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Abstract
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factor and idiosyncratic frailty factors govern borrower credit worth. We derive several
surprising results: in equilibrium, a bank can be more likely to fail with less risky
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1 Introduction

It is conventional wisdom that safer borrowers are associated with safer banks. If this asso-

ciation is not there or even reversed, the real cause of greater bank risk can be traced to lax

regulation and banking supervision, changing market environment, or generous government

guarantees.1 Far from causing greater bank risk, safer borrowers act as a buffer and partially

offset these other factors, similar to how having more bank equity makes the bank safer by

acting as a buffer absorbing loan losses.

We argue that less risky borrowers can induce a higher probability of bank failure. This

unconventional outcome happens because lower credit risk generates two effects that operate

simultaneously and in opposing directions whenever loan defaults are imperfectly correlated:

fewer non-performing loans but also lower income from each performing loan since the loan

interest rate is lower. The second effect is present as long as the loan interest rates and credit

quality are inversely related in equilibrium, which is the case whenever the credit market

is at least partially competitive. However, the exact nature of competition is immaterial to

the point we wish to make, which sets our paper apart from the extensive literature on the

relationship between competition and bank failure risk (Keeley, 1990; Boyd and De Nicolo,

2005; Martinez-Miera and Repullo, 2010). Similarly, the channel we investigate arises inde-

pendently of miss-priced government guarantees, which are well-known for distorting bank

choices along multiple dimensions (see Kareken and Wallace (1978) and the subsequent lit-

erature).

While we are not the first to highlight the presence of these two effects (see, e.g., Repullo

and Suarez (2004)), we show that their interaction with the probability of bank failure has

not been fully explored. Specifically, the canonical approach to modeling correlated defaults

is based on the conditional default probability framework, where all borrowers are exposed to

one or more systematic risk factors (see, e.g., Vasicek (2002); Gordy (2000); Frey and McNeil

(2003)). However, the existing literature on the equilibrium relationship between borrower

and bank risk building on this framework restricts attention to specific functional forms and

usually abstracts from heterogeneous borrower exposure to the systematic risk factors (e.g.,

Gornall and Strebulaev (2018); Nagel and Purnanandam (2020); Mendicino et al. (2019)). It

should be noted that, by heterogeneous exposure, we mean borrower-specific factor loadings

in a credit risk model.2 While few would doubt that such borrower heterogeneity is important

1Safer borrowers tend to be larger, with more cash, less volatile cash flows, better collateral, and easier for
outside investors to evaluate. However, we do not need to take a stance in this paper on what exactly makes
a borrower safer.
2That is, we are interested in situations where the credit quality of the i-th borrower isXi =

∑J
i=1 θi,jZj+σiϵi

where Z1... ZJ are systematic risk factors, the coefficients θi,j ... θi,J are borrower-specific factor loadings
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for understanding bank risk, one major obstacle is methodological since the analysis quickly

becomes intractable.

We show how one can apply survival analysis, especially mixture hazard rates, to circum-

vent some of these issues and systematically investigate how borrower heterogeneity shapes

bank risk. Then, to illustrate the perils of neglecting borrower heterogeneity in models

featuring correlated defaults, we will demonstrate how the equilibrium relationship between

borrower and bank risk can be fundamentally altered when the borrowers are heterogeneously

exposed to the systematic risk factor through the presence of frailty factors (similar to how

some people are more resistant to certain types of viruses than others). In particular, we

compare the equilibrium probability of bank failure in two economies, A and B, under two

scenarios. Scenario 1 : the frailty factor for each borrower in each economy is fixed at the

same level. Scenario 2 : The frailty factor varies among the borrowers according to some

distribution, which is the same in both economies. For concreteness, suppose each borrower

under Scenario 2 can have either low or high frailty with equal probability (and frailty re-

alizations are i.i.d. across all borrowers in each economy). We then derive conditions for

the emergence of the following outcome. Under Scenario 1, the bank in Economy A is more

likely to fail than the bank in Economy B for each possible value of the frailty factor. How-

ever, under Scenario 2, this reverses, and now the bank in Economy A is less likely to fail

than in Economy B.

In other words, mixing borrowers with different frailties can fundamentally alter how

credit worth is associated with the underlying systematic risk factor. Moreover, this change

is not innocuous, as it can have a significant effect on the risk of bank failure. We refer

to such outcomes as bank risk reversals since the situation is similar to how mixing items

of different durability can fundamentally change the observed pattern of aging in survival

analysis (Barlow and Proschan, 1975).3 To our knowledge, we are the first to point out that

mixing borrowers with different frailties can have such perverse effects on a bank’s risk of

failure.

Methodologically, we will treat the systematic risk factor as ’time’ and the frailty factor as

the mixing variable. This allows us to bring tools developed in the context of survival analysis

used to study mixture distributions.4 Mixtures arise whenever there is some unobservable

(i.e., borrower-specific frailty factors) and ϵi is a borrower-specific shock. Such heterogeneity is built into
widely used credit risk models, such as CreditMetrics and KMV (Frey and McNeil, 2003). Loan defaults will
be imperfectly correlated whenever σi > 0 whereas homogeneous exposure corresponds to θi,j = θj for all i.
3It is also related to the Simpson paradox whereby a given association in each sub-population is reversed
once all sub-populations are mixed (Simpson, 1951; Lindley and Novick, 1981).
4The hazard rate approach has a long history in credit risk modeling. However, the focus is on the credit risk
of individual loans rather than correlated defaults (see, e.g., Duffie and Singleton (2003) and the references
therein).
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heterogeneity (i.e., frailty) in the objects of study. One can hardly find situations in the

real world where such heterogeneity can safely be assumed away. This is especially true in

the study of credit risk due to borrower-specific frailty factors, in addition to systematic risk

factors, that are difficult or impossible to anticipate and contract upon. In some cases, banks

may not even be legally allowed to discriminate based on certain borrower characteristics.

It is well-known that a mixture of decreasing hazard rate distributions also has a decreas-

ing hazard rate (Barlow and Proschan, 1975). At the same time, a mixture of increasing

hazard rate distributions does not necessarily have an increasing hazard rate and may have

a strictly decreasing hazard rate and, in general, highly non-monotone hazard rates (Block

et al., 2003). This can occur even when the component distributions have rapidly (i.e., expo-

nentially) increasing hazard rates, thus defying intuition (Gurland and Sethuraman, 1995).

In other words, the hazard rate order is not closed under mixtures, unlike, for example, the

usual stochastic order (i.e., first-order stochastic dominance). The famous borderline case in

Proschan (1963) is that any mixture of constant hazard rate distributions, namely mixtures

of exponentials, displays a strictly decreasing hazard rate.

The counter-intuitive properties of mixture hazard rates can be traced to the changing

composition of the mixture and, in particular, to what has been suggestively termed the

weak-die-first-effect (Vaupel et al., 1979; Finkelstein and Esaulova, 2006). The mixture

hazard rate equals the average hazard rate among the surviving items. As time passes, the

lower-durability items are more likely to die out, whereas the higher-durability items are

more likely to survive. The mixture hazard rate can thus decrease even though each item

has an increasing hazard rate (and thus becomes more likely to die as time passes) because

those who survive items tend to have higher durability than those who die. In our case, the

weak-die-first-effect would manifest as the changing composition of solvent borrowers as a

function of the systematic risk factor.

Our paper relates to the growing literature on the equilibrium relationship between credit

risk and bank failure probability. The main feature of loan portfolios is an imperfect cor-

relation in defaults, which can be captured by assuming that the borrowers are exposed

to one or more systematic risk factors (Schönbucher, 2001; Gordy, 2003; Frey and McNeil,

2003). Several recent papers building on risk factor models have shown that models of bank

risk that do not take into account this special feature of bank assets will tend to generate

misleading implications for bank failure risk (e.g., Gornall and Strebulaev (2018); Nagel and

Purnanandam (2020); Mendicino et al. (2019), but all these papers assume that the borrow-

ers are homogeneously exposed to the systematic risk factor. We add to this literature by

showing that the equilibrium relationship between borrower and bank risk is significantly

more complicated than previously thought, especially when, more realistically, the borrowers
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are heterogeneity exposed to the systematic risk factor.

