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Abstract

In competitive settings, disparities in player strength are common. It is intu-

itively unclear whether a stronger player would opt for larger or smaller effort com-

pared to weaker players. Larger effort could leverage their strength, while lower

effort might be justified by their higher probability of winning regardless of effort.

We analyze contests with three or more players, exploring when stronger players ex-

ert larger or lower effort. To rank efforts, it suffices to compare marginal utilities in

situations where efforts are equal. Effort ranking depends on differences in hazard

rates (which are smaller for stronger players) and reversed hazard rates (which are

larger for stronger players). Compared to weaker players, stronger players choose

larger effort in winner-takes-all contests and lower effort in loser-gets-nothing con-

tests. Effort rankings can be non-monotonic in contests with several identical prizes,

and they depend on the slopes of players’ pdfs in contests with linear prize structure.
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1 Introduction

In many contest applications, such as research competitions or competitions for promo-

tion in firms, participants naturally differ in strength or ability. The contest theory liter-

ature has looked into different forms of player heterogeneity, such as different valuations

for the contest prizes or different cost functions. These analyses have in common that

they consistently predict that players who are stronger or have some advantage over oth-

ers will also choose higher effort compared to the other players. While this is certainly

convincing in a range of applications, it seems that, intuitively, this prediction is not

representative of all contest-like situations. We believe that weaker players compensat-

ing lower ability with higher effort in order to be competitive, or, equivalently, stronger

players choosing lower effort as they have a higher probability to win at any effort level

is, intuitively, at least as convincing a prediction. The literature’s consistent prediction

of stronger players choosing higher effort is due to the way in which heterogeneity has

been modeled.

In this paper, we model players’ strength through their output or contribution to the

contest. We show that, with this approach, stronger players choose either higher or lower

effort than weaker players in equilibrium, in line with the intuition that both should be

possible equilibrium outcomes. We identify how the interaction between player strength

and contest prize structure affects the ranking of effort. In addition to deriving general

results, we study a number of commonly known contest formats.

Many economic interactions can be modeled as a contest, where players exert effort

to win one of several predetermined prizes. Research competitions, for example, involve

contestants submitting proposals with winners obtaining grants or monetary prizes. In

corporate settings, workers exert effort to outperform their peers in promotion compe-

titions to earn higher wages. College applicants invest effort, e.g., crafting their essay,

to gain admission to their preferred institutions. Finally, sporting events are obvious

examples of contests.

While all of these examples can formally be modeled as a contest, there is one impor-

tant difference: In some contests, the organizer wishes the high-ability players to exert

high effort, whereas in others, it is important that the low-ability players work hard. In

research competitions, often only the best project is implemented, in which case motivat-

ing the high-ability players benefits the organizer. In firms, however, poor performance

can be very costly, for instance, when workers interact with important customers or han-

dle sensitive data. Here, it might be more important to motivate low-ability workers
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to work hard and avoid making mistakes. In sports, high effort from strong athletes is

desirable, but weaker players should not be discouraged from exerting effort in order to

maintain competitive balance and entertainment value. Summing up, for the contest

organizer, understanding the conditions under which stronger players exert higher or

lower effort is crucial.

As mentioned, in many contest models, player strength is modeled via their valuation

for the prizes or, equivalently, via their effort cost function, with stronger players valuing

the prizes more or having lower effort cost (e.g., Baye, Kovenock, and de Vries 1996, Fu

and Wu 2020, and Fu, Wu, and Zhu 2023). In these models, stronger players always have

a larger incentive to exert effort. However, we believe that this approach to modeling

strength does not allow for the study of an important aspect: strong players may actually

find it optimal to reduce their effort, thereby saving on effort cost, given their higher

likelihood of winning at any given effort level.

To account for this possibility, it is necessary to model player strength via players’

output or performance in the contest. We do so by considering a Lazear-Rosen tourna-

ment with n ≥ 3 heterogeneous players and a general prize structure, i.e., n prizes, all of

which can be different.1 Prizes are allocated based on the players’ outputs, and a player’s

output is a function of the player’s effort and an individual random variable. Strength

is conceptualized through players’ random variables, using common stochastic orders

comparing the “magnitude” of the random variables. We assume that stronger players’

random variables are greater both in the hazard rate order and the reversed hazard rate

order.2

The analysis of the Lazear-Rosen tournament with n heterogeneous players and a

general prize structure is challenging and, to the best of our knowledge, has not been

done before.3 We characterize the players’ efforts by the first-order conditions of their

maximization problems, and we find that these conditions depend on random variables

distributed according to the Poisson binomial distribution. Except for some cases with a

small number of players, there is no simple formula for the probability mass function of

a Poisson binomial distribution. Thus, we encounter two problems. First, it is difficult to

use the first-order conditions to rank the players’ efforts, especially when the number of

1See Lazear and Rosen (1981). In the case of two (heterogeneous) players, there is always a symmetric
equilibrium, meaning that both players choose the same effort regardless of their strength (Bastani, Giebe,
and Gürtler 2022).

2Note that both these relations are implied by dominance in the likelihood ratio order.
3Drugov and Ryvkin (2020) consider a Lazear-Rosen tournament akin to ours, but they assume homo-

geneous players.
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players is large. Second, it is unclear how (or if) these conditions can be related to player

strength, i.e., commonly used definitions of stochastic order.

The main theoretical contribution of our paper is to overcome these problems. Con-

cerning the first problem, we significantly simplify the analysis by showing that to rank

the efforts of two players, it suffices to compare their marginal utilities for identical ef-

forts. To address the second problem, we decompose the pairwise comparison of two

players into three terms corresponding to whether the first player performs better than

the second, they perform equally well, or the second player performs better than the

first. When players perform equally well, the corresponding terms are symmetric and

do not affect the effort ranking. In the other two cases, we derive terms that are sym-

metric, differing only in that either the reversed hazard rates or the hazard rates of the

two players’ distributions appear, implying a direct relation to player strength. Since the

hazard rates are smaller for stronger players, but the reversed hazard rates are larger,

the effects are countervailing. This means that, in general, it can be either the stronger

or the weaker player who exerts larger effort.

In a next step, we study players’ relative efforts in four common contest formats:

the winner-takes-all contest (where a single prize is awarded to the best contestant), the

loser-gets-nothing contest (where everyone except the worst performer receives the same

prize), a contest with a certain number of identical prizes, and a contest with a linear

prize schedule (where the difference between any two adjacent prizes is constant). We

find that, in a winner-takes-all contest, stronger players always choose larger effort than

weaker ones. The opposite is true in the loser-gets-nothing contest. In a contest with

a certain number of identical prizes, the effort profile can be non-monotone in strength

(meaning that workers of intermediate strength exert the largest effort). Finally, un-

der a linear prize structure, the ranking of efforts depends on the slopes of the players’

probability density functions.

The paper is organized as follows: The next section discusses related literature, while

Section 3 describes the model. Section 4 characterizes the equilibrium and derives a

condition for ranking players’ efforts. Section 5 uses this condition to rank players’ efforts

in different types of contest. Finally, Section 6 concludes. All proofs are relegated to the

appendix.
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2 Related literature

We consider a contest with players of different strengths and therefore contribute to

the literature on contests with heterogeneous players. In many contest models, player

strength is modeled via a player’s valuation of the prize (with stronger players valuing

the prize relatively more) or, equivalently, the marginal effort cost (with stronger players

having lower cost).4 The result obtained from these models is that stronger players

always exert larger effort than weaker ones (unless the stronger player’s advantage is

counterbalanced by some other forces such as handicaps).5

In contrast, our paper models player strength via players’ output in the contest. In

particular, we assume that output is stochastic and that, for a given level of effort, the

distribution of output of stronger players dominates that of weaker ones. Heterogeneity

with respect to players’ output in the contest has been assumed in other contest mod-

els as well (e.g., Bastani, Giebe, and Gürtler 2022 and Kirkegaard 2023a), where some

models use the state-space formulation (as we do in the current paper) and others the

Mirrlees formulation (see Conlon 2009). One of the most closely related papers is Bas-

tani, Giebe, and Gürtler (2022), who consider two-player contests with a single prize, in

which the equilibrium is symmetric and both players exert the same effort. In contrast,

we consider a contest with more than two players and allow for general prize structures.

The equilibrium is no longer symmetric and we investigate the circumstances, under

which stronger or weaker players exert relatively larger effort.

