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Abstract

I endogenize the probability of self-fulfilling outcomes in a game where the

only uncertainty comes from extrinsic sunspots. There is a group of players

wishing to coordinate on the same action and another player, the regime de-

fender, whose action affects the payoff from coordination. The coordinating

players’ actions can be based on a sunspot state, which, unlike in the clas-

sic sunspot approach, is observed with a small, idiosyncratic noise (a private

sunspot). I show how private sunspots, combined with the action of the regime

defender, can be used to derive a unique coordination probability in any equi-

librium where sunspots influence actions. I show how this approach can be

used to determine the probability of a sunspot-driven bank run.
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1 Introduction

Several economic phenomena, such as currency attacks, bank runs, sovereign de-

faults, and technology adoption, can be understood as collective action games where

the players can coordinate on one of two equilibria with very different welfare conse-

quences (Diamond and Dybvig, 1983; Obstfeld, 1996; Calvo, 1988; Katz and Shapiro,

1986; Cole and Kehoe, 2000). Multiple equilibria emerge in those settings because of

strategic complementarities : the benefit of an action for a player increases with the

number of players choosing the same action (Bulow et al. (1985)). Equilibrium mul-

tiplicity poses issues since the effect of a given policy on equilibrium outcomes may

be indeterminate. One approach to studying games with multiple equilibria is intro-

ducing extrinsic uncertainty to the model - a sunspot reflecting agents’ sentiment.

In this approach, each agent is influenced by the sunspot only because he expects

the others to be.1 However, a shortcoming of the sunspot-based approach is that the

probability of coordinating on a specific action is exogenous: it simply depends on the

probability of the associated sunspot state. Stated differently, the standard sunspot

approach offers no theoretical rationale for why good outcomes should be correlated

with good fundamentals and vice versa (Morris and Shin, 2000).

I propose a systematic way to endogenize the probability of a coordination event

within the sunspot-based approach. Specifically, I perturb the original public sunspot

game by assuming that each coordinating player receives a signal of the realization of

the sunspot state, which is arbitrarily close to the true realization - a private sunspot.

I show how and when this private sunspot approach generates a unique probability

1Sunspot equilibria originated with Cass and Shell (1983) and has been applied to macroeconomics
(Azariadis, 1981; Woodford, 1986), monetary economics Smith (1988), learning Woodford (1990),
business cycles Benhabib and Farmer (1994), and bank runs (Peck and Shell, 2003), among others.
For an overview, see Shell (1989).
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of coordinating on a given action when sunspots matter (i.e., when players’ actions

are contingent on sunspots). The general approach is presented in Sections 2 and

3. There is a continuum of homogeneous coordinating players (the agents) taking

a binary action (to attack or not) and another player, the regime defender, taking

a continuous action that affects each agent’s net payoff from an attack. The setup

is similar to Morris and Shin (2003) with the following differences. (i) There is no

intrinsic (i.e., fundamental) uncertainty. (ii) The defender makes a strategic choice

that affects the benefit of the attack for the agents and rules out an attack as the

strictly dominant action. (iii) The defender’s action is unobservable to the agents

when deciding whether to attack. (iv) The defender cannot credibly commit to a

specific action but will best respond to the agents’ strategies.

As is well-known, the strategies of the coordinating players could be conditioned

on a sunspot state - an extrinsic random variable. Even though the state is payoff-

irrelevant, each coordinating player would base his actions on the realized sunspot if

he expects others to do the same. With the usual sunspot-based approach, however,

the equilibrium probability of an attack is generally indeterminate and can be any

number within an interval. Such a prediction is unsatisfactory and reveals a weakness

in that approach. Notice that if the sunspot state is perfectly observed, there is no

strategic uncertainty : given his signal, each coordinating player can perfectly predict

the actions of the others. This is an unappealing assumption since some strategic

uncertainty (however small) is likely to persist. The private sunspot approach intro-

duces a small degree of strategic uncertainty: each coordinating player is never sure

of the exact private sunspot received by each of the other coordinating players. As a

result, the strategies of the coordinating players must satisfy an additional condition,

which, together with the defender’s actions, pins down the probability of an attack.

The private sunspot approach allows the coordinating players to hold idiosyncratic
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sentiments about the prospect of coordinating on a given outcome. One interpretation

of this approach is as a modeling device whose goal is to sharpen the predictions of

sunspot equilibria. Another is that the correlating device (the sunspot structure)

is noisy and unreliable because its realizations cannot be measured precisely or are

open to interpretation. This point has been made by Angeletos (2008), who analyses a

model with imperfectly observed sunspots (see also Angeletos and La’O (2013)). My

approach differs in several ways. First, no regime defender exists in Angeletos (2008),

whereas this player is instrumental here. Second, Angeletos (2008) is interested in how

private sunspots induce variation in the equilibrium actions, even if all players share

the same information about the fundamentals. In contrast, the analysis here perturbs

the original game by adding small noise in the player’s coordination device. Ex-ante,

the coordinating players’ probability of choosing different actions is arbitrarily close

to zero.

One popular approach to resolving the multiplicity of equilibrium when strategic

complementarities are present is the global games approach (Rubinstein, 1989; Carls-

son and Van Damme, 1993; Morris and Shin, 1998; Goldstein and Pauzner, 2005).

That approach requires the underlying model to have a particular structure, which is

not satisfied for the environments I study here. In particular, the fundamental value

determining the payoff from attacking is a strategic choice of the defender in my model

rather than an exogenous random variable. The approach proposed here is appropri-

ate for situations where the defender is not a Stackelberg leader, either because he

lacks commitment or his actions are unobservable to the coordinating players. This

setup is similar to Jann and Schottmüller (2021), where an active defender invests

in costly, unobservable defenses. They show that the game has a unique Nash equi-

librium where no attack occurs if the number of potential attackers is large enough.

My approach differs in several ways. First, they explicitly rule out correlating devices
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(such as sunspots), crucial to my analysis. Second, my results do not depend on the

number of attackers. Third, the private sunspot approach generates an attack with

positive probability as part of equilibrium.

The private sunspot approach has another feature that distinguishes it from global

games. Conditional on the fundamentals, a global game selects a particular equilib-

rium; either an attack happens or it does not (in the limiting case where the noise

goes to zero). The implication is that a small change in the fundamental leads to a

large, discontinuous change in the outcome. The private sunspots approach, in con-

trast, assigns a non-trivial probability to each outcome, which captures the idea that

the coordination process is somewhat random. Moreover, that probability responds

continuously to a change in the fundamentals. The approach here can be viewed as en-

dogenously generating the equilibrium selection mechanism advocated by Ennis and

Keister (2005a) for analyzing government policy in models with complementarities

and multiple equilibria.2

Finally, to illustrate the advantages of the private sunspots approach, I apply the

method to a version of the canonical bank runs model of Diamond and Dybvig (1983).

Specifically, I use a version of the model in which a policymaker without commitment

can intervene and resolve the bank when it faces a run, as in Ennis and Keister (2009,

2010). The policymaker in this framework thus plays the role of the defender in my

framework as it reschedules payments to depositors to achieve ex-post efficiency. If

depositors run on the bank in some states, the private sunspots approach delivers

a unique equilibrium probability of a run. I show how this probability has natural

comparative statics, as changes in economic fundamentals lead to continuous changes

in the probability of a run. I conclude by discussing the advantages of my approach

2In related work, Ennis and Keister (2005b) show how an equilibrium selection mechanism with these
general properties can result from an adaptive learning process with boundedly rational agents. In
contrast, the approach here is fully consistent with rational expectations.
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relative to the global games approach to bank runs in Goldstein and Pauzner (2005).

