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We assess whether the COVID-19 vaccine induces COVID-19 risky behavior (e.g., going 

to bars and restaurants) and thus reduces vaccine efficacy. A key empirical challenge 

is the endogeneity bias when comparing risk-taking by vaccination status since people 

choose whether to get vaccinated. To address this bias, we exploit rich survey panel data 

on individuals followed before and after vaccine availability over 14 months in an event 

study fixed effects model with individual, time, sector, and county-by-time fixed effects 

and inverse propensity weights. We find evidence that vaccinated persons, regardless of 

the timing of vaccination, increase their risk-taking by increasing engagement in some 

risk-taking activities. The evidence is consistent with the “lulling effect”. While vaccine 

availability may reduce the risk of contracting COVID-19, it also contributes to further 

spread of the virus by incentivizing risk-taking in the short term.
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1. Introduction  
 
The COVID-19 vaccine is estimated to have averted over a million deaths and about 10 million 
hospitalizations in the US, one year following its initial distribution (Schneider et al., 2021).1 
Despite these gains, precautionary measures (e.g., social distancing) are still warranted in the short 
term, when vaccine efficacy is uncertain and coverage is low, and new COVID-19 variants emerge 
(Lovelace, 2021). But the safety the vaccine affords might incentivize the vaccinated to lower their 
guard and take more risks, potentially reducing the effectiveness of the vaccine. This behavior 
could be rational risk-taking behavior, or it might be people overestimate the efficacy of vaccines. 
This response can be explained by what Viscusi (1984) termed the “lulling effect”, which describes 
situations where people may respond to the adoption of safety measures (e.g., vaccines) with a 
compensatory increase in risky behavior. Our study aims to investigate the relationship between 
vaccination status, COVID-19 risky behaviors (e.g., going to bars and restaurants), and the 
potential impact on the vaccine's effectiveness.  

A growing literature examines the effect of health interventions on risk-taking behavior in different 
contexts. Findings have been mixed, with some studies reporting increased risky behavior 
following HIV treatment (e.g., Lakdawalla et al., 2006) and Lyme disease vaccine (e.g., Brewer et 
al., 2007), while others indicate a reduction in risky behavior following the HPV vaccine (e.g., 
Moghtaderil & Dor, 2021). The effects can be significant. Lakdawalla et al. (2006) find that the 
introduction of HAART—the recommended HIV treatment regimen—doubles the number of sex 
partners and increases the risk of HIV infection by at least 44%. Moghtaderil & Dor (2021) find 
that receiving the HPV vaccine increases the probability of having a Pap test, which is a diagnostic 
screening test to detect HPV and non-HPV-related cancers, by 22 percentage points. This behavior 
can be due to shifts in risk perceptions. Viscusi & Cavallo (1994) found that the child-resistant 
features of cigarette lighters make precaution-taking less likely mainly because users think lighters 
are safer. The mixed evidence suggests that the relationship between health interventions and risky 
behavior depends on factors such as the nature of the intervention, the context being studied, and 
the behaviors being measured. Thus, the extent vaccines affect risk-taking behavior is an empirical 
question that requires further investigation. 

The mixed evidence at least partly reflects the challenges in identifying the effect of vaccinations 
on risk-taking. A key issue is the endogeneity bias arising from people choosing whether to get 
vaccinated. The problem is unvaccinated individuals cannot serve as a suitable control group when 
vaccination decisions are based on factors such as vulnerability and fear, which are also usually 
related to one’s risk-taking behavior. For example, individuals who are more vulnerable to illness 
or fearful of the virus may be more likely to choose vaccination, and such individuals may also be 
less inclined to engage in risky behavior. Therefore, comparing mean levels of risk-taking behavior 
between vaccinated and unvaccinated individuals may result in biased estimates, as other factors 
beyond vaccination status could explain any observed differences. 
 
We make several attempts to address this endogeneity bias. First, we specify an event study fixed 
effects model that exploits survey panel data on individuals followed at quarterly waves before 
and after vaccine availability over 14 months. This model includes individual and wave fixed 
                                                 
1 Kniesner & Sullivan (2020) estimated 47 million COVID-19 cases in the U.S., with about 1 million hospitalizations, 
resulting in estimated $2.2 trillion in non-fatal economic losses ($46,000 per case) as of July 27, 2020. 
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effects to control for time-invariant differences in individual characteristics and broad secular 
trends that might impact vaccine intent and risky behavior, respectively. We also include county-
by-wave fixed effects to account for the potential influence of county-specific trends, such as 
vaccine access and community-wide beliefs or preferences towards vaccines, which likely change 
over time with new information. Second, we control for difficult-to-measure time-varying 
individual characteristics that may influence both vaccine intent and risk-taking behavior such as 
willingness, vulnerability, fear, and COVID-19 exposure. Third, we use an inverse propensity 
weighting (IPW) technique to account for these and other covariates, allowing for potentially 
nonlinear effects on the likelihood of being vaccinated. IPW facilitates a comparison between 
vaccinated and unvaccinated persons who have similar vaccine propensities by up-weighting the 
unvaccinated who have a high probability of choosing to get vaccinated.2 Finally, we check for 
further endogeneity issues by conducting a placebo test, using the flu vaccine as a placebo 
treatment for COVID-19. If lowered risk of contracting COVID-19 is the means by which the 
COVID-19 vaccine affects risky behavior, then one would be suspicious if the flu vaccine also 
affects it, given the flu vaccine does not protect against COVID-19. Using our main model, we 
show that the flu vaccine has a small and statistically insignificant association with risk-taking. 
This falsification test suggests that endogeneity concerns such as reverse causality or 
unobservables don’t seem to be playing a role in driving our results.  
 
