
Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany´s Excellence Strategy – EXC 2126/1– 390838866 is gratefully acknowledged.

www.econtribute.de

ECONtribute
Discussion Paper No. 276

February 2024

Hauke Licht Ronja Sczepanski
Moritz Laurer Ayjeren Bekmuratovna

No More Cost in Translation: Validating Open-
Source Machine Translation for Quantitative 
Text Analysis

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2126/1-390838866 is gratefully acknowledged.



No more cost in translation: Validating open-source
machine translation for quantitative text analysis

Hauke Licht∗1, Ronja Sczepanski2, Moritz Laurer3,4, and

Ayjeren Bekmuratovna5

1University of Cologne
2Sciences Po Paris

3Hugging Face
4Vrije Universiteit Amsterdam

5DHL

February 5, 2024

Abstract

As more and more scholars apply computational text analysis methods to multi-
lingual corpora, machine translation has become an indispensable tool. However,
relying on commercial services for machine translation, such as Google Translate
or DeepL, limits reproducibility and can be expensive. This paper assesses the vi-
ability of a reproducible and affordable alternative: free and open-source machine
translation models. We ask whether researchers who use an open-source model
instead of a commercial service for machine translation would obtain substantially
different measurements from their multilingual corpora. We address this question
by replicating and extending an influential study by de Vries et al. (2018) on the
use of machine translation in cross-lingual topic modeling, and an original study of
its use in supervised text classification with Transformer-based classifiers. We find
only minor differences between the measurements generated by these methods when
applied to corpora translated with open-source models and commercial services, re-
spectively. We conclude that “free” machine translation is a very valuable addition
to researchers’ multilingual text analysis toolkit. Our study adds to a growing body
of work on multilingual text analysis methods and has direct practical implications
for applied researchers.
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1 Introduction

Political scientists often want to study phenomena in text materials such as political

speeches, administrative documents, or news reports written in different languages. Ma-

chine translation (MT) is a popular strategy for researchers who want to apply quantita-

tive text analysis methods to such multilingual text collections (e.g., Baum and Zhukov

2019; Dancygier and Margalit 2020; Düpont and Rachuj 2022; Barberá et al. 2022; cf.

Baden et al. 2022, Dolinksy et al. 2022, Licht and Lind 2023). It allows bridging language

barriers by transferring documents written in different languages into a single target lan-

guage and thus enables researchers to analyze the resulting monolingual documents with

standard text-as-data methods (e.g. Lucas et al. 2015; Vries et al. 2018; Reber 2019;

Windsor et al. 2019; Courtney et al. 2020; Lind et al. 2021).

To date, however, most scholars rely on commercial services for machine translation,

such as Google Translate or DeepL (but see Licht 2023; Laurer et al. 2023; Mate et

al. 2023). This approach comes with clear limitations. First, using commercial services

limits reproducibility because the underlying translation models are closed-source and

not versioned (Chan et al. 2020). Second, machine-translating large amounts of text can

be expensive because commercial services charge users for each translated character.1

This paper argues for the viability of an affordable, transparent, and reproducible

alternative: using open-source models for machine translation. Open-source MT models,

such as OPUS-MT (Tiedemann and Thottingal 2020) or Facebook Research’s M2M model

(e.g. Fan et al. 2021), allow researchers to translate large text corpora without needing to

pay fees to a commercial service. Moreover, using these models for machine translation

ensures reproducibility because they are publicly available for download.

While open-source MT models promise cheaper and reproducible machine translation,

applied researchers must know whether they enable reliable cross-lingual quantitative text

analysis of political text corpora. We thus assess whether machine-translating multilin-

gual corpora with available open-source models instead of a commercial service (Google

1. see Table 1 on page 6
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Translate or DeepL) reduces reliability and yields substantially different measurements

when applying computational text analysis methods. First, we extend the seminal study

by de (Vries et al. 2018), who evaluate the machine translation approach for cross-lingual

topic modeling (Vries et al. 2018). Second, we present an original study of the reliability

of machine translation for supervised text classification with Transformer-based language

models.

Our findings support the conclusion that open-source MT models can be a reliable

replacement for commercial services when applying bag-of-words as well as Transformer-

based text analysis methods. We find only minor differences between the measurements

obtained from corpora translated with open-source models and commercial services. In

the case of our topic modeling study, we find that the topics estimated by a model fitted

to parliamentary speeches we machine-translated with the open-source M2M model are

as similar to the topic model fitted to human-translated speeches as those estimated

by a comparable model fitted on speech translations generated with Google Translate.

Further, both machine translation-based models allocate speeches to similar topics as

the human translation-based model. In the case of our supervised text classification

study, we find that the difference between Transformer-based classifiers fine-tuned using

translations from open-source MT models perform, on average, only 0.007 F1 score points

worse than comparable classifiers fine-tuned using translations from a commercial MT

model as input.

We conclude that “free” machine translation is a very valuable addition to researchers’

multilingual text analysis toolkit. Our study adds to a growing body of work on multilin-

gual text analysis methods and has direct practical implications for applied researchers.

To facilitate the wider adoption of free machine translation in applied research, we provide

an online translation application.2

2. The application is available online
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2 Machine translation for quantitative text analysis

Machine translation has been extensively validated for various political text analysis

tasks and languages. Table A1 in the Supporting Materials provides an overview of this

literature. While a comprehensive review of this literature is beyond the scope of this

article (see Licht and Lind 2023), we highlight key insights from this literature.

In their seminal study, Lucas et al. (2015) argue that comparative researchers can

use machine translation to translate multilingual corpora into English to enable their

joint analysis with standard bag-of-words methods. They demonstrate this strategy by

analyzing Arabic and Chinese social media posts.

The study by de Vries et al. (2018) was first in supporting Lucas et al.’s argument

with extensive comparative evidence. They base their study on a subset of the EuropParl

parallel corpus (Koehn 2005), which contains the original text of speeches held in the

European Parliament and their translations into the EU’s official languages by its expert

translators. The authors constructed several bilingual parallel corpora from this dataset

by pairing English texts’ expert translations with their German, Spanish, French, and

Polish versions. De Vries et al. (2018) demonstrate that machine translation with Google

Translate enables translation of texts from German, Spanish, French, Danish, and Polish

into English with sufficient reliability for bag-of-words topic modeling when compared to

the benchmark of translation by human experts.

De Vries et al. (2018) study has been highly influential. It is frequently cited in applied

research to justify a machine translation approach to cross-lingual bag-of-words text

analyses (e.g., Barberá et al. 2022). Further, it has been the point of departure for several

other methodological advancements. For example, Reber (2019) systematically compares

the reliability of alternative translation strategies and commercial MT services. Further,

Düpont and Rachuj (2022) evaluate the machine translation approach for comparing the

textual similarity of documents across languages. Courtney et al. (2020) presents evidence

on the reliability of machine translation for bag-of-words supervised text classification.

They examine whether supervised text classifiers trained on English-language machine
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translations of originally Spanish or German texts classify held-out texts as accurately as

classifiers trained on English texts. More recently, Mate et al. (2023) have made a first

step in adding to this finding by examining how the translation of Polish and Hungarian

parliamentary speeches affects the reliability of Transformer-based classifiers (see also

Laurer et al. 2023).

2.1 Open-source MT: an affordable, transparent, and

reproducible alternative

The results summarized above underscore that machine translation can enable reliable

and valid multilingual text analysis. However, using commercial services such as Google

Translate is relatively expensive and raises concerns about the reproducibility and trans-

parency of research (Chan et al. 2020).

We argue that open-source machine translation (MT) models, such as OPUS-MT

(Tiedemann and Thottingal 2020) and M2M (Fan et al. 2021), offer a promising alterna-

tive due to their cost-effectiveness, reproducibility, and transparency.3 Specifically, using

open-source models is cheaper because researchers with some programming experience

only need to invest in GPU computing resources instead of paying a fee for translation.

