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This paper studies repeated trade with noisy information about previous transactions. A buyer has private informa-

tion about his willingness to pay, which is either low or high, and buys goods from different sellers over time. Each

seller observes a noisy history of signals about the buyer’s previous purchases and sets a price. We compare the

cases where previous prices are observable to sellers with the case where they are not. We show that more signal

precision is counterbalanced by two equilibrium mechanisms that slow learning and keep incentives in balance: (1)

sellers offer discounted prices more often, and (2) the buyer rejects high prices with a higher probability. The effect

of making prices observable depends on the signal precision: When the signal is imprecise, making prices public

strengthens the discounting mechanism, improving efficiency and buyer welfare; when the signal is precise, making

prices public activates the rejection mechanism, and efficiency and buyer welfare may decrease. Independently of

the price observability, the buyer tends to benefit from a more precise signal about previous purchases.
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1 Introduction

In many markets, participants conduct multiple transactions over time. For instance, people shopping

online may make multiple purchases from various retailers, and companies and government entities pro-

cure goods and services from multiple suppliers. In these markets, some information regarding past

transactions is often accessible to traders; for example, internet cookies record prior consumer interac-

tions, public reports document the terms of procurement contracts, and information may be disseminated

through leaks, word of mouth, or online forums. Hence, a trader’s behavior is affected by the fact that

other traders may acquire information about his decisions and use it to their advantage.

The current theoretical understanding of how information about previous transactions affects de-

centralized pricing is limited and based on two extreme cases: that of perfect information, and that of

no information. In the first case, Hart and Tirole (1988) show that Coasian forces determine the equi-

librium outcome. The basic logic is clear. If a trader with high willingness to trade accepts a bad price

now, he obtains a small surplus from the transaction but also signals his high willingness to trade, which

weakens his bargaining position in the future. Thus, in equilibrium he rejects bad prices; this means he

loses a small surplus now but secures better prices in the future. To avoid rejection, trading counterparts

offer him good prices. In the second case, when there is no information about previous transactions, the

trader’s signaling motive disappears, and the repeated static outcome results in equilibrium.

In practice, these extreme cases are rare, whereas intermediate cases with imperfect and noisy in-

formation are common. Current models based on the extremes, therefore, give little guidance on the

possible implications of regulatory or technological changes affecting the information available to traders.

This paper’s first contribution is to provide a tractable model to study how noisy information about

previous transactions affects repeated trade. A long-lived buyer meets a short-lived seller at each instant

in continuous time. The buyer has a permanent type, corresponding to his valuation of the seller’s good,

which is either low (`) or high (h), with 0<`<h. (The buyer’s type may also be interpreted as his

wealth or marginal value for money.) Each seller sets a uniform price, and the buyer decides the amount

of the good he buys. We initially assume that each seller observes the previous price offers, together

with a history of noisy signals about the buyer’s previous acceptance decisions. We study Markov perfect

equilibria with the sellers’ posterior belief about the high type as the Markov variable, and with ` always

accepted.

We find that imperfect information on acceptance decisions averts Coasian dynamics while gener-

ating non-trivial trade dynamics. Intuitively, if ` were offered and accepted for sure in an interval of

high posteriors, the buyer’s continuation value would be flat in this interval. A seller could then benefit

from offering a price slightly below h: such a price would be accepted by the high-valuation buyer (the
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h-buyer), because it would give him a positive surplus while not significantly changing the sellers’ beliefs

about his type. In the unique equilibrium, while only low prices are offered for low posteriors, high prices

are offered with positive probability for intermediate posteriors and for sure for high posteriors. Two

incentive constraints are then satisfied for intermediate and high posteriors: because a seller can ensure

trade by offering `, he offers a high price in equilibrium only if the h-buyer accepts it with high enough

probability, while the h-buyer accepts a high price only if doing so does not decrease his continuation

payoff too much.

The paper’s second main contribution is to present two equilibrium mechanisms that keep the incent-

ives of the buyer and sellers in balance. The first is a discount mechanism for intermediate-low posteriors:

sellers offer the discounted price ` with positive probability. Such discounted prices slow learning (be-

cause the acceptance signal is uninformative when price ` is offered, as both buyer types accept it) and

increase the continuation value of the h-buyer, making it less sensitive to the arrival of information. As a

result, the h-buyer is willing to accept high prices in equilibrium, which means that sellers will offer high

prices even when the probability of the buyer’s having a low valuation (and hence rejecting the price)

is relatively high. The second mechanism is a rejection mechanism, which arises for intermediate-high

posteriors when the signal is sufficiently informative; in this case, the h-buyer rejects high prices with

positive probability. This mechanism further slows learning, because a signal indicating rejection of a

high price does not necessarily indicate that the buyer’s valuation is low.

Our mechanisms correspond to the two possible equilibrium mechanisms for lowering the inform-

ativeness of acceptance decisions as required to balance the incentives in the dynamic model: the first

entails a very high acceptance probability (sellers make low price offers that are likely accepted), and the

second entails a very low acceptance probability (sellers make high price offers that are likely rejected).1

In either case, a contrarian signal is interpreted as likely noise, while a conformist signal is interpreted as

carrying little information. We believe that these mechanisms extend beyond the particular assumptions

of our model.

The paper’s third main contribution is its analysis of the welfare effects of policies affecting the

precision of the information available to sellers—for example, internet privacy regulations or transparency

laws for firms and government agencies. For the extremes of signal informativeness, we recover the

existing results: the price tends to ` as the signal becomes arbitrarily precise and to the static monopolistic

price as the signal tends toward pure noise. When the signal precision is low, reducing it weakens the

discount mechanism, which decreases equilibrium trade and increases equilibrium prices; hence, buyer

welfare and efficiency decrease. When the signal precision is high, reducing it weakens both the discount

1 Note that, if α is the unconditional probability that a given price is accepted, both the variance and the entropy of the implied

Bernoulli random variable are single-peaked in α.
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and rejection mechanisms. Because weakening the rejection mechanism increases trade, the total effect

on efficiency and buyer welfare is unclear. We prove that there is a large region of intermediate posteriors

in which the total effect of reducing the signal precision is detrimental to efficiency and buyer welfare.

We also analyze how the effects of signal precision on welfare depend on the observability of prices.

For this we consider a modification of our main model in which sellers observe the previous acceptance

signals but not the prices offered. In this model, deviations by sellers are unobservable, which implies

that all equilibrium offers are accepted for sure; thus, the rejection mechanism is absent. Nevertheless,

we show that when the signal precision is low, buyer welfare and efficiency are lower than in the model

where prices are observable to sellers. The reason is that the equilibrium information carried by the

signal is higher if sellers know the prices offered to the buyer in past transactions: when prices are

observable, the buyer’s acceptance of a high price is very informative; when prices are unobservable,

sellers cannot distinguish between acceptance of high prices and acceptance of low prices. Thus, when

prices are observable, a stronger discounting mechanism is needed to maintain the h-buyer’s incentive

to accept high prices, and buyer welfare and efficiency are higher as a result. However, when the signal

precision is high, we show that this result may be reversed: observability of prices may be detrimental

to the buyer. With high signal precision, when prices are observable, the rejection mechanism keeps the

posterior high for a longer time, lowering the value to the h-buyer of mimicking the `-buyer. Furthermore,

observability of prices may lower market efficiency in this case, by causing the h-buyer to trade less often.

Technical contribution: The paper provides a tractable continuous-time framework for analyzing re-

peated decentralized pricing in a setting where uninformed traders have all the bargaining power and

where private information is revealed through acceptance of price offers. Our model differs from the

continuous-time models in the previous literature in that we modify the recursive formulation of the

problem to allow both the buyer and the sellers to use instantaneous randomizations over non-trivial

regions of posteriors. Such mixed strategies play a crucial role in encoding the various economic mechan-

isms underlying the unique equilibrium. We are also able to accommodate and compare within the same

setting the two cases that are often studied in discrete-time trade models: the public-offers case and the

private-offers case.

Regulatory implications: Our paper provides a novel perspective on the study of pricing in markets with

repeated trade. In our model, changes in signal precision affect the equilibrium behavior of informed and

uninformed traders, affecting welfare and efficiency in non-trivial ways. In Section 5, we discuss some

policy implications in light of current debates on privacy and transparency in online or procurement

markets. While we focus on personalized pricing, we believe our setting captures the main forces in play

in other mechanisms used in practice, such as personalized advertising or recommendations.
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1.1 Literature review

As explained above, Hart and Tirole (1988) show that in a model with perfect information about the

previous transactions, Coasian forces favor an equilibrium in which prices are equal to the buyer’s lowest

valuation, as the acceptance of a high price results in a permanent price increase (there is one seller in

their setting). Kaya and Roy (2020, 2022) show that, also under perfect information about the previous

transactions, equilibria are also Coasian in the presence of adverse selection, and they find that an upper

bound on the buyer’s payoff when offers are private is lower than his payoff in some equilibria when

offers are public; they also analyze the effect of increasing competition. Our assumption of imperfect

observability of acceptance decisions averts Coasian dynamics, shedding light on the interplay between

information and bargaining and providing unique predictions and rich trade dynamics.2 Bonatti and

Cisternas (2020) consider a consumer whose willingness to pay evolves stochastically over time and

analyze the effects of third-party scores measuring the consumer’s purchasing decisions. They find that,

in linear Markov equilibria, sellers tend to offer lower prices when scores are less persistent. Our analysis

focuses on the case where types are permanent and information is disaggregated (e.g., because it is not

transmitted through third parties or because the sellers cannot commit to disregarding some of it). We

show that more informative signals tend to be offset by less informative equilibrium purchasing decisions,

which may be induced by either low (welfare-enhancing) prices or high (welfare-diminishing) prices.

The work most closely related to ours is Lee and Liu (2013), which studies markets in which traders

use bargaining to address disputes, with a type-dependent random outside option being publicly drawn

if traders fail to agree. We look at the opposite situation, in which the outside option (value from not

trading) is fixed, and learning occurs only through the buyer’s endogenous acceptance decisions (so it

depends on the buyer’s type only through his equilibrium behavior). We believe this is a more suitable

framework for studying how information affects prices and trade probability. The implied dynamics and

equilibrium mechanisms are therefore significantly different from those of Lee and Liu (2013). In their

model, the predictions are similar to those for the analogous model with one trade (Daley and Green,

2012): for intermediate beliefs, all offers are rejected, and for extreme beliefs, either all offers are ac-

cepted by both types, or all offers are accepted by exactly one type. In our model, there is either total or

partial separation for intermediate beliefs, and the speed of learning is affected not only by the buyer’s

behavior but also by the endogenous seller’s pricing decision. This outcome differs significantly from the

equilibrium outcome of the analogous model with one trade.3

2 Villas-Boas (2004) studies the case where the monopolist faces overlapping generations of buyers who each live for two

periods, thus avoiding Coasian dynamics. He shows that equilibrium involves cycles in the prices offered to new consumers.
3 It is not difficult to see that the Coase conjecture holds in the one-trade version of our model.
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Our work is also related to the reputation literature. Here, the paper closest to ours is that of Faingold

and Sannikov (2011), in which a firm sells goods at a fixed price to a continuum of buyers, and information

about the firm’s previous quality choices is revealed through a diffusion process. The firm’s type is either

“behavioral”, meaning it produces only high-quality goods, or “normal”, meaning it can produce either

low-quality goods or, at a greater cost, high-quality goods. The price is exogenously set to be equal to 1.4

Our model endogenizes price formation through a simple (yet canonical) pricing procedure often used

in decentralized markets: the seller posts a price, which the buyer accepts or rejects. The model thus

incorporates both the buyer’s incentives (to reveal/conceal private information by accepting/rejecting

high prices) and the sellers’ incentives (to choose prices that maximize the expected revenue given the

buyer’s incentives); these jointly determine the speed of learning. Hence, unlike Faingold and Sannikov

(2011), we obtain that the unique equilibrium features (i) efficient discounts and (ii) inefficient rejections.

Furthermore, in Faingold and Sannikov (2011), the observability of the individual choices of short-lived

agents is irrelevant, whereas in our model the buyer prefers prices to be observable rather than hidden.5

The rest of the paper is organized as follows. We present the model with observable prices in Section

2, and we analyze it in Section 3. In Section 4, we study the welfare effects of reducing the information

observed by sellers. In Section 5, we discuss policy implications for several applications and conclude.

The appendix contains the proofs of the results. An online appendix provides results for discrete-time

versions of our model.

2 The model

Time is continuous. There is a buyer. At each instant t∈R+, the buyer meets a short-lived seller, the

“t-seller”, who offers price pt . The buyer decides the amount of good he purchases from the t-seller,

at∈[0,1], at price pt at . The buyer values all sellers’ goods equally. His valuation, denoted θ , also referred

to as his type, is private, and it is either ` or h with 0<`<h. A natural interpretation is that the buyer’s

type is his willingness to pay, which correlates with his wealth or access to alternative purchasing options.

4 Similar results can be obtained if the price is set “competitively” to be equal to the expected quality of the goods and trade

occurs for sure. Note that, for comparison, the roles of buyers and sellers in our model can be swapped: our model is

equivalent to one where a seller with private information about the production cost repeatedly sells to different buyers over

time.
5 Note that our stage game is an ultimatum game, which is close to the chain store game (studied by Kreps and Wilson, 1982,

and Milgrom and Roberts, 1982). Note also that imperfect information about previous transactions has also been studied in

Liu (2011) and Liu and Skrzypacz (2014), who study reputation effects in repetitions of the product-choice game with limited

records. As we argue above, we believe that the simultaneous nature of the product-choice game (also used by Faingold and

Sannikov, 2011) makes it less adequate than the ultimatum game to study how the incentives to offer and accept prices affect

market efficiency and welfare.
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Hence, the buyer’s instantaneous payoff from purchasing a mass of at units at price pt is at (θ−pt), while

the t-seller payoff is at pt .
6 The initial probability that the type is h is φ0∈(0,1).

There is a public signal about the buyer’s previous purchasing decisions. More concretely, at each

instant t, the t-seller observes (X t ′)t ′∈[0,t), with

X t :=µ

∫ t

0

at ′ dt ′+Bt , (1)

where Bt is a normalized Wiener process and µ>0 is a parameter capturing the precision of the signal.

Throughout Sections 2 and 3, we will consider the case where the t-seller also observes the history of

price offers made by previous sellers.

