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Using Post-Regularization Distribution 
Regression to Measure the Effects of a 
Minimum Wage on Hourly Wages, Hours 
Worked and Monthly Earnings
We evaluate the distributional effects of a minimum wage introduction based on a data 

set with a moderate sample size but a large number of potential covariates. Therefore, 

the selection of relevant control variables at each distributional threshold is crucial to 

test hypotheses about the impact of the treatment. To this end, we use the post-double 

selection logistic distribution regression approach proposed by Belloni et al. (2018a), which 

allows for uniformly valid inference about the target coefficients of our low-dimensional 

treatment variables across the entire outcome distribution. Our empirical results show that 

the minimum wage crowded out hourly wages below the minimum threshold, benefitted 

monthly wages in the lower middle but not the lowest part of the distribution, and did not 

significantly affect the distribution of hours worked.
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1. INTRODUCTION

The introduction of the German statutory minimum wage on the 1st January of 2015
was a major policy experiment. Although there existed a number of industry-specific
minimum wages before 2015, Germany was one of the few countries in the world without
a general minimum wage. The introduction of the nationwide minimum wage at the level
of 8.50 euros/hour in 2015 constituted a major intervention in the German labour market
that a↵ected around 4 million workers (over 11% of the workforce) who earned hourly
wages below 8.50 euros before its introduction, see Mindestlohnkommission (2020).1

Based on di↵erent data sets, previous contributions have examined various aspects
of the German minimum wage introduction. As to potential employment e↵ects, the
literature has reached the consensus that these were non-existent or very small, see, e.g.
Caliendo et al. (2019), Dustmann et al. (2022), Bossler and Schank (2023). By contrast,
the literature appears to have reached conflicting results about the distributional e↵ects
of the minimum wage, i.e., its e↵ects on the distributions of hourly wages, monthly
earnings and working hours (the latter including potential shifts between full-time, part-
time and marginal part-time work). Using register data, Bossler and Schank (2023) find
that the minimum wage significantly reduced inequality in monthly wages. On the basis
of survey data, however, Burauel et al. (2019, 2020) and Caliendo et al. (2022) conclude
that the minimum wage introduction also reduced working hours neutralizing its e↵ect on
monthly wages. Given that German register data do not include information on working
hours, Biewen et al. (2022) analyse large-scale data from the statistical o�ces to conclude
that working hours were not causally a↵ected by the minimum wage so that increased
hourly wages should fully translate into changes in monthly earnings.
Given the inconclusive evidence, the goal of this paper is to reconsider the e↵ects of the

minimum wage introduction on the distributions of hourly wages, monthly earnings and
working hours using the survey data that were analysed in Burauel et al. (2019, 2020)
and Caliendo et al. (2022). Based on modern machine learning methods that allow us to
examine the e↵ects of the minimum wage across all points of the distribution, we reach
the conclusion that the minimum wage crowded out hourly wages below its threshold,
benefitted monthly wages in the lower middle but not the lowest part of the distribution
(consistent with Bossler and Schank, 2023), and did not lead to significant changes in
the distribution of working hours. Our results help reconcile the conflicting results in the
literature obtained from di↵erent data sources as described above.
Our analysis is based on the distribution regression approach introduced by Foresi and

Peracchi (1995) and developed by Chernozhukov et al. (2013). The method of distribution
regression consists of running a large number of binary regressions each modelling the
likelihood that an outcome variable falls below a particular threshold in a fine grid of
thresholds covering the whole distribution. Compared to alternative methods such as
conditional or unconditional quantile regression, distribution regression directly targets
nominal points in the outcome distribution. It is therefore ideally suited to study changes
in distributions such as hourly wages, working hours or monthly wages whose quantiles
typically change over time complicating the interpretation of quantile regression results
if more than one time period is involved. Moreover, distribution regression easily deals
with discrete mass points, see Chernozhukov et al. (2013), which is particulary relevant

1
See Caliendo et al. (2019) for a more detailed overview of the institutional details of the minimum

wage introduction.
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when dealing with highly discrete distributions (working hours) or distributions with
severe heaping (hourly wages, especially after the introduction of a minimum wage).
This is in contrast to conditional or unconditional quantile regression that are based on
the assumption of continuous distributions.
A practical challenge of running distribution regressions is that many separate binary

regression models have to be specified and estimated. The di↵erent binary regression
models should consider potentially varying sets of covariates as di↵erent covariates may
matter at di↵erent points of the distribution. This challenge is particularly pronounced
when using a sample with a moderate sample size but a large number of potential co-
variates as it will become inevitable to select relevant covariates at each distributional
threshold to save degrees of freedom. Given that this typically has to be done over a
large number of thresholds, a hand-picked approach may lead to a considerable amount
of arbitrary specification search with unknown consequences for the potential bias of esti-
mated coe�cients and their estimated standard errors. Another aspect is the likely high
correlation between the regression results for di↵erent distributional thresholds which
complicates inferences over more than one point of the distribution. Apart from infer-
ential aspects, the sheer practical task of specification searches for a large number of
parallel regressions suggests the use of machine learning techniques such as the lasso to
separately predict nuisance terms at the large number of distributional thresholds.
Both the practical and the inferential aspect have been addressed by recent advances