2 Environment and hazard rate preliminaries

This section describes the environment (i.e., the borrowers and the banks) followed by pre-

liminaries on hazard rate functions. The emphasis is on making minimal assumptions, only

those necessary to streamline the analysis, so that the results can be applied to various credit

risk models. There are two dates (0 and 1) and N homogeneous borrowers on date 0. Each

borrower gets a loan of $1 on date 0 and must repay 1+ r on date 1, where the loan interest

rate r will be determined in equilibrium. The sequence of events is depicted in Figure 1.

2.1 Credit risk

We build on the conditional probability of default approach to credit risk based on systematic

risk factors (see, e.g., Gordy (2003); Frey and McNeil (2003)). Specifically, credit risk is

governed by N+1 random variables Θ1... ΘN , Z and a function p(θ, z) such that borrower i’s

probability of default is p(θi, z) whenever Θi and Z have taken on values θi and z respectively.
5

We call Z the systematic risk factor, Θ1 ... ΘN the borrower-specific frailty factors, and

impose the following assumptions.

• The frailty factors Θ1 ... ΘN are independent, identically distributed, and independent

of the systematic risk factor Z. The common distribution of the frailty factors is Π(θ)

with density π(θ), and the distribution of the systematic risk factor is G(z) with density

g(z).

• The number of borrowers is large (N → ∞) so that, by a law of large numbers, the

fraction of defaults among borrowers with frailty θ is almost surely p(θ, z) whenever

the systematic risk factor Z has taken the value of z.

The support of Θi, supp(Θi) = {θ : π(θ) > 0} and the support of Z, supp(Z) = {z : g(z) >

0} are both intervals given by (θ1, θ2) and (z1, z2) respectively. Thus, when the systematic

risk factor Z has taken a value of Z = z, the probability of default for any given borrower

will be

p(z) =

∫ θ2

θ1

p(θ, z)dΠ(θ). (1)

5We neglect that the probability of borrower default generally depends on the loan interest rate since, as we
show in Section 6, this simplification streamlines the analysis without affecting our main results.
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The unconditional default probability of any given borrower is then
∫ z2
z1
p(z)dG(z). The

borrower-specific frailty factors Θ1 ... ΘN and the systematic risk factor Z are realized on

date 1 after all loans have been loans issued. Borrower i with frailty θi then repays his

loan with probability p(θi, z) or defaults with the complement probability. Notice that loan

defaults will be correlated due to the systematic risk factor, but borrowers with different

frailties will be heterogeneously exposed to it.

Our specification can capture reduced form and structural default models of credit risk

(Gordy, 2003; Frey and McNeil, 2003). One can thus think of p(θ, z) as the probability

that the firm’s net worth falls below a default threshold when the firm’s frailty is θ and

the systematic risk factor has taken a value of z. One can also think of 1 − p(θ, z), or any

monotone transformation of it, as measuring the borrower’s distance to default.6

Figure 1: Timeline.

2.2 Banks

Banks issue loans on date 0 financed by a mix of equity and bank deposits. The banking

sector is perfectly competitive, with no legacy assets, franchise values, or intermediation

costs.7 Deposits are insured, supplied perfectly elastically, at a net interest rate normalized

to zero. Consider a bank issuing $1 of loans financed with $k of capital and $1−k of deposits.

Since all borrowers are identical when loans are issued, banking competition ensures they all

get the same loan interest rate of r. The bank thus receives 1 + r from each borrower that

repays his loan on date 1 but only 1−△ from each borrower that defaults where △ ∈ (0, 1]

is the bank’s loss-given loan default. The bank’s net worth for a given realization of the

6For example, the conditional PD function can take the form p(θ, z) = F (ϕ(z)|θ) where ϕ(z) is some strictly
increasing function in z and {F (x|θ) : θ ∈ [θ1, θ2]} is a family of cumulative distribution functions indexed
by the frailty parameter θ.
7Assuming perfect competition is to simplify the analysis but is not important otherwise, as we show in
Section 6.
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systematic risk factor Z = z is then

y(z) = (1− p(z))(1 + r)︸ ︷︷ ︸
income from performing loans

+ p(z)(1−△)︸ ︷︷ ︸
income from non-performing loans

− 1− k︸ ︷︷ ︸
amount promised to depositors

(2)

where p(z) was defined in (1) and is the ratio of non-performing relative to all loans in the

bank’s portfolio. The bank fails on date 1 whenever its net worth turns negative y(z) < 0,

which is equivalent to p(z) > r+k
r+△ . Letting q denote the probability of bank failure, we have

q = P
{
z : p(z) > r+k

r+△

}
. (3)

Each bank operates in the best interest of its shareholders, who are risk-neutral, protected

by limited liability, and require an expected rate of return on their capital of at least δ > 0.

The parameter δ captures the scarcity of bank capital due to agency costs, equity issuance

costs, the tax advantage of debt, or the liquidity premium of deposits.8 The present value

of the expected payoff for the bank’s shareholders net of their capital contribution is thus

π = −k + 1
1+δ

∫ z2

z1

max {y(z), 0} dG(z). (4)

Finally, there is a minimum mandatory capital ratio of kmin ∈ (0, 1) set by regulation. To

make the model interesting, we impose the parameter condition △ > kmin.
9 Since deposits

are insured at a flat rate and bank capital is privately costly δ > 0, each bank operates with

the minimum possible capital ratio, namely k∗ = kmin. The equilibrium loan interest rate r∗

would then be such that the bank’s shareholders break even in expectation∫ z2

z1

max {(1− p(z))(1 + r∗) + p(z)(1−△)− (1− kmin), 0} dG(z) = (1 + δ)kmin. (5)

We will denote by y∗(z) the equilibrium net worth of the bank as a function of z, which

is given by the expression in (2) with r = r∗ and k = kmin. Finally, the equilibrium bank

failure probability q∗ is obtained by inserting the equilibrium values of the loan interest rate

and capital ratio, that is, r∗ and kmn, into the expression for the bank’s failure probability

in (3).

8See, e.g., Holmstrom and Tirole (1997) and Diamond and Rajan (2001) for models micro-founding a positive
value of δ. It should be noted that our result does not hinge on assuming privately costly bank capital δ > 0.
Even if δ = 0, it is well-known that the bank would still strictly prefer to operate with the minimum possible
capital ratio whenever it can fail with a positive probability since this allows it to exploit the deposit insurance
guarantee (Repullo, 2004; Bahaj and Malherbe, 2020).
9This is necessary since △ ≤ kmin implies p(z) ≤ r+k

r+△ for all z. As a result, the bank always has a sufficient
capital buffer to absorb loan losses and cannot fail.
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In summary, an economy is defined by (i) a conditional PD function p(θ, z), (ii) a distri-

bution Π for the frailty factors Θ1 ... ΘN and a distribution G for the systematic risk factor

Z, (iii) the bank’s loss given loan default △ ∈ [0, 1), (iv) a minimum required rate of return

for the bank’s shareholders δ > 0, and (v) a minimum capital ratio kmin ∈ (0, 1).

Finally, even though the subsequent analysis is carried out in terms of bank failure, it

should be noted that, in the spirit of value-at-risk, one can equivalently investigate the prob-

ability that the realized loss on a given portfolio of loans consisting of ex-ante homogeneous

borrowers exceeds a given pre-specified target level (see Section 6).

2.3 Hazard rate functions

It will be useful to first recall the standard definition of a hazard rate. Let T be the lifetime

of an item with distribution function F (t) = P{T ≤ t}, survival function F̄ (t) = 1 − F (t),

and density function f(t). The hazard fate function (also called the failure rate function) is

defined as h(t) = f(t)/F̄ (t) for t ≥ 0. In other words, h(t)dt is the infinitesimal conditional

probability that the item will fail in the next dt units of time, given that it has survived t

units of time. Next, let F (t|θ) = P{T ≤ t|θ} be a family of distributions indexed by a pa-

rameter θ ∈ Θ. Assume each subpopulation F (t|θ) has density f(t|θ). One then mixes these

subpopulations according to some probability distribution Π(.) on Θ leading to a mixture

density f(t) =
∫
Θ
f(t|θ)dΠ(θ) and a mixture survival function F̄ (t) =

∫
Θ
F̄ (t|θ)dΠ(θ). Then

h(t) = f(t)/F̄ (t) is the mixture hazard rate.