We find that once vaccinated, individuals exhibit varying degrees of increased participation in 
some COVID-19 risky behaviors, regardless of the timing of vaccination. Specifically, we find 
positive and significant overall average effects of vaccination on dining indoors, attending 
religious services in person, and shopping, ranging from 3-11%. Our results also reveal 
heterogeneity based on the timing of vaccination with those vaccinated early displaying increased 
participation in more risky activities than those vaccinated later, and they do so at different times 
(i.e., one period post-vaccination as opposed to at vaccination) for activities common to both 
groups. However, at the time of vaccination, those vaccinated later (typically the general public 
without early vaccine access) exhibited a greater significant increase in the magnitude of the risk-
taking effect (7-17%) than those vaccinated earlier (4-8%) (typically vulnerable or essential 
workers with early vaccine access). The evidence presented is consistent with the “lulling effect”. 
While vaccine availability may reduce the risk of contracting COVID-19, it also contributes to the 
further spread of the virus by incentivizing risk-taking in the short term. 
 
To the best of our knowledge, a study by Agrawal et al. (2022) is the only other study to examine 
the relationship between the COVID-19 vaccine and risk-taking. Using repeated cross-sectional 
data, Agrawal et al., implement an RD using discontinuity in vaccine availability at age 65; and an 
IV approach using variations in state-level age-group eligibility policies to instrument for vaccine 
take-up. They find that vaccination does not affect mask-wearing and avoiding crowds/restaurants, 
but obtain mixed evidence for handwashing. Both the RD and IV models estimate a local average 
treatment effect, as such the provide estimates for the age-65 cohort and for those influenced by 
vaccine eligibility policies, respectively.  
 
Our study contributes to the literature in several respects. First, we are among the first to 
empirically analyze the impact of the COVID-19 vaccine on COVID-19 risk behavior. This 
analysis contributes to the existing literature on how vaccines may have different effects in practice 
                                                 
2 See Callaway & Santana (2021) for recent discussion of IPW approach. 
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than those observed in controlled settings such as clinical trials. In clinical trials, participants are 
less likely to engage in compensatory behavior since they do not know if they received the vaccine 
or a placebo and have no evidence of its effectiveness. Hence, even well-designed clinical trials 
may overstate the vaccine’s efficacy in practice. Second, eleven kinds of COVID-19 risky behavior 
(e.g., visiting restaurants, friends, and family, and going shopping) are used to define risk-taking.  
In addition to analyzing these eleven variables independently, we create composite measures that 
consider the overall level of risk-taking among individuals and attempt to account for the actual, 
as opposed to the presumed, risk of contracting COVID-19. This extends current evidence that is 
limited to the four behaviors examined by Agrawal et al. (2022) and might not fully represent the 
risky behavior of the population. Third, we are the first to use panel data to examine the effect of 
the COVID-19 vaccine on risk-taking. Panel data allows us to control for endogeneity concerns 
arising from pre-vaccine differences between the vaccinated and unvaccinated in several ways. In 
addition to controlling for standard demographic variables (e.g., gender and income), the richness 
of the panel data allows us to control for difficult-to-measure individual characteristics that 
typically drive vaccine intent (e.g., fear of virus). Fourth, our approach produces results that are 
generalizable to the US adult population. Finally, the study provides the first estimates of how the 
timing of the vaccine decision affects the vaccine's impact on risk-taking behavior. 
 
The rest of our paper proceeds as follows. In Section 2, we describe the data and define key 
variables used in our model. Section 3 describes the methodology used to estimate the effect of 
vaccination on risk-taking. We present and discuss the results in Section 4.  Finally, we conclude 
in Section 5. 
 
 
2. Data 
 
We use data from the Socio-Economic Impacts of COVID-19 Survey (SEICS), a nationally 
representative survey of adults 18 and older residing in various counties across different states. 
The survey was launched by the Social Policy Institute at Washington University in St. Louis (SPI) 
and was conducted online using Qualtrics. It consists of five waves administered at quarterly 
intervals between April 2020 and June 2021. Participants were compensated for completing the 
survey.3 The survey recruits new respondents in each wave while also allowing for re-contacts of 
prior-wave respondents. This allows us to track changes in respondents’ behaviors and outcomes 
over a period of 14 months after COVID-19 was declared a pandemic. Questions about 
respondents’ risky behavior (the main outcome of interest) were introduced beginning in wave 2 
to approximately 5,000 respondents per wave.4  
 
We exploit the panel nature of the survey by using only a subsample of individuals who 
participated in at least one survey wave before and after the vaccine was made available for 
distribution. Figure 1 displays a timeline of the survey waves and the corresponding dates of 
                                                 
3 Because the survey was only offered online, everyone in the sample had at least basic internet access. Respondents 
were also provided with monetary incentives to complete the survey which could introduce bias by only attracting 
individuals motivated by a reward. Hence, even though the SEICS original sample closely approximates the general 
population of adults in the United States (U.S.), the analysis includes population weights provided in the survey 
generated from the American Community Survey (ACS) to further ensure that SEICS sample closely approximates 
the general population. 
4 More details about the survey methodology available at socialpolicyinstitute@wustl.edu.  

mailto:socialpolicyinstitute@wustl.edu
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vaccine approval and availability. As shown in Figure 1, mass vaccinations began on December 
14, 2020, towards the end of wave 3 of the survey. Thus, our final sample included 3600 
individuals who took part in either waves 2 or 3 and returned to participate in either waves 4 or 5. 
 