There exists a large literature studying the “Tullock contest”, where a player’s win-

ning probability is given by an increasing function of their effort (referred to as their

“impact function”) divided by the sum of all players’ impact functions. Heterogeneity

in these contests is sometimes modeled by assuming that players have different impact

functions (e.g., Fu and Wu, 2020, Fu, Wu, and Zhu, 2022). As shown by, e.g., Jia (2008)

and Fu and Lu (2012), the Tullock contest is strategically equivalent to a contest where

players’ outputs depend on their efforts and a random variable, and prizes are awarded

based on the ranking of outputs. This means that the Tullock contest sometimes rep-

resents a special case of our contest model and that our definition of player strength is

consistent with the differences in the impact function studied in the literature. For ex-

ample, in the concluding section of his paper, Jia (2008) allows for asymmetric distribu-

4See, e.g., Baye, Kovenock, and de Vries (1996), Fu and Wu (2020), and Fu, Wu, and Zhu (2023).
5When the contest game has a mixed-strategy equilibrium as in the all-pay auction, stronger players

have a larger expected effort.
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tions and shows how this results in a case with asymmetric impact functions that differ

by a multiplicative constant. The distributions considered by Jia satisfy the monotone

likelihood ratio property and thus relate to our definition of player strength.

A main contribution of our paper is to demonstrate that weaker players sometimes

choose larger effort than stronger ones and to provide conditions under which this is the

case. Kirkegaard (2023b) presents another contest model where weaker players some-

times choose larger effort than stronger ones. He examines a situation where higher

effort increases the probability of drawing output from a “good” distribution rather than

a “bad” one, though the distributions themselves do not depend on effort. The incentive

to exert effort then hinges on how different the two distributions are. It is possible that

this difference is larger for weaker players compared to stronger ones, thus providing

them with a relatively stronger incentive to exert effort.

3 Model description

We consider a Lazear-Rosen tournament with n ≥ 3 risk-neutral players who compete for

n (finite) prizes that are ordered as w1 ≥ w2 ≥ ·· · ≥ wn ≥ 0 (with at least one inequality

being strict). All players i ∈ {1, . . . ,n} =: N simultaneously choose effort e i ≥ 0, and the

cost of effort c(e i) is described by a twice continuously differentiable, strictly increasing,

and strictly convex function satisfying c(0) = c′ (0) = 0. Consequently, there exists ē > 0

such that w1 = c (ē).

Apart from effort, player i’s output in the contest depends on the realization θi of a

random variable Θi. This random variable captures the strength of player i and we refer

to its realization as i’s skill. The realization θi is unknown to all players, including player

i. It is commonly known, however, that Θi is independently and absolutely continuously

distributed according to the cdf FΘi and pdf fΘi .
6 We assume that, for all i ∈N , fΘi has

convex support denoted by supp( fΘi )= {x : fΘi (x)> 0}, with lower bound ai ∈R∪{−∞} and

upper bound bi ∈R∪ {+∞}.

Player i’s output is given by g(θi, e i) = θi + e i, and prizes are allocated according to

the ranking of outputs.7 That is, the player with the jth largest output receives prize w j

6The random variables are also referred to as “noise” in the contest literature. Our model specification
includes the case Θi = ti +Γi, with ti being a commonly known constant and E [Γi] = 0. This could be
understood as player i’s output depending on the commonly known expected skill ti and the zero-mean
random variable Γi which can be readily interpreted as noise.

7With a general production function g(θi, e i), our assumptions are not sufficient to ensure the existence
of a Nash equilibrium characterized by the players’ first-order conditions to their maximization problems.
For example, the second derivative of the expected prize may be positive and unbounded, implying that
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(for j ∈ {1, . . . ,n}). Ties are broken randomly.

We adopt a first-order approach and characterize the equilibrium through the players’

first-order conditions to their maximization problems. The following set of assumptions

ensures the existence of a pure-strategy Nash equilibrium determined by these first-

order conditions (see Proposition 1).

Assumption 1. i) fΘi is continuously differentiable on [ai,bi] for all i ∈N .

ii) Both fΘi and f ′Θi
are bounded for all i ∈N .

iii) ai + ē < bk for all (i,k) ∈N 2 with i ̸= k.

iv) c is sufficiently convex, i.e., infe∈[0,ē] c′′ (e) is sufficiently large.

Part i) of the assumption ensures that the players’ objective functions are twice con-

tinuously differentiable. Parts ii) and iv) ensure that the objective functions are strictly

concave. Finally, part iii) ensures that players’ marginal return to exerting effort is al-

ways positive, thereby ruling out a corner solution at an effort level of zero.

Finally, we introduce some notation. Denote by e the vector of efforts and by e−i the

vector of efforts excluding e i, i.e., e−i = (e1, . . . , e i−1, e i+1, . . . , en). Player i’s expected payoff

is denoted by Ui (e) =∑n
j=1 Pi j(e)w j − c (e i), where Pi j(e) denotes the player’s probability

of receiving prize w j. For a given effort e i and skill θi of player i and given efforts e−i (but

unknown skill realizations) of the other players, P i,s
A (e i,θi,e−i) denotes the probability

that s of the players from set A ⊆N perform better than i. Moreover, for A ⊆N , denote

by AC the set N \ A. We denote equilibrium efforts with an asterisk.

4 Equilibrium characterization

We start by considering the existence of a pure-strategy Nash equilibrium.

Proposition 1. A pure-strategy Nash equilibrium
(
e∗1, . . . , e∗n

)
exists in which e∗i (i ∈ N )

is characterized by the first-order condition

n∑
j=1

(∫
∂P i, j−1

{i}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
e=e∗

fΘi (x)dx

)
w j = c′

(
e∗i

)
.

the cost function could never be sufficiently convex for the objective function to be concave. However, when
such an equilibrium exists, the main results (and, in particular, Theorem 1) would be the same as in the
case of an additive production function that we focus on in the paper. That is, the results do not depend on
whether effort and skill are complements or substitutes. See Subsection A.2 for details.

7



The first-order condition equates a player’s marginal return to the marginal cost of

effort. The marginal return from exerting effort is calculated as the weighted sum of the

marginal effects of effort on the probability of achieving a certain rank, with the weights

corresponding to the respective prizes. Player i receives prize w j if he or she is outper-

formed by j−1 of the other players. For a given θi, the probability of i receiving w j can

thus be written as P i, j−1
{i}C

(e i, x,e−i). To obtain the unconditional probability of receiving

w j, this probability must be averaged over all possible realizations of Θi. Multiplying

with w j and differentiating with respect to e i then gives rise to the j-th element of the

sum in the player’s first-order condition.

Notice that, for a given vector of efforts and a given realization of Θi, player i’s rank

follows a Poisson binomial distribution with “success probabilities” 1−FΘl (e i + θi − e l)

for all l ̸= i.8 Consequently, P i, j−1
{i}C

(e i, x,e−i) is also derived from a Poisson binomial dis-

tribution. Except for some cases with a small number of draws (i.e., players), there is

no simple formula for the probability mass function of a Poisson binomial distribution.

Therefore, using the first-order condition from Proposition 1 to compare the efforts of

different players is very difficult. Furthermore, it is not clear how (or whether) the con-

ditions can be related to definitions of player strength.

As mentioned in the introduction, the main theoretical contribution of our paper is

to overcome these problems. Regarding the first problem, we significantly simplify the

analysis by showing that, to rank the efforts of two players, it suffices to compare their

marginal utilities in a situation in which their efforts are the same (see Lemma 1). Re-

garding the second problem, we propose a decomposition of the resulting condition into

three terms, corresponding to whether the first player outperforms the second, they per-

form equally, or the second player outperforms the first (see Theorem 1).

We begin by showing that, to rank the equilibrium efforts of two players i and k,

it suffices to compare their marginal utilities in a situation in which their efforts are

the same. When both players exert same effort (e i = ek = e) and have the same skill

realizations (θi = θk = x), the probabilities 1−FΘl (e+ x− e l) are the same for the two

players (for all l ̸= i,k). This observation simplifies the comparison of the two players’

equilibrium efforts significantly.

Lemma 1. If ∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

> ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

and c is sufficiently convex, then

e∗i > e∗k.

In what follows, we assume that the requirement regarding the convexity of c is ful-
8To be precise, the rank equals 1 plus the realization of a random variable that follows this distribution.
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filled, and we focus on the condition ∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

> ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

. The follow-

ing theorem decomposes this condition into different terms. We first present the theorem

and then explain the decomposition in detail.

