approach.

reproducibility and replicability In good scientific prac-
tice, being able replicate and reproduce results is essential. However,
the exact meaning of these two terms may differ between and even
within disciplines. For example, in psychology reproducibility refers to
repeating an experiment and replicability means that independent stud-
ies yield similar results (Patil et al., 2016). Whereas, for computational
experiments, reproducibility can be understood as a different team with
a different experimental setup as obtaining the same results (ACM,
2016). There are attempts to resolve this ambiguity across disciplines
(Barba, 2018), multiple variations of the term’s meaning persist Plesser,
2018. Since the terms meaning may also depend on aspects of the ap-
plication, e.g. in computational applications to what degree outcomes
are deterministic, it is advisable to specify the terms explicitly in the
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context of their application. Here, we follow the definitions by the
Association for Computing Machinery (ACM, 2016):

• Replicability (Different team, same experimental setup): The mea-
surement can be obtained with stated precision by a different
team using the same measurement procedure, the same measur-
ing system, under the same operating conditions, in the same
or a different location on multiple trials. For computational ex-
periments, this means that an independent group can obtain the
same result using the author’s own artifacts.

• Reproducibility (Different team, different experimental setup): The
measurement can be obtained with stated precision by a different
team, a different measuring system, in a different location on
multiple trials. For computational experiments, this means that
an independent group can obtain the same result using artifacts
which they develop completely independently.

To be more terminologically precise, we aim for results reproducibility
(Goodman et al., 2016).

• Results reproducibility: Obtaining the same results from the con-
duct of an independent study whose procedures are as closely
matched to the original experiment as possible.

A replication of an executable model should aim for bit-identicality.
Although computers are deterministic, this is not always feasible. For
example, the seed of the pseudorandom number generator may not
be recorded, or the generated trajectory of pseudorandom numbers
may be dependent on the software version or the underlying hard-
ware. However, when a seed is set, successive simulations of replicable
models should deliver the same result on the same hardware. A re-
production then constitutes a re-implementation of the model in a
different framework, statistically getting the same results. In this ter-
minology, we here replicate a published model and create a model
reproduction on the SpiNNaker neuromorphic system. In an itera-
tive substantiation process, we generate verified executable model
implementations that are in reasonable agreement.

4.2.2 Network activity characterization

When validating neural network activity, one usually cannot expect
a spike-to-spike equivalence between the simulated spiking activity
and the experimental or simulated reference data. Even for different
implementations of the same model, the computation depends on the
capabilities and limitations of the computer hardware and the exact
details of the computer environment (Glatard et al., 2015). Therefore,
the simulation outcomes must be compared statistically to quantify
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the similarity level. In the following, we outline several measures of
increasing complexity that capture a broad range of network activity
dynamics.

Neuron-wise, pairwise, and higher-order measures can, in a sense,
be regarded in a hierarchical order. Neuron-wise statistics consider
only the single unit activity, irrespective of other units’ behavior. Pair-
wise and higher-order statistics consider how the activity is coordi-
nated within the network. Notably, this conceptual hierarchy does
not imply a hierarchy of failure, i.e., agreement on the highest order
does not automatically imply agreement on lower-order measures.
Therefore, each statistical property is to be evaluated.

4.2.2.1 Neuron-wise measures

We characterize the spiking activity of single neurons in the network
via the distributions of several neuron-wise measures. The level of
network activity can be estimated by the average firing rate

FR = nsp/T, (4.1)

nsp denoting the number of spikes during an observation interval of
length T. The inter-spike intervals are defined by

ISIi = ti+1 − ti, (4.2)

where ti denotes a neuron’s ordered spike times. The distribution of
ISIi is used to characterize the temporal structure of the single spike
trains. A measure particularly suited to analyze the regularity of the n
spike intervals is the local coefficient of variation

LV =
3

n− 1

n−1

∑
i=1

(ISIi − ISIi+1)
2

(ISIi + ISIi+1)2 , (4.3)

which equals 1 for a Poisson process (Shinomoto et al., 2003).

4.2.2.2 Pairwise measures

We analyze the cross-correlation function

Rxy(τ) = ⟨x(t)y(t + τ)⟩ = 1
N

N

∑
t=1

x(t)y(t + τ) , (4.4)

where ⟨·⟩ denotes the temporal average (Tetzlaff and Diesmann, 2010).
It quantifies correlations between spike counts of two binned spike
trains, x(t) and y(t), for a range of lags τ given N bins. Subtracting the
average spike counts µx = ⟨x(t)⟩ and µy = ⟨y(t)⟩ yields the covariance
function

Cxy(τ) =
〈
(x(t)− µx)

(
y(t + τ)− µy

)〉
= Rxy(τ)− µxµy . (4.5)
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Normalizing the covariance function by the standard deviations σx =
√

Cxx(τ = 0)
of the processes, one obtains the cross-correlation coefficient function

ρxy(τ) =
Cxy(τ)

σxσy
. (4.6)

The Pearson correlation coefficient is given by ρxy(τ=0) (Perkel et
al., 1967). The matrix of correlation coefficients, C, evaluates the non-
delayed (i.e. zero-lag) correlation of spikes. The activity on different
scales can be analyzed by applying different bin sizes. Here we use
binned spike trains on a fine temporal scale (Pearson correlations
denoted by CC, using a bin width of 2 ms) and on a coarse scale (Pear-
son correlations denoted by RC, using a bin width of 100 ms). The
correlations on coarser scales are often referred to as rate correlation.
In particular, RC is able to capture characteristic population-wide fluc-
tuations of network activity that are often observed on the associated
temporal scales (see e.g., the stripy asynchronous irregular state in
Voges and Perrinet, 2012).

The model we use in this chapter was originally conceived to exhibit
a spatiotemporal arrangement of the spiking activity (polychronous
groups) (Izhikevich, 2006). Therefore, we further analyze potential
time-lagged correlations. For the cross-correlation coefficient function
ρxy(τ), we select a bin width of 2 ms and calculate its sum for lags up
to 100 ms, corresponding to an interval of [−∆; ∆] bins around 0 with
∆ = 50:

Pxy =
∆

∑
τ=−∆

ρxy(τ) (4.7)

4.2.2.3 Correlation structure

Eigenvectors of the correlation matrix capture the correlation structure
of network activity (Friston et al., 1993; Peyrache et al., 2010). Consider
the eigendecomposition of the symmetric, zero-lag correlation matrix
according to

Cvi = ˘ivi, (4.8)

where λi are eigenvalues and vi are eigenvectors. Due to the sym-
metry of the real-valued matrix C it follows that λi ≥ 0 and eigen-
vectors vi are real and orthogonal to each other. A large eigenvalue
corresponds to an intra-correlated group of neurons whose activity
explains a large amount of variance in the system and relates to
dominant features in the correlation structure. The loadings of the
corresponding eigenvector vi identify the neurons constituting such
groups. Consequently, a suitable sorting algorithm, for example, hi-
erarchical clustering, exposes intra-correlated groups as block-like
features of the correlation matrix. Here, we use the scipy1 implementa-

1 RRID:SCR_008058; v1.0.0
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tion scipy.cluster.hierarchy.linkage() with method=’ward’ and
otherwise default settings.

To quantify to which degree the correlation structure of two simula-
tion outcomes (1 and 2) is similar, one may flatten the upper triangular
matrices of the correlation matrices C1 and C2 into vectors c1 and c2,
respectively. This omits duplicate entries due to symmetry and the
unity auto-correlation on the diagonal. The normalized scalar product

0 ≤ |c1 · c2|
∥c1∥ ∥c2∥

≤ 1 (4.9)

then constitutes a measure of similarity. A value of 1 denotes two
identical vectors and a value of 0 two perpendicular vectors. The order
of pairwise correlation coefficients in the two vectors c1 and c2 needs
to be identical, i.e., the similarity measure is sensitive to the labeling
of the neurons. Therefore, it should only be applied to compare two
network simulations of the same neuron population. Accordingly, re-
ordering the neuron population of one network statistically decreases
the similarity measure of any existing structured correlation matrices
while preserving the value for non-structured, e.g., homogeneous,
correlation matrices. As a test statistic, the distribution of the normal-
ized scalar product is not known and depends on the distribution
of cross-correlation coefficients in c1 and c2. The significance of the
similarity measure is therefore estimated using surrogate data. The
associated null distribution is computed by randomly shuffling the
neuron order of one network 10000 times.

4.2.2.4 Spatiotemporal patterns

The evaluation of the correlation structure presented so far considers
only pairwise measures. Nevertheless, the spiking activity of complex
networks may include higher-order interactions. Several methods
for the detection of higher-order correlation have been developed in
recent years (for a review see Quaglio et al., 2018) that do not make
any specific assumption about the underlying connectivity and are
thus well suited as statistical measures for model validation. Here,
we focus on the SPADE (Spike Pattern Detection and Evaluation)
method (Torre et al., 2013; Quaglio et al., 2017). SPADE is a statistical
method to detect spatiotemporal spike patterns, i.e. temporally precise
spike sequences, including synchronous spiking activity. The method
comprises two main steps: a) using Frequent-Itemset-Mining to detect
repeated spike sequences in parallel spike trains, and b) selecting the
sequences that occur often enough to be significant concerning the
null hypothesis of independent firing. The features of the patterns
(neurons forming the sequences, number and time of occurrences, lags
between the spikes forming the sequence, statistical significance of
the pattern) characterize the network activity in terms of higher-order
statistics.
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4.2.2.5 Statistical comparison of distributions

Consider two sample distributions with means µi and standard devia-
tions σi. Here, such sample distributions represent the neuron-wise or
pairwise evaluation of one of the measures described above. According
to Hedges (1981), the effect size

d =
µ1 − µ2

σ
, (4.10)

characterizes the difference in the mean values where

σ =

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

(n1 + n2 − 2)
(4.11)

is the pooled standard deviation, and the ni specifies the number
of samples entering each distribution. In the case of equal sample
sizes, the definition is equivalent to Cohen (1988, p. 67). In the case of
multiple simulation runs, we calculate the average effect size of the
respective measures, as the simulations are independent, and there is
no systematic trend of the measures for the evolving network states.
Calculating the effect size assumes that both distributions are Gaus-
sian. Even though this assumption is not fulfilled for every measure,
we calculate the effect size as a simple quantification of the difference
between the non-normal distributions. Note that for non-normal dis-
tributions, a small effect size does not necessarily indicate similarity
because there might still be a mismatch in the shape of the distribution.
In these cases, additional tests are needed for a complete evaluation.
Candidates are the scalar product measure to compare correlation
structures and statistical hypothesis tests.

The present work employs hypothesis tests to assess the equality
of the means (two-sample Student’s t-test) and the equality of the
distributions (Kolmogorov-Smirnov test, Mann-Whitney U test). This
quantifies the discrepancy in the results by a p-value. The two-sample t-
test only applies to normally distributed data, while the latter two tests
are non-parametric and applicable to any form of distribution. The
Kolmogorov-Smirnov test computes the supremum of the difference
between the two cumulative distribution functions. In contrast, the
Mann-Whitney U test compares the rank sums of the jointly sorted
samples. When applying hypothesis tests, the interpretation of the
p-values as a similarity assessment must also consider potential biases
and dependencies, e.g., on the sample size and the simulation time
(Cohen, 1994).

4.2.3 Implementation of a validation test framework

Rigorous validation testing requires that test results are not affected
by details of the actual testing procedure. This translates to perform-
ing the extraction of test statistics and its evaluation with the same
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methods for both data sources entering the test. In a more complex sce-
nario, this also includes finding an appropriate mapping between the
data sources, for instance, when comparing a large-scale simulation of
spiking activity to experimental data taken from a few electrodes only.
Ultimately, validation methodologies should be standardized within
the neuroscientific community to ensure consistency of the validation
scores across different validation cycles of related models or data sets.
The starting point for drafting a joint base for validation testing is for-
malizing the validation workflow for the individual research domains.
For network-level validation of spiking activity data, we created this
formalization as the open-source Python module NetworkUnit2. All
quantitative comparisons of statistical measures in this chapter are
carried out in this framework and the workflow to reproduce the
findings using NetworkUnit is available online as a Jupyter notebook3.

NetworkUnit focuses on the statistical comparison of measures
characterizing spiking neural network models. It is based on the
Python package SciUnit 4 (Omar et al., 2014), which provides a generic
basis for the testing of models, employing similar concepts to those
of unit testing in software engineering. SciUnit consists of three base
classes for models, tests, and scores. The model class defines the
model to be validated and, if needed, handles its execution. The test
defines which measure is extracted from the model and against which
experimental data the model is validated. Finally, the score defines
the validation method to be applied and quantifies the result of the
validation cycle. Models and tests are connected via their capabilities,
e.g., a definition of what types of data output a model provides
and what type of data input the test requires to extract its measure.
Figure 4.3 schematically depicts the interplay of these components
and the class hierarchy for the cases of validation of a model against
experimental data or substantiation against another model.

For the analysis presented in this chapter, the components in Fig-
ure 4.3 can be understood as follows: the underlying capability is the
class ProducesSpikeTrains as all analyzed measures are based on the
spike times. The SpiNNaker model is implemented as the sim_model

that is to be validated. It could either be validated against experimen-
tal data (exp_data), or substantiated against another instance of the
model (sim_model_B), e.g., the original implementation as illustrated
in our worked example. The test statistics we use in XYTest are the
distributions of the measures presented in Section 4.2.2, e.g., firing
rate or correlation coefficient. All these tests involve the comparison
of distributions, so they are derived from a corresponding BaseTest

(and potentially additional base tests). Some statistics, e.g. the cor-
relation coefficient, depend on additional parameters (controlled by

2 https://github.com/INM-6/NetworkUnit; RRID:SCR_016543

3 https://web.gin.g-node.org/INM-6/network_validation

4 RRID:SCR_014528

https://github.com/INM-6/NetworkUnit
https://web.gin.g-node.org/INM-6/network_validation
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Figure 4.3: Illustration of a typical test design within NetworkUnit. The
blue boxes indicate the components of the implementation of
the validation test, i.e., classes, class instances, data sets, and
parameters. Annotated arrows indicate the relation between
the boxes. Green arrows show the basic functionality. The dif-
ference in the test design for comparing against experimental
data (validation) and another simulation (substantiation) is in-
dicated by yellow and red arrows, respectively. Some compo-
nents’ functionality for the test score computation is indicated
by pseudo-code. The capability class ProducesProperty contains
the function calc_property(). The test XYTest has a function
generate_prediction(), which makes use of this capability, in-
herited by the model class, to generate a model prediction. The
initialized test instance XYTest_paramZ makes use of its judge()

function to evaluate this model prediction and compute the score
TestScore. The XYTest can inherit from multiple abstract test
classes (BaseTest), which is, for example, used with the M2MTest

to add the functionality of evaluating multiple model classes. To
make the test executable, it has to be linked to a ScoreType, and
all free parameters need to be set (by a Params dict) to ensure a
reproducible result.



46 network level validation & reproducible simulations

Params) such as the bin size. In our case, the ScoreType are statistical
hypothesis tests or the effect size.

The test instance uses spike trains from the model and the exper-
imental data or, as in our case, from the reference model implemen-
tation to generate a ‘prediction’ and an ‘observation’, respectively.
The calculation of features on activity data is performed using the
Electrophysiology Analysis Toolkit5. Both observation and prediction
are passed on to the score class, which evaluates their statistical con-
gruence, e.g., in form of a two-sample t-test. Finally, the judge function
of the test instance returns the results, for example, the p-value of the
statistical hypothesis test. This design formalizes the generation of the
results and makes them reproducible. The modular design of model
and test classes enables the reuse of existing tests which facilitates the
comparison of results of different models.

Performing a single test for validating a model does not sufficiently
capture the model behavior to quantify it and comprehensively docu-
ment its scientific applicability. Thus, a whole range of validation tests
is usually performed, which may, in some cases, differ only in detail
or may depend on a parameter. Instead of rewriting the test definition
each time, it is more feasible to make use of class-based inheritance
as indicated in Figure 4.3 (BaseTest→XYTest→XYTest_paramZ). All
specific tests inherit from the sciunit.Test base class. They add and
overwrite the required functionality, such as generating the prediction
by calculating the correlation coefficients from spike trains. Because
there may be a lot of different tests making use of correlation coeffi-
cients (for example, calculating correlations on different time scales), it
is recommended to implement an abstract generic test class to handle
correlations first. This abstract test class cannot be accessed explicitly
by a user but only acts as a parent class for the actual executable
test class, which, e.g., implements the test for a specific choice of
bin size. This class-based inheritance guarantees that all tests build
on the exact implementation and workflow. Here, we concentrate on
model-to-model validation. In this scenario, the test instance com-
pares the prediction of two model instances. For that scenario, we
extended SciUnit with a TestM2M test class, in which the experimental
data (exp_data) in Figure 4.3 are replaced by a second model class
(sim_model_B).

4.2.4 Simulation of the polychronization model

To demonstrate the mode substantiation process, we use a minimal
spiking network model that capable of exhibiting polychronous groups
of spiking neurons, i.e., the polychronization model (Izhikevich, 2006).
The model has several non-standard conceptual and implementation
features that make it an illustrative example for reproduction on the

5 Elephant: http://python-elephant.org; RRID:SCR_003833

http://python-elephant.org
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SpiNNaker neuromorphic system (Furber et al., 2013). The model
exposes essential aspects in the formalization and simulation of neural
networks as it produces a rich repertoire of network dynamics. How-
ever, we do not evaluate the emergence of polychronous groups, as it
has been shown that they result from specific implementation choices
and, therefore, are not robustly reproducible (Pauli et al., 2018). The
original model is implemented in the C programming language and
is available for download from the website of the author6.

The polychronization model consists of 1000 neurons with four
times more excitatory than inhibitory neurons. The corresponding
neuron models are specified in (Izhikevich, 2003). Correspondingly,
excitatory neurons are parameterized to exhibit regular spiking, and
inhibitory neurons to exhibit fast spiking behavior. The neurons are
connected randomly with a fixed out-degree of 100, where inhibitory
neurons only form connections to the excitatory population. Each
excitatory connection is assigned a fixed delay drawn from a discrete
uniform distribution between 1 and 20 ms in intervals of 1 ms and
all inhibitory connections are assigned a delay of 1 ms. Synaptic
weights are initialized with an initial value of 6 for excitatory and
−5 for inhibitory connections. The original model uses dimensionless
variables, but currents can be interpreted in units of pA. The network
is driven by random input realized by an external current pulse of
20 pA injected into one randomly chosen neuron in each time step. The
simulation time step is 1 ms, within which multiple intermediate steps
are calculated, depending on the implementation (Trensch et al., 2018).
The simulated spiking activity in the network modifies the connection
weights according to a spike-timing-dependent plasticity (STDP) rule.
Synaptic weight changes are buffered for one biological second, then
the weight matrix is updated for all plastic synapses simultaneously.
We leave out a description of plasticity implementation here because
it is irrelevant for the remainder of the analysis as we consider only
the dynamics after freezing the learned connectivity matrix and refer
to (Pauli et al., 2018) for a detailed description.

Figure 4.4 illustrates the setup of the simulations for the substan-
tiation workflow. Analyzing 5 network states within one simulation
process instead of the outcome of multiple different simulations with
different random seeds is motivated by the findings of Pauli et al.
(2018) showing that the model may converge into two distinctly dif-
ferent activity states. By analyzing the sample activity at different
training times within one simulation, this ambiguity problem for the
analysis can be bypassed. To generate the network activity data and
to save the network states, the following three steps are performed:

1. Execute the C implementation with STDP for five hours of bio-
logical time. During this simulation run, save the network state
at five points in time ti, i = (1, 2, ..., 5) after 1, 2, 3, 4, and 5

6 https://www.izhikevich.org/publications/spnet.htm

https://www.izhikevich.org/publications/spnet.htm
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Figure 4.4: Design of the simulation setup. Three types of simulations are
used in the substantiation scenario. Saving and loading variables
is annotated at the corresponding points on respective simulation
timelines. A Generation of the five initial network states used
to initialize the following simulations. At the start (t = 0 s) of
running the C implementation of the polychronization model
(with STDP), the connectivity matrix A and delay matrix D are
saved. At the following times ti, the weight matrix W(ti) is saved.
The random input stimulus to the network I(t) is recorded for
the simulation duration. B Generation of data from the five sim-
ulations of the C implementation (without STDP) based on the
random input I(t) and the five sets of initial conditions (A, D,
W(ti)) recorded in (A), respectively. The network spiking activ-
ity SC

i (W(ti), t) is recorded for 60 s. C Identical setup as in (B),
but for the SpiNNaker implementation without STDP, where
SNM

i (W(ti), t) denotes the simulation result. The data from (B)
and (C) are subject to validation testing based on their statistical
features (red dotted lines). Figure amended from Trensch et al.
(2018).
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hours. The network state is defined by the weight matrix W(ti)

containing the current strength of each synapse, the connectivity
matrix A, and the delay matrix D. Additionally, record the first
60 seconds of the random series of neurons to which the external
stimulus is applied (I(t), Figure 4.4A).

2. Switch off STDP in the C implementation. Re-initialize the net-
work model with A, D, I, and the respective W(ti) for the five
simulation runs i = (1, 2, ..., 5). In each run record the network
spiking data SC

i over 60 seconds (illustrated in Figure 4.4B).

3. Repeat step (2) with the implementation on the SpiNNaker
neuromorphic system (NM) of the polychronization model to
obtain the spiking data SNM

i .

The spiking data SC
i and SNM

i are used in the following statistical
analyses. For the sake of simplicity, only the excitatory population is
considered in the following validation. However, the results for the
inhibitory population do not differ qualitatively.

4.2.5 Iterative model improvements

In the process of iterative verification and validation, the development
of the model implementations can be segmented into three main it-
erations. For a more detailed account of the verification and model
implementation, see (Trensch et al., 2018), whereas the statistical evalu-
ation and comparison on each iteration step is presented in the Results
of this chapter. First, the original C implementation of the polychro-
nization model (Izhikevich, 2006) underwent a source code verification
maintaining bit-wise replicability of the simulation outcome. The poly-
chronization model was reproduced on the SpiNNaker neuromorphic
system using the Izhikevich neuron model implementation provided
by the SpiNNaker software stack, using the Explicit Solver Reduc-
tion (ESR) implementation of the dynamics described in Hopkins and
Furber (2015).

The second iteration performed verification activities to resolve dis-
crepancies in the simulated activity statistics. As a result, the ODE
solver implementation for the SpiNNaker and the C model was re-
placed by a semi-implicit fixed-step size forward Euler scheme. Ad-
ditionally, the revised implementations include a precise threshold
detection and an optimized fixed-point representation for some critical
calculations to improve the numerical precision of computations. The
third iteration, initiated by a mismatch in the measured LV measures,
corrects an implementation issue causing a small systematic lag in
spike timing. Thus, each iteration constitutes a refinement of the im-
plementation and subsequent verification and substantiation (using
NetworkUnit). Table 4.1 summarizes the specific changes in each itera-
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C model SpiNNaker model

iteration
I

uses a semi-implicit fixed-step
size forward Euler ODE-solver
with step size 1 ms

(i) uses the SpiNNaker Explicit
Solver Reduction (ESR) imple-
mentation of the Izhikevich neu-
ron model

remains unchanged
(ii) uses Izhikevich’s algorithm
for the neural dynamics

(iii) uses a more exact fixed-step
size forward Euler ODE-solver
with step size 1 ms

iteration
II

uses a 1/16 ms step size and
more precise detection of thresh-
old crossing

uses a 1/16 ms step size and
more precise detection of thresh-
old crossing, applies fixed-point
conversion for critical calcula-
tions

iteration
III

remains unchanged
resolves an implementation issue
with the threshold detection

Table 4.1: Summary of the iterative development steps of the model imple-
mentations, based on a replication of Izhikevich’s original imple-
mentation. Steps (ii) and (iii) represent incremental improvements
between iterations I and II. (ODE = ordinary differential equation).

tion. The model source codes and simulation scripts are available on
GitHub7.

4.3 results

Although digital computer simulations are deterministic, given their
input, achieving the equivalence of two neural network model imple-
mentations is not straightforward. This holds true for our application
scenario, comparing implementations of the Izhikevich polychroniza-
tion model on the SpiNNaker digital neuromorphic system and a cus-

7 https://github.com/gtrensch/RigorousNeuralNetworkSimulations (doi:
10.5281/zenodo.1435831)

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://doi.org/10.5281/zenodo.1435831
https://doi.org/10.5281/zenodo.1435831
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tom C implementation. The SpiNNaker system uses 32-bit fixed-point
numerics, while the C implementation employs floating-point numer-
ics. Furthermore, Pauli et al. (2018) expose that the model dynamics
are sensitive to small changes in model parameters and numerics.
Therefore, we do not expect a spike-to-spike equivalence between
the two model realizations. Instead, the model vs. model comparison
rests on statistical characterization of the simulated network activ-
ity. In Section 4.3.1, we show that the application of validation tests
guides the model development progress. Section 4.3.2 demonstrates
the importance of incorporating multiple characteristic measures in a
comparison application. Finally, Section 4.3.3 builds a comprehensive
substantiation evaluation of the SpiNNaker model implementation
against the C implementation.

4.3.1 Network activity comparisons guide model development (iteration I)

Applying continuous statistical comparisons during the iterative pro-
cess of model implementation benefits the modeler. We illustrates the
guided improvements in the development process of the SpiNNaker
implementation in three iterative steps denoted by i-iii in Figure 4.5
(see Table 4.1.) The results are from 60 s of simulated data starting
from the network state after 5 hours of biological time. Figure 4.5A
shows a raster plot of the spiking data for the C implementation and
the three consecutive steps of the SpiNNaker implementation. Step
i represents the initial SpiNNaker implementation using an Explicit
Solver Reduction (ESR) algorithm for the Izhikevich neuron dynamics.
Step ii reimplements the neuron dynamics described in Izhikevich
(2006). Step iii improves this algorithm by applying a fixed step size
forward Euler method. The C simulation exhibits strong fluctuation in
the population activity indicated as vertical stripes in the raster plot.
The three steps of the SpiNNaker simulation successively show quali-
tatively more similar dynamics. As expected, there is no spike-to-spike
equivalence between the implementations.

We evaluate the statistical agreement between the measure distri-
butions (FRs, LVs, CCs) between the C and SpiNNaker simulations
using the effect size defined in Section 4.2.2.5. The corresponding
results in Figure 4.5B and C visually and quantitatively show an im-
proving agreement with each step of the SpiNNaker implementation
development. The effect size between the distributions declines consis-
tently for all measures with each iteration step. Despite the improved
agreements, the discrepancy in the distributions of firing rates is still
considerable, and there remains a shape mismatch between the distri-
butions of CCs (step iii, Figure 4.5B). The distribution of the sum of
the cross-correlation coefficient of the SpiNNaker simulation (step iii,
Figure 4.5D) is broader and features a longer tail than the distribution
obtained from the C simulation. The corresponding correlation matrix
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Figure 4.5: Comparison of the C simulation with simulations of three
consecutive stages of the SpiNNaker implementation. (A) Raster
plot of the spiking network activity (800 excitatory neurons) of the
C simulation (bottom, blue) and three stages of the SpiNNaker
implementation: i, ii, and iii (top, shades of green). The top and
right histograms show the population spike counts in 60 ms
bins and the mean firing rates, respectively. (B) Distributions of
firing rates (FR, left), local coefficients of variation (LV, middle),
and correlation coefficients (CC, right) for the C and SpiNNaker
simulations. Each row (subsequent implementation steps: i, ii, iii)
represents a specific SpiNNaker simulation (green) that differs in
the underlying neuron model implementation. Data shown for
the C simulation (blue) are identical in the three rows. (C) The
difference between the distributions is quantified by the effect
size with error bars indicating the 95% confidence interval. In step
iii, the effect sizes for the FR, LV, and CC measures are 0.90, 0.05,
and 0.36, respectively. (D) Distributions of the sum of the cross-
correlation coefficient (Pxy, Eq. 4.7) in logarithmic representation
for C and SpiNNaker (implementation step iii). (E) Color-coded
correlation matrices for the sum of the cross-correlation coefficient
in implementation step iii. The symmetric matrices display results
for the subset of 100 excitatory neurons with the highest spike
rates in the SpiNNaker simulation. (F) Raster plot of 8 overactive
neurons in the SpiNNaker simulation (implementation step iii)
showing episodes of 1 kHz spiking (emphasized by red markers).
The top and right histograms show the population spike counts
in 60 ms bins and the mean firing rates for the entire recording.
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Figure 4.6: Comparison of spiking activity measures after model refine-
ment. The panels show from left to right the distributions of FR,
LV, and CC of the C and SpiNNaker simulation in iteration II
Section 4.2.5, for the network state after t5 = 5 h (same display
as in Figure 4.5B). The histogram on the right visualizes the cor-
responding effect sizes (mean and standard deviation across all
five network states t1, t2, . . . , t5). The numerical values are FR:
0.077± 0.025, LV: 1.28± 0.086, and CC: 0.074± 0.006 respectively.

(Figure 4.5E) for SpiNNaker reveals large and small outlier values
that are arranged in horizontal and vertical lines. This visual line
structure points towards individual neurons that are highly correlated
or anti-correlated (within a ±100 ms delay window) to a large number
of other neurons.

Further investigation reveals 8 specific overactive neurons that ex-
hibit larger firing rates than the rest of the population. Indeed, these
neurons show occasional periods of several hundred milliseconds with
firing rates of around 1 kHz (Figure 4.5F). In a subsequent analysis
and source code verification, we trace the excessive firing rates to
an overflow of a fixed-point variable in calculating the membrane
potential. This example showcases how validation testing can reveal
simulation mismatches and provides valuable information guiding
further verification and development steps.

4.3.2 Different characteristic measures provide distinct network assessments
iteration II

In iteration II, the SpiNNaker and the C code are refined with an
improved forward Euler ODE solver, precise detection of threshold
crossings, and a more accurate fixed-point representation on SpiN-
Naker. Based on these versions of the executable models, we compare
the statistical properties of simulated spiking activity.

The distributions of the mean firing rates and correlation coefficients
(Figure 4.6) show an improved agreement to the previous iteration
(Figure 4.5B, bottom row). However, despite the similar firing rates
and correlations, the spiking activity in the SpiNNaker simulations is
considerably more regular, as indicated by a clear shift towards lower
values in the LV distributions. Thus, the implementation refinements
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Figure 4.7: Distributions of characteristic measures after the final step of
model refinement. The top row shows the single neuron statistics
FR, LV, and the ISIs (same display and data specification as in
Figure 4.5B). The histograms of ISIs are displayed using semi-
logarithmic scaling. The bottom row shows pairwise statistics and
network properties: the CC using 2 ms bins, the rate correlation
(RC) using 100 ms bins, and the eigenvalues (λ) of the RC matrices
using a logarithmic scaling of the vertical axis. Right: effect size
using the same display as in Figure 4.6. The effect sizes are FR:
0.41± 0.08, LV: 0.28± 0.09, ISI: 0.14± 0.03, CC: 0.17± 0.03, RC:
0.14± 0.02, and λ: < 8× 10−17, respectively.

improved two statistical measures while worsening the third. So ev-
idently, any validation or substantiation process needs to consider
multiple statistics.

4.3.3 Higher-order network properties extend neuron-wise and pairwise
evaluations iteration III

In the third iteration of the model implementations, we correct the
threshold detection algorithm of the SpiNNaker implementation while
the C simulation remains unchanged. The agreement of the three
activity measures FR, LV, CC improved substantially in this iteration,
as measured by the corresponding effect sizes. Therefore, we include
additional characteristic measures to extend the detail and scope of
the comparison.

Figure 4.7 shows the previous and additional (ISIs, RC, eigenvalues
λ of the RC matrix) distributions. According to the interpretation
of Cohen (1988), the comparisons of all six measures exhibit effect
sizes of small to medium size. With respect to the previous iteration
(Section 4.3.2), the effect sizes for the FR and CC increases slightly.
However, the overall agreement increases because of the improved
match of the LV distributions. All measures show a relatively good
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Figure 4.8: Rate-correlation matrices for the C and SpiNNaker simulations.
Matrix elements show the RCs (color bar) of all pairs of the 800
excitatory neurons, computed from 60s of data with the network
state after 5 hours. The order of the neurons in both symmetric
matrices is determined by hierarchical clustering (Ward variance
minimization algorithm, Section 4.2.2.3) of the C matrix. Auto-
correlations are set to 0 not to disrupt the color scale.

agreement between the two model realizations. The remaining dis-
crepancies are small but systematic shifts in the FR, CC, and RC
distributions, indicating that SpiNNaker tends to exhibit slightly more
correlated spikes. In accordance with this observation, the largest
RC eigenvalue for the SpiNNaker model exceeds the one for the C
model. A larger first eigenvalue indicates that more variance in the
rate correlations is captured by one principle activity mode. Thus, the
first eigenvalue difference suggests that, in SpiNNaker, the intermit-
tent population increases are larger amplitude as compared to the C
simulation (see, e.g., the oscillations described by Bos et al., 2016).

We test the six measure distribution pairs (for all 5 network states)
for statistical equivalence using the non-parametric Kolmogorov-
Smirnov test, the Mann-Whitney U test, parametric Student’s-t test to
the approximately normal distributed measures (FR, LV, RC, log(ISI)).
All tests reject their null hypotheses with p-values below a 5% signifi-
cance level (without correction for multiple comparisons), except the
eigenvalue distributions with p-values between 0.17 and 0.96 for the
5 network states. Thus, all but the eigenvalue measure differ signifi-
cantly between the SpiNNaker and C model implementation, although
the overall effect sizes of these differences can be considered small.

Following the univariate comparison of the characteristic measures
of the spiking network activity, we look closer at the organization of
correlation in the network simulations. Figure 4.8 displays the rate-
correlation matrices of all excitatory neurons for the C and SpiNNaker
simulation. The C matrix is hierarchically clustered so that pairs and
groups of highly correlated neurons are arranged next to each other,
visible by high correlation values near the diagonal. The same neuron
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A                                            B                                           C

Figure 4.9: Frequency and structure of spatiotemporal spike patterns. (A)
Bar diagram of the number of patterns detected using the SPADE
method (Quaglio et al., 2017) in the two simulations. Displayed
are the mean and standard deviation of the results for the 5
network states. The spike times of all 800 excitatory neurons are
discretized by 3 ms bins. From the detected spike sequences, we
only consider sequences that repeated >= 3 times, contain at
least 5 spikes, and are shorter (first to last spike) than 60 ms.
(B) Normalized distributions of the time lags between any two
spikes involved in one of the patterns. The results for each of
the 5 network states are displayed as a separate distribution. (C)
Power spectra of the population activity in each network state.
The spectra are calculated by Welch’s method with a 100 Hz
sampling frequency and a 1 Hz frequency resolution (window
overlap: 50%). The C and SpiNNaker simulation data in all panels
are indicated in blue and green, respectively.

ordering is applied to the SpiNNaker matrix, which does not show
a similar diagonal line of high correlation values. Thus, by visual
inspection, the two simulations seem not to share the same highly
correlated neuron groups. However, we further quantify the similarity
of the correlation structure using the normalized scalar products of the
vectors containing the RC matrix (Section 4.2.2.3). The results for the 5
network states range from 0.176 to 0.209. A significance assessment
with 10000 shuffled surrogate matrices results in corresponding scalar
products between 0.081 and 0.108. Thus, the observed similarity score
for of the two simulations is > 43 standard deviations away from
scores of independent surrogate matrices, indicating a similarity of
the correlation structures beyond chance. In Chapter 5, we develop a
corresponding null-hypothesis significance test following the idea of
statistically comparing the structure of correlation matrices.