Further, using open-source MT models is more transparent than a commercial service

and ensures the reproducibility of analyses involving machine translation.

Cost efficiency and resource requirements

Using commercial services to machine-translate large text corpora can be expensive, as

one pays for each translated character. Accordingly, researchers’ reliance on commercial

services creates an undesirable barrier for those with limited budgets (Baden et al. 2022).

Open-source MT models can lower this barrier. They are freely available for download and

use, and researchers thus do not have to pay translation fees. Instead, the only financial

cost arising when using open-source MT models results from the energy consumed for

computing and, if necessary, from using cloud servers. Overall, this cost efficiency makes

3. Please refer to the Supporting Materials, Section A.1, for details about these MT models.
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Table 1: Comparison of costs in Euro and compute time arising when translating a
fixed amount of text with commercial services or the M2M open-source MT model.

N characters API/Model GPU costs (EUR) run time (h)

18 mio. Google Trans. 326.93 -/- a

18 mio. DeepL 359.26 -/- a

18 mio. M2M-418m A100 2.36 1.6
18 mio. M2M-418m V100 2.36 3.9 b

18 mio. M2M-418m T4 2.36 10.4 b

a we disregard the time elapsed for sending API requests
b estimates based on relative efficiency relative to A100 GPU

open-source MT models an attractive option for researchers on a tight budget and may

even help level the playing field for smaller research teams.

Table 1 provides a cost comparison between two popular commercial MT services

(Google Translate and DeepL) and a popular open-source MT model (M2M-418m). The

two main costs incurred by MT are money and time. For commercial translation services

(APIs), financial costs are calculated on a per-character basis. For open-source models,

the costs are based on GPU4 costs, which are easily accessible through services like Google

Colab.5

Our cost estimates lead to two important insights: First, using open-source models

is significantly cheaper than commercial services. Translating 18 million characters costs

more than EUR 300 via an API and less than EUR 3 with an open-source model. The

trade-off is between compute time and expertise. Especially on older GPUs, translations

can take many hours to complete. Moreover, running the required software on a GPU

requires some additional expertise (e.g., moderate Python programming skills).

To tilt the balance further in favor of the open-source approach, we provide an inter-

active Google Colab-based online translation application,6 code base, and tutorial. We

4. GPUs are “Graphics Processing Units” designed for efficient parallel processing.
5. For commercial services, the costs are: USD 20 per 1 million characters for Google Translate and

USD 20 per 1 million characters for DeepL. Google Colab makes GPUs accessible either for free (with
lower reliability) or for around EUR 11 for a fixed budget of compute hours. For our our cost estimate in
table below, we used a set of 500 long parliamentary speeches, which amounted to 18 million characters.
We then computed the API costs or the costs for different GPUs accessible via Google Colab Pro. The
costs are derived empirically for the A100 GPU and then estimated for the other two types of GPUs.

6. The application is available online
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have designed our app to ease the use of open-source MT models for researchers with

no Python programming skills. Our accompanying tutorial and code base provide re-

searchers with basic Python programming experience with a template they can adapt

to their needs. Given that the level of technical prowess in the (computational) social

science community is steadily increasing (cf. Baden et al. 2022), these resources should

lower the above-discussed barriers to using open-source MT models.

Transparency and reproducibility

While some might find the practical usability of commercial MT services appealing and

the costs their use creates negligible, using commercial MT services raises concerns about

reproducibility and transparency. First, using commercial MT services, researchers have

no control over the specific version of the model used for translation, as they are “closed

source”. This prevents others from replicating their results later because the MT system

used originally might have changed in the meantime (Chan et al. 2020). This problem does

not arise when using open-source MT models. They are typically versioned and available

from publicly accessible platforms or repositories. Researchers can thus document the

exact version of the model they have used, which makes research using open-source MT

models reproducible.

Second, open-source MT models are transparent. The research teams providing them

typically document the parallel corpora and model architecture used to train their models.

Further, it is a well-established best practice to report models’ performances on pre-

defined test sets (“benchmarks”). This enables researchers to make informed decisions

about which MT model to use in a specific application (cf. Licht and Lind 2023), for

example, by assessing the reliability of the available models in the languages they want

to translate. In contrast, the information available about the performance of commercial

services’ MT models often does not meet scientific standards, nor is it transparent what

data has been used for training.

7



3 Two studies on the comparative reliability of

open-source machine translation

We believe the benefits of using open-source MT models for political science research

outweigh the potential costs. However, researchers’ main concern should be whether

they enable comparatively reliable cross-lingual quantitative text analysis in comparison

to commercial services (cf. Vries et al. 2018; Reber 2019; Courtney et al. 2020; Windsor

et al. 2019).

We address this question empirically by comparing results from open-source MT

against commercial MT. The general intuition of our empirical strategy is simple. We

first apply different text-as-data methods to texts that were translated with commer-

cial MT services, open-source MT models, and, if available, by expert translators. We

then compare methods’ outputs obtained for the same documents using different trans-

lations. This allows us to assess whether translating with an open-source model instead

of a commercial service yields systematically different measurements and, hence, levels of

reliability.

Our studies cover two widely used quantitative text analysis methods: topic modeling

and supervised text classification. Further, our studies are based on corpora from different

domains of political communication (parliamentary speech politics, party manifestos, and

social media).

3.1 Study 1: Cross-lingual topic modeling

In our first study, we build on de Vries et al. (2018) to assess whether the translation source

(commercial vs. free MT) affects the reliability of LDA topic modeling. The main strength

of de Vries and colleagues’ original research design is that it allows comparing the in- and

outputs of a topic model obtained from machine-translated texts to those obtained from

human expert translations. This strategy provides an ideal comparison because human

experts are “gold-standard” translators. For both corpora, they pre-processed the text
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data,7 created Term-Document-Matrices (TDMs) that count the number of occurrences of

words (“terms”) in a speech (“document”), and fit an LDA topic model (Blei et al. 2003).

The authors then compare whether the topic content of the models fitted to human

and Google Translate translations is similar in terms of stems and whether the same

documents have similar probabilities of being in a specific topic. Overall, they find that

the topic model based on machine-translated speeches is very similar to the one fitted

on human translations when it comes to the content of a topic and how documents are

matched to the topics. We take advantage of this strength of their study in our analysis.

3.1.1 Empirical strategy

Like de Vries et al. (2018), we compare the reliability of machine translation for topic

modeling by comparing topic model outputs to those of a model fitted directly to texts

translated by human experts. The intuition of this comparison is the following. If it shows

higher discrepancies when we use an open-source MT model for translations instead of

Google Translate, this would indicate that relying on open-source models for translation

impairs the reliability of topic modeling. This finding would support the conclusion that

open-source MT models’ translation quality is insufficient for applied bag-of-words text

analysis. However, if the topic model fitted on open-source MT models’ translations

fare no worse (or even better) than the benchmark model compared to an equivalent

topic model fitted on translations obtained with Google Translate, we would conclude

that open-source MT models enable comparatively reliable topic modeling of machine-

translated texts.

Accordingly, we evaluate whether using open-source MT models for translation instead

of Google Translate negatively affects topic models’ reliability compared to the human

translation benchmark. To compare the quality of open-source machine translation, we

translated the parallel corpora from the respective language into English with OPUS-MT

(Tiedemann and Thottingal 2020).8 We then pre-processed the data in the same way

7. deleting speeches containing less than 50 words, removing stop words, numbers, and punctuation,
as well as stemming and lower casing words

8. We chose OPUS-MT because it had the lowest translation costs regarding time and CO2 emissions
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as de Vries et al. (2018) did, created a TDM, and fitted an LDA topic model with 90

topics (using the same random seed, burn-in time, and number of iterations). Finally,

we compare the in- and outputs of topic models fitted to OPUS-MT or Google Translate

translations to the ones obtained from human expert-translated texts.9 We used the

same metrics as de Vries et al. (2018): The similarity between documents’ bag-of-word

representations. The similarity between documents’ estimated topic proportions. And

the similarity between estimated topics’ document compositions. Overall, our empirical

strategy allows us to evaluate whether, compared to the commercial Google Translate

translations, the translations obtained from OPUS-MT led to stronger discrepancies vis-

à-vis the expert translation benchmark.