in econometric machine learning. In a recent contribution, Belloni et al. (2018a) showed
how to employ a sequence of `1-regularized logistic regressions such that inferences about
the coe�cients of target regressors are valid both pointwise, i.e., in each regression model
separately, as well as uniformly across a large number of models estimated. Their pro-
posed algorithm is closely related to the concept of ‘partialling-out’ in the econometrics
literature, where one removes nuisance terms that are both related to the outcome and
the treatment variables (in the present context referred to as ‘double selection’). Picking
covariates by the lasso method also entails functional form specification as the features
o↵ered to the lasso may include arbitrary transformations of variables (logs, polynomi-
als, indicators for particular values, interaction terms). The possibility to obtain valid
inference after large-scale automatic specification search is a remarkable achievement of
the recent econometric machine learning literature. It represents a major improvement
over the often arbitrary and undocumented specification searches carried out by individ-
ual researchers, which are typically influenced in unknown ways by the propagation of
pre-tested control variables used in previous research.
A key assumption of the `1-regularized methods used by us is approximate sparsity,

i.e., the sequence of coe�cients of potential confounder terms sorted by absolute value
decays quickly enough, but does not have to be exactly equal to zero. This is a natu-
ral assumption in substantive applications where one would like to control for relevant
confounding information, but does not rule out the existence of factors whose influence
may be negligible for the inferential purpose at hand. In the following, we use Belloni et
al. (2018a)’s method but with some modifications to address the fact that our data and
research design features observation clusters and sampling weights.2

2
Our paper appears to be one of the first substantive applications of Belloni et al. (2018a)’s method,

apart from Chiang (2020) who also considers modifications for observation clusters.
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2. ECONOMETRIC METHODS

We aim to measure the e↵ects of the minimum wage introduction across the whole
distribution of an outcome variable Y 2 {hourly wage, hours worked, monthly earnings}.
For this purpose, we use the logistic distribution regression model

P (Y < u|D,X) = E[1{Y < u}|D,X] = ⇤(D✓u +X�u), u 2 U (2.1)

which measures the e↵ects of target variables D = (D1, . . . , Dp̃) (representing treatment
indicators of the minimum wage introduction, see below) across a set of grid points
u 2 U of the outcome distribution. In order to isolate the e↵ect of the target variables
on the likelihood of falling below a particular threshold u, it is necessary to control for
confounders X, which may vary across di↵erent points of the outcome distribution. This
motivates the use of a separate lasso procedure to select a set of relevant control variables
at each point u 2 U .
For the rest of this article, let the vector of potential features be given by X =

(X1, . . . , Xp), target coe�cients ✓u = (✓u1, . . . , ✓up̃)0, nuisance parameters �u = (�u1,
. . . ,�up)0 as well as indicators Y u = 1{Y < u}. Our application features clusters
g = 1, . . . , G of observations Wig = (Yig, Dig, Xig) = (Yig, D1ig, . . . , Dp̃ig, X1ig, . . . , Xpig)
assuming that observations are independent across clusters but may be correlated within
clusters (see next section for more details). We also make use of deterministic sampling
weights vig which are normalized to sum up to the total number of observations.

2.1. Estimation

The post-double lasso method for the logistic regression model (and other generalized
linear models) was developed by Belloni et al. (2016a). Belloni et al. (2018a) extended
the method to cover uniform inference for functional parameters, e.g., for coe�cients of
many parallel logit models as needed in our application. Extensions of the lasso method
to clustered data were considered in Belloni et al. (2016b), Chiang (2020) and Ahrens
et al. (2020). The idea of applying lasso to clustered data is to conceptualize blocks of
observations belonging to the same cluster as ‘super-observations’ and to apply lasso
operations accordingly.
Following Belloni et al. (2018a) and applying modifications for clustering similar to

Chiang (2020), as well as for sampling weights, we use the following post-double selection
procedure to estimate the process of target coe�cients (✓uj), u 2 U , j 2 J = {1, . . . , p̃}.

Step 1. Post-lasso logit of Y u on (D,X)

First run the `1-penalized logit regression

(✓̂u, �̂u) 2 argmin
✓,�

1

G

GX

g=1

ngX

i=1

vig Mu(Wig, ✓,�) +
�1
G

k ̂u · (✓0,�0)0k1 (2.2)

Mu(Wig, ✓,�) = log(1 + exp(Dig✓ +Xig�))� Y u
ig · (Dig✓ +Xig�) (2.3)

where �1 is a penalty parameter and  ̂u a diagonal penalty loading matrix whose
entries are chosen according to the procedure explained in Appendix A.1.
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Then obtain the post `1-penalized logit coe�cients

(✓̃u, �̃u) 2 argmin
✓,�

1

G

GX

g=1

ngX

i=1

vig Mu(Wig, ✓,�) : supp(✓,�) ✓ supp(✓̂u, �̂u) (2.4)

where supp(✓̂u, �̂u) represents the set of indices associated with non-zero coe�cients
in the logistic lasso solution.