Furthermore, we analyze spatiotemporal spike patterns (STPs) as a
higher-order statistic representing potential dynamic signatures of the
underlying network connectivity. The STPs are detected with activities
with SPADE method (Quaglio et al., 2017), considering all repeated
spike sequences irrespective of their significance. Figure 4.9A&B sum-
marizes the total number of patterns and the temporal lags between the
spikes forming a specific STP. While ag distributions are qualitatively
similar in both simulations, we detect considerably more patterns in
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the SpiNNaker simulation. Furthermore, the power spectrum of the
spiking activity pooled across all neurons shows a clear peak around
35 Hz for both simulations (Figure 4.9C). This peak corresponds to the
dominant number of lags around 27 ms in the distribution of patterns’
lags (Figure 4.9B). These observations provide a coherent picture of the
SpiNNaker simulation behavior. The large number of spatiotemporal
patterns can be explained by the simulation’s larger average firing rate
and correlation values, and a larger power around 35 Hz.

4.4 conclusion

quantitative characterizations of network activity In
this chapter, we demonstrate how not only the explicit model param-
eters influence the spiking activity of a network model but also the
details of the exact implementation and properties of the simulation
engine affect the simulation outcome. Consequently, simulating the
same model on two different simulation engines, a C-based simula-
tor and the SpiNNaker neuromorphic hardware, results in simulated
activities that are not identical in their spike times. Here, we inves-
tigate the mismatch in spike timings, going beyond the qualitative
description, and formalize a systematic approach for the quantitative
statistical evaluation of (dis)similarity (cf. Section 1.3). In the charac-
terization of the spiking network activity, we incorporate measures of
varying complexity: univariate measures (e.g., firing rates), pairwise
measures (e.g., correlation coefficients), and higher-order measures
(e.g., spike patterns). Each measure of the spiking statistics reflects
only a limited aspect of network activity. Therefore, the comprehensive
network activity characterization is enriched by including multiple
measures to capture a broad range of network dynamics.

validation and model vs . model comparisons We built on
a general framework of model validation to adapt the concept and ter-
minology to network models of neural systems. Further, we extend its
application beyond the statistical model vs. experiment comparisons
to establish trust in the model to a more general framework of compa-
rability (cf. Section 2.2). Direct model vs. model comparisons have the
benefit of not being limited by data availability and can incorporate a
broad dynamical range, different network states, and edge cases of the
model parameterization. Such a comparison approach can serve many
purposes depending on the models’ relation and their differences. For
example, it can measure the influence of changes to the connectivity
(see Chapter 5), evaluate the robustness to variations of the parameters
or input, or it could also establish trust in a model by proxy when the
other model is already well validated against experimental data. Here,
we use the model vs. model comparison approach to not directly eval-
uate the mathematical model description (using the polychronization



58 network level validation & reproducible simulations

model by Izhikevich (2006)) but its implementation and underlying
simulator engine. In order to not confuse the interpretation of this
validation-like approach, we use the term substantiation.

take-aways from the simulator substantiation The show-
cased application of the substantiation approach to comparing the
C and SpiNNaker illustrates multiple aspects of network activity
characterization, comparability, and model development that can be
generalized to other comparison scenarios. The comparison of simu-
lated population dynamics initially exposed an artifact in the numeric
processing on SpiNNaker, causing unreasonably bursting neurons
(Section 4.3.1). Iterative validation testing can guide the model de-
velopment process by uncovering mismatches of the characteristic
measures and can therefore complement the model verification. Even
before fixing all the eventual issues in the model implementation (e.g.,
refinement of the threshold detection algorithm), the firing rates and
correlation coefficients already showed a good agreement between
the two simulations (Figure 4.6). However, the LV regularity measure
still indicated a considerable mismatch. This example illustrates the
need to have multiple different measures to have the most accurate
representation of all aspects of the network activity. Furthermore, it
shows that there is not necessarily a conditionality between higher and
lower complexity measures. In this case, the statistics of the pairwise
correlations are not informative about the statistics of the univariate LV
measure. After the final adjustments, all our characteristic measures
(firing rate, LV regularity, inter-spike intervals, correlation coefficients,
rate correlation, and correlation eigenvalues) agree between the two
simulations with effect sizes < 0.41 (Section 4.3.3). However, there are
different levels of agreement. Additional analyses on spatio-temporal
patterns in spiking activity reveal a considerable mismatch in the
number of detected patterns (Figure 4.9). Furthermore, hierarchical
clustering of the correlation matrices of the respective simulated spik-
ing activities shows that most intra-correlated groups of neurons do
not involve the same neurons in the two simulations (Figure 4.8). Even
with a good agreement of multiple activity measures, there can still
be additional aspects to the complex and non-linear neural network
dynamics, with even minor details potentially causing significant
discrepancies. For the remaining discrepancies in the SpiNNaker sim-
ulation, we suspect that the fixed-point arithmetic of the system (in
contrast to the floating-point arithmetic in the C simulation) causes a
slightly increased tendency for spike synchronization resulting in only
minimal shifts of the correlation distributions but a more considerable
difference regarding the occurrence of spatio-temporal patterns.

acceptable level of agreement As an outcome of the com-
parison approach, the statistical similarity evaluation of all character-
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istic measures provides a quantitative assessment of the agreement
between the compared entities. However, whether the resulting simi-
larity quantification represents an acceptable agreement depends on
the requirements of the intended application of the respective models.
Conversely, the obtained similarity assessment defines the model’s
accuracy and therefore determines its reasonable applicability scope.
Therefore, our study determines that the SpiNNaker implementation
is sufficient for applications requiring an accurate representation of
the spiking statistics in Izhikevich’s polychronization model. However,
it can not (yet) fulfill strong statistical requirements, including, for
example, the equal number of patterns found with the SPADE method
or the statistical equivalence of the calculated measure distributions
(as assumed by standard null hypothesis significant tests). Whether
a quantified level of agreement is acceptable can also be evaluated
concerning the limitations and variability of the underlying system. In
the biological reality, there are many sources of variability (see, e.g.,
Arieli et al., 1996; Mochizuki et al., 2016; Riehle et al., 2018, for trial-
to-trial and subject-to-subject variability) so that we can typically not
expect an exact agreement of the activity to either other experimental
recordings or model simulations. Thus a model can be considered
accurate in describing an activity feature when it reproduces the ac-
tivity feature within the bounds of its observed variability. Similarly,
we can use the intrinsic limitations of the simulation technology (e.g.,
the SpiNNaker neuromorphic hardware and its software stack) as a
reference to judge the agreement level.

reproducible validation tests with networkunit In this
chapter, we outlined the concept of network-level validation and how
the classical validation approach can be extended for other research
applications employing a statistical comparison of network descrip-
tions. Whether we perform a validation, calibration, or substantia-
tion involving experimental data or model simulations, the practical
steps for the statistical comparison are the same. Therefore, we devel-
oped the Python module NetworkUnit to provide the mechanics and
method implementations to perform such quantitative comparisons.
NetworkUnit is based on the SciUnit framework that is designed for
general scientific model validation (Omar et al., 2014). NetworkUnit
aims to provide a battery of tests applicable to compare network ac-
tivity from spiking neural network models. All tests in this chapter
have been implemented with NetworkUnit and are replicable with the
provided open-access simulation data. Besides the example use-case
presented here, another demonstration of how formalized validation
testing can support model development tasks is described by van Al-
bada et al. (2018) successful porting of the cortical microcircuit model
(Potjans and Diesmann, 2014) to SpiNNaker. Formalizing validation
tests and comparison processes with open-software tools and standard
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tests is a pivotal step to increase the confidence in models developed
by the neuroscience community. It ultimately leads not only to more
replicability but also to true reproducibility of scientific findings.

further application scenarios The presented approach for
the comparison of neural network activity can be adapted to a range
of other scenarios, including: the calibration and validation of models
against experimental data, which we address in Chapter 6; the evalua-
tion of connectivity variations of the same model which we employ in
Chapter 5; measuring the influence of the model parameters’ numeric
precision as investigated in the related study by (Dasbach et al., 2021);
or the comparison of different experimental data sets as we present in
Chapter 7 and Chapter 8. Notably, network-level comparison testing is
not restricted to spiking activity. Models and experimental data can be
evaluated based on continuous activity signals (e.g., the LFP) using the
same approach and testing framework. The statistical testing structure
is not dependent on the network description level (Section 1.2), so it
can be applied to a network model of different scope and granularity
and experimental measurements of different resolution (e.g., MEG,
EEG, or ECoG).
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5.1 introduction

connectivity and activity description levels of net-
works Neural networks, as introduced in Section 1.2, can be de-
scribed on two levels of interaction. On the level of the synaptic
connections, we can describe the physical coupling strength between
pairs of neurons and the resulting efficiency with which they influ-
ence their respective activity, i.e., transmit information. On the activity
level, we can describe the functional coupling between pairs of neu-
rons via correlation-based evaluations of their respective (spiking)
activity. There is a relation between these two levels of descriptions
(Section 1.5). However, this relation is not trivial to determine (Sporns
and Tononi, 2001), and object to change due to the external input
(Stevenson et al., 2008; Pernice et al., 2011), network state (Olcese
et al., 2016), neural dynamics (Ostojic et al., 2009; Aljadeff et al., 2015),

61

https://doi.org/10.1016/j.biosystems.2022.104813
https://doi.org/10.1016/j.biosystems.2022.104813


62 network activity and connectivity comparisons via eigenvector angles

and network dynamics (Van Bussel, 2011; Curto and Morrison, 2019).
Furthermore, in biological networks, it is technologically difficult to
record in-vivo both the connectivity and the activity, so there is only
little biological ground-truth data to determine their relationship (Ger-
hard et al., 2013, one exception is e.g.). Therefore, many efforts focus
on evaluating computational models where we have full access to
connectivity and activity.

relevant characterizations on the description levels

The analysis of networks on the connectivity level and the activity level
typically requires quantitative measures that characterize the relevant
aspects of the network (Section 1.3). Pairwise and higher-order mea-
sures that quantify the interactions between the nodes (i.e., neurons) of
the network are particularly relevant for evaluating the relationship be-
tween the connectivity and activity description level. Examples include
activity correlation measures, i.e., functional connectivity (Bullmore
and Sporns, 2009; Eickhoff et al., 2010), the connectivity eigenspec-
trum (Zhou et al., 2009; Dahmen et al., 2019), and either connectivity
or correlation-based graph measures (Pernice et al., 2011; Curto and
Morrison, 2019; Haber and Schneidman, 2020).

comparability of the network characterizations Based
on such network characterizations, we can evaluate the similarity
between realizations of networks (Section 1.4). We can compare two
network realizations on the connectivity and activity description level.
Moreover, by combining the two comparison levels approaches, we can
investigate how differences in the network connectivities correspond
to differences in their activities. Standard validation-type comparisons
approaches are based on the univariate comparison of distributions of
characteristic measures (as explored in Chapter 4). For single-neuron
measures, this approach is straightforward, as the values are statis-
tically independent and can be univariate compared by appropriate
two-sample tests. Popular tests are, for example, the Student’s t-test
(Student, 1908) or the Kolmogorov-Smirnov test (Hodges, 1958), and,
even though they are not formally statistical tests, comparative scores
such as the Kullback-Leibler divergence (Kullback and Leibler, 1951)
and the effect size (Cohen, 1988).

statistical comparison of pairwise measures However,
as we are interested in the interactions between neurons, we aim to
evaluate pairwise measures (i.e., correlations) for which a univariate
representation is less suitable. Although pairwise measures may also
be represented and compared via the distribution of the individual
values (i.e., entries of the correlation matrix), the sample values are
not statistically independent, and information is lost in the reduc-
tion process. Instead, comparing matrices representing the pairwise
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measure in a meaningful way is not trivial, and only a few statisti-
cal tests are available (Flury, 1988; Krzanowski, 1990; Calsbeek and
Goodnight, 2009; Box, 1949). Approaches to perform comparisons
between matrices that do not involve a statistical test include using
the correlations between matrix elements, the Euclidean distance, or
the geodesic distance (Venkatesh et al., 2019).

construction of a statistical test for pairwise measures

Here, we develop a statistical test to compare pairwise measures of
two networks. In particular, we derive the method for symmetric
matrices of Pearson correlation coefficients and asymmetric matrices
of synaptic weights. Our approach uses the matrix’s eigenspectrum
to characterize the matrix’s structure, including the composition of
correlated or interconnected groups. The eigenvectors of a matrix span
the space in which its element values are represented most naturally.
The first eigenvector points along the direction of the largest variance
in the data, which could represent, for example, a strongly correlated
group of neurons. The second eigenvector points towards the largest
variance within the orthogonal subspace, i.e., a separate structural
aspects of the network. The corresponding eigenvalues quantify the
variance along these axes.

Therefore, we evaluate the similarity between two matrices by quan-
tifying the alignment of the respective eigenvectors with the angles
between them, which we term "eigenangles". Small angles between
pairs of eigenvectors indicate similar underlying network structures.
We define a similarity score from the ensemble of eigenangles weighted
with the respective eigenvalues and derive how the similarity behaves
under the null hypothesis of independent random matrices. With the
assumptions of large matrices that are defined in the same space (i.e.,
calculated from the same set of neurons), we can thus construct a
statistical test and evaluate the similarity between two networks via a
quantitative eigenangle score and a corresponding p-value.

chapter outline In the following, we build up a theoretical
basis for the statistical test by describing the behavior of angles for
high dimensional random vectors and the special case of eigenvec-
tors. We construct the "eigenangle test" by first considering symmetric
correlation matrices for spiking network activity and then extending
our approach to asymmetric connectivity matrices of specific network
types. We characterize the statistical test by applying it to calibration
scenarios of stochastic and simulated neural network activity, as well
as experimental spiking activity data. Finally, we use the eigenangle
test to explore the relationship between network connectivity and
activity by comparing network model realizations with specific con-
nectivity modifications on the connectivity and activity description
level (Figure 5.1).
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The idea and an initial version of the eigenangle test for correlation
matrices were already presented in Robin Gutzen’s Master thesis.
There the test was applied to an example of stochastic spike data.
The presented work extends this work by overhauling and refining
the definition of the eigenangle score, the null hypothesis, and the
analytic null distribution. Also, the corresponding test implementation
was rewritten accordingly and made more numerically robust and
considerably more efficient. This improved test version allows for
the extension to asymmetric connectivity matrices and enables the
efficient evaluation of the here presented application scenarios.

Figure 5.1: Schematic approach for inferring connectivity-activity relation
from comparisons of network realizations. Two realizations of
the same type of spiking network model may differ in their exact
synaptic connectivity (magenta). For example, when rewiring
some or all of the synapses. Consequently, the simulation of the
two realizations may produce different sets of spiking activity
(green). By evaluating the similarity of the respective activity
dependent on the similarity of the respective connectivity, we can
measure the impact of the specific rewiring on the connectivity-
activity relationship.

data and code availability All code and data for the sim-
ulations, analysis, and visualizations are stored in the gin reposi-
tory https://gin.g-node.org/INM-6/eigenangles. The experimental
data used in Figure 5.10 is available in the data publication of Brochier
et al. (2018). The eigenangle test to compare correlation matrices will be
provided as part of the v0.2 release of the Python validation test library
NetworkUnit https://github.com/INM-6/NetworkUnit (RRID:SCR_016543).

https://gin.g-node.org/INM-6/eigenangles
https://github.com/INM-6/NetworkUnit
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5.2 methods

5.2.1 Statistical eigenangle test for correlation matrices

Our objective is to quantify the similarity of a pair of matrices us-
ing a statistical test based on the angles between their eigenvectors.
Throughout this section, we will assume the case of comparing two
symmetric correlation matrices as illustrated by the concrete use case
of correlations between N neuronal spike trains. We generalize the
concept to a more general class of matrices, such as graph asymmetric
adjacency matrices, in Section 5.2.2.

Let {vA
i , i ∈ 1, . . . , N} denote the set of ordered, normalized eigen-

vectors of a matrix A, such that λA
i ≥ λA

i+1 for each corresponding
eigenvalue λA

i . We define the i-th eigenangle ϕi as the ϕi = ∡ (vA
i , vB

i ) =

arccos(vA
i · vB

i ) ∈ [0, π] between the eigenvectors vA and vB of matri-
ces A and B. Thus, we consider the angles between pairs of the i-th
ordered eigenmode of each of the two matrices.

The underlying assumption for the eigenangle test is that a small
angle between two eigenvectors indicates the similarity of the cor-
responding eigenmode, whereas a near-orthogonal angle indicates
a discrepancy. Following this assumption, we will derive criteria to
identify similar eigenmodes based on the eigenangles ϕi by calculating
their expected distribution under the assumption of independent activ-
ity. Let us consider a set of N-dimensional normalized random vectors,
i.e., vectors that are uniformly distributed over the N-dimensional
unit sphere. Here, by assuming matrices A and B to be correlation
matrices containing the correlation coefficients between individual
neurons in the network, the dimensionality N of this space is equal to
the number of recorded neurons. Contrary to the intuition suggested
by a unit circle in N = 2, in higher dimensional spaces (N > 2), the
probability distribution f∡(ϕ) of angles between two random vectors
is not uniform. To illustrate this dependency, let us imagine a point at
the pole of the unit sphere (i.e., the intersection of the sphere with the
first axis) and a randomly chosen second point on the unit sphere. For
N = 2, each section of the circle dΘ, located under angle θ from the
pole, is equally likely to contain the second point. Thus, the probability
distribution of the angle between two arbitrary vectors will be uniform.
However, for N = 3, the ring section’s surface dΘ under the polar
angle θ increases with distance from the pole and is maximal at the
equator. Therefore, the probability of observing an angle between two
random vectors will be increased around π/2, i.e., the vectors tend
to be perpendicular (cf., Figure 5.2A). The same effect is observed for
larger dimensions N > 3. The probability distribution can be approx-
imated numerically by sampling the angles within a set of random
vectors, created by drawing the vector components independently
from a normal distribution and then normalizing the vectors (Guhr



66 network activity and connectivity comparisons via eigenvector angles

et al., 1998). Indeed, the probability distribution can also be calculated
analytically (Cai et al., 2013):

f∡(ϕ) =
Γ(N

2 )√
πΓ(N−1

2 )
sin(ϕ)N−2 ϕ ∈ [0, π] (5.1)

However, here, we consider angles between eigenvectors that are
not randomly distributed but instead are pairwise orthogonal due to
correlation matrices being real and symmetric. We can numerically
demonstrate that the effects of these additional constraints are only
relevant for low-dimensional spaces and that the distribution of eige-
nangles can be approximated by f∡(ϕ) for higher dimensions. To show
this, we first define a random correlation matrix A, which is positive
definite, symmetric, whose elements are real-valued random variables
Aj,i ∈ [−1, 1], and diagonal elements are Ai,i = 1. A random correla-
tion matrix can be created by calculating the Gram matrix from a set
of normalized random vectors: Y = XX∗, where X is a matrix with
rows Xk being normalized vectors with elements drawn independently
from a Gaussian distribution and X∗ denoting the conjugate transpose
of X (Holmes, 1991). The length of the row vectors Xk does not influ-
ence the distribution of the eigenvectors. Therefore, we describe this
degree of freedom in the dimensionality of X as α · N. While α has
no relevance for the distribution of eigenangles, it will influence the
distribution of eigenvalues described below. Figure 5.2B demonstrates
a representative example of how the distribution of angles between
eigenvectors is well approximated by the analytic distribution f∡(ϕ) of
angles between random vectors for higher dimensions (about N > 10).
Therefore, using f∡(ϕ) as an analytical approximation is appropriate
for our approach if we consider the analysis of correlations between
large numbers of neurons (e.g., N > 100, which describes a common
scenario in the analysis of electrophysiological data).

Since we motivated that small eigenangles indicate similarity, we
define the deviation from orthogonality towards small angles ∆i =

1− ϕi
π/2 , with ϕ ∈ [0, π], as the auxiliary variable angle-smallness quanti-

fying the similarity of two vectors on a scale from −1 to 1. Performing
a variable transformation on the random angle distribution (Eq. 5.1),
we obtain the corresponding distribution for the angle-smallness:

f̃∡(∆) ∝ cosN−2(∆ · π/2), ∆ ∈ [−1, 1] (5.2)

The eigenvalues of positive definite matrices extracted from neu-
ronal activity provide a measure to describe the amount of variance
captured by the relative contributions of individual neurons to the
corresponding eigenvectors. For that reason, we argue that eigenvec-
tors with larger eigenvalues have a more dominant role in defining
the structure of the correlation matrix as opposed to eigenvectors
with small eigenvalues. Thus, in designing a cumulative test score
to quantify the similarity of two correlation matrices considering all
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Figure 5.2: Distributions of angles between vectors. A) Examples of dis-
tributions of angles between normalized random vectors for di-
mensions N = 3, N = 10, and N = 20 (colors of the histogram).
Dashed curve: analytical distribution proportional to sin(ϕ)N−2.
Left: example of random vectors on a sphere in N = 3. B) Exam-
ples of distributions of angles between the corresponding eigen-
vectors vi of two random correlation matrices. Dashed curve:
analytical prediction for random vectors as in panel A. Left: Ex-
ample realization of two correlation matrices for N = 10. Each
histogram contains 104 angles from the corresponding sampled
vectors.

pairs of eigenvectors, those with the highest eigenvalues should be
weighted stronger than those with low eigenvalues. To incorporate
this aspect into the test, we weight the angle-smallness ∆i between
i-th eigenvectors of two matrices A and B with the quadratic mean

of the corresponding eigenvalues wi =
√
(λA

i
2
+ λB

i
2
)/2. Although a

different average of the eigenvalues, e.g., the algebraic mean, could
be chosen here, the quadratic mean better emphasizes large outlier
values that correspond to the non-random structures in the matrices.

Next, we derive the analytic distribution of the weighted angle-
smallness wi∆i for pairs of independent random matrices. The Marchenko-
Pastur distribution (Marčenko and Pastur, 1967) given by

hα(λ) =
α

2πλ

√
(λ+ − λ) · (λ− λ−)λ± =

(
1±

√
1
α

)2

α > 1 (5.3)

describes the distribution of eigenvalues λ for matrices of the type
YN = XXT, where X is an (αN)× N random matrix whose entries are



68 network activity and connectivity comparisons via eigenvector angles

independent identically distributed random variables with mean 0 and
variance σ2 < ∞, and XT its transpose. The distribution is asymptotic
for N → ∞, and can be considered a good estimate for the scenario
of N > 100 considered in this study. The distribution hα(λ) only
depends on the parameter α, which we introduced above as the ratio
between the length of the row vectors Xk and the dimensionality N.
In the concrete application of YN representing a matrix of correlation
coefficients between spike trains, the row vectors Xk correspond to
the binned spike trains so that the parameter α is determined by the
number of bins divided by the number of spike trains.

For two independent random matrices A and B with identically
distributed eigenvalues, pairs of the sorted series of eigenvalues (λA

i ,
λB

i ) are asymptotically equal for large N. Therefore, the above-defined
weights wi also follow the Marchenko-Pastur distribution. Combining
the functions ˜fN and hα from Eq. 5.2 and Eq. 5.3, we can formulate the
distribution of the angle-smallness ∆ when weighted with the weights
w as

gN,α(w∆) =
∫ λ+

λ−

˜fN(
w∆
λ

) · hα(λ) ·
dλ

λ
. (5.4)

In this formalism, alternative choices for the weights w are possible
as long as there is a corresponding analytical description for their
distribution.

Given the N individual values of the weighted angle-smallness ob-
tained by comparing corresponding eigenvectors of the two matrices,
we define the scalar similarity score

η =
1
N

N

∑
i

wi∆i (5.5)

as their average. Therefore, a large positive η indicates that the angles
between the eigenvectors (in particular, those corresponding to the
largest eigenvalues) tend to be smaller than expected for independent
random matrices. This indicates that the two matrices have common
non-random structures. To interpret a given value of η for a sample
with given N and α, we derive how η is distributed under the null hy-
pothesis of random matrices. Assuming the N values of the weighted
angle-smallness w∆ being independent random variables, the central
limit theorem states that for large N their properly normalized sum
will converge towards a normal distribution centered around the ex-
pected mean (here 0) with the standard deviation σ = s/

√
N, where

s is the standard deviation of gN,α(w∆). Expressing s as the integral
over the product of the distribution with the squared distance to the
mean, we obtain the final analytical description of the distribution of
the similarity score

f (η) =
1√

2πσ2
exp(− η2

2σ2 ) (5.6)
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where

σ2 =
1
N

∫
x2 · gN,α(x) dx.

Based on Eq. 5.6, we define the null distribution in the context of
a Null Hypothesis Significance Test (NHST). As the construction of
f (η) was based on the assumption of independent random matrices,
the null hypothesis could be best expressed as "the two matrices have
no shared non-random structures". We assumed the matrices to be
of the type YN = XXT. Moreover, we assumed that N is large to ac-
count for the constraint that eigenvectors are orthogonal in Eq. 5.1, to
be able to apply the central limit theorem, and since the integrated
Marchenko-Pastur distribution is asymptotic for N → ∞. From nu-
merical simulations, we found that N > 10 is sufficient so that the
null distribution f (η) reasonably represents the randomly sampled
test data.

Violations of the null hypothesis, in particular, any substantial corre-
lation between the matrices, resulting in a higher score that is unlikely
to be explained just by the width of the null distribution. To evaluate
a sample value of η concerning the null distribution, we assign it a
one-sided p-value,

pη =
∫ ∞

η
f (x) dx =

1
2

(
1 + erf

(
− η

σ
√

2

))
. (5.7)
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Figure 5.3: Construction of the eigenangle test. From left to right, the similar-
ity score η and its corresponding null distribution is constructed
by multiplying the angle-smallness ∆ (derived from the eigenan-
gles ϕ) with the corresponding eigenvalue weights w (derived
from the corresponding eigenvalues λ) for each pair of matched
eigenvectors, and then taking the average. p-values can be as-
signed to the similarity score η using the null distribution. The
presented distributions are for dimension N = 20, and the his-
tograms represent 104 samples.



70 network activity and connectivity comparisons via eigenvector angles

Using the eigenangle NHST, we conclude the property of interest
(here, similarity) as an alternative hypothesis when the null hypothesis
(here, independence) is rejected in the case of a p-value smaller than
a significance level α. Often, the significance level is arbitrarily set
(e.g., α = 0.05), which has implications discussed in detail in the
literature (e.g., Nakagawa and Cuthill, 2007; Szucs and Ioannidis, 2017).
Alternatively, the p-value could be regarded as another quantification,
a random variable that should be calibrated with suitable reference
scenarios. These scenarios should cover different ways the underlying
null hypothesis could be violated to gauge the test’s susceptibility.
Therefore, to better assess the eigenangle test, in the following, we
explore its behavior in use-cases of generated stochastic activity with
inserted correlations (Section 5.3.1). Moreover, we extend our test to the
case of asymmetric connectivity matrices (Section 5.2.2) and investigate
the influence of synaptic rewiring on both the connectivity and activity
for a simple balanced random network model (Section 5.3.3).

interactive notebook An interactive Jupyter notebook illus-
trates the construction of the eigenangle similarity measure and its sta-
tistical evaluation with a combination of text, code snippets, and inter-
active figures: https://gin.g-node.org/INM-6/eigenangles/eigenangle_
basics.ipynb1

5.2.2 Statistical eigenangle test for connectivity matrices

In the following, we investigate under which conditions it is possible
to go beyond the description of the eigenangle score for correlation
matrices and adapt the statistical test to other kinds of matrices repre-
senting pairwise measures. The null distribution for the eigenangle
score can be formulated for any kind of random matrix given two
requirements: they have an analytic description for their eigenvalue
distribution, and the angles between corresponding eigenvectors of
two independent realizations of the matrix are distributed like ran-
dom angles. This opens up additional applications of this approach,
particularly the extension to connectivity matrices discussed in the
following. Random connectivity matrices differ considerably from
random correlation matrices, for example, in that they are sparse, may
be inherently structured by the connectivity parameters of different
subpopulations of neurons, and have complex-valued eigenvalues and
eigenvectors since they are typically asymmetric.

We consider here a specific type of network that fulfills the above
two assumptions. Rajan and Abbott (2006) present an analytic descrip-
tion for the absolute eigenvalue values of the connectivity matrices of
a balanced excitatory-inhibitory network consisting of two (potentially

1 executable in the browser via https://mybinder.org/v2/git/https%3A%2F%2Fgin.

g-node.org%2FINM-6%2Feigenangles/HEAD?labpath=eigenangle_basics.ipynb

https://gin.g-node.org/INM-6/eigenangles/eigenangle_basics.ipynb
https://gin.g-node.org/INM-6/eigenangles/eigenangle_basics.ipynb
https://mybinder.org/v2/git/https%3A%2F%2Fgin.g-node.org%2FINM-6%2Feigenangles/HEAD?labpath=eigenangle_basics.ipynb
https://mybinder.org/v2/git/https%3A%2F%2Fgin.g-node.org%2FINM-6%2Feigenangles/HEAD?labpath=eigenangle_basics.ipynb
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sparsely connected) sub-populations with their respective synaptic
weight distributions. The connections are drawn independently with-
out adhering to a fixed in- or out-degree (i.e., ’pairwise Bernoulli’).
In this study, for simplicity, we define these two sub-populations to
consist of excitatory (E) and inhibitory (I) neurons, respectively. This
implies two weight distributions for the E and I connections. To rank
the eigenvectors and set the weights wi for the eigenangles, we use
only the real component λR of the eigenvalues. The corresponding
distribution h(λR) can be derived from the distribution of the absolute
values of the eigenvalues p(|λ|) by exploiting the point-symmetry of
the spectrum for independently drawn matrix elements (Sommers
et al., 1988; Girko, 1985),

h(λR) =
∫ rc

|λR |
r√

r2 − λ2
R

p(r) dr, (5.8)

where rc is the radius of the circle of complex eigenvalues. We are
working with a specific network model incorporating the above prop-
erties. The exact configuration of the network model is documented
in Table 5.1. Using random initializations of this network model,
Figure 5.4A displays the sampled histogram of the real eigenvalues
together with the analytical description.

We further observe that when the total weight variances of the two
populations (taking into account also the variance caused by their
relative size difference) are approximately the same, the eigenangles
are well described by the distribution of random angles. As the eigen-
vectors (v) are now complex-valued, we need to adapt the definition of
angles to ϕ = arccos (< vA, v∗B >R) with <,> representing the inner
product and ∗ the complex conjugate. Since the additional imaginary
vector components double the degrees of freedom, the dimensionality
factor N in Eq. 5.1 also needs to be adapted accordingly to 2N so that
the random eigenangle distribution becomes

f∡(ϕ) =
Γ(N)√

πΓ(N − 1
2 )

sin(ϕ)2N−2 ϕ ∈ [0, π]. (5.9)

Figure 5.4B displays this analytical eigenangle distribution and
the histogram of sampled eigenangles for the comparison of re-
initializations of our network model. Here, the weight variances in the
network are not exactly equal, but Var JI

Var JE
= 6.16 > 1. This deviation

of the weight variance ratio from 1 causes a slight mismatch of the
sampled eigenangle distribution with the analytic curve. However,
further adjusting the weight variances would require the standard
deviation of the underlying lognormal weight distribution to become
considerably larger than its mean, leading to a worse estimation of
the sample variance of the weights and, consequently, a worse fit of
the eigenvalue distribution. Hence, the chosen configuration repre-
sents a compromise for this kind of E-I network with an E/I ratio of
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80% to 20% to still allow for a reasonable fit of the eigenangle score
distribution.

Figure 5.4: Eigenvalue and eigenangle distribution of connectivity matrices.
For the connectivity matrix of a random balanced network (seed
details in Table 5.1), panel A shows the sampled distribution of
real eigenvalues (inset showing the scatter plot of complex eigen-
values) and the adapted Rajan-Abbott distribution. B) The sam-
pled eigenangle distribution of the corresponding complex-valued
eigenvectors and the prediction for random angles ∝ sin ϕ2N−2.
The sampled histograms are based on eight re-initializations of
the network’s connectivity.

Using this extension to connectivity matrices, we can quantitatively
compare the connectivity and the activity correlations of certain classes
of neural networks with the same statistical method and are therefore
able to directly relate the changes in one to the changes in the other.
This provides a unique approach to investigating to what degree
features of the network connectivity determine aspects of the neural
activity.

5.2.3 Neural network model

To evaluate the extension of the eigenangle test to asymmetric con-
nectivity matrices, we introduce a network model that adheres to the
constraints of the assumed network type (Rajan and Abbott, 2006).
The model describes a random balanced network with an excitatory
(E) and an inhibitory (I) neuron population. Each population has ran-
domly drawn connections to the other population and itself, with
weights drawn from a respective lognormal distribution. Table 5.1
presents a detailed account of all the network model parameters. The
model is implemented with the Nest simulator 3.1 2 (Deepu et al., 2021)
The simulated network activity is in an asynchronous state but exhibits
isolated periods of synchronization between neurons (Figure 5.5).

2 RRID:SCR_002963
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Table 5.1: Network model configuration.

parameter value description

N 1000 number of neurons

f 0.8 fraction of exc. neurons

Jex 0.1 mean exc. strength [mV]

Jin − f Jex/(1− f ) mean inh. strength [mV]

P(Ji) lognormal distribution to sample synaptic strengths

σex 0.12 std of exc. weight distribution [mV]

σin 0.1 std of inh. weight distribution [mV]

T 60000 simulation time [ms]

T0 1000 swinging-in time (additional to T) [ms]

ϵ 0.1 connection probability

η 0.9 external rate relative to threshold rate

delay uniform(min=0.5, max=3.0) distribution to sample synaptic delays [ms]

dt 0.1 time resolution [ms]

connection rule pairwise Bernoulli rule for connection neurons

synapse model static type of synaptic connection

neuron model current-based, delta, leaky iaf type of neuron model

τm 20.0 time constant of membrane potential [ms]

θ 20.0 membrane threshold potential [mV]

Cm 1.0 membrane capacitance [pF]

tre f 2.0 duration of refractory period [ms]

EL 0.0 resting membrane potential [mV]

Vreset 0.0 reset potential of the membrane [mV]

Vm 0.0 membrane potential [mV]

stimulus type independent Poisson driving stimulus to all neurons

stimulus rate 1000 · η · θ/(Jexτm) average rate of the Poisson generator [Hz]
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Figure 5.5: Spiking activity of network model. The raster plot shows the
simulated spiking activity of all 1000 neurons, 800 excitatory
(E, blue) and 200 inhibitory (I, red), of the network model (see
Section 5.2.2 and Table 5.1) in a 5 s window. Top: population
histogram for each population (50 ms bins). Right: mean firing
rate for each neuron.

