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Abstract

The paper studies the canonical hold-up problem with one-sided investment by the buyer

and full ex post bargaining power by the seller. The buyer can covertly choose any distribution

of valuations at a cost and privately observes her valuation. The main result shows that in

contrast to the well-understood case with linear costs, if investment costs are strictly convex

in the buyer’s valuation distribution, the buyer’s equilibrium utility is strictly positive and to-

tal welfare is strictly higher than in the benchmark when valuations are public information,

thus alleviating the hold-up problem. In fact, when costs are mean-based or display decreas-

ing risk, the hold-up problem may disappear completely. Moreover, the buyer’s equilibrium

utility and total welfare might be non-monotone in costs. The paper utilizes an equilibrium

characterization in terms of the Gateaux derivative of the cost function.

Keywords: Information Design, Hold-Up Problem, Unobservable Information

JEL: C61, D42, D82

1 Introduction

Consider the canonical hold-up problem where a buyer can make a costly, relation-specific ex

ante investment that increases her valuation for the seller’s good, and the seller has all bargaining

power ex post. It is well-known that the hold-up problem is most severe if the buyer’s valuation

becomes public information ex post: in this case the seller will extract all gains from trade, and in

anticipation of this, the buyer will not invest. In equilibrium, the buyer’s utility is zero, and total
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welfare equals the gains from trade with no investment. In a seminal paper, Gul (2001) shows that

when the buyer’s investment decision induces a deterministic valuation, then the same welfare

outcomes obtain even if the buyer’s valuation remains her private information so that she can

secure an information rent ex post: while some investment occurs in equilibrium, the buyer still

gets zero utility overall because her ex post information rent is fully dissipated by her ex ante

investment. In addition, total welfare remains the same as with public valuation because the

privacy of the buyer’s valuation implies inefficient bargaining ex post.

One feature of Gul’s (2001) cost structure is that when the buyer chooses a probability dis-

tribution over valuations by adopting a mixed strategy over valuations, the cost of doing so is

expected investment costs, and thus linear in the probability distribution. In this paper, I consider

the hold-up problem when the buyer’s cost of choosing a distribution over valuations is convex

in the distribution. I show that if costs are strictly convex, then the buyer’s equilibrium utility is

strictly positive and total welfare exceeds the zero investment gains from trade, thus alleviating

the hold-up problem. In fact, I identify environments where the first-best outcome obtains in

equilibrium, and thus the hold-up problem disappears completely. Moreover, I show that both

the buyer’s utility and total welfare might increase with investment costs.

I adopt a framework where the buyer can covertly choose any distribution over an interval

of valuations at a cost.1 The cost function is convex in the distribution, nesting Gul’s (2001)

model with linear costs as a special case. The cost function is normalized in that there is a zero

cost “default” distribution that corresponds to the buyer not investing. I further assume that the

cost function is smooth in that it admits a functional derivative in the sense of a (linear) Gateaux

differential. As is well known, the Gateaux differential is a directional derivative that captures the

cost change when the buyer moves marginally from one distribution in the direction of another

distribution.

As a methodological point, I provide an equilibrium characterization that states the conditions

for a distribution by the buyer to be a best response to the seller’s pricing strategy in terms of the

Gateaux differential of the cost function.2 This best response condition formally corresponds to

the familiar condition of a distribution (or, a mixed strategy) to be a best response: Any valuation

in the support of the distribution must yield the same payoff, and any valuation outside the support

must not yield a higher payoff. The novelty is that with non-linear cost, the payoff corresponding

to a valuation depends on the entire distribution itself (not just on the valuation). This implies

that a best response is generally given only in implicit form.

Even though equilibria can, therefore, in general not be explicitly derived, it is remarkably

1“Covertly” means that the seller does not observe the distribution. This is the key difference between my paper

and Condorelli and Szentes (2020) as explained in more detail below.
2Technically, I use a result in Georgiadis et al. (2023) which characterizes the optima of a concave functional that

admits a linear Gateaux differential.
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simple to derive equilibrium utilities and welfare through the best response conditions. First,

I show that under the natural monotonicity assumption that the cost function respects first or-

der stochastic dominance, the seller’s equilibrium profit is always equal to the zero investment

gains from trade and hence a constant.3 It follows that total equilibrium welfare and the buyer’s

equilibrium utility differ by the size of the zero investment gains from trade.

Second, my result that the buyer’s equilibrium utility is zero if her costs are linear, but positive

if her costs are strictly convex, follows from a familiar marginal benefit versus marginal cost logic

that, as I show, carries over to the current setting with flexible investments. Intuitively, the buyer’s

marginal benefit from increasing investment by “increasing” her valuation distribution is constant.

The reason is that the benefit from choosing a distribution is simply the buyer’s expected share of

the trading surplus which is linear in the distribution. On the other hand, the marginal cost from

increasing investment, which can be shown to be the Gateaux differential of the cost function, is

increasing because costs are strictly convex.

Now, equilibrium implies that at the equilibrium distribution, marginal benefits are (weakly)

larger than marginal costs for otherwise it would be profitable for the buyer to deviate in some

direction. Intuitively, since marginal benefits are constant and marginal costs are increasing,

marginal costs are strictly below marginal benefits when the buyer, starting from zero investment,

increases investment up to the equilibrium distribution, resulting in strictly positive equilibrium

utility. In contrast, when investment costs are linear, then both marginal benefits and marginal

costs are constant, which implies that in equilibrium the buyer gets zero utility.

A direct corollary of these observations is that if the cost function is the sum of a linear and a

scaled strictly convex part, then the buyer’s utility (and thus total welfare) increases if the convex

part is scaled up from zero to positive. In other words, the buyer’s utility (and thus total welfare)

locally increases with investment costs.

Explicit expressions for equilibrium strategies and utilities are hard to obtain in general. In

a further part of the paper, I therefore impose more structure on the cost function. In particu-

lar, drawing on Cerreia-Vioglio et al. (2017), I impose assumptions on the Gateaux differential

that amount to certain risk properties of the cost function. I distinguish three cases depending

on whether costs only depend on the mean, or are decreasing or increasing with respect to the

mean preserving spread order. In the terminology of Condorelli and Szentes (2020), costs are

thus “mean-based”, or decreasing, or increasing “in risk”.4 I also scale the cost function with a

parameter that captures the magnitude of costs and marginal costs.

I show that in all cases, total welfare and the buyer’s equilibrium utility increase as the cost

3To be precise, I impose an assumption on the cost function that implies strict monotonicity of the cost function

and thus is slightly stronger than monotonicity.
4To be precise, Condorelli and Szentes (2020) impose these assumptions on the cost function directly, and my

assumptions on the Gateaux differential are slightly stronger.
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parameter increases from zero to a critical value. Moreover, unlike in the case with linear costs

(and unless costs are prohibitively high), total welfare is strictly larger than in the benchmark

case when the seller observes the buyer’s valuation ex post. In this sense, the hold-up problem

is alleviated when the buyer’s valuation is private information and costs are strictly convex. In

fact, if costs are mean-based or decreasing in risk, and the cost parameter is sufficiently large, the

equilibrium outcome is efficient, that is, the hold-up problem disappears completely.5

The basic reason for these results lies in the nature of the buyer’s commitment problem when

choosing a distribution. As highlighted by Condorelli and Szentes (2020), the buyer would like

to commit to a distribution so as to induce the seller to choose a low price. However, since the

buyer’s investment is covert in my setting, she cannot commit to a distribution. Thus, if the seller

were to choose the low price from the commitment outcome, incentives arise for the buyer to

secretely deviate to a different distribution. The strength of the deviation incentives depends

on the comparison of marginal benefits and marginal costs. As mentioned earlier, the marginal

benefits from a deviation are constant, because the benefit of choosing a distribution is simply

the buyer’s expected share of the ex post trading surplus which is linear in the distribution. If, in

addition, marginal costs are constant (costs are linear), the buyer’s overall deviation incentives

are the same for any distribution. In fact, if the seller were to choose the low price from the

commitment outcome, the buyer would want to deviate to the “highest possible” distribution,

and in this sense, the buyer’s commitment problem is most pronounced when costs are linear.6

If, on the other hand, costs are strictly convex, marginal costs are increasing, and thus larger

deviations become more costly. In other words, convexity of costs attenuates the buyer’s commit-

ment problem, and this force moves the equilibrium outcome closer to the commitment outcome,

thus increasing the buyer’s utility (and total welfare). This effect is more pronounced the more

increasing are marginal costs, or the more convex are costs. In my parameterization, an increase

of the cost parameter makes costs more convex, and thus the buyer’s utility (and total welfare)

increases as the cost parameter is scaled up to a critical point.

When costs are mean-based or decreasing in risk, the equilibrium and the first-best outcome

coincide once the parameter exceeds the critical point. This is easiest to illustrate when costs are

decreasing in risk (the argument with mean-based costs is similar but slightly more involved). In

this case, given a pricing strategy of the seller and holding the mean of the buyer’s distribution

fixed, the buyer prefers her distribution to be maximally risky, and consequently she puts all

probability mass only on the smallest and largest possible valuations. In turn, the seller best

responds by choosing either a high price equal to the largest possible valuation, or a low price

5When costs are mean-based, there might be multiple equilibria. I focus on Pareto-optimal equilibria, which are

also buyer-optimal because in any equilibrium, the seller’s profit is the equal to the zero investment gains from trade.
6This is the reason why, with linear costs, the commitment outcome of Condorelli and Szentes (2020) cannot be

sustained when the seller does not observe the buyer’s distribution, as in Gul (2001).
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equal to the lowest possible valuation. But when the price is equal to the lowest possible valuation,

trade is always efficient ex post, and the buyer is the residual claimant of the efficient surplus,

leading her to choose the efficient investment distribution. Now, for the seller to actually best

respond with the low price to the efficient investment distribution, this distribution must not

place to much weight on large valuations, which is only the case if marginal investment costs

are sufficiently high. In my parameterization, this occurs when the cost parameter is sufficiently

large.

This reasoning does not apply when costs are increasing in risk. In this case, equilibrium

involves a mixed pricing strategy by the seller, because given that the buyer prefers a minimally

risky distribution, her best response to a deterministic price is to put all mass on a single valuation.

But this is inconsistent with equilibrium because, anticipating that the buyer puts mass on a single

valuation, the seller would then fully hold up the buyer, and the buyer would rather not invest.

Because the seller mixes, equilibrium trade is inefficient ex post, and the equilibrium outcome

then differs from the first-best.

My paper is most closely related to the abovementioned papers by Gul (2001) and Condorelli

and Szentes (2020). Like Gul (2001), I consider the hold-up problem with unobservable invest-

ments, but allow for convex investment costs.7,8 Non-linear costs are also considered in Condorelli

and Szentes (2020), who, in contrast to my paper, consider the case when the buyer can commit

to an investment distribution (or, equivalently, the seller can observe the distribution but not the

realized valuation).9

From a technical point of view, I use a result in Georgiadis et al. (2023) which, in the context

of a moral hazard problem with flexible effort choice by the agent, provides a first-order con-

dition that characterizes the maximum of a concave, Gateaux-differentiable functional. In the

second part of the paper, where I impose more structure on the cost function, I go beyond pure

optimization and derive explicit equilibria of the investment game from this first-order condition.

