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Abstract

Adopting electric vehicles (EVs) and implementing variable electricity tariffs increase peak demand

and the risk of congestion in distribution grids. To avert critical grid situations and sidestep

expensive grid expansions, Distribution System Operators (DSOs) must have intervention rights,

allowing them to curtail charging processes. Various curtailment strategies are possible, varying in

spatio-temporal differentiation and possible discrimination. However, evaluating different strate-

gies is complex due to the interplay of economic factors, technical requirements, and regulatory

constraints Ð a complexity not fully addressed in the current literature. Our study introduces a

sophisticated model to optimize electric vehicle charging strategies to address this gap. This model

considers different tariff schemes (Fixed, Time-of-Use, and Real-Time) and incorporates DSO in-

terventions (basic, variable, and smart) within its optimization framework. Based on the model, we

analyze the ŕexibility demand and total electricity costs from the users’ perspective. Applying our

model to a synthetic distribution grid, we őnd that ŕexible tariffs offer consumers only marginal

economic beneőts and increase the risk of grid congestion due to herding behavior. All curtailment

strategies effectively alleviate congestion, with variable curtailment featuring spatio-temporal dif-

ferentiation, approaching optimality regarding ŕexibility demand. Notably, applying curtailment

from the users’ perspective does not lower cost savings signiőcantly.
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1. Introduction

As part of the global energy transition, there is a concerted effort to expand renewable energies

(RES) and electrify various end-use sectors. Contributing to the ongoing electriőcation of the

transportation sector, the increasing adoption of electric vehicles (EVs) plays a pivotal role in this

transition. 14% of all new cars sold globally were electric in 2022, up from around 9% in 2021

and less than 5% in 2020. An even stronger increase is projected throughout 2023 (IEA, 2023b).

Simultaneously, integrating digital technologies such as Smart Meters is a crucial component of the

energy transition. Whereas some countries already experience a high penetration of smart meters,

such as Italy, Sweden, Finland, or Spain, other countries plan to force the roll-out in the next years

(Schnaars et al., 2022).

The digitization and the electriőcation of transportation not only underpin the shift towards cleaner

energy sources but also results in sector coupling. Electric vehicles, with their increasing demand

and through their interaction with the electricity system, will thus become an important actor

within the future electricity system (IEA, 2023c). In this context, the ongoing digitization offers

the prospect of employing electric vehicles in a way that actively supports and enhances the overall

functionality of the electricity system. But, also, EV users can potentially beneőt from exploiting

the inherent ŕexibility of EVs (Englberger et al., 2021). By offering variable electricity tariffs to EV

users, electricity providers can forward price signals from the electricity market, mirroring the state

of the energy system. This has two implications. First, EV users can optimize their charging to

minimize electricity costs, and second, the shifting of load implicitly contributes to balancing supply

and demand in the energy system. For example, Schittekatte et al. (2022) show how time-of-use

(TOU) tariffs incentivize load-shifting while simultaneously addressing consumer preferences.

Dynamic tariffs, however, abstract from the grid, as neither the retailers nor the consumers consider

the grid infrastructure in their calculus. Given the divergent objectives of retailers, consumers, and

grid operators, this poses a challenge and may lead to conŕicts. Electric vehicle users prioritize

low charging costs and meeting their mobility or electricity demand, while retailers align their

tariffs with wholesale prices. In contrast, grid operators strive for stable grid operation. The

pursuit of cost savings, often driven by a desire to beneőt from low prices, can result in a high
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simultaneity of charging processes among electric vehicle users, leading to load peaks that strain

the grid infrastructure. This herding behavior poses a signiőcant threat to distribution grids,

where most electric vehicle demand is concentrated and becomes more pronounced with higher

electric vehicle penetration rates. Grid congestion in distribution grids may occur, as highlighted

by Valogianni et al. (2020) and Daneshzand et al. (2023).

To avoid grid congestion, three options exist in general. First, distribution system operators (DSOs)

could restrict the access of EVs to the grid by limiting the installation of charging stations and wall

boxes. This, however, is detrimental to the desired large-scale EV adoption and interferes with

EV users’ objectives. Second, DSOs could expand the grid so that even herding behavior does not

cause congestion. However, designing a grid based on uncoordinated load peaks is considered a

highly inefficient and overly expensive approach, especially as load peaks will increase in amplitude

more than in frequency in the future (Arnold et al., 2023). Moreover, grid expansion faces delays

in numerous countries and struggles to keep pace with the rising demand (IEA, 2023a). The third

option involves granting DSOs the authority to intervene and limit EV charging during critical

hours to prevent grid congestion, as proposed by (von Bonin et al., 2022). This can be achieved

through methods such as volume signals. Actively restricting charging processes allows the grid

operator to ensure stable grid operation, whereas passive solutions like time-varying grid fees may

encourage herding behavior. While volume signals still impact EV users’ goals, they represent a

more cost-effective approach than extensive grid expansion, as demonstrated by (Spiliotis et al.,

2016) and (Heilmann and Wozabal, 2021). The inconvenience of adjusting the charging strategy

could be compensated, as proposed by Schittekatte et al. (2023). Consequently, the third option

emerges as the most promising strategy for integrating more electric vehicles into distribution grids

in the short and medium term, forming the central focus of this paper.

With an intervention, the actual charging strategy would need to be adjusted whenever bottlenecks

in the distribution grid are imminent. The grid operator would thus have to inŕuence the charging

process by sending out signals. In electricity markets, where DSOs have to be unbundled, such

as in Europe 1, grid operation and the optimization of EVs charging strategies have to take place

1Exceptions exist for DSOs with more than 100,000 customers European Comission (2010)
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separately due to regulatory provisions. However, the current discussions revolve around granting

the grid operator access to a certain extent, thereby considering constraints from grid operation in

optimizing charging processes. Uncertainty surrounds how the grid operator gains inŕuence over

the charging process and how the characteristics of the grid can be taken into account in optimizing

charging processes. In Germany, this discussion is taking place within the framework of the design

of ğ14a EnWG (BNetzA, 2023). Here, the DSO could limit charging power with high grid utilization

in certain hours. In summary, the different intervention options exhibit variability regarding the

information involved, ranging from details about the grid utilization to individual load proőles and

the potential for discrimination. All households could be treated equally, or the grid operator could

possess the authority to exert individualized control.

Our paper contributes to the ongoing discussion by examining the effects of different intervention

designs on optimal charging strategies within a case study centered on a synthetic German distri-

bution grid. We aim to understand how various intervention options impact the optimal charging

strategy. Initially, we identify optimal charging strategies based on different tariff designs, excluding

considerations related to the grid. If grid congestion becomes a concern, we then introduce grid

interventions through various curtailment strategies. We differentiate between generalized curtail-

ment (treating all electric vehicle users equally behind the bottleneck) and differentiated curtailment

(adjusting curtailment based on each user’s impact on the bottleneck). Additionally, we explore

exogenously őxed curtailment rates, independent of factors like current transformer overloads and

endogenously variable curtailment rates, which depend on the real-time load. We address the fol-

lowing research questions: How do different tariff designs inŕuence the optimal charging strategy

of EV users and the resulting grid utilization? How do various DSO intervention rights affect the

optimal charging strategy of EV users in terms of charging costs and required ŕexibility under dif-

ferent tariffs? Besides answering these questions, our research contributes to the existing literature

as follows:

• Systematic analysis of mutual inŕuences of charging strategies and interventions of grid op-

erators
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• Development of a model framework to analyze the interdependencies of users, retailers, and

grid operators in distribution grids

• Application of the model framework to a case study for Germany based on a synthetic distri-

bution grid

• Sensitivity analyses on the effect of different EV penetration rates

Consistent with prior research, such as von Bonin et al. (2022), our őndings indicate that im-

plementing time-variable tariffs brings őnancial advantages for consumers, but they are relatively

minor. The weighted average cost savings reach 47.2 EUR per year in the case of Real-time tariffs

and 16.9 EUR per year with ToU tariff, reŕecting only 1 to 3% of total electricity costs. However,

we őnd that time-variable tariffs, especially at high EV penetration rates, can lead to herding be-

havior and increase the peak load. To address this issue, DSOs need intervention rights to avoid

grid congestion effectively. We show that all proposed intervention strategies are suitable to prevent

congestion, although differences can be observed regarding their efficiency. The extent to which the

DSO can convey differentiated signals, incorporating spatial and temporal differences, correlates

closely with the optimal benchmark’s accuracy, assuming perfect information and user discrimina-

tion. The choice of the curtailment strategy has a greater inŕuence on the need for ŕexibility than

the design of time-variable tariffs. From the end user’s perspective, curtailment does not affect

charging costs signiőcantly, especially concerning ToU tariffs or low EV penetration rates. With

RT tariffs and higher penetration rates, the choice of the curtailment strategy is more relevant.