2.1 Representativeness 
 
As with any survey, there may be ways in which the sample systematically differs from the full 
adult population in the U.S. Systematic differences might also persist since we only use a subset 
of the survey respondents who were surveyed in early waves of the survey and returned at a later 
wave. To check that the chosen subsample does not suffer from attrition and is an overall 
representative sample, we compare the characteristics of the weighted SEICS baseline sample with 
those of the population of adults in the U.S., as measured through the Census Bureau’s 2020 ACS 
(5-year-average estimates).5 The results of this comparison are presented in Table A1. 
 
As Table A1 shows, our subsample reasonably approximates the population of adults living in the 
U.S. on key demographic dimensions such as gender, race, household income, and age. The 
racial/ethnic composition of the sample closely matches that of the population, as does the 
distribution of income. On average, the sample of respondents was roughly five years older than 
adult ACS respondents. In terms of education and marital status, 8% of respondents were more 
likely to hold a bachelor's degree or higher level of education, while 8% were more likely to be 
married compared to the population of adults in the U.S. The gender distribution of the SEICS 
sample was also similar to the ACS adult population but with 2% more females. Given that the 
sample only exhibits minor deviations from the ACS and that the key demographic features are 
closely linked to other population characteristics (e.g., debt level, geography, political preference), 
the sample can be considered reasonably representative of the U.S. population on a wide range of 
dimensions. 
 
2.2 COVID-19 risk-taking measures 
 
Our measures of risk-taking come from the responses to SEICS survey questions about the degree 
to which respondents’ social distance before and after being vaccinated. These social distancing 
activities such as dining out, were normally safe but had temporarily become risky due to the 
COVID pandemic. Starting in wave 2, respondents were asked to report the number of times within 
the past 3 months—ranging from ‘0=never’ to ‘4=more than 10 times’—they left their home to 
engage in the following “risky” activities: (i) shopping for food and essentials, (ii) visiting friends 
and family, (iii) going to work in person, (iv) using public transit, (v) dining indoors at restaurants, 
(vi) dining outdoors at restaurants (vii) attending a religious service; (viii) going to a bar, (ix) 
traveling by airplane, (x) attending a political rally speech or campaign event, and (xi) attending 
an organized protest, march or demonstration of any kind. We recategorize responses for each of 
these 11 variables into an indicator variable: 0 if the respondent never left their home to engage in 
the activity; and 1 if the activity is done at least one or two times. We consider each of these 
indicator variables as separate measures of risk-taking, representing whether the respondents 
engaged in the respective risky activity or not. 
 
                                                 
5 The baseline sample refers to respondents that were apart of wave 3 (82% of the sample) as this is the wave right 
before the vaccine became available and the wave before anyone ever got vaccinated. 
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Social distancing is a multi-dimensional construct given it entails several activities, from going to 
a bar to visiting friends. Considering each of these acts as a separate measure of risk-taking 
behavior (as our first measure does) doesn’t account for the inherent variability in individual 
behavior. For example, if we solely consider visits to a bar, we might erroneously conclude that 
someone is not engaging in risky behavior if they avoid bars, despite their participation in other 
risky activities such as increased shopping visits and dining indoors at restaurants. Our analysis 
therefore includes ways of aggregating these activities to get a composite measure of risk-taking 
that combines the 11 risky activities. We consider four different aggregation approaches. 
 
The first is constructed as a count of all eleven activities. We sum across the eleven indicator 
variables for each respondent to create a count (ranging from 0 to 11) increasing in risk-taking, 
which represents the number of these risky activities done by any respondent (mean=3.8, 
SD=2.5).6 While a count of risky activities provides insights into the extent to which individuals 
engage in multiple COVID-19 risky activities, it is important to acknowledge the inherent 
limitations of simply summing the number of individual activities. This method assumes each 
activity is equally important in increasing the spread of COVID, which may not be the case in this 
setting. For instance, the impact of an increase in indoor dining on COVID-19 transmission is 
likely higher than a comparable increase in outdoor dining. Additionally, the nature and frequency 
of events vary, with some (e.g., shopping) being commonplace and less amenable to social 
distancing than others (e.g., protests and campaign events) (see Dave et al, 2021). 