2 The Setup

There is a continuum of coordinating players called the agents. Each agent chooses an

action ai ∈ {0, 1} where ai = 1 is an attack on the regime.3 There is another player

called the regime defender choosing an action θ ∈
[
θ, θ

]
. All agents have the same

payoff function u : {0, 1}×
[
θ, θ

]
× [0, 1] → R where u(a, θ, α) is an agent’s payoff if he

chooses action a, the defender chooses an action θ, and proportion α =
∫ 1

0
aidi of the

other agents choose action 1. The defender’s payoff is W :
[
θ, θ

]
× [0, 1] → R where

W (θ, α) is his payoff if he chooses an action θ and proportion α of the agents choose

action 1. Define△u :
[
θ, θ

]
×[0, 1] → R as the payoff for an agent from choosing action

1 minus the payoff from choosing action 0. That is, △u(θ, α) ≡ u(1, θ, α)−u(0, θ, α).

I impose that △u(θ, α) is bounded, and in addition:

A1: Complementarities. △u(θ, α) is non-decreasing in α.

A2: Action monotonicity. △u(θ, α) is non-decreasing in θ.

A3: Continuity.
∫ 1

0
△u(θ, α)dα is continuous in θ.

A1 states that the incentive for an agent to choose action 1 increases in the proportion

of other agents choosing action 1 (i.e., there are strategic complementarities). A2

states that the incentive for an agent to choose action 1 increases in the defender’s

action θ. In other words, higher θ makes an attack more appealing. A3 is relatively

weak as it allows for some discontinuities of △u(θ, α).4

The defender’s action θ is unobservable by the agents, and therefore, their actions

cannot be contingent on θ. Instead, they infer θ in equilibrium. Let θ̂(0) denote

3The continuum of agents is for simplicity. The results hold for a finite number of agents as well
(see Section 5).
4For example, △u(θ, α) = −c for α < α̂ and △u(θ, α) = θ − c for α ≥ α̂ where α̂ ∈ (0, 1).
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the defender’s optimal action if he expects all agents to choose action 0 (i.e., θ̂(0) ∈

argmaxθW (θ, 0)). Then, the no attack Nash equilibrium exists if △u(θ̂(0), 0) ≤ 0.

Similarly, let θ̂(1) be the defender’s optimal action if he expects all agents to choose

action 1 (i.e., θ̂(1) ∈ argmaxθW (θ, 1)). Then, the attack Nash equilibrium exists

if △u(θ̂(1), 1) ≥ 0. I assume the game has at least one Nash equilibrium in pure

strategies.

3 Sunspot equilibria

Sunspot equilibria are introduced as follows: nature first draws a payoff-irrelevant

random variable s that no one observes. The variable s, with support S ⊆ R and

CDF F (.) is the underlying sunspot state. Each agent then privately observes a payoff-

irrelevant random variable ŝ, which, conditional on s, is i.i.d. with support Ŝ ⊆ R

and CDF F̂ (.|s). Henceforth, ŝi is agent i’s private sunspot. The sunspot structure

Φ = (S, F, Ŝ, F̂ ) is common knowledge.5 The defender does not observe the sunspot

state or receive an informative private sunspot.

Definition 1. An equilibrium with private sunspots consists of a sunspot structure

Φ = (S, F, Ŝ, F̂ ), a strategy for each agent â∗ : Ŝ → {0, 1}, and an action for the

defender θ∗ such that

â∗(ŝ) ∈ argmax
â∈{0,1}

∫
S

u(â, θ∗, α∗(s))dP(s|ŝ) (1)

and

θ∗ ∈ argmax
θ∈[θ, θ]

∫
S

W (θ, α∗(s))dF (s) (2)

5It should be noted that Φ is not part of the model primitives but a modeling device. As in
Angeletos (2008), one can think of private sunspots as idiosyncratic sentiments due to disagreements,
interpreting them, or measurement errors.
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where α∗(s) =
∫
Ŝ
â∗(ŝ)dF̂ (ŝ|s) is the proportion of agents choosing to attack for given

s ∈ S and P(s|ŝ) is the CDF of s conditional on private sunspot ŝ as implied by Bayes

rule.

I will say that sunspots matter if the distribution of the proportion of agents that

attack G(α) = P(s : α∗(s) ≤ α) is non-degenerate.

A4: Sunspot structure. (i) the sunspot state s is a continuous random

variable with density f(.), (ii) agent i’s private sunspot is ŝi = s + ϵηi

where ηi are i.i.d. continuous random variables that are independent of

the sunspot state. The distribution of the noise terms ηi is H(.) with

support [−b, b] ⊆ R and density h(.).6

The parameter ϵ captures the precision of the private sunspots. Henceforth, I only

focus on the vanishing noise, namely ϵ arbitrarily close to zero (public sunspots cor-

respond to ϵ = 0).

The strategy of the agents will be contingent onM threshold points χ1 ... χM such

that each threshold is a switch from one action to another (the action at a threshold

can be either of the two). For example, the following is a single-threshold strategy

such that an agent attacks if and only if his private sunspot is greater than or equal

to χ.

â(ŝ) =

 0 if ŝ < χ

1 if ŝ ≥ χ
(3)

As the noise in the private sunspots vanishes ϵ → 0 either all agents attack with

probability q = 1 − F (χ), or there is no attack with the complement probability

(recall: F (.) is the CDF of the sunspot state). In general, let A ≡ {ŝ ∈ Ŝ : â(ŝ) = 1}
6The support of the sunspot state s and the noise terms ηi can be a bounded interval or the entire
real line. In addition, ηi need not be mean zero or symmetrically distributed.
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denote the set of private sunspots leading to an attack. Then, as ϵ → 0, either all

agents attack with probability q = P(s ∈ A) or there is no attack with probability

1 − q where P(s ∈ A) is the probability that the sunspot state belongs to A. The

defender’s best response in (2) is then

θ̂(q) ∈ argmax
θ∈[θ, θ]

(1− q)W (θ, 0) + qW (θ, 1). (4)

A5: Defender’s action. θ̂(q) is unique for each q ∈ [0, 1]. The function

θ̂(q) is continuous and non-increasing in θ.

A6: Laplacian action monotonicity.
∫ 1

0
△u(θ̂(0), α)dα > 0 >

∫ 1

0
△u(θ̂(1), α)dα.

According to A5, θ̂(q) decreases in q, which, in turn, reduces the agents’ incentive

to attack since △u(θ, α) is non-decreasing in θ. According to A6, an agent with

Laplacian beliefs would attack when q = 0 since, in that case, the defender’s best

response θ̂(0) is relatively high, making an attack preferable.7 On the other hand, an

agent with Laplacian beliefs will not attack if q = 1 since the defender’s best response,

in that case, θ̂(1) is relatively low, making no attack the preferable action.

3.1 Public sunspots

I first examine the more familiar type of sunspot equilibria where the sunspot state

s is observed perfectly by the agents, corresponding to setting ϵ = 0 in A4. There is

no strategic uncertainty in that case: each agent (after observing the sunspot) knows

what the other agents will do.