5.3 results

5.3.1 Calibrating eigenangle similarity in stochastic activity data

In correlation matrices, the eigenvectors associated with the largest
eigenvalues will point to the dominant correlation structures, e.g.,
groups of correlated neurons. The eigenangle test formalizes this
intuition by evaluating the angles between pairs of eigenvectors. In
the following, we quantify the ability of the presented approach to
properly detect correlation structures in neuronal data with three
calibration scenarios.

In the first calibration scenario, we create two sets of independent
stochastic spike trains with inserted correlations among the same
sub-populations of neurons. Figure 5.6, bottom row (clustered corre-
lation), shows an example spiking activity of such a correlated sub-
population. The stronger the introduced correlations and the larger
the sub-populations, the more similar the two correlation matrices and
the smaller the test’s p-values should be.

We create N = 100 spike trains of length T = 30 s, of which N − n
represent independent neurons modeled by a Poisson process (rate
ν = 10 Hz). A compound Poisson process (CPP) models the remaining
sub-population (cluster) of size n (Staude et al., 2010). The CPP inserts
synchronous spikes into the spike trains of the sub-population (with
amplitude distribution A(j) = δ(j− n)) while maintaining the average
rate ν and realizing a pre-described average correlation coefficient. The
correlation matrices are calculated with a bin size of 2 ms. Figure 5.7
shows that the eigenangle test indeed reflects the increasing similarity
of the correlation structure with increasing cluster size and cluster cor-
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Figure 5.6: Example stochastic spiking activity with inserted correlations.
The raster plot shows 2 s of stochastic Poisson spiking activity
(rate 10 Hz) for three correlation scenarios (10 spike trains each)
created by inserting synchronous spikes (red) with a compound
Poisson process. The top row shows independent activity with
only chance correlations. The middle row shows activity with
synchronous spikes inserted in non-overlapping pairs. The bot-
tom row shows activity with synchronous spikes inserted across
multiple spike trains. The mean correlation coefficient for the
pairwise (middle) and clustered (bottom) correlation neurons is
0.3.

relation. As expected, for zero correlation within the cluster, the null
hypothesis that the correlation matrices are independent is plausible
(p ∼ 50%). However, for a sufficiently large cluster size and cluster
correlation (e.g., size= 4, correlation > 0.1), the test rejects the null
hypothesis with a given significance level (e.g., p = 5%), indicating a
similarity of the correlation structures. This analysis confirms the intu-
ition underlying the construction of the eigenangle test and provides
an interpretation of its p-value. For example, a significance level of 0.05
for the eigenangle test corresponds to a shared correlation structure
that is as least as dominant as 4% of neurons being correlated with an
average coefficient of 0.1 with the other neurons showing independent
activity.

We further characterize the features of the eigenangle test by compar-
ing it to the well-established Kolmogorov-Smirnov (KS) test (Hodges,
1958). As for most common two-sample tests, the null hypothesis of
the KS test is that both samples originate from the same underlying
distribution, i.e., the test evaluates similarity, and a p-value smaller
than the significance level rejects this similarity. In contrast, the eige-
nangle test has a null hypothesis regarding the independence of two
samples (matrices). Thus, the eigenangle test evaluates difference, and
a significant p-value indicates similarity.
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Figure 5.7: Comparing sets of stochastic activity with similar correlation
structures. The eigenangle test p-values are presented for the
comparison of two correlation matrices of stochastic Poisson ac-
tivity (100 neurons) with a respective sub-population (cluster) of a
given size (color hues) and prescribed average internal correlation.
Median (curves) and 95% confidence intervals (shaded areas) of
the p-value result from 105 repetitions. The matrices show two
representative examples of correlation matrices for simulations
with identical parameters.

Applying the KS test to the sampled correlation coefficient distribu-
tions, in the above parameter scan, there is no visible dependency of
the p-value on either the cluster size or the correlation and no rejection
of the KS null hypothesis (median p-value: 10.4%; 0.5% of p-values are
smaller than a 1% significance level, Bonferroni corrected). This result
agrees with the expectation because the correlation coefficients in
the two matrices are sampled from the same distribution irrespective
of the correlation structure. Further, when we look at the graph de-
scription where the edges represent the correlation strength between
neurons and compare its local clustering coefficients (Onnela et al.,
2005) with the KS test, there is also no dependency of the p-value on
the cluster size or correlation.

We again generate correlation matrices for the second calibration sce-
nario from stochastic Poisson activity with correlated sub-populations.
Just one sample has two correlated clusters (Figure 5.6, bottom) of
size 6 and 8 (average correlation coefficients: 0.3 and 0.1, respectively).
In contrast, the other sample has the same "amount" of correlation
which is, however, distributed among pairs of non-overlapping neu-
rons. The middle row (pairwise correlation) in Figure 5.6 shows an
exemplary spiking activity of such correlated neuron pairs. So, the
correlation structure of the two samples is distinctly different, while
the corresponding distributions of correlation coefficients are similar.
Comparing the matrices with the eigenangle test and the distributions
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with the KS test illustrates that information about the matrix structure
is lost when only comparing the samples of correlation coefficients.
Figure 5.8 shows that the eigenangle test results in no rejection of the
null hypothesis and thus adequately indicates that the matrices are
different (1.0% false positives, i.e., rejections of the null hypothesis for
a 1% Bonferroni-corrected significance level, N = 105). In most cases
(95.2%), the KS test does not reject its null hypothesis. It, therefore,
indicates a principal similarity between the distributions as the differ-
ence between clustered and pairwise correlation is not represented in
the distribution of correlation coefficients. Applying the KS test to the
clustering coefficient distributions of the corresponding graph instead
rejects the similarity null hypothesis, but only in about 71% of the
cases.

Figure 5.8: Comparing clustered vs. distributed correlations. Correlations of
network activity are organized in distinct groups of multiple neu-
rons or in independent pairs of two. Top: Swarm plots of p-values
(dots) obtained from the eigenangle (left) and KS (right) tests for
N = 105 random initializations of clustered and distributed cor-
relations. Red dots: p-values significant at the 1% level. Bottom:
Example realizations of correlation matrices (left) for the clustered
(blue) and distributed (green) case, and corresponding distribu-
tions of correlation coefficients (right) used for the KS test.

In a third calibration scenario, we compare the correlation matrices
from two simulations of the same network model implemented on
two simulation engines. Given that the underlying structure of connec-
tivity in the network model and the input is identical, we expect that
both simulations exhibit activity with a matching correlation structure.
Figure 5.9 shows the null hypothesis for the eigenangle test is indeed
rejected, indicating that the two simulations produce a similar correla-
tion structure. However, the null hypothesis for the KS test is rejected
as well, indicating that there are different distributions of correlation
coefficients. This discrepancy of yielding similar correlation structures
but different "amounts" of correlations shows a tendency of one of
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the simulator engines to exhibit more synchronous spikes. A more
detailed comparison and discussion of these differences between the
simulator outputs are presented in Gutzen et al. (2018b) and Trensch
et al. (2018).

Figure 5.9: Comparing the model activity from two simulators. The Izhike-
vich polychronization model (Izhikevich, 2006) was simulated
(Trensch et al., 2018; Gutzen et al., 2018b) with identical parame-
ters and initial conditions on both a custom simulator written in
C (blue) and the neuromorphic system SpiNNaker (green). Here,
the correlation matrices (left) and distributions of correlation co-
efficient (right) from a 60 s recording are shown. Comparing 5
recordings, both the eigenangle test and the KS test clearly reject
their respective null hypothesis, indicating a similarity of the
correlation structure by the eigenangle test while the KS test indi-
cates dissimilarity of the distributions of correlation coefficients.

The three calibration scenarios illustrate the proper behavior of the
eigenangle test and how it is complementary to classical two-sample
tests in explicitly evaluating structural matrix features instead of the
distribution of values.

5.3.2 Discriminating behavioral conditions in experimental activity data

The eigenangle test can be applied to compare correlation matrices
based on the same set of neurons. This includes experimental data
acquired from the same recording setup. Hence, the test can quantify
the similarity of the correlation structure across different task condi-
tions. Here, we demonstrate the eigenangle test application to spiking
activity data recorded in the motor cortex of a behaving monkey.

In the experiment, a macaque monkey (session l101210-001) per-
forms an instructed delayed reach-to-grasp task (Brochier et al., 2018).
During each trial, a visual cue (300 ms) informs which grip type to use,
side-grip (SG) or precision-grip (PG), to pull an object. After a delay
period of 1000 ms after cue offset, the GO signal appears, and a second
cue informs about the force on the object, low-force (LF) or high-force
(HF). This analysis considers each trial’s delay and movement periods
(1800 ms intervals from cue onset to 500 ms after GO). For each of
the four different trial types (SGLF, SGHF, PGLF, PGHF), there are 30
trials in the session.
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We construct the comparisons of the correlation matrices of each
trial type against each other (including itself). To do this, we randomly
split the 30 trials of each trial type into two sets of 15 and calculate
the correlation matrices from the spiking activity (bin size 5 ms, 74
single-unit spike trains, respectively concatenated within each set). We
then apply the eigenangle test to compare the first trial set of trial
type A against the second trial set of trial type B. This way, there is no
overlap in compared trials, even when we compare a trial type to itself
(A = B). We resample the trial sets and repeat the comparisons 500
times to remove any eventual sampling bias and evaluate the statistical
variance.

The distribution of the resulting test p-values shows considerable
variance across the trial samples (Figure 5.10). Still, on average, the
test indicates a greater similarity (smaller p-values) between trial
types that share a grip type than trial types with different grip types.
Furthermore, we see that the force type has seemingly no influence
on the similarity of the respective correlation matrices. These results
indicate that the spiking correlations during the behavioral task are
specific for the instructed grip type and not for the instructed force
type. However, we also learn that the eigenangle test should ideally
not be applied to compare a single set of data but to analyze an
ensemble, e.g., by resampling trials to obtain a more robust evaluation
of the p-values.

Figure 5.10: Comparison of the spike correlation structure between 4 ex-
perimental conditions. Each box plot represents the resulting
p-values from comparing two trial types when resampling the
used trial subset (500 repetitions). The comparisons are grouped
by color, showing whether the trial conditions share the grip
and/or force types. We observe a tendency that comparisons
between conditions with the same grip type (green) yield smaller
p-values, indicating more similarity, than those with a different
grip type (blue). Comparisons with the same or different force
types (light/dark) show similar p-values.
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5.3.3 Evaluating network rewiring effects in modeled connectivity and
activity data

Next, we apply the eigenangle test to evaluate the similarity between
simulated networks of the random balanced network model type de-
scribed in Section 5.2.3. We compare versions of this network model
on the activity level via the correlation matrices calculated from the
simulated spiking activity. Furthermore, we also perform comparisons
on the connectivity level via the synaptic weight matrices using the
extension of the eigenangle test described in Section 5.2.2. With the
eigenangle test able to perform quantitative comparisons on both
network description levels, we can systematically investigate the rela-
tionship between connectivity and activity (as schematically illustrated
in Figure 5.1).

Specifically, we evaluate the effect that rewirings of the synaptic cou-
plings have on the correlation structure. These simulation experiments
are inspired by Mongillo et al. (2018), who evaluated the strategic
shuffling and adding of synapses to explore the effects of synaptic
volatility and learning. In their study, the authors quantified the influ-
ence of modifying connectivity on the activity by using the Pearson
correlation between the firing rate vectors before and after rewiring
and calculating the connectivity matrices’ element-by-element corre-
lation. In analogy to the work by Mongillo et al. (2018), we analyze
three types of rewiring protocols.

Redraw: the entire network is re-initialized with a different random
seed, i.e., a new connectivity matrix is drawn from the identical
weight distribution as the original network.

Shuffle: keeping the exact weight values, the synaptic weights be-
tween all pairs of neurons in between a source and a target
population are shuffled,

Add: new E-E synapses are drawn that target a sub-group constitut-
ing a fraction x of the excitatory population. Synaptic weights
are sampled from the weight distribution of existing E-E con-
nections. The number of new synapses is 20% of the number of
existing synapses towards the target sub-group, i.e., 0.2x of all
E-E synapses.

Figure 5.11 illustrates the corresponding test results for each of the
comparisons (original vs. rewired network), repeated 100 times with
different random initialization.

redraw In the redrawing protocol, we compare two independent
random connectivity matrices. As expected, the corresponding test
results for the synaptic weights (Figure 5.11A, top) are non-significant
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p-values (with a median of p = 0.52). However, comparing the re-
sulting correlation matrices indicates a certain degree of similarity
(with a median of p = 0.02). The influence of the general network
configuration and the state of the population dynamics can explain
this initialization-independent similarity between the correlation struc-
tures of completely rewired networks. The network model exhibits
fluctuations in the population activity, including times of synchronous
spiking between many neurons of the network. This activity feature is
represented by the first eigenvector containing similar vector loadings
for all neurons. Therefore, synaptic redrawing or rearranging of neu-
rons does not majorly change the direction of the first eigenvector. This
characterization of the network’s susceptibility to synaptic changes
provides a reference to contextualize the effect of the other rewiring
protocols (see dotted horizontal lines in Figure 5.11).

shuffle Figure 5.11B illustrates the effects of shuffling the existing
synaptic connections between and within the E and I populations (i.e.,
E-E, E-I, I-E, and I-I). The shuffling of the synaptic weights from E
neurons leads to a larger change (i.e., less similarity) in the overall
correlation structure than the shuffling of weights where the source
population is I. However, the weight matrix structure changes are sim-
ilar for all source and target population combinations. They only show
slightly larger p-values for the E-E shuffling than the I-I shuffling,
which likely corresponds to the larger number of shuffled E synapses.
With the ratio between the p-value of correlation and weight compari-
son (log(pcorrelations/pweights)), we may gauge whether the changes to
the correlation structure are under- or over-proportional as compared
to the changes to the connectivity structure (Figure 5.11B, middle).
In particular, we can compare this ratio concerning the reference sce-
nario of a complete weight redrawing (Figure 5.11A, middle). This
way, we identify an over-proportional influence of changing synapses
originating from the E population on the correlation structure.

Additionally, Figure 5.11B-bottom shows the synaptic shuffling
effects on the E and I firing rates by measuring the Pearson correla-
tion coefficients between the respective rate vectors before and after
rewiring. The shuffling only affects the target population’s firing rate
vector, whereas the source population’s vector is nearly perfectly corre-
lated (i.e., unchanged by the rewiring protocol). Further, the synapses
originating from the E population have a larger influence on the target
population’s rates than those originating from the I population. How-
ever, this trend inverts when correcting for the different number of
synapses in the E and I populations. When shuffling the same number
of weights in each case, the synapses originating in the I population
exhibit a larger influence on the rate vectors than those originating
in the E population, particularly for I-I connections (Figure 5.12B,
bottom). However, even when correcting for the number of synapses,
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Figure 5.11: Comparing the effects of rewiring protocols on the connectiv-
ity and activity of a random network model. In each panel, the
scattered points show the outcomes of 100 repeated comparisons
between original and rewired networks realizations (some points
lie outside the bounds of the plotted domain and are not shown),
and the curve and shaded area show the median value and the
bootstrapped 95% confidence interval. Top row: log p-values of
the eigenangle test comparing the weight (magenta) and correla-
tion (green) matrices of two network realizations. Middle row:
corresponding ratios of the log p-values for the comparisons of
correlations versus corresponding weights indicate if changes
in activity correlation are over- or under-proportional given the
change in the connectivity structure. Bottom row: correlation
of the vector of firing rates, separated for excitatory (E, blue)
and inhibitory (I, red) neurons. A) The "redraw" column shows
the distribution of comparison results when comparing two ran-
dom network initialization, i.e., different random seeds. B) The
"shuffle" column compares network realizations with rewired
versions where the synapses between the populations indicated
on the axis are shuffled. C) The "add" column compares net-
works with rewired versions where the number of E-E synapses
that targeted a sub-population constituting a relative fraction of
x of the target E population is increased by 20%.

the trend that E synapses have a greater influence on the correlation
structure remains (see Figure 5.12B, top and middle).

Mongillo et al. (2018) also find that synaptic shuffling mainly influ-
ences the rates of the targeted population. However, they also see a
considerable influence on the non-targeted population. Furthermore,
the study reports a greater influence of synapses originating in the
I population even when not correcting for the number of shuffled
synapses. These deviations emphasize the relevance of the underlying
network configuration. The network model employed by Mongillo
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et al. contains considerably higher connection probabilities (and thus,
more indirect and recurrent connections) than our network model.
Moreover, in their model, the weight distribution and firing rate vari-
ances are larger for the I population than for the E population. The
authors highlight these two factors as the relevant attributes for the
increased influence of I connections.

add When adding additional E-E synapses, we see that a few but
targeted synapses (at x = 0.1, adding 1280 synapses) can cause a
considerable change to the correlation structure (Figure 5.11C), compa-
rable to a full redrawing. However, adding many synapses in a more
distributed manner (up to x = 1.0, adding 12800 synapses) causes
little change to the correlation structure, even though the additional
synapses increase the overall synchronous activity and the average cor-
relation. However, changes to the weight matrix similarity seem to be
linked to the total number of added synapses, i.e., the more synapses
are added, the more dissimilar the weight matrix becomes. Mongillo
et al. (2018) show the same trend of the weight matrix similarity using
the correlation coefficient between the original and rewired matrix
elements.

The effect on the E firing rates is a trade-off between the absolute
number of added synapses and the focus of their targets, resulting
in a U-shape of the rate correlation curve (also reported in Mongillo
et al. (2018)). The isolated effect of focusing the new connections
becomes more visible when changing the protocol and adding the
same number of synapses irrespective of the target population size
(see Figure 5.12C).

5.4 conclusion

summary of the eigenangle test approach Angles can
serve as a measure of vector alignment. We demonstrate that a score
based on the angles between eigenvectors can quantify the similarity
between two symmetric correlation matrices (or two asymmetric con-
nectivity matrices). With the analytical description of this similarity
score under the null hypothesis of independent random matrices, we
construct the statistical eigenangle test. The eigenangle test expands a
niche of statistically comparing pairwise measures and is complemen-
tary to traditional two-sample tests (e.g. Kolmogorov-Smirnov test)
that compare distributions of measures. We establish this statistical
comparison approach’s relevance for pairwise measures representing
interactions between neurons in neural network descriptions.

take-ways of the application examples In three calibration
scenarios, we illustrate that the eigenangle test can accurately assess
shared structural features (i.e., correlated sub-groups) in the compared
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Figure 5.12: Effects of network rewiring with same numbers of changes
synapses. Same as Figure 5.11, but for the shuffle protocol, the
same number of synapses (3500) are rewired for E-E, E-I, I-E, and
I-I. For the add protocol, the same number of synapses (12800,
corresponds to 20% of E-E connections) are added for each target
population size.

matrices and distinguish between different structural configurations
even when the corresponding univariate distribution of values is
comparable. Furthermore, applied to experimental spiking data of a
behaving monkey, the eigenangle test can differentiate between the
correlation structure in two distinct behavioral conditions.

For a balanced neural network model with an excitatory and in-
hibitory population, we apply the eigenangle test to compare both
the synaptic weights and activity correlations between different re-
alizations of the model. We evaluate the effects of synaptic rewiring
protocols that redraw, shuffle, or add connections. We discover that the
type and scope of change brought on by a particular synaptic rewiring
in the network rely on the precise network configuration, making it
challenging to draw general conclusions about the functional char-
acteristics of random balanced networks. Using our specific network
model type, we discover that the synapses from the E population are
primarily responsible for determining the correlation structure. How-
ever, rewiring synapses that originate in the I population has a greater
impact on the firing rates. Furthermore, the correlation structure is
more influenced by how clustered synaptic connections are than by
how many there are.

generalization of rewiring experiments The network model
in Mongillo et al. (2018) and our network model (following the condi-
tions of Rajan and Abbott (2006)) are both relatively simple balanced
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E-I networks. Mainly, they differ in their connection probabilities and
synaptic weight variances. Still, most of the corresponding results of
the rewiring experiments from Mongillo et al. (2018) can be qualita-
tively reproduced. The remaining discrepancies suggest a dependency
between the impact of a specific synaptic rewiring and the configu-
ration and state of the network. The rewiring (i.e., plasticity) effects’
dependency on the network architecture would also be expected when
assuming that different types of neural networks (e.g. different cortical
areas) support different functionality, including mechanisms of learn-
ing, memory, or representational robustness. Our approach allows us
to investigate such dependencies between the correlation structure
and distinct network connectivity features. For example, this approach
could measure the influences of the arrangement, composition, and
interaction of cell assemblies which play a role in various theories
of cortical information processing (Harris, 2005; Litwin-Kumar and
Doiron, 2012; Aviel et al., 2003).

applicability of the eigenangle test The test depends on
the assumption that the two compared networks have the same neuron
identities to properly define an angle between corresponding eigenvec-
tors. Thus, valid applications include model vs. model comparisons
of two versions of the same model (Section 5.3.3) and experiment vs.
experiment comparisons for data acquired with the same recording
setup (Section 5.3.2). Notably, classical model vs. experiment vali-
dation is generally not possible unless there is a mapping between
simulated and experimentally observed neurons. However, validation
testing regarding a model’s dependency on the input, its robustness
to parameter variations, or its stability over time (Section 1.4) may be
evaluated with the test. For any application, to guide the interpretation
of the test results, it is generally advisable to probe the test’s sensitivity
modeled influences in the given context, as was down in Section 5.3.1.

The test assumes a sufficiently large network to apply certain statisti-
cal approximations. However, we estimate with numerical simulations
that N ≥ 100 represents a sufficient number of neurons for practical
purposes. Furthermore, the test relies on ordering the eigenvalues
to define the pairwise angles. When there are two equal eigenvalues
(e.g. two identical clusters in a matrix), this ordering can become
ambiguous. In corresponding numerical simulations, the test never-
theless correctly indicates similarity in most cases but with reduced
accuracy. However, we expect such ambiguity in ordering (the largest)
eigenvalues to be improbable in most experimental or simulated data.

sources of correlation There can be different influences on
the pairwise correlations in a neural network. A correlation between
two neurons’ activity may indicate a direct physical connection, an in-
direct connection (intermediary or common input), or a joint dynamic
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(e.g. same response selectivity or non-stationarity). These mechanisms
can occur on different time scales, and how much they are reflected in
the correlation measure is a matter of the chosen bin size and recording
length. An accurate estimation of the pairwise correlations requires a
sufficiently long recording of the activity data. However, an increased
recording length may entail an increased level of non-stationarity. For
example, suppose the population firing rate is not stationary in time,
as often in experimental data. This will induce rate correlations and
influence the measured correlation values (the degree of influence
depends on bin size). Besides a non-stationary population activity, the
correlation structure itself can also change over time.

The eigenangle test evaluates the data in a non-time-resolved man-
ner and only considers the measured correlation aggregated from
various influences. Therefore, in more complex simulations or experi-
ments, timescales for the correlation and the recording window should
be carefully chosen, and the test result must be discussed concerning
eventual non-stationary influences. Repeating an eigenangle test with
different timescales or surrogate data can help disentangle these in-
fluences and interpret the test results. For example, to separate the
influence of fine-temporal correlations and rate correlation, one could
apply the test to spike-time dithered surrogate data (Grün, 2009; Stella
et al., 2022) that preserves only the rate profile.
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Figure 6.1: Graphical overview. We infer area-specific spiking neuron models
based on spiking activity data from multiple cortical areas. We use
an optimization algorithm to estimate the connectivity parameters
of the models that lead to the maximum similarity between the
simulated and experimental neuronal activity.

6.1 introduction

focus on network connectivity Networks are defined by
their connections. So, in the network view of neural systems, we
focus on how the network nodes (in our case, the neurons) interact.
The physical connectivity in the form of synaptic adjacency thus
represents the backbone of neuronal networks. These connections
relay the information transport and processing to generate complex
cognitive functions. In the previous Chapter 5, we measured the
influence that specific changes to the connectivity structure have on
the network activity in terms of its spiking correlations and firing
rates. Our approach revealed how, in a given network model, some
connectivity aspects and parameter statistics can be more critical
in determining network activity than others. Here, we continue to
explore how network connectivity determines network activity, but
with the alternate approach of inferring connectivity parameters of a
neural network model from characteristic measures of spiking network
activity.

measuring connectivity biological neuronal networks

We look, in particular, into the microscale connectivity in different
cortical areas of macaque monkeys. While much is known about the
cortico-cortical long-range connectivity in the macaque from tract-
tracing studies (Felleman and Van Essen, 1991; Bakker et al., 2012;
Markov et al., 2012), the connectivity within the cortical areas is less
tractable. Currently, estimates of the within-area connectivity rely on
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a combination of measurements from different animals and areas
(Binzegger, 2004; Potjans and Diesmann, 2014). While cortical areas
differ in their neural activity and functionality, they rely on a similar
basic columnar architecture. This architecture is usually described as
the cortical microcircuit and considered the canonical building block
of the cortex (Douglas et al., 1989). However, there is a lack of detailed
estimations of the microcircuit connectivity (microconnectome) outside
the early sensory and motor areas. Estimating such local connectivity
often relies on paired recordings (Thomson, 2002; Song et al., 2005;
Perin et al., 2011; Kodandaramaiah et al., 2018) or glutamate uncaging
(Kodandaramaiah et al., 2018; Nikolenko et al., 2007; Weiler et al.,
2008; Anderson et al., 2010; Noguchi et al., 2011; Yamawaki et al., 2014;
Yamawaki and Shepherd, 2015), which are both tedious processes and
sample from relatively few neurons at a time.

Therefore, we propose an activity-driven method to estimate the
microconnectome from in vivo data. Network activity data is used to
calculate functional connectivity via various correlation-based meth-
ods (Berger et al., 2007; Dann et al., 2016; English et al., 2017; Pastore
et al., 2018; Kobayashi et al., 2019). Under ideal stationary conditions,
functional connectivity can approximate structural connectivity (Os-
tojic et al., 2009; Bullmore and Sporns, 2009; Eickhoff et al., 2010).
However, simulation studies have shown that spurious correlations
lead to systematic errors in the inference of structural connectivity
from pairwise correlations (Das and Fiete, 2020).

inferring connectivity via calibration Instead, we use a
model calibration approach. We determine plausible connectivity pa-
rameters by simulating spiking neural network models and matching
the joint single-neuron statistics between simulations and experimental
activity data. There are several approaches to performing the parame-
ter exploration to optimize the similarity of the simulated and target
experimental activity, including brute force search (Prinz et al., 2004;
Stringer et al., 2016), plasticity rules (Diaz-Pier et al., 2016), infer-
ence via analytic likelihood functions for tractable models (Paninski
et al., 2004; Pillow, 2005; Ladenbauer et al., 2019; René et al., 2019),
or machine learning approaches for analytically intractable models
(Bittner et al., 2019; Gonçalves et al., 2020). However, here, we use an
approach based on evolutionary optimization methods (Druckmann,
2007; Rossant, 2010; Carlson et al., 2014) because of their computational
efficiency, little assumptions on the model, and broad applicability.

Generally, the calibration/optimization approach does not necessar-
ily result in a unique set of parameters. Instead, it may result in one of
the potentially many solutions because disparate network parameters
can produce the same dynamics (Prinz et al., 2004). The degeneracy
of the optimization problem depends on the model complexity and
parameterization, as well as the similarity score. In turn, the successful



90 activity-driven calibration of network connectivity

optimization of an adequate model consolidates that the chosen simi-
larity score and its description level of the network activity capture the
relevant features of the network dynamics (cf.. Chapter 1). We evaluate
the unique convergence of our optimization setup via the application
to synthetic data with known ground truth. Additionally, perform-
ing multiple optimization runs and applying a separate validation
step further supports the plausibility of the optimization solution. For
the calibration and validation steps, we build on the comparison test
framework introduced in Chapter 4.

outline Robustly determining model parameters enables us to
investigate the origins of the difference in neural dynamics across
cortical areas. There are two options for how the variability of neuronal
dynamics across cortical areas could emerge: 1) differences in the
received activity from outside the cortical area, or 2) differences in the
internal structure (connectivity and/or neuron properties). Therefore,
we choose the external input and the internal connectivity probabilities
as free variables in the optimization workflow to evaluate these two
possibilities.

In the following, we use a method to estimate the parameters of
neural network models based on single-neuron statistics. Based on
electrophysiological data from different cortical areas and macaques
(N = 5, Macaca mulatta), we explore the variability of cortical spiking
activity. We then present a custom optimization algorithm to estimate
anatomical parameters from the multi-dimensional activity statistics.
We demonstrate the method’s performance with the test case of a
small balanced spiking neuron network. Further work will include
adapting the methods to larger models and estimating the connectivity
parameters from the experimental data.
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Figure 6.2: Schematic illustration of the statistical value spaces on each
level of abstraction. From left to right, starting with the underly-
ing parameter spaces in the model simulations (Ωmodel) and the
cortical areas (Ωbrain), which both produce spiking data (in D).
Deriving summary statistics (in S) from the spiking data is the
basis for constructing comparisons. Comparisons are performed
via a difference measure (WS) in the space of a fitness function
(F ).

Assessing the quantitative similarity between experimental and sim-
ulated data is a non-trivial procedure that can take many different
forms (Chapter 4). Our approach uses a measure of the joint distance
between the characteristic measures of the spiking activity data. Fig-
ure 6.2 shows the spaces between the abstraction levels of network
parameters and the fitness function.

Let (θ̃n)n∈N bet the set of all the possible parameters that describe
the activity in the central nervous system. This includes anything that
affects neural activity, such as neuroanatomy, chemical concentrations,
or environment temperatures. The brain function B is a highly non-
linear function B : Ωbrain → D, mapping from the parameter space
to the space of activity data, i.e., time series (B(θ̃n))n∈N. Here, we
focus on spiking activity, following the assumption that much of the
relevant information is encoded within this signal. Current acquisition
techniques do not enable simultaneous recording from all neurons in
the brain. Thus we work with a subset D ⊂ (B(θ̃n))n∈N recorded with
extracellular electrodes E. See a detailed description of the data D in
the Methods Section 6.2.1.

On the modeling side, we constrain the range of all possible param-
eters that may describe the brain to the minimal subset θi ⊂ (θ̃n)n∈N.
Here, we focus on the neuroanatomy of the cortex at the level of the
connectivity parameters. The choice of parameters is further deter-
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mined by the chosen model M. For a given set of parameters, the
model will create a time seriesM(θi) of spiking activity. The chosen
models M are described in the Methods Section 6.2.1.

The study’s objective is to assess whether a choice of model param-
eters generates a similar spiking activity as the recorded experimental
activity,M(θi) ≈ D. We extract summary statistics from the data as
characteristic measures on the single-unit level. We call this function S,
and it yields two clouds of points So (observation) and Sp (prediction),
where each dot in the cloud corresponds to the summary statistics of a
slice of recording from a single spike train. See Methods Section 6.2.2
for a description of the used measures.

Finally, we compare the multi-dimensional summary statistics to
each other. Using a judge function J, we can estimate a fitness WSi,
which measures how similar the multi-dimensional summary statistics
are. We used the Wasserstein distance (WS) as a fitness function (see
Section 6.2.2 for details).

6.2.1 Data sets

All data was collected from macaque monkeys (Macaca Mulatta, N = 5)
in the resting state. The macaques were sitting in a dimly lit room
with no particular task while the continuous activity from the cortex
was recorded. The relevant behavior in each experiment was also
tracked using either videos or eye-tracking systems. The recordings
were made using different devices, thus resulting in data for different
layers. Here, we refer to the combined cortical layers L2 and L3 as
L2/3. Consequently, L5 + L6 = L56, and L3 + L4 + L5 = L3/4/5.

Table 6.1: Summary of subjects and recordings included in this study.
Name identifier of the subject, cortical area, layers from which
the data were recorded, number of electrode contacts in each area,
and number of recording sessions are indicated.

Name Sessions Areas Layers Contacts Source

T 7 M1 All 24 Novel from

11 PMd All 24 Kilavik lab

F 59 dlPFC L2/3 4 Novel from

59 V4 L2/3 4 Gregoriou lab

L 1 V1 L5/6 896 Spike sorted

1 V4 L5/6 128 Chen et al 2021

N 2 M1/PMd L3/4/5 96 Brochier lab

E 2 M1/PMd L3/4/5 96 Brochier lab
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Data from macaque T

The data from macaque T was recorded from the premotor cortex
(PMd) and primary motor cortex (M1) (N = 1 subject, N=11 ≈ 15 min
sessions). Acute recordings were made with laminar probes (Plexon
and Alpha Omega, 24 contacts, 100 and 200 µm pitch). The laminar
probes enabled recording from across the cortical layers. The 200 µm
pitch probes could record all layers simultaneously, while the 100 µm
pitch probes did not span the entirety of the cortical gray matter. The
motor cortex gray matter is known to be approximately 3.5 mm thick
(Koo et al., 2012), with the superficial and deep layers roughly split in
half. A guard zone was applied around the middle of the probes of
0.5 mm, where the contacts were excluded. The rest were identified as
either superficial (L2/3) or deep layers (L5/6). A preliminary analysis
of this data has already been published (Kilavik, 2018). The raw data
was spike sorted offline. Spike sorting identified 5-13 clean single units
per probe and session.

In addition to the spiking data, surface Electromyography (EMG) of
the contralateral deltoid muscle, the heart rate with an ear clip, and a
video of the macaque behavior were recorded. In all the behavioral
videos, the screen LEDs were used to send a 1 s long blink every
minute that can be used to realign video with the neural recordings.
We performed a video-based segmentation into behavioral epochs:
eyes-open, eyes-closed, and movement periods. We excluded the move-
ment periods from our analysis since they are associated with high
motor cortex activity and variability (Dąbrowska et al., 2021). Includ-
ing the movement periods would bias the spiking statistics of the
motor cortex to include non-resting state dynamics.

Data from macaque F

The data from macaque F was recorded from visual area V4 and
dorsolateral prefrontal cortex (dlPFC) (N = 1 subject, N = 59 ≈ 5 min
sessions). Acute recordings were made with up to four simultaneous
Plexon electrodes from the superficial layers (L2/3) during resting
state. The eye pupil was tracked for behavioral segmentation into
eyes-open and eyes-closed epochs. Spike sorting identified 4-10 clean
single units per area and session.

Data from macaque L

The data from macaque L was recorded from visual areas V1 and V4

(N = 1 subject, N = 1 ≈ 20 min session). Chronic recordings were
made using 16 8x8 electrode Utah arrays (Blackrock microsystems),
two of them in visual area V4 and the rest in the primary visual cortex
(V1), with a total of 1024 electrodes. The electrodes were 1.5 mm long.
Thus the recordings were made from the deep layers L5 and L6. A
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full description of the experimental setup and the data collection and
preprocessing has already been published (Chen et al., 2022).

Pupil position and diameter data were collected using an infrared
camera to determine the macaques’ gaze direction and eye closure.
In addition to the resting state recordings, a visual response task was
also performed. The visual response data were used to calculate each
electrode’s signal-to-noise ratio (SNR). All electrodes with an SNR
lower than two were excluded from further analysis. Additionally,
we excluded up to 100 electrodes that contributed to high-frequency
cross-talk in each session, as reported in the original data publication
(Chen et al., 2022).

