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Abstract

Due to the approaching limit of the computational speed of classical von-Neumann
architectures, data transfer-intensive cognitive applications in future information tech-
nology demand a paradigm shift. "Beyond-von Neumann" concepts such as biolog-
ically inspired neuromorphic circuits with adjustable synaptic weights promise an
energy-efficient increase in computing power. In this context, novel memristive de-
vices such as redox-based resistive random access memories (ReRAM) are investigated
intensively. They combine nonvolatility, scalability and energy efficiency. Moreover,
they also allow the programming of multiple different resistive states, which further
increases the memory density in addition to the compact design. Due to their mixed
ionic-electronic function, they differ significantly from purely electronic systems. Im-
portant criteria for the use of memristive devices in neuromorphic circuits are the
operation parameters for the two switching modes abrupt and analog switching, the
stochasticity of the switching processes SET and RESET, the variability of the resis-
tance states HRS and LRS as well as the number of programmable states. In addition
to the quantification of these parameters, the physical understanding of the processes
taking place is crucial in order to make predictive statements about applicability and
reliability in circuits. In this context, the exchange with and further development of
physical models is essential. A typical filamentary ReRAM cell operating in the bipo-
lar valence change mechanism (VCM) is composed of one or more insulating metal
oxide layers and two metal electrodes, which differ in terms of work function and
chemical reactivity. A preferred choice for the metal oxide layer by the industry is
HfO2, since it is already available in semiconductor device fabrication lines. By inten-
tionally introducing an additional sub-stoichiometric titanium oxide layer and using a
chemically reactive titanium electrode and an inert platinum electrode, reproducible
and stable switching behavior is obtained. In this work, the described switching
modes are systematically analyzed on nanoscale Pt/HfO2/TiOx/Ti/Pt devices based
on statistical ensembles. The devices are highly comparable to industrially available
options. With the aid of compact model simulations, the results are physically in-
terpreted to obtain a comprehensive description of the devices as a foundation for
usage in future "Beyond-von Neumann" concepts. The results allow an evaluation of
the HfO2-based ReRAM cells with respect to their application in novel neuromorphic
circuits.

ReRAM devices of atomic layer deposition (ALD)-grown 3 nm thick HfO2 films
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were fabricated as cross-point devices with sizes ranging from 10000 nm2 to 3600 nm2.
Functional devices of 1600 nm2 were demonstrated as nano-plug structures. Extensive
statistical characterization of the electroforming behavior and the switching stability
as well as calibration of the switching properties by means of parameter variation
form the basis for the differentiated analysis of the switching kinetics with rectangu-
lar voltage pulses between 100 ns and 1 s. The study of the abrupt switching kinetics
in SET and RESET revealed the influence of the high-resistance state (HRS) on the
switch-on process (SET) on the one hand and the influence of a series resistor on the
switch-off process (RESET) on the other hand. Using the physically motivated com-
pact model "JART v1b" developed in cooperation between IWE-II of RWTH Aachen
University and PGI-7, it could be shown that, in addition to the delay time, the
transition time in SET, which is difficult to access experimentally, also depends sig-
nificantly on the HRS. Furthermore, if the low-resistance state (LRS) approaches the
internal series resistance, a significant time delay of the RESET process is caused.
By restricting HRS and LRS to a medium resistance range, the delay times can be
minimized. Thus, these transition regions can be efficiently used for analog switch-
ing. Quantitative studies in this operation mode revealed that by appropriate choice
of the voltage amplitudes, the behavior of the cells can be controlled to meet the
requirements of neuromorphic circuits such as symmetry and programmability of in-
termediate conductance states. Further detailed investigations on the stochasticity
of SET voltages over repeated switching operations and between different devices,
performed on an extended device ensemble, allowed evaluation of parallel-connected
devices as artificial synapses. The synapse was demonstrated both experimentally
and in simulation using an extended version of the JART v1b model that includes
device variability. The subsequent successful demonstration of synapses in a spiking
neural network highlights the potential of memristive devices for neuromorphic cir-
cuits. The results illustrate that the range of applications can be further extended
through a focused combination of device development and circuit design. In summary,
this work shows that nanosized filamentary ReRAM devices have a high potential for
use as artificial synapses in neuromorphic circuits of the future computer generation.
The obtained results contribute to a deeper physical understanding of the analog and
abrupt switching behavior and demonstrate the wide range of possible applications.
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Kurzfassung

Aufgrund der nahenden Grenze der Rechengeschwindigkeit klassischer von Neumann-
Architekturen verlangen datentransfer-intensive kognitive Anwendungen in der zukün-
ftigen Informationstechnologie nach einem Paradigmenwechsel. „Beyond von Neumann“-
Konzepte wie biologisch inspirierte neuromorphe Schaltungen mit einstellbaren synap-
tischen Gewichten ermöglichen eine energieeffiziente Steigerung der Rechenleistung.
In diesem Kontext werden neuartige memristive Bauelemente wie redox-basierte re-
sistive Speicher mit wahlfreiem Zugriff (ReRAM) intensiv erforscht. Sie vereinen
Nicht-Flüchtigkeit, Skalierbarkeit und Energieeffizienz miteinander. Zudem erlauben
sie die Programmierung vieler unterschiedlicher Widerstandszustände, was die Spe-
icherdichte zusätzlich zur kompakten Bauform erhöht. Dabei unterscheiden sie sich
aufgrund ihrer gemischt ionisch-elektronischen Funktionsgrundlage stark von rein
elektronischen Systemen. Wichtige Kriterien für den Einsatz memristiver Bauele-
mente in neuromorphen Schaltungen sind die Operationsparameter für die zwei Schalt-
modi abruptes und analoges Schalten, die Stochastizität der Schaltprozesse SET
und RESET, die Variabilität der Schaltzustände HRS und LRS sowie die Anzahl
der programmierbaren Zustände. Neben der Quantifizierung dieser Parameter ist
das physikalische Verständnis der ablaufenden Prozesse entscheidend, um prädik-
tive Aussagen über Einsatz und Zuverlässigkeit in Schaltungen treffen zu können.
In diesem Zusammenhang ist der Austausch mit und die Weiterentwicklung von
physikalischen Modellen essenziell. Eine typische im bipolaren Valenzwechselmech-
anismus (VCM) schaltende filamentäre ReRAM-Zelle ist aus einer oder mehreren
isolierenden Metalloxidschichten und zwei Metallelektroden aufgebaut, wobei Un-
terschiede hinsichtlich der Austrittsarbeit und der chemischen Reaktivität bestehen.
Eine von der Industrie bevorzugte Wahl für die Metalloxidschicht ist HfO2, da es bere-
its in den Herstellungslinien für Halbleiterbauelemente verfügbar ist. Durch gezielte
Einführung einer zusätzlichen sub-stöchiometrischen Titanoxid-Schicht und Einsatz
einer chemisch reaktiven Titanelektrode und einer inerten Platinelektrode wird repro-
duzierbar stabiles Schaltverhalten erreicht. In dieser Arbeit werden die beschriebe-
nen Schaltmodi an industrienah hergestellten nanoskalierten Pt/HfO2/TiOx/Ti/Pt-
Bauelementen auf Basis statistischer Ensembles systematisch analysiert. Durch Zuhil-
fenahme von Kompakt-Simulationsmodellen werden die Ergebnisse physikalisch inter-
pretiert, um eine umfangreiche Beschreibung der Bauelemente zu erzielen als Grund-
lage für den Einsatz in zukünftigen „Beyond-von Neumann“-Konzepten. Die Ergeb-
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nisse erlauben eine Bewertung der HfO2-basierten ReRAM-Zellen hinsichtlich ihrer
Anwendung in neuartigen neuromorphen Schaltungen.

ReRAM Bauelemente aus Atomlagen-Abscheidung (ALD) gewachsenen 3 nm dicken
HfO2 Schichten wurden als Kreuzpunkt-Bauteile mit Größen zwischen 10 000 nm2 und
3600 nm2 hergestellt. Als Nanolochstrukturen konnten funktionsfähige Bauelemente
von 1600 nm2 demonstriert werden. Umfangreiche statistische Charakterisierung des
Elektroformierungsverhaltens und der Schaltstabilität sowie eine Kalibrierung der
Schalteigenschaften mittels Parametervariation bilden die Grundlage für die differen-
zierte Analyse der Schaltkinetik mit rechteckigen Spannungspulsen zwischen 100 ns
und 1 s. Die Studie zur abrupten Schaltkinetik in SET und RESET deckte einerseits
den Einfluss des hochohmigen Zustands (HRS) auf den Einschaltprozess (SET) und
andererseits den Einfluss eines Serienwiderstands auf den Ausschaltprozess (RESET)
auf. Unter Zuhilfenahme des in Kooperation zwischen dem IWE-II der RWTH Aachen
und PGI-7 entwickelten physikalisch motivierten Kompaktmodells „JART v1b“ kon-
nte gezeigt werden, dass neben der Verzögerungszeit auch die experimentell schlecht
zugängliche Übergangszeit im SET wesentlich vom HRS abhängt. Weiterhin bewirkt
eine Annäherung des niederohmigen Zustands (LRS) an den internen Serienwider-
stand eine deutliche Zeitverzögerung des RESET. Durch Einschränkung von HRS
und LRS auf einen mittleren Widerstandsbereich können die Verzögerungszeiten min-
imiert werden. So kann der Übergangsbereich effizient für analoges Schalten genutzt
werden. Quantitative Studien ergaben, dass durch geeignete Wahl der Spannungsam-
plituden das Verhalten der Zellen so gesteuert werden kann, dass die Anforderungen
neuromorpher Schaltungen wie Symmetrie und Einstellbarkeit von Zwischenzustän-
den erfüllt werden. Die genauere Untersuchung der Stochastizität der SET Spannun-
gen zwischen Schaltvorgängen und zwischen Bauelementen, die an einem erweiterten
Bauelemente-Ensemble durchgeführt wurde erlaubte in Kombination mit einer um die
Bauelemente-Variabilität erweiterten Version des JART v1b Modells die Evaluierung
parallelgeschalteter Bauteile als künstliche Synapse, sowohl experimentell als auch in
der Simulation. Die erfolgreiche Demonstration der Synapsen in einem gepulsten neu-
ronalen Netzwerk unterstreicht das Potenzial memristiver Bauelemente für neuromor-
phe Schaltungen. Durch eine gezielte Kombination von Bauelemententwicklung und
Schaltungsentwurf lässt sich das Anwendungsspektrum memristiver Zellen noch deut-
lich erweitern. Zusammenfassend zeigt diese Arbeit, dass nanostrukturierte filamen-
täre ReRAM-Bauelemente ein hohes Potenzial für den Einsatz als künstliche Synapsen
in neuromorphen Schaltungen der künftigen Computergeneration haben. Die erziel-
ten Ergebnisse tragen zu einem tieferen physikalischen Verständnis des analogen und
des abrupten Schaltverhaltens der Bauelemente bei und demonstrieren die vielfältigen
Einsatzmöglichkeiten.
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1 Introduction

The enormous amount of data that is currently generated and will be generated in the
next decades by a multitude of sensors in modern electronic devices causes the need for
adequately powerful yet energy-efficient data processing equipment. However, current
computing technologies struggle to deal with the complex challenges of this enormous
amount of data since it is frequently unstructured, noisy or incomplete. Therefore,
research in the field of information technology aims to develop new data analysis
concepts. Besides other concepts such as quantum computing and hyperdimensional
computing, neuromorphic computing (NC) is seen as a promising candidate to fulfill
these requirements. While NC concepts can be executed on traditional hardware,
their von-Neumann architecture limits the computation speed and efficiency. Novel
memory technologies have gained attention in this context as they promise benefits
for NC over the traditional counterparts composed of Complementary Metal-Oxide-
Semiconductor (CMOS) logic gates and physically separated Dynamic Random Access
Memories (DRAM). Accordingly, the applications for these novel memory devices are
frequently termed "Beyond-von-Neumann" concepts. Within the group of emerging
memory technologies, nonvolatile resistive switching memories have received a lot of
attention both from industry and research due to their ease of fabrication, dense in-
tegration possibility and potential use of low cost materials. The essential device
consists of a metal-insulator-metal (MIM) stack. In the group of resistive switching
devices, several subtypes have been identified. One subtype has a significant advan-
tage over the others and is therefore at the forefront of research. That advantage
is that the materials used in the process are CMOS compatible and are in fact al-
ready established in today’s production lines. The mentioned materials are HfO2 and
Ta2O5, which are used as CMOS high-k gate dielectric [1–3] and as capacitor oxide
or, in the nitride form, as copper diffusion barrier [4]. The world’s first available
multi-project wafer service including oxide-based resistive switching memories is in
fact based on Ti-doped HfO2 [5]. The resistive switching in these devices is based
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1 Introduction

on redox processes within the insulating oxide film. The reactions occur in a locally
constrained region of conical shape, which has lead to the commonly used term fila-
mentary redox-based random access memory, short ReRAM. For these devices, many
of the imposed criteria for augmenting existing memory technologies have been suc-
cessfully demonstrated, such as device scaling[6], sub-nanosecond switching[7–10] and
low power non-volatile information storage[11].

However, together with the development of NC concepts, new criteria for storage
devices are emerging. When employing the devices e.g. as artificial synapses, the
focus is shifted from previously important criteria to different ones which have not
received attention before. Filamentary ReRAM devices based on HfO2 and Ta2O5

need to be re-evaluated, and their capability to fulfill these new demands needs to
be clarified. Features like resistance drift and noise or switching stochasticity, which
were previously seen as parasitic and undesired, may now be the enabling factor for
certain NC applications.

The present work utilizes a well studied and designed HfO2-based ReRAM device,
which is highly comparable to industrial and advanced research devices [5, 12–14].
The aim is to elucidate and evaluate the coexistence of stochastic switching between
distinct resistances and the possibility of programming analog resistances in single fil-
amentary valence change mechanism (VCM) ReRAM devices with respect to possible
use cases in NC applications.

1.1 State of the art

Current state of technology of filamentary ReRAM devices for novel computing ar-
chitectures is reviewed in this section. Previous assessments targeting the use as
stand-alone memory or embedded memory are not considered. The reader is referred
to respective papers on ReRAM devices for conventional memory published in the
last 10 years as for example [11, 12, 14–29]. Rather, this section is divided into three
categories that reflect the majority of use cases in novel applications: multilevel state
programming, analog conductance tuning and exploitation of stochastic switching. In
general, the results are shared between filamentary material systems, and are therefore
valid for HfO2-based devices, also.
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1.1 State of the art

1.1.1 Multilevel switching

Multilevel memory is considered extremely advantageous as it increases the informa-
tion density without requiring additional space. The fact that ReRAM devices are
capable of storing multiple bits of information has been known for a while, but deeper
investigations have only been published recently. Sheng et al.[6] demonstrated more
than 256 states (8 bits) in a single ReRAM device with access transistor when con-
sidering the full conductance range. With the target of low power operation in mind,
even 8 states (3 bits) and 4 states (2 bits) were shown below 10 μS and below 1 μS,
respectively. Comparable results have been achieved by Stathopoulos et al.[30], who
were able to dramatically increase the number of programmable states by varying the
interfacial metal oxide. They demonstrated a maximum of 92 distinguishable states
(6.5 bits) in a single crossbar device while maintaining a read conductance below
50 μS. In contrast to the studies mentioned, the majority of publications report be-
tween 2 and 8 states in a single device [13, 31–40]. As seen from comprehensive review
papers [41, 42], the general trend is to focus on few well defined conductance states
within the capable range of the respective device, which typically limits the number
of states to around 8 to 10.

1.1.2 Analog conductance tuning

However, the outstandingly high numbers provided by [6] and [30] indicate that fil-
amentary ReRAM devices are capable of adopting more than 10 states. In fact, as
many as 300 states were estimated by the authors of [42]. However, the limiting factor
in this case is that such states are hardly distinguishable from each other. Therefore,
it makes sense to refer to such operations as analog conductance tuning. This property
has attracted a lot of attention since the vast majority of novel computing concepts
benefit from nonvolatile analog weights. Therefore, a large number of publications
reports analog capabilities in the devices. Most prominently, this feature is found
in area-dependent VCM devices, which are still in an exploratory state. Because of
the strong demand for analog tuning capability, by now, all of the commonly used
materials for filamentary resistive switching have also been studied with respect to
demonstrating analog conductance tuning. In particular, the most research has been
done on HfO2-based [43–54] , Ta2O5-based [55–59] , SrTiO3-based [60] , Al2O3-based
[61–63] and TiO2-based [64, 65] devices. Comparison of the metrics of these devices is
difficult to obtain because of the various target applications of the publications in com-
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1 Introduction

bination with non-standardized characterization methodology. Common challenges,
which have also been consently reported in multiple review and research papers [66–
68] include limited resistance window compared to operation as conventional memory
device, lowered switching voltage and complex dynamics.

1.1.3 Stochastic switching features

In this context and throughout this work, the term stochasticity describes the non-
deterministic character of occuring processes such as transitions between states. The
term variability will be used for observed states or metrics such as measured resis-
tances and voltages. When ReRAM devices were investigated for embedded memory
applications, one of the most challenging aspects was the strong presence of vari-
ability and stochasticity. The extent of interlinking between the variability and the
stochasticity is still under investigation. The established results for memory devices
were recently reconsidered as working principle for neuromorphic applications. Es-
pecially the switching voltage stochasticity has attracted attention. Several studies
focus on exploiting the stochasticity of the SET process for a multitude of applications.
Dalgaty et al.[69] employed voltage signals with amplitudes in the non-deterministic
regime to update ReRAM devices which are located in multiple places of a recurrent
neural network. Yu et al.[70] employed the stochastic SET programming condition
to operate a two-layer winner-take-all network that determines the angle orientation
of an input line. By overlapping a long but weak programming signal from the input
layer with a shorter signal from the output layer, the stochastic SET process is used
to incrementally improve the network’s accuracy through setting the correct devices,
while the incorrect connections are weakened. Naous et al.[71] followed a similar
two-layer network winner-take-all approach in their simulation based study, which
employed a generic memristive device model. They also investigated the possibility
to transfer the stochastic switching feature to the neurons, resulting in similar perfor-
mance for the well-known MNIST dataset[72]. Wenger et al.[73] benchmarked their
CMOS cointegrated devices with the same dataset. Their two-layer perceptron net-
work, which is composed of software-sided neurons and hardware memristive devices,
was able to achieve high recognition rates using a very limited number of neurons.
The stochastic feature in the supervised learning scheme was exploited to SET a
subset of devices proportional to the pixel intensity of each number in the dataset.
Fewer studies exist on the resistance state variability. Dalgaty et al.[74] were able to
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1.2 Scope of this work

demonstrate that the intrinsic conductance variability of the higher conducting state
can be exploited to efficiently implement Markov chain Monte Carlo sampling algo-
rithms. In their study, they employed the normal random conductance variable for a
supervised learning task and a reinforcement learning task. In both cases, accuracies
that outperform software models with the same number of elements are achieved.

In summary, filamentary ReRAMs have overcome the stigma of their variable and
stochastic nature. Instead of mitigation, the named studies have achieved exploitation
of these previously undesired features. The current state of ReRAM technology is at
a turning point. A few years ago, the driving force for research of ReRAM devices
was to complement the existing memory technologies. The goal was to create a non-
volatile, fast read-and-write storage device that fills the latency gap between DRAM
memory and slower, permanent hard drive memory [75]. NC architectures, however,
outperform conventional computers by orders of magnitude when it comes to complex
tasks like image or speech recognition as well as optimization problems or prediction
tasks. Therefore, the target of hardware research has shifted towards a memory unit
that can store multiple bits of information or has properties that allow for efficient
algorithm execution. Filamentary ReRAM devices, especially those based on HfO2,
pass a lot of challenges due to their inherent properties such as temperature con-
straints, integration density, cost and speed, but need more investigation with respect
to their unconventional properties like stochasticity and analog conductance tuning.
The working principle of ionic devices is also lacking complete and comprehensive
models, especially compared to the available descriptions of electronic devices. For
further improvements of ReRAM technology, it is imperative to gain more insights
into the observed phenomena. This understanding will in turn result in better device
design and give indications for the proper choice of device for neuromorphic applica-
tions.

1.2 Scope of this work

The present work aims to explore possible application options for filamentary nano-
crossbar valence change mechanism memristive devices in novel computing concepts.
For this purpose, the focus is on the switching properties of single devices, statistical
analysis of variability of single and multiple devices and on unconventional switching
phenomena such as stochastic switching and analog conductance tuning. The test
vehicle device for this study is the well researched Pt/ 3 nm HfO2 / 3 nm TiOx /
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1 Introduction

10 nm Ti / Pt stack, which is one of the most frequently employed material combi-
nation both in industrial and research contexts. The stack is integrated into crossbar
structures with metal line widths of 100 nm down to 60 nm. As a proof of concept of
the scalability, resistive switching is also demonstrated in a nano-plug-style device of
(40 nm)2 area, reducing the device volume down to 64 · 103 nm3. The chapters of the
work reflect the aim of this work:

Chapter 2 is dedicated to providing the reader with the required fundamental
knowledge about the topics covered in this work. Therefore, Section 2.1 first gives an
overview on the topic of emerging device technologies for novel computing architec-
tures. Section 2.2 continues with a focus on the devices based on resistive switching.
Specifically, the switching mechanism of counter-eightwise filamentary VCM mem-
ristive devices is summarized. Relevant material properties for the employed test
device are given. Section 2.3 introduces the computing architectures and concepts, in
which emerging devices may be utilized. Specific cases where memristive devices are
employed will be discussed.

Chapter 3 summarizes the technical aspects and methods of this work. Thin film
deposition techniques relevant to this work are described in Section 3.1. Section 3.2
summarizes the process for fabrication of the nano-structured crossbar devices that
are mainly used in this work. Section 3.3 describes the measurement setups employed
for electrical characterization of the fabricated devices.

Chapter 4 is dedicated to the phenomenon of resistive switching in the described
test devices. The chapter is split into multiple sections, each reflecting a different
aspect of the devices. Description of the statistics of the initial electroforming step in
Section 4.1 is followed by the demonstration of device miniaturization shown in Sec-
tion 4.2. Endurance characterization is presented in Section 4.3. Statistical analysis
using fast triangular voltage sweeps is described in Section 4.4. Special attention is
paid to the interplay of externally set parameters and resulting switching conditions.
Subsequently, the switching kinetics upon rectangular voltage pulses over multiple or-
ders of magnitude in time are studied in Section 4.5. The implications of the observed
processes on the operation of the devices is investigated.

The following Chapter 5 is dedicated to the analog function of single devices.
First, the analog conductance tuning by constant repeated voltage pulse trains is
investigated in Section 5.1. During the analysis, a distinct conductance noise trend is
observed, which is further investigated in the subsequent Section 5.2.

Three variants of Spike Timing Dependent Plasticity, which is an alternative pro-
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1.2 Scope of this work

gramming technique in the analog-like switching domain is the topic of Chapter 6.
In the following Chapter 7, the second operation mode, namely binary switching,

is studied in more detail. The stochasticity and variability of a device ensemble is
analyzed in detail. SET and RESET resistance switching are investigated separately
and similarities and differences are highlighted in Sections 7.1 and 7.2, respectively.

Chapter 8 shows how transfers between experimental results on single devices
and neuromorphic application concepts can be achieved. The results of the binary
switching mode from the previous chapter are implemented into a Spiking Neural
Network demonstrator application and the results are discussed.

Chapter 9 summarizes the results and findings of this thesis and provides an
outlook for possible future investigation.
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2 Fundamentals

This section of the work should provide the reader with necessary background infor-
mation about the current state of research that relates to the topic of the present work.
Initially, an overview over the currently emerging memory technologies will be given
and contrasted to the previously available options. The investigated resistive switch-
ing devices are put into context with these other technologies in the next section.
Subsequently, a classification within the group of resistive switching devices is given,
including a more detailed definition of the working principle of devices investigated
in this work. Neuromorphic applications have emerged as key aspect in application
pathways for nonvolatile memories. An overview of the wide field of neuromorphic
concepts is given in the last section of this chapter.

2.1 Emerging devices for neuromorphic computing

The vast majority of computing we know and use today is done in systems based on
the von Neumann concept[76]. It follows the principle of physically separating the
Central Processing Unit (CPU) from the Memory unit. In this architecture, inputs
from the outside are passed to the CPU, which performs the appropriate computations
and returns an output. While doing so, it may retrieve or store larger amounts of data
in the memory, while small amounts may be stored in internal registers. The core
strategy for speeding up computational tasks has not changed since the invention
of the von Neumann concept. By increasing the density and hence the amount of
transistors on a chip, parallelizing tasks and increasing the clock frequency, tasks
are processed and the results are returned to memory[77]. However, this strategy
is facing severe limitations. While the speed of computation has steadily increased
through the development of faster hardware and algorithms, the transfer speed to
the memory blocks is lacking behind. This issue is termed von-Neumann bottleneck.
Another factor that is worsening the situation immensely is the rise of neuromorphic
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computing tasks and according concepts, especially the ones that require gigantic
amounts of synaptic weights such as Deep Neural Networks (DNNs). The working
principle of DNNs and other networks is described in Section 2.3. Since the number of
weights is so high, they are stored outside the CPU. However, the working principle of
e.g. DNNs requires them to be accessed regularly. Hence, they need to be transferred
back and forth often. This disadvantage of the von-Neumann concept imposes a
significant energy and time penalty. New memory technologies aim to overcome this
hurdle by providing fast write and read times in dense units that can be integrated on
the same chip with the CPU. In special cases, the computations may even be executed
in the memory units themselves. This concept is accordingly termed Computation-
in-memory (CIM) and is beyond the scope of this thesis. In the past years, several
of these emerging neuromorphic device technolgies have been proposed. Figure 2.1
provides an overview. The classification is done by the respective working priniciple
of the memory device. Three physical mechanisms are included. Here, the following
abbreviations are used:

• EDLC is Electric Double-Layer Capacitor.

• EC-doping is Electrochemical doping.

• FTJ is Ferroelectric Tunnel Junction.

• FeFET is Ferroelectric Field Effect Transistor.

• STT is Spin-Torque-Transfer.

• SOT is Spin-Orbit-Torque.

• DW motion stands for Domain Wall motion.

• PCM is Phase Change Material.

• CMOS is Complementary Metal Oxide Semiconductor.

Resistive switching elements are found in all three categories, however, redox-based
devices are only found in the ion migration category. Here, the species of moving ions
is specified. Although there are indications that cation movement may also play a
role[78–82] the ReRAM devices investigated in this work belong to the anion based
filamentary type. The distinction between non-filamentary and filamentary devices
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2.2 Redox-based resistive switching devices

Figure 2.1: Overview of emerging neuromorphic device technologies. The classifica-
tion is done by the working principle. Reprinted from [66], with the permission of
AIP Publishing.

results from a measurement of the resistance states in dependence of the device area.
By far the most prominent candidate of anion based filamentary devices is based on
the Valence Change Mechanism (VCM).

2.2 Redox-based resistive switching devices

This section is dedicated to the phenomenon of resistance change by voltage stimulus
in the case of redox-active oxide based memory cells. Basic definitions and a physical
description of the working principle of filamentary valence change mechanism devices
are provided in the first subsection. Ionic processes affecting the switching kinetics
are the focus of the second subsection. The reader is referred to the respective text-
books for informations on other occurring physical effects and their functionalities
in oxide devices[83, 84]. These may include reduction/oxidation processes on the
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Figure 2.2: Electronic, ionic, thermal and redox processes during redox-based resistive
switching in a metal (M’) / metal compound isolator (MX) / metal (M”) structure
under bias. Reproduced with permission from [83].

nanoscale such as exchange reactions with the electrodes[85], interactions with the
atmosphere [86] or so called nano-battery effects [87].

2.2.1 Physical switching model

In this section Valence Change Mechanism (VCM) devices are discussed. For this
mechanism to occur, the insulator is a thin oxide layer of a mixed ionic-electronic
conducting (MIEC) material. Typically, this MIEC thin film is sandwiched between
two metal electrodes which differ in their oxidation enthalpy and work function. Fig-
ure 2.2, which is taken from [83] depicts the electronic and ionic processes happening
on the nanoscale in a VCM device under voltage bias. Independently from the stack
design, electrons are easily conducted in the metal electrodes M’ and M”. In con-
trast, the MIEC oxide layer may conduct electronic and ionic currents. The partial
electronic current may result in Joule heating inside the stack. This may in turn
lead to physical phenomena that are not relevant at room temperature. In this sand-
wich structure, reactions at the electrode interfaces may occur. Caused by the ionic
currents, anodic oxidation and cathodic reduction reactions may take place at the
M’ and M” interfaces, respectively. This effect strongly depends on the stack de-
sign. Other reactions include oxygen species interaction with the metal electrodes,
incorporation of oxygen species into the metals, phase transitions, formation of space
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2.2 Redox-based resistive switching devices

charge layers and concentration gradients. Noble electrode metals with low oxygen
affinity make reactions of oxygen with the electrode material electrochemically un-
favourable. However, incorporation of charged species is still possible. In the popular
case of asymmetric electrode materials, the non-noble metal electrode can oxidize
during the interface reaction of anodic oxidation. In this reaction, neutrally charged,
free oxygen is created, which reacts further with the typically high oxygen affinity
metals [83]. The concentration profile of oxygen vacancies, which act as donor sites
in the oxide, may be manipulated by voltage bias to the stack. The oxygen affine,
low work function counter electrode [88] evolves into an ohmic contact to the oxygen
vacancy rich oxide and is hence often referred to as oxygen exchange layer (OEL) or
as ohmic electrode (OE). In contrast, the noble, high work function electrode inter-
face forms a Schottky-type barrier to the oxide. This interface is often referred to as
Active Electrode (AE) and is expected to be the limiting electronic conductor. This
Schottky-type electrode is the one where the resistance switching occurs. The switch-
ing is defined as the resistance change from a low resistance (high conductance) state,
short LRS (HCS) to a high resistance (low conductance) state, short HRS (LCS) and
vice versa. The HRS to LRS and the LRS to HRS transition are termed SET process
and RESET process, respectively. Both processes are achieved by application of a
sufficiently high voltage to the metal electrodes. In the case of VCM-type switching
devices the described processes require opposite polarities, hence the mechanism is
called bipolar. In contrast, devices that require a single voltage polarity to function
are termed unipolar. VCM-type devices can exhibit different area scaling behavior.
Material systems like La0.67Sr0.33MnO3, La0.33Ca0.67MnO3 and Pr(1–x)CaxMnO3 and
others [89–91] show area dependent switching characteristics when sandwiched be-
tween metal electrodes. Essentially, the current through the device scales directly
with the device area. These devices are often referred to as interface-type switches.
Opposite to these devices, there are also resistive switching devices without area de-
pendence. Here, the formation and rupture of a single filament during one switching
cycle is understood as the underlying mechanism. Hence it is termed filamentary-type
switching as the filament size shows minor to no dependence on the electrode area.
In the following only these devices are discussed since they are in the main focus of
this work. Figure 2.3 illustrates this abstract description for an exemplary stack of
Pt/ZrO2/Zr. In this specific material combination, filamentary switching is predom-
inantly observed. Green spheres stand for mobile oxygen vacancies V **

O (using the
Kröger-Vink-notation [92]), while purple spheres represent Zr ions with a valence state
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Figure 2.3: Example of a valence change memory current-voltage characteristic mea-
surement on a Pt/ZrO2/Zr layer stack. Reproduced with permission from [83].

other than +4, i.e. +2 or +3. Yellow spheres mark Zr ions in the +4 valence state.
(A) depicts the ionic distribution in the HRS, which is defined by a low concentra-
tion of oxygen vacancies close to the Pt AE. Application of sufficiently high negative
voltage to the Pt electrode attracts the vacancies, which results in the SET process,
see (B). At lower voltage, the LRS can be read. It is understood that a high oxy-
gen vacancy concentration is present in close proximity to the Pt electrode, see (C).
For transitioning back to the HRS, sufficiently high positive voltage is required. The
result is a retraction of positively charged oxygen vacancies into a filament-shaped
reservoir, see (D). Because of the conical shape and the movement between an active
region and a reservoir region, the commonly used separation into ’disc’ and ’plug’,
respectively, is introduced.

The exact mechanism of the resistance change is still under debate. Funck and Men-
zel recently published a comprehensive review on the conduction mechanism in ReRAM
devices[93]. By studying the predominant switching properties in various oxide ma-
terials, they were able to identify two different types of oxides frequently used for
ReRAM devices. The distinguishing factor was found to be the relative energy level
of oxygen vacancies with respect to the conduction band edge of the oxide. For shal-
low defect states, it was found that the electronic conduction is limited by a Schottky
barrier limited band transport, where the oxygen vacancy concentration close to the
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2.2 Redox-based resistive switching devices

active electrode modulates the Schottky depletion zone length, hence allows switch-
ing. In contrast, deep defect states lead to an interface limited trap assisted tunneling
current. The resulting I-V curves exhibit different shapes: For shallow defect oxides,
strong resistance nonlinearity is observed, while less pronounced to no nonlinearity is
the case for deep defect states. This work focuses on HfO2-based devices. The defect
state level of V **

O in HfO2 [94, 95] as well as the observed state linearity strongly
suggests that the devices used in this work fall in the category of deep defect oxides
[93]. The likely conduction mechanism is hence an interface-limited electron transport
over V **

O defects by trap-assisted tunneling. The main limiting element however is
the Schottky depletion zone at the Pt interface, which requires direct or thermally
assisted tunneling into the Pt conduction band. This description is in line with the
textbook model of [83]. However, the role of the interfacial TiOx at the OEL is still
under investigation.

2.2.2 Switching kinetic fundamentals

The description of the kinetics of the resistance change mechanism is important for
two reasons. On the one hand, it is a relevant metric of a memory device targeted for
high end applications. Filamentary VCM devices have been proven to switch in less
than 1 ns [7–10]. On the other hand, the full switching kinetic curve spanning over
several orders of magnitude in time may elucidate on the physical switching mecha-
nism and different limiting reactions at different timescales [96–100]. The description
of a switching kinetic curve as shown in Figure 2.4 requires certain assumptions to
be made. Within the scope of this work, it is assumed that the switching process
solely depends on the redistribution of doubly charged oxygen vacancies V **

O within
the oxide layer. Generation and recombination are not considered, but are known to
play a significant role in the switching [101–103]. Further, Figure 2.4 highlights that
the SET switching is extremely nonlinear with respect to the voltage-time relation.
Indicated by the findings of Menzel et al. [97] as well as others [100, 104–111], the
applied voltage and generated temperature create a surrounding that enables this
strong nonlinearity. In summary, it was found that the ionic motion is both field
and temperature accelerated. The temperature is generated through Joule heating at
the active electrode interface. It may reach up to values above 1500 K temporarily.
A positive feedback loop of current increase and Joule heating subsequently triggers
a runaway process, which results in the typical abrupt current change observed for
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Figure 2.4: Voltage and temperature dependency on the SET transition time. By
including thermal enhancement in the switching model, the strong nonlinearity in
switching speed reported in VCM-type devices can be reproduced. Reproduced with
permission from [97].

the SET process. Opposite to the SET switching kinetics, few studies focus on the
RESET mechanism. Marchewka et al. [112] proposed a comprehensive model that
describes the transient currents during RESET well. It is based on a dynamic equilib-
rium of oxygen vacancy drift and diffusion. While the positive polarity at the active
electrode repels the doubly charged ions, a concentration gradient and a temperature
gradient is formed. Due to the high overall temperature, diffusion processes are ac-
tive. Subsequently, drift and diffusion forces, which are composed of chemical and
thermodiffusion, counteract each other, resulting in a voltage and time dependent
equilibrium. The result of this balance is the observed gradual current decrease for
the RESET process. Several other studies [107, 113] report that the RESET process
can also have an abrupt appearance. This is, however, caused by a configuration
of the memristive element in series with a sufficiently high ohmic resistor. As the
intrinsic memory resistance value approaches the series resistor value, the applied
RESET voltage is divided. As a result, the observed RESET transition in a sweep
experiment is shifted to higher voltage. Once the process is initiated, the resistance
increases slightly, which in turn alters the voltage divider effect. Due to the nonlin-
ear switching kinetics, a positive feedback loop of resistance increase and increasing
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2.2 Redox-based resistive switching devices

voltage drop starts. Accordingly, the RESET shows an abrupt reduction in current.