Proposition 1. Public sunspots. Suppose A1 - A3 and A5 - A6 are satisfied. Suppose

each agent perfectly observes the sunspot state. Then there are q1 and q2 (q1 < q2)

7An agent’s beliefs are said to be Laplacian whenever he assigns uniform probability over the pro-
portion of agents that attack α ∼ U [0, 1] (Morris and Shin, 2003; Morris and Yang, 2022).

8



such that and for any q ∈ [q1, q2] ∈ [0, 1] there exists a sunspot equilibrium with an

attack probability equal to q.

This proposition illustrates a major shortcoming of the public sunspot approach -

the probability of an attack can be any value in the interval [q1, q2] and, in particular,

there is a continuum of equilibria where sunspots matter (i.e., q ∈ (0, 1)).8 The

public sunspot approach does not provide a way of selecting among these equilibria

or linking the probability of an attack to the model’s primitives.

3.2 Private sunspots

Next, suppose each agent observes the sunspot state with an arbitrarily small idiosyn-

cratic noise (that is, set ϵ > 0 in A4).

Proposition 2. Private sunspots. Suppose A1 - A6 are satisfied. Suppose the agents

observe the sunspot state with a vanishing noise. Then, the equilibrium attack proba-

bility q∗ (when sunspots matter) is unique and given as the solution of

∫ 1

0

△u(θ̂(q∗), α)dα = 0. (5)

Proof. Assume each agent follows the single-threshold strategy in (3) and attacks if

and only if his private sunspot is greater than or equal to χ∗, where this threshold will

be determined in equilibrium. Let G(α) denote the unconditional probability that

the proportion of the agents choosing to attack is no greater than α. That is,

G(α) ≡ P(s : α(s) ≤ α), (6)

8The lower bound q1 is zero whenever the no-attack Nash equilibrium exists and the upper bound
q2 is one whenever the sure-attack Nash equilibrium exists.
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where α(s), the proportion of agents choosing to attack for a given sunspot state s

(see (3) in Definition 1). As the noise in the private sunspots goes to zero, ϵ→ 0, the

CDF in (6) converges to a distribution with mass q∗ on full attack and mass 1 − q∗

on no attack where q∗ is the probability that the sunspot is greater than or equal to

the equilibrium threshold χ∗, that is, P(s ≥ χ∗). In particular, since F (.) is the CDF

of the sunspot state:

q∗ ≡ P(s ≥ χ∗) = 1− F (χ∗),

I will show that q∗ must satisfy the equilibrium condition in (5). From A4 agent i’s

private sunspot is ŝi = s + ϵηi. Then, if the sunspot state is s, the proportion of

agents that observe a private sunspot greater than or equal to χ∗ will be

P(s+ ϵηi ≥ χ∗) = 1−H
(
χ∗−s

ϵ

)
,

where H(.) is the CDF of the noise term ηi. We have for α ∈ [0, 1]:

1−H
(
χ∗−s

ϵ

)
≤ α ⇔ s ≤ χ∗ − ϵH−1(1− α). (7)

Denote by G(α|ŝ) the probability that an agent with a private sunspot ŝ assigns to

the event that the proportion of agents that attack is at most α. From (7) we get for

α ∈ [0, 1]:

G(α|ŝ) = P(s ≤ χ∗ − ϵH−1(1− α) | ŝ). (8)

Next, denote by Π(ŝ) the net expected payoff of an agent with a private sunspot equal

to ŝ. Using (9) we get

Π(ŝ) =

∫
S

△u(θ̂(q∗), α(s))dP(s|ŝ) =
∫ 1

0

△u(θ̂(q∗), α)dG(α|ŝ).
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Next, the threshold strategy in (3) is consistent equilibrium if and only if Π(ŝ) ≤ 0

for ŝ < χ∗ and Π(ŝ) ≥ 0 for ŝ > χ∗. That is, the agent best responds by an attack

for ŝ < χ∗ and by no attack for ŝ > χ∗, implying that an agent with ŝ = χ∗ will be

indifferent between the two actions

Π(χ∗) =

∫ 1

0

△u(θ̂(q∗), α)dG(α|χ∗) = 0.

Thus, q∗ will be determined by (5) if the CDF G(.|χ∗) converges to U [0, 1] as the

noise term in the private sunspots vanishes ϵ→ 0. That is, we must show

limϵ→0G(α|χ∗) = α for all α ∈ [0, 1].

First, recalling that the density of the sunspot state s is f(.) and the density of the

noise term ηi is h(.) we get

G(α|ŝ) =
∫ χ∗−ϵH−1(1−α)

−∞
p(s|ŝ)ds =

∫ χ∗−ϵH−1(1−α)

−∞ f(s)h
(
ŝ−s
ϵ

)
ds∫∞

−∞ f(s)h
(
ŝ−s
ϵ

)
ds

, (9)

where p(s|ŝ) the posterior of the sunspot state s given a private sunspot ŝ as implied

by Bayes rule

p(s|ŝ) =
f(s)h

(
ŝ−s
ϵ

)∫∞
−∞ f(s)h

(
ŝ−s
ϵ

)
ds
.

I proceed as in Morris and Shin (2003) to show that, as ϵ → 0, the effect of f(.)

on G(.|ŝ) vanishes. Specifically, implementing a change of variable z = ŝ−s
ϵ

into (9)

yields

G(α|ŝ) =

∫∞
(ŝ−χ∗)/ϵ+H−1(1−α)

f(ŝ− ϵz)h(z)dz∫∞
−∞ f(ŝ− ϵz)h(z)dz

.

As ϵ→ 0, f(ŝ− ϵz) converges to f(ŝ) and, as a result, f(.) drops out from the above
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and we get

G(α|ŝ) =

∫∞
(ŝ−χ∗)/ϵ+H−1(1−α)

h(z)dz∫∞
−∞ h(z)dz

= 1−H
(
ŝ−χ∗

ϵ
+H−1(1− α)

)
. (10)

Hence, limϵ→0G(α|χ∗) = α for all α ∈ [0, 1]. It remains to establish that Π(ŝ) ≤ 0 for

ŝ < χ∗ and Π(ŝ) ≥ 0 for ŝ > χ∗. From (10) we get for all α ∈ [0, 1]:

1−H
(
ŝ−χ∗

ϵ
+H−1(1− α)

)
> 1−H

(
H−1(1− α)

)
= α for all ŝ < χ∗

1−H
(
ŝ−χ∗

ϵ
+H−1(1− α)

)
< 1−H

(
H−1(1− α)

)
= α for all ŝ > χ∗

We then get G(α | ŝ) ⪯ G(α |χ∗) for all ŝ < χ∗ and G(α | ŝ) ⪰ G(α |χ∗) for all

ŝ > χ∗ where ⪯ denotes first-order stochastic dominance. Since △u(θ̂(q∗), α) is non-

decreasing in α (from A1), it then follows that Π(ŝ) ≤ Π(χ∗) = 0 for ŝ < χ∗ and

Π(ŝ) ≥ Π(χ∗) = 0 for ŝ > χ∗. Thus, the strategy in (3) with a threshold point

χ∗ = F−1(1− q∗) where q∗ solves (5) is consistent with equilibrium. Finally, to show

that q∗ exist and is unique, define the function φ(q):

φ(q) ≡
∫ 1

0

△u(θ̂(q), α)dα.