3.1.2 Results

Overall, our results indicate that using the open-source OPUS-MT model for translation

instead of Google Translate does not negatively affect topic models’ reliability compared

to the human translation benchmark.

First, we look at how the machine translation source affects the bag-of-words inputs to

the topic model. Specifically, we compare the term-document matrices (TDM) obtained

from the human expert translations with the TDMs obtained from Google Translate and

OPUS-MT at the document level by computing document-level cosine similarity scores.

As summarized in Table 2, Google Translate and OPUS-MT result in very similar docu-

ment input representations (see also Figure B1 in the Supporting Materials). Specifically,

the two machine translation models are on par when comparing the total means of TDMs

cosine similarity with the human translation benchmark. As with Google Translate, 92

percent of the OPUS-translated documents had a cosine similarity of 0.8 or higher with

the human-translated English texts.10 Therefore, using OPUS-MT for machine trans-

lation resulted in document representations that are as similar to those obtained from

produced by the GPU compute time.
9. To make topic models’ outputs comparable, similar to Vries et al. (2018), we have matched the

topics based on the stems allocated to the topics.
10. Google Translate has a slight advantage in Polish, German, and Danish, and OPUS-MT performs

exceptionally well in Roman languages such as French and Spanish.
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Table 2: Summary statistics of cosine similarities between bag-of-words represen-
tations’ onbtained from machine- and human-translated texts at document level.
Columns grouped by translation model.

Google Translate OPUS-MT

Language N Mean Std. dev. Min Max Mean Std. dev. Min Max

Danish 2301 0.915 0.063 0.549 0.992 0.902 0.079 0.434 0.988
German 2148 0.915 0.074 0.488 0.991 0.920 0.072 0.279 0.992
Spanish 2335 0.929 0.059 0.483 0.991 0.935 0.056 0.614 0.992
French 2347 0.925 0.064 0.564 0.989 0.930 0.060 0.510 0.991
Polish 2338 0.913 0.073 0.475 0.989 0.908 0.085 0.130 0.990
Total 11469 0.920 0.067 0.475 0.992 0.919 0.072 0.130 0.992

Table 3: Summary statistics of correlations between document-level topic pro-
portion estimates obtained from machine- and human-translated texts. Columns
grouped by translation model.

Google Translate OPUS-MT

Language N Mean Std. dev. Min Max Mean Std. dev. Min Max

Danish 2301 0.809 0.237 -0.059 0.999 0.788 0.185 -0.075 0.996
German 2148 0.799 0.156 0.007 0.997 0.780 0.187 0.035 0.997
Spanish 2335 0.772 0.211 -0.092 0.997 0.781 0.191 -0.048 0.997
French 2347 0.761 0.194 -0.069 0.996 0.801 0.206 -0.036 0.997
Polish 2338 0.769 0.218 -0.038 0.995 0.778 0.243 -0.052 0.997

human expert translations as when using Google Translate.

The discrepancies between the bag-of-words obtained by tokenizing texts translated

with OPUS-MT instead of Google Translate seem to be explained by these models’ dif-

ferent vocabulary sizes. Upon closer inspection of the TDMs, it appears that both the

texts translated by human experts and those translated with Google Translate contain a

similar number of unique terms. In contrast, the number of unique terms in the corpus

translated with OPUS-MT is substantially lower (see Table B1 in the Supporting Ma-

terials). As a result, the overlap of unique terms between the human gold standard is

slightly smaller for OPUS-MT than for Google Translate per language. This might be

because OPUS-MT is an open-source model, and its English vocabulary is thus likely

more limited than that of Google Translate’s model. This limitation in vocabulary size

may explain other differences between Google Translate and Opus, as overlap in word

frequencies is also important for topic modeling tasks.
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As the next step of our analysis, we assess how the machine translation source affects

documents’ estimated topic proportions, one of the main outputs of the LDA topic model.

As shown in Table 3, we find that documents’ estimated topic proportions are highly

similar between Google Translate and the gold standard model and between the gold

standard model and OPUS-MT (see also Figure Figure B2 in the Supporting Materials).

The average correlation between the measurements of the topic model using OPUS-

MT translations and those of the model fitted to human translations is 0.785. For the

model based on Google Translate translations, this correlation is 0.782. Looking at

differences across languages, it is notable that OPUS-MT performs exceptionally well for

French, with an average correlation of 0.801. On the other hand, Google Translate has

a higher correlation with the gold standard for German, with an average correlation of

0.809. Overall, however, we conclude that there are no substantial differences in topic

proportions assigned to documents when using OPUS-MT instead of Google Translate.

Lastly, we assess whether the topics learned by the models trained on machine-

translated texts are comparable to those learned by the model using human expert trans-

lations. As shown in Figure 1, the correlations of learned topics’ prevalence across docu-

ments with those in the human translation benchmark are overall very high for both MT

models. This holds regardless of the source language, and we hence did not observe any

language bias when comparing the performance of OPUS-MT and Google Translate.11

And as is shown in Figure B3 in the Supporting Materials, there is also no substantial

difference between MT models in terms of how the topics learned from their translation

compared to the human translation benchmark in terms of content. The stems load

similarly on topics extracted from the machine-translated texts as on the same topics

extracted from human-translated data for French, Danish, and German. However, slight

differences exist in the overlap of features for Polish and Spanish. Overall, the results do

not indicate a substantial difference between Google Translate and OPUS-MT in their

alignment with the stems of topics in the human-translated data-based topic models.

11. Both translation systems excel in Danish and Romanic languages and perform slightly less well on
Polish, the one Slavic language in our parallel corpus.
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Correlation between machine− and human−translated documents

MT model: Google Translate OPUS−MT

Figure 1: Similarity of corpus-level topical prevalence.

3.2 Study 2: Machine translation in supervised classification

Should researchers expect that supervised classifiers are less reliable in a labeling task

when fine-tuned using texts translated with an open-source instead of a commercial MT

model?

In our second study, we address this question with a large comparative experiment

that allows us to estimate the expected performance difference between classifiers fine-

tuned using an open-source MT model’s translations as text inputs to their counterparts

fine-tuned with translations generated by a commercial MT model.

3.2.1 Data

We have compiled a large benchmark of labeled multilingual political text data sets.

Our benchmark includes four replication data sets (Düpont and Rachuj 2022; Lehmann

and Zobel 2018; Poljak 2023; Theocharis et al. 2016). As shown in Table 4, these data

sets jointly cover 10 European languages and three domains of political communication

(parliamentary speech, party manifestos, and social media).

The texts in these four datasets have been coded on multiple dimensions. As shown

in Table 5, our benchmark thus covers various target concepts, ranging from sentiment

over negative campaigning to incivility. We use this variation within and across datasets

13



Table 4: Datasets

Description Languages

Düpont & Rachuj (2022): sentences from
manifestos taken from the CMP corpus

Danish, Dutch, Finish,
French, German, Italian,
Spanish, Swedish

Lehmann & Zobel (2018): quasi-sentences from
manifestos taken from the CMP corpus

Danish, Dutch, English,
Finish, French, German,
Spanish, Swedish

Poljak (2023): parliamentary speeches delivered
in Question Time sessions

Dutch, English, French a

Theocharis et al. (2016): tweets, retweets, and
replies to tweets by candidates for the 2014
European Parliament election

English, German, Spanish
b

a additional analyses conducted, including speeches from Croatia written in
Bosnian and Croatian
b additional analyses conducted, including tweets written in Greek

to define 15 classification tasks (see column two in Table 5).

We adopt this comparative approach to facilitate the generalizability of our findings.