Theorem 1. If

n−1∑
j=1

∫ ( fΘi (x)
FΘi (x) −

fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j >

n−1∑
j=1

∫ ( fΘk (x)
1−FΘk (x) −

fΘi (x)
1−FΘi (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

) ∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j+1,

then e∗i > e∗k.

Theorem 1 provides a condition under which a player i exerts greater effort than an-

other player k. It is evident that the ranking of the reversed hazard rates of the two

players’ skill distributions, i.e., the sign of
fΘi (x)
FΘi (x) −

fΘk (x)
FΘk (x) , and the ranking of the corre-

sponding hazard rates, i.e., the sign of
fΘk (x)

1−FΘk (x) −
fΘi (x)

1−FΘi (x) , play a crucial role in determin-

ing the players’ relative efforts.9

To derive this condition, we rewrite i’s probability of getting prize w j, “extracting”

the probabilities of beating (or not beating) player k:

Pi j(e)=
∫ (

FΘk (x+ e i − ek)P i, j−1
{i,k}C

(e i, x,e−i)+
(
1−FΘk (x+ e i − ek)

)
P i, j−2

{i,k}C
(e i, x,e−i)

)
fΘi (x)dx.

From this we obtain a decomposition of player i’s marginal winning probability (evalu-

ated at ek = e∗i and e−k = e∗
−k):

∂Pi j(e)
∂e i

∣∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∫

fΘi (x) fΘk (x)
(
P i, j−1

{i,k}C
(
e∗i , x,e∗

−i
)−P i, j−2

{i,k}C
(
e i, x,e∗

−i
))

dx

+
∫

fΘi (x)FΘk (x)
∂P i, j−1

{i,k}C
(
e∗i ,x,e∗

−i
)

∂e i
dx

+
∫

fΘi (x)
(
1−FΘk (x)

) ∂P i, j−2
{i,k}C

(
e∗i ,x,e∗

−i
)

∂e i
dx.

The three lines above correspond to three events, as we explain in the following. A

similar decomposition needs to be done for player k, with the perspectives of i and k

interchanged.

In the first event (first line above), player k has the same skill x as player i. Here, the

9Note that stating Theorem 1 in terms of (reversed) hazard rates prepares the discussion of player
strength in Section 5.
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collision density fΘi (x) fΘk (x) represents the “likelihood” that both players i and k have

skill x, and the difference
(
P i, j−1

{i,k}C
(
e∗i , x,e∗

−i
)−P i, j−2

{i,k}C
(
e∗i , x,e∗

−i
))

describes the increase in

the probability of receiving prize w j when player i marginally increases effort, thereby

overtaking player k.

Now, notice that, if we determine the corresponding decomposition from player k’s

point of view, the first line is exactly the same as that just derived for player i. Accord-

ingly, this first event does not play a role when comparing the two players’ marginal

utilities.

In the second event, player k has a skill strictly smaller than i’s, described by the

“likelihood” fΘi (x)FΘk (x), and thus i beats k with certainty if they have equal efforts.

In this case, i’s marginal winning probability for prize w j depends only on being the

jth-best performer among all players except k:

fΘi (x)FΘk (x)
∂P i, j−1

{i,k}C
(e i, x,e−i)

∂e i

∣∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

.

Observe that
∂P i, j−1

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∂Pk, j−1

{i,k}C
(e i ,x,e−i)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

, as both i and k

have equal efforts, and we only look at players in {i,k}C. Therefore, when comparing the

two players’ marginal utilities, the corresponding difference in terms amounts to

( fΘi (x)
FΘi (x) −

fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

,

explaining why the difference in reversed hazard rates is relevant for the comparison of

marginal utilities.

Finally, in the third event, player k has a skill strictly larger than x. Analogous to the

preceding case, this event is described by the “likelihood” that k beats i, fΘi (x)
(
1−FΘk (x)

)
,

and similar to the second event, i’s and k’s marginal probability of j−2 other rivals out-

performing them is identical for e i = ek.

When comparing the two players’ marginal utilities, the corresponding difference in
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terms amounts to10

( fΘk (x)
1−FΘk (x) −

fΘi (x)
1−FΘi (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

) ∂P i, j−2
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

,

explaining why the difference in hazard rates is relevant for the comparison of marginal

utilities.

It is possible to restate the condition in a different form, based on the differences

between adjacent prizes rather than absolute prize levels. This alternative condition is

presented in the next lemma. It simplifies the analysis in Section 5 because, for the first

three prize structures (contest forms) that we consider in this section, all differences

between adjacent prizes except one are equal to zero. For the fourth prize structure, the

difference between adjacent prizes is constant and positive.

As differences between adjacent prizes are non-negative, the condition shows that

the signs of the terms on the left-hand side and right-hand side are entirely determined

by the ranking of reversed hazard rates and hazard rates, respectively.

Lemma 2. The condition from Theorem 1 can be restated as∫ ( fΘi (x)
FΘi (x)

− fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x) ·(

n−2∑
j=1

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)
P i, j−1

{i,k,l i}C
(
e∗i , x,e∗

−i
))(

w j −w j+1
))

dx

>
∫ ( fΘk (x)

1−FΘk (x)
− fΘi (x)

1−FΘi (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

) ·(
n−2∑
j=1

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)
P i, j−1

{i,k,l i}C
(
e∗i , x,e∗

−i
))(

w j+1 −w j+2
))

dx.

5 Do stronger players exert greater effort?

In this section, we investigate in which situations stronger players exert greater effort

than weaker ones. We begin by defining players’ strength.

As player heterogeneity refers to the distributions of Θ, stronger players should have

distributions that are more likely to yield large realizations. Therefore, a definition of

player strength should relate to the “magnitude" of Θ. An obvious candidate is the like-

lihood ratio order, where player i is assumed to be stronger than player k if Θi is greater

10Notice that in Theorem 1, we have reindexed prizes on the right-hand side of the condition, such that
only P i, j−1 appears. The prize w j corresponds to the summation index j−1 on the right-hand side of the
inequality. See the proof of Theorem 1 for details.
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than Θk in the likelihood ratio order. However, for our results, the likelihood ratio order

is unnecessarily strong. Instead, we adopt a weaker definition based on the hazard rate

order and the reversed hazard rate order.11

Definition 1. Player i is said to be stronger than k if Θi is greater than Θk in both

the hazard rate order and the reversed hazard rate order, i.e.,
fΘi (x)

1−FΘi (x) ≤
fΘk (x)

1−FΘk (x) and
fΘi (x)
FΘi (x) ≥

fΘk (x)
FΘk (x) for all x ∈R.

Throughout this section, we assume that all players are heterogeneous. By this,

we mean that for any pair (i,k) of players, their distributions differ on a subset of

supp( fΘi )∪ supp( fΘk ) of positive measure. A direct implication is that whenever one

player is stronger than another according to Definition 1, the inequalities between the

hazard rates and reversed hazard rates, respectively, are strict on a subset of supp( fΘi )∪
supp( fΘk ) of positive measure.

From Lemma 2, it is now evident that in general, either the stronger or the weaker

player may exert relatively larger effort. The reason is that the hazard rates are smaller

for stronger players, but the reversed hazard rates are larger, so that both sides of the

inequality have the same sign. To delve deeper into the ranking of efforts of players of

different strength, we now consider different prize structures that have received con-

siderable attention both in theoretical analyses and in practice, and we study players’

relative efforts in these cases.

5.1 Winner takes all

The winner-takes-all contest is the one that is most extensively studied in the contest

literature. It awards a single prize to the winner and nothing to the other players.12

Setting w1 = w > 0 and w2 = w3 = ·· · = wn = 0, the condition from Lemma 2 can be stated

as∫ ( fΘi (x)
FΘi (x)

− fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)
P i,0

{i,k,l i}C
(
e∗i , x,e∗

−i
))

wdx > 0.

When player i performs worse than k, he or she has no chance of winning the prize,

and there is no marginal incentive to exert effort. Therefore, in the above condition, all of
11As shown in Theorem 1.C.1. in Shaked and Shanthikumar (2007), if Θi is greater than Θk in the

likelihood ratio order, then it is also greater in both the hazard rate order and the reversed hazard rate
order (and also in the usual stochastic order). That is, player i would be stronger than k according to
Definition 1 if fΘi / fΘk were non-decreasing on supp( fΘi )∪supp( fΘk ).

12Winner-takes-all contests have been shown to be optimal in some settings. See, e.g., Moldovanu and
Sela (2001) and Zhang (2024).
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the terms relating to the hazard rates have disappeared, leaving only the terms relating

to the reversed hazard rates. As stronger players have larger reversed hazard rates than

weaker ones, we obtain the following proposition.