From A2 - A3
∫ 1

0
△u(θ, α)dα is continuous and non-decreasing in θ whereas, from A5,

θ̂(q) is continuous and non-increasing in q. Hence, the function φ(q) is continuous and

non-increasing in q. Moreover, from A6: φ(0) > 0 > φ(1). Then, by the intermediate

value theorem, there exists (in this case a unique) q∗ ∈ (0, 1) such that φ(q∗) = 0.

The reverse case, where each agent attacks if and only if his private sunspot is less

than or equal to χ∗, is treated analogously. Finally, the multiple-threshold case is

established in the appendix.
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4 Discussion

Discrete case

The assumption of a continuum of agents was made for simplicity and with an eye

toward applications. One can easily adapt the analysis to a discrete number of agents.

Assume there are two agents and the defender. An agent has a payoff of zero if he

does not attack, a payoff of −c if he is the only one attacking, and a payoff of ψ(θ)

if both agents attack where ψ(.) is some strictly increasing function of θ. Suppose

the sunspot structure is uniform: s ∼ U [0, 1] and ŝi = s + ϵηi where ηi ∼ U [−1, 1].9

Assume each agent attacks if and only if his private sunspot is greater than or equal

to χ and, as before, focus on vanishing noise ϵ→ 0. Thus, if agent i’s private sunspot

is ŝi = χ, the probability he assigns to the other agent’s private sunspot ŝj being

greater than or equal to χ will be 1
2
. Then, the equilibrium probability of an attack

q∗ is determined as the solution of

1
2
ψ(θ̂(q∗)) = c or θ̂(q∗) = ψ−1(2c). (11)

where θ̂(q) is the defender’s best response given an attack with probability q. The

solution q∗ exists, is unique, and decreasing in c, whenever θ̂(0) > ψ−1(2c) > θ̂(1)

and θ̂(q) is continuous and strictly decreasing in q. In contrast, any q such that

θ̂(q) ≥ ψ−1(c) is a public-sunspot equilibrium.

9Then, conditional on ŝi, agent’s i’s posterior about the sunspot state is s|ŝi ∼ U [ŝi − ϵ, ŝi + ϵ] and
his posterior about the private sunspot of the other agent is ŝj |ŝi ∼ U [ŝi − 2ϵ, ŝi + 2ϵ]. It should be
noted that the previous expressions are incorrect for ŝi < ϵ and ŝi > 1 − ϵ, but this is not an issue
since I focus on vanishing noise ϵ → 0.
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Comparative statics

The private sunspot approach implies that the equilibrium in which the agents’ actions

are contingent on sunspots is unique and generates a probability of an attack that

responds continuously to a change in the parameters. It thus captures the idea that

the coordination process is somewhat random and cannot be perfectly predicted given

the fundamentals Ennis and Keister (2005a,b). As mentioned in the Introduction, this

might be more intuitively appealing than the global games approach, which yields a

discontinuous relationship between the fundamentals and the probability of an attack

when, as in my case, the noise is arbitrarily small.

Defender’s role

The equilibrium value of the attack probability q∗ leads the defender to set θ∗ = θ̂(q∗)

such that an agent with the Laplacian beliefs about the proportion of other agents

that attack (i.e., α ∼ U [0, 1]) will be indifferent between an attack and no attack.

That is,
∫ 1

0
△u(θ∗, α)dα = 0. The defender thus has a crucial role in the analysis and,

apart from the knife-edge case θ = θ∗, the private sunspot approach will not work if θ

is not determined as part of the equilibrium.10 Many applications naturally feature a

player whose action affects the benefit of an attack for the coordinating players. For

example, the central bank will choose the level of reserves in a currency attack model,

the bank will choose its early payment in a bank run model, and the incumbent will

choose the amount spent on defense in a regime change model.

10If the sunspot structure is uniform s ∼ U [0, 1] and ŝi = s+ϵηi where ηi ∼ U [−1, 1] then a probability
shifting argument as in Goldstein and Pauzner (2005) establishes that A1 can be weakened to: there
is a α̂(θ∗) such that △u(θ∗, α) < 0 for α < α̂(θ∗) and △u(θ∗, α) > 0 for α > α̂(θ∗) where θ∗ is the

unique value of θ such that
∫ 1

0
△u(θ∗, α)dα = 0.
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Higher-order beliefs

The approach to establishing the uniqueness of the private sunspot equilibrium is

reminiscent of the global game’s literature (Carlsson and Van Damme, 1993). It is

well-known that the global games selection rule is not robust to perturbations of the

players’ higher-order beliefs (Weinstein and Yildiz, 2007), and similar issues plague

the private sunspot approach.11 Take the two-agent example from the beginning

of this section and consider an alternative sunspot structure. The sunspot state is

uniform s ∼ U [0, 1] as before, but now for given s with probability λ, each agent’s

private sunspot is s and with probability 1− λ each agent’s private sunspot is drawn

independently, from U [s− ϵ, s+ ϵ]. Then, for any ϵ > 0, agent i’s assigns probability

λ + 1
2
(1 − λ) that agent j’s private sunspot is weakly higher P(ŝj ≥ ŝi) = 1

2
. The

equilibrium attack probability q∗ is then determined as the solution of

(λ+ 1
2
(1− λ))ψ(θ̂(q∗)) = c.

Notice that q∗ now depends on the sunspot structure through the parameter λ ∈ [0, 1]

and the only perturbation such that q∗ is independent of the sunspot structure is λ = 0

corresponding to the private sunspot selection rule. The private sunspot approach

is thus appropriate for applications where sunspots matter (i.e., agents’ actions are

contingent on them) but wish to model the probability of an attack as independent

of the sunspot structure and, instead, dependent only on fundamentals.

11I thank an anonymous referee for raising this point.
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5 An Application

This section demonstrates the versatility of the private sunspots approach by apply-

ing it to the limited commitment version of the Diamond and Dybvig (1983) model

in Ennis and Keister (2009, 2010). Most Diamond-Dybvig models assume full com-

mitment by the bank and policymakers to a course of action, even in a run. However,

it is well-known that a bank with commitment can eliminate runs by promising to

suspend payments as soon as a run is detected (Diamond and Dybvig (1983)).12 At

the same time, the actions taken during financial crises are often characterized by

delayed response and only partial suspensions. Ennis and Keister (2009, 2010) show

how such delays arise naturally under limited commitment and how the anticipation

of delays can cause runs. However, runs in their setup are either unanticipated or

their probability is exogenously based on sunspots.13 I will show how the private

sunspots approach is natural in this setup and delivers a unique run probability that

depends on the parameters in an intuitive way. I then relate my analysis to the global

games approach to Diamond-Dybvig that builds on Goldstein and Pauzner (2005) and

requires strong restrictions on investment technologies and banking contracts, as seen

from Allen et al. (2018), Carletti et al. (2023), and Ahnert et al. (2023) among others.

12The literature generates runs in environments with commitment by assuming banks must give a
pre-specified payment until they run out of funds Postlewaite and Vives (1987); Cooper and Ross
(1998); Allen and Gale (2004); Goldstein and Pauzner (2005). In practice, however, bank liabilities
are frequently altered in a crisis (see Ennis and Keister (2009)).