We will use φt to denote the public belief at time t about the buyer’s type being h (given the signal

and price histories). We will focus on Markov strategies. For the buyer with type θ ∈{`,h}, an acceptance

strategy associates to each belief φ∈[0,1] and (on- or off-path) price p̂, a purchased quantity αθ (φ, p̂)∈

[0,1]. An offer strategy associates to each belief φ a price distribution π̃(φ)∈∆(R).

Belief dynamics

We define the following two functions:

µ̃(φ, p̂;α̂,α`,αh):=µ(1−φ)φ (αh(φ, p̂)−α`(φ, p̂))

(α̂(φ, p̂)−φαh(φ, p̂)−(1−φ)α`(φ, p̂)) , (2)

σ̃(φ, p̂;α`,αh)
2 :=µ(1−φ)2φ2 (αh(φ, p̂)−α`(φ, p̂))2 . (3)

These are interpreted as the instantaneous drift and the diffusion parameters of the belief process, re-

spectively, when the sellers assign a probability φ to the valuation of the buyer being h, they believe that

the `-buyer accepts according to α` and the h-buyer accepts according to αh, the buyer actual acceptance

strategy is α̂, and the price offered is equal to p̂.

6 We will sometimes interpret at as the probability of accepting an indivisible good offered by seller t. Allowing at to be

a continuous variable is more convenient in a continuous-time setting. The Online Appendix argues that, in discrete-time

approximations, the two modeling choices provide equivalent results.
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Equilibrium concept

Definition 2.1. A (regular Markov perfect) equilibrium is a strategy profile (α`,αh,π̃) together with a pair

of value functions (V`,Vh):[0,1]→R satisfying the following conditions:

1. V` and Vh are continuous, piecewise twice differentiable, and differentiable at all φ such that

α`(φ, p̂) 6=αh(φ, p̂) for some p̂,7, and, for almost all φ∈(0,1), they satisfy

r Vθ (φ)=Ep̃∼π̃(φ)
�

rαθ (φ, p̃)(θ− p̃)+µ̃(φ, p̃;αθ ,α`,αh)V
′
θ (φ)

+ 1
2 σ̃(φ, p̃;α`,αh)

2 V ′′θ (φ)
�

, (4)

where Ep̃∼π̃(φ)[·] is the expectation operator with respect to the variable p̃ distributed according to

π̃(φ).

2. For all φ and p̂, αθ (φ, p̂) belongs to

argmax
α̂∈[0,1]

�

r α̂(θ− p̂)+µ̃(φ, p̂;α̂,α`,αh)V
′
θ (φ)

�

. (5)

3. For all φ, π̃(φ) belongs to

argmax
π̂∈∆(R)

Ep̃∼π̂
��

(1−φ)α`(φ, p̃)+φαh(φ, p̃)
�

p̃
�

. (6)

The first condition in Definition 2.1 requires that the strategy profile and continuation values are

regular enough that the Bellman equation (4) holds for both θ ∈{`,h}. The second condition in Definition

2.1 says that the buyer acts optimally. Equation (5) indicates the tradeoff he faces. If a price p̂ is such that

α`(φ, p̂)=αh(φ, p̂) (i.e., if the signal is uninformative and so µ̃(φ, p̂;α̂,α`,αh)=0), then the buyer accepts

for sure any price below his valuation (i.e., any p<θ). If, instead, p̂∈(`,h) and α`(φ, p̂)<αh(φ, p̂), then

acceptance gives the h-buyer an instantaneous payoff equal to h− p̃>0, but reveals information about his

type to future sellers, which affects the continuation payoff (as the drift of the posterior is positive). The

third condition in Definition 2.1 says that sellers behave optimally. When the posterior is φ, the seller

chooses the price to maximize the expected revenue, that is, the price multiplied by the probability that

it is accepted.

We now present a condition on the equilibrium behavior.

7 Note that if α`(φ, p̂)=αh(φ, p̂) for all p̂, then, for any continuation play, the belief remains equal toφ. Conversely, if α`(φ, p̂) 6=
αh(φ, p̂) for some p̂, then the differentiability of the continuation values allows us to compute the buyer’s incentive to accept

the price offer using equation (5). Note also that if α`(φ, p̂)=αh(φ, p̂) for some p̂, then µ̃(φ, p̂;α̂,α`,αh)=0 for all α̂; hence

the second term in the argument of argmax in equation (5) is 0.
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Condition 1. The buyer accepts for sure any offer less than or equal to `.

From now on, we focus on equilibria satisfying Condition 1, which we call simply equilibria. Con-

dition 1 is intuitive, and it is a convenient way to make the analysis tractable. It is analogous to a result

obtained in most bargaining models with one purchase: the Diamond paradox establishes that, if a buyer

receives one offer at a time, the lowest equilibrium offer is no lower than the lowest buyer valuation.8,9

Note that Condition 1 effectively transforms the `-buyer into a “behavior” or “action” type who

accepts an offer if and only if it is weakly lower than `. It is then suboptimal for sellers to offer prices

below ` in equilibrium. As we will see, equilibria under Condition 1 have the property that it is optimal

for both types of buyer to behave as prescribed by the condition. Hence, Condition 1 can be seen as either

an equilibrium refinement or a behavioral assumption.

3 Equilibrium analysis

3.1 Preliminary results

We begin by presenting some preliminary results that will help build intuition for our main results.

Throughout, we will fix an equilibrium (α`,αh,π̃). These will establish some necessary conditions that

strategy profiles have to satisfy to be an equilibrium.

Offered prices: We first note that, in the one-shot game, a seller offers ` if φ<φ∗ and h if φ>φ∗,

where φ∗ :=`/h. The same occurs when the signal is uninformative because, when µ=0, we have

µ̃(φ, p̂;α̂,α`,αh)=0, so the buyer behaves myopically (from equation (5)). As the following result es-

tablishes, the threshold φ∗ also plays an important role when the signal is informative.

Lemma 3.1. The following hold in any equilibrium:

1. For each φ≤φ∗, the support of π̃(φ) is {`}.

2. For each φ∈(φ∗,1), the support of π̃(φ) is either {p(φ)} or {`, p(φ)} some p(φ)∈(`,h).

Lemma 3.1 implies that price offers are always smaller than h. This result would be trivial in a

model with a unique transaction, since no buyer type would accept an offer larger than h; hence each

seller would be strictly better off offering ` than offering a price higher than h. In our model with repeated

8 In a repeated-trade setting without noise, prices lower than ` can be sustained in equilibrium, for example by “punishing”

the buyer with prices equal to h if he accepts a higher price. In our model, the noise in the acceptance signal rules out this

possibility.
9 Other authors make other assumptions with similar effects on the equilibrium play. For example, Lee and Liu (2013) require

the value functions to be monotone, and the reputation literature assumes that all types except one are behavioral.
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trade, the result is not obvious, because the h-buyer has signaling motives. The proof of Lemma 3.1 shows

that the continuation value of the h-buyer is a decreasing function of the posterior. As a result, the h-

buyer never accepts an offer higher than h, as doing so both gives him a negative payoff and decreases

his continuation value on expectation.

The previous observation implies that, as in the static model, ` is offered and accepted for sure in

equilibrium when φ<φ∗. Indeed, an immediate implication of Condition 1 is that no seller offers a price

strictly below `, and hence the equilibrium payoff of the `-buyer is 0. This implies that the `-buyer rejects

all offers above `. As a result, when φ<φ∗, offering ` (which is accepted by both types of buyer) gives

the seller a larger payoff than offering any price in (`,h] (which is rejected by the `-buyer).

The fact that, when φ>φ∗, the support of the price distribution is either {p(φ)} or {`, p(φ)} for

some p(φ)∈(`,h) is obtained as follows. Assume a seller offers p̂∈(`,h) (on or off path). The h-buyer

cannot be strictly willing to reject such a price: if he were, the signal would be deemed uninformative by

future sellers (i.e., µ̃(φ, p̂;α̂,α`,αh)=0), but then the buyer would have the incentive to accept the price

(because αh(φ, p̂)=1 would be the unique element in the argument of the maximum in (5)). Hence,

either the h-buyer is indifferent between accepting the price p̂ or not, or he has a strict incentive to accept

it. From equation (5), he is indifferent if and only if

surplus from trade
︷︸︸︷

h− p̂ =

reputation loss
︷ ︸︸ ︷

µ/r (1−φ)φαh(φ, p̂)(−V ′(φ)) (7)

(here and from now on, to save notation, we denote the h-buyer’s continuation value by V instead of

Vh). The term on the left-hand side of equation (7) is the buyer’s instantaneous gain from accepting

the offer; it equals his valuation minus the price. The term on the right-hand side is the implied loss in

terms of continuation value, which can be interpreted as a reputation loss. Keeping all else equal, this

term is larger when the signal is more informative, the equilibrium acceptance probability is larger, or the

continuation value is more sensitive to changes in the posterior.

Acceptance decisions: The h-buyer is strictly willing to accept p̂ when the left-hand side of equation (7)

is strictly bigger than the right-hand side. This implies that, in equilibrium,

αh(φ, p̂)=min
¦

r (h−p̂)
µ(1−φ)φ (−V ′(φ)) , 1

©

. (8)

This acceptance probability acts as a downward-sloping demand: it is 1 if p̂ is low enough and decreases

linearly as p̂ increases until it reaches 0, when p̂=h. We can then compute the price p̂∈(`,h) that max-

imizes the seller’s payoff p̂αh(φ, p̂). The price p(φ) in Lemma 3.1 is the unique maximizer of p̂αh(φ, p̂),
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which is given by

p(φ):=max
�

h/2,

(∗)
︷ ︸︸ ︷

h−µ/r (1−φ)φ (−V ′(φ))
	

. (9)

The expression (∗) in equation (9) represents the highest price accepted with probability one by the h-

buyer, which corresponds to the kink of αh(φ, p̂). The seller’s optimal offer is then either the maximizer

of the linear part of αh(φ, p̂)—that is, h/2, which is rejected by the h-buyer with positive probability—or

the corner solution (∗), if that price is above h/2—which is accepted by the h-buyer for sure. In particular,

we have

α(φ)<1 ⇒ p(φ)=h/2 , (10)

where from now on α(φ):=αh(φ, p(φ)) is the equilibrium probability that the h-buyer accepts p(φ)

(recall that such an offer is rejected for sure by the `-buyer).

It is important to note that, in any equilibrium, it is optimal for the h-buyer to mimic the `-buyer,

that is, to accept an offer if and only if it is equal to or lower than `. This follows from the observation

that either the high price p(φ) is the largest price that the buyer accepts with probability one, in which

case he is indifferent between acceptance and rejection, or p(φ) equals h/2, and the buyer randomizes

between acceptance and rejection. Thus, (7) holds for p̂=p(φ) and αh(φ, p̂)=α(φ).

Optimal high prices: The gain a seller obtains from offering p(φ) is φα(φ)p(φ). By Lemma 3.1, it is

weakly optimal for a seller to offer p(φ)>` for all φ>φ∗. Also, offering ` gives a seller a payoff equal to

` (since she sells for sure). Hence, we have that

φα(φ)p(φ)≥` (11)

for all φ>φ∗. The previous expression holds with equality when ` is offered with positive probability.

Since, by equation (10), either α(φ)=1 or p(φ)=h/2 (or both), we have the following condition for

sellers to offer p(φ) with positive probability for φ>φ∗:

π(φ)∈(0,1) ⇒ p(φ)=max{h/2,`/φ} , (12)

where, by another abuse of notation, π(φ) indicates the probability that the offered price equals p(φ) (in

this case, the term (∗) in equation (9) is equal to `/φ). Hence, ` is offered with probability 1−π(φ) (by

Lemma 3.1).
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Figure 1: Various equilibrium objects for h= r=1, `=0.3, and µ=0.8.11

3.2 Equilibrium characterization

Less informative signal

We first focus on the case where the signal is relatively uninformative—that is, the case where µ is small

(in a sense that will be made precise). Equivalent results can be obtained when the buyer is relatively

impatient, that is, in the case where r is large. Note that, from the previous section, a strategy profile is

fully determined by p(φ) (the high price intended only for the h-buyer), π(φ) (the probability with which

a seller offers p(φ)), and α(φ) (the probability with which the h-buyer accepts p(φ)), for each φ∈[0,1].

The following proposition states some important properties of the unique equilibrium. Below, we

provide intuition for why these properties must hold, and we argue that a discount mechanism is necessary

to balance the buyer’s and sellers’ incentives.

Proposition 3.1. There is some largest µ∈(0,+∞] such that, for each µ<µ, there is an essentially unique

equilibrium.10 In every such equilibrium, there is some φ†∈(φ∗,2φ∗] such that the following hold:

1. On (0,φ∗], π is equal to 0.

2. On (φ∗,φ†), π is strictly increasing, α is equal to 1, and p is strictly decreasing.

3. On (φ†,1), π and α are equal to 1, and p is strictly increasing.

10 “Essentially unique” here means that other equilibria differ from it only on a zero-measure set of posteriors that do not affect

the outcome of the game.
11 It is natural to set p(φ)=h and α(φ)=1 for all φ∈(0,φ∗), even though only ` is offered in equilibrium in this region. The

reason is that when φ∈(0,φ∗), it is optimal for the h-buyer to reject all prices above h and to accept with probability one all

prices below h, as the latter give him a positive surplus from trade and no loss of reputation (since V ′(φ)=0; see equation

(7)).
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Figure 1 illustrates Proposition 3.1. For φ<φ∗, the sellers offer `, the signal is uninformative in

equilibrium, and the payoff of the h-buyer is h−`. As in the static game, the sellers are pessimistic

enough about the buyer’s valuation that they offer price ` even though the h-buyer is willing to accept

any price below h.

Now consider a posterior φ higher than, but close to, the threshold φ∗. Note that the seller’s payoff

from offering a price p̂∈(`,h) is φαh(φ, p̂) p̂, which is higher than ` only if p̂≥`/φ. Hence, p(φ)≥`/φ,

so p(φ) is close to h if φ is close to φ∗. By (10), p(φ) is accepted for sure by the h-buyer. It may seem

contradictory that, when the posterior is close toφ∗, the buyer is willing to accept high prices—which give

him little surplus—even though rejection would be highly informative and would bring the posterior close

to φ∗, where his continuation value is maximal. The apparent contradiction is explained by a discount

mechanism: in equilibrium, sellers offer ` with a high probability (i.e., π(φ)∈(0,1)), which implies that

necessarily p(φ)=`/φ (by (12)) for φ close to φ∗. As we see in Figure 1, such offers flatten the buyer’s

continuation value for posteriors close to φ∗; consequently, the signaling gain from rejection is small

enough that the h-buyer is willing to accept high prices.