Step 2. Data-dependent orthogonalization

Define the weights to be used in step 3

f̂2
uig = ⇤0(Dig ✓̃u +Xig�̃u). (2.5)

Step 3. Weighted post-lasso OLS of [f̂uDj ] on [f̂uDJ\j ] and [f̂uX]

For each target variable Dj , define X̃j = (DJ\j , X) and run the weighted lasso

�̂ju 2 argmin
�

1

2G

GX

g=1

ngX

i=1

vig f̂
2
uig

�
Djig � X̃j

ig�
�2

+
�2
G

k ̂uj�k1, (2.6)

where �2 is a penalty parameter and  ̂uj a diagonal penalty loading matrix whose
entries are chosen according to the procedure explained in Appendix A.1.

The post-lasso WLS coe�cients are defined as

�̃ju 2 argmin
�

1

2G

GX

g=1

ngX

i=1

vig f̂
2
uig

�
Djig � X̃j

ig�
�2

: supp(�) ✓ supp(�̂ju) (2.7)

where supp(�̂ju) represents the set of indices associated with non-zero coe�cients
in the weighted lasso solution.

Step 4. Logit of Y u on union of variables selected in steps 1 or 3

Obtain the post-double selection logit coe�cients

(✓̌u, �̌u) 2 argmin
✓,�

1

G

GX

g=1

ngX

i=1

vig Mu(Wig, ✓,�) : supp(✓,�) ✓ unionu (2.8)

for all the variables that were selected in steps 1 or 3, i.e. the indices in

unionu = supp(✓̂u, �̂u) [
p̃[

j=1

supp(�̂ju). (2.9)

The resulting post-double selection point estimates ✓̌u1, . . . , ✓̌up̃ measure the impact of
target regressors D1, . . . , Dp̃ on Y u at threshold u.
Note that we di↵er from the post-double selection algorithm of Belloni et al. (2018a)

in that we estimate all target parameters jointly in step 4 above, instead of running p̃
separate post-double logits. In the present study, this turns out to be a computationally
attractive modification because we have a small number of target regressors and the
cardinality of the union of selected control variables is still substantially smaller than the
sample size.
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2.2. Inference

In order to compute pointwise and simultaneous confidence intervals for sets of coe�cients
(✓uj), u 2 U , j 2 J we use the following procedures.
The Neyman-orthogonal moment equation for target parameter ✓uj is given by

 j(W, ✓u, ⌘u) =
�
Y u � ⇤(D✓u +X�u)

 
·
�
Dj � X̃j�ju

�
(2.10)

where the nuisance parameters are collected in ⌘u = (�u, �1u, . . . , �
p̃
u).

Define

 (W, ✓u, ⌘u) = ( 1(W, ✓u, ⌘u), . . . , p̃(W, ✓u, ⌘u))
0 (2.11)

and the Jacobian matrix

J(W, ✓u, ⌘u) =
@ (W, ✓u, ⌘u)

@✓u
. (2.12)

As shown in Belloni et al. (2018b), the post-double selection procedure enforces the
sample moment condition

1

G

GX

g=1

ngX

i=1

vig  (Wig, ✓̌u, ⌘̌u) = 0. (2.13)

Conditional on the estimates for the nuisance parameters ⌘̌u, an expansion for the target
parameters ✓̌u1, . . . , ✓̌up̃ yields a consistent estimate of their asymptotic variance matrix

⌃̂u = Ĵ�1
u B̂uĴ

�10

u (2.14)

with

Ĵ�1
u =

h 1
G

GX

g=1

ngX

i=1

vig J(Wig, ✓̌u, ⌘̌u)
i�1

(2.15)

B̂u =
h 1
G

GX

g=1

⇣ ngX

i=1

vig  (Wig, ✓̌u, ⌘̌u)
⌘⇣ ngX

i=1

vig  (Wig, ✓̌u, ⌘̌u)
⌘0i

, (2.16)

where the inner part of matrix B̂u accounts for the clustering of observations. The esti-
mated asymptotic variance of target parameter ✓uj is given by �̂2

uj = (⌃̂u
j,j).

The Neyman-orthogonal moment condition for the target parameters ✓̌u = (✓̌u1, . . . , ✓̌up̃)0

was constructed such that

@

@⌘

h 1
G

GX

g=1

ngX

i=1

vig  (Wig, ✓̌u, ⌘)
i���

⌘=⌘̌u

= 0, (2.17)

implying that the estimating equations are first-order immune with respect to the nui-
sance terms, i.e., by constructing an instrument for Dj in (2.10), one has ‘partialled-out’
the e↵ect of covariates X̃j .
For the multiplier bootstrap procedure, define the p̃-dimensional estimated influence

function

influence(Wig, ✓̌u, ⌘̌u) = �Ĵ�1
u  (Wig, ✓̌u, ⌘̌u). (2.18)

The multiplier bootstrap critical value c↵ is computed as the 1 � ↵ quantile of the
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distribution of

ŝ = sup
u2U ,j2J

1p
G�̂uj

GX

g=1

⇠g ·
h ngX

i=1

vig · influencej(Wig, ✓̌u, ⌘̌u)
i
, ⇠g ⇠ iid N(0, 1) (2.19)

where influencej(Wig, ✓̌u, ⌘̌u) is the j-th component of influence(Wig, ✓̌u, ⌘̌u). The distri-
bution of ŝ can be obtained by repeatedly drawing weights ⇠g from the standard normal
distribution.
The bootstrap critical value c↵ is then used as a scaling factor for the pointwise con-

fidence regions which results in a simultaneous confidence band covering multiple target
parameters (✓uj), j 2 J at multiple distribution thresholds u 2 U with probability 1�↵,
i.e.,