13The limited commitment approach to the Diamond-Dybivg framework has been used to study a
range of topics, including how financial fragility is affected by interest rates Li (2017), inequality
Mitkov (2020), asset opacity Izumi (2021), competition (Gao and Reed, 2021; Xiao, 2022), and
banking regulation Keister and Mitkov (2023).
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5.1 The environment

There are three time periods t = 0, 1, 2. There is a continuum of agents, called the

depositors, and indexed by i ∈ [0, 1]. Each depositor has preferences given by

u(c1 + ωic2) =
(c1+ωic2)

1−γ

1−γ
, (12)

where ct is consumption in period t and ωi is a binomial random variable with support

Ω = {0, 1}. As is standard, the coefficient of relative risk aversion is greater than

one γ > 1. If ωi = 0, the depositor is impatient and values consumption only in

period 1, whereas if ωi = 1, he is patient and values consumption in periods t = 1, 2.

Each depositor learns his type privately in period 1. Each depositor is impatient with

probability π, and the fraction of impatient depositors is also π.

Technology. Each depositor is endowed with one unit of the good in period 0 and

there is a constant-returns-to-scale technology for transforming goods in period 0 into

goods in periods 1 and 2. One unit of the good placed in this technology in period 0

yields R > 1 units in period 2 but only 1 unit in period 1.

Sequential service. There is banking technology that allows depositors to pool their

endowment to insure against idiosyncratic liquidity risks. As in Wallace (1988), the

depositors are isolated from each other, and no trade can occur among them. Each

depositor can visit the banking technology to receive a payment from the pooled

resources (i.e., to withdraw). Those choosing to withdraw in period 1 arrive one at a

time and must consume immediately upon arrival. This sequential service constraint

implies the payment to a depositor can only depend on the information available to
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the banking technology when this payment is being determined.14

Banking authority. A benevolent banking authority (BA) operates the banking

technology. The BA anticipates that a fraction π of the depositors will be impatient

and withdraw in period 1 and always act to maximize the depositors’ expected util-

ities. Importantly, as in Ennis and Keister (2009, 2010), the BA cannot commit to

actions that are not ex-post optimal and instead chooses payments as a best response

given its information and taking as given the profile of withdrawal strategies of the

depositors. As will become clear, the BA is the defender.

Timing. In period 0, all endowments are deposited. At the start of period 1, the

depositors are isolated from each other. After observing his type ωi and private

sunspot ŝi, depositor i chooses to contact the banking technology in period 1 or 2.

Those depositors choosing to withdraw in period 1 arrive at the bank in the order

given by their index i. Thus, depositor i = 0 knows that he has the opportunity to be

the first to withdraw in period 1 whereas depositor i = 1 knows that his opportunity

comes last. The depositor’s position in this order is private information.15 The BA

determines the payment to each depositor as they arrive and as a best response to the

situation. In particular, the BA detects a run as soon as period 1 withdrawals exceed

π and, as explained below, would reschedule payments for the remaining depositors

to reflect this new information.

14If there is no sequential service, the bank would first collect all withdrawal requests and then assign
payments. Then, if payments can be made contingent on that information, runs will not occur as
part of equilibrium since if all depositors request early payment, the bank’s best response is to give
1 to each in period 1. But then, each patient depositor prefers to leave his share in the bank to get
a larger payment in period 2.

15The approach here follows Green and Lin (2003) and Ennis and Keister (2010) among others since
it simplifies the analysis while capturing in a tractable way the notion that the depositors may have
some information about their position in the withdrawal order. The results will be very similar
if the depositors first choose when to withdraw and are then randomly assigned positions in the
withdrawal order.

18



The efficient allocation. To derive a benchmark allocation, suppose a benevolent

planner observes all depositors’ types and controls their withdrawal actions. The

planner gives c∗1 in period 1 to each impatient depositor and c∗2 in period 2 to each

patient depositor. These payments will be chosen to solve

max
{c1,c2}

πu(c1) + (1− π)u(c2), (13)

subject to (1− π)c2 = R(1− πc1). The planner’s solution satisfies 1 < c∗1 < c∗2 < R.

As is well-known, this solution can be implemented as an equilibrium by a bank that

does not observe depositors’ types. In particular, the bank pays c∗1 to each of the first

π depositors in period 1. In period 2, the bank’s remaining resources mature and are

evenly divided among the remaining depositors.

5.2 Sunspot equilibria

Consider now the decentralized economy, where each depositor chooses his withdrawal

strategy as part of a non-cooperative game, and the BA chooses payments as a best

response to the strategy profile for the depositors.

Sunspot structure. Fix a sunspot structure Φ = (S, F, Ŝ, F̂ ) and suppose the de-

positors observe their private sunspots before withdrawals begin. A strategy for

depositor i is a mapping from his realized type ωi and his private sunspot ŝi to a

decision of whether to withdraw in period 1 or period 2. The analysis is simplified by

the following observations. First, each impatient depositor has a strictly dominant

strategy to withdraw in period 1, implying that the measure of withdrawals in period

1 will be at least π. Second, the BA detects a run as soon as the measure of with-

drawals exceeds π - but not before that since at least π withdrawals always happen.
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Finally, one can show that any run in this setup is necessarily partial and restricted

to those patient depositors with an opportunity to withdraw before the BA detects

a run, namely those with an index i ≤ π. So, consider the following strategy profile

for the depositors. (i) Each impatient depositor withdraws early. (ii) Each patient

depositor with i ≤ π withdraws early (i.e., runs on the bank) if and only if his private

sunspot falls in the attack set A ⊆ Ŝ. (iii) Each patient depositor with an index i > π

withdraws late.

Next, I will derive the BA’s best response to this strategy profile and then apply

the private sunspot approach to derive the equilibrium run probability.

Remaining payments. Denote by α ∈ [0, 1] the fraction of patient depositors

among the first π to contact the bank, implying that the measure of depositors that

run on the bank is απ. Also, let π̂α denote the fraction of the remaining 1 − π de-

positors that are impatient. We have dπ̂α

dα
> 0, π̂0 = 0, and π̂1 = π.16 The BA does

not observe α but instead makes inferences based on the flow of withdrawals. If with-

drawals stop at π, the BA infers there is no run (α = 0), and all remaining depositors

are patient. The BA would then give ĉ2NR = R(1−πc1
1−π

) in period 2 to each patient

depositor implying that the sum of expected utilities of the remaining depositors is

VNR

(
1−πc1
1−π

)
= (1− π)u

[
R(1−πc1

1−π
)
]
. (14)

On the other hand, if withdrawals continue after the first π, the BA infers a run

is happening (i.e., α > 0), and, therefore, not all impatient depositors have been

served. Payments for the remaining depositors will then be rescheduled to (c1R, c2R)

depending on the BA’s updated belief about the distribution of α. Specifically, since

the BA’s prior on the event {α ∈ (0, 1)} goes to zero as the noise in the depositor’s

16The exact expression for π̂α is derived in the proof of Proposition 3
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private sunspots vanishes, Bayes rule implies that that the BA’s posterior on the event

{α ∈ (0, 1)} also goes to zero. Then, the rescheduled payments in a run (c1R, c2R)

converge to the solution of the program

VR
(
1−πc1
1−π

)
= max

{ĉ1R,ĉ2R}
πu(ĉ1R) + (1− π)u(ĉ2R) (15)

s.t πĉ1R + (1− π)ĉ2R/R = 1−πc1
1−π

. (16)

After a run is detected, the BA would set ĉ1R and ĉ1R to maximize the sum of expected

utilities of the remaining depositors given that α = 1. Then, for given α ∈ (0, 1], the

measure of remaining impatient depositors is (1− π)π̂α and each of those is paid ĉ1R

whereas the measure of the remaining patient depositors is (1− π)(1− π̂α) and each

is paid ĉ2α where

ĉ2α = R(1−πc1−(1−π)π̂αĉ1R)
(1−π)(1−π̂α)

. (17)

Thus, given c1 and α, the late payment for each remaining patient depositor, after

incorporating the response of the BA, will be determined as in the above. The function

ĉ2α is equal to ĉ2NR for α = 0, strictly decreasing in α, and equal to ĉ2R for α = 1.