My paper shares with Ravid et al. (2022) the feature that the seller does not observe the

distribution of the buyer’s valuation. The key difference is that in Ravid et al. (2022), the buyer’s

ex ante choice is to acquire information about, rather than invest in, her valuation. Ravid et al.

(2022) show that in the limit when information acquisition costs are small, the buyer is worse

7Gul (2001) does not only consider the problem with one-shot ultimatum bargaining as I do here, but shows that

efficiency can be restored by an appropriate dynamic bargaining protocol.
8Other papers that study versions of the hold-up problem with linear investment costs are Dilme (2019) and Lau

(2008). Dilme (2019) considers a setting where the investment increases both parties’ valuation, and the informed

party makes a take-it or leave-it offer ex post, leading to endogenous adverse selection. He shows that the non-

investing party gets less than when investment is observable. In Lau (2008), the seller obtains a truth-or-noise signal

about the buyer’s investment prior to making the take-it or leave-it offer. Lau (2008) shows that the information

benefits the seller, while the buyer, as with no signal, still gets zero surplus.
9As a by-product, my analysis also shows that the commitment outcome might be first-best, because in those cases

where my equilibrium outcome coincides with the first-best, it also coincides with the commitment outcome.

5



off than when information is for free. In contrast, I obtain welfare results away from the limit

because the information acquisition constraint that the distribution be Bayesian consistent with

a prior is missing from my framework and allows for more explicit equilibrium characterizations.

In an extension, I show how my framework can be used to speak to information acquisition in the

case that the buyer’s true valuations can take on only two values.10

The paper is organized as follows. The next section presents an example with two possi-

ble buyer valuations. Section 3 presents the general model. Sections 4 and 5 contain the key

equilibrium and welfare results. Section 6 derives explicit results when costs are mean-based,

decreasing or increasing in risk, respectively. Section 7 discusses a connection to information

acquisition. Section 8 concludes. All formal proofs are in the appendix.

2 Example

This section presents a simple example to illustrate the key intuitions of the paper. There is a buyer

and a seller. The buyer can have two possible valuations v ∈ {α,ω} for the seller’s good where

0 < α < ω. Ex ante, the buyer chooses a probability f ∈ [0, 1] with which the high valuation

ω occurs. Ex post, after the valuation is realized, the seller makes a take-it or leave-it offer by

choosing a price p. If the buyer rejects, both parties obtain zero payoff. If the buyer accepts, her

payoff is valuation minus price, and the seller’s payoff is the price.

Without loss, the seller chooses a price equal either to α or ω. Allowing for mixed strategies,

let h ∈ [0, 1] be the probability with which he chooses the high price. The buyer’s cost of investing

f is C( f ) = ℓ f + 1/2 ·κ f 2, where κ ≥ 0 and ℓ ∈ (0,ω−α).

If κ= 0, then costs are linear. This can be interpreted in the sense that the buyer has two pure

strategies: “choose valuation α” at cost 0, and “choose valuation ω” at cost ℓ. The linear costs

C( f ) = ℓ f therefore correspond to the costs of the mixed strategy where valuation α (resp. ω)

is chosen with probability 1− f (resp. f ).

The first-best investment level f FB maximizes the total surplus (1− f )α+ fω− C( f ) and is

thus given by

f FB =min

§

ω−α− ℓ

κ
, 1

ª

. (1)

Next, I discuss equilibrium. I begin with the benchmark case that the buyer’s valuation v

becomes publicly observable before the seller sets the price. In this case, the seller will always

choose p = v. As a consequence, the buyer’s ex post surplus is zero, and she will therefore choose

zero investment f = 0. The seller’s profit is α, the buyer’s utility is 0, and total welfare is α.

10For the case with buyer commitment and information acquisition, see Roesler and Szentes (2017).
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Next, I consider the case with unobservable investment where the seller observes neither the

distribution f nor the valuation v.11 Consider first the seller’s best response to f : if f < α/ω,

the seller optimally chooses the low price (h = 0). If f = α/ω, the seller is indifferent between

the high and low price (h ∈ [0, 1]). And if f > α/ω, the seller optimally chooses the high price

(h= 1).

Consider now the case with linear costs (κ = 0). In this case, the same welfare outcomes

obtain as in the case with observable valuation. To see this, note that there is no equilibrium

where the seller sets a deterministic price. The reason is that if the seller were to charge the

low price (h = 0), the buyer’s utility from investment f is f (ω − α) − ℓ f . Thus, her marginal

investment benefit is ω−α, and her marginal investment cost is ℓ. Since ℓ < ω−α, the buyer’s

best response would be “full” investment f = 1. At that point, however, charging the low price

would not be a best response for the seller.

Reversely, if the seller were to charge the high price (h= 1), the buyer’s utility from investment

f is 0 − ℓ f and her best response would be “zero” investment f = 0. At that point, however,

charging the high price would not be a best response for the seller (recall that α > 0).

Therefore, there is only a mixed strategy equilibrium where the buyer chooses f = α/ω so as

to keep the seller indifferent between both prices, and the seller chooses h so as to keep the buyer

indifferent between zero investment ( f = 0) and full investment ( f = 1).12 Because the buyer

is indifferent, her equilibrium utility is zero (her utility from zero investment). As the seller is

indifferent, her equilibrium profit is α (her profit from charging the price α), and total equilibrium

welfare is α. Therefore, payoffs are identical as in the case with observable investment: While

there is now positive investment in equilibrium and the buyer obtains an ex post information

rent, her rent is fully dissipated by her ex ante investment expenditures. Moreover, the positive

investment does not improve welfare because trade is not efficient ex post.

Consider now what changes if κ is larger than zero so that investment costs are convex. If the

seller charges the low price (h= 0), the buyer’s marginal investment benefit is still ω−α but her

marginal costs ℓ+κ f are now increasing in investment f . Therefore, if κ is sufficiently large, the

buyer’s optimal choice of investment is below α/ω so that charging the low price remains indeed

optimal for the seller. In fact, if the seller charges the low price, trade is efficient ex post, and

the buyer is the residual claimant of the efficient surplus, leading her to invest at the first-best

level. Therefore, whenever f FB is below α/ω, the first-best outcome f FB obtains in equilibrium

and there is no hold-up problem. Formally, it follows from (1) that f FB ≤ α/ω if and only if

11The case with observable investment and unobservable valuation corresponds to the setting in Condorelli and

Szentes (2020) where the buyer can commit to a distribution of valuations.
12More formally, given h, the buyer maximizes f (1 − h)(ω − α) − ℓ f . Thus, her best response is f = 0 if h >

1−ℓ/(ω−α), and f = 1 if h < 1−ℓ/(ω−α), and she is indifferent otherwise. Since ℓ < ω−α, the only intersection

of the buyer’s and seller’s best responses is at f = α/ω and h = 1− ℓ/(ω−α).
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κ ≥ κ̂ =ω/α · (ω−α− ℓ). Thus, the first-best outcome prevails if κ ≥ κ̂.

What happens if κ ∈ (0, κ̂)? In this case, the first-best outcome does not obtain in equilibrium,

because marginal costs are too low for the buyer not to deviate to a larger than the first-best

investment f FB if the seller were to choose the low price α. Similar to the case with linear cost, in

equilibrium the buyer chooses f = α/ω so as to keep the seller indifferent, and the seller chooses

h so as to render the buyer’s choice of α/ω optimal, that is, (1−h)(ω−α) = C ′(α/ω). In contrast

to the case with linear cost, however, the buyer now obtains strictly positive utility. The reason

is that up to the equilibrium investment level f , her marginal costs are strictly lower than her

marginal benefits due to convexity of the costs and linearity of the benefits. Formally, the buyer’s

equilibrium utility in the range κ ∈ (0, κ̂) calculates to

UB = f (1− h)(ω−α)− C( f ) =
1

2
κ
� α

ω

�2

. (2)

Notice that this is increasing in κ. The reason is that in the range κ ∈ (0, κ̂), the direct effect of

facing higher investment costs is outweighed by the indirect strategic effect that the seller reduces

the price (reduces h) as κ increases. Moreover, as the seller is indifferent between the low and

the high price, her profit is α, irrespective of κ. Thus, total welfare is UB +α.

Overall, three insights emerge from these observations:

(i) The buyer’s equilibrium utility and total welfare are non-monotone in costs. They increase

up to κ̂ and then decrease, as illustrated by Figure 1. The blue (solid) curve plots the buyer’s

utility as a function of κ.

(ii) Because the buyer’s utility is strictly positive for κ > 0, total welfare is strictly larger than

in the benchmark case when the buyer’s valuation is public information.

(iii) For values κ ≥ κ̂, the equilibrium outcome is efficient, and the hold-up problem disap-

pears, as illustrated by Figure 1. The red (dashed) curve plots first-best welfare minus the seller’s

equilibrium profits α and coincides with the buyer’s equilibrium utility for κ ≥ κ̂. (Note that for

κ ≤ω−α− ℓ, we have that f FB = 1. Thus, welfare is linear in κ in this range.)

I now turn to the general model where the buyer’s valuation can take any value in an interval.

I will show that (i) and (ii) carry over to the general setting if investment costs are strictly convex.

On the other hand, whether (iii) carries over depends on the structure of the cost function and

obtains if the cost function is “mean-based” or displays “decreasing risk”, but not if it displays

”increasing risk”.
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κ
κ̂ω−α− ℓ

Figure 1: The figure shows UB as a function of κ (blue) and total welfare minus α (red, dashed)

for the values α = 1, ω= 2, ℓ= 1/2, κ̂ = 1.

3 Model

There is a seller who has a good, and there is a buyer who can invest in her valuation for the

good by choosing a cumulative distribution function (cdf) F over the set of possible valuations

V = [α,ω], 0 ≤ α < ω, at cost C(F). Let F denote the set of all cdf’s over V . The timing is as

follows: The seller chooses a price p, and the buyer simultaneously chooses a cdf F ∈ F . Then

the buyer privately observes her realized valuation v and decides to accept or reject to trade at

the price p. If she rejects, both parties get zero. If she accepts, the buyer’s payoff is v− p, and the

seller’s payoff is p.

The buyer’s strategy specifies a cdf F and a decision to accept or reject, contingent on p. A

(mixed) strategy for the seller is a cdf over prices. In a perfect Bayesian equilibrium (henceforth:

equilibrium), the buyer accepts any price p < v and rejects any price p > v, and her choice of cdf

is optimal given the seller’s pricing strategy, and the seller’s strategy is optimal given the buyer’s

choice of cdf and acceptance/rejection decision.

It is a standard argument that in any equilibrium, the buyer accepts with probability 1 when

indifferent (p = v) and that the seller never chooses a price strictly below the buyer’s smallest

possible valuation α. Moreover, it is weakly dominated for the seller to choose a price strictly

above the buyer’s largest possible valuationω. To analyze the initial stage of the game, I therefore

focus on seller strategies H that are cdf’s from the set F .