We now argue that, for high posteriors, a high price p(φ)>h/2 is offered for sure, and it is accepted

for sure by the h-buyer. To see this, we change variables and use the log-likelihood ž(φ):= log(φ/(1−φ));

we set W (ž(φ)):=V (φ).12 Equations (8) and (9) can then be written as

αh(φ, p̂)=min
¦

r (h−p̂)
µ(−W ′(ž(φ))) , 1

©

and p(φ)=max
�

h/2, h−µ/r (−W ′(ž(φ)))
	

, (13)

respectively. Since W is decreasing and bounded and limφ→1 ž(φ)=+∞, it must be that limφ→1 W ′(ž(φ))=

0. Hence, p(φ)→h as φ→1, and so α(φ)=1 for large enough φ (by (10)). Also, from (12) we have

that π(φ)=1 for φ large enough.

The proof of Proposition 3.1 establishes that when µ is small, only equilibria with the two regimes

described above can exist.13 That is, there is a threshold φ†∈(φ∗,1) at which sellers stop offering dis-

counts. Such a threshold is obtained using the standard smooth-pasting condition at φ† so that the

differentiability of V is preserved.

12 The log-likelihood is often more convenient to use than the posterior. For example, when the type-dependent acceptance

probabilities are constant, the drift of the log-likelihood is constant, while the drift of the posterior is proportional to φ (1−φ)
because learning is slow for extreme posteriors.

13 This is intuitive: from (10) we have that α(φ)<1 only if p(φ)=h/2, but such a low price is not reached in equilibrium when

µ is small. In fact, as µ→0, we have that p(φ)→h for all φ>φ∗; that is, the equilibrium outcome converges to the static

equilibrium outcome as the signal becomes less informative.
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Since p(φ)=`/φ>h/2 for φ<φ†, we have

`/φ†=p(φ†)≥h/2 ⇒ φ†≤2φ∗ .

In fact, φ† is increasing in µ (see the proof of Proposition 4.1) and reaches 2φ∗ when µ=µ. As a result,

in the case µ>µ (analyzed below), there is no equilibrium like the one described in Proposition 3.1. Note

that µ=+∞ if and only if φ∗≥1/2 (i.e., h/2≤`).

Remark 3.1. We can see in Figure 1 that π(·) is discontinuous at φ†. To see why, note first that when

φ∈(φ∗,φ†), the price is p(φ)=`/φ, which is decreasing. Hence, for the buyer to remain indifferent

in equilibrium between accepting and rejecting p(φ), his continuation value has to decrease faster for

higher values of φ (see equation (13)). In fact, in the proof of Proposition 3.1 we show that W ′′(ž(φ))=

−(r/µ)`e−ž(φ)<0 for φ∈(φ∗,φ†), that is, W is strictly concave in this region. Because only high prices

are offered in the region (φ†,1), which are accepted for sure by the h-buyer, the log-likelihood follows

a standard diffusion process with constant drift. Hence, using that rejecting all offers above ` is optimal

for the h-buyer, his continuation value can be shown to be W (ž(φ))=c1 e−κ ž(φ)>0 for some constants

c1,κ>0, which is strictly convex. At φ†, equation (4) implies

r W (φ†)= lim
φ↑φ†
(1−π(φ)) r (h−`)+π(φ) µ2 (−W ′(ž(φ))+W ′′(ž(φ)))

= lim
φ↓φ†

µ
2 (−W ′(ž(φ))+W ′′(ž(φ))) .

Hence, because W is differentiable at φ† and the right and left limits of W ′′(ž(φ)) as φ approaches φ†

differ, we have that limφ↑φ†π(φ)<1= limφ↓φ†π(φ).

More informative signal

We now study the case where the signal is relatively informative, that is, where µ>µ. This is equivalent

to studying the case where the buyer is relatively patient. As discussed above, this case occurs only if

φ∗<1/2 (since µ=+∞ otherwise).

As we argued above, there are no equilibria with the structure provided in Proposition 3.1 when

µ>µ. The following result establishes that, when the signal is informative, there is again an essentially

unique equilibrium, which now features two new equilibrium regions in addition to the three regions

described in Proposition 3.1. These regions are depicted in Figure 2.
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Figure 2: Various equilibrium objects for h= r=1, `=0.15, and µ=1.5.

Proposition 3.2. Let µ be as defined in Proposition 3.1. Then, for all µ>µ, there is an essentially unique

equilibrium. For each µ>µ there are thresholds φ̂†∈(2φ∗,1) and φ̂††∈(φ̂†,1) such that, in the unique

equilibrium, the following hold:

1. On (0,φ∗), π is equal to 0.

2. On (φ∗,2φ∗), π is strictly increasing, α is equal to 1, and p is strictly decreasing.

3. On (2φ∗,φ̂†), π is strictly increasing, α is strictly decreasing, and p is equal to h/2.

4. On (φ̂†,φ̂††), π is equal to 1, α is strictly increasing, and p is equal to h/2.

5. On (φ̂††,1), π and α are equal to 1, and p is strictly increasing.

As before, there is a lower region (0,φ∗)where ` is offered and accepted for sure. For low-intermediate

posteriors (posteriors close to but above φ∗), sellers randomize between offering `, which both types of

buyer accept for sure, and offering p(φ)=`/φ, which the h-buyer accepts for sure (recall (12)). As the

posterior increases, the high price p(φ) decreases. Now, since µ>µ, there is no φ†∈(φ∗,1) where the

equilibrium transition to a phase where α(φ)=π(φ)=1: as we argued before, if such a value φ† existed,

it would be larger than 2φ∗, but this would imply that p(φ†)<h/2, contradicting (9).

Hence, when the posterior reaches 2φ∗, the price is equal to h/2, which is the lowest price above `

offered in equilibrium (by (9)). Then, for posteriors close to but higher than 2φ∗, additional increases in

the posterior do not decrease the price p(φ) further: it remains equal to h/2. As φ increases, the sellers’

indifference between offering ` and offering h/2 is maintained by a rejection mechanism: an increase in the

posterior lowers the probability with which h/2 is accepted. The sellers’ indifference condition requires

that φα(φ)h/2=` or, equivalently, α(φ)=2`/(φh), so α decreases in φ. As the posterior increases,

the probability with which sellers offer ` decreases. Both the positive probability of a discount and the

positive probability of rejection of h/2 slow the sellers’ learning, keeping the h-buyer indifferent between
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accepting and rejecting h/2.14

As for the case where µ<µ, sellers stop offering ` when the posterior reaches a certain threshold,

denoted by φ̂†>2φ∗. While π jumps at φ̂† for the same reason as before, α is continuous at φ̂†. Intuit-

ively, because p is continuous (by (9)), a continuous α ensures that the sellers continue to find it optimal

to offer p(φ). By (10), the price remains equal to h/2 in some range of higher posteriors, denoted by

(φ̂†,φ̂††), where α is increasing in φ. Intuitively, as φ increases and the posterior region with discounts

gets further away, so the signaling incentive for the h-buyer to reject h/2 decreases. Such incentive is

kept in equilibrium by increasing the informativeness of rejection. After α reaches 1, it stays equal to 1.

As we argued in Section 3.1, the h-buyer stays indifferent between accepting and rejecting the high price

p; hence, the price increases in the posterior.

4 Effects of privacy policies

We now study the effects of reducing the amount of information each seller has about the previous history.

The results give insight into the possible impact of policies regulating or banning cookies, which we discuss

further in Section 5.

In our model, there are two ways of reducing the information available to each seller. We will first

study the effect of making the acceptance signal less precise (i.e., of reducing µ) in Section 4.1. We will

then analyze a model in which sellers can observe the acceptance signal but not the prices offered by

previous sellers in Section 4.2. We will finally study the effect of making the price offers unobservable in

Section 4.3.

4.1 Limiting signal precision

We first study the effect of reducing signal informativeness. Reductions in µ could correspond to policies

limiting the data stored in cookies, while increases in µ could be attributed to improvements in tracking

technology or to regulations requiring transparency in the transactions of government agencies.

Proposition 4.1. 1. For each φ∈(φ∗,1), V (φ) is strictly increasing in µ on (0,µ).

2. If µ>µ and φ∈(φ∗,φ̂†), then d
dµV (φ)>0.

3. For each φ∈[0,1), limµ→∞V (φ)=h−`.

4. For each φ∈[0,1], limµ→0 V (φ)=(h−`)I[0,φ∗](φ).

14 The proof of Proposition 3.1 shows that φ† increases as µ increases when the signal is less informative—indicating that it

becomes easier for the buyer to lower the seller’s posterior—and µ is such that φ†=2φ∗. It then follows that the rejection

mechanism only can occur when the signal is informative enough, that is, when µ>µ.
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The first claim in Proposition 4.1 establishes that when the signal is not very informative, the h-

buyer’s payoff is increasing in the signal precision. The intuition for the result is the following. When the

signal becomes more informative, the buyer’s acceptance of a high price is more informative about his

high valuation. Greater signal informativeness is offset, in equilibrium, by more frequent discounts, which

increase—and therefore flatten—the h-buyer’s continuation value. When the signal informativeness is

low, only this discount effect takes place, thus increasing the signal informativeness benefits the buyer.

When the signal is already informative, it is less clear whether informativeness translates into a

higher buyer payoff or not. Proposition 4.1 establishes that small increases in µ increase V (φ) when

φ is in (φ∗,φ̂†], so the strengthening of the discount mechanism dominates the strengthening of the

rejection mechanism in this region. Since only the rejection mechanism takes place in (φ̂†,φ̂††), higher

signal precision makes it more costly for the h-buyer to mimic the `-buyer and reach φ̂† (where discounts

begin). Still, since the continuation value upon reaching φ̂† increases, the change in V (φ) for φ∈(φ̂†,1)

is unclear. While the proof of Proposition 4.1 provides explicit equations for φ̂†, φ̂††, and the continuation

value for the different regions, analytically determining the effect of changes in µ has proved not possible.

Numerical simulations seem to indicate that increases in µ do increase V (φ) for all φ∈(φ∗,1).

When the signal is very imprecise (small µ), the h-buyer obtains a very low payoff for most φ>φ∗:

the region where sellers offer discounts vanishes as µ→0 and, due to slow learning, mimicking the `-

buyer becomes unatractive. By contrast, when the signal is very precise (large µ), the h-buyer’s obtains

a payoff close to h−` for most φ>φ∗. As µ increases, the region where sellers offer discounts expands

toward (φ∗,1), and the probability of a discount tends to 1 (i.e., π(φ)→0 as µ→∞ for all φ∈(φ∗,1)).

4.2 The private offers case

We now study the case where offers are unobservable to future sellers, which is referred to in the literature

as the “private offers case” (the model presented and studied in Sections 2 and 3 corresponds to the “public

offers case”).

In practice, price offers may be unobservable because of regulations restricting the information avail-

able to sellers. For example, cookies may be allowed to collect metrics about a user’s previous activity but

not data on his actual transactions. A search engine may be able to track a user up to the point where

he opens a webpage and collect some information about his behavior on the webpage, but not to identify

the actual offers made to him. Similarly, while the existence of previous procurement contracts may be

easier to be known by current contractors, some details on prices may be undisclosed under confidentiality

agreements.
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We now construct a version of the model described in Section 2 in which price offers are unobservable

to other sellers. Now, the t-seller observes only the public signal (X t ′)t ′<t defined in (1). Markov strategies

are defined in exactly the same way as in Section 2. Given a strategy profile, for each θ ∈{`,h} we define

the θ -buyer’s expected acceptance probability for the belief φ as

αθ (φ)=Ep̃∼π̃(φ)[αθ (φ, p̃)] .

The value of αθ (φ) indicates the equilibrium probability with which a θ -buyer accepts the price offer

when the posterior is φ. Hence, the Bellman equation is now

r Vθ (φ)=Ep̃∼π̃(φ)
�

rαθ (φ, p̃)(θ− p̃)+µ̃(φ, p̃;αθ ,α`,αh)V
′
θ (φ)

+ 1
2 σ̃(φ, p̃;α`,αh)

2 V ′′θ (φ)
�

(14)

instead of (4), where µ̃ and σ̃ are defined in (2) and (3). The crucial difference between the analysis of

the private offers case and that of the public offers case is that now α` and αh do not depend on the actual

price offer. Thus, while the drift in equation (14) only depends on p̃ through the acceptance decision of

the buyer (i.e., αθ (φ, p̃)), while the variance is independent of p̃.

The equilibrium concept is analogous to that of Definition 2.1, with the following differences. First,

because the price offers are not observable, the condition that Vθ is “differentiable at all φ such that

α`(φ, p̂) 6=αh(φ, p̂) for some p̂” is now replaced by “Vθ is differentiable at all φ such that αh(φ) 6=α`(φ).”

Second, instead of the condition (5), αθ (φ, p̂) belongs to the following set for all φ where Vθ is differen-

tiable:

argmax
α̂∈[0,1]

�

r α̂(θ− p̂)+µ̃(φ;α̂,α`,αh)V
′
θ (φ)

�

. (15)

Equilibrium analysis

We begin by stating that Lemma 3.1 also holds for the unobservable offers model.

Lemma 4.1. Lemma 3.1 holds in the private offers case.

As in the public offers case, if φt≤φ∗ then the t-seller offers `, while if φt>φ
∗ she may randomize

between offering some price p(φt) (with some probability again denoted by π(φt)) and offering ` (with

probability 1−π(φt)). Again, α(φt) denotes the probability with which the h-buyer accepts the price

p(φt) when the t-seller offers it, and V is the continuation value of the h-buyer.

Although, just as in the public offers case, the support of prices consists of either one or two points,
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the logic for this is quite different in the private offers case. When prices are observable, each price is

accepted with a different probability in equilibrium (that is, αh depends on both p̂ and φ in equation

(7)). This probability affects the informativeness of the signal so that the buyer is indifferent between

accepting and rejecting the price (recall equation (7)). As we saw, there is a unique price above ` that

maximizes the seller’s payoff (i.e., the acceptance probability multiplied by the price). When instead

prices are unobservable, the buyer’s reputation loss from accepting an offer p̂ is independent of the price

offered. Indeed, the h-buyer is indifferent between accepting and rejecting p̂∈(`,h) if

surplus from trade
︷︸︸︷

h− p̂ =

reputation loss
︷ ︸︸ ︷

µ/r (1−φ)φ (αh(φ)−α`(φ))(−V ′(φ)) , (16)

and he is strictly willing to accept (reject) the offer if the right-hand side of (16) is strictly higher (lower)

than the left-hand side.