To account for the relative importance of each risky activity, we develop a second risk index using 
weights derived from factor loadings in a principal component analysis (PCA) of the eleven 
activities. Computed by summing the products of each variable's value and its corresponding factor 
loading, this method accounts for the significance of each activity in relation to an assumed latent 
construct, representing COVID-19 risk. While assuming the primary latent factor adequately 
represents the factor of interest—risk-taking—is reasonable in our observed setting given the 
nature of the activities and the survey's explicit design for gauging social distancing during the 
COVID-19 pandemic, we acknowledge its limitations. Thus, we explore alternative approaches to 
assign weights based on the actual, rather than presumed, risk of contracting COVID-19. 

It is challenging to obtain precise calibrations of the actual risks of non-compliance with different 
parts of the social distancing guidelines, whether in terms of life expectancy or even infection 
probability. In this context, we aim to provide suggestive correlations, which we believe are useful. 
For our third aggregate measure, we account for actual COVID-19 risk by estimating a probit 
regression to model the probability of a household member testing positive for COVID-19 based 
on each of the 11 activities as predictors.7 The resulting coefficients, from which we obtain the 
marginal probabilities of a household member getting COVID-19, serve as weights for combining 
the eleven activities into a third aggregate measure by summing the products of each activity’s 
value and its respective weight. To ensure positive predicted values, aligning with the expectation 
that risky activities contribute positively to COVID-19 risk in our context, we apply the 

                                                 
6 A Cronbach alpha check of internal consistency equals 0.80 for the anti-social distancing index shows that the index 
is internally reliable. Factor analysis revealed one underlying factor with an eigenvalue greater than 1. Taken together, 
the ASDI index is considered reliable and internally consistent. 
7 We use the household measure as a proxy of actual COVID-19 risk since a direct measure of individual COVID-19 
status is unavailable. 
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exponential function to constrain the coefficients. For robustness, we construct a fourth index using 
weights from the same regression model estimated but estimated as an Ordinary Least Squares 
(OLS) model. To address potential endogeneity between household COVID-19 positive status and 
engagement in risky activities, we model the estimation of COVID exposure (household testing 
positive or not) before vaccine availability, based on lagged values of the 11 risky activities.8 This 
approach mitigates the possibility of reverse causality, in which contracting COVID affects 
subsequent behavior, because in our main analysis COVID follows rather than precedes the risky 
behavior. 

All other demographic characteristics necessary to categorize respondents based on vaccination 
status are taken directly from the responses provided in the survey. Table 1 provides summary 
statistics of these and all other model variables, which we discuss next.  
 
2.3.1 Covariates/Determinants of vaccination decision 
 
In this section, we summarize the literature on the vaccine hesitancy determinants drawing mainly 
from Aw et al.’s (2021) meta-analysis to better understand possible differences by vaccine status, 
which might act as confounders in our model. We first discuss the three key categories identified—
contextual, group/individual, and vaccine-specific factors—followed by how we account for these 
factors (listed in Table 1).  
 
Contextual factors 
 
Of the contextual factors most examined in the literature, socio-demographics, namely, young age, 
female, non-White, and lower education, were most commonly linked to higher vaccine hesitancy 
(Aw et al., 2021). Aw et al. (2021) and Dhanani & Franz’s (2022) meta-analysis show systematic 
differences in vaccine intent among different socio-demographic groups due in part to 
vulnerability to severe illness or death from COVID-19 based on factors such as occupation, age, 
race/ethnicity, and health status.9 Political affiliation and inclinations also play a significant role 
in vaccine hesitancy (Aw et al., 2021; Dhanani & Franz, 2022) and predict reported policy 
preferences, mask use, and social distancing (e.g., Barrios & Hochberg, 2020; Bruine de Bruin et 
al, 2020). Studies find that Republicans report significantly higher vaccine hesitancy than 
Democrats (Dhanani & Franz, 2022) and that Democrats are more likely than Republicans to take 
the threat of the virus seriously and support efforts to control it (Allcott et al., 2020). 
 
Group/individual factors 
 
The primary group/individual factors influencing vaccine intent encompass beliefs/attitudes about 
health and prevention (e.g., fear of contracting the virus or beliefs about disease severity), past 
experiences with vaccinations, and trust and experience with the health system and providers (Aw 
                                                 
8 More formally, we estimate the following OLS and probit models: 𝐶𝑂𝑉𝐼𝐷𝑃𝑂𝑆௜௧ = 𝛽଴ +  𝑹௜,௧ିଵ

ᇱ 𝛿 + 𝜈௜௧; and 
Pr (𝐶𝑂𝑉𝐼𝐷𝑃𝑂𝑆௜௧ = 1) = Φ൫𝑹௜,௧ିଵ

ᇱ 𝛿൯ + 𝜈௜௧ , respectively. COVIDPOS is an indicator variable where 1=someone in 
the household tests positive for COVID-19.  𝑹௜,௧ିଵ

ᇱ  is a vector of the lag of the 11 COVID risky activities. Φ() is 
a probit function. The details of these regression estimations and output are available upon request. 
9 More than 81% of COVID-19 deaths occur in people over age 65 (See Center for Disease Control and Prevention, 
2023). Those in close contact with these persons also tend to have a greater incentive to vaccinate and take precautions 
(Dabla-Norris et al., 2021). 
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et al., 2021). Akesson et al. (2022) underscores the significance of beliefs, revealing through their 
online experiment, that individuals dramatically overestimate the dangerousness and 
infectiousness of COVID-19 relative to expert opinion. Providing expert information partially 
corrects these beliefs. Within the broader literature, heightened vaccine hesitancy is commonly 
associated with a low perceived risk of contracting COVID-19, absence of chronic medical 
conditions, and the belief that COVID-19 is not severe (Aw et al., 2021). Adding to the complexity, 
one's risk preference is also a significant factor. Studies illustrate a negative correlation between 
risk-taking and COVID-19 vaccine uptake, suggesting that individuals with a higher inclination 
towards precautionary measures are more likely to get vaccinated (Dabla-Norris et al., 2021; 
Latkin et al., 2021). 
 
