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1. Introduction 
 
 Excitations in crystals can be described using formalism of dispersion relations of the 
normal modes or quasi-particles (phonons, magnons, etc.). These relations contain the most 
detailed information on the intermolecular interactions in solids. 
 The result of a neutron scattering experiment is the distribution of neutrons that have 
undergone an energy exchange ω = Ei - Ef,  and a wave vector transfer, Q = ki – kf , after 

scattering by the sample.: 
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coh is coherent scattering cross section, inc is incoherent scattering cross section. They are 
constants that can be found in tables (http://www.ncnr.nist.gov/resources/n-lengths/). S(Q,) 
functions depend only on the structure and dynamics of the sample and do not depend on the 
interaction between neutrons and the sample. Sinc(Q,) reflects individual motions of atoms. 
Scoh(Q,) provides the information on the structure and collective excitations in the sample.  

 
 
 
 The triple axis spectrometer is designed for measuring the Scoh(Q,) in monocrystals. 
Therefore this function is of special interest for us. 

Energy transfer  
 = Ei - Ef 

 
Momentum transfer 
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2. Elastic scattering and Structure of Crystals 
 

In the case of coherent elastic scattering, when ω = 0 (ki = kf ) only neutrons, that 
fulfill the Brags law are scattered by the sample: 

                                                   nλ = 2dhklsinhkl,                                                                      (2) 

where λ is a wavelength of neutron, dhkl  is a distance between crystal planes described by 
corresponding Miller indexes hkl. hkl denotes the angle between incoming (outgoing) scattering 
beam and the (hkl) plane. 
 For the analysis of the scattering processes in crystals it is convenient to use the concept of the 
reciprocal space. For an infinite three dimensional lattice, defined by its primitive vectors a1, 
a2 and a3, its reciprocal lattice can be determined by generating three reciprocal primitive 
vectors, through the formulae: 
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Note the denominator is the scalar triple product. Geometrically, the scalar triple product 
a1(a2a3) is the volume of the parallelepiped defined by the three vectors.  
 Let us imagine the lattice of points given by the vectors g1, g2 and g3 such that  is an 
arbitrary linear combination of these vectors: 

                         321 gggτ lkh  ,       (4) 

where h,k,l are integers. Every point of the reciprocal lattice, characterized by  corresponds 
in the position space to the equidistant set of planes with Miller indices (h,k,l) perpendicular 
to the vector . These planes are separated by the distance   

hkl
hkld

τ

2
         (6) 

 The Brag’s condition for diffraction can be expressed in the following vector form:  

Q = hkl        (7) 

A useful construction for work with wave vectors in reciprocal space is the Brillouin 
zone (BZ). The BZ is the smallest unit in reciprocal space over which physical quantities such 
as phonon or electron dispersions repeat themselves. It is constructed by drawing vectors from 
one reciprocal lattice points to another and then constructing lines perpendicular to these 
vectors at the midpoints. The smallest enclosed volume is the BZ.  
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Fig.1 Real (left) and reciprocal (right) two dimensional lattices and BZ (gray area) 
 
 

3. Inelastic Neutron Scattering and Phonons 
 

 
Fig.2  Phonon dispersion curves for Ge. 

 
Atomic vibrations in a crystal can be analyzed in terms of lattice waves which are the 

normal modes of the crystal. The frequencies of normal modes  are related to their wave 
vectors q (q = 2/) by the dispersion relations 

       = j(q),          (7) 

where the index j denotes a particular branch. For a crystal with N atoms per primitive unit 
cell there are 3N branches of the frequency spectrum. Three branches are acoustic ones for 
which   0 as q  0; the other 3N-3 are branches are optical branches for which  tends to 
a finite value as q  0. In certain directions of high symmetry the normal vibrations are 
strictly transverse or longitudinal. The energy quantum  is called phonon in analogy to the 

phonon for electromagnetic waves.  
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 If we want to measure the frequency of a phonon  for a certain q, the basic scattering 
conditions must fulfil the energy and momentum conservation laws: 

)()(
2
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n
fi kk

m
EE        (9) 

Q = ki – kf = G  q 

When the above conditions are fulfilled, the function Scoh(Q,) shows a peak. We can held Q 
constant and vary ki (kf) to measure intensity of scattered neutrons at different energy 
transfers. In order to keep Q, and thus q, constant while varying ki, the scattering angle must 
change as well as the relative orientation of the crystal with respect to kf.  
 The intensity of neutrons scattered by phonon is proportional to the square of the 
dynamical structure factor F(Q): 
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Where sum is taken over all atoms in unit cell with coordinates rk , exp(-W) is a Debye-
Waller factor, ek denotes the polarization vector of the phonon. The scalar product  jqeQ   

means that only lattice vibrations polarized along the momentum transfer are visible. This 
makes possible to distinguish transverse (TA) and longitudinal (LA) acoustic modes. For TA 
modes eq, and therefore Q must be perpendicular to q, while for a LA mode, one must take 
Q q (Fig. 3) 

 

 
Fig. 3 Top: LA and TA phonons. Bottom: Neutron scattering diagram in the reciprocal space 
for TA (left ) and LA phonons  
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4. Triple Axis Spectrometer PUMA  
The three-axis instrument is the most versatile instrument for use in inelastic scattering 
because it allows one to probe nearly any coordinates in energy and momentum space in a 
precisely controlled manner. The three axes correspond to the axes of rotation of the 
monochromator (axis1), the sample (axis2), and the analyzer (axis3). The monochromator 
crystal selects neutrons with a certain energy from the white neutron beam emanating from 
the reactor. The monochromatic beam is then scattered off from the sample (second axis). The 
neutrons scattered by the sample can have a different energy from those incident on the 
sample. The energy of these scattered neutrons is then determined by the analyzer crystal 
(third axis). All three angles (M, S, A) can vary during an experiment, the sample table and 
analyzer are equipped with air pads, so that they can glide over the “Tanzboden” (dancing 
floor). Below, we describe in detail each component of a triple-axis spectrometer. 
 

Monochromator 
A crystal monochromator is used to select neutrons with a specific wavelength. Neutrons with 
this wavelength interact with the sample and are scattered off at a similar (elastic) or different 
wavelength (inelastic). The energy of the neutrons both incident on and scattered from the 
sample is determined by Bragg reflection from the monochromator and analyzer crystals, 
respectively. For a specific Bragg plane (hkl) characterized by an interplanar spacing dhkl, the 
crystal is rotated about a vertical axis. A pyrolytic graphite with d002 =  3.35 Å (PG(002)) and 
a copper with d220 = 1.28 Å (Cu(220)) monochromators are available at PUMA. The angular 
range of the monochromator 2M is of 15o - 115°. The PG(002) is usually used for energies 
below 50meV (>1.3Å). For higher incident energies the Cu(220) can be used. 

Sample table 
The sample table from the company Huber provides a possibility to vary independently both 
2s and S. It is equipped with a goniometer moving the sample in the three translation axes x, 
y and z and tilting. The tilt angle is ±15°. Single crystal experiments can be performed with an 
Euler cradle at PUMA. The sample environment includes magnets, pressure cells, cryostats 
and high temperature furnace. 

Analyzer 
Like the monochromator, the PG(002) analyzer consist of 20x5 separate analyzer crystal 
plates are mounted in an aluminum frame. There is an option to measure with the flat or 
horisontaly and verticaly focused analyser. The angular range of the analysator 2M is of  
-130o - 130°. 

Detector and monitor 
The detector consists of five counter tubes which are filled with a 3He pressure of 5 bar. To be 
able to monitor the neutron flux incident on the sample, a low-efficiency neutron counter 
monitor is usually placed before the sample. Such a monitor is required so that flux variation 
caused by, for example, the reactor power fluctuations and the change in reflectivity of the 
monochromator with neutron wavelength can be automatically corrected for.  
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Fig.4 PUMA spectrometer. 
 
 
 
Slits, Collimators, Filter 

Additional components like slits or collimators are used to define the beam cross 
section. Collimators (1- 4) are used for the improvement of the resolution and to specify 
the beam divergence. They consist of multiple parallel arranged Gd2O3 coated foils with a 
defined angle to the beam. The angular divergence of the collimator in the horizontal plane  
is defined by the distance between foils d and the length of the collimator l (tan  = d / l). 
Different collimators with a horizontal divergence between 10’ and 60’ are available at the 
instrument.  

One of the problems of the TAS method is the possible presence of higher harmonics 
in the neutron beam. Higher harmonics arise from higher order (hkl) in Bragg’s law (2). This 
means that if the monochromator (analyzer) crystal is set to reflect neutrons with a 
wavelength of  from a given (hkl) plane, it will also reflect neutrons with wavelength /n. 
This leads to the appearance of several types of spurious peaks in the observed signal. 
Different filters are used to eliminate the high-order neutrons and to reduce the background. 
There are a sapphire filter (Al2O3) and an erbium filter (Er) at PUMA. They are installed in 
front of the monochromator. Sapphire filter is used wavelengths > 1 Å and reduce the 
background inducing by the epithermal neutrons. Erbium filter is suitable as /2 filter for  
between 0.5 and 1Å as well as /3 filter for  between 0.7 and 1.6Å. 
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Components 
Axis PUMAs 

notation 
Description 

Monochromator M M mth Monochromator Theta 
 2M mtt Monochromator 2Theta 
  mtx, mty Monochromator Translation x-, y- direction 
  mgx, mgy Monochromator Goniometer x-, y- direction 
  mfh, mfv Monochromator Focus horizontal, vertical 
Sample S S psi Sample Theta 
 2S phi Sample 2Theta 
  stx, sty, stz Sample Translation x-, y-, z- direction 
  sgx, sgy Sample Goniometer x-, y- direction 
Analyzer A A ath Analyzer Theta 
 2A att Analyzer 2Theta 
  atx, aty Analyzer Translation x-, y- direction 
  agx, agy Analyzer Goniometer x-, y- direction 
  afh Analyzer Focus horizontal 
Collimators  alpha1 – alpha4 Collimation 
 
 

5. Experiment Procedure 
 
The aim of the experiment is to measure acoustic phonons in a germanium sample. The 
phonons will be measured for [110] (LA) and [001] (TA) directions in [220] BZ.  
The experimental procedure shall contain the following steps: 
 
Sample alignment 
It is very difficult to align a sample with triple axis spectrometer, if the sample orientation is 
absolutely unknown. A sample must be pre-aligned, this means that the vertical axis of the 
sample must be known and roughly perpendicular to the ‘Tanzboden’. Than we shall do the 
following steps: 
- Inform the control program of the spectrometer about a scattering plane of the sample. One 
must set two reciprocal vectors (in our case [110] and [001]) laying in the scattering plane. 
- Drive spectrometer (M, 2M, S, 2S, A, 2A,) to the position corresponding to [220] 
reflection. 
- Scan S and find the Brag’s peak.  
- Scan corresponding goniometer axes to maximize intensity of the peak. 
- Do the same for other reflection [004]. 
- Change the offset of the S so that the nominal S values correspond to intensity maxima for 
the above reflections. 
 
Phonons measurements 
For our measurements we will chose the const-kf configuration with kf = 2.662 Å-1 (Ef = 14.68 
meV). This means that we will scan the energy transfer  = Ei – Ef by varying incident 

energy Ei (ki). We are going to use PG(002) monochromator. 
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For LA phonon we will do constant-Q scans in the energy transfer range  = 0 – 21 meV (0 

– 8 THz) for the following points:  
Q(r.l.u.) = (2.1, 2.1, 0), (2.2, 2.2, 0), (2.3, 2.3, 0), (2.4, 2.4, 0), (2.5, 2.5, 0), (2.6, 2.6, 0), (2.7, 
2.7, 0), (2.75, 2.75, 0).  
 
For TA phonon we will do constant-Q scans in the energy transfer range  = 0 – 15 meV (0 

– 3.6 THz) for the following points:  
Q(r.l.u.) = (2, 2, 0.2), (2, 2, 0.3), (2, 2, 0.4), (2, 2, 0.5), (2, 2, 0.7), (2, 2, 0.8), (2, 2, 0.9), (2, 2, 
1).  
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Fig 5 Elements of PUMA 
 

a) PG Analyzer b) Soller collimator 

c) Sample table d) Shutter, filters and collimators 

e) Analyzer and Detector f) Detector, consists of 5 3He tubes 
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6. Preparatory Exercises 

1. Calculate angles M, 2M, S, 2S for the reflections [220] and [004] of germanium (cubic-
diamond, a = 5.66 Å), supposing that kf = 2.662 Å-1 = const, monochromator is PG(002), and 
check, if this reflections are measurable with our experimental setup. 
2. Before doing a scan it is important to check that all point in Q -  space are available, 

instrument angles do not exceed high or low limits. Also, an experimental scientist must be 
sure that the moving instrument will not hit walls or any equipment. Calculate instrument 
parameters (M, 2M, S, 2S) for the momentum transfers Q (r.l.u.) = (2.1, 2.1, 0), (2.75, 
2.75, 0) and energy transfers  = 0 and 21 meV. This can be done using an online triple-axis 

simulator:  
http://www.ill.eu/instruments-support/computing-for-science/cs-software/all-software/vtas/ 
 

7. Experiment-Related Exercises 
 

1. Plot obtained spectra for each Q as a function of energy (THz). Fit the spectra with 
Gaussian function and find centers of the phopon peaks. The obtained phonon 
energies plot as a function of q. 

2. Why triple-axis spectrometer is the best instrument to study excitations in single 
crystals? 

3. During this practicum we do not consider some problems that are very important for 
planning experiments with a triple axis instrument such as resolution and intensity 
zones [2]. Persons who have a strong interest to the triple-axis spectroscopy should 
study these topics by oneself. Advanced students should be able to explain our choice 
of Brillouin zone and parameters of scans for the phonon measurements. 

 

Useful formula and conversions 
 
1 THz = 4.1.4 meV 
 
nλ = 2dhklsinhkl, 

hkl
hkld

τ

2
  

 

f0 kkQ   

2cos222
fifi kkkkQ   

 

If ki = kf  (elastic scattering) 

 sin

4
sin2  ikQ  

 
E [meV] = 2.072 k2 [Å-1] 
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1 Introduction 

Many properties of solid matter like their mechanical, thermal, optical, electrical and 
magnetic properties depend strongly on their atomic structure. Therefore, a good 
understanding of the physical properties needs not only the knowledge about the particles 
inside (atoms, ions, molecules) but also about their spatial arrangement. For most cases 
diffraction is the tool to answer questions about the atomic and/or magnetic structure of a 
system. Beyond this, neutron diffraction allows to answer questions where other techniques 
fail. 

2 Crystallographic Basics 

In the ideal case a complete solid matter consists of small identical units (same content, same 
size, same orientation like sugar pieces in a box). These units are called unit cells. A solid 
matter made of these cells is called a single crystal. The shape of a unit cell is equivalent to a 
parallelepiped that is defined by its base vectors a1, a2 und a3 and that  can be described by its 
lattice constants a, b, c; ,  and   (pic. 1). Typical lengths of the edges of such cells are 
between a few and a few ten Ångström (1Å=10–10 m). The combination of various restrictions 
of the lattice constants between a ≠ b ≠ c; ≠  ≠ ≠ 90° (triclinic) and a = b = c;  =  
= 90° (cubic) yields seven crystal systems. The request to choose the system with the highest 
symmetry to describe the crystal structure yields fourteen Bravais lattices, seven primitive and 
seven centered lattices. 

Fig. 1: Unit cell with |a1|=a, |a2|=b, |a3|=c,  
 

Each unit cell contains one or more particles i. The referring atomic positions xi=xi*a1 + yi*a2 
+ zi*a3 are described in relative coordinates 0 ≤ xi; yi; zi < 1. The application of different 
symmetry operations (mirrors, rotations, glide mirrors, screw axes) on the atoms in one cell 
yield the 230 different space groups (see [1]). 
 
The description of a crystal using identical unit cells allows the representation as a 
threedimensional lattice network. Each lattice point can be described as the lattice vector t = 
u*a1 + v*a2 + w*a3; u, v, w  Z. From this picture we get the central word for diffraction in 
crystals; the lattice plane or diffraction plane. The orientations of these planes in the crystal 
are described by the so called Miller indices h, k and l with h, k, l  Z (see pic. 2). The 
reciprocal base vectors a*1, a*2, a*3 create the reciprocal space with: a*i * aj  = ij with ij=1 
for i=j and ij=0 for i≠ j. Each point Q=h*a*1 + k*a*2 + l*a*3 represents the normal vector of 
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a (hkl) Plane. Each plane cuts the crystal lattice along its base vectors a1, a2 and a3 at 1/h*a1, 
1/k*a2 and 1/l*a3. A Miller index of zero means that the referring axis will be cut in infinity. 
Thus, the lattice plane is parallel to this axis.  

Fig. 2: Different lattice planes in a crystal lattice, a3 = viewing direction 
 
The atoms in a unit cell are not rigidly fixed at their positions. They oscillate around their 
positions (e.g. thermal excitation). A simple description for this is the model of coupled 
springs. In this model atoms are connected via springs whose forces describe the binding 
forces between the atoms (e.g. van der Waals, Coulomb, valence). The back driving forces of 
the springs are proportional to the deviation xi of the atoms from their mean positions and to 
the force constant D, thus. F = -D*Δx (harmonic approximation). 
Therefore, the atoms oscillate with xi = Ai*sin(ν*t) around their mean positions with the 
frequency ν and the amplitude Ai. Both, ν and Ai are influenced by the force constant Dj of the 
springs and the atomic masses mi of the neighbouring atoms. The resulting lattice oscillations 
are called phonons in reference to the photons (light particles) in optics, which as well 
transport energy in dependence of their frequency. A more complex and detailed description 
of phonons in dependence on the lattice structure and the atomic reciprocal effects is given in 
lattice dynamics. In the harmonic approximation the displacements of an atom can be 
described with an oszillation ellipsoid. This ellipsoid describes the preferred spacial volume 
in which the atom is placed. Its so called mean square displacements (MSD) Ui

jk represent the 
different sizes of the ellipsoid along the different main directions j, k in the crystal. The 
simplest case is a sphere with the isotrope MSD Bi. In the next paragraph MSD are discussed 
from the point of view of diffraction analysis. 
A full description of a single crystal contains information about lattice class, lattice constants 
and unit cell, space group and all atomic positions and their MSD. If the occupancy of one or 
more positions is not exactly 100%, e.g. for a mixed crystal or a crystal with deficiencies 
there has to be used also an occupancy factor.  
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3 Structure Determination with Diffraction 

3.1 Introduction 
Diffraction means coherent elastic scattering of a wave on a crystal. Because of the quantum 
mechanical wave/particle dualism x-rays as well as neutron beams offer the requested wave 
properties: 
 
Electrons: E = hν; λ= c/ν 
Neutrons: Ekin = 1/2 * mn*v2 = hν = p2/2mn; λ= h/p; p ~(mn kB T) 
 
h: Planck’s constant; ν: oscillation frequency; λ: wavelength; c: light speed; p: impact; mn: 
neutron mass; kB: Boltzmann constant; T: temperature 
 
Only the cross section partners are different (x-rays: scattering on the electron shell of the 
atoms, neutrons: core (and magnetic) scattering) as explained in detail below. In scattering 
experiments informations about structural properties are hidden in the scattering intensities I.  
In the following pages we will discuss only elastic scattering (λin=λout). The cross section of 
the radiation with the crystal lattice can be described as following: 
Parallel waves of the incoming radiation with constant λ are diffracted by lattice planes which 
are ordered parallel with a constant distance of d. This is very similar to a light beam reflected 
by a mirror. The angle of the diffracted beam is equal to the angle of the incoming beam, thus 
the total angle between incoming and outgoing beam is 2 (see fig. 3). 

Fig. 3: Scattering on lattice planes 
 
The overlap of all beams diffracted by a single lattice plane results in constructive 
interference only if the combination of the angle , lattice plane distance d and wavelength 
λmeet Braggs law: 

2d sin = λ 
 
The largest distance dhkl = |Q| of neighboured parallel lattice planes in a crystal is never larger 
than the largest lattice constant dhkl ≤ max(a; b; c). Therefore, it can only be a few Åor less. 
For a cubic unit cell (a = b = c;  =  =  = 90°) this means:  
dhkl = a/ (h2+k2+l2) 
 
With increasing scattering angle also the indices (hkl) increase while the lattice plane 
distances shrink with a lower limit of dmin = λ/2. Therefore, scattering experiments need 

Q



6  M. Meven 

wavelengths λ in the same order of magnitude of the lattice constants or below. This is equal 
to x-ray energies of about 10 keV or neutron energies about 25 meV (thermal neutrons).  
 
Ewald Construction: In reciprocal space each Bragg reflex is represented by a point Q = 
h*a*1 + k*a*2 + l*a*3. A scattered beam with the wave vector k fulfills Braggs law if the 
relationship k = k0 + Q , |k|=|k0|=1/λ is true, as shown in fig. 4. During an experiment the 
available reciprocal space can be described by an Ewald sphere with a diameter of 2/λ and the 
(000)-point as cross point of k0 direction and the centre of the diameter of the sphere. The 
rotation of the crystal lattice during the diffraction experiment is equal to a synchronous 
movement of the reciprocal lattice around the (000)-point. If Braggs law is fulfilled, one point 
(h k l) of the reciprocal lattices lies exactly on the Ewald sphere. The angle between the k-
vektor and the k0-vektor is 2. The limited radius of 1/λ of the Ewald sphere limits also the 
visibility of (h k l) reflections to |Q| < 2/λ.  

 
Fig. 4: Ewald construction 

 
Determination of the Unit Cell: Following Braggs law the scattering angle 2 varies (for 
λ=const.) according to the lattice distance dhkl. Thus for a given λ and known scattering angles 
2 one can calculate the different d values of the different layers in the lattice of a crystal. 
With this knowledge is is possible to determine the lattice system and the lattice constants of 
the unit cell (although not always unambigously!).  
 
Atomic Positions in the Unit Cell: The outer shape of a unit cell does not tell anything about 
the atomic positions xi=(xi yi zi) of each atom in this cell. To determine the atomic positions 
one has to measure also the quantities of the different reflection intensities of a crystal. This 
works because of the relationship between the intensities of Bragg reflections and the specific 
cross section of the selected radiation with each element in a unit cell. Generally one can use 
the following formula for the intensity of a Bragg reflection (h k l) with Q (kinetic scattering 
theory): 
 
Ihkl ~ |Fhkl|

2 with Fhkl =n
i=1 si(Q) exp(2(hxi+kyi+lzi)) 

 

Q 
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The scattering factor F is a complex function describing the overlap of the scattering waves of 
each atom i (n per unit cell). si(Q) describes the scattering strength of the i-th atom on its 
position xi in dependence of the scattering vector Q, which depends on the character of cross 
section as described below. 
In this context one remark concerning statistics: For measurements of radiation the statistical 
error  is the square root of the number of measured events, e.g. x-ray or neutron particles. 
Thus, 100 events yield an error of 10% while 10,000 events yield an error of only 1%! 
 
Mean Square Displacements (MSD): Thermal movement of atoms around their average 
positions reduce the Bragg intensities during a diffraction experiment. The cause for this 
effect is the reduced probability density and therefore reduced cross section probability at the 
average positions. For higher temperatures (above a few Kelvin) the MSD Bi of the atoms 
increase linearly to the temperature T, this means B ~ T. Near a temperature of 0 K the MSD 
become constant with values larger than zero (zero point oscillation of the quantum 
mechanical harmonic oscillator). 
Thus, the true scattering capability si of the  i-th atom in a structure has to be corrected by an 
angle-dependent factor (the so called Debye-Waller factor): 
 
si(Q) → si(Q) * exp(-Bi(sin Q/)2) 
 
This Debye-Waller factor decreases with increasing temperatures and yields an attenuation of 
the Bragg reflection intensities. At the same time this factor becomes significantly smaller 
with larger sinλ~|Q|. Therefore, especially reflections with large indices loose a lot of 
intensity. The formula for anisotropic oscillations around their average positions looks like 
this: 
 

si(Q) → si(Q) * exp(-22(Ui
11 h

2a*2 + Ui
22 k

2b*2 + Ui
33 l

2c*2 + 
                                   + 2Ui

13 hl a*c* + 2Ui
12 hk a*b* + 2Ui

23kl b*c*)) 
 
The transformation between B and Ueq (from the Uij calculated isotropic MSD for a sphere 
with identical volume) yields  B = 82Ueq. 
For some structures the experimentally determined MSD are significantly larger than from the 
harmonic calculations of the thermal movement of the atoms expected. Such deviations can 
have different reasons: Static local deformations like point defects, mixed compounds, 
anharmonic oscillations or double well potentials where two energetically equal atomic 
positions are very near to each other and therefore distribute the same atom over the crystal 
with a 50%/50% chance to one or the other position. In all those cases an additional 
contribution to the pure Debye-Waller factor can be found which yields an increased MSD. 
Therefore in the following text only the term MSD will be used to avoid misunderstandings. 

3.2 Comparison of X-ray and Neutron Radiation 

X-Ray Radiation interacts as electromagnetic radiation only with the electron density in a 
crystal. This means the shell electrons of the atoms as well as the chemical binding. The 
scattering capability s (atomic form factor f(sin)) of an atom depends on the number Z of 
its shell electrons (f(sin(=0)/λ) =Z). To be exact, f(sin()/λ) is the Fourier transform of the 
radial electron density distribution ne(r): f(sin()/λ)=s ∫∞0 42ne(r) sin(µr)/µr dr with 
µ=4sin()/Heavy atoms with many electrons contribute much stronger to reflection 
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intensities (I~Z2) than light atoms with less electrons. The reason for the sinλ-dependence 
of f is the diameter of the electron shell, which has the same order of magnitude as the 
wavelength λ. Because of this there is no pointlike scattering centre. Thus, for large scattering 
angles the atomic form factors vanish and also the reflection intensities relying on them. The 
atomic form factors are derived from theoretical spherical electron density functions (e. g. 
Hartree-Fock). The resulting f(sinλ)-curves of all elements (separated for free atoms and 
ions) are listed in the international tables. Their analytical approximation can be described by 
seven coefficients (c; ai; bi; 1≤ i ≤ 3) , see [1]. 
 
Neutron Radiation radiation interacts with the cores and the magnetic moments of atoms. 
The analogon to the x-ray form factor (the scattering length b) is therefore not only dependent 
on the element but the isotope. At the same time b-values of elements neighboured in the 
periodic table can differ significantly. Nevertheless, the scattering lengths do not differ around 
several orders of magnitude like in the case of the atomic form factors f . Therefore, in a 
compound with light and heavy atoms the heavy atoms do not dominate necessarily the Bragg 
intensities. Furthermore the core potential with a diameter about 10-15Å is a pointlike 
scattering centre and thus the scattering lengths bn become independent of the Bragg angle 
and sinλ respectively. This results in large intensities even at large scattering angles. The 
magnetic scattering lengths bm can generate magnetic Bragg intensities comparable in their 
order of magnitude to the intensities of core scattering. On the other hand side the magnetic 
scattering lengths are strongly dependent on the sinλ value due to the large spacial 
distribution of magnetic fields in a crystal. Therefore, it is easy to measure magnetic 
structures with neutrons and to separate them from the atomic structure. 
 
Comparison: In summary in the same diffraction experiment the different character of x-ray 
and neutron radiation yield different pieces of information that can be combined. x-rays yield 
electron densities in a crystal while neutron scattering reveals the exact atomic positions. This 
fact is important because for polarised atoms the core position and the centre of gravity of 
electron densities are not identical any more. In compounds with light an heavy atoms 
structural changes driven by light elements need additional diffraction experiments with 
neutrons to reveal their influence and accurate atomic positions respectively. One has to take 
into account also that for x-rays intensitied depend twice on sinλ. Once bye the atomic form 
factor f, and twice by the temperature dependent Debye-Waller factor (see above). The first 
dependence vanishes if using neutron diffraction with b=const. and decouples the structure 
factors from the influence of the MSD. In general this yields much more accurate MSD Uij 
especially for the light atoms and might be helpful to reveal double well potentials. 

3.3 Special Effects 

From the relation I~|F|2 one can derive that the scattering intensities of a homogenous 
illuminated sample increases with its volume. But there are other effects than MSD that can 
attenuate intensities. These effects can be absorption, extinction, polarization and the Lorentz 
factor: 
 
Absorption can be described by the Lambert-Beer law: 
 
I = I0 exp(-µx) , µ/cm-1 = linear absorption coefficient, x/cm = mean path through sample  
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The linear absorption coefficient is an isotropic property of matter and depends on the 
wavelength and kind of radiation. For x-rays penetration depths are only a few millimetre or 
below (e.g. for silicon with µMoK=1.546 mm-1, µCuK=14.84 mm-1 with penetration depths of 
3 mm and 0.3 mm respectively). This limits transmission experiments to sample diameter of 
typically below 0.3 mm. To correct bias of intensities due to different scattering paths through 
the sample one has to measure accurately the sample size in all directions. Even for sphere 
liek samples the mean path lenghts depend on 2 In addition the sample environment must 
have an extraordinary small absorption  
Thermal neutrons have for most elements a penetration depth of several centimeters. Thus, 
sample diameters of several millimeters and large and complex sample environments 
(furnaces, magnets, etc.) can be used. On the other hand side one needs sufficiently large 
samples for neutron diffraction which is often a delicate problem.  
 
Extinction reduces also radiation intensities. But the character is completely different form 
that of absorption. In principle extinction can be explained quite easily by taking into account 
that each diffracted beam can be seen as a new primary beam for the neighbouring lattice 
planes. Therefore, the diffracted beam becomes partially backscattered towards the direction 
of the very first primary beam (Switch from kinetic to dynamic scattering theory!). Especially 
for very strong reflections this effect can reduce intensities dramatically (up to 50% and 
more). Condition for this effect is a merely perfect crystal.  
Theoretical models which include a quantitative description of the extinction effect were 
developed from Zachariasen (1962) and Becker and Coppens [2, 3, 4, 5, 6]. These models 
base on an ideal spherical mosaic crystal with a very perfect single crystal (primary 
Extinction) or different mosaic blocks with almost perfect alignment (secundary Extinction) 
to describe the strength of the extinction effect. In addition, it is possible to take into account 
anisotropic extinction effect if the crystal quality is also anisotropic. Nowadays extinction 
correction is included in most refinement programs [7]. In general extinction is a problem of 
sample quality and size and therefore more commonly a problem for neutron diffraction and 
not so often for x-ray diffraction with much smaller samples and larger absorption.  
 
Polarisation: X-ray radiation is electromagnetic radiation. Therefore, the primary beam of an 
x-ray tube is not polarized. The radiation hits the sample under an diffraction angle of  
where it can be separated into two waves of same intensity, firstly with an electrical field 
vector parallel E|| and secondly perpendicular E towards the -axis. Whilst the radiation 
with E|| will not be attenuated the radiation with E will be attenuated with E → cos(2) E. 
The polarization factor P for the attenuation has then the following formula (I  ~ E2): 
 
P = (1+cos(2)2)/2 
 
Additional optical components like monochromator crystals also have an impact on the 
polarization and have to be taken into account accordingly. 
  
Lorentz factor: The Lorentz factor L is a purely geometrical factor. It describes that during 
an - and -scan respectively of Bragg reflections towards higher 2 values for the same 
angular speed Δ/Δt an effectively elongated stay of the sample in the reflection position 
results.: 
 
L = 1/sin(2) 
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This has to be taken into account for any kind of radiation in an diffraction experiment. 
 

3.4 Summary of Theory of Method 

The different interactions of x-ray and neutron radiation with the atoms in a crystal make 
neutrons in general the better choice for a diffraction experiment. But on the other hand one 
has to take into account the available flux of x-rays and neutrons respectively. The flux of 
modern neutron sources like the Heinz Maier-Leibnitz neutron source (FRM II) is spread 
around a broad spectrum of neutron energies. In a sharp band of energies/wavelengths, e.g. 
∆/<10-3, there is the flux of neutrons several order of magnitude smaller than the flux of  x-
rays of a corresponding synchtrotron source or x-ray tube in the laboratory. The reason for 
this is the fact that in an x-ray tube most x-rays are generated in a small energy band, the 
characteristic lines of the tube target (K, K, etc.). Additional metal foil used as filter allow 
to cut off unwanted characteristic lines which yields quasi monochromatic radiation of a 
single wavelength.  
To use neutrons around a small energy band one has to use monochromator crystals. This 
reduces significantly the number of available neutrons for the diffraction experiment. Thus, 
the weak flux of neutrons and the weak cross section of neutrons with matter has to be 
compensated with large sample sizes of several millimeters. For the same reason the 
monochromatization of the neutrons is normally chosen to be not too sharp (resolution about  
∆λ/λ≈10-2 for neutrons, ∆λ/λ≈10-5 – 10-6 for synchrotron). 
 

3.5 From Measurement to Model 

To get a structural model from the experimentally collected integral Bragg intensities one 
needs several steps in advance. Firstly on has to make sure that all reflections are measured 
properly (no shading, no λ/2-contamination, no Umweganregung (Renninger-effect) ). 
Damaged reflections have to be excluded from further treatment. 
During data refinement not only the quantities of the relative intensities but also their errors 
are taken into account. The total statistical error  of an integral intensity Iobs of a single 
reflection is calculated as following: 
 
 = Iobs + Ibackground + (k Itotal)

2 
 
The part 

 = Itotal, Itotal = Iobs + Ibackground refers to the error caused by counting statistics. It 
contains as well the effective intensity Iobs as well as the contribution of the background. But 
there are other effects that influence the reproducibility of a measurement (and thus the total 
error), e.g. specific errors of the instrumental adjustment. Those errors are collected in the so 
called McCandlish-Factor k and contribute to the total error. Therefore, the total error cannot 
drop below the physically correct limit of the experiment and thus the impact of strong 
reflections does not become exaggerated in the refinement. The determination of k is done by 
measurent the same set of reflections several times during an experiment (the so called 
standard reflections). The mean variation of the averaged value represents k. In addition, the 
repeated measurement of standard reflections offers the opportunity to notice unwanted 
changes during experiment like structural changes or release from the sample holder.  
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To make sure the comparisability of all reflections with each other, all intensities and errors 
are normalized to the same time of measurement (or monitor count rate) and undergo the 
Lorentz and (in the x-ray case) polarization correction. 
Finally in advance of the data refinement there can be done an numerical (e.g. with DataP, 
[8]) or an empirical absoprtion if necessary. The quality of a measurement is checked in 
advance of the data refinement by comparing symmetry equivalent reflections and systematic 
extinctions to confirm the Laue group and space group symmetry. The result is written as 
internal R-value: 
 
Rint = (k=1

m(j=1
n

k (<Ik>- Ij)
2))/ (k=1j=1

n
k(Ij

2)k) 
 
Rint represents the mean error of a single reflection j of a group k of nk symmetry equivalent 
reflections, corresponding to its group and the total number m of all symmetrically 
independent groups. Therefore Rint is also a good mark to check the absorption correction. 
After these preliminary steps one can start the final data refinement. 
At the beginning one has to develop a structural model. The problem with that is that we 
measure only the absolut values |Fhkl| and not the complete structure factor Fhkl = |Fhkl|exp() 
including its phase . Therefore, generally the direct fouriertransform of the reflection 
information Fhkl from reciprocal space into the density information  in the direct space 
(electron density for x-rays, probability density of atomic cores for neutrons) with 
 
(x) ~ hkl Fhkl exp(-2(hx+ky+lz)) 
 
not possible. This can be done only by direct methods like patterson, heavy atom method or  
anomal dispersion for x-rays. 
In the so called refinement program a given structural model (space group, lattice constants, 
atomic form factors, MSD, etc.) are compared with the experimental data and fitted. In a leas 
squares routine those programs try to optimize (typically over several cycles) the free 
parameters to reduce the difference between the calculated structure factors Fcalc and 
intensities |Fcalc|

2 respectively and the experimentally found Fobs and  |Fobs|
2 respectively. To 

quantisize the quality of measurement there are several values in use: 
 
1. unweighted R-value: Ru = hkl |Fobs

2-Fcalc
2|/hkl Fobs

2 
This value gives the alignment of the whole number of reflections without their specific 
errors.  
 
2. weighted R-value: Rw = (hkl w (Fobs

2-Fcalc
2)2)/hkl w Fobs

4 
This value represents the alignment of the whole number of reflections including their 
specific errors or weights (w~1/2). Sometimes weights are adopted in a way to suppress 
unwanted influence of the refinement algorithm by weak or badly defined reflections.  Be 
aware that such corrections have to be done extremely carefully because otherwise the 
refinement adopts the data to the selected structural model and not the model to the 
experimental data! 
  
3. Goodness of Fit S: S2 =(hkl w (Fobs

2-Fcalc
2)/(nhkl-reflections - nfree parameter) 

 
S should have a value near one if the weighting scheme and the structure model fit to the 
experimental data set.  
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4 Sample Section 

4.1 Introduction 
La2-xSrxCuO4 is one of the cuprate superconductors with K2NiF4- structure for whose 
discovery the noble prize was granted in 1988 (Bednorz and Müller [9]) . Pure La2CuO4 is an 
isolator. Doping with earth alcali metals (Ca2+, Sr2+, Ba2+) on the La3+ lattice positions 
generates in dependence of the degree of doping superconductivity. Sr doping of x=0.15 
yields a maximum Tc of 38 K. 
 
Pure La2CuO4 undergoes at Tt-o=530 K a structural phase transition from the tetragonal high 
temperature phase (HTT) 
 
F4/mmm: a=b=5.384 Å, c=13.204 Å, ===90° at T=540 K 
 
to the orthorhombic low temperature phase (LTO)  
 
Abma: a=5.409 Å, b=5.357 Å, c=13.144 Å, ===90° at room temperature.  
 
The phase transition temperature Tt-o drops for La2-xSrxCuO4 with increased doping and 
disappears above x=0.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.. 6 left: J. Birgenau, G. Shirane, HTC Superconductors I, World Scientific (1989) 
Fig.. 6 right: Stuctural parts of La2CuO4 in the LTO phase 
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Fig. 7 left: tetragonal HTT phase   Fig. 7 right: orthorhombic´LTO phase 

 

4.2 Twinning 
During the transition into the low temperature phase the CuO6 octahedrons are tilted around 
their [010] axis. Thus, the two axes of identical length in the HTT phase, a1 and a2, are not 
equal in the LTO phase anymore. Instead, the longer one becomes the new a axis, the shorter 
one becomes the b axis. Whether a1 or a2 becomes the new a axis depends only on the real 
structure of the crystal, for instance grain boundaries or point defects. Therefore, one can find 
two equivalent crystallographic space groups in the LTO phase:  
 
Abma (a1 → a, a2 → b) and Bmab (a1 → b, a2 → a) 
  
For the structure factors in the LTO is valid: 
 
 FAbma(hkl)=FBmab(khl) 
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  Fig. 8 

(a) orthorhombic distortion with twinning correspondint to a (1-10) mirroring 
(b) corresponding reciprocal lattice 
(c) Overlay of  (110)- and (1-10)-mirroring in reciprocal space 

 
In the HTT phase only reflections with h, k, l of equal parity (g for even, u for uneven) are 
allowed - (uuu) and (ggg). They are called in the following main structrure reflections. 
In the LTO phase additional reflections occur, called super structure reflections: In the Abma-
Structure (ugg),  l≠0 and (guu), in the Bmab structure (gug), l≠0 and(ugu).  
Forbidden in both the HTT and the LTO phase are (uug), (ggu), (ug0) and (gu0).  
These extinction rules will become important later.  
In the real structure of the crystal there exist four domain types in total. They are separated 
into two pairs with the couple Abma1/Bmab1 (I/II) with the (1-10) mirror plane as grain 
boundary and the couple Abma2/Bmab2 (III/IV) with the (110) mirror plane as grain boundary 
(fig. 8). 
 