P
⇣
✓̌uj � c↵

�̂ujp
G

 ✓0uj  ✓̌uj + c↵
�̂ujp
G

for all u 2 U , j 2 J
⌘
⇡ 1� ↵. (2.20)

3. DATA AND IMPLEMENTATION

3.1. Data sources and specification

Our empirical analysis is based on the German Socio-Economic Panel Study (SOEP, v35)
which is a long-running survey providing representative information about the German
population.3 We use information for the years 2011 to 2018 covering the years around
the introduction of the German minimum wage on the 1st January 2015. The strength
of a survey like the SOEP is the wealth of information that can be used as covariates.
A weakness is the moderate sample size of around 11,000 wage earners per year, which
motivates the use of specification selection methods. Our final sample after sample se-
lection criteria is around 90,000 covering the years 2011 to 2018. We exploit only the
cross-sectional information in the SOEP as the sample is highly unbalanced due to fre-
quent refreshment samples and permanent sample dropout. We use the sampling weights
provided with the SOEP that ensure that cross-sectional information is representative for
the German population in the given year. We exclude from our sample individuals who
are not subject to the minimum wage (the self-employed, students, apprentices, interns
and similar groups).
Following the minimum wage literature after the seminal contribution by Card (1992),

we measure the e↵ects of the minimum wage introduction by a continuous treatment
indicator bite representing the fraction of workers in population subgroups with wages
below the minimum wage level of 8.50 euros/hour before the minimum wage was intro-

duced. The idea is that the changes induced by the minimum wage should be largest in
population subgroups that had the strongest exposure to the new minimum wage level,
controlling for other things. As the sample size of the SOEP would be too low to construct
reliable bite measures for small population subgroups, we take our bite measure from a
larger data set, the German Structure of Earnings Survey (GSES). The bite measure
used here is defined at the 2-digit industry level di↵erentiated by East/West Germany.
Measuring the bite at the industry level fits well industrial relations in Germany as a
large part of wage bargaining takes place at this level. Our bite measure varies between

3
See Schröder et al. (2020).
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.003 and .701, providing large variation to measure the e↵ects induced by the exposure
to the newly introduced minimum wage.4

We measure the e↵ects of the minimum wage introduction on the distribution of our
outcome variables Y 2 {hourly wage, hours worked, monthly earnings} by the specifica-
tion

P (Y < u|D,X) = ⇤( ✓2013/14 · [bite#1year=2013/14]

+✓2015/16 · [bite#1year=2015/16]

+✓2017/18 · [bite#1year=2017/18] +X�u), u 2 U , (3.1)

where the symbol # represents interaction of the treatment variable bite with the year of
observation. In order to keep the number of target coe�cients low, we combine two adja-
cent years. Defining yearly coe�cients leads to similar results but with higher volatility
over years. The coe�cients ✓2015/16 and ✓2017/18 represent the treatment e↵ects of the
minimum wage introduction on the likelihood of falling below a particular threshold u
in the outcome distribution. They measure to what extent, e.g., hourly wages below a
particular level u became more or less frequent after the minimum wage introduction per
unit of exposure to the newly introduced minimum wage, controlling for other charac-
teristics X that are relevant for explaining that a particular wage observation falls below
threshold u (e.g., work experience, education, occupational characteristics, time e↵ects
etc., see below). In other words, the coe�cients ✓2015/16 and ✓2017/18 represent the iso-
lated e↵ects of the minimum wage introduction after controlling for factors a↵ecting both
the outcome and the exposure to the minimum wage introduction at di↵erent points of
the distribution. The coe�cient ✓2013/14 provides a pre-treatment test as it measures to
what extent di↵erences already emerged between high and low exposure groups before

the minimum wage was introduced (compared to the omitted time period 2011/12).

3.2. Variables and feature engineering

Our dependent variables are derived from the survey information on monthly earnings
and actual hours worked per week (including overtime). Monthly earnings and actual
hours worked per week are taken as they appear in the survey. Hourly wages are computed
as monthly earnings divided by monthly hours worked (defined as weekly hours times
4.345).
Table B.1 in the Appendix describes the information that is used to construct the set of

control candidates (features) from which the `1-methods can choose relevant elements for
predicting the nuisance terms at each threshold. The total number of features constructed
in this way is several thousands as we not only include transformations of continuous
variables (polynomial terms, square root, log) and indicators for potentially important
individual values of continuous variables (e.g., an indicator for having an unemployment
experience of zero years), but interactions and full sets of indicators for all our categorial
variables. Take the example of an educational classification with five categories. In this
case, we include a full set of five indicators describing the membership in each category (no