The raw data were spike-sorted using a semi-automatic workflow
with Spyking Circus—a free, open-source spike-sorting software writ-
ten entirely in Python (Yger et al., 2018). An extensive method descrip-
tion can be found in their publication and the online documentation
of Spyking Circus1. After the automatic sorting, the waveform clusters
were manually merged and labeled as single-unit activity, multi-unit
activity, or noise. Only single-unit activity (SUA) spike trains were
included in this study. The waveform signal-to-noise ratio (wfSNR)
was calculated for all SUA, and those with a wfSNR < 2 or electrode
SNR < 2 (from the visual response task) were excluded from the
analysis.

Data from macaques N & E

The data from macaques N & E was recorded with an implanted
10x10 electrode Utah array from the interface between premotor (PMd)
and primary motor (M1) cortex (N = 2 subjects, N = 2 15-20 min
sessions per subject). A full description of the experimental setup, data
collection, and preprocessing is described in (Brochier et al., 2018). An
extensive analysis of the resting state data has also been published
(Dąbrowska et al., 2021). In addition to the registration of brain activity,
the monkey’s behavior was video recorded and synchronized with the
electrophysiology recording.

Spiking neuron models

In this study, we use two different spiking network models, a small
balanced spiking network (Brunel and Brunel, 2000; Ostojic, 2014) and
a cortical microcircuit model (Potjans and Diesmann, 2014). Both were
simulated using NEST 3.2 (de Schepper et al., 2022).

Small balanced spiking neuron network model

The small balanced spiking network model consisted of one excita-
tory (E) and one inhibitory (I) population of leaky integrate-and-fire

1 spyking-circus.readthedocs.io
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neurons. The neurons a randomly connected with a probability P for
each possible connections (pairwise Bernoulli). The default connection
probability P depends on the source and target population:

P0 =

[
PEE PEI

PIE PI I

]
=

[
0.15 0.18

0.17 0.19

]
,

Each connection has a delay value that is drawn from a log-normal
distribution. The network is driven by an input of independent spike
trains simulated with an inhomogeneous Poisson process.

Microcircuit model

The cortical microcircuit model describes the neural populations under
a square of 1 mm2 cortical surface in the layers L2/3, L4, L5, and L6

(Potjans and Diesmann, 2014). Each layer consists of two populations
of point neurons, one excitatory and one inhibitory, thus a total of
eight populations. The total number of neurons was based on layer-
resolved stereological neuron estimates. All layers receive a constant
background input with Poisson noise.

For the synthetic data, we used the following connectivity matrix,
with the elements Psource,target with source and target being the popu-
lations [L2/3E, L2/3I , L4E, L4I , L5E, L5I , L6E, L6I]:

P0 =




0.1009 0.1689 0.0437 0.0818 0.0323 0 0.0076 0

0.1346 0.1371 0.0316 0.0515 0.0755 0 0.0042 0

0.0077 0.0059 0.0497 0.1350 0.0067 0.0003 0.0453 0

0.0691 0.0029 0.0794 0.1597 0.0033 0 0.1057 0

0.1004 0.0622 0.0505 0.0057 0.0831 0.3726 0.0204 0

0.0548 0.0269 0.0257 0.0022 0.0600 0.3158 0.0086 0

0.0156 0.0066 0.0211 0.0166 0.0572 0.0197 0.0396 0.2252

0.0364 0.0010 0.0034 0.0005 0.0277 0.0080 0.0658 0.1443




which was previously derived from anatomical studies (Binzegger,
2004; Potjans and Diesmann, 2014).

6.2.2 Characterization of spiking activity

The experimental and simulated spike trains are sliced into 10 second
samples. We compute the characteristic measures for each neuron
in these data samples and construct a multi-dimensional cloud of
spiking neuron statistics. These multi-dimensional summary statistics
are used to characterize the activity in the cortical areas and to assess
the similarities between experiments and simulations. We use the
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following four characteristic measures to quantify multiple aspects of
the spiking activity.

firing rate The first order of neuronal activity is the firing rate,
measured by the number of emitted spikes (Nspikes) per recording time
T:

FR =
Nspikes

T
. (6.1)

local coefficient of variation Looking at the intervals be-
tween n consecutive spikes of a neuron I, the revised local coefficient
of variation LvR (Shinomoto et al., 2003) quantifies the instantaneous
regularity of the spiking, also taking into account the refractory period
R = 5 ms:

LvR =
3

n− 1

n−1

∑
i=1

(
1− 4Ii Ii+1

(Ii + Ii+1)2

)(
1 +

4R
Ii + Ii+1

)
. (6.2)

Equivalent to other measures of spiking regularity, a value of 0
indicates perfectly rhythmic spiking, whereas a value of 1 corresponds
to a Poisson point process.

average correlation coefficient The pairwise Pearson cor-
relation coefficient of two spike trains quantifies the level of syn-
chronized coordination between two neurons. It is defined as the
covariance between two binned spike trains b with a mean number of
spikes per bin µ, normalized by the roots of the individual variances:

CCij =
covij√coviicovjj

covij =< bi − µi, bj − µj > (6.3)

Since CC is a pairwise measure, we use the average correlation value
of a neuron with all N − 1 other simultaneously recorded neurons to
have a neuron-wise characterization.

CCi
avg =

1
(N − 1) ∑

j∈[1,N]\i
CCij (6.4)

standard deviation of correlation coefficients Using
the above definition of correlation coefficient Eq. 6.3, we also use the
standard deviation to measure the spread of correlation values of a
neuron:

CCi
std =

1
(N − 2) ∑

j∈[1,N]\i
(CCi

avg −CCj) (6.5)

Additional measures were considered but not used in our analysis
because they were strongly correlated to other measures. If strongly
correlated measures were introduced, some properties would be over-
represented in the fitness function. For example, the coefficient of
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variation (Cv, Cv2) (Holt et al., 1996) and local variability (Lv) (Shi-
nomoto et al., 2003) of the inter-spike intervals are excluded due to
their similarity to the LvR. Introducing Cv, Cv2, Lv and LvR would
significantly increase the representation of the inter-spike interval
variation without a large increase in the explained variance. We also
considered the spike-triggered population response (stPR) (Okun et al.,
2015), but did not include it due to its similarity with the CCavg. As
the LvR requires a minimum of three spikes to be computed, we set a
threshold of FR ≥ 2 spikes/s for any given spike train to be included
in the analysis. Since the considered measures assume stationarity, the
length of the spike train slices must not be too long. We, therefore,
choose a spike train sample length (tslice) of 10 seconds. All metrics
were computed using their implementation in the elephant toolbox
(Denker et al., 2022), within the NetworkUnit reproducible testing
framework (Gutzen et al., 2018b).

Multidimensional fitness function

Selection of a fitness function

To assess the fitness of a given parameter set, we need to compare
the multi-dimensional single-neuron statistics to our target. Thus, we
need to compute a distance between multi-dimensional probability
distributions. Such problems have been explored, for example, in the
context of GANs, where the Wasserstein distance (Arjovsky et al.,
2017), also known as the earth mover’s distance, was found to have
many desirable properties:

1. agnostic about the underlying statistical distribution

2. jointly evaluates multivariate distributions, thus incorporating
the covariance structure

3. can compare samples of different sizes

4. is a true distance: symmetric and positive definite

5. is extendable to higher dimensions

6. is numerically robust on point-distributions (no integration
needed)

Not all common similarity measures share all these properties. For
example, the Kullback-Leibler divergence violates properties 4 and 6,
whereas the Jensen-Shannon entropy violates property 6.

Wasserstein distance

The Wasserstein distance (WS) is defined as an optimal transport
problem between the observations (So, the target multi-dimensional
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summary statistics) and the predictions (Sp, the multi-dimensional
summary statistics from the candidate model). Each multi-dimensional
summary statistics cloud is an N ×M matrix of N number of sam-
ples (spike train slices) and M number of summary statistics. The
observations and predictions must have the same number of summary
statistics Mo = Mp but can have different sample sizes No and Np. First,
we normalized (z-scored) the statistics cloud concerning the observa-
tions So across samples for both So and Sp. This normalization ensures
that the measured distances remain comparable across many different
predictions Sp. The normalization step further ensures that all met-
rics M are equally weighted. Without normalization, the firing rates
would affect the distance by several orders of magnitude more than
the correlation statistics (CCavg, CCstd). Second, we assigned equal
weights (mass) wo, wp to each neuron within the statistics clouds, such
that ∑No wo = ∑Np wp = 1. Thus, So and Sp have the same total mass,
and the differently sized statistics clouds can be compared. Finally, we
search for the optimal transport of mass between So and Sp by finding
the graph configuration that minimizes the work required to transport
all the weights:

min
So

∑
i

Sp

∑
j

wi,j · di,j (6.6)

where wi,j is the weight transported between points i and j, and
di,j is the Euclidean distance between them. For finding the optimal
graph configuration, we use the simplex algorithm implemented in
OpenCV (Bradski, 2000). Then, the Wasserstein distance (WS) is the
work normalized by the transported weight, which we defined to
∑N w = 1. Thus ∑So

i ∑
Sp

j wi,j = 1, and the WS is therefore

WS =
So

∑
i

Sp

∑
j

wi,j · di,j (6.7)

Multi-objective vs single-objective optimization

An alternative approach to a multi-dimensional distance is multi-
objective optimization, where the multi-dimensional distribution is
separated into univariate distributions. Each distribution is tested
separately, and a Pareto front of all objectives is sought. However,
toy tests with this approach struggled to fit all summary statistics
simultaneously and would lead to inconsistent results. We encountered
three problems with a multi-objective approach:

1. Logical “Or”: different summary statistics fitted separately and
not simultaneously.

2. Ignored covariance structure due to univariate testing.

3. Sensitive to the choice of statistical test or distance (e.g., Kolmogorov-
Smirnov, t-test).
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Ultimately we found that single-objective optimization with a multi-
dimensional distance was more robust than a multi-objective optimiza-
tion.

Optimization algorithm

We use an optimization algorithm to explore our models’ parameter
space, maximizing the similarity between the target observations and
the model predictions. Analogous to evolutionary processes, each
model parameterization is called an individual, and a population of indi-
vidual is iteratively evaluated and mutated to generate the individual
with the best fit. As described in the previous section (Section 6.2.2),
we used the Wasserstein distance as the fitness function, which the
optimizer has to minimize. The optimization algorithm consists of an
iterative random search outlined in the pseudocode 1.

Algorithm 1 Pseudocode of random search algorithm

1: population← generate random individuals
2: for generation ≤ N do
3: population. f itness← evaluate(population)
4: survivors← select(all individuals)
5: mutants← mutate(survivors)
6: newcomers← generate random individuals
7: population← newcomers and mutants

First, the optimizer generates an initial population of individuals
θ⃗0, θ⃗1, ..., θ⃗N , of length Npopulation = 128. Then, the individuals are
simulated and evaluated with the multi-dimensional summary statis-
tics Si of their simulated spiking activity. The fitness of is calculated
by the Wasserstein distance between Si and the pre-computed target
multi-dimensional summary statistics So.

The evaluation step was parallelized in a high-performance com-
puting (HPC) system. Thus, evaluating each generation step takes
only as long as it’s the slowest individual. It is to be noted that the
computational cost of spiking model simulations scales up with the
total number of synapses. Thus some parameter combinations with
unrealistically many synapses would require a much longer simula-
tion time. To avoid this problem, we set a time limit for the evaluation
step (tuned to each model); if the time limit is reached, the individ-
ual will get the worst possible fitness. After the evaluation step, a
fraction psurvival = 0.5 of the population with the best fitness (lowest
Wasserstein distance) were selected, and the rest of the models were
discarded. We call the remaining individuals the survivors. Additional
to the survivors, we also include a small fraction of the all-over best
individuals by selecting pfrom_best = 0.1 from the population with the
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highest score of the whole optimization. This addition prevents the
algorithm from drifting away from a good fitness area.

After selecting the survivors of a generation, we mutate them
and the overall best individuals using a Gaussian mutation with
the mean equal to the parameter values and the standard deviation
fixed to a value σmutation = 0.01. In some cases, with a probability of
pgradient = 0.5, the mutation is not random but instead follows the
natural gradient, calculated from the nearest individuals in parameter
space (including previously discarded ones). We estimate the natural
gradient as follows:

g⃗ ≈ 1
Nnearest

Nnearest

∑
j=1

(
WSj −WS0

) θ⃗j − θ⃗0√
θ⃗j · θ⃗0

(6.8)

where g⃗ is the gradient vector, θ⃗0 is the current individual with fitness
WS0 (i.e., the point in parameter space for which the gradient is being
estimated), and θ⃗j are the nearest neighbors (Nnearest = 1000) to θ⃗0 in
the parameter space.

Finally, the population is complemented with new random individ-
uals, such that the new population has a length of Npopulation. The new
population then undergoes the same evaluation, selection, and mu-
tation steps until a maximum number of iterations Niterations = 250 is
reached. The optimization algorithm was implemented in the learning-
to-learn (L2L) framework (Yegenoglu et al., 2022).

6.3 results

6.3.1 Characterization of cortical activity across areas and subjects

The first step is to acquire appropriate data sets for investigating
the variation and specialization across cortical areas. Therefore, we
sourced cortical spiking data measured in multiple cortical areas and
layers from 5 macaque monkeys across 4 experimental setups in dif-
ferent labs (see Methods Section 6.2.1 for details). For a comparison
between data sets and a relation to stationary models that is as fair
as possible, all recordings were performed without any task behavior
or stimulus in an idle resting state. Figure 6.3A shows an overview
of the cortical locations and layers for each experimental recording.
The spike train data was cut into 10 s slices for the following anal-
ysis. Exemplary samples are shown in Figure 6.3B. Since the direct
comparison of spiking data is not feasible, we instead choose four
single-neuron statistics to characterize the spiking activity per neu-
ron, calculated within each 10 s slice, as the basis for quantitative
comparisons: the firing rate (FR), the local variability (LvR), and the
average of a neuron’s cross-correlations (CCavg), and its standard de-
viation (CCstd) (see Section 6.2.2 for details). Figure 6.3C, illustrates
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Figure 6.3: Overview of experimental data sets and their summary statistics.
A) Schematic representation of the recording location. B) Sample
recordings of simultaneous spike trains from each data set for a
10 s window, superscripts indicate the subject name. C) Summary
statistics of the single unit spike trains. Each point in the scatter
plots corresponds to a 10 s spike train of a single neuron. D)
Variance explained by the first four principal components (PC) of
the multi-dimensional summary statistics.

the univariate distributions of the neuron-wise measures (on the di-
agonal) and the relations between measures as point clouds (on the
off-diagonal), separately for each data set. This choice of comparison
measures informs about distinct aspects of the activity data without
being redundant. Their individual relevance is underlined by a PCA
analysis showing that they each explain at least 5-10% of the variance
in each data set (Figure 6.3D).

We also measure the power spectral density from the spike time
histograms (Figure 6.4) but do not include it in the summary statistics
due to its different dimensionality.

Analogously to the summary statistics for the experimental data, we
also extract those four characteristic measures from the two spiking
network models we use in this study. A smaller balanced network
consisting of 10000 excitatory (E) and 2500 inhibitory (I) neurons
and a microcircuit model with E-I populations over four layers (to-
tal 61843 E and 15326 I neurons, see Methods Section 6.2.1). From
simulations, with their "default" parameters, we already see that the
multi-dimensional summary statistics for the small balanced network
span a narrower range (Figure 6.5), whereas those of the microcircuit
model span a broader range that is more similar to the experimental
data (Figure 6.6).
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Figure 6.4: Power spectral density (PSD) of the spike time histogram (bin size
10 ms) within the groups for tslice = 20 s data slices. The median
for each area (solid line) and the 5-95% percentiles (shading) are
shown.

6.3.2 Comparison setup

This study comprises comparisons between experimental data sets
recorded from different subjects and different cortical areas, compar-
isons between models with different parameterizations, and compar-
isons of model vs. experiment. Although serving different purposes
within the model optimization workflow and the notion of similarity
is interpreted differently in each situation, the practical execution and
implementation remain the same. In these comparisons, we are quan-
tifying the similarity between the spiking activity of simultaneously
recorded neurons. The setup to perform the comparison tests is built
on the validation test library NetworkUnit (Chapter 4). We extend the
package by implementing additional functionalities needed for our
multi-dimensional comparisons.

For this comparison application with data from different areas, lay-
ers, and time slices, we need to be careful to separate and reasonably
group the data for the extraction of measures and comparisons. With
the spiking data being cut into 10 s slices, each data set is represented
as a list (for each slice) of lists (for each neuron) of spike trains. The
characteristic measures are only computed within each slice of simul-
taneously recorded neurons. This is particularly important for a valid
definition of the correlation coefficients. Furthermore, each neuron is
labeled with its attributed layer so that only the characteristics of neu-
rons from the same layer are compared. A corresponding definition
of comparison tests realizes this selective grouping. In NetworkUnit,
tests are represented as ‘class’ objects so that variations of existing
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Figure 6.5: Multi-dimensional summary statistics of the small balanced spik-
ing neuron network with the target parameters.

tests can be defined as their child classes, minimizing redundant code
and computations. For example, the tests measuring CCavg and CCstd
are both derived from the general CC test. The four tests for our
four characteristic measures (Section 6.2.2) are combined together in
a "joint test". Since we chose only neuron-wise measures, the output
of each test has a length equal to the number of tested neurons (i.e.,
spike trains), and the outputs of the four tests can be combined into a
four-dimensional characterization of the spiking activity. So, instead
of multiple univariate comparisons, we can perform a combined multi-
dimensional comparison using the Wasserstein distance (Section 6.2.2).
The Wasserstein distance evaluates the minimum distances that are
required to move one multi-dimensional point cloud to another. Here,
the dimensions correspond to the z-scored characteristic measures
and the points to activity slices of individual neurons. This approach
has the essential advantage that the information about the relations
between the measures is retained and included in the comparison
score. So, the outputs of our comparison setup are fitness scores, one
for each layer label, that we average to a combined score to be used
in the model optimization. It is to be noted that the fitness score does
not have absolute interpretability, i.e., it is not a true metric. For the
optimization, however, we only need its relative interpretability to
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Figure 6.6: Multi-dimensional summary statistics of the microcircuit model
with the target parameters.

maximize the model fitness, i.e., minimize the combined Wasserstein
distance.

Due to the large amount of data from the experimental recordings
and the model simulations and the many comparisons that need to
be performed in the stepwise optimization process, there is a relevant
concern for computational performance. Therefore, we improved the
implementation of the comparisons with NetworkUnit by extending
its caching functionality not to recalculate existing results between
simulations and tests and introduced parallelization between tests and
independent comparisons.

6.3.3 Multidimensional activity characterization captures the distinct dif-
ferences between cortical areas

Before applying our comparison setup to evaluate spiking neural net-
work models, we first gauge the variability across the datasets by ap-
plying the setup to experiment-to-experiment comparisons. Thus, we
perform pairwise comparisons between all the individual experimental
recordings across subjects, areas, and layers (Figure 6.7) using univari-
ate comparisons (ANOVA) for each of the four characteristic measures
(Panel A-D) and multivariate comparisons (MANOVA) where the four
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measures are considered in combination (Panel E). For the individual
tests, to not introduce sample-size biases, we subsample a fixed num-
ber N of points from the multi-dimensional summary statistics. We
choose N = 350 (randomly sampled) since the tests are robust to the
normality assumption if the samples are large (generally N > 30) and
robust to the assumption of equal (co-)variance (homoscedasticity)
if the sample sizes are equal (Lindman, 1992). The significance level
α = 0.05 for the ANOVA and MANOVA tests was Bonferroni corrected
for multiple testing (k = 47 experiment pairs · 5 test types = 235),
such that α = 0.05/k = 2.13 · 10−4.

The univariate ANOVA tests (Figure 6.7A-D) reveal that no single
characteristic measure can distinguish the activity from all areas, i.e.,
reject the hypothesis of similarity with p < α. However, for comparing
the combined measures with the MANOVA tests (Figure 6.7E), all
recording pairs become statistically different from each other. There-
fore, we can conclude that the multi-dimensional summary statistics
are specific for each area and/or layer. This result motivates our ap-
proach to optimize neural network models separately for different
cortical areas to estimate area-specific connectivity parameters.

Although all recordings are statistically different according to the
MANOVA evaluations, some appear to be less different than others.
Notably, the most similar recordings are for the same area and layer
in different monkeys (M1/PMdE

l3/4/5 vs. M1/PMdN
l3/4/5), and for the

same layer of adjacent areas (M1T
l2/3 vs. PMdT

l2/3), while recordings
from different layers in the same area and subject tend to be more
different (V4L, M1T, except PMdT).

6.3.4 Proof of concept: genetic optimization algorithms can infer connectiv-
ity parameters

After demonstrating that our characterization and comparison setup
for spiking network activity can differentiate recordings from different
cortical areas(Section 6.3.3), we want to exploit this area specificity
to estimate corresponding connectivity parameters for area-specific
neural network models. To estimate the underlying model parameters
from activity data, we search the parameter space for a configuration
that minimizes the Wasserstein distance score between simulated
and experimental recordings. We explore the parameter space with
an evolutionary optimization algorithm (see Methods Section 6.2.2).
However, we verify that the optimization method finds the correct
parameter values. To this end, we test the optimization workflow with
simulated data where the ground truth, i.e., the underlying model
parameters, is known. So, we generate a set of spiking activity and
calculate its summary statistics by simulating a small, balanced spiking
neuron network (N = 12500, see Methods Section 6.2.1 with the target
parameterization. By matching the summary statistics of the activity
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Figure 6.7: Uni- and multivariate pairwise comparison tests of the four
characteristic measures. We test the null hypothesis that two
or more groups have the same population mean. In all panels,
lower triangular entries show the logarithm of the p-values, and
the upper triangular part shows the F-statistic. A-D) shows the
univariate pairwise analysis of variance (ANOVA) tests. E) shows
the multivariate pairwise analysis of variance (MANOVA) tests.
Significance levels (α = 0.05) are corrected for multiple testing ac-
cording to the Bonferroni correction. Note that the area ticklabels
refer to the lower triangular entries, while the upper triangular
part is mirrored along the diagonal.

of the target model with the simulated activity of an independent
model realization, we aim to retrieve adequate estimations of the
target connectivity parameters: (PEE, PEI , PIE and PI I). See Figure 6.5
for the multi-dimensional summary statistics of the synthetic data.

Since the simulations are driven by randomized input, there are
inevitable variations in the multi-dimensional summary statistics.
We quantified this variability within the target model by simulating
N = 20 different realizations of the network model, with all param-
eters equal except for the random seed. The Wasserstein distance
between the simulations is presented in Figure 6.8A). Furthermore, we
also evaluate the effect of subsampling on the variability and find only
a slight increase in the variance of the Wasserstein distance score. Low
sensitivity to subsampling is desirable since the recorded experimental
data represents only a tiny fraction of the total number of neurons
in a cortical area. Next, we ensure that the optimization landscape
(parameter space) is smooth. A non-smooth parameter space indicates
numerical instabilities in the model, the fitness function, or the sum-
mary statistics. Therefore, we perform a parameter scan in the ranges
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Figure 6.8: Proof of concept for the optimization method using the Wasser-
stein distance (WS) between the dynamical ranges. A WS vari-
ability of the target simulation due to different randomized inputs
and randomized subsampling (N = 20). B Progress of the opti-
mization algorithm, as the lowest WS overall (green) and within
each generation (grey). C Pairplot of the estimated parameter sets.
Off-diagonal plots show the parameters of the estimated models.
Each point represents one model instance. The color indicates the
WS for that model instance with respect to the target. Diagonal
plots show the histogram of estimated parameters for models
with WS < 0.5. The inset on top right shows a schematic repre-
sentation of the network model.

Pxy ∈ [0.05, 0.20] with steps of 0.01, confirming that the parameter
space is indeed smooth. Thus, the optimization algorithm should be
able to converge and find the global minimum consistently.

Indeed, the optimization converges in about 100 generations (Fig-
ure 6.8B), i.e., N ≈ 12800 simulations were needed to find the solution
since there were 128 simulations per generation. The estimated param-
eters with a Wasserstein distance < 1 were all found in the vicinity of
the target parameters (Figure 6.8C). Considering the measured variabil-
ity of the simulated activity, the multi-dimensional summary statistics
of all those parameter combinations can be considered equivalent to
the target simulation. Therefore, we can conclude that our optimization
approach can successfully estimate the connectivity parameters (for
an adequately simple model) based on multi-dimensional summary
statistics of the spiking activity.

6.4 conclusion

summary Different cortical areas show different functional speci-
ficity and neural activity. Given the notion of a canonical cortical
microcircuit architecture, how are these differences between cortical ar-
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eas manifested in the local network connectivity? Here, we presented a
method to optimize the parameters of a neural network model so that
the statistics of its spiking activity match the statistic of a target set of
(experimentally recorded) spiking activity. The optimization method
uses a multi-dimensional cloud of four characteristic single-neuron
measures. We showed how the characteristic measures vary across the
dataset and how their joint multi-dimensional statistics reflect distinct
differences and uniquely characterize the cortical areas. Furthermore,
we provided a proof of concept application of the optimization method
using synthetic data. Further work will be needed to extend the meth-
ods to more biologically realistic models, which could then be used to
estimate the connectivity parameters from the experimental data.

network activity characterizations for calibration

and validation Our findings suggest rich and varied multi-
dimensional summary spiking statistics across different cortical ar-
eas. In agreement with previous reports (Mochizuki et al., 2016), our
findings show considerable variability in the spiking activity across
the cortex. Furthermore, the characteristic measures (FR, LvR, CCavg,
CCstd) represent a reasonable description of the main statistics of the
network activity. Each describes a considerable (min 5− 10%) of activ-
ity variability, and while none can distinguish the data from different
cortical areas alone, their joint statistics show a clear separation. Ad-
ditionally, they are sufficient in describing the activity of a simple
E-I network to determine its network configuration uniquely. Still, to
further expand the comparison scope and make our approach more re-
liable, the calibration-type comparisons based on the four-dimensional
summary statistics will be complemented by separate validation-type
comparisons. Validation tests are used to evaluate the agreement be-
tween a model and an (experimental) target based on data features
that are not yet integrated into the model via calibration. Therefore,
we intend to compare the power spectral density of the population
activities, the number of silent neurons, and the timescales of the spike
train autocorrelation. The timescales are already well known to vary
across the cortex at both the individual neuron and population levels
(Chaudhuri et al., 2015) and therefore represent a relevant condition
to check the plausibility of the model.

Our optimization approach was designed to balance exploration and
exploitation. We initially used evolutionary algorithms akin to Rossant
(2010) and Carlson et al. (2014). However, when fitting the connection
probability between neuron populations, the crossover steps would
move the optimizer away from the global optimum. Our interpretation
was that the crossover shifting of one parameter pushed the model into
a completely different regime. This is mostly not the case in genetics,
where a single base pair swap often causes only marginal differences.
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Thus, we removed the crossover step and substituted it with random
sampling.

limitations & outlook So far, this work has demonstrated a
proof of concept with a small balanced E-I spiking neural network.
We set only four free parameters, spanning a relatively constraint
parameter space, that could even be scanned with a naive brute-force
approach. The parameter space for the more biologically realistic mi-
crocircuit model is several orders of magnitude larger, containing (at
least) 64 free parameters. Performing a brute-force parameter scan
for the microcircuit model with the same resolution would require
N = 1664 ≈ 1077 parameter configurations to evaluate (several orders
of magnitude over the estimated total number of atoms of planet
Earth, ∼ 1050). This combinatorial explosion drastically reduces the
effectiveness of the random search algorithm. Therefore, the parameter
space needs to be constrained, for example, by imposing a strict E-I
balance or setting limits for the total number of synapses. Smarter
search strategies and initial explorations could further support the ex-
ploration performance via computationally cheaper mean-field models
(Layer et al., 2022).

Tackling these obstacles, future work will see this approach ex-
tended to larger and more biologically realistic models to estimate
local cortical connectivity parameters. This will enable us to compare
inferred parameters of local connectivity and network input across
cortical areas, investigating the relationships between microscale con-
nectivity, statistics of network activity, and specific functionality.
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Figure 7.1: Graphical overview. The Collaborative Brain Wave Analysis
Pipeline (Cobrawap) enables the analysis of slow wave activ-
ity from heterogeneous data, for example ECoG (top row) and
wide-field calcium imaging (bottom row). In five successive stages
the input data is processed and abstracted to a common wave
description level, from which wave characterizations can be de-
rived to serve as the basis for cross-domain comparisons. The
pipeline is built with open-source tools and in a modular design
that makes each component individually reusable.

7.1 introduction

Traveling waves are a feature of neural network activity that can be
observed in many brain areas, in particular in the cerebral cortex,
and with many different measurement techniques. As introduced in
Section 1.3, the prevalent phenomenon of cortical wave activity can on
the one hand be linked to properties of the underlying connectivity
architectures, and on the other has been associated with multiple func-
tional properties (Wei et al., 2016; Davis et al., 2020; Balasubramanian
et al., 2019; Heitmann et al., 2015; Townsend et al., 2017). However,
their functional role in neural processes and computation remains
unclear. Slow wave activity in the range of about 0.5− 4 Hz, defined
by transitions between states of low activity (Down) and high activity
(Up), represent a specific type of cortical waves. They, in particular,
are reliably observed in mammals during NREM sleep and anesthesia
(Figure 7.2) and are therefore associated with memory, consciousness,
and the cognitive effects of sleep (Hanlon et al., 2009; Capone et al.,
2019a; Golosio et al., 2021a; Shimaoka et al., 2017). Since the discovery
and the early studies and the early studies on slow wave activity in the
1990s (Steriade et al., 1993; Contreras et al., 1996; Achermann and Bor-
bély, 1997; Sanchez-Vives and McCormick, 2000), a lot of research has
accumulated around this phenomenon. For example, findings include
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that the transitions of cells between Down and Up states are syn-
chronously coordinated over a wide cortical range implying a larger
network mechanism (Volgushev et al., 2006), that coordinates with the
synchronization of the astrocytic network (Szabó et al., 2017), thalamic
activity (Szabó et al., 2017), and across the cortex as reoccurring slow
wave patterns can appear over an entire hemisphere (Muller et al.,
2016). Evidence from slice and in-vivo recordings further suggests
that wave propagation is guided by excitability, i.e., predominantly
resides in layers 4 and 5 (Capone et al., 2019b; Bharioke et al., 2022),
and shows distinctly different oscillation characteristics across cortical
regions (De Bonis et al., 2019). Another insight studying in vitro ferret
slices is the influence of the temperature: the duration of Up states
shortens with cooling while the Down states are shortest around the
physiological temperature 36− 37◦C (Reig et al., 2009). Although slow
wave activity is characteristic of sleep and anesthesia, it can even be
observed in localized areas during wakefulness in EEG recordings
of behaving mice (Vyazovskiy et al., 2011). Additionally, modeling
approaches suggest the importance of long-range connections (Pas-
torelli et al., 2019), synchronous high-amplitude events (Jercog et al.,
2017), and the correct E-I ratio (Keane and Gong, 2015) to exhibit
propagating slow waves.

This richness of data and results from the literature, in principle,
provides a promising basis to build a comprehensive understanding
of the phenomenon. However, given this variety of studies, it is not
surprising that they reveal also a very heterogeneous mosaic of data-
types, approaches, methods, metrics, and terminology. Due to this
plurality, the relationships between the respective findings are rarely
apparent and mostly qualitative, limiting the potential of cumulative
discovery by the collection of studies (as introduced in Section 2.2).

Yet, even if authors adopt definitions and methods from other pub-
lications, it is not necessarily straightforward to compare their quan-
titative findings. For example, in one study Massimini et al. (2004)
recorded slow traveling waves in sleeping subjects with HD EEG.
They determined an average propagation velocity along a row of
20 electrodes of 2.7± 0.2 m/s. Botella-Soler et al. (2012) performed
similar measurements in sleeping humans and adopted the wave defi-
nition and methodology from the previous study (e.g. settings of the
bandpass filter and the thresholds for the negative peak detection).
Interpolating from two electrodes at a time, they report an average
propagation velocity of 1.0± 0.2 m/s. Although, the constructed simi-
larity between the two studies makes it considerably easier to relate
the results, a rigorous quantitative comparison is still difficult as there
remain crucial differences in analysis implementations. For example,
the first study uses an arithmetic mean to compute the average while
the second study uses the mode peak of a kernel-density estimated
velocity histogram. From a reader’s perspective, it is difficult to im-
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Figure 7.2: Multiscale, Uniphenomenon: the many faces of slow waves.
a) wide-field voltage-sensitive dye imaging of awake C57BL6J
mice (Chan et al., 2015), b) recorded anesthetized GCaMP6f mice
with wide-field fluorescence microscopy (Celotto et al., 2020), c)
optically evoked Ca2+ wave in anesthetized C57/BI6 mice (Stroh
et al., 2013), d) distributed network of cortical columns of LIF
with Spike Frequency Adaptation neurons (Pastorelli et al., 2019),
e) one-dimensional multi-layer thalamo-cortical model with one-
and two-compartment neuron models using Hodgkin-Huxley
kinetics (Bazhenov et al., 2002), f) 2D balanced conductance-
based spiking neural network model (Keane and Gong, 2015), g)
multi-electrode recording in ferret cortical slices (Capone et al.,
2019b), h) human HD-EEG during first sleep episode of the night
(Massimini et al., 2004), i) human ECoG recording during sleep
(Muller et al., 2016), j) intracranial depth EEG in sleeping human
subjects (Nir et al., 2011), k) intracranial depth EEG in humans
during sleep (Botella-Soler et al., 2012).
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possible to retrace other differences or correct for confounds in their
methodology and implementations, especially when the respective
analysis code is not accessible or reusable. So, even when definitions,
standards, and methods are shared, there can still be various potential
undocumented differences in the analysis due to different algorithmic
and implementation choices, which makes it increasingly ambitious
to interpret and understand the differences in the quantitative results.

One part of the solution to this dilemma is that the analysis method
(incl. the code) does not only need to be accessible enough to make
the results reproducible, but it further needs to be general enough
to be reusable. The other part revolves around finding a common
analysis basis to further be able to integrate data from different sources
for cross-domain comparisons (Section 1.4). However, defining an
adequate description level representing all relevant properties of the
phenomenon is typically rather ambiguous since it is generally unclear
which observables or characteristic measures are essential. For slow
wave activity, the properties that are typically reported are thus often
heuristic and include, for example, transition slopes (Ruiz-Mejias et al.,
2011), phase velocity (Massimini et al., 2004; Muller et al., 2016), wave
type classification (Townsend et al., 2015; Denker et al., 2018b; Roberts
et al., 2019), source/sink location and propagation patterns (Huang et
al., 2010; Pazienti et al., 2022; Liang et al., 2021), excitability (De Bonis
et al., 2019; Ruiz-Mejias et al., 2016; Mattia and Sanchez-Vives, 2012),
event frequency (Capone et al., 2023), and others. Concluding from
the insights of Chapter 4, there is no single characteristic measure
that is sufficient on its own to comprehensively represent the network
activity, therefore, any proper comparison approach must incorporate
multiple characteristic measures. Thus, we here focus on the common
observables planarity, inter-wave intervals, velocity, and direction.