Then, basic curtailment increases charging costs by 4.7 EUR per year, while more sophisticated

curtailment results in a slightly lower increase of 2.6 EUR per year. But still, from the end user’s

perspective, the őnancial beneőts of smart tariffs outweigh the cost increase due to curtailment.

The paper is structured as follows. Chapter 2 introduces the electricity tariff designs and possibilities

for DSO interventions. Chapter 3 details a method for modeling different grid intervention strategies

in optimizing charging processes based on tariff designs. Chapter 4 applies this method to a

synthetic distribution grid, while Chapter 5 discusses our őndings. Chapter 6 concludes this paper.
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2. Electricity tariff designs and possibilities for DSO interventions

The charging processes of electric vehicles can be controlled both passively and actively. With

passive control, users are incentivized to shift their load, e.g., in response to price signals. Thus,

users’ charging decisions are inŕuenced only indirectly. With active control, users’ charging decisions

can be overruled remotely, e.g., by volume signals to modulate the charging power of charging

processes (IEA, 2022b). In this study, we analyze the interdependencies of time-varying electricity

prices provided by retailers and volume signals from the DSO to curtail charging processes to avoid

grid congestion. In this chapter, we introduce the different considered design options for these

signals.

In terms of (retail) price signals, there are various tariff models with different structures, ranging

from ŕat rates to piece-wise ŕat rates to fully dynamic pricing. The latter two belong to the group

of (time-)variable price signals, which can help address the growing price volatility in wholesale

markets while consumers can beneőt economically. By shifting charging processes to periods of

lower prices, charging processes are implicitly shifted according to the availability of intermittent

resources (Schittekatte et al., 2022). In this paper, we distinguish three speciőc tariff designs: a

Fixed tariff and two time-dependent tariffs known as Time-of-Use and Real-Time tariffs.

• Fixed tariff : Consumers pay the same electricity price regardless of when they consume

electricity. Thus, Fixed tariffs do not incentivize a shift in charging processes. The retailer

bears the price risk of the wholesale market but adds a risk premium to the tariff.

• Time-of-Use tariff : Time-of-Use tariffs provide time-variable electricity prices in certain

predeőned time windows. The tariffs segment the day into sections with equal price levels

corresponding to the overall load (i.e., low, mid, and high). The differentiated prices incen-

tivize a shift of charging processes into lower price windows.

• Real-Time tariff : Real-Time tariffs are fully time-variable, with the retailer forwarding

volatile wholesale prices and price risk to the customers. However, if all EVs in a distribution

grid receive the same high-resolution variable electricity price signal, it can lead to herding

behavior and a high simultaneity of charging processes.
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Responding to electricity price signals could result in herding behavior of charging processes, which

may cause congestion issues in the distribution grid by concentrating charging power within speciőc

time intervals. Consequently, the DSO may need to intervene actively and provide signals to electric

vehicles, including curtailing their charging processes. To determine effective signals, the DSO

requires access to information on grid utilization and user behavior, as well as the ability to interact

with the charging stations of electric vehicles. In future energy systems, the level of digitization

and the corresponding availability of information remains uncertain. Additionally, the treatment

of charging stations, whether equal or individually controlled with possible discrimination, depends

on the regulation of DSO. Consequently, various design options for DSO interventions are possible,

differing regarding information availability and discrimination.

We consider three different curtailment strategies to reŕect different intervention options: basic

curtailment, variable curtailment, and smart curtailment.

• Basic Curtailment: Basic curtailment involves limiting charging processes based on antici-

pated congestion. DSOs use standard load proőles and probabilistic methods in non-digitized

distribution grids to predict grid congestion. Once a DSO anticipates congestion in the dis-

tribution grid for a speciőed time interval, it can reduce the charging power of all charging

stations downstream of the bottleneck. In this approach, the DSO applies the same őxed

curtailment factor for the entire distribution grid. Charging processes are implicitly shifted

to less critical time intervals by curtailing peak loads. However, this approach can be overly

restrictive and may result in inefficiencies.

• Variable Curtailment: Variable curtailment builds upon the Basic Curtailment approach

but introduces time-dependent curtailment signals. Instead of applying a őxed curtailment

factor for the entire distribution grid, the DSO selectively curtails only the electric vehicles

behind the anticipated bottleneck as necessary. Consequently, all users behind the bottleneck

are treated similarly but more efficiently than under Basic Curtailment.

• Smart Curtailment: Smart curtailment, as deőned in this paper, represents the optimal

intervention of the DSO assuming perfect information and individual treatment of each charg-
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ing process. With perfect information, the DSO is aware of EV users’ economically optimal

charging schedules and can calculate each household’s time-dependent impact on grid ele-

ments. Based on this information, the DSO can forward individual and time-dependent cur-

tailment factors to each household, effectively managing and optimizing charging processes

within the grid.

By combining different tariff designs with various DSO intervention strategies, nine different use

cases are formulated, as represented by the boxes in Figure 1. Additionally, a hypothetical case

with no curtailment is considered a reference to illustrate potential bottlenecks that may occur

before curtailment.

Figure 1: Combinations of electricity tariff designs and possibilities for interventions by the DSO

The figure illustrates how we label our different use cases. Each combination of DSO intervention and tariff design
is labeled with an individual name.

Combining a speciőc tariff design with one possible intervention strategy reŕects one setting for

optimizing households and the related charging processes. Our model approach will be described

in the following chapter.
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3. Grid interventions in the context of optimizing charging processes

This chapter introduces a new model to analyze the effects of different electricity tariff designs

combined with DSO intervention concepts on grid utilization and electricity costs. This model

comprises two components: an asset optimization model to minimize households’ electricity costs,

explained in Section 3.1, and a grid model, introduced in Section 3.2. Information from the grid

model regarding grid signals is considered in the optimization model with the help of load and

generation distribution factors. These factors are considered using new equations within the opti-

mization model. The methodology of this linkage, implemented in three different ways for the three

intervention strategies, is explained in Section 3.3. Section 3.4 gives an overview of the process of

calculations.

By considering signals from the grid within the central optimization, our holistic model provides a

comprehensive perspective that incorporates the characteristics of the grid and the economic opti-

mization of charging processes and their mutual dependencies. The approach allows us to maintain

the computational efficiency of both the market and grid models. The modular nature of the model

linkage with the distinction of controllable and non-controllable assets makes it applicable to indi-

vidual distribution grid topologies and scenarios.

3.1. Optimization of decentralized energy systems

In this study, we develop a model for the economic analysis of decentralized energy systems. It is

designed as a linear optimization program that maximizes individual entities’ proőts following a

price-taking assumption and the assumption of perfect foresight. The operation of decentralized,

controllable assets is optimized based on technical and economic parameters. The model also allows

for analyzing the effects of őxed and variable retail tariffs.

The model can simultaneously optimize the electricity and heat turnover for multiple households in a

distribution grid. The model comprises electricity-related consumption and production technologies

with all relevant parameters, such as heat pumps, electric vehicles, storage units, and entities with

heat and electricity demand. The model maximizes each household’s proőt while covering the heat

and electricity demand. Depending on the setting, the required electricity for direct consumption
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or heat production is either produced by the households’ technologies, such as PV systems, or

obtained from an electricity supplier. Maximizing the proőts, thus, is equivalent to minimizing the

cost of energy supply. Equation (1).

max
∑

q∈Q

[
∑

c∈Gel

P gel,f
c,q ∗mf

c −
∑

c∈Lel

P lel,p
c,q ∗ (pwq + t)] (1)

The model optimizes the asset deployment for each time interval q. The őrst term of the objective

function, for each generation unit c, represents the generated electricity in the interval q, which is

fed into the grid and reimbursed by the feed-in tariff mf
c . The second term represents electricity

procurement for each electricity-consuming asset. The parameter pwq represents the provisioning

component of the consumer price, while t comprises the taxes and levies.

The equations (2) until (5) are demand and supply equations for electricity (2, 3) and heat (4, 5).

The equations break down energy generation and consumption to their purposes. The electricity

generation P gel
c,q splits into electricity fed into the grid (P gel,f

c,q ) and provided for electricity consumers

c′ ∈ C on-site (P gel
c,c′,q). The electricity consumption (P lel

c,q) in equation (3) splits correspondingly into

electricity procured (P lel,p
c,q ) from an electricity provider, and the consumption covered by on-site

generation units.