Vaccine-specific factors 
 
Vaccine-specific considerations significantly shape COVID-19 vaccine intent, with a key focus on 
perceptions regarding the safety and efficacy of the COVID-19 vaccine (Aw et al., 2021). These 
concerns mirror issues observed with established vaccines, such as the flu vaccine, where safety 
and efficacy remain central considerations (Dibonaventura & Chapman, 2008). Additionally, 
structural barriers, including the location for vaccination and the time required for transport, further 
contribute to vaccine-specific factors influencing intent (Aw et al., 2021). 
 
2.3.2 Proxies for vaccine decision influences 
 
We account for contextual determinants/socio-demographic differences in our model by including 
several control variables derived from SEICS data collected on each respondent. These variables 
include respondents' age, gender, income, race, education, marital status, sector employed, and 
child (<6 years) living in the household. We also observe whether an elderly (65+) lives in the 
respondent’s household; whether they or anyone in the household have one or more health 
conditions10; whether anyone in the household ever tested positive for the coronavirus, and 
whether they are required to work in person regardless of the sector in which they work. We also 
include respondents’ political beliefs—liberal, moderate, or conservative as well as their reported 
political party affiliation as control variables. The survey data also includes self-reported measures 
of usually difficult-to-measure time-varying characteristics, that we use to account for 
group/individual influences. These are the self-reported fear of COVID-19 (reported on a scale 
that ranges from ‘0=no fear’ to ‘100=very afraid’), the probability of becoming ill and requiring 
hospitalization or dying (reported on a scale from ‘0=no probability’ to ‘100=certainty’), and 
whether the respondent has a close friend or relative die from COVID-19.11  
 
To account for unobserved individual differences, we first use SEICS data on individual’s self-
reported measure of willingness to receive the vaccine as a proxy for vaccine intent. This variable 
serves as a catchall for other individual drivers of vaccine intent that are not directly observed in 
our data. Secondly, as we show later, we exploit the panel nature of our data to control for other 

                                                 
10 The chronic medical illnesses reported are chronic lung diseases, moderate to severe asthma, serious heart 
conditions, being immunocompromised, diabetes, kidney disease (undergoing dialysis), liver disease, hypertension, 
severe obesity (body mass index (BMI) of 30 or higher) and sickle cell disease.  
11 We recoded self-reported fear as an indicator variable equal to 1 for reported fear exceeding the mean value and 0 
otherwise. 



 

9 
 

unobserved differences, such as personality traits, through individual and wave fixed effects. We 
also account for vaccine-specific influences such as accessibility through county-by-wave fixed 
effects.12 
 
2.3.3 Balance of covariates 
 
We check for balance between vaccinated and unvaccinated groups using all observed covariates 
that might explain the decision to vaccinate. For each covariate, we compare the average value for 
the early and late vaccinated group to the average value among the never vaccinated group using 
an F-test. Covariates are considered balanced if the resulting test statistic is not significantly 
different from zero at the 10% level of significance or lower. The result of the balance tests is 
presented in Table 1. We find a significant difference for majority of the covariates (see Table 1). 
Therefore, simply comparing the mean risk-taking behavior by vaccine status could result in biased 
estimates, as any observed differences could be due to factors other than vaccination. In the next 
section, we describe how our methodology addresses this problem. 
 
 
3. Methodology 
 
Table 1 suggests that simple comparisons of risk-taking by vaccination status can be misleading, 
given the number of observable confounders. As a result, we specify a model that attempts to 
address the endogeneity of one’s COVID-19 vaccine decision. 
 
In our setting, persons receive initial vaccination at different points in time: in wave 4—which we 
refer to as early vaccination; and wave 5—which we refer to as late vaccination. In this staggered 
treatment set-up, recent literature warns that the most popular model used—two-way fixed effects 
models—produces estimates that are not reliable in the presence of effect heterogeneity, and that 
they potentially even have the wrong sign.13 To avoid this, we estimate separate event study fixed-
effects models for each vaccinated group. Formally, we estimate the effect of vaccination for the 
early and late vaccinated by employing the following event-study fixed effects model: 
 

𝑌௜௖௧ = ∑ 𝛽௘௘ஷିଵ ∙ 1(𝐸 = 𝑒) + 𝜂௜ + 𝜆௧ + 𝛿௖௧ + 𝑣௜௖௧ ,                          (1) 
 
where equation (1) is estimated as separate regressions for early and late vaccinated. The control 
group consists of individuals not yet treated at wave 𝑡. 𝑌௜௖௧ is an indicator variable representing 
whether individual 𝑖 in county 𝑐 at wave 𝑡 participates in a given type of risky behavior. For the 
composite measures of risk-taking, we use equation (1) to model the expected value of a Poisson 
random variable given the positively skewed nature of all measures and the fact that one of them 
follows a count distribution. 𝐸 is the length of time before and after vaccination. Hence, if 
                                                 