The following overlaps of reflections result from this twinning:  
 
- No splitting of the (00l) reflections, 
- triple splitting of the (hh0) reflections 
- fourfold splitting of the (h00) reflections. 
 
An equal distribution of the volumetric portion of each single domain yields a ratio of 
intensities of 1:2:1 for the triple splitting. The distance ∆ between the centre and the side 
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peaks of a (hkl) reflex gives because of (a+b)/2 = a1/2 an information about the orthorhombic 
a/b splitting. For the triple splitting of a (hh0) reflex is valid: 
 
∆ = 90°-2arctan(b/a) 
 
Thus, although the real crystal is twinned, one can quantify the orthorhombic distortion. 
 
The intensity contribution of the single domains corresponding to the whole intensity of a 
reflection can be described (taking into account the incoherent overlap of single intensities 
and the volumetric portions VA1 to VB2 of the domains) as follows: 
 
Iobs(hkl)            = IAbma1(hkl)  + IBmab1(hkl)  + IAbma2(hkl)  + IBmab2(khl) or  
 
Vtotal|Fobs(hkl)|2=VA1|FAbma1(hkl)|2 +VB1|FBmab1(hkl)|2 + VA2|FAbma2(hkl)|2 +VB2|FBmab2(hkl)|2  

 
  = (VA1 + VA2)|FAbma1(hkl)|2 + (VB1|+ VB2)|FBmab1(hkl)|2  
 
  = Vtotal {|FAbma(hkl)|2 + (1-) |FAbma(khl)|2 }  

 
with  being the relative portion of the volume of Abma domains to the crystal..  
 
Because of the extinction rules in the LTO phase for the super structure reflections is valid: 
Iobs(hkl) ~ |FAbma(hkl)|2 for Abma and Iobs(hkl) ~ (1-|FAbma(khl)|2 for Bmab. Thus, one can 
classify directly intensities to the volumetric portions of the domain types Abma and  Bmab  
respectively. Therefore, by using one single additional parameter  to describe the relation 
between the twins in the structure one can determine the orthorhombic single crystal 
structure! This holds true although the Bragg reflections contain contributions of up to four 
different domains. 
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4.3 Oxygen Position 
The oxygen atoms undergo the largest shift of their positions during the transition to the LTO 
phase. For the structure factor of a any Bragg reflection forbidden in F4/mmm is valid: 
 
 
F(hkl) ~ i si exp(-2(hxi+kyi+lzi) =F(hkl)apex oxygen+F(hkl)in plane oxygen+F(hkl)structure w/o O  
                                                        →F(hkl)apex oxygen+F(hkl)in plane oxygen 
 
In the LTO phase the atomic position of the apex oxygens is (x 0 z), the atomic position for 
the in-plane oxygens is (1/4 1/4 -z). This yields the following intensities for the superstructure 
reflections: 
 
F(hkl)apex oxygen = cos(2hx)cos(2lz) for h even or 
F(hkl)apex oxygen =  sin(2hx)cos(2lz) for h uneven 
 
In the case of x-rays the form factor fi~Zi, Zi=order number is much smaller for oxygen 
(Z=16) than for Cu (Z=29) and La (Z=57). Because of Iobs(hkl) ~ |F(hkl)|2 the oxygen shift is 
hardly measurable. In the case of neutrons the scattering lengths bi of all atoms are in the 
same order of magnitude (bO=5.803 barn, bCu= barn, bLa= barn, 1 barn = 10-24 cm-2). 
Therefore, the intensity contribution of the oxygen atoms increeases in relation to the other 
elements in the structure and allows a much more precise determination of the structural 
change of the oxygen positions 

5 Preparatory Exercises 

1. What is the fundamental difference between powder/single crystal diffraction and 
what are the advantages and disadvantages of both techniques (Compare d-values and 
orientations of different reflections in a cubic structure)? 

2. What is wrong with fig. 2? 

3. Which reflections are not allowed in a face centered structure (structure factor)? 

4. There is no space group F4/mmm in the international tables. Why (Which other space 
group in the international tables yields the same pattern in direct space)? 
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6 Experiment Procedure 

During this practical course not all physical and technical aspects of structure analysis with 
neutrons can be discussed in detail. Nevertheless this course is supposed point out the basic 
similarities and dissimilarities of x-rays and neutron radiation as well as their specific 
advantages and disadvantages in general and referring to single crystal diffraction. The 
sample selected for this practical course is most suitable for this purpose because of its special 
crystallographic peculiarities.  

6.1 The Instrument 

Fig. 5 shows the typical setup of a single crystal diffractometer with a single detector. 
Outgoing from the radiation source a primary beam defined by primary optics (in our case the 
beam tube) reaches the single crystal sample. If one lattice plane (hkl) fulfills Braggs laws, the 
scattered beam, called secondary beam, leaves the sample under an angle 2 to the primary 
beam. The exact direction of this beam depends only on the relative orientation of the sample 
to the primary beam.  
For the diffractometer shown in fig. 5 the movement of the neutron detector is limited to a 
horizontal rotation around the 2 axis. Thus, only those reflections can be measured, whose 
scattering vector Q lies exactly in the plane defined by the source, the sample and detector 
circle. This plane is also called scattering plane.  

 
Fig. 5: Scheme of a single crystal diffractometer 
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To direct the secondary beam towards the detector position one has to orient the sample 
around the three axes ,  and . These three axes allow a virtually random orientation of the 
crystal in the primary beam. During the experiment the sample has to stay exactly in the cross 
point of all four axes (2,  and ) and the primary beam. Additionally, for 2 =  = 
 = 0° the primary beam direction and the  axis on one hand side and the 2-, - and -axes 
on the other hand side are identical while the angle between the primary beam and the 2-is  
exactly 90°. Because of the four rotational axes (2, , ) this kind of single crystal 
diffractometer is often called four circle diffractometer. Another often used geometry - the so 
called -Geometrie - will not be discussed in detail here. 
 
Further details of the experimental setup: 
 
1. Beam source and primary optics: The primary beam is generated by a suitable source (x-
rays: x-ray tube, synchrotron; neutrons: nuclear fission, spallation source). The primary optics 
defines the path of the beam to the sample in the Eulerian cradle. Furthermore, the primary 
optics defines the beam diameter using slits to make it fit to the sample size for homogeneous 
illumination. This homogeneity is very important because the quality of the data refinement 
relies on the comparison of the intensity ratios between the different reflections measured 
during an experiment. Wrong ratios caused by inhomogeneous illumination can yield wrong 
structural details! Other components of the primary optics are collimators defining beam 
divergence and filters or monochromators which define the wavelength  of the radiation. 
 
2. Sample and sample environment: The sample position is fixed by the centre of the 
Eulerian cradle which is defined by the cross point of the axes  and .  As described 
above, the cradle itself has in combination with the -circle the task to orient the sample 
according to the observed reflection in a way that it hits the detector. The sample itself is 
mounted on a goniometer head. This head allows the adjustment of the sample in all three 
directions x; y; z, via microscope or camera. To avoid scattering from the sample 
environment and goniometer head the sample is usually connected to the head via a thin glass 
fibre (x-rays) or aluminum pin (neutrons). This reduces significantly background scattering. 
For experiments at high or low temperatures adjustable cooling or heating devices can be 
mounted into the Eulerian cradle. 
 
3. Secondary optics and detector: The 2 arm of the instrument hold the detector which – 
in the ideal case – catches only radiation scattered from the sample and transforms it to an 
electrical signal. There exists a variety of detectors, single detectors and position sensitive 1D 
and 2D detectors. Area detectors have a large sensitive area that allows the accurate 
observation of spatial distribution of radiation. Other components of the secondary optics are 
slits and collimators or analyser (as optional units). They fulfil the task to shield the detector 
from unwanted radiation like scattering from sample environment, scattering in air, wrong 
wavelengths or flourescence 



HEiDi  19 

6.2 Sequence of measurement in Theory  

1. Centering: In advance of the planned scientific program (profile analysis, Bragg data 
collection) the orientation of the sample in relation to the coordinate system of the 
diffractometer has to be determined. First of all the sample has to be centered optically to 
assure a homogeneous illumination of the sample. Afterwards, a reflection search routine has 
to be started to optimize the intensity of a found reflection by moving several angles after 
each other.  
In many cases there are some structural informations like the unit cell and hkl values of strong 
reflections available from previous studies, e.g. from powder diffraction, thus, one can limit 
the reflection search to 2 values around these strong reflections to spare some time and to 
classify manually the found reflections with the correct indices. 
 
2. Determination of orienting matrix and lattice constants: The comparison of the Q 
vectors of the found and centered reflections yields generally one or more suggestions for a 
suitable unit cell. This is done by a least squares routine minimizing the error bars between 
the calculated and measured Q vectors.  This method allows to determine accurately the 
orientation matrix Mo = (a* b* c*)T of the sample relative to the coordinate system of the 
diffractometer and the lattice constants of the unit cell.  
 
On HEiDi the axes are defined as following: x=primary beam, z || 2 axis, y=z x x.  
A proposed unit cell is only acceptable if all experimentally found reflections can be indexed 
with integer hkl , this means Q = (h k l)*Mo. In addition the found reflection intensities I offer 
a course check, e.g. whether extinction rules are followed or intensities of symmetrically 
identical reflections are identical. 
 
3. Profile analyses and scan types: During profile analysis reflex profiles are analysed via so 
called  scans. During this scan the sample is turned for n steps around a center position 0. 
This scan makes different crystallites in one large sample visible. In addition one has to take 
into account that even in perfectly grown crystals there are grain boundaries and slight 
mismatches of the crystallites. These mosaic blocks are perfect crystals whose orientations are 
misaligned only a few tenths of a degree or less. By the way, the axis position 22= is 
called the bisecting orientation of the Eulerian cradle.  
As long as the vertical aperture is large enough, a rotation of the crystal around a 0, that is 
equivalent to the ideal 0 Bragg angle of a reflex allows to catch the intensity portion of each 
crystallite in the sample in the neutron detector on the fixed 2 position, even those that can 
only be found for slightly differing . Therefore, a crystal with large mosaicity gives 
measurable intensities over a broader  area than a perfect crystal. Thus it gives a broader 
reflex profile. Also the tearing and cracking of a crystal creates broad but unregular profiles. 
Beside the crystal quality also the instrumental resolution limits the measurable profile widths 
in the following sense: The divergence of a primary beam in real experiment is limited, for 
instance to 0.2°.  
If a reflection fulfills Bragg’s Law at  the total divergence is a convolution of the 
divergence of the primary beam and the mosaicity/divergence of the sample. Thus, the 
reflection profile will never be sharper than the divergence of the primary beam itself. 
In addition one has to take into account that for larger diffraction angles a fixed detector 
window will not be sufficient to catch the whole reflection intensities during a rocking scan. 
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For a given spectrum ∆/ of the primary beam, with increasing scattering angle  angular 
range ∆ increases with sin(∆2)=tan()*∆/ for which all wavelengths in the interval 
±∆/ fulfilling Bragg’s law are distributed. Because of the limited width of the detector 
window this yields a cut off of intensities for larger scattering angles for -scans. 
To compensate this cut off effect it is necessary to begin at a certain 2-angle to move the 
detector window with the -angle.. This can be done by so called /2-scans. The start 
position of this 2range depends on the primary beam divergence and sample quality and has 
to be checked individually for each sample. 
  
4. Collection of Bragg reflections: If a sample was found good after the described 
preliminary studies one can start with the Bragg data collection. In this data collection all (or 
selected) reflections in a given 2 intervall are collected automatically. The usual strategy 
follows the rule „Only as many as necessary“. This means the following: On one hand side 
the quality of the measured reflections has to fulfil certain standards (like small standard 
deviations  and a good shape of the profiles) to reach an acceptable accuracy. On the other 
side there is only a limited amount of time available for each reflection due to the huge 
number of them (up to several thousands). and the limited beam time. A rule of thumb is 
therefore to measure about 10 non symmetry equivalent reflections for each free parameter 
used in the data refinement to get the correct structure. To achieve this goal a typical 
algorithm is to do a prescan with tmin per point of measurement in combination with a given 
larger (e.g. I/=4 and 25%, respectively) and a smaller  (e.g. I/=20 and 5%, respectively) 
relative error limit. tmin is chosen in a way that the statistics of strong reflections is fine 
already after the prescan. Weak reflections are also noticed in the prescan and stored as weak 
reflections without additional treatment. Reflections in between get an additional chance to 
improve their statistics by performing a second scan with a limited amount of time up to tmax- 
tmin. This method avoids to spend unreasonable beam time to weak reflections which will not 
help to improve the quality of the structure model. 

6.3 and in Practice 

1. Adjust optically the sample in the neutron beam : Alignment of the sample in the 
rotational centre of the instrument. This is necessary for a homogeneous  illumination of 
the sample for all possible orientations. 
 

2. Search for Bragg reflections and center them, ‚ “Reflex centering”: Sample and 
detector position are controlled by a special diffractometer software. The main goal is to 
find suitable angular positions for the detector first and afterwards for the sample to get a 
measurable signal. Afterwards the orientation of the sample in the Eulerian cradle have to 
be optimized for maximum intensity. 
 

3. Analyse profiles of selected reflections: Study different reflex profiles and reveal the 
impact of twinning 
 

4. Determine the orthorhombic lattice parameters a, b and c:  Estimate the misalignment 
of a and b in reference to  a1/2 in the real tetragonal cell. 
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5. Determine the average tetragonal unit cell: The centering of different reflections allows 
the calculation of all lattice constants including the averaged tetragonal parameters. 
 

6. Observe super structure reflections: Measuring pairs of (hkl)/(khl) allows the estimation 
of the volumetric contribution of each single domain to the whole crystal. 
 

7. Select measurement parameters for Bragg data collection: In order to optimize the 
number and statistical quality of collected Bragg reflections suitable scan parameters 
(time/step, no. of steps, stepwidths, etc.) have to be determined. 
 

8. Collect a Bragg data set  

6.4  Data analysis 

After having measured a Bragg data set one has to do the final step, the alignment of model 
and measurement: 
 
1. Data Reduction: In this process the measured reflection profiles are analysed and 

reduced to a simple list of all measured reflections and their integrated intensities 
including error bars and some other useful information. This so-called hkl-list is the base 
for the next step: 
 

2. Structure refinement: Here the measured hkl-list and our structure model are combined 
to determine structural details like atomic positions and mean square displacements.  

7 Experiment-Related Exercises 

1. Why is the optical adjustment of the sample so important? 

2. How large is the a/b-splitting at room temperature (=|a-b|/(a+b))? 

3. What is the benefit/enhancement of studying the room temperature structure with 
neutrons instead of X-rays? 
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Appendix (Tables and space groups from [1])
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1. Applications of neutron powder diffraction 
 
Powder diffraction reveals information on the phase composition of a sample and the 
structural details of the phases. In particular, the positions of the atoms (crystallographic 
structure) and the ordering of magnetic moments (magnetic structure) can be obtained. In 
addition to the structural parameters, also some information on the microstructure (crystallite 
sizes/microstrains) can be obtained. The knowledge of the structure is crucial to understand 
structure – properties – relationships in any material. Thus, neutron powder diffraction can 
provide valuable information for the optimisation of modern materials. 
 
 
Typical applications: 
 

Material Task 
lithium-ion battery materials positions of Li atoms, structural changes/phase 

transitions at the electrodes during operation, 
diffusion pathways of Li atoms 

piezoelectric ceramics structural changes during poling in electric field, 
positions of O atoms 

hydrogen storage materials positions of H atoms, phase transformations 
during hydrogen absorption/desorption 

ionic conductors for fuel cells positions of O/N atoms, thermal displacement 
parameters of the atoms and disorder at different 

temperatures, 
diffusion pathways of O/N atoms 

shape memory alloys stress-induced phase transformations, stress-
induced texture development 

materials with collosal magneto  
resistance effect 

magnetic moment per atom at different 
temperatures 

catalysers structural changes during the uptake of sorbents 
nickel superalloys phase transformations at high temperatures, 

lattice mismatch between matrix and embedded 
particles as function of temperature 

magnetic shape memory alloys magneto-elastic effects, magnetic moment per 
atom at different temperatures and magnetic 

fields 
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2. Basics of powder diffraction 
 
Diffraction can be regarded as detection of interference phenomena resulting from coherent 
elastic scattering of neutron waves from crystalline matter. Crystals can be imagined by a 
three-dimensional periodic arrangement of unit cells. The unit cell is characterised by the 
lattice parameters (dimensions and angles) and the positions of atoms or molecules inside the 
unit cell.  
For diffraction experiments the probe should have a wavelength comparable to interatomic 
distances: this is possible for X-rays, electrons or neutrons.  
 
 
Structure factor 
 
The structure factor describes the intensity of Bragg reflections with Miller indexes (hkl), 
based on the particular arrangement of all atoms j in the unit cell 
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where 
Fhkl: structure factor of Bragg reflection with Miller indexes hkl.  
n: number of atoms in unit cell 
bj: scattering lengths (in case of neutron scattering) or atomic form factor (in case of X-ray 
diffraction) of atom j 
Tj: Debye Waller factor of atom j 
 
The scalar product jRH
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revealing the fractional atomic coordinates of atom j in the unit cell. 
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Thus, the structure factor can also be given as follows: 
 

 
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The intensity of a Bragg reflection is proportional to the square of the absolute value of the  
structure factor: 2

hklFI   
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Debye-Waller Factor 
 
The Debye-Waller Factor describes the decrease in the intensity of Bragg reflections due to 
atomic thermal vibrations. 

 







 jj uQQT 

2
1exp)(  

 
vector uj reflects the thermal displacements of atom j 
 
 
Braggs' Law 
 
 
Braggs' Law provides a relation between distances of lattice planes with Miller indexes hkl, 
i.e. dhkl, and the scattering angle 2 of the corresponding Bragg peak. Braggs' law can be 
illustrated in a simplified picture of diffraction as reflection of neutron waves at lattice planes 
(Fig. 1). The waves which are reflected from different lattice planes interfere, If the path 
difference between the reflected waves corresponds to an integer multiple of the wavelength, 
constructive interference occurs.  
The condition for constructive interference (= Braggs' law) is given by: 
 

 ndhkl sin2  
 

 
Figure 1: Illustration of Bragg’s law: constructive interference of neutron waves, reflected 
from lattice planes, where , 2 are Bragg angles, 2=2dhklsin is the path difference and 
2=n is the constructive interference. 
 
The result of constructive interferences can be observed as so called Bragg reflections at a 
neutron detector. Applying Bragg’s law one can derive the lattice spacings (“d-values“) from 
the scattering angle positions of the Bragg peaks in a constant-wavelength diffraction 
experiment. With the help of d-values a qualitative phase analysis can be carried out. 
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Ewald's sphere 
 
The Ewald's sphere provides a description of diffraction with help of the reciprocal lattice. At 
first, we introduce the scattering vector Q and the scattering triangle (Figure 2). The incident 
neutron wave is described by a propagation vector ki, the scattered wave is given by kf. In the 
case of elastic scattering (no energy transfer) both vectors ki and kf  have the same length 
which is reciprocal to the wavelength. 
 



2
 fi kk


 

 
 
remark:  

The length of the wave vectors are sometimes given as 


1
 fi kk  (This definition is found 

esp. in crystallographic literature, while the other one is more common in physics textbooks).  
 
The angle between vectors ki and kf is the scattering angle 2. The scattering vector   Q is the 
given by the difference between ki and kf : 
 
Q= k f − ki  






sin4Q  

 

 
Figure 2: Illustration of scattering vector and scattering angle resulting from incident and 
scattered  waves. 
 
In the visualisation of the diffraction phenomena by Ewald the scattering triangle is 
implemented into the reciprocal lattice of the sample crystal – at first, we consider diffraction 
at a single crystal (Figure 3). Note that the end of the incident wave vector coincides with the 
origin of the reciprocal lattice. Ewald revealed the following condition for diffraction: we 
have diffraction in the direction of kf, if its end point (equivalently: the end point of scattering 
vector Q) lies at a reciprocal lattice point hkl. All possible kf, which fulfil this condition, 
describe a sphere with radius , the so called Ewald's sphere. Thus we obtain a hkl 
reflection if the reciprocal lattice point hkl is on the surface of the Ewald's sphere. 
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Figure 3: Illustration of diffraction using the Ewald's sphere (in crystallographic notation). 
 

In figure 3 the radius of  Ewald's sphere is given by 1/ (For


2
ik we obtain a radius of 

). 
 
We receive the following condition for diffraction: the scattering vector Q should coincide 
with a reciprocal lattice vector Hhkl (* 2): 
 

hklHQ


2 ; xxx
hkl clbkahH 

 ; 
hkl

x
hklhkl d

dH 1



 

From this diffraction condition based on the reciprocal lattice we can derive Bragg's law:  
 







  sin22sin42 hkl

hkl
hkl d

d
HQ


 

 
 
The Ewald's sphere is an important tool to visualize the method of single crystal diffraction: 
At a random orientation of a single crystalline sample a few reciprocal lattice points might 
match the surface of Ewald's sphere, thus fulfil the condition for diffraction. If we rotate the 
crystal, we rotate the reciprocal lattice with respect to the Ewald's sphere. Thus by a stepwise 
rotation of the crystal we receive corresponding reflections.     
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Powder Diffraction in Debye-Scherrer Geometry 
 
For a powder sample one can assume a random orientation of all crystallites. 
Correspondingly, there is a random orientation of the reciprocal lattices of the crystallites as 
well. The reciprocal lattice vectors for the same hkl, i.e. Hhkl, describe a sphere around the 
origin of the reciprocal lattice. In the picture of Ewald's sphere we observe diffraction, if the 
surface of the Ewald's sphere intersects with the spheres of Hhkl vectors. For a sufficient 
number of crystallites in the sample and a random distribution of grain orientations, the 
scattered wave vectors kf describe a cone with opening angle 2 with respect to the inident 
beam ki.  
In the so called Debye-Scherrer geometry a monochromatic beam is scattered at a cylindrical 
sample (Fig. 4). The scattered neutrons (or X-rays) are collected at a cylindrical detector in 
the scattering plane. The intersection between cones (scattered neutrons) and a cylinder 
(detector area) results in segments of rings (= Debye-Scherrer rings) on the detector (Fig 5). 
By integration of the data along the Debye-Scherrer rings one derives the conventional 
constant-wavelength powder diffraction pattern, i.e. intensity as a function of the scattering 
angle 2.  
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Figure 4: Illustration of powder diffraction using Debye-Scherrer geometry. On the left: cones 
of neutrons scattered from a polycrystalline sample are detected in the scattering plane. On the 
right: resulting powder diffraction pattern (after data integration along the Debye-Scherrer 
rings). 
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Figure 5: Two dimensional diffraction data (detector height vs. scattering angle 2), collected 
at high-resolution powder diffractometer SPODI, illustrating the Debye-Scherrer rings of a 
corundum sample. 
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Relations between Bragg positions and lattice parameters 
 
With the help of Braggs law one can derive the lattice spacings “d-values” directly from the 
positions of the Bragg reflections. The d-values are related with the lattice parameters of the 
unit cell (the cell dimensions a,b,c and the cell angles ) and the Miller indexes (hkl) of 
the corresponding reflections. In the following, the relations are provided for the different 
crystal systems. 
 
 
cubic      
 
hexagonal     
 
 
tetragonal     
 
 
orthorhombic    
 
monoclinic     
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3. Information from powder diffraction experiments 
 

 
Figure 6: on the left: typical powder diffraction pattern. On the right: zoom on a single Bragg 
peak. 
 
In the following, we will consider the information which can be derived from diffraction 
patterns. 
 
Positions (scattering angles) of Bragg reflections  
 
 phase identification (from d-values) 
 lattice parameters of the phases 
 symmetry information (space group) by lattice parameters and selection rules (systematic 

extinction of reflections) 
 
 
Intensity of Bragg reflections 
 
 crystallographic structure 

 positions of atoms (fractional atomic coordinates) 
 occupancies of atoms on their sites 
 thermal displacement parameters 

 magnetic structure 
 magnetic lattice (propagation vector) 
 magnetic symmetry (space group) 
 magnetic moment per atom 

 quantitative phase analysis  
 preferred orientation effects 
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Profiles of reflections 
 
The reflection profiles result in a convolution of the instrumental resolution function with 
possible broadening effects of the sample 
 
 microstructural information from peak broadening 

 microstrains 
 crystallite sizes 

 
 
Modulation/Profile of Background 
 
 short range order 
 disorder 
 amorphous contents 
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4. Evaluation of powder diffraction data 
 
Powder diffraction data are used for qualitative or quantitative phase analysis, investigations 
of phase transformations, refinement of structural parameters or a structural solution. 
 
Qualitative phase analysis is based on the determination of d-values and relative intensities (in 
particular intensities of strong reflections have to be considered). The phase identification 
requires crystallographic data bases (e.g. ICDD, ISCD, COD) and is supported by literature 
data and information from other methods (e.g. NMR, analysis of the chemical composition). 
Such kind of phase analysis is however typically carried out with laboratory X-ray diffraction.  
 
The majority of neutron powder diffraction studies is carried out to observe structural changes 
– in particular structural phase transformations – as a function of temperature or other external 
parameters as pressure, magnetic field, electric field…In this respect, neutron diffraction 
allows to investigate technical materials under conditions close to their application. For 
instance, lithium ion batteries can be investigated during charging/discharging or piezoelectric 
materials during electric poling. Reaction pathways in chemical reactions can be observed at 
distinct gas atmospheres and temperatures.  
 
Typically, powder diffraction data are analysed by the full-profile decomposition, the so 
called Rietveld method, for a refinement of structural parameters as lattice parameters, 
fractional atomic coordinates, atomic occupancies and atomic displacement parameters. In the 
Rietveld method, the full diffraction pattern is calculated based on a structure model, taking 
into account the above mentioned structural parameters, as well as reflection profile 
parameters, instrumental parameters and background parameters. Using least-squares method, 
a stepwise refinement of the model parameters is carried out to describe (“to fit”) the 
experimental data. 
 
Powder diffractometers are often classified as “high-resolution” or “high-intensity” 
diffractometers. High-resolution powder diffractometers are designed for structure 
refinements on complex systems. High-intensity diffractometers allow fast kinetic 
measurements to investigate phase transitions at a short time scale or chemical reactions. 
 
Besides structure refinement, also structure solution can be done based on powder diffraction. 
A structure solution reveals the determination of a formerly unknown structure of a 
compound, including the correct space group. This includes following steps: 

- finding cell dimensions 
- finding genuine symmetry 
- localisation of atoms 
- determination of site occupancies 
- determination of thermal displacement parameters 
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Figure 7: a) Data treatment of a measurement on the ferroelectric Pb0.99La0.01Zr0.54Ti0.46O3, 
carried out at 5 K at diffractometer SPODI (FRM II):  Diffraction pattern including 
experimental data, calculated data by Rietveld fit, Bragg reflection positions of the phases 
(space groups CC and Cm)  and difference plot (between experimental and calculated data). b) 
Zoom into the diffraction pattern, hightlighting a superlattice reflection of the CC phase. c) 
structure model of the  CC  phase, view in the [001]c direction. d) structure model of the  CC  
phase, view in the [010]c direction. In particular, the superstructure in the tiltings of oxygen 
octahedra can be seen in c) and d). 
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5. Comparison between neutron and X-ray diffraction 
 
  
I) X-rays are scattered at electrons, neutrons are scattered at nuclei  
 
In case of X-ray scattering, the scattering power of an atom (described by the atomic form 
factor f) is proportional to the number of electrons (or: charge density).  
Neutrons are scattered at nuclei. Thus the interaction (described by the scattering length b) 
varies between different isotopes of an element. In contract to X-ray diffraction, the scattering 
power of neighbouring elements in the periodic system can be very different. 
 
implications: 
 
Localisation of light elements next to heavier ones  
 
X-ray diffraction is a powerful tool to determine the positions of heavy atoms, but the 
localisation of light atoms in the vicinity of much heavier atoms is often difficult or related 
with high uncertainties. Neutron diffraction is advantageous to localise light atoms such as H, 
D, Li, C, N, O in the neighbourhood of heavy atoms. 
 
 
Localisation of neighbouring elements in the periodic table 
 
Neighbouring elements in the periodic table can hardly be distinguished by means of X-ray 
diffraction. Neutrons are advantageous for such cases: examples: Mn – Fe - Co – Ni or O – N. 
 
 
Q-dependence of intensities 
 
Since the size of electron clouds is comparable to the wavelength, the atomic form factor 
depends on sinorQTherefore the intensities of X-ray reflections decrease significantly 
for increasing Q (increasing scattering angles 2. 
As the range of the neutron–nuclei–interaction is by orders of magnitude smaller than the 
wavelengths of thermal neutrons, scattering lengths do not depend on Q. As a consequence, 
neutron diffraction patterns do not show a decrease of Bragg reflection intensities for higher 
scattering angles, enabling the analysis of larger Q-ranges. In particular, neutron diffraction is 
advantageous for the analysis of thermal displacement parameters. 
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II) neutrons interact weakly with matter 
 
implications: 
 
sample volume 
 
The flux (number of particles per time and space unit) from neutron sources is much lower 
compared to X-ray tubes or even synchrotrons. In addition, neutrons interact weakly with 
matter. Therefore, much larger sample amounts are required compared to X-ray diffraction 
(“grams instead of milligrams”). On the other hand this weak interaction results in much 
higher penetration depths of neutrons, compared to laboratory X-ray diffractometers. Thus, 
polycrystalline bulk samples can be investigated. Furthermore, the usage of large sample 
volumes avoid possible problems due to preferred orientation effects. In this respects, neutron 
diffraction is typically advantageous for coarse grained materials. 
 
Sample environments 
 
The large penetration depths of neutrons facilitates the usage of sample environments like 
cryostat, furnaces, magnets,... In general neutron scattering experiments are more versatile 
applying very high or low temperatures compared to X-ray instruments. On the other hand, 
synchrotron studies are advantageous for small samples amounts. Therefore high pressure 
studies are more challenging for neutron than X-ray diffraction. 
 
 
III) neutrons exhibit a magnetic moment 
 
Neutrons do not have an electric charge. However, they consist of three quarks causing an 
internal charge distribution. In combination with their spin this results in a magnetic moment 
of the neutron. 
 
implications: 
 
magnetic scattering 
 
The dipole-dipole interaction between the magnetic moment of the neutron and a magnetic 
moment of an atom results in a magnetic scattering contribution. The magnetic scattering 
power is incidentally in the same order of magnitude as the nuclear scattering contribution. 
Magnetic scattering contribution can be easily detected by means of neutron diffraction. In 
synchrotron diffraction studies, possible magnetic scattering events are weaker by several 
orders of magnitude than the Thomson scattering.  
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6. Setup of the high-resolution neutron powder 
diffractometer SPODI at FRM II 
 
The main components of a constant-wavelength neutron powder diffractometer are: source, 
monochromator, sample and detector (Fig. 8). Between these components collimation systems 
are installed which determine the instrumental resolution function and the neutron flux.  
 

 

thermal 

neutrons 

neutron guide 

monochromator 
angle: 2M 

mosaicity:  

secondary collimator  
2  

sample 

detector 

primary collimator  
1 

detector collimator  
3 

source 

 
Figure 8: Illustration of a typical instrumental layout, introducing the parameters used by 
Caglioti to describe the instrumental resolution function. 
 
 
Instrumental resolution function 
 
The instrumental resolution function of a constant wavelength diffractometer can be 
expressed by a relation between the full-width at half maximum (FWHM) of the reflections as 
a function of the scattering angle 2. As shown by Calgioti, the instrumental resolution 
function (of a constant-wavelength powder diffractometer) can be approximated by: 
 

WVUFWHM   tantan2  
 
with the Caglioti parameters: 
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In this approach it is assumed that all components have Gaussian transmission profiles. The 
resolution function is determined by the horizontal beam divergences  the 
monochromator angle 2m and the mosaicity of the monochromator (Figure 8). The Caglioti 
equations help to design an instrument to achieve a designated performance. However, it 
should be emphasised that in the approximations of Caglioti only the horizontal beam 
divergences are taken into account, neglecting vertical beam divergences caused by a vertical 
focusing monochromator or a vertical divergent neutron guide. Those effects are taken into 
account by ray-tracing methods (Monte-Carlo simulations), which allow a detailed modelling 
of the individual components. 
The powder diffractometer SPODI has been designed to achieve both high resolution and 
good profile shape. In its standard configuration (highest resolution mode) SPODI uses a 
unique very high monochromator take-off angle of 155° along with a large monochromator-
to-sample distance of 5 meters. An evacuated beam tube of about 4 m in length is located 
between the monochromator and the sample which also controls both vertical and horizontal 
neutron beam divergences at the sample position. Thus the natural neutron beam divergence 
in horizontal plane is 25’ only.  
 
 
Monochromator 
 
At constant-wavelength diffractometers, the monochromatisation is perfomed using crystals 
followings Bragg's equation: 
 

 sin2 hkld , where the effective transmission band is determined by a derivative 

MM 


 cot
  

 
The width of the wavelength band  strongly depends on the monochromator angle 2m 
and the mosaicity of the monochromator , i.em. Thus these parameters have a major 
impact on the instrumental resolution function and the flux on the sample.  
Typically, the monochromator crystals are installed at a vertical focusing unit of 200 – 300 
mm, allowing optimization of the intensity distribution at the sample position with respect to 
the monochromator – sample distance or the sample height. On the other hand, the vertical 
beam divergence results in a smearing of the Debye-Scherrer rings along the detector height 
(this effect depends also on the sample height). At the high-resolution powder diffractometer 
SPODI, 15 Germanium wafer-stack crystals with a (551)-orientation are used. Different 
wavelengths between 1.0 Å  and 2.6 Å can easily be selected by a rotation of the 
monochromator unit (without changing the monochromator take-off angle 2m), i.e. by 
selecting different (hkl) reflection planes. In general, large wavelengths are advantageous to 
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investigate structures exhibiting large cell dimensions (or interatomic spacings). This is the 
case for large unit cells, but in particular for magnetic ordering. With decreasing wavelengths, 
larger Q-values can be achieved. Thus, with lower wavelengths, more reflections can be 
observed in the same scattering angle range. Low wavelengths are in particular advantageous 
for the analysis of thermal displacement parameters or static disorder phenomena. 
 
 
Detector array 
 
At constant-wavelength diffractometers the data are collected in an angle-dispersive manner 
at equidistant 2 points. Detector systems based on 3He have been most commonly used due 
to their very high efficiency. Nowadays, the world wide shortage of 3He demands and 
promotes the development of alternatives, in particular scintillator based systems.  
Classical high-resolution powder diffractometers, such as D2B (ILL), SPODI (FRM II), BT1 
(NIST), ECHIDNA (ANSTO) use multidetector/multicollimator systems. The data are 
collected by 3He tubes while the beam divergence is limited by Soller collimators. Such 
systems enable high Q-resolution over a broad scattering angle regime, while the resolution 
does not depend on the sample diameter. On the other hand, a multidetector concept requires 
a data collection by stepwise positioning of the detector array to collect the full diffraction 
pattern. Therefore, kinetic measurements are not feasible due to the fact that the sample must 
not change during the collection of a pattern. 
The detector array of SPODI consists of 80 3He tubes, which are position sensitive in the 
vertical direction. Thus, two-dimensional raw data are obtained, which allow to rapidly check 
for sample crystallinity, alignment and possible preferred orientation effects. The 
conventional diffraction patterns (intensity vs. scattering angle 2) are derived from the two-
dimensional raw data by integration along the Debye-Scherrer rings. 
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7. Experiment: Phase- and structure analysis of lead 
titanate at various temperatures 
samples  

Lead zirconate titanates PbZr1-xTixO3 („PZT“) exhibit piezo-, pyro- and ferroelectric 
properties. Piezoelectricity describes the generation of an electric polarisation as a 
consequence of a mechanical deformation – or the other way round the development of a 
macroscopic strain by an electric field. The crystallographic condition of piezoelectricity is 
the lack of an inversion center: as the balance points of negative and positive charge do not 
coincide, the displacements of the ions in the electric field results in an electric polarization. 
Pyroelectrticity refers to a spontaneous polarization of a material as a function of temperature. 
Ferroelectrics belong to a special class of pyroelectric materials, in which the polarization can 
be switched by an electric field, resulting in a ferroelectric hysteresis. 

The electromechanical properties of PbZr1-xTixO3 can be understood by their phase 
transformation behaviour. At high temperatures they exhibit the perovskite crystal structure 
with simple cubic symmetry (space group Pm-3m). Because of its symmetry (inversion 
center) this phase is not piezoelectric but paraelectric. During cooling, titanium-rich samples 
undergo a phase transition to a tetragonal phase (space group P4mm). This phase 
transformation is accompanied by atomic displacements. In particular, the Ti4+/Zr4+ are shifted 
in the opposite direction than O2- ions, resulting in a dipole moment or a spontaneous 
polarisation. The material exhibits ferroelectric behaviour, with a polar axis in the direction of 
the pseudocubic c-axis, i.e. [001]c . Zirconium-rich samples undergo a phase transition 
towards a rhombohedral phase (space group R3m) during cooling. In this case, the atomic 
displacements result in a polar axis in direction [111]c with respect to the parent pseudocubic 
lattice. Materials PbZr1-xTixO3 with compositions (Zr/Ti ratios) close to the so called 
morphotropic phase boundary between rhombohedral and tetragonal phase, show the highest 
piezoelectric response, i.e. the largest macroscopic strain as a function of the applied electric 
field. These compositions are therefore most interesting for technological applications. The 
piezoelectric properties can be modified further by adding doping elements to substitute Pb2+ 
or Ti4+/Zr4+ ions. 
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Figure 9: Structure models of the paraelectric cubic phase and the ferroelectric rhombohedral 
and tetragonal phases.  
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Figure 10: Phase diagram of PbZr1-xTixO3, illustrating regions of phase stability for 
paraelectric cubic phase PC, ferroelectric rhomboedral phases FR(HT) (= high temperature) and 
FR(LT) (= low temperature) and ferroelectric tetragonal phase FT. From B. Jaffe, W. R. Cook, 
H. Jaffe, Piezoelectric Ceramics and Related Issues, Academic Press, London, 1971. 

PbZr1-xTixO3, find extensive applications 

 transformation from mechanical in electric energy: ignition elements, lighters 
 transformation from electric in mechanical energy (actuators): fuel injectors, 

loudspeakers, sonar transducers, active control of vibration, ink printers 
 transformation from mechanical force in an electric signal (sensors): strain gauges, 

microphones 
 data storage, information technology: capacitors, F-RAM 
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Experiment 

In the frame of the practical course, the temperature-dependent phase transformation behavior 
of a PbZr1-xTixO3 sample with tetragonal symmetry should be investigated. Diffraction 
patterns at different temperature steps between room temperature and 600 °C will be collected 
using a vacuum high-temperature furnace. The structural changes at different temperatures 
will be investigated by an analysis of the lattice parameters. Based on the experimental data, 
the relations between the structural changes and the corresponding physical properties can be 
discussed. 