P gel
c,q = P gel,f

c,q +
∑

c′∈Lel

P gel
c,c′,q ∀q ∈ Q ∧ c ∈ Gel (2)

P lel
c,q = P lel,p

c,q +
∑

c′∈Gel

P lel
c,c′,q ∀q ∈ Q ∧ c ∈ Lel (3)

P gth
c,q =

∑

c′∈Lth

P gth
c,c′,q ∀q ∈ Q ∧ c ∈ Gth (4)

P lth
c,q =

∑

c′∈Gth

P lth
c,c′,q ∀q ∈ Q ∧ c ∈ Lth (5)

The equations (6) to (16) set the technical constraints for the considered technologies. Equation (6)

limits the generation of electricity generators by their installed capacity ic and the time-dependent
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availability proőle sq. For intermittent resources like PV systems, sq varies during the day based

on the considered weather year.

P gel
c,q ≤

1

4
ic ∗ sq ∀q ∈ Q ∧ c ∈ Gel (6)

Power-to-heat technologies, such as heat pumps and heating rods, are deőned by equations (7) and

(8) based on Frings and Helgeson (2022). The őrst equation determines the conversion of electricity

into thermal energy (P gth
c,q ). The conversion is based on the time- and asset-dependent efficiency

ηelc,q, including the COP. The latter equation restricts the electricity consumption P lel
c,q based on the

installed electric power.

P lel
c,q ∗ η

el
c,q = P gth

c,q ∀q ∈ Q ∧ c ∈ (Lel ∪Gth) (7)

P lel
c,q ≤

1

4
ielc ∀q ∈ Q ∧ c ∈ (Lel ∪Gth) (8)

Finally, electric and thermal storage equations are deőned in constraints (9) to (12). Equations

(9) and (10) restrict the maximum state of charge (SOC) for thermal and electric storage units,

including electric vehicles. Equations (11) and (12) limit the charging and discharging of storage

units alike. The factor dc,q represents a storage’s grid connection. For regular storage units, the

grid connection is constantly given (dc,q = 1). Electric vehicles, however, are disconnected from the

grid during their trips (dc,q = 0).

SOCel
c,q ≤ isoc,elc ∀q ∈ Q ∧ c ∈ (Lel ∪Gel) (9)

SOCth
c,q ≤ isoc,thc ∀q ∈ Q ∧ c ∈ (Lth ∪Gth) (10)

P gel
c,q ≤ P lel

c,q ≤
1

4
ielc ∗ dc,q ∀q ∈ Q ∧ c ∈ (Lel ∪Gel) (11)

P gth
c,q ≤ P lth

c,q ≤
1

4
ithc ∗ dc,q ∀q ∈ Q ∧ c ∈ (Lth ∪Gth) (12)

For storage units, the continuity and the balancing constraints are shown in equations (13) to (16).

In the őrst equation, the SOC is determined by the SOC of the previous interval, the charged and

discharged energy. Electric vehicles’ electricity consumed in trips is removed once at departure.

It is included in addend rc,q. η represents the charging and discharging efficiency. The balancing
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equation (15) ensures that, at large, demand and supply are balanced, including the consumption

by trips for electric vehicles.

SOCel
c,q = SOCel

c,q−1
+ P lel

c,q ∗ η
el
c,q −

P gel
c,q

ηelc,q
− rc,q ∀q ∈ Q ∧ c ∈ (Lel ∪Gel) (13)

SOCth
c,q = SOCth

c,q−1
+ P lth

c,q ∗ ηthc,q −
P gth
c,q

ηthc,q
∀q ∈ Q ∧ c ∈ (Lth ∪Gth) (14)

∑

q∈Q

P gel
c,q

ηelc,q
+ rc,q =

∑

q∈Q

(P lel
c,q ∗ η

el
c,q) ∀c ∈ (Lel ∪Gel) (15)

∑

q∈Q

P gth
c,q

ηthc,q
=

∑

q∈Q

(P lth
c,q ∗ ηthc,q) ∀c ∈ (Lth ∪Gth) (16)

Given the explained model, various operating schemes are deployed and used to analyze the differ-

ent combinations of tariffs and DSO interventions explained in chapter 2. The different electricity

tariffs are modeled by parameterizing pwq . For the őxed tariff, the parameter is constant for all time

intervals, while for the time-of-use tariff, it is piece-wise constant in different time windows. For

modeling the real-time tariff, the parameter is fully ŕexible in each time interval.

3.2. Grid model

The optimization model initially determines the operational strategy for the assets without con-

sidering potential grid constraints. Therefore, we perform an AC power ŕow to check whether the

computed solution is physically feasible. If bottleneck situations occur, assets affecting congestion

have to change their load or supply. Consequently, the impact of single assets on the power ŕow

of speciőc lines and transformers has to be determined. Generation and load distribution factors

provide information about the contribution of single assets to the total ŕow on a line. With the

help of those distribution factors and the information on maximum line utilization, new constraints

in the optimization model prevent bottlenecks in the distribution grid during asset optimization.

Based on the optimization results, the AC power ŕow uses the time series of each asset located in

the distribution grid as input. Market results only contain information on active power dispatch, so

the reactive power is calculated afterward. Based on Dynge et al. (2021), we assume a őxed power
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factor of cos(ϕ) equal to 0.98 for all loads. Reactive power is calculated as given in equation (17).

Batteries and generators do not provide or consume reactive power.

Q =

√

P 2

cos(ϕ)2
− P 2 =

√

1

cos(ϕ)2
− 1 ∗ P = k ∗ P (17)

The AC power ŕow is performed with each asset’s active and reactive power time series input. The

results, such as line loading and line ŕows, are then used as necessary inputs for matrix operations

according to Schneider et al. (2018) and Kłos et al. (2015). By applying their presented methods,

the contribution of single assets on the line loading can be obtained. The most important steps to

obtain the distribution factors are described in the following paragraphs.

The total ŕow P (Nx1) is calculated using either an upstream or a downstream approach based

on power ŕow results. The upstream approach considers all feeding ŕows, while the downstream

approach accounts for all draining ŕows of a given node. Following the upstream approach, an

element F in
nm of F in contains the power injected at the node m if a line between n and m exists.

Otherwise, the entry is zero. Additionally, the nodal generation pgn is added. On the other hand,

the downstream approach accumulates all ŕows draining node n and the nodal load plm.

P =















Pn

...

PN















with Pn =
∑

n∈N

F in
n,m + P g

n =
∑

m∈N

F out
n,m + P l

m (18)

Virtual nodes with generation or supply equal to the line loss are added at the middle of each line.

The line is then split into two parts. Both are then without losses.

Next, the matrices of ŕow contribution C (NxN) and ŕow distribution A (NxN) are computed as

shown in equations (19) to (22), I describing the identity matrix.

Cu = diag−1(P ) ∗ F in (19)

Au = I − CT
u (20)

Cd = F out ∗ diag−1(P ) (21)

Ad = I − Cd (22)
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The matrices C and A can be used to obtain generation distribution factors GDF (MxN) and load

distribution factors LDF (MxN).

GDF = diag(Λ(GfCuC
T
t ))GfA

−1

u (23)

LDF = diag(Λ(GfCdC
T
t ))GfA

−1

d (24)

The Λ operator returns the diagonal elements of a square matrix. Gf (NxM) represents the in-

cidence matrix with ’from’-nodes and Gt (NxM) is the incidence matrix with ’to’-nodes. The

element gdfk,m indicates the share of injected power at node m ŕowing on line k. Likewise, ldfk,m

indicates the share of withdrawn power at node m ŕowing on line k. With the distribution factors,

new equations in the market model are formulated, as described in the next subsection.

3.3. Coupling of the asset optimization model and grid model

The way distribution factors are used to formulate new constraints in the asset optimization model

reŕecting line and transformer capacity limits depends on the type of grid signal associated with the

curtailment approach. As presented in chapter 2, three types of grid signals are considered. In the

case of basic curtailment, the maximum load of each electric vehicle behind a bottleneck is limited

during a speciőc time interval. Variable curtailment reŕects curtailing all electric vehicles behind

a bottleneck with the same time-dependent curtailment factor. In the case of smart curtailment,

single EVs are individually controlled optimally to resolve congestion, assuming perfect information.

Basic Curtailment: Equation (25) is used for the basic curtailment concept. Only information

about congested lines and transformers is considered in the LDF matrix. Consequently, values

larger than 0 reŕect a contribution of node n to the power ŕow on a congested line or transformer

k. Transferred into reality, LDF is a model-based approximation of the information regarding con-

gestions and affected nodes behind that bottleneck. If a node with an EV contributes to congestion,

the maximum charging power ielc is multiplied by 0 < e < 1. αc is a set of nodes connected to a
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component c. The value of e depends on the penetration rate for EVs and represents a curtailment

factor determined a priori. All EVs behind a bottleneck face the same curtailment.