12 One other factor that might be related to vaccine intent is religiosity. While the literature reviewed does not highlight 
religiosity as a key determinant in vaccine intent, it is usually referred to in tangent to partisan beliefs (e.g., Albrecht, 
2022). While we do not observe one’s religiosity directly, we observe several variables that the literature finds are 
highly correlated with religiosity such as willingness to get vaccinated, political affiliation, political party, and we 
later adjust for county-by wave-fixed effects which proxies any communal effect of religious influences.  
13 See Goodman-Bacon, 2021; Callaway & Sant'Anna, 2021; De Chaisemartin & D'Haultfoeuille, 2020; Borusyak et 
al., forthcoming; for a recent discussion on the failure of two-way fixed effects regressions for time-varying treatment 
effects. 
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vaccinated early, 𝐸 takes on values -2, -1, 0 and +1. If vaccinated late, 𝐸 takes on values -3, -2, -1 
and 0. The period immediately prior to vaccination (i.e., -1), is the reference exposure period for 
both vaccinated groups and is therefore excluded from the analysis. 𝛽௘ is the key parameter that 
we are interested in estimating. It represents the change in the average level of risk-taking behavior 
among the vaccinated group relative to their pre-vaccination period, compared to what would have 
occurred if they had not been vaccinated. In addition to the event study estimates, we report the 
overall average of the estimated effects for the early and the late vaccinated, weighted by the share 
of individuals in each group. 
 
We account for broad secular trends and time-invariant differences in individual characteristics 
(observable and unobservable) that might affect both vaccine intent and risky behavior, using wave 
and individual fixed effects (𝜆௧ and 𝜂௜), respectively.14 We also account for county-specific trends, 
such as vaccine access, infection and hospitalization rates and county-wide popular beliefs or 
preferences towards vaccines, which likely change over time due to new information and 
resources. We do so by including county-by-wave fixed effects (𝛿௖௧). 
 
It is also important that we control for individual time-varying observables, which likely drive 
vaccine intent and risk-taking behavior. We adjust equation (1) for the observed covariates using 
inverse propensity weights (IPW). We estimate the propensity weight as follows:  
 

                                                   𝜔௜ = ට𝐷௜ + (ଵି஽೔)௣(௫ഢ)෣

ଵି௣(௫ഢ)෣                                                               (2) 

 
where 𝐷௜ is whether individual 𝑖 is vaccinated, 𝑝(𝑥௜) is the estimated propensity score for 
individual 𝑖. The propensity score is computed by estimating a separate logit model, which predicts 
the probability of selecting vaccination as a function of all covariates listed in Table 1 and dummies 
for an individual’s sector of employment. Because there are multiple vaccination dates for multiple 
groups, there is a unique propensity score for every group. The analysis uses covariates from only 
the wave prior to vaccination in the propensity score calculation. Using a logit model to predict 
the propensities allows the effects of the covariates to have a non-linear impact on the probability 
of being vaccinated as opposed to just a linear one if we were to simply include these covariates 
in the model directly. 
 
IPW assigns higher weights to unvaccinated individuals that have higher odds of being vaccinated. 
This reduces the differences between the vaccinated and unvaccinated individuals in terms of their 
propensity to take the vaccine. To incorporate the uncertainty from estimating the propensity score 
in a separate regression, we use bootstrapped standard errors clustered at the individual level based 
on 1,000 replications. We also perform two standard checks on the IPW. The first assesses the 
common support requirement that there should be both vaccinated and unvaccinated individuals 
that have similar propensity to get vaccinated. The second, checks for covariate balance, which 
determines whether the IPW adequately adjusts for differences in covariates between the 
vaccinated and unvaccinated, allowing us to compare individuals of similar covariate distributions. 
We discuss the results of these checks in Section 4. 
 

                                                 
14 One such difference that would impact vaccine intent and risky behavior is ease of access to vaccine site. 
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The validity of our approach rests on a conditional parallel trend assumption. This implies that 
average risk-taking behaviors for the vaccinated and unvaccinated groups would have followed 
parallel paths in the absence of vaccination, conditional on adjusting for covariates.15 So far, we 
are assuming that applying inverse propensity weights to equation (1) and including individual, 
wave, county, and county-by-wave fixed effects accounts for any pre-vaccine differences that 
could cause a violation of the parallel trend assumption. In Section 4, we test empirically whether 
we have sufficiently controlled for differences between the vaccinated and unvaccinated prior to 
vaccine availability by estimating analogous vaccine effects for the pre-vaccine periods. If the 
vaccinated and unvaccinated groups follow parallel paths in the absence of the vaccination, the 
pre-vaccination estimates should be insignificant and close to zero. These results, reported as a 
part of Tables 2 and 3, are discussed with our main results in Section 4. We also consider the 
potential role of other endogeneity issues, such as reverse causality and unobservables on our 
findings by implementing a placebo test in Section 4.3, using the flu vaccine as a placebo treatment 
for COVID-19. We show using the outcomes from the placebo that these issues do not appear to 
be driving our results.  
 