4
For more details on the bite measure used here, see Biewen et al. (2022). An alternative would be to

define the bite at the level of labour market regions but this faces the di�culty that the coverage of

labour market regions in a survey like the SOEP is patchy and that regional information in the SOEP

can only be processed on-site with limited computational facilities.
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omitted category). The lasso can then flexibly pick the indicators that help to remove the
omitted variable bias for explaining the e↵ect of the treatment variables at a particular
threshold.5 It is important not to omit a reference category when constructing sets of
such indicators as exactly the omitted category could be the one prefered by the lasso
(the information represented by the omitted category could be re-constructed as a linear
combination of other categories, but this runs counter to the idea of finding a sparse
approximation for the nuisance term). In a similar way, we o↵er to the lasso nested or
overlapping information from classifications of higher or lower aggregation levels from
which it can choose the information that is most suitable to remove omitted variable
bias. For example, we include occupation codes at di↵erent aggregation levels (1-digit,
2-digit etc.) and nested or partly overlapping education classifications that o↵er finer or
more coarse information (see Table B.1).
In order to arrive at the final set of potential covariates o↵ered to the lasso, we elim-

inate from the full set of features described in Table B.1 i) constant features, ii) du-
plicates/multiples of other features, iii) features that uniquely characterize less than 1
percent of our sample. We can relax restriction iii) to a certain extent without changing
results in important ways. However, in our experience doing this increases the likelihood
of perfect prediction problems and convergence issues in the logit models that counter
the motivation of this paper to find a fully automatic way to pick controls at the typi-
cally large number of thresholds without having to fix problems or eliminate features by
hand at individual thresholds. Applying the above criteria, the final number of features
included in our estimations was around 2,500 (the exact number of features depends on
the outcome variable as features related to working hours cannot be included for monthly
earnings and hours worked due to perfect prediction issues). This is clearly too large for
individual specification searches at one given threshold, let alone at the typically around
40-50 thresholds used per dependent variable in our application.

3.3. Details on lasso implementation

As described in section 2, our methods allow for clustering of observations in two ways:
i) for statistical inference and ii) for the choice of lasso penalties. As to i), it is well-
known that in di↵erence-in-di↵erences-like designs, it is necessary to cluster at the level
of the treatment variable, see, e.g. Abadie et al. (2022). Our treatment variable bite
is based on the combination of 2-digit industries and East/West information giving us
153 population subgroups at the level of which we cluster in all inference procedures
(estimation of variance matrices and draws for multiplier bootstrap). We initially also
tried to cluster the lasso penalties at this level but found that this led to quite erratic and
volatile results across di↵erent thresholds and coe�cients which did not seem plausible.
This behaviour of the lasso is not surprising given the relatively low number of clusters in
our application and their sometimes chunky nature. For computing lasso penalty loadings,
we therefore clustered at the level of the panel units, which is standard for panel data;
see, e.g. Belloni et al. (2016b), Ahrens et al. (2020).
As mentioned above, it is useful to o↵er potentially multicollinear control variables to

the lasso (nested information, full sets of indicators etc.) to allow the lasso to extract the

5
For categorial variables, we also define a category ‘missing value’ that may also be picked by the lasso

if it helps to predict the treatment or the outcome variable. This also helps to conserve the number of

observations as observations with missings in these variables do not have to be discarded.
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information that is most suitable for removing omitted variable bias. It is well known
that the lasso solution need not be unique if the feature set contains mostly discrete
(binary) variables as in our case, see Tibshirani (2013). To evade numerical di�culties,
we implemented our post-`1-estimators using the Moore-Penrose pseudo-inverse.
In our application, the cardinality of the active set of control variables was between 60

and 80 depending on the threshold. The double-selected features consistently included
time e↵ects, various information on educational qualifications and work experience as
well as additional controls that di↵ered across thresholds in plausible ways (e.g., indi-
cators for low occupational positions/job types at lower thresholds, information on firm
characteristics or particular educational/occpuational qualifications at medium or upper
thresholds, interactions of such characteristics with gender or East/West Germany at
particular thresholds).

4. EMPIRICAL RESULTS

4.1. Econometric analysis

We start with the impact of the minimum wage on the likelihood of falling below certain
thresholds in the hourly wage distribution after the minimum wage introduction as shown
in Figure 1. The subfigures display the coe�cients on the bite variable before (2013/14)
and after the minimum wage was introduced (2015/16 and 2017/18). The results show
that, as intended by policymakers, the likelihood of having hourly wages lower than 8.5
euros per hour was significantly lower in groups with high minimum wage exposure after
the introduction (Figures 1bc) but not before the introduction (Figure 1a). The picture
shows how the likelihood of wages below 8.5 euros per hour was gradually reduced in
groups with high minimum wage exposure right after the introduction in 2015/16, and
even more clearly in later years 2017/18. There is no evidence for spill-over e↵ects over
the minimum level of 8.50 euros/hour. This is in line with Caliendo et al. (2022) based
on the same data set, but not with Biewen et al. (2022) and Bossler and Schank (2023)
who find some evidence for spill-over e↵ects based on other data sources.6

Figure 1 features various simultaneous confidence intervals based on the multiplier
bootstrap referring to the coe�cient process over increasing parts of the distribution. By
construction, the simultaneous bands become wider as the set of coe�cients is extended,
but the main increase occurs when going from pointwise to simultaneous intervals. The
uniform confidence bands can be used to carry out hypothesis test. All three subfigures of
Figure 1 display the zero line. If the zero line is not contained in the simultaneous band,
we can reject the hypothesis that the minimum wage had no e↵ect on hourly wages.
This hypothesis is not rejected in the pre-introduction period 2013/14 (Figure 1a), but
rejected in the post-introduction periods 2015/16 and 2017/18 (Figures 1bc). One can
also test whether e↵ects are homogenous across the distribution. For this, one has to
check whether the lowest value of the upper confidence band lies below the highest value
of the lower confidence band (in the graphs, these points are symbolized by small circles).
E↵ect homogeneity can be rejected for the post-introduction period 2017/18 (Figure 1c),
but not for periods 2013/14 and 2015/16 (Figures 1ab).
The methodology in Belloni et al. (2018a) allows us to not only include in confidence

intervals the whole process of one coe�cient but potentially also the processes of other