By including tasks focusing on concepts with varying levels of difficulty in corpora from

different domains, we ensure that our findings on the “reliability cost” of using open-

source are not specific to a single data set, target concept, or classification task.

We have obtained machine translations into English for all non-English texts in our

four data sets from two commercial services (DeepL and Google Translate) and three

open-source MT models (M2M 418M, M2M 1.2B, and OPUS-MT). In addition, all but

the Lehmann and Zobel (2018) data come with Google Translate translations that the

data sets’ owners obtained when compiling them.12

3.2.2 Empirical strategy

Our main research question is whether it makes a difference for a classifier’s reliability

to use an open-source instead of a commercial MT model to translate the texts taken

as inputs when fine-tuning it. Accordingly, we are not primarily interested in how well

classifiers perform in a task but how classifiers fine-tuned for the same task compare when

12. Theocharis et al. (2016) obtained their Google Translate translations in 2015, Düpont and Rachuj
(2022) in 2020, and Poljak (2023) in 2021 according to our correspondence with the authors.
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Table 5: Tasks overview

Data Task Label classes

Düpont & Rachuj: sentences from manifestos taken from the CMP corpus

CMP major policy
domain categories

classify the policy topic
discussed in quasi-sentence

extrel, freedem, polsys,
econ, welqual, fabsoc,
socgrp

CMP left–right position
indicators

classify the stance expressed
in quasi-sentence

left, right, none

classify stance expressed in
quasi-sentence (binary)

left, right

CMP left–right position
indicators in domain
category “Economy"

classify the stance expressed
in quasi-sentences about
economic issues (binary)

left, right

CMP left–right position
indicators in damain
category “Freedom &
Democracy"

classify the stance expressed
in quasi-sentences about the
issue of freedom and
democracy (binary)

left, right

Lehmann & Zobel: quasi-sentences from manifestos taken from the CMP corpus

PimPo issue categories classify the issue focus of
quasi-sentences

immigration, integration

PimPo position
indicator

classify the stance expressed
in quasi-sentences about the
issues of immigration and
integration (binary)

position: sceptical,
supportive

Poljak: parliamentary speeches delivered in Question Time sessions

dichotomized attack
count indicator

detect whether a speech
contains one or more attacks
of parliamentary actors

attack: yes, no

attack type indicators classify the type of attack attack type: policy, trait,
both

incivility indicator detect incivile attacks incivile: yes, no
Theocharis et al.: tweets, retweets, and replies to tweets by candidates for the 2014 European Parlia-
ment election

sentiment categories classify the sentiment of
tweets

positive, neutral, negative

classify the sentiment of
tweets (binary)

positive, negative

type of communication
indicator

classify the type of
communication in tweets

broadcasting, engaging

politeness indicator detect impolite tweets polite, impolite
tweet focus indicator detect political tweets political: yes, no

using different translations as inputs.

We address this question empirically by fine-tuning one classifier per text transla-
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tion model (i.e., one using DeepL translations, one using Google Translate translations,

etc.) for each of our 15 tasks.13 This results in six (five) classifiers per task for datasets

with(out) old Google Translate translations.14 In addition, we have fine-tuned one mul-

tilingual classifier per task to also allow for additional comparisons to the alternative

strategy of aligning texts through embedding instead of translation (cf. Licht and Lind

2023).15

We then compare these classifiers’ language- and label class-specific performances

in labeling held-out texts within tasks, using the F1 score as an evaluation metric to

estimate classifiers’ reliability.16 Holding constant the random seed, data splits, and fine-

tuning hyper-parameters for each task,17 we can directly compare the predictions and

out-of-sample classification performances of classifiers fine-tuned using different machine

translations of the same texts. We can thus put classifiers fine-tuned using texts machine-

translated with commercial MT services into a head-to-head comparison with classifiers

fine-tuned using machine translations generated with open-source models. This allows us

to assess, for example, whether a sentiment classifier fine-tuned using OPUS-MT transla-

tions achieved a lower F1 score in classifying originally Spanish texts than a comparable

classifier fine-tuned using DeepL translations.

Our main analysis focuses on estimating the average performance difference of classi-

fiers fine-tuned using open-source MT models’ translations relative to classifiers fine-tuned

using commercial MT models’ translations. To this end, we combine classifiers’ language-

and label class-specific F1 scores across tasks and regress these scores on an indicator of

the (type of) MT model used to translate texts.18 To account for uncertainty in estimates

of classifiers’ test set F1 scores, we use 50 bootstrapped F1 scores for each classifier as

13. We applied inverse class weighting to improve classification performance for minority label classes,
and for severely imbalanced tasks, we down-sampled majority class instances in the training data (see
Table C6).

14. We have used the RoBERTa base checkpoint for fine-tuning for all except those in the Theocharis
et al. (2016) data set. As the Theocharis et al. (2016) data set records Twitter posts, we used the
RoBERTa-based Twitter language model pre-trained by Barbieri et al. (2020) instead.

15. using XLM-T (Barbieri et al. 2022) for the tasks in the Theocharis et al. (2016) data set and
XLM-RoBERTa (Conneau et al. 2020) instead

16. We focus on the F1 score because the label classes are imbalanced in all our tasks (cf. Table C1–C4).
17. see Table C6
18. We exclude F1 scores in classifying English-language texts from this comparison, as they would

downward bias our performance difference estimates. However, our results are robust to including them.
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outcomes in our regressions. Further, to account for heterogeneity across classifiers (cf.

Figures C1-C4), all our regressions include data set, task, source language, and label

class fixed effects and cluster standard errors by source language, tasks, label class, and

translation model. Specifically, we estimate the following regression:

F1 score d, t, c, l = β0 + β1 model type + δ d + θ t + κ c + λ l + ϵ d, t, c, l (1)

where F1 score d, t, c, l represents a bootstrapped F1 score for dataset d, task t, label class

c, and language l; “model type” is a categorical indicator differentiating between commer-

cial MT-based classifiers (reference category), open-source MT-based translations, and

multilingual Transformer-based classifiers; and δ, θ, κ, and λ are the data set, task, label

class, and language fixed effects estimates, respectively.

If our estimate of β1 for the open-source MT-based classifier category is negative,

this would indicate that using an open-source MT model for translation instead of a

commercial one results, on average, in a lower F1 score, indicating poorer reliability in

labeling held-our texts. The coefficient estimate’s magnitude, in turn, indicates by how

much worse.

Note that as our goal is to compare the classifiers fine-tuned for each task using the

translations obtained with different MT models, we restrict our analyses to the languages

that can be translated into English by all models. For example, we excluded the Greek

tweets in the Theocharis et al. (2016) data set because they cannot be translated to

English by the OPUS-MT model (see the note in Table 4).

3.2.3 Results

Table 6 reports the results of our main regression analyses. The evidence it presents

speaks directly to our research question of what reduction in classification reliability we

should expect when using an open-source MT model instead of a commercial MT service

to translate the text inputs taken to fine-tune a supervised text classifier.

Our evidence suggests we should expect such a reduction, but it will be negligibly

small. Model 1 estimates the average difference in classifiers’ test set F1 scores when using
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Table 6: OLS coefficient estimates of the effect of using open-source vs. commercial
machine translation models for translating input texts on classifiers’ language-specific
out-of-sample classification performance (F1 score).