Following experimental procedures will be carried out 

 sample preparation, filling the sample material into a sample can, adjustment of the 
sample stick, installation of the sample stick into the furnace 

 short test measurement to check the sample adjustment and data quality 
 programming the experiment to run the data collection at various temperatures and 

starting the scans  
 data reduction: derivation of diffraction patterns from the two-dimensional raw data 
 data analysis: analysis of the lattice parameter changes as a function of temperature 
 discussing the results with respect to structure – properties relationships 
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1 Introduction

In this practice, we will perform a polarized neutron single crystal diffraction experiment using
the flipping ratio method. This is a unique method for precisely determining magnetic form
factor [1] and magnetic anisotropy [2,3] taking advantage of nuclear-magnetic coherent scatter-
ing. The magnetic form factor is a Fourier transformation of the spacial distribution of magnetic
electron clouds centred at magnetic ions in a crystal. By performing inverse Fourier transfor-
mations, a real space magnetic density can be obtained and then compared with theoretical
calculations in quantum mechanics, which provides information on quantum states of magnetic
ions in the crystal. For example, Fig. 1 illustrates the measured magnetic density of Ba2TGe2O7

(T = Cu, Co and Mn) compounds where the different orbital occupations of the five 3d orbitals
induce different density shapes for the three compounds [4].

In this experiment, you will first learn the normal devices and setups for performing such an
experiment and then learn how to perform the experiment and analyse the collected data. For
more details about polarized neutron diffraction techniques, the readers are referred to Refs. [5–
7].

Fig. 1: (upper) Perspective views on the isosurface of the magnetic density of Ba2TGe2O7

(T = Cu, Co, and Mn) compounds obtained by fitting the flipping ratio data with multipole
models . There nine, seven, and five 3d electrons for the divalent Cu2+, Co2+ and Mn2+ ions,
corresponding to 1, 3 and 5 unpaired electrons with difference orbital filling schemes. The
yellow balls are oxygen ions around the magnetic ions. (lower) The five 3d electron orbitals
in cubic crystal electric fields represented by the isosurfaces showing the angular distribution
probability for electrons in each orbital. Taken from Ref. [4].

2 Basic theory

The use of polarized neutrons adds an extra dimension to neutron diffraction studies on mag-
netic materials in comparison with using unpolarized neutrons. One important advantage is the
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ability to obtain an unambiguous separation of magnetic and nuclear scattering. Another is the
ability to resolve different directional components of magnetic structure factors. In the study
of non-collinear magnetic structures, it is sometimes impossible to distinguish between two or
more different viable magnetic structures without polarized neutrons. Here we briefly present
the basic theory of polarized neutron diffraction related to this experiment.

Neutron carries a spin, an intrinsic angular momentum with a corresponding magnetic moment.
The neutron spin has a quantum number 1/2 which allows +1/2ℏ and −1/2ℏ for the angular
momentum along a quantization direction. In practical situations, the quantization direction is
usually defined by an external magnetic field. A perfectly polarized neutron beam means that
all the neutrons of the beam are in one of these two eigenstates, i.e., all “up” or all “down”.

The neutrons have spin-dependent interactions with nuclei with nonzero spins and with the un-
paired electrons with spin and orbital angular momenta. For example, the interactions between
neutrons and unpaired electrons are magnetic dipole-dipole interactions between the magnetic
moments of neutrons and electrons. The spin of neutron can be flipped during scattering by the
nuclear spin perpendicular to the neutron spin or by the magnetic moment perpendicular to the
neutron spin. Therefore, the final beam polarization can be changed by scattering which can be
measured in experiments with polarization analyses.

The beam polarization can be changed in both direction and magnitude. The intensity and
polarization of the scattered beam are given by the Blume-Maleyev equations [8–11]:

I = N∗N +M ∗
⊥ ·M⊥ + 2Pi · ℜ[N∗M⊥] + iPi · (M ∗

⊥ ×M⊥), (1)

PfI = PiN
∗N

− Pi(M
∗
⊥ ·M⊥) + 2ℜ[M ∗

⊥(Pi ·M⊥)]

+ 2ℜ[N∗M⊥] + 2ℑ[N ∗M⊥]× Pi

− i(M ∗
⊥ ×M⊥).

(2)

In the equations above, I and Pf are the intensity and polarization of the scattered beam. Pi is
the polarization of the incident beam. N and M⊥are nuclear structure factor and the component
of the magnetic structure factor perpendicular to Q originating from magnetic electrons. There
are four different types of terms in the equations: nuclear only, magnetic only, nuclear-magnetic
interference and magnetic chirality or handedness. The nuclear-magnetic interference appears
when the magnetic and nuclear periodicities are the same and the magnetic and nuclear scat-
terings coherently interfere at the same points in reciprocal space. Magnetic chirality means
chirality in spin-ordered states or (atomic-scale or mesoscopic) spin textures. Fig. 2 shows the
left-handed and right-handed chiral magnetic structure of CsCuCl3 as an example [12].

There are four different types of neutron diffraction derived from the Blume-Maleyev equations:

• unpolarized diffraction

• half polarized diffraction (flipping ratio method)

• uniaxial polarization analysis

• three-dimensional polarization analysis (spherical neutron polarimetry)
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Fig. 2: Left-handed (a) and right-handed (b) chiral magnetic and crystal structure of CsCuCl3.
Taken from Ref. [12].

With unpolarized neutrons, the scattered intensity is simply the sum of the nuclear and mag-
netic intensities. Remarkably, the scattered beam could have non-zero polarization due to the
nuclear-magnetic interference and the magnetic chirality irrespective to the unpolarized incident
beam. Fox example, the (111) Bragg peak of the magnetized Cu2MnAl crystal is ∼ 96% po-
larized because nuclear and magnetic scattering have similar scattering amplitude and interfere
destructively for neutrons of one spin state. Together with a relatively high scattering intensity,
this makes it a widely used polarizing neutron monochromator.

Half polarized neutron diffraction (Fig. 3) is an experiment in which only a polarizer (or anal-
yser) is used and the Bragg peak intensities (I+ and I−) for positive and negative incident
polarizations are measured. Then, the two intensities are compared by taking the ratio I+/I−

(the so-called flipping ratio). It is a very precise method to measure the magnetic structure
factor and form factor for constructing magnetic density maps in the unit cell because many
factors (except for the extinction factor) affecting the precision of the Bragg peak intensity are
cancelled out by the intensity division.

In an experiment with uniaxial polarization analysis, the incident beam is polarized along a
certain direction, and the spin-flip and spin-non-flip scattering intensities are measured. This is
a powerful method for separating magnetic, nuclear, coherent, and incoherent scatterings.

Finally, the spherical neutron polarimetry method allows to measure both the longitudinal and
the transverse components of the final polarization and thus to precisely determine the changes
of the neutron polarization in direction and magnitude during the scattering process of the sam-
ple. This method provides the most comprehensive information than the methods mentioned
above but has the cost of more measurements with polarization analyses.

On POLI, there are three setups implemented for single crystal measurements: unpolarized
neutron diffraction under extreme sample environments, the flipping ratio method (Fig. 3), and
the spherical neutron polarimetry method. In this experiment, we will perform a flipping ratio
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Fig. 3: Experimental setup for a polarized neutron diffraction experiment. Taken from
Ref. [13].

measurement on a magnetic single crystal in high vertical magnetic fields. Here, we assume
that Pi is along the vertical axis z and the polarization is ±P when flipping the polarization of
the incident beam. According to the Blume-Maleyev equations, the flipping ratio is,

R =
I+

I−

=
N∗N +M ∗

⊥ ·M⊥ + 2Pℜ[N∗M z
⊥] + iP (M ∗

⊥ ×M⊥)
z

N∗N +M ∗
⊥ ·M⊥ − 2Pℜ[N∗M z

⊥]− iP (M ∗
⊥ ×M⊥)z

(3)

where the superscripts z denote the vertical component of the vectors. If magnetic moments
in the sample are perfectly aligned along the vertical field direction and there is no magnetic
chirality, the flipping ratio is simplified to be,

R =
N2 +M2 sin2 α + 2P sin2 αℜ[N∗M ]

N2 +M2 sin2 α− 2P sin2 αℜ[N∗M ]
(4)

where α is angle between the scattering vector and the vertical axis. Further, for centrosymmet-
ric structures, both N and M are real and we have,

R =
N2 +M2 sin2 α + 2P sin2 αMN

N2 +M2 sin2 α− 2P sin2 αMN
(5)

Once the nuclear structure factor N is known precisely, the magnetic structure factor can be
deduced by solving a second-degree equation based on which the magnetization maps (e.g.,
Fig. 1) can be constructed by e.g., reverse Fourier transformations.

3 Overview of the instrument

POLI is two-axis single crystal diffractometer with a lifting counter detector using polarized
and unpolarized neutrons. It is built on the hot neutron source of the FRM II reactor providing
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Table 1: Useful instrument parameters for this experiment.

Components Parameters Description
Monochromator theta m Monochromator θ

Sample
omega (ω) Sample θ

gamma (γ) Sample 2θ

xtrans, ytrans Sample horizontal translations
Detector nu (ν) Detector lifting angle

a very high neutron flux at short wavelengths (0.5-1.0 Å). The SR-9a neutron guide leads the
primary beam to the monochromator of POLI. The neutrons of the desired wavelength are
reflected by the monochromator. After flying out of the shielding, they go through polarizer
(optionally) and reach the sample on the sample table. The scattered neutrons can be directly
detected by the detector at a 2θ angle or first pass through the polarization analyser between the
sample and the detector. On the neutron flying path, there are magnetic guide fields, flippers,
and procession coils to maintain and manipulate the neutron polarization. Table 1 shows a few
useful instrument parameters for this experiment.

Monochromator
There are two monochromators made of Cu and Si single crystals on POLI and the (220) and
(311) Bragg peaks are used, respectively. They are mounted back-to-back on a goniometer
on the monochromator table inside the shielding. Two fixed channels on the monochromator
shielding at 2θmono = 14◦ and 42◦ allow four different wavelengths to be used: 0.55, 0.70, 0.90
and 1.15 Å. The whole instrument outside the monochromator shielding can be moved using
air cushion.

Polarizer and analyser
The incident monochromatic neutron beam can be polarized by a polarizer. There are two
neutron polarizers on POLI of different types: a polarized 3He spin filter cell and a Fe/Si super-
mirror bender.

The 3He spin filter is a glass cell filled with polarized 3He gas located in a magnetostatic cavity
with magnetic shielding made of µ-metal of very high permeability. The nuclear spins of the
3He gas are polarized in the laser lab at FRM II and the gas preferably absorbs the neutrons
with spins anti-parallel with the 3He nuclear spins. Electrical coils around the cavity generate
a homogeneous horizontal magnetic field parallel with the 3He nuclear polarization and the
incident beam. This keeps the 3He gas from being depolarized by the random stray fields from
the environment.

The Fe/Si supermirror bender consists of a stack of the thin Si wafers (0.3 mm thick) coated with
Fe/Si multi-layer supermirrors of a total reflection angle three times of that of the nature nickel
(m=3). There are Gd absorbing layers on the top of the supermirror. The Fe/Si supermirrors
are magnetized by permanent magnets on the top and at the bottom of the bender so that the
supermirrors only reflect neutrons with one certain spin state. The stack is bent into a C-shape,
closing the direct view through a Si wafer. As a result, only neutrons with one spin state are
reflected by the supermirror, can travel inside the Si wafers, and finally exit the bender. Whereas
the neutrons of the other spin state are not reflected, cannot follow the C-shape, and is absorbed
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in the Gd layer.

The 3He spin filter cell is normally used for experiments with zero-field sample environments
or magnets with low stray fields (e.g., the 2.2T magnet on POLI). Otherwise strong stray fields
break the polarization of the 3He gas and thus the neutron polarization. The Fe/Si supermirror
bender is more robust to the stray fields and normally used in the experiments with strong
magnets (e.g., the 8T magnet on POLI).

Nutator (adiabatic spin-field rotator)
The nutator is located at the exit/entrance of the 3He polarizer/analyser which changes the beam
polarization direction. It is a magnetic tunnel parallel to the incident/scattered neutron beam.
The nutator after the polarizer contains successively longitudinal and transverse static guide
fields which adiabatically changes the polarization. By rotating the nutator after the polarizer
about its axis, the neutron polarization can be set to be along any direction in the plane perpen-
dicular to the incident beam.

Mezei coil spin flipper
The Mezei flipper uses a non-adiabatic field perpendicular to the guide field to flip the po-
larization. It consists of a compensation coil and a flipping coil which are perpendicularly
winded. The compensation coil creates a field to cancel the guide field and the flipping coil
generates a field perpendicular to the neutron polarization to rotate the polarization by 180◦.
After the neutrons exit the flipper, they enter the guide field region immediately. It is useful for
a monochromatic beam of a fixed neutron velocity.

Sample table
The sample is built with an air cushion for positioning. It has a goniometer for mounting
relatively light sample environments, e.g., a cryostat. The goniometer has horizontal translations
and can tilt sample by up to ±5◦. The goniometer can be rotated about the vertical axis which
is the sample θ angle. The goniometer could not hold heavy sample environments, e.g., the 8T
magnet. Therefore, the heavy sample environments are directly mounted on the sample table
and the sample stick inside can be rotated as the sample θ angle.

Lifting counter detector
The detector is an aluminium tube which is filled with high pressure 3He gas. It is inside a
shielding box and mounted on the sample 2θ arm. The sample 2θ range is from −20◦ to 130◦

(depending on the sample environment used). The vertical lifting angle is from −4◦ to 30◦.

Neutron camera
A neutron camera can be mounted facing the direct beam after the sample for checking the
sample position in the beam.

4 Experiment procedure

Finding the orientation of a single crystal with a single detector on POLI is difficult, especially
when the sample orientation is not known. Generally, the quality and orientation of the single
crystal are first checked with a X-ray/neutron Laue camera. The reciprocal planes interested
are aligned close to the horizontal plane, making it easily accessible because the sample is
only rotated in the horizontal plane and the lifting angle for the detector is limited. An initial
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crystal structure determined from other experiments will be used to calculate a list of reflections.
The stronger reflections are first measured and used for finding the orientation matrix and for
refining the lattice parameters which are very critical for locating and measuring the Bragg
peaks interested afterwards.

1. Shifting the sample to the centre of the ω rotation for a homogeneous illumination

(a) Mount sample inside the magnet on the sample table.

(b) Take images of the sample in the beam using the neutron camera at ω0, ω0 + 180◦,
ω0 + 90◦ and ω0 + 270◦ (ω0 is the current sample theta angle).

(c) Compare the images and shift the sample to the centre of the rotation.

2. Correcting the sample height by measuring ±Q Bragg peaks. This will bring the sample
to the rotation centre of the lifting detector.

3. Centring a list of strong Bragg peaks and refining the orientation matrix and the sample
lattice parameters. Centring for a Bragg peak means finding the optimal ω, γ and ν
values at which the Bragg peak shows the strongest intensity. This is done by iteratively
performing successively ω, γ and ν scans for a Bragg peak and finding the peak centre
until the optimal angular values for the centre do not change much.

4. Perform flipping ratio measurements for a list of Bragg peaks.

5. Extract the magnetic structure factors from the measured flipping ratios.

6. Calculate the magnetic density map using inverse Fourier transformation.

5 Preparatory exercises

1. What is neutron polarization? How to polarize neutrons? What are the three types of
neutron polarizers?

2. How does the neutron spin react to magnetic fields? How to maintain and manipulate the
neutron polarization during the experiment?

3. What are the necessary devices and their functions for performing neutron polarization
analysis?

4. What are the four types of terms in the Blume-Maleev equations?

5. What is the difference between cold, thermal, and hot neutrons? Why are hot neutrons
useful for detailed analyses of structures?

6. Why does a supermirror polarizer have a low performance for hot neutrons?
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6 Experiment-related exercises

1. What are the magnetic electrons in materials? What is the magnetic form factor?

2. What type of magnetic structure do you know?

3. Why is a large Q-coverage important for doing a reverse Fourier transformation for con-
structing a real-space magnetic density map?

4. In the flipping ratio method, why do we apply a strong magnetic field?
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(a) The monochromators on the table inside the
shielding.

(b) Double focusing Si and Cu
monochromators.

(c) The 3He filter cell (upper) and the magnetic cavity
(lower) of the 3He polarizer. The 3He cells are inserted
into the hole.

(d) The nutator at the exit of the 3He po-
larizer.

Fig. 4: Overview of the POLI instrument components.
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(e) Sectional view of the polarized neutron diffrac-
tion setup with the 3He polarizer (in blue), the nu-
tator (in green), the sample (in yellow) and a mag-
net (in grey at the sample position). The red arrows
show the neutron polarization, orange arrows guide
fields, and the blue arrows vertical fields from the
magnet.

(f) The setup with the 8T magnet, Mezei flipper and
supermirror bender polarizer.

(g) Sample table. (h) The lifting counter detector.

Fig. 4: (continued) Overview of the POLI instrument components.
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Jülich Centre for Neutron Science (JCNS)

Phone: 089/158860-825

e-Mail: jianhui.xu@frm2.tum.de

https://mlz-garching.de/poli
https://mlz-garching.de/poli






Manual of the JCNS Laboratory Course Neutron Scattering

PANDA 
Three-axis spectrometer 

Peter Link (TUM), Astrid Schneidewind, Petr Cermak 
Jülich Centre for Neutron Science 
Forschungszentrum Jülich 
 



2 P. Link (TUM), A. Schneidewind, P. Cermak

Contents
1 Introduction and theoretical basics 3

1.1 Brillouin-zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Inelastic scattering processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Triple axis basics 5
2.1 Typical measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Normalization of the counting rates . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Resolution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Peak forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Description of the PANDA 11

4 Experiment 17
4.1 NICOS basics - sample alignment . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conclusions 20

Contact 22



PANDA 3

1 Introduction and theoretical basics

This short summary is thought as a repetition of the basic knowledge needed for this experiment.
It is expected that you are familiar with the chapter 11 of the Lectures. You will need to know,
that scattering vector Q is defined as

Q = ki − kf , (1)

where ki and kf are incident and final wavevectors. If ki = kf , we speak about elastic scattering.
We can measure elastic scatterting on PANDA as well, but usually our users are interrested in
inelastic case.

You should be also familiar with the concept of the reciprocal lattice introduced in chapter 4.8
of the Lectures. Reciprocal lattice represents the Fourier transform of a real Bravais lattice
defining the crystalline arrangement in single crystal. It exists in reciprocal space (also known
as momentum space) and it is much harder to imagine than the Bravais lattice (existing in real
space). It can be shown that the reciprocal lattice of a Bravais lattice is a Bravais lattice again
having all symmetry elements of the original lattice. Each point hkl in the reciprocal lattice
refers to a set of planes (hkl) in real space. It is convinient to use reciprocal space to depict
equation (1), as can be seen in Fig. 1.

You shoul also know different types of the crystal lattices, the terms of unit cell as well as the
use of Miller’s indices.

1.1 Brillouin-zone

To simplify description of periodic lattice, it is useful to construct so called Brillouin zones.
For this, in the reciprocal lattice the perpendicular bisector planes of the vectors connecting one
lattice point with all the others are created (see also Fig. 2).

[000]

kf

ki

2Θs

qQ

[220]

kf

ki

2Θs

q

Q

[004]

Figure 1: Scattering diagrams for inelastic scattering of neutrons on a fcc crystal. The recip-
rocal [11̄0] plane is drawn. Notation similar to the text. The energy transfer is represented by
the different lengths of ki and kf
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a1 a2

1LE

g1
g2

1LE−1

Figure 2: 2-dimensional point lattice in the real and reciprocal spaces. The first Brillouin zone
is plotted around a reciprocal lattice point.

b)a)

Figure 3: Schematics of measurement in a) real space and in b) reciprocal space

Remark: The construction of the Brillouin zones is on the basis Bravais lattice. I.e.,
Germanium and Silicon have a fcc lattice with a 2-atomic basis. The scattering function is
influenced in a way that several refections vanish, others are amplified. The reciprocal lattice
stays to be of fcc symmetry.

The first Brillouin zones around the points of the reciprocal lattice fill the reciprocal space. By
this, points of high symmetry are easy to identify. They are used to be named by letters (see
Fig. 4).

Because of the periodicity of the lattice, we define q, which is measured from the center of the
Brilluin zone:

Q = G± q (2)

where G is a Bragg point in reciprocal space (satisfying equation 4.16 in the Lectures). See
Fig. 3 for example.
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1.2 Inelastic scattering processes

Inelastic scattering was introduced to you on the example of vibrating atoms - phonons in chap-
ter 11.2.2 of the Lectures. PANDA is cold triple axis instrument and it is most suited for study
of energy transfers between 0.1 - 5 meV. This energy range is often too low for optical phonon
study, but ideal for acoustic phonons, vibrations of ordered magnetic moments (magnons, spin
waves), crystal field excitations and interaction between them.

To shortly summarize and visualize inelastic scattering one can assume that the neutron initiates
an oscillation in the crystal. By this, the neutron looses energy or gains energy when scattered
on an oscillating atom which results in the annihilation of this oscillation. For the energy gain,
a decent mode has to be already excited in the crystal. Therefore at the temperature of absolute
zero, there is no energy gain scattering and at room temperature, both energy gain and loose
sides are almost equivalent.

What is now the advantage of neutrons for the study of lattice vibrations, compared to x-rays?
You know, that x-rays are easier to handle and available with much higher flux, especially
at synchrotron sources where in addition higher brilliance is achieved. The energy of thermal
neutrons is in average circa 30 meV which is related to a wavevector of 3.8 Å

−1
. The dimensions

of the reciprocal lattice is circa 2 Å
−1

for Germanium. X-rays with similar wave vectors have
energies of ≈ 10 keV. The excitation of a lattice vibration with an energy of 10 meV would be
according to a relative energy change of 10−6 for photons. For neutrons the change is in the
order of kinetic energies.

1.3 Dispersion relation

Typical purpose of the PANDA experiment is to determine the correlation ω(q) experimentally.
ω(q) is the dispersion relation of phonons or any other (quazi)particals in the crystal. It contains
all information about the dynamic properties of the studied material. Physical quantities as
velocity of sound (from phonons) or the contribution of the heat capacity can be deduced from
it. But, also the dominating interaction potentials between the atoms can be derived. For the
visualization the 3-dimensional relation is drawn for several directions of symmetry abreast (see
Fig. 4).

The physical principle of dispersion relation ω(q) of phonons is shown on example of one-
dimensional atomic chain in chapter 11.2.2 of the Lectures.

2 Triple axis basics

2.1 Typical measurement

At one time, clasical triple axis instrument did measure on point in reciprocal Q-energy space
(e.g. one point in Fig. 4). We look now at the correlation between the configuration of the
spectrometer and the variables Q and ∆E. The absolute values of ki and kf (incident and
outgoing wave vectors) are determined by the scattering angles at the monochromator and the
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Figure 4: Dispersion relation of Germanium at 80 K taken from [6]. Points of exceptionally
high symmetry are indicated by letters. (small picture).

analyzer crystals 2Θm and 2Θa, respectively 1. Having neutron waves we need

Ekin =
(~ kn)2

2m
, (3)

with p the momentum and m the mass of the neutron.
Thus, we know also

ω =
∆E

~
= ~
|ki|2 − |kf |2

2mn

. (4)

The orientation of the sample determines the direction of ki relatively to the crystal lattice (char-
acterized by the sample rotation angle ωs, sth in NICOS, see chapter 4.1) and the scattering
plane. Within the scattering plane 2Θs determines the direction of kf . Q results from eq. (1).

Conversely, we do not get the configuration of the instrument from ω and Q.

In standard experiments, the scans are done at constant Q or constant energy transfer ∆E.
While for very stiff dispersion modes, in the vicinity of the Brillouin zone center, constant-E is
chosen (Fig. 5(b)), most of the Brillouin zone is normally measured with const.-Q (Fig. 5(a)).
Please take time and think about the reason and how the different angles change during the two
measurements shown in the figures.

As demonstrated in fig. 6, the lengths of ki or kf can be fixed. This is a way to change the
resolution of the instrument optimizing the measurement for different problems.

1 2Θm and 2Θa are the relevant numbers. The rotation of the crystals Θm and Θa are fixed in relation to 2Θm/2
and 2Θa/2.
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(a) Example for constant-Q scans
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(b) A constant-E scan
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Figure 5: Examples for different scans (scattering triangles and dispersion relation.)
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a)

c)

b)

q

q

Qa = Qc

Qb

Figure 6: The same phonon excitation measured in different ways:
(a)↔(b): Measurements at different elastic peaks but with identical |ki| and |kf |.
(a)↔(c): Identical position of the reciprocal space measured with different ki.
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2.2 Normalization of the counting rates

Planning an experiment, it seems to be native to count the scattered neutrons in the detector
at every point for a useful time. But, the counting rate ZDet depends not only on the scatter-
ing cross section. It also depends on instrument parameters which possibly change during the
measurement or within a scan.

ZDet ∝ Iprim(ki) ·RMono(|ki|)
1

|ki|
S(Q, ω) RAnal(|kf |) · PDet.(|kf |). (5)

with R(|k|) the reflectivities of the Bragg crystals (on analyzer and detector), PDet.(|kf |) the
efficiency of the detector and Iprim.(|ki|) the incident intensity at the used energy. S(Q, ω) is
the scattering cross section of your crystal, which you want to measure.

In order to get that quantity we use a monitor detector usually mounted after the monochro-
mator and before the sample. The probability to be detected is for neutrons with a velocity v
proportional to the time t the neutrons stay in a monitor of the width d:

t =
d

v
=
dmn

~ |k|
(6)

One expects as monitor count-rate:

Zmonitor ∝ Iprim(ki) ·RMono(|ki|)
1

|ki|
(7)

To perform a measurement, events are counted in the detector until a particular number of
monitor counts is reached. The real count rate in the detector with monitor Z ′

Det is:

Z ′
Det =

ZDet

ZMoni

∝ S(Q, ω) RAnal(|kf |) · PDet.(|kf |). (8)

As you have seen in previous chapter, every point in reciprocal space Q can be achieved with
infinite number of combinations of ki and kf . Because the measured count rate normalized by
the monitor depends only on |kf |, it make sense to perform all measurements in constant |kf |
mode, where dependence (8) vanishes. If |kf | is varied by any reasons during the scan, the
corresponding corrections have to be done for the data analysis.

2.3 Resolution function

Up to now we did not consider the fact that at every point of the Q-ω-space the spectrometer is
pointing to the measured intensity is scattered in a finite volume around this point. A sharp (δ-)
peak in the scattering function at (Q0, ω0) gives a measured signal of the form:

ZDet(Q, ω) ∝ R(Q−Q0, ω − ω0). (9)

R is the resolution function and depends on the configuration of the spectrometer only. Ordinary
R is assumed to be Gaussian in its components.
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Figure 7: Focused vs. unfocused measurement.

The measured signal results from the convolution:

ZDet(Q, ω) ∝
∫
S(Q′, ω′) R(Q′ −Q, ω′ − ω) dQ′dω′. (10)

For illustration take a contour line of the resolution function (exactly: the 2-dimensional projec-
tion of the resolution function). It is normally elliptically and shows the region of the scattering
function ’seen’ by the instrument. In fig. 7 the projections of the resolution function are plotted
into the dispersion relation, at the right the intensities to be expected, respectively. A measure-
ment is characterized to be focused if the short axes of the resolution ellipsoid is perpendicular
to the dispersion surface (to be measured).

It is important to understand in which cases a sharp resolution function is helpful or not. E. g.,
see a const.-Q-scan through a sharp ’horizontal’ dispersion surface:

S(Q, ω) = S0 δ(ω − ω0). (11)

The measurement is focused, i.e.

R(Q, ω) = e−
ω2

σω ·R(Q). (12)

Eq.(10) gives:

Z(ω) ∝ e−
ω2

σω

∫
R(Q)dQ. (13)

Expanding the resolution ellipsoid in the momentum coordinates, the measured intensity in-

creases. The line width depends only on e−
ω2

σω .

Reference: [7] Chap.4

The real form of the resolution function is influenced now by several effects: The Bragg-crystals
are not of perfect lattices but have a finite mosaicity (which means it consists of several small
single crystals, and their lattice parameters have weak deviations from the average). This ’mo-
saicity spread’ - given by the angle ηm - broadens the Bragg peaks e.g. at the monochromator.
Further influences are the finite angle resolution of the detectors, a finite size of the sample and
diverging beams.
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The beam reflected at the monochromator is a bunch of wave-vectors with a distribution pm(ki),
the transmission function of the monochromator. The analyzer has to be described in analogy.
To calculate the resolution function of the spectrometer, the two transmission functions have to
be convoluted with respect to 2Θs. This simulation can be done by software Takin [8]. You will
get some qualitative ideas about this within the experiment.

Reference: [3]

2.4 Peak forms

We learned: For sharp peaks in the scattering function we get a Gaussian signal in the mea-
surement. This will be found in most of the experiments. However, some compounds exhibit
broadened phonon resonances, so-called soft modes. They are originated by phonon-phonon-
and phonon-electron-interactions 2 and result in a finite lifetime τ of the single oscillation states.
Calculating the damped harmonic oscillator the line shape is identified to be Lorentzian:

S(ω) ∝ ω2

(ω2
0 − ω2)

2
+
(
ω
τ

)2 (14)

with the line width (FWHM):

δω =
1

2τ
. (15)

The resulting signal of such a ’soft’ peak is the convolution of a Lorentzian with a Gaussian
curve called Voigt profile. This profile is not easy to be calculated mathematically. In the case
of comparable widths of the single profiles it can be sufficient to take the width of the Voigt
curve as the sum of the widths of the Gaussian and the Lorentzian contributions.

If it is necessary for the data analysis to determine the peakwidths, the resolution function has
to be deconvoluted from the measured signal. This can be done by software.

References: [2], [4]

3 Description of the PANDA

PANDA is a three axis spectrometer (TAS) at the cold source of FRM II reactor at MLZ. The
first thermal TAS was built 1954 and generally improved 1959 by Bertram N. Brockhouse at
NRU Reactor in Chalk River. For his merit in the field of inelastic neutron scattering he got
the Nobel price 1994. Even if the intensities at the detector were increased by magnitudes, the
instrument is remote controlled and the safety is improved today, the general principle of the
method is still the same:

The beam of cold neutrons (energy E ≈ 5(30) meV, momentum p ≈ 1.5(4) · 10−24 kg m/s),
which has de Broglie wavelength

2 These effects are neglected by the assumption of harmonic oscillations.
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λ =
h

p
, (16)

or a wavevector of the length k = 2π
λ

, exits the moderator tank of the reactor through a beam
port. The neutrons enter a monochromator being of single crystals with a d-spacing d.

By the Bragg equation

nλ = 2d sin Θm (17)

the angle 2Θm defines the energy of a monochromatic neutron beam (wave vector ki, energy
Ei), which points to the sample to be investigated.

Direction and energy of the neutrons are changed at the sample following the inelastic scattering
laws. At the secondary spectrometer (analyzer) neutrons with the wave vector kf and the energy
Ef are selected by Bragg reflection at a second crystal and are counted in the detector. By this,
the momentum transfer (Q) of the neutrons to the sample as well as the energy transfer (∆E)
from the sample to the neutrons can be determined.

Q = ki − kf , ∆E = Ei − Ef . (18)

For useful statistics normally a fixed configuration of the instrument - related to a decent energy
and momentum transfer - is taken for counting at the detector. The scattering function of the
sample is therefore taken pointwise. These scans are measured at constant Q or at constant
energy E, depending on the experimental strategy (see below).

PANDA is located at the beamport SR2 in the experimental hall of FRM II and has a comparably
large neutron flux at low background. For more detail see:
http://www.mlz-garching.de/panda.

We now discuss the components of the three axis spectrometer. Photos of the main components
are collected at the gallery 16 for better understanding.

Shielding Since neutrons damage biological matter the region of the primary beam has to be
shielded. This is done by a so-called drum (in the case of PANDA blue / green colored) with
the monochromator in its centre. The drum is made of heavy concrete with a large amount of
chemically combined water, boron added. Also used are boron-treated (PE) sheets. Chemically
combined water and PE contain a large amount of hydrogen which is able to decelerate fast
neutrons. Boron as a large absorption coefficient for cold and thermal neutrons 3, and the
isotope emerging at the neutron capture is not radioactive. But, normally materials are activated
by the nuclear reactions and therefore activated (and the reactor emits hard Gamma radiation
also if the primary shutter is closed), so the shielding has to be opened only after measurements
of the remaining radiation even if the reactor is down. A part of the installation is shown here
at the photos. The drum is made to shield γ-radiation as well as neutrons.

During the movement of the monochromator axes a ring of the shielding which contains the
beam channel for the beam scatered at the monochromator is entrained. To avoid a closing of
the primary beam during the ongoing rotation, the ring partially consists of 11 so-called mobile

3 Typical reaction: 10
5 B + 1

0n→ 7
3Li + 4

2He + 2.8 Mev

http://www.mlz-garching.de/panda
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Notation:
Q Neutron source
M Monochromator
S Sample table
A Analyzer
D Detector
α1

collimators
α2

α3

α4

2Θm angles of the
Spectrometer-
axis

2Θs

2Θa

Abs Shielding
Sel Selector
Mob Mobile blocks
Sh Primary shutter

Figure 8: Schematic design of a three axis spectrometer.
Remark: all angles are counted in the region [−180◦, 180◦]. (0◦ is directed in beam,

positive angles are counter-clockwise.) 2Θs is therefore positive.

blocks (made of the same concrete as the ring) which are moved by an automatic control from
one side of the opening to the the other. The geometry and the control ensure a proper shielding
where necessary (see fig.8).

Monochromator In the rotation centre of the shielding the monochromator is positioned. It
consists of 121 single crystals of pyrolytic graphite (PG) mounted on a crystal holder. The
crystal holder and therfore the grapite lattice planes are rotated by the angle Θm to the primary
beam. The intensity of the monochromatic beam scattered at the angle 2Θm

4 depends on the
lattice parameter of the monochromator material (here PG) and on the incoming angle..

To avoid contamination of higher-order Bragg reflection in the incoming beam, n = 2, 3 . . .
(Gl. (17)), filter materials are positioned between monochromator and sample. In the case of
PANDA this is polycrystalline boron or, sometimes, pyrolytic graphite.

Maximum intensity at sample and detector can be achieved by focusing the monochromator and
the analyzer in horizontal and vertical direction. Here the 121 monochromator (55 analyzer)
crystals are curved in both directions by complex mechanics to get the crystal surfaces into
a paraboloid-like shape. The radius of the curvature depends on the neutron wavelength. By
taking into account the distances also a focus of the momentums is possible.

Sample table The sample is mounted on a table which can be moved on air-pressure. In
addition to motors rotating the sample and the analyzer/detector around the sample - giving
Θs and the scattering angle 2Θs, the sample orientation can be adjusted by goniometers and

4 Remark: Sometimes the angles Θm, Θs and Θa are named α1 to α3.
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l

d

α

Figure 9: Drawing of a Soller collimator. The divergence of the outgoing beam is
tan(α/2) = d/l, which is in the example ca. 18◦. On PANDA the collimation can be chosen
between 15 and 80 minutes.

translation stages. For studies of magnetism, the sample is normally positioned in a cryostat or
a cryomagnet - cooling down to temperatures of 0.03 K and appying fields up to 13.2 T.

Analyzer The analyzer is also located in a shielding, but here the reason is to decrease the
background in the detector. The crystal holder located again on a goniometer and translation
stages allows a horizontal focus of the analyzer, the crystals are mounted to have a fixed vertical
focus. The crystals are at the angle Θa to the beam, the detector is rotated by 2Θa.

Detector The neutrons are counted by a beamtube, filled with 3He under high pressure (ca 10
bar). A neutron can be trapped by a 3He nucleus and converted to 4He. The emitted γ quant
ionizate the gas and is detected like in a Geiger-Müller counter. This allows to count ca. 90%
of the incoming neutrons.

Diaphragms, collimators and attenuators In addition to the already described parts several
components are needed in the beam path dor beam conditioning. For example variable di-
aphragms (slits) are installed before and after the sample which are adjusted to the sample size
to decrease the background. A secondary shutter is mounted after the monochromator. More
diaphragms are with the primary shutter in the reactor wall and between the primary shutter and
the monochromator.

Beyond that in every part of the beam path so-called Soller collimators can be applied. It con-
tains of ca. 20 cm long, coated with white GdO2 foils, which are exactly parallel and therefore
limit the divergence of the beam . The value of the divergence is described by the angle α (see
fig. 9). Collimators with α = 15′ to α = 60′ are available. Small divergence corresponds with
high resolution but small intensity. The primary collimators are placed in the primary shielding
and are changed automatically, the others have to be changed by hand (motorization planned).
The beam size is limited only horizontally, i.e. within the scattering plane. For increase of
intensity we normally allow a large divergence of the beam in the direction perpendicular to the
scattering plane.

Sometimes, e.g. for alignment, the detector is in the straight beam or Bragg reflections have
a very large intensity. To avoid a saturation of the detectors, the incoming beam ist attenuated
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by PE-plates of different thicknesses which can moved into the beam (and combined) automat-
ically.

Monitor To compare or to combine data from different scans or measurements the intensities
are normalized to an intensity counted by the monitor in the primary beam. Its signal is propor-
tional to the incoming intensity. This is also important for energy scans, where the incoming
intensity changes with 2Θm due to the energy-dependent spectrum. Also different reactor power
can be corrected in this way (see paragraph 8).

Goniometer Monochromator, analyzer and sample are placed on 2-axis goniometers. This
allows tilts around two perpendicular to each other which meet in the centre of the beam. So
the sample does not move out of the beam centre during the tilt. The available angles are
limited (±15◦), the sample can be adjusted but has to be pre-oriented before measuring on the
three-axis instrument. It is also possible to translate the sample a few millimeters horizontally
and vertically.

Cover page: Overview over PANDA
From left: Monochromator shielding, sample table with 15T cryomagnet, analyzer box and
detector shielding.

Figure 10: (Following page) Components of PANDA taken in different phases of the construc-
tion.
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(a) Side view into the (opened)
Monochromator shielding onto the
PG-monochromator.

(b) PG-analyzer in the (opened) analyzer box.
The horizontal curvature is changed by
rotating the individual segments.

(c) Detailed view onto the sample table with
vacuum chamber. From bottom: Rotation
table, xy-stage, goniometer, z-stage

(d) Soller collimators in the automatic changer
for α1 (in the primary beam.)

(e) Typical sample mounting for use of
cryostat.

(f) Detector tubes to be built into the detector
shielding
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4 Experiment

PANDA is a complex research instrument, where normally measurements on samples at very low
temperature, high magnetic fields and / or high pressure are performed. Phonons for example
are measured to learn about the interaction potentials in solids. Measurements of spin wave
dispersions contribute to determine magnetic interactions.

The goal of this practice is to give inside to the potential of neutron scattering on a three-
axis spectrometer. To get results, you have to understand the functionality of the instrument and
measure resolution function of the instrument. Because of limited time of this practice, you will
not be able to measure and evaluate any dispersion realation, a normal experiment on PANDA
needs 7-10 days. Your PANDA labcourse will be going on like

1. Preparation

• Gather theoretical basics (lecture room).

• Talk about a strategy for the measurements and a plan of the experiment (lecture
room).

• Pass the security to the experimental hall.

• Safety instruction at the instrument PANDA.

2. Alignment

• Proof of the instrument alignment by scans of the monochromator or analyzer axis.

• Alignment of the sample, define the scattering plane, optimize background.

3. Measurements

• Determine the resolution elipsoid of the spectrometer for two different wave vectors
by measuring sets of scans around the Bragg peaks.

• Do the same for the horizontally flat geometry of PANDA.

• Do the same for different kf .

• Compare intensities and resolution in all cases.

4. Data analysis

• Learn how to plot the measured data (1D and 2D plots)

• Compare measured results with theoretical predictions in Takin software [8].