Then, since the solution of the program in (15) - (16) satisfies ĉ2R > ĉ1R we get

ĉ2α > ĉ1R for all α ∈ [0, 1]. Next, each of the remaining patient depositors would best

respond by withdrawing late - as specified in the depositors’ strategy profile. Finally,

I turn to the incentive of the depositors, who have a chance to withdraw before the

BA detects a run.

Equilibrium run probability. Recall that all impatient depositors would withdraw

early, whereas all patients with a chance to withdraw after the BA has detected a

run (i.e., i > π) would withdraw late. So, consider a patient depositor with an

opportunity to withdraw before the BA has detected a run (i.e., i ≤ π). For given c1
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and α this depositor gets a payoff of u(c1) from running on the bank and a payoff of

u(ĉ2α) from waiting where ĉ2α is given in (17). Thus, the net payoff from a run for

such a patient depositor for given c1 and α is

△u(c1, α) = u(c1)− u(ĉ2α). (18)

The BA does not learn new information during the first π withdrawals and, since

depositors are risk-averse, would give a common amount c1 to each of the first π

depositors. Then, once the measure of withdrawals reaches π, one of two things can

happen. First, withdrawals stop, and the bank’s remaining matured resources are

spread equally among the patient depositors. Second, withdrawals continue, and the

BA immediately reschedules payments to ĉ1R and ĉ2R to solve the program in (15).

Notice that all remaining payments are uniquely pinned down once c1 and α have

been determined. As the noise in the private sunspots goes to zero, we have α = 1

with probability q or α = 0 with probability 1 − q. Given any q ∈ [0, 1], the BA

selects c1 to maximize the sum of expected utilities of all depositors, anticipating how

it reacts after a run is detected. That is,

c1(q) ∈ argmax
c1∈[0, 1/π]

πu(c1) + (1− π)
[
(1− q)VNR

(
1−πc1
1−π

)
+ qVR

(
1−πc1
1−π

)]
. (19)

where VNR

(
1−πc1
1−π

)
and VR

(
1−πc1
1−π

)
are defined in (14) and (15) respectively.

Proposition 3. Suppose the depositors observe the sunspot state with a vanishing

noise. Then the equilibrium bank run probability q∗ (when sunspots matter i.e., q∗ ∈

(0, 1)) is determined as the solution of the following equation

∫ 1

0

△u(c1(q∗), α)dα = 0,
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where △u(c1, α)dα is defined in (18) and c1(q) in (19).

Figure 1 displays q∗ as a function of the coefficient of relative risk aversion γ (left

panel), the return of the investment technology R (middle panel), and the aggregate

proportion of impatient depositors π (right panel).17 There are several notable impli-

cations. First, a higher coefficient of relative risk aversion γ leads to a higher q∗ since

it pushes the bank to engage in more maturity transformation by setting a higher

early payment. In particular, a higher early payment implies that the bank will be in

worse financial shape when a run is discovered (after π withdrawals), which implies

that the payments for depositors who wait will be lower. This fact creates a stronger

incentive to run, thus pushing up the equilibrium run probability. Second, R has a

non-monotone effect on q∗. As R increases, the bank will give a larger early payment.

However, there are two competing effects on the expected late payment and, thus, on

the return to staying invested. First, if there is no run, the late payment will increase

relative to the early payment. Second, when a run occurs, more investment will be

liquidated (due to the larger early payments), reducing the late relative to the early

payment. As the middle panel in Figure 1 shows, the second effect dominates for

relatively small values of R, whereas the first effect dominates for relatively large.18

Finally, π also has a non-monotone effect on q∗. Recall that π in this setup also

measures how many depositors will get to withdraw before the bank discovers and

responds to a run - a large π implies that the response to a run comes later when

the bank is in worse financial shape. This force also appears in models with public

sunspots (see, e.g., Ennis and Keister (2010) and Keister (2016)) where fragility al-

ways increases in π. The private sunspots approach introduces strategic uncertainty,

17I set π = 0.5 in the left and the middle panel, R = 2 in the left and the the right panel, and γ = 5
in the middle and the right panel.

18The non-monotonicity in R reflects forces similar to those identified by Li (2017) by arbitrarily
focusing on the largest possible sunspot-based run probability.
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bringing a second competing effect. A depositor who receives the threshold signal

will be relatively more optimistic about the value of waiting because he anticipates

that some agents may not be participating in the run. The magnitude of this effect

is increasing in π because the bank reacts more strongly to a run when π is large.

This second effect, therefore, decreases the incentive to run as π becomes larger. The

right panel in Figure 1 shows that, for this example, the first effect dominates when

π is small, but the second effect dominates as π becomes larger, eventually pushing

the equilibrium run probability to zero.

Figure 1: Bank run probability

5.3 Discussion

It is informative to compare the approach here to the large literature that follows

Goldstein and Pauzner (2005) in changing the Diamond-Dybvig model to fit into the

global games framework of Carlsson and Van Damme (1993). However, some of these

changes are questionable on theoretical grounds. First, Goldstein and Pauzner (2005)

assumes the bank offers a simple demand-deposit contract that is not optimal in

their environment. In particular, the bank continues to pay withdrawing depositors

at face value until it is completely out of resources. This is not how a financial

crisis unfolds in practice, as discussed at the start of this section. They need to

take this approach because having a fixed contract allows them to use global game
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techniques. In contrast, I show how a more realistic version of the Diamond and

Dybvig (1983) model fits naturally into the private sunspots framework.19 Second,

Goldstein and Pauzner (2005) assumes that the bank is fully liquid in some states of

the world, meaning it could repay all of its depositors immediately without defaulting.

This is another strong assumption required for the global game techniques to work

but is not required by the private sunspots approach. These strong restrictions on

the environment will perhaps be justified if the global games selection rule were, in

fact, robust to different perturbations of the underlying complete information game.

However, as shown by Weinstein and Yildiz (2007), the global games selection rule

of Carlsson and Van Damme (1993) is a property of the particular perturbation

used, and other reasonable perturbations can lead to very different outcomes (see,

e.g., Example 1 and 2 in Weinstein and Yildiz (2007)). Finally, the private sunspots

approach delivers more intuitively appealing comparative statics. That is, conditional

on fundamentals, the framework based on Goldstein and Pauzner (2005) predicts the

probability of a run is either 0 or 1 (as the noise vanishes), whereas in my case, the

probability of a run is either zero or strictly between 0 and 1, and it varies smoothly

with the parameters.

6 Conclusion

I propose a way to endogenize the probability of self-fulfilling outcomes based on

sunspots (the private sunspots approach). The setup is a non-cooperative game where

each agent takes a binary action (i.e., to attack or not). There is also a regime defender

taking an action as a best response to the agents’ strategies and whose action affects

19Gu (2011) also considers asymmetric observations of the sunspot state in a setup very different
from mine. In particular, the bank in Gu (2011) has full commitment, and there are multiple
sunspot-based equilibria.
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the agents’ payoffs. The equilibrium attack probability is self-fulfilling. Yet, the

private sunspot approach allowed us to derive the probability of an attack as a function

of the model’s parameters. The reason is that this approach introduces strategic

uncertainty: the sunspot state is observed by each agent with vanishing noise. As a

result, the agents’ strategies must satisfy an additional equilibrium condition, which,

together with the defender’s actions, pins down the equilibrium attack probability.