Model 1 Model 2

Type of model (ref.: commercial MT model)
open-source MT model −0.007 (0.001)∗∗∗

multilingual classifier −0.012 (0.002)∗∗∗

Translation model (ref.: DeepL)
Google Translate 0.006 (0.002)∗∗

Google Translate (old) 0.001 (0.002)
OPUS-MT 0.002 (0.002)
M2M (1.2B) −0.002 (0.002)
M2M (418M) −0.013 (0.002)∗∗∗

multilingual −0.009 (0.002)∗∗∗

R2 0.428 0.429
Adj. R2 0.428 0.429
Num. obs. 48300 48300

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
The F1 scroe is measured on a scale from 0 to 1. A coefficient estimates of, for example, +0.01 (+0.001) represents

an average increase of the F1 score by 0.01 (0.001), that is, one (a tenth of one) F1 score points.
All models include data set, task/outcome, and language fixed effects.
Standard errors clustered by data set, task/outcome, language, and, in case of tasks with more than two labels, by

label class.

an open-source MT model instead of a commercial one. This difference is estimated to

be negative and statistically significant (t = −5.42, p < 0.000). However, the estimated

magnitude is only 0.007, less than a difference of 0.01 units on the [0, 1] F1 score scale.

Thus, when fine-tuning a supervised text classifier, researchers should expect a reduc-

tion in its out-of-sample classification reliability if they use an open-source instead of a

commercial MT model for translation. However, they can expect that this reduction will

be negligibly small, considering that even classifiers fine-tuned on different folds of the

same data set (Licht 2023; Laurer et al. 2022) or with different seed (Wang 2023) usually

exhibit higher levels of variability in test set F1 scores than our estimate of 0.007.

Moreover, Model 1 in Table C8 in the Supporting Materials shows that these findings

hold when dropping classifiers fine-tuned with input text translations generated with older

Google Translate versions from the comparison. Model 2 in Table C8 further presents
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evidence that the estimated classification reliability reduction of 0.007 in model 1 in

Table 6 drops by 60% and becomes statistically insignificant if we remove classifiers fine-

tuned with input text translations generated with the small (418B) M2M model from the

comparison.

Model 2 in Table 6 adds further nuance to these findings. It compares classifiers

fine-tuned with DeepL translations to ones fine-tuned using one of the other MT model’s

translations. This shows that neither using OPUS-MT nor the 1.2B parameter M2M

model instead of DeepL significantly reduces classifiers’ test set F1 scores. Further, it

shows that even the “worst” alternative – using the small M2M model – only reduces

classifiers’ test set F1 score by 0.013 compared to using DeepL. Again, we believe that

this difference is practically negligible.

We visualize a more detailed breakdown of the results for Model 2 in Table 6 in

Figure C5 in the Supporting Materials. It reports the results from regressions that pair-

wise compare translation models in how they affect classifiers’ out-of-sample performance

and underscores that OPUS-MT and the large M2M model are competitive alternatives

to commercial machine translation services.

Moreover, in Table C10 in the Supporting Materials, we show that our main finding

holds when comparing classifiers’ text-level predicted labels instead of their overall reli-

ability. Specifically, we find that the labels predicted for test set samples by classifiers

fine-tuned using M2M 1.2B or OPUS-MT translations agree on average no less with the

labels predicted by DeepL-based classifiers than the labels predicted by Google Translate-

based classifiers. This, again, underscores that using open-source MT models results in

comparable degrees of measurement reliability than using commercial MT services when

fine-tuning translation-based text classifiers.

4 Conclusion and discussion

Open-source machine translation (MT) models like OPUS-MT (Tiedemann and Thottin-

gal 2020) and M2M (Fan et al. 2021) are affordable, transparent, and reproducible alter-
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natives to commercial MT services like Google Translate and DeepL. We have assessed

whether machine-translating multilingual corpora with available open-source models in-

stead of a commercial service (Google Translate) yields substantially different results

when applying two common computational text analysis methods. Our first study repli-

cates and extends the study by Vries et al. (2018), who evaluate machine translation for

cross-lingual topic modeling. Our second study is an original analysis of the reliability

of open-source machine translation for cross-lingual supervised text classification with

Transformer-based classifiers.

Our findings support the conclusion that open-source MT models can replace com-

mercial services when applying bag-of-words topic modeling and Transformer-based su-

pervised text classification. We find only minor differences between the measurements

obtained from corpora translated with open-source models and commercial services. In

the case of our topic model analyses, we find that the topics estimated by a model fitted

on parliamentary speeches we machine-translated with the open-source M2M model are

as similar to the benchmark topic model fitted on human-translated speeches as those

estimated by its counterpart model fitted on speech translations generated with Google

Translate. Further, both machine translation-based models allocate speeches to similar

topics as the benchmark model. In the case of our supervised text classification study,

we find that the difference between Transformer-based classifiers fine-tuned using trans-

lations from open-source MT models perform, on average, only 0.7 F1 scores worse than

comparable classifiers fine-tuned using translations from a commercial MT model as in-

put.

Our findings has important implications for applied researchers. Given that using

“free” MT models for topic modeling or fine-tuning a Transformer-based classifier re-

sults in no less reliability measurements than using a commercial MT service, applied

researchers can benefit from the transparency and reproducibility advantage. Maybe as

important from a practical point of view, using open-source MT models can save re-

searchers costs. As a point in case, relying on an open-source instead of a commercial

MT service to translate the non-English texts in the four benchmark data sets used in
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Study 2 would save them about U.S. $ 1267 (see Table C5). And the labeled texts in our

four benchmark data sets make up only a fraction of the target corpora analyzed in the

papers they originate from.

Our study is not without limitations, however. Researchers might find translation

with open-source MT models technically challenging. While software packages such as

the EasyNMT Python package provide a handy toolkit,19 we acknowledge that deploying

these models and using GPU computing environments are no trivial skills. The code base

and online app we provide thus aim to lower this accessibility barrier.20

Further, as is standard in the methodological literature (cf. Table A1), all our analyses

use English as the target language. When researchers study corpora recording only

Slavic or Nordic languages, for example, it might be better for measurement reliability to

translate texts to the majority language in their corpus or the language other languages

descended from. Our study does not provide evidence on the reliability of these alternative

strategies.

Additionally, our topic modeling study only examines the LDA topic model, exclud-

ing neural topic modeling methods.Similarly, our supervised classification study only

examines Transformer encoder fine-tuning while ignoring recent developments in using

generative large language models for prompt-based zero- and few-shot political text clas-

sification (e.g., Gilardi et al. 2023). However, given the influence and popularity of the

LDA topic model and Transformer encoder fine-tuning in applied political science re-

search, we believe that our study should still inform the methodological choices of many

researchers.
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Supporting Materials
No more cost in translation: Validating open-source
machine translation for quantitative text analysis

A Machine translation

A.1 Open-source MT models

OPUS-MT models are small and specialized encoder-decoder Transformer models (Tiede-

mann and Thottingal 2020). Each model can only translate exactly one language direction

(e.g. Chinese to English, but not English to Chinese). This gives individual models good

performance for translating between two languages in one direction with relatively small

size (around 300 MB), but it this also means that every language pair and translation

direction requires a separate model. More than 1000 models are available open-source

for many different directions.21 The models are trained on the OPUS corpus, which is an

open-source collection of manually translated text pairs. Moreover, data augmentation

techniques such as back-translation are used to increase diversity. The models are funded

by European Union and Finish grants.

The M2M model is a large and general encoder-decoder Transformer model (Fan et

al. 2021). It is general because it can translate in any direction between 100 languages

(9900 directions) simultaneously. This makes the model more general, but it is also

significantly larger and slower than the OPUS-MT models. It exists in three sizes: 0.418,

1.2, or 12 billion parameters with large model files (1.9, 5, or 47 GB). The training data is

created by automatically mining highly semantically similar texts in different languages.

Monolingual texts are embedded with a multilingual embedding model and highly similar

texts are then matched as probable translations. Moreover, data augmentation strategies

21. see https://huggingface.co/Helsinki-NLP and https://github.com/UKPLab/EasyNMT
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Table A1: Overview of published political and communication science articles eval-
uating machine translation for different bag-of-words quantitative text analysis tasks.

Reference Task Domain Translation service Source language(s) Target lang.