 
4. Empirical Results 
 
4.1 Diagnostic Results 
 
In this section we conduct checks on the IPW estimation and present evidence of the parallel 
trends. These findings set the stage to measure how vaccination affects risk-taking behavior of 
individuals and any heterogeneity thereof.  
 
Common support and covariate balance 
 
To generate the weights for the IPW we described in Section 3, we estimate the probability of 
selecting vaccination in the form of a propensity score. Once a propensity score has been calculated 
for each observation, one must ensure that there is overlap (typically referred to as common 
support) in the range of propensity scores across vaccinated and unvaccinated groups. This ensures 
the availability of both vaccinated and unvaccinated individuals that have similar propensity to get 
vaccinated. To detect the extent of overlap, we follow Imbens’ (2004) recommendation and plot 
the density of estimated probabilities for selecting vaccination separately for the vaccinated and 
unvaccinated groups. We show the resulting plots in Figure 2. From Figure 2 we see that both plots 
overlap (i.e., extend across the same estimated probabilities of being vaccinated) quite well. In 
only about 2% of the cases (in the tails of the distributions), there are no estimated probabilities in 
common for vaccinated and unvaccinated individuals. There is therefore a sufficient common 
support for the distribution of propensity scores. 
 

                                                 
15 Note that it would be unreasonable for parallel trends to hold without conditioning on covariates. One reason is the 
rapid and progressive policy changes implemented by states that might affect risky behaviors and vaccine intent. These 
changes include limits on social gatherings, adding states to travel quarantine lists, mandating face masks and 
encouraging residents to stay home. For example, late March and early April 2020, majority of states issued orders 
directing residents to stay at home and for schools and nonessential businesses to close. By late April (and extending 
up to the beginning of June) states then began reopening’s. 
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We then check that reweighting equation (1) with IPW is in fact allowing us to compare individuals 
of similar covariate distributions. Once units are reweighted, the characteristics of the constructed 
vaccinated and unvaccinated groups should not be significantly different. As is typical in the 
literature (see e.g., Morgan & Todd, 2008), we use the absolute standardized mean difference 
(ASMD) to compare the means of a given covariate between vaccinated and unvaccinated 
individuals before and after implementing IPW.16 ASMD is used to assess the degree to which the 
characteristics are different on average between the vaccinated and unvaccinated individuals. 
Standardizing allows us to compare the difference in means across covariates. Figure 3 displays 
the resulting ASMDs for all covariates with and without propensity score adjustment to show the 
selection bias. We follow Imbens & Rubin’s (2015) recommended rule of thumb that an ASMD 
not exceeding one quarter is considered balanced. The generated output shows that when setting 
the threshold for the mean difference to one quarter, all covariates were balanced after IPW 
adjustment, indicating a significant reduction in the baseline bias due to IPW. 
 
Parallel trend assumption 
 
The empirical analysis also relies on the conditional parallel trend assumption, which asserts that 
the vaccinated and unvaccinated with similar characteristics would follow a similar trend in risk-
taking behavior in the absence of vaccination. To test this assumption, we estimate analogous 
treatment effects for the pre-vaccination periods of the early and late vaccinated. Specifically, we 
estimate one pre-treatment effect for early vaccinated individuals, corresponding to the period just 
prior to vaccination (Tables 2 and 3, Panel A); and two pre-treatment effects for late vaccinated 
individuals, corresponding to one and two periods before vaccination (Tables 2 and 3, Panel B). If 
parallel trends are supported, we expect these coefficients to be statistically insignificant and small 
(i.e., close to zero), indicating that there are no significant differences in the risk-taking behaviors 
of vaccinated and unvaccinated individuals in the absence of vaccination. 
 
When we consider the risk-taking activities independently (Table 2), pre-treatment estimates are 
also close to zero and insignificant for all risky activities except attending bars and participating 
in protests for those vaccinated early (Panel A, columns 5 and 8) and visiting friends and family 
for the late vaccinated (Panel B, column 1). In Table 3, we report results for 4 different 
aggregations of COVID-19 risky activities. Using these composite measures, all pre-trend 
estimates are insignificant and close to zero. In short, our pre-vaccination results provide strong 
evidence in support of the conditional parallel trend assumption for both the early and late 
vaccinated. 
 
4.2 Main Results  
 
Thus far, we have shown all the evidence supports the assumption that our model, as outlined in 
Section 3, makes the vaccinated and unvaccinated individuals sufficiently comparable. Thus, we 
leverage vaccine status to identify the parameters of equation (1).  
 
Table 2 displays estimates for each of the 11 COVID-19 risky activities using the event study 
linear probability version of our model (columns 1-11). The first row presents the overall average 
                                                 
16 Specifically, ASMD =(𝑋ത் − 𝑋ത௖)/ ඥ(𝑆்

ଶ + 𝑆஼
ଶ)/2, where 𝑋ഥ ்and 𝑋ത஼ denote the covariate mean of treatment and 

comparator group, respectively, and 𝑆்
ଶ and 𝑆஼

ଶ represents the corresponding variances. 
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estimates (i.e., the average of the estimated effects for early and late vaccinated, weighted by the 
share of individuals in each group) followed by event study estimates for early and late vaccinated 
individuals in Panel A and B, respectively. Parallel trends hold for all cases except three 
outcomes—attending bars and participating in protests for the early vaccinated (Panel A, columns 
5 and 8) and visiting friends and family for the late vaccinated (Panel B, column 1)—preventing 
us from drawing any definitive conclusions about their impact of vaccination on these behaviors. 
Thus, we focus our discussion on the remaining risky activities. 
 