• Fit the dispersion relation of prepared dataset end evaluate the results.

4.1 NICOS basics - sample alignment

Our instrument control software is NICOS. It is written in Python and also all commands
and scriptings is done in Python. We will now illustrate how to use basic NICOS com-
mands on the procedure of sample alignment.
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(a) Put the sample on the sample table / in the cryo and enter the sample parameters to
nicos:

# define the name of the sample
Sample.samplename = ’NaCl’
# define the unit cell parameters and symmetry
Sample.lattice = (5.64, 5.64, 5.64)
Sample.angles = (90.0, 90.0, 90.0)
Sample.spacegroup = 225
# define the sample orientation, to have HHL plane
# within the scattering plane of the instrument
Sample.orient1 = (1.0, 1.0, 0.0)
Sample.orient2 = (0.0, 0.0, 1.0)

(b) Calculate the sample 2θ angle of the desired Bragg peak and drive the instrument
there.

# set the variable peak to hkl indices
# on which we will align PANDA
peak = (0,0,2)
# just calculate instrument angles
calpos(peak)
# drive sample 2theta to 50 (calculated position)
stt(50)

(c) Scan the sample rotation to find the peak:

# run continous scan of an axis (sample rotation)
# from 10 to 200 degrees)
contscan(sth, 10, 200)

(d) Perform a finer scan and rotate the sample to the fitted peak position:

# run scan (stop at every point) of sth
# from 53, 20 points, step 0.2, count 1s
scan(sth, 53, 0.2, 20, 1)
# move to the fitted value
sth(54.2)
# tell NICOS, that this is my 002 reflection
setalign(peak)

(e) Scan the goniometer on which the peak lies and move it to the fitted maximum
position:

# centered scan around 0,
# step size: 1 deg.
# 5 points on each side
# time: 1s per point
cscan(sgy, 0, 1, 5, 1)
# move to fitted value
sgy(0.2)
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(f) Perform a longitudinal scan to correct the sample lattice constants:

# perform centered scan around position "peak"
# step is 0.003 in l direction
qcscan(peak, (0,0,0.003), 12, 1)
# Question:
# center of the scan was at 1.984,
# how should we adjust lattice parameters?

(g) Repeat the procedure on a peak with θ ± 90◦ to get the scattering plane aligned.

(h) Adjust the sample slits (by running prepared script in NICOS)

run(’slits.py’)
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5 Conclusions

Congratulations, you just finished reading of the PANDA tutorial! If something was not
clear, we will be happy to answer your questions during the tutorial.

Have you ever thinked, why is our instrument called PANDA? Do you thing it is an
abbreviation of something else? Try to think about it! Most original solution could get
some small reward :)

Looking forward to see you,
PANDA Team
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1 Introduction

Neutron backscattering spectrometers are used to measure inelastic scattering with very high
energy resolution. What does this mean?

In inelastic scattering, scattering intensity is measured as function of the energy exchanged
between the scattered neutron and the sample. As in other areas of physics, a data set of the form
intensity-versus-energy is called a spectrum. An instrument that resolves inelastic scattering is
therefore called a spectrometer.

While elastic scattering experiments yield information about structure or texture of a sample,
inelastic scattering is used to investigate its dynamics. Specifically, inelastic neutron scattering
yields information about the thermal motion of atomic nuclei.

The most common instrument for inelastic neutron scattering is the triple-axis spectrometer. It is
routinely used to measure phonon and magnon dispersions, with energy exchanges of the order
of meV. In contrast, the high resolution of a backscattering spectrometer allows to resolve very
small energy shifts of the order of µeV. By the time-energy uncertainty relation, small energy
means long times. Hence, backscattering addresses relatively slow nuclear motion — much
slower than the lattice vibrations typically seen in triple-axis spectrometry. Depending on their
nature, such motions can appear in the spectra as a broadening of the elastic line (quasielastic
broadening) or as distinct features at certain transferred energies (inelastic peaks).

What processes take place on the energy or time scale made accessible by neutron backscatter-
ing? For instance the following:

• hyperfine splitting of nuclear spin orientations in a magnetic field,
• rotations or hindered reorientations of molecules or molecular side groups,
• quantum tunneling,
• hydrogen diffusion in ionic conductors,
• diffusion of water confined in small pores or at different surfaces,
• relaxation in viscous liquids and glasses,
• innermolecular rearrangements in polymers and biological systems such as proteins.

During your lab course day, you will use the backscattering spectrometer SPHERES (SPec-
trometer for High Energy RESolution) to study one example of these applications.

2 Spectrometer Physics

2.1 Energy Selection by Backscattering

In crystal spectrometers, neutron energies are selected by Bragg reflection from crystals, ac-
cording to the Bragg condition

nλn = 2dhkl sinΘ (1)

where dhkl is the distance of lattice planes [hkl], and Θ is the glancing angle of reflection
from these planes. The index n indicates that along with a fundamental wavelength λ1, integer
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fractions λn = λ1/n are transmitted as well. To suppress these unwanted higher orders, ex-
perimental setups include either a mechanical neutron velocity selector (Fig. 1), or a beryllium
filter.

Fig. 1: Rotor of a mechanical neutron velocity selector. The blades are coated with neutron
absorbing material. In SPHERES, such a selector is used as a pre-monochromator that reduces
the incoming white spectrum to about ±6%. © Astrium GmbH.

In practice, the parameters d and Θ on the right-hand side of Eq. (1) are not sharp: Imperfec-
tions of the crystal lead to a distribution of lattice constants, characterized by a width δd. And
similarly, imperfections of the neutron optics (inevitable because the incoming beam, the sam-
ple, and the detector all have finite size) lead to a distribution of reflection angles, characterized
by a width δΘ. By differentiating the Bragg equation (1), one obtains the relative width of the
wavelength distribution reflected by a crystal monochromator:

δλ

λ
=
δd

d
+ cotΘ δΘ. (2)

In usual crystal spectrometers, the second term is the dominant one. However, by choosing
Θ = 90◦, the prefactor cotΘ can be sent to zero. This is the fundamental idea of the backscatter-
ing spectrometer. If a monochromator crystal is used in backscattering geometry, with Θ ≃ 90◦,
then the reflected wavelength distribution is in first order insensitive to the geometric imperfec-
tion δΘ; it depends only on the crystal imperfection δd and on a second-order (δΘ)2 term.

Fig. 2: The monochromator of SPHERES consists of hexagonal Si(111) wafers of 750 µm
thickness, glued onto a spherical support made of carbon fiber.

The monochromator of SPHERES is made of silicon crystals in (111) orientation (Fig. 2).
The backscattered wavelength is λ = 2d111 = 6.27 Å, corresponding to a neutron energy of
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Fig. 3: The analyzers of SPHERES are made of the same Si(111) as the monochromator. For
small scattering angles, they are shaped as rings; for large scattering angles, they are approxi-
mately rectangular sections of a sphere.

2.08 meV. The crystals are cut from wafers produced by the semiconductor industry. They
are perfectly monocrystalline, so that their intrinsic resolution1 of δd/d ≃ 10−6 is actually
too good because it does not match the spectrometer’s second-order geometric imperfection
(δΘ)2 ≲ 10−4. As a remedy, the crystals are glued to a spherical support so that the resulting
strain induces a lattice constant gradient of the order δd/d ≃ 10−4.

2.2 Spectrometer Layout

In a crystal spectrometer, a monochromator is used to send a neutron beam with a narrow
energy distribution Ei±δE onto the sample. After the sample, a second monochromator, called
analyzer, is used to select a narrow energy distributionEf±δE out of the scattered spectrum. In
SPHERES, we actually have a huge array of analyzers (Fig. 3), covering a solid angle of about
2.5, which is 20% of 4π. These analyzers send energy-selected neutrons towards 14 different
detectors, depending on the scattering angle ϑ.

Fig. 4 shows the complete layout of SPHERES. The incoming beam is pre-monochromatized
by a mechanical velocity selector. Then, it is transported by a focussing neutron guide into
the instrument housing where it passes trough the open position of a first rotating chopper
(background [bg] chopper)2 and then hits a second rotating chopper (PST chopper). The PST
chopper rotor (Fig. 5) carries mosaic crystals made of pyrolitic graphite on half of its circumfer-
ence. When the incoming neutrons hit these crystals, they undergo a Bragg reflection towards
the monochromator.3 Otherwise, they are transmitted towards a beamstop.

The backscattering monochromator selects a neutron band Ei ± δE as described above. Neu-

1 In perfect crystals, the intrinsic resolution δd/d is limited by primary extinction: Say, each crystalline layer has
a reflectivity of about 10−6. Then only about 106 layers contribute to the Bragg reflection. This limits δλ/λ to
about 10−6.
2 The role of this device is to reduce the background during the counting of the scattered neutrons.
3 As a side effect, the Bragg deflection by rotating mosaic crystals achieves a favorable phase-space transform
(PST): the incoming wavevector distribution is spread in angle, but compressed in modulus. This results in a
higher spectral flux in the acceptance range of the monochromator.
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shutter
velocity selector

focussing guide detectors

analysers

PST chopper

beamstop

monochromator
Doppler drive

NL6a

vacuum chamber

bg chopper sample

Fig. 4: Layout of the Jülich backscattering spectrometer SPHERES at MLZ

Fig. 5: Schematic front view of the PST chopper rotor of SPHERES. The yellow band indicates
the mosaic crystals that deflect the incident beam towards the monochromator.

trons within this band are sent back towards the PST chopper. When they reach the PST chop-
per, the rotor has turned to its open position: the mosic crystals have moved out of the way; the
neutrons coming from the monochromator are transmitted towards the sample.

The sample scatters neutrons into 4π. About 20% of this is covered by analyzers. If a scattered
neutron hits an analyzer and fullfills the backscattering Bragg condition, it is sent back towards
the sample. It traverses the sample4 and reaches a detector. To discriminate energy-selected
neutrons from neutrons that are directly scattered from the sample into a detector, the time of
arrival is put in relation to the chopper phase.

While the primary spectrometer (everything before the sample) is mainly in vacuum, the sec-
ondary spectrometer is not. To minimize neutron losses in the secondary spectrometer, the
entire instrument housing can be flooded with argon. However, for the labcourse we preferen-
tially remove the argon, so that participants can enter into the housing.

2.3 Measuring Spectra

So far we have introduced a static arrangement with fixed energies Ei = Ef . Such an arrange-
ment is actually used to measure the fraction of elastic versus total scattering, called the Debye-
Waller factor for coherent scattering and the Lamb-Mössbauer factor for incoherent scattering.

4 Of course not all neutrons are transmitted: some are lost, some are scattered into a wrong detector. This inac-
curacy is inevitable in neutron backscattering. We strive to keep it small by using rather thin samples with typical
transmissions of 90% to 95%.
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More often, however, one wants to measure full spectra S(Q,ω). Therefore, one must find a
way to modify the energy transfer

ℏω = Ei − Ef . (3)

This can be done using the Doppler effect: The monochromator is mounted on a linear drive
that performs a cyclic motion. In the monochromator’s rest frame, the backscattered energy is
always the value E0 = 2.08 meV given by the lattice constant of Si(111). Depending on the
monochromator’s velocity v, the value in the laboratory frame is

Ei(v) =
mn

2
(v0 + v)2 (4)

where v0 = 631 m/s is the neutron velocity at E0 = mn/2 v
2
0 . The Doppler drive of SPHERES

has a linear amplitude of ±75 mm and achieves a velocity amplitude of ±4.7 m/s, resulting in
an energy range

−30.7 µeV < ℏω < 30.9 µeV. (5)

This is called the dynamic range of the spectrometer.

When a scattered neutron is detected, its time of flight is traced back to the moment when it
has been backscattered by the monochromator. From the recorded trace of the linear drive, the
monochromator velocity at that moment is infered, ω is computed from (4) and (3), and the cor-
responding histogram channel is incremented. To determine S(Q,ω), one needs to normalize to
the time spent in channel ω. This normalization is routinely done by the instrument’s raw-data
reduction program SLAW.

2.4 Instrument Characteristics
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Fig. 6: Resolution function of SPHERES, measured on a standard sample at a low temperature
where the scattering is purely elastic.

The performance of a spectrometer can be characterized by its resolution function. To obtain
the resolution function, one measures the spectrum of a purely elastic scatterer. Fig. 6 shows the
result of a resolution measurement from a user experiment on SPHERES. Note the logarithmic
intensity scale.
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Conventionally, the resolution of an instrument is characterized by the full width at half max-
imum (FWHM). For SPHERES, a typical value is 0.65 µeV. Note however that the FWHM is
not the full story: the quality of an instrument also depends on the shape of the resolution func-
tions, especially of the deep wings. The resolution of SPHERES is slightly asymmetric. This is
related to the (δΘ)2 term in the wavelength spread of a backscattering analyzer: all deviations
from the perfect Θ = 90◦ geometry lead to the transmission of longer wavelengths, never of
shorter ones.

Another important figure of merit is the signal-to-noise ratio (SNR). It depends strongly on the
ratio of scattering to absorption cross sections and on the thickness and geometry of the sample.
With argon filling SNR for a typical sample with good scattering can exceed 2000:1, whereas
without argon it is decreased by ca 35%. On the other hand, for strongly absorbing samples it
is sometimes less than 100:1. The SNR can be further substantially enhanced by operating the
background chopper at half the frequency of the PST chopper, albeit at the cost of intensity.

3 Applications

In the following, two different applications of neutron backscattering are explained: hyperfine
splitting in a magnetic material, and methyl group tunneling.

3.1 Hyperfine Splitting

The measurement of hyperfine splitting has been historically the first application of neutron
backscattering,5 and to this day, it is the conceptually simplest one.

Since the neutron has spin S = 1/2, its magnetic quantum number can take the values Sz =
±1/2. In a scattering event, this quantum number can change. In more pictorial words: when a
neutron is scattered, it may or may not undergo a spin flip.

As angular momentum is conserved, a change of Sz must be accompanied by an opposite
change of the magnetic quantum number Iz of the nucleus by which the neutron is scattered,
∆Iz = −∆Sz. Therefore, spin-flip scattering is only possible if the sample contains nuclei with
nonzero spin I .

Nuclei with nonzero spin quantum number I possess a magnetic moment

µ = IgµN (6)

with the nuclear magneton

µN =
eℏ
2mp

= 3.153 · 10−8 eV/T. (7)

The g factor is different for each nucleus.6

5 A. Heidemann, Z. Phys. 238, 208 (1970).
6 Tabulation: http://ie.lbl.gov/toipdf/mometbl.pdf.
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A local magnetic field B leads to a splitting of energy levels,

E = IzgµNB, (8)

called hyperfine splitting. Consequently spin-flip scattering is accompanied by an energy ex-
change ∆E = ±gµNB. By measuring the neutron energy gain or loss ±∆E, one can accurately
determine the local field B in ferromagnetic or antiferromagnetic materials.

3.2 Molecular Rotation and Quantum Tunneling

Rotational motion of molecules or molecular side groups is one of the most important applica-
tions of neutron backscattering. Here, we specialize on the rotation of methyl (CH3) groups.
We consider these groups as stiff, with fixed7 CH bond length 1.097 Å and HCH angle 106.5.◦

The only degree of freedom is then a rotation around the RC bond that connects the methyl
group to the remainder R of the molecule. This RC bond coincides with the symmetry axis of
the CH3 group. The rotational motion can therefore be described by a wave function ψ that
depends on one single coordinate, the rotation angle ϕ.

The Schrödinger equation is {
B
∂2

∂ϕ2
− V (ϕ) + E

}
ψ(ϕ) = 0. (9)

For free rotation (V = 0), solutions that possess the requested periodicity are sine and cosine
functions of argument Jϕ, with integer J . Accordingly, the energy levels are E = BJ2.

Given the value B = 670 µeV, it is obvious that free rotor excitations occur only far outside
the dynamic range of neutron backscattering. Conversely, if we observe an inelastic signal
from methyl groups on a backscattering spectrometer, then we must conclude that V ̸= 0: the
methyl group rotation is hindered by a rotational potential. This potential can be caused by the
remainder R of the molecule as well as by neighbouring molecules.

Due to the symmetry of the CH3 group, the Fourier expansion of V (ϕ) contains only sine and
cosine functions with argument 3mϕ, with integer m. In most applications, it is sufficient to
retain only one term,

V (ϕ)
.
= V3 cos(3ϕ). (10)

The strength of the potential can then be expressed by the dimensionless number V3/B. In the
following we specialize to the case of a strong potential, V3/B ≫ 10, which is by far the most
frequent one.

In a strong potential of form (10), the CH3 group has three preferential orientations, separated
by potential walls. The motion of the CH3 group consists mainly of small excursions from the
preferred orientations, called librations. Essentially, they are harmonic vibrations.

At low temperatures, almost exclusively the vibrational ground state is occupied. Yet reorien-
tational motion beyond librations is possible by means of quantum mechanical tunneling: the
wave functions of the three localised pocket states ψm (m = 1, 2, 3) have nonzero overlap.

7 Ignoring the variations of empirical values, which are of the order of ±0.004 Å and ±1.5◦.
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Therefore, the ground state is a linear combination of pocket states.8 Periodicity and threefold
symmetry allow three such combinations: a plain additive one

ψ1 + ψ2 + ψ3, (11)

and two superpositions with phase rotations

ψ1 + e±i2π/3ψ2 + e±i4π/3ψ3. (12)

In the language of group theory, state (11) has symmetry A, the degenerate states (12) are
labelled Ea, Eb. It is found that A is the ground state. The tunneling splitting ℏωt between
the states A and E is determined by the overlap integral ⟨ψm|V |ψn⟩ (m ̸= n). It depends
exponentially on the height of the potential wall. Provided it falls into the dynamic range of
neutron scattering, it leads to a pair of inelastic lines at at ±ℏωt.

With rising temperatures, the occupancy of excited vibrational levels increase. This facilitates
transitions between A and E sublevels and results in a decrease of ℏωt and a broadening of the
inelastic lines.

Upon further temperature increase, thermal motion of neighbouring molecules causes so strong
potential fluctuations that the picture of quantum tunneling is no longer applicable. Instead, the
motion between different pocket states can be described as stochastic jump diffusion.

Let pm(t) be the probability of being in pocket state m (m = 1, 2, 3). Assume that jumps
between the three main orientations occur with a constant rate τ−1. Then, the pm obey rate
equations

d

dt
pm(t) =

1

τ

{
−pm +

∑
n̸=m

1

2
pn

}
. (13)

The stationary equilibrium solution is just pm = 1/3 for all m. When perturbed, the system
relaxes into equilibrium with a time dependence of exp(−t/τ̃). Explicit solution of the linear
differential equation system (13) yields τ̃ = 2τ/3.

According to a fundamental theorem of statistical mechanics (the fluctation dissipation theo-
rem), the relaxation by which a slightly perturbed system returns into equilibrium has the same
time dependence as the pair correlation function in equilibrium. Therefore, we can employ the
solution of (13) to write down the self-correlation function of the protons that constitute our
methyl group. Fourier transform yields then the incoherent scattering function

S(Qω) = a(Q)δ(ω) + b(Q)
Γ

ω2 + Γ2
. (14)

The first term describes elastic scattering. The second term, the Fourier transform of the expo-
nential exp(−t/τ̃), is a Lorentzian with linewidth Γ = τ̃−1; such broadening of the elastic line
is often called quasielastic.

8 This is an extremely simplified outline of the theory. In a serious treatment, to get all symmetry requirements
right, one must also take into account the nuclear spins of the H atoms. See W. Press, Single-Particle Rotations in
Molecular Crystals, Springer: Berlin 1981.
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4 Preparatory Exercises

1. Relate the relative wavelength spread δλ/λ to the relative energy spread δE/E.

2. In SPHERES, useable detectors are located at scattering angles 2θ ranging from 12.5◦

to 134◦. Calculate the corresponding wavenumbers in Å−1. Recommendation: use the
following constants in atomic units: ℏc = 1973 eVÅ and mnc

2 = 940 MeV.

3. Convert dynamic range and resolution of SPHERES into GHz. To make contact with
optical spectroscopy, you might also wish to convert into cm−1.

4. Empirically, it is found that the centre of the resolution function can be fitted by a Gaus-
sian a exp(−E2/2/σ2). Derive an expression that relates the Gaussian standard deviation
σ to the FWHM.

5. Note that the above mentioned fit applies only to the very centre of the resolution function.
How does a Gaussian look like on the lin-log representation of Fig. 6? And a Lorentzian?

6. In SPHERES, the distance sample-analyzer is 2 m. Calculate the time neutrons need for
a round trip sample-analyzer-sample.

7. Assume that the monochromator motion is perfectly sinusoidal. Sketch how the measur-
ing time per energy channel varies with ℏω.

8. Draw a sketch of the expected backscattering spectrum S(Q,ω) of a ferromagnetic mate-
rial with I ̸= 0.

9. A good example to observe rotational tunneling is the benzene-derived molecule xylene
(dimethylbenzene, C8H10). What is the required thickness to obtain 90% transmission for
a flat xylene sample?

10. Sketch the expected spectra for different temperatures.

5 Experiment Procedure

5.1 The experiment itself

First, the key components and working principles of the instrument are revised and discussed
with the tutor.

The proposed experiment consists in the observation of methyl group tunneling in xylene, in
its meta- or para- isomeric form. An alternative experiment is the observation of hyperfine
splitting in a magnetic material. The tutor shows how to insert the sample in the instrument’s
cryostat and how to launch the measurements using the instrument’s graphical user interface.
Log entries are written to the instrument log wiki. The details of the experimental procedure
are discussed with the group.
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5.2 Data reduction

The program SLAW is used to convert raw neutron counts into S(Q,ω). It is parametrized by
a script, called Slawfile. The tutor provides a sample script, which is then modified to
convert the results of the current experiment.

SLAW can save S(Q,ω) in a variety of output formats. Most relevant are plain tabular formats
recttab and spectab, and a self-documenting format y08 required by our standard data-
analysis software FRIDA.

5.3 Data evaluation

The data evaluation is done using the data-analysis package FRIDA. For a tutorial and help,
refer to the FRIDA webpages. 9

1. Plot a representative selection of measured spectra and observe how the signal change at
different temperatures and Q-values.

2. With the help of the tutor, fit the signal for one of the temperatures using the convolution
of a theoretical model with a measured resolution function. For convenience, a simplified
model will be employed.

3. Use the same model to fit the other temperatures and evaluate the temperature dependence
of the relevant fit parameters.

4. Select one spectrum and try to fit the elastic line and a chosen inelastic line, if there are
any, with a Gaussian and with a Lorentzian.

6 Experiment-Related Exercises

Use the obtained results from data evaluation to answer the following questions and discuss
them with the tutor.

1. How does the signal qualitatively change with different temperatures? And with different
Q-values?

2. Summarize the temperature dependence of the fit parameters.

3. How could you improve the simplified model to better describe the data?

4. Why is it important to measure the resolution function?

9 Follow the link at https://jugit.fz-juelich.de/mlz/frida.

https://jugit.fz-juelich.de/mlz/frida
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1 Introduction

Polarized neutron scattering and polarization analysis represent powerful techniques for the
studies of complex ordering phenomena and dynamics of condensed matter. The elements of
this technique and its advanced applications in particular in magnetism have been comprehen-
sively covered in a number of lecture notes and papers [1–5]. The aim of this exercise on
Neutron Polarization Analysis is to provide you with some hands-on experience on the practical
aspects of polarized neutron scattering based on the multi-detector time-of-flight spectrometer
DNS at MLZ [6]. The details on the handling of polarized neutrons and the fundamentals of
polarization analysis will be demonstrated from a range of experiments and exercises.

In Section 2 of this manual, an overview of the instrument DNS as well as its unique capabilities
will be given. Section 3 consists of necessary preparatory exercises and questions which can
be studied before the experiment. Section 4 describes the experiment procedure and Section 5
provides the experiment-related exercises.

2 Overview of the DNS Instrument

DNS is a versatile diffuse scattering cold neutron time-of-flight spectrometer with polariza-
tion analysis at the neutron guide NL6 at MLZ. DNS has the capability to allow unambiguous
separations of nuclear coherent, spin incoherent and magnetic scattering contributions simulta-
neously over a large range of scattering vector Q and energy transfer E. A schematic layout of
DNS is shown in Fig. 1.

DNS features wide-angle polarization analysis, a large position-sensitive detector array and a
high frequency disc chopper system. With its compact design and the powerful double-focusing
PG(002) monochromator, DNS is optimized as a high intensity instrument with medium reso-
lution. A monochromatic neutron beams with a wavelength between 2.4 to 6 Å is available at
DNS. A neutron velocity selector suppresses higher orders or allows to select λ/2 without the
need to move the secondary spectrometer. The polarizer is a solid-state C-bender with Fe/Si
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1. Double focusing PG(002) monochromator
2. Beamshutter
3. Velocity selector
4. Polarizer (supermirror benders)
5. Disk chopper
6. Pi-flipper
7. Slits
8. Monitor
9. XYZ-coils

10. Sample
11. Polarization analysers
12. Detectors 24 tubes
13. Position sensitive detectors 128 tubes

Fig. 1: Schematic sketch of DNS instrument.
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coated polarizing supermirrors m = 3.5 [7] and the polarization analyzers use m = 3 Schärpf
bender-type focusing supermirrors. A polarized neutron flux as high as 5 × 106 n/(s·cm2) has
been achieved at 4.74 Å. The polarization rate of the incident neutron beams is nearly 96%.
The wide-angle polarization analysis in the horizontal scattering plane is achieved by the si-
multaneous use of 24 analyzers separated by 5◦ in 2θ. The neutron spins are manipulated using
a Mezei-type π-flipper, followed by a set of orthogonal XYZ-coils situated around the sample
position for providing guide fields. In addition to the high polarized flux, the unique strength
of DNS lies in its extreme versatility. DNS can be operated in a number of modes for a wide
range of samples. There are three polarization analysis (PA) modes at DNS: uniaxial-PA for
separation of coherent and spin-incoherent scattering in non-magnetic samples; longitudinal-
PA for separation of magnetic scattering in paramagnetic and antiferromagnetic samples; and
vector-PA for the determination of complex magnetic structures.

Time-of-flight (TOF) spectroscopy is another important application at DNS. Additional to the
polarization analysis detectors a set of 128 position-sensitive 3He tubes of 1 m height and half
inch diameter without polarization analysis increases the covered solid angle up to 1.9 sr. For
TOF measurements the beam is pulsed with a three slit titanium disc chopper with a frequency
up to 300 Hz, shown in Fig. 2a. DNS is targeted as a high count-rate cold neutron time-of-flight
spectrometer with medium resolution. It is thus ideal for the studies of spin dynamics in many
novel magnetic materials. Fig. 2b shows a TOF measurement of Vanadium with an achieved
elastic-line resolution of 0.3 meV. The technical details of DNS are given in Table 1.

a) b)

Fig. 2: (a) Opened chopper housing, with visible titanium three slit chopper. (b) TOF measure-
ment of Vanadium f = 250 Hz, λ = 4.2 Å, elastic-line resolution ≈ 0.3 meV
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Monochromator horizontal- and vertically adjustable
double-focusing

PG(002), d = 3.355 Å (at
NL6)

crystal dimensions: 2.5 × 2.5 cm2 (5 × 7 crystals)
wavelengths: 2.4 Å ≤ λ ≤ 6 Å

Velocity selector minimum wavelength 1.5 Å at 2200 rpm
wavelength bandwith ∆λ/λ: 30 – 40 %

Chopper system chopper disk: Titanium, 3 slits, ∅ = 420 mm
chopper frequency: ≤ 300 Hz

Expected flux at
sample (n/cm2s)

non-polarized ≈ 108

polarized (polarizer: m = 3.5 super-
mirror benders)

≈ 5×106–107

Detector banks
for non-polarized
neutrons

position sensitive 3He detector tubes 128 units, ∅ = 1.27 cm, height
≈ 100 cm

total solid angle covered: 1.9 sr
horizontal covered scattering angle: 0◦ ≤ 2θ ≤ 135◦

Detector banks
for polarized
neutrons

polarization analyzers: 24 units, m = 3 supermirror
benders

3He detector tubes: 24 units, ∅ = 2.54 cm, height
15 cm

horizontal covered scattering angle: 5◦ ≤ 2θ ≤ 135◦

Qmax λi = 2.4 Å (Ei = 14.2 meV) 4.84 Å−1

λi = 6 Å (Ei = 2.28 meV) 1.93,Å−1

Energy resolution λi = 2.4 Å (Ei = 14.2 meV) ≈ 1 meV
λi = 6 Å (Ei = 2.28 meV) ≈ 0.1 meV

Suitable samples single crystals, powders, soft matter (e.g. polymers, liquids etc.)
Sample environ-
ments

top-loading CCR, closed-cycle cold head, orange cryostat, cryo-
furnace, 3He/4He dilution cryostat (∼20mK), cryomagnet (self-
shielding, vertical field up to 5T)

Table 1: The technical details of the DNS instrument.

Typical scientific applications at DNS are the studies of complex magnetic correlations, such as
in highly frustrated magnets and strongly correlated electron systems, as well as the structures
of soft condensed matter, such as the nanoscale confined polymers and proteins, via polarization
analysis. Beside the separation of the magnetic cross section from nuclear and spin-incoherent
ones, polarization analysis can also be used to explore possible anisotropy of spin correlations
in complex materials. Polarized powder diffraction carried out at DNS is complementary to
standard neutron powder diffraction and may be extremely useful for magnetic structure re-
finements, particularly in case of small magnetic moments by improving the signal to back-
ground ratio. Fig. 2(a) shows the magnetic and nuclear scattering of iron-based superconductor
Sr2CrO3FeAs measured at DNS with polarization analysis and the corresponding Rietveld re-
finements [8].

The exploration of unusual magnetic properties can also be efficiently undertaken on single
crystals by reciprocal space mapping. Fig. 2(b) shows an example of the measured magnetic
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diffuse scattering patterns originating from the spiral spin-liquid state of MnSc2S4. The dif-
fuse magnetic scattering separated by polarization analysis forms a squared-ringpattern close
to the Brillouin zone boundaries characteristic for the predicted spiral surface [9]. Fig. 2(c)
shows the magnetic diffuse scattering derived with the same approach on the molecule magnet
{Mo72Fe30} [10]. DNS also represents a powerful instrument for the soft condensed matter
community for the separation of nuclear coherent scattering from often dominating spin inco-
herent scattering background in hydrogenous materials.

a)

b) c)

Fig. 3: Examples of the scientific applications at DNS: (a) magnetic and nuclear scattering of
iron-based superconductor Sr2CrO3FeAs at 3.5 K as measured (blue) at DNS via polarization
analysis and the Rietveld refinements (red) [9]; (b) Diffuse magnetic scattering from the spiral
spin-liquid state of MnSc2S4 (c) differential magnetic scattering cross section measured at 1.5
K and the theoretical simulation with the three-sublattice spin model of the citation{Mo72Fe30}
molecule magnet [10].
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3 Preparatory Exercises

The practical aspects and the experimental setup of DNS with respect to polarization analysis
have been addressed and discussed in great details in the lecture [1]. Therefore, it is strongly
recommended to go through the relevant sections of the lecture notes thoroughly before the
exercises. Try to answer the following general questions, it would greatly improve your under-
standings:

1. What is the Larmor precession? How to calculate the Larmor frequency (ωL)?

2. How do neutron spins respond to changing magnetic fields? What are adiabatic and non-
adiabatic behavior?

3. How to are polarized neutrons produced and how is the spin state of the neutrons after the
scattering process analyzed?

4. What is a spin flipper and how does it work?

5. What is the flipping ratio? What is the polarization rate of the neutron beams?

6. What are nuclear coherent, spin incoherent, isotopic incoherent and magnetic scattering
processes? Whether and how are the spin states of the scattered neutrons changed in those
scattering processes?

In addition to these general questions, the following exercises are provided:

1. How strong should the magnetic field Hy be in a coil of length L = 100 mm to perform a
90◦ turn for neutrons with λ = 4 Å (see Fig. 4a)

2. A magnetic field H changes its space direction by 90◦ over a distance of L = 20 mm (as
shown in Fig. 4b). How strong should the field H be to achieve an adiabatic evolution of
the neutron spins? The neutrons wavelength is λ = 4 Å.

neutron spin precession
around Hyy

x

z

Pz

Hy

The coil provides a magnetic
field Hy along the y axis.

λ=4 Å

100 mm

H

λ=4 Å

20 mma) b)

Fig. 4: Prepatory exercises
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4 Experiment Procedure

After the DNS instrument and its major instrument components are briefly introduced by the
tutor, the first task for students is to learn how to manipulate neutron spins via Larmor precession
and properly set guide fields.

The experiment will start with a measurement of two standard samples, which are used to
correct for detector efficiency and finite flipping ratio. The students will change the samples
in the cryostat and will learn how to move the sample, detectors, fields and slits by the python
based instrument control software Nicos. Afterwards a polycrystalline magnetic sample and a
single crystal will be examined.

1. Vanadium hollow-cylinder: nuclear spin-incoherent scattering

2. Non-magnetic alloy Ni0.89Cr0.11: isotopic incoherent scattering

3. Antiferromagnetic powder NiO

4. Single crystal sample - from an actual research project at the point of the lab course

5. Alternatively D2O could be measured

The students are expected to perform the experiment to measure the spin-flip and non-spin-flip
scattering intensities of each sample via wide-angle polarization analysis at DNS and under-
stand the differences between nuclear, magnetic, spin-incoherent and isotopic incoherent scat-
tering.

The Ni0.89Cr0.11 sample will further be used for the alignment of the π-flipper and z-compensation
field strengths.

For detailed information about the instrument components and data analysis software the stu-
dents are referred to the DNS intranet wiki (only accessible from MLZ network):
https://wiki.frm2.tum.de/dns:index

5 Data Evaluation and Experiment-related Exercises

After the experiment the students will learn how to plot the data using instrument specific soft-
ware and how to separate the different scattering cross sections. The polarization efficiency can
never achieve 100% due to polarization losses by depolarizations in the polarizer, the analyzer
and the guide fields and the imperfections of the polarizer, the analyzer and the flipper, this
always leads to a finite flipping ratio. The correction for finite flipping ratio thus becomes an
important and always necessary practical issue in order to obtain a precise separation. There-
fore, the following exercise related to the flipping ratio correction is provided

1. For neutrons with a wavelength λ=4.74 Å and a flight path of 10 mm through the flipper
coil, how strong the flipping field would be required to achieve a π-flip?

https://wiki.frm2.tum.de/dns:index
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2. Which measurement would you use to determine the flipping ratio at DNS. How large is
the flipping ratio and the polarization rate of the incident neutron beam at DNS?

3. With the measured finite flipping ratio, how would you correct the spin-flip scattering
intensity Isf and the non-spin-flip scattering intensity Insf?

4. How can polarization analysis be used to separate nuclear coherent scattering from spin-
incoherent scattering in soft condensed matter?

5. How is the scattering cross section obtained via the XYZ-method? Which necessary
corrections need to be done for a precise separation?

6. What ratio between the spin-flip and non-spin-flip intensities do you expect for Vanadium
and Ni0.89Cr0.11 and what is the physical origin?
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1 Introduction

Neutron spin echo spectroscopy provides the highest energy resolution in neutron scattering.
The covered energy range (or Fourier time range) matches excellently thermally driven motions
in soft matter systems such as polymer chains in solution, in the melt, domain motions of
proteins, phospholipid membrane fluctuations to mention just a few. This experiment aims to
study the dynamics of a polymer chain in solution. Poly(ethylene propylene) (PEP) with a
molecular weight of 100 kg/mol is dissolved in deuterated decane with a concentration of 3%.
The dynamics of PEP polymer in solution will be studied at room temperature. The results will
be interpreted in terms of the Zimm model, which allows to draw conclusions about the internal
motions of the polymer chains.

2 Neutron Spin Echo Spectroscopy

The neutron spin echo technique uses the neutron spin as an indicator of the individual velocity
change the neutron suffered when scattered by the sample. Due to this trick NSE accepts a
broad wavelength band and at the same time is sensitive to the velocity changes down to 10−5.
However, the information carried by the spins can only be retrieved modulo an integer number
of spin precessions and thus it is retrieved as intensity modulation proportional to the cosine
of a precession angle difference. The measured signal is the cosine transform I(Q, t) of the
scattering function S(Q,ω). All spin manipulations only serve to establish this special type of
velocity analysis. For details see Reference [1].

Due to the intrinsic Fourier transform property of the NSE instrument it is especially suited
for the investigation of relaxation-type motions, which contribute at least several percent to the
entire scattering intensity at the momentum transfer of interest. The Fourier transform property
yields the desired relaxation function directly without numerical transformation and tedious
resolution deconvolution. The resolution of the NSE may be corrected by a simple division.

The NSE instrument (see Figure 1) consists mainly of two large solenoids that generate the
magnetic field that causes the precession of neutron spin (precession field). The precession
of the spin is limited by π/2-flippers, which are in front of the entrance and respectively exit
of the first and second main solenoids; the π-flipper is located near the sample position. The
embedding fields for the flippers are generated by Helmholtz-type coil pairs around the flipper
locations. After leaving the last flipper the neutrons enter an analyzer containing 60 (30 x 30
cm2) magnetized CoTi supermirrors located in a solenoid set. These mirrors reflect only neu-
trons of one spin direction into the multidetector. Figure 1 (middle) shows the layout of the
solenoids, the bottom part the engineering design of the J-NSE spectrometer. The main preces-
sion coils providing the strong precession region, are superconducting and fully compensated
(no dipolar stray fields) in order to minimize the mutual influence of the different spectrometer
components.

Depending on its velocity, each neutron undergoes a number of precessions in the first solenoid
before hitting the sample. After the scattering process the π-flipper inverts the spin orien-
tation so that the rotation in the second solenoid exactly compensates the first if the speed
of the neutrons is not changed by the scattering (purely elastic process), whereas inelasti-
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cally scattered neutrons collect a different phase angle of rotation, ∆Ψ ≃ ∆v/v2 γ J , with
γ = 2π × 2913.06598 × 104 s−1 T−1 and J being the magnetic field integral (the integrated
magnetic field a neutron experiences during its flight through the field). The distribution of
the velocity changes ∆v of neutrons that experienced an energy transfer during scattering at
the sample – in terms of its cos-Fourier transform – is measured as polarization of the neutron
beam at the end of the second solenoid after the last π/2-flipper. Small velocity changes are
proportional to the small energy changes ℏω, ω being the frequency of the Fourier transform.
The time parameter (Fourier time) is proportional to λ3J and here in first instance is controlled
by the current setting of the main coils, which determins the field integral J .

magneticfield
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Fig. 1: Working principle of the NSE spectrometer showing the spin precessions along the
flight path for the velocity encoding/decoding (top), the magnetic layout of the actual J-NSE
spectrometer with all solenoids (middle) and the engineering design of the actual J-NSE spec-
trometer (bottom) [2, 3].

The polarization is determined by scanning the magnetic field in one of the main coils with the
so-called phase coil. If first and second arm are symmetric, a maximum of the polarization is
measured. However, if the phase of the spins is shifted by 180 degree by variation of the field
of one coil, one gets to a minimum of intensity. With a 360 degree variation one gets to the
next maximum and so on. These oscillations are shown in Figure 2. The amplitude of such an
echo is normalized to the difference between maximum intensity (up-value), where all flippers
are switched off, and the minimum intensity where only the π-flipper is switched on (down-
value). Assuming that this normalization accounts for all imperfections of the polarization
analysis in the instrument, the result yields the desired degree of polarization reduction due to
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inelastic/quasielastic scattering of the sample. Since the thus determined polarization reduction
also contains the effects due to field integral inhomogeneity a further normalization step is
needed, which is equivalent to a resolution deconvolution in a spectroscopic instrument as e.g.
the backscattering spectrometer. In order to be able to perform this resolution correction the
same experimental and data treatment procedure has to be carried out with an elastic scatterer.