Proposition 2. In winner-takes-all contests, if player i is stronger than k, then equilib-

rium efforts satisfy e∗i > e∗k.

We illustrate this result with an example.

Example 1. Consider a winner-takes-all contest with n = 3 players, prize w = 2 and cost

function c(e) = 2e2. The players’ skills are drawn from Exponential distributions with

pdfs fΘi = λi exp(−λix), x ≥ 0, where (λ1,λ2,λ3) = (1
2 ,1, 3

2

)
, i.e., the players are ordered by

strength according to Definition 1 with player 1 being the strongest player. The contest

has an equilibrium with effort vector e∗ = (0.1475,0.1334,0.1068).

5.2 Loser gets nothing

Next, we consider the loser-gets-nothing contest. In this type of contest, n−1 prizes of

equal size are awarded, meaning w = w1 = ·· · = wn−1 > wn = 0.13 The condition from

Lemma 2 can be stated as∫ ( fΘi (x)
1−FΘi (x)

− fΘk (x)
1−FΘk (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

)
·
( ∑

l i∈{i,k}C
fΘl i

(
e∗i + x− e∗l i

)
P i,n−3

{i,k,l i}C
(
e∗i , x,e∗

−i
))

wdx > 0.

When player i performs better than k, he or she secures a prize and there is no

marginal incentive to exert effort. Therefore, in the above condition all of the terms

relating to the reversed hazard rates have disappeared and only the terms relating to

the hazard rate play a role. As stronger players have smaller hazard rates than weaker

ones, we obtain the following proposition.

Proposition 3. In loser-gets-nothing contests, if player i is stronger than k, then equilib-

rium efforts satisfy e∗i < e∗k.

We illustrate this result with an example.

13A loser-gets-nothing contest can be optimal when the contest designer can select both the prize struc-
ture and the contest-success function, see Letina, Liu, and Netzer (2023).
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Example 2. Consider a loser-gets-nothing contest with n = 3, prize vector (w1,w2,w3) =
(1,1,0) and cost function c(e) = e2. The players’ skills are drawn from Exponential dis-

tributions with pdfs fΘi = λi exp(−λix), x ≥ 0, where (λ1,λ2,λ3) = (1
2 ,1, 3

2

)
, i.e., the players

are ordered by strength according to Definition 1 with player 1 being the strongest player.

The contest has an equilibrium with effort vector e∗ = (0.1951,0.3080,0.3385).

5.3 m ∈ {2, . . . ,n−2} identical prizes

The winner-takes-all and loser-gets-nothing contests are special cases of a contest in

which a certain number of identical prizes are awarded. Now, we study the remaining

cases of this type of contest assuming that the players compete for m identical prizes of

value w, where m ∈ {2, . . . ,n−2} and n ≥ 4.14 We observe that w j −w j+1 = 0 for all j ̸= m

and wm −wm+1 = w. The condition from Lemma 2 then simplifies to∫ ( fΘi (x)
FΘi (x)

− fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

·
( ∑

l i∈{i,k}C
fΘl i

(
e∗i + x− e∗l i

)
P i,m−1

{i,k,l i}C
(
e∗i , x,e∗

−i
))

wdx

>
∫ ( fΘk (x)

1−FΘk (x)
− fΘi (x)

1−FΘi (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

)
·
( ∑

l i∈{i,k}C
fΘl i

(
e∗i + x− e∗l i

)
P i,m−2

{i,k,l i}C
(
e∗i , x,e∗

−i
))

wdx.

It is difficult to derive a general result regarding the ranking of efforts. The main

reason is that effort can now be non-monotonic in strength, meaning that players of

intermediate strength may choose the largest effort. We now explain why this is the

case. First, notice that P i,m−1
{i,k,l i}C

(
e∗i , x,e∗

−i
)

appears on the left-hand side of the inequality,

whereas P i,m−2
{i,k,l i}C

(
e∗i , x,e∗

−i
)

appears on the right-hand side. This is because the left-hand

side corresponds to the situation in which the other player, being compared to the con-

sidered player, performed worse, implying that the player would still win a prize even

if m−1 of the remaining players performed better. In contrast, the right-hand side of

the inequality corresponds to the situation in which the other player performed better,

so that the considered player only wins a prize if at most m−2 of the remaining players

perform better.

Recall that both P i,m−2
{i,k,l i}C

(
e∗i , x,e∗

−i
)

and P i,m−1
{i,k,l i}C

(
e∗i , x,e∗

−i
)

are calculated from the

14Such a prize structure is considered by, e.g., Siegel (2010) and Morgan, Tumlinson, and Várdy (2022),
where the latter assume a continuum of players.
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probability mass function of the Poisson binomial distribution. From Darroch (1964),

we know that this function has either a unique mode or two consecutive ones, where

such mode differs from the mean by less than 1.

Now, suppose that players are ordered by decreasing strength, and we are compar-

ing the efforts of players 1 and 2. Let both these players be much stronger than the

others. Given sufficiently large differences in strength, we observe P1,m−2
{1,2,l i}C

(
e∗i , x,e∗

−i
) >

P1,m−1
{1,2,l i}C

(
e∗i , x,e∗

−i
)
, as the mode of the corresponding probability mass function is low.15

Then the right-hand side of the inequality from Lemma 2 tends to be larger than the

left-hand side, implying that e∗2 tends to be larger than e∗1.

Next, suppose we are comparing the efforts of players n− 1 and n, assuming that

these players are much weaker than the others. With a similar line of reasoning, e∗n
would tend to be smaller than e∗n−1. As a result, a non-monotonic effort sequence would

arise. The following example illustrates this.

Example 3. Consider a contest with n = 4 players, prize vector (w1,w2,w3,w4)= (1,1,0,0)

and cost function c(e) = e2. The players’ skills are drawn from Exponential distributions

with pdfs fΘi = λi exp(−λix), x ≥ 0, where (λ1,λ2,λ3,λ4) = (1
2 ,1, 3

2 ,2
)
, i.e., players are or-

dered by strength according to Definition 1 with player 1 being the strongest player. The

contest has an equilibrium with effort vector e∗ = (0.1804,0.2780,0.3119,0.3013) which is

non-monotonic in strength.

5.4 Linear prize structure

Finally, we consider a linear prize structure, where the difference between adjacent

prizes is constant. That is, we assume that w1 −w2 = ·· · = wn−1 −wn = w and wn = 0.16

The condition from Lemma 2 can be restated as∫
fΘi (x)

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)n−2∑
j=1

P i, j−1
{i,k,l i}C

(
e∗i , x,e∗

−i
))

dx

>
∫

fΘk (x)

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)n−2∑
j=1

P i, j−1
{i,k,l i}C

(
e∗i , x,e∗

−i
))

dx.

15Given that the remaining players are much weaker than 1 and 2, their success probabilities are low.
Accordingly, the mean number of successes is low as well, which implies a low mode by Darroch’s rule for
the mode.

16In the literature, this is also referred to as an arithmetic prize sequence. See, e.g., Xiao (2016).
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As
∑n−2

j=1 P i, j−1
{i,k,l i}C

(
e∗i , x,e∗

−i
)= 1, the condition simplifies to

∫
fΘi (x)

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

))
dx >

∫
fΘk (x)

( ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

))
dx

⇔ EΘi

[ ∑
l i∈{i,k}C

fΘl i

(
e∗i +Θi − e∗l i

)]
> EΘk

[ ∑
l i∈{i,k}C

fΘl i

(
e∗i +Θk − e∗l i

)]
.

When the prize structure is linear, player i’s marginal incentive to exert effort does

not depend on whether k performs better or worse, for the following reason. Suppose

i performs better than k. Then he or she secures a prize of w and competes against

the remaining n−2 players for an even larger prize. He or she gains w when beating

one of the remaining players, 2w when beating two of them, and so on. Now suppose

i performs worse than k. Then he or she does not secure any positive prize, but still

competes against the remaining players for a positive reward. And, as in the first case, i

would gain w by beating one of the remaining players, 2w by beating two of them and so

on. That is, the structure of rewards in the competition against the players other than

k is the same regardless of whether i performs better or worse than k. Consequently,

the terms in the condition from Lemma 2 relating to the hazard and reversed hazard

rates, respectively, disappear (formally, we add fΘi (x)FΘx (x) and fΘi (x) (1−FΘx (x)), which

simplifies to fΘi ).

Suppose that i is stronger than k according to Definition 1. As Θi is greater than Θk

in the usual stochastic order, the following proposition is immediate.