4

h
∗ P lel

c,q ≤















ielc ∗ e ,if
∑

k∈K

∑

n∈αc
ldfk,n,q > 0

ielc ∗ 1.0 ,if
∑

k∈K

∑

n∈αc
ldfk,n,q = 0

∀q ∈ Q ∧ c ∈ Lel (25)

Variable Curtailment: Variable curtailment builds upon the principles of Basic Curtailment

but incorporates additional information concerning the actual load and congestion levels. Instead

of applying a őxed curtailment factor to all EVs located behind a bottleneck, time-dependent

signals are transmitted to them. Although all EVs behind the bottleneck experience the same

level of curtailment, the intensity varies over time, aligning with the real-time utilization patterns.

Equation (26) can be formulated based on these assumptions.

4

h
∗ P lel

c,q ≤















ielc ∗ ec,q ,if
∑

k∈K

∑

n∈αc
ldfk,n,q > 0

ielc ∗ 1.0 ,if
∑

k∈K

∑

n∈αc
ldfk,n,q = 0

∀q ∈ Q ∧ c ∈ Lel (26)

Smart Curtailment: For modeling smart curtailment, two more advanced equations are used in-

stead of equation (25) or (26) to consider optimally determined grid signals within the optimization

model to prevent grid congestions. To achieve this, we assume perfect information regarding grid

utilization, the impact of single nodes on power ŕow, and the possibility of controlling each electric

vehicle individually. Assuming that only a fraction of the assets in the distribution grid is control-

lable, GDF and LDF only include the contribution values of the respective nodes. Consequently,

for all transformers and loads, we differentiate between the total maximum capacity limit Pmax
k,q and

the maximum capacity limit Pmax,controllable
k,q related to the nodes with controllable assets. Figure 2

visualizes this relationship. For simplicity, S, P , and Q reŕect power values with no temporal and

spatial component.
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Figure 2: PQ-Diagram to determine the maximum, controllable active power on grid elements

The capacity limit of each line or transformer k is deőned by the maximum apparent power Smax
k .

The apparent power consists of an active and reactive part. Each part can be further decomposed

into three parts. The őrst part (P act,noControllable
k,q and Qact,noControllable

k,q ) respectively includes the

contribution of all nodes in a speciőc time interval q on line and transformer ŕow that have no

controllable assets. A second part (P act,Controllable
k,q and Qact,Controllable

k,q ) includes the actual con-

tribution of all nodes on line and transformer ŕow which have controllable assets such as electric

vehicles. The last part (Qgap,Controllable
k,q and Qgap,Controllable

k,q ) deőnes a gap that reŕects the max-

imum additional active and reactive power on a line or transformer until the maximum apparent

power is reached. In case the maximum apparent power is already reached by the actual active

(P act
k,q ) and reactive power (Qact

k,q), this gap has to be negative. Dispatch of the different controllable

assets has to be readjusted to stay within the maximum apparent power. In the market model, only

Pmax,Controllable
k,q is used, which corresponds to imax

k,q there. Appendix A describes its calculation in

detail.

With the values for LDF, GDF and imax
k,q , equations (27) and (28) can be formulated in the

optimization model. Equation (27) considers all controllable nodes with generation larger than

load (generation nodes), and equation (28) does the same for all controllable load nodes.

4

h
∗
∑

n∈N

[max(0n,q,
∑

c∈αn

P gel
c,q −

∑

c∈αn

P lel
c,q) ∗ gdfk,n,q] ≤ imax

k,q ∀k ∈ K ∧ q ∈ Q (27)

4

h
∗
∑

n∈N

[max(0n,q,
∑

c∈αn

P lel
c,q −

∑

c∈αn

P gel
c,q ) ∗ ldfk,n,q] ≤ imax

k,q ∀k ∈ K ∧ q ∈ Q (28)
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Components are mapped to the respective node with the matching set αn, and the balance is

calculated. From the generation perspective, by multiplying the nodal generation (
∑

c∈αn
P gel
c,q −

∑

c∈αn
P lel
c,q) with the GDF matrix, the power ŕow on each line caused by the respective node is

computed. After summing over all nodes, the total power ŕow on each line or transformer k is the

result. For all lines and transformers in the system, the total power ŕow has to be lower than the

maximum capacity limit imax
k,q . The same can be formulated for nodes treated as load nodes, as

done in equation (28).

3.4. Process of calculations

Figure 3 shows how the optimization and grid model interact in an iterative process to quantify

the effects of different tariff structures and intervention options of the DSO. The process slightly

differs between basic, variable, and smart curtailment. The columns relate to different simulation

or optimization steps.

Figure 3: Process diagram illustrating the various optimization and computation steps

In the first step, the simulation and optimization of all decentralized assets and households are

done by running the optimization model without considering the grid. Fixed, ToU or Real-Time

prices are used depending on the selected tariff design. One of the results is the optimal charging

strategy for each household. In the second step, an AC power ŕow is performed to check the

validity of the optimization results. If there is no congestion, the model will stop here. In the

case of line or transformer overloading, the third step follows. Here, the necessary parameters

are calculated to consider the grid situation within the optimization model. The method of calcu-
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lation varies according to the curtailment strategy. Regarding basic and variable curtailment, the

generation and load distribution factors are calculated only for the respective time intervals and

congested elements. In the case of smart curtailment, the generation and load distribution factors

are calculated for all time intervals and grid elements together with the line and transformer ca-

pacity limits. Depending on the curtailment strategy, the respective constraints are parameterized

and used in the optimization model to reŕect the signals from the grid, as described in section 3.3.

Then, the optimization model is rerun in the fourth step, considering the additional constraints

depending on the curtailment strategy. These new constraints reŕect the signals from the grid.

The validity of the asset operations concerning potential grid constraints is checked again in the

őnal fifth step. If there is no congestion remaining, the process stops after step őve. But, in

the case of basic and variable curtailment, new congestion can occur by shifting the load to time

intervals when charging power is not limited. Consequently, these additional time intervals must

then be considered additionally. This is done by rerunning step 3 and updating the matrices with

generation and load distribution factors. In the case of variable curtailment, the curtailment factor

ec,q is increased marginally when necessary. In the case of smart curtailment, the process ends here,

except that the nodal balance of individual nodes within the distribution system after step four

changes the sign from the result after step one. 2

4. Case Study - Technical and economic effects of different intervention concepts

We employ the formulated model alongside the proposed combinations of tariff schemes and di-

verse intervention methods by the DSO to a synthetic distribution grid represented as a case study.

Within this chapter, we focus on optimal EV charging strategies in combination with various elec-

tricity tariff schemes and examine the implications of distinct DSO intervention methods. The

computed outcomes cater to a range of EV penetration rates. Section 4.1 details the case study’s

context and base data. Section 4.2 explores the őrst research question addressing the impact of dis-

2Nodal balance could switch from positive to negative or the other way round after one iteration. For example,
a load node could become a generation node if PV generation remains high and the load is curtailed and shifted to
other time intervals. Then, the generation and load distribution factors are calculated again in step three for all time
intervals and nodes. The highest values from the first and second iterations determine the new matrices.
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parate tariff structures on optimal EV charging strategies and, subsequently, grid utilization under

various EV penetration rates. Section 4.3 is devoted to the second research question, focusing on

the implications of the DSO’s varied intervention concepts on optimal charging strategies, account-

ing for differing penetration rates. We analyze the impacts considering factors such as ŕexibility

demand (Chapter 4.3.1) and charging costs (Chapter 4.3.2).

4.1. Analysis Environment

We parameterize the optimization model and a synthetic distribution grid to analyze the interde-

pendencies of various tariff designs and DSO interventions. In the following section, we provide

details regarding the grid conőguration, the proőles used (including renewables, electricity prices,

and charging proőles), the factors for curtailment (see chapter 3.2), and the considered period in

the form of type days.

The analysis is based on the grid conőguration "1-MVLV-semiurb-all-0-sw" made available by the

SimBench project (Meinecke et al., 2020). The grid comprises 115 medium-voltage nodes with

downstream low-voltage grids, as illustrated in Figure 4. However, only 12 connected low-voltage

grids, consisting of 1015 low-voltage nodes, are explicitly modeled. In contrast, the remaining 103

low-voltage grids are aggregated with a predeőned load pattern at their respective medium-voltage

node.
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Figure 4: Conőguration of the distribution grid

The analysis encompasses various distributed energy resources, including power-to-heat, photo-

voltaic (PV) systems, energy storage systems, and electric vehicles (EVs). For 2030, EV penetration

rates for Germany are considered based on Hecking et al. (2018) and randomly allocated.