2.2.3 Compact model fundamentals

Modelling of the complex processes behind the resistive switching is challenging and
the subject of recent investigations. One of the most advanced switching models at the
time of this thesis is the fully physics-based Jülich Aachen Research Tools (JART) VCM
compact model [114] in Version v1b. It will be referred to as JART VCM model in
this work. As it will be employed in the following chapters, it is described in more
detail here. For deeper insights about compact modelling of VCM devices, the reader
is referred to more extensive publications [96, 112, 115–118] and the comprehensive
PhD thesis of C. La Torre [119].

In the JART VCM model, the ReRAM device is composed of four elements. One,
a Schottky diode resembles the AE/oxide interface. Second, a disc resistance Rdisc.
Third, a plug resistance Rplug and fourth, a series resistance Rseries. The length of
the filament lcell is equal to the resistive switching oxide thickness. The disc and
plug length is termed ldisc and lplug, respectively. The filament cross-section area A

is calculated by A = πr2
fil, where rfil is the filament radius. The concentration of

oxygen vacancies in the disc region and the plug region is denoted by Ndisc and Nplug,
respectively. The series resistance is split into two parts, which reflect electrode and
line resistances on one hand and the ohmic OE/oxide interface on the other hand.
Here it is important to note that the line series resistance is a function of current,
since the Joule heating of metal lines with small cross-section area generates a non-
negligible temperature increase.

In the model, the voltage Vapplied is applied to the AE while the ohmic electrode
is forced to ground. I is the current through the device. First, Kirchhoff’s law,

Vapplied − [VSchottky + I · (Rdisc + Rplug + Rseries)] = 0 (2.1)

is solved. Although not correct in every case as recently described by Funck and
Menzel [93], the conduction mechanism in the filament is approximated by band
conduction with the temperature-dependent electron mobility µn. The disc and plug
resistances are calculated by

Rdisc = ldisc

A · zVoeNdiscµn(T ) = ldisc

A · zVoeNdiscµn0
exp

(
∆Eac

kBT

)
(2.2)
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and
Rplug = lplug

A · zVoeNplugµn(T ) = lplug

A · zVoeNplugµn0
exp

(
∆Eac

kBT

)
. (2.3)

Here, zVo is the charge state of the oxygen vacancies with respect to the situation in
a perfect crystal lattice, e denotes the elementary charge, T is the temperature, kB

is the Boltzmann constant, and µn0 is the mobility prefactor, which is temperature-
independent. The mobility temperature dependence is modeled using ∆Eac as activa-
tion energy. The Schottky diode current is either the thermionic emission current ITE

or the thermionic field emission current ITFE:

I =

ITE Vapplied > 0 (forward)

−ITFE,reverse Vapplied ≤ 0 (reverse).
(2.4)

Thermionic emission current is described by

ITE = AA∗T 2 exp
(

−eϕBn

kBT

) (
exp

(
eV

kBT

)
− 1

)
, (2.5)

which includes the effective Richardson constant [120]

A∗ = 4πemeffk2
B

h3 . (2.6)

Thermionic field emission current for negative voltage is described by

ITFE,V <0 = A
A∗T

kB

√
πW00e

(
−V + ϕBn

cosh2(W00/kBT )

)
exp

(
−eϕBn

W0

) (
exp

(
−eV

ζ

)
− 1

)
.

(2.7)

Here, W00, W0, and ζ are calculated by

W00 = eh

4π

√
ND

meffϵs
, (2.8)

W0 = W00 coth
(

W00

kBT

)
, and (2.9)

ζ = W00

(W00/kBT ) − tanh(W00/kBT ) . (2.10)
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eϕBn, which is the effective barrier height, is computed by

ϕBn = ϕBn0 − ∆ϕ = ϕBn0 −

√
eEmax

4πϵϕB

= ϕBn0 − 4

√
e3ND(ϕBn0 − ϕn − V )

8π2ϵ3
ϕB

. (2.11)

The donor concentration goes into this equation through ND. For the donor concen-
tration in the above equations, ND = zVoNdisc is assumed. The energy difference eϕn,
which is the energy between the Fermi level and the conduction band edge, also de-
pends on the donor concentration. Based on the Boltzmann statistics, it is calculated
by

ϕn = kBT

e
log

(
2(2πmeffkBT/h2)3/2

zVoNdisc

)
. (2.12)

For resistive switching to occur, the oxygen vacancy concentration must change.
The ionic current Iion of mobile oxygen vacancies between the plug and the disc is
modeled by

dNdisc

dt
= − 1

zVoe A ldisc
· Iion. (2.13)

In the JART VCM v1b model, the plug is assumed as highly concentrated, infinite
oxygen vacancy reservoir. The temperature and field dependent ionic current can be
calculated by

Iion = AJion,drift

= A

2zVoeaν0N exp

−
∆WA

[√
1 − γ2 + γ arcsin γ

]
kBT

 sinh
(

azVoeE

2kBT

)
· Flimit

 .

(2.14)

Here, ν0 is the attempt frequency, a is the hopping distance and N is the ion con-
centration. Flimit is a factor that limits the ionic current to avoid deviation from the
maximum/minimum allowed concentration. The difference of forward and reverse
jumps is introduced by the prefactor γ according to

γ = azVoeE

π∆WA
. (2.15)

The driving concentration N in the drift current equation is chosen as the geometric
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mean of both concentrations Ndisc and Nplug:

N =
√

Ndisc · Nplug. (2.16)

The electrical field for SET and RESET is calculated through

E =


Vdisc + Vplug

lcell
Vapplied > 0 (RESET)

Vdisc

ldisc
Vapplied < 0 (SET).

(2.17)

It is numerically ensured that the concentrations do not exceed the maximum and
minimum concentrations Ndisc,max and Ndisc,min.

A single temperature for the whole filament is used. It is calculated based on the
dissipated power in the filament caused by the voltage drops across the plug and the
disc:

T = (Vdisc + Vplug) · I · Rth,eff + T0. (2.18)

T0 is the ambient temperature. The temperature increase caused by the Joule heating
is described using a singular effective thermal resistance Rth,eff.

2.3 Neuromorphic computing architectures employ-
ing memristive devices

This section introduces two important types of novel brain-inspired architectures that
are thought to benefit from utilizing memristive devices, namely Fully Connected
Neural Networks and Spiking Neural Networks. It is not meant as a full review,
but should give the reader an impression of the possible target applications that are
relevant to this work. For more detailed information, the reader is referred to recent
review publications on the topic[42, 66, 121–125].

By definition of Carver Mead [126], neuromorphic architectures aim to translate
the working principles found in biological systems into human-built hardware systems.
The two fundamental building blocks of the human brain as it is understood today are
synapses and neurons. Neurons receive, compute and generate signals from connected
neurons. The connections are realized in the form of synapses, which pass the signals
along and modulate them in strength and/or shape. Based on these rather loose
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definitions, it is not surprising that a wide variety of brain-inspired concepts have
developed over the past years. Network properties such as number of elements and
interconnections, information encoding, output result interpretation and so forth may
be freely chosen. In the context of this work, the memristive devices are solely inves-
tigated with respect to synapse application. Two network architectures are described
in more detail in the following sections.

2.3.1 Fully Connected Neural Networks

The most frequently used and arguably the most straightforward approach to un-
derstand the concept of brain-inspired computing is a single layer, fully-connected
network. A schematic example is shown in Figure 2.5. It consists of an input neuron
layer and an output neuron layer. Each input neuron is connected individually to
each output neuron by a synapse with a specific weight wi,j. In the forward pass
phase, also called inference, of the network learning, input information xi is given to
the input neuron layer. The signals are passed through the synapses to the output

neurons, which accumulate the multiplied signals (
n∑

j=1

wixi) and impose a nonlinear

activation function on them. The obtained values from the output layer are the result
of the network computation and serve as input to a problem-dependent algorithm
that aims to solve the problem. The easiest example for this would be a function that
determines the maximum output neuron signal and declares its assigned value the
calculated solution to the problem. Other criteria are possible however. In the next
stage, the backward pass, the result of the network is compared to the known label of
the input, and an error value is calculated by the chosen loss function. The loss value
is then propagated backwards through the network, resulting in a gradient value for

Input Layer

Output Layer

Synaptic 

connections

Figure 2.5: Example of a single layer fully connected neural network. Created with
the web-based tool of LeNail [127].
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each synapse weight. This gradient can then be turned into an update value, which
is added to each of the current synapse values. The process of forward and backward
pass may be iterated many times to increase the accuracy of the network. To increase
the performance of such neural networks, more neuron layers can be introduced. This
architecture is then called Deep Neural Network (DNN) and follows the same rules as
described above, but consists of a significantly larger amount of neurons and synapses.
A limited number of publications have demonstrated use of filamentary VCM devices
as integral part of the structure on the side of neurons, such as [69, 128, 129]. In
most cases, it is required to connect additional circuitry to the device as they do not
intrinsically provide the features required for a neuron, such as volatility. However,
their reversible and fast resistance transition has proven to be a beneficial property
in this field. On the other side, application examples as synapses are numerous [49,
65, 68, 73, 74, 130, 131] owing to the state nonvolatility and the multi-bit capability.

2.3.2 Spiking Neural Networks

An alternative to DNNs that is motivated from the brain is the Spiking Neural Net-
work (SNN). In this architecture, neurons are still connected to each other by synaptic
elements, which modify the signals. However, the strict layer arrangement of DNNs is
not necessary in SNNs. More importantly, SNNs utilize spike signals as information
carrier in contrast to DNNs, where the information is encoded in clocked, rectangular
signals, similar to a classical computer. Information encoding in spike form is inspired
by the biological brain. Information can be stored in many ways in the spike domain.
Spiking rate, spike shape, amplitude and relative timing of spikes are examples of
information encoding.

Accordingly, the rules for defining SNNs are less strict compared to DNNs, and
many sub-categories have evolved. Comprehensive reviews on the use of memristive
devices in SNNs can be found in [132, 133]. The specifics of the utilized SNN in this
work are explained in the respective Chapter 8.
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3 Experimental Methods

This chapter introduces the experimental methods that are relevant in the scope of
this work. Section 3.1 describes the different thin film deposition techniques that were
employed to obtain the layers of the resistive switching devices. The most important
layers, namely the oxides, were obtained by Atomic Layer Deposition (ALD), while
the metal layers were fabricated using two different Physical Vapor Deposition (PVD)
techniques, Sputtering and Electron Beam Evaporation. Next, Section 3.2 describes
the steps for structuring the deposited layers into nano-crossbar devices that were
solely used in the scope of this work. The main focus of this thesis is the electrical
characterization of the obtained VCM devices. Therefore, Section 3.3 describes the
employed measurement setups in detail.

3.1 Thin film deposition techniques

This section describes the two main thin film deposition techniques that are used in
this work to fabricate the layer stack. First, the principle of oxide thin film ALD is
introduced, and the details of the employed process for obtaining the hafnium oxide
and titanium oxide layers are provided. The second component of the memristive
device in this work are layers of tantalum, titanium and platinum metal. All metals
can be deposited using sputtering and electron beam evaporation. Both methods were
employed in this work. Hence, they are described and the relevant parameters are
provided.
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3.1.1 Atomic Layer Deposition

Principle of ALD

The principle of ALD was developed by Tuomo Suntola and Jorma Antson and
patented in 1977 [134]. Figure 3.1 illustrates the process for arbitrary chemicals
A and B. The basic definition of ALD is that a substrate surface, which is heated
to sufficient temperature, is presented with vapor of a first chemical A ( 1⃝), which
can react with the surface to form a single element atomic layer ( 2⃝). Subsequent
removal, typically termed purge, of the vapor of chemical A and possible reaction
products ( 3⃝) and introduction of the second chemical B ( 4⃝) leads to a formation
of an atomic layer of B by reacting with the first layer of A ( 5⃝). Element B and
the possible byproducts of this reaction are removed from the reaction site ( 6⃝), and
the growth cycle is completed. By repetition of this alternating cycle, a film can
be grown until the desired thickness is reached. The difference to other Chemical
Vapor Deposition (CVD) techniques is this alternating pattern of injecting the pre-
cursor chemicals in contrast to simultaneous injection at the same time. Because the
ALD reaction is a surface limited process [135], the growth can be controlled precisely
by the number of growth cycles. Additionally, the process of surface saturation by
atomic (sub-)monolayers ensures high uniformity and hence dense and thin layers.
The resulting film can therefore be tuned precisely in thickness. Because the reac-
tants are delivered to the surface as vapors, the growth is isotropic and the walls of
etched holes with high aspect ratios in the sample surface can be covered homoge-
neously [136]. Further merits of ALD is the possibility to cover large areas, CMOS
process compatible process temperatures and low impurity contents [137, 138].

Processes in this work

In the scope of this work, two processes are used to grow layers of HfO2 and TiOx. The
same reaction chamber in an Oxford Instruments FlexAlTM ALD system is utilized
for both processes. Figure 3.2 (a) shows the tool, which is part of the Nanocluster
tool that is located in the Helmholtz Nano Facility, Forchungszentrum Jülich GmbH.
It is connected by a gate valve to a loadlock terminal, which is outfitted with an
Edwards turbo molecular pump and a lamp heater. Both allow for effective removal
of gas contaminants of loaded wafers by achieving a base pressure of about 10-9 mbar
and a temperature of 200 °C, respectively. The precursor cabinet allows permanent
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Substrate Substrate Substrate

Substrate SubstrateSubstrate

1 2 3

6 5 4

Chemical A

Chemical B

Figure 3.1: Schematic ALD principle. By alternating injection ( 1⃝ and 4⃝), reaction
with the surface ( 2⃝ and 5⃝) and removal ( 3⃝ and 6⃝) of chemicals A and B, the layer
is grown.

installation of up to six bubbled precursor containers. Three oxygen sources are
available: A radio-frequency remote plasma generator can provide oxygen plasma, a
water container can provide water vapor and an ozone generator. In Figure 3.2 (b)
a cross-section of the reaction chamber is depicted. The precursors in this system
are transported from their storage container in the precursor cabinet via a carrier
gas, which is Argon. This type of ALD is called bubbler ALD since the carrier gas
is injected below the liquid surface in the precursor containers. As written in Fig-
ure 3.2 (b), the reaction chamber is equipped with a remote plasma source as well
as gas inlets for precursors and water vapor. A detailed description of the parameter
optimization on this machine can be found in the PhD thesis of Alexander Hardt-
degen [140]. The following parameters are the result of this optimization and were
kept constant thoughout this work. The HfO2 process in this work utilizes oxygen
plasma as oxidizing agent. The table heater temperature is set to 300 °C. Note that
this temperature is likely not reached at the substrate surface and is therefore not
equal to the deposition temperature. The metal-organic precursor for this process
is tetrakis(ethylmethylamido)hafnium (TEMAH, Hf(NCH3C2H5)4). Its structure is
depicted in Figure 3.3 (a). During the growth, the precursor container is heated to
70 °C to adjust the vapor pressure of the liquid. The growth cycle for plasma assisted
ALD of HfO2 is depicted in (b). Here, the filled color regions indicate open ALD
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Figure 3.2: (a) Oxford Instruments FlexAl ALD located in the Nanocluster at
Forschungszentrum Jülich GmbH. The visible parts are labeled. (b) Cross-section
of the reaction chamber. Taken and adapted from [139].

valves. The second line labeled "Ar" indicates the gas line that goes directly into the
chamber. The third line ("Ar purge") indicates the status of the gas line that goes
through the precursor carrying line, but not through the containers. The fourth line
("Ar bubbler") is the line that goes through the precursor liquid and hence is the
actual carrier gas. The process works as described for the schematic principle above.
The first step is to inject the carrier Argon gas into the heated precursor container.
At the same time, Argon gas is provided both through the direct line and the purge
line to the chamber. During the surface reaction and the following precursor purge
step, these gas flows are maintained. Afterwards, all ALD valves are closed for a
duration of 3 s, allowing the exhaust pump to remove the TEMAH molecules and re-
action products from the atmosphere. To ensure reliable plasma ignition, a dedicated
oxygen gas flow stabilization step is performed next. During the subsequent plasma
step, the surface layer is oxidized. Byproducts of this oxidation reaction as well as the
remaining oxygen gas are purged from the chamber during the final step of the cycle.
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Figure 3.3: (a) Chemical formula of the Hf precursor
tetrakis(ethylmethylamido)hafnium, short TEMAH. (b) Process flow diagram
for one full plasma assisted growth cycle of HfO2.

This process has a characteristic growth rate of about 0.1 nm cycle, which means that
30 cycles are necessary to reach the 3 nm thickness utilized in this work.

The process for the deposition of TiOx is slightly different since it utilizes water va-
por as oxidizing agent. Hence, it is called a thermal process. The precursor molecule
of tetrakis(dimethylamino)titanium (TDMAT, Ti(N(CH3)2)4) is illustrated in Fig-
ure 3.4 (a). The sample table temperature is also 300 °C. The precursor container
is heated to 60 °C for the growth. The process parameters are listed in the process
flow diagram in Figure 3.4 (b). During the first step, the chamber is pressurized by
injecting Ar gas through the purge line. For the second step, which is the precursor
injection, the ALD valve to bubble the precursor is opened and Ar carrier gas is in-
jected into the chamber. The subsequent purge removes the reaction products and
the remaining TDMAT from the chamber. The water vapor is injected by opening
the according ALD valve for 20 ms, which is long enough to draw a sufficient amount
of water vapor from the container. Note that the water container is not bubbled, but
the vapor is drawn purely by the low pressure in the chamber. The water vapor and
reaction products are purged for a duration of 20 s. This process results in a growth
rate of 0.035 nm per cycle, which means that about 85 cycles are required to grow the
desired thickness of 3 nm.

The described processes for HfO2 and TiOx are performed without removing the
sample from the chamber. They are, however, seperated by a 5 minute long pump
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Figure 3.4: (a) Chemical formula of the Ti precursor
tetrakis(dimethylamino)titanium, short TDMAT. (b) Process flow diagram for
one full thermal growth cycle of TiOx.

step, during which the chamber is evacuated. This step aims at removing possibly
remaining TEMAH, oxygen gas and byproducts of the HfO2 growth that might in-
fluence the subsequent growth of TiOx. The resulting amorphous films are dense and
coat the sample surface uniformly.

3.1.2 Physical Vapor Deposition

Physical vapor deposition (PVD) is the method of choice to deposit the metal layers
in this work. In the scope of this work, tantalum, titanium and platinum films were
employed in the fabrication electrodes. However, they were fabricated using different
PVD methods. In the following, the two employed fabrication methods, namely
sputter deposition and electron beam evaporation for bottom and top metal layers,
respectively, are introduced.

Sputter deposition

Two main variants can be determined for sputter deposition, namely direct current
(DC) and radio frequency (RF) sputtering. Both may be used in combination with
magnetron sputtering. The substrate and the sputter target are mounted opposite to
each other in a vacuum chamber. The process pressure in the chamber is typically
kept between 10-3 and 10-1 mbar. Often Argon gas is used as the sputtering gas.
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3.1 Thin film deposition techniques

DC sputtering involves a constant voltage that is applied to the target while the
substrate is grounded. Once the plasma is ignited, the Ar ions generated in the
electric field are accelerated towards the target. The surface impacts of the ions cause
a random collision sequence, which can result in ejection of near-surface target atoms
[141]. Ejected atoms traverse the distance to the opposite substrate, adhere on its
surface, and finally deposit there. The sputter yield, i.e. the number of ejected target
atoms per incident Ar ion, depends on the surface binding energy of the target atom
species, the relative masses of the ionized gas atoms and target atoms, the ion kinetic
energy, and the impact incident angle.

In contrast, RF sputtering involves a capacitive coupling of the cathode, i.e. the
target, to an RF generator. Because the mobility of the free electrons in the ionized
gas is much higher, the cathode quickly develops a negative DC bias with respect to
the anode. Subsequently, Ar ions are accelerated towards the cathode and the sputter
process is initiated as described for the DC case. During one electric field half-cycle,
positive charges are accumulated on the cathode. In the following half-cycle, they
are neutralized by the electrons that are attracted. The net current for a full cycle
is hence zero. RF sputtering is especially useful for non-conductive target materials
since the static charging of the target is avoided, which would increasingly disrupt
the plasma or prevent ignition altogether.

One modification to both variants is using magnetron sputtering. The deposition
rate is increased by a permanent magnet mounted behind the target. It contributes a
magnetic field of constant strength close to the sample surface. The moving electrons
in the surface vicinity are confined to circular trajectories. Therefore, more Ar ions are
generated on these trajectories. Additionally, the ionized gas hits the target surface at
a more shallow angle, which increases the sputter rate. The local increase in sputter
rate can create elliptical erosion marks in the target. The uniformity of the resulting
film can be decreased using this method, but can be omitted by using a non-parallel
sample-target constellation.

For the bottom electrode, a tantalum film serves as adhesion promoting layer
between the Si/SiO2 substrate and the platinum layer that is part of the actual VCM
device. Both bottom metal layers are deposited in the same Scienta Omicron off-
axis sputter tool, which is part of the Nanocluster in the Helmholtz Nano Facility in
the Forschungszentrum Jülich GmbH. It features an extremely low base pressure of
10-10 mbar. The process parameters for the 5 nm thick Ta layer and the 25 nm thick
Pt layer are as listed in Table 3.1:
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Table 3.1: Sputter parameters for the bottom metal layer fabrication.
Parameter Ta process Pt process
Target manufacturer EVOCHEM Ad-

vanced Materials
EVOCHEM Ad-
vanced Materials

Ar flow 30 sccm 30 sccm
DC power – 40 W
RF frequency 13.56 MHz –
RF power 100 W –
Target tilt 51 ° 51 °
Substrate rotation 12 rpm 12 rpm
Substrate heater temperature 22 °C 22 °C
Process pressure 0.003 mbar 0.0056 mbar
Deposition time 163 s 375 s

Electron Beam Evaporation

Another method to deposit metal layers that was used for the top metal layers in
this work is electron beam evaporation. It involves generation of an electron beam
by extracting electrons from a tungsten tip. This focused beam is redirected by a
generated magnetic field to a cooled crucible which contains the desired thin film
material. In contrast to sputter deposition this process requires the best possible
vacuum to minimize collisions of gas molecules with the beam. The electron beam is
able to locally vaporize the material in the crucible. The so derived atoms in the gas
phase are distributed in the chamber and condensate on the cooler surfaces, including
the sample that is mounted opposite to the crucible.

The parameters for the evaporation of titanium and platinum, i.e. the top elec-
trode metal layers, are summarized in Table 3.2.
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Table 3.2: Electron beam evaporation parameters for the top metal layer fabrication.
Parameter Ti process Pt process
Crucible material manufacturer MaTeck Mate-

rial Technologie &
Kristalle GmbH

EVOCHEM Ad-
vanced Materials

Acceleration voltage 10 kV 10 kV
Beam current 500 mA 500 mA
Beam power reduction 9 % to 10 % 35 % to 36 %
Preheating duration 2 min 2 min
Process pressure 5· 10-5 mbar 5· 10-5 mbar
Deposition rate 0.5 Å 1.5 Å

3.2 Nano-crossbar fabrication

Industrial application of VCM-type devices require device sizes that are compatible
with current CMOS technologies. Device footprints, i.e. the area that a device re-
quires, should therefore be in the range of few ten nanometers. Therefore, the VCM
device of this work is fabricated in nanometer sized crossbar structures. This in-
tegration process utilizes patterning by electron beam lithography (EBL), which is
described in the following. A schematic view of an EBL writing system is shown in
Figure 3.5. Electrons are extracted from a tungsten tip by an electric field and sub-
sequently accelerated towards the sample. In the scope of this work, the acceleration
voltage was kept constant at 100 kV, which allows for excellent contrast between illu-
minated and dark regions in the resist. After extraction and acceleration, the electrons
are manipulated through a series of magnetic lenses and apertures to achieve a beam
of defined focus and current. Both determine the required time for a region to receive
the correct electron dose, which is the defining parameter for EBL resists. The resist
that is used in this work is MicroChemicals AZ nLOF 2020. The dose for this resist
was kept constant at 70 μC/cm2 in accordance to a dose series experiment performed
prior. The fabrication procedure, starting from the thermally oxidized silicon wafers,
is described in the following. Sketches in Figure 3.6 illustrate the intermediate pro-
cess steps and the final device geometry. First, the passivated substrates are covered
by a sputtered bottom electrode layer of 5 nm Ta and 25 nm Pt ( 1⃝). The Scienta
Omicron sputter system that is described in Section 3.1.2 is used for this. The resist
covering for the BE structuring is done in the HNF clean room. A (2:1) mixture of
(MicroChemicals AZ EBR solvent : MicroChemicals AZ nLOF 2020) is applied on
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Figure 3.5: Schematic view of an electron beam lithography system. Electrons are
emitted, focused and manipulated to illuminate the sample that is covered with EBL
resist. Redrawn from [142].

the dried surface via spin-coating (4000 rpm for 1 minute) and soft-baking at 90 °C for
3 minutes. The dilution of the resist leads to a layer thinning down to about 220 nm
in thickness. It is required to obtain narrow resist lines after development by avoiding
high resist aspect ratios, which are likely to collapse. The resist is structured by EBL
( 2⃝) as described above. The Raith EBPG 5200 EBL system is operated by Dr. Ste-
fan Trellenkamp and Dr. Florian Lentz and is located in the HNF. After exposure to
the electron beam, the activated resist requires a short post exposure bake, which is
done at a temperature of 110 °C for 1 minute. In the following, the bottom electrode
layers are etched via Reactive Ion Beam Etching (RIBE). This dry etching process
allows anisotropic etching of the metal lines. Details of RIBE processes can be found
in references [143–145]. The remaining protective resist is removed by the according
solvent based on dimethyl sulfoxide (DMSO) ( 3⃝). Subsequent treatment in acetone
and isopropyl alcohol removes remaining residues. The structured BE have line widths
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Figure 3.6: (a) Nano crossbar fabrication process. (b) SEM image of a
100 nm x 100 nm crossbar.

between 60 and 100 nm. The BEs are covered with the remaining layers for the de-
vice stack, i.e. 3 nm HfO2, 3 nm TiOx, 10 nm Ti and 20 nm Pt ( 4⃝). The oxides are
deposited via ALD as described in Section 3.1.1. The metals are obtained by electron
beam evaporation, see Section 3.1.2. The top electrode and the oxides are structured
using the same e-beam lithography process as for the BE. The fabricated resist lines
are perpendicular to the BE lines and identical in width ( 5⃝). Through RIBE etching
and resist removal in the identical process as before, the crossbar structure is finalized
( 6⃝). Figure 3.6 shows a Scanning Electron Microscopy image of the final structure.
Note that no length scale is depicted due to the tilting of the sample, which illustrates
the topography. The physical characterization of the sputtered, evaporated and ALD
grown layers is documented in the respective recent works on technology [140, 145,
146]. The reader is referred to these works for details on the layer characterization.
Layer control by X-Ray Reflectivity (XRR) measurement was performed on blank
SiO2 substrates. Details on XRR can be found in [147]. Figure 3.7 shows the XRR
measurements for the bottom electrode in (a), the oxide double layer in (b) and the
top electrode metals in (c) as black symbols. The actual layer thicknesses, which are
obtained from the fits drawn in red, are written in the diagrams. Note that the layer
thicknesses are not perfectly in line with the nominal values, yet the sum of the actual
thicknesses is very close or identical to the sum of the nominal values. This is due to
the difficulty to identify the precise interface position by XRR. All layers have been
tested individually for their deposition rate. Hence, the origin of the deviations from
the nominal values is the limiting fitting accuracy and the actual layer thicknesses are
likely identical to the nominal values.
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Figure 3.7: X-Ray Reflectivity measurements of the layers on blank SiO2 substrates.
(a) Bottom electrode metals. (b) ALD grown oxides. (c) Top electrode metals.

3.3 Electrical Analysis

This section focuses on the measurement setups that were used for electrical charac-
terization of the VCM devices. It is mainly split into two categories, namely setups
that are used for sweep measurements and setups that are used for application of
square voltage pulses, typically on shorter timescales than the sweep measurement
systems.

3.3.1 Sweep measurement setups

One of the most employed technique for electrical measurement of VCM devices is the
current-voltage sweep. It consists of three consecutive voltage ramps. Starting at 0 V,
the voltage is first decreased to a negative voltage, then increased to a positive voltage
and decreased back to 0 V. At the same time, the current that goes through the device
is recorded. In this work, two setups were employed for sweep measurements, which
are introduced in the following.

Agilent B1500A setup

The first measurement setup for sweeps is an Agilent B1500A instrument, which is
connected to a Karl Suess Microtec PA-200 semiautomatic prober. Within the scope
of this work, the measurement setup is used for electroforming and voltage sweeps
on previously electroformed samples to verify normal function. The advantage of this
setup is that it allows automated sequential contacting and measurement of devices
on the test sample by programmable table movement. The probe station is depicted
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Figure 3.8: Photo of the Karl Suess Microtec PA-200 semiautomatic prober. The
four installed Source Measurement Units of the Agilent B1500A are connected to the
visible probes.

in Figure 3.8. For specifications about the instrument, the reader is referred to the
product page of the device [148].

Custom current compliance sweep setup

The second setup for measuring voltage sweeps was developed by Tyler Hennen from
the IWE 2, RWTH Aachen University with the goal of reducing the current overshoot
that occurs in commercial measurement hardware when the current compliance is
reached through a fast transition such as the electroforming and SET process of a
VCM device. The measurement setup and its significant advantages over commercially
available equipment was described in detail in the paper of Hennen et al. [149] and is
therefore only briefly introduced in this thesis.

The setup consists of multiple individual components, which are shown in Fig-
ure 3.9. The arbitrary waveform generator Rigol DG5102 applies the programmed
voltage waveform to the tungsten needles contacting the device under test (DUT).
The signal is simultaneously recorded on channel A of the Picoscope 6403C oscil-
loscope. To achieve the set goal of reducing the current overshoot phenomenon, a
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Figure 3.9: Custom built measurement setup designed by Tyler Hennen from IWE 2,
RWTH Aachen University. Main components are labeled. The reader is referred to
reference [149] for schematics of the current compliance circuit.

current limiting circuit is connected directly to the needle, acting as an active current
compliance, see Figure 3.9. This circuit has been developed specifically for measuring
ReRAMs [149]. To determine the current flow through the device, the voltage Vout is
recorded on channel B of the Picoscope 6403C. The current is obtained by dividing
the voltage by a known resistance. The main component of the current compliance
circuit are two transistors that are supplied with the appropriate voltages by the USB-
1208HS-2AO Hub. The adjustable range of the current compliance is determined by
the resistance of Rcompliance. During this work, Rcompliance was chosen to achieve tun-
able current compliance between 50 μA to 800 μA. The reader is referred to the paper
of Hennen et al. [149], where the exact circuit for the current compliance is illustrated
and explained. For this work, a few additional points apart from the circuit are to be
noted:

• All measurements performed on this setup use a triangular voltage signal, i.e.
are sweep measurements. Initially, 0 V is applied and sweeped to the negative
polarity VSET, stop, which is defined as the minimum applied voltage. After
reaching VSET, stop the voltage is sweeped back to 0 V and in the positive polarity
to VRESET, stop, the maximum applied voltage, and finally reduced back to 0 V.
During the sweep the slew rate is kept constant and is between 6000 V/s and
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7000 V/s in this work. This means it is about three orders of magnitude higher
than the Agilent B1500A setup.

• The Picoscope 6403C operates at its maximum sampling rate of 1.25 billion
samples per second. Since the internal memory of 512 MSamples is limited, long
voltage waveforms are split into shorter sequences. Further, the Rigol DG5102
waveform generator outputs small discrete voltage steps when a voltage ramp
is programmed. Since the change from one step to the next is typically slower
than the sampling frequency of the oscilloscope, the signal is oversampled. The
data is hence smoothed by calculating the moving average of the voltage and
the current and down-sampled to 1000 data points per sweep.

• After an I-V curve is measured, a significant current offset of roughly 10 μA
can be observed. This offset is subtracted during the analysis. For this, the
HRS branch of the sweep is linearly fitted around the 0 V mark and the y-
intercept current is subtracted from all data points. The issue is illustrated in
Figure 3.10 (a). Figure 3.10 (b) shows the resulting changes in the switching
curve. After the correction of the offset the HRS resistance can be calculated.
All shown I-V curves from this setup are offset corrected. However, the static
resistance value is still relatively imprecise. Instead, the differential resistance
given for measurements from this setup. In first approximation, a linear I-V
relation is assumed. It is fitted between (-0.1) V and (-0.4) V via a least squares
algorithm.

• The fixed voltage resolution of channel B on the Picoscope 6403C oscilloscope
leads to a limited current resolution. Currents below 100 nA are therefore im-
possible to resolve with sufficient accuracy. The device properties measured in
the scope of this work are all above this setup limitation.
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Figure 3.10: Offset subtraction procedure for the custom compliance circuit measure-
ment setup. (a) As recorded data (grey), linear fit to the HRS (red) and resulting
shifted I-V curve (blue). (b) The difference between the corrected curves on a loga-
rithmic scale.

3.3.2 Pulse measurement setups

For several results of this work, square voltage pulses were employed. Square voltage
pulses contain a different type of information about the device properties compared to
voltage sweep measurements. Additionally, they are the likely method of operation in
the later integrated devices, unless special driver circuitry is created. The operation
with square voltage signals can be divided into two principles. In the first one, the
transient currents are recorded and are analyzed. Read signals before and after the
switching pulse are performed, but serve only as verification of the observations that
occurs during the switching pulse, e.g. a lower resistance after a successful SET pulse
compared to before the switching pulse. The second principle ignores the transient
switching current or does not record it altogether. In this method, the analysis is
carried out by studying the read currents prior and after the switching pulse. Once
again, the method of choice depends on the target of the investigation, and the latter
is closer to the likely mode of operation in future applications.

In the following, three setups are introduced that are employed in this work to
generate square voltage pulses.
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Figure 3.11: Keithley 4200-SCS setup with sample stage, probe needles, microscope
and PMUs in the background.

Keithley 4200 SCS setup

The first introduced setup for square voltage pulses is a Keithley 4200-SCS equipped
with 4225-Pulse Measurement Units (PMUs) with additional 4225-RPM Remote Am-
plifier/Switch modules which allow detection of currents in the nanoampere range.
Due to the capability of recording the transient currents it falls into the first cate-
gory of setups in this work. Figure 3.11 shows a photo of the probe station, which is
a Cascade Microtech MPS150 system equipped with a Motic PSM-1000 microscope
and two manually operated DPP220 probe positioners. The Keithley 4200-SCS instru-
ment can generate square current resolved voltage signals up to a voltage of +/- 40 V
at times down to 70 ns with rising and falling flanks of 20 ns. The current range is
adjustable between 100 nA and 200 mA, allowing current resolution for a wide range
of device resistances. For more specifications of the device, the reader is referred to
the product page [150]. The device is controlled by a custom LUA script which sends
commands and receives data via the GPIB interface.
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Figure 3.12: Photo of the resistance network pulse measurement setup probe station
including sample stage, probe needles and cable connections to outside the chamber.
Measurement instruments are located in a nearby instrument rack.