Fig. 2: Echo group measured with the NSE instrument.

For a given wavelength the Fourier time range is limited to the short times (about 3 ps for J-NSE
instrument @ MLZ) by the lower limit of the field integral and to long times by the maximum
achievable field integral J =

∫
Bdl. The lower limit results from the lowest field values that

are needed as “guide” field in order to prevent neutrons from depolarization effects. The upper
limit results either from the maximum field that can be produced by the main solenoid, or by
the maximum field integral inhomogeniety (→ variation of precession angle between different
paths within the neutron beam) that can be tolerated respectively corrected for, depending which
condition applies first. The J-NSE may achieve a J = 1 Tm corresponding to t = 96 ns at λ = 8
Å.

The scattering vector Q is determined by the angle 2θ of the second arm of the spectrometer with
respect to the first one by Q = 4π/λ sin(θ) (Bragg equation). The Fourier time t is proportional
to the magnetic field of the main solenoids. At a given scattering vector Q, the magnetic field
is successively increased and an echo group is recorded for each setting to obtain I(Q, t) as a
function of t.
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2.1 Separation of coherent and incoherent scattering

By the use of polarized neutrons it is possible to separate the coherent and spin incoherent part
of the scattering, since the incoherent scattering changes the polarisation to −1/3. For different
scattering vectors Q the scattering intensity is measured, once in the spin-up configuration and
once in the spin-down setup. In the spin-up configuration all spin flippers are switched off and
the longitudinal, in forward direction (i.e. parallel to the magnetic field) polarized beam can
pass through the spectrometer. The analyzer in front of the detector transmits those polarized
neutrons. The measured intensity at the detector in this configuration is the maximum possible
intensity. In the spin-down configuration only the π flipper at the sample position is switched
on, which rotates the neutron spin orientation by 180◦. The spin direction is now against the
magnetic field direction and in the ideal case the analyzer completely absorbs the neutrons,
so that the minimal possible detector intensity is measured. Omitting background effects and
assuming perfect flipping ratio (ratio spin-up/spin-down = ∞ in the direct beam) coherent and
incoherent scattering contributions can be separated as follow (with Up: detector intensity in the
diffraction run with all flippers off, Down: detector intensity in the diffraction run with only
π flipper at sample position on, Icoh: coherent scattered intensity, Iinc: incoherent scattered
intensity):

Up+Down = Icoh + Iinc (1)

Up−Down = Icoh − 1/3Iinc (2)

which gives
Up = Icoh + 1/3Iinc (3)

Down = 2/3Iinc (4)

respectively
Iinc = 3/2Down (5)

Icoh = Up− 1/2Down (6)

To include non-ideal flipping ratio and background count rate the calculation is more difficult.

3 Polymer dynamics

There are different models to describe the dynamics of large molecules. A nice overview is
given in the book ”Neutron Spin Echo in Polymer Systems”, which is also available online [4],
as well as in laboratory course lectures, chapter 13.

The conformation of a linear polymer chain follows a random walk, this means a chain segment
of length l can move freely around the neighboring segment (within the limitation of chemical
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bonds). With a set of segment vectors rn = Rn − Rn−1, where Rn is the position vector
of segment n, the distance between segments, which are n steps apart, follows a Gaussian
distribution [4]:

Φ(R, n) =

(
3

2πnl2

)3/2

exp

(
− 3R2

2nl2

)
(7)

with l the segment length.

By summing up the scattering amplitudes of the centres of the segments of a polymer chain
with the correct phases, one obtains the scattering function of the polymer chain (see Lecture
on Dynamics of Macromolecules for more details):

I(Q, t) = ⟨
N∑

n,m=1

exp[iQ · (Rn(t)−Rm(t))]⟩ (8)

A snapshot of the chain, i.e. the static structure factor, is obtained for t = 0. One gets the well
known Debye funktion:

I(Q) = NfDebye(Q
2R2

g) (9)

fDebye(x) =
2

x2
(e−x − 1 + x) (10)

with Rg the radius of gyration of the chain.

3.1 Rouse dynamics

In the Rouse model the Gausssian polymer chain is described as beads connected by springs.
The springs correspond to the entropic forces between the beads and the distance between the
beads corresponds to the segment length of the polymer. The polymer chain is in a heat bath.
The Rouse model describes the movement of the single chain segments of such a polymer chain
as Brownian movement. Thermally activated fluctuations (by the stochastic force fn(t) with
< fn(t) >= 0), friction force (with friction coefficient ζ) and the entropic force determine the
relaxation of polymer chains.

The movement of the chain segments is described by a Langevin equation:

ζ
dRn

dt
+

∂U

∂Rn

= fn(t) (11)

The Langevin equation can be solved and one can calculate with equation 8 the intermediate
scattering function, which is measured by NSE (for details, see the lecture on “Dynamics of
Macromolecules”):

I(Q, t) = exp(−Q2Dt)Iintern(Q, t) (12)

with a diffusive part with a relaxation rate proportional to Q2 and the part describing the internal
relaxation, which can be written for QRG >> 1:

Iintern(Q, t) =
12

Q2l2

∫ ∞

0

du exp(−u−
√
(ΓQt)h(u/

√
(ΓQt))) (13)
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Fig. 3: Schematic representation of the polymer chain in the Rouse model [4] as a Gaussian
chain with beads connected by springs.

with the relaxation rate
ΓQ =

kBT

12ζ
Q4l2 (14)

and
h(u) =

2

π

∫
dx cos(xu)(1− e−x2

)/x2 (15)

Note that the local relaxation rate depends on Q4. When I(Q, t)/I(Q, 0) is plotted against the
Rouse variable

√
ΓQt, all curves collapse onto a master curve if the Rouse model holds.

With this model, for example, the dynamics of short polymer chains in the melt can be de-
scribed. With increasing molecular weight some other effects like the constraints imposed by
mutual entanglements of the polymer chains become important, which are described in the rep-
tation model by de Gennes (Nobel prize 1991). In this experiment polymers in solution, not
in the melt, are considered. The Rouse model then needs to be extended by hydrodynamic
interactions as will be described in the following section.

3.2 Zimm dynamics

Polymers in solution can be described by the Zimm model, where hydrodynamic interaction be-
tween the chain segments mediated by the solvent are dominant. Moving chain segments exert
forces on other segments due to the flow of the surrounding solvent. Within some approxima-
tions the system can be described by a Langevin equation analogous to that of the Rouse model
which includes the friction coefficient ξ = 6πηaseg with η the viscosity of the solvent. The main
modification is the inclusion of the hydrodynamic interaction represented by an Oseen tensor
to account for the forces acting to neighbouring beads via the flow field of the solvent. More
details can be found in Reference [4].

The intermediate scattering function can be written again in the form of Equation 12, with a
global diffusion of the whole particle, and the internal polymer fluctuations Iintern(Q, t). An
approximation to Iintern(Q, t) of the Zimm model is a stretched exponential function which
reads

Iintern(Q, t) = exp

(
−
(
kBTQ

3t

6πηb

)β
)

(16)
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Fig. 4: Calculated I(Q,t) with the Zimm model (left) and resulting effective diffusion (Γ/Q2).

with b ≃ 1.354 and β ≃ 0.85. The relaxation rate of a polymer chain in this model,
Γ = kBTQ

3/(6πη), is mainly determined by the viscosity of the solvent. Internal dynam-
ics is dominant at higher scattering vectors Q, where also the typical Q3 dependence of the
relaxation rate can be observed. At smaller scattering vectors the contribution from the center
of mass diffusion is more prominent so that rather a Q2 dependence of the relaxation rate is
expected.

Figure 3.2 shows the calculated I(Q,t) for a series of Q-values (i.e. scattering angles instrument)
which will be measured in the labcourse with the NSE spectrometer, together with the resulting
relaxation rate divided by Q2. This should be constant for simple diffusing processes. The
linear increase indicates the Q3-depencence which is characteristic for Zimm dynamcis.

3.3 Center of mass diffusion

With NSE spectroscopy the movements on length scales in the order of nanometer and time
scales in the order of nanoseconds can be observed. This matches e.g. the center of mass
diffusion of macromolecules in solution or micelles. The mean square displacement of a par-
ticle is < r2(t) >= 6DCM t with the diffusion constant DCM = kBT/(6πηRG), where RG is
the hydrodynamic particle radius and η the viscosity (Stokes-Einstein-relation). The dynamic
structure factor which is measured by NSE is then

I(Q, t)/I(Q, 0) = exp
(
−1/6 < r2(t) > Q2

)
= exp

(
−DCMQ2t

)
(17)

This result can be obtained again by the Langevin equation of a particle undergoing Brownian
motion in a solvent. A simple diffusion process therefore has a quadratic dependence on the the
scattering vector Q.

4 Preparatory exercises

1. How fast do neutrons with a wavelength of 8 Å fly?

2. What is the value of the earth’s magnetic field?
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3. What is the magnetic field at the surface of a common permanent magnet?

4. How many mm fall neutrons on their way from the entrance of the spectrometer to the
detector (about 7 m) due to gravity?

5. How many precessions does a neutron of λ = 8 Å perform in the main coils if the Fourier
time is set to 20 ns? (Angle Ψ = γ/v

∫
Bdl).

5 Experiment procedure

5.1 The experiment itself

First, the function of the key components of the neutron spin-echo spectrometer will be
explained and demonstrated.

The generation of the ”Spin Echo” will be demonstrated with an auxiliary phase coil, wound
around one of the main precession coils with a simple wire. With a laboratory DC-powersupply
connected to this coil, the magnetic field inside this main coil is slightly varied. A fully sym-
metrical setup with identical magnetic path integrals in both main coils results in a maximum
count rate at the detector. Increasing the current in the auxiliary coil from this point results in
an additional phase shift of the neutron spin and thus the intensity varies from the maximum to
a minimum and further to the next maximum and so on. In this way, the echo group is scanned.

• The frequency of the oscillation (i.e. the current needed to go from one intensity maxi-
mum to the next maximum), depends on the field integral and on the wavelength of the
neutrons. Approximating the field integral of a current loop allows thus to determine the
wavelength of the neutrons in this experiment. This will be done with the recorded data.

The experimental sample under investigation is a polymer chain (PEP, polyethylenepropylene)
with a molecular weight of 100 kg/mol in solution (deuterated decane). The PEP concentration
is 3 wt %. The first experiment with the sample is to measure the elastic scattering by recording
the spin-up and spin-down intensity at the detector.

• The coherent and incoherent scattering of the sample shall be extracted from this reading
and plotted versus the scattering vector Q.

The dynamics of the sample is measured. For some selected scattering vectors Q, a series of
Fourier times is measured for the sample, for a background sample containing everything but
the objects under investigation, in this case the pure deuterated solvent (d-decane), and for an
elastic scatterer as reference.

5.2 Data reduction

Each Fourier time is determined by measuring 2-3 oscillations of the echo bunch and fitting
the theoretical curve (a cosine oscillation with a gaussian envelope) to the measured points.
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In short, the normalized amplitude of the fitted curve is the degree of polarization obtained in
this measurement. This elaborated fitting procedure is done with a program called drspine,
which creates the files containing the intermediate scattering function I(Q, t)/I(Q, 0).

5.3 Data evaluation

The I(Q, t) vs. t is contained in the files report XXXXX.dtr as ascii-data.

• Read in the data with some data treatment program (e.g. free software qtisas:
https://www.qtisas.com).

• Try to fit the data. First use a simple exponential function I(Q, t) = A exp (−Γt) and
determine the relaxation rate Γ. For diffusion like behaviour with the Stokes-Einstein
diffusion coefficient, Γ = DQ2 should be valid. Plot Γ/Q2 vs. Q to check the validity of
the model. It also allows for the determiation of the hydrodynamic radius of the particle
assuming a viscosity of d-decane of η = 0.954× 10−3 kg/(ms).

• Use a stretched exponential function as model function: I(Q, t) = A exp (−[Γt]β) and
determine the relaxation rate Γ and the stretching exponent β. The Zimm model would
predict that the rate depends on the viscosity η as Γ = kBT/(6πη)Q

3. What is the
viscosity of d-decane? Does the Q-dependence of the model describes that of the data
correctly (i.e. is Γ/Q3 = const.)?

6 Experiment related exercises

Data evaluation (the bullet points in section 5):

1. Separate coherent and incoherent scattering from the elastic scan (diffrun) and plot it.

2. Evaluate the data containing I(Q, t)/I(Q, 0) vs t with the models as described in the
previous section and discuss the results.

General questions:

1. Why are no iron yoke magnets used in the construction of a NSE spectrometer?

2. What is the maximum field inside the main precession coils of the J-NSE?

3. What determines the resolution of the spin echo spectrometer?

4. How does the signal look like if the scattering is spin-incoherent? (Hint: in this case 2/3
of all neutron spins get flipped in the scattering process.)

5. What is the measured effect of the spin echo spectrometer?

6. What is measured finally?
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7 J-NSE Training environment

Data reduction and evaluation of the NSE labcourse experiment can be done in the training en-
vironment at https://training.mlz-garching.de/jcns/ where the j-nse relevant
data and evaluation software is available in a linux container running in the browser.

The following section describes the basics of the j-nse data structure, data reduction and evalu-
ation and serves as a guideline for the practical part of the labcourse.

7.1 Log into the labcourse training environment

Training environment: http://training.mlz-garching.de/jcns/ User name: will be given during
labcourse pwd: will be given during labcourse

1) open terminal emulator (top: Applications -> terminal emulator)
2) cd brings you to home directory
3) cd data brings you to the directory with the labcourse data
4) jupyter lab starts jupyter lab in a web browser.
5) Start the two notebooks DrSpineMacroGenerator.ipynb and

pep100 labtest.ipynb
6) Inside the notebooks: execute the cells with code with shift-ENTER

The notebooks and data reduction tools available here and described in more detail below can
be used to get a deeper insight into the working principle of neutron spin echo spectroscopy and
in the workflow of data reduction.

7.2 Look at the raw data

In the file browser of the jupyter lab on the left, you can click on the different files and view
them in a jupyter sub-tab.

Look at

• m20104.echo: raw ascii data of a scan: a single scattering vector q, multiple Fourier
times t (=B-Field-setting), at each Fourier time t a scan of the phase coil to record the
echo. At each point of the phase coil scan, a detector image (32x32 pixels = 1024 pixels).

• m20104 ActC4mmQ0.10t0.989ns.dat: extract of one Fourier time for quick plot-
ting. First column: current in phase coil, then anode signal (detector sum), different
sensors (B, Temp) and detector areas.

• mxx.echo.directory: Short description of all scans at the instrument (here, extract
of the full mxx.echo.directory file). “Electronic labbook”.

• diffract.run: diffraction only, with ‘spin up’ (column 7) and ‘spin down’ (column
12) configuation as a function of q (second column). Can serve as polarized diffraction
to extract coherent and incoherent intensity (one labcourse task, see above). Mainly for
assessing the required measurement time.
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7.3 Data reduction: From Detector Images to I(Q,t)

1) Prepare macro for drspine data reduction programm:

• go to DrSpineMacroGenerator.ipynb tab in jupyter lab. Select refs, sam-
ple, bgr according to the entries in the mxx.echo.directory (refs: 19968-70, sample
19971-73, bgr 19974-76).

• “Create macro”

• possibly execute it right away within the script, BUT: more insight with separate
execution

• if you execute it, also execute the two cells at the end with the pdflatex and the
qpdfview command to get the pdf report.

2) open another Terminal, cd, cd data, then call $HOME/local/bin/drspine and
within the program then the created macro macname1 (or the name you gave). Already
prepared macro: drpep in case the macro generation fails.

3) A pdf with the report of the evaluation opens with details concerning the fits, but also
some “standard evaluation” of the intermediate scattering function I(q,t).

If the pdf report does not open (for the macro generator this is the case) call pdflatex
report19971 1.tex followed by qpdfview-qt5 report19971 1.pdf in the ter-
minal window or directly in drspine. -BUT BEFORE: Study the details below:

7.3.1 Details of data reduction

First check: required python environment installation? Call

sh $HOME/local/bin/drspine create env.sh and
source $HOME/local/bin/drspine activate.sh
in a Terminal window.

These two commands are in cd, cd drspine, tail -15 INSTALL.md

(If you changed to the drspine directory, don’t forget to navigate back to the data directory with
cd, cd data)

With
alias drspine='$HOME/local/bin/drspine'
starting drspine gets a bit easier (just drspine instead of the path.

Details which can be studied: with the drspine program: call
dump
to save all fitting details.

Echo fits across the 2D detector, e.g. for the reference:
drspine --> plot fits run 19969 tau 1
(then the python command line opens, from there, the same things can be called with:)
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p l o t f i t s ( ’ . / f i t s 1 9 9 6 9 ’ , t a u =1 , np ix = 8 , )

Troubleshooting in case the fits do not work: Reinstall the ipython environment
with the following commands:
cd, cd .ipython rm -rf profile drspine/
Then reinstall the profile with
sh $HOME/local/bin/drspine create env.sh
source $HOME/local/bin/drspine activate.sh
see above. Then it should work.

High fourier time (good echos throughout the detector, since it is an elastic scatterer, with some
reduction in polarization due to imperfections of the instrument):

d r s p i n e / p l o t [ 2 ] : p l o t f i t s ( ’ . / f i t s 1 9 9 6 9 ’ , t a u =10 , np ix = 8 , )

PEP polymer in deuterated decane, low fourier time (good echos throughout the detector):

d r s p i n e / p l o t [ 2 ] : p l o t f i t s ( ’ . / f i t s 1 9 9 7 2 ’ , t a u =1 , np ix = 8 , )

Hig fourier time: (already fainted echos throughout the detector due to the decay in I(q,t)):

d r s p i n e / p l o t [ 2 ] : p l o t f i t s ( ’ . / f i t s 1 9 9 7 2 ’ , t a u =10 , np ix = 8 , )

Deuterated decane, low fourier time: Already almost no echco, dynamics so fast that everything
already decayed; much weaker intensity:

d r s p i n e / p l o t [ 2 ] : p l o t f i t s ( ’ . / f i t s 1 9 9 7 5 ’ , t a u =1 , np ix = 8 , )

Close python command line with ctrl-d, quit drspine with quit.

create pdf report (if not done automatically): 1) pdflatex report. . . tex 2) qpdfview-qt5 re-
port. . . pdf
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7.4 Final data: I(q,t)

Ascii results of I(q,t) vs t for different sets of q are in the .dtr files and also in last sqt.dat. The
pdf report contains a tentative “standard” analysis. Further analysis can then be done by fitting
the datasets with some model, e.g. with jupyter notebooks, origin, qtisas (a free origin clone
adapted to scattering).

Follow data evaluation suggestions from section .

7.5 Data evaluation and fitting example

The notebook pep100 labtest.ipynb gives an example of some fits with different models
to the data.

Note: if there are remaining calls to dpd (commands starting with dpd.xxx), just delete “dpd.”
and re-execute the cell.
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Fig. 1: Representation of the protein
lysozyme, which has a very compact form.

Fig. 2: A spherical colloidal particle is
the second sample of choice.

1 Introduction

The objective of this lab course is to clarify the essential concepts of small-angle neutron scat-
tering. Structures are only visible by a scattering experiment if there is an appropriate contrast.
For neutrons one often uses the exchange of 1H by 2H = D, i.e. deuterium. The chosen contrast
of this lab course is achieved by using heavy water (D2O) as solvent. The materials (solutes)
are natural ones having normal protons.

The globular, compact lysozyme (Fig. 1) appears in chicken eggs and has anti-bacterial function.
The molecule is charged, which leads to repulsive interactions. So there is a short range order,
and the distance between the molecules can be determined.

The other sample is a dispersion of colloidal, spherical particles. The sample will be diluted
such that there is no interaction between the particles. So we can determine the size of the
particles by the Guinier approximation, and secondly by the first “minimum”. More details are
given below.

2 Preparing solutions in Water

A lysozyme solution of 0.02g per ml of water must be prepared. We will weigh 0.02g of
Lysozyme and put it into a new Packard glas. With an Eppendorf pipette we will add exactly 1
ml D2O. These pipettes are extremely accurate with respect to the volume. From the solution
about 0.5 to 0.6ml are transferred to Hellma quartz cuvettes, which are 1mm thick. For the later
evaluation we need a highly accurate concentration. So all weights need to be written down as
exactly as possible.

For the colloidal suspension, we will prepare a 1% solution. So we will weigh 0.01 g or
polystyrene particles. Then we will again add 1 ml of D2O.
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If some samples have been already prepared (possibly from earlier groups), we may also use
those without own preparation.

3 The Measurement at KWS-1 and/or KWS-2

These two solutions (suspensions) are now being measured in the small-angle neutron scattering
instrument KWS-1 (or KWS-2). The wavelength of neutrons is set to 7Å. The collimation is
fixed to 8m. The samples are placed as close as possible to the detector, to measure the largest
Q values possible. Both samples will be measured at detector distances 2m and 8m. The offset
between the sample position and the detector of about 30cm leads to effective detector distances
of about 1.7m and 7.7m.

The sample holder will be filled with the two samples. In addition, the empty beam and a
plexiglass plate are measured for absolute calibration. For a good statistical measurement the
following times are set: 8m detector distance for 20min, and 2m detector distance 10min. The
total measuring time for the 4 positions will be about 2 hours. The measurement is typically
started before lunch, and can be evaluated in the afternoon. It is quite likely that an internal
employee will start separate measurements during the afternoon until the next morning in order
to use the valuable measuring time overnight.

4 Evaluation of the Scattering Data: Absolute Calibration

The measured data is raw data at first and describes the intensity on the detector. The data has
to be corrected for the effectiveness of the different detector channels. Then the empty beam
measurement is subtracted to account for the zero effect of the instrument. Then the intensities
are expressed as absolute units using Eq. 5.5 and are radially averaged, because for the isotropic
scattering samples, the intensity does not depend on the polar angle. To perform all these
steps we will be using a software available in our institute, called QtiKWS. However, since the
understanding of the Eq. 5.5, as such, is more important than the exact technical understanding
of the evaluation, the results are produced relatively quickly by the software, namely, dΣ/dΩ as
a function of the scattering vector Q for our samples. This data will be provided for the students
to do the final evaluation. In the following, this evaluation is described.

5 Evaluation of Lysozyme Scattering Curves

The position of the maximum Qmax provides information on the typical distance of the proteins
in solution. This can be calculated to ℓ = 2π/Qmax. Knowing the weight of the protein in
water (0.02g/cm3) there is an alternative way to calculate the average distance. The molar
mass of the protein is 1.43 × 104g/mol. The number density of the protein is therefore n/V =
0.02g/cm3/(1.43 × 104g/mol) = 1.40 × 10−6mol/cm3 = 8.42 × 10−7Å−3. For a simple cubic
packing the typical distance is given by ℓ = 3

√
V/n. For a hexagonal close packed lattice the

typical distance is ℓ = 6
√

16/27 3
√
V/n. This distance is the minimum distance of the planes
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important for the scattering experiment, and the next neighbor distance of the hexagonal c.p.
lattice is

√
3/2 ℓ = 6

√
2 3
√
V/n. Both calculated distances of the cubic and hexagonal structure

are to be compared with the measured one.

6 Evaluation of the Scattering from Colloidal Particles

In a first step we have to prepare the scattering data for background subtraction. We plot the
original data of the two detector distances in a log-log plot, i.e. log10(dΣ/dΩ) → log10 Q. After
this, we will see a plateau at high Q which indicates the constant incoherent scattering. Taking
the average of the last (say 10) points will give us the estimate of the background. A new
column with the background subtracted will be generated for the 8m and 2m measurements.
Finally, the two data sets should be combined to yield a single data set.

Now, we will aim at the overall appearance of the colloids, i.e. we will determine the particle
dimension. For this purpose the Guinier approximation can be applied. The general appearance
of the Gunier scattering law was already given in eq. 5.35 and reads:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−1

3
Q2R2

g

)
(1)

For this purpose we plot the logarithm of the background corrected intensity against the square
of the scattering vector, i.e. ln(dΣ/dΩ) → Q2. The highest Q will lead to large values that
we are not interested in. So the plot has to be truncated to the rather small Q, say Q2 =
0..4 × 10−4Å−2. Here, we do a linear regression and take the slope S as a result only. It has
the units Å2. From this we can calculate the radius of gyration using Rg =

√
−3S. Then, the

relation to the full radius is used, i.e. R =
√

5
3
Rg.

If the concentration was too high, or there are weak electrostatic repulsive interactions, we will
try to apply the structure and formfactor fit. The presence of a structure factor can be seen by
lower scattering intensities at smallest Q compared to slightly higher Q, i.e. there is a maximum
in the scattering that would not be there without interactions. We will then have:

dΣ

dΩ
(Q) =

dΣ

dΩ
(0) · S(Q) · F (Q) (2)

For the formfactor, we will take the ideal sphere expression:

F (Q) =

[
3
sin(QR)−QR cos(QR)

(QR)3

]2
(3)

For the two particle structure factor we will then find the approximation:

S(Q) = 1− 8ϕ ·
[
3
sin(2QR)− 2QR cos(2QR)

(2QR)3

]
(4)

The full expression will then be fitted to the whole scattering curve, and the radius will be one
parameter that we obtain.

Then, we will try to read the Q-value of the first “minimum”. Due to smearing effects of the
reolution and polydispersity, the “minimum” may only weakly be formed as a weak dip. The
radius is now obtained from R = 4.493/Qmin.
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The last evaluation method will be the Porod scattering at high Q. It applies for any shape of
particles with a smooth surface. Here the many heavily oscillating fringes are smeared out, such
that the scattering has a simple power law:

dΣ

dΩ
(Q) = P ·Q−4 =

9

2
· dΣ
dΩ

(0) · (QR)−4 (5)

So, we need to determine the forward scattering from our previous evaluations, and read the
coefficient P from a log-log plot of the intensity versus the scattering vector Q.

After we have obtained three different versions of the radius R, they should be compared and
discussed. The imperfections of the different evaluations should have become clear by the use
of the different approaches.



KWS-1 & KWS-2 7

7 Preparatory Exercises

(I) Lysozyme in D2O

The first sample of the Neutron Lab Course at the SANS instrument KWS-1 (KWS-2) will
be Lysozyme in heavy water (D2O). This protein is rather globular (diameter ca. 5 nm). The
Coulomb interactions of this charged molecule lead to liquid-like short-range-ordering. This
will be observed in the SANS scattering experiment by a correlation peak. Simple estimations
will be made now:

1. Give the connection between the number density ϕ and the unit cell parameter assuming
a simple cubic lattice!

2. The chemical concentration c is usually given in g/L or mg/ml. The molar mass of the
molecule is 14307g/mol. What is the connection between the chemical concentration and
the number density?

3. The correlation peak appears at a scattering vector Qmax. How would it relate to the unit
cell parameter of a simple cubic lattice? What is the dependence of Qmax as a function of
the chemical concentration c?

4. Please rationalize the relations of the hexagonal close packed lattice with respect to the
cubic packing! The spacing of the planes is shorter by a value of rougly 0.916 (larger Q
value compared to cubic). The nearest neighbor has a larger distance of ca. 1.122 times
the cubic packing.

(II) Colloidal Dispersion

The different approaches for the size determination is the main subject here.

1. The Appendix B derived the Guinier scattering law for any shape of particles while in
the main manuscript the first application was the compact sphere. What is the general
meaning of the radius of gyration Rg? What is the general understanding for other shapes
of particles?

2. At large Q we observe a constant background from incoherent scattering. The hydro-
gen atom has a incoherent cross section of 80 × 10−24cm2, and the deuterium atom
2 × 10−24cm2. The concentration of hydrogen from the particles is roughly 100 times
smaller than the concentration of deuterium from the heavy water. On the basis of these
numbers estimate the ratio of background from the particles and the solvent!

3. We came across the Porod scattering at high Q for the spheres with smooth surfaces. The
original expression for the scattering would describe heavy oscillations at high Q. Why
does this part of the scattering curve smear out such that a simple power law is remaining?
This reason holds for any type of power law at high Q.
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1 Introduction 

 KWS-3 is a very small angle neutron scattering (VSANS) diffractometer using 
focusing mirror to achieve a high Q-resolution 3·10−5Å−1. In “standard mode” with Q-
range between 10−4 and 2.5·10−3Å−1 KWS-3 demonstrates worldwide best performance: 
flux much higher than any pinhole SANS instrument and measurement time much 
shorter than at any double crystal diffractometer (Ultra-SANS=USANS). The high 
brilliance FRM-II reactor in Garching allowed for the increase in neutron flux by more 
than forty times in comparison to flux in Jülich before relocation. A number of 
improvements have been carried out during the last years. Integration of the second 
detector with almost three times better space resolution and of second sample position at 
1.3m sample-to-detector distance extended Q-range in both directions. Currently, Q-
range of KWS-3 covers almost three decays from 3·10−5 to 2.5·10−2 Å−1 with polarized 
or non-polarized neutrons. 
  
       USANS and SANS experiments are performed by two different types of 
instruments to cover a combined Q-range from 10-5 Å-1 up to 1 Å-1. In principle, the Q-
ranges of both instrument classes are overlapped. Typical USANS instruments like S18 
(ILL) or PCD (NIST) may reach maximum Q-vectors of 5×10-3 Å-1. The disadvantage of 
these instruments is that they do not allow taking a full area image on a 2D position 
sensitive detector. On the other hand, the well-known pinhole instrument D11 at 
Institute Laue-Langevin (ILL) reaches a minimum Q-vector of 4×10-4 Å-1 by use of 
largest possible wavelength 22 Å and sample-to-detector distances (> 40 m). But the 
required instrumental settings push both types of instruments to their limits, mainly due 
to signal-to-noise level and the reduced flux at sample position. To overcome this 
intensity problem several VSANS technics were introduced as additional elements of a 
pinhole SANS instrument like neutron lenses (material and magnetic), multi-beam 
collimators (pinhole and slit geometry; single- and multi-point) [1]. An alternative 
design is realized by the KWS-3 instrument [2]. KWS-3 is designed from scratch as a 
VSANS instrument without default pinhole option. In Figure 1(a) optimal Q-ranges for 
different small angle technics are shown. Figure 1(b) demonstrates neutron intensity 
gain of VSANS (KWS-3) instrument in comparison to best SANS and USANS 
diffractometers.  
 

 (a) 

(b) 

 
Figure 1: (a) optimal Q-ranges of different small angle 
technics; solid lines correspond to optimal 
configurations and dashed lines to “reachable” Q-ranges 
where only strongly scattered samples could be 
measured; (b) “illustrative” plot of neutron intensities 
per sample for given minimum Q. 
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 The increasing need for these intermediate Q-vectors arises from the growing 
interest in biological and colloidal samples, which partially deal with length scales in 
the µm range. An investigation of the multilevel structures in partially crystalline 
polymer solutions performed using a combination of those three above depicted types of 
SANS instruments can be found in [3]. 
 
      The principle of KWS-3 instrument is an one-to-one image of an entrance aperture 
onto a 2D position-sensitive detector by neutron reflection from a double-focusing 
toroidal mirror as shown in Figure 2(left). The main innovation and challenge of KWS-
3 was to build a large mirror having a shape as close as possible to an ellipsoid and 
surface roughness less than 5 Å. The dimension of the toroidal mirror is 120×12×5 cm3 
thick double focusing mirror of 11 m focal length. At such a short mirror length with 
respect to the focal length, the toroidal shape is a good enough approximation to an 
elliptical shape. The reflection plane has been chosen to be horizontal, reducing the 
deterioration of the image due to gravity. Photo of the mirror is shown in Figure 2 
(right). 
 

  
Figure 2: (left) layout of KWS-3; (right) toroidal mirror installed in the vacuum chamber. 
 
 KWS-3 is optimized for VSANS range from 3.0·10-5 to 2.5·10-2 Å-1. For last cold 
source filling and instrument configuration the flux at the sample position (and detector) 
is near 25000 counts per full sample (λ = 12.8 Å , Δλ/λ =16%, 2x2 mm2 entrance 
aperture, 20x80 mm2 beam size and sample-to-detector distance is around 9.5 m). The 
instrument’s standard configuration with a 9.5 m sample-to-detector distance (SD) 
allows performing scattering experiments with Q range between 3.0·10-5 and 2.5·10-3 Å-
1. A second sample position at 1.3 m SD reaches the Q-range to 1.5·10-3 – 2·10-2 Å-1 
and can overlap with the classical pinhole SANS instruments (KWS-1/2). Another 
“mobile” sample position could be installed to adapt a sophisticated sample 
environment between 8 and 2 m SD. Thus the length scale that can be analyzed by 
VSANS at KWS-3 goes beyond 20 µm. 

2 VSANS applications 

 All applications of the classical SANS could be investigated by VSANS by taking 
into account Q-resolution of VSANS. The conventional fields of application of very 
small angle scattering studies are: 



KWS-3  5 

• particles in solution [protein & colloidal aggregates, polymers, micelles, ceramics]; 
• porous materials [cement, paste, rocks, coal etc.]; 
• inhomogeneous metallic alloys; 
• bulk samples with artificial regular structure [phase gratings]; 
• hierarchical structures of biominerals hydrogels and aerogels; 
• rheology and structure/morphology of complex fluids; 
• magnetic scattering [with polarized and non-polarized neutrons]; 
 

and other inhomogeneities on a size range from 30 nm to 20 μm, often in addition to 
SANS spectra, but also diffraction, reflection and refraction studies on surfaces. 

3 Preparatory Exercises 

1. The contrast variation (CV) is a very important feature of the neutron scattering. 
What is the scattering length density (SLD) r? How to calculate the SLD? What 
is the definition of the scattering contrast Dr? How to carry out the contrast 
variation experiment in case of an aqueous solution of particles?  

2. The standard Q-range of KWS-3 is from 4.0·10-5 to 2·10-2 Å-1. What the size of 
particles could be investigated in this Q-range? What are the form factor P(Q) 
and structure factor S(Q)? In which case the scattering intensity dS/dW(Q) could 
be represented as a product of the structure factor and form factor dS/dW(Q)= 
dS/dW(0)×P(Q)×S(Q)? What is the physical “content” of the forward scattering 
dS/dW(0) [I(0)]? 

3. The standard wavelength at KWS-3 is 12.8 Å. What are disadvantages of this 
wavelength? What should we correctly select before sample preparation? 

4. What is the difference between pine-hole SANS and focused SANS? Could you 
estimate the length of a pine-hole SANS instrument with Q-resolution from 10-4 
to 3·10-3 Å-1 and the beam-size 16 cm2? 

4 Experiment Procedure 

Before the VSANS experiment: The key to a successful VSANS experiment is to 
know the detailed information of the system studied. For example, for the solution 
samples, one may need to know the concentration, scattering contrast, the size range of 
the scattering, the sample volume.  
 
During the experiment: Depending on the particle size studied, the sample volume 
available, the temperature and pressure required, the instrument needs to be set up 
specifically. After setting the optimum instrument configuration (Collimator-sample and 
detector-sample distances, irradiation time, sample temperature etc.), samples are 
measured on the sample holder with specific sample environment.  
 
After the experiment: The raw data from an experiment of an anisotropic sample 
should represent the scattering of this scatterer. The data are generally corrected for the 
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sample and instrument geometry, detector efficiency, electronic and backgrounds, and 
averaged isotopically by the software QtiKWS [4].   
 
       The following experiments marked with ‘*’ are optional. You can select the 
experiments considering on your background.  
 
4.1 Suspensions of Spherical Colloidal Polystyrene Particles in Water 
 
      The measured SANS intensity (corrected for background and put on an absolute 
scale) for many ‘particulate’ systems can be expressed as 

 !"
!#
(𝑄) = $

%
  (1) 

Where N is the number of the particles, V is the sample irradiation volume, Δρ is the 
scattering contrast, Vp is the volume of the scatterer. P(Q) is the scattering form factor 
which describes the size and shape of the scatterers. S(Q) is the scattering structure 
factor (the inter-particle correlation factor) which represents the interference of neutrons 
scattered from different objects. In many cases when the particles concentration are very 
low, it is reasonable to analyse the scattering in terms of randomly oriented, non-
interacting particles (i.e. we neglect the structure factor in this case and set S(Q)=1). 
Thus from equation 1 we can obtain the structure factor and form factor when measure 
several samples with different conditions, e.g. different concentration, Δρ.  
        
      Within the frame of this practicum we will explore aqueous solution of 
monodisperse polystyrene (PS) microspheres with diameter 8000/6000 Å and the initial 
concentration 1%/ 0.02%/ 0.01% of particles in H2O. From this experiment we want to 
know the shape and average dimension of the particles and the particle interactions. In 
future, this sample will be used at KWS-3 as “a standard sample” to check the 
performance of instrument, absolute calibration, instrument resolution.  
 
Table 1. Suspensions of Spherical Colloidal Polystyrene Particles in Water for practicum 4.1. 

 S1 S2 S3 S4 S5 

Concentration / wt% 1 0.5 0.2 0.1 1 

Size / Å 8000 8000 8000 8000 6000 

 
 
4.2 *Contrast Variation Experiment on Polystyrene Particles in H2O/D2O  
  
       In Table 2 there is collected information about PS microspheres obtained from the 
producer; additionally all necessary information about H2O and D2O is listed there.  
 
 

 

 

Table 2. Parameters of used components 
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 Polystyrene Spheres H2O D2O 

Scattering Length Density [Å-2] 1.41·10-8 -0.56·10-8 6.50·10-8 

Density, 20°C [g/cm3] 1.05 1.0 1.05 

Radius [Å] 4000±45   

 
 The contrast variation is proposed to proceed simply by step-by-step adding of D2O 
to the initial H2O solution of spheres. To estimate how much of D2O we should add, the 
simulation of the forward scattering should be done as function of D2O concentration: 

!&
!#
(0) = 𝐹Spheres𝑉Spheres(𝜌Spheres − 𝜌Water+

0, 

where VSpheres is volume of PS spheres, rSpheres SLD of PS spheres, rWater SLD of 
D2O/H2O mixture, FSpheres volume fraction of PS spheres in D2O/H2O mixture. We 
could rewrite the above mentioned equation in terms of F0 and FD2O, the volume 
fraction of PS spheres in the initial H2O solution and volume fraction of D2O in 
D2O/H2O mixture respectively: 

!&
!#
(0) = 1!(341"#$)

341!1"#$
𝑉Spheres,𝜌Spheres − 𝜌607 − 𝐹807(𝜌807 − 𝜌607)-

0. 

In Figure 3 the forward scattering  as a function of FD2O and F is plotted. At 
the starting point of the experiment (FD2O=0) we have PS spheres in pure H2O and 
maximal volume fraction of spheres FSpheres = F0 = 1%. Minimum of the plotted curve 
corresponds to the matching point of PS spheres in water. In Table 3 seven points 
around matching concentration are labelled with “CV” mark. In case of CV, from the 
scattering curves of above-mentioned samples we need to extract only “integral” 
parameter forward scattering to extract information about minimum of the forward 
scattering, and plot it as function of D2O content. 
 
  

  
Figure 3. Forward scattering as a function of FD2O and F. 