6
Note that the minimum wage level was initially set at 8.50 euros/hour in 2015, but was increased to

8.84 euros/hour in 2017.
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Figure 1: Minimum wage e↵ects in hourly wage distribution

(a) Coe�cient process bite#1year=2013/14 (pre-treatment)

��

��

��

�

�

�

�

� �� �� �� ��

SRLQWZLVH XQLIRUP�����HXURV
XQLIRUP������HXURV XQLIRUP������HXURV

KRXUO\�ZDJH���X

(b) Coe�cient process bite#1year=2015/16 (post-treatment)
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(c) Coe�cient process bite#1year=2017/18 (post-treatment)

��

��

��

�

�

�

�

� �� �� �� ��

SRLQWZLVH XQLIRUP�����HXURV
XQLIRUP������HXURV XQLIRUP������HXURV

KRXUO\�ZDJH���X

Note: 90 % uniform confidence bands based on multiplier bootstrap (100,000 replications). The intervals

refer to increasing ranges of coe�cients. The circles mark the lowest value of the upper confidence band

and the highest value of the lower confidence band.
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Figure 2: Hourly wage e↵ects: confidence bands including pre-test

(a) Coe�cient process bite#1year=2013/14 (pre-treatment)
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(b) Coe�cient process bite#1year=2015/16 (post-treatment)
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(c) Coe�cient process bite#1year=2017/18 (post-treatment)
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Note: 90 % uniform confidence bands based on multiplier bootstrap (100,000 replications). The additional

intervals in the lower two panels simultaneously cover the coe�cient process of the respective period and

the coe�cients of the pre-test period 2013/14 (up to 9 euros/hour). The circles mark the lowest value of

the upper confidence band and the highest value of the lower confidence band.
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Figure 3: Minimum wage e↵ects in monthly earnings distribution

(a) Coe�cient process bite#1year=2013/14 (pre-treatment)
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(b) Coe�cient process bite#1year=2015/16 (post-treatment)
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(c) Coe�cient process bite#1year=2017/18 (post-treatment)
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Note: 90 % uniform confidence bands based on multiplier bootstrap (100,000 replications). The intervals

refer to the monthly earnings range relevant to minimum wage recipients (350 to 2050 euros). The additional

intervals in the lower two panels simultaneously cover the coe�cient process of the respective period and

the coe�cients of the pre-test period 2013/14. The circles mark the lowest value of the upper confidence

band and the highest value of the lower confidence band.
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Figure 4: Minimum wage e↵ects in working hours distribution

(a) Coe�cient process bite#1year=2013/14 (pre-treatment)
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(b) Coe�cient process bite#1year=2015/16 (post-treatment)
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(c) Coe�cient process bite#1year=2017/18 (post-treatment)
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Note: 90 % uniform confidence bands based on multiplier bootstrap (100,000 replications). The additional

intervals in the lower two panels simultaneously cover the coe�cient process of the respective period and

the coe�cients of the pre-test period 2013/14. The circles mark the lowest value of the upper confidence

band and the highest value of the lower confidence band.
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coe�cients, see equation (2.20). In Figures 2bc, we incorporate into the simultaneous
interval the co�cients for the potential pre-trends from Figure 2a. For clarity, we focus
on the range of hourly wages 5-9 euros/hour at which the introduction of the minimum
wage was targeted. The figure illustrates the point made by Roth (2022) that conditioning
on the result of a pre-test leads to an undercoverage of confidence intervals. It shows the
‘cost’ in interval coverage for our coe�cients of interest caused by previously testing for
the existence of pre-trends (up to 9 euros/hour). In our application, this cost is small
but non-negligible.
In Figure 3, we turn to the e↵ects of the minimum wage introduction in the distribution

of monthly earnings. This analysis is interesting as it allows one to assess which workers in
the personal income distribution benefited most from the introduction. Our simultaneous
confidence intervals in Figure 3 are constructed such that they cover the range up to 2,050
euros per month as it is unlikely that individuals a↵ected by the minimum wage earn
more than this amount per month (wage rates around the minimum wage would require
working hours of over 50 hours per week to achieve monthly earnings over 2,050 euros).
It turns out that it were not earners of very low monthly wages (i.e., part-time and
marginal part-time workers), but individuals with monthly earnings between 1,200 and
1,700 euros/month who gained most. These are most likely full-time workers receiving
very low hourly wages before the minimum wage introduction (a full-time worker working
40 hours a week at the minimum wage receives a monthly wage of 8.50 x 40 x 4.345 =
1,477 euros). Our results are consistent with the results in Bossler and Schank (2023)
based on administrative data, who also find the largest e↵ects of the minimum wage
introduction on the 20th to 30th percentile of their monthly wage distribution (Bossler
and Schank, 2023, table 2), roughly corresponding to the range of 1,200 to 1,700 euros
as above, but no or very small e↵ects for monthly wages between the so-called minijob
threshold of 450 euros and a monthly wage of around 1,000 euros (the latter could be the
result of a minimum wage recipient working part-time).7 Note that, while the confidence
bands in Figure 3 reject the hypothesis of no minimum wage e↵ects on monthly earnings,
we cannot reject the hypothesis that e↵ects are homogeneous (the lowest point of the
upper confidence band is not below the highest point of the lower band).
An open question from Figures 2 and 3 is whether changes in the distribution of