Lucas et al. (2015) Topic modeling (STM) Citizen-produced
social media

Google Translate Arabic, Chinese English

De Vries et al. (2018) Topic modeling (LDA) Parliamentary
speech

Expert translations,
Google Translate

Danish, French, German,
Spanish, Polish

English

Reber (2019) Topic modeling (LDA) Web pages of
(I)NGOs

Google Translate,
DeepL

German English

Windsor et al. (2019) Dictionary analysis (LWIC) UN plenary
speeches

Google Translate English, French, German,
Russian, Chinese, Arabic

English

Düpont and Rachuj
(2022)

Textual similarity Party manifestos Google Translate 12 languages a English

Courtney et al. (2020) Supervised classification News article
paragraphs

Google Translate German, Spanish English

Lind et al. (2021) Supervised classification News articles Google Translate German, Hungarian,
Polish, Romanian,
Spanish, Swedish

English

Licht (2023) Supervised classification Party manifestos M2M (Fan
et al. 2021)

12 languages b English

Laurer et al. (2023) Supervised classification Party manifestos M2M seven languages c English
Mate et al. (2023) Supervised classification Parliamentary

Speech
OPUS-MT
(Tiedemann and
Thottingal 2020)

Hungarian, Polish English

a Catalan, Danish, Dutch, Finnish, French, Galician, German, Italian, Norwegian, Portuguese, Spanish, and Swedish
b same as Düpont and Rachuj (2022) by pooling their and data by Lehmann and Zobel (2018)
c English, French, German, Korean, Russian, Spanish, and Turkish



like back-translation and quality filtering techniques are used. The authors intentionally

avoid English-centric decisions during model design, for example when choosing anchor

languages for sentence pair mining. The model was created and open-sourced by Facebook

AI.
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B Supporting results for Study 1

Table B1: Number of tokens in topic models’ vocabulary and share of tokens in
machine translation-based topic models that overlap with tokens in vocabulary of
topic model fitted to human experts’ translations.

N tokens Token overlap

Language Experts Google Translate OPUS-MT Google Translate OPUS-MT

Danish 37761 37232 31472 0.754 0.707
German 36390 36575 31945 0.763 0.717
Spanish 38014 40524 32554 0.753 0.713
French 38064 33013 32790 0.741 0.712
Polish 37893 39184 32309 0.712 0.664

Polish

French

Spanish

German

Danish

0.00 0.25 0.50 0.75 1.00
Cosine Similarity

MT model: Google Translate OPUS−MT

Figure B1: Distribution of cosine similarities between bag-of-words representations’
onbtained from machine- and human-translated texts at document level.
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Polish

French

Spanish

German

Danish

0.00 0.25 0.50 0.75 1.00
Correlation between machine− and human−translated documents

MT model: Google Translate OPUS−MT

Figure B2: Similarity of document-level topic proportion estimates.

Polish

French

Spanish

German

Danish

0.00 0.25 0.50 0.75 1.00
Correlation between machine− and human−translated documents

MT model: Google Translate OPUS−MT

Figure B3: Comparisong of estimated topics’ content between models based on
human- and machine-translated texts.
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C Supporting materials for Study 2

C.1 Data set descriptive statistics

Table C1: Label distribution by task and language in Düpont & Rachuj (2023)
data

Task Label class N Danish Finish French Italian Dutch Spanish Swedish

econ 8116 0.203 0.162 0.234 0.125 0.219 0.308 0.142
extrel 2434 0.060 0.102 0.059 0.104 0.094 0.055 0.038
fabsoc 4409 0.049 0.205 0.109 0.093 0.228 0.047 0.142
freedem 2257 0.032 0.069 0.075 0.050 0.056 0.080 0.059
polsys 4249 0.061 0.095 0.219 0.071 0.093 0.138 0.111
socgrp 2955 0.112 0.093 0.095 0.075 0.087 0.081 0.102

classify the policy
topic discussed in
quasi-sentence

welqual 9130 0.483 0.275 0.209 0.482 0.224 0.291 0.406

left 7636 0.153 0.267 0.283 0.135 0.347 0.090 0.330
none 16684 0.373 0.413 0.446 0.522 0.456 0.603 0.361

classify the stance
expressed in
quasi-sentence right 9230 0.474 0.320 0.271 0.342 0.197 0.307 0.310

left 1473 0.268 0.184 0.286 0.291 0.268 0.072 0.394
none 4860 0.520 0.490 0.384 0.505 0.593 0.700 0.497

classify the stance
expressed in
quasi-sentences about
economic issues
(binary)

right 1783 0.212 0.327 0.330 0.204 0.139 0.229 0.109

left 1065 0.643 0.150 0.261 0.854 0.717 0.415 0.838
right 1103 0.357 0.850 0.716 0.146 0.250 0.521 0.162

classify the stance
expressed in
quasi-sentences about
the issue of freedom
and democracy
(binary)

none 89 0.024 0.034 0.064

Table C2: Label distribution by task and language in Lehmann & Zobel (2018)
data

Task Label class N Danish English Finish French Dutch Spanish Swedish

immigration 1963 0.512 0.603 0.381 0.69 0.399 0.520 0.233classify the issue focus
of quasi-sentences integration 2317 0.488 0.397 0.619 0.31 0.601 0.480 0.767

neutral 602 0.201 0.138 0.033 0.27 0.112 0.156 0.155
sceptical 1161 0.315 0.219 0.311 0.16 0.391 0.165 0.123

classify the stance
expressed in
quasi-sentences about
the issues of
immigration and
integration (binary)

supportive 2517 0.484 0.643 0.656 0.57 0.497 0.679 0.722

C.2 Classifier fine-tuning
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Table C3: Label distribution by task and language in Poljak (2022) data

Task Label class N Bosnian English French Croatian Dutch

no 18059 0.908 0.700 0.679 0.765 0.648detect whether a
speech contains one or
more attacks of
parliamentary actors

yes 6587 0.092 0.300 0.321 0.235 0.352

policy 3206 0.418 0.516 0.602 0.363 0.548
both (policy & trait) 1752 0.272 0.203 0.226 0.346 0.293

classify the type of
attack

trait 1629 0.310 0.281 0.172 0.291 0.159

no 5234 0.837 0.823 0.786 0.812 0.712detect incivile attacks
yes 1353 0.163 0.177 0.214 0.188 0.288

Table C4: Label distribution by task and language in Poljak (2022) data

Task Label class N German Greek English Spanish

negative 5053 0.183 0.330 0.212 0.131
neutral 15513 0.712 0.651 0.590 0.678

classify the sentiment
of tweets

positive 3122 0.105 0.019 0.198 0.191

broadcasting 9346 0.516 0.514 0.244 0.337classify the type of
communication in
tweets

engaging 14342 0.484 0.486 0.756 0.663

no 2304 0.086 0.235 0.054 0.023detect impolite tweets
yes 21384 0.914 0.765 0.946 0.977

no 5987 0.449 0.136 0.268 0.169detect political tweets
yes 17701 0.551 0.864 0.732 0.831
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Table C5: Number of characters and estimated translation cost by language and
data set

Language Speeches Sentences Characters Cost (U.S. $)

Düpont & Rachuj: sentences from manifestos taken from the CMP corpus

Danish 1326 125034 2.50
Dutch 10734 1194246 23.88
Finish 2724 340954 6.82
French 5057 828657 16.57
Italian 827 147978 2.96
Spanish 11720 2311085 46.22
Swedish 1162 106252 2.13

Lehmann & Zobel: quasi-sentences from manifestos taken from the CMP corpus

Danish 603 52220 1.04
Dutch 1383 150481 3.01
English 552 71900
Finish 270 33893 0.68
French 100 18693 0.37
Spanish 965 169500 3.39
Swedish 407 30192 0.60

Poljak: parliamentary speeches delivered in Question Time sessions

Bosnian 2606 11148 1013809 20.28
Croatian 7865 62996 7167369 143.35
Dutch 3572 51925 4919180 98.38
English 7936 45156 3856746
French 2667 33316 3531428 70.63

Theocharis et al.: tweets, retweets, and replies to tweets by candidates for the 2014 European Parlia-
ment election

English 6606 645000
German 5432 540027 10.80
Greek 5703 572831 11.46
Spanish 5947 645430 12.91
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Table C6: Number of epochs, training batch size, and gradient accumulation steps
applied when fine-tuning our classifiers. We have held other hyper-parameters con-
stant, using a learning rate of 1e−5, a warm-up ratio of 0.05, and a weight decay of
0.1.