 

 

dS dW 0( )
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Figure 4: Expected results. (Left) the scattering signal in case of FD2O=0.04 and 0.76. In the amplified 
inset is the small angle part of the calculated scattering curves. In case of FD2O=0.04 there is clear 
suppression of the forward scattering due to the hard sphere interactions. Calculated scattering curve in 
case of the sample with FD2O=0.76 shows no interaction term. Red curve is pure form factor of PS 
spheres without taking into account instrumental resolution function. (Right) Ration between FD2O=0.04 
and FD2O=0.76 is plotted here. So the forward scattering and form factor of both sample are the same, 
and in case of FD2O=0.76 sample S(Q)=1, therefore this ratio is the structure factor of FD2O=0.04 sample. 

 
         Next step is the investigation PS spheres in case of sample with D2O content 76% 
[PS content 0.25%]. This point is located at the local maximum (see Figure 3). At this 
level of the dilution the structure factor is definitely undetectable. Please read carefully 
caption of Figure 4 to understand the logic of planned experiment. 

 
Table 3. Samples for practicum; CV: samples for the contrast variation; FF, SF: sample for form and 
structure factor determination. 

FD2O 0 CV 3.6 FF, SF 10 CV 20CV 30CV 40CV 50CV 60CV 76 FF 

FSpheres 1.0
0 

0.96 0.9 0.8 0.7 0.6 0.5 0.4 0.24 

I(0) [cm-1] 103 75.2 38 6.5 0.47 12.01 33.2 55.9 75.2 

 
4.3 *VSANS for Anisotropic and Periodic Samples 
 
        From the experiment 4.2 and 4.3, we discussed isotropic samples in the solution 
where the scattering is isotropic at the same Q value. The scattering patterns depend on 
the shape, size (P(Q), form factor) and ordering (S(Q), structure factor) of the scattering 
particles resulting in different shaped neutron scattering, mostly in circles (isotropic 
scattering) on the 2D detector. However, anisotropic scattering arises if the studied 
system contains anisotropic inhomogeneities, elongated or flattened, or certain 
predominant arrangement of molecules. The scattering pattern is the reciprocal “image” 
(Fourier transform) of the size and the arrangement of the particles (real space). If the 
particles in the sample are randomly oriented, the 2D scattering pattern of such a system 
would be a circular average and isotropic. While the particles have more or less 
orientation, the 2D scattering pattern becomes anisotropic. The pattern contains 
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additional information related to the structure which makes the small angle scattering 
analysis quite complicated. 
 
 

  
Figure 5: (Left) Electrolytic deposition of Ni on Cu coated glass substrate through photoresist mask: 
stripes 1.65 μm, separation 1.65 μm => period d=3.3 μm. (Right) Slit geometry of the neutron entrance 
aperture and 2D image at detector. 

 
   A model of Ni Grating sample is shown in Figure 5. During the experiment, we 

want to measure the sample using neutron beam with different geometry. From the 
experiment we want to measure the distance of the Ni slit in the grating. We try to 
understand the anisotropic and periodic samples scattering and compare to the sample 
measured in solutions. 
 

5 The experiment and data reduction 

         All samples listed in Table1/2 we will measure without beamstop (Sample). 
Additionally, the empty cell (EC) and the dark current (DC) run will be measured and 
used for data reduction of all datasets.  
What to measure?  

 ISample, IEC, IDC [counts per current pixel, normalized by monitor] 
Sample transmission T (by corresponding mask we consider only primary beam):  

 𝑇 = 𝐼&9:;<= 𝐼>?⁄  

Empty cell and black current subtraction (for every pixel of the detector):  

 𝐼 = (𝐼&9:;<= − 𝐼8?+ − 𝑇 ∙ (𝐼>? − 𝐼8?) 

Absolute calibration:  

 
!"
!#
= @

!∙B∙C"∙⟨@%&⟩∙∆#
 

where d sample thickness, T sample transmission, eD detector efficiency,  DW solid 
angle per current pixel, <IEC> normalized neutron intensity at sample. 

 

Radial averaging of the obtained matrix:
 

  
!"
!#
→ !"

!#
(𝑄) 
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6 Experiment-Related Exercises 

 
        Within our “one-day-experiment” at KWS-3 it would be nice to get as much as 
possible information about above mentioned sample, like: 
a) in the first experiment, why it is not necessary to measure H2O as background? 
b) the form factor P(Q) of PS spheres from sample with FD2O=0.76; “real” radius R 
and polydispersity of the PS microspheres; 

c) the structure factor S(Q) in case of FD2O=0.04 and decide about the interactions 
between spheres: could we neglect the structure factor S(Q) during data 
analysis? 

d) the scattering length density of PS spheres by H2O/D2O contrast variation. At 
matching point, the SLD of microspheres and water are equal. Polystyrene in 
microspheres is amorphous or crystalline?      
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Fig. 1: Sketch of the reflectometer TREFF@NOSPEC in top view.

1 Introduction

The neutron reflectometry TREFF@NOSPEC at the neutron guide NL5-S is part of the neutron
guide laboratory at the research reactor FRM II in Garching. TREFF is a joint facility of JCNS
and the neutron optics group of FRM II. It is used for the investigation of magnetic layered
structures as well as neutron optical components for the installation and improvement of neutron
scattering instruments.

Figure 1 depicts the neutron reflectometer TREFF in the neutron guide hall of the FRM II re-
search reactor. Essentially, it consists out of a double monochromator, the collimation path, the
sample table with several stages of translation and rotation and, finally, the scattering arm with
a position sensitive detector. The distance between the collimation slits is 1820mm and 450mm
between the second slit and the centre of rotation of the sample table. For this experiment the
wavelength is set to λ=4.73 Å.

2 Preparatory Exercises

The following questions will be asked during the practical course at TREFF:

1. In the sketch (Figure 1 of the instrument you will find a Be-filter and a NG (neutron
guide) between the MC1 and MC2. What are they used for?
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Fig. 2: This drawing should help you to solve question 5.

2. In the introduction the used wavelength was given with λ=4.73 Å. Which other wave-
length are possible and how do you achieve these?

3. Depict a reflectivity curve of a substrate only

4. Depict a reflectivity curve of a substrate plus a layer

5. Calculate the divergence of a beam passing two slits S1 and S2 in a distance of L (see
Figure 2)

6. Calculate the angle of collimation of the neutron beam to sufficiently resolve reflectivity
oscillations of a 80nm thick monolayer on a substrate. What slit sizes follow for this
reflectometer

3 Experiment Procedure

The aim of this experiment is the investigation of a nickel monolayer deposited on a glass
substrate with unknown composition. Using neutron reflectometry the thickness of the nickel
layer should be determined.

1. Perform a reflectivity experiment on the sample’s back side and analyse the critical angle.
To get sufficient collimation of the neutron beam, 0.6mm slit size for S1 and S2 should
be taken.

2. Take the reflectivity curve of the Ni-monolayer system with the suitable collimation an-
gles, so speaking the slit size for S1 and S2 calculated in the section before

3. Do like 3) but with a slit size of 3mm for S1 and S2.

3.1 The experiment itself

We (in the end it will be you) will mount the sample on the sample table and pre-align it with
an appropriate tool (what could it be) parallel to the neutron beam. After some alignment scans
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with the neutron beam we will measure the reflectivity curve step by step of the sample (see
chapter Experiment Procedure).

3.2 Data reduction

The instrument saves the number of counts as a function of scattering angle.

3.3 Data evaluation

For systems such as multilayers the scattered intensity is determined by the difference in the
potential of each layer (contrast). The potential is given by the scattering length density
ρsld =

∑
j bjρj with the scattering lengths bj and the particle number densities ρj . The index

j runs over all kind of atoms of the layer. The scattering length density is comparable to the
optical density in light optics.
The refraction index of each layer is given by

n� 1− λ2

2π
ρsld = 1− δ

.
With the angle of total external reflection Θc ∼

√
2δ, which is usually small, it follows

kc,z = k sin(qc)� kqc =
2π

λ

√
2
λ2

2π
ρsld =

√
4πρsld

for the critical wave vector. For a monolayer system the reflected amplitude of each interface
rf,1 and rf,2 can be calculated by the Fresnel formulae (Equation 16 in chapter 12 of the
lectures book).
Neglecting roughness at the sample surface and at the interface between layer and substrate,
for the amplitude at the surface one gets

rf,1 =
kz,vac − kz,lay
kz,vac + kz,lay

and at the interface rf,2 =
kz,lay − kz,sub
kz,lay + kz,sub

with

kz,vac = k sin(q) , kz,lay =
√
k2z,vac − 4πρsld,lay and kz,sub =

√
k2z,vac − 4πρsld,sub

.
The superposition of both amplitudes yields the reflected amplitude of a monolayer sample

R = [rf,1 + rf,2 exp(2ikz,layd)]
exp(−2ikz,vacd)

[1 + rf,1rf,2 exp(2ikz,layd)]

with the film thickness d. The reflected intensity is given by re mean square of R. For
kz,vac > 3kc,z the intensity can be calculated in Born approximation by

|R|2 � π2

k4z,vac

[
ρ2sld,lay + (ρsld,lay − ρsld,sub)2 + 2ρsld,lay(ρsld,lay − ρsld,sub) cos(2kz,vacd)

]
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4 Experiment-Related Exercises

1. calculate from the reflectivity curve of the glass substrate the scattering length density
ρsld,sub

2. Describe the differences and explain them between the measurement of the Ni monolayer
with the 3mm slit and the slit size you have calculated.

3. Calculate the scattering length density ρsld,sub of the Ni monolayer using:
molar volume VNi=6.59 cm3 mol−1

Avogadro number NL=6.02 1023 mol−1

coherent scattering length bNi=10.3 fm

4. Determination of the thickness d of the Ni monolayer using the reflectivity formula in
Born approximation. At first, estimate d based on the distance of the fringes of the reflec-
tivity (see Data evaluation chapter).
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Fig. 1: Neutron time-of-flight spectrum of pentafluorotoluene, taken from [1]. Elastic scattering
happens at energy transfer zero, quasielastic scattering in a region of approximately 0± 1meV,
inelastic scattering at larger energy transfers.

Scattering experiments are carried out in order to obtain information about the structure and
dynamics of the studied systems (e. g. crystals, liquids, nanoparticles). Optical microscopes
are simpler to understand and operate but their resolution is limited by the wavelength of light.
There are only few techniques which give access to the length scale of molecules and atoms. Of
those, one of the most important is scattering which gives direct information on the disposition
and motions of atoms weighted according to the scattering probability, or cross-section [3].

There are several kinds of scattering experiments, depending on the subject matter. In this
experiment we want to introduce you to quasielastic neutron scattering (QENS). Quasielas-
tic scattering is referring to a broadening of the elastic line in a spectrum. The extend of this
broadening is approximately 1 meV. Whereas in inelastic scattering (which will not be further
discussed in this experiment), discrete maxima or bands appear clearly separated from the elas-
tic line. While one can gain information about the structure or periodic motions (i. e. phonons)
of the sample using diffraction or inelastic scattering, respectively, it is possible to analyse
non-periodic motions (e. g. diffusion) with quasielastic scattering.

Prior to the experiment, you should read and understand these instructions you won’t have
much time to do so during the experiment. You should also work out the question section. In
the following discussion we will follow the path of the neutrons from the source over the sample
to the detector. Then theory of scattering will be introduced, so that one can understand which
information can be obtained from the scattered neutrons. Thereon the specific experiment will
be explained.

To carry out the experiment you should bring: this introduction; your answers to the ques-
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tions; paper and a pen. After having started the measurement of the reference sample, we will
show you the spectrometer TOFTOF. Afterwards we will prepare a sample, which we then will
measure. Finally, we will evaluate the data together.

1 Basics

1.1 The neutron source FRM II

In general there are two techniques produce neutrons for a scattering experiment – spallation
and nuclear fission. During spallation, huge nuclei (e. g. lead) are bombarded with protons, sub-
sequently split and, among others, emit neutrons. The FRM II is a nuclear reactor optimized for
use as a neutron source. Here, 235U captures a thermal neutron and thereby becomes unstable.
The nucleus fissures and, among others, emits three fast neutrons.

These fast neutrons must be slowed down (moderated) to thermal energies, that is room temper-
ature, in order to initiate a new fission. One neutron is needed for the fission, while the others
will be used for the neutron scattering experiments. The moderation occurs in D2O of about
300 K which encloses the core.

In order to further slow down the neutrons, and thereby match their energies to the ones of
atomic motions, a tank containing liquid D2 at 25 K is located close to the fuel element. From
this cold source several neutron guides lead the neutrons to the instruments. Inside these guides,
the neutrons are transported by total reflection at the inner walls. The time of flight spectrometer
TOFTOF is located at the end of neutron guide 2a in the neutron guide hall.

1.2 The time-of-flight spectrometer TOFTOF

Cold neutrons move with a velocity of several hundred m/s. Hence one can determine the
kinetic energy of the neutrons comfortably by a time of flight (TOF) measurement along a
certain distance. If one sets the initial energy of the neutrons before the scattering event to a
well-known value and measures the final energy (or velocity) after the scattering process, the
energy transfer can be determined. Since the position of the detectors is fixed, the scattering
angle is also known.

During time of flight spectroscopy the energy transfer is measured by a time of flight measure-
ment of the neutrons. The advantage of the time of flight technique is that a huge range of
momentum and energy transfer can be captured simultaneously.

TOFTOF is a multi chopper time of flight spectrometer with direct geometry [4]. This means
that all neutrons have (more or less) the same energy before interacting with the sample. After
being scattered by the sample, the energy transfer can be determined. Both, the tuning of the
energy of the incident neutrons (their wavelength) and the determination of the energy of the
scattered neutrons is done by time of flight.

The neutrons are directed to the spectrometer through a neutron guide, which has a supermirror
coating. The end of the guide is double focusing.
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Fi g. 2: S c h e m ati c dr a wi n g of T O F T O F. F oll o wi n g t h e n e utr o n g ui d e, first ar e p air e d c h o p p ers
1 & 2 w hi c h w or k t o g et h er wit h 6 & 7 as v el o cit y s el e ct or. C h o p p ers 3 & 4 r e m o v e hi g h er
or d ers, 5 is t h e fr a m e o v erl a p c h o p p er. T h e ti m e n e e d e d f or t h e n e utr o ns t o g et fr o m t h e s a m pl e
t o t h e d et e ct ors e n c o d es t h eir e n er g y.

T h e pri m ar y s p e ctr o m et er c o nsists of s e v e n r ot ati n g c h o p p er dis cs w hi c h ar e pl a c e d i n e v a c u at e d
v ess els ( c ol or e d gr e e n o n t h e c o v er p a g e). T h e dis cs ar e m a d e of c ar b o n fi b er c o m p osit es a n d
ar e c o at e d wit h n e utr o n- a bs or bi n g b or o n. O n o p p osi n g si d es, slits h a v e b e e n m a n uf a ct ur e d i nt o
t h e dis cs t hr o u g h w hi c h n e utr o ns c a n p ass. T h e first a n d l ast p air of c h o p p ers r ot at e i n o p p osit e
dir e cti o n e a c h.

T h e i n c o mi n g w hit e n e utr o n b e a m is p uls e d b y t h e first p air of c h o p p ers ( c h o p p ers 1 a n d 2,
p ulsi n g c h o p p ers). T his p uls e still c o nsists of n e utr o ns wit h all v el o citi es ( or w a v el e n gt h). T h us
t h e p uls e s pr e a ds al o n g t h e w a y t o t h e l ast c h o p p er p air. T h es e l ast t w o c h o p p ers ( c h o p p ers 6
a n d 7, m o n o c hr o m ati n g c h o p p ers) s el e ct a n arr o w r a n g e of w a v el e n gt hs o ut of t h e p uls e. T h e
t hir d a n d f o urt h c h o p p er filt er o ut hi g h er or d ers ( hi g h er or d er r e m o v al c h o p p ers).

T h e fift h c h o p p er is t h e fr a m e o v erl a p c h o p p er. Aft er t h e s c att eri n g pr o c ess s o m e n e utr o ns fl y
t o w ar ds t h e d et e ct ors, w h er e t h e y will b e r e gist er e d as a f u n cti o n of arri v al ti m e. It is ess e nti al
t h at all s c att er e d n e utr o ns of o n e p uls e ar e d et e ct e d b ef or e t h e n e utr o ns fr o m t h e n e xt p uls e
arri v e. T h e o v erl a p of sl o w n e utr o ns fr o m a p uls e wit h f ast n e utr o ns of t h e f oll o wi n g p uls e
i nsi d e t h e s e c o n d ar y s p e ctr o m et er is c all e d fr a m e o v erl a p. T h e fr a m e- o v erl a p- c h o p p er bl o c ks
o ut s e v er al p uls es, i n or d er t o a v oi d s u c h a n o v erl a p.

T h e e n er g y r es ol uti o n (i. e. t h e wi dt h of t h e el asti c li n e) is m ai nl y d et er mi n e d b y t h e c h os e n
w a v el e n gt h a n d t h e l e n gt h of t h e n e utr o n p uls e t h at i m pi n g es o n t h e s a m pl e. A g o o d e n er g y
r es ol uti o n c a n b e a c hi e v e d wit h a hi g h r ot ati o n al s p e e d of t h e c h o p p er dis cs ( u p t o 2 2 0 0 0 r e v-
ol uti o ns/ mi n ut e). T h e e n er g y r es ol uti o n of t h e s p e ctr o m et er c a n b e c h a n g e d c o nti n u o usl y i n
t h e r a n g e fr o m r o u g hl y 5 µ e V t o 5 m e V ( Fi g. 3). B y d e fi ni n g t h e e n er g y u n c ert ai nt y o n e c a n
m o dif y t h e ti m e of o bs er v ati o n i n t h e r a n g e fr o m r o u g hl y 1 ps t o 1 ns.

T h e i nt e nsit y of t h e i n ci d e nt n e utr o n b e a m is r e c or d e d wit h a m o nit or, w hi c h is l o c at e d b et w e e n
t h e pri m ar y s p e ctr o m et er a n d t h e s a m pl e. A n i o ni z ati o n c h a m b er is us e d as a m o nit or, fill e d
wit h fissil e m att er ( 2 3 5 U). T h e i n c o mi n g n e utr o ns tri g g er a fissi o n a n d t h e hi g h- e n er g y n u cl e ar
fissi o n pr o d u cts g e n er at e a cl e ar v olt a g e p uls e, d u e t o t h eir hi g h i o ni z ati o n d e nsit y.

Aft er p assi n g t h e m o nit or, t h e n e utr o ns hit t h e s a m pl e. M ost of t h e n e utr o ns ar e tr a ns mitt e d a n d
ar e c a pt ur e d i n t h e b e a mst o p, b ut a b o ut 1 0 % of t h e n e utr o ns ar e s c att er e d i n all p ossi bl e dir e c-
ti o ns. T h e n e utr o ns t h at ar e s c att er e d i n t h e dir e cti o n of t h e d et e ct or e nt er t h e fli g ht c h a m b er,
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Fig. 3: Calculated energy resolution of the TOFTOF spectrometer shown for several chopper
rotation speeds as function of the initial neutron wavelength. The chopper rotation speeds are
given in rounds per minute (rpm) [4].

which occupies the space between the sample and detectors. The chamber is filled with argon
in order to avoid unwanted scattering with air molecules.

Altogether 1000 3He-detectors (40 cm long and 3 cm in diameter) are placed tangential to the
Debye-Scherrer-circle and also tangential to an imaginary spherical surface with a radius of 4 m
around the position of the sample. Thus the flightpath from the sample to the detectors is 4 m
long. The scattering angle 2θ covers a region from 7.5◦ to 140◦. The detection of the scattered
neutrons inside the 3He-detectors occurs via a (n,p)-reaction. Hereby the neutrons are registered
and tagged with a time stamp. The amount of detected neutrons is saved in time of flight bins
for each detector in raw data files.

2 Theory

2.1 Cross sections

The probability that a neutron is scattered by a nucleus is denoted by the scattering cross section
σ. It depends on:

1. the element

2. the isotope

3. the relative spin orientation of neutron and nucleus

Imagine a single crystal. The scattering cross section of every nucleus i can be decomposed
into σ±∆σi where σ is the average over the whole crystal. This averaged part of the scattering
cross section is called the coherent scattering cross section: scattered neutrons which can be
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nuclide / element σcoh (barn) σinc (barn) σabs (barn)
1H 1.758 80.27 0.3326
2H 5.592 2.05 0.0005
H 1.760 80.26 0.3326
C 5.551 0.001 0.0035
N 11.01 0.5 11.51
O 4.232 0.001 0.0002
F 4.017 0.001 0.0096
Al 1.495 0.01 0.231
P 3.307 0.005 0.172
V 0.02 5.08 5.08

Table 1: Coherent and incoherent scattering cross sections as well as absorption cross sections
of some selected nuclei or elements in their natural isotope composition, 1 barn = 100 fm2.
Source: [3].

described by this part of the scattering cross section “see” a regular lattice and interfere to a
regular scattering pattern.

In contrast, the ∆σ are distributed randomly throughout the crystal and the scattering of the
neutrons which can be described by the ∆σ does not interfere to a special pattern. This effect
is attributed to an artificial quantity, the incoherent scattering cross section.

The proton (1H) has the biggest incoherent cross section of all nuclei we study normally (about
80 barn, cf. Tab. 1). For practical purposes, the big difference between the incoherent scattering
cross section of the proton and the deuteron (2H) is of enormous importance. Using isotope
exchange, i. e. (partial) deuteration of molecules, specific parts of the sample can be masked.

Vanadium scatters at the employed wavelengths also mainly incoherently although not as strong
as the proton.

2.2 Principle of a scattering experiment

At a scattering experiment, two important values are recorded (cf. Fig. 4):

• The scattering vector Q is defined as the difference between the wave vector kf of the
scattered wave (f as “final”) and the wave vektor ki of the incident wave (i as “initial”).
The momentum gained or lost during the scattering process can be calculated by

∆p = ℏQ = ℏ(kf − ki) . (1)

However, the momentum transfer is commonly not noted. Instead, the scattering vector
is commonly stated in units of inverse Ångstrom.

• The energy transfer ∆E is defined as the energy of the neutron after Ef and before Ei the
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Fig. 4: Schematic representation of a scattering experiment. ki,f,t are the wave vectors of the
initial (incoming), final (scattered) and transmitted neutrons, respectively. Q is the scattering
vector.

scattering process:

∆E = ℏω = ℏ(ωf − ωi) =
ℏ2(|kf |2 − |ki|2)

2mn

. (2)

The energy transfer is measured in meV. Often, ω is written incorrectly instead of ℏω.

The absolute value of the wave vectors k is defined as |k| = 2π/λ, with an refractive index
n ≈ 1 (which is a very good approximation for neutrons). However, the scattering vector
cannot be measured directly, only the wave vector of the incident and scattered neutrons. Using
the law of cosine one obtains a general equation for converting ki and kf to Q:

|Q|2 = |ki|2 + |kf |2 − 2|ki||kf | cos(2θ) . (3)

In the case of elastic scattering, the energy transfer is zero. Hence |ki| = |kf | simplifies the
equation to

Q =
4π

λ
sin

(
2θ

2

)
(4)

where Q = |Q|. Roughly speaking a distance d in direct space corresponds to a Q value

Q =
2π

d
. (5)

Therefore one can extract information about the physical configuration of the nuclei in the
sample by analyzing the intensity of the elastic scattering as a function of Q (the diffractogram),
cf. Fig. 6. Furthermore the intensity at a certain value of Q as a function of energy (a spectrum)
provides information about the motion of the nuclei (see Fig. 6).

2.3 Correlation & scattering functions

The position and the motions of the nuclei in any system can be described using correlation
functions. It can be shown that these correlation functions are what is measured with scattering
methods.



TOFTOF 9

Fig. 5: Left: Pair correlation, right: self correlation. In the case of pair correlation, the second
particle may be a different one than the first one but it doesn’t have to.

The pair correlation function Gpair(r, t) gives the probability to find a particle j at time t at the
place r if this or another particle i was at time t = 0 at the origin r = 0, as shown in Fig. 5. The
pair correlation function is

Gpair(r, t) =
1

N

N∑
i=1

N∑
j=1

∫
⟨δ{r̃−Ri(0)} · δ{r̃+ r−Rj(t)}⟩ dr̃ , (6)

with the number of particles N , an integration variable r̃ and the place Rj(t) of particle j at
time t. The angle brackets ⟨⟩ denote an ensemble average.

The self correlation function or auto correlation function Gself(r, t) gives the probability to find
one particle at time t at place r if this very particle was at time t = 0 at the place r = 0, see
again Fig. 5. It is defined as

Gself(r, t) =
1

N

N∑
i=1

∫
⟨δ{r̃−Ri(0)} · δ{r̃+ r−Ri(t)}⟩ dr̃ . (7)

In the following, we will assume that the samples are powder samples or liquids (i. e. not single
crystals) and will therefore use the absolute value of r, r, instead of the vector.

It is possible to calculate the pair and self correlation function from the scattered intensities.
Roughly, the calculation is as follows:

From the intensity of the scattered neutrons measured as function of momentum and energy
change, one obtains the double differential scattering cross section which can be seen as the
sum of a coherent and an incoherent part:

d2σ

dΩdE ′ =
kf
ki

N

4π

(
σcohScoh(Q,ω) + σincSinc(Q,ω)

)
. (8)

It denotes the probability that a neutron is scattered into the solid angle dΩ with an energy
change dE ′. N is the number of scattering nuclei and S(Q,ω) is called the scattering function.

The Fourier transform in time and space of the coherent scattering function Scoh(Q,ω) is noth-
ing but the pair correlation function Gpair(r, t) and the Fourier transform in time and space of
Sinc(Q,ω) is the self correlation function Gself(r, t).

Three functions are important:
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1. the correlation function G(r, t)

2. the intermediate scattering function I(Q, t) which is the Fourier transform (from r to Q)
of G(r, t)

3. the scattering function S(Q,ω) which is the Fourier transform (from t to ω) of I(Q, t)

All of them exist in two versions, considering pairs of particles (pair correlation function) or
only one particle (self correlation function).

For the intermediate scattering function I(Q, t) one can obtain further expressions – for a pair
correlation

Icoh(Q, t) =
1

N

N∑
i=1

N∑
j=1

〈
e−iQRi(0)eiQRj(t)

〉
(9)

and for the self correlation function

Iinc(Q, t) =
1

N

N∑
i=1

〈
e−iQRi(0)eiQRi(t)

〉
. (10)

At neutron spin echo spectrometers, the intermediate scattering function is measured – all other
neutron scattering spectrometers, including TOFTOF, measure the scattering function.

At TOFTOF, we mainly probe the non-periodic motions in disorded materials, for instance
diffusion processes in liquids. If a scatterer performs several motions simultaneously (but in-
dependently from each other), the resulting incoherent scattering function is a convolution in
energy space of the single scattering functions, for example

Stotal(Q,ω) = Sdiffusion(Q,ω)⊗ Sinternal motion(Q,ω) . (11)

As a convolution corresponds to a multiplication after Fourier transform, one can also write

Itotal(Q, t) = Idiffusion(Q, t) · Iinternal motion(Q, t) . (12)

If two scatterers perform two motions independently from each other and both cause incoher-
ent scattering, the recorded total incoherent scattering function is simply the sum of the two
scattering functions, for example

Stotal(Q,ω) = Ssolute(Q,ω) + Ssolvent(Q,ω) , (13)

which is also a sum after Fourier transform to the intermediate scattering function.

This decomposition of the scattering functions into parts is very important.

Due to the limited number of supporting points it is not possible to obtain the correlation func-
tion by numerical Fourier transform of the measured scattering function. Therefore, one pro-
ceeds the other way round: After inventing a plausible correlation function, one performs a
Fourier transform of this theoretical function to a scattering function and checks if this can
describe the data.

The hereby obtained theoretical scattering function Stheor(Q,ω) is fitted to the measured scatter-
ing function Smeas(Q,ω) after convolving the theoretical scattering function with the measured
instrumental resolution. The instrumental resolution is often determined using a vanadium sam-
ple which is an elastic, incoherent scatterer.
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3 Experiment

3.1 The system

In this experiment we will study the diffusive motions of molecules, e.g. n-alkanes or salt
solutions. By analyzing this system we want to learn more about the mechanism of molecular
self-diffusion, i.e. internal motions of the molecules and long-range diffusion processes.

3.2 Modelling the motions

Molecules in general are by far too complex to come up with a scattering function which de-
scribes all the motions correctly. Therefore, very simplified models are used. Assuming that the
molecule itself is rigid and moves as a whole, one obtains the scattering function

Sdiffusion(Q,ω) =
1

π

|Γd(Q)|
ω2 + Γd(Q)2

, (14)

a Lorentzian with a Q-dependent width |Γd(Q)|. If the diffusion follows exactly Fick’s law, one
obtains

|Γd(Q)| = D ·Q2 (15)

with the diffusion coefficient D which is normally given in m2/s.

Deviations from this ideal ∝ Q2 law indicate that the observed process is not ideal Fickian
diffusion. A constant (too large) value of Γd at small Q can be a sign of confinement: the
molecule cannot escape from a cage formed by the neighbouring molecules. If the width Γd

goes towards a constant value at large Q, this can be a sign of jump diffusion which should
rather be named stop-and-go diffusion: the molecule sits for some time at a certain place, then
diffuses for a while, gets trapped again, . . .

Try to fit the data with one Lorentzian. If this model does not describe the data satisfactorily,
the assumption of a rigid molecule was probably not justified. The scattering function for a
localized motion can be written as:

Sintern(Q,ω) = A0(Q) · δ(ω) + (1− A0(Q)) · 1
π

|Γi|
ω2 + Γ2

i

, (16)

that is the sum of a delta-function and a Lorentzian (confer also figure 6). |Γi| gives the fre-
quency of the motion, A0(Q) is called the elastic incoherent structure factor (EISF) and it gives
information on the long time average position of the scatterer, in first approximation the size of
the localized motion.

As we assume that the molecule performs a local motion and long-range diffusion simultane-
ously but independently from each other, we have to convolve the two functions with each other.
The result is the sum of two Lorentzians:

S(Q,ω) = F (Q) ·
{
A0(Q)

π

|Γd(Q)|
ω2 + Γd(Q)2

+
1− A0(Q)

π

|Γd(Q)|+ |Γi|
ω2 + (|Γd(Q)|+ |Γi|)2

}
. (17)
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3.3 The experiment itself

We might either produce a sample together or fill an existing sample into the aluminium hollow
cylindrical container or a flat aluminium container. This sample is then measured at TOFTOF,
additionally a vanadium standard and the empty aluminum container will be measured. The
length and number of measurements will have to be adjusted to the available time, it will be
necessary to use some measurements of the preceding groups.

You will do all sample changes in the presence of a tutor who explains the procedure in detail.

3.4 Data reduction

The instrument saves the number of counts as a function of scattering angle and time-of-flight,
N(2θ, tof). The next step is the data reduction which applies several corrections and transforms
to get rid of many instrument-specific properties of the data and convert them to a scattering
function S(Q,ω).

Data reduction (and later on also data evaluation) is done using the program Mantid Workbench
[5]. On the Desktop lauch the icon Mantid Workbench. Mantid Workbench is used in many
large scale facilities and it includes a variety of instrument routines, including a TOFTOF data
reduction routine. A detailed description of how to launch and run the routine is available at the
instrument.

Mantid Workbench is structured in workspaces. A workspace contains all necessary data like
the time of flight/energy transfer of the neutron, its 2θ/Q - values and the intensity. It also con-
tains so called metadata, i.e. information about the measurement settings or sample conditions
(e.g. temperature). Any operation on the data takes as an input a workspace and the output is
stored in another workspace.

Raw data files that have been measured under the same conditions (e.g. temperature) can be
added and treated as one data set. This will be done in the loading routine. After reading the
data files, the raw data N(2θ, tof) are normalized to the incoming neutron flux. The empty can
measurement is subtracted from the data and the sensitivity of each detector is calibrated using
the vanadium standard measurement. As vanadium is an incoherent scatterer, it should scatter
the same intensity in all directions. The only effect which causes deviations from an isotropic
scattering is the Debye-Waller-factor (DWF) which is well-known and can be corrected. This
is followed by the calculation of the energy transfer from the time-of-flight so that one obtains
S(2θ, ω).

The next step is to calculate the momentum transfer Q from the scattering angle 2θ and the
energy transfer ω using equation (3). During this step, we obtain about 1000 spectra with
relatively low statistics each and a varying value of Q as the energy transfer varies. To get a
better statistics and to have spectra which have the same Q for all values of energy transfer, the
1000 spectra are grouped into about n spectra of constant ∆Q in the same routine. The binning
parameters can be set in TOFTOF data reduction routine.
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Fig. 6: Left: Neutron diffraction patterns of solid pentafluortoluene at 100 K (λi = 6 Å), taken
from [1]. If the scattering vector is a reciprocal lattice vector, the positive interference of neutron
waves yields a maximum in the scattered intensity. The sharp features in the diffraction pattern
indicate an ordered lattice. Right: The spectra S(Q,ω) of pentafluortoluene (◦) and vanadium
(–) at a momentum transfer of Q = 1.1 Å−1, cf. also [1]. The solid sample shows only an
internal motion, can therefore be described by equation 16.

3.5 Data evaluation

For a quantitative analysis, fit the spectra with the functions given in section 3.2. For this
purpose, a fit-routine in Mantid Workbench can be used. For the fit, the binned data sets of
S(Q,ω) for both the sample and the vanadium resolution measurement are required since the
theoretical functions have to be convolved with the experimental resolution. Both data sets will
have been created during the data reduction routine. Plot the data set you want to fit, and evoke
the Fit Function Routine (for a single spectra) in Mantid Workbench. Using the Add Function
command, you can build the appropriate fit function, e.g.

S(Q,ω) = Convolution [Resolution; (DeltaFunction + Lorentzian)]+LinearBackground
(18)

The Multi data set fitting interface can be used to do a (sequential) fit for all Q-values in the
data set. Judge the fit quality by the reduced χ2 and by visually inspecting the fits together with
the data. Plot the obtained parameters for the width, Γ, as function of Q2 and determine the
diffusion coefficient.

If you measured the sample at different temperatures, repeat the procedure for all of them.

4 Questions to be answered before the experiment

1. Do you expect the vanadium sample to be activated by the neutron beam? What about the
aluminium container with the real sample? (2 min)

2. The vanadium standard sample at TOFTOF is a hollow cylinder with an outer diameter
of 22.5 mm and a height of 65 mm. The wall thickness is 0.6 mm. Which fraction of the
neutrons that hit the vanadium will be scattered? How big is the transmission?
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3. Why do the samples measured at TOFTOF mostly have a transmission of about 90 %?
How can the transmission be adjusted? (3 min)

4. The substance to be measured is filled in a gap between the inner and the outer cylinder
of the sample container. The inner diameter of the outer cylinder is always 22.5 mm,
the inner cylinder can be chosen to have either 22.1 mm or 22.3 mm outer diameter. The
height of the cylinders is 65 mm. How large is the sample volume for the two different
inner cylinders? Which inner cylinder would you use? (5 min)

5. Please note where this handout could need improvement. (5 min)

5 Questions to be answered during the experiment

1. When measuring water-based samples, H2O is most often replaced by D2O when the
water is not the subject of the study. Why? The signal of the solvent has to be subtracted
in both cases! (2 min)

2. Why is the sample container made of aluminum? (2 min)

3. The Vanadium standard sample at TOFTOF (hollow cylinder, 2 cm outer diameter,
0.6 mm thickness) is a “7% scatterer”, meaning that it transmits 93% of the neutrons.
In the moment, TOFTOF has 1000 neutron detectors with an active area of 40x3 cm each
in 4 m distance from the sample. Estimate the efficiency of the monitor detector using the
Monitor rate and Signal Rate given by the control program. (5 min)

4. To calculate the energy of neutrons in meV with a well-known wavelength given in Å,
one can use a formula

E ≈ a

λ2
. (19)

Determine a numerical value for a. How big is the initial energy Ei of the neutrons in the
current experiment? (5 min)

5. What is the maximal energy transfer from the neutron to the sample? (1 min)

6. What is the maximal energy transfer from the sample to the neutron? (1 min)

7. Draw at least six scattering triangles (as shown in Fig. 4) for these points in the dynamical
range:

• Elastic scattering with a scattering angle of 7.5◦; with a scattering angle of 140◦ (the
first & last detector at TOFTOF)

• Same scattering angles with neutron energy gain

• Same scattering angles with neutron energy loss

(6 min)

8. Locate those points in this dynamic range plot and determine which area in this plot is
accessible in the current scattering experiment. (5 min)
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∆E = Ef −Ei

Q = | ~Q|

Fig. 7: Dynamic range plot.

9. How can you distinguish coherent and incoherent scattering in the diffraction pattern?
Which information can you extract from the spectra when they are caused by coherent or
incoherent scattering, respectively? (2 min)

10. Why do we measure Vanadium? (three reasons; for one it is important that Vanadium
scatters neutrons incoherently, for two it is important that the Vanadium signal does not
have a quasielastic broadening) (6 min)

11. Assume that the scatterers in your sample are partially trapped. They diffuse inside a
“cage” until they find a hole through which they can escape. How do the intermediate
scattering function I(Q, t) and the scattering function S(Q,ω) look like? (5 min)

6 Constants

mn = 1.675 · 10−27 kg (20)

h = 6.626 · 10−34 J · s = 4.136 · 10−15 eV · s (21)

ℏ = 1.055 · 10−34 J · s = 6.582 · 10−16 eV · s (22)

e = 1.602 · 10−19 C (23)
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REFSANS. Horizontal Time-of-Flight Reflectometer with GISANS Option 3 

1 Introduction 

REFSANS is the horizontal reflectometer with GISANS option operated by Helmholtz-
Zentrum Hereon at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching.1 It has been 
conceived to measure both specular and off-specular reflectivity for solid/liquid, 
solid/gas, and liquid/gas interfaces. Moreover, it allows performing Grazing-Incidence 
Small Angle Scattering experiments to investigate lateral correlations at the interfaces. 

Differently from other reflectometers installed at MLZ, REFSANS uses a pulsed 
polychromatic incident neutron beam and determines the neutron wavelengths through 
the analysis of their Time-of-Flight (ToF). Although technically more demanding, ToF-
analysis has many advantages, such as the possibility to have access to a large Q  range 
with a single angle of incidence, which is very important for investigations of kinetic 
phenomena occurring at interfaces. 

Figure 1 shows a sketch of REFSANS. The instrument consists of three pairs of chopper 
disks to define the wavelength resolution and the wavelength band; a collimation system 
and optical components which are able to bend the incident beam, if necessary. The 
neutrons are recorded by a 2-D detector, which can be lifted up to 5 deg. 

Typical reflectivity curves are recorded using two or three incident angles to cover the 
range –10.005 Å 0.25zQ  , where zQ  is the component of the momentum transfer 
which is perpendicular to the interface. 

 

 

 

 

 

 Neutron Guide NL2b  Slits 
 Master Chopper  Polarizer and Spin Flipper 
 Tiltable Neutron Guide Elements   Sample 
 Movable Slave Chopper   Liftable Scattering Tube 
 Additional Chopper Pairs   Detector 

Figure 1. Sketch of REFSANS as seen from the side. 

2 Preparatory exercises 

The following questions will be helpful during your experiment at REFSANS 

 
 

0 – 5 deg 

   

 

    
  

 

 
 

 
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1. As mentioned in the introduction, REFSANS is an instrument working in Time-
of-Flight mode. The horizontal distance between the first chopper disk and the 
detector can reach up to 21.5 m. Try to estimate the time it takes for neutrons to 
travel between these two points. Perform such evaluation for the fastest and 
slowest neutrons typically used at the instrument, namely 2Å  and 21Å . All 
the necessary fundamental physical constants may be found on the NIST website.2 

2. The duration of a neutron pulse has to be comparable to the interval of time 
required for the slowest neutrons to reach the detector. Based on the estimations 
performed in the previous point, try to evaluate at what rotation speed (expressed 
in revolutions per minute, rpm) the chopper disks have to rotate to provide the 
wavelength band 2 Å 21  . 