We model 940 households at individual nodes within the 12 low-voltage grids of different sizes. These

low-voltage grids are assumed to represent relatively homogenous settlements with single-family

houses. The base demand of households, excluding EVs and electric heating, is generated using a

publicly available load proőle generator (Pŕugradt et al., 2022). In line with Birk et al. (2021), the

proőles differ regarding the number of persons per household (two or four), efficiency levels, the

number of gainfully employed persons, and vacation behavior, resulting in sixteen different types

of households. Only households with an EV are considered controllable, as detailed in Chapter 3.

The baseline conőguration assumes an EV penetration rate of 30%, representing the proportion

of households within the grid area possessing both an EV and a charging station. Scaling this
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proportion would lead to approximately 14 million EVs in Germany KBA (2023). In addition to

this baseline rate, the analysis also considers increased EV penetration rates of 50% and 70%.

Within individual low-voltage grids, the EV penetration rates ŕuctuate between 23% and 68% for

the baseline rate of 30%, reŕecting variations in neighborhood affluence. Corresponding rates for

EV penetration rates of 50% and 70% range from 41% to 79% and 65% to 100%, respectively. For

the 12 low-voltage grids included in this study, the total energy consumption, inclusive of EVs,

equals 7.3 GWh/a for the baseline EV penetration rate of 30%, 8.7 GWh/a for 40%, and 10.7

GWh/a for 50%. Additional details regarding the properties of the modeled 12 low-voltage grids

can be found in Appendix B.

Renewable generation proőles are determined based on the weather year 2015 and a representative

weather station in North Rhine-Westphalia, Germany. For modeling the retail prices, we adjust

the procurement component of the consumer prices for the different tariffs based on expected day-

ahead wholesale prices based on the future energy system scenario "EL80" from Hecking et al. (2018)

using the energy system model DIMENSION (Helgeson and Peter, 2020). All components of the

consumer price, such as the grid usage fees, levies, and electricity tax, are taken from the selected

scenario and consistently applied across all tariffs. The value-added tax of 19% is subsequently

calculated based on the consumer price components. We disregard the retailer’s added margin

and distribution components to streamline the model. The distribution component includes a

risk premium depending on the respective tariff. As the dynamics of the tariffs increase, the risk

premium reduces due to price risks being transferred to consumers. The risk premium is virtually

zero for fully dynamic tariffs. The distribution of the resulting wholesale prices and the derived

average consumer prices for both the Fixed tariff and the Time-of-Use tariff can be seen in Figure

5. The 2030 quarter-hourly wholesale prices on the left ŕuctuate around 59.6 EUR/MWh with an

average peak price of about 62.3 EUR/MWh.
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Figure 5: Electricity prices: A) Cumulated distribution of assumed electricity wholesale prices
(2030) B) Composition of the electricity price for consumers (2030)

For each type day, consisting of three consecutive days, we deőne the Fixed and the TOU tariff

based on the respective wholesale prices individually to ensure comparability of prices. On average,

the procurement component for the Fixed tariff corresponds to the average wholesale price of

59.6 EUR/MWh, culminating in an average total őxed consumer price of 251.3 EUR/MWh. The

Time-of-Use tariff features three price levels that apply regardless of the type of day (weekends

or weekdays). The procurement components mirror the average annual prices within three time

windows. On average, the tariff structure encourages charging in the őrst third of the day (246.3

EUR/MWh) over the last third (249.2 EUR/MWh), with charging in the second third of the day

being the least favored (253.1 EUR/MWh). For the Real-Time tariff, the procurement component

of the consumer prices equals the quarter-hourly wholesale price. For the year under consideration,

the prices vary between -33.2 and 475.7 EUR/MWh, with the average price aligning with the őxed

consumer price. The characteristics of the EVs are summarized in őgure 6. The left side shows the

cumulative distribution of daily energy consumption, with a mean value of about 11 kWh daily. The

EV users, thus, represent frequent commuters. The right side shows the share of EVs connected

to the grid during three representative days. It shows a typical commuting pattern. At noon,
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EVs are not at home and, thus, not connected to the grid, while they are at night. The electric

vehicles are charged up to a maximum capacity of 11 kW. EVs can be charged anything between

sufficiently charged for the next trip and until the batteries are fully charged. EVs are connected to

the charging station when they arrive home, even though the charging processes do not necessarily

start immediately. Additionally, maximizing the self-consumption, i.e., if a PV system is available,

is a fundamental consumption strategy that also affects the charging behavior.

Figure 6: A) Cumulated distribution of EVs’ daily energy consumption and B) Share of EVs with
grid connection over time

Depending on the penetration rate and the tariff design, the curtailment factor for basic curtail-

ment (e) (see equation (25)) is varied according to the table 1. Each factor is used for the whole

distribution grid. The variation is necessary because the need for curtailment increases with higher

penetration rates and more dynamic electricity tariffs.

Table 1: EV curtailment in use cases with basic curtailment

Concept EV penetration 30 % EV penetration 50 % EV penetration 70 %

Basic-Fix 0 % 0 % 20 %
Basic-ToU 35 % 60 % 75 %
Basic-RTT 35 % 60 % 75 %

For performance reasons, the year under consideration is divided into 16 typical days to reduce

the computation time. The 16 days correspond to eight winter and eight summer days, as well as
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eight working days and eight weekend days. The days are weighted individually and add up to

365 days. To analyze storage operation for more than one day, the preceding and following days

for each typical day are included in the calculations. A detailed description is given in Birk et al.

(2021) regarding the production and consumption proőles for the considered assets.

4.2. Impact of different tariff structures on optimal charging strategies and grid utilization

This section investigates how tariff structures alter EV charging strategies and consequently impact

grid utilization. Initially, we scrutinize load pattern variations speciőc to an individual transformer

and a three-day time interval across different tariff schemes. This analysis is conducted for the

three EV penetration rates, denoted as ’dRates’. Additionally, we calculate changes in absolute

electricity costs for each tariff design and penetration rate. We use the costs associated with the

őxed-tariff scheme as a benchmark, enabling a standardized comparison of tariff cost-effectiveness

and highlighting the economic implications of different tariff structures for EV charging. The results

of this analysis are illustrated in Figure 7, divided into two parts. The left-hand side demonstrates

the demand proőle, visualizing how EV charging demands ŕuctuate under various tariff structures

and penetration rates. Conversely, the right-hand side represents absolute electricity costs.
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Figure 7: Impact of tariff structures on optimal charging strategies and related charging costs
without curtailment

Note: The left segment of the figure concretely portrays the demand patterns tied to a singular transformer for
three days. The distribution of charging costs depicted on the right is calculated annually, encompassing all vehicles
distributed across the twelve grids. Each row reflects the results for a given penetration rate.

Examining variations in total electricity costs for individual electric vehicles reveals interesting

trends. Notably, the implementation of dynamic tariffs results in a reduction in total costs for almost

all households when compared to the Fixed tariff. Among the dynamic tariff structures, Real-Time

Pricing emerges as particularly inŕuential, outweighing the impact of Time-of-Use tariffs. With the

ToU tariff, households experience weighted average savings of 16.9 EUR across all penetration rates.

At the same time, a stronger trend is observed with the RT tariff, where households save an average

of 47.2 EUR across all penetration rates. Only a few households experience increasing electricity

costs, driven by individual charging patterns correlated with high-price windows. However, when

compared to the total electricity expenses of each household, the changes in costs are relatively small.

25



Speciőcally, the Time-of-Use tariff decreases relative electricity costs by about 1.0%, whereas the

Real-Time tariff yields slightly higher savings of about 3%.

The observed ŕuctuations in charging costs can be attributed to the shifting demand in response to

price signals. In the case of the ToU tariff, we observe demand being diverted primarily towards the

early hours of the day, between 00:00 and 09:00. This shift is driven by the lower electricity prices

prevalent during this time window. Conversely, under the RTT scheme, the charging mechanisms

are more reactive to granular, 15-minute price signals, with the demand being lowest during the

night.

When considering all tariff schemes, it’s important to understand that adjusting optimal charging

strategies and increasing the penetration rate of EVS could potentially lead to congestion in the

distribution feeders. The provided table 2 analyses potential transformer overloads in the twelve

Low Voltage grids, given different EV penetration rates and under various electricity tariff schemes.