Time is not the only risk factor, and, as is well-known, the hazard rate function h(t)

can be defined with respect to any variable - it is not even necessary for this variable to be

non-negative (Shaked and Shanthikumar, 2007). The hazard rate functions in our case will

be defined with respect to the systematic risk factor Z, whereas the mixing variable θ will be

borrower frailty. Specifically, the hazard rate function h(z|θ) associated with the conditional

PD function p(θ, z) is

h(z|θ) = d
dz
[−log(1− p(θ, z))] =

∂
∂z

p(θ,z)

1−p(θ,z)
, (6)

where the borrower frailty θ is treated as a parameter. The hazard rate function has a natural

interpretation. If the systematic risk factor has taken a value of Z = z, the proportion

of solvent borrowers among those with frailty θ will be 1 − p(z|θ). Thus, h(z|θ)dz is the

proportion of those borrowers that default given an infinitesimal increase dz in the systematic

risk factor. The function p(θ, z) is said to have an increasing (decreasing) hazard rate if h(z|θ)
is monotonically increasing (decreasing) in z. On the other hand, p(θ, z) has a constant

hazard rate if h(z|θ) is constant in z, which is the case if and only if p(θ, z) = e−θϕ(z) where
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ϕ(z) is some linear function in z. The mixture hazard rate h(z) associated with p(z) is

defined as

h(z) = p′(z)
1−p(z)

=
∫ θ2
θ1

∂
∂z

p(θ,z)π(θ)dθ∫ θ2
θ1

(1−p(θ,z))π(θ)dθ
. (7)

In other words, the frailty factor is the mixing variable since it leads to different subpopula-

tions of borrowers based on their frailty. We impose the following assumptions:

• The function p(θ, z) is strictly increasing and absolutely continuous in z.10

• The family of hazard rate functions h(z|θ), θ ∈ [θ1, θ2] are ordered in θ and, in partic-

ular, h(z|θ) is strictly increasing in θ.

3 Main results

We introduce a baseline economy and a safer economy as a laboratory to study how borrower

credit quality shapes equilibrium bank risk. We assume throughout that the distribution

of the frailty factor is the same in both economies Π(θ) = Π̃(θ) for all θ ∈ (θ1, θ2) and

denote its density by π(θ). We also take the remaining parameters (△, kmin and δ) and the

distribution of the systematic risk factor Z to be the same in both economies.11 The ratio

of non-performing loans as a function of the systematic risk factor is p(z) in the baseline

economy and p̃(z) in the safer economy. That is,

p(z) =

∫ θ2

θ1

p(θ, z)π(θ)dθ︸ ︷︷ ︸
Baseline economy

and p̃(z) =

∫ θ2

θ1

p̃(θ, z)π(θ)dθ︸ ︷︷ ︸
Safer economy

, (8)

where p(θ, z) is the conditional PD function in the baseline economy and p̃(θ, z) is the

conditional PD function in the safer economy. From (3), the equilibrium probability of bank

failure in the baseline economy q∗ and in the safer economy q̃∗ will be

q∗ = P
{
p(z) > r∗+kmin

r∗+△

}
and q̃∗ = P

{
p̃(z) > r̃∗+kmin

r̃∗+△

}
,

where r∗ is the equilibrium loan interest rate in the baseline economy and r̃∗ is the equilibrium

loan interest rate in the safer economy. In the above, we use that the bank in each economy

10We do not really need absolute continuity of p(θ, z) with respect to z (i.e., continuity will suffice) since we
are primary interested in the hazard rate order (see, e.g., Section 1 in Shaked and Shanthikumar (2007)) but
impose it nevertheless in keeping with the usual approach in survival analysis.

11Section 6 outlines one way of micro-founding a common systemic risk factor based on a well-known property
of first-order stochastic dominance.
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operates with the minimum possible capital ratio kmin, which, moreover, is the same for both

economies.

3.1 Unconventional outcome and risk-reversals

The unconventional outcome happens whenever the bank in the baseline economy is less

likely to fail than the bank in the safer economy even though the conditional PD function in

the baseline economy is always higher than in the safer economy, That is, p(θ, z) > p̃(θ, z)

for all θ and all z.

Definition 1. The unconventional outcome happens whenever:

(i) p(θ, z) > p̃(θ, z) for all θ ∈ (θ1, θ2) and all z ∈ (z1, z2) and

(ii) q∗ < q̃∗.

Definition 1 implies p(z) > p̃(z) for all z ∈ (z1, z2). To rule out some uninteresting cases,

we will further impose

limz→z2p(θ, z) = 1 for all θ ∈ (θ1, θ2). (9)

This implies that the bank in the baseline economy fails with some probability greater than

zero, and it is necessary to rule out uninteresting situations where the bank in the ’safer’

economy is more likely to fail simply due to greater systematic risk.12 Next, we define risk-

reversal. In particular, let q∗(Π) and q̃∗(Π) denote the probability of bank failure in the

baseline and safer economy, respectively, when the distribution of the frailty factor in each

economy is Π. Also, let δθ denote a degenerate distribution at θ. That is, δθ(x) = 0 if x < θ

and δθ(x) = 1 if x ≥ θ.

Definition 2. Risk-reversal happens whenever: (i) q∗(δθ) ≥ q̃∗(δθ) for all θ ∈ (θ1, θ2) and

(ii) q∗(Π) < q̃∗(Π) for some distribution function Π : [θ1, θ2] → [0, 1].

Risk reversal happens whenever the bank in the baseline economy is more likely to fail

when all borrowers in the two economies have the same frailty but less likely when the

borrowers differ in their frailty. Stated differently, risk reversal implies that the outcome will

be unconventional, but only if the dispersion of the frailty factor is large enough.

12For example, assume that each borrower in the baseline economy defaults with probability 0.1, but defaults
are independent for all z. As a result, the bank in the baseline economy never fails. On the other hand,
each borrower in the safer economy defaults with a probability of 0.01, but defaults are perfectly correlated:
for z large enough, all borrowers default, and the bank fails. Notice that the conditional PD function in the
baseline economy, in that case does not satisfy (9).
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3.2 Sufficient conditions

We now provide sufficient conditions for the unconventional outcome and risk reversals in

Proposition 1 in terms of the hazard rate properties of the conditional PD functions p(θ, z)

and p̃(θ, z). Denote by h̃(z|θ) and h̃(z) the hazard rate function and the mixture hazard rate

function associated with the conditional PD function in the safer economy p̃(θ, z). Consider

the following relationships:

h(z|θ) ≥ h̃(z|θ) for all z ∈ (z1, z2) and all θ ∈ (θ1, θ2) (10)

h(z) < h̃(z) for all z ∈ (z1, z2) (11)

It will be useful to keep mind that h(z|θ) ≥ h̃(z|θ) for all z is equivalent to (1−p(θ, z))/(1−
p̃(θ, z)) weakly decreasing in z and similarly, h(z) ≥ h̃(z) for all z is equivalent to (1 −
p(z))/(1 − p̃(z)) weakly decreasing in z. The conditions in (10) - (11) state that for each

θ the component hazard rate in the baseline economy h(z|θ) is (weakly) higher than the

component hazard rate in the safer economy h̃(z|θ). At the same time, the mixture hazard

rate in the baseline economy h(z) is strictly lower than the mixture hazard rate in the safer

economy h̃(z). This is possible since, as is well-known, the hazard rate order is not closed

under mixtures (Barlow and Proschan, 1975).13

Proposition 1. Suppose p(θ, z) > p̃(θ, z) for all θ ∈ (θ1, θ2) and all z ∈ (z1, z2). Then

(i) The unconventional outcome happens whenever (11) holds. That is, h(z) < h̃(z) for

all z ∈ (z1, z2).

(ii) Risk-reversal happens whenever (10) and (11) hold. That is, h(z|θ) ≥ h̃(z|θ) and

h(z) < h̃(z) for all z ∈ (z1, z2) and all θ ∈ (θ1, θ2).

The proof of this proposition is in the appendix, whereas Section 3.3 provides intuition.