The buyer’s expected utility (net of investment costs) when valuation v has realized and before

having observed the price is

H(v) =

∫ v

α

(v − p) dH(p) =

∫ v

α

H(p) dp, (3)

where the second equality follows from integration by parts. The ex ante expected utilities for
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the buyer and seller are then given by13

U(F, H) =

∫

V

H(v) dF − C(F), Π(H, F) =

∫

V

(1− F(p−))p dH(p). (4)

With abuse of language, I refer to a combination (F, H) ∈ F 2 as an equilibrium when F and H

are mutual best responses given U and Π.

I next state the assumptions on the cost function that I impose throughout the paper.

A1 C :F → R is convex and continuous14.

A2 C is Gateaux differentiable, that is, for all F, F̃ ∈F , the “Gateaux differential” of F in the direction

of F̃ , given as the limit

δC(F ; F̃ − F) = lim
ε→0

1

ε
[C(F + ε(F̃ − F))− C(F)] (5)

exists. Moreover, there is a continuous “Gateaux derivative” cF : V → R so that

δC(F ; F̃ − F) =

∫

V

cF(v) d(F̃ − F). (6)

A3 cF(v) is strictly increasing in v for all F ∈ F .

Convexity is an economically natural assumption. Note that a mixture of two distributions can

always be generated by a two-stage process where in the first stage a random draw determines

from which of the two distributions the valuation is drawn in the second stage. Convexity then

simply captures the fact that the cost of generating the mixture distribution through this two-

stage process is an upper bound on the least costly way to generate the simple counterpart of the

mixture distribution.

A2 captures that costs are smooth. Intuitively, the Gateaux differential δC(F ; F̃ − F) approx-

imates the cost change C(F̃) − C(F) if one moves from F in the direction of F̃ . Expression (6)

means that the Gateaux differential is linear (in F̃ − F) and thus amounts to a linear approxima-

tion of cost changes—analogous to a first-order Taylor approximation with cF corresponding to

the gradient of C at the point F .15

13F(p−) denotes the left limit limq↑p F(q).
14More precisely, C is assumed to be continuous in the topology of weak convergence, that is, if Fn converges

weakly to F , then C(Fn) converges to C(F). Because the set of cdfs F is compact, continuity of C ensures existence

of various optimizers below.
15To see the analogy, suppose C : R → R is uni-dimensional. Then by multiplying and dividing the Gateaux-
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A3 implies that C is monotone in the sense that it respects first order stochastic dominance, a

natural property in the investment context considered here. In fact, monotonicity of C is equiva-

lent to cF being increasing for all F ∈ F (see Cerreia-Vioglio et al., 2017). While A3 is therefore

slightly stronger than monotonicity of C , it simplifies some of my arguments, because, as I will

show, it uniquely pins down the seller’s equilibrium profits.16

A3 also implies that C is uniquely minimized by the distribution which places full mass on the

lowest valuation α. I shall refer to this distribution as Fmin, and normalize the cost of Fmin to zero

to ensure that investment costs are non-negative:17

Fmin = 1[α,ω], C(Fmin) = 0. (7)

Fmin can thus be interpreted as the default distribution that arises if the buyer does “not invest”.18

Finally, note that continuity of C implies that there is a well-defined first-best distribution that

maximizes the total surplus
∫

V
v dF − C(F). If unique, I denote the first-best distribution as F FB.

An important special case is the class of linear cost functions. C is linear if and only if C(F) =
∫

V
c(v) dF(v) for a continuous function c : V → R. In this case, the Gateaux derivative is cF = c

at all points F . Linearity arises in a setting where the buyer can choose a valuation v ∈ V at cost

c(v), and V is the set of the buyer’s pure strategies (see, e.g., Gul, 2001). C(F) is then the cost of

the mixed strategy that randomizes over V according to F . For a linear cost function, we have

min
v∈V

c(v) = 0. (8)

To see this, note that C(F) =
∫

V
c(v) dF(v) is minimized by any cdf Fmin that places full mass on

points v were c is minimal. Thus, C(Fmin) =minv∈V c(v) which is 0 by (7).

A useful benchmark for the analysis is the case in which the buyer’s valuation becomes public

information before the seller chooses the price. In equilibrium, the seller then chooses the price

equal to the valuation and extracts the entire trading surplus. Anticipating this, the buyer chooses

differential with F̃ − F , it can be written as

δC(F ; F̃ − F) = lim
ε→0

1

ε(F̃ − F)
[C(F + ε(F̃ − F))− C(F)] · (F̃ − F) = C ′(F) · (F̃ − F),

and hence δC(F ; F̃ − F) ≈ C(F̃ )− C(F). It is well-known though that, in general, the Gateaux differential need not

be linear, but only homogeneous.
16A3 implies that C is strictly monotone in the sense that if F first order stochastically dominates G and does not

coincide with G almost everywhere, then C(F) > C(G).
17
1 denotes the indicator function.

18That Fmin minimizes C follows from monotonicity and since any distribution first order stochastically dominates

Fmin. Uniqueness follows from the fact that cF is strictly increasing. I omit the details.
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the default distribution Fmin. The resulting utilities and welfare are

U PUB = 0, Π
PUB = α, W PUB =

∫

V

v dFmin = α. (9)

4 Equilibrium Analysis

My first proposition is the main equilibrium characterization of the paper.

Proposition 1 (i) There is an equilibrium.

(ii) (F, H) is an equilibrium if and only if there are λ and π≥ α such that

H(v)− cF (v)−λ ≤ 0 ∀v ∈ V, (10)

H(v)− cF (v)−λ = 0 ∀v ∈ supp(F), (11)

(1− F(p−))p−π ≤ 0 ∀p ∈ V, (12)

(1− F(p−))p−π = 0 ∀p ∈ supp(H). (13)

Part (i) follows from a standard fixed point argument along the same lines as in the existence

proof in Ravid et al. (2022, footnote 22). Part (ii), more precisely, the conditions (10) and (11)

which characterize the buyer’s best response in terms of the Gateaux derivative, are somewhat

non-standard. To shed light on part (ii), it is easiest to first consider the conditions (12) and (13).

These conditions represent the familiar conditions for a (mixed) pricing strategy by the seller

to be a best response to F : Any price in the support of the strategy must yield the same profit

π= (1− F(p−))p, and any price outside the support must not yield a higher profit.

The conditions (10) and (11) are analogous conditions for the buyer. In fact, consider the

special case of linear C , and recall the interpretation of C as the cost of a mixed strategy when

the buyer can choose a valuation v at cost c(v). In this case, the buyer’s utility from the pure

strategy v is H(v)− c(v), and the conditions (10) and (11) therefore represent the conditions for

a (mixed) strategy by the buyer to be a best response to H. The significance of part (ii) is that the

same formal conditions characterize the buyer’s best response even when the Gateaux derivative

cF is not constant in F .

Notice, however, that when cF is not constant in F , (10) and (11) describe F only implicitly,

because F appears on both sides. To see this more clearly, note that (10) and (11) imply that a

point in supp(F) is a maximizer of H(v) − cF (v). Therefore, F is a solution to (10) and (11) if

and only if its support satisfies

supp(F) ⊆ arg max
v∈V

H(v)− cF(v). (14)
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To establish (10) and (11), I can use Proposition 1 in Georgiadis et al. (2023) which shows

that F maximizes U(G, H) =
∫

V
H(v)dG − C(G) with respect to G, and is thus a best response to

H, if and only if F is the solution to the first-order condition19

∫

V

H(v)− cF(v) dF ≥

∫

V

H(v)− cF (v) dG ∀G ∈ F . (15)

With λ =
∫

V
H(v)− cF (v) dF , this writes

∫

V

H(v)− cF (v)−λ dF = 0 and

∫

V

H(v)− cF (v)−λ dG ≤ 0 ∀G ∈ F . (16)

Because F and G are cdf’s, this is equivalent to (10) and (11).

Finally, it is noteworthy that Proposition 1 does not use the monotonicity assumption A3.

5 Welfare Analysis

This section contains the key welfare results for general cost functions. The main result shows how

the buyer’s equilibrium utility and total welfare depend on the convexity of the cost function. To

set the stage, I first show that in any equilibrium, the seller’s profit is equal to α and thus coincides

with his profit in the case when valuations are public.20

Proposition 2 The seller’s equilibrium profit is α.

The argument is by contradiction. If the seller’s profit was strictly larger than α, then since

the seller is indifferent between all prices in the support of the pricing distribution, the price α

is not in the support. Thus, the smallest price, say p, in the pricing distribution is strictly larger

than α. This implies that p cannot be in the support of the buyer’s valuation distribution, because

the buyer would benefit from redistributing probability mass from v = p to v = α. This follows

from the buyer’s best response condition and the fact that cF is strictly increasing. But if p is not

19A similar characterization of the optimum of a concave functional in terms of its Gateaux derivative appears in

Luenberger (1997, Lemma 1, p. 227).
20Proposition 2 does rely on A3. Without further assumptions on cF , equilibrium profits are not uniquely pinned

down because there can be multiple equilibria with different profits. This can be illustrated already in the linear

case. Suppose that α = 0, and that c is strictly positive on the interval (α,ω) and c(α) = c(ω) = 0. In this case, all

distributions that place mass only on α or ω are costless for the buyer. There are therefore multiple equilibria: the

buyer places probability f on ω and 1− f on α for some f ∈ [0,1], and the seller chooses p =ω. The seller’s profit

is fω. This observation generalizes, and it can be shown that, in general, the seller’s profit is bounded by

min

�

arg min
v∈V

cF (v)

�

≤ Π ≤max

�

arg min
v∈V

cF (v)

�

. (17)
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in the support of the buyer’s distribution, it cannot be an optimal price for the seller, because a

slight price increase would make him better off.

Since the seller’s profit is α, total equilibrium welfare is W = UB + α and thus pinned down

by the buyer’s equilibrium utility which is the object of the next proposition.

Proposition 3 Let (F, H) be an equilibrium.

(i) The buyer’s equilibrium utility is21

UB =

∫

V

cF(v) dF(v)− C(F)−min
v∈V

cF (v). (18)

(ii) If C is linear, then UB = 0.

(iii) If C is strictly convex and C(F) 6= 0, then UB > 0.

The proof of part (i) shows that λ in part (ii) of Proposition 1 is equal to −minv∈V cF (v).

Once this is established, the expression for UB is immediate from plugging (11) into (4). Part

(ii) is immediate from (18), the definition of linear costs and the fact that minv∈V c(v) = 0 by

(8). Note that part (ii) replicates the result in Gul (2001) that when costs are linear, the welfare

outcomes when the buyer’s valuation is her private information coincide with those in the public

information benchmark.