Resistance network pulse measurement setup

The second setup used for fast pulse measurements in this work consists of an Agi-
lent B1110A Pulse-/ Pattern Generator and a Tektronix TDS6804B Digital Storage
Oscilloscope. The setup was created from these components by Bernd Rösgen and
Marcel Gerst. In this setup, the voltage signals are generated by the Agilent B1110A
waveform generator. Simultaneous to being applied to the device, the voltage pulse
is monitored with the Tektronix TDS6804B oscilloscope on Channel 1. Further, the
voltage drop over a 39.2Ωresistor connected in series to the DUT is recorded and am-
plified by a Texas Instruments OPA847 high speed operation amplifier. The resulting
signal is a 22 times magnified signal and is monitored on Channel 2 of the oscillo-
scope. The voltage is then recalculated into a current that flows through the device.
A second resistor and OPA847 amplifier results in a 422 times magnified signal, which
is routed to Channel 3 on the oscilloscope.

The device resistance read-out is designed differently to other setups. A Stanford
Research Systems SR830 Lock-In Amplifier is utilized for this task. An AC voltage
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Figure 3.13: Photo of the ArC ONE instrument measurement unit. Three ways of
connecting DUTs are possible: by connecting a single DUT to the BNC connectors,
by using the pin banks to connect a probe card or by placing a bonded chip in the
according socket. Photo taken from [151].

signal with a bias of 470 mV and a frequency of 1 MHz is applied to the described
resistance network. This results in a sinusoidal voltage read signal of 25 mV on the
DUT. Figure 3.12 shows the setup probe stage. The setup is additionally capable of
low temperature measurements and atmospheric variations in the vacuum chamber.
In the present work, this feature is not utilized. The instruments allow for square
voltage pulse testing over a range of nine orders of magnitude in time, 10 ns to 10 s.
Voltage amplitudes between 100 mV and 10 V in both polarities are possible. Due to
the setup’s capability of measuring the transient currents it also belongs in the first
category of setups in this work.

ArC ONE measurement setup

The third electrical measurement setup for square voltage waveforms in this work
is an ArC ONE instrument by ArC Instruments. Because transient currents of the
switching pulses are not recorded, this device falls into the second defined category
of voltage pulse measurement devices. Instead, the device characterization is carried
out by applying the programmed voltage pulse and reading the resistance afterwards.
An image of the measurement unit is shown in Figure 3.13. The ArC ONE offers
multiple options to connect single or multiple DUTs. The first is to connect a single
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Figure 3.14: (a) Probecard configuration of the ArC ONE instrument. (b) Probecard
in holder. (c) Microscope image of the probecard in contact with a single line array.
(d) Zoom into the BE contact and the first two devices.

DUT to the BNC connectors. Multiple DUTS can be contacted either by using the
pin banks via a probe card or by placing a bonded chip in the according socket on the
actual measurement unit. In the scope of this work, the connection to single devices
was done via the BNC connectors directly to needle probes. Contact to multiple
DUTs was done by connecting the pin banks on the instrument board to a probe
card. The probe card is specifically designed for the device configuration in this work
and features 33 individual needles, which are routed to the respective pins via an
accordingly designed cable. It was fabricated specifically for this sample geometry
by High Tech Trade company. The described setup is illustrated in Figure 3.14 (a)
and (b). Microscope images of the probecard in contact with a sample are shown in
(c) and (d). The ArC ONE instrument comprises a single waveform generator and
routing options to one or multiple outputs. Therefore, individual voltage signals on
different probes are not possible. However, it allows application of voltage pulses
down to 70 ns in duration and up to 12 V in amplitude. For further specifications, the
reader is referred to the instrument’s product page [151].

42



4 Resistive switching in HfO2-based
devices

This chapter describes the phenomenon of resistive switching of the devices investi-
gated in the scope of this work. Starting from the as fabricated state, the electroform-
ing process is described. The subsequent resistive switching is examined with regard
to the operating parameters and the observed relations. Endurance characteristics
are described. The focus of this chapter, however, lies in the detailed description of
SET and RESET kinetics in the range from 1 s to 10 ns. It will be shown that both
processes are made up of two kinetically consecutive steps with different physical
origins. Their individual length is determined by the previous device state and the
SET or RESET voltage amplitude applied in each case. Consequently, gradual and
abrupt switching characteristics emerge. Both are possible pathways to build artifi-
cial synapses that involve analog conductance tuning. In single cells, the transition
time may be used to tune the device conductance gradually. In the case of abrupt
switching, the switching stochasticity with respect to cycle-to-cycle and device-to-
device variation is investigated. The findings of this chapter form the foundation of
the following chapters, which exploit the interrelation found in the study of the kinetic
behavior.

4.1 Electroforming

As described in section 2.2, an electroforming step is typically required for obtain-
ing resistive switching. Unless the oxide layer has been modified beforehand, e.g.
by ion implantation and oxygen deficiency engineering, the required electroforming
voltage is significantly higher than the SET voltage for the subsequent switching op-
eration. Figure 4.1 a shows the electroforming with an active current compliance of
50 μA and first RESET curves without current compliance of 64 identically fabricated
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4 Resistive switching in HfO2-based devices

(a) (b) (c)

Figure 4.1: Electroforming of the investigated stack
Pt / 3 nm HfO2 / 3 nm TiOx / Ti / Pt. (a) Current voltage curves of 64 devices
of 100 nm x 100 nm size. 53 devices subsequently showed standard filamentary
VCM-type switching. (b) Corresponding statistics of the electroforming voltage and
the first RESET voltage. (c) Initial and first HRS resistance statistics.

100 nm x 100 nm devices. A high uniformity which is typical for ALD grown layers is
observed. Figure 4.1 b demonstrates this uniformity. The electroforming voltage dis-
tribution is very sharp with a median value of -2.66 V while the extreme values in the
distribution are -2.76 V and -2.60 V. The subsequent RESET process is not as defined
as the initial current voltage behavior, which is attributed to the stochastic nature of
the filament formation. However, the RESET voltage distribution is still narrow with
a median of 1.03 V and a minimum of 0.75 V and a maximum of 1.39 V. While all
devices in the ensemble showed electroforming, around 17 % are stuck in a very low
resistive state below 1 kΩ, which can be seen in Figure 4.1 c. Concerning the yield of
the ensemble, it is 100 % for electroforming, but only 17 % for reproducible switching.
Since the dominant failure type is LRS stuck, it could be reasoned that the current
overshoot obtained for the abrupt current increase during electroforming could cause
this issue. The existence of the overshoot is without doubt since the RESET current
is up to two orders of magnitude higher than the set current compliance of 50 μA dur-
ing electroforming. This assumption would mean that the yield of the manufactured
device could theoretically reach 100 % if the overshoot could be minimized.

To summarize, the nano-crossbar Pt / HfO2 / TiOx / Ti / Pt devices require an elec-
troforming step prior to stable filamentray-type resistive switching. The residual
leakage current of pristine devices is very low and the forming voltage distribution
of various devices is quite narrow. The devices are formed into the ON-state with a
negative voltage polarity applied to the Pt BE. By this, oxygen vacancies are injected
into the metal oxide film from the Ti electrode. For cells of 3 nm HfO2 and 3 nm TiOx,
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the electroforming voltage is about -2.66 V±0.10 V at a sweep rate of around 1 V/s.
These uniform electroforming characteristics hence comply with silicon technology
voltages. The device yield after the first RESET is sufficiently high for the studies
conducted in this work.

4.2 Miniaturization of VCM devices

One of the most recognized features of VCM devices is their superior scalability. Espe-
cially applications that strive to mimic functions in the brain are expected to require
many millions of devices on a limited footprint. Other neuromorphic concepts will
likely benefit from dense integration in the future as well. Therefore, miniaturization
of VCM devices has been a topic in research and industry from an early stage of devel-
opment onward [6, 20, 152–155]. The main device size of this work is 100 nm x 100 nm
as described in Section 3.2 due to the yield advantage over more scaled devices. Higher
reproducibility and yield is possible in industrial production lines. However, this sec-
tion highlights the potential for miniaturization of the devices used in this study. Aside
from the 100 nm x 100 nm crossbar device size, 60 nm x 60 nm devices in crossbar ge-
ometry and 40 nm x 40 nm as plug devices were tested. The fabrication pathways are
described in Section 3.2 and Appendix A. Figure 4.2 (a) shows the Scanning Electron
Microscopy (SEM) images of a described 100 nm x 100 nm crossbar structure. In the
upper panel, the contact pads for probing, labeled BE for bottom electrode, and TE
for top electrode, are visible. The lower image is a zoom-in on the actual crossing
point of the electrodes. The sketch in Figure 4.2 (b) illustrates the stack structure
at the crosspoint. The Pt / HfO2 / TiOx / Ti / Pt device stack can be identified. The
sketch in Figure 4.2 (c) depicts the device geometry for the plug device. Note that the
dimensions are not to scale in these sketches. The Pt / HfO2 / TiOx / Ti / Pt device
stack exists only where the SiO2 layer is etched. Elsewhere, the stack in the overlap
area is Pt / SiO2 / HfO2 / TiOx / Ti / Pt, effectively preventing switching apart from
the plug location. SEM imaging of the plug geometry device are challenging due to
the small hole size and the top electrode roughness. Figure 4.3 shows the according
electrical measurements for the three devices. Electroforming results are depicted as
grey solid lines, while five subsequent switching cycles are drawn in black color. All
three devices exhibit typical forming and switching properties. However, there are
two major differences. The first is the current scaling in the pristine state, i.e. the
electroforming curve before the rapid current increase. As expected, the current in
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Figure 4.2: Miniaturization of the device in this work. (a) SEM pictures of
the 100 nm x 100 nm device in crossbar geometry. Color added in post-processing.
(b) Sketch of the device in cross-point geometry. Lines are fabricated in 60 nm and
100 nm width. (c) Sketch of the plug device with 40 nm x 40 nm etched area.

this state is decreased with decreasing device area. The second observation is, that the
RESET for the 60 nm x 60 nm devices occurs at higher voltage and current compared
to the 100 nm x 100 nm and 40 nm x 40 nm devices. The switching is also fairly abrupt,
while it is more gradual for the other two devices. This effect can be attributed to
the increased line resistance of the 60 nm wide and 1 μm long metal lines that connect
the device to the contact pads. The appearance of the RESET transition is severely
changed by a series element [107, 113, 156]. Avoiding the series resistance effect in
scaled crossbar devices could be achieved with two strategies. The first is to use better
conducting materials for the metal lines such as copper. However, this comes with
its own issues as such materials are typically unwanted in proximity to silicon-based
devices. The second strategy is to alter the non-lateral device geometries such as
metal layer thickness tmet and line length lmet. An increase of the former and decrease
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4.3 Endurance characteristics

(a) (b) (c)

Figure 4.3: Miniaturization of the device in this work. Forming (grey solid curves)
and subsequent switching cycles (black lines) (a) of the 100 nm x 100 nm and (b) of
the 60 nm x 60 nm devices in crossbar geometry and (c) of the plug device with
40 nm x 40 nm area.

of the latter can reduce the metal line resistance Rmet according to

Rmet = ρ · lmet

bmet · tmet

. (4.1)

For scaled devices with the given materials, the specific resistivity ρ and the metal
line width bmet are fixed. In the scope of this work, this approach was not tested due
to fabrication limitations. Because the 40 nm x 40 nm device is not a crossbar device,
but a plug device with a 40 μm wide bottom electrode and a 1 μm wide top electrode,
the series resistance is low even compared to the 100 nm x 100 nm devices. Hence, the
RESET does not appear abrupt in this device. Other than the RESET, the switching
appears almost identical within the usual device variation, which is to be expected
for filamentary devices where the typical assumed filament size is in the range of a
few tens of nanometers in diameter.

To summarize, the successful device miniaturization of VCM devices is demon-
strated. The expected device function is demonstrated when the device size is reduced
down to 40 nm x 40 nm.

4.3 Endurance characteristics

Sufficient endurance is one of the key prerequisites for obtaining statistically meaning-
ful data sets of ReRAM devices. For all device tests, the summed number of switching
cycles should remain below the critical cycle number for device degradation. Ideally,
a safety margin is kept, since many device tests impose significantly more stress on
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4 Resistive switching in HfO2-based devices

the device than a controlled current voltage sweep with an active current compliance.
Nonetheless, endurance testing provides a good guideline for the onset of degradation
effects. For achieving high cycle numbers in endurance tests in reasonable times, the
measurement procedure is typically split into two sections with the purpose of reducing
the data traffic between measurement device and user PC which is often the limiting
factor. The majority of the switching cycles is not recorded and therefore termed
"blind cycling". In decadal spacing, measurement cycles are performed. This proce-
dure is described in Figures 4.4 (a) and (c) for a typical rectangular pulse endurance
and a sweep endurance, respectively. The first is measured with the Keithley 4200
system, see Section 3.3.2. The latter is recorded with the current compliance circuit
setup described in Section 3.3.1. In the first case, the switching itself is not recorded.
Instead, the read currents after the switching pulse are measured and the resistance
is calculated. In the case of a sweep endurance, a full sweep cycle is recorded and
the read resistance is calculated according to the procedure described in Section 3.3.1.
The endurance measurement results of the two modes are shown in Figures 4.4 (b) and
(d). The rectangular pulsed endurance is shown for a single device while the sweep
endurance comprises measurements of 10 devices. Therefore, Figure 4.4 (d) shows the
results of each device as grey line as well as the median for HRS and LRS as black
and red line, respectively. The SET process of the rectangular pulse endurance was
performed at a voltage of -1.0 V for 1 μs, while the RESET was carried out at 1.45 V
for 1 μs, also. Read signals were 1 ms in length and -0.2 V in amplitude. In the sweep
endurance, a single blind cycle had a duration of 10 μs, during which the voltage was
swept from 0 V to -2.0 V, up to 1.3 V and back to 0 V. During the SET process, a
current compliance of 600 μA was active. To achieve more accurate read resistance
during the measurement cycles, the total sweep duration was increased to 1 ms.

In summary, the devices show stable and reproducible switching behavior for at
least one million switching cycles even for pulsed switching without active current
compliance. It is known that optimized switching voltages and algorithms tailored to
the device properties can yield higher endurance numbers [26, 157–159]. It is expected
that such improvements are also possible for the device of this work, However, the
endurance numbers presented in this section of the work demonstrate that the device
is stable enough for the studies conducted in the following chapters.
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Figure 4.4: Endurance characteristics of the tested devices. (a) Endurance measure-
ment scheme with rectangular pulses. (b) Results of endurance measured with rectan-
gular pulses. Abrupt device failure occurs after 5 · 107 switching cycles. (c) Measure-
ment scheme with triangular voltage pulses, including a current compliance. (d) Ac-
cording results for 10 devices (grey lines). The median for HRS and LRS is shown in
black and red line, respectively. Gradual device failure occurs between 107 and 109

cycles.

4.4 Statistical analysis of resistance state tuning
for the voltage sweep mode

In this section, the focus is on the controlled sweep operation of the investigated
devices. By using the setup described in 3.3.1, a statistical meaningful number of
data points can be collected in a reasonable amount of time. Additionally, the fast
and reproducible current compliance of this setup is crucial for studying the influence
of the SET and RESET operation on the resistance states. For the systematic in-
vestigation of switching dependencies, a pre-defined measurement scheme was used,
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700 µA

100 µA

1.5 V1.0 V

Figure 4.5: Typical I-V measurement sweeps in semilogarithmic view. Only every
tenth sweep of 100 for each parameter set is shown. The external parameters [ICC;
VRESET, stop] are on the diagonal of the matrix. From blue to red: [100 μA; 1.0 V],
[200 μA; 1.0 V], [300 μA; 1.1 V], [400 μA; 1.2 V], [500 μA; 1.3 V], [600 μA; 1.4 V],
[700 μA; 1.5 V].

which is hereafter referred to as the “matrix measurement”. Here, the values of cur-
rent compliance ICC and maximum applied RESET voltage VRESET, stop are varied in
discrete steps in two nested loops. The outer loop, which sets the value of ICC starts
at 100 μA and increases by ΔICC = 100 μA. In the inner loop, VRESET, stop is varied
from 1.0 V to 1.5 V in steps of 0.1 V. In total, 6 x 7 = 42 different values of ICC and
VRESET, stop were applied. At each parameter pair [ICC; VRESET, stop] 100 I-V sweeps
are performed from triangular voltage signals. The sweep duration is kept constant at
1 ms per sweep, and the applied voltage at -2.0 V for the SET process. Therefore, the
effective sweep rate is between 6000 V/s and 7000 V/s, depending on the VRESET, stop

value. A selection of sweeps from a typical matrix measurement are displayed in Fig-
ure 4.5 in a color coding. Here, 7 representative combinations of [ICC; VRESET, stop]
are shown, referring to the main diagonal of the measured matrix. Data reliability
has been confirmed on multiple devices and across samples. Reproducibility of the
switching behavior at certain [ICC; VRESET, stop] parameters was confirmed by repe-
tition of parameter combinations after finishing of the matrix routine. For better
visibility, only every tenth out of the one hundred sweeps per [ICC; VRESET, stop] pair
is shown.

Some universal switching behaviors of VCM-type ReRAMs can also be observed
in this measurement.

50



4.4 Statistical analysis of resistance state tuning for the voltage sweep mode

V
R

E
S

E
T,

 s
to

p
 [

V
]

R
HRS

 [Ω]

|V
S

E
T
| [

V
]

R
LRS

 [Ω]

I C
C
 [

µ
A

]

V
R

E
S

E
T
 [

V
]

(a) (b)

Figure 4.6: Typical sweep parameter dependencies: (a) RHRS can be controlled by
the applied RESET stop voltage, VRESET, stop, and influences the subsequent SET
voltage. (b) RLRS is governed by the applied current compliance, ICC, during SET
and influences the subsequent RESET voltage in the presence of a series resistance in
the same resistance range as the LRS.

• First, the HRS read value, RHRS, depends on VRESET, stop.

• Second, the SET voltage is increased if the previous RHRS is higher [108, 110,
159, 160]. Figure 4.6 (a) illustrates this correlation. The RHRS is evaluated as
described in 3.3.1. In these measurements, an increase in RHRS by two orders of
magnitude leads to an increase of the SET voltage of about 0.3 V. The repeated
cycles were essential for robustly detecting this trend, since the SET voltage
variation is about 0.2 V even for fixed values of VRESET, stop.

• Third, the RLRS is adjustable by the level of ICC [6, 37, 161].

• Fourth, the RESET switching voltage VRESET is almost constant under changing
of ICC, unless RLRS approaches a similar value to the series resistance causing
an increase in VRESET [107, 113, 156, 159, 162]. This relation is depicted in
Figure 4.6 (b), which shows an increase of VRESET by about 0.2 V when RLRS is
reduced from about 6 kΩto roughly 1 kΩ. The series resistance of around 800Ωis
attributed to the small cross section of the lines of the nano-crossbar devices.

• Fifth, the device current at the RESET point IRESET is similar to the pro-
grammed compliance current ICC [161]. In Figure 4.5 it is seen that this behav-
ior is fulfilled for ICC values higher than 400 μA, while RESET overshoots are
seen for smaller ICC levels.
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4 Resistive switching in HfO2-based devices

In the analysis of the matrix measurement, it is observed that the HRS level
undergoes several changes as it is influenced by the external parameters. The most
significant influence is posed by varying the VRESET, stop as discussed above. However,
an additional feature emerges when the current compliance is varied on top of that.
Combining a moderately low VRESET, stop and a high ICC during the preceding SET
operation results in a comparably low HRS. In contrast, a higher HRS is reached at
the same VRESET, stop, when the preceding ICC was lower. For high VRESET, stop, this
observation is in fact reversed: Here, a high and a low current compliance during
the preceding SET operation enables a RESET to a relatively higher and lower HRS,
respectively. For intermediate voltages, a HRS is achieved, that is almost independent
of the ICC or the LRS prior to the RESET. The transition between the three regimes
is very gradual, and does not occur spontaneously in contrast to the deep RESET
behavior reported in [6]. Figures 4.7 (a), (b) and (c) depict details of this observation,
showing the recorded sweeps for VRESET, stop = 1.0 V, 1.3 V and 1.5 V, respectively.
Because the inherent resistance variability overlaps with the described effect on the
HRS level, it was necessary to acquire a significant number of sweeps to identify
this behavior. In Figure 4.7 (a), the HRS is strongly degraded with increased ICC.
Figure 4.7 (b) illustrates the almost identical RHRS at VRESET, stop = 1.3 V for all ICC.
Figure 4.7 (c) shows the slightly increasing RHRS trend for VRESET, stop = 1.5 V. This
observation is statistically analyzed by the boxplot graph in Figure 4.7 (d). The box
positions are slightly shifted from the actual ICC positions to increase the readability.
The dashed lines serve as guide to the eye and highlight the three regimes.

In addition to the representation in Figure 4.6 (a) and (b), the individual RHRS

data points are depicted in Figure 4.8 in an alternate form. Here, the HRS level
is plotted against the VRESET, stop. At each voltage, the observed values are split
into subgroups with respect to the preceding current compliance value, which also
reflects the previous LRS level, see Figure 4.6 (b), and shown in color in Figure 4.8.
Note that only every second tested ICC is included in the graph. A slight voltage
shift of the ICC subgroups is imposed for graphical demonstration purposes. As a
general statement, the overall expected behavior of resistance increase with increased
VRESET, stop is confirmed. However, the splitting of the current compliances at every
VRESET, stop reproduces the trend observed from Figure 4.7 (d). At VRESET, stop of
1.0 V, a higher current compliance leads to a relatively lower HRS level compared to
the usage of a low current compliance. At intermediate voltages, the HRS tunability
is nearly constant, regardless of the value of ICC. In contrast, at a high VRESET, stop of
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Figure 4.7: HRS current-voltage interdependence observed in the sweep experiments
performed by the matrix measurement protocol. In each panel, the sweeps of all 7 ICC
values are shown for a single value of VRESET, stop. (a) 1.0 V. (c) 1.3 V. (d) 1.5 V. (b)
The reversal of order of the HRS level with increasing VRESET, stop.

1.5 V, a higher ICC enables the RESET operation to reach higher HRS values, while
for lower ICC values only relatively lower HRS levels are achieved. This phenomenon
of complex HRS tunability is highlighted by the spline curves for 100 μA and 700 μA
in blue and red color, respectively.

As seen in the presented figures, the device exhibits all typical features of a stan-
dard filamentary VCM-type resistive switching cell as described in several review
articles and text books [6, 159–161]. Yet, the described HRS tunability phenomenon
by means of a parameter cross-dependency has not been reported. Two main reasons
may be responsible for this absence of representation: First, an extensive number of
repeated sweeps at each parameter pair [ICC; VRESET, stop] is required to identify an
effect that has the same order of magnitude as the inherent variability of the HRS.
The effect could only be significantly demonstrated by measuring at least 100 cycles
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Figure 4.8: Analysis of the reachable HRS resistance values as a function of the
current compliance and VRESET, stop derived from the matrix measurement. At each
value of VRESET, stop, 4 ICC values are shown. A slight voltage shift is added for better
readability. At low voltages, the RESET process achieves only low HRS for high
current compliance. At intermediate voltages, the effect of ICC on HRS is neglectable.
At high VRESET, stop, higher HRS are achieved for high ICC. Splines serve as guide to
the eye.

per parameter combination. This means, that the device must endure a minimum of
5000 stable cycles before the onset of degradation. Additionally, this minimum num-
ber may even be higher in the presence of higher variability. The second reason may
be the required systematic measurement protocol. Typically, when a large number of
cycles is desired, the external parameters are kept constant [26, 159, 163], whereas the
described phenomenon is only observable with the systematic variation as performed
in the described matrix measurement.

The JART VCM model that is presented in this work in Section 2.2.3 and in other
works [43, 115, 116] is not able to deliver an explanation for the shown phenomenon
in the full extent. Therefore, the accurate physical interpretation is challenging due
to the cross-coupling interference of electrical and thermal effects in filamentary-type
VCM devices [97, 115].

Yet, the observed effect may be interpreted individually in the three voltage
regimes. In the low voltage regime, a higher ICC induces low HRS values at con-
stant VRESET, stop. It is known that a series resistor impacts the RESET process if
its resistance is in the range of RLRS [107, 113] because the voltage is divided be-
tween the variable resistance and the constant series element. By using a high ICC
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and low amplitude for VRESET, stop, the switching element approaches the series resis-
tance and the voltage divider effect becomes visible. As soon as the limiting effect of
the series element is overcome, the effect vanishes due to the strong switching time
nonlinearity. Hence, it is only visible for the lowest VRESET, stop of 1.0 V. At interme-
diate VRESET, stop, the RESET process dynamics are strongly accelerated according
to the extreme voltage-time nonlinearity inherent to VCM devices [43, 107]. The
oxygen vacancies residing at the Pt / HfO2 interface can be retracted irrespective of
the previous configuration in the LRS for this voltage regime. Therefore, only very
minor deviations between the ICC levels are observed. The fluctuations in the voltage
range of 1.2 V to 1.4 V are attributed to variability. In the voltage regime of 1.4 V
and above, two effects are important. They are visible in Figure 4.7 (d) and Fig-
ure 4.6 (a). Caused by the increase in VRESET, stop and the following RHRS increase,
the SET voltage is also increased. This is not unexpected and reported in litera-
ture[108]. Accordingly, the SET process causes a higher power dissipation, which is
obtained by the product of ICC, which is equal to before, and the measured SET
voltage. This additional power dissipation is expected to trigger accelerated oxygen
excorporation at the ohmic electrode interface, leading to a more dense oxygen va-
cancy configuration at the Pt / HfO2 interface. The RESET switching dynamics for
this ionic configuration then could be significantly accelerated compared to the case
of low VRESET, stop [43, 107]. The additionally created or moved oxygen vacancies
are removed to a large extent, together with the usual amount of filament retraction.
Thus, the result is a reduced remaining defect concentration and a higher RHRS.

Strong programming conditions are often employed to achieve larger resistance
windows. However, they are also known to degrade the endurance [164]. The hypoth-
esis of additional creation and accelerated retraction can explain this observation. It
can be assumed that the cell contains a finite number of oxygen vacancies that can
be created and used for resistive switching before the device begins to degrade. If
stronger programming conditions trigger enhanced generation, the reservoir of oxy-
gen vacancies that can be utilized for switching is used up at a faster rate, hence the
onset of device degradation begins earlier. As described above and expected from Sec-
tion 4.3, no degradation effects were observed in the described experiment. Likely, the
onset of degradation is beyond 1 million cycles even for the unfavorable measurement
conditions.

In summary, this section described the phenomenon of a systematic HRS depen-
dence both on RESET stop voltage and on the current compliance during resistive
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switching. Through statistical analysis, the effect was distinguishable from the inher-
ent resistance variability. Two effects were detected: On one hand, high ICC combined
with low VRESET, stop leads to RHRS lowering due to the voltage divider effect. On the
other hand, the increase in VSET, which is caused by higher RHRS, causes higher
power dissipation at the same ICC. Additional defects created during this process
trigger an accelerated RESET process at high VRESET, stop and consequently a higher
RHRS. While such strong programming conditions can boost the resistance window,
it can lead to faster device degradation.

4.5 Exploiting the switching kinetics of HfO2-based
ReRAM devices for SET and RESET opera-
tion

Parts of this section are taken from [43]. Hence, some figures contain the abbreviations
LCS and HCS, which stand for low conductance state and high conductance state
and represent the conductance counterparts to HRS and LRS, respectively. The
motivation for this unit change lies in the comparably simpler calculation of the
associated current at a given reading voltage, since it is a multiplication and not a
division. In accordance, the following section discusses effects on conductance change
frequently. HRS and LRS may be used interchangeably with LCS and HCS.

As discussed in 2.2, the dynamics of the conductance change of a typical filamen-
tary VCM device is asymmetric in nature: The transition from HRS to LRS is quite
abrupt due to a positive feedback between current increase and Joule heating[97,
100]. In contrast, the opposite RESET process is gradual in nature due to a negative
thermal feedback and, eventually, the counteracting forces of drift and diffusion of
oxygen vacancies approaching equilibrium concentration[112]. Based on these prop-
erties programming of multiple conductance states is achieved either by controlling
the current during SET, e.g. by using a transistor in series to the ReRAM[161], or by
changing the RESET voltage amplitude exploiting the gradual RESET transition[30,
33]. A layer stack modification to the typical VCM ReRAM device can change the
switching properties[162, 165–167]. The introduction of an inherent conduction lim-
iter (ICL) has a positive impact on reducing SET variability and has opened up the
possibility of a gradual transition on either side, increasing single device and network
performance[44, 113, 159]. In a synaptic application, such a gradual conductance
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change for both SET and RESET is desired, i.e. analog conductance states should be
programmable. With the background of the strong switching kinetic nonlinearity of
SET and RESET, the capability of the devices to perform such analog programming
should be investigated individually. Therefore, the following sections will discuss the
SET switching kinetics and the RESET switching kinetics individually. The condi-
tions that allow analog programming that are found in these sections are applied to
the demonstration of analog conductance tuning. Comparison with a compact model
in the final section elucidates the physical mechanism.

SET switching kinetics

In the VCM-type system Pt/HfO2/TiOx/Ti/Pt, the TiOx layer acts as the aforemen-
tioned ICL. The reader is referred to [113] for a detailed investigation on the impact of
the introduction of an artificial interface titanium oxide layer on resistive switching in
voltage sweep mode. The complete stack design, including the equivalent circuit used
in the compact model, is illustrated in Figure 4.9 (a). The equivalent circuit shows
the different components that are combined in the device under testing (DUT). The
conductance of the metal connections (Gline) and the titanium oxide interface layer
(GTiOx) can be combined into a conductance GICL, which represents the ICL. For sim-
ulation purposes, the HfO2 layer is split into a plug and disc region, where the plug is
conductive and represents an infinite reservoir of oxygen vacancies. In Figure 4.9 (b),
two sweep measurements of bipolar resistive switching (BRS) of a single device are
shown. The slew rate of the voltage ramps was set constant at 1.0 V/s. In the first
case (solid black line), the initial starting LCS is low. Negative bias applied to the
Pt BE leads to an abrupt increase of the current at a voltage of -0.75 V. The current
through the device after the SET process is initially limited by the ICL. At a voltage
below -1.3 V, a measurement system sided current compliance of 900 μA is active. The
conductance is close to the maximal achievable value. At positive bias applied to the
Pt BE, the device switches back to the LCS at a voltage of 1.3 V. As the voltage
is stopped at 1.6 V, the device is in a low LCS again, which promotes another SET
process with abrupt characteristic in the subsequent BRS cycle. The second opera-
tion mode, drawn in colored lines, each representing an individual conductance state
contrasts with the first operation mode. Here, the initial LCS is more conductive.
The first switching loop is taken for a voltage sequence from 0.0 V to -0.5 V to 0.0 V.
The stop voltage of the SET sweep is consecutively decreased from -0.5 V to -0.85 V
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Figure 4.9: (a) Stack design of the nanosized
25 nm Pt/3 nm HfO2/3 nm TiOx/10 nm Ti/20 nm Pt devices and equivalent cir-
cuit including the conductance-limiting element GICL composed of contributions
from the lines, Gline, and from the inherent TiOx layer, GTiOx . The HfO2-based
memristive element is characterized by the conductive filament which is divided
into a conductive plug, Gplug, and the resistive disc regime, Gdisc; dimensions not to
scale. (b) Current-voltage sweeps measured for the device in (a) visualizing the two
switching operations of the BRS SET and RESET, which are the abrupt mode (black
line) and gradual mode (colored lines). Reproduced with permission from [43].

in steps of 10 mV. Each negative sweep results in a new, separable conductance state,
which is indicated by the different colors. In this operating mode, no measurement
sided current compliance is necessary. Analogously, upon applying triangular voltage
signals (0.0 V to VRESET, stop to 0.0 V) with increasing positive amplitude to the Pt
BE, a gradual decrease in the conductance is achieved for VRESET, stop between 0.75 V
and 1.0 V. Starting the switching hysteresis with the device in a low LCS leads to
an abrupt SET and abrupt RESET characteristic, which is due to the thermoelectric
coupling during the SET event and the voltage divider effect during RESET. In con-
trast, switching loops recorded in the defined limits of moderate LCS and HCS level
enable gradual bipolar BRS for the SET and the RESET process. This shows, that
the initial conductance state plays a decisive role for achieving the desired switching
properties. This state-dependence of the switching mode is further investigated by
analyzing the current transients for constant voltage pulses. For this measurement
procedure, the device is initialized with a defined LCS. Then, a negative SET volt-
age pulse of variable duration and amplitude is applied. Figure 4.10 (a) shows the
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Figure 4.10: (a) Observed conductance values after 1 μs SET pulse with varying ampli-
tude for low (closed triangles), intermediate (open triangles), and high (filled circles)
initial LCS level. (b) Analog transient current response during SET obtained for a
high initial LCS and a SET voltage of 0.72 V. (c) Abrupt transient current response
during the SET pulse obtained for a low LCS level and a SET voltage of 0.85 V.
(d) SET switching kinetics study revealing the variability of the experimental delay
time at given SET voltage amplitudes. The simulation results (solid colored lines)
show that the differences in the delay time can largely be explained through a varia-
tion of the initial LCS values. Reproduced with permission from [43].

read conductance states obtained by 0.2 V read signals after applying a voltage pulse
with 1 μs width and variable amplitude. A clear dependence of the read conductances
from the voltage pulse amplitude and from the initial LCS state (indicated by colors)
is obtained. For the lowest initial LCS of about 2 μS to 10 μS (pink triangles) two
regimes appear. At amplitudes below |Vpulse| = 0.75 V only minor deviations from
the initial LCS are measured. At higher voltage amplitudes, a mixture of successful
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and unsuccessful SET events is observed. While in general a higher amplitude leads to
a higher HCS, intermediate conducting states appear as well indicating an incomplete
switching event. In contrast, the highest initial LCS conductance state (closed black
circles) shows an almost linear relation of conductance increase with rising |Vpulse|
starting from about 0.625 V. Intermediate conductance levels, which are inaccessible
from the lowest LCS, are reproducibly addressable. For intermediate initial states of
16 to 20 μS (open blue triangles), only a slight deviation from a linear behavior at
voltages between 0.65 V and 0.7 V is obtained. Some events, however, are delayed
in their conductance change, while others follow the linear increase in conductance.
It is interesting to note that the final HCS is independent of the initial state; it is
only a matter of the applied voltage amplitude as indicated by the data overlap in
Figure 4.10 (a) at voltages greater than 0.7 V. This effect can be related to the volt-
age divider effect due to the ICL[113]. The state-dependence of the programming
behavior shown in Figure 4.10 (a) is correlated to a different current response during
the application of the voltage pulse. Figure 4.10 (b) shows a typical SET current
transient from a high initial LCS of about 40 μS at a pulse amplitude of 0.72 V. In
contrast, Figure 4.10 (c) shows the effect of a low initial LCS value, in detail 5 μS, on
the transient current for a SET voltage pulse of 0.85 V and 1 μs. Typically, the current
transients starting from a moderately low LCS show a slow current increase in the
beginning, followed by fast current increase. This two-step SET process is related to
a positive feedback between conductance increase and increasing Joule heating, which
finally leads to a thermal runaway[100, 105]. The delay time of the SET process tdelay

describes the initial low current increase and is often assumed to be equal to the SET
time, tSET, because it marks the onset of the fast current increase, consistent with
literature[100]. However, a more precise definition of tSET should include the time for
the fast, abrupt current increase, which is termed transition time ttrans in this work,
see zoom-in of Figure 4.10 (c). Therefore, tSET is the sum of tdelay and ttrans. Data
on the relation between ttrans and the pulse amplitude starting from low initial LCS
is shown in Figure 4.11. Exemplarily, two effects on the SET transition behavior can
be determined from Figures 4.10 (b) and (c). An increase in the SET voltage by
0.13 V leads to significant reduction of the SET transition time to the point, where
the entire transition event is undergone within the pulse duration. This demonstrates
a strong nonlinearity of the transition time from the applied voltage consistent with
results on SrTiO3-based devices reported in the literature[100]. In contrast, SET
events from high initial LCS (Figure 4.10 (b)) show a different dependency. The high
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Figure 4.11: Transition time analysis of the SET kinetics measurement starting from
the LCS of 2 to 10 μS. Only events where the transition involved at least 12 samples
were recorded. Reproduced with permission from [43].