Several remarks are in order. First, the bank in the baseline economy will be less likely to fail

than the bank in the safer economy whenever (11) holds regardless of whether, in addition,

one also imposes p(θ, z) > p̃(θ, z) for all θ and z. That is, the mixture hazard rate order is

sufficient to rank the equilibrium probability of bank failure in the two economies. Second,

we only need h(z) < ˜h(z) for all values of Z such that the bank in the baseline economy

remains solvent. That is, {z : y∗(z) ≥ 0}. The ranking of the hazard rates for other values

of z is immaterial to whether the bank in the baseline economy is more or less likely to fail.

13We will investigate why this happens in Section 4. For now, we offer an example based on Block et al.
(2003). Take h(z|θ) = θ − e−5(z+1) and h̃(z|θ) = θ − e−5z implying h(z|θ) > h̃(z|θ) for all z ∈ [0,∞). Then,
if the frailty factor for each borrower in each economy is either θ = 1 or θ = 6 with equal probability, we
obtain a hazard rate reversal, namely h(z) < h̃(z) for all z ∈ [0,∞).
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3.3 Loan performance vs loan interest effect

The hazard rate ranking conveys useful information about how the probability of bank fail-

ure varies with borrower risk. In particular, to determine whether the bank in the baseline

economy is more or less likely to fail than the bank in the safer economy, it is necessary to

examine the relationship between the two banks’ equilibrium net worth as a function of the

systematic risk factor, as shown in Figure 2. Specifically, for each z, the equilibrium rela-

tionship between the net worth of the two banks can be decomposed into a loan performance

and a loan interest effect, as shown below.

ỹ∗(z)︸ ︷︷ ︸
Safer economy

= y∗(z)︸ ︷︷ ︸
Baseline economy

+ (p(z)− p̃(z))(r̃∗ +△)︸ ︷︷ ︸
Loan performance effect

− (1− p(z))(r∗ − r̃∗)︸ ︷︷ ︸
Loan interest effect

. (12)

The bank in the safer economy has a lower ratio of non-performing loans than the bank in the

baseline economy p̃(z) < p(z) and thus gains an income of (p(z)− p̃(z))(r̃∗ +△) from those

borrowers that default in the baseline economy but repay their loan in the safer economy

(loan performance effect). Simultaneously, the loan interest rate in the safer economy is

lower than in the baseline economy r̃∗ < r∗ (see below), leading to the bank in that economy

to lose an income of (1 − p(z))(r∗ − r̃∗) from those borrowers that would repay their loan

in both economies (loan interest effect). Next, since the shareholders of each bank must

earn the same expected equilibrium rate of return (equal to δ) the net worth functions y∗(z)

and ỹ∗(z) will cross at least once at some point z′ ∈ (z1, z2) whose value will be determined

in equilibrium.14 In particular, we obtain from (12) that the net worth functions are equal

y∗(z′) = ỹ∗(z′) if and only if the equilibrium loan interest rate in the baseline economy r∗ and

the equilibrium loan interest rate in the safer economy r̃∗ satisfy the following relationship

r∗ = r̃∗ + p(z′)−p̃(z′)
1−p(z′)

(r̃∗ +△). (13)

Then, since p(z) > p̃(z) for all z, including z′, the above immediately implies that the loan

interest rate will be higher in the baseline economy r∗ > r̃∗. We then show in the proof of

Proposition 1 that if the mixture hazard rates are ordered as in (7), namely h(z) < h̃(z) for

all z, then y∗(z′) = ỹ∗(z′) implies dy∗(z′)
dz′

> dỹ∗(z′)
dz′

. Hence, y∗(z) will cross y∗(z) only once

and from below as shown in Figure 2 implying y∗(z) < ỹ∗(z) for all z < z′ and y∗(z) > ỹ∗(z)

for all z > z′. The overall result is that the bank in the baseline economy will be less likely

to fail than the bank in the safer economy.

14If such a point does not exist, the shareholders of the bank in one of the economies would earn strictly greater
equilibrium expected return than the shareholders of the bank in the other economy, which is inconsistent
with equilibrium.
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Remarks. One can use the decomposition in (12) to weaken the sufficient conditions for

the unconventional outcome in Proposition 1. In particular, the net worth of the bank in

the baseline economy y∗(z) equals the net worth of the bank in the safer economy ỹ∗(z) if

and only if the loan performance effect equals the loan interest effect (p(z)− p̃(z))(r̃∗+△) =

(1− p(z))(r∗− r̃∗). Denote by Z∗ the set of all realizations of the systematic risk factor such

that these two effects are equal. The bank in the baseline economy is then less likely to fail

(i.e., the unconventional outcome happens) whenever h(z) < h̃(z) for all z ∈ Z∗.

Also, it is not hard to generalize the above argument to situations where the two economies

are distinct in terms of minimum capital ratio, loan-loss given default, and the interest rate

that must be promised to the depositors. We also imposed perfect competition and assumed

the bank’s shareholders in each bank earn the same expected return, but this is not needed

either, nor is it necessary to assume that the probability of borrower default does not depend

on the loan interest rate. All these modifications of the base setup are considered in Section

6.

3.4 An example

The following example features both the unconventional outcome and a risk reversal and

illustrates how neglecting borrower heterogeneity can be misleading. The frailty for each

borrower in each economy is either θ = 0.1 or θ = 0.5 and the conditional PD function in

the baseline economy p(θ, z) and in the safer p̃(θ, z) economy are given by

p(θ, z) = 1− e−θ(z+1)1.1 and p̃(θ, z) = 1− e−θz1.1 , (14)

where the support of the systematic risk factor is (0,∞).15 Notice that p(θ, z) > p̃(θ, z) for

all θ and all z and limz→∞p(θ, z) = 1. Figure 3 displays q̃∗−q∗

q∗
as a function of the probability

of the low frailty realization η ≡ P {Θ = 0.1}. Whether or not the unconventional outcome

happens depends on the variance of the frailty factor, namely Var(θ) = η(1−η). In particular,

there are three distinct regions in the figure.

• (i) For low values of η, the bank in the baseline economy is more likely to fail than the

bank in the safer economy q∗ > q̃∗.

• (ii) For intermediate values of η, the bank in the baseline economy is less likely to fail

than the bank in the safer economy q∗ < q̃∗.

15The specification in (14) is a version of the proportional hazard model, which has a long history in credit
risk modeling and is examined at length in Section 5.
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Figure 2: This figure displays the equilibrium net worth y∗(z) (ỹ(z)) of the bank in the
baseline (safer) economy as a function of the realized value of the systematic risk factor
Z = z. The relationship between y∗(z) and ỹ(z) is given in (12), and it can be decomposed
into a loan performance and a loan interest effect. The bank in each economy fails whenever
its net worth is negative.

• (iii) For high values of η, the bank in the baseline economy is again more likely to fail

than the bank in the safer economy q∗ > q̃∗.

It is easy to see that this example also features risk-reversal as per Definition 2 since the

bank in the baseline economy is more likely to fail whenever the frailty for all borrowers is

fixed to θ = 0.5, which corresponds to η = 0 in Figure 3. Similarly, the bank in the baseline

economy is more likely to fail whenever the frailty for all borrowers is fixed to θ = 0.1, which

corresponds to η = 1. That is, mixing borrowers with different frailty can significantly alter

and even reverse, as in this example, the relationship between borrower and bank risk. The

next section investigates what makes borrower heterogeneity conducive to the unconventional

outcome.
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Figure 3: This figure is from Section 3.4 and displays q̃∗−q∗

q∗
as a function of the probability

of the low frailty realization for each borrower η ≡ P{Θ = 0.1}. The remaining parameters
in each economy are kmin = 0.05, δ = 0.01, and △ = 0.3. The distribution of the systematic
risk factor in each economy is exponential G(z) = 1 − e−1.5z. The unconventional outcome
happens q̃∗ > q∗ but only if the variance of the frailty factor, namely Var(θ) = η(1 − η), is
large enough.