The argument behind part (iii), perhaps the key result of the paper, is economically intuitive,

and it is instructive to elaborate on it. Imagine that, instead of choosing among all cdf’s, the buyer

chooses a uni-dimensional investment level τ ∈ [0, 1] by selecting a convex combination

Fτ = τF + (1− τ)Fmin (19)

of the equilibrium distribution F and the default distribution Fmin. Given the seller’s equilibrium

distribution H, the buyer’s benefit from investing τ is

Ψ(τ) =

∫

V

H(v) dFτ = τ

∫

V

H(v) d(F − Fmin) +

∫

V

H(v) dFmin, (20)

and her cost is Φ(τ) = C(Fτ).

Because the buyer’s equilibrium choice F (in the equilibrium where she chooses among all

cdf’s) is F1, her equilibrium utility is

UB = Ψ(1)−Φ(1). (21)

21Note that minv∈V cF (v) is well-defined since cF is continuous by assumption.
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I now use a marginal benefit and cost argument to show that this expression is strictly pos-

itive. Indeed, because the investment benefit Ψ(τ) is linear in τ, marginal benefits Ψ ′(τ) =
∫

V
H(v) d(F − Fmin) are constant. On the other hand, note that

Fτ+ε = Fτ + ε(F − Fmin). (22)

Therefore, marginal costs at τ correspond exactly to the Gateaux differential at Fτ in the direction

F − Fmin. Formally:22

Φ
′(τ) = lim

ε→0

1

ε
[C(Fτ + ε(F − Fmin))− C(Fτ)] = δC(Fτ, F − Fmin) =

∫

V

cFτ(v) d(F − Fmin). (23)

Now, the fact that F is a best response implies that at τ = 1, marginal benefits (weakly) exceed

marginal costs, because otherwise, the buyer could profitably deviate by marginally lowering τ.

Formally, the equilibrium conditions (10) and (11) imply that at τ= 1:

Ψ
′(1)−Φ′(1) =

∫

V

H(v)− cF(v) d(F − Fmin) (24)

=

∫

V

λ dF −

∫

V

H(v)− cF (v) dFmin (25)

= −

∫

V

H(v)− cF (v)−λ dFmin (26)

≥ 0. (27)

Crucially, because C is strictly convex, so is Φ,23 and thus Φ′ is strictly increasing. Therefore,

because marginal benefits are constant, marginal benefits strictly exceed marginal costs for all

τ < 1: ψ′(τ)> φ′(τ).

Finally, note that the buyer can guarantee herself a weakly positive utility by investing τ = 0

which corresponds to choosing the default distribution Fmin = F0.24

Therefore, because the buyer’s marginal utility is strictly positive up to τ = 1, her overall

22This observation is also used in Chew and Nishimura, 1992, page 300.
23To see this, let ζ ∈ (0,1), then

Φ(ζτ+ (1− ζ)τ′) = C(Fmin + (ζτ+ (1− ζ)τ
′)(F − Fmin)) (28)

= C(ζ(Fmin +τ(F − Fmin)) + (1− ζ)(Fmin +τ
′(F − Fmin))) (29)

< ζC(Fmin +τ(F − Fmin)) + (1− ζ)C(Fmin +τ
′(F − Fmin)) (30)

= ζΦ(τ) + (1− ζ)Φ(τ′). (31)

24This would result in utility Ψ(0)−Φ(0) =
∫

V
H(v) dFmin−C(Fmin) which is weakly positive because H is positive

and C(Fmin) = 0 by (7).
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utility is strictly positive. Formally:25

UB = Ψ(1)−Φ(1) =

∫ 1

0

Ψ
′(τ)−Φ′(τ) dτ+Ψ(0)−Φ(0) > 0. (32)

Before I turn to economic implications of Proposition 3, it is noteworthy that the proposition

does not rely on the monotonicity assumption A3. Moreover, the expression for the buyer’s utility

is quite general and does not depend on the details of the hold-up problem considered here, but

carries over to games where players are engaged in some strategic interaction ex post and (some)

players can choose an investment ex ante. The equilibrium of the ex post game pins down the

best response conditions analogous to (10) and (11) from which players’ utilities can be deduced

as in (18).

The next corollary uses the results obtained so far to derive welfare changes when a strictly

convex part is added to a linear cost function. Part (i) says that the buyer’s equilibrium utility

and total welfare may increase as costs increase. Part (ii) says that with strictly convex costs,

the welfare when valuations are private is strictly larger than in the benchmark case with public

valuations. In this sense, the hold-up problem is alleviated with unobservable investments.

Corollary 1 Consider a cost function that is a combination of a linear and a strictly convex cost

function, that is, C(F) =
∫

V
ℓ(v) dF + κΓ (F) where κ ≥ 0 and Γ is strictly convex and satisfies

A2-A3. Suppose there is κ̃ > 0 and an equilibrium (Fκ̃, Hκ̃) with C(Fκ̃) 6= 0. Then we have:

(i) The buyer’s equilibrium utility and total welfare is strictly larger at κ̃ than at κ = 0.

(ii) Total welfare when valuations are private information is strictly larger than when they are

public information at κ̃ but the same at κ= 0: W |κ=κ̃>W PUB |κ=κ̃ and W |κ=0=W PUB |κ=0.

Part (i) is a direct implication of Propositions 2 and 3. Part (ii) follows from (i) and (9). In the

next section, I impose more structure on the cost function under which there will be an interval

of κ̃’s that satisfy the assumption in Corollary 1 that C(Fκ̃) 6= 0 in equilibrium.

6 Cost specifications

From now on, I assume that C can be written as

C(F) = κΓ (F), (33)

25For the special case that the cost function is of the form C(F) = C̃(
∫

µ(v) dF), C̃ , µ both convex, Georgiadis et

al. (2023) analogously show that in a flexible moral hazard problem, the agent obtains a strictly positive rent if and

only if C̃ is not linear.
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where κ > 0 and Γ is strictly convex and satisfies A2-A3 and has Gateaux derivative γF .26

Moreover, I shall distinguish cost functions according to their risk properties. By Cerreia-

Vioglio et al. (2017), the risk properties of a cost function are closely connected to the shape of

the Gateaux derivative (just like the risk attitudes of an expected utility maximizer are connected

to the shape of her Bernoulli utility function).

In particular, I distinguish between the following cases.27

A4 Γ (F) = Γ0(MF) depends only on the mean MF of F where Γ0 : [α,ω]→ R is strictly convex and

differentiable.

A5 γF is strictly concave for all F ∈ F .

A6 γF is strictly convex and differentiable for all F ∈ F .

Under A4, all that matters is the mean of a distribution but not its risk. Notice that the Gateaux

derivative γF(v) = Γ
′
0
(MF )v is linear, thus excluding the other two cases. Moreover, strict con-

vexity of Γ0 ensures that Γ is strictly convex while differentiability is only imposed to simplify the

exposition. By Cerreia-Vioglio et al. (2017), A5 implies that Γ (and thus C) increases if F becomes

less risky in the sense of the mean preserving spread order, and A6 implies that Γ increases if F

becomes more risky in the sense of the mean preserving spread order. Differentiability of γF in

A6 is only imposed to simplify the exposition. I follow Condorelli and Szentes (2020) and refer

to the three cases respectively also as mean-based, decreasing in risk, and increasing in risk (even

though this is somewhat imprecise, as they impose these assumptions on C , not on cF ).

Finally, throughout this section, I assume that α > 0,28 and I denote by T f the “two-point

distribution” that places mass (1− f ) on α and mass f on ω.

The main results of this section characterize welfare outcomes as a function of the cost pa-

rameter κ. I show that in all three cases, there is a critical κ̂ so that the buyer’s equilibrium utility

and total welfare increase in κ for all κ ∈ (0, κ̂), and welfare under private information is strictly

larger than when the buyer’s valuation becomes public information. Moreover, under A4 and A5,

equilibrium welfare coincides with first-best welfare for κ larger than κ̂. Importantly, this result

is not driven simply by costs being prohibitive and holds for a range of κ’s where the default

distribution Fmin is not first-best. In other words, the hold-up problem disappears in this case. I

26The analysis carries over without much substantial change, but requires more case distinctions, if C(F) is of the

form
∫

V
ℓdF + κΓ (F) as in Corollary 1 as long as cF = ℓ+ κγF satisfies A3 and, respectively, A4, A5, or A6.

27Most of the analysis does not rely on the “strictness” properties A5 and A6. Strictness simplifies the analysis

because it rules out multiplicity of equilibria at various places.
28The case α = 0 is special in that the seller cannot guarantee himself a positive profit by charging a price equal to

the lowest possible valuation. In this case, there are “mis-coordination” equilibria where the buyer does not invest

and the seller charges a high price. The assumption α > 0 rules out these uninteresting equilibria. Gul (2001)

imposes a similar assumption.
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also show that, in contrast, under A6 the equilibrium outcome differs from the first-best (unless

costs are prohibitive so that the default distribution is first-best.)

I begin the analysis with noting a general property of the buyer’s equilibrium distribution that

follows directly from the fact that the seller’s equilibrium profit is α. Define for π,β ∈ [α,ω], the

distribution29

Kβ
π
(v) =









0 i f v < π

1−π/v i f v ∈ [π,β)

1 i f v ≥ β

. (34)

Kβ
π

is known as an “equal revenue distribution” because if the seller faces “demand” Kβ
π

, then any

price p ∈ [π,β] gives him the same revenue π. Expressed differently, a distribution F allows the

seller to get profit larger than π if it is located below Kω
π

at some point v, because the price p = v

yields the seller profit v(1 − F(v−)) > v(1− Kω
π
(v)) = π. This observation readily implies that

because the seller’s equilibrium profit is α by Proposition 2, the buyer’s equilibrium distribution

must be located (weakly) above Kω
α

:

Lemma 1 Let (F, H) be an equilibrium. Then F is first order stochastically dominated by Kω
α

, that

is, F(v)≥ Kω
α
(v) for all v ∈ V .

6.1 Mean-based costs

In this section, I assume that A4 holds. Since C(F) = κΓ0(MF), the Gateaux derivative is

γF(v) = Γ
′
0
(MF)v, (35)

where Γ ′
0
> 0 due to A3. I begin by characterizing the first-best distribution.

Lemma 2 Let A4 hold, and define

κ0 =
1

Γ
′
0(ω)

, κ1 =
1

Γ
′
0(α)

. (36)

Then any distribution with mean M FB = M FB(κ) is first-best, where

M FB =









ω i f κ≤ κ0

Γ
′
0

−1
(1/κ) i f κ ∈ (κ0,κ1)

α i f κ1 ≤ κ

. (37)

29This distribution plays a key role also in Gul (2001), Roesler and Szentes (2017), Condorelli and Szentes (2020),

Ravid et al. (2022).
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To understand the lemma, notice that a first-best distribution maximizes the total surplus

∫

V

v dF − C(F) = MF − κΓ0(MF), (38)

which depends only on the mean, because costs are mean-based. Because MF ∈ [α,ω], the

claim follows from the first-order condition for the maximizer of (38). Note also that because

Γ0 is strictly convex, the maximizer is unique whereas the first-distribution is unique only for κ

outside the interval (κ0,κ1). For κ ∈ (κ0,κ1), any distribution F with MF = M FB is a first-best

distribution. Finally, observe that strict convexity of Γ0 also implies that M FB is strictly decreasing

within (κ0,κ1).