Note that α`(φ)=1−π(φ); that is, the `-buyer’s acceptance probability coincides with the probabil-

ity with which ` is offered. By the standard take-it-or-leave-it offer argument, a seller offers a price higher

than ` in equilibrium only if the h-buyer is indifferent between accepting or rejecting it and he accepts it

for sure. We then have that αh(φ)=1. Hence, in equilibrium, sellers offer either ` or

p(φ)=h−µ r−1 (1−φ)φπ(φ)(−V ′(φ)) . (17)

Any off-path offer in (`, p(φ)) is accepted for sure by the h-buyer, while any price strictly above p(φ) is

rejected for sure. It then follows that, unlike in the public offers case, the equilibrium probability that

the h-buyer accepts p(φ) (again denoted by α(φ)) is always 1. Hence, the rejection mechanism is not

present in the private offers case.

Proposition 4.2. Assume price offers are unobservable. Then there is a unique equilibrium. In such an

equilibrium, there is some φ‡∈(φ∗,1) such that the following hold:

1. On (0,φ∗], π is equal to 0.

2. On (φ∗,φ‡), π is strictly increasing, α is equal to 1, and p is strictly decreasing.

3. On (φ‡,1), π and α are equal to 1, and p is strictly increasing.

Proposition 4.2 resembles Proposition 3.1, but applies to all values of µ. For the same reasons as in

the public offers case, for posteriors in (0,φ∗), sellers offer ` with probability one. Again, when φ is close

to (but above) φ∗, (i) sellers are only willing to offer p(φ) if p(φ)≥`/φt ; and (ii) the h-buyer, in turn,

is willing to accept a high price only if his continuation value is not very sensitive to the posterior. The

“flattening” of h-buyer’s continuation value is produced by a variation of the previous discount mechanism:
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Because ` is offered with positive probability (i.e., π(φ)∈(0,1)), V stays high and, since offers made

by sellers are not observable to future sellers, the signal becomes less informative. Hence, V ′(φ) and

µ̃(φ;α̂,α`,αh) are small in absolute value, so accepting a high price is more attractive to the h-buyer by

(15). Now, π increases in φ until it is equal to 1 for some value φ=φ‡ (so it is continuous). From then

on, as before, only p(φ) is offered, and p(φ) in increases toward h as φ→1.

We finalize the section with a result analogous to Proposition 4.1, establishing that a more inform-

ative signal is always beneficial for the buyer when prices are not observable.

Proposition 4.3. When prices are not observable:

1. For each φ∈(φ∗,1), V (φ) is strictly increasing in µ.

2. For each φ∈[0,1), limµ→∞V (φ)=h−`.

3. For each φ∈(0,1), limµ→0 V (φ)=(h−`)I[0,φ∗](φ).

4.3 Welfare analysis

In this section, we compare the buyer welfare and efficiency in the public and private offers cases analyzed

in Sections 3 and 4.2. We will also consider the benchmark case where the signal is uninformative,

interpreted as an online market where cookies are banned and thus buyers are fully anonymous.15

We denote the three cases as follows: “x=no” refers to the case where the sellers observe neither the

prices nor the signal, “x=ob” refers to the case where the sellers observe both the prices and the signal,

and “x=un” refers to the case where the sellers observe the signal but not the prices. As discussed above,

in the case where nothing is observable, the sellers offer ` for sure when φ<φ∗ and offer h for sure when

φ>φ∗.

The buyer’s surplus

We first compare the buyer’s surplus across the different cases. Given that the `-buyer obtains no surplus

in any of the cases, we focus on the payoff of the h-buyer.

Proposition 4.4. 1. If µ≤µ, then V ob(φ)>V un(φ)>V no(φ) for all φ∈(φ∗,1).

2. If µ>µ, then min{V ob(φ),V un(φ)}>V no(φ) for all φ∈(φ∗,1).
15 There is a movement aimed at banning the practices that allow advertisers and political organizations to track individuals with

tailored messages, a practice called “microtargeting”. See, for example, https://www.politico.eu/article/targeted-advertising-

tech-privacy.
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Comparing the three cases is easier when the informativeness of the signal is low. The equilibrium

structure is then similar in the observable case (Proposition 3.1) and the unobservable case (Proposition

4.2). For low posteriors, the sellers offer low prices; for intermediate posteriors, they randomize between

low and high prices; and for high posteriors, they offer only high prices. The h-buyer accepts all offers.

For low and high posteriors, the incentives of the buyer and the sellers do not qualitatively depend

on the observability of the price offers. Sellers offer the discounted price ` when φ is low and the highest

price which is accepted for sure by the h-buyer whenφ is high. Let us now fix some intermediate posterior

φ. In the public offers case, accepting the high price `/φ leads to a significant expected increase in the

posterior. The buyer nevertheless accepts the high price, because his continuation value is not sensitive

to the posterior. On the other hand, in the private offers case, other sellers do not know whether the high

price `/φ or the low price ` was offered. Hence, the buyer’s acceptance of `/φ leads to a lower expected

increase in the posterior. The continuation value is therefore steeper in the private offers case. Formally,

equations (9) and (17) can be written as

− d
dφV x(φ)=γx(φ) r (h−`/φ)

µ(1−φ)φ , (18)

where γob(φ)=1 and γun(φ)= 1
πun(φ)>1. For higher φ, V x solves the same equation for both x=ob

and x=un, since in both cases the sellers make only high offers, and the h-buyer is indifferent between

acceptance and rejection. The proof of Proposition 4.4 shows that this implies that the buyer is indeed

better off in the public offers case.

When the signal is informative (i.e., µ>µ), the relative order between V ob and V un may be reversed

at some posteriors. The reason lies in the different mechanisms that slow learning in equilibrium. When

prices are unobservable, only the discount mechanism is present: the signal becomes less informative only

when the low price is offered with positive probability. When prices are observable, learning is slowed

down by the rejection mechanism as well as the discount mechanism. That is, as described in Section 3.2,

the h-buyer sometimes rejects high-price offers, which slows learning for intermediate posteriors. This

means that, if the initial prior is high, it takes a long time for the posterior to reach low values when

the h-buyer mimics the `-buyer. The implication is that when the signal is informative enough, at high

posteriors the buyer is worse off in the public offers case than in the private offers case.

Figure 3(a) depicts V ob and V un for parameters under which, when the signal is very informative,

at some posteriors the buyer is worse off in the public offers case than in the private offers case. For

intermediate posteriors, sellers offer the low price more often in the public offers case, and so the buyer’s

payoff is higher there. However, for higher posteriors, sellers offer higher prices in the public offers case.

We can see this from the figure: the low acceptance probability at intermediate posteriors implies that V ob
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Figure 3: (a) V ob and V un for h= r=1, `=0.05, and µ=3. (b) Thresholds for the public offers case (φ†, φ̂†, and
φ̂††) and the private offers case (φ‡) as a function of µ, for h= r=1 and `=0.2.

decreases quickly to preserve the buyer’s indifference between accepting high prices or rejecting them.

This means that if the posterior is initially very high, it takes a long time for it to become low, even if the

h-buyer mimics the `-buyer. As a result, at high posteriors, sellers offer higher prices in the public offers

case, which means the buyer’s payoff is lower.

Figure 3(b) depicts the equilibrium thresholds in both the public and private offers cases as functions

of the signal precision µ. When the signal is not very informative (i.e., µ<µ), the range where sellers

offer discounts in the public offers case, (0,φ†), is larger than its counterpart in the private offers case,

(0,φ‡). While this is also true when the signal is very informative (with discounts offered on (0,φ̂†) in

the public offers case and on (0,φ‡) in the private offers case), for these signals there is also, in the public

offers case, a region (φ̂†,φ̂††) with no discounts and where the buyer rejects high prices in equilibrium,

making him worse off than in the private offers case.

Remark 4.1. Proposition 4.4 establishes that the buyer tends to prefer public offers over private offers in

repeated bargaining, as rejecting a high offer then sends a stronger signal of low type. The logic would

be reversed if there were only one transaction (see Kaya and Liu, 2015), as in that case unobservabil-

ity of offers would enhance the Coasian forces, since sellers could not update their beliefs according to

previous sellers’ deviations. However, our result also shows that unobservability is sometimes beneficial

to the buyer in repeated bargaining, since it prevents the rejection mechanism from slowing equilibrium

learning.
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Efficiency

We now take the perspective of a social planner who has the same discount rate as the buyer. The social

planner values each transaction of the θ -buyer at θ , independently of the transaction price, for both

θ ∈{`,h}.

We use W x(φ) to denote the social welfare (or efficiency) for each case x∈{no,un,ob}. The social

welfare is given by

W x(φ)=(1−φ)

(∗)
︷ ︸︸ ︷

Ex ,`
�∫∞

0 `(1−πx(φt))e−r t r dt
�

�φ0=φ
�

+φ Ex ,h
�∫∞

0 h(1−πx(φt)+πx(φt)αx(φt))e−r t r dt
�

�φ0=φ
�

︸ ︷︷ ︸

(∗∗)

(19)

for all φ∈(φ∗,1), where Ex ,θ is the expectation in the equilibrium for the x-model conditional on the

strategy of the θ -buyer.16 The term (∗) is equal to the social welfare generated by the transactions of the

`-buyer, who purchases only when the price is `. The term (∗∗) is equal to the social welfare generated

by the transactions of the h-buyer, who purchases for sure when the price is ` and with probability αx(φ)

otherwise.

Proposition 4.5. 1. If µ≤µ, then W ob(φ)>W un(φ)>W no(φ) for all φ∈(φ∗,1).

2. If µ>µ, then W un(φ)>W no(φ) for all φ∈(φ∗,1).

We observe that the term (∗) in equation (19) is 0 when x=no andφ>φ∗. Hence, the social welfare

gain from the presence of a signal (with or without information about prices) comes from the fact that

sellers then offer ` more frequently than if there is no signal, which implies that the `-buyer purchases

more often. Recall that the h-buyer’s payoff from mimicking the `-buyer coincides with his equilibrium

payoff, since he is always indifferent between accepting and rejecting p(φ). Note also that, if the h-buyer

mimics the `-buyer, his payoff equals h−`multiplied by the discounted times the price ` is offered. Since

(∗) is equal to ` multiplied by the discounted measure of the times the price ` is offered, we have that (∗)

is equal to `
h−` V x(φ) for all x∈{no,un,ob}.

The term (∗∗) in equation (19) is equal to h for both x∈{no,un}, since the h-buyer buys with prob-

ability one at all times. It is then clear that W un(φ)>W no(φ) for all φ∈(φ∗,1), because the presence of

a signal increase the equilibrium probability of trade for the `-buyer while leaving it unchanged for the

h-buyer. When x=ob, on the other hand, for µ>µ there is a wide range of posteriors where the h-buyer

purchases with probability less than one. Additionally, given the slowness of learning due to the rejection

16 Note that αno(φ)=πno(φ)=1 and p(φ)=h for φ>φ∗; that is, the unique outcome of the game with no information when

φ0>φ
∗ is one where all sellers offer h and only the h-buyer accepts such offers.
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mechanism, the `-buyer purchases less often in the public offers case than in the private offers case if µ

is large enough. This implies that some transactions that occur in the other cases are not realized in the

public offers case. Thus, making prices unobservable may improve social welfare when the signal is very

informative.

5 Discussion

There is increasing interest in regulating the availability of information in markets. For example, the

European Union, India, Australia, and California have recently passed laws regulating online cookies and

other tracking technologies. Similarly, purchases by government entities and listed firms are often subject

to transparency regulations.17 While the main goal of such regulations may not necessarily be to increase

market efficiency (they are typically aimed at protecting consumer privacy, preventing corruption, or

promoting investor trust), they do affect the incentives of market participants. Our paper provides a

canonical setting in which to analyze how changes in the availability of information affect equilibrium

welfare and efficiency. We now explain how our results and their implications can be interpreted and

used in practice.

Additional information: An important prediction of our model is that buyer welfare and efficiency tend

to be greater when more information is available about previous transactions. In the context of online

shopping, however, cookies may contain non-transactional information about websites visited by a user,

including social media, news websites, and entertainment platforms. This information may reveal in-

dividual characteristics such as the user’s income, age, gender, or occupation, which sellers may use to

determine their price offers. Similarly, in the procurement context, information about the financial po-

sition of a public or private entity may be revealed through investments, mandatory public reports, or

leaks.

To study the effect of such additional information, one could consider a model with an exogenous

stochastic process providing information about the buyer’s type, à la Daley and Green (2012).18 In such

a model, our two equilibrium mechanisms would not exist (so, for example, there would not be random

discounts), and an increase in signal precision would make the buyer worse off.

17 The pioneer regulation governing internet privacy was the European Union’s General Data Protection Regulation (GDPR),

implemented in 2018 and commonly referred to as the Cookie Law. Also, several articles in the Treaty on the Functioning of

the European Union (TFEU) concern transparency and openness in decision-making, which are seen as foundational values

of the EU.
18 One could further allow for buyers to distort their behavior, e.g. via additional browsing activity, to modify the information

provided (similarly to our model). We could model such a possibility as in Dilmé (2019), which studies a dynamic signaling

game in which the signal depends on effort instead of type.

24



In practice, it is reasonable to expect that both types of information are available to sellers. In a

combined model, if the exogenous signal were very informative, the buyer’s surplus would be close to 0,

while if it were very imprecise, the outcome would be close to our predictions. Hence, regulations limiting

the overall availability of information would have a double effect. On the one hand, they would limit the

sellers’ ability to capture information rents, by exogenously limiting their access to the buyer’s private

information. On the other hand, they would diminish the buyer’s incentive to strategically reject offers,

so the frequency of discounts would decrease. Thus, regulations may have opposite effects depending on

the type of information they address, since they influence both the signaling incentives and the allocation

of information rents.

Right to privacy: Some regulations are intended to guarantee the so-called right to privacy, giving users

the option to conceal personal information online.19 In our setting, such a possibility could be incor-

porated by allowing the buyer to decide whether to hide his signal history from each seller. The buyer’s

decision to hide or reveal his signal history would then convey information about his type. Standard

unraveling arguments (à la Milgrom, 1981) would favor the existence of equilibria satisfying our charac-

terization (where the buyer is always believed to be of type h unless he reveals his signal history).20

While unraveling suggests that opt-out policies are of limited effectiveness, selective restrictions on

certain types of information could be more effective. For example, a regulation could ban cookies from

recording non-transactional information (such as demographic data and data on visits to news websites

or social media), while allowing users to opt in or out of providing transactional data. Such a policy

would protect the user’s privacy, limiting the signaling effect of concealing non-transactional data (which

we argue above would tend to benefit sellers rather than buyers), while preserving the user’s equilibrium

gain from the strategic rejection of high prices.