4 What leads to risk-reversals?

This section examines the conditions leading to risk reversals which, as shown in Proposition

1, are closely tied to hazard rate reversals, namely, situations such that mixture hazard rates

behave very differently than their components. To fix ideas and illustrate the forces at play,

we begin with a simple example. Then, we introduce a convenient decomposition of the

mixture hazard rates that will be used to derive necessary, and in some cases sufficient,

conditions for risk reversals.
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p(θ, z) for the baseline economy z1 z2

Low frailty θ1 0.058 0.467
High frailty θ2 0.262 0.956

p̃(θ, z) for the safer economy z1 z2

Low frailty θ1 0.026 0.444
High frailty θ2 0.125 0.946

Table 1: Example of hazard rate reversal. Each table entry shows the probability of borrower
default for a given combination of the frailty factor and the systematic risk factor in the
respective economy. Each realization of the frailty factor is equally likely.

4.1 Hazard rate reversals - an example

Table 1 displays the conditional borrower PD in each economy where both variables are

taken to be binary. That is, Θ ∈ {θ1, θ2}, Z ∈ {z1, z2}. Moreover, each value of the frailty

factor is equally likely P{Θ = θ1} = P{Θ = θ2} = 0.5. The mixture hazard rate in each

economy can be decomposed as follows (the expressions below are a special case of (15) and

(16)):

p(z2)−p(z1)
1−p(z1)︸ ︷︷ ︸
0.656

=
(

p(θ1,z2)−p(θ1,z1)
1−p(θ1,z1)

)
︸ ︷︷ ︸

0.434

[
(1−p(θ1,z1))

1
2

(1−p(θ1,z1))
1
2+(1−p(θ2,z1))

1
2

]
︸ ︷︷ ︸

0.560

+
(

p(θ2,z2)−p(θ2,z1)
1−p(θ2,z1)

)
︸ ︷︷ ︸

0.940

[
(1−p(θ2,z1))

1
2

(1−p(θ1,z1))
1
2+(1−p(θ2,z1))

1
2

]
︸ ︷︷ ︸

0.440

p̃(z2)−p̃(z1)
1−p̃(z1)︸ ︷︷ ︸
0.670

=
(

p̃(θ1,z2)−p̃(θ1,z1)
1−p̃(θ1,z1)

)
︸ ︷︷ ︸

0.429

[
(1−p̃(θ1,z1))

1
2

(1−p̃(θ1,z1))
1
2+(1−p̃(θ2,z1))

1
2

]
︸ ︷︷ ︸

0.527

+
(

p̃(θ2,z2)−p̃(θ2,z1)
1−p̃(θ2,z1)

)
︸ ︷︷ ︸

0.938

[
(1−p̃(θ2,z1))

1
2

(1−p̃(θ1,z1))
1
2+(1−p̃(θ2,z1))

1
2

]
︸ ︷︷ ︸

0.473

The hazard rate in the baseline economy is higher than the hazard rate in the safer

economy for each value of the frailty factor (0.434 vs 0.429 and 0.940 vs 0.938). However, the

mixture hazard rate is lower in the baseline economy (0.656 vs 0.670). There are two effects

at play leading to this outcome. First, the default rate among the high-frailty borrowers is

lower in the safer economy (0.125 vs. 0.262), implying that the proportion of high-frailty

solvent borrowers relative to all solvent borrowers is higher in that economy (0.473 vs. 0.440).

As a result, the mixture hazard rate in the safer economy is, to a greater extent, determined

by the hazard rate of its high-frailty borrowers than the mixture hazard rate in the baseline

economy. Second, the high-frailty borrowers in the safer economy still have a higher hazard

rate than the low-frailty borrowers in the baseline economy (0.938 vs 0.434), and this last

effect is strong enough to generate a hazard rate reversal in this particular case.
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4.2 A useful decomposition of the mixture hazard rates

The previous example shows that hazard rate reversals can be traced to the changing com-

position of solvent borrowers as a function of the systematic risk factor. To systematically

study these effects, we adopt the approach of Lynn and Singpurwalla (1997). In particu-

lar, the mixture hazard rate in (7) can be recast as a weighted sum of the corresponding

component hazard rates in (6). That is,

h(z) =

∫ θ2

θ1

h(z|θ)π(θ|z)dθ where π(θ|z) ≡ (1−p(θ,z))π(θ)∫ θ2
θ1

(1−p(θ,z))π(θ)dθ
, (15)

where recall that π(θ) is the density function of the frailty factor in the baseline economy.

For z fixed, the conditional density function π(θ|z) is the ratio of solvent borrowers with

frailty θ relative to all solvent borrowers.16 That is, each component hazard rate h(z|θ)
must be weighted by the remaining solvent borrowers with the corresponding frailty (1 −
p(θ, z))π(θ) relative to all remaining solvent borrowers

∫ θ2
θ1
(1 − p(θ, z))π(θ)dθ. Thus, there

are two opposing effects since high p(θ, z), and therefore low 1 − p(θ, z), is associated with

high h(z|θ) and vice versa. Similarly, the mixture hazard rate for the safer economy is

h̃(z) =

∫ θ2

θ1

h̃(z|θ)π̃(θ|z)dθ where π̃(θ|z) ≡ (1−p̃(θ,z))π(θ)∫ θ2
θ1

(1−p̃(θ,z))π(θ)dθ
. (16)

From (15) and (16) it is not hard to see that we have h(z) ≥ h̃(z) for all z (ruling out the

unconventional outcome and risk-reversals) whenever h(θ, z) ≥ h̃(θ′, z) for all θ, θ′ and all

z. These, however, are rather strong conditions since they require even the lowest-frailty

borrowers in the baseline economy to have a higher hazard rate than the highest-frailty

borrowers in the safer economy.17

4.3 Weak-die-first-effect and its implications

By subtracting
∫ θ2
θ1
h̃(z|θ)π(θ|z)dθ from h(z) and from h̃(z) and using the expressions for the

mixture hazard rates in (15) and (16) we obtain that h(z) < h̃(z) is equivalent to∫ θ2

θ1

(
h(z|θ)− h̃(z|θ)

)
π(θ|z)dθ <

∫ θ2

θ1

h̃(z|θ) (π̃(θ|z)− π(θ|z)) dθ︸ ︷︷ ︸
Weak-die-first-effect

. (17)

16Observe that, since the hazard rate is a conditional characteristic, the ordinary expectation with respect to
θ does not define a mixture hazard rate and proper conditioning must be used, namely that in (15).

17This is not the case in the Example from Section 4.1 where the high-frailty borrowers in the safer economy
have a hazard rate of 0.938, which is considerably higher than the hazard rate of the low-frailty borrowers
in the baseline economy 0.434.
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We have used a term from survival analysis to label the right-hand side as the weak-die-first

effect (Vaupel et al., 1979) or, in our case, the high-frailty-borrowers-default-first-effect. It

should be noted that the weak-die-first-effect in the context of survival analysis describes

how the composition of items in a given mixture changes with the passage of time, whereas

in our case this effect is interpreted as describing the composition of solvent borrowers in the

baseline relative to the safer economy as one varies the systematic risk factor Z.18 Recall

from Proposition 1 that risk-reversals happen whenever h(z|θ) ≥ h̃(z|θ) for all θ and z and

h(z) < h̃(z) for all z. Hence, risk reversals necessarily imply a weak-die-first-effect defined

as the term on the right-hand side of (17) being positive.

Proposition 2. Suppose 1−p̃(θ,z)
1−p(θ,z)

is strictly increasing in θ for all z. Then there is a weak-

die-first-effect. That is,∫ θ2

θ1

h̃(z|θ) (π̃(θ|z)− π(θ|z)) dθ > 0 for all z.

This proposition is based on a theorem of Finkelstein and Esaulova (2006), showing that

if the mixing random variables are ordered in the sense of likelihood ratio, then the mixture

hazard rates can be ordered as well. In essence, 1−p̃(θ,z)
1−p(θ,z)

strictly increasing in θ allows one

to implement change of variable and then order the mixing variable in the sense described

above. Intuitively, 1−p̃(θ,z)
1−p(θ,z)

increasing in θ implies that, for each z, the mixture of solvent

borrowers in the baseline economy contains a lower fraction of high frailty borrowers than

the mixture of solvent borrowers in the safer economy generating a weak-die-first-effect in

the baseline relative to the safer economy.19

Corollary 1. Suppose 1−p̃(θ,z)
1−p(θ,z)

is strictly increasing in θ for all z.

(i) The unconventional outcome happens whenever h(z|θ) ≤ h̃(z|θ) for all θ and z.

(ii) Risk-reversal happens whenever h(z|θ) = h̃(z|θ) for all θ and z.