Proposition 4. Consider a contest with a linear prize structure and let i be stronger than

k.

i) If, for all (e i, e l i ) ∈ [0, ē]2,
∑

l i∈{i,k}C fΘl i

(
e i + x− e l i

)
is increasing in x on supp( fΘi )∪

supp( fΘk ), then the equilibrium efforts satisfy e∗i > e∗k.

ii) If, for all (e i, e l i ) ∈ [0, ē]2,
∑

l i∈{i,k}C fΘl i

(
e i + x− e l i

)
is decreasing in x on supp( fΘi )∪

supp( fΘk ), then the equilibrium efforts satisfy e∗i < e∗k.

We illustrate Proposition 4 with an example.

Example 4. Consider a contest with n = 3 players, linear prize structure (w1,w2,w3) =
(2,1,0) and cost function c(e) = 8e2. We assign the roles of player i and k to 1 and 3,

respectively. Then {i,k}C = {2}. We assume f1(x) = 2
(
x− 1

2

)
on

[1
2 , 3

2

]
, f2(x) = 1

4 + x
4 on

[0,2], f3(x) = 2− 2
(
x− 1

2

)
on

[1
2 , 3

2

]
. This contest has an equilibrium with effort vector
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e∗ = (0.07505,0.0628,0.0698), illustrating case i) of Proposition 4. If we change player

2’s increasing density to the decreasing f2(x) = 3
4 − x

4 on [0,2], we get an equilibrium with

effort vector e∗ = (0.0708,0.0621,0.0759), illustrating case ii) of Proposition 4.

While Theorem 1 considers two players with different marginal utilities, the results

should be transferable to the case where they are the same. That is, in the case of

equal marginal utilities, we would expect the two players to choose the same effort, as

an effort level fulfilling both players’ first-order conditions would exist. The following

example confirms this intuition for the case of a linear prize structure and a constant pdf

for one of the players.

Example 5. Consider a contest with n = 3 players, linear prize structure (w1,w2,w3) =
(2,1,0) and cost function c(e) = 8e2. Again, we assign the roles of player i and k to 1

and 3, respectively. We assume f1(x) = 2
(
x− 1

2

)
on

[1
2 , 3

2

]
, f2(x) = 1

2 on [0,2], f3(x) = 2−
2

(
x− 1

2

)
on

[1
2 , 3

2

]
. The contest has an equilibrium with effort vector e∗ = ( 7

96 , 1
16 , 7

96

) ≈
(0.0729,0.0625,0.0729). We have e∗1 = e∗3 even though player 1 is stronger than player 3.

5.5 A weaker definition of player strength

Our definition of player strength is relatively strict in that it is not always possible to

rank two players in terms of their strength. The reason is that neither skill variable

may be greater than the other in both the hazard rate order and the reversed hazard

rate order. With a weaker definition of player strength, our results, unsurprisingly, do

not necessarily hold.

It seems reasonable to require that any definition of strength should ensure that

a stronger player has a larger expected skill than a weaker one, so ranking players

according to their expected skills (in case they are well-defined) amounts to a relatively

weak definition of player strength.

In the following, we suppose that strength is defined by the ranking of expected val-

ues, and consider some of the implications.

Example 6 shows that equally strong players can have different efforts.

Example 6. Consider a winner-takes-all contest with n = 3 players, prize w = 1 and

cost function c(e) = 2e2. The players’ skills are drawn from Beta distributions with pa-

rameters αi and βi such that (α1,β1) = (1,1), (α2,β2) = (2,2), (α3,β3) = (3,3). The ex-

pected value is given by αi
αi+βi

, i.e., all three players have the same strength of E[X ] = 1
2
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if defined by expected value. This contest has an equilibrium with effort vector e∗ =
(0.2476,0.3001,0.3045).

In Example 7 we show that weaker players may choose larger effort than stronger

ones in a winner-takes-all contest, contrary to Proposition 2. We do this by modifying

Example 6, making player 1 (the player with the smallest equilibrium effort) slightly

stronger than the other players, resulting in player 1’s effort being (still) smaller than

the other players’ efforts.

Example 7. Consider a winner-takes-all contest with n = 3 players, prize w = 1 and cost

function c(e)= 2e2. The players’ skills are drawn from Beta distributions with parameters

αi and βi such that (α1,β1)= (11
10 ,1

)
, (α2,β2)= (2,2), (α3,β3)= (3,3). The expected value is

given by αi
αi+βi

, i.e., player 1 is stronger than the other two players if defined by expected

value. This contest has an equilibrium with effort vector e∗ = (0.2616,0.2920,0.2910).

6 Conclusion

We have studied contests with players of different strengths. We have derived a condition

that allows us to rank the efforts of two players. The condition is symmetric except for

the differences in the reversed hazard rates and the hazard rates of the two players’

skill distributions, and can thus be related to the players’ relative strength. Two players’

efforts can be ranked if their strength can be compared according to our definition. This

holds even if other players in the contest cannot be ranked by their strength. We have

used the condition to compare players’ efforts in four widely used contest formats.

While we have not investigated a contest-design problem, we can still derive some

implications from our results for the designer’s choice of prize structure. Whenever the

designer wishes to ensure that the strongest players exert the largest effort, a winner-

takes-all contest is an attractive option. In contrast, when the designer wishes to moti-

vate the weaker players, a loser-gets-nothing contest could be preferred.

A Appendix

A.1 Proofs

For a given e i, θi, and e−i (but unknown skill realizations of players other than i), denote

by Ri (e i,θi,e−i)+1 a random variable that gives the final rank of player i (where rank 1

corresponds to prize w1 etc.). Denote probabilities by P. We obtain the following lemma:
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Lemma A.1. Let ê i > ẽ i and 0< FΘ j

(
e i +θi − e j

)< 1 for e i ∈ {ê i, ẽ i}, given θi and e−i, and

all j ∈ {i}C. Then Ri (ê i,θi,e−i) is smaller than Ri (ẽ i,θi,e−i) in the usual stochastic order,

that is, P (Ri (ê i,θi,e−i)≤ x) ≥ P (Ri (ẽ i,θi,e−i)≤ x) for all x ∈ {0, . . . ,n−1}. The inequality

is strict for all x ∈ {0, . . . ,n−2}.

Proof of Lemma A.1. The random variable Ri (e i,θi,e−i) is distributed according to the

Poisson binomial distribution with “success probabilities” 1−FΘ j

(
e i +θi − e j

)
. If ê i > ẽ i

and 0< FΘ j

(
e i +θi − e j

)< 1 for e i ∈ {ê i, ẽ i}, then 1−FΘ j

(
ê i +θi − e j

)< 1−FΘ j

(
ẽ i +θi − e j

)
for all j ∈ {i}C. W.l.o.g., let i = n.

We prove the lemma by showing that, if we replace FΘ j

(
ẽ i +θi − e j

)
by FΘ j

(
ê i +θi − e j

)
for one player j ∈ {n}C, the resulting distribution of Ri is smaller than the original dis-

tribution in the usual stochastic order with the corresponding inequality being strict for

all x ∈ {0, . . . ,n−2}. As a switch from ẽ i to ê i leads to a change from FΘ j

(
ẽ i +θi − e j

)
to

FΘ j

(
ê i +θi − e j

)
for all players j ∈ {n}C, the claim of the lemma follows from repeatedly

applying the same argument for all j ∈ {n}C.

We write Ri (ẽ i,θi,e−i)= Z1+·· ·+Zn−1, where the Z j are independent Bernoulli vari-

ables with P
(
Z j = 1

) = 1−FΘ j

(
ẽ i +θi − e j

)
. We further define R′

i (ẽ i,θi,e−i) = Z1 + ·· · +
Zn−2. We obtain

P (Ri (ẽ i,θi,e−i)≤ y)

= P
(
R′

i (ẽ i,θi,e−i)≤ y∧Zn−1 = 0
)+P

(
R′

i (ẽ i,θi,e−i)≤ y−1∧Zn−1 = 1
)

= P
(
R′

i (ẽ i,θi,e−i)≤ y
)
FΘn−1 (ẽ i +θi − en−1)

+P
(
R′

i (ẽ i,θi,e−i)≤ y−1
)(

1−FΘn−1 (ẽ i +θi − en−1)
)

= P
(
R′

i (ẽ i,θi,e−i)≤ y
)
FΘn−1 (ẽ i +θi − en−1)

+(
P

(
R′

i (ẽ i,θi,e−i)≤ y
)−P

(
R′

i (ẽ i,θi,e−i)= y
))(

1−FΘn−1 (ẽ i +θi − en−1)
)

= P
(
R′

i (ẽ i,θi,e−i)≤ y
)

−P
(
R′

i (ẽ i,θi,e−i)= y
)(

1−FΘn−1 (ẽ i +θi − en−1)
)
.