Buyer sophistication: An important assumption in our model is that buyers are sophisticated. This

assumption drives our result that permissive information policies tend to benefit buyers. However, while

buyer sophistication may be a reasonable assumption in procurement contexts, it is less clearly so in

online markets. In our model, if it were common knowledge that the buyer is not sophisticated, the

sellers would charge ` for φ<φ∗ and h for φ>φ∗. The h-buyer’s payoff would then be lower than in our

original analysis (in which sellers react to buyer sophistication by lowering prices). In fact, the opposite

19 For example, a major outcome of the EU’s Cookie Law is the requirement that websites allow users to opt out of cookies.
20 There would also be inefficient equilibria in which disclosure of the history would be perceived as a sign that the buyer is of

type $Gt, so that in equilibrium the buyer would not disclose his history. Note that it has been argued that the requirement

for users to report their cookie preferences at every website they visit is costly to them, generating “opt-out fatigue”, which

diminishes the quality of their browsing experience. Johnson et al. (2020) find that in the US, even though users express

strong privacy concerns, only a very small fraction opt out of targeted online advertising.
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comparative statics would arise for an unsophisticated buyer: as the signal became more informative,

buyer welfare and efficiency would decrease.

These observations suggest that, to increase buyer welfare and efficiency, permissive information

policies must be combined with buyer education. It is generally not necessary that all buyers be soph-

isticated as long as sellers do not directly observe sophistication: as long as the fraction of sophisticated

buyers is large enough, sellers will tend to offer low prices to avoid rejection by sophisticated buyers.

Personalized product recommendations: In the context of online shopping, individualized offers often

take the form of personalized product recommendations—for example, via advertisements or within-

platform promotion of goods. For example, sellers can promote the advertisement of certain goods on

platforms such as Google or Amazon as a function of the user’s search history.

Personalized product recommendations have effects similar to those of personalized pricing. In their

most extreme version, they are equivalent: a seller can offer the same product at different prices (perhaps

under different IDs) and strategically promote them depending on the buyer’s history. If searching is costly,

buyers with high willingness to trade may accept a high price. Similarly, a seller may recommend highly

profitable goods to buyers who are likely to have high willingness to trade, while offering better-value

goods to other buyers. Therefore, policies aimed at limiting personalized pricing should also address

personalized recommendations and advertising, as these can often be used to achieve similar results.

Efficiency: A related point often raised in defense of cookies is that they can improve the user’s experience

by making internet browsing more efficient. For example, cookies can be used to tailor advertisements

to the user’s interests, reducing frictions in the market for advertising. (On the other hand, such tailored

advertising may also be harmful; for example, it may facilitate political manipulation by third parties.)

To capture these potential benefits, our model could be adapted to allow for some horizontal differ-

entiation. For example, we could allow each seller to offer the buyer one of two types of products, with

the assumption that the buyer’s relative preference for each product is correlated with his willingness to

trade. The usual tradeoff between efficiency and buyer welfare would then arise: the more information

the sellers have, the more efficient trade becomes (as the buyer is offered the goods he prefers) and the

more easily the sellers can extract surplus from the buyer. It is then plausible that the h-buyer would

sometimes benefit from rejecting his preferred product in order to get the other product at a low price.

As in our main model, this would induce sellers to offer low prices. The study of optimal information

policies in this setting is left for future research.

As shown by the examples above, the dynamic considerations incorporated into our model help ad-

dressing a number of possible effects of policies concerning internet privacy and financial transparency.
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Such policies affect the information available, thus distorting the incentives for market participants to

reveal their private information. Our results imply that allowing more informative signals (e.g., deregu-

lating cookies or promoting transparency) tends to enhance efficiency by limiting the bargaining power of

uninformed agents. Nevertheless, some caution is needed: in certain situations, the disclosure of prices

or non-transactional information may lower welfare in equilibrium.
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A Proofs of the results

A.1 Proofs of results in Section 3

Proof of Lemma 3.1

Proof. We divide the proof into 3 steps:

Step 1: Preliminary observations. Note that sellers never offer a price below ` in equilibrium, since

offering ` ensures trade. Then, it is without loss of generality to focus on equilibria where the `-seller

accepts a price offer if and only if it is equal to `, and where each seller never offers a price lower than `.

As a result, V`(φ)=0 for all φ∈(0,1).

Note also that, if the h-buyer accepts a price p̂>` for sure, then a seller is willing to offer such a

price if and only if p̂≥`/φ. Hence, no price in (`,`/φ) is offered in equilibrium.

Finally, it will sometimes be convenient to use the log-likelihood instead of the posterior. For each

φ∈(0,1) and z∈R, we define

ž(φ)= log
� φ

1−φ

�

and φ̌(z)= ez

1+ez . (20)

Note that φ̌(·) is the inverse of ž(·). Abusing notation, for some function f of φ, we will sometimes

use f (z) and f ′(z) to denote f (φ̌(z)) and d
dz f (φ̌(z)), respectively. Note that, for example, f ′(ž(φ))=

φ (1−φ) f ′(φ).

Step 2: Monotonicity of Vh. We continue the proof by stating and proving the following result:

Lemma A.1. Vh(φ)=h−` for all φ∈(0,φ∗] and Vh is strictly decreasing on (φ∗,1).

Proof. 1. Proof that Vh(φ)=h−` for all φ∈(0,φ∗). If only ` is offered in (0,φ∗) then the result

follows. Assume then, for the sake of contradiction, that it is optimal for a seller to offer p̂>` when

the posterior is φ∈(0,φ∗]. Since p̂ has to be at least `/φ by Step 1—hence strictly higher than h—,

it must be that p̂ is accepted for sure (by the argument laid out in the main text after Lemma 3.1).

Then, from equation (9), such price should then satisfy:

`/φ≤ p̂=h+µ/r V ′h(ž(φ)) . (21)

Note that, if |V ′h(ž(φ))| is small enough, the right-hand side of the previous expression is close to

h. This implies that, if |V ′h(ž(φ))| is small enough, sellers offer ` for sure (since no price above h

is optimal), and Vh(φ)=h−`. We conclude that either V ′h(φ)=0 for all φ∈(0,φ∗), in which case
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Vh(φ)=h−` for all φ∈(0,φ∗], or V ′h(φ) 6=0 for all φ∈(0,φ∗).21 In other words, when restricted to

(0,φ∗), either Vh is strictly decreasing, or strictly increasing, or equal to h−`. It is clear Vh cannot be

strictly decreasing, since in this case the h-buyer rejects all prices above h, hence it is strictly optimal

for each seller to offer ` for all φ∈(0,φ∗) and Vh(φ)=h−`. Assume, for the sake of contradiction,

that Vh is strictly increasing. Equation (21) implies that, in this case, limz→−∞V ′h(z)=+∞ and

hence limz→−∞Vh(z)=−∞, which is a contradiction. Then, the only possibility is that Vh(φ) is

equal to h−` for all φ∈(0,φ∗].

2. Proof that Vh is strictly decreasing on (φ∗,1). Assume first V ′h(φ1)=0 for some φ1∈(φ∗,1). This

implies that αh(φ1, p̂)=1 for all p̂<h, and αh(φ1, p̂)=0 for all p̂>h. Hence, at posterior φ1, the

seller offers h for sure in equilibrium, since φh>` when φ>φ∗. Equation (4) then becomes

r Vh(φ1)=
1
2 µ(1−φ1)

2φ2
1 V ′′h (φt) .

We then have that φ1 it is a minimizer of Vh. This implies that Vh is strictly increasing on (φ1,1), so

all prices offered on (φ1,1) are higher than h (by the argument used to obtain equation (9)). But

then this implies that limφ↗1 Vh(φ)≤0, and therefore Vh(φ)<0 for some φ, which is a contradic-

tion. We conclude that V ′h(φ) 6=0 for all φ∈(φ∗,1).

Since Vh cannot be strictly increasing on (φ∗,1) (because Vh(φ∗)=h−` and equilibrium offers are

never lower than `) and V ′h(φ) 6=0 for all φ∈(φ∗,1), we have that the Vh must be strictly decreasing

on (φ∗,1).

(End of the proof of Lemma A.1. Proof of Lemma 3.1 continues.)

Step 3: Proof of the result. The argument in the main text implies that either the seller offers `, or

p(φ) satisfying equation (9), or randomizes between them. An immediate implication of Lemma A.1 is

that ` is offered with probability one when φ∈(0,φ∗]. Also, since Vh is strictly decreasing on (φ∗,1), we

have that ` is never offered with probability one at posteriors in (φ∗,1) (note that if ` was offered with

probability one at some posterior φ∈(φ∗,1), then the posterior would remain equal to φ at all times for

φ0=φ, so we would have Vh(φ)=h−`=Vh(φ∗)).

Proof of Propositions 3.1 and 3.2

Proof. We prove Propositions 3.1 and 3.2 together. We divide the proof into ten steps:

Step 1: Preliminary derivations. We begin the proof by providing a useful equation. The arguments

in the main text (following Lemma 3.1) show that, for each posterior φ∈(φ∗,1), the buyer is indifferent

between accepting p(φ) or not (that is, equation (7) holds for p̂=p(φ)). This implies that the buyer’s con-

tinuation value can be computed as if he did reject p(φ) for all posteriors φ. As a result, the continuation

21 The observation implies that V ′h cannot continuously “approach” 0, since a small value of V ′h (φ) implies Vh(φ)=h−` when

φ<φ∗.
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value of the buyer satisfies the following equation:

r V (φ)=(1−π(φ))(h−`)−µ(1−φ)φ2π(φ)α(φ)2 V ′(φ)

+ 1
2 µ(1−φ)

2φ2π(φ)α(φ)2 V ′′(φ) . (22)

The previous expression is convenient as it does not depend on p(φ).

Step 2: Preliminary results on continuity. We continue by providing a result on the continuity of α(·)
and p(·), and the limits of V (φ) as φ tends to φ∗ and 1.

Lemma A.2. Bothα(·) and p(·) are continuous on (φ∗,1). Furthermore, limφ↘φ∗ V (φ)=h−` and limφ↗1 V (φ)=
0.

Proof. The continuity of α(·) and p(·) on (φ∗,1) is immediately implied by equations (8) and (9). That

limφ↘φ∗ V (φ)=h−` follows from continuity of the continuation value and Lemma A.1.

We finally prove that limφ↗1 V (φ)=0. Recall that, by Lemma A.1, V is strictly decreasing on (φ∗,1).
We assume, for the sake of contradiction, that limφ↗1 V (φ)>0. Since it is optimal for the h-buyer to follow

the `-buyer’s strategy (that is, only accepting offers equal to `), there must exist some increasing sequence

(φn)n converging to 1 such that (π(φn))n is convergent and limn→∞π(φn)<1.22 We can write equation

(9) using log-likelihoods (see equation (20)) as

p(φ)=max
�

h/2, h+µ/r V ′(ž(φ))
	

.

Hence, since limφ↗1 V ′(ž(φ))=0 (because V is strictly decreasing and bounded below by 0), we have

that limφ↗1 p(φ)=h. This implies that, if φ is close enough to 1, p(φ)>max{`/φ,h/2}, hence π(φ)=1

(by (12)). As a result, limφ↗1 V (φ)=0.

(End of the proof of Lemma A.2. Proof of Propositions 3.1 and 3.2 continues.)

Step 3: Preliminary results on regimes. We now present a result providing the equations for each of

four possible types of regimes on (φ∗,1).

Lemma A.3. The following statements follow for all φ1,φ2∈[φ∗,1] with φ1<φ2:

1. If p(φ)=φ/` for all φ∈(φ1,φ2) then φ2≤2φ∗, α(φ)=1, π(φ)∈(0,1),

π(φ)= 2φ (h−`−V (φ))
φ (h−`)+2`(1−φ) , (23)

and

π′(φ)= 2 r (φ−φ∗)+2(1−φ)φ∗µπ(φ)
(1−φ)φµ(φ (1−φ∗)+2(1−φ)φ∗)>0 . (24)

22 If no such sequence exists, then the fraction of time where ` is offered during the time the posterior is in (φ,1) shrinks to 0

as φ→1. This implies that the payoff the h-seller obtains by mimicking the `-seller converges to 0 as φ gets close 1.
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2. If p(φ)=h/2 for all φ∈(φ1,φ2) then φ1≥2φ∗ (hence φ∗<1/2), α(φ)∈[2φ∗/φ,1), and V (φ)>
h/4. Also,

(a) If α(φ)=2φ∗/φ for all φ∈(φ1,φ2), then

π(φ)= 2φ (h−`−V (φ))
2h−3` (25)

and

π′(φ)= r
2µ(1−φ)(2−3φ∗)φ∗ >0 . (26)

(b) If α(φ)∈(2φ∗/φ,1) for all φ∈(φ1,φ2), then π(φ)=1,

α(p̂)=− r h
2µ(1−φ)φV ′(φ) , (27)

and

α′(φ)= 4V (φ)−hα(φ)
(1−φ)φh >0 . (28)

3. If p(φ)>max{h/2,`/φ} for all φ∈(φ1,φ2) then α(φ)=1, π(φ)=1, and

p′(φ)= 2V (φ)−h+p(φ)
(1−φ)φ >0 . (29)

Proof. 1. The fact that φ2≤2φ∗ follows from the fact that p(φ)≥h/2 for all φ (by equation (9)). The

fact that α(φ)=1 follows from equation (10). Equations (23) and (24) follow from equations (9)

(with p(φ)=`/φ) and (22) (with α(φ)=1). Finally, π(φ)∈(0,1) because π(φ)∈[0,1] and π is

strictly increasing by equation (24).

2. That φ1≥2φ∗ follows from equation (11). That α(φ)≥2φ∗/φ follows from the definition of φ∗

and the optimality condition for the sellers requiring that φα(φ)p(φ)≥`.

That α(φ)<1 follows from the fact that, if α(φ)>2φ∗/φ, then the first equality in equation (28)

holds (from equations (22) and (27) withπ(φ)=1), so α(φ)=1 and p(φ)=h/2 only if V (φ)=h/4.