Next, assume the conditional PD functions satisfy the relationship p(θ, z) = p̃(θ, ϕ(z))

for some strictly increasing function ϕ(z) such that ψ(z) > z for all z.20 It is not hard to see

that the following will be true in this case

h(z|θ) = ϕ′(z)h̃(ϕ(z)|θ) and h(z) = ϕ′(z)h̃(ϕ(z)).

18Of course, only one values of the systematic risk factor will be realized on date 1 and by varying the
realization of Z we mean a counterfactual exercise where one uses the credit risk model to examine properties
of the mixture of solvent borrowers for different value of Z.

19It is easy to check that the example in Table 1 satisfies the condition in Proposition 2.
20Notice that this is with loss of generality as it assumes that the function ϕ(z) does not depend on θ.
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As a result, the condition in (11), namely h(z) < h̃(z) for all z, is equivalent to ϕ′(z)h̃(ϕ(z)) <

h̃(z) for all z. Moreover, if ϕ(z) = z + α for some constant α > 0, then h(z) < h̃(z) is

equivalent to the mixture hazard rate in the safer economy h̃(z) strictly decreasing in z.

This simple derivation, and a well-known property of mixture hazard rates, leads to another

corollary of Proposition 2.

Corollary 2. Suppose p(θ, z) = p̃(θ, ϕ(z)) where the function ϕ(z) is strictly increasing,

differentiable, and such that ϕ(z) > z. Then the unconventional outcome happens whenever

ϕ′(z)h̃(ϕ(z)) < h̃(z) holds for all z. If, in addition, ϕ(z) = z + α for some α > 0. Then

(i) The unconventional outcome happens whenever h̃(z|θ) is weakly decreasing in z for

all θ.

(ii) Risk-reversal happens whenever h̃(z|θ) is constant in θ for all z.

This corollary stems from the well-known fact that h̃(z|θ) weakly decreasing in z for

each θ implies that the mixture hazard rate h̃(z) is strictly decreasing in z for any non-

degenerate distribution for the frailty factor (Barlow and Proschan, 1975). For completeness,

the appendix contains proof of this important result, which can be linked to properties of

log-convex functions.

5 Application: proportional hazard models

We now apply the analysis from the previous sections to the proportional hazard model,

which is of interest due to its wide use in credit risk modeling (Duffie and Singleton, 2003)

and other fields (Finkelstein, 2008). Let the conditional probability of default in the baseline

economy p(θ, z) and in the safer economy p̃(θ, z) be as follows

p(θ, z) = 1− e−θΛ(ϕ(z)) and 1− p̃(θ, z) = e−θΛ(z), (18)

where z ≥ 0 and θ ≥ 0. The function ϕ(z) governs how credit risk in the two economies

relates. It is strictly increasing, differentiable, and such that ϕ(z) > z for all z. The function

Λ(z) (to be precise, its first derivative Λ′(z)) is called the base hazard rate and it is non-

negative, differentiable, and strictly increasing.21

Proposition 3. Suppose the conditional PD functions p(θ, z) and p̃(θ, z) are as in (18)

and the distribution of the frailty factor is the same in the two economies with a moment-

generating function MΘ(t) =
∫ θ2
θ1
e−θtdΠ(θ). Then

21The example in Section 3.4 was a special case with ϕ(z) = z + α and Λ(z) = (z + γ)β where γ and α are
parameters. Also, note that ϕ(z) independent of θ implies that credit risk in both economies is governed by
a proportional hazard model with the base hazard rate in the baseline economy defined as H(z) ≡ Λ(ϕ(z)).
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(i) The unconventional outcome happens whenever d
dz

MΘ(−Λ(ϕ(z)))
MΘ(−Λ(z))

> 0.

(ii) Risk-reversal happens whenever d
dz

MΘ(−Λ(ϕ(z)))
MΘ(−Λ(z))

> 0 and ϕ′(z)Λ′(ϕ(z)) ≥ Λ′(z) for all

z.

One tractable variant of the proportional hazard model is to assume that the frailty factor

is gamma-distributed with density function

π(θ) = 1
Γ (a)ba

θa−1e−θ/b, (19)

where a and b are the shape and scale parameters. Since frailty cannot be negative in the

proportional hazard model, the gamma distribution, along with the log-normal and Weibull

distribution, is a natural choice. The gamma distribution is very flexible since it can take

on a variety of shapes, becoming the exponential distribution for a = 1, whereas, for large a,

it assumes a bell shape similar to the normal distribution. The moment-generating function

of the gamma distribution is MΘ(t) = e−alog(1+bt). Proposition 3 then implies that the

unconventional outcome happens whenever

d
dz

1+bΛ(z)
1+bΛ(ϕ(z))

> 0. (20)

If, in addition, one assumes that the function ϕ(z) is such that ϕ(z) = z + α for some

parameter α > 0 the above condition for the unconventional outcome would simplify to

Λ′′(z)
(Λ′(z))2

< b
1+Λ(z)

, (21)

which is equivalent to the condition derived by Gurland and Sethuraman (1995) for a de-

creasing mixture hazard rate in this type of model. This is not a surprise since if ϕ(z) = z+α

then h(z) < h̃(z) for all z is equivalent to h̃(z) strictly decreasing in z.

An example. Let ϕ(z) = z+α and Λ(z) = (z+γ)β where γ > 0 and α > 0 are parameters

and suppose the frailty factor in each economy is gamma distributed with density as in (19).

Then the unconventional outcome happens whenever h̃(z) is strictly decreasing in z, which

is true whenever the parameter values are such that

γβ > (β − 1)b.

Notice that the above will be satisfied for all β ∈ (0, 1]. On the other hand, risk-reversal

happens whenever h(z|θ) ≥ h̃(z|θ) for all θ and z and h(z) < h̃(z) for all z which is true
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whenever the parameter values are such that

γβ > (β − 1)b ≥ 0.

The difference with the previous condition is that (β − 1)b ≥ 0 implies β ≥ 1. Finally, it

should be noted that Corollary 1 implies that in the borderline case β = 1, the outcome is

unconventional and features risk-reversal for any non-degenerate distribution for the frailty

factor and not only for the gamma distribution.

Weak-die-first-effect. One other notable feature of the proportional hazard model in (18)

is that it always features a weak-die-first-effect (see Section 4) since:

1−p̃(θ,z)
1−p(θ,z)

= eθ(Λ(ϕ(z))−Λ(z)),

which, under the maintained assumptions on Λ(z) and ϕ(z), is strictly increasing in z. Even

if a proportional hazard model does not exactly govern credit risk in the baseline economy

but instead we have

p(θ, z) = 1− e−θΛ(ϕ(θ,z)),

where ϕ(θ, z) now also depends on θ, one can still derive relatively straightforward conditions

for the weak-die-first-effect. In particular, 1−p̃(θ,z)
1−p(θ,z)

will be strictly increasing in θ if and only

if

Λ(ϕ(z))− Λ(z) + θΛ′(ϕ(θ, z))∂ϕ(θ,z)
∂θ

> 0.

The above is satisfied whenever ∂ϕ(θ,z)
∂θ

≥ 0. In other words, if ∂ϕ(θ,z)
∂θ

is non-decreasing in θ

then the proportional hazard setup implies that for each z the mixture of solvent borrowers

in the safer economy is to a greater extent skewed towards high frailty borrowers than the

mixture of solvent borrowers in the baseline economy which, as we saw in Proposition 2, is

a necessary condition for risk-reversals.

6 Discussion

Here, we clarify the role of the assumptions and show that our main results are robust to

several natural variations of the baseline setup.

Role of Competition

Perfect banking competition is not necessary for our results, and, in fact, one can remain

agnostic about the exact nature of banking competition and intermediation costs in the
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two economies as long as they share a common systematic risk factor Z. That is, given

any equilibrium loan interest rates r∗ and r̃∗ (however these were actually determined), the

equilibrium net worth of the two banks would still satisfy the relationship in (12).22 In other

words, r∗ and r̃∗ will be related as in (13) regardless of the nature of banking competition.

The analysis then proceeds verbatim, and Proposition 1 applies as long as the equilibrium

net worth of the two banks crosses at least once for some value of Z, such that both banks

are solvent, as shown in Figure 2. In other words, as long as we rule out uninteresting cases

where one of the banks is less likely to fail simply because it is more profitable than the

other bank for each realization of Z.