Next, I characterize equilibrium.

Proposition 4 Under A4, (F, H) is an equilibrium only if the seller’s pricing distribution is a two-

point distribution H = Th with h< 1, and F(v)≥ Kα
ω
(v) for all v ∈ V . Moreover:

(i) (F, Th) is an equilibrium with h > 0 if and only if F(ω−) = 1 − α/ω, κΓ ′
0
(MF ) < 1, and

h= 1− κΓ ′
0
(MF).

(ii) (F, Th) is an equilibrium with h= 0 if and only if F is a first-best distribution.

That F is first order stochastically dominated by Kω
α

is Lemma 1. To see that the seller’s pricing

distribution is a two-point distribution, recall from (14) that in equilibrium every valuation in the

buyer’s support maximizes the function H(v)− cF (v). Because H is convex by definition, and cF

is linear for mean-based costs, either (1) H(v)− cF(v) is maximized at a corner point α or ω, or

(2) any v ∈ [α,ω] is a maximizer, and H is, in fact, linear itself. In case (1), because the buyer

has no valuation in (α,ω), setting a price in (α,ω) is strictly suboptimal. Case (2) implies, by

definition, that H
′
= H is constant on (α,ω), and thus H has no support point in (α,ω).

Moreover, there cannot be an equilibrium where the seller charges p = ω with probability 1

(h = 1). The reason is that if p = ω the buyer’s utility is 0− C(F) and her best response would

be the default distribution. But then p =ω would yield zero profit and is not a best response for

the seller. Hence, h< 1 in equilibrium.

Part (i) describes a (candidate) equilibrium where the seller randomizes between the prices α

and ω. For the seller to be indifferent between α and β , the buyer needs to put mass α/ω on ω,

hence 1− F(ω−) = α/ω. Moreover, if the seller randomizes between α and ω, the buyer obtains

utility (1−h)(MF −α)−κΓ0(MF), because costs are mean-based. The first-order condition for the

(mean of the) buyer’s best response thus implies 1− h= κΓ ′
0
(MF).

Part (ii) of the proposition describes a (candidate) equilibrium where the seller charges the low

price α with probability 1. Ex post trade is then efficient, and the buyer is the residual claimant

of the efficient surplus. Thus, choosing a first-best distribution is a best response.
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When costs are mean-based, there can be multiple equilibria where the buyer’s distribution

has different means. To see this, consider condition (i) of Proposition 4. For the seller to be

indifferent between the prices α and ω, all that is needed is that the buyer’s distribution puts

mass α/ω onω. On the other hand, given the seller chooses priceω with probability h, it follows

from the buyer’s best response condition that because γF is linear, any distribution with mean

such that 1−h= κΓ ′
0
(MF ) is a best response. In general, there are multiple combinations (h, MF)

that satisfy these requirements.30

Even though there might be multiple equilibria, in any equilibrium, the seller’s profit is α by

Proposition 2. Therefore, an equilibrium which maximizes the buyer’s utility also maximizes total

welfare, and is also Pareto-optimal. It is therefore natural to focus on Pareto-optimal equilibria

which I characterize next.

Proposition 5 Under A4, we have:

(i) If MKωα
< M FB, then:

(a) There is a unique Pareto-optimal equilibrium (F, H) with F = Kω
α

and H = Th with

h= 1−κΓ ′
0
(MKωα

).

(b) In this equilibrium, the buyer’s utility is UB = κ[Γ
′
0
(MKωα

)(MKωα
−α)− (Γ0(MKωα

)−Γ0(α))].

(ii) If MKωα
≥ M FB, then:

(a) There is a first-best distribution F so that F and H = Th with h = 0 is a Pareto-optimal

equilibrium.

(b) In any Pareto-optimal equilibrium, the buyer’s utility is UB = W FB − α, where W FB is

first-best welfare.

Intuitively, if MKωα
< M FB, then no first-best distribution can be first order stochastically domi-

nated by Kω
α

, and hence there is no equilibrium as in part (ii) of Proposition 4. Moreover, the

characterization of the first-best in Lemma 2 together with the fact that Γ ′
0

is strictly increasing

implies that κΓ ′
0
(MKωα

) < 1 if MKωα
< M FB. Therefore, by part (i) of Proposition 4, F = Kω

α
with the

respective Th is an equilibrium. Finally, it is Pareto-optimal because among all buyer distributions

that are equilibrium candidates, Kω
α

has the maximal mean.

If, on the other hand, MKωα
≥ M FB, then there is a first-best distribution with F FB ≥ Kω

α
. For

example, by an intermediate value argument, there is an equal revenue distribution Kβ
α

with

30Among all distributions F that put mass α/ω on ω and satisfy F ≥ Kω
α

, the distribution Tα/ω has the small-

est mean, and the distribution Kωα has the largest mean. Therefore, any distribution F with Kωα ≤ F ≤ Tα/ω and

κΓ ′
0
(MF ) < 1 is consistent with equilibrium.
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largest support point β < ω such that M
K
β
α
= M FB. Since costs are mean-based, Kβ

α
is a first-

best distribution. Thus there is an equilibrium as in part (ii) of Proposition 4. Because the buyer

chooses a first-best distribution in such an equilibrium, it is clearly Pareto-optimal.

The next corollary restates the previous proposition as a comparative statics result in terms of

κ.

Corollary 2 Let A4 hold and let

κ̂=
1

Γ
′
0(MKωα

)
. (39)

Then κ̂ ∈ (κ0,κ1), and along any selection of Pareto-optimal equilibria (Fκ, Hκ) we have:

(i) The buyer’s utility UB and total welfare is strictly increasing in κ for κ ∈ (0, κ̂).

(ii) Total welfare is equal to first-best welfare for κ≥ κ̂.

(iii) Total welfare when valuations are private information is strictly larger than when they are

public for all κ < κ1.

To understand the result, recall from Lemma 2 that when κ is small (κ < κ0), the first-best

distribution puts all mass onω, and M FB =ω. Thus, for small values of κ, we are in the parameter

region of part (i) of Proposition 4. As κ increases within the range (0, κ̂), there are two effects on

the buyer’s utility. On the one hand, there is a price effect, as the seller increases the probability

of charging the low price p = α. On the other hand, the buyer faces higher investment costs.

In the range (0, κ̂), the price effect outweighs the cost effect, and UB increases with κ. To

see this, note that since costs are mean-based, we can think of the buyer as simply choosing a

(uni-dimensional) mean M ∈ [α,ω]. Since the buyer’s utility is (1 − h)(M − α) − κΓ0(M), the

marginal benefit of doing so is the probability of the low price 1−h. Thus, given 1−h, the buyer

increases the mean until marginal costs are equal to marginal benefits: 1−h = κΓ ′
0
(MKωα

). On the

other hand, for “inframarginal” units M < MKωα
, marginal benefits are strictly larger than marginal

costs, since costs are strictly convex, thus generating strictly positive utility for the buyer.

Therefore, as κ increases, the price effect exactly compensates the buyer for the cost effect at

the margin MKωα
. At the same time, the difference between marginal benefits and marginal costs

for the inframarginal units becomes more pronounced. Thus, the price effect outweighs the cost

effect overall. As a result, the buyer’s utility as well as total welfare increase in κ. Formally, strict

convexity of Γ0 implies that the term in square brackets in the expression for the buyer’s utility in

part (i),(b) of Proposition 4 is strictly positive.

To see part (ii) of the lemma, observe that as κ increases, M FB decreases until it reaches the

level MKωα
at κ = κ̂ at which point we move into the parameter region of part (ii) of Proposition
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4. The equilibrium outcome then coincides with the first-best, and this explains part (ii) of the

lemma. Notice that κ̂ < κ1. Hence, for κ ∈ (κ̂,κ1), the hold-up problem disappears even though

the first-best distribution in this region differs from the default distribution.

Finally, part (iii) is a direct consequence of the fact that the buyer’s utility is strictly positive

for all κ < κ1.

6.2 Strictly concave Gateaux derivative

In this section, I assume A5. I begin with the characterization of the first-best distribution.

Lemma 3 Under A5, there is a unique first-best distribution given by the two-point distribution

F FB = T f FB where f FB minimizes f (ω−α)− C(T f ) over f ∈ [0, 1].

To understand the intuition, consider the problem of maximizing total surplus for a given mean:

max
F

∫

V

v dF − C(F) = MF − C(F) s.t . MF = M . (40)

Because C is strictly decreasing in risk, F minimizes costs by maximizing risk, that is, by putting

mass only on the support bounds α and ω. Thus, the solution to (40) is a two-point distribution

T f and induces total surplus f (ω−α)− C(T f ).

More formally, the result follows from a general characterization of the first-best distribution

that I give in the appendix. This characterization is formally analogous to the buyer’s best response

conditions (10) and (11) with the difference that the buyer’s gross benefit H(v) is replaced by

the first-best gross benefit v. In particular, any point in the support of the first-best distribution

maximizes v−κγF(v). Because of strict concavity of γF , the only possible maximizers are α orω,

and thus, the only points in the support of a first-best distribution are α or ω.

I next derive necessary conditions for equilibrium. First, the same argument as in the previous

paragraph implies that the buyer’s equilibrium distribution is a two-point distribution T f when

the Gateaux derivative is strictly concave. More specifically, by (14), any point in the support

of the buyer’s equilibrium distribution maximizes H(v)− κγF (v). Because of convexity of H and

strict concavity of γF , the only possible maximizers are α or ω. Moreover, by Lemma 1, F is first

order stochastically dominated by Kω
α

. For a two-point distribution F = T f , this is the case if and

only if f ≤ α/ω or, equivalently, T f ≥ Tα/ω. Finally, because the buyer’s distribution has only α or

ω in its support, it is strictly suboptimal for the seller to charge a price strictly in between α and

ω. Thus, H is a two-point distribution Th. As with Proposition 4, we have h < 1. The following

proposition summarizes.
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Proposition 6 Under A5, (F, H) is an equilibrium only if F and H are two-point distributions H = Th

with h< 1, and F = T f with F ≥ Tα/ω.

By Lemma 3 and Proposition 6, the search for first-best and the buyer’s equilibrium distribu-

tions can be restricted to two-point distributions T f . Moreover, the mean M = (1 − f )α + fω

of a two-point distribution uniquely pins down f = M−α
ω−α . Therefore, instead of searching for

first-best or equilibrium values of f , one can as well search for first-best or equilibrium values

of M ∈ [α,ω]. With this change of variables, the setting becomes effectively mean-based, and

the results from the previous section essentially carry over. More specifically, define the cost of

choosing the two-point distribution T f with mean M as

Γ0(M) = Γ (TM−α
ω−α
). (41)

Γ0 is then increasing and strictly convex with derivative31

Γ
′
0
(M) =

γT M−α
ω−α

(ω)− γT M−α
ω−α

(α)

ω−α
. (43)

The characterization of the mean of the first-best distribution is then identical as in Lemma 2.