Task Epochs Training
batch size

Gradient
accumula-

tion

Downsampling
ratio

Dupont & Rachuj

classify the policy topic
discussed in
quasi-sentence

2 16 2 0.4

classify the stance
expressed in
quasi-sentence

3 16 2 0.4

classify stance expressed in
quasi-sentence (binary)

3 16 2 0.4

classify the stance
expressed in
quasi-sentences about
economic issues (binary)

5 16 2 0.4

classify the stance
expressed in
quasi-sentences about the
issue of freedom and
democracy (binary)

5 16 2 0.4

Lehmann & Zobel

classify the issue focus of
quasi-sentences

5 16 2 0.4

classify the stance
expressed in
quasi-sentences about the
issues of immigration and
integration (binary)

5 16 2 0.4

Poljak

detect whether a speech
contains one or more
attacks of parliamentary
actors

5 16 2 0.4

classify the type of attack 8 16 2 0.4
detect incivile attacks 8 16 2

Theocharis et al.

classify the sentiment of
tweets

5 32 2 0.4

classify the sentiment of
tweets (binary)

5 32 2 0.4

classify the type of
communication in tweets

5 32 2 0.4

detect impolite tweets 5 32 2
detect political tweets 5 32 29



Table C7: Overall (cross-language) F1 scores by dataset, outcome, and translation
model Values (in brackets) report average (95% confidence interval) of bootstrapped
test set estimates. The last column reports these scores for multilingual classifiers
for comparison.

DeepL Google
Translate

Google
Translate

(old)

OPUS-MT M2M
(1.2B)

M2M
(418M)

multilingual

Dupont & Rachuj

classify the policy topic
discussed in
quasi-sentence

0.583
[0.576, 0.591]

0.589
[0.582, 0.594]

0.587
[0.579, 0.594]

0.588
[0.581, 0.597]

0.580
[0.572, 0.587]

0.573
[0.565, 0.581]

0.573
[0.564, 0.581]

classify the stance
expressed in
quasi-sentence

0.637
[0.630, 0.646]

0.645
[0.636, 0.653]

0.640
[0.632, 0.649]

0.634
[0.626, 0.642]

0.636
[0.629, 0.644]

0.625
[0.615, 0.632]

0.629
[0.622, 0.637]

classify stance expressed in
quasi-sentence (binary)

0.754
[0.743, 0.769]

0.759
[0.741, 0.773]

0.747
[0.734, 0.757]

0.756
[0.742, 0.770]

0.756
[0.743, 0.770]

0.736
[0.724, 0.749]

0.757
[0.743, 0.768]

classify the stance
expressed in
quasi-sentences about
economic issues (binary)

0.716
[0.689, 0.738]

0.698
[0.671, 0.724]

0.718
[0.696, 0.737]

0.698
[0.672, 0.721]

0.728
[0.696, 0.757]

0.700
[0.675, 0.722]

0.711
[0.682, 0.735]

classify the stance
expressed in
quasi-sentences about the
issue of freedom and
democracy (binary)

0.864
[0.844, 0.891]

0.865
[0.845, 0.889]

0.864
[0.846, 0.890]

0.860
[0.836, 0.889]

0.856
[0.834, 0.883]

0.851
[0.829, 0.876]

0.884
[0.867, 0.908]

Lehmann & Zobel

classify the issue focus of
quasi-sentences

0.869
[0.856, 0.883]

0.856
[0.841, 0.871]

0.863
[0.850, 0.878]

0.861
[0.847, 0.881]

0.851
[0.834, 0.870]

0.851
[0.834, 0.873]



classify the stance
expressed in
quasi-sentences about the
issues of immigration and
integration (binary)

0.877
[0.865, 0.891]

0.872
[0.859, 0.885]

0.869
[0.855, 0.883]

0.879
[0.863, 0.892]

0.868
[0.854, 0.881]

0.855
[0.842, 0.869]

Poljak

detect whether a speech
contains one or more
attacks of parliamentary
actors

0.786
[0.767, 0.797]

0.783
[0.765, 0.803]

0.775
[0.759, 0.792]

0.782
[0.761, 0.799]

0.774
[0.755, 0.789]

0.775
[0.758, 0.794]

0.770
[0.749, 0.792]

classify the type of attack 0.622
[0.587, 0.655]

0.621
[0.590, 0.663]

0.616
[0.578, 0.659]

0.623
[0.578, 0.661]

0.601
[0.558, 0.632]

0.622
[0.589, 0.652]

0.596
[0.569, 0.627]

detect incivile attacks 0.557
[0.503, 0.610]

0.560
[0.514, 0.614]

0.541
[0.483, 0.584]

0.550
[0.501, 0.606]

0.546
[0.503, 0.584]

0.548
[0.501, 0.597]

0.503
[0.460, 0.542]

Theocharis et al.

classify the sentiment of
tweets

0.689
[0.671, 0.702]

0.691
[0.673, 0.706]

0.688
[0.667, 0.701]

0.696
[0.677, 0.709]

0.664
[0.647, 0.678]

0.690
[0.677, 0.703]

classify the sentiment of
tweets (binary)

0.929
[0.908, 0.946]

0.926
[0.909, 0.944]

0.923
[0.906, 0.937]

0.913
[0.896, 0.932]

0.912
[0.898, 0.927]

0.922
[0.905, 0.938]

classify the type of
communication in tweets

0.810
[0.799, 0.826]

0.815
[0.801, 0.828]

0.818
[0.806, 0.832]

0.809
[0.794, 0.821]

0.807
[0.795, 0.820]

0.840
[0.830, 0.850]

detect impolite tweets 0.374
[0.332, 0.418]

0.376
[0.328, 0.424]

0.374
[0.336, 0.410]

0.348
[0.301, 0.396]

0.353
[0.304, 0.404]

0.430
[0.379, 0.475]

detect political tweets 0.763
[0.743, 0.786]

0.763
[0.744, 0.782]

0.756
[0.739, 0.776]

0.745
[0.723, 0.765]

0.738
[0.723, 0.759]

0.769
[0.750, 0.784]



classify the policy topic discussed in quasi−sentence

classify the stance expressed in quasi−sentence

classify stance expressed in quasi−sentence (binary)

classify the stance expressed in quasi−sentences about
economic issues (binary)

classify the stance expressed in quasi−sentences about
the issue of freedom and democracy (binary)

0.4 0.5 0.6 0.7 0.8 0.9

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate (old)
Google Translate
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M2M (1.2B)
OPUS−MT

Google Translate (old)
Google Translate
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M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate (old)
Google Translate
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M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate (old)
Google Translate

DeepL

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate (old)
Google Translate

DeepL

F1 score

Figure C1: Summary of fine-tuned classifiers’ language-specific (macro) F1 scores
by task (panels) and translation source (y-axis) for Dupont & Rachuj (2022) data
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classify the issue focus of quasi−sentences

classify the stance expressed in quasi−sentences about
the issues of immigration and integration (binary)

0.82 0.84 0.86 0.88 0.90

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

F1 score

Figure C2: Summary of fine-tuned classifiers’ language-specific (macro) F1 scores
by task (panels) and translation source (y-axis) for Lehmann & Zobel (2018) data

detect whether a speech contains one or more attacks of
parliamentary actors

classify the type of attack

detect incivile attacks

0.4 0.5 0.6 0.7 0.8

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate (old)
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DeepL
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M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate (old)
Google Translate

DeepL

F1 score

Figure C3: Summary of fine-tuned classifiers’ language-specific (macro) F1 scores
by task (panels) and translation source (y-axis) for Poljak (2023) data
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classify the sentiment of tweets

classify the sentiment of tweets (binary)

classify the type of communication in tweets

detect impolite tweets

detect political tweets

0.4 0.6 0.8

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

multilingual
M2M (418M)
M2M (1.2B)
OPUS−MT

Google Translate
DeepL

F1 score

Figure C4: Summary of fine-tuned classifiers’ language-specific (macro) F1 scores
by task (panels) and translation source (y-axis) for Theocharis et al. (2016) data
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Table C8: Additional analyses of effect of using open-source vs. commercial ma-
chine translation models for translating input texts on classifiers’ language-specific
out-of-sample classification performance (F1 scores). Model 1: w/o old GT transla-
tions. Model 2: w/o small M2M translations.