Table 2: Number of events of potential transformer overloadings

dRate 30 dRate 50 dRate 70

Grid Fix ToU RTT Fix ToU RTT Fix ToU RTT

LV1 0 0 0 0 0 0 0 0 0
LV2 0 378 220 0 1014 982 41 1272 1387
LV3 0 303 180 0 920 1000 59 1218 1437
LV4 0 0 0 0 933 859 0 1077 1098
LV5 0 278 106 0 664 618 0 957 951
LV6 0 319 185 0 603 625 0 898 960
LV7 0 79 48 0 647 632 0 937 1005
LV8 0 0 0 0 23 0 0 27 19
LV9 0 0 0 0 0 0 0 0 0
LV10 0 0 0 0 0 0 0 47 17
LV11 0 0 0 0 26 20 0 497 383
LV12 0 0 6 0 0 0 0 96 43

Total 0 1357 739 0 4830 4736 100 7026 7300

Note: The number of events in each distribution grid refers to a whole year with a maximum of 35040 time steps.
The total value is the sum over all events in one column.

The absence of overload events in grids LV1, LV8, LV9, and LV10, across all scenarios, indicates

the resilience of these grids to increased EV penetration and tariff variations. On the other hand,

for grids like LV2, LV4, LV6, and LV7, the number of overload events tends to increase with the EV

penetration rate and varies signiőcantly between tariff schemes. The RTT scheme shows increased
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susceptibility to overloads as the EV penetration rate rises. This suggests that while RTT schemes

may offer real-time pricing beneőts, they could lead to potential grid congestion when not ade-

quately managed, particularly in scenarios of high EV penetration. The ToU tariff scheme exhibits

a moderate number of overload events in the scenario with a low penetration rate, suggesting a

balanced approach, but records a signiőcant rise in potential overloads as EV penetration rates

increase. The results stress the vital role that DSOs must play in ensuring the stability of the

power grid. Interventions by DSOs become crucial to prevent potential transformer overloads and

maintain the grid’s reliability and resilience in the case penetration rates increase and dynamic

electricity tariffs are introduced. The effects of different DSO intervention strategies are evaluated

in the following two sections.

4.3. Impact of different intervention options of the grid operator on optimal charging strategies

In this section, we address the second research question of quantifying the impact of different in-

tervention options of the grid operator on optimal charging strategies. We do so by focusing on

ŕexibility demand to avoid grid congestion (Subsection 4.3.1) and the change of charging costs in

Subsection 4.3.2.

4.3.1. Flexibility provision in the whole grid area

The congestion on transformers and lines in the distribution grid is mitigated by ŕexible EV charg-

ing, as charging is shifted to other time intervals. The amount of shifted energy can be interpreted

as a ŕexibility provision. Its value is calculated as the positive delta between the charging power

of each electric vehicle before and after the grid signals as described in equation (29).

Flex =
∑

EV

∑

t

[max(ibeforeEV,t − iafterEV,t , 0)] (29)

The amount of provided ŕexibility by electric vehicles to avoid congestion is visualized in Figure 8.
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Figure 8: Flexibility provision by electric vehicles

The őgure above shows a signiőcant trend: introducing time-varying tariffs, such as Time-of-Use and

Real-Time tariffs, directly correlates with increased ŕexibility demand to avoid congestion. When

considering a 30% or even a 50% EV penetration rate, curtailment is not required under Fixed

tariffs but becomes necessary as dynamic tariffs are introduced. The magnitude of the increase in

ŕexibility demand due to the implementation of dynamic tariffs is not constant but depends on the

electric vehicle penetration rate. Speciőcally, it is observed that with increasing EV penetration

rates, the necessity for ŕexibility increases across all electricity pricing schemes and both curtail-

ment strategies. For example, in the case of the ToU tariff combined with basic curtailment, the

ŕexibility demand increases eightfold when comparing the results for a penetration rate of 30% with

those for a rate of 50%. The demand reaches even more than 1000 MWh with basic curtailment if a

penetration rate of 70% is assumed. Upon reaching the maximum analyzed penetration rate of 70%,

the demand for ŕexibility experiences a substantial surge across all electricity pricing schemes and

curtailment strategies. With increasing EV penetration rates, curtailment becomes indispensable
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even for Fixed tariffs. Regarding the effectiveness of curtailment strategies, smart curtailment, the

optimal benchmark, requires uniformly less ŕexibility than basic and variable curtailment across all

pricing schemes, regardless of the EV penetration rate. Furthermore, variable curtailment always

outweighs basic curtailment. This steady advantage highlights how a spatial and temporal differen-

tiation of curtailment reduces the amount of ŕexibility and thus can help integrate more EVs into

the electricity grid more easily. However, even in challenging scenarios, smart curtailment maintains

its superiority over basic and variable curtailment, exemplifying its robustness and efficiency.

4.3.2. Electricity Costs

Figure 9 illustrates a comparative analysis of the annual variations in electricity costs, considering

the TOU and RT tariffs, EV penetration, and the three different curtailment strategies. The

comparison is made to the scenario featuring a őxed tariff without curtailment. Notably, the cost

differentials for the őxed tariff are not visualized, as this tariff structure entails consistent costs

irrespective of the employed curtailment approach.

Figure 9: Comparison of cost deltas

Note: ’before’ refers to the hypothetical case of charging exclusively based on price signals before curtailment
strategies are deployed.

The boxplots depict that both TOU and RT tariffs exhibit reduced overall electricity costs for most

households with ŕexible charging, both before and after the application of curtailment. However,
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a minor increase in costs is observed for some households under variable tariffs. This is attributed

to the limited ŕexibility of charging demand coincidentally aligning with higher electricity prices.

Furthermore, on average, the RT tariff demonstrates an approximately threefold higher cost reduc-

tion than the TOU tariff. However, it is essential to note that the weighted average cost reductions

compared to the őxed tariff are modest Ð around 1% for the TOU tariff and approximately 3% for

the RT tariff. This is due to the variable component constituting only a minor fraction of the retail

price. The cost delta for the TOU tariff appears almost independent of the curtailment strategy, as

the deltas remain unchanged compared to the scenario before curtailment. This can be attributed

to the length of the chosen TOU tariff intervals, which allows for sufficient load shifting to meet

the grid limitations at the same price level.

In contrast, for the RT tariff, the curtailment strategy impacts the cost delta, which depends on the

EV penetration rate. While curtailment has a marginal impact on cost deltas at an EV penetration

rate of 30%, its effects become more pronounced at rates of 50% and 70%. Comparing these

scenarios to cases without curtailment, basic curtailment, the least efficient concept, diminishes

cost savings more signiőcantly than variable and smart curtailment. This effect intensiőes with an

increasing EV penetration rate, necessitating more substantial load shifting to comply with grid

constraints.

At an EV penetration rate of 50%, the weighted average cost delta under basic curtailment decreases

by approximately 4.7 EUR compared to the scenario without curtailment. Variable and smart

curtailment exhibit a milder reduction by 2.2 EUR and 1.4 EUR, respectively. Consequently, the

cost savings under variable curtailment closely align with those achieved through smart curtailment.

For an EV penetration of 70%, the weighted average cost delta under basic curtailment further

decreases by 6.4 EUR. In contrast, variable and smart curtailment experience a more modest

reduction of 2.6 EUR and 2.5 EUR, respectively. Despite this, the cost savings remain above those

realized by the TOU tariff.

All in all, the shift from the Fixed tariff to a time-variable tariff has a stronger economic impact

than the choice of the curtailment strategy, even at higher EV penetration rates. This implies

that introducing the RT tariff, even under basic curtailment, is more efficient than a Fixed tariff
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or a TOU tariff. With an increasing EV penetration, however, a change from basic curtailment to

smarter curtailment strategies becomes beneőcial.

5. Discussion

This study uses a synthetically constructed distribution grid to represent a future scenario con-

cerning household generation and consumption patterns. Due to the inherent heterogeneity of

distribution grids in terms of size and topology, the applicability of the őndings from this study to

other contexts may be limited. However, certain trends and insights have emerged irrespective of

the speciőc grid infrastructure.

The őndings indicate that signiőcant electric vehicle penetration does not necessarily cause grid

congestion under the current market conditions, characterized by an absence of market and grid

signals. For the analyzed use case, grid congestion occurs at EV penetration rates beyond 50% with

a őxed tariff. This, however, is highly dependent on the respective grid topology and the current

state of the expansion. IEA (2022a) őnd that, in German distribution grids, an EV penetration rate

beyond 20% can cause signiőcant grid adaption needs, affecting rural grids considerably stronger

than urban grids. Transformers are by far the most affected grid element in this regard. An EV

impact assessment study for Australia shows that depending on the grid, critical penetration rates

vary signiőcantly between 20% in rural and 80% in large urban distribution grids (Nacmanson

et al., 2021). A similar study for California indicates that even EV penetration rates of 7% can

cause signiőcant overloading (Jenn and Highleyman, 2022). Rather than the EV penetration, the

balance of regional demand and supply and the degree of correlation between EV load and the

power generated by wind or PV systems determine how prone a distribution grid is to congestion.