Likewise, given that the seller chooses a two-point distribution Th in equilibrium, the buyer’s

utility from T f in terms of its mean is (1 − h)(M − α) − κΓ0(M) which is formally identical as

in the case with mean-based costs in the previous section. Therefore, Proposition 4 as well as

Proposition 5 and Corollary 2 carry over verbatim with the only difference that the distribution

Kω
α

is replaced by the two-point distribution Tα/ω. The reason is that now the buyer’s equilibrium

distribution F is in the class of two-point distributions with F = T f ≥ Tα/ω.

Remark Because under A4 and A5, the equilibrium outcome is first-best for κ ≥ κ̂, the equilibrium

outcome also coincides with the buyer-optimal commitment outcome as analyzed in Condorelli

and Szentes (2020). The reason is that seller’s profit when the buyer has commitment is never

smaller than α because the seller can guarantee himself α by charging the price αwith probability

1. Therefore, if κ ≥ κ̂, then even with commitment, the buyer cannot attain higher utility than

his equilibrium utility W FB −α.

31To see this, note that T f +ε = T f + ε(T1 − T0), and thus

d

d f
Γ (T f ) = lim

ε→0

1

ε

�

Γ (T f + ε(T1 − T0))− Γ (T f )
�

= δΓ (T f ; T1 − T0) =

∫

V

γT f
d(T1 − T0) = γT f

(ω)− γT f
(α). (42)

The expression for Γ ′
0
(M) now follows with the chain rule.
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6.3 Strictly convex Gateaux derivative

In this section, I assume A6. I begin by characterizing the first-best.

Lemma 4 Under A6, a first-best distribution is a deterministic distribution F FB = 1[vFB ,ω] that puts

all mass on vFB where vFB maximizes v − κΓ (1[v,ω]) over v ∈ [α,ω]. In particular, the default

distribution is first-best if and only if

κ ≥ κ1 =
1

γ′
1[α,ω]
(α)

. (44)

Intuitively, consider again problem (40). Because now C is strictly increasing in risk, F minimizes

costs by minimizing risk, that is, by concentrating all mass on a single point. Thus, the solution

to (40) is deterministic. Moreover, the total surplus induced by a distribution that puts all mass

on v is v −κΓ (1[v,ω]).

The characterization for when the default distribution is first-best will be used below when

I compare equilibrium and first-best. The characterization follows from the fact that any point

in the support of the first-best distribution maximizes v − κγF FB (v), as explained after Lemma 3.

Therefore, the default distribution 1[α,ω] is first-best if and only if the only point in its support, α,

maximizes v −κγ
1[α,ω]
(v). This the case if and only if 1−κγ′

1[α,ω]
(α)≤ 0, that is, (44).

I next characterize equilibrium. Strict convexity of γF implies that the function v−κγF(v) has

a unique maximizer v∗(F) on [α,ω]. Recall also the definition of Kβ
π

from (34).

Proposition 7 Under A6, (F, H) is an equilibrium if and only if

F = K v∗(F)
α

, H(p) = κγ′
F
(p)1[α,v∗(F))(p) + 1[v∗(F),ω](p). (45)

Proposition 7 says that the buyer’s distribution is an equal revenue distribution and that the

seller’s pricing distribution is essentially equal to the derivative of the Gateaux derivative. In

particular, the supports [α, v∗(F)] of both distributions are convex and identical. The proof of

Proposition 7 follows from the same arguments as in the proof of Proposition 1 in Gul (2001).

The only difference is that Gul (2001) considers the case with linear cost C so that cF does not

depend on F . This does not, however, matter for the argument.32

Proposition 7 characterizes the equilibrium only implicitly because F depends on v∗(F). A

more explicit characterization can be obtained by noting that v∗(F) = β is the upper support

bound of an equal revenue distributions F = Kβ
α

. Thus, equilibrium is characterized by the so-

lutions to the equation v∗(Kβ
α
) = β . Since v∗(F) maximizes the function v − κγF(v), v∗(F) is

32As in Gul (2001), differentiability of γF is not needed for the result. In this case, the derivative of γF in (46) has

to be replaced by the right derivative.
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the solution to the respective first order condition. This pins down the equilibrium value of β as

stated in the next proposition.

Proposition 8 Under A6, (F, H) is an equilibrium if and only if

F = Kβ
α

, H(p) = κγ′
K
β
α

(p)1[α,β)(p) + 1[β ,ω](p), (46)

and β is any value that satisfies:

κγ′
K
β
α

(β) = 1, or β = α and κγ′
Kαα
(α)≥ 1, or β =ω and κγ′

Kωα
(ω)≤ 1. (47)

In general, there might be multiple equilibria, because there might be multiple solutions β to

(47). A sufficient condition for there to be a unique solution β is that γ′
K
β
α

(v) is strictly increasing

in β for all v ∈ V . To see this, note that the convexity of γ then implies that the function γ′
K x
α
(x)

is strictly increasing in x , and an intermediate value argument implies that (47) has a unique

solution.33 One class of cost functions which satisfies this property is the class of “moment-based”

cost functions Γ (F) = Γ̃ (
∫

V
µ(v) dF) where Γ̃ is differentiable, increasing and convex, and µ is

differentiable, increasing and strictly convex.34

For the purpose of comparative statics with respect to κ, I shall now assume that equilibrium

is unique. Recall that κ1 is the critical value from which on the default distribution becomes

first-best.

Corollary 3 Suppose that A6 holds, and let

κ̂=
1

γ′Kωα
(ω)

. (48)

Moreover, suppose that there is a unique equilibrium. Then, we have:

(i) The buyer’s utility UB and total welfare is strictly increasing in κ for κ ∈ (0, κ̂).

(ii) Total welfare when valuations are private information is strictly larger than when they are

public for all κ < κ1.

(iii) First-best welfare is strictly larger than equilibrium welfare for all κ < κ1, that is, unless the

default distribution is first-best.

33Recall that a differentiable convex function is also continuously differentiable.
34In this case, γF (v) = Γ̃

′(
∫

V
µ(v)dF)µ(v), and γ′

F
(v) = Γ̃ ′(
∫

V
µ(v)dF)µ′(v). As F increases in the first order

stochastic dominance sense, so does Γ̃ ′(
∫

V
µ(v) dF) as well as γ′

F
(v). Because Kβ

α
increases in the first order stochastic

dominance sense as β increases, the claim follows.
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The intuition behind part (i) of the corollary is similar as in Corollary 2. As κ increases in

the range (0, κ̂), the direct effect of facing higher investment costs is outweighed by the indirect

strategic effect that the seller reduces the price (in the first order sense). More precisely, observe

that for values κ ≤ κ̂, the buyer chooses F = Kω
α

in equilibrium. Therefore, the Gateaux deriva-

tive κγKωα
becomes steeper as κ increases. By Proposition 7, this means that the seller’s pricing

distribution decreases in the first order sense. This price effect outweighs the direct cost effect

because costs are strictly convex.

Part (ii) follows from the fact that for κ < κ1 the equilibrium distribution is different from the

default distribution. Therefore, by Proposition 3, the buyer’s utility is strictly positive, and thus

total welfare is strictly larger than when valuations are private information.

While parts (i) and (ii) are analogous to the case with linear or strictly concave Gateaux

derivative, part (iii) is different. The reason is that unless the buyer’s equilibrium distribution is

the default distribution, the buyer’s and the seller’s distribution have the same (non-degenerate)

interval support [α,β], leading to trade inefficiencies ex post. The equilibrium outcome is there-

fore not efficient.

I conclude this section with a parameterized example that sheds light on the difference be-

tween equilibrium and first-best welfare as a function of κ.

6.3.1 Example

Consider the second moment QF =
∫

V
v2 dF , and define

Γ (F) =
1

4
Q2

F
−

1

4
α4 (49)

with Gateaux derivative

γF(v) =
1

2
QF v2. (50)

Γ is evidently convex. Since Fmin places all mass on α, the second term in (49) ensures that

Γ (Fmin) = 0, in line with the normalization in (7).

With an eye on applying Proposition 8, note that since Kβ
α

has density α/v on [α,β) and a

mass point of size α/β at β , we have

Q
K
β
α
=

∫ β

α

v2 α

v2
dv +β2 ·

α

β
= 2αβ −α2 (51)
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so that γ′
K
β
α

(v) = [2αβ −α2]v. Condition (47) for the equilibrium value β therefore writes

κ[2αβ2 −α2β] = 1, or β = α and κα3 ≥ 1, or β =ω and κ[2αω2 −α2ω]≤ 1. (52)

Thus, I obtain the following equilibrium characterization where I calculate the buyer’s utility using

(18).

Lemma 5 Let Γ be given by (49). Let β̂ be the positive solution to the quadratic equation

2ακβ̂2 −α2κβ̂ − 1 = 0. (53)

Define κ̂ = 1
αω(2ω−α)

and κ1 =
1
α3 . Then the equilibrium value β in Proposition 8 is

β =









ω i f κ ≤ κ̂

β̂ i f κ ∈ (κ̂,κ1)

α i f κ ≥ κ1

. (54)

Moreover, the buyer’s equilibrium utility is UB = κα
2 (β −α)2.

The blue solid line in Figure 2 illustrates the typical shape of equilibrium welfare UB +α as a

function of κ. It increases linearly in the range κ ∈ (0, κ̂) and then decreases. At κ1, investment

costs become prohibitive, and F = Fmin in equilibrium.

Next, I characterize the first-best which follows straightforwardly from Lemma 4.

Lemma 6 Let Γ be given by (49). Let κ0 = 1/ω3. Then the first-best distribution is F FB = 1[vFB ,ω]

where

vFB =









ω i f κ ≤ κ0

κ−
1
3 i f κ ∈ (κ0,κ1)

α i f κ ≥ κ1

. (55)

Figure 2 plots the first-best welfare (red, dashed line). The difference between first-best and

equilibrium welfare is largest at κ = 0 (corresponding to linear costs) and then decreases with

κ until it becomes zero at the level κ1 where costs become prohibitive so that zero investment is

efficient.

7 Investment and information acquisition

My model can be extended to allow an interpretation where it is costly for the buyer not only to

invest in, but also to learn about, her valuation. Ravid et al. (2022) consider a framework where
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κ
κ1κ̂κ0

α

Figure 2: Total equilibrium welfare (blue) and first-best welfare (red, dashed) for the cost speci-

fication (49) as a function of κ for the values α = 1, ω= 3/2, κ0 = 1/12, κ1 = 1/2.

the buyer’s true valuation is a value θ in a compact interval Θ. Initially, the buyer only has a prior

belief F0 ∈ F over Θ, but she can acquire a signal about her valuation at a cost before trading.