That α(φ)<1 for all φ∈(φ1,φ2) follows from the fact that V is strictly increasing on (φ∗,1) (by

Lemma A.1). Also:

(a) Equation (26) follows from equations (22) and equation (7) (with α(φ)=2φ∗/φ).

(b) That π(φ)=1 follows because the seller strictly prefers offering h/2 than offering ` (since

`<φα(φ)p(φ)). Equation (27) follows from equation (8), and equation (28) follows from

equations (22) and (27) (with π(φ)=1).

To prove that V (φ)>h/4, recall the end of the proof of Lemma A.2. It shows that there exists some

φ<1 such that α(φ)=1 for all φ∈[φ,1). This implies that, if α(φ)=1 for all φ∈(φ1,φ2), then

there must be some φ<1 such that α′(φ)≥0 and so V (φ)≥h/4. Since V is strictly decreasing on

(φ∗,1) by Lemma A.1, we have V (φ)>h/4 for all φ∈(φ1,φ2).
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3. That α(φ)=1 follows from equation (10). That π(φ)=1 follows from equation (12). Equation

(29) follows from differentiating equation (9) (since the max operator on its right-hand side is

larger than h/2) and from using equation (22). That p′(φ)>0 follows from the fact that, from

equations (9) and (29), we have that p′′(φ)<0 when p′(φ)=0, but we know that p(φ)<h and

limφ′↗1 p(φ′)=1.

(End of the proof of Lemma A.3. Proof of Propositions 3.1 and 3.2 continues.)

Step 4: Proof that p(φ)=`/φ and α(φ)=1 for φ close to φ∗. Take a sequence (φn)n strictly decreasing

toward φ∗ such that φn∈(φ∗,min{1,2φ∗}) for all n. From equation (11), we have that p(φn)≥`/φn>

h/2 for all n, and so p(φn)→h. By Lemma A.3, we have that α(φn)=1 for all n. Recall that, from

Lemma A.2, V (φn) converges to h−`. Assume, for the sake of contradiction and taking a subsequence if

necessary, that p(φn)>`/φn>h/2 for all n. Lemma A.3 implies that p(φ) is increasing when it is strictly

larger max{`/φn,h/2}, hence this implies that p(φ)>max{`/φn,h/2} for all φ∈(φ∗,1). From equation

(29) it is clear that there must be some posterior φ′>φ∗ such that p(φ′)>h, which contradicts Lemma

3.1.

Step 5: Definition of φ†. From the previous step, there must be some maximal φ† such that p(φ)=`/φ
for allφ∈(φ∗,φ†). Take someφ∈(φ∗,φ†); that is, we have that p(φ)=`/φ andα(φ)=1. From equation

(9) we have

`/φ=p(φ)=h+ r−1µ(1−φ)φV ′(φ) . (30)

Additionally, by Lemma A.3, we have π(φ)∈(0,1). We can solve (30) for V (with boundary condition

V (φ∗)=h−`), and obtain

V (φ)=h−`+ r (φh−`)
µφ + r (h−`)

µ log
�1−φ
φ

�1−φ∗
φ∗

�

. (31)

Note that we have V ′(φ∗)=0, so V ′ is continuous at φ∗. Then, from equation (22), we have

π(φ)= 2 r
(φ (h−3`)+2`)µ

�

`−φh−φ (h−`) log
�1−φ
φ

�1−φ∗
φ∗

��

. (32)

Since the right-hand side of equation (31) tends to −∞ as φ→1, it must be that φ†<1.

Step 6: Preliminaries for less informative signal. We first focus on the case φ†<2φ∗. We want to

show that, for all φ>φ†, we have p(φ)>max{h/2,`/φ}, and hence α(φ)=1, π(φ)=1, and equation

(29) holds (by Lemma A.3).

We first argue that there is no φ∈(φ†,min{2φ∗,1}) where p(φ)=`/φ. Assume, for the sake of

contradiction, that there is an interval (φ1,φ2) with φ†≤φ1<φ2≤2φ∗ such that p(φ)>`/φ for all

φ∈(φ1,φ2) and p(φ2)=`/φ2. Since p(φ) approaches `/φ2 as φ→φ2 from above the curve `/φ, it

must be that limφ↗φ2
p′(φ)≤−`/φ2

2 which, by equation (29), implies

V (φ2)≤
1
2 (h+`−2`/φ2)<

1
2 (`−h)<0 ,
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which is a contradiction. Hence, there is no φ∈(φ†,min{2φ∗,1}) where p(φ)=`/φ.

We now argue that there is no φ∈(min{1,2φ∗},1) such that p(φ)=h/2. If φ∗≥1/2 the result is

clear, so assume that φ∗<1/2. Assume, for the sake of contradiction, that there is an interval (φ1,φ2)
with 2φ∗≤φ1<φ2<1 such that p(φ)>h/2 for all φ∈(φ1,φ2) and p(φ2)=h/2. It is clear that p(φ)>
max{`/φ,h/2} for all φ∈(φ1,φ2) (since h/2>`/φ for φ>2φ∗). This implies, by Lemma A.3, that p is

increasing on (φ1,φ2), hence it is not possible that p(φ2)=h/2 (p is continuous by Lemma A.2).

We then have proven that p(φ)>max{h/2,`/φ} and α(φ)=π(φ)=1 for all φ>φ†; hence, by

Lemma A.3, equation (29) holds. This implies that equation (22) can be written, for all φ∈(φ†,1),
as

r V (φ)=(1−π(φ))(h−`)−µ(1−φ)φ2π(φ)2α(φ)2 V ′(φ)

+ 1
2 µ(1−φ)

2φ2π(φ)2α(φ)2 V ′′(φ) . (33)

The solution to this equation is

V (φ)=C1

�1−φ
φ

�κ
+C2

�1−φ
φ

�−1−κ
, (34)

where

κ:= 1
2 (
Æ

1+8 r/µ−1)>0 , (35)

and C1 and C2 are integration constants. Using that, by Lemma A.2, we have that limφ↗1 V (φ)=0, and

so C2=0. We can use the continuity of V ′ at φ† and equations (31) and (34) with C2=0 to obtain the

value of C1 as a function of φ†, so we have that

V (φ)= r
µ
φ†−φ∗
φ†

� φ
1−φ

� φ†

1−φ†

�−κ
h (36)

for all φ∈(φ†,1). Finally, the value of φ† is obtained using that V is continuous at φ†. This requirement

can be written as

− (κ−1) r (φ†−φ∗)
φ†κ

+ r (1−φ∗) log
� φ†

1−φ†

� φ∗

1−φ∗
�

−µ(1−φ∗)=0 . (37)

The left-hand side of the previous expression is−µ(1−φ∗)whenφ†=φ∗, and tends to+∞whenφ†→1,

so a solution exists. Furthermore, the derivative of the left-hand side of the previous equation with respect

to φ† is

r (κ(φ†−φ∗)+(1−φ†)φ∗)
κ(1−φ†)(φ†)2 >0 .

Hence, there is exactly one value of φ† solving equation (37). The derivative of the left-hand side of

expression (36) with respect to µ is

− 2 r2 (φ†−φ∗)
µ2φ† (1+2κ)κ2 −(1−φ∗)<0 .

It is then clear that φ† is increasing in µ.
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Step 7: Definition of µ. We now claim that there is some value µ∈(0,+∞] such that a solution φ†

strictly smaller than 2φ∗ for equation (37) exists if and only if µ<µ. The result is obviously true if

φ∗≥1/2, since then µ=+∞ (by the arguments in Step 6). Assume then that φ∗<1/2.

Note that, differentiating the left-hand side of expression (37) two times with respect to µ (recall

that κ depends on µ, see equation (35)), we obtain

−7
8+φ

∗+ µ+4 r
8µ(1+2κ) .

Using the value of κ (from (35)) it is easily seen that the previous expression is negative for all φ∗<1/2.

Furthermore, the left-hand side of expression (37) is negative when φ†=φ∗, and tends to +∞ when

φ†→1. It is then clear that there is only one value of µ for which φ†=2φ∗. That is, using Step 6, we

have proven that, for all µ≤µ, the unique equilibrium is as described in the state of Proposition 3.1, while

for all µ>µ there is no equilibrium of this form.23

Step 8: Preliminaries for the more informative signal. Assume for the rest of the proof that µ>µ.

In this case, φ†=2φ∗ (where φ† is defined in Step 5 as the maximal such that p(φ)=`/φ for all φ∈
(φ∗,φ†)). Since α(·) is continuous on (φ∗,1) (by Lemma A.2), an implication of Lemma A.3 is that all

equilibria satisfy the characterization provided in Proposition 3.2.24

Then, to show existence and uniqueness of equilibria, we have prove the existence and uniqueness

thresholds φ̂† and φ̂†† such that the implied continuation value satisfies the smooth pasting conditions

and such that α(φ̂††)=1.

To prove existence of an equilibrium, we construct the continuation value of the h-buyer. To do so,

we use Lemma A.3 to determine the equations governing V for the different regions of beliefs, for some

given values of φ̂† and φ̂††.

1. Region (0,φ∗): In this region we have V (φ)=h−` (by Lemma 3.1).

2. Region (φ∗,2φ∗): In this region, equation (31) holds.

3. Region (2φ∗,φ̂†): Imposing the smooth pasting conditions at 2φ∗, we obtain that, in this region,

V (φ)=h−`+
�h

2+
`
4 log

� 1−φ
1−2φ∗

�

−(h−`) log
�2−2φ∗

1−2φ∗
�� r
µ . (38)

4. Region (φ̂†,φ̂††): In this region, V follows equation (22) with π(φ)=1. Using (27), we obtain

V (φ)= 1
2
p
µ/r

hH
�

(1−φ)−1 c1+ c2)

for some c1<0 (so V is decreasing) and c2∈R; where H is the inverse of the integral of the Gaussian

distribution multiplied by 2, that is,

23 Indeed, as µ→0 we have φ†→φ∗, so the value of φ† is increasing in µ at φ†=2φ∗. (Proposition 4.1 sows that the unique

φ† solving equation (37) is increasing in µ.)

24 Indeed, recall that α is continuous by Lemma A.2. By Lemma A.3, it is decreasing only if it is equal to 2φ∗/φ. Hence, if

an equilibrium exists for µ>µ, there must be some φ̂† and φ̂†† such that α(φ)=2φ∗/φ for all φ∈(2φ∗,φ̂†) (case 2(a) in

Lemma A.3), then satisfies equation (27) in (φ̂†,φ̂††) (where it is strictly increasing), and it is equal to 1 in (φ̂††,1).
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H−1(x):= 2p
π

∫ x
0 e−x ′2 dx ′ .

Note that the domain and codomain of H are, respectively, (−1,1) and R, and also that H is strictly

increasing and strictly convex on (0,1).

5. Region (φ̂††,1): In this region, V follows equation (34) for some C1>0 and C2=0.

We have 5 unknown variables to be determined: φ̂†, φ̂††, c1, c2 and C1. To do so, we have two smooth

pasting conditions at φ̂†, two other smooth pasting conditions at φ̂††, and the requirement thatα(φ̂††)=1.

We have then as many unknown variables as conditions.

Using the smooth pasting conditions at φ̂†† and that α(φ̂††)=1, we obtain

C1=
r h

2κµ

� φ̂††

1−φ̂††

�κ

(where recall that κ is defined in (35)) and also

H
�

(1−φ̂††)−1 c1+ c2

�

=
�

κ
Æ

µ/r
�−1

(39)

and

H ′
�

(1−φ̂††)−1 c1+ c2

�

=− 1−φ̂††

φ̂†† c1

p
µ/r

. (40)

We define the variables c† :=(1−φ̂†)−1 c1+ c2 and c†† :=(1−φ̂††)−1 c1+ c2. Since V is positive and

decreasing and H is increasing, it must be that c†>c††>0. From the two equations (39) and (40), and

from the boundary conditions at φ̂† we obtain the following four equations:

1. The first equation determines the value of c††:

c††=H−1
� 1
κ
p
µ/r

�

= 2p
π

∫

r1/2

κµ1/2

0 e−x2
dx . (41)

2. The second and third equations express φ̂† and φ̂†† as functions of c† and c††:

φ̂†=2φ∗
H ′(c†)
H ′(c††)

�

1−
Æ

µ/r (c†− c††)H ′(c††)
�

,

φ̂††=
2φ∗H ′(c†)

H ′(c††)(1+2φ∗
p

µ/r (c†− c††)H ′(c†))
.

It is not difficult to see that, as long as c†>c††, we have φ̂†<φ̂††<1.

3. The only value left to determine is c†. This is obtained by solving the fourth equation

0= r log
�

(1−2φ∗)
�

1−2φ∗H ′(c†)
�

(∗)
︷ ︸︸ ︷

1
H ′(c††)−

p
µ(c†−c††)p

r

�

��

+2φ∗
�

2(1−φ∗)µ−2(1−φ∗) r log
�

1+ 1
1−2φ∗

�

−pµ
p

r H(c†)+ r
�

. (42)
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To prove existence of an equilibrium, we have to prove that equation (42) has a solution for c† in (c††,1),
and to prove uniqueness of an equilibrium that such solution is unique.

Step 9: Existence of an equilibrium for the more informative signal. We first note that if c† is replaced

by c†† in equation (42), the resulting equation is equivalent to equation (37) with φ†=2φ∗. This result

is intuitive: when µ=µ (hence equation (37) with φ†=2φ∗ holds), we have c†=c††, which implies that

φ̂†=φ̂††=2φ∗. Since in this part of the proof we assume that µ>µ implies that the right-hand side of

equation (42) is positive when c† is replaced by c††.

It is easy to see that the term (∗) in equation (42) is positive when c† is replaced by c††. Hence, since

H ′(c†) tends to +∞ when c† tends to 1, we have that there exists a value c† such that the right-hand side

of equation (42) tends to −∞ as c†↗c†.25 Then, continuity proves the existence of an equilibrium.