For y= n−1, we have P
(
R′

i (ẽ i,θi,e−i)= y
)= 0. In this case, we obtain P (Ri (ẽ i,θi,e−i)≤ y)=

P
(
R′

i (ẽ i,θi,e−i)≤ y
) = 1. For y ≤ n− 2, we have P

(
R′

i (ẽ i,θi,e−i)= y
) > 0. Hence, all

else equal, P (Ri (ẽ i,θi,e−i)≤ y) is strictly increasing in FΘn−1 (ẽ i +θi − en−1). This means

that, if we would replace FΘn−1 (ẽ i +θi − en−1) by FΘn−1 (ê i +θi − en−1), the term would

increase.
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Proof of Proposition 1. We first show that a pure-strategy Nash equilibrium exists. The

optimal e i will always belong to the set [0, ē], meaning that we can restrict attention

to (e1, . . . , en) ∈ [0, ē]n (which is compact and convex). By Rosen’s theorem (Rosen, 1965,

Vojnović, 2016, p.658), it remains to show that a player i’s expected payoff is continuous

and concave in e i. Notice that i’s expected payoff can be stated as

Ui (e)=
n∑

j=1

(∫
P i, j−1

{i}C
(e i, x,e−i) fΘi (x)dx

)
w j − c (e i) .

By our assumptions, Ui is twice continuously differentiable and, thus, continuous. More-

over, it is strictly concave if

n∑
j=1

(∫
∂2P i, j−1

{i}C
(e i ,x,e−i)

∂e2
i

fΘi (x)dx

)
w j < c′′ (e i) ,

which is fulfilled for sufficiently convex c if
∫ ∂2P i, j−1

{i}C
(e i ,x,e−i)

∂e2
i

fΘi (x)dx is bounded from

above. We return to this issue at the end of the proof.

Next, we show that the optimal efforts are characterized by the players’ first-order

conditions to their maximization problems. By the concavity of the expected payoff func-

tions, it suffices to rule out a corner solution at e i = 0. Since c′ (0) = 0, the optimal effort

is positive if
∑n

j=1

(∫ ∂P i, j−1
{i}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
e i=0

fΘi (x)dx

)
w j > 0.

Recall that P i, j−1
{i}C

(e i, x,e−i) is the probability that j−1 of player i’s opponents perform

better than i when i chooses effort e i and has skill level θi = x. The probability that a

randomly selected player l ̸= i performs better than i can be stated as 1−FΘl (e i + x− e l).

As such, P i, j−1
{i}C

(e i, x,e−i) can be calculated by means of the Poisson binomial distribu-

tion with “success probabilities” 1−FΘl (e i + x− e l). Notice that, by part iii) of Assump-

tion 1, FΘl (e i + x− e l) ∈ (0,1) for all e i, e l ∈ [0, ē] and all l ∈ {i}C. Accordingly, we can

evoke Lemma A.1, according to which a marginal increase in effort leads to a rank dis-

tribution that is smaller in the usual stochastic order than the original distribution.

As prizes are decreasing in the rank with at least one inequality strict, it follows that∑n
j=1

(∫ ∂P i, j−1
{i}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
e i=0

fΘi (x)dx

)
w j > 0.

It remains to be shown that
∫ ∂2P i, j−1

{i}C
(e i ,x,e−i)

∂e2
i

fΘi (x)dx is bounded from above. Notice

that P i, j−1
{i}C

(e i, x,e−i) can be written as a finite sum of terms of the form

(
1−FΘl1

(
e i + x− e l1

))·...·(1−FΘl j−1

(
e i + x− e l j−1

))
·FΘl j

(
e i + x− e l j

)
·...·FΘln−1

(
e i + x− e ln−1

)
.
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By the product differentiation rule,
∂P i, j−1

{i}C
(e i ,x,e−i)

∂e i
can be written as a finite sum of terms

of the form

−
j−1∑
r=1

fΘlr

(
e i + x− e lr

)(∏ j−1
s=1,s ̸=r

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j FΘls

(
e i + x− e ls

))
+

n−1∑
r= j

fΘlr

(
e i + x− e lr

)(∏ j−1
s=1

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j,s ̸=r FΘls

(
e i + x− e ls

))
.

Accordingly,
∂2P i, j−1

{i}C
(e i ,x,e−i)

∂e2
i

can be written as a finite sum of terms of the form

−
j−1∑
r=1

f ′Θlr

(
e i + x− e lr

)(∏ j−1
s=1,s ̸=r

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j FΘls

(
e i + x− e ls

))
+

j−1∑
r=1

j−1∑
t=1,t ̸=r

fΘlr

(
e i + x− e lr

)
fΘlt

(
e i + x− e l t

) ·(∏ j−1
s=1,s ̸=r,t

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j FΘls

(
e i + x− e ls

))
−

j−1∑
r=1

n−1∑
t= j

fΘlr

(
e i + x− e lr

)
fΘlt

(
e i + x− e l t

) ·(∏ j−1
s=1,s ̸=r

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j,s ̸=t FΘls

(
e i + x− e ls

))
+

n−1∑
r= j

f ′Θlr

(
e i + x− e lr

)(∏ j−1
s=1

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j,s ̸=r FΘls

(
e i + x− e ls

))
−

n−1∑
r= j

j−1∑
t=1

fΘlr

(
e i + x− e lr

)
fΘlt

(
e i + x− e l t

) ·(∏ j−1
s=1,s ̸=t

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j,s ̸=r FΘls

(
e i + x− e ls

))
+

n−1∑
r= j

n−1∑
t= j,t ̸=r

fΘlr

(
e i + x− e lr

)
fΘlt

(
e i + x− e l t

) ·(∏ j−1
s=1

(
1−FΘls

(
e i + x− e ls

))∏n−1
s= j,s ̸=r,t FΘls

(
e i + x− e ls

))
.

Since both fΘi and f ′Θi
are bounded, it follows that

∂2P i, j−1
{i}C

(e i ,x,e−i)

∂e2
i

can be written as a finite

sum of bounded terms. This implies that both
∂2P i, j−1

{i}C
(e i ,x,e−i)

∂e2
i

and
∫ ∂2P i, j−1

{i}C
(e i ,x,e−i)

∂e2
i

fΘi (x)dx

are bounded as well, completing the proof.

Proof of Lemma 1. The proof is by way of contradiction, so suppose that e∗i ≤ e∗k. In

equilibrium, we have ∂Ui(e)
∂e i

∣∣∣
e=e∗ = ∂Uk(e)

∂ek

∣∣∣
e=e∗ = 0. Together with ∂Ui(e)

∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

>
∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

this rules out e∗i = e∗k, so that we can confine attention to the case
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e∗i < e∗k. We rewrite the equilibrium conditions as

∂Ui(e)
∂e i

∣∣∣
e=e∗ +

∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

= 0,

∂Uk(e)
∂ek

∣∣∣
e=e∗ +

∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

= 0,

which can be written as

∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

+
∫ e∗k

e∗i

∂2Ui(e)
∂e i∂ek

∣∣∣
e−k=e∗

−k

dek = 0,

∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

+
∫ e∗k

e∗i

∂2Uk(e)
∂e2

k

∣∣∣∣
e−k=e∗

−k

dek = 0.

Notice that ∂2Ui(e)
∂e i∂ek

does not depend on the cost function c. Thus, if c is sufficiently convex,

i.e., if infe∈[0,ē] c′′ (e) is sufficiently large, then ∂2Ui(e)
∂e i∂ek

> ∂2Uk(e)
∂e2

k
for all e ∈ [0, ē]n. Together

with ∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

> ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

this implies that the two equilibrium condi-

tions cannot be simultaneously fulfilled, leading to the desired contradiction.