Concluding, the comparability of analysis results requires common
(or at least comparable) terminologies, methods, algorithms, and char-
acteristic measures. Therefore, in this chapter we present an adaptable,
reusable analysis pipeline for the evaluation of (slow) waves, that
is able to integrate data from heterogeneous sources and builds on
existing standards and open-source open-source tools (e.g. Sankemake
(Mölder et al., 2021), Elephant (Denker et al., 2018a), Neo (Garcia et al.,
2014), Nix (Stoewer et al., 2014), Pandas (McKinney, 2010), Scipy (Vir-
tanen et al., 2020)). In the following, we first conceptually examine the
development requirements of a flexible but formalized approach for
constructing analysis pipelines (Section 7.2.1), that we then leverage
to implement a modular pipeline to analyze cortical slow wave ac-
tivity (Section 7.3.1): The Collaborative Brain-Wave Analysis Pipeline
(Cobrawap). Then, we employ Cobrawap to perform a structured
and partially automatized analysis of many heterogeneous datasets
(Section 7.3.2), and to benchmark the Up state detection method by
interchanging the corresponding method block (Section 7.3.3).
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7.2 methods

7.2.1 Implementation principles of constructing an adaptable analysis
pipeline

design approach When constructing a rail system with only a
few starting points and a few destination, it might be most efficient to
just build the direct paths from between the combinations of starting
and destination points. However, with increasing number of starting
points and destinations (and their corresponding combinations), it
quickly becomes more efficient to build common traffic nodes where
tracks from similar domains come together and can then fan out to
a multitude of destinations without requiring one specific track. We
apply the same idea to the design of analysis pipelines to integrate
data from different domains (e.g. measurement techniques) and enable
their analysis for a multitude of applications (Figure 7.3). Aligning
heterogeneous input data means that we need to find a common rep-
resentation independent of whether it is obtained via EEG, implanted
electrode arrays, imaging techniques, or even simulations. The input
data may differ in terms of spatial- or temporal resolution, scale, or
signal type. Still, the analysis pipeline should be able to process them
appropriately to converge towards a common description of the phe-
nomenon of interest (here, traveling wave activity). Using a common
set of methods and algorithms the pipeline should enable a variety of
specific analyses and derive characterization metrics that are agnostic
about the data’s origin. So that the resulting quantitative measures are
comparable.

using modular elements The key to making the pipeline adapt-
able to the different data processing requirements, analysis approaches,
and scientific questions is modularity. Thus, in the first layer of struc-
turing, we segment the analysis procedure into a series of sequential
stages that are executed in order (“from left to right”). Each stage
is a self-consistent logical step in an analysis workflow with a well-
defined purpose, input, and output. A stage should be constructed
general enough to be useable as a standalone or potentially reusable
in other pipelines, and its output should be considered a reasonable
intermediate result. Along the pipeline, the stages become necessarily
more specific and tailored towards the scientific application, while the
early stages cope with more general tasks such as data integration
and preprocessing that are likely shared across different pipelines.
Each stage is further segmented into blocks. A block defines a concrete
action to be performed on the data, implementing a method. Simi-
lar to stages, blocks have a well-defined input and output by which
they can be chained together. In contrast to stages, blocks are not
necessarily executed in a predefined sequence. Instead, each stage
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Figure 7.3: Pipeline Approach. The proposed pipeline design has the role
of aligning methods and algorithms to create and operate on a
common description of the phenomenon of interest: integrating
data from heterogeneous sources on the one hand and being
capable of extracting a variety of output metrics on the other,
enabling a basis for rigorous comparison. The foundations of
the pipeline are built on existing tools and standards, e.g., data
and metadata representation, file formats, standard packages and
implementations, environment handling, and workflow manage-
ment. Within this framework, the catalog of applicable methods
is flexibly extendable, making the analysis pipeline adaptable and
reusable.

implements the mechanics of the block interactions and defines which
block combinations and sequences can be chosen. Some blocks may
need to be mandatory for the realization of the stage’s purpose and
have a fixed place in the execution order. Others may be optional and
flexibly arrangeable. We identify two flavors of block selections: choose
one, selecting one method block from multiple options; and choose any,
selecting any number of method blocks in any order (see Figure 7.6).

Furthermore, the modular design of the pipeline is further sup-
ported by building on specialized solutions that address some general
demands in research software development. Many of the challenges in
constructing the analysis workflows are already formalized and being
addressed by open-source software tools and standards, such as data-
and metadata representation (Zehl et al., 2016; Sprenger et al., 2019;
Rübel et al., 2021), provenance (Butt and Fitch, 2020), version control
(Bell et al., 2017), standardized algorithms and frameworks (Virtanen
et al., 2020; Denker et al., 2018a; Omar et al., 2014), and workflow
management (Mölder et al., 2021; Crusoe et al., 2021; Garijo et al.,
2017). Therefore, here, we can focus on making scientific progress by
bringing the existing resources together.

realization with the snakemake workflow manager The
pipeline implementation uses the open-source language Python to
ensure accessibility and reproducibility. Further, we designed the
pipeline’s architecture having in mind the features of the Python-
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based workflow manager snakemake (Mölder et al., 2021), which em-
ploys input-to-output rules containing executable shell commands
(e.g., Python scripts or bash commands). Snakemake structures the
execution of the rules by building dependency trees from the final
result file(s) back to the initial input, matching the input requirements
to the outputs of preceding rules (see Figure 7.7). The rules are de-
fined in script files called snakefile which also link to a config file. Thus,
our pipeline structure is conveniently mappable onto the snakemake
elements: blocks are represented by rules and stages by snakefiles. In
addition, we use another top-level snakefile to combine the stages as
snakemake subworkflows and make the pipeline executable as a whole.
Furthermore, we expand the standard functionality of snakemake
by three mechanics required by our pipeline design: 1) chaining the
stages by linking the outputs and inputs of subworkflows, 2) manually
selecting a specific block (i.e., method) or a sequence of blocks by
choosing the desired methods in a config file, and 3) selecting and
switching between sets of configs files ("profiles") for all stages.

interfacing the modular elements This degree of flexibility
in the combination of stages and blocks and their reusability as stan-
dalone tools or in other workflows requires a detailed definition and
standardizing of the input and output formats. By defining the input
requirements for each stage and block, they can successfully interact
while remaining interchangeable and thus reusable for other pipelines
or applications. The agreement of any input data with the stage input
definition checked by a fixed ’check_input’ block. The output format
of stages is similarly defined, because as intermediate results it should
suffice to the same level of completeness and documentation as a final
result. These definitions are collected in the stage’s README file to
guide developers of alternative pipelines as well as contributors of
new blocks for the stage. Similarly, the individual blocks also need
to clearly state the type and format of their in- and outputs. Other
than for the stages, this is largely handled organically in form of the
dependencies of the corresponding snakemake rule and the definition
of the script’s command line arguments and complemented by its
docstring.

data and metadata representation The entire first stage
is dedicated to being the interface between the pipeline and the data
resource. For the analysis of slow waves with this pipeline, the data
needs to be obtained from electrodes or pixels that are arranged on
a rectangular grid (which may include empty sites), and that exhibit
propagating Up states. The corresponding minimal set of metadata
required for the pipeline to process the data are i) the sampling rate,
ii) the distance between the electrodes/pixels, iii) and their relative
spatial locations of the grid as integer x and y coordinates. Although
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not explicitly used, it is strongly recommended to include more infor-
mation such as the measured cortical location, the spatial scale of the
grid, the units of the signal, the type and dosage of the anesthetic, an
identifier of the dataset, etc. This additional metadata is propagated
through the pipeline alongside the data in order to reasonably use and
interpret the results. The consistent handling of data and metadata
throughout the stages and block requires representation in a standard-
ized format. For this, we chose the data format Neo (Garcia et al.,
2014). Neo supports a variety of data types and reading and writing
of various common file formats. This interoperability is, thus, ideal for
aiding the flexible use of the pipeline. Since Neo itself is very versatile,
there are multiple ways how to organize the data and metadata in the
Neo structure, so we need to be even more precise in standardizing the
data structure. That means that within the pipeline we store the data
of all channels in one ‘neo.AnalogSignal‘ object and the metadata in
the corresponding annotations and array annotations for channel-wise
metadata (like their x and y coordinates). Processing and transforma-
tion blocks overwrite the data in this Analogsignal object and add
corresponding metadata. Additional ‘neo.Event‘ objects may be added
to represent transition times and wavefronts as well as an additional
AnalogSignal object for derived vector fields (e.g., the optical flow).
The file format to use for storing the intermediate results of blocks and
stages can be format supported by Neo. We recommend Nix (Stoewer
et al., 2014) for a robust file format, or the pickle or numpy for a less
robust format that is, however, faster to read and write and produces
smaller files.

logging mechanisms The modular organization of the pipeline
facilitates maintainability. Built-in means of the pipeline, such as auto-
matic reports and storing intermediate results alongside their config
files, further support reproducibility, and transparency. They contain,
for example, logs, execution statistics, dependency trees, plots, and
config settings.Additionally, we are currently working on integrating
a formalized provenance tracking with fairgraph1. Furthermore, each
block and each stage should also have corresponding plotting output.
This helps as a sanity check and aid for potential debugging as well
as enriching the results and execution logs.

configurability The flip side of flexibility and adaptability is
complexity and ambiguity. The many combinatorial possibilities need
to be controlled by a user interface separate from the actual analysis
scripts, e.g., what stages and blocks should be executed, in which
order, and with which parameters. Config files (e.g., in csv, yaml, json
format) offer human-readable access and control to a user to adapt
and execute different variations of the pipeline. Furthermore, blocks

1 https://pypi.org/project/fairgraph/

https://pypi.org/project/fairgraph/


120 slow wave analysis across heterogenous datasets

need to be implemented having generality in mind. This means a
given method should be presented in its most general form and any
specification should be handled by corresponding parameters settings,
given as command line arguments, i.e. within the pipeline via the con-
fig file. Even though this approach is initially more time-consuming,
it does pay off in both the quality of the method implementation
and its (re-)usability. Furthermore, the availability and aggregation
of parameters allow for easier and more transparent calibration of
the pipeline across blocks and stages. Each stage has one config file
collecting the parameter settings for this stage and its blocks. Addi-
tionally, there is one config file for the entire pipeline that specifies
the stages and their order and can define global parameters that may
also overwrite stage parameters, e.g., for setting the file format or
plotting parameters for all stages. Parameters in the config files are
typically calibrated for a specific data type or experiment setup. To
conveniently switch between calibration presets, the pipeline supports
a hierarchical organization of config presets via profiles. By executing
the pipeline with PROFILE=data1, for each stage the corresponding
config file config_data1.yaml is used. For more versatility, profile
names can use underscores to define subcategories and exceptions,
e.g., data1_subject3. In this case, each stage first looks if a corre-
sponding config file of the same name exists, and if not removes the
subcategory with the last underscore from the name, and repeats this
lookup until it finds the named config file or defaults to config.yaml.
Furthermore, profiles can have variations indicated in the name with a
’|’, e.g., data1_subject3|methodA. This variation key is not removed
when first looking up existing config files in the naming hierarchy,
only when config|methodA.yaml doesn’t exit it is removed and the
lookup loop is repeated. In contrast to other typical analysis work-
flows, here, the construction of a specific workflow does not require
the changing of any scripts but is rather like tracing a path along the
selected stages and blocks within a larger framework offered by the
pipeline.

version controlled development The implementation of
the general "collaborative brain-wave analysis pipeline" (Cobrawap)
infrastructure is being developed on GitHub2. In the following, we
present the application of the pipeline design for the specific context
of slow wave activity and the corresponding configuration3.

7.2.2 LogMUA Estimation (in stage 2)

The multi-unit activity (MUA) is an estimate of the local population
firing rate, based on the relative spectral power in the high-frequency

2 https://github.com/NeuralEnsemble/cobrawap

3 https://gin.g-node.org/INM-6/cobrawap_publication_code

https://github.com/NeuralEnsemble/cobrawap
https://gin.g-node.org/INM-6/cobrawap_publication_code
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regime (200-1500 Hz) of the extracellular recordings. (Mattia et al.,
2010; Reig et al., 2009; De Bonis et al., 2019) The corresponding al-
gorithm first selects a moving window that samples the recording at
a given rate. From these samples, the power spectral density (PSD)
is calculated using the Welch algorithm. The MUA is defined as the
average power in the defined frequency band divided by the aver-
age power of the full spectrum. Using the logarithm of the MUA
helps to emphasize further the bi-modality of the distribution in the
presence of slow oscillations. In the selection of the parameters for
the algorithm, it is crucial to choose a moving window size large
enough so that the chosen frequencies can be accurately estimated
(window size ≤ 1

highpass frequency ) and a corresponding MUA rate so

that the full recording is sampled from (MUA rate < 1
window size ).

7.2.3 Trigger Detection (in stage 3)

The pipeline implementation provides multiple options to detect trig-
ger events, i.e., transitions from a low activity state to a high activity
state (Up).

threshold: The trigger events can either be defined by setting a threshold
value for all the signals or by fitting a bimodal function to
the amplitude distribution for each channel in order to set the
threshold value. In the latter case, the fitting function is the
sum of two Gaussians and the threshold value is set to the
central minima. This option is applied to the ECoG datasets in
this paper. As an alternative to a double Gaussian fit, there is
also the option to only fit the first peak corresponding to the
low activity state by only looking at the data left of the peak
and defining the threshold as mean + std · SIGMA_FACTOR with
a user-defined SIGMA_FACTOR. Since the thresholding method
detects also the corresponding downward transitions, this block
is usually paired with an additional block that removes Up and
Down states that are too short, given user-defined minimal Up
and Down durations.

Hilbert phase: Instead of detecting threshold crossings on the actual signal,
the upstrokes of the upward transitions can be detected by
thresholding the phase signal of the corresponding analytic
signal. An adequate threshold value is a matter of definition,
here, we apply −π/2, which corresponds well to the beginning
of the upstroke in the actual signal. To be more robust, the
algorithm only selects time points where the threshold is crossed
from smaller to larger values and where the crossing is followed
by a peak (phase = 0). This option is applied to the calcium
imaging datasets in this paper unless otherwise indicated.
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minima: As a third option, we adapted and improved the minima de-
tection method presented in (Celotto et al., 2020). This method
relies on the assumption that in an adequately filtered signal
that the existence of a local minimum followed by a peak of a
certain height indicates the start of a upward transition. This is
particularly suitable for recording techniques characterized by a
fast characteristic rise time (i.e. comparable with the theoretical
minimum time interval between the passage of two waves on a
single channel, e.g. optical data). We improved this method by
including some further refinement on trigger candidates. Under
the assumption that only one minima candidate can lie between
two "good" local maxima candidates, we impose that 1) local
maxima candidates need to have a signal intensity higher than
a relative threshold value, determined in a moving window; 2)
local maxima candidates need to be separated by a minimum
distance (associated with the characteristic frequency of the in-
vestigate phenomenon); 3) a local minima candidate needs to
be followed by a monotonically rising signal for a defined time
interval (also associated to the characteristic frequency of the
investigated phenomenon). If more than one candidate mini-
mum is found between two local maxima candidates, the last
one before the following "good" maxima is selected.

7.2.4 Trigger Clustering (in stage 4)

Wavefronts are defined as clusters of trigger times in the three-dimensional
space of the electrode arrangement (x,y) and samples in time (t). To run
a clustering algorithm in this space, the units of the time dimension
need to be translated to the units of the spatial dimensions. The ideal
transformation factor (TIME_SPACE_RATIO) depends on the expected
dynamic of the phenomena. A wave that propagates linearly with v0 is
best recognized in the cluster when the time dimension is transformed
by a factor v0/(sampling rate× spatial scale). Thus, if we expect a
propagation velocity roughly in the order of ∼ 10− 20 mm

s then the
transformation factor for the calcium imaging data with sampling
rate 25 Hz and spatial scale 50µm is ∼ 8− 16 pixel

f rame . Here, we choose
a TIME_SPACE_RATIO of 11 for the calcium imaging data which scales
according to the spatial resolution to a factor of 0.25 for the logMUA
ECoG data with a sampling rate of 100 Hz. The clustering is performed
by a density-based algorithm (scipy.cluster.DBSCAN), illustrated in
Figure 7.4. The additional parameters for this algorithm are the min-
imum number of samples (MIN_SAMPLES_PER_WAVE) and the typical
distance between neighboring sample points (NEIGHBOUR_DISTANCE)
and were determined by calibrating test recordings from both cal-
cium imaging and ECoG data and scaled consistently with the spatial
resolution.
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Figure 7.4: Wavefront definition via trigger clustering. Visualizing the clus-
tering of detected transition times in the space-time domain for
10 s of an example calcium imaging recording. The trigger events
are grouped based on their proximity in space and time using a
density-based clustering algorithm (color coded).

7.2.5 Optical Flow Estimation (in stage 4)

The optical flow is the pattern of apparent motion in a visual scene,
which here corresponds to the recorded signal on the recording grid.
To estimate the optical flow of the spatial propagation of activation, we
apply the Horn-Schunck algorithm with a quadratic penalty function
and a 3x3 Scharr derivative filter on the phase of the signal (the
alternative application using the signal’s amplitude, as well as different
derivative filters can be selected via the configuration). Although other
penalty functions, i.e., the Charbonnier function, are more accurate,
we found that here the simple quadratic function is sufficient. This
observation is in agreement with Townsend and Gong (2018) who
report good results for the near quadratic edge case of the penalty
function. Their study also guided our choice of the parameter α =

1.5, determining the weight of the smoothness constraint over the
brightness constancy constraint. The resulting vector field is smoothed
by a Gaussian kernel which reflects the dimensions of the expected
wave activity with respect to the spatial and temporal scale of the data.

7.2.6 Quantification and Statistical Analysis

kernel estimation The kernel estimations for the plotted distri-
butions in Figure 7.10 and Figure 7.11 use scipy.gaussian_kde with
the default Scott’s rule (Scott, 2015) as bandwidth method, except
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for the distributions of inter-wave intervals which use 0.2 times the
standard deviation as the kernel size.

velocity filter Since the channel-wise velocity measure can pro-
duce unreasonably high values when there are near identical time
delays between spatially distant triggers, we cap the presented distri-
butions at 120 mm/s.

7.2.7 Experimental model and subject details

An overview of all the individual recordings is presented in Figure 7.5.

mouse ecog recordings The three experimental ECoG datasets
have been provided by IDIBAPS (Institut d’Investigacions Biomèdiques
Agustí Pi i Sunyer): Wild-Type Williams Beuren Syndrome (WBS) 3-4
months old adult male mice, Wild-Type Fragile X Syndrome-Fmr1

knockout mice in FVB background (FXS) and Propagation Modes of
Cortical Slow Waves across anesthesia levels in adult male C57BL/6J
mice (PMSW) (Sanchez-Vives, 2019a; Sanchez-Vives, 2019b; Sanchez-
Vives, 2020). All animals were bred in-house at the University of
Barcelona and kept under a 12 h light/dark cycle with food and water
ad libitum. All procedures were approved by the Ethics Committee
at the Hospital Clínic of Barcelona and were carried out to the stan-
dards laid down in Spanish regulatory laws (BOE-A-2013-6271) and
European Communities Directive (2010/63/EU).

For WBS subjects, an intraperitoneal injection of ketamine (100 mg/kg)
and medetomidine (1.3 mg/kg) was administered to induce anesthe-
sia. It was maintained by a constant administration of subcutaneous
ketamine (37 mg/kg/h). For FXS subjects, anesthesia was induced by
the inhalation of 4% isofluorane in 100% oxygen for induction and
1% for maintenance. Finally, for PMSW subjects, an intraperitoneal
injection of ketamine (75 mg/kg) and medetomidine (1.3 mg/kg) and
maintained by the inhalation of different concentrations of isoflurane
in pure oxygen. In PMSW, three levels of anesthesia were reached that
were classified according to the provided isoflurane concentrations:
deep=1.16± 0.08% (s.e.m); medium=0.34± 0.06%; light=0.1± 0.0%.
The volume delivered was 0.8 L/min.

In order to avoid respiratory secretions and edema, atropine (0.3 mg/kg),
methylprednisolone (30 mg/kg), and mannitol (0.5 g/kg) were ad-
ministered subcutaneously to all subjects. So as to aid breathing and
once in the surgical plane of anesthesia, a tracheotomy was performed.
The animal was then placed on a stereotaxic frame (SR-6M, Narishige,
Japan) with constant body temperature monitoring maintained at
37◦C by means of a thermal blanket (RWD Life Science, China). A
wide craniotomy and durotomy were performed over the left or right
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Figure 7.5: Data overview. Each row shows one of the 60 recordings used in
this study. The columns show some of the attributes in which they
can differ, and within each column, different values are colored
differently.
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(only left in FXS) hemisphere from -3.0 mm to +3.0 mm relative to the
bregma and +3.0 mm relative to the midline. A 32-channel multielec-
trode array (550 µm spacing) covering a large part of the hemisphere’s
surface was used to record the extracellular micro-electrocorticogram
(micro-ECoG) activity. For WBS and FXS datasets, recordings were
acquired from spontaneous activity in the animal under anesthesia.
Regarding the PMSW dataset, each anesthesia level was maintained
for 20-30 minutes, and spontaneous recordings were consistently ob-
tained in a stable slow oscillatory regime (approximately 10 minutes
after the change in concentration). During the recording protocol, a
precise visual inspection of all channels was made in order to ensure
that all of them were properly acquiring the signal. The signals were
amplified (Multichannel Systems, GmbH), digitized at 5 kHz, and
fed into a computer via a digitizer interface (CED 1401 and Spike2

software, Cambridge Electronic Design, UK).

mouse widefield calcium imaging recordings Experimen-
tal data acquired from mice have been provided by LENS (European
Laboratory for Non-Linear Spectroscopy4) (Resta et al., 2020a; Resta
et al., 2020b). All procedures involving mice were performed in ac-
cordance with the rules of the Italian Minister of Health (Protocol
Number 183/2016-PR). Mice were housed in clear plastic enriched
cages under a 12 h light/dark cycle and were given ad libitum access
to water and food.

Mouse Model: The transgenic mouse line used is the C57BL/6J-
Tg(Thy1GCaMP6f)GP5.17Dkim/J (referred to as GCaMP6f mice5)
from Jackson Laboratories (Bar Harbor, Maine USA). In this mouse
model, the ultra-sensitive calcium indicator (GCaMP6f) is selectively
expressed in excitatory neurons (Chen et al., 2013; Dana et al., 2014).

Surgery and wide-field imaging: Surgery procedures and imaging
protocols were performed as described in (Celotto et al., 2020). Briefly,
6 months old male mice are anesthetized with either a mix of ketamine
and Xylazine in doses of 100 mg/kg and 10 mg/kg respectively or
isoflurane (3− 4% induction and 1.5− 2% maintaining). To obtain
optical access to neuronal activity over the right hemisphere, the local
anesthetic lidocaine (20 mg/mL) was applied and the skin and the
periosteum over the skull were removed. Wide-field imaging was
performed right after the surgical procedure. GCaMP6f fluorescence
imaging was performed with a 505 nm LED light (M505L3 Thorlabs,
New Jersey, United States) deflected by a dichroic filter (DC FF 495-
DI02 Semrock, Rochester, New York, USA) on the objective (2.5x
EC Plan Neofluar, NA 0.085, Carl Zeiss Microscopy, Oberkochen,
Germany). The fluorescence signal was selected by a band-pass filter

4 LENS Home Page, http://www.lens.unifi.it (accessed on Nov. 2019)
5 For more details, see The Jackson Laboratory, Thy1-GCaMP6f, https://www.jax.org/
strain/025393 (accessed on Nov. 2019).

http://www.lens.unifi.it
https://www.jax.org/strain/025393
https://www.jax.org/strain/025393
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(525/50 Semrock, Rochester, New York, USA) and collected on the
sensor of a high-speed complementary metal-oxide semiconductor
(CMOS) camera (Orca Flash 4.0 Hamamatsu Photonics, NJ, USA). A
3D motorized platform (M-229 for the xy plane, M-126 for the z-axis
movement; Physik Instrumente, Karlsruhe, Germany) allowed the
sample displacement.

7.3 results

7.3.1 Construction of an adaptable analysis pipeline (Cobrawap) to enable
slow wave comparisons

Since there is no single fully comprehensive measure to characterize
spatial activity patterns, we focus on identifying common observables
and analysis metrics of slow wave activity that enable a reasonable
comparison between datasets of different measurement types. By in-
vestigating the relations of the characteristics metrics with the compar-
ison parameters (scale, brain state, anesthetic level, spatial/temporal
resolution, etc.), we may evaluate the capabilities of measurement
methods, identify biases, constrain theories, develop and benchmark
analysis methods, contribute to defining standards, as well as aid
the assessment of clinical data of, for example, in the case of coma
patients.

Based on the conceptual framework illustrated previously (Sec-
tion 7.2.1, we demonstrate the creation of a specific analysis pipeline
application aimed at the analysis and comparison of slow wave ac-
tivity across heterogeneous datasets. For this, we consider 5 publicly
available datasets from the EBRAINS KnowledgeGraph platform6 of
electrocochleography (ECoG) and calcium imaging recordings of anes-
thetized mice. Besides the measurement technique, the 60 examined
recordings vary in a range of factors such as experimental setup, the
genetic strain of the mice, anesthetic, anesthesia level, temporal- and
spatial resolution, and recording duration (see Section 7.2.7).

We organized the pipeline into 5 sequential stages, successively
transforming the raw data, detecting wavefronts, and extracting slow
wave characterizations, as illustrated in Figure 7.6. In the following,
we describe the role of each stage in the analysis of the ECoG and
calcium imaging data. The selection and execution order for each of
the data types is illustrated for each stage in Figure 7.7. The general
functionality of the stages and blocks is further described in the
Methods (Section 7.2.1) and in the corresponding README files in
the Github Repository.

stage 1 Data Entry: In the first stage the data is being prepared for the
later stages by loading, structuring, and annotating the data

6 https://search.kg.ebrains.eu/

https://search.kg.ebrains.eu/
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and metadata according to the defined representation scheme
using the Neo data format (Garcia et al., 2014)). For loading
the data and processing the often unique structure, typically,
each data source requires a custom loading script to integrate
the information from a data file and a corresponding config file.
The loading script can be adapted from a template, making use
of utility functions and, ideally, the IO functionality of Neo7.
After loading, it is checked if the data object conforms with the
requirements and an overview of a data sample is plotted.

stage 2 Processing: The stage offers a series of blocks implementing
basic processing steps that can be arbitrarily combined o fit the
data type and their analysis objectives. Both data types undergo
a background subtraction, a normalization, and a detrending
step to remove eventual recording artifacts. Considering the
different measurement modalities and temporal resolutions of
the data types, additionally, the calcium imaging recordings are
cut to a region-of-interest and filtered from 0.1 to 5 Hz, while
the raw ECoG signals are transformed to a logMUA signal (see
Section 7.2.2) with a reduced sampling rate better suited to
capture the slow oscillations and the transitions between Down
and Up states (which are detected in the third stage). Where
available, the blocks use standard function implementations by
the Elephant Electrophysiology Analysis Toolkit (Denker et al.,
2018a), the stack of scientific Python packages (i.e. scipy, scikit,
etc.), or algorithms from the literature.

stage 3 Trigger Detection: This stage provides multiple options of trig-
ger detection methods for identifying the time stamps of upward
transitions (and downward if possible) in each channel as an
indicator for the possible passage of a wavefront. Since the ECoG
logMUA signal shows sharp state transitions, they are best de-
tected by a threshold determined from a channel-wise fit of the
amplitude distributions (as in De Bonis et al. (2019)). Conversely,
the transitions in the imaging data are determined by the slow
activation function of the fluorescent molecules. Therefore, they
are better detected by identifying the upwards slopes by either
the Hilbert phase signal crossing a specific value (here −π/2)
or by the local minima preceding a dominant peak (see Sec-
tion 7.2.3). In the following, we use the trigger detection via the
Hilbert phase, however, we focus on the quantitatively compari-
son of the two methods in Section 7.3.3. Additionally, there are
optional filter blocks that can be applied to clean the collection
of detected triggers, like the removal of unreasonably short Up
or Down states. In the following, only upward transitions are
considered as triggers. The output of stage 3 is a series of trigger

7 https://neo.readthedocs.io/en/stable/io.html

https://neo.readthedocs.io/en/stable/io.html
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events that is stored alongside the signals in the output data
object. Although this stage is tailored towards the detection of
state transitions it has also proven useful for other wave-like
activity beyond slow waves, demonstrated in Chapter 8.

stage 4 Wave Detection: Within this stage, the channel-wise trigger times
are grouped to define the individual waves (see Section 7.2.4),
describing the wave activity on a abstract but common level. This
wave representation is again stored as a series of grouped trigger
events in the data object. The wave description is optionally
enriched with additional descriptions such as the optical flow
Section 7.2.5 and the critical points of the resulting vector field
(Townsend and Gong, 2018) or an additional clustering of the
waves into modes based on the spatial arrangement of the trigger
delays (Ruiz-Mejias et al., 2011).

stage 5a Wave-wise Characterization: The final stage calculates one or
multiple characteristic measure on the basis of the common and
measurement-independent slow wave description generated by
the previous stages. This entails scalar measures as but may
also contain metadata information like analysis parameters or
information about the dataset added in stage 1 (selected via the
annotations block). The selection of characterization metrics
can be tailored toward addressing specific scientific questions
or research objectives. To have a consistent output format for
the final stage, there are two distinct realizations: one for a char-
acterization using wave-wise measures, e.g., determining one
velocity value per wave; and another for a characterization using
channel-wise measures, e.g., calculating local velocity values per
channel and wave. For simplicity, these alternatives are presented
together in Figure 7.6A and Figure 7.7.

stage 5b Channel-wise Characterization: This alternative final stage is
equivalent to the ’Wave-wise Characterization’ in its functional-
ity, but its characteristic measures are calculated per wave and
channel (i.e. electrode or pixel). The output in either case is a
pandas dataframe (McKinney, 2010) where each row represents
either one wave or one channel in a wave and each column
an attribute/characteristic. Consequently, the output for one
dataset can be directly merged or compared with the output for
other datasets and serves as the basis for various cross-domain
comparisons (e.g., data comparisons, model validation, method
benchmarking).

To demonstrate the capabilities of the pipeline approach to gener-
ate meaningful quantification of slow-wave phenomena, we choose
four metrics as the basis for cross-dataset comparisons: the local (i.e.,
channel-wise) inter-wave interval, velocity, and direction measures;
and the global (i.e., wave-wise) planarity measure.
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Figure 7.6: Pipeline illustration. This figure shows the progression of two
test datasets (ECoG in blue, calcium imaging in green, see Sec-
tion 7.2.7) through the analysis pipeline. A: The five successive
stages contain a collection of modular blocks in three different
selection modes (fixed, choose one, choose any). The analysis
path is adaptable for specific datasets and analyses by selecting
the desired blocks (indicated by colored dots for the test datasets)
and by setting the corresponding parameters in the config file.
Where reasonable, blocks either trigger the execution of a plotting
block to illustrate the intermediate result or produce a plot as an
additional output. B: The intermediate results after each stage
are visualized for the two test datasets as color-coded signal on
the electrode/pixel grid covering most of the right hemisphere of
the mouse brain (up=anterior, right=lateral) with ECoG spanning
4.95× 2.75 mm and calcium imaging 5× 5 mm. From left to right,
they show the analysis process from loading the raw data, pro-
cessing the signal, detecting upward transitions (black marker),
grouping them into wavefronts (red marker) together with their
optical flow (arrows), to the example result of quantifying the
linear flow alignment within the waves (i.e., planarity).
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Figure 7.7: Pipeline structure. The diagrams shows for each stage of the
pipeline illustrated in Figure 7.6 the execution order of the blocks,
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The inter-wave interval is defined as the time delay between the
occurrence of two consecutive waves at a recording site.

The channel-wise velocity is calculated from the derivatives of
the delay function of a wave T(x, y), which indicates when a
wave has reached the position (x, y) in its propagation (Green-
berg et al., 2018; Capone et al., 2019b; Pazienti et al., 2022):

vx,y =

√
1

∂xT2 + ∂yT2 (7.1)

The channel-wise direction of wave propagation can also be
directly derived from the time delay function T(x, y). However,
in the following, we use the optical flow of the phase signal
(see Section 7.2.5 for details). The optical flow is a continuous
vector-valued signal for each position (x, y), indicating in which
directions the contour lines of equal phase propagate. We define
the channel-wise wave directions of a propagating wave as the
optical flow vector directions at the time and position of its
trigger events.

The planarity of a wave is also defined via the optical flow as the
absolute value of the normalized channel-wise direction vectors
at the times and positions of all trigger events that belong to a
wave, quantifying their alignment on a scale from 0 to 1:

planarity =
||∑ v⃗i||
∑ ||v⃗i||

(7.2)

For one of the calcium imaging recordings, Figure 7.8 presents
some of the measures in the pipeline output, i.e., a table (pandas
dataframe (McKinney, 2010)) containing all wave characteristics. The
channel-wise and wave-wise measured directions and velocities, as
well as the wave-wise planarities, are summarized for 4 groups of
similar waves, i.e., "wave modes". The wave-mode clustering method
(implemented as an optional block in stage 4 of the pipeline) applies a
k-means clustering on the trigger delay matrix containing the relative
trigger times for each channel in each wave (Ruiz-Mejias et al., 2011;
Capone et al., 2019b; Pazienti et al., 2022). The number of modes was
set by hand to reasonably represent the variability of wave types in
the recording. Generally, the ’optimal’ number of modes to set for the
k-means algorithm depends on recording and the analysis application.
For the presented recording, most waves are relatively planar and
travel along the lateral-posterior-to-medial-anterior axis (modes #2

and #4), mode #1 is a variation of mode #4 with a lower average
velocity, and mode #3 contains only one wave that seems to be a
collision of two opposing wavefronts. Although the channel-wise and
wave-wise measures for the direction and velocity (Figure 7.8B&D)
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are defined and calculated in a completely different way, they agree
considerably well for the modes #1, #2, and #4 when the wave pattern
is predominantly planar. The complex wave pattern of mode #3 can not
be accurately captured by a single wave-wise value for the direction
and velocity, resulting in the presented deviations. Otherwise, the
different measures provide a coherent characterization of each wave
mode. In the following, we only use channel-wise measures for the
analyses, with the exception of the wave-wise planarity measure,
which has no channel-wise equivalent. An analog figure for a selected
EcoG recording is presented in Figure 7.9.

7.3.2 Evaluation of experimental influences via slow wave comparisons

Based on the exemplary realization of the pipeline, we are now in a
position to perform quantitative comparisons of slow wave dynamics
across the described ECoG and calcium imaging datasets, contrasting
various experimental parameters. In the following, we demonstrate
the application of the pipeline to investigate the influences of the
anesthetic type and dosage, the application of disease models via
genetic knock-out, and the measurement technique itself, in particular,
its spatial resolution.