3. When a pulse starts traveling towards the detector, (part of) the neutrons inside 
the region enclosed between the first and second disks (master and slave choppers, 
respectively; see Figure 1) are recorded by the detector. It is normally assumed 
that the uncertainty affecting the measurement of the Time-of-Flight is negligible 
(indeed it is really small, 0.1 s ). Based on this assumption, what can be said 
about wavelength uncertainty? 

4. The neutron beam has to be collimated in order to define its direction as precisely 
as possible. Figure 2 shows the most used principle used to collimate a beam: a 
system composed of two slits. The dashed line represents the path of an ideal 
infinitely collimated beam, whereas the solid lines the effective beam divergence. 
The uncertainty on the angle that the beam forms with the sample is given by 
 , as represented in the figure. If the vertical apertures of the slits are 1b  and 

3b , and if the distances between the slits is l , show that the angular uncertainty 
  is given by 

  1 3arctan
2

b b
l




     

 

 

 

 

 

 

Figure 2. Principle of the REFSANS collimation system, from a lateral view. 

5. Because of the Time-of-Flight mode, at REFSANS it is possible to cover a large 
zQ  range with a single or few angles of incidence. Suppose to use a wavelength 

band of 2 Å 21   and two incident angles of 0.50 deg and 2.50 deg to cover 

     
1b   3b   

l   
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the necessary zQ  range. Try to calculate this range and to imagine how the 
incident angles can be set. 

6. For the analysis of the experiment (see Sections 3 and 4) you will need to estimate 
the Scattering Length Density (SLD ) of Aluminum, Silicon and Titanium: their 
mass density of at room temperature are 32.7 g cm , 32.33 g cm  and 

34.506 g cm , respectively. Try to perform this estimation. Try also to calculate 
the SLD  of air, in normal conditions and compare it with the values obtained for 
the other three elements. Scattering lengths may be found on the NIST webpage.3 
Try also to list all other information you need, to perform the requested 
estimation. 

3 Experimental procedure 

In this experiment, a Silicon block coated with a layer of Titanium and an additional 
layer of Aluminum will be measured, to get information about the thickness and the 
quality of the coating layers. The two metallic layers have been deposited through the 
sputtering technique.4 

Blocks like the one to be tested can be used as electrode in an electrochemical cell, to 
study corrosion phenomena occurring at the surface: The Aluminum surface is put in 
contact with a corrosive liquid and counter/reference electrodes. Then the Al/liquid 
interface is probed by neutron reflectometry. During the experiment, the potential 
between the electrodes or a certain current may be imposed through the use of a 
potentiostat/galvanostat. 

This is a typical description of a so-called “in-operando” experiment: an experiment 
where a certain phenomenon is promoted imposing some quantities (such as the electrical 
current), and is investigated during its occurrence, at its site (“in-situ”). 

In our experiment we will limit ourselves to simply investigate the surface of the block: 
for investigations with neutron reflectometry, and even more so for electrochemical 
experiments, it is important that the surface is as smooth as possible to prevent the 
occurrence of off-specular scattering and low reflectivity. 

3.1 The experiment itself 
A short overview of REFSANS will take place, and the main characteristics of the TOF-
analysis will be shortly discussed. 

A silicon block with Ti/Al layers will be provided. The thicknesses requested from the 
manufacturer were 100Å   for the Titanium layer and 500Å   for the Aluminum 
layer. The participants will mount the block over a cell holder and install it at the 
instrument. After a short discussion about the order of the interfaces to be probed, the 
sample will be aligned. 

To cover a zQ  interval ranged between 3 16 10 Å   and –10.15Å  we will use the a wide 
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wavelength range (from 2 to 21 Å) and two incident angles, namely 0.50 deg and 2.50 
deg. After a short discussion on the beam size to use and on the detector position, the 
measurement will be started. The measurement times can be set as 20 min for the 
primary beam, 30 min for the low angle measurement, and 1.5 h for the 2.50 deg 
measurement. 

3.2 Data reduction 
The data reduction will be performed with the instrument scientist, who will explain the 
fundamental steps and provide the reflectivity, R, vs. the vertical momentum transfer 

zQ . 

3.3 Data evaluation 
Data evaluation of the measured reflectivities strongly depends on the system under 
investigation. For a simple system composed of a single interface or two interfaces, some 
of the characteristics may be obtained through a simple analysis of the pattern, such as 
position of maxima, distance between two consecutive maxima, position of the critical 
angle, etc. 

For more complex systems, or even for gaining more details on simple systems, a full 
analysis of the results has to be performed. If the system can be approximated to a 
sequence of distinct layers, reflectivities may be analyzed through the Parratt recursion 
algorithm:5 the system is divided in a certain sequence of layers. Applying the condition 
according to which the wave function and its first derivative must be continuous at each 
interface, a series of recurrence relations is constructed from which it is possible to 
calculate the theoretical reflectivity. This reflectivity depends on the thickness of the 
layers, as well as on their roughness and composition (SLD ). An equivalent treatment 
is due to Abeles,6 which takes advantage from the matrix formalism. Many programs are 
available for the analysis of reflectivity data. One good example is Motofit,7-8 a package 
working in the IGOR Pro environment.9 Motofit co-refines neutron reflectivity data, 
using the Abeles approach and least squares fitting. Another valid alternative is GenX 
10. These programs may also perform simultaneous fittings of systems in which the 
contrast have been changed by replacing some elements with different isotopes (e.g. -H 
with -D): this is very important because the mathematical procedure that allows us to 
obtain thicknesses, roughness etc. from reflectivity data is ill-posed: erroneous or 
physically meaningless values can have a trend of R as a function of zQ  very similar to 
that of the system under examination. Multiple measurements on the same system 
performed with suitably isotope replacement of some elements (the so-called contrast 
variation method) can reduce the appearance of unacceptable datasets. 

For a very basic analysis, like the one concerning the sample which will be measured, 
Parratt32 may also be used: this program was formerly developed at the BErlin Neutron 
Scattering Center (now known as Helmholtz-Zentrum Berlin). 

All programs for analyzing reflectivity data ask for the number of layers existing in the 
system to be analyzed, their SLD , thickness and roughness of the interfaces. 
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4 Experiment-related exercises 

1. Observe the reflectivity data and try to qualitatively determine the main 
characteristics. 

2. For the neutron reflection between two semi-infinite slabs, the critical value of zQ  
is given by 4zQ     , where   is the difference between the scattering 
length density (SLD ) of the two media.11 Compare this theoretical value with the 
experimental value observed. 

3. Try to make an approximate sketch of the trend of the SLD  vs. the vertical 
distance from the interface Si/Ti. How do you expect the SLD  to change across 
the various interfaces? 

4. The maxima and minima are due to the presence of the Al and Ti layers, which 
influence the neutron wave exercising a different potential and creating the 
conditions for constructive interference along proper directions. Thus, the position 
of the maxima depends on the (constructive) interference occurring between the 
neutron waves reflected from the different layers. A (broad) maximum at high zQ  
should correspond to the thinner layer (Ti): therefore, its position should give a 
very rough estimation (the order of magnitude) of the Ti layer. Use the Bragg 
equation to estimate if the corresponding thickness agrees with the expected value. 
Also, discuss why this estimation might not give a proper value for the thickness. 

5. Assume to have installed Motofit, to perform a full analysis of the reflectivity 
data. The program starts with a simple three-interface system, namely 
Air/SiO2/Si: a thin layer of SiO2 (SLD = 6 –23.47 10 Å ) is always present on top 
of Si substrates. The roughness of the Si surface is, according to the manufacturer, 
ranged between 5 and 10 Å. Set 10 Å as starting value for this interface. Set also 
15 Å as thickness for the SiO2 layer. Afterwards the total number of layers have 
to be defined: in principle, besides the SiO2, Ti, and Al layers, an additional layer 
of Al2O3 and, possibly, a layer of TiO2 should be added on top of the correspondent 
metallic layers. Anyway, since these layers are most likely very thin (< 2-3Å), 
they can be neglected for a first analysis. Thus, add the layers of Al and Ti along 
with the SLD  evaluated in Section 2 and the expected thicknesses. Also set a 
value of 9% for z zQ Q  and try to fix all the values except the thicknesses of Ti 
and Al. Fit and judge the fitting. Roughness smears the minima and maxima and 
decrease the specular reflectivity: try to leave free the roughness for the Ti, Al 
and SiO2 interfaces and re-fit. Finally, if the fitting is not satisfactory, try to leave 
free the SLD  of Ti and re-fit. Judge the results and try also to understand if some 
values are different from those expected and why. 

6. As general rule, for investigations with reflectometry, the roughness should not 
exceed 10 Å. Based on the results obtained, try to judge the quality of the layers 
sputtered on the Silicon crystal. 
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1 Introduction

Apart from water, proteins are the most abundant molecules in living cells. They are constantly
synthesized in the cell by the well known transcription and translation mechanism where first the
DNA is read out to produce a messenger RNA which encodes the proteins and in the subsequent
translation process the protein is synthesized by the ribosomes which itself is a protein/RNA-
complex. Proteins fulfil numerous functions in the cell, for example enzymatic catalysis which
enhances the speed with which molecules like fatty acids are synthesized or transport and
storage of important molecules like oxygen or they are involved in immunology, just to name a
few [1] . In order to fulfill these functions proteins adopt a unique three dimensional structure
with a carefully controlled mixture of flexibility and stiffness. For an understanding of their
function knowledge of this three dimensional structure is a prerequisite. Ideally one would
like to produce a movie where one can follow the functioning protein in action in slow motion
with atomic resolution. In practice, there are techniques available which have a sufficient time
resolution (in the fs-regime) but do only provide very limited structural information like time
resolved infrared spectroscopy. On the other hand there are methods which provide full atomic
resolution but with essentially no time resolution. With those methods one often stops the
functioning process of a protein under investigation in an intermediate state by trapping methods
using inhibitor molecules which stop the catalytic process of the protein leaving it trapped it in
a certain intermediate state. This article will focus on the latter static techniques among which
X-ray protein crystallography is the most widely used one. It will also introduce the method
of neutron protein crystallography since there are some similarities but also some differences
to X-rays as probes. Finally an example case study is discussed where both techniques give
complimentary information. But at first a short introduction into the basic structural properties
of proteins is given.

2 Some Basics about Proteins

2.1 Amino acids as the building blocks of proteins

Proteins consist of a chain of amino acids. In that sense they are biopolymers and since they in
general have charged side chains they can also be called polyelectrolytes. The first information
about a protein is therefore the number of amino acid residues it contains. This number can
span quite a wide range between 10 and 25 000. In a historical nomenclature often the term
“polypeptide” is used for a small protein containing between 10 and 100 amino acids. Amino
acid chains with a smaller number of amino acids than 10 are often named oligopeptides.
Typically a protein contains 100 amino acids. The average molecular weight per amino acid
is around 100 g/mol. This provides a possibility to calculate an estimate for the molecular
weight of a protein from the number of its residues. Despite there are many different amino
acids (or to be more exact: 2-amino carboxylic acids) present in living organisms not all of
them are used to build up proteins. The proteinogenic amino acids are shown in Figure 1.
Covalently attached to the central C-atom, the so called Cα-atom are an amino functional group,
a carboxylic group, the side chain atoms and finally one hydrogen atom. Since the Cα-atom has
a sp3 hybridization sterically all four constituents point into the corners of a tetrahedron. Since
(apart from the amino acid glycine) this Cα-atom has four different constituents it forms a chiral
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Fig. 1: A compilation of all 20 amino acids found in natural proteins. The N-terminal
amino group is here shown in its neutral charge state pointing to the bottom of the page.
Covalently attached to it is the Cα-atom which carries the corresponding side chain group
Adaptedfromhttp : //upload.wikimedia.org/wikipedia/.
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Fig. 2: A peptide bond forms between two amino acids. As a result a water molecule is released.
The inverse process is called hydrolysis.

centre in the Fischer sense. So two different arrangements of these four constituents are possible
which lead to the L- and D-enantiomers of the corresponding amino acid, according to Fischer’s
convention. But in nature only the L-enantiomers are found as building blocks of proteins.

The ribosomes in a living cell synthesize the proteins according to the code read from the
messenger RNA. This process is called translation . Hereby in a step by step fashion one
amino acid after the other is linked via a peptide bond between the carboxylic group of the
existing amino acid chain and the amino functional group of the newly added amino acid. A
water molecule is released per peptide bond formed (see Fig. 2). Hence, the peptide bond
formation is a poly-condensation. The inverse process requires adding a water molecule and is
named hydrolysis. Formation of a peptide bond requires free energy, so the inverse process is
exothermic but happens on a very long time scale between 10 to 1000 years without enzymatic
catalysis.

The sequence of amino acids is the primary structure of the protein. It can be displayed as a line
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Fig. 3: Due to a partial double bond character of the C-N peptide bond the rotation around it
is hindered by a steep potential. This causes the four atoms OCNH to form a planar structure
(marked in green). The only remaining degrees of freedom per amino acid along the backbone
are the two dihedral angles ψ and ϕ.

of text with a three letter code representing one amino acid. It is a common convention that the
line of text starts at the N-terminal end of the amino acid chain i. e. with the amino acid with
side chain R1 in the example given in Fig. 2 on the right.

Another specialty of the peptide bond is its partial double bond character of the chemical bond
between the carbon and nitrogen atom. The lone electron pair at the nitrogen atom is delocalized
and has some existence probability between the atoms forming the peptide bond. This causes
the bond length to shrink below the value of a single bond. As a consequence, the rotation
around the CN-bond is hindered and the four atoms OCNH form a planar geometry denoted
by a green polygon in Fig. 31. This is why one amino acid only contributes two degrees of
freedom to the amino acid backbone which are denoted by the dihedral angles ϕ and χ, for their
definition see Fig. 3. Another property of this planar set of atoms is their potential to from
hydrogen bonds. Hereby, the oxygen atom is partly negatively charged and is a hydrogen bond
acceptor. The hydrogen atom covalently linked to the backbone nitrogen atom carries a positive
partial charge and is therefore a hydrogen bond donor. It is this hydrogen atom which can be
easily replaced by a deuterium atom when the protein is dissolved in heavy water (D2O) for a
certain time. This can be seen as a proof for the hydrogen donor capabilities of this hydrogen
atom.

2.2 The three dimensional structure of proteins

After leaving the exit tunnel of the ribosome the polypeptide chain folds into a unique three
dimensional structure. This process is sometimes assisted by chaperones, which provide a
special electrostatic environment, which helps the proteins to fold correctly. Since the backbone
of all proteins is the same (i. e. the covalently linked atoms N- Cα-C-N- Cα-C and so forth)
the side chains determine this unique three dimensional structure. This structure is stabilized by
four different interactions. First of all there is the possibility of establishing hydrogen bonds
between two parts of the backbone, but also between side chains or between a side chain

1 Only in rare cases one finds a distorted planar geometry. The dihedral angle ω for the rotation around the CN-
bond is in this case not equal to +180°. The potential for rotation around the CN-bond has a second local minimum
at ω=0, which corresponds to the peptide bond in its cis configuration. This is frequently found in conjunction with
the amino acid proline.
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and a part of the backbone. Another stabilizing mechanism is a formed salt bridge between
a negatively and a positively charged side chain, e. g. aspartic acid and lysine. The third
interaction is the formation of a hydrophobic cluster or core. Hereby the surrounding water
plays a major role which makes it a mostly entropic effect. It is more favorable for the water
molecules to form hydrogen bonds with each other than to stick between some hydrophobic
side chains. This is why those side chains tend to be packed together in the folding process
resulting in van der Waals interactions among them. The fourth stabilizing moment of a three
dimensional fold of a protein is a disulfide bridge between two cysteine residues. Often this is
used to link two different amino acid chains to form one protein.

When the primary structure only gives the linear sequence of amino acids, the secondary
structure of a protein denotes all arrangements of the protein backbone stabilized by a regular
hydrogen bonding pattern. These hydrogen bonds are solely between different parts of the
backbone. There are several structural motifs of that kind which occur frequently in proteins.
Some of these motifs have been given a name e .g α-Helix or parallel β-sheet (Fig. 4).

The side chains of the amino acids forming an α-Helix point to the outside perpendicular to the
helix axis. Per winding 3.6 amino acids form one winding. The hydrogen bonding pattern can
be seen in Fig. 4 or taken from Table 1. Since all hydrogen bonds have a dipole moment which
is aligned in parallel in an α-helix a large dipole moment is formed by an α-helix which makes
it energetically unfavorable when the number of residues involved exceeds 40 [2]. The β-sheet
comes in two flavors a parallel one and an anti-parallel one (shown in Fig. 4). They differ by
the hydrogen bonding pattern, but in both cases the side chains point roughly perpendicular to
the plane defined by the backbone alternatingly upwards and downwards.

The β-sheet comes in two flavors a parallel one and an anti-parallel one (shown in Fig. 4).
They differ by the hydrogen bonding pattern, but in both cases the side chains point roughly
perpendicular to the plane defined by the backbone alternatingly upwards and downwards.

Table 1: Geometric properties of some secondary structure elements (values taken from cite4).

Secondary structure Frequency H-bonding Handedness Typical ϕ Typical ψ
α-helix (3.613) abundant i to i+4 right -57◦ -47◦

310 helix infrequent i to i+3 right -20◦ -54◦

α-helix (4.416) rare i to i+5 right -57◦ -80◦

polyproline II rare - left -78◦ +149◦

polyglycine II rare i to i+3 left -80◦ +150◦

parallel β-sheet abundant wide pair - -119◦ +113◦

antiparallel β-sheet abundant close pair - -139◦ +135◦

Apart from the structures mentioned in Table 1 certain turns form regular hydrogen bonding
patterns such they can be considered secondary structural elements. On the bottom left of Fig. 4
with the backbone marked in blue a turn motif is visible. This is also an example of a secondary
structure element of proteins. It allows for the amino acid chain to reverse its direction to form
the anti-parallel β-sheet.

Ramachandran plots are especially suited to judge the secondary structure content of a protein.
They consist of a scattered plot of all dihedral angles found per residue in the protein (see Fig.
5). On the x-axis all the dihedral angles of ϕ and on the y-axis the dihedral angle ψ is drawn for
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Fig. 4: On the left the residues 48 to 55, 107 to 130 and 187 to 196 of concanavalin A (pdb
code 1XQN) are shown as an example of an anti-parallel β-sheet [3]. On the right residues
104 through 114 of sperm whale myoglobin (pdb code1L2K), are shown forming an α-helix [4]
(Images made with VMD version 1.8.7).

each amino acid residue resulting in one black filled symbol per residue. Obviously, myoglobin
is mostly an α-helical and concanavalin A a β-sheet rich protein. Due to steric hindrances
because of the presence of the side chain many combinations of ϕ and ψ are unfavourable
(white areas in Fig. 5).

Fig. 5: Ramachandran plots of the protein concanavalin A on the left and myoglobin on the
right. The red area shows dihedral angles typical for α-helices. In the yellow and orange
areas dihedral angles typical for β-sheets can be found. The green region corresponds to rare
left handed helical arrangements of the protein backbone (Images made with VMD version
1.8.7 [5]).

The tertiary structure of a protein denotes the three dimensional arrangement of all atoms of the
protein in space, including the side chains. This information can be obtained by structural
techniques like protein crystallography (will be discussed below), NMR. On that level all
interactions mentioned above play a role. Super-secondary structural elements e. g. the α-
helix bundle found in myoglobin and the βαβαβ-structure found in dehydrogenases are often
seen in a tertiary structure. Another concept to divide the tertiary structure into sub-motifs is
to define certain domains which are parts of the protein which can fold to this domain structure
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Fig. 6: Secondary structure plot of human urokinase plasminogen activator receptor citeXXX6,
a complex protein (pdb code 1YWH). The domains DI (yellow), DII (blue) and DIII (red) are
shown. Amino acids not belonging to any domain are depicted in grey.

without the context of the complete protein. Often these domains provide functional sub-units
and their structure is highly conserved throughout the protein family. Figure 6 shows three
domains DI to DIII of human urokinase plasminogen activator receptor protein as an example.

Some proteins need more than one amino acid chain to be functional. The arrangement of the
different amino acid chains is then referred to as the protein’s quarternary structure.

2.3 The protein folding problem

The process with which the proteins reach this three dimensional structure is called protein
folding and is under intense investigations after C. B. Anfinsen has performed pioneering
experiments on denaturation and re-folding [6]. Considering the time a typical protein needs
for folding which is of the order of seconds there must be some directive force leading to the
correct fold. An exhaustive search of the overall parameter space of all possible dihedral angles
ϕ and ψ would take too long for proteins of a typical size of 100 amino acids (Levinthal’s
paradox). A possible mechanism for such a directive force is the hydrophobic collapse where
all hydrophobic side chains move together to from a hydrophobic core inside the protein. In
a different hypothesis secondary structure elements of proteins form first and lead then to the
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final three dimensional fold.

3 Protein Crystallography

The previous chapter intended to define some technical terms which describe protein structure
in general. The following chapter will show how most of this structural information has
been obtained. The protein data bank (www.rcsb.org) is a well known source of structural
information on proteins. Data from many different experimental techniques are entered in
a standardized format, a .pdb file which essentially contains not only three dimensional
coordinates of all observed atoms in a protein but also information on their mean square
displacements. The number of stored entries exceeds 200 000. Among them X-ray
crystallography has contributed more than 85 %. The next in line method with more than 15 000
entries in the data bank is electron microscopy. Solution NMR spectroscopy as a method was
used in more than 12 000 entries. The remaining methods count less than 250 entries including
neutron protein crystallography. Since the latter technique is represented by an instrument in
the Jülich Centre for Neutron Science (JCNS) it is discussed in this experiment manual.

Fig. 7: Real space arrangement of myoglobin molecules in a crystal of space group P21 (on the
left) versus diffraction pattern (right) of a myoglobin crystal.

For both techniques X-ray and neutron protein crystallography a single crystal of the protein of
interest is required since the scattering of one protein molecule is very weak. Only using very
bright X-ray sources in the future (e. g. XFEL) one might be able to gain enough information
out of single protein molecules in solution, averaging many exposures and orientations. But
in general a crystal has to be grown, especially large ones in case of neutron crystallography
since the neutron luminosity of modern sources is much smaller than the X-ray flux reached
by synchrotron sources. To grow sufficiently large crystals is a big challenge in the case of
many proteins, especially membrane proteins. Here, one has to adjust a large parameter set
of protein concentration, pH value, salt or precipitant concentration just to name a few. The
crystal serves as a noiseless amplifier of the diffraction signal. But the arrangement of proteins
in a crystals brings in another advantage, since the orientational averaging can be avoided,
which is always present in the solution phase. Fig. 7 shows on the left the regular arrangement
of myoglobin molecules in a crystal lattice. The unit cell of the monoclinic lattice (space group
P21) is indicated by black lines. It bears one myoglobin molecule in the asymmetric unit and
two myoglobin molecules in one unit cell. The picture on the right shows a diffraction pattern
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Fig. 8: The table on the left lists scattering lengths of selected atoms of biological relevance.
On the right there is a comparison of X-ray scattering cross section with scattering lengths from
neutron scattering. The circles are scaled to match at the carbon atom.

recorded with the instrument BioDiff on a myoglobin crystal. The crystal is rotated by ca.
0.3◦while recording one diffraction pattern. In order to map the reciprocal space completely
one has to put the crystal in many different orientations into the beam and record diffraction
patterns as mentioned above. Fortunately, crystal symmetry helps that some orientations are
equivalent to each other.

3.1 A neutron protein crystallography instrument

Since X-rays are scattered from the electrons in the crystal and neutrons from the nuclei,
hydrogen atoms are hardly seen in X-ray crystallography experiments. Only at very high
resolutions of 1 Åor less there is a chance to observe hydrogen atom positions. This resolution
is often not within reach because of the crystal quality. Here neutron protein crystallography
must be employed to retrieve the hydrogen atom positions. Moreover, neutron scattering can
distinguish between different isotopes, especially between hydrogen and deuterium. Whereas
from X-ray crystallography the electron density in the unit cell of the crystal can be calculated,
neutron protein crystallography yields the nuclear scattering length density, which is a signed
quantity. In fact, the coherent scattering length of hydrogen is negative and the one from
deuterium is positive (cf. Fig. 8).

A major drawback of the method neutron protein crystallography is the required crystal size.
Due to the much smaller neutron flux as compared to X-ray flux the crystals required for a
neutron crystallography study must be much larger as compared to X-ray crystallography. Here,
often crystal diagonals of 1 mm and more have to be reached. As an example of a neutron
diffraction instrument optimised for protein crystallography the instrument BioDiff at the FRM
II shall be introduced. It is a collaboration between the Forschungszentrum Jülich (FZJ) and the
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II).
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Fig. 9: Schematic view of the BioDiff instrument (left) and a picture taken from a similar view
point with the biological shielding removed (right).

Figure 9 shows a schematic view of the instrument from the top and a corresponding picture
when the biological shielding has been removed. The neutron beam from the cold source of
the FRM II reactor enters from the right. By Bragg reflection from a pyrolytic graphite crystal
(002-reflex) neutrons are taken out from the white neutron spectrum of the neutron guide NL1
and pass a first boron carbide adjustable slit and a velocity selector. The velocity selector acts
as a λ/2 filter. Together with the pyrolytic graphite crystal it forms a monochromator with a
∆λ/λ of ca. 2.5%. Behind the velocity selector the beam passes a second variable slit and
the main instrument shutter, named γ-shutter. Additionally, a boron carbide neutron shutter is
placed directly after the monochromator crystal for a faster shutter operation. Before entering
the detector drum of the image plate detector through a Zirconium window a collimator made
out of two manually exchangeable boron carbide apertures with fixed diameters between 3 mm
and 5 mm shape the beam to fit to the sample size. At present the sample is usually contained
in a glass tube (either a thin walled capillary or a NMR-tube for larger crystals). It is fixed
to a standard goniometer which is mounted upside-down from the sample stage on top of the
instrument. After passing the sample the main neutron beam exits the detector drum through
a second Zirconium window and hits finally the beam stop which consists of a cavity of 4 mm
thick boron carbide plates surrounded by a 13 cm thick wall of lead shielding bricks. The
cylindrical image plate detector is covering roughly half of the total 4 π solid angle. It is 200
mm in diameter and 450 mm in height. It can be read out with three different resolutions of 125
µm, 250 µm and 500 µm. As an alternative, one can lower the image plate detector and swing
in a neutron sensitive scintillator which is imaged onto a CCD-chip. This CCD-camera set up
serves as a second detector. In particular it is used for a fast alignment of the sample crystal
with respect to the neutron beam.

With the image plate detector the diffraction pattern shown in Fig. 7 on the right has been
recorded. In fact, a complete crystallographic data set on a myoglobin crystal has been recorded
allowing for the calculation of a nuclear scattering length density map. The exposure time was
17 minutes per frame and the crystal was rotated by 0.5◦during exposure. 331 frames were
recorded before the crystal was manually rotated by ca. 90◦in the capillary and another set
of 243 frames were recorded. Altogether ca. 9 days of beam time were necessary to record
the complete data set. The achieved resolution with sufficient completeness was 1.7 Å. The
required time to record this data set was much longer as the 30 minutes from X-ray diffraction.
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3.2 Some general aspects of diffraction by a protein crystal

Having recorded a complete data set on a crystal some data treatment is necessary in order to
calculate meaningful atom positions. Here only a brief introduction can be given more details
can be found in text books [7, 8]. Assuming a number of n atoms per unit cell the structure
factor of a single unit cell can be written as (see previous experiment manuals):

F (S) =
n∑

j=1

fj exp (2πirjS) (1)

Here rj denote the atom position of atom j and S is the scattering vector perpendicular to the
plane which reflects the incident beam. fj can be seen here either as the scattering length of
atom j in the neutron scattering case or the atomic scattering factor in case of X-ray diffraction.
One can generalize this approach by switching form the summation to an integration to yield:

F (S) =

∫
unitcell

ρ (r) exp (2πirS) d3r (2)

where ρ (r) is the electron density distribution or the scattering length density respectively.
Since a crystal consists ofAxBxC unit cells, the structure factor of the crystal can be composed
as

Fcryst. (S) = F (S)
A∑

u=0

exp (2πiuajS)
B∑

v=0

exp (2πivbjS)
B∑

w=0

exp (2πiwcjS) (3)

The vectors a , b and c denote basis vectors of the unit cell. For an increasing number of
unit cells the sums can be represented by delta functions leading to the Laue conditions for the
structure factor being non-zero:

ajS = h, bjS = k, cjS = l (4)

Therefore, one only gets constructive interference, when the scattering vector is perpendicular
to planes in the crystal which can be denoted by the index vector h = hkl . For this reason the
diffraction pattern of a single crystal shows distinct peaks, the so called Bragg peaks. The Bragg
law can be easily derived from equation 4. Figure 10 shows the Ewald sphere construction. It
is a tool to construct the direction of the diffracted beam. The Ewald sphere has its origin at the
position of the crystal. Its radius is the reciprocal wavelength used in the scattering experiment.
The origin of the reciprocal lattice is placed at the intersection of the sphere with the incident
beam direction. Whenever the orientation of the reciprocal space is such that another point of
the reciprocal space lies on the Ewald sphere a diffracted beam results in the direction of the
line running from the centre of the Ewald sphere through that point.

When the crystal is rotated the reciprocal space rotates with it resulting in other lattice points
to cause diffracted beams. In practice the incident beam is not strictly monochromatic but has
a wavelength distribution which causes the Ewald sphere to be elongated to form a spherical
shell of a certain thickness. This increases the number of diffracted beams observed. The beam
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Origin of the 

reciprocal lattice

Fig. 10: Ewald sphere: On the left the schematic shows how to construct the Ewald sphere. On
the right an Ewald sphere (golden colour) construction is shown in three dimensions. The blue
square represents a flat two dimensional detector.

divergence adds also to its thickness. So, the positions of the diffracted beams on the detector
only depend on the reciprocal lattice. The structure of the protein inside the unit cell is encoded
in the amplitude and phase of the structure factor. To obtain the electron density or the nuclear
scattering length density one has to perform the inverse Fourier transformation:

ρ (r) =
1

V

∑
h

F (h) exp (−2πirh) (5)

Here V is the volume of the unit cell. Unfortunately only the modulus squared of the structure
factor is measured as intensity on the detector. The phase information is lost which is known as
the phase problem of crystallography.

There are several solutions to the phase problem which are only applicable for the X-ray
diffraction case:

1. isomorphous replacement: Several crystals of the same crystal structure have to be
available for this method. First a crystallographic data set is recorded on an untreated
crystal. Then crystals are soaked in at least two different heavy atom salt solutions. In the
best case, the different heavy atom ions occupy different regular positions in the unit cell.
From these (at least) two crystallographic data sets recorded on the heavy atom treated
crystals phase information can be retrieved which is then used to determine the phases of
the data set of the untreated crystal.

2. anomalous dispersion: Often it is possible to replace one distinct methionine amino acid
with an artificial seleno-methionine one. The selenium atom has a suitable absorption
edge on which anomalous scattering can be performed by tuning the wavelength of
the beamline to the anomalous regime. Crystallographic data sets are then recorded at
different wavelengths from with the phase information can be calculated. In some cases
this approach can also be adopted for sulfur atoms present in naturally occurring cysteine
residues.
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3. molecular replacement: From the primary structure one can search the protein data base
(pdb) for proteins with a similar amino acid sequence. If one finds enough fragments
which seem to be sufficiently homologous to the unknown structure one can use those
fragments for the calculation of initial phases. In further refinement steps these phases
can be improved further. Since the number of unique structures entered in the protein data
base is growing this method is increasingly favoured over other methods.

The phase problem of the neutron data sets is solved by using the X-ray structure and the
molecular replacement technique.

3.3 Model building and refinement

With the data treatment one has now arrived at a contour map ρ (r) be it either a nuclear
scattering length density or an electron density. Now the information on the primary structure
of the protein is used and either manually or employing software first the backbone is coarsely
fitted into the contour map. Then from this model new amplitudes and phases of the structure
factor are calculated using eq. 1. The modulus squared of the structure factor is again compared
with the data. One could now think of a least square based fitting procedure to find the optimum
arrangement of the protein atoms in the unit cell. In practice however maximum likelihood
and simulated annealing molecular dynamics simulations are used because those are superior
to the least square approach in terms of overcoming local minima. In these molecular dynamics
simulations a lot of stereochemical information is used as restraints for example known bond
lengths of Carbon to Carbon single bonds or bond angles. The agreement between model and
observed contour map is often measured by calculating a so called R-factor:

R =

∑
h ||Fobs (h)| − |Fobs (h)|| |∑

h |Fobs (h)|
(6)

The index ”obs” denotes the observed structure factors and the index ”calc” the calculated
structure factors from the model. The value of the R-factor lies in the limits between 0 and 1. A
good agreement between model and measured data leads to an R-factor of about 0.2. R-factors
of 0.5 and above are indicative for a random agreement between model and data.

But even a good R-factor does not guarantee that the model fits to the data. In fact, it is possible
in special cases to obtain a reasonably low R-factor when using the amino acid chain in the
wrong direction as a model [9]. Here, Brünger et al. [10] have suggested to divide the measured
Bragg reflections into two subset one working set denoted by ”A” and one test set denoted by
”T”. With the working set the fitting procedure is performed, whereas the test set only serves to
control the model quality by calculating the Rfree factor.

Rfree =

∑
h∈T ||Fobs (h)| − |Fobs (h)|| |∑

h∈T |Fobs (h)|
(7)

The test set usually consists of 5 to 10 % of all structure factors, uniformly distributed over the
resolution range.
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Fig. 11: The side chain of the amino acid tryptophan no. 7 of myoglobin measured with neutron
diffraction at different resolutions. The contour level of the shown nuclear map is +1.5σ (blue)
and -1.75σ (red). Exchangable hydrogen atoms (green) and Carbon- (yellow), Nitrogen- (blue)
and Oxygen-atoms (red) appear on a positive contour level. Only not exchangable hydrogen
atoms are seen on the negative contour level.

The R-factor and Rfree factor should not differ too much from each other. In general, it is
good practice to always look at the resulting model and its fit to the calculated map after
each refinement step. Ramachandran plots can also be used to judge whether the amino acid
backbone adopts a reasonable fold. With decreasing resolution (cf. Fig. 11) of the data it
becomes more and more difficult to find the right orientations of side chains or even errors in
the registry of the protein backbone can occur, whereby for example one amino acid is left out.

4 Example data set: Trypsin with the ligand aminopyridine

The enzyme trypsin is a protease. This means it cuts the protein chain of other proteins into two
parts. The group of Prof. Gerhard Klebe from the University of Marburg has used this protein
in order to show how neutron protein crystallography can contribute to a better understanding
of drug fragment binding [11]. They measured a neutron structure of the ligand free enzyme as
a reference. They used different small molecule ligands as examples for drug fragments with a
drug consisting of typically 3-5 such fragments.

Here, we investigate how the fragment aminopyridine binds to trypsin.

The refinement is now the step where one adapts the model to the data. At BioDiff, the
refinement program phenix.refine [13] is used in most cases. But also other programs can
be chosen as for example the CCP4 suite or nCNS.

1. We use the sub-program from the phenix package called Xtriage to check the hkl-list file
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Fig. 12: A screenshot of the data integration software [12] at work: One detector image of the
Trypsin data set is shown in black and white intensity encoding with the indexed Bragg reflexes
encricled in yellow color. The red circles indicate when Bragg refelxes overlap. A magnified
part of the detector image is shown in the bottom left corner. Here, the integration region is
sown in a white circle and the background region is shown as a white rectangle. The χ2 of the
integration per image is plotted in the bottom right corner.

(*.sca) which was output from the software HKL2000 in the data reduction step.

2. For a starting model we use the x-ray structure of a ligand free trypsin enzyme which can
be found in the protein data base with the name 5mne.pdb. To remove the lines which
indicate the anisotropic refinement results, we use a linux command:

cat 5mne.pdb | grep ATOM > onlyATOM.pdb

3. The pdb-tools of phenix.refine are quite useful. We remove the hydrogen atoms from
the model: Remove ”name *H*“and we tick the box saying ”Remove alternative
conformations“

4. We skip the molecular replacement step which would normally follow now with the
model we have produced so far. Instead we see that the ligand free model crystalized
in the same space group and unit cell size as the data we have for the enzyme with the
ligand aminopyridin. In this case we can use direktly phenix.refine to do a first rigid body
refinement to get first phases from our ligand free model. We give the starting model
onlyATOM.pdb and the hkl-list as input files. We use the following settings:

• tick ”generate new set of control reflections“

• refinement settings: ”rigid body“

• refinement settings: ”add hydrogen to model: H/D at exchangable site, H elsewhere“
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Fig. 13: A screenshot of the refinement in progress showing the aminopyridine density. Data
taken from [11].

• refinement settings: scattering table ”neutron“

• refinement settings: number of processors: 3

After three cycles of refinement the R-factors should drop to about 0.3. Can you make out,
where the aminopyridine ligand is protonated?

5 Preparatory Exercises

In order to test your understanding of this experiment manual it is very helpful to solve the
following problems:

1. How many protein molecules form one asymmetric unit in the given protein crystal (see
specifications below)? Specifications of the protein crystal:

• Frozen crystal with an orthorhombic unit cell (a̸=b̸=c and α = β = γ=90◦, space
group P212121) with side lengths: a=57.96 Å, b=65.11 Å, c=86.51 Å

• Molecular Weight of the protein: Mw=38770 Da ( or g/mol)

• Molecular Density of the protein: d=1.3g/cm3

• Assumed water content in the crystal: Vs= 20%-50%

• Z=4 (number of asymmetric units in the unit cell, i.e. the number of symmetry
operators in the space group P212121)
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2. Why is every second reflection missing/cancelled out on the main axis in the reciprocal
space when using crystals with the space group P212121? Look into the structure factor
equation 3!

6 Experiment Procedure

Each beamtime at BioDiff starts with mounting of crystals which have been brought by the
users. When the first crystal has been aligned to the goniometer axis and the neutron beam,
a first exposure can be made. From this first detector image one can judge already what the
resolution of the data set will be when it is recorded using this crystal. Often one can already
calculate the needed exposure time and the final completeness of the data set.

If the completeness and achievable resolution are good enough for the scientific question of the
user to be answered, one can start data collection with this first crystal. But often one needs to
mount some other crystals in order to see which crystal allows for the highest resolution and
completeness in the shortest possible beamtime. This is often a delicate optimization process.

6.1 The experiment itself

After a short safety training, the instrument BioDiff will be explained in detail. As a first step
we check the goniometer axis of the instrument with the use of the beam line camera. We will
mount a protein crystal and align it on the goniometer axis using the cross hair of the beamline
camera. After closing the drum of the instrument we can make an exposure with neutrons and
collect a first detector image. From this image one try to deduce the resolution to which the
crystal will scatter. Using the orientation matrix of the crystal inferred from this first diffraction
image, we will develop a strategy for a collection of a full data set using the software HKL2000.

6.2 Data reduction

Using the example data set of trypsin or one data set recently measured at BioDiff, we will
introduce the data reduction process. We will also discuss how one can optimize the integration
of the Bragg reflexes. Time permitting we can also show our efforts to develop our own data
reduction software called OpenHKL. The final outcome of this step of data processing is a list
of intensities with their respective h, k and l value.