LCS shortens the delay time so much that it is no longer observable. The analysis
of the current transients from low LCS during the SET event in 1 μs pulses lead to
a better understanding of the SET switching kinetics plot given in Figure 4.10 (d),
which was recorded using pulse lengths between 100 ns and 1 s. Here the variability
of the SET time, which at a given voltage scatters over about four orders of magni-
tude, originates from different low initial states. The lower the LCS is, the longer the
SET time is, consistent with previous studies [108, 109, 160] and with the simulation
results presented in this study as shown below. However, the more careful analysis
revealed that this variation in the experimentally derived SET time is, in detail, due
to an increase in the delay time leaving the transition time almost unaffected. Further
control of the SET behavior of defined VCM-type devices requires the determination
of the transition time versus voltage dependence in separation from the effect of the
experimental conditions on the delay time.

The study in Figure 4.10 (a) for 1 μs SET pulses was extended to cover pulse
lengths from 100 ns up to 1 s, resulting in the graphs given in Figure 4.12 (a), (b) and
(c) for high initial LCS of 40 - 50 μS, intermediate initial LCS of around 20 μS, and
low initial LCS of around 3 μS, respectively. The median conductance averaged over
ten SET pulses is given for the high and intermediate LCS in (a) and (b). Since the
median value of conductance would misrepresent the reality of the mix of successful
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Figure 4.12: Median conductance values after SET pulses (at Vread = 0.2 V) with
varied amplitude and duration, starting from (a) high LCS and (b) intermediate
LCS. (c) Conductance values after SET pulses starting from low initial LCS level.
A mixture of successful and unsuccessful SET events is observed. In the HCS, the
values coincide independent of previous LCS. Reproduced with permission from [43].

and unsuccessful SET events for the low LCS case, a different depiction method is
chosen for Figure 4.12 (c). Combinations of pulse duration and amplitude which
leave the device conductance unaffected are drawn as LCS values (dark blue color).
In cases where the device undergoes a SET event or remains in the LCS, which is
defined as probabilistic switching, a mixture of LCS and HCS values is drawn, with
the density of HCS states representing the probability of a SET event. When the
pulse voltage-time-combination always leads to a SET event, the respectively reached
HCS is drawn (orange to red color). The shown diagrams can be understood in several
ways. Firstly, the voltage dependence on the achieved HCS at read voltage of 0.2 V,
which was already shown in Figure 4.10 (a), is evident. By application of increased
voltage, a higher HCS is achieved. This holds true for all three initial states. This
means, that the reached HCS level is independent of the initial LCS state. However,
depending on the initial state, the voltage threshold for conductance modulation
is influenced. High initial LCS levels require lower voltages for state modulation
than low LCS start conditions. Yet, in the experiments presented in this section, all
initial conditions lead to almost the same slope in the semi-logarithmic voltage-time-
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plot, indicating identical physical processes. This observation supports the thermally
activated switching model. Alternatively, the diagrams can be understood from the
viewpoint of constant voltage operation. Using extended pulse durations instead of
increasing the amplitude also yields a gradual transition between LCS and HCS in the
case of high initial LCS conditions. At low initial LCS, longer pulse times additionally
make the switching event more likely.

Apparently, the two kinds of switching characteristics observed for high/intermediate
LCS and low LCS are related to the different behavior during the current transients.
To access intermediate conductance values, the length of the pulse time tpulse must
be comparable with the transition time ttrans. For very low initial LCS, tpulse » ttrans

holds, and thus, the pulse time for switching is a lot longer than the transition time.
In consequence, the switching appears binary. Only when the switching transition
happens at the end of the applied pulse, intermediate states might be accessible, but
these are rare events.

RESET switching kinetics

To study the state- and voltage-dependence of the RESET process, the devices were
programmed to different HCS by applying different pulses of -0.9 V up to -1.6 V for
a duration of 10 μs in a preceding SET process. The respective HCS, read at 0.3 V,
are plotted in Figure 4.13 (a). The obvious nonlinearity of the HCS vs. SET voltage
behavior arises from the effect of the ICL element of these devices (see Figure 4.9 (a)).
This interplay arises only at SET voltages below -1 V and was therefore not visible
in Figure 4.10 (a). Subsequently, RESET experiments at constant voltage are per-
formed for various HCS. Representatively, Figure 4.13 (b) shows the transient currents
recorded for a RESET voltage of 1.0 V. The device shows strongly delayed RESET
behavior depending on the initial HCS level. Equivalent to the analysis of the SET
processs, the RESET process is experimentally defined by the RESET time tRESET,
which is determined when the current drops below 300 μA. In the more specific anal-
ysis, the transient RESET behavior reveals two regimes. The time addressed to the
regime of low current reduction is named the delay time, tdelay, RESET, the one related
to the strong current reduction is identified as the transition time, ttrans, RESET. The
addition of both yields the RESET time tRESET. In the case of low initial HCS, about
500 μS, drawn in dark blue, the RESET occurs within the first few microseconds after
pulse application. In the case of high initial HCS, about 700 μS, drawn as orange

63



4 Resistive switching in HfO2-based devices

10−6 10−4 10−2 100

tRESET pulse [s]

VRESET = 1.0 V
0

100

200

300

400

500

600

700

I R
E

S
E

T
 [
µ

A
]

0.8 0.9 1 1.1 1.2 1.3

VRESET pulse [V]

100

10−2

10−4

10−6

10−8

t R
E

S
E

T
 [
s
]

(c)

10−8

0

100

200

300

400

500

600

700

I R
E

S
E

T
 [
µ

A
]

0.75 µs

0.4 µs 

0.8 1.0 1.2 1.4 1.6

|SET pulse voltage| [V]

400

500

600

700

C
o
n
d
u
c
ta

n
c
e
 [
µ

S
]

(a)

48.3 ms

(b)

0.4 µs 

Figure 4.13: (a) HCS of the devices programmed by application of a SET pulse of 10 μs
and the given voltage amplitude. The nonlinearity originates from the influence of the
ICL. The black circles show the initial states of the corresponding simulations in (b).
(b) RESET current transients at a constant RESET voltage of 1.0 V for different initial
HCSs. High HCS values lead to pronounced delays during the RESET operation. The
simulated transients (black solid lines) are able to fit the variation of the delay by
assuming different initial states. The zoom of the simulated transients illustrates that
the transition time is state independent. (c) RESET switching kinetics for various
HCSs characterized by the SET pulse amplitude that is defined by the color code of
(a). A delay of up to six orders of magnitude in switching time is observed. The
simulations (solid lines) predict the voltage-time dependence well. Reproduced with
permission from [43].

lines, several hundred milliseconds up to 1 second are needed for obtaining the RE-
SET. Here, the RESET time is controlled by the delay time, which turns out highly
state-dependent. In contrast, the duration of the sharp transition between HCS and
LCS, i.e. the RESET transition time ttrans, RESET, stays almost constant. Zooming
into the transiton regime reveals a transition time of about 65 ns for all initial HCS.
From this, the RESET process can be viewed as consisting of three distinct phases.
During the first phase, the state stays almost constant and little switching occurs
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because during this phase most of the applied voltage drops over the ICL. This delay
phase increases significantly for higher HCS and thereby leads to the state dependent
delay time. The second phase is the abrupt RESET transition. It has a constant
duration at a specific voltage independent on the initial state. The third phase is the
slow "phasing out" after the abrupt transition that appears due to the strong temper-
ature decrease with increasing resistance, which slows down the switching into lower
LCS states[112]. The strong dependence of the experimentally accessible RESET time
was further analyzed at different voltages. A pattern of increasing RESET time with
increasing HCS level, highlighted by the colored bars, is visible from Figure 4.13 (c).
In the extreme case tested, the RESET is delayed by about six orders of magnitude
in time while changing the voltage amplitude of the preceding SET process by 0.7 V.
The simulation results, drawn as solid lines, closely match the experimental findings.
The strong nonlinearity of the dependence of the switching time on the applied pulse
voltage emphasizes the importance of controlling the conductance window, since un-
favorable delay times arise when the conductance leaves the moderate regime. Based
on the systematic experimental analyses combined with the simulations by means of
the fully physical switching model (see below), a detailed description of the SET and
RESET dynamics and their state-dependence is developed.

Synapses formed from stochastically and deterministically switch-
ing memristive devices

Utilizing this understanding, two alternative types of synapses can be realized with
the same device. Bivalent switching between distinctive high HCS and low LCS levels
is possible by pulse operation with increased voltage. In this case, the SET/RESET
delay time will become significantly longer than the transition time and intermediate
states are not accessible. Figure 4.14 (a) depicts a suggested pulse scheme of alternat-
ing pulse packages for LTP and LTD operation. Figure 4.14 (b) shows an exemplary
extract of three alternating LTP/LTD cycles. In this specific case, the voltages were
chosen high enough to obtain reproducible switching with the first two pulses. As
shown in Figure 4.14 (c), the change of the normalized conductance over pulse num-
ber, which is essentially the update function of the weights, is strongly nonlinear,
since the first pulse already traverses the entire dynamic range of the conductance. In
the case of linear weight update, this function would follow the straight diagonal line
from 0 to 1. A significant step towards a more linear weight update function is taken
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Figure 4.14: LTD and LTP operation with parameters resulting in abrupt and gradual
switching behavior: (a) and (d) Operation method and parameters. (b) and (e) Re-
sulting alternating LTP and LTD cycles. (c) and (f) Normalized conductance evolu-
tion revealing the high abruptness of the SET/RESET operation parameters in (a)
and the more gradual behavior for parameters of (d). The diagonal line marks linear
behavior. The fits in (c) and (f) are performed according to the model of Fusi and
Abbott[168]. Reproduced with permission from [43].

by (i) choosing a pulse length that is smaller than the transition time at a specific
voltage and (ii) reducing the HCS and increasing the LCS level. During operation,
this is effectively achieved by reducing voltage amplitudes as given in Figure 4.14 (d).
The LTP/LTD cycles depicted in Figure 4.14 (e) show conductance levels inaccessible
by the method shown in (a). The normalized conductance change function over pulse
repetition is therefore shaped more towards the straight diagonal line, as can be seen
in Figure 4.14 (f). The major difference between the two modes seems to be the
transition time from LCS to HCS. Low initial LCS levels require a high SET voltage,
which, in turn, results in very short transition time (e.g. 22 ns), and is just above the
resolution limit of the measurement setup. Hence, intermediate conductance steps are
highly infrequent as the transition from LCS to HCS is orders of magnitude shorter
than the pulse duration. Once triggered, it is likely to begin and finish within a
single pulse. Additionally, a delay time of high variance is inherent. This makes the
accessibility of intermediate conductance states very complicated to achieve, even if
accordingly short pulse durations were available in the employed measurement setup.
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In contrast to this, the transition times corresponding to lower SET/RESET voltages
in Figure 4.14 (e) and (f) approach towards the range of the pulse length of 1 μs for this
experiment. Furthermore, in these experiments no delay time for the SET transition
was observed as the initial LCS is quite high. This makes intermediate conductance
states accessible by single pulse application, since the SET process has not been fin-
ished by the end of the pulse and is subject to further changes in the subsequent
pulse with the same amplitude. Comparable studies on TiN/HfO2/Ti/TiN devices
have been reported by Frascaroli et al.[48]. Interestingly, the voltage regimes defining
analog-type behavior in the different HfO2-based memristive devices are quite com-
parable. This could be evidence of the universal applicability of the transition-time
concept proposed here. From the experimental results shown, it can be concluded
that analog switching is possible if the pulse length is of the order of magnitude of the
transition time. Furthermore, the state-dependency of the SET/RESET transition
should be eliminated. To this end, a suitable conductance window must be selected.

Compact model simulation

To validate and generalize this conclusion, a simulation study was performed using
the compact model for filamentary switching based on the valence mechanism called
JART VCM v1, which is part of the Juelich-Aachen Resistive Switching Tool Box
(JART). The model deviates slightly from the original description[113]. The mecha-
nism of ion conduction, which was previously modeled according to the law of Mott
and Gurney[169] is now modeled according to the proposal of Genreith-Schriever[170].
This provides a more accurate description for very high electric fields. To achieve a
consistent description of the SET and RESET dynamics, a polarity-dependent ef-
fective thermal resistance Rth is introduced. The switching parameters have been
fitted within physically reasonable limits to match the experimental data. The used
parameters are listed in Table 4.1 and the equivalent circuit diagram is shown in
Figure 4.9 (a). The model reproduces the state- and voltage-dependence of the ex-
perimental data over many orders of magnitude in time. The solid colored lines in
Figure 4.10 (e) show the simulated SET delay times for three different initial resis-
tance values. In the simulations, a constant voltage pulse with a rise time of 1 ns
is applied. The SET delay is defined at the point in time with the steepest current
rise. The spread of the experimental data is well reproduced by assuming different
initial resistances (according conductances of 2 μS to 10 μS) in the simulation, which
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Figure 4.15: (a) Simulated transition times for SET and RESET: the marked cir-
cles show the SET and RESET voltages to achieve transition times of 1 ms and 1 μs.
The corresponding SET and RESET transients for transitions times of 1 ms and 1 μs
are shown in (b) and (c), respectively. The times t0 and t1 are arbitrary reference
times at the beginning of the transition. Δt represents the time range in which linear
conductance modulation is achieved. In (d), the cross symbols show the conduc-
tance evolution for consecutive SET pulses (blue) and RESET pulses (red) in the
conductance regime defined by the black circles in (b). The diamonds in (d) show
the conductance modulation for too high voltage amplitudes (-0.4 V/0.8 V). In (e),
the cross symbols show the conductance evolution for consecutive SET and RESET
pulses in the conductance regime defined by the black circles in (c). The diamonds
in (e) show the simulated conductance modulation using the same pulse length and
amplitudes as for the crosses, but starting from a lower initial conductance. Repro-
duced with permission from [43].

agrees well with the initial resistance states in the experimental data. In the simu-
lations the SET delay time is orders of magnitudes higher than the transition time,
consistent with the experimental data shown in Figure 4.10 (c) and previous simu-
lation studies[100]. The simulated RESET current transients are shown in black in
Figure 4.13 (b). The initial oxygen vacancy concentrations are chosen to match the
initial experimental states at 0.2 V. In the simulations, the RESET pulse of 1.00 V is
applied as a constant voltage signal with a rise time of 1.0 ns. As in the experiment,
the RESET transition is strongly delayed for higher HCS. This delay results from the
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Table 4.1: Simulation parameters (for the explanation of the symbols, see the work
of Hardtdegen et al.[113].
Symbol Value Symbol Value
lcell 3 nm A* 6.01 · 105 A/(m2K2)
ldisc 0.4 nm eΦBn0 0.18 eV
rfil 45 nm eΦn 0.1 eV
zVO 2 μn 4 · 10-6 m2/Vs
a 0.25 nm Nplug 20 · 1026 m-3

ν0 2 · 1013 Hz Ndisc,max 20 · 1026 m-3

ΔWA 1.35 eV Ndisc,min 0.008 · 1026 m-3

ε 17 ε0 Rth,eff,SET 15.72 · 106 K/W
εΦB 5.5 ε0 Rth,eff,RESET 4.2444 · 106 K/W
T0 293 K GTiOx 1538 μS
Gline (I = 0 μA) 1391 μS Gline (I = 700 μA) 1234 μS

voltage-divider effect of the ICL. At the beginning most of the voltage drops over the
ICL rather than the active switching part. As soon as the conductance decreases,
the voltage drop over the device increases, and in turn, the switching speed increases.
This leads to the fast RESET transition. Due to the reduced power dissipation, the
conductance change slows down towards the end. This "phasing out" origins from
the decrease in local temperature in combination with ionic drift and diffusion ap-
proaching equilibrium defines the behavior in this region during RESET[112]. In
contrast, the plateau region at the final stages of the SET transition is due to the
current limitation by the ICL. To achieve a stable analog switching, the time frame
of the input signals should be in the order of the transition time. Thus, the tran-
sition time from SET and RESET pulse simulations were extracted. It turns out
that the SET and the RESET transition times are state-independent (cf. zoom in
Figure 4.13 (b)), which is consistent with the presented experimental findings. Fig-
ure 4.15 (a) shows the simulated SET/RESET transition time as a function of the
applied voltage. Consistent with data of Ta2O5- and SrTiO3-based filamentary VCM
cells, the transition time is a highly nonlinear function of the applied voltage[100],
but almost independent of the initial state. The graph also shows that the transi-
tion times required for RESET are longer than for SET. Thus, asymmetric voltage
amplitudes will be required to achieve SET and RESET with comparable transition
times. The desired time sequence depends on the application. For the simulation,
transition times of 1 ms and 1 μs were selected. According to Figure 4.15 (a), the
corresponding SET/RESET voltage pairs are (-0.33 V/0.68 V) and (-0.44 V/0.91 V)
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4 Resistive switching in HfO2-based devices

for 1 ms and 1 μs transition time, respectively. To access intermediate values between
HCS and LCS, a pulse width smaller than the transition time is required. In addi-
tion, too high HCS and too low LCS should be avoided, as this would lead to long
delay times. In order to achieve optimum tunability, the conductance values must
be selected within the transition regime as illustrated in Figure 4.15 (b) and (c) for
the 1 ms and 1 μs case, respectively. The marked maximum and minimum conduction
states allow for an almost linear tuning of the conductance with consecutive pulses
of identical voltage amplitudes and duration. The length of the pulses is adjusted to
achieve ten different conductance levels. To this end, the elapsed time between the
beginning (see t0 and t1 in Figure 4.15 (b) and (c)) and the end ((t0 resp. t1) + Δt)
of the conductance transition is divided by 10. Using the voltage amplitudes and the
pulse widths determined as described before, pulse train simulations with 10 consecu-
tive SETs followed by 10 consecutives RESETs are performed. The simulation results
are shown as crosses in Figure 4.15 (d) and (e) for the 1 ms and 1 μs case, respectively.
In both cases, an almost linear conductance tuning can be achieved. Furthermore,
the tuning turns out to be very similar. Following the procedure described above,
conductance tuning for analog memristive behavior can be achieved on every time
scale. However, any deviation from this procedure unavoidably leads to undesirable
results. This is demonstrated in Figure 4.15 (d), where the diamonds are the results of
a tuning starting from the same initial conductance and with the same pulse widths
as before, but using higher voltage amplitudes (-0.4 V/0.8 V). The transition times
for these amplitudes are smaller than the chosen pulse width (see Figure 4.15 (a)).
Thus, intermediate states are hardly accessible and the switching becomes binary and
achieves high HCS and low LCS. The accompanying increase of stochasticity is due to
the state-dependence of the delay times in these conductance regimes. The simulation
results correspond well with the experimental data shown in Figure 4.14 (a)-(c). If
a lower initial conductance value is chosen while the pulse width and height are the
same as in the linear case, the resulting conductance follows an S-shaped modulation
(diamonds in Figure 4.15 (e)). In this case, the pulse voltages and the pulse width are
chosen according to the procedure described before, but higher HCS and lower LCS
values are used. Thus, there is a trade-off between nonlinearity of the conductance
tuning and the accessible conductance window.
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4.5 Exploiting the switching kinetics of HfO2-based ReRAM devices for SET and
RESET operation

Conclusion

In conclusion, it was shown that the same Pt/HfO2/TiOx/Ti/Pt stack could be ex-
ploited for analog or binary, stochastic conductance modulation. The controlling
parameters are the voltage amplitude and the pulse length. The most important
issue is that a proper conductance window must be chosen. In general, SET and RE-
SET in VCM-type memristive devices are a two-step process: A sharp conductance
change within a transition time succeeds a slow conductance change described by a
delay time. Both times highly depend on the applied voltage. While the delay time
turns out to be highly state-dependent for a specific voltage, the transition time is
relatively independent of the state of the device.

Based on these findings, two conditions for achieving analog conductance behav-
ior in filamentary VCM cells are deduced. First, the applied pulse length must be
shorter than the transition time. Otherwise, the switching will become binary. Sec-
ond, the conductance window must be chosen in a way that delay times are signifi-
cantly reduced below several percent of the transition time. This can be effectively
done by increasing the initial LCS and by decreasing the HCS, prior to SET oper-
ation (potentiation) and to RESET operation (depression), respectively. Using the
JART VCM v1 model, a generalization of this result could be made and an experi-
mental procedure to find the optimum working condition was formulated. First, the
transition time needs to be determined as a function of the applied voltages. Based
on this result, the SET and RESET voltage amplitudes can be chosen according to
the operation time of the targeted application. From the recorded SET and RESET
transients, a proper conductance window is then defined. It is important to note
that, in principle, every timescale allows for proper operation conditions. The volt-
ages, however, may not be compatible to the application. The present study points
a new direction for further research. As the transition time is identified as the most
important parameter, future research should strive for the elucidation of the physical
parameters influencing the transition time and the size of the addressable conductance
window.
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5 Analog function of VCM devices

The previous chapter elucidated on the coexistence of analog and binary switching
in single memristive devices. This chapter focuses on the operation in analog mode.
The possibility to program and store analog conductance in memristive devices makes
them a possible candidate for different applications. Deep Neural Networks (DNNs)
can be accelerated by several orders of magnitude compared to computations in the
CPU at the same performance levels [68, 171]. Other applications are Computa-
tion in Memory (CIM) concepts [172–174] and as analog content addressable memory
(CAM) [56, 175] with ReRAMs which can decrease the overall power consumption
by an order of magnitude or more compared to SRAM architectures with the same
function [56]. Both applications require initial programming and storage of analog
conductance values. However, once the desired weights are programmed, the device
operation is limited to reading the conductance. For networks that can learn online,
the conductance modulation is of additional interest. In many cases, a rather simple
but effective way of analog conductance programming, namely constant repeated volt-
age signals, is preferred. Depending on the specific application, different constraints
such as the minimum number of programmable states, linearity of the update and
symmetry between the update directions are important [67, 68]. In the following
section, these parameters will be quantified for the studied device. During the inves-
tigation, a significant influence of noise is found which severely limits the number of
distinguishable states. The identified noise characteristics of the programmed states,
which have been reported in a similar form in other literature sources [176–179], are
examined and interpreted in terms of the physical model of filamentary VCM devices.

5.1 Analog switching by constant voltage signals

As discussed for Figure 4.14, single VCM cells can be tuned in analog conductance
states using a sequence of voltage pulses with constant amplitude and duration. This
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Figure 5.1: Definitions for the Long Term Potentiation (LTP) and Depression (LTD).
(a) Voltage pulse sequence for LTP and LTD. (b) Increase and decrease of the con-
ductance value during a typical LTP and LTD cycle.

feature is considered very advantageous for applications requiring frequent conduc-
tance changes in an analog manner. In this section, the analog tuning capability
through constant pulses is examined in more detail. In literature, this behavior is
commonly termed Long Term Potentiation (LTP) and Long Term Depression (LTD).
Figure 5.1 shows the used definitions in this work. The pulsing scheme is shown in (a)
and a typical LTP/LTD cycle in (b). A cycle is therefore defined as the combination of
one LTP and one LTD half cycle. Each half cycle consists of 1000 programming pulses
and conductance readings. The voltage for performing LTP is negative according to
the bipolar SET process. Conversely, the LTD voltage is positive. LTP and LTD
pulse length is always 100 ns, while the read pulses are 10 ms long. The interpulse
duration is limited by the measurement setup and is on the order of milliseconds. The
read amplitude is kept constant at -0.2 V.

Figure 5.2 illustrates three examples how the conductance of a single cell can be
programmed with constant pulses. The bottom panel shows the response to -0.5 V
and +0.5 V amplitude pulses for LTP and LTD, respectively. The response of the cell
to these voltage pulses is small, and noise largely masks the conductance changes.
A different response is observed for -0.6 V and +0.7 V, see middle panel. The con-
ductance is noticeably increased by LTP pulses and decreased by LTD pulses. Small
conductance increments throughout the continued pulses are observed. Intermedi-
ate states are repeatedly approached. In contrast, the upper panel shows the cell’s
response to higher voltages (-0.7 V and +0.9 V). Again, the conductance can be pro-
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Figure 5.2: Long Term Potentiation and Depression overview. From lower to upper
panel: Low amplitudes do not trigger significant conductance change while interme-
diate amplitudes lead to analog-type programmable conductance. Higher amplitudes
cause relatively abrupt changes within the first few pulses.

grammed reproducably, but significant conductance gaps appear in the intermediate
range, indicating a nonlinearity in the programming. In particular for the LTP half
cycle, the first applied pulse frequently induces a change of about 300 μS or more.
Considering the total conductance difference between the end of an LTP and an LTD
cycle, the influence of higher absolute voltages is observable. From the lower to the
upper panel, the total conductance difference ΔG increases from values around 10 μS
to around 350 μS to around 700 μS. An extension of the presented experiment is con-
ducted by varying the LTP voltage and the LTD voltage in a matrix-like fashion. The
parameters (Vpot | Vdep) are varied between (-0.3 V | +0.1 V) and (-0.8 V | +1.0 V)
in 50 mV steps. The relationship between the LTP and LTD amplitude is denoted as
Vdep = |Vpot| + ΔV. However, the unbalanced corners of the matrix are not tested
because the cycling for these parameters is unstable, i.e. the device typically gets
stuck in the corresponding state of the prevailing voltage polarity. Each combina-
tion is repeated 100 times, i.e., 100 alternating LTP and LTD half cycles are applied
without intermediate write-verify.
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5 Analog function of VCM devices

First, the observations made in Figure 5.2 are investigated in more detail. Fig-
ure 5.3 (a) shows the mean conductance response to the first applied LTP pulse
(ΔGpot, first) as well as the mean maximum conductance change (ΔGpot, max) within
one pulse as function of the mean total LTP conductance window ΔGpot, total. The
error bars are given by the standard deviation of the 100 cycles. The trend is consis-
tent with the observation in Figure 5.2: above about 600 μS of the total conductance
range, the first LTP conductance change coincides with the maximum conductance
change at about 200 μS, suggesting that the switching is strongly nonlinear and that a
third of the dynamic range is inaccessible. The corresponding LTP voltage is -0.7 V.
At even higher voltages, the first LTP pulse induces a conductance change which
corresponds to half of the total adressable range. At lower voltages, the first and
the maximum conductance changes seperate and decrease, while the absolute con-
ductance range also decreases. However, this regime allows for smaller conductance
increments in the LTP sequence. Importantly, this means that near linear conduc-
tance change is possible. For LTD, which can be seen in Figure 5.3 (b), a different
trend can be observed. Even for the highest total conductance ranges, which are
reached by employing accordingly high voltages, the maximum conductance step is
limited to around 200 μS. Across all voltages, the first conductance step is found be-
low the maximum value. This means that a more gradual conductance transition
is found for the first LTD pulses. However, the black open circles indicate that the
maximum conductance step is around 200 μS for the majority of voltages. Only for
small voltages does the maximum conductance step fall below 200 μS. However, the
maximum conductance step is sometimes higher than the total achieved conductance
range ΔGdep, total. This is also the case for the LTP. It is indicated by the red dashed
line, which marks ΔGtotal = ΔGmax. It is clear that a conductance step larger than
the total bridged conductance range is unrealistic. The reason for these points can
be found in the lower panel of Figure 5.2. For low applied voltages, the conductance
noise from one pulse to the next can be larger than the actual spanned conductance
range from the beginning of an LTP and LTD cycle. This means, that the value of
the maximum conductance step ΔGmax at ΔGtotal around 0 μS in Figure 5.3 is ac-
tually caused by the noise present in the measurement. Hence, the data points that
are displayed below this threshold represent a severely degraded signal to noise ratio,
i.e. individual noise spikes are stronger than the signal. The presence of noise in the
analog switching regime significantly complicates the analysis of the underlying con-
ductance change. For this reason, the approach of Gong et al.[51] is adopted. Here, a
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Figure 5.3: Correlation between the conductance change of the first pulse (colored
solid symbols) and the maximum conductance change (black open symbols) with the
total tunable conductance at the specific voltage for (a) LTP and (b) LTD. Red dashed
lines represent ΔGtotal = ΔGmax.

Gaussian Process Regression (GPR) algorithm is used to seperate the noise from the
underlying signal. It is assumed that the measured conductance values are normally
distributed around a hidden arbitrary function. Importantly, GPR is independent of
the physical switching mechanism and does not require any user-made assumptions,
which makes it an ideal tool to study the noisy data of filamentary resistive devices.
For a detailed description and validation of the technique to study analog resistive
devices, the reader is referred to the original paper [51]. Figure 5.4 shows example
cycles from the data in Figure 5.2. The blue lines in (a) through (c) represent the
optimized noise-free GPR fits to each half cycle. (d) to (f) show the histograms of
the residual conductances of the LTP, while (g) to (i) show the LTD residuals. The
coarsely sampled Gaussian distribution is evident, as shown by the blue lines.

The exemplary fits in Figures 5.4 (a) to (c) illustrate that each LTP and LTD
cycle can be divided into two parts as indicated by the dashed vertical lines. The first
part, labeled "SW" for switching part, is characterized by a monotonic conductance
drift that depends on the polarity of the signal. For LTP, the slope is positive, while
LTD has a negative slope. In all measured half cycles, the monotonic fit section ended
before reaching the end of the pulse train, i.e. the slope of the GPR fit changed sign.
This second region, labeled "NSW" for non-switching part, is characterized by noise
around a mean conductance value, which does not change in response to the applied
pulses. A similar observation was made by Brivio et al. [176]. In the following, both
parts will be treated separately, starting with the switching part.
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Figure 5.4: Gaussian Process Regression analysis of the data shown in Figure 5.2.
(a) to (c) Example fits to LTP and LTD. Voltages are (a): (-0.7 V | +0.9 V), (b):
(-0.6 V | +0.7 V) and (c): (-0.5 V | +0.5 V). Times are all 100 ns. (d) to (f) According
residuals histograms of the LTP fits. (g) to (i) According residuals histograms of the
LTD fits. Blue lines show the normal probability distributions as verification of the
assumption of normally distributed noise around the GPR fit.

78



5.1 Analog switching by constant voltage signals

Switching part

First, the LTP/LTD half cycles are examined in terms of the number of pulses until
the fit changes sign for the first time, i.e. the conductance saturates and the mean
value remains constant. A high number of pulses is generally desired in analog-like
devices because it means that the number of programmable conductance steps is
higher. The respective term to describe this number is resolution in this work and
can be seen as a theoretically ideal, completely noise-free signal. Figure 5.5 shows
the LTP voltage dependence of the number of pulses until saturation is reached over
the absolute conductance range traversed. The points are mean values, while the error
bars represent the standard deviation of the 100 half cycles per voltage combination,
i.e. the variation from . For all measured half cycles, saturation was reached well
before the end of the half cycle pulse train at 1000 pulses. The influence of the voltage
on the number of pulses to saturation is not clear when considering only the data
points. The grey to black lines indicate the described voltage offset between LTP and
LTD, which is given by ΔV = |Vdep|-|Vpot|. Figure 5.6 shows the according graph for
LTD. It is evident from the grey lines in Figures 5.5 and 5.6 that voltage combinations
with negative ΔV, i.e. where |Vdep| < |Vpot|, do not produce significant conductance
windows for programming. Exemplarily, this can also be seen in the lower panel of
Figure 5.2. The relevant voltage combinations are therefore limited to positive ΔV, i.e.
|Vdep| > |Vpot|. Although the error bars in Figures 5.5 and 5.6 make it clear that the
observation of resolution is statistically sound, they make it considerably more difficult
to make sense of the graphs. Therefore, in Figure 5.7 (a) and (b), the mean values of
Figures 5.5 and 5.6 are presented without error bars. Only combinations where ΔV
is equal to or greater than 50 mV are shown. Additionally, colored lines are added
to connect the points of equal voltage and highlight the following observation. Two
different trends are evident for both polarities. For the LTP data, the nearly horizontal
colored lines indicate that the resolution is purely determined by the amplitude Vpot.
For a given LTP voltage, the conductance window ΔGpot, total is determined by the
voltage offset ΔV as indicated by the grey lines. The opposite is the case for the LTD
data. Here, the resolution varies significantly for a given amplitude Vdep. Instead of
resolution, the LTD voltage appears to determine the conductance windowΔGdep, total.
The resolution depends strongly on the offset voltage. The highest resolutions are
achieved with moderate offset voltage, while strong ΔV lower the number even with
the same Vdep.
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Figure 5.5: Total conductance range versus number of pulses until saturation is
reached for LTP half cycles. Solid lines show the voltage offset between LTP and
LTD, where ΔV = |Vdep|-|Vpot|.

To illustrate the significance of resolution in the actual measured data and the
widely varying behavior, two sets of example LTP/LTD cycles are shown in Figure 5.8.
The selected set combinations are highlighted in Figure 5.7 by square symbols and star
symbols. Figure 5.8 (a) shows examples for ΔV = 200 mV, while (b) shows example
cycles for ΔV = 50 mV combinations. The vertical lines for LTP and LTD mark the
first negative gradient in the data, i.e. resolution. LTP and LTD voltages are shown
in the Figure. The three LTP voltages between (a) and (b) are identical, but the
LTD amplitude differs. Comparison between the LTP curves in (a) and (b) illustrates
that both the resolution and the absolute final conductance are determined by the
LTP amplitude and are largely independent of the offset voltage and the previous
conductance state. In contrast, the LTD half cycles are significantly affected by the
offset voltage. In (a), the 200 mV difference leads to low resolutions for all three
example curves. The resolutions are comparatively high for the 50 mV difference in
(b) and follow an increasing trend with LTD voltage. The higher resolution comes at
the cost of a reduced conductance window.

This significantly different behavior for LTP and LTD raises the question which off-
set voltage and which combination thereof actually provides symmetrical resolutions.
Since it is difficult to compare the resolution values for the data points in Figure 5.7,
the numbers for LTP are plotted against the LTD numbers in Figure 5.9. The diago-
nal line marks the identity. The grey lines are labeled with the according ΔV, while
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Figure 5.6: Total conductance range versus number of pulses until saturation is
reached for LTD half cycles. Solid lines are voltage offsets.

the color of the circles represent the LTP voltages. Amplitudes |Vpot| < 0.5 V are
not shown due to the low resolution number, the small observed conductance range,
and for clarity of the plot. The lines for the offset voltages show a consistent trend.
50 mV difference between LTP and LTD amplitude favors the resolution of the LTD
half cycle. However, 150 mV and 200 mV lead to increasingly lower LTD resolution.
The most symmetrical combinations are found for 100 mV. The LTP resolution data
points for each LTP amplitude are almost vertically aligned, while the points for LTD
are spread further apart. This underlines that the LTP is largely independent of the
opposite programming half cycle, while the LTD is strongly dependent on it.