Proof of Theorem 1. Player i’s probability of ending up in position m can be written as

Pim(e)=
∫ (

FΘk (x+ e i − ek)P i,m−1
{i,k}C

(e i, x,e−i)+
(
1−FΘk (x+ e i − ek)

)
P i,m−2

{i,k}C
(e i, x,e−i)

)
fΘi (x)dx,

where P i, j
{i,k}C

(e i, x,e−i)= 0 for j ∈ {−1,n−1}. Differentiating with respect to e i leads to

∂Pim(e)
∂e i

=
∫ (

fΘk (x+ e i − ek)P i,m−1
{i,k}C

(e i, x,e−i)+FΘk (x+ e i − ek)
∂P i,m−1

{i,k}C
(e i ,x,e−i)

∂e i

)
fΘi (x)dx

+
∫ (

− fΘk (x+ e i − ek)P i,m−2
{i,k}C

(e i, x,e−i)+
(
1−FΘk (x+ e i − ek)

) ∂P i,m−2
{i,k}C

(e i ,x,e−i)

∂e i

)
fΘi (x)dx

=
∫

fΘi (x) fΘk (x+ e i − ek)
(
P i,m−1

{i,k}C
(e i, x,e−i)−P i,m−2

{i,k}C
(e i, x,e−i)

)
dx

+
∫

fΘi (x)
FΘi (x) FΘi (x)FΘk (x+ e i − ek)

∂P i,m−1
{i,k}C

(e i ,x,e−i)

∂e i
dx

+
∫

fΘi (x)
1−FΘi (x)

(
1−FΘi (x)

)(
1−FΘk (x+ e i − ek)

) ∂P i,m−2
{i,k}C

(e i ,x,e−i)

∂e i
dx.

Recall that player i’s expected payoff is given by Ui (e) = ∑n
j=1 Pi j(e)w j − c (e i). The
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marginal utility can be written as

∂Ui(e)
∂e i

=
n∑

j=1

(∫
fΘi (x) fΘk (x+ e i − ek)

(
P i, j−1

{i,k}C
(e i, x,e−i)−P i, j−2

{i,k}C
(e i, x,e−i)

)
dx

)
w j

+
n∑

j=1

(∫
fΘi (x)
FΘi (x) FΘi (x)FΘk (x+ e i − ek)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i
dx

)
w j

+
n∑

j=1

(∫
fΘi (x)

1−FΘi (x)

(
1−FΘi (x)

)(
1−FΘk (x+ e i − ek)

) ∂P i, j−2
{i,k}C

(e i ,x,e−i)

∂e i
dx

)
w j − c′ (e i) .

Hence,

∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
n∑

j=1

(∫
fΘi (x) fΘk (x)

(
P i, j−1

{i,k}C
(
e∗i , x,e∗

−i
)−P i, j−2

{i,k}C
(
e∗i , x,e∗

−i
))

dx
)

w j

+
n∑

j=1

∫
fΘi (x)
FΘi (x) FΘi (x)FΘk (x)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j

+
n∑

j=1

∫
fΘi (x)

1−FΘi (x)

(
1−FΘi (x)

)(
1−FΘk (x)

) ∂P i, j−2
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j − c′
(
e∗i

)
,

implying that

∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
n∑

j=1

(∫
fΘi (x) fΘk (x)

(
P i, j−1

{i,k}C
(
e∗i , x,e∗

−i
)−P i, j−2

{i,k}C
(
e∗i , x,e∗

−i
))

dx
)

w j

−
n∑

j=1

(∫
fΘi (x) fΘk (x)

(
Pk, j−1

{i,k}C
(
e∗i , x,e∗

−k
)−Pk, j−2

{i,k}C
(
e∗i , x,e∗

−k
))

dx
)

w j

+
n∑

j=1

∫
fΘi (x)
FΘi (x) FΘi (x)FΘk (x)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j

−
n∑

j=1

∫
fΘk (x)
FΘk (x) FΘk (x)FΘi (x)

∂Pk, j−1
{i,k}C

(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j

+
n∑

j=1

∫
fΘi (x)

1−FΘi (x)

(
1−FΘi (x)

)(
1−FΘk (x)

) ∂P i, j−2
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j

−
n∑

j=1

∫
fΘk (x)

1−FΘk (x)

(
1−FΘk (x)

)(
1−FΘi (x)

) ∂Pk, j−2
{i,k}C

(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j.
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Notice that, for z ∈ { j−2, j−1}, we have P i,z
{i,k}C

(
e∗i , x,e∗

−i
)= Pk,z

{i,k}C
(
e∗i , x,e∗

−k

)
and

∂P i,z
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∂Pk,z

{i,k}C
(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

. Thus, the difference in marginal

utilities becomes

∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
n∑

j=1

∫ ( fΘi (x)
FΘi (x) −

fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j

+
n∑

j=1

∫ ( fΘi (x)
1−FΘi (x) −

fΘk (x)
1−FΘk (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

) ∂P i, j−2
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j.

As P i, j
{i,k}C

(e i, x,e−i)= 0 for j ∈ {−1,n−1}, we can rewrite this as

∂Ui(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Uk(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
n−1∑
j=1

∫ ( fΘi (x)
FΘi (x) −

fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j

+
n−1∑
j=1

∫ ( fΘi (x)
1−FΘi (x) −

fΘk (x)
1−FΘk (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

) ∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

dx

w j+1.

The claim from the theorem then follows from an application of Lemma 1.

Proof of Lemma 2. The condition from Theorem 1 can be restated as

∫ ( fΘi (x)
FΘi (x)

− fΘk (x)
FΘk (x)

)
FΘi (x)FΘk (x)

n−1∑
j=1

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

w j

dx

>
∫ ( fΘk (x)

1−FΘk (x)
− fΘi (x)

1−FΘi (x)

)(
1−FΘi (x)

)(
1−FΘk (x)

) ·n−1∑
j=1

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

w j+1

dx.
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Thus, it suffices to show that

∂P i, j−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

= − ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)
P i, j−2

{i,k,l i}C
(
e∗i , x,e∗

−i
)

+ ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)
P i, j−1

{i,k,l i}C
(
e∗i , x,e∗

−i
)

for j ∈ {1, . . . ,n−1}, where P i,−1
{i,k,l i}C

(
e∗i , x,e∗

−i
) = 0. For j = 1, we have P i, j−1

{i,k}C
(
e∗i , x,e∗

−i
) =

P i,0
{i,k}C

(
e∗i , x,e∗

−i
)= FΘl1

(
e∗i + x− e∗l1

)
· ... ·FΘln−2

(
e∗i + x− e∗ln−2

)
. By the product differentia-

tion rule, we obtain

∂P i,0
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

= ∑
l i∈{i,k}C

fΘl i

(
e∗i + x− e∗l i

)∏
l j∈{i,k,l i}C

FΘl j

(
e∗i + x− e∗l j

)
= ∑

l i∈{i,k}C
fΘl i

(
e∗i + x− e∗l i

)
P i,0

{i,k,l i}C
(
e∗i , x,e∗

−i
)
.

Next, let j ∈ {2, . . . ,n−1}. As there are n−2 players besides i and k, P i, j−1
{i,k}C

(
e∗i , x,e∗

−i
)

con-

tains
(n−2

j−1

)
summands, each of which contains n−2 factors. Each summand is of the form(

1−FΘl1

(
e∗i + x− e∗l1

))
·...·

(
1−FΘl j−1

(
e∗i + x− e∗l j−1

))
·FΘl j

(
e∗i + x− e∗l j

)
·...·FΘln−2

(
e∗i + x− e∗ln−2

)
,

and the
(n−2

j−1

)
summands capture all permutations of the n−2 players in {i,k}C.

Accordingly,
∂P i, j−1

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

contains
(n−2

j−1

)·(n−2) summands, each of which

contains n−2 factors. Each summand is either of the form

− fΘl1

(
e∗i + x− e∗l1

)
·
(
1−FΘl2

(
e∗i + x− e∗l2

))
· ... ·

(
1−FΘl j−1

(
e∗i + x− e∗l j−1

))
·

FΘl j

(
e∗i + x− e∗l j

)
· ... ·FΘln−2

(
e∗i + x− e∗ln−2

)
or of the form

(
1−FΘl1

(
e∗i + x− e∗l1

))
· ... ·

(
1−FΘl j−1

(
e∗i + x− e∗l j−1

))
·

fΘl j

(
e∗i + x− e∗l j

)
·FΘl j+1

(
e∗i + x− e∗l j+1

)
· ... ·FΘln−2

(
e∗i + x− e∗ln−2

)
,

and the
(n−2

j−1

) · (n−2) summands again capture all permutations of the n−2 players. In

particular, j−1
n−2 ·

(n−2
j−1

) ·(n−2)= ( j−1) ·(n−2
j−1

)
summands are of the first form, and n−2−( j−1)

n−2 ·(n−2
j−1

) · (n−2) = (n−1− j) · (n−2
j−1

)
are of the second form. As all of these summands are
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symmetric, the share of summands in which the pdf of a particular player in {i,k}C (say

l1) occurs, is 1
n−2 . This means that the pdf of this particular player occurs in j−1

n−2 · (n−2
j−1

)
summands of the first form and in n−1− j

n−2 · (n−2
j−1

)
summands of the second form.