To check the validity of the pipeline, we first qualitatively replicate
some of the results that were previously published using the same
datasets. It has been shown that the dynamics of slow waves crucially
depend on the level of anesthesia. While the velocity of waves tends
to decrease slightly in deeper anesthesia states (Pazienti et al., 2022),
the inter-wave intervals become more prolonged, i.e., the frequency of
waves decreases (Pazienti et al., 2022; Dasilva et al., 2021). The same
trends are visible in the corresponding pipeline output presented in
Figure 7.10A. The velocity and frequency of slow waves were also
measured in the context of a disease model for Williams-Beuren Syn-
drome (WBS) in knock-out (KO) condition and wild-type (WT) (of
the same genetic strain) (Davis et al., 2020; Sanchez-Vives, 2019b). In
both the previous publication and the pipeline output (Figure 7.10B,
there is no major effect on the wave characteristics visible except
for a slight increase in the measures variances in the knock-out con-
dition (Figure 7.10B). Including yet another dataset from a similar
experiment that models the Fragile-X Syndrome (FXS) (Sanchez-Vives,
2019a) allows us to expand the analysis across experiments. Ignor-
ing the genetic knock-out and only looking at the wild-type control
subjects, we can compare the influence of other experimental param-
eters between the WBS and FXS experiments. A notable difference
between the two experimental setups is that in the WBS experiment,
ketamine was used as the anesthetic (100 mg/kg inducing + 37 mg/kg
maintaining), while the FXS experiment used isoflurane (4 % inducing
+ 1 % maintaining). Comparing the distributions for the wild-type
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Figure 7.8: Representation of the pipeline output for one exemplary cal-
cium imaging recording. Within the pipeline, the optional block
wave_mode_clustering groups together similar waves into wave
modes. The characterization of the waves in each of the 4 modes
is shown in the corresponding columns (in no specific order). A:
The average wave pattern (number of waves indicated on top) is
illustrated as a time-delay heatmap with iso-delay contours. B:
The aggregated histogram of channel-wise directions in waves
of this mode. The black lines indicate the average wave-wise di-
rection measure. C: Map of the average channel-wise velocities
in waves of this mode, overlayed with the average channel-wise
direction determined via the optical flow. D: The corresponding
distributions of channel-wise velocities and, as black ticks and
errorbars, the average and 95% CI of the corresponding wave-
wise velocities. E: The average and 95% CI of the planarity values
for the waves of this mode. An analogous example figure for an
ECoG recording is shown in Figure 7.9.



7.3 results 135

Figure 7.9: Representation of the pipeline output for one exemplary ECoG
recording. The figure is analogous to Figure 7.8.
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mice shows significantly larger velocities measured in the experiment
that used isoflurane and a larger range of inter-wave intervals for the
experiment that used ketamine (Figure 7.10B). In comparison to Fig-
ure 7.10A, where anesthesia was induced with ketamine (75 mg/kg)
but maintained with isoflurane (0.1-1.16 %), we see a better agreement
to the velocities in the WBS (ketamine) experiment than to the FXS
(isoflurane) experiment. However, it is to be noted that since this is
a meta-analysis, there is little control for confounding parameters
between the different datasets. So, the attribution of the differences in
wave characteristics to one parameter, here the anesthetic type, has to
take this into account.

Next, we are expanding the scope of the analysis and contrast the
ECoG recordings of ketamine- and isoflurane-anesthetized mice to
analogous recordings of anesthetized mice that use calcium imaging to
measure the cortex activity (Resta et al., 2020a; Resta et al., 2020b). Fig-
ure 7.10C illustrates the distributions of wave characteristics grouped
by measurement technique and anesthetic type. A principal differ-
ence between the measurement techniques is their spatial resolution.
The calcium imaging data has a resolution of 0.05 mm compared to
0.55 mm for the ECoG data. The finer resolution allows for a better
distinction of complex non-planar wave patterns, as can be seen by the
broader planarity distribution that is shifted towards smaller planarity
values. Additionally, complex wave patterns with low planarity seem
to be more prevalent under isoflurane-induced anesthesia than with
ketamine-induced anesthesia, which can also be seen to a smaller
extent in the ECoG recordings. Furthermore, the detected waves in
the calcium imaging data are more frequent and regular, as shown
by the inter-wave-interval distributions. Regarding the wave velocity
distributions, there is a notable discrepancy between the measurement
techniques for the isoflurane datasets, while the velocities for the ke-
tamine dataset are quite similar. This considerably difference in wave
velocities is likely related to a difference in the isoflurane concentra-
tion (1% in EcoG and 1.5− 2% in calcium imaging recordings), as
even small differences in the concentration can have a considerable
effect on the wave dynamics (cf. Figure 7.10A&B). The slow waves
we detect with the pipeline tend to propagate along a preferred axis
and primarily in one direction. This axis seems to be approximately
consistent within the data of each measurement technique but not
across. In the ECoG data, the preferred propagation axis spans from
posterior-medial to anterior-lateral, with the preferred direction be-
ing different for the isoflurane and ketamine datasets. In the calcium
imaging data, the preferred wave direction is from posterior-lateral
to anterior-medial. Wave propagations being principally oriented in
a back-to-front or front-to-back manner is also reported in previous
studies (Massimini et al., 2004; Nir et al., 2011; Ruiz-Mejias et al.,
2011; Sheroziya and Timofeev, 2014; Greenberg et al., 2018; Pazienti
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et al., 2022). The spread of the wave direction histogram around the
preferred directions can be either caused by a variance of channel-wise
directions between waves or within waves, e.g., low-planarity waves
have, per definition, a broader spread of channel-wise directions. To
further investigate the observed differences in the wave characteristics
between the ECoG and calcium imaging data, we eliminate the aspect
of their different spatial resolution by spatially downsampling the
calcium imaging data. By downsampling in a stepwise manner up to
a downsampling factor of 11, for which the spatial resolution is then
equal to the one of ECoG (0.55 mm), we can disentangle the effects
the resolution has on the measured wave characteristics. Figure 7.10D
shows how the distributions of wave characteristics change as a func-
tion of the downsampling factor. With a decreasing spatial resolution,
fewer waves are detected, and they appear more planar as some com-
plex local patterns are no longer detected. This effect is particularly
obvious for the isoflurane datasets. A similar effect on the probability
of detecting a planar wave as a function of ROI size has been previ-
ously shown by Liang et al. (2021). As mentioned before, there are
relationships between the planarity of a wave and the corresponding
measured channel-wise velocities and directions. The fact that the di-
rection histogram of the downsampled calcium imaging data is more
narrow indicates that the propagation directions are consistent across
waves, and the variances observed in Figure 7.10C are caused mainly
by non-planarity. With increasing planarity, in particular, the waves in
the isoflurane datasets also exhibit faster channel-wise velocities that
surpass the ketamine wave velocities, as is also visible in the ECoG
data.

So, we demonstrate how the adaptable pipeline approach enables
the comparison of slow wave characteristics across heterogenous
datasets, including electrical and optical acquisition methods. This
meta-analysis illustrates distinct differences within the aggregated
data and potential dependencies on the experimental parameters to
be further investigated.

7.3.3 Method benchmarking via slow wave comparisons

While applying the same analysis method to different data enables
rigorous comparisons, applying different methods to the same data
allows investigating the influence of the choice of the method itself.
In the analysis of slow waves, the method for detecting the transi-
tions from Down to Up states plays an important role. So far, in
the calcium imaging data, we detected the trigger times at the up-
stroke of the transitions as the Hilbert phase of the signal crossing
a threshold value of −π

2 (Section 7.2.3). However, there also exist
alternative methods to define potential trigger times, such as using
the local minima of the filtered signal, for example, done in Celotto
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Figure 7.10: Quantitative comparison of slow waves across heterogeneous
datasets. Violin plots show sample distributions with indications
of the median (dashed line) and the quartiles (dotted lines).
Line plots also show the median and quartiles (shaded areas).
Polar plots show the distributions of wave directions in the right
hemisphere so that up corresponds to an anterior direction and
right to a lateral direction. A: Velocity and inter-wave intervals
of slow waves in ECoG recordings as a function of the anesthesia
level. B: Velocity and inter-wave intervals of slow waves in ECoG
recordings of experiments modeling Willems-Beuren Syndrome
(WBS) and Fragile-X Syndrome (FXS) split into wild-type (WT,
blue) and knock-out (KO, green) subjects. C: The ECoG data
from panel B is compared to calcium imaging data, split into
anesthetic types, concerning wave velocities, inter-wave intervals,
wave planarity, and wave direction. D: Effect of stepwise spatially
downsampling the calcium imaging data from 0.05 mm (factor
1) to 0.55 mm (factor 11), the spatial resolution of the ECoG
data. The wave direction histograms are only shown for the fully
downsampled data (with factor 11).
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et al. (2020). Figure 7.11 illustrates the influences the two different de-
tection methods have on the resulting wave characteristics. Realizing
this method-benchmarking workflow with our pipeline only requires
selecting the corresponding detection block in the config file of the
wave detection stage and to rerun the analysis on the calcium imaging
data. As shown in Figure 7.11A, the resulting triggers differ clearly
in number and exact timing, influencing the timing and number of
detected waves. As a result, the representation of individual waves
can differ to varying degrees (see an example in Figure 7.11B). Never-
theless, the overall distributions of wave characteristics remain very
similar (Figure 7.11C). The slightly shorter inter-wave intervals for the
minima-detected waves can be attributed to the increased number of
detected waves.

This method comparison allows us to evaluate the strength of each
way of detecting upward transitions and check for potential biases
introduced in the wave characterization. The minima detection method
is less strict and therefore detects more waves, including some smaller
local ones. The Hilbert-phase method detects fewer waves, which
are, however, better separated and more coherent across channels.
Thus, we see that finding slow waves in different use cases is also
a matter of applying the appropriate methods while being aware of
their advantages and disadvantages. For a more extensive method
comparison, including specific edge cases, this approach can be further
combined with simulated data.

7.3.4 Model calibration via slow wave comparisons

Applying the Collaborative Brain-Wave Analysis Pipeline to experi-
mental data enables the extraction of key spatio-temporal characteris-
tics of slow waves acquired with multiple experimental methodologies
at local and multi-areal spatial resolution. These insights are, of course,
beneficial to modelers as they can inform the model development pro-
cess and offer new approaches to exploit data to introduce complexity
and biological realism in the models. However, the pipeline can also be
directly applied to simulation outcomes to extract the same characteris-
tics as from the experimental data to perform quantitative comparisons
for model calibration and/or validation.

Here, we demonstrate how a mean-field neural network model
can be analyzed with our pipeline and adapted to match the slow-
wave characteristics of a calcium imaging dataset (Section 7.2.7). A
detailed account of this modeling study is published in (Capone et al.,
2023). The network model consists of approximately 1400 interacting
populations, representing the pixels in the corresponding calcium
imaging data. Each population entails 500 excitatory and inhibitory
current-based AdEx (Adaptive Exponential integrate-and-fire) neu-
rons and is modeled by a first-order meanfield equation (Capone et al.,
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Figure 7.11: Comparison of trigger detection methods in calcium imaging
data. A: Upward transitions (triggers, black vertical lines) found
by two different detection algorithms, looking for either local
minima or a crossing of the Hilbert phase = −π/2, in an exam-
ple signal taken from the black-colored pixel indicated in panel B.
B: The same exemplary wave (corresponding to the last trigger
in panel A) illustrated over the recorded area as detected using
the two trigger detection algorithms. The arrows indicate the
local direction of the wavefront at the time of the trigger, which
is also encoded as the color of the arrow. C: The distributions of
the comparative characteristics of the resulting waves with the
two different methods in the calcium imaging datasets.
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2015; Capone et al., 2019a; El Boustani and Destexhe, 2009; Gigante
et al., 2007), so that all the neurons in the population are described by
their average firing rate. It has been shown that the spike-frequency
adaptation of neurons is a crucial parameter in realizing a network
state exhibiting slow-wave activity (Mattia and Sanchez-Vives, 2012; di
Volo et al., 2019; Tort-Colet et al., 2021; Cattani et al., 2022). Therefore,
a parameter for the adaption strength b is included in the model.
Furthermore, we incorporate anatomical information to define connec-
tivity priors (Schnepel et al., 2015), including the fact that long-range
inter-areal connection are suppressed during the expression of slow
waves (Olcese et al., 2016). This is represented by kernel functions
for the connection probabilities between populations that have an
elliptical shape on the cortical grid plane and are exponentially decay-
ing with the distance. So, that the connectivity of each population is
parameterized by the connectivity weight k0, connectivity anisotropy
a, the eccentricity of the elliptical kernel function e, and the spatial
decay exponent λ. Each population is further driven by an external
input Iext.

The model is optimized in two steps, specifically for a 40 s recording
of the experimental data. In the first step, the connection parameters
for each model population are optimized by a likelihood maximization
(using the gradient-based optimizer iR-prop (Igel and Hüsken, 2003))
with respect to the activity of a pixel in the recording. This parameter
inference is performed on the 32 s of the recording. The remaining
8 s are used for a validation of the inference procedure to avoid
overfitting. As the fluorescent indicator (Thy1-GCaMP6f) used in
the experimental recordings targets specifically excitatory neurons,
we can only consider the excitatory activity to constrain the model.
The inhibitory activity is instead considered as hidden variable and
determined via an adiabatic approximation (Mascaro and Amit, 1999).
The resulting neural network model is able to produce simulated
activity corresponding to a slow wave activity state (Figure 7.12B).
However, the simulated slow wave dynamics are repeating nearly
identically. Since the applied model constraints are local in time, they
are not able to reproduce the variability over time that is found in the
experimental data.

Therefore, the model optimization requires a second step, a calibra-
tion of a neuromodulatory input. This neuromodulation is expressed
as an oscillation of the Iext and b parameters with an amplitude A
and period T around their previously determined channel-wise values
(inspired by Goldman et al. (2019)). The calibration uses the characteri-
zation of the slow wave activity in the experimental and the simulated
data resulting from our presented analysis pipeline. As illustrated
in Figure 7.13, we compare the local velocity, direction, and inter-
wave-interval measures individually using the Wasserstein distance
(Arjovsky et al., 2017), and used the square root of their quadratic sum
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Figure 7.12: Raster plots of experimental and simulated slow wave activity.
The raster plots on the right-hand side display the transition
times from Down to Up states in each recording channel (pixel),
so that a vertical group of trigger points indicates a slow wave
passing over the recorded area. The colors of the waves indicate
different wave modes (not discussed). A) Experimenal data from
the right hemisphere of an anesthetized mouse, recorded via
calcium imaging. B) Simulated data from a mean-field neural
network model with connectivity parameters inferred from the
experimental data via a likelihood optimization. C) Simulated
data from the same model as in B, but with an additional os-
cillatory neuromodulation that is calibrated to match the slow
wave characteristics (velocity, direction, inter-wave interval) of
the experimental data. Figure adapted from Capone et al. (2023)
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as a combined score. Using a grid search for A and T, we minimize the
distance score to determine optimal neuromodulatory parameters. The
resulting simulated slow wave activity has a much better resemblance
of the target experimental data, reasonably reproducing most of the
features of the non-stationary and non-linear dynamics of the slow
wave activity (cf. Figure 7.12A&C).

7.4 conclusion

7.4.1 Comparability and reusability

The use-case-specific slow wave analysis illustrates the benefits of a
structured, modular pipeline approach. These benefits, however, are
not limited to slow wave analyses but can contribute generally rel-
evant aspects to rigorous data analysis procedures. So, the pipeline
features built-in mechanisms (largely due to the use of snakemake)
to retain information about the analysis scripts, their execution order,
and parameter settings. The stage and block documentation and the
visualization of their respective outcomes help to follow the workflow
in detail to redo the analysis, but also to check results and increase
confidence in the findings. By further aligning the workflows for
different datasets within the pipeline using the same or analogous
analysis methods (while still catering to their diverse processing de-
mands), the individual results become more comparable. This does
not mean that the results are expected to be the same, but by control-
ling the variations in the analysis workflow, the remaining differences
(measurement techniques, species, anesthetics, etc.) can be reasonably
evaluated and quantified. The flexibility to deal with the input of very
different datasets also trivially extends to simulated data. Therefore,
the pipeline design also provides a basis for the validation testing of
models. The modularity that enables the pipeline to be adapted to dif-
ferent datasets also brings the additional advantage that the individual
analysis steps become interchangeable and can thus be evaluated on
their own. Analyzing the same dataset with such an adapted pipeline
lets us test the influence of a method on the downstream results.
Eventually, the gain of such a pipeline design extends even further
as all its elements work as well as standalone components and can
be reused for other pipeline or non-pipeline applications. Finally, the
goal is not to fully automate data analyses but to provide a tool base
to make the creation of analysis workflows more efficient, rigorous,
and reproducible. No software can replace a thoughtful scientist, but
the right software can give a scientist more room to think.

As the pipeline is built up in a modular fashion, there are multiple
levels of reusability. The simplest is to use the adaptability via the
config files to change the selection, order, or parameters of blocks to
modify the pipeline execution. For larger, more specific changes to the
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Figure 7.13: Calibrating the oscillatory modulation of the mean-field model.
A) Schematic of the calibration step. The mean-field network
model with inferred connectivity parameters is simulated with
an additional oscillatory neuromodulation and the resulting
slow-wave characteristics compared to the experimental data
in order to determine the ideal oscillation paramters. B,C) The
comparison is based on the local wave velocity, direction, and
inter-wave interval distributions. The agreement of the simula-
tion and experimental data depends on the parameter setting,
panel B and C showing a good and a bad examplary parameter
setting. D,E The agreement between the slow-wave characteris-
tics is quantified by the Wasserstein distance (color scale). The
heatmaps illustrate the results of a grid search for the amplitude
and period of the neuromodulatory oscillations via the individ-
ual Wasserstein distances (panel E) and the combined distance
(panel D). Figure adapted from Capone et al. (2023)
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pipeline, new blocks can be added, for example, to integrate a new
dataset or to carry out data analysis focused on other observables. For
this, the pipeline repository provides corresponding templates and
instructions. There is no principal restriction of types of data: as long
as it conforms to the minimum requirements (e.g., an electrode/pixel
layout on a grid), the pipeline may be applied on EEG, LFP, or even
spiking data. While both blocks and stages are designed to also work
as stand-alone analysis snippets in other workflows, most notably,
the pipeline design allows deriving new analysis pipelines for other
applications. Such a reuse is demonstrated in Chapter 8, to analyze the
the cortical wave activity (e.g. in the alpha, beta, and gamma regime)
in behaving monkeys.

7.4.2 How a structured analysis pipeline can contribute to progressing the
study of slow waves

The presented meta-analysis across heterogenous datasets comprises
ECoG and calcium imaging recordings (Figure 7.10). These measure-
ment techniques are known to result in fundamentally different signals.
While ECoG tends to record only the spiking activity of neurons in the
superficial layer with a high firing rate and a high signal-to-noise ratio
with high temporal and low spatial resolution, imaging Genetically
Encoded Calcium Indicators (GECIs) such as GCaMP6s, measures
population activity from specific cell types (i.e. excitatory neurons) in
layers 2/3 and 5 as a delayed, low-pass filtered, non-linearly trans-
formed fluorescence signal with low temporal and high spatial res-
olution (Siegle et al., 2021a; Siegle et al., 2021b; de Vries et al., 2020).
Therefore, even elaborate models can’t fully capture all aspects of their
complex relationship, and there is generally no precise agreement
between results derived from the two measurements beyond coarse
qualitative measures (Wei et al., 2020; Chen et al., 2013; Stringer et al.,
2019). In this context, our analysis pipeline can quantitatively illustrate
the differences in the measurement types regarding the characteristics
of slow wave activity. For analyzing wave characteristics, it is of par-
ticular interest from which cortical layer the measurement technique
samples the recorded neurons since aspects like frequency power or
propagation speed are known to vary considerably with cortical depth
(Halgren et al., 2018; Capone et al., 2019b). Taking these considerations
into account, an integrative approach of using multiple measurement
techniques may benefit from the complementing viewpoints that, for
example, ECoG and calcium imaging can provide.

Besides the biases of the measurement technique and its resolution,
we further present the influences of the anesthetic type and dosage on
the wave characteristics, showing in particular that ketamine tends to
produce more planar waves than isoflurane, in turn also influencing
the measured directions and velocities. This effect is likely linked to
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the known attributes of the anesthetics, that ketamine is more effective
in generating slow-wave activity as it increases LFP power in the delta
frequency band while isoflurane rather enhances LFP activity in the
theta band and above (Michelson and Kozai, 2018; Purdon et al., 2015).

The need to quantitatively relate results from the literature to each
other becomes quite apparent when, for example, investigating the
sources of variance of the velocity of slow waves, which can vary
from a few mm/s in in-vitro measurements and in-vivo recordings
of anesthetized rodents up to ∼ 10 m/s in human sleep experiments
(Massimini et al., 2004; Ruiz-Mejias et al., 2011; Muller et al., 2016).
Studied influences to this variability include the extent of axonal projec-
tions (Massimini et al., 2004; Golomb et al., 1996), axonal conductances
(Ruiz-Mejias et al., 2011), involved cell types (Bazhenov et al., 2002),
neuronal excitability via the availability of neuromodulators (Destexhe
et al., 1999a) and via cortico-cortical or cortico-thalamic loops (Moha-
jerani et al., 2013; Sanchez-Vives and McCormick, 2000). Furthermore,
the velocity of a wave may depend on its direction, which in turn is
influenced by an interplay of local and global connectivity properties
and frequency effects (Galinsky and Frank, 2020; Mohajerani et al.,
2013; Massimini et al., 2004). Comparison between data from different
studies can help relate and discern such influences.

While the exploration of wave characteristics under different condi-
tions can provide further insight into the understanding of the under-
lying processes, experimental data can also suffer from constraints in
the data size, parameter regime, and uncontrolled confounds. There-
fore, in many scenarios, it is crucial to be able also to include modeling
data in the analysis. The following subsection discusses a use-case
where the adaptability of the pipeline to simulation output is exploited
in the context of model calibration.

7.4.3 Conclusion

In this paper, we show how formalizing analysis approaches can have
miscellaneous advantages. By taking a data-science perspective, we
work towards integrating heterogeneous insights from different data
and analysis types. Furthermore, we experienced how structuring
our methodology and implementation also contributed greatly to
our structure of thought. We are confident that this work pushes
forward the requirement of reusability for analysis resources and
succeeds in promoting making use of and contributing to community
software projects (like Elephant, Neo, Nix, Snakemake, and many
more). Because in the end, the scientific community is more efficient
when everyone can directly benefit and build on each other’s work
and can rigorously compare their results without re-implementing the
wheel.
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8.1 introduction

We are continuously objected to a ton of sensory input that is signaled
to our brain. Additionally, there is neural activity from all kinds of
internal processes, including learning, planning, attention, memory re-
call, emotion, homeostasis, daydreaming. Still, the immensely intricate
information processing mechanisms manage to selectively filter the
relevant sensory input in a given context and integrate it with existing
activity and structures to generate corresponding reactions. These pro-
cessing mechanisms feature both parallel and sequential processing
(Parks et al., 1991; Musslick et al., 2016) as well as bottom-up and top-
down signal integration (Buschman and Miller, 2007). All this happens
continuously. Executing motor actions is simultaneous to perception,
which again informs action. Examples of this enormous feat include
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hand-eye coordination tasks and active sensing (Schroeder et al., 2010).
Most of the exact working mechanisms that are involved are still
unknown, while our approaches to probing the neural systems are
limited to recording tiny fractions of the neural activity (Section 1.3).
However, with carefully designed experiments and systematic analysis
of behavioral and neurophysiological measurements, we can glimpse
into the activity signatures of these underlying processes.

Here, we explore the sensory integration and cortical information
processing in a hand-eye coordination task performed by a free-
viewing monkey. The monkey is instructed to reach for illuminated
targets that light up in different sequences. We measure the neural
activity with implanted multielectrode arrays in the motor cortex and
areas V1, V2, DP, and 7A in the visual cortex. We focus our analysis
on the wave dynamics of the local field-potential (LFP) signal as a
high-level representation of the neural network activity. Previously,
it has been shown that the oscillatory LFP activity in the cortex is
organized in traveling wave patterns which correlate to behavioral
events and have been suggested to organize neural processes across
space and time (Ermentrout and Kleinfeld, 2001; Rubino et al., 2006;
Zhang et al., 2018; Muller et al., 2018).

We characterize the wave activity over the course of a recording
session and compare it across the visual areas, frequency bands, and
behaviorally relevant task events. We find distinct wave activity be-
haviors for the individual areas and frequency bands. Furthermore,
we identify a wave pattern signature that is uniquely selective and
directionally tuned to a relative transition from one visual target to its
upper right neighbor.

8.2 methods

8.2.1 Data acquisition

The experimental data were acquired in a real-time visuomotor behav-
ior and electrophysiology recording setup at the Institut de Neuro-
sciences de la Timone in Marseille, France, and is described in detail in
(de Haan et al., 2018). The setup is in a dark environment and includes
a chair for a monkey with a projection surface in front of the chair
(Figure 8.1A). The head of the subject is fixated with a custom mask
to allow for an accurate recording of the free-viewing eye movements
via an infrared LED and camera1. The right arm is attached to an
exoskeleton2 that allows for arm/hand movements in the horizon-
tal plane while recording the hand position. The plane of the hand
movement is underneath the non-transparent projection surface. A
cursor (a round dot) indicates the hand’s position on the projection

1 EyeLink 1000; SR Research; https//www.sr-research.com
2 KINARM; BKIN Technologies; www.bkintechnologies.com
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surface. The cortical activity is recorded with implanted multielec-
trode arrays3. The simultaneous recordings of the hand movements,
eye movements, trial events, and neural activity are collected from the
individual recording systems, temporally aligned, and integrated into
a common data object.

The experiment and neural recordings are performed with a macaque
(Macaca mulatta) monkey (subject Y). The subject was implanted with
multiple multielectrode arrays (inter-electrode distance 0.4 mm) in the
left hemisphere of the cerebral cortex. A 10× 10 array was placed in
the motor/dorsal pre-motor cortex (M1_PMd), and four 6× 6 arrays
were placed along the visual pathway, covering the areas V1, V2, DP,
and 7A (Figure 8.1B).

Here, we use a data recording acquired during the performance
of a visually guided motor task. On the projection surface, six target
locations are arranged in a hexagon, with an additional target in
the center. In each trial, a sequence of four targets is presented. One
target is illuminated at a time, and the next target lights up when the
hand cursor reaches the target location (within a radius of 0.65 cm). A
trial is successful if the subject reaches the sequences of illuminated
targets with less than 1.5 s for each target. There are 12 different
sequences, each starting with the central target position, that are
presented randomly during a session. If a trial is unsuccessful, the
same sequence is presented again. Here, we use a session (y180306-
land-001) with 176 trials, of which 120 are successful, with a total
duration of 658.12 s.

3 Utah Array; Cerebus, Blackrock Microsystems; http://blackrockmicro.com
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Figure 8.1: Setup of the Vision-for-Action Experiment. A schematically
illustrates the components of the experimental setup and the
neural and behavioral recording devices. The flowchart shows
the flow of the corresponding analog (solid lines) and digital
(dashed lines) signals. B shows the approximate placements of
the Utah electrode arrays in the left hemisphere of the monkey.
A 10× 10 array (orange) is located in the border of the primary
motor cortex, and dorsal premotor cortex (M1_PMd), and four
6× 6 arrays (turquoise) are located in the visual cortex in the
areas V1, V2, DP, and 7A. Adapted from de Haan et al. (2018).

8.2.2 Data processing and analysis

analysis pipeline The raw electrode signals (30 kHz) are down-
sampled to 1 kHz and with the behavioral data, trial events, and
the various metadata stored as a combined object in the Neo format
(Garcia et al., 2014). This data object is further processed and analyzed
with the Collaborative Wave Analysis Pipeline (Cobrawap), which we
introduced in Chapter 7. When entering the pipeline, the data is fur-
ther annotated with information about the electrodes’ spatial layout
on the arrays and the cortical surface. In the pipeline’s processing
stage, the signal of each channel is centered around 0, 1st-order de-
trended, frequency filtered, and finally z-scored. The frequency filter
(using a 4th-order ’sosfiltfilt’ Butterworth filter) is applied to separate
four frequency domains: subalpha (1− 10 Hz), lowbeta (10− 23 Hz),
highbeta (23− 35 Hz), and gamma (60− 90 Hz), see Figure 8.2. The next
stage detects the timing of potential wavefronts within each channel,
defined by the oscillation phase (calculated with a Hilbert transform)
crossing a value of ϕ = 0. Subsequently, these trigger times in all
channels are grouped into wavefronts via a density-based clustering
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algorithm (using the DBSCAN function from the scikit-learn Python
package (Pedregosa et al., 2011)). Further, we augment the filtered LFP
signals with an optical flow vector-field signal, calculated with a Horn-
Schunck algorithm, to indicate the instantaneous spatial propagation
direction of the wavefronts (Townsend and Gong, 2018). Additionally,
we group similar types of waves by applying a k-means clustering
(n = 4) on the channel-wise trigger times, defining 4 wavemodes
(Ruiz-Mejias et al., 2011).

characteristic wave measures From the output of stage 4 of
Cobrawap "Wave Detection," we extract continuous direction angle and
planarity measures from the optical flow vector field. The continuous
direction angles are defined per channel as the counter-clockwise
angle from the posterior direction (positive horizontal axis in the here
presented figures). The continuous planarity is defined per array as
the normalized length of the sum of individual unit-length optical flow
vectors, measuring the alignment of the vector field on a scale from 0
to 1. While these two measures do not depend on the detection of the
individual wavefront, we additionally use the following wave-wise
and channel-wise characteristic wave measures resulting from stage
5 of Cobrawap "Wave Characterization". Per wave, we also define a
wave-wise planarity measure analogous to the continuous planarity
but based on the optical flow vectors at the times and positions of
wavefront triggers. We measure the wave-wise inter-wave interval
as the time delay between successive waves averaged over channel
locations. Further, we measure the wave-wise velocity by interpolating
the horizontal and vertical locations of the wavefront trigger on the
array as a function of time. Per channel per wave, we use the channel-
wise wave direction and the channel-wise wave velocity that we
calculate from the spatial gradient of the trigger delay function of
a wave T(x, y). Between the continuous optical flow directions and
wave-wise gradient directions, we see a tendency that the optical
flow estimation is slightly biased from the geometry of the electrode
array, showing an artifactual preference for horizontal and vertical
directions. The wave-wise velocity measure generally agrees with
the channel-wise velocity, showing a somewhat higher variance due
to the additional channel variability. The channel-wise measures are
equivalent to the measures used in Chapter 7.

In the analysis of the LFP signals, we calculate the power spectral
density and intra- and inter-area coherence, using the implementation
of Welch’s approximation method in the Elephant toolkit (Denker
et al., 2018a) (using a "Hann" window with an overlap of 0.5). We
calculate the coherence between two arrays by aggregating the coher-
ence between pairs of individual channel signals from these arrays. 10
times, we sample the random pairs between all the channels, i.e., 320
channel pairs with each channel involved in 10 pairs.
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8.3 results

8.3.1 Frequency domains of the LFP activity

The oscillatory LFP activity is commonly segmented into the charac-
teristic frequency bands delta, theta, alpha, beta, and gamma (often
splitting beta and gamma further into low and high parts) spanning
the range from ∼ 0.5 Hz up to ∼ 150 Hz. These frequency bands were
first defined as a pragmatic segmentation of the frequency range (Ste-
riade et al., 1990). The exact generating mechanisms and their role in
neural processing are still not fully understood. However, the different
domains are associated with correlates of network state and behavior,
and the their exact frequency span can vary with the subject’s species
and age, as well as the cortical location and depth (Buzsaki, 2006).
Therefore, the definition of the LFP frequency bands are not univer-
sally fixed. While there are more detailed approaches to identifying
frequency band boundaries in electrophysiology data (Shackman et al.,
2010; Donoghue et al., 2020; Cohen, 2021), we here suffice with a less
complex approach. To cover all potentially relevant frequencies, we
define broad frequency ranges. We perform a qualitative assessment of
the frequency power spectrum and the intra- and inter-area coherency
spectra to separate different oscillatory mechanisms, i.e., peaks in the
spectrum, without splitting them between two bands. Based on the
spectra, shown in Figure 8.2, we thus define four frequency bands for
our analysis: subalpha (1− 10 Hz) combining most of the conventional
delta, theta, and alpha domain; lowbeta (10− 23 Hz); highbeta (23− 35),
and gamma (60− 90). To avoid the influence of the 50 Hz line noise,
and since there is no indication of spectral peaks above 35 Hz, we
leave out the "low gamma" regime between our defined highbeta and
gamma bands.

In the power spectrum (Figure 8.2A), we observe prominent peaks
for the arrays in 7A and DP in the lowbeta band. Two distinct spectral
peaks are visible in the lowbeta and highbeta bands for the motor
array. We include, here, also the array placed in the motor area because,
during the performance of the visuomotor task, we expect interactions
between the motor cortex and the visual cortex that may involve the
dominant frequencies from the motor array. The coherency analysis
further depicts peaks in subalpha and lowbeta for the signals within
areas V1, 7A, and DP (Figure 8.2B). In between the different arrays,
we observe strong coherency effects for the neighboring 7A-DP areas
in the subalpha and lowbeta band. Similarly, there is also a strong
coherence between the neighboring V1-V2 areas in the lowbeta and
highbeta bands.
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Figure 8.2: Identifying the frequency domains of the LFP. A) The spectral
power density for multielectrode array (color coded) on a double-
logarithmic scaling. The four frequency domains are displayed
as gray-hatching patterns. B) The intra-area (top) and inter-area
(bottom) coherence within and between the arrays. Values in the
45− 55 Hz range are removed to suppress the line noise.

8.3.2 Characterization of traveling waves across areas and frequencies

Visualizing the phase signal of the LFP activity in the space of the
cortical surface for each of the frequency bands creates a fascinating
display of wave activities. Waxing and waning patterns of changing
directions, reorganizing in planar, sometimes spiral, sometimes more
complex arrangements, travel over the electrode arrays. Regularly,
the activity synchronizes over the area, and waves seem to travel
from one area to the next. Figure 8.3A shows a snapshot of such a
wave display over the four electrode arrays in the visual cortex in the
lowbeta band. We find a first indication that the observed activity
is not a random collection of wave-like patterns but that there are
repeating characteristic patterns by applying a wavemode analysis
(see Section 8.2.2). For example, looking at the V2 array in one of
the first successful trials (trial 5), we see that there are two principle
modes of wave occurring on that array (Figure 8.3B). Of the 65 waves
detected in that trial, 43 waves propagate from the bottom to the
top of the array (anterior-lateral to posterior-medial, mode A), 20
propagate from the top-right of the array to the bottom left (posterior
to anterior, mode D). We set the number of wavemodes to discern
by the clustering algorithm to 4. Therefore it necessarily produced
two additional wavemodes. However, these two modes, B and C, only
contain one wave, representing the furthest outlier patterns from the
main mode clusters A and D.
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Figure 8.3: Examplary wave patterns on the cortical surface. For trial 5 of
the visuomotor task, A) shows a snapshot shortly after the first
target was reached with ongoing wave activity over the different
arrays in their actual arrangement on the cortex. On the arrays,
the color code displays the phase of the LFP activity filtered to the
lowbeta band (10− 23 Hz). The white arrows display the optical
flow vector field as approximate wave directions. For the same
trial, B) shows 4 wavemodes of typical wave pattern in the V2
array, with the most waves falling into the modes A and D. The
array is oriented with the connector cable to the right side (turned
∼ 34◦ counter-clockwise compared to panel A).