Systematic risk factor

We assumed the two economies have the same systematic risk factor Z. Here, we outline one

reason this could be the case. Suppose the conditional PD function in the baseline economy is

pB(θ, yB) where yB is the realization of the systematic risk factor YB and the conditional PD

function in the safer economy is pS(θ, yS) where yS is the realization of another systematic risk

factor YS. Assume pB(θ, yB) is strictly increasing in yB and pS(θ, yS) is strictly increasing in

yS. Further, assume YB ≥1 YS where ≥1 denotes first-order stochastic dominance.23 Hence,

there exists another random variable Z and functions ϕB and ϕS such that ϕB(z) ≥ ϕS(z)

for all z and YB =D ϕB(Z) and YS =D ϕS(Z) where =D denotes equality in distribution.

This property, known as Strassen’s theorem, actually goes both ways: YB ≥1 YS if and only if

there is a random variable Z and functions ϕB and ϕS such that ϕB(z) ≥ ϕS(z) for all z and

YB =D ϕB(Z) and YS =D ϕS(Z) (see, e.g., Section 1 in Shaked and Shanthikumar (2007)).

Then take Z to be the systematic risk factor in each economy and define the conditional PD

functions p(θ, z) ≡ pB(θ, ϕB(z)) and p̃(θ, z) ≡ pS(θ, ϕS(z)).

Borrower PD depends on r

The probability of borrower default was assumed to be independent of the loan interest rate,

but our main result does not hinge on this assumption. Suppose the conditional PD function

in the baseline economy is p(θ, z, r) and the conditional PD function in the safer economy is

p̃(θ, z, r). Then define the functions p∗(θ, z) ≡ p(θ, z, r∗) and p̃∗(θ, z) ≡ p̃(θ, z, r̃∗) where, as

before, r∗ is the equilibrium loan interest rate in the baseline economy and r̃∗ the equilibrium

22We maintain the assumption that deposits are insured at a flat-rate and perfectly elastically supplied at an
interest rate which is the same in the two economies and normalized to zero.

23If X and Y are two random variables such that P{X > x} ≥ P{Y > x} for all x ∈ (−∞,∞) then X is
said to dominate Y in the first-order stochastic sense denoted X ≥1 Y . Intuitively, X is more likely than Y
to take on larger values.

21



loan interest rate in the safer economy. Further, suppose that due to credit rationing or moral

hazard (we do not need to take a stance on the exact reason), the probability of borrower

default is increasing in the loan interest rate. The analysis proceed exactly as before but with

p(θ, z) and p̃(θ, z) replaced by their equilibrium counterparts p∗(θ, z) and p̃∗(θ, z) respectively.

Discrete Z

If the systematic risk factor is discrete, the unconventional outcome will arise under similar

circumstances. In fact, one can derive sufficient and necessary conditions in the special case

of a binary systematic risk factor.

Proposition 4. Suppose the systematic risk factor is binary Z ∈ {z1, z2} where z1 < z2.

Assume p(z1) > p̃(z1) and p(z2) > p̃(z2). Let η = P{Z = z2} denote the probability of the

bad state. The unconventional outcome then happens if and only if

p(z2)−p(z1)
1−p(z1)

≤ (1+δ)kmin

(η+δ)kmin+(1−δ)△ < p̃(z2)−p̃(z1)
1−p̃(z1)

. (22)

For example: p(z1) = 0.2, p(z2) = 0.3, p̃(z1) = 0.05, p̃(z2) = 0.25, η = 0.05, △ = 0.3,

kmin = 0.05, and δ = 0.01. The equilibrium loan interest rate in the baseline economy is

0.0780, the equilibrium loan interest rate in the safer economy is 0.0191, and only the bank

in the baseline economy fails in the bad state, thus leading to the unconventional outcome.

Difference along several dimensions

The only distinctive feature of the baseline relative to the safer economy was the conditional

PD function, but this was for simplicity (and to identify exactly the effect of borrower

risk) since we can allow the two economies to differ along multiple dimensions. Assume

the loan-loss given default is △ in the baseline economy and △̃ in the safer economy, the

minimum capital ratio is kmin in the baseline economy and k̃min in the safer economy, and the

equilibrium deposit interest rate is r∗D in the baseline economy and r̃∗D in the safer economy.

Again, we can remain agnostic about the exact reason for these differences and whether they

are due to regulation, market forces, or both. The bank in the baseline economy is then

less likely to fail than the bank in the safer economy, leading to the unconventional outcome

whenever the mixture hazard rates satisfy

h(z) < h̃(z)
[
1− △−△̃+(1−kmn)(1+r∗D)−(1−k̃min)(1+r̃∗D)

(1−p(z))(r∗+△(z))

]
for all z. (23)

The above reduces to (11) whenever kmin = k̃min, r
∗
D = r̃∗D, and △ = △̃. On the other hand,

the term in square brackets in (23) is less than one - pushing against the unconventional
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outcome - whenever the bank in the baseline economy has greater loss given loan default

△ > △̃, or it must pay more to its depositors r∗D > r̃∗D, or it must operate with higher

minimum capital ratio kmin > k̃min than the bank in the safer economy.

Government guarantees

We assumed throughout that deposits are insured, leading to the question of whether what

we find can be attributed to frictions due to miss-priced government guarantees, which are

well-known for distorting banks’ choices along several dimensions.24. Even if that were the

case, our analysis would still be useful since banks are exposed to distortionary government

guarantees. However, one can show that miss-priced deposit insurance is not driving the

results since the takeaway from Figure 3 remains the same under fairly priced deposit insur-

ance premiums. In other words, the channels emerge independently from distortions due to

miss-priced government guarantees.

Portfolio loss reformulation

Instead of casting the analysis in terms of bank failure, one can investigate the probability

that the loss on a given portfolio of loans would exceed a pre-specified level, say k. In

particular, if L(z) ≡ −(y(z)−1) is the realized loss on the loan portfolio where y(z) is given in

(2), then the probability of the event {z : L(z) > k} is the same as in (3). The only thing that

changes is the interpretation of q, which now is the probability that the portfolio loss exceeds

the pre-specified level, with the rest of the analysis proceeding verbatim. This reformulation

is useful for the following: the bank has J different types of borrowers on date 0 indexed

by j ∈ {1, ..., J} (in the baseline model J = 1). The conditional default probability for the

type-j borrower is pj(θ, z) where θ and z are as before, but now we index the conditional

PD function with the borrower type. The bank then forms J different portfolios - one for

each borrower type - and examines the probability of the event {z : Lj(z) > k} where Lj(z)

is the loss on the j-th portfolio and kj is a pre-specified tolerance level for that particular

portfolio.

7 Conclusion

The conventional view is that, other things equal, a bank with safer borrowers will be safer

than a bank with riskier borrowers. As a result, banks with safer borrowers should not be as

heavily scrutinized by regulators and allowed to hold less capital or, more generally, reduce

24See, e.g., Kareken and Wallace (1978); Repullo (2004); Harris et al. (2020); Bahaj and Malherbe (2020)
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the risk mitigation they undertake compared to banks with riskier borrowers. This paper uses

tools from survival analysis to challenge this view by showing that the bank with the safer

borrowers can, nevertheless, be more likely to fail than the bank with the riskier borrowers.

Further, this outcome tends to happen under greater borrower heterogeneity and cannot be

attributed to miss-priced government guarantees or a particular competitive environment.

Instead, the mechanism behind this outcome is traced to the changing composition of solvent

borrowers as a function of the systematic risk factor, illustrating how borrower heterogeneity

can significantly alter the equilibrium relationship between borrower and bank risk.

Appendix

Proof of Proposition 1.