The first form of summand contains j−2 “successes”, and if we focus on player l1, the
j−1
n−2 ·

(n−2
j−1

)
summands corresponding to this player capture all permutations of the n−3

players in {i,k, l1}C. Notice that j−1
n−2 ·

(n−2
j−1

)= ( j−1)(n−2)!
(n−2)( j−1)!(n−1− j)! = (n−3)!

( j−2)!(n−1− j)! =
(n−3

j−2

)
. As all

permutations of players in {i,k, l1}C are considered and as P i, j−2
{i,k,l1}C

(
e∗i , x,e∗

−i
)

contains(n−3
j−2

)
summands, the sum of the j−1

n−2 · (n−2
j−1

)
terms of the first form can be written as

− fΘl1

(
e∗i + x− e∗l1

)
P i, j−2

{i,k,l1}C
(
e∗i , x,e∗

−i
)
.

Likewise, each player in {i,k}C corresponds to n−1− j
n−2 · (n−2

j−1

)
summands of the second

form and they each contain j−1 “successes”. The n−1− j
n−2 ·(n−2

j−1

)
summands again capture all

permutations of the n−3 players in {i,k, l1}C. Notice that n−1− j
n−2 ·(n−2

j−1

)= (n−1− j)(n−2)!
(n−2)( j−1)!(n−1− j)! =

(n−3)!
( j−1)!(n−2− j)! =

(n−3
j−1

)
. As all permutations of players in {i,k, l1}C are considered and as

P i, j−1
{i,k,l1}C

(
e∗i , x,e∗

−i
)

contains
(n−3

j−1

)
summands, the sum of the n−1− j

n−2 · (n−2
j−1

)
terms of the

second form can be written as fΘl1

(
e∗i + x− e∗l1

)
P i, j−1

{i,k,l1}C
(
e∗i , x,e∗

−i
)
.

The proof of the lemma then follows by applying the same argument to all other

players.

A.2 General production technology

With a general production technology, player i wins against k iff

g (θi, e i)> g (θk, ek) ,

where we assume that g is continuously differentiable, and both increasing in θi and e i.

Define ge :R→R by ge (x)= g (x, e) and denote the inverse by g−1
e . Player i then performs

better than k iff

g−1
ek

(g (θi, e i))> θk.

Accordingly, for a given θi, i performs better than k with probability FΘk

(
g−1

ek
(g (θi, e i))

)
.

This means that player i’s probability of ending up in position m can be written as

Pim (e)=
∫ (

FΘk

(
g−1

ek
(g (x, e i))

)
P i,m−1

{i,k}C
(e i, x,e−i)

+ (
1−FΘk

(
g−1

ek
(g (x, e i))

))
P i,m−2

{i,k}C
(e i, x,e−i)

)
fΘi (x)dx.
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Differentiating with respect to e i yields

∂Pim(e)
∂e i

=
∫ (

fΘk

(
g−1

ek
(g(x,e i))

)
g′

ek

(
g−1

ek (g(x,e i))
)∂g(x,e i)

∂e i

P i,m−1
{i,k}C

(e i, x,e−i)+FΘk

(
g−1

ek
(g (x, e i))

) ∂P i,m−1
{i,k}C

(e i ,x,e−i)

∂e i

)
fΘi (x)dx

+
∫ (

− fΘk

(
g−1

ek
(g(x,e i))

)
g′

ek

(
g−1

ek (g(x,e i))
)∂g(x,e i)

∂e i

P i,m−2
{i,k}C

(e i, x,e−i)+
(
1−FΘk

(
g−1

ek
(g (x, e i))

)) ∂P i,m−2
{i,k}C

(e i ,x,e−i)

∂e i

)
fΘi (x)dx.

It follows that

∂Pim(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Pkm(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∫  fΘk (x)

g′
e∗i

(x)
∂g(x,ei)
∂ei

∣∣∣
ei=e∗i

P i,m−1
{i,k}C

(
e∗i , x,e∗

−i
)+FΘk (x)

∂P i,m−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘi (x)dx

+
∫ − fΘk (x)

g′
e∗i

(x)
∂g(x,e i)
∂e i

∣∣∣∣
ei=e∗i

P i,m−2
{i,k}C

(
e∗i , x,e∗

−i
)+ (

1−FΘk (x)
) ∂P i,m−2

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘi (x)dx

−
∫  fΘi (x)

g′
e∗i

(x)
∂g(x,ek)
∂ek

∣∣∣∣
ek=e∗i

Pk,m−1
{i,k}C

(
e∗i , x,e∗

−k
)+FΘi (x)

∂Pk,m−1
{i,k}C

(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘk (x)dx

−
∫ − fΘi (x)

g′
e∗i

(x)
∂g(x,ek)
∂ek

∣∣∣∣
ek=e∗i

Pk,m−2
{i,k}C

(
e∗i , x,e∗

−k
)+ (

1−FΘi (x)
) ∂Pk,m−2

{i,k}C
(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘk (x)dx.

Now notice that

fΘk (x)

g′
e∗i

(x)
∂g(x,e i)
∂e i

∣∣∣∣
ei=e∗i

P i,m−1
{i,k}C

(
e∗i , x,e∗

−i
)

fΘi (x)= fΘi (x)

g′
e∗i

(x)
∂g(x,ek)
∂ek

∣∣∣∣
ek=e∗i

Pk,m−1
{i,k}C

(
e∗i , x,e∗

−k
)

fΘk (x)

and

fΘk (x)

g′
e∗i

(x)
∂g(x,e i)
∂e i

∣∣∣∣
ei=e∗i

P i,m−2
{i,k}C

(
e∗i , x,e∗

−i
)

fΘi (x)= fΘi (x)

g′
e∗i

(x)
∂g(x,ek)
∂ek

∣∣∣∣
ek=e∗i

Pk,m−2
{i,k}C

(
e∗i , x,e∗

−k
)

fΘk (x) .
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The above difference in marginal probabilities thus simplifies to

∂Pim(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Pkm(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∫ FΘk (x)

∂P i,m−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘi (x)dx

+
∫ (

1−FΘk (x)
) ∂P i,m−2

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘi (x)dx

−
∫ FΘi (x)

∂Pk,m−1
{i,k}C

(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘk (x)dx

−
∫ (

1−FΘi (x)
) ∂Pk,m−2

{i,k}C
(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘk (x)dx,

which can be rewritten as

∫ FΘi (x)FΘk (x)
∂P i,m−1

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘi (x)
FΘi (x) dx

−
∫ FΘi (x)FΘk (x)

∂Pk,m−1
{i,k}C

(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘk (x)
FΘk (x) dx

+
∫ (

1−FΘi (x)
)(

1−FΘk (x)
) ∂P i,m−2

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘi (x)
1−FΘi (x) dx

−
∫ (

1−FΘi (x)
)(

1−FΘk (x)
) ∂Pk,m−2

{i,k}C
(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

 fΘk (x)
1−FΘk (x) dx.

Notice that
∂P i,m−1

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∂Pk,m−1

{i,k}C
(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

and

∂P i,m−2
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∂Pk,m−2

{i,k}C
(ek,x,e−k)

∂ek

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

. We can thus write the preceding

expression as

∂Pim(e)
∂e i

∣∣∣
ek=e∗i ,e−k=e∗

−k

− ∂Pkm(e)
∂ek

∣∣∣
ek=e∗i ,e−k=e∗

−k

=
∫ FΘi (x)FΘk (x)

∂P i,m−1
{i,k}C

(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

( fΘi (x)
FΘi (x) −

fΘk (x)
FΘk (x)

)
dx

+
∫ (

1−FΘi (x)
)(

1−FΘk (x)
) ∂P i,m−2

{i,k}C
(e i ,x,e−i)

∂e i

∣∣∣∣∣
ek=e∗i ,e−k=e∗

−k

( fΘi (x)
1−FΘi (x) −

fΘk (x)
1−FΘk (x)

)
dx.
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This generalizes our previous results (keeping in mind that the “success probabilities”

determining P i, j
{i,k}C

(e i, x,e−i) are now given by 1− FΘl

(
g−1

e∗l

(
g

(
x, e∗i

)))
rather than 1−

FΘl

(
e∗i + x− e∗l

)
).
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