Regardless of the resolution numbers, a considerable amount of nonlinearity can
be seen in the switching part of the LTP and LTD half cycles, for example in Fig-
ure 5.8. To systematically study nonlinearity in the device of this work, the data are
first filtered for sufficient resolution above 100. In addition, a requirement for the
total conductance modulation of at least 200 μS is imposed. For both criteria pulse
combinations that do not show significant change are removed. Subsequently, both
the conductance range and the pulse count are normalized to ensure comparability.
The median lines of the described analysis are shown in Figure 5.10. The LTD line is
inverted to show the difference to the LTP. The colors are coded for the LTP voltage
as indicated in the color scale on the left. LTD voltages can be calculated from the
given offset. The imposed resolution and conductance criteria only result in postive
offset voltages from 50 mV to 200 mV, see Figures 5.10 (a) to (d). Additionally, the
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Figure 5.7: Resolution versus conductance range plot for (a) LTP and (b) LTD half
cycles. Solid grey lines are voltage offsets and colored lines are same voltages.

criteria are met only for absolute LTP voltages above 0.55 V. It is obvious that all
tested pulse combinations exhibit significant nonlinearity. The theoretical linear con-
ductance response is illustrated by the gray diagonal line in the diagrams. While the
LTP seems to be mainly dependent on the respective LTP voltage, the LTD curves
are both dependent on the voltage, see for example Figure 5.10 (c), but also on the
offset voltage. At low offset voltages, the response is close to the linear line, while
higher offset voltages lead to more nonlinearity. The reasons for this behavior are
very similar to the discussion for resolution. Importantly, LTD exhibits a broader
range of nonlinearities that can be controlled by external parameters, whereas the
LTP appears to be more deterministically nonlinear.

Another important metric for analog tuning with memristive devices is the sym-
metry between LTP and LTD. Therefore, the normalized data are again represented
as the difference between LTP and LTD, i.e., the absolute LTD curve is substracted
from the LTP curve: ΔGpot-|ΔGdep|. The results corresponding to the data in Fig-
ure 5.10 are shown in the asymmetry plots in Figures 5.11 (a) through (d). Positive
values indicate that the LTP has higher nonlinearity, while the opposite is true when
the values are negative. Good symmetry is indicated by values close to zero. The
colors are chosen with respect to the LTP voltage as indicated by the colorbar on the
left. The written offset voltages enable assignment of the used LTD amplitude. The
graphs allow for easy visual differentiation of the asymmetry of the nonlinear curves.
A clear trend is observed. For low offset voltages, the LTP is dominating for all volt-
ages. Increasing the offset voltage strengthens the LTD, until the LTD is dominating
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Figure 5.8: Two sets of exemplary LTP/LTD cycles for important voltage combina-
tions. Vertical lines indicate the resolution. The offset voltage ΔV = |Vdep|-|Vpot| is
always 200 mV in (a) and 50 mV in (b).

the asymmetry. At 200 mV offset and for high absolute LTP voltage, the LTP is
dominant again because the switching is abrupt. In all cases, higher absolute voltages
lead to more asymmetry. The least asymmetric combination is found for moderate
LTP amplitude and moderate offset voltage. To illustrate the tradeoff, the best com-
bination of every offset voltage is taken and analyzed further when the switching and
noise parts are recombined. In particular the combinations (-0.60 V | +0.65 V), (-
0.55 V | +0.65 V), (-0.55 V | +0.70 V) and (-0.55 V | +0.75 V) show values closest to
zero and therefore represent the least asymmetric curves. The observations so far are
summarized as follows:

• Voltage offsets below 0 mV, i.e. |Vpot| > |Vdep|, result in insignificant switching
operations. LTD voltage should always be at least equal or higher than the LTP
voltage in its absolute amplitude. Switching is significant and stable from an
offset of 50 mV.

• The resolution of the LTP half cycle is determined only by the LTP amplitude,
but not by the offset voltage or the start conductance. In contrast, the LTD
half cycle resolution is significantly affected by the previous programming and
the offset voltage for a given LTD amplitude changes the resolution.

• The resolution symmetry between LTP and LTD is therefore determined by
matching the controllable LTD half cycle to the LTP half cycle, which is fixed
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Figure 5.9: LTP versus LTD resolution for relevant voltage combinations. The dashed
lines indicates identical values for LTP and LTD.

for a given LTP amplitude. A ΔV of 100 mV proved to be ideal for obtaining
symmetrical resolutions for almost all tested combinations.

• Nonlinearity is present in all combinations that have stable switching operations
and cannot be avoided. However, the symmetry of the normalized curves can
be achieved by choosing an LTD curve that matches the opposite LTD curve
as close as possible in its asymmetry. The lower nonlinearity of the lower LTP
amplitudes allows a better match with an LTD half cycle.

The ideal combination of LTP and LTD for symmetry in the resolution number and
symmetry in the normalized curve is therefore a moderate LTP amplitude of -0.55 V
with an LTD amplitude increased by 100 mV, i.e. 0.65 V. Other combinations may
have a higher conductance range, but suffer from the asymmetries described earlier.
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Figure 5.11: Asymmetry plots for the relevant subset of pulse combinations. Asym-
metry is defined as ΔGpot-|ΔGdep|. (a) to (d) represent offset voltages.
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Noise part

To further explore the occurrence of noise in this experiment, a procedure similar
to that described in [176] is applied. As discussed above, the analog transition is
completed after the first derivative of the fitted GPR signal changes sign for the first
time. The subsequent pulses do not contribute to a change in the mean conductance,
but rather cause noise around the mean value. Therefore, the mean conductance of the
last pulses µ(Gend) and the according standard deviation σ(Gend) will be calculated
in this part of the cycle. Figure 5.12 (a) and (b) show the results for LTP and
LTD, respectively. Here, the colors show the amplitude of the applied voltage pulse
as before. The diagonal grey lines represent different values of signal-to-noise ratio
(SNR), as defined by

SNRavg = µ(Gend)
σ(Gend) . (5.1)

Since the mean and standard deviation are considered, the fraction describes the
average case of the SNR. The diagrams shown include both the influence of the noise
as a function of the average conductance (x-axis) as well as the effect of the voltage
amplitude (color scale). The LTP analysis reveals that, in general, relatively low
noise levels are present at the end of each cycle. The SNRavg is typically above 10.
Considering the results from Figure 5.3, however, voltages above -0.5 V show higher
noise than the actual conductance change. Considering only voltages below -0.5 V,
the value of SNRavg is typically above 50 for LTP. At lower LTP voltages, the value of
SNRavg seems to increase further. This effect is due to the nearly constant standard
deviation, while the mean conductance decreases due to the decreasing voltage. This
observation is in excellent agreement with the results from Section 4.5.

A different effect is observed in the LTD case. Similar to the LTP, the differ-
ent voltage levels lead to different mean final conductances, but because of the more
gradual transition of the RESET process, a wider range of conductance values is cov-
ered. In particular, this means that different voltage amplitudes at the same terminal
conductance can be compared and their influence on noise excitation observed. For
a mean conductance of around 200 to 500 μS, voltages from 0.1 V to 0.7 V can be
compared. There is a clear trend of increase in noise amplitude with increase in pulse
amplitude. Another effect is the decrease in noise with decreasing mean conductance.
Between 30 μS and 200 μS, the mean conductance and noise level appear to be almost
proportional at a constant SNRavg of around 5. As such conductances can only be
achieved with voltages above 0.9 V, the influence of voltage on the noise can not be
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Figure 5.12: Noise analysis at the end of the LTP (a) and LTD (b) half cycles. The
mean and the standard deviation for each measured cycle is shown with respect to the
applied voltage amplitude. Diagonal lines mark distinct signal-to-noise ratio levels.

extracted from this experiment. Looking at the results from Figure 5.3, the noise at
the end of the LTD half cycles leads to SNRavg values around 5 to 20 for voltages that
induce conductance switching. Compared to the observation of the LTP, the noise
levels at the end of LTD half cycles are the limiting factor in terms of SNRavg. In gen-
eral, the noise levels are higher when LTD pulses were applied, as can also be seen in
the histograms in Figure 5.4. Brivio et al.[176] came to similar results in their analysis
to a certain extent. In the supplementary section of their paper, they compare the
SET and RESET process in terms of the noise amplitudes. Although they do not give
a quantitative value, it is clear that the dominant noise is observed during RESET
cycles, i.e. LTD. However, in their analysis they conclude that the main source of
noise stems from the mean resistance range of the device, while the effect of applied
voltage is not considered in detail. In contrast, the results obtained in this chapter
show that a higher voltage also increases the observed noise, especially in the center
of the easily programmable conductance range. Since the noise-versus-conductance
curve is bell-shaped (see Figures 5.12), it seems logical to prefer programming in the
high conductance range, since it provides a good signal-to-noise ratio. However, this
decision implies the use of high voltage amplitudes, which has been shown to have
a negative impact on analog programming, see the previous section. Interestingly,
the conductance range from about 50 μS to about 600 μS, which allows analog tuning,
is also the range with the highest observed conductance noise. The reason for this
observation is not entirely clear, but could be related to the complex nonlinear con-
ductance change mechanism in HfO2 based devices. This will be investigated in more
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detail in Section 5.2.

Reduction of programmable states by noise

In the two preceding sections, the switching and noise component of the analog
conductance modulation were analyzed individually. In this section, an attempt is
made to recombine the two for the most promising parameter combinations, which
were found in the switching section and determined to be (-0.60 V | +0.65 V), (-
0.55 V | +0.65 V), (-0.55 V | +0.70 V) and (-0.55 V | +0.75 V). The approach chosen is
a worst-case approximation for the number of programmable states in a 1 σ range. The
used noise characteristic is taken from the LTD curve for two reasons: First, it is fully
available for the relevant conductance range. Second, LTD pulses in the experiment
caused slightly more noise than LTP pulses, indicating that the LTD curve represents
the higher noise levels, which is consistent with the worst-case approximation. For
the same reason, the upper envelope of the noise spectrum is chosen. Figures 5.13 (a)
to (d) show the results. Here, the data points show the noise spectrum for LTD pulses
with amplitude of +0.65 V, +0.65 V, +0.70 V and +0.75 V, respectively. The dashed
line marks the upper limit spline used for the following analysis. To determine the
number of levels that can be assumed for a given pulse combination, the window
between minimum conductance and maximum conductance for each combination is
filled with as many distributions as possible, keeping a distance of 1 σbetween the lev-
els. The resulting distribution averages and sigma values are shown as colored dots
in Figure 5.13 (a) through (d). The number of levels resulting from this approxima-
tion are 7, 5, 6 and 7, respectively. Figures 5.14 (a) to (d) show the corresponding
normal distributions. Since a spacing of 1 σis required, they overlap considerably.
Increasing the requirement to a 2 σ spacing allowed the testing of four distributions
in all cases, but better separation. Finally, the parameter combinations are compared
with respect to their respective LTP and LTD resolution, taken from Figure 5.6 and
5.5, and the number of levels. Figure 5.15 shows that almost identical resolutions
are found only for the combination (-0.55 V | +0.65 V). For the other parameters
asymmetric resolution values occur. Note that the asymmetry of the resolution is not
equal to the normalized asymmetry, which was acceptable for all four parameters. At
the same time, the lowest number of separable levels is found for the combination
(-0.55 V | +0.65 V), which is due to the strong presence of noise in the programmable
conductance range. The most important findings of this section are summarized as
follows:
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Figure 5.13: Recombining switching and noise for analog conductance modulation
for the best combinations regarding conductance range and asymmetry. (a) and (b)
show noise data for +0.65 V LTD pulses, (c) for +0.7 V and (d) for +0.75 V. Dashed
lines indicate the upper noise boundary. Points mark seperable levels within the
programmable conductance range.

• The operation parameters chosen strongly affect the response characteristic in
the analog-like operation in various ways.

• In conductance modulation, switching and noise occur simultaneously. In or-
der to understand the underlying properties, it is helpful to separate the two
processes. In the context of this work, this was achieved by applying a Gaus-
sian process regression, which assumes an undistorted form, and subsequent
separation of signal and noise.

• It was found that the noise-free switching part is best understood with three
quantities: resolution, nonlinearity, and asymmetry. All three quantities are
influenced by the absolute amplitudes of LTP and LTD, but also their relative
amplitudes. In general, LTD amplitudes should be chosen moderately (100 mV)
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Figure 5.14: Histograms of seperable levels within the programmable conductance
range for the ideal combinations from the previous analysis.

higher than the LTP to account for both the resolution and the nonlinearity of
the physical SET process. At the same time, moderate LTP amplitudes allow
a more symmetrical balancing. This means, that both the nonlinearity and
the asymmetry mainly stem from the physics of the SET process. The best
approach was found to match the LTD half cycle, which is characterized by the
more controllable RESET dynamics, to match the LTP half cycle.

• During the noise analysis, it was found that maximum noise is present for devices
in intermediate conductance. At the lower end as well as at the upper end,
the noise decreases. On the low conductance side, the signal-to-noise ratio
stabilizes to a near-constant value of about five, while the signal-to-noise ratio
the high conductance side increases dramatically. Further investigation of this
phenomenon is found in the following section.

• The switching part of the most promising sets of parameters in terms of pro-
grammable conductance range, resolution, and symmetry of inherent nonlinear-
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Figure 5.15: Summary of resolution and levels for the chosen parameters.

ity were recombined with the measured noise characteristics to determine the
number of realistically programmable levels. In stark contrast to the theoretical
resolution, which was in the proximity of 200, a 1 σ noise estimate was found to
reduce this number to only 5 to 7 levels.

• The most promising switching combination is found exactly in the conductance
range with the highest absolute noise values. This further limits the possibility
of matching multiple states. At the same time, this is the range where the
relative noise, i.e. the signal-to-noise ratio transitions from constant to higher,
favorable values. This could be related to the conduction mechanism in the
cells.

These observations can be understood as a consequence of the results found for
the switching kinetics analysis in Section 4.5. The switching processes for LTP and
LTD, i.e. SET and RESET, are fundamentally different from each other. The SET
process is thermally activated and self-accelerating due to the thermal runaway phe-
nomenon. In consequence, the LTP half cycle is mostly independent from the previous
state and shows little to no dependence on the offset voltage or absolute conductance.
Therefore, the absolute LTP voltage becomes the critical factor for resolution and
nonlinearity. The RESET process is inherently different in two aspects. First, the
gradually decreasing conductance causes a self-deceleration because the lower cur-
rents generate less heat. Second, the counteracting forces of drift and diffusion [112]
further stabilize the conductance decrease. For these two reasons, the LTD half cycle
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allows much better control. On one hand, the LTD voltage can be selected to adjust
the resolution and the nonlinearity. On the other hand, the previously programmed
configuration has a tremendous influence on the RESET dynamics, which can be seen
in the strong dependence on the offset voltage between LTP and LTD.

It has been shown that the analog function of the devices is severely limited by
the presence of Gaussian noise in the measurement, which significantly reduces the
number of realistically separable states. It is interesting to note that the optimal
switching conditions for LTP/LTD are found in a region with strong noise. This
could indicate that the two phenomena are related in their physical nature. The
ionic configuration in the conductance range for analog function is required to be
easily disturbed by voltage pulses with small amplitudes, since stronger amplitudes
trigger exponentially accelerated conductance changes. While such configurations are
favorable for analog programming, they could be prone to unintended fluctuations or
drifts for the same reason. The exact characteristics of the observed Gaussian noise
in the experiment will be discussed in detail in the following section.

5.2 Analog state stability

The previous section has shown that the analog tunability is significantly affected by
the presence of noise. In addition, an interesting relationship was found between the
mean conductance and the noise standard deviation. This section aims to further
explain this phenomenon in more detail. An experiment is designed to study noise
in an isolated fashion over the range of programmable conductance that is relevant
for applications where analog states may be employed. To do this, a single device
is programmed into a defined conductance state by using a simple pulsed program-
verify scheme utilizing both LTP and LTD voltages. Following the programming, the
conductance is read by a signal of -0.2 V with the maximum frequency allowed by the
setup, which is every 2 ms after the first read. Due to the delay of the measurement
script, the first read signal is 5 ms delayed to the last program-verify read. The read-
ing continues for about 1 s. The device function is then verified through cycling the
device. This sequence is repeated 1000 times for the targeted conductance level. The
same procedure is repeated for the next conductance level and so on. The programmed
conductances are equally spaced in 20 μS increments from 20 μS to 800 μS, resulting
in a total of 40 000 measurements of 1 s duration each. The programmed conductance
has a tolerance of only ± 2 μS, which means that the conductances are well sepera-

93



5 Analog function of VCM devices

10
1

10
2

10
3

 (G
read

) [µS]

10
0

10
1

10
2

 (
G

re
a

d
) 

[µ
S

]

1

2

5

1
0

2
0

5
0

1
0
0

2
0
0

  0

100

200

300

400

500

600

700

800

P
ro

g
ra

m
m

e
d

 C
o

n
d

u
ct

a
n

ce
 [

µ
S

]

0 0.2 0.4 0.6 0.8 1

Time [s]

0

200

400

600

800

C
o

n
d

u
ct

a
n

ce
 [

µ
S

]

(a) (b)

Figure 5.16: Overview of the designed read noise experiment. (a) Five exemplary
read noise traces. Colors on the left indicate the programmed conductance levels.
(b) Noise characteristic irrespective of time after programming and differences between
repetitions.

ble after the last programming pulse. Exemplary measurements for 5 programmed
conductances are shown in Figure 5.16 (a). The colors indicate the programmed con-
ductance. The processing of the data is analogous to the noise analysis in the previous
section. However, as the data consists only of read signals and no switching is per-
formed, the full measurement time of 1 s is considered for the analysis. The mean
conductance and the standard deviation are shown in Figure 5.16 (b). The previously
observed bell-like shape is reproduced. The typical SNR is 5 until a conductance of
roughly 100 μS is reached. Above that, the SNR increases. In contrast to the results
of the previous section, the vertical spread of the conductances is relatively large.
On one hand, this may be attributed to the 10x larger amount of data recorded in
this experiment. On the other hand, the recorded duration is significantly longer.
Consequently, the time dependence is further analyzed.

A closer look at a single measurement reveals that the noise is more pronounced
in the first part of the values, directly after the end of programming. This effect is
referred to as intra-trace noise in the context of this work. Figure 5.17 (a) shows as
an example the first 300 ms of a trace programmed at 200 μS. The trace is divided
into 100 ms intervals. Larger conductance jumps are observed in the first interval,
while the second and third interval show comparatively less noise. The according
conductance histograms for the three intervals in Figure 5.17 (b) emphasize this ob-
servation. The standard deviation is continously decreasing, from 20.1 μS for the first
interval to 10.6 μS in the third interval. The intervals after 300 ms show a continuous
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Figure 5.17: Example for intra-trace noise in the experiment. (a) First 300 ms of a
trace programmed to 200 μS, divided into 100 ms intervals. (b) According conductance
histograms. The standard deviation gradually decreases.

decrease, however with smaller margins. This observation is applied to the data of
Figure 5.17 (b), which is divided into 10 time intervals of 100 ms each. The mean
and standard deviation are shown in Figure 5.18 (a) with the data of the first in-
terval plotted in blue and of the last interval in yellow. As expected, the majority
of standard deviation values is lower for the last intervals compared to the first in-
terval. The spread is still relatively wide in the vertical direction, but the trend is
well reproduced. To evaluate the time dependence for all time intervals, the mean of
the standard deviation is plotted against the mean of the mean conductance shown
in Figure 5.18 (b). The reported trend of reduced noise for longer times is observed
over the whole conductance range. The difference between first and second interval
is most significant, while the following intervals change at a lower rate.

The vertical spread of points for one time interval in Figure 5.18 (a) remains after
extraction of the intra-trace component. The difference between the individual traces
in one time interval is that they are programmed individually and slightly different ev-
ery time. In fact, each program-verify cycle is seperated by full switching into a high
conductance and a low conductance state, resetting the conditions for every cycle.
Figure 5.19 (a) shows the read signals of three consecutively recorded traces which
were all programmed with the target of 200 μS. The resulting, actual conductances
of 198.89, 198.57 and 200.08 μS are all within the ± 2.00 μS tolerance. The recorded
conductance traces show very different trends, ranging from a conductance increase
(green trace) to conductance decrease (blue). This phenomenon is termed inter-trace
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Figure 5.18: Analysis of the intra-trace noise for all programmed conductances.
(a) First interval (blue) and last interval (yellow), indicating the reduction in noise
with time. (b) Meaned relation for all times.

noise in this work. The magnitude of inter-trace conductance differences spans al-
ready 200 μS at the end of the measurement in this simple example. This implies
that the inter-trace noise is far more severe than the intra-trace noise. Furthermore,
the conductance difference between the traces appears to increase with time, whereas
the intra-trace noise decreases. To capture the behavior for all coductances tested,
the standard deviation of the mean conductances for the ten time intervals is plotted
against the averaged conductances, as shown in Figure 5.19 (b). This analysis essen-
tially removes the effect of the intra-trace noise, because the standard deviation in one
time interval is not considered in this analysis. Instead, this shows the drifting apart
of the mean conductance for the time intervals of the traces. In agreement with the
observation of the example, the graph shows that the difference between the traces
increases with time. Figure 5.20 shows the comparison of the two observed effects as
an example for the traces programmed at 200 μS. In the first 100 ms, the noise types
are nearly identical, because the traces are all programmed to the same conductance.
The noise in the first few milliseconds is therefore dominated by the intra-noise phe-
nomenon. For longer times, the splitting up of different traces increases, while the
intra-trace noise decreases. Overall, the designed experiment allows several observa-
tions.

• The bell-like shape of the noise is reproduced. The SNR is also constant here at
low to medium conductance values, but increases at higher conductance values.

• The spread of the noise is more severe than in the previous experiment which
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Figure 5.19: Inter-trace noise analysis. (a) Three subsequently recorded traces, pro-
grammed to 200 μS, showing increasing difference with time. (b) Inter-trace noise
analysis for all times and conductances. The noise gradually increases in magnitude.

included LTP and LTD programming. Two underlying phenomena were found.

• The intra-trace noise evolves during the trace. It is characterized by a high
standard deviation at the beginning of the trace and gradually decreases as the
trace progresses. Intra-trace noise dominates in the first 100 ms of a trace, but
is comparatively low at the end of the measurement.

• The inter-trace noise is the difference between traces taken at different times.
It is characterized by a low magnitude right after conductance programming,
but increases over the course of the trace. Its final magnitude is comparatively
high, therefore it appears to be the dominating source of noise for read events
performed at a longer times after programming.

Discussion

The difference between the time dependence of intra-trace noise and inter-trace noise
suggests that overlapping mechanisms play a role when programming an analog con-
ductance.

The observed intra-trace noise amplitude is explained first: The temporal de-
velopment of the intra-trace noise amplitude can be divided into two sections. A
time-dependent decay right after programming is followed by a constant noise value
for long times. Typically, such decays at low applied voltage are explained by re-
laxation of volatile states which were charged during programming. One example of
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Figure 5.20: Example of intra-trace and inter-trace noise for the 200 μS programmed
conductance. While intra-trace noise gradually decreases with time, the difference
between traces increases and is overall stronger in magnitude.

such charged states has been reported by La Torre et al.[180], who observed a char-
acteristic current decay for Ta2O5 and ZrO2-based resistive switching devices when
the subloop-feature found in the low conductance state was measured. Characteristic
current decays after programming are also frequently found in area-dependent VCM
devices, for example SrTiO3 and TiO2-based devices[181]. Different to those studies,
the mean current does not really decrease in the presented experiment, but the noise
does. The proposed explanation is, that as the charged states are emptied after the
programming, the associated current jumps contribute to the measured intra-trace
conductance noise. Towards the end of the measurement time, around 1 s after pro-
gramming, the intra-trace noise has stabilized to a value different from zero. This
indicates a time-independent source of noise.

Other studies also report on noise phenomomena in VCM devices. For example,
Brivio et al.[176] have extracted the noise in a similar LTP and LTD experiment
as shown in Section 5.1. The samples are HfO2-based and very comparable to the
devices of this work. The simulation and experimental data are given as function
of resistance. However, upon transforming the graph to conductance data, a similar
bell-shaped curve is obtained as seen in Figure 5.21 (a). The model they apply
suggests that the oxygen vacancy concentration profile is slightly disturbed with each
incoming voltage pulse. This means that the mean conductance averaged over many
pulses is not changed, but noise, which they term Stimulated Telegraph Noise, is

98



5.2 Analog state stability

induced. Another study was performed by Mao et al.[177], who measured the noise
properties of their integrated Ta2O5-based devices. They show the measurement
in conductance, and the bell shape is reproduced, see Figure 5.21 (b). However,
they do not provide an explanation for the observed behavior, but fit the results to
include the noise characteristic in their neural network simulations. An extensive
study on the noise properties in the low conductance state was recently published by
Wiefels et al.[178]. They employed ZrO2-based resistive switches. Through a Kinetic
Monte-Carlo simulation, it is found that vacancy jumps towards and away from the
active Schottky interface have the most significant impact on the current fluctuations.
Furthermore, the JART VCM v1b compact model is extended by a stochastic state
machine to match these current fluctuations. The measurement data is presented as
ΔR / V over the mean resistance. Transforming the curve into conductances yields the
bell-shaped characteristic, which can be found in Figure 5.21 (c). However, towards
low conductances the shape deviates from the other reports slightly. Finally, a recent
study of Perez et al. [179] found that an array of HfO2-based devices shows similar
noise properties as depicted in Figure 5.21 (d). They split the experiment into LTP
and LTD and found that the LTP is significantly more noisy, which was attributed to
partial abrupt switching in the device ensemble. However, their LTD curve is almost
identical to the other reports, most likely due to the more gradual nature of the
RESET process. Both the model of Brivio et al.[176] and Wiefels et al.[178] suggest
that the oxygen vacancy profile along the filament direction (vertical direction in the
context of this work) is the decisive source of noise.

Neither study, however, addresses the bell-shaped curve that emerges in the con-
ductance plots. To understand this feature, the conductivity mechanism of the device
plays a crucial role, as it relates the oxygen vacancy profile to the measured currents.
The recent ab initio simulation study of Funck and Menzel [93] proposes that the
current conduction in typical VCM devices is in strong relation with the oxygen va-
cancy energy level in the oxide’s band gap. For shallow defect levels, electrons tunnel
through the Schottky depletion zone at the active electrode in its full length into
the conduction band. For deep defect states, the model describes interface-limited
electron transport and trap-assisted tunneling over the oxygen vacancy defects as the
correct mechanism. In both cases, the Schottky barrier at the active electrode is cur-
rent limiting, but the transport mechanism is different. As summarized by Funck and
Menzel, the oxygen vacancy defect energy levels in HfO2, ZrO2 and Ta2O5 may all
be considered in the category of deep defects. Furthermore, it is known that the con-
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Figure 5.21: Noise characteristics reported in literature. (a) Transformed simulation
data from the study of Brivio et al.[176]. (b) Experimental data from the study of
Mao et al.[177]. (c) Transformed compact model simulation of Wiefels et al.[178],
based on the JART VCM v1 model also used in this work. (d) Experimental data
from the study of Perez et al.[179].

duction mechanism in these systems changes from an exponential I-V characteristic
for low conductance to a linear one at higher conductance.

By combining the noise mechanism of oxygen vacancy profile perturbations and
the conduction mechanism for HfO2, a comprehensive picture for the bell-shaped
curve is proposed. This is illustrated in Figure 5.22. According to the model the
intra-trace noise curve in the last measurement interval is assigned to the three ion
configurations at the AE interface labeled A, B, and C. At low conductances (region
A), the mechanism of trap-assisted tunneling determines the noise. Since the current
flow happens via the oxygen vacancies, the vertical position of the vacancy closest to
the AE has a strong impact on the noise. Slight position changes of this vacancy alter
both the mean conductance and the noise simultaneously. Therefore, the signal to
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Figure 5.22: Proposed model for the intra-trace conductance noise based on the cur-
rent conduction mechanism in HfO2 devices. In region A, both conductance and noise
are linked through the position of the last vacancy. In region C, many oxygen vacan-
cies are accumulated, reducing the influence of single position perturbations. Region
B is the transition between A and C.

noise ratio stays constant in this regime. For the other extreme at high conductance
(region C), many oxygen vacancies are accumulated close to the Pt interface. Position
changes have only a minor influence on the current, because there are many alternative
defects that serve as conducting pathway for the current. The bell-shape of the
measured noise hence describes the gradual transition between these two extreme
scenarios (region B). Starting at low conductance, a single current conducting vacancy
tip is pointed towards the AE. At the peak of the bell-shaped noise curve, its position
is closer to the AE, but it is still a mostly single conductance path. Further increase
activates more available paths, which lowers the influence of a single vacancy. Towards
high mean conductance, many conductance paths through alternative defect positions
are available. Therefore, the influence of single position perturbations is gradually
minimized.

The compact model of Wiefels et al. is basically identical to the one that was
previously employed to match the experimental data in Section 4.5. In a later chapter,
the parameters of Table 4.1 will be slightly refined to match a stochastic switching
dataset, see Chapter 8. Therefore, the parameters extracted there, see Table 8.1, are
used to calculate the intra-state noise characteristics for the sample of this work. As
will be explained later, the model has the capability to model cycle-to-cycle variability
and device-to-device variability properties. For the shown simulation in this section,
the device-to-device variability is set to zero and the variability in the simulation data
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Figure 5.23: Comparison of the intra-trace noise in the last time interval (yellow
dots) with the JART VCM v1 compact model simulated noise (red circles), using the
state machine probabilities from [178] and the simulation parameters from Table 8.1.
Device-to-device variability is set to zero.

hence is only cycle-to-cycle variability. The results are shown in Figure 5.23. Since
the simulation does not include relaxation effects, but comprises the cycle-to-cycle
variability, the final time interval of the data is chosen for comparison. The simulation
results are shown as red circles. Each point shows the calculated mean conductance
and conductance standard deviation of a 1 s long simulated read signal. While the
general bell shape is reproduced as expected, a significant discrepancy between the
simulation and the measurement data is evident. However, the differences can be
understood as follows. The difference in the mean conductance could be removed
by increasing the filament radius to allow higher current, i.e. lowering the device
conductance. The experimental data originate from a device which has a relatively
high conductance, which explains the difference. The comparatively small difference
in noise amplitude on the y axis can be reduced by adapting the probabilities of
the state machine. In the shown simulation, they were left unchanged from the
ones given in the study of Wiefels et al.[178]. The compact model utilizes electronic
band transport as described in Section 2.2.3. The trap-assisted tunneling character
of the conduction, which was described in the proposed model above, is therefore
missing. The descreasing noise with increasing average conductance is well reproduced
because the difference between the trap-assisted conduction mechanism and the band
conduction mechanism is small for high oxygen vacancy concentrations. However,
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Figure 5.24: Slopes of the linear fits to each trace for programmed conductance of
(a) 40 μS, (b) 400 μS and (c) 800 μS.

the simulation fails to reproduce the trend to constant signal-to-noise ratio at low
conductances. This feature is inherent to the physical model of the simulation and
would be hard to adjust through parameter choice only. A better fit to the data would
therefore require to change the underlying physical model of the compact model, which
is ongoing work at the time of this thesis.

The second feature is the inter-state noise, which is the increasing difference be-
tween traces of the same programmed conductance with time. To evaluate the un-
derlying physical mechanism, a linear fit is applied to each trace. The conductance
at t = 0 s is set to the programmed conductance. The slopes for three representative
programmed conductances, namely 40 μS, 400 μS and 800 μS are shown as histograms
in Figure 5.24 (a) to (c), respectively. The dashed vertical line at zero slope highlights
that all three distributions are above zero on average, but also extend below zero in
different degrees. For the programmed conductance of 40 μS, the majority of data is
in the positive regime. At 400 μS, the trend is even more pronounced. At 800 μS, a
larger portion of traces shows a negative slope and the mean slope is closer towards
zero. The distributions show that the inter-trace noise is not identical to a determin-
istic conductance drift, since there are both positive and negative slopes. However,
one component that could explain the tendency to higher conductances could be the
oxygen vacancy concentration gradient that is built up along the filament direction
during programming. While the exact fields and temperatures in the disc region are
difficult to estimate, it can be expected that diffusion of oxygen is possible, which can
explain the positive conductance change component. However, the negative compo-
nent is unclear and requires more experiments in the future.

To summarize, it was found that the noise of programmed analog conductance
states is composed of two parts: First, a single programmed conductance shows a base-
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5 Analog function of VCM devices

line noise associated with oxygen vacancy position perturbations. The characteristic
bell-shaped noise curve could be explained by taking into account the conduction
mechanism of HfO2-based VCM devices and the potential oxygen vacancy jumps
along the filament direction. The first few hundred milliseconds of the traces show
an additional decaying noise, which may be related to the relaxation of volatile states
that were charged during the programming. Second, the programmed conductance
states exhibit a non-deterministic conductance drift. The majority of traces drifts
towards higher conductances, which may be attributed to diffusion caused by the
oxygen vacancy gradient. The counteracting force of negative drift slopes is still
under debate and requires more experiments.
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6 Spike Timing Dependent Plas-
ticity

In the previous chapter the conductance programming was described using rectangu-
lar wave voltage signals with constant amplitude. This mode of operation is mainly
used for learning in deep neural networks or for computation in memory concepts.
In brain-inspired Spiking Neural Networks (SNNs), an alternative approach for pro-
gramming the conductance, the so called Spike Timing Dependent Plasticity (STDP)
is often used. The current understanding of the biological system is that the synap-
tic strength should be modulated when two spike emitting nodes send signals, which
may coincide at a synaptic connection [182]. In biology, these voltage signals are
generated by neurons, and the connecting elements are synapses. The electronic de-
vice analogy are electronic neurons and electronic synapses. Electronic neurons can
be constructed from transistor circuits or from novel, volatile devices, which are the
topic of active research[183–188]. Nonvolatile memristive devices are better suited as
electronic synapses. The two main pathways for synapses in SNNs have been iden-
tified as Spike Rate Dependent Plasticity (SRDP) and STDP. For SRDP, the device
conductance is modulated when a train of identical voltage signals with a certain fre-
quency reaches the synapse. The modulation should be dependent on the frequency
of the incoming signals. The study of Nishi et al.[111] has shown that the switch-
ing dynamics of VCM devices, operated in the binary mode, does not change when
a single pulse is split into shorter pulses, i.e. the frequency of the applied pulse(s)
does not change the device response. In Section 5.1, the analog operation mode
was investigated. The findings suggest that the analog operation follows the princi-
ples of the binary mode. Hence, it is expected that VCM devices in general behave
frequency-independent. For this reason, SRDP is not included in this study. For
STDP, the device conductance should be modulated when the pre-synaptic neuron
and post-synaptic neuron fire with a certain timing relative to each other. Because
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Figure 6.1: Concept of STDP in VCM crosspoint devices. Signals are sent to the
device from the presynaptic side, here defined as bottom electrode, and the postsy-
naptic side, here top electrode. Signals coincide depending on their timing.

VCM devices are inherently different from their biological counterparts, the present
study does not attempt to mimick their signal amplitudes and shapes. However, it
will be shown that the filamentary VCM device dynamics allows for implementation
of some of the basic principles of STDP. The principle of STPD in VCM crosspoint
devices is shown in Figure 6.1. By definition of this work, the voltage signal coming
from the presynaptic side is applied to the bottom electrode, while the signal from
the postsynaptic side is applied to the top electrode.

In the following, three combinations of presynaptic and postsynaptic waveforms
will be discussed. The first combination is composed of a short rectangular signal and
a longer triangle voltage waveform. It is designed to translate the well understood
relationship between voltage amplitude and conductance modulation into a STDP
scheme. The second combination is composed of two identical triangle waveforms.
While this selection of waveforms is easier to implement in a circuit, the results show
that the control of the STDP response is more challenging. The third combination is
composed of two double triangle waveforms. This combination is the most complex.
It demonstrates that a single overlapping event can induce more than one switching
operation. The final STDP response is determined by the sequence of positive and
negative voltage polarity signals and the voltage balancing.