Step 10: Uniqueness of an equilibrium for the more informative signal. It is only left to prove that

the right-hand side of equation (42) is strictly decreasing on (c††,c†). To do so, define c̃† :=H(c†). Then,

the derivative of the right-hand side of equation (42) with respect to c̃† is

0=−2φ∗ r H ′′(c†)

(∗∗)
︷ ︸︸ ︷

1
H ′(c††)−

p
µ(c†−c††)p

r +
p
µp
r

H ′(c†)
H ′′(c†)

1−2φ∗H ′(c†)
� 1

H ′(c††)−
p
µ(c†−c††)p

r

�

−2φ∗
p
µ
p

r . (43)

The derivative of (∗∗) with respect to c† is
p
µ/(2

p
r H(c†))>0, and its value at c†=c†† is

e
− r
κ2µ
�

4 r+µ−pµ
p

8 r+µ
�

2
p
π r

,

which is positive. Hence, the term (∗∗) is positive. As a result, the derivative of the right-hand side

of equation (42) with respect to c† is negative. We conclude that there is a unique pair of thresholds

(φ̂†,φ̂††), with 2φ∗<φ̂†<φ̂††<1 such that V satisfies all boundary conditions. Then, when µ>µ, a

unique equilibrium (which satisfies the characterization of Proposition 3.2) exists.

A.2 Proofs of results in Section 4

Proof of Proposition 4.1

Proof. The proof is divided into four steps.

Step 1. We first show that V is increasing in µ on (0,µ). We divide this step of the proof into two sub-steps:

1. We first prove that φ† is increasing in µ. To do so, recall from the proof of Propositions 3.1 and 3.2

that φ† is the unique solution to (37), which we denote φ†
µ in this proof.

We note that the derivative of the left-hand side of expression (37) with respect to µ (recall that κ

25 Indeed, the term inside the logarithm on the first line of equation (42) tends to 0 as c†↗ c†.
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depends on µ, see equation (35)) is equal to

µ(1+κ)+2 r
2µ(1+2κ)

φ†−φ∗
φ∗ −(1−φ

∗) .

Such expression is strictly increasing in φ† and negative for all φ†∈(φ∗,φ
†
), where

φ
†
:=min

¦

1,φ∗
�

1− 2(1+2κ)µ(1−φ∗)
2 r+(1+κ)µ

�−1©
.

If φ
†
=1 then we have that the left-hand side of expression (37) is decreasing in µ, and hence φ† is

increasing in µ. Assume then that φ
†
<1. When we evaluate the left-hand side of expression (37)

for φ†=φ
†

we obtain

−(1−φ†)
�

µ+ 2(κ−1)(1+2κ) rµ
2κ r+κ(1+κ)µ + r log

� (1+3κ)µ−2 r
(1+κ)µ+2 r

�

�

.

Using the definition of κ (see equation (35)), it is easy to see that the previous expression is positive.

This implies that φ
†
>φ†. As a result, we have that the derivative of the left-hand side of equation

(37) at φ†
µ is negative. Recalling that the left-hand side of equation (37) is strictly increasing in φ†

(see the proof of Propositions 3.1 and 3.2), we have that φ†
µ is increasing in µ on (0,µ).

2. Let z∗ := ž(φ∗) and z† := ž(φ†) (recall the definition of ž in (20)). Note that φ† for all z∈[z†,∞)
we have26

V (z†)
−V ′(z†)







>κ−1 if z∈(z∗,z†).

=κ−1 if z∈[z†,+∞).
(44)

Take now two values µ1<µ2<µ. By part 1, we have that z†
µ1
<z†

µ2
, where the subindexes µ1 and

µ2 indicate equilibrium values corresponding to each value of µ. From equations (9) (with p(φ)=
`/φ) and (31), we have Vµ1

(z)<Vµ2
(z) and −V ′µ1

(z)>−V ′µ2
(z) for all z∈(z∗,z†

µ1
]. Assume, for a

contradiction, that there is some z>z†
µ1

such that Vµ1
(z)=Vµ2

(z). There must then be some ẑ>z†
µ1

such that Vµ1
(ẑ)=Vµ2

(ẑ) and −V ′µ1
(ẑ)≤−V ′µ2

(ẑ). But then,

Vµ2
(ẑ)

−V ′µ2
(ẑ)
≤

Vµ1
(ẑ)

−V ′µ1
(ẑ)
=κ−1

µ1
<κ−1

µ2
≤

Vµ2
(ẑ)

−V ′µ2
(ẑ)

.

This is a contradiction. We then showed that Vµ1
(φ)<Vµ2

(φ) for all φ∈(φ∗,1).

Step 2. That d
dµV (φ)>0 when µ>µ and φ∈(φ∗,φ̂†) follows immediately from differentiating the

right-hand side of expressions (31) (which holds when φ∈(φ∗,2φ∗)) and (38) (which holds when

φ∈(2φ∗,φ̂†)).

Step 3. We now show that limµ→∞V (φ)=h−` for all φ∈(φ∗,1). There are two cases:

26 Indeed, if there is a solution V of (31) and a value of φ† such that equation (44) is satisfied, there is an equilibrium as in

Proposition 3.1 (since the smooth pasting conditions hold at φ† for some continuation value from the right given in (34) for

some C1 and with C2=0).
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1. Assume first µ=+∞ (that is, if φ∗≥1/2). Take a sequence (µn)n tending to +∞. Let (φ†
n)n be

the sequence of the corresponding equilibrium thresholds, which is increasing by Step 1, and let

φ†
∞∈(φ

∗,1] be its limit. From equation (31), we have that limn→∞V ′n(φ)=0 for all φ∈(φ∗,φ†
∞).

Hence, limn→∞Vn(φ)=h−` for all φ∈(φ∗,φ†
∞).

If φ†
∞=1 then the result holds. If φ†

∞<1 then, given that the drift of the belief process from reject-

ing offers at each φ∈(φ†
∞,1) becomes arbitrarily large as µ→∞, we have that limn→∞Vn(φ)=

h−` for all φ∈(φ†
∞,φ∗), hence the result holds.

2. Assume that, instead, µ<+∞ (that is, φ∗<1/2). Then, if µ is large enough, the equilibrium

characterization in Proposition 3.2 applies. By the same argument as when µ=+∞, we now have

limµ↗+∞V ′(φ)=0 for all φ∈(φ∗,2φ∗).

For each φ∈(2φ∗,φ̂††), we have (from equation (8))

V ′(φ)=− r h/2
µ(1−φ)φα(φ)≥−

r h
4µ(1−φ)φ∗ ,

where we used α(φ)≥2φ∗/φ by the optimality of the seller’s strategy.

We can now take a sequence (µn)n tending to+∞ and let (φ̂††
n )n be the sequence of the correspond-

ing equilibrium thresholds. Taking a subsequence if necessary, assume that (φ̂††
n )n tends to some

value φ̂††
∞∈[φ

∗,1]. Then, we can then use the same argument as for the case where µ=+∞.

Step 4. We now want to show that limµ→0 V (φ)=0 for all φ∈(φ∗,1). When µ is small enough, we can

use the equilibrium characterization in Proposition 3.1. Take a sequence (µn)n tending to 0. Let (φ†
n)n

be the sequence of the corresponding equilibrium thresholds. Taking a subsequence if necessary, assume

that (φ†
n)n tends to some value φ†

∞∈[φ
∗,1].

Now, for all φ∈(φ∗,φ†
∞), we have limn→∞V ′n(φ)=+∞ (from equation (31)). This has the implic-

ation that, φ†
∞=φ

∗. Because, for each n, the buyer is willing to reject all offers for all φ>φ†
n for all n,

and because the learning speed tends to 0 for all φ, the result holds.

Proof of Lemma 4.1

Proof. That Lemma A.1 holds in the case where offers are not observable can be proven analogously.

Additionally, by the usual take-it-or-leave-it offer argument, each seller either offers ` (which is accepted

for sure by both types of the buyer) or the price p(φ)>` given in equation (17) (which is accepted for

sure by the h-buyer and rejected for sure by the `-buyer).

Proof of Proposition 4.2

Proof. The result follows trivially from Lemma 4.1 when φ≤φ∗ :=`/h. The rest of the proof is divided

into six steps.

Step 1: Preliminary results on regimes. Using that α`(φ)=1−π(φ) and αh(φ)=1, the continuation
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value satisfies

V (φ)= r
�

π(φ)(h−p(φ))+(1−π(φ))(h−`)
�

−π(φ)µ(1−φ)2φV ′(φ)+ 1
2π(φ)µ(1−φ)

2φ2 V ′′(φ) . (45)

Additionally, the h-buyer’s indifference between accepting p(φ) or not implies that equation (17) holds

as well.

We begin with a result characterizing some of the characteristics of the different possible regimes.

The following result is analogous to Lemma A.3 in the proofs of Propositions 3.1 and 3.2.

Lemma A.4. Assume prices are not observable. The following statements follow for all φ∗≤φ1<φ2≤1:

1. If π(φ)∈(0,1) for all φ∈(φ1,φ2) then φ2<1, p(φ)=`/φ, and

π(φ)=− r (h−`/φ)
(1−φ)φµV ′(φ) . (46)

2. If π(φ)=1 for all φ∈(φ1,φ2) then

p(φ)=h+ µr (1−φ)φV ′(φ) . (47)

Proof. 1. The indifference of the sellers implies that p(φ)=`/φ. As a result, from equations (17) and

(45), we have

0= r (φ−φ∗) V ′(φ)
h + r

2 (φ−φ
∗)2 V ′′(φ)

h +φ2µ
�

1−φ∗− V (φ)
h

�

V ′(φ)2

h2 (48)

holds. Equation (46) follows from equations (45) (with p(φ)=`/φ) and (48). Note that equation

(46) can be written using log-likelihoods as

π(z)=− r (h−(1+e−z)`)
µV ′(z) .

Since it must be that V ′(z)→0 as z→∞ (because V is bounded below by 0), we have that φ2<1.

2. Case π(φ)=1 for all φ∈(φ1,φ2): Equation (47) follows from the indifference of the h-buyer on

accepting p(φ) or not, that is, equation (17). Additionally, we have the equation (45) becomes

r V (φ)=µ(1−φ)2φV ′(φ)+ 1
2 µ(1−φ)

2φ2 V ′′(φ) . (49)

(End of the proof of Lemma A.4. Proof of Proposition 4.2 continues.)

Step 2: Continuity of p and π. In this step, we prove that p and π are continuous. Note that, since

equation (17) holds for all φ, the continuity of π implies the continuity of p. Hence, we prove that π is

continuous by contradiction. There are then two cases:
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1. Assume first that π(φ)∈(0,1) for some φ∈(0,1) and there is a sequence (φn)n converging to φ

such that π(φn)=1 for all k. Note that π(φ)<1 only if p(φ)=`/φ. Then, we have that

lim
n→∞

p(φn)=h+ µr (1−φ)φV ′(φ)= `
φ −

1−π(φ)
π(φ) (h−`/φ)<`/φ .

This is a contradiction.

2. The alternative case is that π(φ)∈[0,1] and there is a sequence (φn)n converging to φ such that

π(φn)<1 for all k and (π(φn))n converges to some π 6=π(φ). Note that p(φn)=`/φn for all n.

Then, we have that

`/φ= lim
n→∞

p(φn)=h+ µr (1−φ)φπV ′(φ)=h−(h−p(φ)) π
π(φ) .

If π(φ)=1 then, since p(φ)≥`/φ, the right-hand side of the rightmost equality is strictly bigger

than `/φ, a contradiction. If instead π(φ)<1 then p(φ)=`/φ, but then the previous equation

implies π(φ)=π, again a contradiction.

Step 3: Determination of the equilibrium structure. Let (φ1,φ2) be a maximal region withπ(φ)∈(0,1)
for all φ∈(φ1,φ2) (that is, π(φ1)∈{0,1} and π(φ2)=1). We aim at proving that there is at most one

such interval, and is such that φ1=φ∗. Note that φ2<1 by Lemma A.4. We have that p(φ2)=`/φ2.

Then, using π(φ2)=1, we have

lim
φ↗φ2

π′(φ2)=
2`+φ2 (2V (φ2)−h−`)
hφ2 (1−φ2)(φ2−φ∗)

. (50)

We first argue that there is a unique value φ2 such that the right-hand side of the previous equation is

positive if φ2>φ2 and negative if φ2>φ2. To see this, recall V is decreasing. Hence, if the numerator

is 0 for some value φ2, it must be that 2V (φ2)−h−`<0. If φ2>φ2, the numerator of the right-hand

side of (50) is negative, while if φ2>φ̄2 the numerator is positive. Now, note that since π′(φ2)≥0 and

φ2<1, we have that φ2≤φ2. Also, if π(φ1)=1, we have φ1≥φ̄2 since π′(φ1)≤0. It then follows that

there is at most one interval (φ1,φ2) where π(φ)∈(0,1) for all φ∈(φ1,φ2) and π(φ1),π(φ2)∈{0,1}.
Furthermore, if such an interval exists, we have that φ1=φ∗ (and so π(φ1)=0) and π(φ2)=1.

We now prove that there must be some φ̂‡∈(φ∗,1) such that π(φ)∈(0,1) for all φ∈(φ∗,φ̂‡). To

show this, assume not; that is, assume that π(φ)=1 for all φ∈(φ∗,1). In this case, equation (49) holds

for all φ∈(φ∗,1). The general solution to this equation is (34) for some C1,C2∈R and where κ>0 is

defined in equation (35). Since V is bounded, it must be that C2=0. The value-matching condition

imposes that V (φ∗)=h−`; that is,

V (φ)=
�1−φ
φ

�1−φ∗
φ∗

�κ
(h−`) .

This implies that

lim
φ↘φ∗

p(φ)=h− µr κ(h−`)<h .

40



This is a contradiction, since p(φ)≥`/φ.

We let φ‡∈(φ∗,1) be the supremum value such that π(φ)∈(0,1) for all φ∈(φ∗,φ‡).

Step 4. Equations for existence and uniqueness. From Step 3, we have that there is some C1∈R++
such that, for all φ∈(φ‡,1), we have27

V (φ;C1)=C1

�1−φ
φ

�κ
. (51)

For each C1, we let φ̂(C1) be determined by setting π(φ̂(C1))=1 in equation (46) replacing V ′(φ) by

V ′(φ̂(C1);C1). We then have

C1=
r
�1−φ̂(C1)
φ̂(C1)

�−κ
(φ̂(C1)−φ∗)h

µκφ̂(C1)
. (52)

The derivative of the right-hand side of the previous expression with respect to φ̂(C1) is

r
�1−φ̂(C1)
φ̂(C1)

�−κ
(φ∗ (1−φ∗)−

(∗)
︷ ︸︸ ︷

(φ∗−κ)(φ̂(C1)−φ∗))h

µκ(1−φ̂(C1))φ̂(C1)2
.