Our goal is to find correlates of the wave activity data that help
us relate the activity in the cortical areas to each other and external
stimuli and behavior. Due to the complexity of the wave activity, we
need to abstract it to its characteristic features (as also motivated in
Section 1.3). Thus we first derive quantitative measures to characterize
the waves across the areas and frequencies. In Figure 8.4, we look
at the planarity, inter-wave intervals, velocity, and direction of the
detected waves (see details in Section 8.2.2). Generally, we see that the
measure profiles for each area in each frequency band are distinctly
different, except for the inter-wave intervals that become relatively
similar for all areas towards higher frequencies.

A striking characteristic is that V1 exhibits considerably faster and
more planar waves. With increasing frequency, the wave velocities
are also higher. However, the velocity increase as a function of the
frequency differs for the respective areas. V1 tends to have relatively
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fast waves and DP rather slow waves in all frequency bands. However,
V2 is on the slow end in subalpha and lowbeta but has a steep velocity
increase between highbeta and gamma. In contrast, 7A has its steepest
increase between subalpha and lowbeta with only slight increases
in higher frequencies, having even slightly slower velocities than V2
in gamma. Furthermore, the wave planarity is also dependent on
the frequency band. While the planarity distributions of V2 and DP
remain unchanged throughout the frequencies, V1 and 7A both show
the most planar waves in the lowbeta band and the least planar waves
in the subalpha and gamma band.

Looking at the wave directions, we see a preferred propagation axis
on each array. Wave propagation in DP and 7A tends to be oriented
on an anterior/medial-to-posterior/lateral axis. Waves in V1 tend to
be perpendicular to that on an anterior/lateral-to-posterior/medial
axis, and V2 waves travel mostly on an anterior-to-posterior axis.
There can also be a slight preference for one of the two directions on
the preferred axes. This asymmetry also appears to change for some
areas in some frequency bands. For example, for subalpha V2 and
lowbeta DP, there is a switch of preferred direction along their axes
compared to the other frequency bands. For all areas, the shape of
the direction distribution also broadens in higher frequencies, which
could be an effect of waves in higher frequency bands being associated
with shorter wavelengths resulting in less homogenous and more
complex local wave patterns. Correspondingly, there are observations
in the literature that slow oscillations show coherence over a greater
distance while fast oscillations are contained locally (e.g. von Stein
and Sarnthein, 2000; Valderrama et al., 2012).



156 cortical wave dynamics in behaving monkeys

Figure 8.4: Wave characterization across cortical areas and frequency bands.
The four rows present characterization of the wave activity in the
four frequency bands defined in Figure 8.2. The columns present
the summary distributions for the wave-wise measures planarity,
inter-wave intervals, velocity, and channel-wise direction over all
successful trials in the analyzed session, separated for the four
areas in the visual cortex V1 (bright blue), V2 (dark blue), DP
(bright green), 7A (dark green).

8.3.3 Relation of wave characteristics to trial events

There is still much to be analyzed and understood about the charac-
teristics of the wave activity on their own. However, in order to come
closer to identifying a potential functional role of the wave activity,
we need to correlate the wave characteristic to behavior and exter-
nal stimuli. To this end, we cut the data into individual trials, select
only the successful ones, and align them to specific trial events (see
the trial definition in Section 8.2.1) to see if any wave characteristic,
on average, changes in response to the trial event. In particular, we
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look at the number and channel-wise velocities of detected waves
and the directions and the planarity of the continuous optical flow
vector field signal (see Section 8.2.2 for details). The direction angles
ϕ are circular values and, therefore, not straightforward to average
or visualize as a function of time. Thus, we instead plot the horizon-
tal (anterior→posterior) and vertical (lateral→medial) components
of the direction as cos(ϕ) and sin ϕ. In the trials, we select windows
of ±200 ms around the target-onset or target-reached events, either
for one of the 4 targets in the sequence task (averaging over different
sequences, i.e., positions) or for one of the 7 target positions (averaging
over the order in the sequence).

Looking at the animated wave activity in a single trial, illustrated
in Figure 8.5A, by visual inspection, one tends to see eventual rela-
tions between the wave dynamics and the occurrence of task events.
However, in the trial averaged traces of the characteristic measures,
no obvious relation appears for any alignment events, areas, and
frequency bands. However, relations between trial events and wave
activity become apparent when looking at specific sequences of target
positions.

In the subalpha frequency band, the onset of the upper-right target
position in the hexagonal layout after a prior onset and reaching of
the central target position always triggers a specific wave pattern most
robustly seen in V2 (Figure 8.5A). After the target onset, the wave
direction shifts to an anterior direction ∼ 50 ms after the onset event,
independent of the wave direction before the onset event. Then the
wave activity quickly changes the direction 180◦ propagating in a
posterior direction at ∼ 100 ms, which remains at least until 200 ms
after onset. Within this time frame of 50− 200 ms after target onset,
the direction-changing activity is accompanied by a steep increase in
the vector fields’ planarity in V1 and V2. Additionally, the number of
detected waves in V2 increases considerably around ∼ 100 ms after
onset, and in V1 around ∼ 200 ms after onset. Furthermore, we can
also detect an increase in V1 wave velocities after the target onset.

However, this particular wave pattern that reoccurs in every trial
with a center-out transition to the upper-right is not specific to the
onset of the upper-right target position alone. Therefore, we look at
instances where there is a similar relative target transition to the upper-
right in the trials. Figure 8.5B and C show such instances for transitions
from the left to the upper-left target position and the bottom-right
to the right target position. Although the described measure trends
are not as clear and with more variability as in Figure 8.5B, the same
pattern can be identified in response to the target onset. Further testing
the specificity of the pattern, we look at instances where there is a
transition upwards to the upper-right target position from the lower-
right target position (Figure 8.5D). One can identify aspects of the
same pattern, but much less pronounced than in panels A-C, e.g., there
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is no increased V1 wave velocity in panel D. Lastly, to check whether
this pattern is indeed selective for a target transition approximately in
the upper-right direction and not just for any transitions to one of the
upper-right target positions, we look at instances where there is an
upper-left transition from the right target position to the upper-right
target position (Figure 8.5E). Indeed, there is no response in the form
of the same wave pattern for an upper-left target transition.

8.4 conclusion

summary In this chapter, we investigate the wave activity of the
LFP signal in the cortical areas V1, V2, DP, and 7A along the visual
pathway in awake macaque monkeys performing a visuomotor hand-
eye coordination task. We analyze characteristic measures of the wave
activity across cortical areas, frequency bands, and in relation to
behaviorally relevant trial events. Figure 7.2 in Chapter 7 illustrates the
issue of multiscale phenomena like wave activity that the assessment
with a single measurement technique typically implies a compromise
between temporal and spatial resolution, as well as a fine resolution
or a larger scope. In this regard, spanning the analysis over multiple
multielectrode arrays represents an approach to increase the scope
of the observable network without reducing the granularity of the
recording (cf. Section 1.2). To analyze the wave activity, we exploit the
intentional reusability of the Cobrawap pipeline that we developed in
the context of Chapter 7. We built the pipeline’s modular processing
and analysis blocks for analyzing slow wave activity (< 1 Hz) of
propagating Up states recorded with ECoG and wide-field calcium
imaging. Here, we demonstrate how the pipeline can be adapted to
wave phenomena more generally, particularly for oscillatory LFP wave
activity in higher frequencies (1− 90 Hz).

area and frequency specific wave activity With the de-
tection and characterization of individual waves over the trials of a
recording session, we show that the four neighboring visual areas
exhibit wave activity with distinctly different (multivariate) property
statistics (Section 8.3.2). This result is analogous to the multivariate
characterization of the spiking activity across cortical areas presented
in Chapter 6. In both cases, we see unique activity fingerprints of corti-
cal areas that a combination of characteristic measures can differentiate
(cf. neural characterization theme Section 2.3).

Furthermore, we observe that the wave activity statistics are specific
to the cortical areas and vary across the frequency bands from sub-
alpha to gamma. A difference between the frequency bands should
be expected since they are associated with different oscillatory mech-
anisms, as introduced in the Section 8.1. However, many oscillatory
mechanisms are not yet known or fully understood. Therefore, thor-
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Figure 8.5: Wave characteristics aligned to target onsets at specific positions.
Caption on the next page.
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Figure 8.5: Wave characteristics aligned to target onsets at specific positions.
The first column shows the target onset events in the hexagonal
target layout. The data is aligned to the target onset in the po-
sition marked by the arrow head for trials where the target at
the position of the arrow base was on immediately prior. There-
fore, A, B, and C correspond to a target position transition to the
upper-right, C to a transition upwards, and E to a transition to
the upper left. The individual plots in each row show the course
of subalpha wave activity measures (window 400 ms) aligned to
the target onsets and averaged over successful trials. The traces
correspond to the median activity measures of the four cortical ar-
eas (V1-light blue, V2-dark blue, DP-light green, 7A-dark green),
aggregated over channels and trials, with the trace-surrounding
shading representing the 99% confidence interval. The columns
show the measures cos(angle) (i.e,anterior→posterior), sin(angle)
(i.e., lateral→medial), planarity, number of waves, and velocity.
The cosine and sine were calculated from the angle ϕ of the
continuous channel-wise optical flow directions (ϕ = 0 pointing
posterior), and so is also the planarity measure. The number of
waves and their velocity depends on the detection and separation
into individual wavefronts.

ough characterizations of the oscillatory activity features, such as
propagating waves, can contribute to building a broader knowledge
collection to deduce the underlying mechanisms.

Furthermore, the different frequency bands are also assumed to have
different functional roles. For example, in the context of predictive
coding (Rao and Ballard, 1999), the feedforward and feedback signals
traveling in the opposite direction along hierarchical pathways are
thought to travel in different cortical layers and different frequency
bands (Bastos et al., 2012; Bastos et al., 2015; Schneider et al., 2020;
Vezoli et al., 2021). Accordingly, the feedforward signal should be more
dominant in the low (subalpha) frequencies and the high (gamma)
frequencies, while the feedback signal should be more dominant in
intermediate (beta) frequencies. Suppose cortical waves are involved
in such feedforward and feedback signals. In that case, one might,
for example, expect waves to propagate along the visual pathway
in different directions depending on the frequency band, not unlike
the frequency-dependent preferred directions we see in our wave
characterization in Figure 8.4.

further wave activity comparison applications To test
the hypotheses of predictive coding and other theories, the presented
characterizations of the wave activity may serve as a basis for statisti-
cal experiment vs. experiment comparison applications (Section 2.2).
For example, such comparisons can evaluate wave activity differences
between scenarios that are assumably either feedforward or feedback
dominated: before vs. after movement onset, target onset vs. target
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reached, or onset of earlier targets vs. later target (by the last target,
the monkey has recognized the sequence). More forthright compari-
son scenarios could involve comparing perturbed and unperturbed
trials. The experimental setup allows visual perturbations of the hand
cursor or motor perturbations via the exoskeleton, similar to Tseng
et al. (2007), Arce et al. (2010), and Torrecillos et al. (2015). However,
it is to be noted that the corresponding analysis of wave directions
across frequency bands relies on the electrode arrays’ exact placement
and orientation on the cortical surface. However, we know that im-
planted electrodes can drift and be moved out of place by scar tissue.
Furthermore, we generally do not know the depth of the implanted
electrodes (Mendoza-Halliday et al., 2022). Thus, the analysis cannot
correctly incorporate effects specific to the measured cortical layer.

functional relevance of wave activity In Section 8.3.3, we
identify a neural correlate of the form of a characteristic wave activity
pattern of at least 200 ms that is precisely triggered in response to a
target lighting up to the upper-right relative to the last reached target
position. This locking effect is most pronounced for the transition of
the central location to the upper-right target position in the hexago-
nal layout. However, the effect is still clearly observable in relative
transitions to the upper-right with other position pairs. However, the
effect disappears when the relative orientation to the target position
changes, even when involving the same absolute position. The clear
and distinct specificity of a complex wave pattern that repeats reliably
to the related event is genuinely astonishing.

The specificity to a relative target transition direction suggests that
the response may be related to a corresponding eye movement and a
focus shift. Indeed, traveling waves triggered by saccadic eye move-
ment have been observed for several decades (Evans, 1953; Thickbroom
et al., 1991; Zanos et al., 2015). These reports found that attributes
of the triggered wave, such as the latency, amplitude, or direction,
correlate with the saccade’s duration, direction, and location in the vi-
sual field. While earlier works were limited to EEG recordings, Zanos
et al. (2015) measured the saccade-triggered waves with an implanted
multielectrode array in the visual cortex of a macaque monkey. They,
however, report the wave activity in the V4 area (located next to V2)
and in the beta band (defined as 20− 40 Hz). The earlier works as-
signed the triggered wave activity to the change in visual stimulation
caused by the eye movement (Billings, 1989). However, Zanos et al.
(2015) speculate further that the wave activity may also be related to
transient activations of local inhibitory circuits involved in saccadic
suppression mechanisms (Kleiser et al., 2004).

Our further research will include a correlation analysis of the trial
events and the behavioral signals of eye and hand movement.
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C O N C L U S I O N

In this thesis, we set out to better understand neural network dynam-
ics. Our approach consists of exploring meaningful characterizations
of network activity, constructing network comparisons based on the
resulting activity descriptions, and evaluating the similarity between
network descriptions concerning their underlying structure and func-
tional purpose. Each step of this three-step approach (i.e., thematic
threads Figure 3.1) is represented in the five research projects that
encompass this thesis. In the following, we outline how the work
in Part ii contributes to each of the three themes and builds on one
another.

9.1 characterization of neural data

complexity levels of spiking activity characteristics

Chapter 4 presents several measures that characterize different aspects
of the spiking activity of neural networks. We classify the measures
according to the level of interaction between the neurons they repre-
sent. Neuron-wise measures quantify isolated attributes of individual
neurons, including the average firing rate and the spiking regularity.
Pairwise measures quantify interactions between neurons, such as the
Pearson correlation coefficients between spike trains. Higher-order
measures represent more complex interactions between multiple neu-
rons, for example, the eigenvalues of the correlation matrix or the
statistics of spatio-temporal patterns.

univariate description Initially, we focus on univariate com-
parisons. This means we consider the individual measure values in-
dependent so they can be compared via their sample distribution,
irrespective of whether the measure is neuron-wise, pairwise, or
higher-order. Such a univariate description implicitly assumes that the
measure values are identically distributed, which is a reasonable initial
approximation. These assumptions allow us to apply two-sample null-
hypothesis significance testing (NHST) as a statistical tool to perform
a quantitative comparison between two sets of measured network ac-
tivity characteristics. Despite these constraints (revised further down
the thread), NHSTs present a well-established approach with many
available and implemented tests (Nickerson, 2000).

take-aways from univariate comparisons Based on such
univariate comparisons of network spiking activity, we evaluate the
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similarity of two model implementations. These comparisons high-
light two aspects of network characterization. First, no single measure
is sufficient to represent the neural network comprehensively. Each
measure is just one observable and can not capture all relevant in-
formation. Therefore, it is generally necessary to use many distinct
measures in combination to construct a meaningful comparison. Sec-
ond, although the characteristic measures can be classified in their
complexity into neuron-wise, pairwise, and higher-order measures,
there is no agreement hierarchy. For example, if two neural networks
are similar in terms of their pairwise correlation coefficients, this does
not necessarily imply that their neuron-wise spiking regularities are
also similar. Conversely, an agreement in multiple neuron-wise and
pairwise measures between two network realizations does not deter-
mine that, for example, the statistics of spatio-temporal patterns are
also similar.

pairwise correlation measures In Chapter 5, we focus on
pairwise measures and review the assumption of the NHST approach
that the measured values are independent. In particular, we look at
correlations describing the interactions within a network. The correla-
tions between neurons A and B and neurons A and C condition the
correlation between B and C, resulting in a positive definite correlation
matrix. This aspect of interdependence is not captured in a univariate
distribution of correlation coefficients. Therefore, we introduce a new
statistical test that can evaluate the similarity between correlation ma-
trices. Applications to stochastic, simulated, and experimental spiking
activity data demonstrate that the matrix representation of pairwise
measures and its appropriate statistical comparison can capture spe-
cific aspects of the coordinated spiking activity that are not accessible
by a univariate approach. For example, this pairwise characterization
can distinguish the activity motifs associated with highly-connected
neuron assemblies that are often proposed as vital elements in neural
network architectures (Harris et al., 2003; Aviel et al., 2003; Litwin-
Kumar and Doiron, 2012). Furthermore, we extend the considerations
of (symmetric) pairwise activity measures to (asymmetric) pairwise
measures of synaptic connectivity.

multivariate description The second assumption of the ini-
tial approach was that all measure values are identically distributed.
This consideration needs to be revised, especially for network archi-
tectures consisting of distinct populations, for example, excitatory
and inhibitory neurons across multiple layers in a cortical column
model. Therefore, in Chapter 6, we extend our systematic approach by
grouping neurons by population into sets of simultaneously recorded
spike trains. So, in a comparison between two networks, only corre-
sponding groups are compared, and their respective similarity scores
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are combined into a joint score. Additionally, we elaborate on the
insight that it takes multiple measures to evaluate a neural network
reasonably. Each measure can represent a distinct network character-
ization. However, a measure may also correlate to other measures,
which can itself be a characteristic attribute of the network. For exam-
ple, it may be that neurons with a high firing rate also tend to spike
more regularly. Such correlations between neuron-wise measures can
be captured in a joint, multivariate description of the characteristic
measures. Furthermore, they can be represented in multidimensional
measure space and compared using the Wasserstein distance. In an
evaluation of different sets of experimental data, we see that we can
not distinguish all datasets with any single univariate description but
only with the joint multivariate approach.

waves as population activity measure Next, we focus on
activity characteristics at the population level in the form of spatially
propagating activity waves. Patterns of traveling waves are ubiquitous
in cortical activity across species, frequency bands, and scales. Waves
can represent propagating fronts of local transitions between activity
states (slow waves) as well as spatial phase relationships of local
field oscillations. We investigate their local (channel-wise, i.e., pixel or
electrode-wise) and global (wave-wise) characteristics. In Chapter 7,
we develop an adaptable analysis pipeline to describe slow wave
activity data from heterogeneous sources on a common abstraction
level. We extract characteristic measures of the wave activity from
this abstract wave description, such as velocity, direction, planarity,
and inter-wave intervals. By deriving comparable wave characteristics
across data sources, we can relate the wave characteristic to data-
specific parameters, such as the spatial resolution of the measurement
technique. We reuse the same approach and measures in Chapter 8

for characterizing oscillatory phase waves in the local-field potential
(LFP). The wave characterizations present distinct activity signatures
for different visual areas and frequency bands. Furthermore, we see
a correlation between wave characteristics and behaviorally relevant
events.

9.2 modalities of comparison

adapting the validation concept When comparing two net-
work characterizations, we are interested in how the two networks
are related. This comparison modality determines what kind of infor-
mation we can gain and in what context it is useful. Networks can
be described based on experimental recordings of biological tissue,
computational model simulations, stochastically generated activity,
and their many variations. The classic validation scenario compares
model simulations against experimental measurements to establish
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confidence in the accuracy of the model predictions. Validation has an
established conceptual foundation and is applied in many scientific
fields (Section 1.4). In Chapter 4, we adapt the validation approach
and terminology to the network-level evaluation of the neural activity.
Analog to model vs. experiment applications, we discuss the applica-
bility of model vs. model and experiment vs. experiment comparison
modalities. Model vs. model applications can not establish a model’s
confidence as validation testing does. However, they can, for example,
evaluate plausibility, consistency, and sensitivity to input or parameter
variations.

simulator evaluation Notably, validation qualitatively sepa-
rates the mathematical model and the executable model description.
For neural network models, this highlights the role that the simulator
engine plays in evaluating a model. As a use case, we demonstrate a
model vs. model comparison approach to evaluate the neuromorphic
SpiNNaker system as a simulator. We develop a neural network model
implementation on the SpiNNaker system and iteratively compare its
simulation result to a reference simulation. This application showcases
the benefits of validation testing for guiding the model development
process. Furthermore, we discuss the interpretation of validation test
results and emphasize a context-dependent level of agreement.

validation test framework The applications and interpreta-
tions of different comparison modalities can be very diverse. Still, the
practical network comparison workflow is basically identical. There-
fore, we formalized this process in the Python validation test library
for network-level comparisons "NetworkUnit". This framework im-
plements validation testing in the form of interacting class instances.
Network descriptions class A and B with the capability to simulate
spiking activity are matched to a test class that extracts characteristic
activity measures. In combination with a score class, the sample mea-
sures of A and B are statistically compared, resulting in a similarity
score.

comparing network model variations In Chapter 5, we
extend this framework by developing the statistical eigenangle test
to evaluate the similarity of pairwise activity measures such as the
Pearson correlation coefficient (and the synaptic weights as pairwise
connectivity measure). We apply this test to explore further applica-
tions of model vs. model comparison scenarios (and an experiment
vs. experiment scenario). In particular, we compare initializations of
the same network model with a different random seed to measure
the stochastic variability of the network connectivity and activity. Ad-
ditionally, we apply specific changes to the connectivity of a model
instance and compare the model before versus after to quantify the
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impact of the applied changes. These applications serve to evaluate the
model’s sensitivity to variations. Moreover, evaluating such rewiring
experiments allows us to gauge the impact of specific connectivity
motifs on the activity and better understand the underlying network
dynamics.

model calibration Chapter 6 showcases how multiple com-
parison modalities can be combined to optimize network model pa-
rameters for experimental activity data from different cortical areas.
Quantifying the variance of cortical activity across areas by experi-
ment vs. experiment comparisons supports the need for area-specific
model definitions. An analogous model vs. experiment workflow can
be used to compare a model instance to a specific dataset to evaluate
their similarity. To calibrate the model connectivity parameters, we
adjust the model parameters accordingly in an iterative optimization
loop. Calibration is conceptually different from validation because it
explicitly incorporates the information from the experimental data
into the model. After the optimization loop converges, the model
vs. experiment validation testing thus needs to use a separate set of
data (and ideally additional comparison metrics). We demonstrate the
efficacy of our model optimization approach to converge to a unique
solution of parameter settings by applying it to a test scenario, in
which we calibrate a simple network model against simulated data
with known ground truth. Chapter 7 shows another calibration and
validation use-case, where a neuromodulatory input to a mean-field
model is fitted so that the model exhibits accurate statistics of slow
wave characteristics.

comparing variation of experimental data Besides, in
Chapter 7, we mainly focus on experiment vs. experiment comparisons
across heterogenous datasets based on slow wave characteristics. In a
meta-study, we aggregate datasets from different sources and compare
them grouped by measurement technique, anesthetic type/dosage,
and genetic strain. With this approach, we can evaluate the influence
of these experimental parameters on the measured wave activity. In
Chapter 8, we further compare experimental data of behaving macaque
monkeys to evaluate the characteristics of cortical waves across (visual)
areas, frequencies, and behaviorally relevant events.

9.3 interplay of connectivity, activity, function :

variability of simulated neural network activity The
exploration of different comparison metrics and modalities for neural
network descriptions raises the question of what we can learn about a
neural system from these comparisons. In particular, we are interested
in the interplay between network connectivity, activity, and function.



170 conclusion

The activity of neural networks is not a deterministic result of the
underlying connectivity. The network dynamics are affected by addi-
tional influences such as the dynamic state of the network, type of
external input, and internal and external sources of stochasticity. In
neural network models, such influences are often explicitly included in
the model description or the simulation environment. However, details
of the model implementation and simulation environment also influ-
ence the simulated activity, for example, the type of random number
generators, solver of ordinary differential equations, or floating point
arithmetic. In Chapter 4, we quantitatively measure the variability of
simulated spiking activity of a neural network model between two
different computing architectures (classical Von-Neumann vs. digital
neuromorphic).

measuring connectivity → activity effects In Chapter 5,
we introduce a new methodology for analyzing the relationship be-
tween network connectivity and activity. The statistical test can (for
a specific type of network) compare the structure of the synaptic
connectivity and the activity correlation between two network real-
izations. Thus, we can quantitatively link connectivity changes to
changes in the activity correlation. In our network model setup, we
find that changes to specific synapse populations and motifs have an
over-proportional effect on the activity correlations and firing rates
while others are under-proportional. However, we also see that the
susceptibility to specific synaptic changes depends on network type,
state, and parameterization.

inferring activity → connectivity In Chapter 6, we investi-
gate activity-to-connectivity inference by calibrating network model
parameters. By matching the characteristics of the simulated spiking
activity to experimental recordings, we can accurately determine the
most likely parameter values for the model’s connection probabilities
and external input. The demonstrated effectiveness of this approach
suggests that, within the constraints of the model parameterization
and recorded network state, similar spiking activity is indicative of
similar connectivity. We see distinctly different spiking activity in
functionally separated cortical areas in the experimental data, suggest-
ing different microscale connectivity in their network structure. Thus,
a following investigation of the inferred structural differences may
further indicate their specialized function.

wave activity can inform connectivity and function

Finally, we focus on traveling wave activity, a prevalent neural network
activity motif. On the one hand, it has been shown that traveling waves
naturally emerge from delays in horizontal connectivity (Davis et al.,
2021) and that slow waves constitute a "default mode" activity in the
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cortex (Sanchez-Vives et al., 2017). In a model calibration application
(Section 7.3.4), we also show that realistic wave activity can emerge
from an anisotropic connection probability kernel and a rhythmic
modulation of the external input and the spike-frequency adaptation.
On the other hand, wave activity has been linked to functions such as
memory consolidation (Wei et al., 2016; Capone et al., 2019a; Pazienti
et al., 2022), movement preparation (Dean et al., 2012; Heitmann et al.,
2015; Denker et al., 2018b), and visual perception (Muller et al., 2014;
Zanos et al., 2015; Davis et al., 2020).

In Chapter 7, we integrate heterogeneous data sources into a joint
meta-study to build towards a cumulative understanding of slow
wave activity. In this meta-study, we evaluate the influence of dataset-
specific influences on the characteristics of wave activity. For example,
we measure the effects of different anesthesia states on wave dynamics,
which may contribute to evaluating theories of unconscious brain
states. Further, we compare the wave activity recorded with electrical
and optical measurement techniques and isolate the influence of the
spatial resolution on the wave measures.

In Chapter 8, we investigate the wave activity in four areas in the
visual cortex that we know are connected within the hierarchical
visual pathway. The (frequency-dependent) characterization of the
wave activity in each area represents the basis for evaluating further
how wave activity is mediated between these connected sub-networks.
In a preliminary analysis, we find a specific wave pattern signature
that exclusively locks to relative visual target transitions towards the
upper-right. Based on this observation, we discuss a link between
wave activity in the visual cortex and eye movement, which could
further narrow down the functional role wave activity could play in
visual processes.
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10.1 open and collaborative science practices

general open science practices Practices of open and col-
laborative science are a prerequisite in modern science. The FAIR
principles (Findable, Accessible, Interoperable, Reusable) formalize
open science practices for research data management (Wilkinson et
al., 2016) and research software development (Lamprecht et al., 2020;
Barker et al., 2022). In this work, we explicitly address issues of repro-
ducibility and reusability of data and code (discussed, for example,
in Section 10.2 and Section 10.3). Moreover, our research applications
benefit from open-access data (e.g., in the meta-study in Chapter 7)
and code (e.g., in the model replication in Chapter 4). The data and
code resources of our publications are published in a form supporting
the replicability of results. We emphasize using open-source tools and
standard data formats, such as the Python programming language1,
Neo data representation (Garcia et al., 2014), odML metadata repre-
sentation (Grewe et al., 2011), Nest simulator (Deepu et al., 2021; de
Schepper et al., 2022), Elephant analysis toolkit (Denker et al., 2018a),
snakemake workflow management system (Mölder et al., 2021), and
other Python modules. In our analysis-code development, we aim
to contribute to such tools by providing application feedback and
co-developing new utility features. We aim to make our methods and
implementations generally reusable. Thus, in the scope of this thesis,
we develop two open-source software products that we reuse in our
projects and that are also being reused in external research projects.

networkunit NetworkUnit (Gutzen et al., 2018a) is a validation
test library to perform statistical network-level comparisons of net-
work activity data. The module is based on the SciUnit validation
framework (Omar et al., 2014), to which we, in turn, contribute by
integrating new features. Furthermore, we align NetworkUnit with
other SciUnit-based test libaries2, and serving in the SciUnit executive
committee3. Chapter 4, Chapter 5, and Chapter 6 use and develop
NetworkUnit. Beyond our work, NetworkUnit is further applied in
projects to evaluate simulators, i.e., comparing the accuracy of a GPU-
accelerated Nest against conventional Nest (Tiddia et al., 2022) and
comparing a native Nest model implementation against a PyNN-based

1 Python Software Foundation, https://www.python.org/
2 https://github.com/scidash/sciunit/network/dependents?dependent_type=

REPOSITORY

3 https://github.com/scidash/sciunit/blob/master/COMMITTEE.md

173

https://www.python.org/
https://github.com/scidash/sciunit/network/dependents?dependent_type=REPOSITORY
https://github.com/scidash/sciunit/network/dependents?dependent_type=REPOSITORY
https://github.com/scidash/sciunit/blob/master/COMMITTEE.md


174 discussion & outlook

(Davison et al., 2008) Nest implementation (Albers et al., 2022). Fur-
thermore, NetworkUnit is used in projects evaluating the influence
of numerical parameter resolution on the simulated outcome, i.e.,
measuring the robustness concerning the synaptic weight resolution
(Dasbach et al., 2021) and synaptic delay resolution.

cobrawap Cobrawap (Gutzen et al., 2023) is a framework for con-
structing brain wave analysis pipelines in a modular manner. The
tool is developed and applied in Chapter 7 and Chapter 8, including
the related model calibration application described in Section 7.3.4
(Capone et al., 2023). Furthermore, Cobrawap is being applied in an
external project using whole-brain calcium imaging studies of anes-
thetized and sleeping mice in the context of the works Shimaoka
et al. (2017) and Zhang et al. (2022). Moreover, current work aims to
extend the pipeline stages with additional methods (e.g., hierarchical
subsampling (De Luca et al., 2022)) and to integrate the tool with
high-performance computing resources and provide it as a workflow
service on the EBRAINS platform4 (Lupo et al., 2022).

10.2 continuous validation testing

validation testing improves model quality and repro-
ducibility Standardized validation tests help establish an accurate
confidence level in a model. Furthermore, in Chapter 4, we show how
the repeated application of validation tests during the model devel-
opment can support and improve the process. Validation tests during
model development are distinctly different from calibration, where a
bad comparison score triggers the adjustment of model parameters.
Instead, validation tests guide the modelers in their model design
and, in some cases, may trigger another pass of verification tests. In
Chapter 4, we formalize the application of network-level validation
tests (incl. calibration and substantiation). The standardized process
and the corresponding implementation in the NetworkUnit module
enhance reproducibility and ease of use.

validation testing for model development and publish-
ing Elaborating on this idea, the next step would be to further
formalize also the continuous application of validation tests, for ex-
ample, in the context of model development. Instead of manually
deciding when and which validation test to apply, predefined tests
could be executed automatically with each iteration or adaption of the
model. By applying predefined tests, the modeling process is evalu-
ated for prior hypotheses, as opposed to applying suits of validation
tests that may be adjusted ad-hoc and can obscure the model’s ex-
planatory power. In combination with an automatically triggered test

4 https://wiki.ebrains.eu/

https://wiki.ebrains.eu/
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execution, such a process would reduce the possibly arbitrary choices
of a modeler and make the modeling process more reliable. Such a
continuous validation process can also be applied to other application
contexts. For example, performing automated tests on newly recorded
data in an experiment by comparing it to sample data can quickly
detect deviations from the expected activity regime. Such experimen-
tal data validation can indicate possibly faulty equipment and enrich
the metadata in the form of a quality measure of a recording session.
Furthermore, automated and standardized validation tests could ben-
efit the publishing of models. Combining validation testing with the
registration of models in model databases would provide an indepen-
dent assessment in the form of scores on various standardized tests.
The quantitative assessments would make the models comparable and
help define their scope of application.

validation testing for interoperability Beyond evaluat-
ing how accurately a model describes a system of interest, validation
tests can further evaluate the robustness of a model’s technical realiza-
tion. Computational results may be influenced by even minor details
of the implementation and the computer system (Glatard et al. (2015),
Chapter 4). Therefore, an evaluation of a model’s confidence should
include its robustness concerning different computational environ-
ments. This can include, for example, an evaluation of the influence of
the precision of value representations (Dasbach et al., 2021)1 or algo-
rithm choice (e.g., for an ODE solver) (Trensch et al., 2018)1. Sensitivity
checks can reveal artifactual network model behavior as demonstrated
by Pauli et al. (2018)1. Furthermore, the model validation with respect
to simulator engines can be combined with benchmarking tests of the
simulation performance as done for the comparisons Nest vs. SpiN-
Naker (van Albada et al., 2018), Nest vs. Nest GPU (Golosio et al.,
2021b; Tiddia et al., 2022), and Nest vs. PyNN Nest (Albers et al.,
2022). The Nest vs. SpiNNaker benchmarking was performed parallel
to the project described in Chapter 4, and the latter two examples are
currently being adapted and expanded1 with validation testing using
NetworkUnit.

technical realization of a validation framework The
process of continuous validation could be realized similarly to the
practice of continuous integration in software development, which au-
tomatically executes unit tests that check the correct behavior of the
code base whenever an update is pushed to the code repository. The
aspect of storing validation test results and linking them to models
and datasets is currently being developed by Appukuttan et al. (2022)

1 The author was involved in an advisory/supportive role in designing these validation
workflows.
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in the context of the EBRAINS platform5. This effort also includes
the development of domain-specific validation test libraries based on
the generic validation test module SciUnit (Omar et al., 2014). The
NetworkUnit module for tests in the network-level domain that we de-
velop in the context of Chapter 4, Chapter 5, and Chapter 6 contributes
to this work.