Square + Triangle Waveforms

Figure 6.2 shows the first applied STDP scheme. It is strongly asymmetric in pulse
geometry chosen, see Figure 6.2 (a). The upper panel shows the presynaptic signal,
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Figure 6.2: First tested STDP waveform combination. (a) shows the presynaptic
(upper panel) and postsynaptic (lower panel) waveforms. The postsynaptic waveform
is shown in its original form (solid line) and inverted (dashed line), which is in ac-
cordance to the active electrode referencing of this work. (b) shows three distinct
examples of overlap between the waveforms.

which is applied to the BE of the device. It consists of two 10 μs long rectangu-
lar pulses with opposite polarity. The negative amplitude is intentionally smaller to
compensate for the asymmetry of the device response. The reason behind this is ex-
plained in Section 5.1. The postsynaptic signal, shown in the lower panel, is chosen
as two triangular voltage ramps with symmetrical amplitude in negative and positive
polarity. The waveform duration is much longer than the presynaptic one at 250 μs
per ramp. The solid line in the graph shows the voltage waveform on the device top
electrode. For convenience, the inverted voltage is also shown as dashed line. The
vertical dashed line in both panels shows the reference time for the following over-
laps. In both waveforms, the voltage changes from the maximum (minimum) to the
opposite polarity minimum (maximum) amplitude within 2 μs. Figure 6.2 (b) shows
three exemplary cases of time-dependent overlap of the voltage signals. The displayed
voltage is the summed voltage on the BE, while the TE would be on ground in this
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Figure 6.3: Synaptic response to the waveforms shown in Figure 6.2 at various Δt.

case. This follows the convention in this work. In the upper panel, the special case of
Δt = 0 μs is illustrated. The addition of presynaptic and inverted postsynaptic sig-
nal leads to a reduction in both positive and negative absolute amplitude compared
to the individual signals as they cancel each other out. At Δt = -50 μs, i.e. when
the presynaptic signal reaches the device slightly before the postsynaptic signal, the
waveform sum leads to an enhancement of the positive amplitude. This case is shown
in the middle panel. The total negative polarity on the device is essentially given by
the inverted postsynaptic signal. The lower panel shows the opposite case, when the
presynaptic signal arrives after the postsynaptic one. Here, the positive polarity is
shaped by the inverted postsynaptic waveform, while the negative side is affected by
the addition of presynaptic and inverted postsynaptic waveforms. The experiment for
this waveform was carried out in the following way: Δt was varied between -500 μs
and +500 μs in steps of 1 μs. Importantly, the testing was started at Δt = 0 and
continued to higher absolute values of Δt symmetrically (Δt = 0 μs, +1 μs, -1 μs, ...).
This is crucial in avoiding unwanted conductance runaway to potentially stuck states.
The sequence was repeated 15 times to eliminate the effect of outliers. The device
was cycled 5 times between repetitions to ensure normal functionality. Before each
repetion, it was programmed to an initial conductance of 200 μS, which was identi-
fied to be in the conductance range that allows analog conductance modulation, see
Section 5.1. However, the conductance was free to change in response to the applied
voltages, meaning that the G in ΔG / G is not constant and most likely not 200 μS.
This is important to note when ΔG / G goes to high values. Figure 6.3 shows the
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resulting synaptic response to the given waveforms at various Δt. Shown is the rel-
ative conductance change ΔG compared to the conductance G before the waveform
is applied to the device. Grey open circles show every measurement, while red circles
represent the mean value of the 15 repetitions. The x axis is shortened to the relevant
range between -200 μs and +200 μs. For higher timing differences, the conductance
remained constant apart from noise, i.e. ΔG / G = 0. This shows that the appli-
cation of the individual waveforms did not elicit a synaptic response. The shape of
the synaptic response is easily understood from the examplary waveforms illustrated
in Figure 6.2 (b). Starting at negative Δt and going towards zero, the signal over-
lap enhances the positive polarity more and more, which induces increasing LTD of
the device conductance. As Δt approaches zero, the overlap of the waveforms first
leads to a reduction in pulse length of the strengthened positive polarity. In fact, this
can be seen by the few points which lie between the minimum ΔG / G and the data
points around zero. In the region around Δt = 0, the overlap cancels each other out
as shown in the upper panel of Figure 6.2 (b). For increasing Δt, the above described
process repeats for the negative polarity, leading to LTP of the device conductance.
The presynaptic voltages are chosen as (-0.24 V | +0.48 V), and the symmetric volt-
age maximum/minimum of the postsynaptic waveform is (-0.60 V | +0.60 V). The
extreme voltage combinations are therefore (-0.84 V | +1.08 V), which is higher than
the typical voltages found for LTP and LTD using constant signals, see Section 5.1.
The data in Figure 6.3 already shows signs of strong programming conditions close to
the described voltages, which are reached at Δt = -10 μs and Δt = +10 μs. However,
the symmetrical testing procedure described above allows the conductance to stay
within a programmable window, and the ramped shape of the postsynaptic waveform
quickly reduces the programming amplitudes to typical levels. To study the influence
of the voltage levels, the described experiment is repeated using the same waveform
shape. The amplitudes are changed systematically, see Figure 6.4 (a). The results of
Figure 6.3 are shown in yellow color, meaning that both higher and lower amplitudes
were tested. The lower panel in (a) only shows the inverted postsynaptic waveform.
The mean synaptic responses for the various amplitudes is shown in Figure 6.4 (b),
upper panel. The overall shape of the response curve largely remains identical to
before. However, for stronger voltage amplitudes than the above described case of
(-0.24 V | +0.48 V) | (-0.60 V | +0.60 V), the LTP response increases dramatically,
indicating strong programming conditions. The lower panel of Figure 6.4 shows the
maximum and minimum applied voltage for the tested Δt range. Both panels to-
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Figure 6.4: Amplitude scalability demonstration. (a) Presynaptic (upper panel) and
inverted postsynaptic (lower panel) waveforms. (b) According synaptic responses
(upper panel) and maximum and minimum amplitudes of the waveforms (lower panel).

gether demonstrate that the given waveform combination mainly utilizes the voltage
control to program the device. Overall, this clearly illustrates the voltage scalability
of this STDP waveform combination. Regarding the time response, the postsynaptic
waveform could be made even longer, i.e. the ramps having a lower slope. It is easily
imagineable that the synaptic response would be stretched to longer timescales. This
highlights the versatility of this waveform combination.

This STDP programming example utilized a waveform scheme which essentially
exploits the timing of the two pulses to generate a single, nearly rectangular voltage
pulse. It essentially translated the time dependence into a voltage dependence. As
discussed in Section 4.5, it is relatively easy to program roughly targeted conductances
with a single pulse if the starting conductance is in a suitable range. Due to the
strong nonlinearity of the switching kinetics, however, true time encoding is far more
challenging.
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Triangle + Triangle Waveforms

Another possibility for waveforms in STDP presents itself in using two triangular
waveforms, where one is slightly asymmetric to compensate for switching asymmetry.
To make the waveforms comparable, the postsynaptic signal of the previous example
is kept, see Figure 6.5 (a) lower panel. Note the original signal as solid line and
the inverted signal, which is with reference to the active electrode, as dashed line.
The presynaptic waveform is a similar triangular shape, see upper panel. However,
the amplitude in negative polarity is lower, which is the attempt to compensate the
switching asymmetry. In the shown waveforms, the minimum and maximum volt-
ages of the presynaptic signal are (-0.2 V | +0.5 V) and for the postsynaptic signal
(-0.5 V | +0.5 V). Figure 6.5 (b) upper panel illustrates the resulting waveform for
Δt = 0 μs. The signals cancel each other out for the most part. Only the differ-
ence in slope is evident by the stronger postsynaptic amplitude. The middle and
lower panel of the Figure show the cases for Δt = -100 μs and Δt = +100 μs, respec-
tively. The resulting waveform is once again a nearly rectangular pulse with higher
amplitude, surrounded by lower amplitude voltage signals where the waveforms are
of different polarity. Because of the presynaptic waveform asymmetry, negative Δt
lead to a rectangular voltage shape, while positive Δt lead to a distorted shape. This
distortion should be beneficial in shortening the time that strong amplitude is ap-
plied. The shown waveforms are tested identically to the first waveform combination.
The resulting synaptic response is shown in Figure 6.6. Important to note, especially
compared to the first waveform combination in Figure 6.3, is the difference in x and y
axis length. The values of ΔG / G exceed the mark of 400 % frequently for Δt around
+100 μs. At the same time, the response starts and ends around -200 μs and +200 μs,
while the first waveform combination was limited to the Δt range between -100 μs and
+100 μs. This confirms that the individual length of the waveforms plays a significant
role in the extent of the synaptic response curve. Going from negative Δt towards
zero, the curve changes from the expected zero response to increasingly negative val-
ues. The Δt range between -200 μs and around 0 μs looks similar to the response curve
of the first waveform combination, see Figure 6.3. The main difference is the stronger
response, which leads to flattening towards ΔG / G = -100 %, which is of course the
minimum possible value. As expected from the waveforms, the response around zero
is zero. However, the following LTP repsonse is very strong, but similar in shape
to the first waveform combination. To investigate if this waveform combination also
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6 Spike Timing Dependent Plasticity
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Figure 6.5: Second tested STDP waveform combination. (a) shows the presynaptic
(upper panel) and postsynaptic (lower panel) waveforms. The postsynaptic waveform
is shown in its original form (solid line) and inverted (dashed line), which is in ac-
cordance to the active electrode referencing of this work. (b) shows three distinct
examples of overlap between the waveforms.

allows for voltage scaling, the experiment is repeated with more voltages. The data of
Figure 6.6 is shown as yellow curves in Figure 6.7. The tested presynaptic and post-
synaptic voltage scaled combinations are shown in (a), while (b) shows the respective
synaptic reponses (upper panel) and the maximum and minimum voltage amplitudes
of the tested waveforms. The synaptic responses curves show that a slight increase
in voltage (orange and red color) strengthens both LTD and LTP significantly, with
ΔG / G values approaching -100 % for Δt around -100 μs and reaching extreme values
up to +5000 % around +100 μs. Of course, such values exceed the window of analog
conductance modulation significantly and point towards bistable switching. Upon
lowering the voltage scaling (green to blue curves), the synaptic response on the other
hand quickly diminishes, likely because the voltages are just not sufficient enough, see
lower panel in Figure 6.7 (b). This result is unexpected as the given waveforms should
not introduce such strong responses for moderate voltages. However, one explanation
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Figure 6.6: Synaptic response to the waveforms shown in Figure 6.5.

may be found in the way this waveform combination is expected to interact with the
device. Because the signals are on the same timescale in duration, the overlap of pre-
and postsynaptic signal not only encodes a maximum or minimum voltage like in the
first example, but additionally manipulates the duration of the "strong" amplitude.
This entanglement of voltage and duration is illustrated in Figure 6.8. Here, five ex-
emplary negative Δt are shown. By increasing Δt from -10 μs to -100 μs, both the peak
positive voltage is reduced and the pulse duration is increased. While the maximum
positive voltage is shown the lower panel of Figure 6.7 (b), the duration information
has not been considered so far. However, as discussed before, the filamentary VCM
devices in this work exhibit very strong voltage-time nonlinearity, meaning that the
time encoding in the shown voltage scheme does not affect the devices significantly
because the time only marginally changes compared to the exponential dependence
of VCM devices on time. The shown STDP waveforms may therefore be a better
candidate for resistive devices with a less pronounced voltage-time nonlinearity.
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6 Spike Timing Dependent Plasticity
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Figure 6.7: Amplitude scalability demonstration for the second waveform combina-
tion. (a) Presynaptic (upper panel) and inverted postsynaptic (lower panel) wave-
forms. (b) According synaptic responses (upper panel) and maximum and minimum
amplitudes of the waveforms (lower panel).
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Figure 6.8: Demonstration how voltage amplitude and duration are entangled in the
second STDP waveform combination.
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Double triangle + double triangle Waveforms

In the previous two examples, the conductance modulation was achieved by overlap-
ping two voltage waveforms which resulted in one dominating voltage pulse and some
surrounding voltage signals with smaller amplitude. This section will demonstrate
an alternative approach. Instead of a single voltage pulse that is sufficiently high to
modulate the conductance, multiple sufficiently high voltage signals are generated.
The deciding factor for the conductance change therefore is not a singular additive
voltage amplitude and polarity, but instead the balance and sequence of the consec-
utive signals. For this purpose, the waveforms shown in Figure 6.9 (a) are employed.
The upper panel shows the presynaptic signal, while the lower panel illustrates the
postsynaptic signal and the inverted polarity to conform with the active electrode
definition in this work. The waveforms are termed "double triangular" and consist of
both negative and positive polarity sloped voltages. The reference time is at 300 μs,
where the signals have their maximum, as indicated by the vertical dashed line. The
amplitudes of the presynaptic waveform is slightly lowered compared to the postsy-
naptic one. Figure 6.9 (b) shows three cases for different Δt. In the upper panel,
the case of Δt = 0 μs shows that once again the waveforms are chosen so that the
positive polarity is generally favored to compensate the switching asymmetry in the
VCM devices. The middle and lower panel illustrate the cases of Δt = -100 μs and
Δt = +100 μs, respectively. as described, the timing of these overlaps leads to signif-
icant amplitudes in both polarities. However, there is a distinct difference between
the two cases: At Δt = -100 μs, a relatively strong positive voltage peak is followed
by a negative one and a low amplitude positive one. The finishing, significant pulse
of the sequence is of negative polarity. In contrast, at Δt = +100 μs, the leading peak
is an insignificant positive one, then a comparably strong negative one followed by a
positive peak. The last significant pulse of the sequence is therefore of positive po-
larity. The discussed waveforms are reflected in the synaptic response curve shown in
Figure 6.10. At Δt = -100 μs, the device is strongly potentiated, while Δt = +100 μs
triggers LTD. At Δt = 0 μs, the conductance remains unchanged, similar to the previ-
ous two examples. Different to the previous waveforms is the larger flat region around
Δt = 0 μs. Another difference to the previous examples is that the synaptic response
curve shows both LTD and LTP for both signs of Δt, which results in a total of 4
peaks in the response curve. The reason for this is the different dynamic response of
LTP and LTD. The strength of these peaks can be modulated by scaling the voltages
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6 Spike Timing Dependent Plasticity
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Figure 6.9: Third tested STDP waveform combination. (a) shows the presynaptic
(upper panel) and postsynaptic (lower panel) waveforms. The postsynaptic waveform
is shown in its original form (solid line) and inverted (dashed line), which is in ac-
cordance to the active electrode referencing of this work. (b) shows three distinct
examples of overlap between the waveforms.

of the input signals. The tested waveforms are shown in Figure 6.11 (a). The data
of Figure 6.10 is shown in yellow color. Slightly increasing the voltages strengthens
all four peaks in the response curve significantly, see Figure 6.11 (b) upper panel.
By lowering the voltages, the four peaks are reduced in magnitude. Because of the
accelerated dynamics of the SET process, this lowering is most visible for the peak
at Δt = -100 μs. The maximum and minimum voltage amplitudes of the waveforms
in the lower panel of Figure 6.11 (b) are not able to explain this effect since both
minimum and maximum voltages peak at Δt = -100 μs. In fact, they peak a second
time at Δt = +100 μs with the same value. However, the resulting synaptic response
is an LTD. This points to the fact this waveform combination induces bipolar sig-
nals, where the balancing between LTP and LTD as well as the finishing pulse in the
voltage sequence are the deciding factor.
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Figure 6.10: Synaptic response to the waveforms shown in Figure 6.9.

Summary of STDP operation

The presented three operation examples illustrated the versatility of the studied HfO2-
based filamentary VCM devices as synaptic devices. The tested waveform combina-
tions, which are specifically designed for operation with the tested device, were suc-
cessful in achieving plastic behavior. The first combination of a short rectangular bipo-
lar pulse and a slow bipolar triangular pulse exploited the well-understood switching
dynamic behavior of the SET and RESET process to generate ideal voltage waveforms
for analog conductance modulation. By using the vastly different timescales of pre-
and postsynaptic waveforms, the relative timing of the pulses translates the strong
voltage-time nonlinearity of the switching kinetics, see Section 4.5, into an operation
principle that operates on a linear timescale. In the chosen example, the presynaptic
waveform was on the 10 μs time scale, while the postsynaptic was in the 100 μs time
scale. With voltage modifications that are easily derived from the switching kinetic
curves, these time scales may be changed down towards the Nanosecond range or
towards the Millisecond range, which is closer to the biological counterpart. A more
linear response may be facilitated by manipulating the postsynaptic waveform. For
example, a more linear synaptic response could be realized by changing the voltage
ramps to a slightly convex shape. Another example would be the expansion of the
flat region around the diagram origin by decreasing the slope between the maximum
and minimum amplitude of the postsynaptic waveform. The second example demon-
strated why signals on the same timescale are inherently more difficult to adjust to
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6 Spike Timing Dependent Plasticity
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Figure 6.11: Amplitude scalability demonstration for the third waveform combination.
(a) Presynaptic (upper panel) and inverted postsynaptic (lower panel) waveforms.
The vertical dashed line marks the reference time. (b) According synaptic responses
(upper panel) and maximum and minimum amplitudes of the waveforms (lower panel).

filamentary VCM devices. While synaptic response was observed and the response
timescale followed the input waveforms, precise tuning proved difficult. The operation
with such waveforms is likely better suited for devices with less pronounced voltage-
time nonlinearity. In the context of ReRAM devices, area-switching materials have
demonstrated such behavior and may therefore be a good candidate for this. The
third example illustrated another operation principle, where the coincidence of pre-
and postsynaptic waveforms generates a sequence of voltage peaks which individually
are sufficiently strong to induce conductance modulation. Here, the timing sequence
and the relative balancing dictates the device response. This approach proofed to
be the most complex, but also most versatile STDP type as multiple peaks emerged,
whereas before the correlation between sign of the the timing difference and conduc-
tance modulation direction were in an injective relationship to each other. Another
point to mention is that the appearance of extreme responses is not necessarily un-
desired. For example, the complete turning on or off of a synaptic connection in a
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special event can be desired in some applications. This of course strongly depends on
the application.

In summary, STDP presents an alternative approach to program filamentary VCM
devices. The presented cases underline that the devices in this work are a potential
candidate for application as electronic synapses in Spiking Neural Networks. The op-
eration should however be carefully chosen to the device physics. If properly executed,
the device response can be tuned accurately.
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6 Spike Timing Dependent Plasticity
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7 SET and RESET switching vari-
ability aspects

Section 4.5 discussed the switching process as a two-step process composed of a delay
part and a transition part. However, the discussion about the variability phenomenon
was deliberately left out to bring across the message of the underlying switching dy-
namics. In order to address aspects of switching variability in the studied HfO2/TiOx

devices, a statistical approach is presented in this section.

7.1 Switching variability of the SET process

As seen in Figure 4.10 and 4.12, the SET switching time of a single device varies
between 3 and 5 orders of magnitude for a given voltage amplitude. Vice versa,
for a given pulse duration, the required voltage can vary by about 300 mV, see Fig-
ure 4.10 (a). In fact, the procedure for recording the SET switching kinetics reflects
this inhomogenous response to identical signals: Typically, the variation of pulse du-
ration and pulse amplitude is performed through a nested loop. Within the loop, each
pair of duration and amplitude is repeated multiple times to obtain a significant num-
ber of measureable switching times. As this is the most straight forward approach,
it is followed by many publications in literature [7–9, 38, 96, 97, 100, 104, 105, 107–
112, 160, 189–198]. In consequence to this procedure, a large number of switching
attempts are discarded as they are either unsuccessful in switching the device or offer
poor resolution in the timescale of the switching event. The first case occurs most
frequently when the voltage is too low or the duration too short, while the latter
case occurs more often for high voltages at long durations. In both situations, the
variability of the switching event plays a big role. For the same voltage pulse to the
same device in a comparable HRS, the current response can significantly differ. An
example of this behavior is shown in Figure 7.1. Here, four example current transients
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7 SET and RESET switching variability aspects
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Figure 7.1: Upper panel: Typical SET voltage stress sequence. A read pulse for
verification of the HRS is followed by the voltage stress pulse. The resulting resistance
state is detected by another read pulse. Lower panel: Recorded possible current
responses are shown in logarithmic scale. The SET transitions are indicated by arrows.
Reproduced with permission from [116].

are shown. The shown SET attempts were recorded on the same device in direct suc-
cession, with only a RESET to the HRS before the next SET attempt. Before the
SET pulse is applied, a read signal of -0.2 V is applied to the device, confirming the
device being in HRS, which was in the range of 200 kΩ to 350 kΩ. The following SET
voltage pulse with a duration of 1 μs and an amplitude of -0.88 V causes a variable
current response of the device. In the case of Try 1, the current remains at a low
level for the pulse duration, exhibiting no significant increase. The subsequent read
signal confirms that the device has not undergone a significant change in resistance
as the current is still low. In comparison, Tries 2, 3 and 4 show an abrupt increase
in absolute current during the voltage stress. As typical for filamentary VCM type
devices, this transition does not occur at a deterministic time but is highly variable
(tdelay, Try 4 > tdelay, Try 2 > tdelay, Try 3). Furthermore, the current at the end of the pulse
is not identical for the tries with an abrupt increase but also suffers from variability.
The subsequent read signal current level reflects the current at the end of the SET
pulse, where |Iend, Try 2| > |Iend, Try 4| > |Iend, Try 3|. However, the unsuccessful SET
attempts which are typically discarded when studying the switching kinetics com-
prise another interesting feature, that is the switching probability. In Figure 7.2 (a),
the switching kinetic data points of the previous section are drawn in colors with
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7.1 Switching variability of the SET process
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Figure 7.2: (a) SET kinetics measurement and (b) according SET probability traces
as a function of the pulse amplitude.

respect to the pulse duration they were recorded with, see the according legend in
Figure 7.2. Each pulse with a given voltage amplitude and pulse length was repeated
25 times, hence a SET probability can be calculated. In Section 4.5, Figure 4.12
comprises these values as pixel densities. In Figure 7.2 (b), the resulting values are
plotted with respect to the pulse amplitude. Figure 7.3 shows the same values with
respect to the pulse duration. Note that each probability is calculated from only 25
trials, making this dataset relatively susceptible to statistical error. Nevertheless, the
trends of the switching kinetics are clearly reproduced. The demonstrated derivation
from the switching kinetics into probabilities reflects the switching variability for a
single device through multiple cycles. However, this cycle-to-cycle variability can dif-
fer from device to device, similar to the other properties such as sweep characteristic
and resistance distribution. To confirm this assumption, the following experiment is
conducted: A total of 15 devices are contacted individually and subjected to various
voltage pulses using the measurement system described in Section 3.3.2. The voltage
stress duration was chosen as 1 μs to be as close to industrial relevance as possible
while maintaining sharp pulse geometry. The voltage range is chosen from -0.6 V
to -1.1 V with -20 mV increments. In comparison to the SET kinetics measurement,
the voltages are relatively high. However, at short timescales, some of the variable
devices may require higher voltages than observed in the SET kinetics. Furthermore,
the devices are less likely to degrade because of the short pulse duration. In the
experiment, each SET attempt is repeated 50 times. This number is a compromise
between measurement speed and statistical significance. Between the attempts, the
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Figure 7.3: SET probability derived from the SET kinetics experiment as a function
of pulse duration.

device was subjected to one and a half switching cycles of SET (-2.0 V; 100 μA com-
pliance), RESET (1.3 V; no current compliance) and SET (-2.0 V; 100 μA compliance)
by sweeping the voltage. Afterwards, the device is prepared for the SET attempt by
precisely programming it into a resistance value between 200 kΩ and 350 kΩ through
a voltage adjusting read-verify scheme. SET pulses that lead to a read resistance
lower than 20 kΩ are counted as successful events. At this point, it is convenient to
introduce the term "SET probability trace", which describes the SET probability data
points with respect to voltage. In general, each individual trace is expected to begin
at zero probability for low voltage. In a finite range of intermediate amplitudes, the
trace should increase from 0 to 1 in a monotonous fashion as the SET event should
occur more frequently the higher the voltage is. At high voltages, the trace is expected
to stay at 1 since every SET attempt should be successful. However, deviations from
this ideal behavior are expected because of the limited sample number that the prob-
ability is calculated from. Examplarily, this can be seen in the SET probability traces
shown in Figure 7.2 (b) for the 100 ms trace, which has a very ideal shape, and the
neighbouring trace of 10 ms pulse width, which has several kinks, likely owing to the
low sampling number of SET attempts. In Figure 7.4 (a), the individual SET proba-
bility traces of each of the 15 devices is shown for pulse durations of 1 μs. As expected,
the variation between devices is significant. While the SET probability trace of some
devices begins at a voltage of 0.65 V, others start at 0.90 V or at even higher ampli-
tude. The voltage range of intermediate probability is around 150 mV to 200 mV for
all measured devices. This cycle-to-cycle voltage range is therefore smaller than the
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(a) (b)

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0

S
E
T
P
ro
b
a
b
ili
ty

|Voltage| [V]

Device

Y04 D9

Y05 D2

Y05 D4

Y06 D1

Y06 D2

Y06 D3

Y06 D4

Y08 D2

Y08 D3

Y08 D4

Y08 D5

Y09 D5

Y09 D6

Y09 D8

Y09 D9

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0

S
E
T
P
ro
b
a
b
ili
ty

|Voltage| [V]

Percentile

5 %

25 %

median

75 %

95 %

Figure 7.4: SET probability traces of 15 devices for 1 μs pulse length. (a) Individual
devices. (b) Statistical analysis.

device-to-device spread, which can be estimated at around 300 to 350 mV. For better
readability, the same data is shown in Figure 7.4 (b), where the 5, 25, 50, 75 and 95
percentiles at each tested voltage are shown. Since the tested number of devices was
15, the 5 % and 95 % lines are identical to the envelope of the ensemble. This dataset
will be analyzed further in the next chapters as it provides the statistical input for the
simulations. As described in the measurement procedure, the HRS before attempting
the SET was programmed through a read-verify pulse scheme. The target resistance
was 200 kΩ to 350 kΩ. In Figure 7.5 (a), the measured resistance just before the pulse
is applied is shown as a device resolved stacked bar diagram. The double log scale is
chosen for two reasons. On the x axis, it is chosen to accommodate for the lognormal
resistance distribution. On the y axis, it highlights the uniformity of the distribution
while correctly representing the small distribution tails. As indicated by the sharp
distribution, the HRS remained roughly in the programmed window. Further, only
small deviations between devices are noticeable. However, the programmed resistance
is not perfectly matched with the defined resistance target window at the distribu-
tion edges. The tails of the distribution are slightly too low and too high. This can
also be seen in the CDF plot in Figure 7.5 (b). This effect has been studied before
[178, 199–202] and is understood as the effect of oxygen vacancy diffusion towards
and away from the insulating gap. This random movement effectively smears out the
programmed resistance distribution. Since the programmed state was reached just be-
fore the SET is attempted and each attempt is followed by two full switching cycles,
the broadening should not impact the measurement results in this experiment. Fig-
ure 7.5 (c) highlights the high uniformity between devices when they are programmed
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Figure 7.5: (a) Programmed HRS of 15 devices before 1 μs SET pulse is applied.
(b) CDF analysis. (c) Mean and standard deviation of log-distributed resistances.

by a read-verify scheme. Here, diamond symbols demonstrate the mean of the decadal
logarithmic resistance distribution, while squares denote the standard deviation of the
same. In Figure 7.6 (a) and (b), the LRS values resulting from successful SET events
are shown. Since the resistance in this case is not programmed by the previously em-
ployed read-verify scheme the distributions are significantly wider spread. Important
to note is, however, that the various LRS resistances have been reached with a range
of different voltages. The effects of exceedingly higher voltages on the LRS resistance
have been shown in Section 4.5. Due to the series resistance, the LRS is further de-
creased with higher voltage. Nonetheless, the device-to-device spread is significantly
more noticeable compared to the programmed HRS. While some devices reach just
below the SET threshold resistance of 20 kΩ, others frequently reach below 2 kΩ. The
difference between devices is further underlined in the CDF plot in Figure 7.6 (b).
Black circles indicate the previous HRS of all devices, see Figure 7.5 (b). There is no
correlation between the shape or position of the SET probability trace and resulting
LRS distribution, i.e. the resulting LRS can be high or low independent from the on-
set of the switching trace. The phenomenon of SET probability of VCM type resistive
switches consists of multiple parts. For rectangular voltage signals, it can be explained
by the SET kinetics in large parts. By considering both successful and unsuccessful
switching events at a given combination of voltage amplitude and pulse length, SET
probabilities can be defined. The probability is a product of cycle-to-cycle variability
and shows a typical voltage window of about 150 mV where the switching is not zero,
but also non-deterministic. The SET probability of an ensemble of individual devices
is significantly affected by d2d variability. The extremes of the rather small device
ensemble already reached a difference of around 350 mV. The voltage range of the d2d
variability is therefore larger than the c2c voltage range, i.e. the voltage difference of
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Figure 7.6: (a) Resulting LRS of 15 devices after an 1 μs SET pulse is applied. (b) CDF
analysis.

two different devices is larger than the non-deterministic switching voltage window
of a single device. The statistical analysis of this observation will be employed in the
next section for an extension of the JART VCM v1 compact model and a compar-
ison to the respective simulation. With respect to the resistance distribution, it is
apparent that by employing a read-verify scheme, the HRS is precisely controllable
apart from minor current drift events. However, physical boundaries such as oxygen
diffusion impose a limit on the distribution sharpness, as was also discussed for the
observation of noise in analog conductance states, see Section 5.2. In contrast to
the HRS, LRS distributions after successful SET events proved to be strongly het-
erogeneous between devices, ranging over one order of magnitude in resistance. This
property should be considered in an application where a blind SET pulse is applied to
the device in contrast to a programming via current compliance control or read-verify
scheme.

7.2 Variability of the RESET process

In Figure 4.13, the RESET process kinetics were studied. It was found that the
RESET transition time is mostly independent of the initial conductance, but the
delay time is strongly elongated for low LRS. Due to the small number of measurement
points, the resulting HRS states were not analyzed further. In this section, the HRS
levels resulting from a range of RESET voltages are studied. In Figure 7.7, the
results of a similar experiment to the previous section for the SET process are shown.
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7 SET and RESET switching variability aspects

The device was cycled one and a half times in total. Starting with a SET process
(-2.0 V; 100 μA compliance), the device is switched to LRS. The following RESET
sweep (1.3 V; no current compliance) results in an HRS of more than 100 kΩ. The
HRS is confirmed by a read sweep. Afterwards, the same read-verify scheme as for
the SET experiment is employed, however the target is a resistance between 3 kΩ
and 5 kΩ. Once the target resistance is reached, a RESET pulse with a duration of
1 μs and variable amplitude is applied. In this experiment, the RESET voltage was
varied between 0.5 V and 1.5 V with a step size of 100 mV. Each voltage was tested
for 500 times to ensure sufficient resolution in the distribution tails. Since the LRS
is not as susceptible to influence from noise and random ionic motion as the HRS or
analog states, see Section 5.2 and [178, 202–204], the programmed resistance remains
almost constant until the pulse is applied. As can be seen in Figure 7.7 (a) and (b), the
resistance distribution measured after the RESET pulse does not increase significantly
for voltages lower than 0.9 V. At higher amplitudes, the resistance after the RESET
pulse increases significantly. The distribution for each voltage amplitude can be fit
with a lognormal distribution, see the straight lines in Figure 7.7 (b). For increasing
pulse amplitude, the mean resistance as well as the width of the distribution increases.
The respective values from the lognormal fits, i.e. the mean of the decadal logarithm
and the standard deviation of the same are shown in Figure 7.7 (c) as diamond
and square symbols, respectively. The mean increases from the programmed LRS at
[ log(3 kΩ) ≈ 3.48 ... log(5 kΩ) ≈ 3.70 ] to around 100 kΩ at 1.0 V and 1 MΩ at 1.4 V.
The standard deviation increases up to 1.0 V and stays close to 0.45 until 1.4 V. The
highest resistances are observed at 1.5 V, after which the experiment is stopped to
prevent damage to the device. However, the standard deviation at 1.5 V increases
strongly, which can also be seen by the flat slope in the CDF plot. In contrast to
the SET experiment, the measured resistance ensembles do not show splitting into
two distributions as would be expected from a probabilistic process. This suggests
that the RESET process is more controllable and exhibits less or no stochasticity
compared to the SET process. From an application point of view, in many cases it
is desireable to program a relatively high HRS with narrow distribution to ensure
easy discrimination of from LRS and to avoid inaccurate or false read outs. From the
presented data, voltages of 1.3 V and 1.4 V seem to result in high HRS values while
ensuring comparably low variability. Therefore, the experiment described above is
extended by additional 13 individual cells, which were subjected to the same routine
described before for amplitudes of 1.3 V and 1.4 V. The results are shown in Figure 7.8.
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Figure 7.7: RESET voltage dependence for 1 μs pulses. (a) Resulting HRS in depen-
dence of applied amplitude. (b) CDF analysis. Lines are lognormal fits. (c) Mean
and standard deviation of the decadal logarithm of the resistance.

(a), (b) and (c) correspond to 1.3 V, while (d), (e) and (f) represent the results of 1.4 V
pulse amplitude. Device 1 is the same data as in Figure 7.7. The same trend of mean
resistance increase by higher voltage as for the single device is noticeable. At the same
time, the standard deviation increases only slightly. Also important is the device-to-
device variability for both the mean and the standard deviation. Some devices seem to
have generally a higher HRS capability than others at the same voltage. Accordingly,
some devices appear to be more variable than others. All devices show resistance
distributions that are well described by a single lognormal fit, i.e. no splitting is
observed. This proves once again that the RESET process is not stochastic in nature.