Since the buyer’s preferences for the good are linear in the valuation, a signal corresponds to a

distribution F ∈ F of posterior means that is a mean preserving contraction (MPC) of the prior

F0. Optimizing over a functional subject to the MPC constraint is, by now, a well-studied problem

when the functional is linear (Dworczak and Martini, 2019, Kleiner et al., 2021), but is difficult

when the functional is non-linear such as when information acquisition costs are non-linear.

The approach presented in this paper can however be applied to include information acquisi-

tion when one restricts the space Θ of the buyer’s true valuations to consist of only two possible

values, as I now illustrate. Suppose that Θ = {α,ω}. A prior then corresponds simply to a mean

M0 ∈ V = [α,ω], and any signal corresponds to a cdf F ∈ F over posterior means v ∈ V with the

simplified MPC constraint that F has mean M0, that is,
∫

V
vdF = M0.

Specifically, suppose that without investing, the buyer’s valuation is equal to the lowest possi-

ble valuation α with probability 1. The buyer can invest to increase the mean MF of the valuation

distribution F at a cost ρϕ(MF), ρ ≥ 0, where ϕ is strictly increasing and convex. The mean MF

then corresponds to the prior, and the buyer can learn about the true valuation given the prior at

a cost. Specifically, consider a strictly convex function r : V → R and let σ
∫

V
r(v)− r(MF) dF ,

σ ≥ 0, be the (“posterior-separable”) cost of information acquisition. Since r is convex, informa-

tion acquisition costs increase in the mean preserving spread order, or equivalently, in Blackwell

informativeness. Moreover, acquiring no information, which corresponds to choosing the degen-

erate distribution 1[M ,ω] that places probability 1 on M , is costless.

The cost function

C(F) = ρϕ(MF) +σ

∫

V

r(v)− r(MF ) dF (56)
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therefore combines the cost of investing and the cost of information acquisition. Suppose that

ρϕ − σr is strictly convex. Then C is convex, and if r is strictly increasing, then the Gateaux

derivative

cF(v) = [ρϕ
′(MF)−σr ′(MF)]v +σr(v) (57)

is strictly increasing and strictly convex. Therefore, Proposition 8 applies unchanged with κγF

replaced by cF . Moreover, as explained after the statement of Proposition 8, equilibrium is unique

if c′
K
β
α

(v) is strictly increasing in β for all v ∈ V . This is satisfied here because ρϕ −σr is strictly

convex.

I now use these observations to obtain the following comparative statics result.

Lemma 7 Let C be given by (56). Let ϕ, r be strictly increasing, differentiable, and strictly convex,

and let ρϕ − σr be strictly convex. Then there are ρ̂, σ̂(ρ) so that for all (ρ,σ) with ρ < ρ̂ and

σ < σ̂(ρ), the buyer’s equilibrium utility and total welfare is strictly increasing in ρ and strictly

decreasing in σ.

The formal reason behind this result is similar to the reason behind Corollaries 2 and 3. As ρ

increases or σ decreases, the convex part of the cost function C goes up. Thus, an increase in ρ

or a decrease in σ corresponds to an increase in κ in Corollaries 2 and 3.

Economically, Lemma 7 suggests that the comparative statics with respect to investment and

information acquisition costs are opposed to one another. While higher investment costs (higher

ρ) attenuate the hold-up problem, higher information acquisition costs (higher σ) aggravate the

hold-up problem.

8 Conclusion

In this paper, I reconsider the hold-up problem with unobservable investments when the buyer’s

investment costs are convex in the investment distribution. The main results are that in contrast to

the case with linear costs, the buyer’s utility is positive in equilibrium, and welfare with privately

observable valuation is strictly larger than when valuations are public. Moreover, buyer utility

and total welfare might increase with costs. Finally, when costs are mean-based or decreasing in

risk, the hold-up problem may disappear, since the equilibrium outcome is efficient in some cost

range. The equilibrium characterization I derive is portable to other applications with flexible

pre-investments.
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A Appendix

Proof of Proposition 1 I only show part (ii). (Part (i) follows with the same arguments as the

proof in footnote 22 in Ravid et al., 2022.) Note first that it is a standard argument that the

(mixed) strategy H is a best response to F for the seller if and only (12) and (13) hold, where π is

the seller’s best response profit. Because the seller can guarantee himself the profit α by choosing

the price α with probability 1, we have π≥ α.

That the buyer’s best response to H is characterized by (10) and (11) is shown in the main

text. QED

Proof of Proposition 2 Note first that by setting the price α with probability 1, the seller can

ensure profit α. Thus, α ≤ Π. To see that α ≥ Π, assume to the contrary that α < Π. Let

p =min supp(H) be the lower support bound of the seller’s pricing distribution.

I first show that p 6∈ supp(F). Indeed, since α < Π = (1− F(p−))p, we have α < p. Because

H(α) = H(p) = 0 by definition of H, and since cF (α)< cF (p) by A3, it follows

H(α)− cF (α)−λ= 0− cF(α)−λ > 0− cF (p)−λ= H(p)− cF (p)−λ. (58)

Therefore, (10) and (11) imply that p 6∈ supp(F).

Now distinguish two cases:

(a) F(p−) < 1. Since F(ω) = 1 and p 6∈ supp(F), this implies that p < ω. Therefore, since

p 6∈ supp(F), there is q > p with F(p−) = F(q), and hence the seller could increase profits by

increasing the price from p to q, contradicting that p ∈ supp(H).

(b) F(p−) = 1. Then the seller’s profit from price p is zero, and hence, since p ∈ supp(H), we

have that Π = 0. This contradicts that α < Π. QED

Proof of Proposition 3 To show the generality of the proposition, I prove it without invoking A3.

As to (i). I first show that λ = −minv∈V cF (v). Indeed, let v =min supp(F), p =min supp(H)

be the lower support bounds.

Observe first that v ≤ p. Otherwise, if p < v, then F(p−) = 0 so that the seller’s profit at p

is (1− F(p−))p = p. But since F(v−) = 0 by definition of v, the seller could strictly increase his

profit by deviating to the price p = v. By (12) and (13), this contradicts that p is in supp(H).

Next, I show that v ∈ argminv∈V cF (v). To the contrary, suppose cF (v) > cF(v̂) where v̂ ∈

argminv∈V cF(v). Because v ≤ p, we have that H(v) = 0. Therefore, because (trivially) H(v̂)≥ 0,

we have

H(v)− cF (v)−λ < H(v̂)− cF (v̂)−λ. (59)
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By (10) and (11), this contradicts that v is in supp(F).

Therefore, because v ≤ p implies H(v) = 0, and because cF(v) =minv∈V cF (v), we infer from

(11) that

0= H(v)− cF (v)−λ = −min
v∈V

cF(v)−λ, (60)

as desired.

To see the expression for UB, recall from (4) that UB(H, F) =
∫

V
H(v) dF(v) − C(F). Thus,

plugging in H from (11) yields (18).

As to (ii). Note that when C is linear, we have
∫

V
cF (v) dF =
∫

V
c(v) dF = C(F). Thus,

UB = −minv∈V c(v) = 0 by (8).

As to (iii). The proof is given in the main text. QED

Proof of Corollary 1 The proof is given in the main text. QED

Proof of Lemma 1 The proof is given in the main text. QED

Proof of Lemma 2 The proof is given in the main text. QED

Proof of Proposition 4 Let (F, H) be an equilibrium. The proof for the first part of the statement

is given in the main text. It remains to show the equilibrium conditions (i) and (ii).

As to (i). We have that h ∈ (0, 1) in equilibrium if and only if the seller is indifferent between

the prices α and ω which is the case if and only if F(ω−) = 1−α/ω. Further, F is a best response

by the buyer if and only if (10) and (11) hold. Note that H(v) = (1 − h)v since H = Th, and

cF (v) = κΓ
′
0
(MF)v. Hence, (10) and (11) write

(1− h)v − κΓ ′
0
(MF)v −λ = 0 ∀v ∈ supp(F), (61)

(1− h)v − κΓ ′
0
(MF)v −λ ≤ 0 ∀v ∈ V. (62)

Since F(ω−) = 1−α/ω, F has a mass point of mass α/ω at ω. Because α/ω < 1, F has at least

one other point in its support, and thus (61) is true for at least two points in V . Since the function

on the left hand side is linear, it follows that (61) is actually true for all points in V . Thus, (61)

and (62) are equivalent to

(1− h)v − κΓ ′
0
(MF)v −λ = 0 ∀v ∈ V. (63)

This is equivalent to h = 1− κΓ ′
0
(MF) and λ = 0. Thus, h ∈ (0, 1) is equivalent to κΓ ′

0
(MF ) < 1.

This completes the proof of (i).
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As to (ii). To see the “only if”-part, let (F, Th) be an equilibrium with h= 0, that is, p = α with

probability 1. Then the buyer’s utility is MF −α−κΓ0(MF) which is equal to the full surplus minus

the constant α. Therefore, the buyer’s best response F is a first-best distribution.

To see the “if”-part, let F be a first-best distribution with F(v)≥ Kω
α
(v) for all v ∈ V . Then, in

particular F(ω−) ≥ Kω
α
(ω−) = Kω

α
(ω) = 1−α/ω. In other words, the mass onω is less than α/ω.

Thus, the seller weakly prefers p = α over p = ω. Hence, h = 0 is a best response by the seller.

Moreover, given h = 0, F is a best response by the buyer as argued in the previous paragraph,

and this completes the proof. QED

Proof of Proposition 5 As to (i),(a). Let MKωα
< M FB. Then there is no first-best distribution

F FB that is first order stochastically dominated by Kω
α

. Hence, F FB 6≥ Kω
α

. Hence, by part (ii) of

Proposition 4, there is no equilibrium with h= 0.

Next, I show that (Kω
α

, Th) with h= 1−Γ ′
0
(MKωα

) is an equilibrium. By part (i) of Proposition 4,

it is sufficient to show that Γ ′
0
(MKωα

) < 1. Indeed, because α≤ MKωα
< M FB, Lemma 2 implies that

either M FB = ω and thus κΓ ′
0
(ω) = κΓ ′

0
(M FB) < 1, or M FB = Γ ′

0

−1
(1/κ) and thus κΓ ′

0
(M FB) = 1.

Since Γ0 is strictly convex, Γ ′
0

is strictly increasing, and so the fact that MKωα
< M FB implies that

Γ
′
0
(MKωα

) < 1, as desired.

To complete the proof of part (a), I now argue that (Kω
α

, Th) with h= 1− Γ ′
0
(MKωα

) is uniquely

Pareto-optimal. Indeed, let (F̃ , Th̃) be another equilibrium. As remarked above, there is no equi-

librium with h̃ = 0. Hence, h̃ = 1 − Γ ′
0
(MF̃ ) by part (i) of Proposition 4. The buyer’s utility in

(F̃ , Th̃) is

ŨB = (1− h)(MF̃ −α)− Γ0(MF̃) = Γ
′
0
(MF̃)(MF̃ −α)− Γ0(MF̃). (64)

The derivative with respect to MF̃ is Γ ′′
0
(MF̃)(MF̃ −α) which is positive since Γ0 is strictly convex.