However, the probability of grid congestion rises due to the simultaneity of charging processes as

the number of EVs increases (compare with Arnold et al. (2023))

Situations of abundant renewable feed-in are correlated with lower electricity prices. Flexible tar-

iffs, which are driven by the electricity market prices, can thus help to integrate electricity from

renewable resources, as they provide consumers with economic incentives to shift their demand

to cheaper charging times with a high share of feed-in by renewables (compare with Powell et al.
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(2022)). This is called market-oriented charging. The results of this passive coordination in the

form of a price signal depend on the consumers’ willingness to participate and pay.

Depending on the tariff design, purely market-oriented charging with a fully ŕexible electricity

market retail price component could trigger herding behavior. It occurs when multiple users exploit

the same low prices, resulting in higher loads in the respective time intervals. This would also be the

case if a variable grid usage fee induces time-variability to the retail price and would be exacerbated

by additional ŕexible consumers, such as heat pumps. ToU tariffs represent a trade-off between non-

existing (Fixed tariff) and fully dynamic market signals (Real-Time tariff). They alleviate herding

effects by incentivizing a shift of charging processes to certain time windows rather than speciőc

points in time, as is the case with Real-Time tariffs. This őnding is consistent with Schittekatte et al.

(2022), who see in ToU tariffs a reasonable intermediate step toward fully ŕexible time-dependent

tariffs.

We őnd that while variable tariffs cause signiőcant load shifting, the consumers’ resulting economic

beneőts are limited. For the chosen TOU tariff, households’ cost savings are at about 1% compared

to a ŕat tariff, while those for the RT tariff are at about 3%. This is due to the structure of retail

prices, in which the electricity market component only has a small share, as electricity is taxed on

a per-unit basis, and due to limited price ŕuctuations in the chosen use case. This is similar to

Blaschke (2022), who makes the same observation for the current German electricity market. He

őnds that the average savings of ŕexible EV charging based on dynamic prices are about 22 EUR

per year. In the presented future scenario, with a higher share of RES and resulting price volatility,

the weighted average cost savings of EV charging with a fully dynamic tariff are 47.2 EUR per year.

Herding effects highlight the limitations of variable market signals, as they can potentially exacer-

bate critical load situations. But, when market signals are paired with grid signals, grid constraints

can be accounted for. However, curtailment dimensioning and planning become more complex due

to the potential of passive control mechanisms to stimulate herding behavior. This complexity

makes it challenging to curtail efficiently and system-oriented.

The proposed smart curtailment approach yields an optimal asset deployment considering both the

electricity market and the grid. It intervenes only marginally with the purely market-oriented load
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duration curve and maximizes the load while complying with grid limitations. It, thus, predomi-

nantly affects higher load levels nearing full load. It marks an optimal system-oriented benchmark

that indicates the minimum ŕexibility requirements to fulőll the charging demand under consid-

eration of the grid, regardless of the underlying tariff. It corresponds to volume signals with the

highest possible degree of spatial and temporal differentiation on a node level. However, it remains

a theoretical optimum, which is hard to implement due to the lack of transparency in distribution

grids.

In distribution grids with low digitization and a lack of real-time load information, grid-oriented

charging based on uniform volume signals to prevent congestion, e.g., ripple control signals is a

common active control approach (basic curtailment). Fixed volume signals, with neither a spatial

nor a temporal differentiation, are prone to inefficiencies since the curtailment rate might not

be optimal, potentially leading to curtailment that exceeds peak load requirements. Furthermore,

excessive curtailment could cause load loss if the grid signals are coordinated poorly with the market

signals (Basic-RTT). Although we do not observe a loss of load in the presented use case, we do see

that, dependent on the EV penetration rate, close to three times more load is shifted than ultimately

necessary to comply with the grid limits under consideration of an RTT. With a more targeted

curtailment approach (variable curtailment) with a high-level spatio-temporal differentiation on a

subgrid level, we observe that the ŕexibility demand can be reduced considerably to an offset of

about 37-38% above the minimum requirements.

At the same time, we observe that the interventions of DSO only marginally affect the potential cost

savings of time-variable tariffs. For the TOU tariff, we see hardly any difference in the cost savings,

as the deőned intervals of the TOU tariff are long enough to shift the load in a grid-oriented fashion.

We observe more nuanced differences between the curtailment strategies regarding cost savings for

the RT tariff, which become more pronounced with increasing EV penetration. At a 70% EV

penetration, the weighted average cost savings with basic curtailment compared to purely market-

oriented charging reduce by 24%, while, with a reduction of about 10.5%, variable curtailment is

considerably closer to smart curtailment (-8.5%). Given the limited potential of demand ŕexibility

to achieve electricity cost savings but a considerable potential to avoid grid expansion (Spiliotis
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et al., 2016; Resch et al., 2021), the real value of ŕexibility for households lies in avoiding grid

expansion and, thus, higher grid usage fees.

Our results show that active control with volume signals can achieve feasible system states while

complying with grid restrictions and avoiding loss of load, even if these are not necessarily optimal,

depending on the curtailment strategy. However, without őnancial incentives, the acceptance of

active control mechanisms is limited, as they restrict end use, impair consumer convenience, and

potentially lead to, even if limited, a loss of proőts, and as the necessary smart metering comes at

a cost. A remuneration in case of curtailment, e.g., reduced grid usage fees, could overcome this.

Nevertheless, effective coordination mechanisms between the market (electricity prices) and the grid

(potential bottlenecks) cannot be overstated in ensuring the successful integration of EVs and other

ŕexible assets. By integrating market incentives with grid constraints and capacity, we can foster

user behaviors that uphold grid stability, contribute to integrating feed-in by renewable electricity

resources, and provide economic beneőts. It, thus, facilitates charging in a system-oriented manner.

In the context of implementing curtailment strategies with spatiotemporal discrimination, it is

imperative that, őrstly, the state of the grid is measured, that, secondly, this information is dis-

seminated to all relevant stakeholders, and that, thirdly, it is metered at the lowest possible cost.

In this regard, digitizing distribution grids by implementing smart meters and digital control de-

vices to deliver real-time data on load, grid capacity, and constraints is inevitable. To achieve this,

questions about data sovereignty and access must be answered. Additionally, the costs of smart

metering are an important factor in the business case of demand response. The calculated weighted

average yearly cost savings of 47.2 EUR or lower, if the grid is considered, mark an upper acceptable

bound for households with a ŕexible EV only.

Policymakers should foster an environment conducive to this transformation. First and foremost,

policymakers need to speed up the digitization of German distribution grids and the smart meter

roll-out, as smart meters are imperative for sophisticated charging concepts. Additionally, policy-

makers must work towards open regulation where grid and market information can be used jointly

in future energy systems. This would involve rethinking the unbundling principle, which currently

limits the potential for fully integrated systems.
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6. Conclusion

As electriőcation of the transport sector progresses in the context of the global energy transition,

fast and optimal integration of EVs into the existing energy system becomes crucial. While ensuring

a market-oriented integration, the avoidance of grid congestion is imperative. For market-oriented

EV charging, retailers use dynamic tariffs, incentivizing consumers to lower electricity costs by op-

timizing charging strategies based on those tariffs. However, due to herding behavior, this approach

puts extra pressure on distribution grids, requiring DSOs to step in and curtail to prevent conges-

tion. Design options for the intervention rights differ in the required information and the degree of

spatio-temporal differentiation of the curtailment signals. The concrete design of DSO intervention

rights is subject to political debate. We contribute to this by analyzing the implications of various

active control approaches.

We have developed a model capable of assessing optimal charging strategies based on different

tariff schemes, including őxed, Time-of-Use, and Real-Time tariffs. In the event of grid conges-

tion concerns, we further explore various curtailment options by the DSO in optimizing charging

strategies. The smart curtailment approach establishes an efficiency benchmark under the assump-

tion of full information. Basic curtailment involves predeőned curtailment factors in anticipation

of congestion, while variable curtailment employs individual curtailment rates based on regional

and temporal variations. By applying the model to a synthetic distribution grid conőgured with

a future inventory of distributed assets, we show how different charging designs result in different

grid loads, ŕexibility demands, and electricity costs.