The observed difference between SET and RESET behavior can be understood
with the physical model for filamentary switching. On the one hand, the initially low
currents in HRS limit the potential to SET at a fixed time for a given voltage. Instead,
the beginning of the thermal runaway phenomenon is stochastic and not predictable
before the SET pulse is applied. The switching therefore appears probabilistic. The
reason for this could be that many ion configurations result in the same resistance.
However, one configuration may be more volatile than another when voltage is ap-
plied, resulting in the very different switching times at a given voltage. On the other
hand, the current during RESET from the LRS is high during the pulse. If the LRS
resistance is far enough away from the series resistance, the delay time is neglectable.
Because the current in the LRS is high, the device is Joule heated and ionic motion is
possible soon after the voltage is applied. The gradual nature of the RESET is due to
the shifting equilibrium of drift and diffusion as described in detail by Marchewka et
al.[112]. Hence, the observed distribution is uniform. The RESET process is therefore
not stochastic in nature.
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Figure 7.8: Device-to-device variability for 1 μs pulses of 1.3 V ((a), (b) and (c)) and
1.4 V ((d), (e) and (f)) amplitude. (a) and (d) Histograms of the resulting resistance.
(b) and (e) CDF analysis. Lines are lognormal fits. (c) and (f) Mean and standard
deviation of the decadal logarithm of the resistance.
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8 Application of resistive switch-
ing features for neuromorphic hard-
ware

Parts of this section are taken from [116]. Memristive devices are seen as promis-
ing candidate for replacing conventional CMOS and DRAM architectures where non-
volatility, energy-efficiency and scalability is important. One such field of applications
is neuromorphic computing. Memristive devices exhibit a multitude of unconventional
properties that would hinder their use in classical computing architectures. Not all
properties are found in every material and every material stack, but a few examples
include time and temperature dependent resistance decay, resistance read noise and
stimulated read noise, sub-loop switching features and existence of switching variabil-
ity. In the emerging field of neuromorphic computing, which itself is unconventional
compared to previous computing paradigms, such features may offer powerful en-
hancement strategies. In the following, an application pathway that exploits the SET
switching stochasticity aspect of filamentary VCM devices is discussed. An in-depth
experimental analysis of d2d and c2c variability of the binary mode is presented.
By matching the experimentally observed variabilities to the JART VCM compact
model, the concept of parallel operation of devices as a synapse is evaluated through
experiments and simulation. The combined variability of these devices is exploited
for a stochastic online learning network. It is demonstrated that stochastic switching
features can be employed for a pattern classification task.
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8 Application of resistive switching features for neuromorphic hardware

8.1 Background

Several approaches have been exploited for synapse emulation utilizing the stochastic
nature of the resistance change in ReRAM devices. From the literature, two main
pathways are identified, these are the single-device and the compound-device archi-
tectures. On the side of single device architectures, extensive studies exist on the
variability phenomenon both for d2d and c2c aspects [54, 71, 73, 205–207]. The idea
to incorporate multiple resistive devices into a synapse has been introduced earlier
[208–214]. All variants followed the strategy to compensate for the short-comings of
single devices by forming compound synapses. Singha et al. concluded that a synapse
construction based on multiple parallel devices does not yield a significant advantage
over single analog switches, but can be chosen as an alternative pathway when other
tradeoffs emerge. However, while extracting the typical switching voltage stochastic-
ity from c2c, their work doesn’t consider the aspect of d2d variability, which should
yield a significantly different result for a single, analog device synapse compared to the
multi-device approach [211]. Boybat et al. employed parallel PCM devices as analog
synapses for three different neural network tasks. They conducted a very detailed
study of variability between individual devices and the switching stochasticity over
multiple cycles. However, the main goal of their work was to stabilize analog conduc-
tance changes in the synapse’s update under application of repeated current pulses
[215]. Common for previous works published on the subject of stochastic switching of
ReRAM devices in neural networks is the utilization of behavioral models. These lead
to voltage-dependent switching probability models such as the Poisson distribution
[71, 205, 207, 208, 213], sigmoidal distribution [73], Gaussian distribution [70] and
lognormal distribution [210, 216] and even linear dependence [211]. By definition,
these models only capture the minimal required behavioral aspects and possess little
to no predictive character for any setup modification. However, with the aim to cor-
relate the single ReRAM device behavior with the neuromorphic circuit behavior, it
is imperative to use more detailed compact models that are able to capture the full
dynamical spectrum of the employed device type.

8.2 Extension of variability in the JART model

The equivalent circuit diagram of the JART VCM compact model is shown in Fig-
ure 8.1 (a). The parameters for the deterministic model are listed in Table 8.1. In a

132



8.2 Extension of variability in the JART model

previous work [115], d2d and c2c variability were implemented in the JART VCM v1b
model by pulling a random set of parameters from a truncated Gaussian distribution
(seed parameters) for d2d variability and then changing these parameters, throughout
the simulation around this seed parameter to produce c2c variability. The truncation
of the Gaussian distribution determines the maximum deviation of the parameters
around its mean value and was the same for the initialization as well as for the varia-
tion throughout the simulation. The variability parameters were chosen as the mini-
mum and maximum oxygen vacancy concentration in the disc Ndisc, min and Ndisc, max,
as well as the radius of the switching filament rfil and the length of the disc region
ldisc. The choice of parameters was motivated based on the experimental findings of
[217], where it was shown that the filament can form at different positions in the cell
leading to variability in LRS and HRS.

Compact modeling aims to provide a tool for the design of circuits as well as
bridging the gap between device-level technology and circuit design. Therefore, if
a certain application is considered, the compact model must adequately model the
device behavior under the conditions of the specific experiment. For this section, the
relevant experiment is the measurement of the SET probabilities at different applied
voltages starting from a specific range of HRS. Due to the large cycling variability

Table 8.1: Simulation parameters (for the explanation of the symbols, see[113], [115]
and [116].
Symbol Value Symbol Value
lcell 3 nm A* 6.01 · 105 A/(m2K2)
ldisc 0.25 nm eΦBn0 0.18 eV
rfil 30 nm eΦn 0.1 eV
zVO 2 μn 4 · 10-6 m2/Vs
a 0.25 nm Nplug 20 · 1026 m-3

ν0 2 · 1011 Hz Ndisc,max 0.25 · 1026 m-3

ΔWA 1.6 eV Ndisc,min 0.2 · 1023 m-3

ε 17 ε0 Rth,eff,SET 4 · 107 K/W
εΦB 5.5 ε0 Rth,eff,RESET 14 · 106 K/W
T0 293 K Rseries 1300Ω

and the large spread between different devices observed in the experiment described
in Section 7, it was decided to change the way variability is introduced into the
model. Instead of the previous version, the ranges for d2d and c2c variability are
split. This is schematically depicted in Figure 8.1 (b). In the new version, a cell
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8 Application of resistive switching features for neuromorphic hardware

is initialized by drawing the seed variability parameters from a truncated Gaussian
distribution. The c2c variability is achieved by changing these parameters during the
simulation. However, the range in which these parameters can change during cycling is
limited independently from the range of the d2d variability through a fixed percentage
around the seed value. This enables tuning d2d and c2c variability independently to
fit the model parameters to the measurements. The new implementation, therefore,
uses three different parameters to modify the different variability of the model. The
relative standard variation which determines the width of the truncated Gaussian
distribution is used to initialize the devices. This quantity influences mostly the d2d
variability since it determines whether the parameters will be initialized closer or
further away from the median value on average. The c2c variability is controlled
by two parameters, namely the c2c percentage and the maximum step size. The
c2c percentage determines the range around the drawn set of seed parameters for
each device in which the parameters can change through repeated switching. On
the other hand, the maximum step size determines the maximum amount by which
the variability parameters may change between two successive switching cycles. The
influence of these different parameters can be seen in Figure 8.1 (c) through (f).
Figures 8.1 (c), (d) and (e) show the effects of different amounts of c2c variability on
the SET probabilities while (f), (g) and (h) show the effects of different amounts of d2d
variability. It can be observed that increasing the c2c variability makes the behavior
of single devices more stochastic. This implies that increasing voltages do not always
result in an increase of SET probability but might also decrease it. Increasing the
d2d variability spreads the SET probability curves across a larger voltage range. The
parameters related to the variability are given in Table 8.2. They are kept constant
in this work showing the high degree of consistency between model and experiment.

Table 8.2: Simulation parameters (for the explanation of the symbols, see the work
of Bengel et al.[115].
Symbol Min /Median / Max Symbol Value
Nmin, var [1023 m-3] 0.1 / 0.2 / 0.3 relative standard devia-

tion
1

Nmax, var [1026 m-3] 0.05 / 0.25 / 20 c2c percentage 15 %
rvar [nm] 25 / 30 / 35 maximum stepsize 10 %
lvar [nm] 0.175 / 0.25 / 0.35 - -
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Figure 8.1: (a) Equivalent circuit diagram of the JART VCM v1b model for the
HfO2/TiOx based memristive devices. (b) Schematics of the modification made to
the variability model exemplary for the variability model parameter rvar. For each
device, a seed parameter is drawn from the d2d range. Around this seed parameter,
the cell’s variability parameters can change by the smaller c2c range. (c) to (e) Effect
of different amounts of the c2c variability on the SET probability behavior for three
cells. For (c), the c2c percentage was 5 %, for (d) it was 15 %, and for (e) it was
25 %. (f) to (h) Effect of different amounts of d2d variability. This was achieved
by decreasing the d2d range and the variation coefficient for (f). For (g) the values
from Table 8.2 were chosen and for (h) the d2d range was increased. The changes are
conceptually shown by the small PDF diagrams given on top of diagram (c) to (h).
Redrawn with permission from [116].
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8 Application of resistive switching features for neuromorphic hardware

8.3 Experimental results and compact model sim-
ulations for single devices

As described in Chapter 7, 15 individually contacted devices were tested experimen-
tally for their SET probability traces. In this specific context, a SET probability
trace is the probability-voltage relation that shows the required voltage range for a
device to traverse from zero percent switching probability to 100 % switching proba-
bility. By definition, the SET is counted as successful if the resistance is lower than
20 kΩafter the SET attempt. If the resistance is still above 20 kΩ, the trial is counted
as unsuccessful. The SET probability is then given as the fraction of successful events
over the total number of trials. In Chapter 7, voltage stresses of 1 μs duration were
employed. The voltage range from -0.6 V to -1.1 V chosen with increments of -20 mV
ensures that the entire trace is recorded with a sufficient resolution in voltage, where
non-deterministic switching occurs, i.e. where the SET probability lies between 0 %
and 100 %. At each voltage step, 50 trials are performed. This amount is a com-
promise between measurement speed and statistical significance. Hence, each given
probability value has to be seen with an inaccuracy of at least 2 %. Each attempt is
accompanied by a forced SET, a RESET and another SET using a sweep signal. The
resistance state prior to voltage stressing is then accurately programmed to be in the
range of 200 kΩand 350 kΩbefore the SET trial, which corresponds to read currents
between -0.57 μA and -1 μA. The HRS read currents immediately before pulse appli-
cation are shown as the red histograms in Figure 8.2. The distribution lies well within
the defined limits described above. Minor deviations at the lower and upper boundary
are noticeable. This behavior, which was described in Section 5.2, has been studied
before [178, 218] and can be explained by ionic noise that is typically present in fila-
mentary VCM devices. Figure 8.3 depicts the measured SET traces from Chapter 7
in grey lines and symbols and the simulated traces of the described experiment in dif-
ferent colors. For better readability of the comparison, the gathered device traces are
analyzed statistically in the following manner: The median trace value, as well as 5 %,
25 %, 75 % and 90 % percentiles at every tested voltage, are given. In this context, the
term “edge cases” refers to the SET probability traces at the lower and upper voltage
extreme. For the experimental dataset, the 5 % and 95 % lines essentially reflect the
edge cases because of the limited device count. Therefore, the relative uncertainty in
these percentiles is quite large. For the simulation dataset, the actual edge cases may
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be located at slightly lower or higher voltages than the 5 % and 95 % lines, respec-
tively. Here, the relative uncertainty is reduced because of the higher device number.
While the agreement between simulation and experiment of the median and the 25 %
and 75 % cases is nearly flawless, the compact model exhibits a slight mismatch for the
5 % and 95 % lines. However, this deviation is minor. The percentile lines are, how-
ever, an important characteristic for comparison to the simulation dataset. Overall,
the experimental data shows the expected behavior of combined c2c and d2d vari-
ability. Following the median trace highlights the c2c aspect. It traverses from zero
SET probability at low voltages to deterministic switching, i.e. a SET probability of
100 %, at high voltages. The regime of non-deterministic switching has a width of
around 160 mV. For the voltages in this range, the c2c variability leads to a mixture
of successful and unsuccessful events. The percentile marks are indicative of the d2d
spread of the devices. While the median trace of the experimental datasets shows the
beginning of the non-deterministic regime at 0.80 V and the end at 0.96 V, the 25 %
trace is shifted to lower voltages of 0.70 V and 0.86 V, respectively. The opposite trend
is observed for the 75 % trace which shows a range between 0.86 V and 1.04 V. The
range between these two traces, the interquartile range, is therefore almost perfectly
constant at 160 mV for all voltages. The same observation can be made with the 5 %
and 95 % traces. Here, a range of 280 mV is covered. These numbers are important
measures for comparison to the simulation, but also comparison to other devices and
device types. In cases where the SET event was successful, i.e. the resistance was
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8 Application of resistive switching features for neuromorphic hardware

below 20 kΩ, the resistance is noted. The red histogram at the higher current level
in Figure 8.2 summarizes the read currents of the measured low resistance states. A
significant spread from 10 μA up to 300 μA is visible. This spread further signifies
the presence of variability in the devices. Three important points must be mentioned
in this context: First, the displayed histogram is gathered from 15 different devices.
Closer analysis reveals, that each device itself has a less significant spread. Hence,
the d2d aspect of this measurement has to be taken into account. On top of that is
the second point: The shown data summarizes both the d2d and the c2c variability
of the devices. The third point is that in this measurement, low resistive states that
result from SET pulses with varying amplitude are shown. The results of Section 4.5
have demonstrated the impact of stronger voltages on the resistance state after the
SET process. Therefore, voltage stresses that are barely enough to switch the device
will lead to higher resistances than voltage stresses that switch the device with high
certainty. Because of these three aspects, the spread of the low resistive state is not
unexpected.

The simulation for this experiment is carried out with the model parameters de-
scribed above. A total of 250 device seed parameters are drawn in the described way.
Each drawn device is tested in the same way as described above for the experimental
devices. Hence, the distributions of the HRS prior to the voltage stress and the LRS
in cases where switching took place can be compared. Clearly visible in Figure 8.2
is the nearly perfect agreement of the HRS distributions before the SET attempt.
Comparing LRS values is a bit more complicated. As visible from the comparison
of distributions in Figure 8.2, the simulation lacks parts of the distribution both at
the lower current end and the higher current end. This difference is caused by two
different phenomena. The lower current end difference is caused by the imperfect de-
scription of the switching transition time by the model. As discussed in Section 4.5,
the SET transition can be abruptly interrupted if the switching pulse is ended, but
the device has not fully undergone the SET process. In the present model, the tran-
sition speed is higher than the experimental one, thus causing mainly full switching
events. Therefore, the lower current end is not simulated as often as in the experi-
ment. The higher current end difference is due to the experimentally observed effect,
that a stronger voltage leads to a higher read current, even after the switching event is
completed. The employed simulation model cannot fully describe this relation, since
in these simulations the defined maximum oxygen vacancy concentration is reached
when the SET event has taken place. In total, the switching model still describes the
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Figure 8.3: Statistics of the d2d and c2c SET switching variability for 1 μs voltage
stresses for experiment and simulation. Redrawn with permission from [116].

experimental data very accurately. The missing effects may be addressed in a future
work. As stated above, a much higher number of devices is simulated compared to
the experimentally measured dataset. For the evaluation, the same approach as for
the experimental dataset is chosen, and the median at each voltage as well as the 5 %,
25 %, 75 % and 95 % are calculated. The results are compared to the experimental
results in Figure 8.3. The good agreement for the median SET probability trace is
visible. Moreover, all percentile traces are also well met, with only very minor devi-
ations at the 5 % and 95 % traces. In summary, the simulation of SET events on the
timescale of 1 μs reveals a high degree of agreement between measurement and simu-
lation. All statistical values, including current levels and switching voltage, are well
met. Slight deviations are caused by the inherent variability of both measurement
and simulation on one hand and by minor effects not accounted for in the model on
the other hand.

To verify our simulation model beyond the correct c2c and d2d description on
the 1 μs time scale, the predictive capability for a different experiment is tested. A
crucial prerequisite for a model is to correctly display the switching dynamics over
multiple orders of magnitude in switching time [43, 97, 100, 115]. For this purpose,
a single device was experimentally tested and the results were compared to the com-
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Figure 8.4: (a) Seed parameters of the simulated device. (b) SET probability as
a function of the pulse amplitude for different pulse widths. An experimental and
a simulation device, which are both close to the median on the 1 μs timescale, are
compared. Both voltage window and voltage onset in dependence of pulse duration
are correctly described, verifying the predictive character of the compact model. The
envelope areas quantify the maximum possible voltage shifts resulting from insufficient
repetitions at a given voltage. Redrawn with permission from [116].

pact model simulation. The tested device, which was previously shown in Section 7
in Figure 7.2, follows the median trace of the 1 μs experiment closely and is therefore
considered as a good example. The device is switched by voltage pulses that vary
over multiple orders of magnitude in pulse duration and voltage stress. The device
preparation procedure for SET probability testing is identical to before. However,
in this experiment, the device is stressed with a voltage pulse of variable duration
(100 ms down to 100 ns) and amplitude (-400 mV to -925 mV in -25 mV decrements).
The test procedure is repeated 25 times at each combination of pulse width and pulse
amplitude. Figure 8.4 (b) displays the experimental SET probabilities at each com-
bination as a solid line. Noticeably, the onset of the SET probability curve shifts
to lower voltages when increasing the pulse duration. This reflects the typical SET
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8.3 Experimental results and compact model simulations for single devices

switching kinetics. However, the voltage range, where the probability is neither 0 %
nor 100 %, remains roughly constant at around 160 mV, with some deviations caused
by the limited number of tries. To reproduce this behavior over multiple orders
of magnitude in switching time, a simulation identical to the described experiment
is conducted by choosing a single device seed parameter that follows the simulated
median trace of the previously described 1 μs experiment. The seed parameters are
listed in Figure 8.4 (a). Note that the c2c percentage and the maximum stepsize are
15 % and 10 % as indicated in Table 8.2. However, for this median-like simulation
device, the pulse duration dependent SET probability traces are recorded not only
once, but 50 times. Figure 8.4 (b) contains the results of this simulation. Here, the
dashed lines represent the SET probability at each combination of pulse duration and
voltage stress, calculated from the 1250 attempts at this combination. At the same
time, the colored areas outline the range that is covered by each subset of 25 tries
per combination. This method was chosen to highlight the fact, that a SET proba-
bility trace for the same device can show a shift of the voltages when recorded twice.
The true SET probability trace is revealed by repeating the same pulse conditions a
significant amount of times. In our experiment, 25 attempts already yielded stable
results, but with each additional trial, the accuracy of the SET probability trace can
be increased. In Figure 8.4, only every second pulse duration is shown for better
readability. However, the not shown pulse durations follow the same trend of onset
voltage and show the same width of the traces. By comparing the experimental results
to the simulation, it is directly visible that the median simulated curves closely follow
the experimental ones apart from some minor deviations likely caused by the limited
number of trials in the experiment. The key characteristic, namely the voltage range
of non-deterministic switching, is met reasonably well. The good agreement between
measurement and simulation validates the JART VCM v1b switching model for this
kind of experiment. The predictive character, namely that the compact model can
describe the switching dynamics precisely on the 1 μs scale as well as for multiple
orders of magnitude in pulse time, has been demonstrated. Therefore, the model is
employed in the following sections for creating a multi-device compound synapse and
a pattern classification network.
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8 Application of resistive switching features for neuromorphic hardware

8.4 Theoretical and experimental considerations for
a multi-device synapse

In this section, the implementation of the proposed parallel synapse model from a
theoretical standpoint is described and the operation is experimentally demonstrated.
Several devices are connected in parallel and are biased with identical voltage stresses
of 1 μs duration. For the proposed probabilistic update in the following SNN applica-
tion, it is desired to apply a voltage pulse of a given amplitude and get a corresponding
probabilistic bitline current response as the outcome. Therefore, different current re-
sponse levels have to be accessible with some probability. By increasing (reducing)
the voltage stress, the probability of getting a higher (lower) current response should
increase. In the following, the effect of ReRAM device variability on the collective
synapse behavior will be discussed by using our compact model to simulate different
exemplary cases.

8.4.1 Theoretical considerations

For the proposed synapse implementation, it is required for the synapse to be able to
adopt intermediate current levels between the two extreme cases of all devices in HRS
and all devices in LRS. If all devices were to show identical, deterministic behavior, no
intermediate current levels can be achieved, and the accumulated synapse current will
either be low or high for low and high voltage signals, respectively. This undesirable
or even worst-case scenario is illustrated in Figure 8.5 (a) and (b), where (a) shows
the SET probability traces of 3 devices with identical seed parameters and no c2c
variability, while (b) shows the probability for normalized bitline current levels at
each voltage. As can be expected the synapse will only show two achievable current
levels since the LRS and HRS values are the same for all three devices which switch in
a deterministic fashion at a specific voltage. The addition of d2d variability leads to a
significant change in the synapse behavior. Figure 8.5 (c) and (d) show three devices
without c2c variability but with significant d2d variability. Different voltage onsets
yield (n+1) separable bitline current levels, with n being the number of devices per
synapse. Each of the levels has exactly 100 % probability in a distinct voltage interval
as the devices still show deterministic switching at a voltage specific to each device.
The simulation was performed by modifying the seed parameters to achieve a device
switching at a low, a moderately high and a high voltage. The device switching at a
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Figure 8.5: Simulation of different synapse behavior to showcase the relation between
SET probability traces of individual devices (upper row) and probabilities for the
achieved bitline currents (lower row) by adapting the compact model. (a) and (b)
represent three identical deterministically behaving devices. (c) and (d) show three
different but deterministic devices. (e) and (f) show three identical but probabilis-
tically behaving devices. (g) and (h) show three different and probabilistic devices.
Redrawn with permission from [116].

low (high) voltage is realized by choosing a small (large) filament radius (rvar), a small
(large) disc length (lvar) and a high (low) initial oxygen vacancy concentration in the
disc (Ndisc, init). Adding c2c variability to situation (a) in Figure 8.5 instead of d2d
variability leads to the behavior observed in Figure 8.5 (e) and (f). The devices shown
here have the same parameter seed. Throughout the simulation, their parameters were
varied to achieve c2c variability. At each voltage 50 tries were performed for each
device. It should be noted that this limited number of repetitions at each voltage is
the reason for the three different SET probability traces. Increasing the number of
repetitions will make the traces comparable and even identical for an infinite number
of repetitions. Since only a limited number of cycles is simulated, the SET probability
traces are different. In Figure 8.5 (f), the resulting bitline current range probabilities
form a voltage window. In this voltage window, the intermediate bitline current ranges
can be addressed with a single voltage pulse. However, the voltage window has a
width of only around 200 mV although the total range of applied voltages is 600 mV.
The previous cases are, however, purely theoretical cases. Filamentary switching
VCM type devices exhibit significant d2d and c2c variability as a consequence of
the underlying physical mechanism as well as tolerances in device fabrication. This
makes it virtually impossible to eliminate variability. By combining d2d and c2c
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8 Application of resistive switching features for neuromorphic hardware

variability, we arrive at the most realistic case shown in Figure 8.5 (g) and (h).
Compared to the previous case, the voltage window is significantly wider (around
400 mV), which is caused by the early onset voltage of device D1 and the late onset of
D3. In this specific case, it would be sufficient to employ voltage levels with a spacing
of around 100 mV to address the intermediate bitline current ranges. Another feature
of real devices that can be observed here is that the number of accessible levels is
larger than (n+1). This can be attributed to the variability in the LRS state of
the various devices as shown in Figure 8.2. It should be noted here that similar to
Figure 8.5 (e) and (f) resulting bitline current probabilities in Figure 8.5 (h) are not
an unambiguous consequence of the SET probability traces in Figure 8.5 (g) due
to the limited number of tries at each voltage level. Each trial of all devices at a
specific voltage can be viewed as a discrete stochastic process. In summary, to realize
an analog synapse with binary switching devices, the interplay between d2d and c2c
variability is very important. Deterministic devices limit the number of levels to two
while adding d2d leads to an increase of the number of levels in a deterministic fashion
(the levels can be programmed with 100 % probability). Adding c2c variability leads
to probabilistic devices and a probabilistic update. The voltage window to achieve
this, however, might be limited. Differing probabilistic devices widen this window,
but are not necessarily required for the proper synapse functionality if their individual
c2c variability covers a sufficiently wide voltage window. For an increasing number
of devices per synapse, the range of conductances will shift towards higher values.
However, if we scale this range by the number of devices in each synapse, we can see
that the resulting fraction stays constant. Thus, the bounds to the synaptic efficacy
stay constant except for a shift towards higher conductance levels, which might lead
to a higher power consumption. On the other side, the analog tunability improves as
more intermediate levels become accessible. Lastly, this improvement in the synapse
behavior will increase the area that each synapse occupies. As d2d and c2c cannot be
eliminated in real devices the observations need to be tested by measurements.

8.4.2 Experimental demonstration of the multi-device synapse

To verify the proposed explanation of the synapse behavior in dependence of the in-
cluded variability, two exemplary cases of experimentally realized synapses are shown.
For this, the voltage stress is applied to three devices simultaneously. In order to do
so, a probe card arrangement as described in the experimental section 3 is employed.
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Figure 8.6: Experimental demonstration of favorable synapse characteristics. (a) SEM
picture of a section of the device structure contacted in a probe card arrangement.
Blue: Top electrodes. Green: Bitline electrode (color added in postprocessing). (b)
SET probability traces of three fairly similar devices. (c) Resulting bitline current
probabilities, showing the narrow voltage range for tunability. (e) SET probability
traces of three significantly different devices. (f) Resulting separated bitline current
ranges. Redrawn with permission from [116].

From the 32 x 1 line array, a subset of three devices is contacted to see the direct
dependence of the device SET probability traces on the synapse characteristic. The
structure is shown in the scanning electron microscopy (SEM) picture in Figure 8.6 (a).
The addressed cases reflect the cases discussed in Figure 8.5 (g) and (h). In this ex-
periment, the three devices in parallel were repeatedly stressed with voltages from
-0.7 V to -1.2 V in steps of -50 mV. Each voltage was tested 100 times. The initializa-
tion was carried out for each device individually and followed the same procedure as
described for Figure 8.3 (g). After each voltage stress, the summed bitline current is
recorded for a read voltage of -0.2 V. On top of that, each device is read individually
with a read voltage of -0.2 V. First, three devices with very similar SET probability
traces are contacted, see Figure 8.6 (b). The resulting synapse behavior is depicted
in Figure 8.6 (c). As expected, the bitline current ranges are only addressable in a
very limited voltage range of about 0.2 V. This means, that intermediate synapse cur-
rents require very precise voltage stresses to the devices. This combination of devices
reflects the case of identical probabilistic devices as described in Figure 8.5 (e) and
(f). In contrast, the second subset of devices contacted shows a significant voltage
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8 Application of resistive switching features for neuromorphic hardware

margin between the individual SET probability traces, see Figure 8.6 (d). At 0.70 V,
the highest probability is observed for the lowest current range of 0 μA to 30 μA, since
only infrequently switching events occur and the devices remain in the HRS. A lower
probability is evident for the second current range of 30 μA to 80 μA. By increasing the
voltage to 0.75 V, the probability of reaching this second level is increased. However,
the first level or the third level may occur with a low probability. This trend con-
tinues in a very regular pattern at 100 mV intervals until currents of 230 μA or more
are observed. Here, the currents do not increase further with voltage because the
synapse’s dynamic range is reached. Therefore, at 1.20 V, the probability for reaching
the last level, i.e. currents above 230 μA, is 100 %. The dynamic voltage window of
this synapse, therefore, lies in the voltage range from 0.70 V to 1.05 V, which results in
a voltage window of 0.35 V. This behavior is favorable over the case of nearly identical
devices, since a higher voltage spacing for the levels can be utilized, which in turn
reduces the challenges for integration. In summary, the proposed synapse structure
fulfills the imposed requirements. The synapse’s tunability window is mainly influ-
enced by the switching probability behavior of the individual devices it is composed
of. Two possible ways for enlarging this window can be derived: First, the presence
of d2d variability can improve the synapse behavior. However, only having d2d vari-
ability can still lead to unwanted synapse behavior if nearly identical devices happen
to appear in a given synapse. A better approach is to introduce more c2c variability
in each device while reducing the d2d variability to a minimum. By this method, the
voltage window remains large enough for several voltage levels with moderate spacing.
At the same time, the minimized d2d variability ensures conformality of the synapse
characteristic.

8.4.3 Performance criteria for multi-device synapses

For three different synapse sizes, namely three, eight and twelve devices per synapse,
50 synapses are simulated. At each voltage stress, 50 SET tries are conducted. For
comparing the arising effects when scaling up the synapses, three new parameters are
introduced as indicated by the sketch in Figure 8.7 (a):

1. The difference between the first and the last SET probability trace with respect
to the pulse voltage. For this, the area between the two extreme traces is
calculated by the trapezoidal numerical integration of the difference of the first
and last trace, see the shaded area in Figure 8.7 (a).
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Figure 8.7: (a) and (b) Sketch of the introduced analysis parameters based on the
individual SET probability traces and the bitline current probabilities. The grey
shaded area in (a) shows the first parameter, while the solid red line in (b) shows
the second and the dashed red line in (b) shows the third. (c) Dependence between
tunability range and extreme trace area for the simulations comprising 50 instances
of three, eight and twelve devices each. (d) Statistics of the effective number of
addressable intermediate bitline current ranges for each synapse size. Redrawn with
permission from [116].

2. The synapse tunability voltage range. It is calculated by the difference in voltage
of the first current range at a probability of 75 % and the voltage of the last
current range at a probability of 75 %. This value describes the range of voltages
in which the intermediate current ranges (between ‘all devices HRS’ and ‘all
devices LRS’) can be stochastically addressed. It should be adequately large for
the chosen voltage levels of the application. The value is marked with an arrow
in Figure 8.7 (b).

3. The effective number of realistically addressable levels. For this, the number of
levels that reach a probability of 40 % or more over the whole voltage range is
counted. It is highlighted by the horizontal dashed line in Figure 8.7 (b).

Figure 8.7 (c) displays the relation between the SET probability difference and the
synapse tunability voltage range for all synapse sizes and each individually initialized
synapse. The simulations with three devices per synapse are indicated by green circles.
The achievable voltage window for a synapse constructed from three devices ranges
from quite low values to the desired larger ranges. For three devices per synapse,
an increasing relation of the tunability range with the area enveloped by the highest
and lowest SET trace is obtained. The exact underlying relation is however masked

147



8 Application of resistive switching features for neuromorphic hardware

by the significant variability, which stems from the combination of variable devices.
The simulation results are controlled by the experimental data. For this purpose,
the desired data points are determined from measurements shown in Figure 8.6 (b)
and (c) and in Figure 8.6 (d) and (e), respectively, and are added to the graph in
Figure 8.7 (c) as diamond-shaped symbols. The data points from the experiment lie
within the range of the simulated multi-device synapses for the case of three devices.
This match clearly demonstrates the accuracy of the developed compact model. A
further enlarged voltage tunability range of a multi-device synapse can be achieved by
increasing the number of devices per synapse. Figure 8.7 (c) also displays the simu-
lation results for eight and twelve devices per synapse. For the purpose of comparing
these synapses, the bitline current ranges were normalized with the assumption that
each device contributes 38 μA (corresponds to 5.2 kΩ) to the overall bitline current.
Furthermore, instead of splitting the resulting currents into six levels as for the three
devices per synapse, the currents are grouped in eleven and 15 levels for eight and
twelve devices per synapse, respectively. For the eight and twelve devices per synapse
structures, the tunability window is above 0.2 V, and levels at around 0.4 V. The
synapse comprising twelve devices shows an even higher SET probability difference,
but no significant increase in the tunability window is evident. Most important for
synapses comprising eight and twelve devices is the absence of synapses with an un-
desirable low voltage tunability window. This can be attributed to the low chance
of drawing eight or twelve nearly identical devices for the synapse, respectively. By
increasing the synapse size, it becomes increasingly likely to draw devices from the full
d2d range, hence making sure that sufficient variability is present in the synapse. For
the three devices, there is a chance of getting three highly similar devices with their
limited c2c voltage range, thus causing low voltage window synapses as e.g. shown
experimentally in Figure 8.6 (b) and (c). Figure 8.7 (d) shows the statistical analysis
for the 50 simulated synapses regarding the effective number of addressable interme-
diate bitline current levels for each synapse. As expected, the number of levels with
a probability of 40 % or more increases with synapse size, allowing for more accurate
tuning of the larger synapses. The experimentally determined data points are plotted
as diamond symbols. Again, the data points derived for the extreme cases lie at the
edges of the simulated range. It is therefore expected that increasing synapse size will
yield higher network performances, especially if overlapping patterns are shown since
such require improved synapse tunability.
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Figure 8.8: The neural network consists of 22 synapses connected to an integrate-
and-fire type output neuron. The synapses consist of multiple VCM ReRAM devices
connected in parallel. The studied range is between 1 and 24 cells per synapse. It is
trained to react to a pattern+ (which is presented to 11 of its synapses) with a high
number of spikes and to a pattern- (which is also presented to 11 of its synapses) with
a low number of spikes. Redrawn with permission from [116].

8.5 Spiking Neural Network setup

To highlight the power of exploiting device stochasticity, the device model is employed
in a binary classification problem with overlapping features. To systematically assess
the classification accuracy, the complexity of the problem is raised through increasing
the overlap, i.e. the mutual information between the patterns. The parameters of
the variability model are drawn to initialize the required number of devices, which
depends on the number of ReRAM per synapse. The devices are usually initialized
with a resistive state that roughly lies between the LRS and HRS.