6.3 Data evaluation

Many users of BioDiff receive an hkl list file from the instrument responsibles of the respective
diffractometer beam line. They choose then a refinement software to employ the fitting of
the model to the hkl-list data. Here, the students can get hands on experience and perform their
own refinement steps. The refinement of a neutron structure is never finished and a good quality
refinment involves often a close look to the residual density and to the model it produced.
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7 Experiment-Related Exercises

After performing the experiment one should be able to answer the following questions:

1. Why do hydrogen atoms appear on the negative contour of the scattering length density
maps?

2. Why do the users often bring crystals where the water is exchanged with deuterated
water?

3. What can you learn from a neutron structure of a protein which you cannot learn from an
x-ray structure of the same protein?
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1 Introduction 

 
The energy of cold neutrons is below 0.005 eV (i.e. much below the typical energies of 

chemical bonds), their wavelengths are around 5 Å (in the range of crystal lattices), and their 
velocities are a few hundred m s–1. They are ideal for non-destructive investigations of atomic 
or nano-structures mainly based on neutron scattering. The neutron flux within the cold 
source is above 1014 cm–2 s–1. 
 

 
 

Figure 1. Beam tubes in FRM II reactor (source: FRM II webpage)  
 
Cold neutrons can be transported away from the reactor core using neutron guides. When 

using a simple flight tube, the intensity of the neutron beam decreases according to 1/r2. In 
guides, neutrons can be transmitted with just a very little loss, which is proportional to 1/r. 
The inner surface of the guide tubes is covered with the so-called supermirror made of 
hundreds of sub-micron titanium and nickel layers. Each pair of metal layers reflects one 
wavelength with Bragg reflection, while the whole coating (with the total thickness of a few 
microns) reflects a whole wavelength range within ±2–3°. The guides can be as long as 50–
100 m. The neutron flux at the end of a guide like this is still more than 109 cm–2 s–1. The flux 
can be further increased with the use of elliptically tapered guides. At the PGAA facility at 
FRM II the flux at the focal point is about 5×1010 cm–2 s–1. 
 

   
Figure 2. Neutron guides (source: FRM II web page) 

Cold 
neutron 
beams 
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2  Radiative neutron capture (or the (n,g) reaction) 
 
Neutrons have no electric charge; thus, they can interact with the positively charged 

atomic nucleus at any energy. (In contrast to charged particles, which need energies higher 
than a given threshold energy to interact with the nuclei.) Whenever a nucleus absorbs a slow 
(thermal or cold) neutron, a so-called compound nucleus is formed whose excitation energy 
equals the binding energy of the neutron. (For slow neutrons, the kinetic energy can be 
neglected.) The binding energy is in the range of 6–10 MeV for most nuclei, it tends to 
increase with the atomic number until Z = 22–28, then slowly decreases. Most compound 
nuclei get rid of the excitation energy with the emission of g radiation. This is called radiative 
neutron capture, or (n,g) reaction.  
 
 

 
Figure 3. The process of the (n,g) reaction 

 
If the nucleus formed in the de-excitation is stable, then the process ends. If it is 

radioactive, then it decays away typically with b decay with a given half-life, during which 
delayed g radiation is also emitted. The typical form is b– decay, as these nuclides are 
neutron rich, but sometimes b+ decay can also occur. As a result, we get a nucleus whose 
mass number is increased by one, and the atomic number is also increased by one, or in the 
case of b+ decay, decreased by one. 
 
After a neutron capture, certain nuclides emit charged particles: the most important 

reactions are the following: 3He(n,p)3H, 6Li(n,a)3H, 10B(n,a)7Li, and 14N(n,p)14C.  In the case 
of neutron capture in 10B, the first energy level above the ground state of 7Li is also populated, 
that is why g radiation with the energy of 478 keV is also emitted. These reactions have rather 
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high probabilities (cross sections), so they are applied in neutron detection or when shielding 
against neutrons. 
 
The probability of the neutron capture is described by the neutron capture cross section. 

The SI unit of it is cm2, but barn = 10–24 cm2 is also accepted. The “real” cross section, as 
calculated from the sizes of protons and neutrons, is typically between 1–10 barns. While the 
scattering cross sections of the nuclei are not far from these values, the capture cross section 
can be several orders of magnitude smaller, or even higher. The nucleus of 4He (i.e., the a 
particle) is so stable that it does not interact with neutrons at all. This is the only exception in 
the nature. Other stable nucleus formations typically have very low cross sections, like 12C 
(0.0035 b), 16O (0.00019 b), or the ones with closed neutron shells (e.g., 37Cl, 40Ca with 
N = 20, 90Zr with N = 50, all less than 1 b). On the other hand, there are several nuclides, 
which “like” to absorb neutrons, i.e., they have high cross sections, such as 113Cd (20,600 b), 
157Gd (257,000 b). These are typically heavy metals far from the magic numbers (meaning the 
nuclear shells), which have very dense level schemes, and an energy level slightly above the 
capture state is excited with a high probability (so-called low-energy resonances). Elemental 
cadmium and gadolinium (together with the above-mentioned boron) are also good neutron 
shielding materials. 
 
The capture cross section highly depends on the neutron’s kinetic energy. The most 

important rule that describes this correlation is the so-called 1/v law, which means that the 
cross section is inversely proportional to the velocity (v), or the square root of the kinetic 
energy. This law is strictly valid for every nuclide at the cold neutron energies, and for most 
nuclides at thermal neutron energies. The light nuclides follow this rule up until the fast 
neutron energies. The simple explanation for this phenomenon is that the more time the 
neutron spends in the vicinity of the nucleus, the higher is the probability of its being 
absorbed. 



6  Zsolt Révay 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Capture cross sections of H, Cl and Cd as a function of energy. 
 
As can be seen in the above figure, hydrogen (dominant isotope: 1H) follows the 1/v law 

until about 1 MeV. Chlorine (35Cl) has its first resonance above 100 eV, while in the case of 
cadmium (113Cd) the first resonance is already at 0.17 eV, which is followed by broad region 
of unresolved resonances. This low-lying resonance overlaps with the thermal neutron 
energies. It can also be seen that in the cold-energy range, all cross-section curves are parallel 
on log-log scale, i.e., their ratios are independent from the neutron energies.  
 
The capture state is not a state in the quantum mechanical sense, as it lives just for a very 

short time, decays in about 10–14 s, and de-excites in less than 10–10 s. This short live-time is 
still long enough that all the nucleons share equally the excitation energy (unlike in fast-
neutron reactions, where the projectile runs through the nucleus kicking out one or more 
nucleons), but still far below the resolution times of the counting devices, and even more 
below the delayed g radiation following b decay. The g radiation emitted during the de-
excitation is thus called prompt gamma radiation. The total energy released during the de-
excitation always equals the binding energy.  
 
There are a few nuclides, where no energy levels exist between the capture state and the 

ground state. These nuclides always emit their full excitation energy in the form one high-
energy prompt gamma photon, like 1H (2223 keV), 2H (6250 keV). In all other cases, there is 
at least one energy level below the capture state; so, the de-excitation goes through an energy 
cascade.  
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Figure 5. De-excitation from the capture state for a few light nuclides (Sn stands for the 

neutron binding energy). 
 
The energies of the gamma photons correspond to the differences between the level 

energies; thus, they are characteristic to the emitter nuclide. (The gamma energy is slightly 
smaller than the energy of the transition due to the recoil of the nucleus, but the deviation is 
typically less than 1 keV.) The branching ratios, i.e., the probabilities of the transitions from 
a certain level depend on the nuclear properties of the states (spins, parities etc.).  
 
The gamma rays appear in the spectra as peaks at certain energies. Heavier elements can 

have hundreds or thousands of levels below the capture state, at certain energy ranges 
sometimes they can be regarded as a continuum. The gamma spectra of these elements have 
characteristic peaks (close to the binding energy showing the primary transitions, and at low 
energies, showing the transitions to the ground state), but broad regions of irresolvable peaks 
also appear in them (see below).  
 
The emission probability of a given g photon is mainly determined by the branching ratio 

of the transition. At low energies, however, electrons might be emitted instead of gamma rays 
(electron conversion, EC). 

H, D 6Li, 7Li, 12C 16O 

Sn Sn Sn 
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Figure 6. Spectra with strong characteristic peaks, with lower-intensity background peaks 

(above) and with many irresolvable peaks and broad continuum (below).  
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3 Chemical analysis based on radiative neutron capture 
 
All the chemical elements emit a series of characteristic prompt gamma rays, based on 

which they can be identified in the gamma spectra. Because of the large number of peaks, 
interferences may disturb the identification. That is why, several of the strongest peaks need 
to be found to identify one element with a high certainty. Not just the energies, but also the 
relative intensities are characteristic. If we find a handful of peaks, whose energies agree 
with those of the element, and they also show the same intensity pattern, then we can regard 
the element as detected. 
 
Once an element has been identified, the amount of it in the irradiated sample can be 

determined as follows: 
 

  (1) 

 
where A is the peak area, e is the counting efficiency, t is the measurement time (live time, s). 
The ratio A/e t shows the number of gamma photons emitted by the element in the irradiated 
sample in a second; it is sometimes called g activity.  
1) It equals the activity (a, number of decays per second) times the emission probability (Pg).  
2) When the activity is generated in a nuclear reaction, n is the number of atoms from the 
given element, which equals the mass m (g) over the molar mass M (g/mol) times the 
Avogadro constant NA (mol–1). F (cm–2 s–1) is the flux of the neutron beam. At the end of the 
expression, the nuclear constants appear: q is the isotopic abundance, s0 is the neutron capture 
cross section, while Pg is the emission probability of the given gamma ray (mostly agrees with 
the branching ratio, discussed above).  
3) The product of this three cannot be determined independently in this method, hence we use 
one unified quantity sg, which is called the partial gamma-ray production cross section. 
The ‘0’ index shows that the flux and the cross sections are regarded at thermal energies. The 
unit of the cross sections is cm2 in this equation.  
 
The activation equation in (1) is the basic equation for the absolute method of prompt 

gamma activation analysis (PGAA). Any quantity can be determined, if all the others are 
known. First, we have to calibrate our detection system with calibration sources of known 
activities and emission probabilities. Once we know the efficiency, with a flux monitor, 
whose mass and partial cross section are known, we can determine the flux. Then, if we know 
the partial cross section of an element for a given gamma peak, we can determine its mass. 
Alternatively, if we know the mass, then we can determine partial cross section for later 
analyses. 
 
As the cross section is energy dependent, it seems important to differentiate between 

irradiations in cold and thermal beams. As mentioned above, the cross-section ratios are 
constant over the energy range of slow neutrons. This phenomenon can be used to simplify 
the flux determination. If we use the thermal cross section of a flux monitor to determine the 
flux, we use a number about 4-times too low, and thus we get an increased flux value. That is 
called the thermal-equivalent flux. If we use thermal-equivalent fluxes and thermal cross 
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sections, our calculations will always be consistent independent of the actual energy 
distribution of the neutron beam. (There is one exception, when a neutron beam’s energy 
overlaps with the low-energy resonances. In this rare case, a special correction factor is taken 
into consideration to account for the discrepancy. In the frame of this lab practice, we do not 
deal with such cases.) 
 
Sometimes we cannot be sure of the beam flux reaching the sample. The beam might be 

inhomogeneous, and we might not know the actual mass, either, because the sample itself can 
be larger than the beam. In such cases, we can still use the relative method of PGAA, i.e., we 
can use a simplified version of equation (1) as follows: 
 

  (2) 

 
where on the right-hand side, we can see the efficiency-corrected peak-area ratio which equals 
the molar ratio times the partial cross-section ratio. The measurement time and the flux 
cancel. The molar ratio can easily be converted into mass ratio, too: m1/m2 = n1/n2×M1/M2. 
The relative method can be regarded as using an internal flux monitor chosen from the 
components of the sample, while the flux is not explicitly expressed. 
From the mass ratios or the molar ratios, the composition can be calculated either in 

weight percent or in molar percent. With the relative method, we do not get the actual mass of 
the element in the irradiated sample. It makes other simplifications possible, too. As we do 
not need the absolute efficiency, just the efficiency ratio, we do not need to use absolute 
activities during the calibration, which are sometimes known just with a relatively high 
uncertainty.  
If we calculate the concentration from equation 1, and disregard the uncertainties from 

flux, time, and efficiency, then we also follow the relative method in the end. 
The relative method makes it very simple to determine partial cross sections, too: one just 

needs to irradiate a simple compound, whose stoichiometric coefficients are very well 
known. Then, from the efficiency-corrected peak-area ratio, one can simply determine the 
unknown cross section relative to the other.  
 
We can also use the delayed g radiation for analysis as well, as the delayed gammas are 

also characteristic. The energy released after the activation is typically less than 3 MeV, 
which results in much simpler spectra. When the counting takes place after the irradiation, 
one has to correct for the decay using these three factors: 
 
  (3) 
  
  (4) 

  

  (5) 

 
where l =ln 2 / T1/2 (the half-life in seconds), tact, tcool, and tcount mean the activation, cooling, 
and counting times, respectively. The saturation activity can be calculated from the dividing 
the activity on the left-hand side in equations 1 by the product of these three factors.  
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Figure 7. The change of activity in time during and after the activation. The thin horizontal 
line represents the saturation activity. 
 
This method is called the neutron activation analysis (NAA). The irradiations take place in a 
near-core irradiation channel, while the counting is performed in low-background 
laboratories, where the samples are transferred with pneumatic (rabbit) systems. The high-
flux cold beam at FRM II can be used for activation very efficiently, too. 
 
If the counting is performed simultaneously with the irradiation, then we use the in-beam 
correction factor alone: 
 

  (6) 

 
 
 

4 Gamma spectroscopy 
 
Gamma radiation is acquired by a gamma spectrometer. The soul of this system is the 

high-purity germanium (HPGe) semiconductor detector.  
 

   
Figure 8. HPGe detectors 
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It can be regarded as a large (100–200 cm3) diode, which is biased in the terminating 
direction, i.e., no electric current is flowing in it. Once ionizing radiation produces electron-
hole pairs in its volume, a weak current can be observed. To minimize the disturbing effects 
from the thermal noise, the detector is kept at the temperature of liquid nitrogen. The detector 
signal is amplified and its height, that is proportional to the absorbed energy, is determined by 
a digital spectrometer. After the evaluation of one signal, the spectrometer adds one count to 
a channel proportional to this signal height (in the end to the gamma-ray energy) in the so-
called multi-channel analyzer (MCA). The spectra we use contain 16384 channels, we 
collect photons between about 30 keV and 11 MeV, thus one channel is about 0.7 keV broad. 
The total number of counts is typically many millions. The spectrometer handles count rates 
up to a few ten thousand counts per second (cps), but is typically operated at a few thousand 
cps. 
 
The detector does not directly detect the g photons. In the interaction of the photon with 

matter (see below), energetic charged particles (electrons, and sometimes also positrons) are 
produced. They generate a large number of electron-hole pairs in the semiconductor crystal. 
Counting is a statistical procedure, which results in a more-or-less Gaussian peak, whose Full 
Width at the Half of Maximum (FWHM) is 0.1–0.3% of the energy (at 1332 keV, large 
detectors, like the one at FRM II, have an FWHM of 1.9 keV, but using the low gain typical 
for PGAA it is somewhat worse: 2.3 keV).  
 
The spectrum of a mono-energetic g ray does not contain only one single line in the 

spectrum. The detector response function depends on the interactions of the photons with the 
germanium crystal, which are the following: 
 
1. Photo-electric effect. In this interaction, the total energy of the g photon is 

transmitted to an atomic electron, whose energy will be fully absorbed, and a signal 
proportional to this absorbed energy will be seen at the output. Photo-electric effect 
is typical for low-energy (max. few hundred keV) photons. If a photon is 
immediately absorbed in the crystal in one photo-electric interaction, we will see a 
count appearing at the energy of the photon (E). 

2. Compton scattering. In Compton scattering, only a fraction of the photon energy 
will be transmitted to an atomic electron, and a lower-energy scattered photon will 
also be released. This photon may leave the crystal, or can interact with it again. 
Compton scattering is the typical interaction of medium-energy photons (max. a 
few MeV). If the photon undergoes only Compton scattering, then the respective 
count will appear somewhere below the photon energy. That is why we see a broad 
Compton plateau in each spectrum. Compton scattering is not isotropic. Its highest 
probability is for forward scattering, when there is no energy loss, and the backward 
scattering, when the energy loss is the greatest, and the back scattered photon has 
the energy of about 250 keV (a bit less than the half of the electron’s rest mass). 
When this photon leaves the detector, a count will appear ~250 keV below E. 

3. Pair production. This is typical for high-energy photons, i.e., with the energy of 
several MeV. In this case, an electron-positron pair is produced in the vicinity of an 
atom. Both charged particles lose their kinetic energies fully. After slowing down, 
the positron annihilates on an atomic electron producing (in most cases) two g 
photons with the energy of exactly 511 keV (which is the rest mass of the electron), 
flying in the opposite directions. Any of the two photons may or may not interact 
and thus be detected in the detector. If one of them does not, but the other is fully 
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absorbed, then a peak will appear at the energy of E – 511, if none of them do, then 
a second peak appears also at E – 1022. They are called single and double escape 
peaks, respectively. 

 

Figure 9. Schematic drawing of the detector response function. 
 
The effects of all three interactions can be observed in the detector response function 

(see the figure above). The full-energy peak at E means the events, during which the whole 
photon energy is absorbed in the detector in one or several steps. The two escape peaks can be 
seen at the energies of E–511 and at E–1022. The so-called annihilation peak can be seen at 
511 keV, which originate from escape photons from the structural materials. The energy of 
the Compton electrons is between 0 and E – 250, that is why the Compton plateau starts at 
very low energies and ends half way between the single escape peak and the full-energy peak 
in the form of the so-called Compton edge. Between this and the full-energy peak, events 
from multiple Compton scatterings appear. The photons back-scattered from the structural 
materials, produce a broad peak around 250 keV. Below 100 keV, one can see X-ray peaks 
induced by the gamma radiation in the structural materials and in the detector. 
 
The Compton plateau can be significantly reduced by a solution called Compton 

suppression. A scintillator detector (in our case bismuth germanate, BGO, see figure below) 
surrounds the HPGe detector in order to catch the scattered photons.  
 
 

   
Figure 10. Bismuth germanate (BGO) scintillator surrounding the HPGe detector used for 

Compton suppression, design and photo. 
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Scintillators are another typical detector type in nuclear measurements. They emit a light 
flash in visible-ultraviolet range while being ionized. The light is collected by mirrors to a 
converter (so-called photo cathode) emitting electrons, and so-called photo-multiplier tubes 
amplify this weak current for further handling by electronics. The most well-known 
scintillators are zinc sulfide (ZnS), sodium iodide (NaI), and bismuth germanate (BGO). 
 
The detector system is surrounded by a thick lead shielding, which also serves the purpose 

that the BGO does not see any other radiation, just the one scattered out from the HPGe.  
 

Whenever the two detectors fire at the same time, a Compton event has just happened, 
meaning energy loss due to scattering. If those events are rejected, the spectrum will be much 
cleaner. Compton suppression can efficiently reduce the Compton plateau, thus smaller 
characteristic peaks can be detected all over the spectrum, as can be seen in the next figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Normal and Compton-suppressed prompt gamma spectra of Cl (PVC). 
 

The spectrum can be regarded as a vector, whose elements are integers. In our context, 
these numbers are counts in channels. To assign physical meaning to this set of counts, one 
has to calibrate the spectrum. The calibration remains valid until the system is changed, but it 
needs to be checked from time to time. (The PGAA instrument is calibrated at the beginning 
of each cycle.)  
 
The spectrum peaks can then be fit using several programs, which determine the net peak 

areas, see below. 
 



PGAA  15 

 
 

Figure 12. Peak fitting with Hypermet-PC. 
 

 
 
To assign the channels to photon energy is called the energy calibration, when 

calibration sources are measured, whose photon energies are accurately known. Then we need 
to determine the detector efficiency, which shows the fraction of g photons collected at a 
given energy compared to actual number of photons emitted by the sample. The detector at 
the PGAA facility is located at the distance of 330 mm from the sample, which means that we 
detect only a very small fraction (less than 0.1%) of the photons. At about 100 keV, the 
photons are detected for sure, once they reach the detector, but high-energy photons are 
detected with a much smaller probability. The detector efficiency involves both the geometric 
and the intrinsic efficiency. The efficiency curve for the PGAA detector at FRM II can be 
seen in the next figure. 
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 Figure 13. Efficiency of the HPGe detector. (Inset is linear.) 
 
 
The chemical analysis is normally performed using a dedicated program. During the 

analysis, one has to identify all the chemical elements whose strongest lines appear in the 
spectrum (qualitative analysis). Then the masses have to be calculated according to equation 
1 (quantitative analysis). In case of several strong lines, an average mass can be determined. 
The equivalent masses of the background components (lead from the shielding, fluorine from 
the Teflon sample holder, aluminum from sample chamber, etc.) have to be subtracted from 
the masses. These masses can be obtained from the chemical analysis of background spectra. 
From the net masses, one can then determine the composition of the sample using the relative 
method of chemical analysis. 
 
 

5 PGAA instrument at FRM II 
 
Neutron guides and collimators. The neutron beam arrives from the cold source through 

an approx. 55-m long, curved neutron guide, whose last 7 m is elliptically tapered. (The 
curvature filters out fast neutrons and gamma radiation arriving from the core.) The last 110-
cm long section can be replaced with a collimator. In the first case one gets a strong focused 
beam (thermal-equivalent flux up to 6×1010 cm–2 s–1), while in the second case, a weaker 
homogeneous beam is the result (flux up to 3×109 cm–2 s–1). The beam size is maximum 
20×20 mm2.  
The sample chamber is made of aluminum and is lined with 6Li-containing plastic (to 

absorb the scattered neutrons). It can be evacuated. It is equipped with a sample changer: a 
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carousel with 16 positions, from where aluminum sample frames can be moved into the beam. 
The samples are attached to the frames with Teflon string, and are typically sealed in Teflon 
(CF2) bags. 
The anti-Compton detector system (HPGe surrounded by BGO) is placed perpendicularly 

to the beam. The sample-to-detector distance is 330 mm. The radiation emitted by the sample 
reaches the HPGe detector through a lead collimator with a diameter of 20 mm. 
Behind the sample chamber, a beam stop is located. It is made of boron carbide. It 

absorbs the thermal neutrons while emitting 478-keV g photons, which are shielded against 
with lead. (1 cm of lead attenuates the 478-keV gamma rays from neutron capture on boron 
with about an order of magnitude.) 
The whole instrument is covered with about 3 t of lead to shield against the strong 

radiation from the neutron guide, the beam stop, and the sample. The layout can be seen 
below. 
 
 

 
 
Figure 14. The layout of the PGAA facility. (Lead shielding and neutron guide removed 

around the neutron beam.)  
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6 Preparations 
 
Read the description carefully. 
Calculate the present activity of a radioactive source, whose activity was 393 kBq ±1.5% 

at 2008-03-01 (1st of March, 2008) and its half-life: 13.516 y. Use excel, so that it can be 
transferred to any other dates. 
Check the rules of error propagation. 

 

7 Experiment 
7.1 Efficiency 

Determine the efficiency of the detector at selected energies using a 152Eu source.  
Activity of the source: 393 kBq ±1.5% at 2008-03-01 (1st of March, 2008), its half-life: 

13.516 y. 
Plot the data points in log-log scale, then fit a straight line to it, and use this function in 

the later tasks. 
 
Table 1. Energies and emission probabilities together with their uncertainties for 152Eu 

(also available in an excel file). 
 

Energy (keV) Emission 
probability (%) 

121.7817 (3)  28.41 (13) 
244.6974 (8)  7.55 (4) 
344.2785 (12) 26.58 (12) 
411.1165 (12) 2.237 (10) 
778.9045 (24) 12.96 (6) 
867.380 (3)  4.241 (23) 
964.079 (18) 14.49 (6) 
1085.837 (10) 10.13 (6) 
1089.737 (5)  1.73 (1) 
1112.076 (3)  13.40 (6) 
1212.948 (11)  1.415 (9) 
1299.142 (8)  1.632 (9) 
1408.013 (3)  20.84 (9) 
1457.643 (11)  0.498 (4) 

 

7.2 Flux 

Determine the thermal-equivalent neutron flux at the sample position with a titanium flux-
monitor foil using the efficiencies from task 1. (Take care of the units!) 
 
mass:  0.00275g 
molar mass:  47.87 g/mol 
cross section at 342 keV:  1.84 barn ± 1.1% 
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cross section at 1381 keV:  5.18 barn ± 2.3% 
(for comparison: efficiency at 342 keV in Feb 2019:  0.000161± 1.6%) 
(for comparison: efficiency at 1381 keV in Feb 2019:  8.13 ×10–5 ± 1.8%) 
 

 

7.3 Cross section 

Determine the partial gamma-ray production cross section for 770-keV line of potassium 
from the PGAA spectrum of potassium chloride (KCl) using the relative method. Prepare and 
measure the sample, evaluate the lines at 770 keV and at 517 keV. Calculate the partial cross 
section and estimate the uncertainty of the result. 
 
cross section:  Cl 517 keV sg: 7.58 ± 0.6% 
(for comparison: efficiency ratio in Feb 2019: e (770) /e (517) = 1.211 ± 0.7%) 
 

7.4 Analysis 

Prepare a sample of cement, measure it with PGAA. Collect prompt (and decay) spectra. 
In the spectrum viewer, identify the major components of the sample (using the databases 
available at the instrument), i.e., make the qualitative analysis. Determine the composition 
based on the strongest lines of the identified elements, i.e., perform the quantitative analysis 
on the sample. Use Table 2 (and its excel-equivalent) for checking the characteristic peaks. 
 

8 Exercises 
 
Fit a function to the efficiency data points (e.g. linear on log-log scale) determined in Task 1. 
Use this function whenever the efficiency is needed. 
Determine the flux from the prompt gamma spectrum of Ti foil (Task 2) using the areas of the 
Ti peaks at 341 and 1381 keVs. 
Calculate the partial gamma-ray production cross section of K at the energy of 770 keV using 
the efficiency function and the spectrum from Task 3. 
Based on the identified peaks of the detected elements from the spectrum of Task 4, please 
determine the composition of the sample. 
 
 



20  Zsolt Révay 

 
Table 2. Molar masses of elements for Z<30, efficiencies at different energies (from Aug 

2014, efficiency ratios are approximately valid at any time), partial gamma-ray production 
cross sections for the prompt (and certain decay) gamma lines. (Also available in Excel.) 

 
 

Z El MW E(keV) dE e(b) de% s ds% RI T1/2 (s) 
1 H 1.008 2223.259 0.019 5.76E-05 1.2 3.33E-01 0.2 100.0  
3 Li 6.941 2032.31 0.07 6.1E-05 1.1 3.98E-02 5 100.0  
3 Li 6.941 980.559 0.046 8.65E-05 0.4 4.36E-03 5.1 11.0  
3 Li 6.941 1051.817 0.048 8.43E-05 0.4 4.36E-03 5.1 11.0  
4 Be 9.012 853.631 0.011 9.1E-05 0.5 1.65E-03 8.9 26.7  
4 Be 9.012 3367.484 0.035 4.22E-05 1.5 2.92E-03 8.9 47.3  
4 Be 9.012 2590.014 0.025 5.17E-05 1.3 1.88E-03 8.9 30.4  
4 Be 9.012 6809.579 0.099 2.17E-05 1.4 6.18E-03 9 100.0  
5 B 10.811 477.6 5 0.000112 0.6 7.13E+02 0.3 100.0  
6 C 12.011 1261.708 0.057 7.82E-05 0.5 1.23E-03 2.7 45.6  
6 C 12.011 4945.302 0.066 3.01E-05 1.4 2.70E-03 2.9 100.0  
6 C 12.011 3684.016 0.069 3.91E-05 1.5 1.17E-03 3.5 43.5  
7 N 14.007 1884.853 0.031 6.38E-05 1.0 1.45E-02 1.3 61.1  
7 N 14.007 5268.984 0.072 2.83E-05 1.4 2.37E-02 1.5 100.0  
7 N 14.007 5297.662 0.153 2.81E-05 1.4 1.67E-02 1.6 70.5  
7 N 14.007 5533.251 0.076 2.7E-05 1.3 1.57E-02 1.6 66.0  
7 N 14.007 6322.301 0.088 2.35E-05 1.3 1.49E-02 1.7 62.8  
7 N 14.007 10829.102 0.208 1.04E-05 4.8 1.07E-02 3.5 44.9  
8 O 15.999 870.682 0.034 9.04E-05 0.5 1.75E-04 6.2 99.8  
8 O 15.999 1087.714 0.031 8.32E-05 0.4 1.51E-04 6.3 85.9  
8 O 15.999 2184.381 0.039 5.82E-05 1.2 1.50E-04 6.2 100.0  
8 O 15.999 3272.109 0.069 4.32E-05 1.4 3.53E-05 7.1 20.1  
9 F 18.998 1633.602 0.015 6.91E-05 0.8 9.60E-03 4.3 100.0 11.2 
9 F 18.998 583.493 0.022 0.000104 0.6 3.52E-03 4.3 36.7  
9 F 18.998 655.942 0.022 9.98E-05 0.6 1.96E-03 4.3 20.5  
9 F 18.998 6600.386 0.11 2.25E-05 1.3 9.85E-04 5.2 10.3  
11 Na 22.99 1368.633 0.006 7.55E-05 0.6 5.30E-01 1.6 18.5 53852 
11 Na 22.99 90.979 0.016 0.000176 1.7 2.65E-01 1.3 45.1  
11 Na 22.99 869.221 0.017 9.04E-05 0.5 1.13E-01 1.2 20.8  
11 Na 22.99 6395.048 0.126 2.33E-05 1.3 1.01E-01 2 19.3  
12 Mg 24.305 584.936 0.024 0.000104 0.6 3.16E-02 4.7 100.0  
12 Mg 24.305 1808.616 0.059 6.54E-05 1.0 1.81E-02 4.7 57.3  
12 Mg 24.305 2828.117 0.105 4.85E-05 1.4 2.39E-02 4.7 75.6  
12 Mg 24.305 3916.653 0.157 3.71E-05 1.5 3.14E-02 4.7 99.5  
12 Mg 24.305 3053.85 0.117 4.56E-05 1.4 8.27E-03 4.8 26.2  
13 Al 26.982 1778.85 0.03 6.6E-05 1.0 2.33E-01 1.3 99.4 134.5 
13 Al 26.982 7723.782 0.255 1.86E-05 1.5 6.67E-02 2 28.7  
14 Si 28.086 3538.976 0.05 4.05E-05 1.5 1.18E-01 1.7 100.0  
14 Si 28.086 4933.826 0.074 3.01E-05 1.4 1.12E-01 2 95.3  
14 Si 28.086 1273.383 0.029 7.79E-05 0.6 2.89E-02 1.9 24.5  
14 Si 28.086 2092.914 0.032 5.99E-05 1.1 3.30E-02 1.9 28.0  
14 Si 28.086 6379.747 0.107 2.33E-05 1.3 2.10E-02 2.8 17.8  
14 Si 28.086 7199.016 0.127 2.04E-05 1.4 1.27E-02 3.1 10.8  
15 P 30.974 77.992 0.023 0.000171 1.6 5.89E-02 4.8 74.4  
15 P 30.974 512.65 0.018 0.000109 0.6 7.92E-02 5 100.0  
15 P 30.974 636.57 0.017 0.000101 0.6 3.10E-02 4.6 39.1  
15 P 30.974 1071.154 0.02 8.37E-05 0.4 2.48E-02 4.7 31.3  
15 P 30.974 3899.648 0.076 3.72E-05 1.5 3.01E-02 4.7 38.0  
16 S 32.066 841.013 0.014 9.15E-05 0.5 3.48E-01 1.7 100.0  
16 S 32.066 2379.495 0.035 5.5E-05 1.3 2.08E-01 1.5 59.9  
16 S 32.066 5420.241 0.1 2.75E-05 1.4 3.09E-01 2.3 88.9  
16 S 32.066 3220.364 0.057 4.37E-05 1.4 1.24E-01 1.6 35.8  
17 Cl 35.453 517.077 0.008 0.000109 0.6 7.43E+00 0.9 83.2  
17 Cl 35.453 1164.831 0.012 8.09E-05 0.5 8.92E+00 0.7 100.0  
17 Cl 35.453 788.37 0.212 9.36E-05 0.5 4.90E+00 2 55.0  
17 Cl 35.453 786.182 0.15 9.37E-05 0.5 3.61E+00 2 40.5  
17 Cl 35.453 1951.15 0.015 6.25E-05 1.1 6.49E+00 0.8 72.7  
17 Cl 35.453 1959.359 0.016 6.24E-05 1.1 4.18E+00 0.9 46.9  
17 Cl 35.453 6110.711 0.072 2.44E-05 1.3 7.37E+00 1.4 82.6  
17 Cl 35.453 6619.576 0.081 2.24E-05 1.3 2.75E+00 1.6 30.8  
17 Cl 35.453 7790.277 0.106 1.84E-05 1.5 2.89E+00 2.1 32.4  
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Z El MW E(keV) dE e(b) de% s ds% RI T1/2 (s) 
17 Cl 35.453 6627.865 0.084 2.24E-05 1.3 1.56E+00 1.9 17.5  
17 Cl 35.453 8578.583 0.153 1.61E-05 1.8 9.28E-01 2.8 10.4  
19 K 39.098 770.325 0.023 9.44E-05 0.5 9.03E-01 1.3 100.0  
19 K 39.098 1158.88 0.024 8.11E-05 0.5 1.60E-01 1.6 17.7  
19 K 39.098 1618.976 0.029 6.95E-05 0.8 1.30E-01 1.6 14.4  
20 Ca 40.078 1942.677 0.027 6.27E-05 1.1 3.52E-01 2.1 100.0  
20 Ca 40.078 519.563 0.075 0.000108 0.6 5.03E-02 2.6 14.3  
20 Ca 40.078 2001.314 0.029 6.16E-05 1.1 6.59E-02 2.3 18.7  
20 Ca 40.078 6419.694 0.213 2.32E-05 1.3 1.76E-01 2.6 50.0  
20 Ca 40.078 4418.497 0.12 3.33E-05 1.4 7.08E-02 2.6 20.1  
21 Sc 44.956 147.114 0.016 0.00017 1.6 6.08E+00 1.4 85.2  
21 Sc 44.956 227.86 0.016 0.000149 1.0 7.13E+00 1.5 100.0  
21 Sc 44.956 142.627 0.016 0.000171 1.6 4.88E+00 1.5 68.5  
21 Sc 44.956 295.343 0.019 0.000135 0.7 3.97E+00 2.8 55.6  
22 Ti 47.88 1381.738 0.027 7.51E-05 0.6 5.18E+00 2.3 100.0  
22 Ti 47.88 341.689 0.029 0.000127 0.6 1.84E+00 1.1 35.6  
22 Ti 47.88 1585.952 0.027 7.02E-05 0.8 6.24E-01 1.2 12.1  
22 Ti 47.88 6760.011 0.089 2.19E-05 1.4 2.97E+00 2.9 57.3  
22 Ti 47.88 6418.353 0.08 2.32E-05 1.3 1.96E+00 2.9 37.8  
23 V 50.942 1434.06 0.01 7.38E-05 0.7 4.95E+00 2.1 99.0 224.58 
23 V 50.942 125.234 0.027 0.000175 1.7 1.61E+00 2.6 32.5  
23 V 50.942 645.789 0.022 0.0001 0.6 7.69E-01 2.2 15.6  
23 V 50.942 6517.617 0.148 2.28E-05 1.3 7.83E-01 5.5 15.8  
23 V 50.942 7163.168 0.181 2.05E-05 1.4 5.90E-01 7.3 11.9  
24 Cr 51.996 834.803 0.033 9.17E-05 0.5 1.38E+00 1.9 100.0  
24 Cr 51.996 749.102 0.032 9.53E-05 0.5 5.69E-01 1.5 41.3  
24 Cr 51.996 7937.858 0.117 1.8E-05 1.6 4.24E-01 2.5 30.8  
24 Cr 51.996 8510.681 0.137 1.63E-05 1.8 2.31E-01 3.5 16.7  
24 Cr 51.996 8482.84 0.14 1.64E-05 1.8 1.68E-01 4.2 12.2  
25 Mn 54.938 846.754 0.02 9.13E-05 0.5 1.28E+01 1.2 62.9 9280 
25 Mn 54.938 83.884 0.023 0.000174 1.6 3.11E+00 1.6 24.2  
25 Mn 54.938 1810.72 0.04 6.53E-05 1.0 3.63E+00 2.7 17.8 9280 
25 Mn 54.938 7243.518 0.092 2.02E-05 1.4 1.36E+00 2.4 10.6  
26 Fe 55.847 352.332 0.016 0.000126 0.6 2.73E-01 1.2 41.8  
26 Fe 55.847 122.078 0.022 0.000175 1.8 9.56E-02 3.1 14.7  
26 Fe 55.847 691.914 0.016 9.79E-05 0.6 1.37E-01 1.3 20.9  
26 Fe 55.847 7631.051 0.093 1.89E-05 1.5 6.53E-01 1.9 100.0  
26 Fe 55.847 7645.485 0.093 1.89E-05 1.5 5.49E-01 2 84.0  
26 Fe 55.847 9297.903 0.207 1.42E-05 2.3 7.47E-02 3.3 11.4  
27 Co 58.933 229.811 0.012 0.000148 1.0 7.18E+00 1.2 100.0  
27 Co 58.933 277.199 0.011 0.000138 0.8 6.77E+00 1.2 94.2  
27 Co 58.933 555.941 0.01 0.000106 0.6 5.76E+00 1.1 80.3  
27 Co 58.933 447.717 0.011 0.000115 0.6 3.41E+00 1.1 47.6  
27 Co 58.933 7491.29 0.121 1.94E-05 1.5 1.16E+00 2.5 16.1  
28 Ni 58.69 464.972 0.018 0.000113 0.6 8.43E-01 1.2 56.6  
28 Ni 58.69 8998.31 0.093 1.5E-05 2.1 1.49E+00 1.9 100.0  
28 Ni 58.69 8533.453 0.083 1.62E-05 1.8 7.21E-01 1.9 48.4  
28 Ni 58.69 6837.437 0.064 2.16E-05 1.4 4.58E-01 1.7 30.8  
28 Ni 58.69 7819.547 0.075 1.84E-05 1.5 3.37E-01 1.9 22.7  
29 Cu 63.546 277.993 0.025 0.000138 0.8 8.93E-01 1.3 100.0  
29 Cu 63.546 159.018 0.026 0.000167 1.5 6.49E-01 1.2 72.7  
29 Cu 63.546 185.658 0.026 0.00016 1.3 2.44E-01 1.3 27.3  
29 Cu 63.546 202.689 0.026 0.000155 1.2 1.94E-01 1.3 21.7  
29 Cu 63.546 343.651 0.025 0.000127 0.6 2.15E-01 1.5 24.1  
29 Cu 63.546 7915 0.088 1.81E-05 1.5 8.69E-01 1.9 97.3  
30 Zn 65.39 115.256 0.023 0.000176 1.8 1.67E-01 1.6 47.0  
30 Zn 65.39 1077.336 0.017 8.35E-05 0.4 3.56E-01 1.4 100.0  
30 Zn 65.39 7863.545 0.107 1.82E-05 1.5 1.41E-01 3.5 39.7  
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