10.3 reusability of the collaborative brain wave analy-
sis pipeline

types of pipeline reuse Not only physical but also digital re-
sources should be recycled. Therefore, we explicitly designed the Col-
laborative Brain Wave Analysis Pipeline (Cobrawap) to be adaptable
and reusable. Therefore, the continuous development and application
of the pipeline beyond its initial application in Chapter 7 was expected.
There are different types of possible pipeline reuse. In terms of its
interfaces to larger workflow applications, the pipeline can be applied
to other input types and/or for producing another type of output. In
terms of the pipeline’s modularity, the reuse types can be classified
as adaption (e.g., new data, changed configuration, changed block
selection), selection (e.g., extracting individual or a subset of blocks or
stages), or extension (adding additional blocks and/or stages).

branching-off pipeline extensions For example, current
work entails the development of a pipeline realization that focuses
on the local oscillations of multi-unit activity signals between Up
and Down states and ignores the spatial propagation, similar to the
work by De Bonis et al. (2019). The Slow Oscillation Analysis Pipeline
(SOAP) reuses the first three stages of the Cobrawap and then branches
off with specialized stages for more detailed local analysis. Another
envisioned pipeline application will extend the analysis of sponta-
neous wave activity to wave activity triggered by external electrical
stimulation. This extension requires storing information about the
electrical stimulation, such as its timing, location, intensity, and pulse
shape, in the standardized data representation of the pipeline (using
Neo (Garcia et al., 2014)). This additional stimulus information is
then available to new specialized blocks, for example, to calculate
the stimulus-response complexity by a perturbation-complexity index
(PCI) (Casali et al., 2013; Virmani and Nagaraj, 2019). Perturbational
complexity is a clinical measure for evaluating levels of consciousness
realized in multiple method definitions and implementations (Casali
et al., 2013; Virmani and Nagaraj, 2019; Deco et al., 2018). Besides en-
abling PCI analyses on heterogeneous data, the corresponding pipeline
integration could also be used to compare the different PCI methods,
i.e., "method benchmarking" as demonstrated in Section 7.3.3.

5 https://wiki.ebrains.eu/bin/view/Collabs/model-validation

https://wiki.ebrains.eu/bin/view/Collabs/model-validation
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input type pipeline adaptions While the initial application of
Cobrawap was tailored towards spatially coordinated propagating Up
and Down states in the < 1 Hz regime (Chapter 7), we demonstrated
in Chapter 8 how the pipeline can be adapted to oscillatory wave
activity in higher frequency regimes. This adaption involves reinter-
preting the detection of Down-to-Up transitions in slow waves as the
detection of an equal-phase wavefront (e.g., defined via its peak ϕ = 0)
and calibration of the configuration parameters to the corresponding
frequency regimes and spatial resolution. In this context, we integrated
additional input datasets of oscillatory wave activity measured with
implanted multielectrode arrays (Brochier et al., 2018; Chen et al.,
2022). While traveling oscillatory waves are observed in many cortical
regimes, frequency bands, and experimental contexts (e.g. Senseman
and Robbins, 2002; Petersen et al., 2003; Wu et al., 2008; Townsend and
Gong, 2018; Denker et al., 2018b; Balasubramanian et al., 2019), there
are some discrepancies in the reported results and terminology. For
example, both Townsend and Gong (2018) and Denker et al. (2018b)
classify and investigate different wave types (including planar, spiral,
and radial patterns) but apply different definitions. Integrating the cor-
responding datasets and methods into the pipeline could disentangle
the different definitions and make the results comparable.

convergence level of heterogenous data When integrat-
ing heterogeneous data into a common analysis, the crucial question
arises concerning the adequate comparison level at which all data
abstractions should converge. For example, when we compare wave
activity based on spiking and LFP data, we could either approximate
an LFP signal from the spikes (e.g., via LFPy Hagen et al., 2018)
and then process both data equivalently or derive wave measures
directly from both signals. On the one hand, a direct calculation of
wave measures from each data modality provides a more immedi-
ate wave description that may adjust for specific properties of the
data modality. On the other hand, abstracting the more detailed data
modality (spikes) to the more coarse data modality (LFP) allows a
more immediate convergence of the data descriptions and equiva-
lent calculations of wave measures. However, both approaches also
have considerable drawbacks in terms of increasing complexity when
adding new data modalities or wave measures. Transforming one
data modality into another can get out of hand quickly when dealing
with many different data sources and is not always easily possible.
Similarly, developing methods to extract wave measures separately for
each data modality increases the amount of methodological/coding
effort and potential sources of errors and discrepancies many-fold.
Therefore, in most cases, we would define the convergence level (i.e.,
abstract wave description) and derive wave measures independently
of any data source. In Chapter 7, we motivate this approach with the
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analogy of a rail system. When there are many starting points and
many possible destinations, it is most effective to construct central
traffic nodes instead of many direct connections. This option always
involves an abstraction of the input data and may, in some cases, also
omit to leverage the total informative value of the data. For example,
the temporal precision and eventual phase-locking effects would be
disregarded when abstracting spiking data via rate fluctuations to the
abstract wave description defined in Cobrawap.

10.4 inferring connectivity and predicting activity

connectivity-activity relation A key aspect in network
neuroscience is and remains the dynamic relationship between the
structural connectivity of networks and the activity they exhibit. Due
to their multifaceted relationship, it is not trivial to conclude when we
can infer structure from the activity and when we can infer activity to
structure. As the same computer hardware can run different kinds of
software, a network with fixed connectivity can give rise to different
types of activity. However, this analogy’s extent is vague as the brain is
not like a computer in many aspects (Brette, 2022). While connectivity
shapes activity, the activity also shapes connectivity via multiple
plasticity mechanisms on different timescales from milliseconds to
hours (Gerstner et al., 2018).

functional connectivity Notably, the structural connectivity
is more challenging to measure than the activity of a network, espe-
cially for in-vivo recordings. Therefore, investigating structure-activity
relationships often involves the analysis of functional connectivity. Func-
tional connectivity describes the interaction strength between network
nodes only based on their activity correlation. Inferring causation
(structural connectivity) from correlation (functional connectivity) is
highly problematic, mainly due to correlation contributions via indi-
rection connections and common inputs. While under ideal stationary
conditions, functional connectivity can approximate structural connec-
tivity (Bullmore and Sporns, 2009; Eickhoff et al., 2010), it has also
been shown that spurious correlations induce systematic errors in the
inference of structural connectivity (Das and Fiete, 2020). Nevertheless,
there is continuous progress in inferring connectivity from activity,
for example, by taking into account the sparseness level of the net-
work (Pernice and Rotter, 2013), using the point-processes models of
measured spike trains to guide the inference (Gerhard et al., 2013),
or combined structural and functional analysis (Battiston et al., 2017).
We know that the connectivity → activity relation is a one-to-many
mapping that is influenced by additional factors such as the network
input and its dynamical state (Sporns and Tononi, 2001). For the
other way around, activity→ connectivity, the ambiguity of functional
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connectivity concerning the underlying connectivity also suggest a
one-to-many (or at least one-to-few) mapping. However, evaluations of
functional connectivity (e.g., in the above-cited works) further suggest
that additional assumptions can reduce ambiguity and establish a
one-to-one mapping from activity to connectivity.

activity → connectivity The consideration of a one-to-one
mapping from activity to connectivity is used implicitly when cali-
brating connectivity parameters via comparisons of activity features.
In order to make the unique inference of the connectivity tractable in
a calibration application, the corresponding model needs to impose
additional constraints for the connectivity, as we also do in Chap-
ter 6. Therefore, we do not attempt to calibrate every aspect of the
model connectivity but only specific aspects, such as the connectiv-
ity probabilities between neuron populations and the external input.
Other connectivity aspects are fixed, such as the number of excita-
tory and inhibitory neurons, the total number of synapses, and their
strength distribution. In particular, also any plasticity effects are ig-
nored. Furthermore, these model constraints must also correspond to
the experimental target system. Therefore, we focused in Chapter 6

on simple resting-state recordings that provide a certain degree of
stationarity. Any remaining ambiguity in the connectivity inference
would be indicated by repeated calibration steps not converging to a
unique solution or by a subsequent validation procedure. We find in a
proof-of-concept application with modeled data that our calibration
workflow based on evolutionary optimization converges properly to
the ground truth connectivity parameters based on a multivariate ac-
tivity characterization. Furthermore, we find that our characterization
approach for spiking activity can distinguish recordings from different
cortical areas, layers, and subjects, with the similarity of characteriza-
tions generally corresponding to the assumed functional similarity of
the recorded sets of neurons (e.g., between the same area and layer in
different subjects). These first results, thus, provide good conditions to
approximate connectivity parameters of cortical microcircuit models
from spiking activity data, which we pursue in the next step. Similarly,
in Chapter 7, we demonstrate a calibration application that infers
connectivity and external input parameters for a mean-field network
model via slow wave activity measured with wide-field calcium imag-
ing. The successful modeling of realistic slow wave activity shows that
many of the observed wave activity features can be accounted for by
the interplay of spatially structured connectivity and fluctuating input
(Capone and Mattia, 2017; Capone et al., 2023). This insight seems to
also generalize for wave activity in higher frequency regimes (Kang
et al., 2023).



180 discussion & outlook

connectivity → activity The activity of a network is con-
strained by its underlying connectivity. However, due to non-linear
network dynamics and additional influences, the activity can typi-
cally not be determined precisely from a given connectivity (Albada
et al., 2015). For example, in Chapter 4, we demonstrate how small
numerical details in a model realization can substantially affect the
exhibited spiking activity. However, multiple works draw relations
between activity attributes (e.g., correlations) and specific connectivity
aspects, such as recurrence and hub structures (Pernice et al., 2011),
or background activity and synaptic properties (Ostojic et al., 2009).
In Chapter 5, we also demonstrate a quantitative approach that can
measure the influence of changes to a network model’s connectivity on
the network’s activity correlations. The "eigenangle test" relies on the
informative value of the eigenspectrum of a matrix-valued network
measure. As, for example, demonstrated in Zhou et al. (2009) and
Dahmen et al. (2019), the eigenspectrum of the connectivity matrix
can inform the network state and dynamics. In our application, we
use synaptic rewiring protocols to investigate the influences of the
different connection changes between excitatory and inhibitory pop-
ulations and the spread of additional excitatory connections. With
this approach, we find that the correlation structure is more sensitive
to excitatory connections, as previously suggested by Aertsen and
Gerstein (1985), while firing rates are more sensitive to inhibitory
connections, as also found by Mongillo et al. (2018). Our approach
can be adapted to a range of other rewiring protocols, for example,
to probe the effects of the arrangement, composition, and interaction
of cell assemblies (Harris, 2005; Aviel et al., 2003; Litwin-Kumar and
Doiron, 2012). Despite the complex and non-linear behavior of neural
network dynamics (Dahmen et al., 2022; Wainrib and Touboul, 2013;
García del Molino et al., 2013; Sompolinsky et al., 1988), we show that
there are strategic approaches to evaluate its aspects for a given neural
network type. Besides the type of network model that we used (Rajan
and Abbott, 2006), the eigenangle test can, in principle, be applied
to other network types with analytical eigenspectrum descriptions
(e.g. Sommers et al., 1988; Kuczala and Sharpee, 2016; Ahmadian
et al., 2015; Schuessler et al., 2020; Muir and Mrsic-Flogel, 2015), or
numerically defined null hypothesis distributions via surrogate data
(Grün, 2009; Stella et al., 2022).

10.5 relation between spike patterns and lfp waves

separation into spikes and lfp Neural activity, measured
by implanted electrodes, can be abstracted and separated into two
types of activity: spikes, the binary pulse signals representing action
potentials from nearby neurons; and the local field potential (LFP), the
low-pass filtered analog signal component representing a population
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activity from nearby neuron groups (Section 1.3). The link from intra-
cellular action potentials to extra-cellular spikes is relatively clear
(through the filter of spike sorting (Rey et al., 2015)). In contrast, there
are many factors contributing to the LFP signal that may depend on
the species, brain area, spectral band, and network state. However, the
main contributors are the local postsynaptic potentials (Pesaran et al.,
2018).

Evidently, there is an overlap in the respective underlying mech-
anisms, as spikes and LFP both represent aspects of electric neural
activity. However, the unique contributions to the signals make them
both relevant complementary components to understanding neural
network dynamics. For example, in contrast to spikes, the LFP sig-
nal reflects subthreshold membrane dynamics and their correlation
across neurons (Ness et al., 2016; Speed et al., 2020). Spikes, in contrast
to LFP, can be attributed to individual neurons and can therefore
resolve activations of specific combinations of neurons (Grün et al.,
2002; Litwin-Kumar and Doiron, 2012). Both, spikes and LFP signal
components are extracted from the same recorded signal and mainly
distinguished by their frequency regime: LFP ⪅ 300 Hz, multi-unit
activity (MUA) containing spikes ⪆ 300 Hz. Chapter 4, Chapter 5, and
Chapter 6 focus on the analysis of the spiking activity while Chapter 7

and Chapter 8 focus on wave dynamics in low-pass filtered (LFP)
signals.

interaction of spikes and lfp Even though the spikes and
LFP are separated by frequency domain, the signals are not indepen-
dent. In fact, there are remnants of the spiking activity in the higher
frequencies of the LFP signal (⪆ 50 Hz), measured on the same elec-
trode, that become visible in correlation analyses or spike-triggered
averages (Ray and Maunsell, 2011; Zanos et al., 2011). Besides such
artifactual relations, there are also meaningful relations between the
signal components. Spikes not only influence the LFP at the same
electrode but can create an outward propagating wave of LFP activity,
that can be measured in nearby electrodes (Nauhaus et al., 2009). The
other way around, the LFP can influence the membrane potential of
a neuron and thus change its probability to emit an action potential
(i.e., "ephaptic coupling") (Anastassiou et al., 2011). Additional to the
exchange of action potentials via synapses, this type of interaction
represents another communication mechanism between neurons. It is
widely supported that rhythmic LFP activity plays a role in coordi-
nating distant spiking activity and thus aligning different functional
processes and neural circuits (Varela et al. (2001), Section 10.6).

One signature of this coordinating mechanism between LFP and
spikes is that sometimes the timing of spikes is locked to the phase of
the LFP or a frequency band of the LFP ("phase locking"). The degree
of phase locking depends on the LFP oscillation strength (Denker
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et al., 2007), surplus synchrony of the spikes (Denker et al., 2011), and
can correlate with stimulus features (Engel et al., 1990; Fries et al.,
2001; Vinck et al., 2010). These findings suggest a functional relevance
of LPF-spike interactions, however, the exact mechanisms are not yet
understood. Another indicator to an eventual functional mechanism is
that patterns of coordinated spikes ("spatio-temporal patterns") tend
to have a preferred spatial direction (Takahashi et al., 2015; Torre et al.,
2016), just as wave activity shows a preferred directionality (Rubino
et al. (2006) and Denker et al. (2018b), Chapter 7, Chapter 8). An ongo-
ing research project under the author’s supervision investigates the
alignment of simultaneously co-occurring spike patterns and waves.

10.6 functional roles of cortical waves

direction preferences of traveling cortical waves Ru-
bino et al. (2006) were the first to report the organization of local LFP
oscillatory activity into propagating waves in the motor cortex. Among
their results, they report the propagation of beta-band waves along
preferred axes. However, the preferred axes are distinct for different
functional areas in the motor cortex. In the primary motor cortex,
waves travel on an anterior-posterior axis, whereas in the dorsal pre-
motor area, they travel on a lateral-medial axis. Similarly, we observe
preferred wave propagation axis in the visual cortex that differ in
orientation (Section 8.3.2). Although there are also complex wave pat-
terns, like spiral or radial patterns, that do not have a single defined
direction, most observed waves tend to have an approximate planar
directionality (Denker et al., 2018b; Townsend and Gong, 2018). The
emergence of traveling cortical waves can be explained by the delays
of horizontal fiber connections (Davis et al., 2021), and their direction
preference by anisotropic connection probability kernels (Section 7.3.4,
Capone et al. (2023)).

In Section 7.3.2, we further observe preferred direction axes on a
hemisphere scale for slow wave activity. Notably, while the waves
recorded with either ECoG or calcium imaging had preferred di-
rections roughly on an anterior-posterior axis, the tilt of the axes
in medial-lateral directions differed considerably between the two
measurement techniques. A possible explanation for this discrepancy
could be that the two techniques measure from different subsets of
neurons in different cortical layers (ECoG: layer 1; calcium imaging:
layer 2/3 & 5) (de Vries et al., 2020; Siegle et al., 2021b; Siegle et al.,
2021a). Additionally, there is further evidence that cortical wave dy-
namics differ across the laminar layer structure of the cortex (Halgren
et al., 2018; Capone et al., 2019b; Bharioke et al., 2022).

Furthermore, wave direction and direction variability seem to be a
matter of spatial scope and frequency. Low-frequency oscillation pat-
terns are coordinated over a longer distance (e.g., a hemisphere) than
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the typically more localized high-frequency oscillations (von Stein and
Sarnthein, 2000; Valderrama et al., 2012). This trend also corresponds
to our observation of the direction variance as a function of frequency
in recordings of implanted multielectrode arrays (Section 8.3.2). So, the
directionality of cortical wave dynamics depends on the underlying
connectivity, the specific area and layer, and frequency. Considering
the popular view that synchronization of oscillations plays a role in
the coordination of activity across local or distant neural population
(Destexhe et al., 1999b; von Stein and Sarnthein, 2000; Halgren et al.,
2018), wave direction is plausibly also of functional relevance for the
directed flow of information (e.g., in feedback and feedforward pro-
cesses) (Buffalo et al., 2011; van Kerkoerle et al., 2014; Michalareas
et al., 2016).

communication within frequency bands When looking
at the visualized LFP phase wave patterns across different frequency
bands on multielectrode arrays, as in Chapter A, one can visually
distinguish distinct patterns that occur on the same array at the same
time, but in different frequency bands. In the context of informa-
tion flow and inter/intra-areal communication, one might draw an
analogy to frequency-separated communication channels as they are
implemented, for example, in radio signals.

Indeed, similar concepts are proposed for cortical function and are
widely studied. For example, synchronization of neural populations
to different frequency bands can control different modes of atten-
tion (Fries et al., 2001; Buschman and Miller, 2007; Lakatos et al.,
2008; Schroeder and Lakatos, 2009; Landau et al., 2015; Helfrich et al.,
2018; Fiebelkorn et al., 2018); rhythmic synchronization modulates
effective connectivity so that post-synaptic populations select inputs
that are coherent to its dominant frequency ("communication-through-
coherence") (Fries, 2005; Fries, 2015); feedback and feedforward signals
(e.g., in a predictive coding schema) are separated into distinct fre-
quency bands (Bastos et al., 2012; Bastos et al., 2015; Michalareas et al.,
2016; Dann et al., 2016; Schneider et al., 2020; Vezoli et al., 2021; Vinck
et al., 2022). Notably, these concepts are not mutually exclusive and
share some common aspects. However, none of these studies explicitly
relate the concept of frequency channels with traveling wave patterns.

Expanding these approaches by further considering the spatial or-
ganization of neural oscillations would be promising, as Davis et al.
(2020) showed that the presence of waves can be more predictive
of perceptual sensitivity than just the oscillation phase alone. Con-
versely, a detailed frequency consideration may be helpful to distin-
guish the feedforward and feedback attributes of stimulus-triggered
and internally-generated (i.e., "spontaneous") waves. Attributes of
stimulus-triggered waves in the visual cortex may depend, for exam-
ple, on a stimulus’s contrast (Nauhaus et al., 2009), or its position,
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orientation, and frequency (Benucci et al., 2007). In contrast, there are
also internally-generated waves that are instead indicative of attention
(Davis et al., 2020) and general top-down communication (Roland
et al., 2006). Furthermore, observed cross-frequency coupling effects
(Lakatos et al., 2008; Schroeder and Lakatos, 2009; Helfrich et al., 2018;
Greenwood and Ward, 2022) represent possible interaction modes be-
tween different frequency-specific mechanisms (Halgren et al., 2018).

In Section 8.3.2, we observe preliminary evidence that wave di-
rection preferences change across frequencies. However, in order to
substantiate this finding and narrow down its eventual relations to
mechanisms suggested in the literature (e.g., feedback/feedforward
separation), we need to further analyze the contextual details and
reconcile previous evidence from the time, frequency, and spatial
domains of oscillatory communication schemes and traveling wave
dynamics.

computational mechanisms It has been suggested for a long
time that additionally to the synaptic transmission of action potentials,
oscillations of the local field potential (LFP) play a crucial role in
the computational processes of neuro-electrical signals (Varela, 1995;
Hopfield, 1995; Wilson et al., 2015). In Section 10.5, we discussed
the unique contributions of spike and LFP signals. To narrow down
the eventual computational mechanisms of neural circuits, one has
to consider the various evidence for functionally relevant activity
features (Section 1.5) and the complex biophysical spike-LFP and
LFP-LFP interactions. Likely, there is not just a single way in which
information is encoded and processed. Field potential oscillations (and
their wave organizations) may be involved in various mechanisms in
different brain regions, frequency bands, and spatial and temporal
scales.

The LFP as a population activity measure is not only a helpful
workaround for the grave undersampling limitations in recordings of
simultaneous activity from single neurons. Even when neurons are in
the direct vicinity of a recording electrode, many emit spikes extremely
sparsely (Shoham et al., 2006) and are therefore not captured in the
recorded spiking activity. Still, their subthreshold activity contributes
to the LFP. The LFP, in turn, influences the membrane potential of
neurons and, therefore, their spiking probability and timing (Fröhlich
and McCormick, 2010; Anastassiou et al., 2011; Su et al., 2012; Han
et al., 2018). The local LFP oscillations rhythmically hyperpolarize
and depolarize the membrane potential of nearby neurons. During
hyperpolarization, neurons are mostly unresponsive, while during
depolarization, neurons are more sensitive to input, and spikes are
shifted towards the peak of the LFP oscillation phase (Reyes and Fetz,
1993; Mellon and Wheeler, 1999).
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As LFP oscillations modulate neuron sensitivity, the formation of
cortical wave patterns means that within the extent of a wave, only a
part of the cortical area is deactivated (hyperpolarized), while another
part is excitable (depolarized). Therefore, wave activity in a cortical
sensory field ensures that always a fraction of neurons is maximally
sensitive (Ermentrout and Kleinfeld, 2001). This hypothesis agrees
with reports of correlations between wave activity in the visual cortex
and performance in a visual perception task (Davis et al., 2020). Sen-
sory cortical areas are typically spatially organized in some map of
the corresponding sensory field. So, different stimuli (e.g., different
orientations of a visual stimulus) activate spatially separate parts in
the sensory field. In the case of two such different stimuli occurring
simultaneously, a coinciding wave could separate the two stimuli by
their phase. This phase information could be used to categorize or
selectively attend different inputs (Sompolinsky and Tsodyks, 1994;
Ermentrout and Kleinfeld, 2001). Accordingly, there are observations
that the spike phase of a neuron is selectively tuned to the orientation
of a visual stimulus (Vinck et al., 2010). Furthermore, observations
show that functional areas typically contain less than one wavelength
of an LFP wave, i.e., a phase variation < 2π (Roelfsema et al., 1997;
Ribary et al., 1991; Prechtl et al., 1997; Lam et al., 2000; Rubino et al.,
2006), so that each site in the area can be associated with a unique
phase value. This notion of a relation between wavelength and area
dimensions is further supported by observations of waves being re-
flected and compressed at the border between visual areas (Xu et al.,
2007).

Besides within-area wave dynamics, the spatial spread of LFP
rhythms is also postulated to support synchronization and modu-
lation across spatially separated and functionally specialized areas
(e.g. Varela et al., 2001; Shine et al., 2021). Although, such long-range
interactions may be restricted to lower frequencies ⪅ 30 Hz as the
range of gamma-modulated computation is limited (Ray and Maun-
sell, 2010). Propagating wave patterns in lower frequency regimes
may reflect the communication between coordinated processes such
as loops of action and perception (Jutras et al., 2013; Noel et al., 2022).
In this regard, the rhythmic LFP oscillations are thought to segment
the sensory input steam and integrate the information into a hierarchi-
cal structure of perception, for example, in active visual exploration
(Jensen et al., 2021), or the understanding of language (Kazanina and
Tavano, 2022).

waves in visual processing Notably, many of the observed LFP
waves are recorded in cortical areas associated with visual processing
and/or correlated to visual input. Even the observation of beta-band
waves in the motor cortex by Rubino et al. (2006) were shown to not
relate to movement planning or execution but instead hypothesized to
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correspond to visual target input. In Chapter 8, we observe a distinct
wave pattern that occurs very selectively only for a relative transition
of a visual target to the upper right. In the 1-10 Hz (subalpha) regime,
within 50-150 ms after target-onset to the upper right, we see an
increase in detected waves and wave planarity in V1 and V2, a wave
velocity increase in V1, and a wave propagation pattern in V2 that
travels first in an anterior direction and then abruptly reverses into a
posterior direction. The timing of this wave response to target onsets
suggests a relation to a corresponding eye movement.

There have been many reports of changes in the oscillatory activity
along the visual pathway that are related to eye movement (e.g. Lee
and Malpeli, 1998; Reppas et al., 2002; Purpura et al., 2003; Sylvester
et al., 2005; Rajkai et al., 2008; Barczak et al., 2019). Further, EEG
recordings have shown that saccade-evoked potentials are organized
in waves ("λ" waves) whose properties (e.g., latency, shape, amplitude)
correlate with the saccade properties (e.g., duration, direction, position)
(e.g. Evans, 1953; Billings, 1989; Thickbroom et al., 1991; Skrandies
and Laschke, 1997). More recently, similar effects of saccade-triggered
waves were also observed with implanted electrode arrays (Zanos et
al., 2015). However, these various findings do not yet paint a coherent
picture to which our observations could adhere. Consequently, we lack
a comprehensive explanation of saccade-related potential oscillations,
their wave properties, and their eventual functional role.

Initial theories focused on the fact that eye movements shift the
visual scene over the retina (Thickbroom et al., 1991). However, the
presence of saccade-triggered responses even in complete darkness
point to additional mechanisms (Skrandies and Laschke, 1997). En-
suing hypotheses instead emphasize that the fixation at the end of a
saccade is accompanied by increased excitability across the visual path-
way (Lee and Malpeli, 1998; Nakamura and Colby, 2000; Reppas et al.,
2002; Rajkai et al., 2008). So, it stands to reason that there is not only a
visually evoked response but also a depolarizing preparation/expecta-
tion activity independent of retinal input and caused by a shifted gaze
(Ito et al., 2011; Barczak et al., 2019). Such a preparation mechanism
was postulated to integrate new observations with ongoing activity
in higher-order regions (Sobotka and Ringo, 1997) by synchronizing
activation onset across areas (Purpura et al., 2003; Jutras et al., 2013),
mediated by phase-resets of neural oscillations (Lakatos et al., 2008;
Rajkai et al., 2008; Barczak et al., 2019). Furthermore, multiple find-
ings suggest that an inhibitory input suppression during the saccade
precedes the excitability after fixation (Kleiser et al., 2004; Sylvester
et al., 2005; Churan et al., 2012; Zanos et al., 2015; Barczak et al., 2019).
In summary, there is accumulating evidence that active visual sensing
(Schroeder et al., 2010; Barczak et al., 2019) is organized by oscillatory
processes that modulate sensory-evoked responses (Davis et al., 2020)
to enable the integration of visual inputs (Jensen et al., 2021).
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These theories and results mostly align with our experimental ob-
servations (Section 8.3.3). Many of the cited studies report the cor-
responding oscillatory processes in low-frequency regimes (delta -
alpha) (Purpura et al., 2003; Barczak et al., 2019; Jensen et al., 2021)
(notably except (Zanos et al., 2015)), which have been shown to occur
as traveling waves in the human neocortex (Zhang et al., 2018). Fur-
thermore, there are also indications of directional tuning mechanisms
in LFP saccade responses (Sobotka and Ringo, 1997; Purpura et al.,
2003; Zanos et al., 2015). In the next steps of our analysis, we aim to
incorporate behavioral hand and eye-movement data to better identify
the correlates of the LFP wave dynamics. In this regard, we hope to
integrate further aspects of the spatial organization of oscillations (i.e.,
waves) into the existing theories of visual processing and shed some
light on the functional role(s) of traveling wave activity.

10.7 personal perspective on the future of (computa-
tional) neuroscience

There are still many fundamental questions in neuroscience that await
to be answered. For example, in analogy to the Millennium Prize
Problems in mathematics, van Hemmen and Sejnowski (2005) formu-
lated "23 Problems in Systems Neuroscience". The issue with such
fundamental questions is that they are unlikely to be answered by any
single research project.

Looking back on the history of scientific breakthroughs, (Kuhn,
1962) describes a modest ascent of the general knowledge level inter-
cepted with major jumps of scientific revolutions. Although sometimes
attributed to a single research work, such revolutions or breakthroughs
are, in most cases, an aggregation of many incremental research works
that eventually culminate in a paradigm shift. However, it appears that
the neuroscience research landscape is becoming increasingly com-
plex, making it more difficult to aggregate many individual findings
to improve our fundamental knowledge effectively. Fundamentally
understanding neural systems and their host organisms involves many
disciplines addressing research questions on many scales, from molec-
ular to social and environmental interactions. This argument that
research progress in the future is facing different obstacles than in the
past may be biased by a hindsight view of the past and an uncertain
view of the future. Nevertheless, there are real obstacles to scientific
progress in our time, and although we are better positioned to advance
scientific progress than ever in history, our advancements also bring
their own challenges:

a) There are multiple known unknowns in our understanding of
neural systems, for example: How do neurons encode information?
What are the neural correlates of consciousness? Can we simulate an
entire human brain? How do biological neural networks compute?
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However, many of the questions still seem less tractable in the sense
that it is already difficult to define the question. For example: "What
do we mean by neural code?" (Brette, 2019), "Is there a hard problem
of consciousness?" (Chalmers, 1995; O’Hara and Scutt, 1996), "Which
whole brain simulations are actually useful?" (Destexhe, 2021). "What
do we mean by biological computation?" (Wood, 2019). b) Further-
more, there have never been so many research resources and so many
people working to advance science (Naujokaitytė, 2021). Still, in this
huge assortment of scientific activity, we struggle to get an overview
of the relevant works (Bornmann and Mutz, 2015), and therefore also
to get research heard by the right people and allocate resources where
they could be used most efficiently (Heinze, 2008). c) The technological
resources available to science are incredible: Supercomputers (Alvarez,
2021), 7-Tesla+ MRI (Platt et al., 2021), Neuropixel probes (Steinmetz
et al., 2018), and instant communication to any other researcher. But
with great power comes great humility as many disciplines face an
ongoing reproducibility crisis (Miłkowski et al., 2018). d) With ad-
vanced measurement technology and databases, there has never been
so much detailed data on neural systems. Still, this only represents
a tiny glimpse into the entire neural structure and activity ensemble.
Instead, we face the issues of organizing, describing, representing, stor-
ing, sharing, processing, and analyzing the data at scale (Wilkinson
et al., 2016).

Within this current state of neuroscience research, we argue that
fundamental progress requires systematic approaches to aggregate
the many heterogeneous advances into a collaborative effort to build
a cumulative understanding of neural systems. The work presented
in this thesis aims to contribute to this effort by developing system-
atic approaches for the quantitative comparability of neural network
descriptions. In an ideal future, we would like to see the seamless
reusability and combinability of research resources (including soft-
ware, methods, results, data, and metadata) facilitated by open stan-
dards and interfaces. Furthermore, to tackle fundamental challenges
in neuroscience, we hope to see a more systematic decoupling of tech-
nological, methodological, biological, and philosophical demands. For
example: is the quest to determine the "neural code" limited by our
measurement techniques? Is it limited because of biological stochastic-
ity and variability? Or is the task limited by an insufficient definition
of the question?
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A
V I S UA L I Z I N G C O RT I C A L WAV E S

Neural oscillations have rich dynamics which are challenging to cap-
ture in a coherent picture. Complex interactions between signal com-
ponents across space, time, and frequency exist. Such interactions
give rise to various propagating wave patterns that are observable
in the amplitude and phase of the neural activity. Figure A.1 is the
result of an exploration of how to design data visualizations of cor-
tical wave dynamics. The blog article, rgutzen.github.io/2020-06-25-
visualizing_waves, provides a detailed description of the process of
constructing the visualization. The visualization is also featured in
the "SciPy John Hunter Excellence in Plotting Competition" and was
awarded second place in 2020

1.
We use an open-access dataset of neural activity is analyzed that

was recorded by a 10x10 electrode array in the motor cortex of a
macaque monkey during a hand movement task (Brochier et al. (2018),
Section 5.3.2). In this task, the monkey is instructed to reach for an
object and to grasp it after receiving two visual cues specifying the
grip type (precision grip or side grip) and the grip force (high force or
low force).

The visualization shows four different frequency regimes, their spec-
tral power in the frequency domain, their wave-like activity across
the electrode array, and the signal evolution in time. The organiza-
tion of the activity phase in space reveals spiral, circular, planar, and
synchronous wave patterns. Distinct neural activity patterns appear
simultaneously in the different frequency regimes. The power spec-
trum shows their varying contributions to the full signal. Further,
the signal time course shows how the components align, especially
around behaviorally relevant events. As a reaction to the ’Grip-Type
Cue’, the beta and alpha components increase in spectral power and
show a more synchronized activity across the electrode array. However,
they are reduced in favor of theta and delta contributions during the
hand movement. Generally, there seems to be a correlation between
the spectral power and the kind of wave pattern. This kind of visu-
alized relations between the aspects of the neural signals and their
correlations to behavioral events may serve as a basis to guide further
investigations of the functional role of brain waves (for example as in
Chapter 8).

1 https://jhepc.github.io/2020/entry_24
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192 visualizing cortical waves

Figure A.1: Neural wave dynamics in the motor cortex of a macaque
monkey during an instructed reach-to-grasp task. An
animated version of the figure can be accessed at
youtube.com/watch?v=keXdZirxxjQ. The figure presents
the local field potential activity in four color-coded frequency
domains (Delta, Theta, Alpha, Beta) with varying spectral power
(left). The activity is recorded with an implanted 10x10 electrode
array (top-left inset). The spatial organization of the oscillation
phases over the area of the electrode array displays complex
wave dynamics (center). The signal components evolve in time
(right) and show a varying degree of coherence that seems to be
related to trial events (labeled marker) of the task.

https://www.youtube.com/watch?v=keXdZirxxjQ


B
T H E K I N T S U G I B R A I N

Art and science can interact a symbiotic relationship. Scientific topics
are often a sources for compelling art pieces; and art can as a creative
approach to address scientific questions in thought provoking ways.
There are many efforts that promote "SciArt", and "BrainArt" (or "Neu-
roArt") in particular. One of them is the OHBM BrainArt exhibition1,
that is organized as a part of the annual OHBM (Organization for Hu-
man Brain Mapping) conference. In this context, I presented the piece
shown in Figure B.1.

This artwork is inspired by the brain’s plasticity. The brain
can rewire and repair its broken connections. Kintsugi is the
Japanese art of repairing broken bowls or other pottery with gold,
highlighting its cracks, and celebrating its imperfections as part
of its history. Initially, plasticity allows for molding the clay and
for molding the brain in its early development by the external
influences imposed on it. Once in its apparent final shape, it
is still subject to change and external forces. Bowls can break.
Brains can break. Plasticity does not end. In many cases, they
can still be repaired and become more valuable in the process. The
philosophy of kintsugi, thus, raises the question: how much do
we gain from our scars? And in which way is the brain entirely
unlike a bowl?

1 https://ohbm-brainart.github.io
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194 the kintsugi brain

Figure B.1: "The kintsugi brain" is an artwork by Robin Gutzen, that consists
of multiple hand-modeled clay figures of human brains, finished
in different glazes. The brain figures were purposely broken and
repaired with gold glue in the style of the Japanese art-form
"kintsugi". (The photo on the right was taken at the OHBM BrainArt
exhibition 2022 in Glasgow by visitor Dr. Teodora Stoica)
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