It remains to show that h(z) < h̃(z) for all z implies the slope of y∗(z) is strictly greater

than the slope of ỹ∗(z) at any point, say z′, such that y∗(z′) = ỹ∗(z′). That is, we want to

show

y∗(z′) = ỹ∗(z′) ⇒ dy∗(z′)
dz′

> dỹ∗(z′)
dz′

Recall from (2) that the net worth of each bank is given by

y∗(z) = (1− p(z))(1 + r∗) + p(z)△− (1− kmin)

ỹ∗(z) = (1− p̃(z))(1 + r̃∗) + p̃(z)△− (1− kmin)

Hence, y∗(z′) = ỹ∗(z′) is equivalent to

r∗ − p(z′)(r∗ +△) = r̃∗ − p̃(z′)(r̃∗ +△)

or adding △ to both sides

(1− p(z′))(r∗ +△) = (1− p̃(z′))(r̃∗ +△) (24)

Differentiating the net worth functions y∗(z) and ỹ∗(z) with respect to z:

dy∗(z)
dz

= −p′(z)(r∗ +△) = − p′(z)
1−p(z)

(1− p(z))(r∗ +△)

dỹ∗(z)
dz

= −p̃′(z)(r̃∗ +△) = − p̃′(z)
1−p̃(z)

(1− p̃(z))(r̃∗ +△)
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Finally, evaluating these derivatives at z = z′ and using the relationship in (24) yields

dy∗(z′)
dz′

> dỹ∗(z′)
dz′

⇔ p′(z′)
1−p(z′)

= h(z′) < p̃′(z′)
1−p̃(z′)

= h̃(z′) (25)

But since h(z) < h̃(z) for all z we get dy∗(z′)
dz′

> dỹ∗(z′)
dz′

as desired.

Proof of Proposition 2.

Suppose 1−p̃(θ,z)
1−p(θ,z)

is strictly increasing in θ for all z. We must show the right-hand side of (17)

is positive, which is equivalent to showing∫ θ2

θ1

h̃(z|θ)π̃(θ|z)dθ >
∫ θ2

θ1

h̃(z|θ)π(θ|z)dθ (26)

Denote by Π(θ|z) =
∫ θ

θ1
π(θ|z)dθ and Π̃(θ|z) =

∫ θ

θ1
π̃(θ|z)dθ the distribution functions corre-

sponding to π(θ|z) and π̃(θ|z). Since h̃(z|θ) is assumed to be strictly increasing in θ it will

be sufficient to show Π̃(.|z) ≥1 Π(.|z) where ≥1 denotes first-order stochastic dominance.

Consider the following:

π̃(θ|z) = (1−p̃(θ,z))π(θ)∫ θ2
θ1

(1−p̃(θ,z))π(θ)dθ
=

(1−p(θ,z))

[
1

A(z)
1−p̃(θ,z)
1−p(θ,z)

π(θ)

]
∫ θ2
θ1

(1−p(θ,z))

[
1

A(z)
1−p̃(θ,z)
1−p(θ,z)

π(θ)

]
dθ

= (1−p(θ,z))m(θ|z)∫ θ2
θ1

(1−p(θ,z))m(θ|z)dθ

where m(θ|z) is a probability density function defined as

m(θ|z) ≡ 1
A(z)

1−p̃(θ,z)
1−p(θ,z)

π(θ)

and A(z) ≡
∫ θ2
θ1

1−p̃(θ,z)
1−p(θ,z)

π(θ)dθ is a normalizing factor ensuringm(θ|z) is a proper density (i.e.,∫ θ2
θ1
m(θ|z)dθ = 1). Then 1−p̃(θ,z)

1−p(θ,z)
strictly increasing in θ implies the ratio m(θ|z)

π(θ)
is strictly

increasing in θ. That is,
d
dθ

[
m(θ|z)
π(θ)

]
= d

dθ

[
1

A(z)
1−p̃(θ,z)
1−p(θ,z)

]
> 0

Therefore, for all z, the density function m(.|z) dominates the density function π(.) in the

likelihood ratio sense. Theorem 3 in Finkelstein and Esaulova (2006) then implies Π̃(.|z) ≥1

Π(.|z). Finally, since Π̃(.|z) ≥1 Π(.|z) and the distributions Π̃(.|z) and Π(.|z) are not the

same Theorem 1.A.8. in Shaked and Shanthikumar (2007) implies that the strict inequality

in (26) holds.
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Proof of Corollary 2.

This corollary is based on the following closure under mixtures theorem of Barlow and

Proschan (1975): if h̃(z|θ) is decreasing in z for all θ, then h̃(z) is decreasing in z. For

completeness, we provide proof based on the properties of log-convexity where, recall, that

the function 1 − p(θ, z) is log-convex in z means that log(1 − p(θ, z)) is convex in z. In

particular, start from

1− p̃(z) =

∫ θ2

θ1

(1− p̃(θ, z))π(θ)dθ

and suppose dh̃(z|θ)
dz

≤ 0 for all θ. Recall the definition of a hazard rate function:

h̃(z|θ) = d
dz
[−log(1− p̃(θ, z))]

Hence dh̃(z|θ)
dz

≤ 0 if and only if −log(1− p̃(θ, z)) is concave in z for θ or equivalently if and

only if 1− p̃(θ, z) is log-convex in z for all θ. But then, since log-convexity is preserved under

mixtures (Bagnoli and Bergstrom, 2006) 1− p̃(z) will be log-convex. Therefore the mixture

hazard rate h̃(z) decreases in z. That is,

dh̃(z)
dz

= d2

d2z
[−log(1− p̃(z))] ≤ 0

The above inequality is strict whenever the distribution of the frailty factor Π(θ) is non-

degenerate, as we assume to be the case.

Proof of Proposition 3.

The hazard rate function in the baseline h(z|θ) and in the safer economy h̃(z|θ) are given by

h(z|θ) = θϕ′(z)Λ′(ϕ(z)) and h̃(z|θ) = θΛ′(z)

It follows that h(z|θ) ≥ h̃(z|θ) if and only if

ϕ′(z)Λ′(ϕ(z)) ≥ Λ′(z) (27)

Denoting by MΘ(t) =
∫ θ2
θ1
e−θtdΠ(θ) the moment-generating function for the frailty factor

we get

1− p(z) =

∫ θ2

θ1

(1− p(θ, z))dΠ(θ) =MΘ(−Λ(ϕ(z)))
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for the baseline economy. Similarly, we get

1− p̃(z) =MΘ(−Λ(z))

for the safer economy. Finally, recall that h(z) < h̃(z) for all z is equivalent to (1−p(z))/(1−
p̃(z)) strictly increasing in z (Shaked and Shanthikumar, 2007), which in that case is the

same as
d
dz

MΘ(−Λ(ϕ(z)))
MΘ(−Λ(z))

> 0 (28)

Proposition 1 then implies that the unconventional outcome happens whenever (28) holds,

whereas a risk-reversal happens whenever (27) and (28) jointly hold.

Proof of Proposition 4.

First, observe that

p(z2)−p(z1)
1−p(z1)

= 1− 1−p(z2)
1−p(z1)

and p̃(z2)−p̃(z1)
1−p̃(z1)

= 1− 1−p̃(z2)
1−p̃(z1)

Hence, (22) will be equivalent to

1−p(z2)
1−p(z1)

≥ △−kmin(
η+δ
1−η

)
kmin+△

> 1−p̃(z2)
1−p̃(z1)

It will be sufficient to show that any bank fails in the bad state (i.e., when Z = z2) if and

only if the following holds
1−p(z2)
1−p(z1)

< △−kmin(
η+δ
1−η

)
kmin+△

(29)

Indeed, if the bank fails in the bad state and r∗ is the equilibrium interest rate, then:

(1− η) [(1− p(z1))(1 + r∗) + p(z1)(1−△)− (1− kmin)]

and (1− p(z2))(1 + r∗) + p(z2)(1−△) < 1− kmin (30)

The first condition states that the bank’s shareholders break even in expectation, whereas

the second is that their bank fails in the bad state Z = z2. Solving for the equilibrium loan

interest rate r∗:

r∗ = 1
1−p(z1)

[(
η+δ
1−η

)
kmin +△p(z1)

]
(31)

The above expression for r∗ is valid if and only if the bank fails when the state is bad Z = z2.

We next show this is the case if and only if (29) holds. First, adding △ to both sides of (31)
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yields

r∗ +△ = 1
1−p(z1)

[(
η+δ
1−η

)
kmin +△

]
(32)

Second, (30) is equivalent to

(r∗ +△)(1− p(z2)) < △− kmin

Finally, using (32) to substitute for r∗ + △ in the above leads to the desired condition in

(29).
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