Given that φ̂(C1)>φ∗ and κ>0, the term (∗) is bounded above by φ∗ (1−φ∗). Then, for each C1>0,

φ̂(C1) is uniquely defined, and φ̂ :R++→(φ∗,1) is a bijective function. Hence, from now on, abusing

notation, we use φ̂∈(φ∗,1) instead of C1 as the free variable coming from the differential equation (49).

We also use V (·;φ̂) instead of V (·;C1).

For any given φ̂, the pair of values of V (φ̂;φ̂) and V ′(φ̂;φ̂) can be used as boundary conditions to

obtain a unique solution to equation (48) on (φ∗,φ̂], which we denote V (φ;φ̂) without risk of confu-

sion.28 From the previous expressions we have that

V (φ̂;φ̂)=
(φ̂−φ∗) r h

φ̂κµ
. (53)

The right hand side of equation (53) is increasing in φ̂ on (φ∗,1), and 0 at φ̂=φ∗. Additionally, the

previous expressions imply

V ′(φ̂;φ̂)=−
(φ̂−φ∗) r h

(1−φ̂)φ̂2µ
. (54)

It is easy to see that this is decreasing in φ̂ for all φ̂∈(φ∗,1).

Hence, there is an equilibrium (which must be as specified in the statement of the proposition) for

27 Note that this coincides with expression (34) with C2=0, satisfied by the continuation value on the upper belief regions of

beliefs in the observable case.
28 Note that, by the smooth pasting condition, V (·;φ̂) is continuous and differentiable at φ̂. It satisfies equation (48) on (φ∗,φ̂]

and equation (49) on [φ̂,1).
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a given value φ‡∈(φ∗,1) only if there is a solution of equation (48) on (φ∗,φ‡), denoted V (·;φ‡), with

boundary conditions (53) and (54), and the lower boundary condition holds, that is, if limφ↘φ∗ V (φ;φ‡)=
h−`.

Step 5. Change of variables. From now on, we assume an equilibrium with continuation value V exists,

and we will establish the necessary and sufficient conditions that it satisfies, and we will finally establish

the existence of a unique equilibrium in Step 6. We change variables defining, for each φ̂∈(φ∗,1),

W (y):= 21/2
p
µ/r φ̂

(φ̂−φ∗)h

�

V
� φ̂φ∗ y
φ̂ (y−1)+φ∗

�

−(h−`)
�

for all y∈
�

1,+∞
�

. Note that W is negative and increasing. Note also that the limit φ↘φ∗ corresponds

to the limit y→∞, while φ=φ̂ corresponds to y=1. Using our definition, equation (48) takes the

following simpler form:

W ′′(y)= y2 W (y)W ′(y)2 . (55)

Since W (·) is negative, it is also concave. The requirement that limφ↘φ∗ V (φ)=h−` corresponds to

limy→∞W (y)=0. We will now analyze solutions to equation (55).

We note that the boundary conditions (53) and (54) can be written as boundary conditions on W at

y=1 as follows:

W (1;φ̂)=21/2
Æ

µ/r
�

r
κµ−

φ̂ (1−φ∗)
φ̂−φ∗

�

, (56)

W ′(1;φ̂)= 21/2
p
µ/r

φ̂−φ∗

(1−φ̂)φ∗
. (57)

The right-hand side of equation (56) is strictly negative if and only if φ̂∈(φ∗,φ̂+), where

φ̂+ :=min
�

1,φ∗
�

1−(1−φ∗)κµ/r
�−1	

>φ∗ .

Also, in this range, W (1;φ̂) increases from −∞ to either 0 (if φ̂+<1) or 21/2
�

κ−1−
p

µ/r
�

(if φ̂+=1).

The right-hand side of equation (57) is strictly positive and strictly increasing in φ̂ on (φ∗,1), and increases

from 0 to +∞.

Step 6. Existence and uniqueness. We now aim to show that there is a unique φ̂∈(φ∗,1) such that

lim
y↗∞

W (y;φ̂)=0 ,

where W (·;φ̂) is the solution to (55) with boundary conditions given by equations (56) and (57). We do

it in two parts:

1. Uniqueness: Take two different values φ̂1 and φ̂2 satisfying φ∗<φ̂1<φ̂2<φ̂
+. By the previous

results, W (1;φ̂1)<W (1;φ̂2)<0 and 0<W ′(1;φ̂1)<W ′(1;φ̂2). We want to show that W (y;φ̂2)−
W (y;φ̂1) is increasing in y , and so W (·;φ̂) tends to 0 for at most one value of φ̂∈(φ∗,φ̂+). Assume,

for the sake of contradiction, there is some value y ′ such that W ′(y ′;φ̂1)=W ′(y ′;φ̂2), and let y be
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the infimum with this property. It then has to be that W (y;φ̂1)<W (y;φ̂2). Then we have

W ′′(y;φ̂1)= y2 W (y;φ̂1)W
′(y;φ̂1)

2< y2 W (y;φ̂2)W
′(y;φ̂2)

2=W ′′(y;φ̂2) .

This is a contradiction, since W ′(·;φ̂1)<W ′(·;φ̂2) on (1, y). Hence, we have that W ′(y;φ̂1)<
W ′(y;φ̂2) for all y>1. Therefore, if W (y;φ̂1) and W (y;φ̂2) are convergent as y→∞, they con-

verge to different values. A similar argument implies that two solutions of equation (55) cross at

most once.

2. Existence: Note that a particular solution of (55) is Ŵ (y):=−21/2/y .29 Note also that, as φ̂→φ∗,

W (1;φ̂)→−∞<Ŵ (1) and W ′(1;φ̂)→0<Ŵ ′(1) .

Hence, if φ̂ is close enough to φ∗, limy→∞W (y;φ̂) is strictly lower than limy→∞ Ŵ (y), which is

equal to 0. We assume, for the sake of contradiction, that limy→∞W (y;φ̂+)=w+, for some w+<0.

Since W (1;φ̂+)=0 if φ̂+<1, then it must be that φ̂+=1 and so W ′(1;φ̂+)=+∞. Then, any

solution of equation (55) with W (1)<W (1;φ̂+) is such that limy→∞W (y)<w+. We let W (y;1) be

defined as limφ̂→1 W (y;φ̂), which by assumption satisfies limy→∞W (y;1)<0. For each ε, let W̃ε(·)
be defined as the solution to equation (55) satisfying W̃ε(2)=W (2;1) and W̃ ′

ε(2)=W ′(2;1)+ε. It is

clear that if ε>0 is chosen strictly larger than 0, then W̃ε(1)<W (1,1). Since solutions to (55) only

cross once, we have limy→∞ W̃ε(y)>w+, but this is a contradiction. Hence, there exists a unique

value φ̂† such that W (y;φ̂†)=0, and hence a unique equilibrium exists.

Proof of Proposition 4.3

Proof. Recall that, as we proved in the proof of Proposition 4.2, the equilibrium is divided into three re-

gions. In the region (0,φ∗), V=h−`. In the region (φ∗,φ‡), V follows equation (48) (with limφ↘φ∗ V (φ)=
h−`) and π satisfies equation (46). In the region (φ∗,φ‡), V satisfies equation (34) with C2=0, and

π(φ)=1. Recall also that limφ↗φ‡π(φ)=1.

We first note that we can define

U(φ):=
Æ

µ/r
� V (φ)

h −1+φ∗
�

. (58)

so that equation (48) becomes

U ′′(b)=−
φ−φ∗+φ2 U(φ)U ′(φ)

(φ−φ∗)2
,

with the condition now that U(φ∗)=0. Note that U is negative and does not depend on µ. Note now that

29 Such solution is an equilibrium when µ= r, in which case φ̂†=2φ∗/(1+φ∗).
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we can rewrite equation (46) as

π(φ)= φ−φ∗p
µ/r (1−φ)φ2 (−U ′(φ))

.

Since π is increasing, π(φ‡)=1, and the right-hand side of the previous equation is decreasing in µ, it

follows that φ‡ is increasing in µ (recall Figure 3(b)).

We define

V̂µ(φ):=h−`+ 1p
µ/r

hU(φ) . (59)

(Note that V (φ)= V̂µ(φ) for φ∈(φ∗,φ‡]. Note that V̂µ(φ) is increasing in µ (since U(φ) is negative).

Define also

Ṽµ(φ;Cµ):=Cµ
�1−φ
φ

�κ(µ)
,

where κ(µ) is the right-hand side of (35). (Note that V (φ)= Ṽµ(φ;Cµ) when φ∈[φ‡,1), where Cµ is the

value of C1 in equation (34) for the unique equilibrium.) By letting φ‡
µ be the value of φ‡ for µ, note also

that the smooth pasting condition implies V̂µ(φ‡
µ)= Ṽµ(φ‡

µ;Cµ) and V̂ ′µ(φ
‡
µ)= Ṽ ′µ(φ

‡
µ;Cµ).

Take µ1,µ2∈R++ with µ1<µ2. Using subindexes to denote the variables of the corresponding

(unique) equilibria, the previous observations imply that φ‡
µ1
<φ‡

µ2
and that Vµ1

(φ)<Vµ2
(φ) for all φ∈

(φ∗,φ‡
µ1
]. Assume, for the sake of contradiction, that there is some φ̂∈(φ‡

µ1
,1) such that Vµ1

(φ)=Vµ2
(φ).

There are two cases:

1. Consider first the case φ̂∈(φ‡
µ1

,φ‡
µ2
). We then have Ṽµ1

(φ̂,Cµ1
)= V̂µ2

(φ̂) and Ṽ ′µ1
(φ̂,Cµ1

)≥ V̂ ′µ2
(φ̂).

Let Ĉµ2,µ1
be the value such that Ṽµ2

(φ̂, Ĉµ2,µ1
)= Ṽµ1

(φ̂,Cµ1
), that is,

Ĉµ2,µ1
=Cµ

�1−φ̂
φ̂

�κ(µ1)−κ(µ2) .

Simple algebra shows that

Ṽ ′µ2
(φ̂, Ĉµ2,µ1

)=
κ(µ2)
κ(µ1)

Ṽ ′µ1
(φ̂,Cµ1

) .

Since κ(·) is a decreasing function, we have that Ṽ ′µ2
(φ̂, Ĉµ2,µ1

) is smaller in absolute value than

Ṽ ′µ1
(φ̂,Cµ1

), hence it is higher because both are negative. Therefore, using that Ṽ ′µ1
(φ̂,Cµ1

)≥ V̂ ′µ2
(φ̂),

we have Ṽ ′µ2
(φ̂, Ĉµ2,µ1

)> V̂ ′µ2
(φ̂). It then follows that there exists some Ĉ ′µ2

< Ĉµ2,µ1
and φ̂′<φ̂ such

that V̂µ2
(φ̂′)= Ṽµ2

(φ̂′, Ĉ ′µ2
) and V̂ ′µ2

(φ̂′)= Ṽ ′µ2
(φ̂′, Ĉ ′µ2

). Nevertheless, this implies that there exists

an equilibrium for µ2 with φ‡=φ̂′<φ‡
µ1

, which contradicts the uniqueness of the equilibrium es-

tablished in Proposition 4.2.

2. Consider now the case φ̂∈[φ‡
µ2

,1). In this case we have Ṽµ1
(φ;Cµ1

)= Ṽ ′µ2
(φ,Cµ2

) and Ṽ ′µ1
(φ;Cµ2

)≥
Ṽ ′µ2
(φ,Cµ2

). This implies that Cµ2
= Ĉµ2,µ1

defined above. As we argued, we have that Ṽµ1
(φ;Cµ1

)<
Ṽ ′µ2
(φ,Cµ2

), which is a contradiction.
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Proof of Proposition 4.4

Proof. When µ≥µ the result is trivial, so we focus on the case µ<µ. We define

V̂ ob(φ)=h−`+ r (φh−`)
µφ + r (h−`)

µ log
�1−φ
φ

�1−φ∗
φ∗

�

for all φ∈[φ∗,1). Note that V̂ ob(φ)=V ob(φ) for all φ∈[φ∗,φ†] (recall equation (31)), but V̂ ob(φ)>
V ob(φ) for all φ∈(φ†,1]. As the proof of Propositions 3.1 and 3.2 argues, V̂ ob(φ)

−V̂ ob′(φ)
>κ−1 for all φ<φ†

and V̂ ob(φ‡)
−V̂ ob′(φ‡)

<κ−1 for all φ>φ†.

We also define z†= ž(φ†) and z‡= ž(φ‡) (recall the definition of ž in (20)). Recall that equation (44)

holds for V ob, and we also have

V un(z)
−V un′(z)







>κ−1 if z∈(z∗,z‡),

=κ−1 if z∈[z‡,+∞).
(60)

Note that V̂ ob′(φ‡)=V un′(φ‡) (because πun(φ‡)=1, and so γob(φ‡)=γun(φ‡)=1 in equation (18)), and

so V̂ ob(φ‡)>V un(φ‡). As a result, V̂ ob(φ‡)
−V̂ ob′(φ‡)

>κ−1, hence it must be that φ‡<φ†.

The argument proceeds as in the proof of Proposition 4.1. Assume, for the sake of contradiction, that

there is some z>z‡ such that V un(z)=V ob(z). Since V un(z‡)<V ob(z‡), there must then be some ẑ>z‡

such that V un(ẑ)=V ob(ẑ) and −V un′(ẑ)≤−V ob′(ẑ). But then, this implies,

V ob(ẑ)
−V ob′(ẑ)

≤
V un(ẑ)
−V un′(ẑ)

=κ−1 ,

that is, V ob(ẑ)
−V ob′(ẑ)=κ

−1. This implies that ẑ≥z†. Nevertheless, we then have that V un(z†)<V ob(z†). Since

V un and V ob(z) follow the same equation for z>z†, this implies that V un(z)<V ob(z) for all z>z†, which

is a contradiction. This concludes the proof of the proposition.

Proof of Proposition 4.5

Proof. We prove each part separately:

1. We first prove that, if µ≤µ, then W ob(φ0)>W un(φ0)>W no(φ0) for all φ0∈(φ∗,1). The last in-

equality is trivial for the reasons laid out in the main text after the proposition. The first inequality

is obtained as follows. Note that, when µ≤µ, we have that αx(φ)=1 for all x∈{un,ob}. Hence,

the term (∗∗) in equation (19) is equal to h for all x . As explained after the proposition, the term

(∗) in equation (19) is equal to `
h−` V x(φ0) for all x∈{un,ob}. Then, applying Proposition 4.4, the

result follows.

2. We now prove that, if µ>µ, then W un(φ0)>W no(φ0) for all φ0∈(φ∗,1). This result holds trivially

by the arguments after the proposition.
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