8.5.1 Network setup and general learning procedure

The investigated neural network consists of 22 synapses connected to an integrate-
and-fire type output neuron. The synapses each consist of one or multiple ReRAM
cells connected in parallel. The studied range is between 1 and 24 cells per synapse.
The network structure is shown in Figure 8.8. The patterns are synthesized to have
control over the complexity and to study the network accuracy as a function of the
problem complexity. To generate the patterns half of the synapses are picked ran-
domly and stimulated with a Poisson distributed spike train. The rest of the synapses
are not stimulated. This is called pattern+. To generate pattern-, an overlapping pa-
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Figure 8.9: Exemplary raster plots showing the Poisson distributed spike trains which
are applied to the different synapses for 1 s. (a) and (b) show an exemplary pattern+
and pattern-, respectively, with an overlap of seven between the patterns. The over-
lapping synapses (1, 5, 8, 12, 15, 18, 22) are marked as red vertical symbols. (c) and
(d) show two noisy pattern+ examples. Based on the ideal pattern (not shown) two
synapses were flipped (11 and 18 in (c) and 5 and 6 in (d)). The flipped synapses are
marked as orange vertical symbols. Redrawn with permission from [116].

rameter M is defined, which is the number of common features or amount of mutual
information. M number of synapses from pattern+ are then selected randomly as the
common feature of pattern-. The rest of the features of pattern- is chosen randomly
from the remaining synapses that are not included in pattern+. The synapses making
up pattern- are also stimulated via a Poisson distributed spike train. As an additional
level of complexity, noise is introduced in the patterns by randomly flipping a specified
number of features in pattern+ and pattern-. Seven noisy test patterns are generated
for pattern+ and seven for pattern-. These training patterns will be used during the
inference phase for the evaluation of the network’s performance. A few exemplary
patterns are shown as raster plots in Figure 8.9. Figure 8.9 (a) and (b) show one
exemplary pattern+ and pattern-, respectively, with an overlap of seven. The seven
overlapping patterns are marked as red vertical symbols, while the red horizontal lines
represent the non-overlapping patterns. Figure 8.9 (c) and (d) show two pattern+ in
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8.5 Spiking Neural Network setup

which two synapses have been flipped each. The flipped patterns are marked as or-
ange vertical symbols, while the non-flipped patterns are marked as black horizontal
symbols. To train the network, a technologically plausible training algorithm is uti-
lized, namely a stochastic Delta rule algorithm, which is the simplest form of gradient
descent for single-layer networks [37]. The Delta rule can be formulated as

∆wi = λ · (ŷ − y) · xi, (8.1)

where ∆wi denotes the amount the weights that have to change in the network, λ

is the learning rate which can be used to scale the amount of weight change per
update, ŷ is the target, y is the neuron output activity and xi selects the synapses to
which the current pattern is applied. For the binary classification problem, the target
for pattern+ and pattern- are the maximum and minimum firing rate of the neuron
FRMAX and 0, respectively. Therefore, the update rule becomes

∆wi = λ · FRMAX · label − FR

FRMAX
· xi, (8.2)

where label is 1 when pattern+ is applied and 0 if pattern- is applied. FR is the
firing rate of the neuron in response to the applied pattern. This training rule is
formalized in Algorithm 1. To assess the untrained accuracy all training patterns
are presented to the network. At this stage, the accuracy of the network is 50 %
in most cases, which is the accuracy of guessing randomly. This first step is done to
show that the network is trained during the next steps and starts from a bad accuracy.
The simulations are performed in the following fashion. The synapses are simulated
using Cadence Spectre, and the current

∑
Isyn (see Figure 8.8) accumulated at the

output node is saved. This output current is then fed into an integrate-and-fire neuron
model realized in MATLAB which samples the current at 1 ms intervals. The current
is summed up until the neuron threshold IT H is reached and the integrated current
is reset to zero. Each instant of time at which the neuron threshold is reached is
counted as a spike of the neuron. The total number of spikes produced for 1 s is
then compared with the decision threshold FRMAX/2. If the number of spikes is
larger the pattern is interpreted as pattern+ and if it is smaller it is interpreted as
pattern-. After the initial evaluation, the network is repeatedly trained and tested for
10 epochs. During the training, a noisy training pattern is applied to the specified
synapses and the number of spikes FR is counted. This number is then compared with
the target number for the current pattern which is either FRMAX for pattern+ or 0
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Algorithm 1 Delta Rule implementation with stochastic synapses
1: wi = rand();
2: while Test Accuracy < 100% or # epochs < 11 do
3: apply labeled train pattern
4: calculate FR
5: ∆wi= λ * F RMAX∗label−F R

F RMAX
*xi

6: if label=0 then
7: if epoch=1 then
8: V train, i = V RESET, nominal*xi
9: else

10: V train, i = round( V RESET, nominal * |∆wi|)
11: end if
12: else
13: if epoch=1 then
14: V train, i = V SET, nominal xi
15: else
16: V train, i = round( V SET, nominal |∆wi|)
17: end if
18: end if
18: apply V train, i
19: end while

for pattern-. The difference between the real and wanted number of spikes is scaled by
FRMAX, multiplied with the learning rate λ which is set to a value of 1.2 in our case,
and multiplied with a vector that corresponds to the assignment of synapses of the
current training pattern. This relationship is described by Equation 8.2. It represents
the desired weight change for all the synapses that just received a pattern. In this
way, the following programming pulse will be weaker if the neuron’s response is close
to the ideal response (0 or FRMAX) so as not to disturb the achieved weights too
much, and stronger if the neuron’s response to the current pattern is far away from
the ideal response. After the calculation of the distance between the ideal and the
actual neuron response, the programming pulses are applied to the synapses that also
received the training signals. The nominal SET (-0.8 V) and RESET (1.3 V) voltages
are scaled by ∆wi and rounded to the closest 100 mV increment. This scaling of the
voltages modulates the switching probability of the ReRAM cells in the synapse. As
the probability of switching is increased if the network’s error is higher and decreased
if it is lower, this represents a technologically plausible stop learning mechanism.
Additionally, this can be seen as a form of randomized or stochastic rounding [219]
similar to the one implemented in [213]. In previous works, stochastic rounding has
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8.5 Spiking Neural Network setup

been found to improve neural networks, enabling to reduce the bit size of the weights
[220] or enabling to reduce the input bit size [221] while keeping the accuracy constant
[221]. The scaled programming voltages are applied for 1 μs, leading to a SET/RESET
of the ReRAM cells of the respective synapses. This training procedure is performed
for three pattern+ and three pattern- in a random succession for each epoch. After
these six training rounds, the network’s performance is tested on seven test patterns
for pattern+ and pattern-. This procedure is repeated until the accuracy on the test
pattern set reaches 100 % or until 10 epochs are reached.

8.5.2 Hardware aware network optimization

The network also contains hyperparameters. Hyperparameters are these parameters
used to control the learning process. Unlike the weights, the hyperparameters are not
derived through training but have to be specified prior to the training. For the utilized
network, the hyperparameters are defined by the learning rate λ, the neuron threshold
current IT H , the maximum achievable spike rate FRMAX, which also determines the
spike decision threshold, and the SET and RESET voltages for the synapses. While
these parameters have a significant impact on the network performance, they are typ-
ically not trained but rather preset to a constant value. Therefore, their choice has to
be motivated in a different way, which usually involves trial and error. In this work,
however, a plausible procedure to tune two of the hyperparameters, namely IT H and
FRMAX is described, before the training of the neural network starts. This alleviates
the problem of finding optimal hyperparameters through guessing, since two param-
eters less have to be optimized manually. The devices exhibit significant d2d and c2c
variability as discussed in the previous sections. This makes finding global parameters
for the neuron threshold IT H and the decision threshold (FRMAX/2), which ensure
good network convergence, challenging. In any case, a global combination of IT H and
FRMAX for all neurons would be a compromise and would degrade the performance
by having this global constraint. A novel approach is to mitigate this issue at a local
scale by self-adapting the values at the individual neuron level. Before training the
network, the neurons are first strongly excited by turning all synapses on through use
of a stronger SET pulse (-1.3 V for 1 μs) to achieve a global SET probability of 100 %.
Then, the output current that is achieved for several different exemplary pattern+
training signals, applied to 11 random synapses, is sampled. All synapses are excited
because of the external noise, i.e. flipped bits, which are introduced during the actual
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network operation. By varying IT H , the maximum possible number of spikes that can
be generated by this output neuron can be sampled. In a second step, all synapses
are turned off by applying a RESET pulse (+1.3 V for 1 μs) and the output current is
sampled for several different exemplary pattern- training patterns. By varying IT H in
this state, the minimum possible number of spikes that can be generated by this out-
put neuron can be determined. By averaging over the responses, the value of IT H that
results in the largest difference between the neurons response to pattern+ and pattern-
is found. Using this IT H , the decision threshold FRMAX/2 is defined as the difference
between the weakest response of the neuron to the different pattern+ signals and the
strongest response of the neuron to the different pattern- signals. It is found that the
optimum IT H is increased with the number of ReRAM cells per synapse as a higher
current will pass through the parallel devices. The decision threshold FRMAX/2 is
found more or less independent of the number of devices per synapse. The values are
distributed between 20 Hz and 30 Hz. The hyperparameter tuning algorithm is for-
malized in Algorithm 2. In summary, the proposed algorithm maximizes the distance

Algorithm 2 Hyperparameter tuning algorithm
1: wi = rand();
2: apply V SET = (-1.3 V ∥ 1 µs)
3: for j = index test patterns do
4: I+, j =

∑22
n=1 Isyn, n, j

5: end for
6: for k = index ITH do
7: FR+, k(ITH, k) = mean(number of spikes, j)
8: end for
9: apply V RESET=(1.3 V ∥ 1 µs)

10: for j = index test patterns do
11: I -, j=

∑22
n=1 Isyn, n, j

12: end for
13: for k=index ITH do
14: FR -, k(ITH, k) = mean(number of spikes, j)
15: end for
16: ITH, k = max(FR+, k - FR -, k)

between the neurons response for pattern+ and pattern-. An additional advantage is
that it enables adaptation to failed devices and even would enable retraining of the
network. This might be useful if after a certain time some of the devices start to fail.
In that case, the described procedure can be repeated and adapted hyperparameters
can be found that consider the failed devices. Once these hyperparameters have been
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algorithmically optimized, the training begins.

8.6 Spiking Neural Network results

First, the achievable accuracy of the neural network under increasing overlap between
pattern+ and pattern- and how the accuracy is improved by increasing the number of
devices per synapse is investigated. The studied ranges for the overlap were M = 4
to 10 while the studied range of devices per synapse was 1, 4, 8, 12 and 24 devices.
Figure 8.10 (a) shows the simulation results of the neural network’s accuracy as a
function of the overlap between the patterns and the number of devices per synapse.
If the accuracy reached 100 % after a certain training epoch, the training was stopped
and this accuracy is taken as the final value of this run. Otherwise, the accuracy
after 10 epochs was used. Figure 8.10 (b) to (f) show the evolution of the accuracy
over the training epochs for all 10 runs (thin grey lines) as well as the mean curve
(thick red line) for an overlap M between the patterns of nine. Figure 8.10 (b) shows
the results if each of the 22 synapses consists of only one ReRAM device, and (c) to
(f) for 4, 8, 12 and 24 devices per synapse, respectively. From this figure, multiple
effects can be observed. Due to the different sources of variability that already exist
in the initialization phase of the network (d2d, Poisson inputs, etc.), ten runs are per-
formed for each combination of overlap between the patterns and number of devices
per synapse. From Figure 8.10 (a) it can be observed that the overlap between the
two patterns influences the network’s performance. Generally it is observed that the
network reliably reaches an accuracy of 100 % for overlaps smaller than 5, indepen-
dent of the number of devices per synapse. For larger overlaps, the average accuracy
is degraded. However, this effect is stronger for networks where only a small number
of devices are used. This shows that increasing the number of devices per synapse is
a way to improve the performance of the neural network if the classification problem
becomes more difficult. This can also be observed in Figure 8.10 (b) to (f). While
networks with only one or four devices per synapse struggle to reach an accuracy of
100 % during training, perfect accuracy can be achieved after only one training epoch
for networks with more devices. While some runs also achieve high accuracies after
a few training rounds for the small networks, other runs struggle as their accuracy
is stuck at a low value or oscillates over the epochs. A closer look at the training is
depicted in Figure 8.11. Here, the conductances of the different categories of synapses
for the runs in 8.10 (b), (d) and (f) as well as the number of spikes that were gener-
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Figure 8.10: (a) Simulation results of the neural network’s accuracy as a function of
the overlap between the patterns and the number of devices per synapse. (b) to (f)
show the accuracy over the training epochs for all ten runs (thin grey lines) as well
as the mean curve (thick red line) for an overlap between the patterns M of nine. (b)
shows the results if each of the 22 synapses consists of only one ReRAM device, (c)
to (f) accrodingly for 4, 8, 12 and 24 devices per synapse. Redrawn with permission
from [116].

ated for positive and negative patterns are shown. Figure 8.11 (a), (b) and (c) show
the conductances normalized to the number of one, eight and 24 devices per synapse,
respectively, of the synapses receiving pattern+ (orange line and diamonds), pattern-
(blue line and circles) and both patterns (black line and triangles) over the training
epochs. Again, the overlap between the patterns was nine. The solid and dashed
lines show the mean values while the different symbols show the values of the actual
synapses. Figure 8.11 (e), (d) and (f) show the corresponding number of spikes FR
that are generated if pattern+ (orange) or pattern- (blue) is presented to the neuron.
The lines again show the mean values while the symbols show the number of spikes
generated for the unique patterns. Similarly to Figure 8.10, it is observed that a higher
number of devices improves the network’s performance. While Figure 8.11 (a) and
(d) (one device per synapse) show that the training is not complete after ten epochs,
the training already finishes after the sixth epoch for (b) and (e) (eight devices per
synapse) or after the first training epoch for (c) and (f) (24 devices per synapse).
Looking closer at Figure 8.11 (a) shows the reason why the training is not successful.
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Figure 8.11: (a), (b) and (c) show the conductances normalized to the number of
devices per synapse of the synapses receiving pattern+ (orange line and diamonds),
pattern- (blue line and circles) and both patterns (black line and triangles) over the
training epochs. The overlap is nine in all cases and the number of devices per
synapse was one in (a) and (d), eight in (b) and (e) and 24 in (c) and (f). The solid
and dashed lines show the mean values while the different symbols show the values
of the actual synapses. (d), (e) and (f) show the corresponding numbers of spikes FR
that are generated if pattern+ (orange) or pattern- (blue) is presented to the neuron.
The lines again show the mean values while the symbols show the number of spikes
generated for the unique patterns. Redrawn with permission from [116].

While the synapses receiving only pattern+ (orange) or only pattern- (blue) are pro-
grammed to distinct values that stay constant throughout the training, the synapses
receiving both patterns (black) are not programmed to a stable conductance level
and change throughout the training, oscillating between the conductance boundaries.
Since the overlap was nine in this example, the group of synapses receiving exclusively
pattern+ or pattern- each only consists of two elements while the black group consists
of nine elements. The consequences of this can be seen in Figure 8.11 (d) which shows
the number of spikes generated in this case for pattern+ in orange color and pattern-
in blue color. The distance between the neuron’s responses to pattern+ and pattern-
is small and both are subject to abrupt changes. This prevents a converging of the
delta rule algorithm as the training voltages are not scaled down. A contrast to this
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can be seen in Figure 8.11 (b) and (e) which are achieved for an increased number of
devices per synapse of eight. In this case, the synapses receiving both patterns quickly
reach a stable conductance range. As can be expected the neuron responds to this
increase (decrease) in current with a significantly higher (lower) number of spikes for
pattern+ (pattern-). Lastly, Figure 8.11 (c) and (f) show an even improved picture.
The training is already finished after the first training epoch as all synapses achieve
a stable conductance value. It can be observed in Figure 8.11 (a), (b) and (c) that
the neural network only reaches 100 % accuracy when the synapses receiving both
patterns (black) are completely excited. The explanation for this finding is that fully
excited and fully depressed synapses are representative of more stable device states
in the sense that they require higher voltages to be switched. It has been shown that
a higher HRS requires higher SET voltages to set the device and that a smaller LRS
requires higher RESET voltages to reset it. Therefore, if a synapse is found in a fully
excited or depressed state, it will require higher absolute voltages to switch it to the
opposite state as if the synapse was only partially excited or depressed.

In summary, the presented results show that increasing the number of devices
per synapse greatly increases the performance of the network as it allows for a more
gradual tuning of the weights and helps with reaching the stop learning condition,
i.e. 100 % accuracy. Finally the network’s performance when the inputs are noisy
is investigated. The number of flipped bits represents an external noise source. For
the case of N flipped bits, N random synapse assignments are changed for every
training and test pattern. This makes the classification problem significantly more
difficult since it causes the wrong synapses being trained. Here, a range of zero flipped
bits up to two flipped bits is tested. For even higher numbers of flipped bits, the
accuracy is heavily degraded and no network architecture is able to reliably achieve
accuracies much higher than random guessing. An overview of the results for one and
two flipped bits can be seen in Figure 8.12 (a) and (b). As expected, the accuracy
worsens when some of the input bits are flipped in each training and test run. Another
important feature to be observed in Figure 8.12 (c), (d) and (e) is that the unique
runs showcased by the orange diamonds and the blue circles show a significantly larger
spread if the number of flips is increased, resembling the significant rise in pattern
to pattern variability. The different test patterns are fixed before the training starts
and they are not changed over the epochs. While some patterns produce more easily
distinguishable spike numbers (close to zero for pattern- or about 60 for pattern+),
other patterns provide not such a clear spike response. The number of patterns
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producing an unclear response increases with the number of flipped input bits. For
zero flips all patterns provide a clear spike response, for one flip there is one pattern
that falls out of line and for two flips most of the patterns provide an unclear spike
response. This degradation can also be seen in the median spike response for pattern+,
which is close to 60 for zero flips, around 50 for one flip and only at 40 for two flips.
The dependence of the accuracy on the number of devices per synapse and the overlap
between the patterns is however more complicated than before. One trend which can
be observed is that for smaller overlaps the smaller networks usually perform better
than their larger counterparts. The proposed explanation for this is that when the
network becomes larger it stops training the weights after the first few epochs as the
error-adjusted SET and RESET voltages become too small to significantly adjust the
weights. Figure 8.13 (a) and (c) show this exemplarily for the case of two flips, an
overlap of 4 and the networks containing one (a) or 24 (c) devices per synapse. The
normalized conductances of the synapses in Figure 8.13 (a) are much more shallow
than their counterparts in Figure 8.13 (c), which enables the network to reach a better
final result. The synapses in Figure 8.13 (c) show very little change after around the
second epoch which means that the network has stopped training at this point. As
seen in Figure 8.11 larger networks generally lead to a faster convergence, as they
are able to find weight values for high accuracies quicker. In the presence of flipped
bits in the inputs, this behavior will still hold. However, as some of the synapses
are trained in the opposite direction, this initial stable solution does not yield 100 %
accuracy. Their smaller counterparts take longer to find a stable solution as the
weights are easier disturbed. This gives the smaller synapses a certain robustness
against the incidence of flipped bits. An increase in overlap stresses the point that
larger networks perform generally better for one flip, see Figure 8.12 (a). For two flips
the same statement is true, see Figure 8.12 (b). Multiple effects determine the final
accuracy of a network with a given size and overlap that can be achieved. On the one
hand, smaller networks have an advantage if the overlap between the patterns is small
or medium as their less stable weights can be tuned even if the error becomes smaller,
see Figure 8.13 (a) and (c). However, larger networks perform better for one flipped
input and larger overlaps, which can be explained in the same way as for the zero flip
cases. The comparison of the smallest and largest considered network for an overlap of
nine and two flipped input bits in Figure 8.13 (b) and (d) shows why larger networks
can find better solutions for high overlaps than smaller networks. While the unique
synapses receiving both patterns (grey triangles) for the small network are mostly
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Figure 8.12: (a) and (b) show the accuracies achieved for (a) one or (b) two flipped
bits, averaged over ten runs and evaluated after the same criterion that was used
in Figure 8.10. (c), (d) and (e) show the number of spikes generated by pattern+
(orange) and pattern- (blue). The solid lines show the median while the diamonds
or circles show the responses to the unique pattern+ or pattern-, respectively. (c)
shows the results for zero flips, (d) for one flip and (e) for two flips. Redrawn with
permission from [116].

programmed to less stable medium conductance states as depicted in Figure 8.13 (b),
the larger network can program them to a more stable high conducting state as shown
in Figure 8.13 (d).

Overall, the accuracy is reduced if the inputs are noisy. As can be expected, this
effect is stronger if more inputs are noisy. As the drop in accuracy is closely related
to the utilized training rule, it seems reasonable to investigate how to increase noise
resilience. As seen from the device analysis, this noise resilience will have to take into
account the specialties of ReRAM programming. One idea towards this might be to
use a non-linear scaling of the voltage in the delta rule algorithm. If - for the sake of
argument - it is assumed that the first spike response was at a maximum distance from
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Figure 8.13: (a) to (d) show the conductances normalized to the number of devices per
synapse of the synapses receiving pattern+ (orange line and diamonds), pattern- (blue
line and circles) and both patterns (black line and grey triangles) over the training
epochs. The solid and dashed lines show the mean values while the different symbols
show the values of the actual synapses. Redrawn with permission from [116].

the goal spike response, this would result in ∆wi of 1 as described in Equation 8.2,
giving the nominal programming SET voltage or RESET voltage in the training step.
If the next spike response to an applied pattern was now at half the distance from the
goal spike response, the resulting ∆wi would be 0.5 corresponding to half the nominal
SET or RESET voltage to be applied afterwards. This dividing of the training voltage
in half is however problematic when applied to the tested devices. As can be seen
in Figure 8.3, the range of voltages that lead to a 50 % SET probability is around
300 mV, considering also the edge cases. This range is not significantly changed if
one goes to other SET probabilities. If now the nominal SET voltage was -1 V, to
ensure a 100 % probability, half of that would be -500 mV, which would result in no
switching at all. For half the algorithmic response the actual response is more or less
set to zero. Of course, this assumed case does not occur frequently, and typically the
presented voltage scaling approach works. Also the SET probabilities are affected by
the HRS with smaller HRS states leading to an increased probability for a constant
voltage. Still, there is room for improvement if adapted scaling of the training voltages
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is performed.

8.7 Discussion and summary

The following points summarize the main findings of this study: First of all, it has
become obvious that for a correct device description it is necessary to study multiple
devices on multiple timescales and with high repetition numbers. Findings based on
single device experiments or limited cycle numbers are to be considered with extreme
caution, as inaccurate c2c and d2d variability assumptions can change the results on
higher levels of integration architectures significantly. Primarily, this can be seen in
the shown examples in Figure 8.5 and in Figure 8.1. Various combinations of c2c and
d2d variability lead to different synapse behavior. If not modelled with respect to
a minimum statistical range of devices, wrong conclusions on the synapse behavior
might be drawn, leading to suboptimal operation, which will increase the mismatch
between simulation and experimental investigation of a network. Second, it is crucial
to evaluate the agreement between experimental results and the employed simulation
tool in detail as shown in this work. Several aspects need to be addressed accurately:

• Resistance distributions of HRS and LRS

• SET voltage onset and distribution

• Switching dynamics

• Device-to-device spread

Ultimately, simulation tools like the proposed JART VCM compact model are un-
avoidable for testing novel neuromorphic concepts for their feasibility in real-world
situations. In this context, accurate device compact models may be seen as an impor-
tant step on the way towards large-scale neuromorphic applications, just like transistor
models are at the foundation of current processing units. Third, the concept of paral-
lel devices for a single synapse is investigated. The bottom-up derivation of favorable
synapse behavior in Section 8.4.1 concluded that for the desired application it is very
important to have a certain amount of variability in total, which may be composed
of both c2c and d2d variability to different extents. This minimum variability in the
synapse composition translates into favorable tunability of the synaptic weight. It
was shown that additional devices in the synapse compound enhance this tunabil-
ity factor, hence enhancing the synapse performance. This effect lead to an increased
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number of realistically addressable levels, a larger operation voltage window and more
distinct levels per synapse. Three according parameters to assess the quality of a com-
pound synapse were introduced and verified through experiment and simulation. An
interesting outlook for the future presents itself. In more advanced integration routes
the amount of d2d will most likely be reduced, while the c2c amount will remain
as it is a consequence of the physical nature of the VCM-type resistance change.
Therefore, the addressed case with small d2d variability may arise. However, the
presented approach should be resilient towards this development, as the requirement
lies within the interplay of c2c and d2d variability. However, adjustments regarding
the operation voltages may become necessary because the voltage window is signifi-
cantly reduced under these circumstances, requiring a voltage spacing in the tens of
millivolts. Fourth, the proposed synapse structure was implemented into an exem-
plary neural network which was trained using a technologically plausible algorithm
making use of the concept of stochastic rounding. By developing an optimized hyper-
parameter tuning scheme for the devices, the network was able to converge to 100 %
accuracy for easy tasks. As expected from the previous discussion, higher complexity
problems, i.e. higher overlap between the patterns, required additional devices per
synapse to maintain high accuracy. Here, a top-down view on the network training
stage revealed that a higher device count per synapse leads to more resilience against
perturbations in the form of pattern overlap. However, this stability proved to have a
weakness when additionally considering input noise, i.e. flipped bits, in the training
stage. As the final synapse weight was reached after a single epoch for large synapses,
noise in the form of flipped bits lead to degraded accuracies. In contrast, fewer devices
per synapse required multiple epochs for reaching the minimum error, therefore aver-
aging over multiple flipped bit events. Hence, for low overlaps, a lower device count
surpassed the performance of higher device numbers per synapse, while high overlap
tasks were better solved by higher device count synapses. One mitigation strategy
of this unexpected result may present itself in a more conservative voltage scaling
approach, which begins at a lower voltage and employs smaller voltage increments.
By this technique, the prolonged learning stage allows averaging over multiple flipped
bit patterns and therefore adds noise robustness to the network. The need for ad-
justments like the developed hyperparameter tuning algorithm and the device-aware
network operation emphasizes the importance of algorithms that are tailored to the
physical substrates.

As memristive devices have become widely used in neuromorphic applications in
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8 Application of resistive switching features for neuromorphic hardware

recent years, the concept of using multiple devices per synapse has been applied to
different realizations of memristive devices. Examples for experimental realizations
of this concept were done for Electro-Chemical Metallization (ECM) cells [208] and
Phase Change Mechanism (PCM) cells [215], as well as other VCM systems. In
addition, since the primary requirement for employing the concept is switching volt-
age variability, it can be considered applicable to other VCM systems such as Ta2O5

[111], TiO2 [222] or SrTiO3 [223]. However, in many systems, the possibility of analog
switching has been demonstrated. Further studies are required for a parallel config-
uration of such analog type switches since the concept proposed in this chapter is
based on digital switches with two distinguishable states. However, the diverse resis-
tance switching phenomena observed in these systems will require careful design of the
synapse operation algorithms. For instance, higher resistance variabilities will reduce
the realistic number of addressable synapse current levels, while a tighter switching
voltage distribution may reduce the voltage window where conductance tunability is
possible. The parameters derived in Section 8.4 are able to capture these device-
related characteristics and offer comparable quantities for different devices and device
types. On the network level, mainly theoretical results have been obtained so far
due to the difficulty of large scale integration possibilities. Singha et al. [211] used
simulations to investigate this synapse concept for showing Spike Timing Dependent
Plasticity (STDP) behavior. Their findings showcase that increasing the number of
parallel devices in the synapse brings the synapse closer to the optimal analog case.
However, in their study, they did not consider resistance variability nor d2d variabil-
ity. At the current state of memristive device research, these two issues have not been
resolved, but may be reduced in the future. The modelling in this work therefore
represents a more realistic picture of the current state of the art. Even including the
described artefacts, it was possible to achieve promising results, suggesting that the
concept can compensate for some of the perceived device shortcomings. Also, they
did not go to the network level to investigate the performance of a neural network
based on their synapses. Bill and Legenstein [209] proved the feasibility of the pro-
posed synapse concept in a STDP update rule from a theoretical point of view and
with simulations of idealized bistable devices. Their study came to the similar conclu-
sion, that the network classification error can be reduced by increasing the synapse
resolution, i.e. increasing the number of devices per synapse M. However, in their
abstract model, they did not consider conductance variability in the states, leading
to the assumption that each synapse can assume up to M+1 discrete conductance. A
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8.7 Discussion and summary

more realistic case is shown in this chapter, where the actual addressable number of
states per synapse is lower than M+1, caused by the conductance variability. How-
ever, the overall trend of performance gain is maintained, which is in line with their
study. Furthermore, the study predicts a strong resilience of parallel device synapses
against device non-uniformity, which we can confirm from our study. Overall, the re-
sults obtained from previous literature studies and this work agree that the proposed
concept of multiple devices per synapse is a promising approach, presenting a feasible
alternative to single analog devices as synapse elements. However, by introducing
multiple devices per synapse, new challenges arise due to the device characteristics,
which were shown to have direct impact on synapse levels and tunability window.
Moreover, multiple devices per synapse results in an increased area footprint and
peripheral CMOS circuitries. Solutions such as the demonstrated hyperparameter
algorithm will be required to access the full potential of this promising approach.
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9 Conclusion and Outlook

The goal of this work was to investigate the two switching modes, namely abrupt and
analog switching, in established filamentary VCM-type HfO2 based ReRAM devices
for the application as synaptic elements in neuromorphic circuits. The test vehicle
of this work was the industrially highly relevant Pt/HfO2/TiOx/Ti/Pt stack. Utiliz-
ing ALD grown oxides, the integration into nano-crossbar devices resulted in reliable
resistive switching, allowing for in-depth characterization of the physical processes
that cause the two switching modes. Electrical measurements by voltage sweeps and
voltage pulses were conducted to gain deeper understanding of the operation pa-
rameters for both modes. Importantly, the results were verified on device ensembles
and through multiple iterations, which yielded statistically relevant datasets. Fur-
ther, the device analysis was conducted in close exchange with simulations from the
JART VCM v1b compact model, allowing for physical interpretation of the observed
relations and further development of the model.
The most important results of this work are summarized as follows:
(1) Reliability of the initial electroforming step, device scalability and endurance was
investigated on device ensembles. The high quality and uniformity of the ALD films
resulted in dense and pinhole-free layers that showed highly reproducible electroform-
ing at CMOS compatible voltage levels, underlining the industrial relevance of the
investigated system. By adapting a nanoplug structure, device miniaturization down
to 40 nm x 40 nm size was demonstrated. The switching properties were maintained,
which emphasizes the possibility for extremely dense integration in future applica-
tions. Endurance measurements of multiple devices showed that more than 1 million
switching cycles is possible without further optimization, which is sufficient especially
for neuromorphic circuits, where high switching numbers are less critical than in em-
bedded memory applications.
(2) The SET and RESET transient current analysis revealed that a two-step process
is underlying in both switching events. For the SET, a delay time that is dependent

167
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on the voltage amplitude and the previous HRS programming is followed by a voltage
dependent transition time. In the HRS resistance range where abrupt switching is
prevalent, the delay time is significantly longer than the transition time. Accord-
ingly, analog programming via the transition time is inaccessible. The physical origin
was identified as the delayed thermal runaway process, which is triggered after the
highly variable delay time has passed. The RESET delay time is highly dependent
on peripheral circuit elements such as series resistances. A delay time increase of up
to six orders of magnitude is observed when the voltage divider effect is active, i.e.
when the switching element resistance approaches the series resistance. The following
transition time is voltage-dependent and shorter than the delay time. Importantly,
its duration is independent from the previous delay time. From these results, it was
possible to identify the origin of analog programming capability in the devices as the
effective utilization of the transition time. In accordance, the use of short voltage
pulses with moderate amplitude is imperative for analog programming. At the same
time, the low LRS range and the high HRS range should be avoided to avoid the
appearance of delay times.

(3) A quantification of the analog properties was presented to identify tailored oper-
ation parameters for a desired programming response. For this purpose, metrics for
describing the noise-free LTP and LTD curves were introduced: resolution, linearity
and asymmetry. Many neuromorphic applications benefit from completely linear as
well as symmetric LTP and LTD behavior. The experimental reality is that no com-
bination of voltage amplitudes yielded completely linear response. Instead, it was
found that the LTP process exhibits a purely amplitude-dependent behavior, which
is largely independent of the previous LTD programming. This is true both for reso-
lution and nonlinearity. In contrast, the LTD resolution and nonlinearity is impacted
both by the amplitude as well as the previous programming, making this process the
more controllable of the two. The consequence of this relation is that symmetry of
the individually nonlinear processes and symmetry in resolution is obtained when the
LTD operation parameters are chosen in a way that matches the less adjustable LTP
behavior. Hence, a range of viable operation conditions is systematically found and
the nonlinearity, asymmetry and resolution can be chosen according to the application
specific requirements.

(4) The noise feature extracted from the LTP and LTD analog programming was
investigated in more detail. It was found that the most suitable conductance range
for analog programming is the range that also has the highest absolute conductance
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noise. A constant signal-to-noise ratio at low conductance transitions into an im-
proved signal-to-noise ratio at high conductance, resulting in the typical bell-like
shape for the plot of the standard deviation versus the mean value of conductance.
Frequent literature reports of similar noise characteristics suggest that this behavior is
an inherent property of filamentary VCM-type devices. Recent advancements of the
understanding of electronic conduction in the cells suggest that the physical explana-
tion can be found in the importance of single oxygen vacancy position perturbations
due to the complex relation of ionic configuration in trap-assisted tunneling-based de-
vices. Although the ionic configuration possibilities are nearly infinite, the presented
considerations lead to the conclusion that the realistically distinguishable number
of conductance levels in the presented devices is limited to around eight. Material
modifications or noise reduction strategies could improve this number.
(5) The SET process stochasticity was identified as promising property for implement-
ing an analog synapse by utilizing devices switched in the binary operation mode.
Through statistical analysis, a quantification of cycle-to-cycle and device-to-device
variability was obtained. By arrangement of parallel devices an artificial synapse
was constructed and the functionality was experimentally demonstrated. The key
insight was that the mentioned variability components complement each other in the
synapse structure. At least cycle-to-cycle variability is required for the concept to
work. Through simulations with an extended version of the JART VCM v1b model,
the observations were confirmed and the artificial synapse unit was utilized in a spik-
ing neural network for a pattern recognition task. Variation of the device per synapse
count and the problem complexity illustrated the viability of the proposed synapse
concept.
The present work reports important findings for the future adoption of the filamentary
VCM device technology in neuromorphic circuits. However, there are a couple of open
questions which should be addressed in upcoming studies:
(1) The demonstrated noise extraction resulted in a characteristic bell-shape curve,
which is reported in literature, too. However, an adequate model that captures this
property in the full extent is still lacking. Nevertheless, such features have proven to be
highly beneficial in some new applications, e.g. Bayesian neural networks. Modeling
and calibration could therefore pave the way for further development of such concepts.
(2) The demonstrations of applicability for synapse functionality in this work are
limited to supervised learning tasks. However, there are many concepts that em-
ploy unsupervised learning algorithms. Applicability of filamentary devices in such
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networks should be tested in the future.
(3) Through lower conductance programming, currents are reduced and the device is
operated more energy-efficiently. By on-chip co-integration with commercially avail-
able transistors, this goal can be achieved. However, it needs to be determined how
much of the reported properties translate to such co-integrated devices and should
therefore be tested accordingly.
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Appendix

Fabrication of 40 nm x 40 nm nanoplug devices

The following recipe for nanoplug devices was developed by Solomon Chekol of the
PGI-7 at Forschungszentrum Jülich.

Starting substrate: 20 cm x 20 cm Si/430 nm SiO2. Fabrication steps:

1. Bottom electrode metal deposition: Sputtering of 5 nm Ta and 25 nm Pt;

2. Cleaning: 3 minutes of ultrasonic bath in Acetone at power level 3 followed by
3 minutes of ultrasonic bath in isopropyl alcohol at power level 3, drying with
N2 gas;

3. Bottom electrode lithography:

(a) Substrate dehydration at 120 °C for 3 min;

(b) Spincoating of (1:2) diluted AZ nLof 2020 resist at 4000 rpm for 45 s;

(c) Resist baking at 90 °C for 3 min;

(d) Electron beam exposure at 100 kV using mask "True_Planar_Device_L1";

(e) Post-exposure baking at 110 °C for 3 min;

(f) Development in AZ 726 MIF developer for 1 min, stopped in deionized
water, drying with N2 gas.

4. RIBE etching using Argon process gas.

5. Resist removal by DMSO at 80 °C for minimum of 3 hours, followed by 3 min
ultrasonic bath at power level 5. Swabbing in Acetone and optional plasma
ashing.

6. Deposition of the insulation layer of 20 nm SiO2 by plasma enhanced ALD.
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7. Nano hole lithography:

(a) Spincoating of AllResist CSAR 6200.04 resist at 4000 rpm for 45 s;

(b) Resist baking at 150 °C for 1 min;

(c) Electron beam exposure at 100 kV using mask "True_Planar_Device_L2";

(d) Development in AR 600-55 developer for 1 min, stopped in isopropyl alco-
hol, drying with N2 gas.

8. RIBE etching using CF4 process gas.

9. Resist removal by AR 600-71 for minimum of 30 min, followed by acetone, iso-
propyl alcohol and deionized water bath.

10. Deposition of the switching layers of 3 nm HfO2 by plasma enhanced ALD and
3 nm TiOx by thermal ALD.

11. Top electrode lithography:

(a) Spincoating of AllResist CSAR 6200.04 resist at 4000 rpm for 45 s;

(b) Resist baking at 150 °C for 1 min;

(c) Electron beam exposure at 100 kV using mask "True_Planar_Device_L3";

(d) Development in AR 600-55 developer for 1 min, stopped in isopropyl alco-
hol, drying with N2 gas.

12. Deposition of the top electrode metal layers of 10 nm Ti and 20 nm Pt by sput-
tering.

13. Lift-off by AR 600-71 over night, followed by acetone, isopropyl alcohol and
deionized water bath.

14. Contact pad opening lithography:

(a) Substrate dehydration at 120 °C for 3 min;

(b) Spincoating of (1:2) diluted AZ nLof 2020 resist at 4000 rpm for 45 s;

(c) Resist baking at 90 °C for 3 min;

(d) Electron beam exposure at 100 kV using mask "True_Planar_Device_L4";

(e) Post-exposure baking at 110 °C for 3 min;
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(f) Development in AZ 726 MIF developer for 1 min, stopped in deionized
water, drying with N2 gas.

15. RIBE etching using CF4 process gas.

16. Resist removal by DMSO at 80 °C for minimum of 3 hours, followed by 3 min
ultrasonic bath at power level 5. Swabbing in Acetone.
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