Our research reveals that adopting time-variable tariffs yields marginal őnancial beneőts for con-

sumers. The weighted average cost savings amount to 47.2 EUR for the Real-time tariff and 16.9

EUR for the Time-of-Use tariff, representing only 1 to 3% of total electricity costs. However, we

observe that time-variable tariffs, particularly at higher EV penetration rates, can induce herd-

ing behavior and increase peak load. To mitigate this issue, DSOs require intervention rights to

prevent grid congestion effectively. Our őndings indicate that all proposed intervention strategies
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effectively prevent congestion, although notable differences exist in efficiency. The DSO’s ability

to convey differentiated signals, incorporating spatial and temporal nuances, closely correlates with

the accuracy of the optimal benchmark. We show, that in the case of time-variable tariffs, the

choice of the curtailment strategy is a stronger driver for ŕexibility requirements than the design of

time-variable tariffs. From the end user’s standpoint, curtailment has a negligible impact on charg-

ing costs, particularly with ToU tariffs. In the case of RT tariffs, cost savings diminish marginally

after curtailment. Basic curtailment increases charging costs by 4.7 EUR per year, while variable

curtailment only leads to a slightly lower increase by 2.6 EUR per year. The choice of the curtail-

ment strategy becomes relevant at higher EV penetration rates, while time-variable tariffs beneőt

consumers regardless of the EV penetration rate.

Based on our research, we identify three relevant areas for further research. First, since this work

focuses only on the ŕexibility of charging within a distribution grid, the interdependencies with

other ŕexible consumers, such as heat pumps, should be analyzed. In this context, the efficiency of

different coordination mechanisms can be analyzed as a contribution to the market design debate.

Second, the value of ŕexibility use, abstracting from the selected use case, must be analyzed from

a system perspective to obtain generalizable results. An analysis of the impact of ŕexible demand

on market outcomes on spot markets is also of interest. Finally, the economic value of avoided grid

expansion due to the use of ŕexibility should be the subject of further research to complement the

discussion on the value of ŕexibility.
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Nomenclature

Abbreviations

Table 3: Table of abbreviations

CHP combined heat and power EV electric vehicle
DSO distribution system operator LV low voltage
EASE Electricity Asset Evaluation MV medium voltage
EM electricity market P2P peer-to-peer
ESP energy service provider PV photovoltaic

Sets, Parameters and Decision Variables

Table 4: Sets

Set Unit Description

q ∈ Q - Time
c, c′ ∈ Gel - Component that generates electricity
c, c′ ∈ Lel - Component that consumes electricity
c, c′ ∈ Gth - Component that generates heat
c, c′ ∈ Lth - Component that consumes heat
n,m ∈ N - Node
n ∈ αc - Set of nodes that belong to a component. Mapping nodes to com-

ponents
c ∈ αn - Set of components that belong to a node. Mapping components to

nodes
k ∈ K - Line
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Table 5: Decision Variables

Variable Unit Description

P gel
c,q kWhel Electrical energy generated by each generation unit c in time interval

q
P gel,s
c,q kWhel Electrical energy generated by each generation unit c in time interval

q and sold at the wholesale market

P gel,f
c,q kWhel Electrical energy generated by each generation unit c in time interval

q and feed in to the grid
P gel,p
c,c′,q kWhel Electrical energy generated by each generation unit c in time interval

q and provided to a load c′ on-site
P lel
c,q kWhel Electrical energy consumed by each consumption unit c in time

interval q

P lel,p
c,q kWhel Electrical energy procured from wholesale or an electricity provider

and consumed by each consumption unit c in time interval q

P lel
c,c′,q kWhel Electrical energy procured from a generation unit c′ on-site and

consumed by each consumption unit c in time interval q
P gth
c,q kWhth Thermal energy generated by each generation unit c in time interval

q
P gth
c,c′,q kWhth Thermal energy generated by each generation unit c in time interval

q and provided to consumption unit c′

P lth
c,q kWhth Thermal energy consumed by each consumption unit c in time in-

terval q

P lth
c,c′,q kWhth Thermal energy generated by generation unit c′ and consumed by

each consumption unit c in time interval q
SOCel

c,q kWhel Electrical energy inside a storage unit c in time interval q

SOCth
c,q kWhth Thermal energy inside a storage unit c in time interval q
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Table 6: Parameters

Parameter Unit Description

Ad, Au - Matrixes of ŕow distribution in the grid model
Cd, Cu - Matrixes of ŕow contribution in the grid model
dc,q - grid connection of storage unit [0; 1]
e - factor that curtails maximum charging power
F in
n,m kWel Power injected in a bus m from a connected bus n in the grid

model
F out
n,m kWel Power drained from bus n to a connected bus m in the grid model

gdfk,n,q - Matrix with generation distribution factors
ielc kWel installed capacity of each electrical component c
ithc kWth installed capacity of each thermal component c

isoc,elc kWhel installed capacity of each electrical storage c

isoc,thc kWhth installed capacity of each thermal storage c
ldfk,n,q - Matrix with load distribution factors

mf
c e/kWhel feed-in tariff for each generation unit c

ml
c e/kWhel subsidy for the own consumption of electricity generated by a chp

unit c
P act
k,q kWel actual active power on a grid element

P act,noControllable
k,q kWel actual active power on a grid element affected by buses with non

controllable assets

P act,Controllable
k,q kWel actual active power on a grid element affected by buses with con-

trollable assets

P gap,Controllable
k,q kWel remaining active power on a grid element before capacity limit is

reached

Pmax,Controllable
k,q kWel maximum active power of a grid element affected by buses with

controllable assets
Pn kWel Total nodal ŕow in the grid model
P g
n kWel Nodal generation in the grid model

P l
n kWel Nodal load in the grid model

pwq e/kWhel wholesale price

Qact
k,q kWArel actual reactive power on a grid element

Qact,noControllable
k,q kWArel actual reactive power on a grid element affected by buses with

non controllable assets

Qact,Controllable
k,q kWArel actual reactive power on a grid element affected by buses with

controllable assets

Qgap,Controllable
k,q kWArel remaining reactive power on a grid element

rc,q kWhel Electrical energy that is consumed by electric vehicles through
driving

sq - time depended availability proőle
Smax
k,q V A maximum apparent power of a grid element

t e/kWhel taxes and levies
ηelc,q - component-dependent and time-dependent electrical efficiency

ηthc,q - component-dependent and time-dependent thermal efficiency

fc e/kWhel component-dependent fuel costs
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Appendices

A. Calculation of maximum active power on each line and transformer

To formulate the equations (27) and (28) for the market model, the maximum active power for

each line and transformer, only affected by nodes with controllable assets, has to be known. Based

on the knowledge of the values for P act and Qact as a result of the AC power ŕow, the values of

P gap,Controllable and Qgap,Controllable have to be calculated. It is assumed that the gap can only

be controlled by readjusting the operation of assets which are part of the virtual power plant.

Consequently, Qgap,Controllable is only affected by electric vehicles. As formulated in equation (17)

the reactive power of loads is deőned as a őxed ratio of active power. The variable Qgap,Controllable

can therefore be replaced by the term k ∗ P gap,Controllable where P gap,Controllable is the variable and

k is the constant. The maximum apparent power can now be calculated as it is shown in equation

(A.1).

Smax =
√

(P act + P gap,Controllable)2 + (Qact +Qgap,Controllable)2 (A.1)

To calculate the maximum value of P gap,V PP the equation (A.1) had to be transformed in order to

apply the formula. The result is shown in equation (A.2). To simply this equation, the parameters

a, b and c are introduced which represent the constant factors.

0 = (1 + k2) ∗ P gap,Controllable2 + (2P act + 2kQact) ∗ P gap,Controllable + (P act2 +Qact2 + Smax2

)

= a ∗ P gap,Controllable2 + b ∗ P gap,Controllable + c

(A.2)

Finally, the maximum additional active power Pmax,Controllable can be calculated by applying equa-

tion (A.3). The result pgap,Controllable can either be positive in case the line is not overloaded or

negative, if the transmitted power has to be reduced.

P gap,Controllable = max[
1

2a
∗ (−b±

√

b2 − (4ac))] (A.3)

Pmax,Controllable = (P act,Controllable + P gap,Controllable) ∗ η (A.4)
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As a last step, the maximum active power that can be injected by nodes with controllable assets

is calculated by adding pmax,Controllable and pgap,Controllable as it is shown in equation (A.4). The

factor η reŕects a virtual buffer to additionally ensure that line loading does not exceed 100%. Its

value is assumed to be equal 0.90.
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B. Properties of the low voltage grids

Figure B.1: Properties of low voltage grids 1-6 depending on the penetration rate of electric vehicles
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Figure B.2: Properties of low voltage grids 7-12 depending on the penetration rate of electric
vehicles
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