The private sunspot approach is especially suitable for applications where the defender

makes a strategic choice but lacks commitment, such as in the bank run application

from the last section.

Appendix

Proof of Proposition 1.

Since the sunspot state is perfectly observed, the agents’ strategies can be directly

contingent on it. So, assume each agent attacks if and only if s ≥ χ. The probability

of an attack is then q = 1−F (χ) where F (.) is the CDF of the sunspot state. Notice

that focusing on a single-threshold strategy is without loss of generality since one can

generate any q ∈ (0, 1) through χ = F−1(1− q). An attack with probability q will be

consistent with a public sunspot equilibria whenever the following is satisfied

△u(θ̂(q), 0) ≤ 0 ≤ △u(θ̂(q), 1), (20)

where θ̂(q) is the defender’s best response to an attack probability of q. The first

inequality in (20) ensures that each agent best responds by not attacking when all

other agents do not attack α = 0, whereas the second that each agent best responds
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with an attack when all other agents attack α = 1. Next, define

φ(q) ≡
∫ 1

0

△u(θ̂(q), α)dα. (21)

From A2 - A3
∫ 1

0
△u(θ, α)dα is continuous and non-decreasing in θ whereas, from

A5, θ̂(q) is continuous and non-increasing in q. Hence, φ(q) is continuous and non-

increasing in q. Further, from A6 we have φ(0) > 0 > φ(1). Then, by the intermediate

value theorem, there exists (in this case a unique) q∗ ∈ (0, 1) such that φ(q∗) = 0.

That is,

φ(q∗) =

∫ 1

0

△u(θ̂(q∗), α)dα = 0.

Next, since △u(θ̂(q∗), α) is non-decreasing in α we get from the above:

△u(θ̂(q∗), 0) ≤ 0 ≤ △u(θ̂(q∗), 1).

Hence, q∗ will be consistent with a public sunspot equilibrium. Then, since△u(θ, 0) is

non-decreasing in θ whereas θ̂(q∗) is non-increasing in q, the following set of conditions

will be satisfied. First, if the probability of an attack is greater than q∗ and no other

agent attacks α = 0, then each agent best responds by not attacking.

△u(θ̂(q), 0) ≤ △u(θ̂(q∗), 0) ≤ 0 for each q ∈ (q∗, 1] (22)

Second, if the probability of an attack is less than q∗ and all other agents attack

α = 1, then each agent best responds by attacking.

△u(θ̂(q), 1) ≥ △u(θ̂(q∗), 1) ≥ 0 for each q ∈ [0, q∗) (23)
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Letting q1 (q2) denote the smallest (largest) value of q consistent with public-sunspot

equilibrium, we have q1 ≤ q∗ ≤ q2 and, to establish that there is a continuum of

public-sunspot equilibria, we must show that either q1 < q∗ or q2 > q∗. Recall that

either the no-attack or the sure-attack Nash equilibrium is assumed to exist. If the

no-attack Nash equilibrium exist we have △u(θ̂(0), 0) ≤ 0. The previous implies

△u(θ̂(q), 0) ≤ 0 for each q ∈ [0, 1] which, combined with (23), implies that each

q ∈ [0, q∗] is a public-sunspot equilibrium (i.e., q1 = 0). On the other hand, if the

sure-attack Nash equilibrium exists, we have △u(θ̂(1), 1) ≥ 0. Then, △u(θ̂(q), 1) ≥ 0

for each q ∈ [0, 1] which, combined with (22), implies that each q ∈ [q∗, 1] is a public-

sunspot equilibrium (i.e., q2 = 1).

Proof of Proposition 2.

The main text deals with the single-threshold case, and thus, it remains to establish

the multi-threshold case. So, suppose the agents’ strategy contains M > 1 thresholds

χ∗
1 < χ∗

2 < ... < χ∗
M such that each agent attacks whenever his private sunspot is less

than or equal to the lowest of those thresholds. That is,

â(ŝ) = 1 for all ŝ ≤ χ∗
1. (24)

Hence, â(ŝ) = 0 for ŝ ∈ (χ∗
1, χ

∗
2), â(ŝ) = 1 for ŝ ∈ [χ∗

2, χ
∗
3], and so on. The flip case

â(ŝ) = 0 for ŝ ≤ χ∗
1 is very similar and omitted. I will show that q∗ will still be

determined by (5) as in the single-threshold case. Consider any agent i with a private

sunspot ŝ and define the random variables Y (ŝ), X(ŝ, y), and X(ŝ) as follows:

• Y (ŝ) = y is the realized proportion of agents with a sunspot less than or equal

to agent i’s private sunspot ŝ. Let Ψ(y|ŝ) denote the CDF of Y (ŝ).
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• X(ŝ, y) = x is the realized proportion of agents that attack given that agent i’s

private sunspot is ŝ and y is the fraction of agents with a private sunspot less

than or equal to ŝ. Let Qy(x|ŝ) denote the CDF of X(ŝ, y).

• X(ŝ) = x is the realized proportion of agents that attack given that agent i’s

private sunspot is ŝ. Let Q(x|ŝ) denote the CDF of X(ŝ).

Notice that the CDF Ψ(.|ŝ) depends on the sunspot structure but not on the agents’

strategies, whereas the CDFsQy(x|ŝ) andQ(x|ŝ) depend on the sunspot structure and

the agents’ strategies. In particular, Q(x|ŝ) is a mixture distribution where Qy(x|ŝ)

are the component CDF and Y (ŝ) is the mixing variable with CDF Ψ(y | ŝ). That is,

Q(x|ŝ) =
∫ 1

0

Qy(x|ŝ)dΨ(y|ŝ) for x ∈ [0, 1]. (25)

Also, notice that (25) is an equivalent way of defining the CDF G(α|ŝ) in (9). The

net expected payoff of an agent whose private sunspot is equal to ŝ is then

Π(ŝ) =

∫ 1

0

△u(θ̂(q∗), x)dQ(x|ŝ) for ŝ ∈ Ŝ.

If the strategy in (24) is consistent with equilibrium, an agent with a private sunspot

equal to one of those thresholds will be indifferent between an attack and no attack.

That is, Π(χ∗
k) = 0 for all k ∈ {1, ...,M}. I will show that as ϵ→ 0, Ψ(.|ŝ) converges

to U [0, 1] for all ŝ ∈ Ŝ. That is,

limϵ→0Ψ(y | ŝ) = y for all y ∈ [0, 1] and all ŝ ∈ Ŝ.
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Indeed, if the underlying sunspot is s, the proportion of agents who observe a private

sunspot less than or equal to ŝ is

P(s+ ϵηi ≤ ŝ) = H( ŝ−s
ϵ
),

where H(.) is the CDF of the noise term ηi. This proportion will be less than or

equal to y ∈ [0, 1] if and only if s ≥ ŝ− ϵH−1(y). In other words, agent i with private

sunspot ŝ assigns probability

P(s ≥ ŝ− ϵH−1(y) | ŝ) = Ψ(y | ŝ)

to the event that the proportion of agents with a private sunspot less than or equal

to his is less no greater than y. Then

Ψ(y | ŝ) =
∫ ∞

ŝ−ϵH−1(y)

p(s|ŝ)ds =

∫∞
ŝi−ϵH−1(y)

f(s)h( ŝ−s
ϵ
)ds∫∞

−∞ f(s)h( ŝ−s
ϵ
)ds

,

where h(.) is the PDF of the noise terms ηi. Changing the variable of integration in

the above to z = ŝ−s
ϵ

yields:

Ψ(y | ŝ) =
∫ H−1(y)

−∞ f(ŝ− ϵz)h(z)dz∫∞
−∞ f(ŝ− ϵz)h(z)dz

.