monthly earnings were only caused by changes in wage rates or whether the minimum
wage also reduced working hours, potentially dampening its e↵ect on monthly earnings as
suggested by Burauel (2019,2020) and Caliendo (2022). Our results in Figure 4 suggest no
evidence for significant changes in the distribution of working hours due to the minimum
wage, which is in line with Biewen et al. (2022), but not with Burauel (2019,2020) and
Caliendo (2022). Confidence intervals bands consistently cover the zero e↵ect line and
the overall pattern of point estimates is stable across pre- and post-treatment periods,
indicating no changes post- vs. pre-treatment. As a consequence, our results suggest
that the introduction of the minimum wage did not induce significant reductions in
weekly working hours in order to keep monthly wage bills constant, or to significant
shifts between di↵erent types of jobs (part-time, marginal part-time, full-time).

7
Bossler and Schank (2023)’s analysis based on administrative data find additional significant e↵ects

for very low wages below the minijob threshold of 450 euros per month. Unfortunately, this range is

insu�ciently covered in our data and could not not be represented as additional thresholds in our

distribution regression model.
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5. CONCLUSION

This paper uses a distribution regression model to evaluate the e↵ects of the introduction
of the German minimum wage in 2015 on the distribution of hourly wages, hours worked
and monthly earnings. Our data source is the German Socio-Economic Panel (SOEP)
which is characterized by a moderate sample size but a large number of potential control
variables. We measure the e↵ects of the minimum wage at each point of our outcome
distributions employing flexible machine learning methods recently developed by Belloni
et al. (2018a). These methods allow us to automatically specify a large number of parallel
logit models over a fine grid of distributional thresholds, while providing valid statistical
inference across ranges of thresholds, after a comprehensive, machine-led specification
search which is una↵ected by subjective decisions and pre-tested specification choices.
Our distribution regression analysis provides a more comprehensive picture about the
points of the distribution at which the minimum wage had an e↵ect compared to previous
contributions. Our results suggest that the minimum wage displaced hourly wages below
its minimum level, benefitted monthly wages in the lower middle but not the very low part
of the distribution and did not lead to significant changes in the distribution of working
hours. This implies that changes in hourly wages fully translated into increases in monthly
wages for minimum wage recipients. Our results help reconcile previously conflicting
results in the literature on the e↵ects of the German minimum wage introduction based
on di↵erent data sources.
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Schikora, S. Liebig (2020). The economic research potential of the German Socio-
Economic Panel study. German Economic Review, 31, 335–371.

Tibshirani, R.J. (2013). The lasso problem and uniqueness. Electronic Journal of Statis-

tics, 7, 1456–1490.



Post-regularization distribution regression 17

APPENDIX A: CHOICE OF PENALTY LEVELS AND LOADINGS

In order to allow for a di↵erent choice of observation clusters when computing penalties as
opposed to computing standard errors and confidence intervals, we define in the present
section clusters as g⇤ = 1, . . . , G⇤ with observations j = 1, . . . , ng⇤

(as opposed to the
main text, where we defined clusters as g = 1, . . . , G with observations i = 1, . . . , ng).
In addition, define the (p̃ + p)-dimensional vector X̃ = (D,X) and the ((p̃ � 1) + p)-
dimensional vector X̃j = (DJ\j , X). The algorithms for setting penalty levels and load-
ings are due to Belloni et al. (2018a) with modifications for clustering of observations as
in Chiang (2020). In addition, we incorporate sampling weights vig.

A.1. Penalty level and loadings for logistic lasso

Step 1. Initialize procedure

Set m̄ = the maximal number of iterations and define constants

�1 = c
p
G⇤ ��1(1� �/2(p̃+ p)), c = 1.1, � = 0.1/ log(G⇤).

Set m = 0. Starting from a constant-only model, determine the five features that
have the maximal ex-ante gradient by absolute value. These represent the five fea-
tures that are most promising for reducing the prediction error. Fill their logit
coe�cients into ✓̃mu , �̃m

u (set other entries to zero).

Step 2. Iterative determination of penalty and loadings

Set

l̂ujk,m+1 =
n 1

G⇤

G⇤X

g⇤=1

h ng⇤X

j=1

vig (Y
u
ig � ⇤(Dig ✓̃

m
u +Xig�̃

m
u ))X̃kig

i2o 1
2

 ̂m+1
u = diag

⇣
l̂ujk,m+1, k = 1, . . . , (p̃+ p)

⌘

Run logistic lasso to obtain refined lasso coe�cients ✓̃m+1
u , �̃m+1

u .