Model 1 Model 2

Type of model (ref.: commercial MT model)
open-source MT model −0.007 (0.001)∗∗∗ −0.003 (0.001)
multilingual classifier −0.012 (0.002)∗∗∗ −0.012 (0.002)∗∗∗

R2 0.439 0.430
Adj. R2 0.438 0.429
Num. obs. 42600 41200

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
The F1 scroe is measured on a scale from 0 to 1. A coefficient estimates of, for example, +0.01 (+0.001) represents

an average increase of the F1 score by 0.01 (0.001), that is, one (a tenth of one) F1 score points.
All models include data set, task/outcome, and language fixed effects.
Standard errors clustered by data set, task/outcome, language, and, in case of tasks with more than two labels, by

label class.

C.3 Additional analyses
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Table C9: Effect of using open-source vs. commercial machine translation models
for translating input texts on classifiers’ language-specific out-of-sample classification
performance (F1 scores) in social media vs. other domains. Classifiers fine-tuned on
old Google translations not included in comparison.

Model 1 Model 2

Type of model (ref.: commercial MT model)
open-source MT model −0.007 (0.001)∗∗∗

multilingual classifier −0.014 (0.002)∗∗∗

Translation model (ref.: DeepL)
Google Translate 0.006 (0.002)∗∗

OPUS-MT 0.001 (0.002)
M2M (1.2B) −0.001 (0.002)
M2M (418M) −0.011 (0.002)∗∗∗

multilingual −0.011 (0.002)∗∗∗

Social media vs. other domains
social media data 0.181 (0.004)∗∗∗ 0.182 (0.005)∗∗∗

open-source MT model X social media data −0.009 (0.005)
multilingual classifier X social media data 0.020 (0.007)∗∗

Google Translate X social media data −0.003 (0.007)
OPUS-MT X social media data 0.001 (0.007)
M2M (1.2B) X social media data −0.014 (0.007)∗

M2M (418M) X social media data −0.018 (0.008)∗

multilingual X social media data 0.019 (0.008)∗

R2 0.439 0.440
Adj. R2 0.439 0.439
Num. obs. 42600 42600

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
The F1 scroe is measured on a scale from 0 to 1. A coefficient estimates of, for example, +0.01 (+0.001) represents an

average increase of the F1 score by 0.01 (0.001), that is, one (a tenth of one) F1 score points.
All models include data set, task/outcome, and language fixed effects.
Standard errors clustered by data set, task/outcome, language, and, in case of tasks with more than two labels, by label

class.
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vs. OPUS−MT

vs. M2M (418M)

vs. M2M (1.2B)

vs. Google Translate (old)

vs. Google Translate

vs. DeepL

−0.04 −0.02 0.00 0.02 0.04

OPUS−MT
M2M (418M)
M2M (1.2B)

Google Translate (old)
Google Translate

DeepL

OPUS−MT
M2M (418M)
M2M (1.2B)

Google Translate (old)
Google Translate

DeepL

OPUS−MT
M2M (418M)
M2M (1.2B)

Google Translate (old)
Google Translate

DeepL

OPUS−MT
M2M (418M)
M2M (1.2B)

Google Translate (old)
Google Translate

DeepL

OPUS−MT
M2M (418M)
M2M (1.2B)

Google Translate (old)
Google Translate

DeepL

OPUS−MT
M2M (418M)
M2M (1.2B)

Google Translate (old)
Google Translate

DeepL

Mean difference in 100 bootstrapped F1 scores

Figure C5: Summary of mean differences estimated by from regressions that com-
pare the performances of classifiers fine-tuned using texts’ translations generated
with different machine translation models as input. Points (horizontal lines) indicate
the mean difference (95% confidence interval) in F1 scores of the Translation model
named on the y-axis compared to the translation model named in the plot panels
header. For example, the positive difference for the comparison “Google Translate
vs. Deepl” indicates that using DeepL instead of Google Translate to translate input
texts results in, on average, more reliably classifiers.
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C.3.1 Evaluation at the level of predicted levels

In addition to evaluating classifiers in terms of their overall test set performance, we can

also leverage our data to compare their classifications at the level of individual texts in

the test sets. This allows for a harder test of our claim that using an open-source MT

model to translate the texts used to fine-tune a supervised classifier yields comparable

results to using a commercial MT service.

To assess the similarity of classifiers’ measurements at the level of test set predicted

labels, we compare predicted labels between classifiers fine-tuned for the same task but

with translations from different MT models. Because we lack human translations for

our labeled data sets, we use the classifiers using DeepL translations as a benchmark

in these comparisons. We then compare the agreement test set predicted labels by a

classifier fine-tuned, for example, using OPUS-MT translations, with those generated by

its DeepL-based counterpart. Specifically, for each task and language in the given dataset,

we compute ne agreement score with the classifier based on Deepl translations for the

Google Translate, OPUS-MT, M2M 418M, and M2M 1.2B-based classifiers, respectively.

OPUS−MT

M2M (418M)

M2M (1.2B)

Google Translate (old)

Google Translate

0.5 0.6 0.7 0.8 0.9 1.0
agreement rate with DeepL−based classifier

Figure C6: Distribution of classifiers’ agreement with DeepL-based classifiers pre-
dicted test set labels.

Figure C6 summarizes these agreement estimates. This shows that there are no no-

table differences between DeepL-based classifiers predicted labels and those of classifiers

18



Table C10: OLS coefficient estimates of the effect of using open-source MT model
instead of Google Translate on classifiers’ agreement on test set examples’ predicted
labels realteive to DeepL-based classifiers. Google Translate-based classifiers average
agreement with DeepL-based classifiers (within dataset, task, and language), shown
in the intercept, used as comparison.

Model 1

Intercept 0.856 (0.009)∗∗∗

OPUS-MT −0.011 (0.006)
M2M (1.2B) −0.010 (0.006)
M2M (418M) −0.030 (0.006)∗∗∗

R2 0.611
Adj. R2 0.574
Num. obs. 280

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
Agreement is measured on a scale from 0 to 1.
All models include data set, task/outcome, and

language fixed effects.
Standard errors clustered by data set,

task/outcome, language, and, in case of tasks
with more than two labels, by label class.

fine-tuned using the other MT models’ translations as inputs.

The regression results presented in Table C10 support this conclusion.22 The estimate

for the intercept of this regression model reports Google Translate-based classifiers’ aver-

age agreement with their DeepL-based counterparts. The estimates for OPUS-MT, M2M

418M, and M2M 1.2B, respectively, report the average deviation of classifiers’ agreement

rates with DeepL-based classifiers from this baseline. Except for the coefficient for M2M

418M-based classifiers, these estimates are all statistically insignificant. This indicates

that there are no systematic differences between the degrees to which the predictions of

classifiers fine-tuned with these MT models translations agree with DeepL-based classi-

fiers compared to classifiers using Google Translate translations. This underscores that

the large M2M model and OPUS-MT are suitable replacements for their commercial

alternatives.

22. As previously, the OLS regression includes data set, task, and language fixed effects and clusters
standard errors by data set, task, and language.
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