As ϵ → 0, f(ŝ − ϵz) converges to f(ŝ) and the density f(.) drops out from Ψ(y | ŝ).

Then, for each y ∈ [0, 1] we get as ϵ→ 0

Ψ(y | ŝ) =
∫ H−1(y)

−∞ h(z)dz∫∞
−∞ h(z)dz

= H(H−1(y)) = y.
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Hence, limϵ→0Ψ(y | ŝ) = y for y ∈ [0, 1] and ŝ ∈ Ŝ implying that as the noise van-

ishes the CDF Ψ(.|ŝ) converges to U [0, 1]. Then, since Y (ŝ) ∼ Ψ(.|ŝ) converges in

distribution to U [0, 1] for all ŝ the mixture CDF in (25) becomes

limϵ→0Q(x|ŝ) =
∫ 1

0

Qy(x|ŝ)dy for all x ∈ [0, 1].

Next, fix the lowest threshold point χ∗
1 and recall that â(ŝ) = 1 for all ŝ ≤ χ∗

1. The

strategy profile in (24) thus implies P(X(χ∗
1, y) ≥ y) for all y ∈ [0, 1]. In other words,

X(χ∗
1, y) is obtained from Y (χ∗

1) by adding a non-negative random variable to each

realization of Y (χ∗
1). Hence, P(X(χ∗

1) ≥ Y (χ∗
1)) = 1 which implies X(χ∗

1) ⪰ Y (χ∗
1)

where ⪰ means first-order stochastic dominance (see, e.g., Section 6 in Mas-Colell

et al. (1995)). Then since △u(θ̂(q∗), y) is non-decreasing in y:

∫ 1

0

△u(θ̂(q∗), x)dQ(x|χ∗
1) ≥

∫ 1

0

△u(θ̂(q∗), y)dy. (26)

where the above uses Y (ŝ) ∼ U [0, 1] for all ŝ. Also, let χ∗
k for k ∈ {2, ...,M} be

any threshold point greater than χ∗
1. The strategy profile in (24) then implies P(y ≥

X(χ∗
k, y)) = 1 for all y ∈ [0, 1]. Hence, P(Y (χ∗

k) ≥ X(χ∗
k)) = 1. Hence, Y (χ∗

k) ⪰

X(χ∗
k) which, in turn, implies

∫ 1

0

△u(θ̂(q∗), y)dy ≥
∫ 1

0

△u(θ̂(q∗), x)dQ(x|χ∗
k). (27)

Combining (26) - (27) with Π(χ∗
k) = 0 for all k yields:

0 =

∫ 1

0

△u(θ̂(q∗), x)dQ(x|χ∗
1) ≥

∫ 1

0

△u(θ̂(q∗), y)dy ≥
∫ 1

0

△u(θ̂(q∗), x)dQ(x|χ∗
k) = 0.

(28)
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The first line follows from Π(χ∗
1) = 0, the second line from (26), the third line from

(27), and the final line from Π(χ∗
k) = 0. We then get from (28) that the following

must be satisfied in equilibrium:

∫ 1

0

△u(θ̂(q∗), y)dy = 0.

That is, the equilibrium attack probability is still determined by (5) as in the single-

threshold case. In other words, whenever sunspots matter, the number of thresholds

in the agents’ strategy does not affect the equilibrium attack probability since the

equilibrium location of those thresholds will be such that the equilibrium attack

probability corresponds to its value in the single-threshold case.

Proof of Proposition 3.

I first show that equilibrium runs will be restricted to patient depositors with an op-

portunity to withdraw before the BA detects a run. To see why, suppose withdrawals

continue beyond the first π, leading the BA to infer that a run is happening. Then, if

the BA anticipates some fraction ρ of the remaining depositors to withdraw in period

1, it reschedules the payment plan for the remaining depositors (ĉ1ρ, ĉ2ρ) maximize

the sum of their expected utilities

ρu(ĉ1ρ) + (1− ρ)v(ĉ2ρ)

subject to the budget constraint

ρĉ1ρ + (1− ρ)ĉ2ρ/R = 1−πc1
1−π

.
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The solution of this program will be characterized by the above budget constraint

and the following first-order condition

u′(ĉ1ρ) = Ru′(ĉ2ρ).

Since R > 1, we have ĉ1ρ < ĉ2ρ for all ρ ∈ [0, 1] implying that a patient depositor

with an opportunity to withdraw after the BA detects a run strictly prefers to wait.

Next, the late payment to each patient depositors ĉ2α, defined in (17), depends on c1,

ĉ1R and π̂α where π̂α is obtained from the depositors’ strategy profile and given by

π̂α = π
1−π

(
1− π

π+α(1−π)

)
.

Thus π̂0 = 0 for α = 0, π̂α strictly increases in α, and π̂1 = π. Next, since the

depositors’ utility function u is of the constant relative risk aversion form, the solution

of the program in (15) - (16) is given by

ĉ1R = 1−πc1
(1−π)(π+(1−π)R(1−γ)/γ)

and ĉ2R = R1/γ 1−πc1
(1−π)(π+(1−π)R(1−γ)/γ)

.

We have ĉ1R < ĉ2R and, in addition, ĉ1R and ĉ2R are decreasing functions of c1. Thus,

ĉ2α defined in (17), equals ĉ2NR for α = 0, is strictly decreasing in α, and equals

ĉ2R for α = 1. Also, ĉ2α is strictly decreasing in c1. Hence, A1 and A2 hold since

△u(c1, α) = u(c1)−u(ĉ2α) is strictly increasing in α and c1. Next, the optimal choice

of c1 in (19) is characterized by the following first-order condition

u′(c1) = (1− q)Ru′(ĉ2NR) + qRu′(ĉ2R). (29)
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Given that u is constant relative risk aversion we can solve for c1 in terms of q to get

c1(q) =
1

π+A(q)1/γ
where A(q) = (1− q)λ−γ

0 + qλ−γ
1

where λ0 and λ1 are such that λ0 > λ1 and given by

λ0 =
1

(1−π)R(1−γ)/γ and λ1 =
1

(1−π)(π+(1−π)R(1−γ)/γ)
.

Observe that A5 holds since c1(q) is unique for each q ∈ [0, 1] and decreasing in q.

Finally, as q → 1, we get from (29) that u′(c1(q)) converges to Ru′(ĉ2R) implying

c1 < ĉ2R. Then, ĉ2R ≤ ĉ2α for all α ∈ [0, 1] implies c1(q) < ĉ2α for all α ∈ [0, 1]. As a

result,
∫ 1

0
[u(c1(q))− u(ĉ2α)]dα < 0 for all q sufficiently close to one implying that the

equilibrium run probability will be strictly less than one q∗ < 1 (that is, q∗ is then

either 0 or strictly between 0 and 1).
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