If maxk |l̂ujk,m+1�l̂ujk,m| < tolerance orm = m̄ then stop. Otherwise setm = m+1
and repeat step 2.

A.2. Penalty level and loadings for WLS lasso

Step 1. Initialize procedure

Set m̄ = the maximal number of iterations and define constants

�2 = c
p
G⇤ ��1(1� �/2(p̃+ p)(p̃+ p� 1)), c = 1.1, � = 0.1/ log(G⇤)

Starting from a constant-only model, determine the five features that have the
maximal ex-ante gradient by absolute value. These represent the five features that
are most promising for reducing the prediction error. Fill in their WLS coe�cients
into �̃j,mu (set other entries to zero).
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Step 2. Iterative determination of penalty and loadings

Set

l̂ujk,m+1 =
n 1

G⇤

G⇤X

g⇤=1

h ng⇤X

j=1

vig f̂
2,m
uig (Djig � X̃j

ig�̃
j,m
u )X̃j

kig

i2o 1
2

 ̂m+1
uj = diag

⇣
l̂ujk,m+1, k = 1, . . . , (p̃� 1) + p

⌘

Run WLS lasso to obtain refined lasso coe�cients �̂j,m+1
u .

If maxk |l̂ujk,m+1�l̂ujk,m| < tolerance orm = m̄ then stop. Otherwise setm = m+1
and repeat step 2.

APPENDIX B: CONSTRUCTION OF FEATURES FOR LASSO

Table B.1: Variables and transformations included in the double selection algorithm.

Variable Type Transformations included
Treatment variable

Bite continuous linear
Time e↵ects

Year categorical(8) indicators for each category
Worker characteristics 1

Gender categorical(2) indicators for each category
East/West Germany categorical(2) indicators for each category
Worker characteristics 2

Age continuous 1st, 2nd, 3rd, 4th power, square root, log
Years of education continuous 1st, 2nd, 3rd, 4th power, square root, log
Full-time experience (years) continuous 1st, 2nd, 3rd, 4th power, square root
Part-time experience (years) continuous 1st, 2nd, 3rd, 4th power, square root
Ft experience + 0.5 Pt experience continuous 1st, 2nd, 3rd, 4th power, square root
Tenure (years) continuous 1st, 2nd, 3rd, 4th power, square root
Overtime (hours/week) continuous 1st, 2nd, 3rd, 4th power, square root

indicator for no overtime
Unemployment experience (years) continuous 1st, 2nd, 3rd, 4th power, square root

indicator for no unemployment experience
Worker characteristics 3

Type of school degree categorical(9) indicators for each category
Type of vocational training degree categorical(7) indicators for each category
Type of tertiary degree categorical(11) indicators for each category
Fine type of tertiary degree categorical(23) indicators for each category
Variants of no educational degree categorical(4) indicators for each category
ISCED classification of educational degree categorical(10) indicators for each category
5-group categorization of German education sys-
tem

categorical(5) indicators for each category

3-group categorization of German education sys-
tem

categorical(3) indicators for each category

ISCO08 occupation code (2-digit) categorical(40) indicators for each category
ISCO08 occupation code (3-digit) categorical(121) indicators for each category
KldB2010 occupation code (1-digit) categorical(10) indicators for each category
KldB2010 occupation code (2-digit) categorical(37) indicators for each category
Occupational position categorical(12) indicators for each category
NACE industry code (1-digit) categorial(18) indicators for each category
NACE industry code (2-digit) categorial(86) indicators for each category
Full-time/part-time/marginal part-time categorical(3) indicators for each category

indicator for pt/mpt combined
Minjob contract categorical(2) indicators for each category
Firm size categorization I (coarse) categorical(5) indicators for each category
Firm size categorization II (finer) categorical(8) indicators for each category
Public sector categorical(3) indicators for each category



Post-regularization distribution regression 19

Federal state categorical(16) indicators for each category
Urban area categorical(2) indicators for each category
Nationality (continents) categorical(5) indicators for each category
Nationality (subcontinents) categorical(12) indicators for each category
Nationality (countries) categorical(116) indicators for each category

indicator for German nationality
Household size count(16) 1st power, indicator each category
Partner lives in household categorical(3) indicators for each category
Marital status (single/divorced/widowed etc.) categorical(9) indicators for each category
# children in household aged 0-2 years count 1st power, indicator for zero
# children in household aged 3-5 years count 1st power, indicator for zero
# children in household aged 6-11 years count 1st power, indicator for zero
# children in household aged 12-17 years count 1st power, indicator for zero
Person in need of care lives in household categorial(3) indicators for each category
Homeowner/renter (with subcategories) categorical(5) indicators for each category
Health indicator ordinal(6) 1st power, indicator for highest two values

indicator for lowest two values
Interactions

Age # Household size full expansion of age transformations with household size
Age # (Worker characteristics 2) full expansion of features with age transformations
Household size # (Worker characteristics 2) full expansion of features with household size
Gender # (Worker characteristics 2) full expansion of features with gender indicators
Gender # (Worker characteristics 3) full expansion of features with gender indicators
East/West # (Worker characteristics 2) full expansion of features with East/West indicators
East/West # (Worker characteristics 3) full expansion of features with East/West indicators
Note: Number of categories in brackets for count and categorical variables.