Therefore, the Pareto-optimal equilibrium maximizes MF̃ . Recall from Proposition 4 that F̃ ≥ Kω
α

in any equilibrium. Therefore, MF̃ < MKωα
for any F̃ 6= Kω

α
, and hence (Kω

α
, Th) is uniquely Pareto-

optimal.

To complete the proof of part (i), it remains to show (b). Note that since the default distribu-

tion puts all mass on α, we have Γ0(α) = 0 by (7). Therefore part (b) follows from (64).

As to (ii),(a). I first show that there is an equilibrium (F, Th) with h = 0 and F a first-best

distribution. Indeed, because MKωα
≥ M FB ≥ α = MKαα

, an intermediate value argument delivers

that there is v̂ ≤ ω so that MK v̂
α
= M FB, and hence K v̂

α
is a first-best distribution by Lemma 2.

Moreover, K v̂
α
≥ Kω

α
by definition, and thus (K v̂

α
, Th) with h = 0 is an equilibrium by part (ii) of

Proposition 4.

Since the seller chooses p = α with probability 1 in this equilibrium, and K v̂
α

is a first-best

distribution, the buyer extracts the residual first-best surplus W FB −α. Since the seller gets α in
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any equilibrium by Proposition 2, there is no equilibrium in which the buyer gets a higher utility.

It follows that (K v̂
α
, T0) is a Pareto-optimal equilibrium.

Part (b) is obvious, and this completes the proof. QED

Proof of Corollary 2 That κ̂ ∈ (κ0,κ1) follows from (36) and the fact that MKωα
∈ (α,ω) and that

1

Γ
′
0(v)

is strictly decreasing in v due to strict convexity of Γ0.

Moreover, by (37), we have that MKωα
= M FB if and only if κ = κ̂, and since M FB is decreasing

in κ (and strictly so in (κ0,κ1)), it follows that MKωα
< M FB for κ < κ̂ and MKωα

> M FB for κ > κ̂.

I now show part (i) of the corollary. The previous paragraph implies that for κ < κ̂, part (i)

of Proposition 5 applies, and the buyer’s utility is UB = κ[Γ
′
0
(MKωα

)(MKωα
−α)− (Γ0(MKωα

)− Γ0(α))].

Note that the term in the square brackets is strictly positive because strict convexity of Γ0 implies

Γ
′
0
(x)(x −α)> Γ0(x)− Γ0(x) for all x > α. Therefore, UB is strictly increasing in κ.

As for part (ii) of the corollary, for κ ≥ κ̂, part (ii) of Proposition 5 applies, and therefore

welfare in a Pareto-optimal equilibrium is first best.

Finally, part (iii) follows from part (ii) and (9). QED

Proof of Lemma 3 To prove the lemma, I first characterize the first-best distribution for general

cF .

Lemma A.1 F FB maximizes
∫

V
v dG − C(G) if and only if there is λFB such that

v − cF FB (v)−λFB ≤ 0 ∀v ∈ V, (65)

v − cF FB (v)−λFB = 0 ∀v ∈ supp(F FB). (66)

The proof of Lemma A.1 is identical to the proof that establishes the best response conditions (10)

and (11) for the buyer. The only difference is that in the objective function, the buyer’s expected

gross benefit
∫

V
H(v) dF is replaced by

∫

V
v dF . QED

I can now prove Lemma 3. Because cF is strictly concave, v − cF (v) is strictly convex and

thus maximized at the points α or ω. Thus, a distribution that satisfies (65) and (66) must

be a two-point distribution T f for some f , and the optimal f FB maximizes
∫

V
v dT f − C(T f ) =

f (ω−α)+α−C(T f ). Since C is strictly convex by assumption, C(T f ) is strictly convex in f , and

thus f FB is unique. QED

Proof of Proposition 6 The proof is given in the main text. QED

Proof of Lemma 4 By Lemma A.1, a first-best distribution is characterized by the conditions (65)

and (66). Because cF is strictly convex for all F , the function v− cF (v) has a unique maximizer for

all F . Therefore, the conditions (65) and (66) can be satisfied only for a distribution F FB which
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is a degenerate distribution 1[vFB ,ω] for some point vFB. Since a degenerate distribution that puts

all mass on v generates total welfare v − C(1[v,ω]), vFB maximizes this expression.

The argument behind expression (44) is in the main text. QED

Proof of Proposition 7 The proof is the same as the proof of Proposition 1 in Gul (2001). QED

Proof of Proposition 8 Because v∗(Kβ
α
) maximizes v − κγ

K
β
α
(v), we have that v∗(Kβ

α
) is given as

the solution v∗ to the first order condition

κγ′
K
β
α

(v∗) = 1, or v∗ = α and κγ′
K
β
α

(α)≥ 1, or v∗ =ω and κγ′
K
β
α

(ω)≤ 1. (67)

By Proposition 7, the equilibrium value of β is given by v∗(Kβ
α
) = β . Inserting this in (67) yields

the claim. QED

Proof of Corollary 3 As to (i). Since κ < κ̂, Proposition 8 implies that F = Kω
α

in equilibrium. By

part (i) of Proposition 3, the buyer’s equilibrium utility is thus

UB = κ

�∫

V

γKωα
(v) dKω

α
(v)− Γ (Kω

α
)−min

v∈V
γKωα
(v)

�

. (68)

It follows with the same arguments as in part (iii) of Proposition 3 that the term in brackets is

strictly positive. Thus, since Kω
α

is independent of κ, UB is strictly increasing in κ for all κ < κ̂.

As to (ii). Recall that Fmin is uniquely given by the distribution 1[α,ω] that places mass 1 on

α. For κ < κ1, Proposition 8 implies that F = Kβ
α

with β > α in equilibrium. By part (iii) of

Proposition 3, it follows that UB > 0. Hence, since seller profit is α by Proposition 2, total welfare

UB +α is strictly larger than α =W PUB.

As to (iii). By Lemma 4 and Proposition 8, the equilibrium distribution F coincides with the

first-best if and only if F = Kα
α
= 1[α,ω] and F FB = 1[α,ω]. The former is the case if κ ≥ κ1, and

the latter is the case if α maximizes v − κγ
1[α,ω]
(v) which is also equivalent to κ ≥ κ1. Therefore,

first-best welfare is strictly larger than equilibrium welfare if and only if κ < κ1. QED

Proof of Lemma 5 The characterization of the equilibrium value β follows by straightforward

algebra from Proposition 8 and (52).

It remains to calculate UB. By (18) and (50):

∫

V

cF(v) dF(v) =
1

2
κQF

∫

V

v2 dF(v) =
1

2
κQ2

F
, (69)
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and minv∈V cF(v) = cF (α) =
1

2
κQFα

2. Hence, by (18),

UB =

∫

V

cF(v) dF(v)− C(F)−min
v∈V

cF (v) (70)

=
1

2
κQ2

F
−

1

4
κQ2

F
+

1

4
κα4 −

1

2
κQFα

2 (71)

=
1

4
κ
�

Q2
F
+α4 − 2QFα

2
�

(72)

=
1

4
κ
�

QF −α
2
�2

. (73)

Plugging in QF = 2αβ −α2 for F = Kβ
α

from (51) yields the claim. QED

Proof of Lemma 6 By Lemma 4, vFB maximizes

v −κΓ (1[v,ω]) = v −
1

4
κv4 +

1

4
κα4. (74)

Expression (55) now follows from the first order condition for this maximization problem. QED

Proof of Lemma 7 Notice first that since cF is strictly increasing so that A3 holds, the default

distribution puts all mass on α. Therefore, by (7),

C(Fmin) = ϕ(α) = 0. (75)

Moreover, by Proposition 2, A3 also implies that the seller’s profit is α so that total welfare is

UB +α. Hence, it is enough to show the claim for UB only. To do so, define

ρ̂ =
1

ϕ′(MKωα
)
, σ̂(ρ) =

1−ρϕ′(MKωα
)

r ′(ω)− r ′(MKωα
)
. (76)

By definition, we then have for all (ρ,σ) with ρ < ρ̂ and σ < σ̂(ρ) that

c′
Kωα
(ω) ≤ 1, (77)

and hence, Proposition 8 implies that Kω
α

is the buyer’s equilibrium distribution. By part (i) of
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Proposition 3, because cKωα
(v) is minimized at α, the buyer’s equilibrium utility is thus

UB =

∫

V

cKωα
(v) dKω

α
(v)− C(Kω

α
)−min

v∈V
cKωα
(v) (78)

= ρ

�∫

V

ϕ′(MKωα
)v dKω

α
(v)−ϕ(MKωα

)−ϕ(α)

�

(79)

−σ

�∫

V

r ′(MKωα
)v dKω

α
(v)− r(MKωα

)− r(α)

�

(80)

−σr(α) (81)

= ρ
�

ϕ′(MKωα
)MKωα
−ϕ(MKωα

)−ϕ(α)
�

−σ
�

r ′(MKωα
)MKωα
− r(MKωα

)
�

. (82)

Because ϕ(α) = 0 by (75), strict convexity of ϕ and r implies that the square brackets are strictly

positive. Thus, the buyer’s utility is strictly increasing in ρ and strictly decreasing in σ. QED

References

Cerreia-Vioglio, Simone, Fabio Maccheroni, Massimo Marinacci. Stochastic dominance analysis

without the independence axiom. Management Science 63.4 (2017): 1097-1109.

Dilme, Francesc. Pre-trade private investments. Games and Economic Behavior 117 (2019):

98-119.

Dworczak, Piotr, and Giorgio Martini. The simple economics of optimal persuasion. Journal of

Political Economy 127.5 (2019): 1993-2048.

Hong, Chew Soo, and Naoko Nishimura. Differentiability, comparative statics, and non-expected

utility preferences. Journal of Economic Theory 56.2 (1992): 294-312.

Condorelli, Daniele, and Balazs Szentes. Information design in the hold-up problem. Journal of

Political Economy 128.2 (2020): 681-709.

Georgiadis, George, Doron Ravid, and Balazs Szentes. Flexible Moral Hazard Problems. Econo-

metrica (2023), forthcoming.

Gul, Faruk. Unobservable investment and the hold-up problem. Econometrica 69.2 (2001):

343-376.

Kleiner, Andreas, Benny Moldovanu, and Philipp Strack. Extreme points and majorization: Eco-

nomic applications. Econometrica 89.4 (2021): 1557-1593.

36



Lau, Stephanie. Information and bargaining in the hold-up problem. The RAND Journal of

Economics 39.1 (2008): 266-282.

Luenberger, David G. Optimization by vector space methods. John Wiley & Sons, 1997.

Ravid, Doron, Anne-Katrin Roesler, and Balazs Szentes. Learning before trading: on the ineffi-

ciency of ignoring free information. Journal of Political Economy 130.2 (2022): 346-387.

Roesler, Anne-Katrin, and Balazs Szentes. Buyer-optimal learning and monopoly pricing. Amer-

ican Economic Review 107.7 (2017): 2072-2080.

37


	Foliennummer 1