We observe an overall 3-11% statistically significant increase in risky activities—specifically, 
participation in indoor dining (11%), religious services (11%), attendance at campaigns (3%), and 
shopping (5%)—among vaccinated individuals, regardless of the vaccination timing (row 1 of 
Table 2). These effects appear to vary based on the timing of one’s vaccination. At the time of 
vaccination, the later vaccinated individuals showed a greater increase in the magnitude of the 
risk-taking effect (7-17%) (Panel B, columns (2), (4), and (5)), than those who received the vaccine 
earlier (4-8%) (Panel A, columns (7) and (10)). Furthermore, although both the early and late 
vaccinated groups demonstrated heightened risk-taking behavior by increasing engagement in 
indoor dining and attending religious services, the later vaccinated group did so at the time of 
vaccination, while the early vaccinated group showed an increase one period after vaccination, at 
which point the general public had vaccine access. Furthermore, the impact of vaccination on 
attending campaigns and in-person work seems to be driven by the early-vaccinated group, being 
the only group for which we observe a significant and positive increase in these activities. Notably, 
the discernable effect is observed only at the time of vaccination for this group and diminishes in 
subsequent periods (Panel A of Table 2). The later vaccinated cohort also showed a significant 
positive increase in risky behavior by attending bars (7%). We also see the early vaccinated group, 
not until one period after vaccination, shows a 5-9% increase in the probability of risk-taking 
behavior by traveling by plane, using public transport, and shopping,  and a 5% decrease in dining 
outdoors, despite a loss in precision, Conversely, visiting friend and family display only small 
changes (average 2%) in the coefficients relative to the period prior to vaccination, suggesting that 
vaccination does not appear to have a significant effect on risk-taking behavior associated with 
this activity.  
 
Table 3 shows the estimates of the effect of vaccination on the composite risk measures using the 
Poisson model specified in Section 3. The first row shows the overall average effects across both 
groups, and subsequent rows show event study estimates for the early and late vaccinated in Panel 
A and B respectively. We find that being vaccinated, regardless of differences in the time of 
vaccination, resulted in an overall average increase in risk-taking (row 1, columns 1-4). These 
amount to a 12% increase in risk-taking activities (column 1) and a 16.2% increase in the 
probability the respondent or a family member would contract COVID-19 (column 4).  
 
The effects vary based on the timing of vaccine availability. For the early vaccinated, we find a 
sizable increase in risk-taking at the time of vaccination, albeit insignificant in some models 2-4 
(Panel A). This group further increased their risk-taking behavior one period later.  These results 
suggest that individuals took on relatively more risk, the longer ago they were vaccinated. Those 
vaccinated later also increased their risk-taking following vaccination but by a relatively smaller 
magnitude compared to early vaccinated one period later (Panel B). The early vaccinated group 
increased the mean number of COVID-19 risky activities by 7-17% (Panel A), while those who 



 

14 
 

got vaccinated later increased their mean activities by about 14% (Panel B). While there is some 
loss in precision for models 2-4, overall, the results remain qualitatively the same across all 
specifications—once vaccinated we observe a sizable increase in risky activities (columns 1 and 
2) and risk (columns 3 and 4). 
 
4.3 Placebo Test 
 
Much effort has been devoted to addressing endogeneity issues arising from people choosing 
whether to get vaccinated. Nevertheless, there might still be unobservables, such as impulsivity or 
impatience, influencing one’s vaccination decision and risk-taking behavior. We therefore check 
for further endogeneity issues by conducting a placebo test, using the flu vaccine as a placebo 
treatment for COVID-19. Two features of the flu vaccine make it a credible placebo treatment in 
our setting. First, we expect both vaccines to share similar influences, since the decision to take 
either vaccine occurred during an unusual period of heightened vaccine awareness and hesitancy.17 
However, a potential bias arises from healthcare providers recommending both vaccines 
simultaneously. Individuals opting for the flu vaccine first may be influenced by factors such as 
age, comorbidities, occupation, and location, seeking early flu protection. Assuming these factors 
similarly influence the choice of both vaccines, our model effectively controls for these influences, 
as previously outlined. Second, unlike the COVID-19 vaccine, the flu vaccine does not offer 
protection against coronavirus. Thus, if a lower risk of contracting COVID-19 is the means by 
which the COVID-19 vaccine affects risky behaviors, then one would be suspicious if the flu 
vaccine also affects it. A non-zero effect would suggest that there are still unobservables at play. 
 
While flu vaccines don't protect against COVID-19, they reduce the risk of a simultaneous double 
infection. Thus, we use respondents’ flu vaccine status in wave 3 (Nov. to Dec. 2020), prior to the 
peak of the flu season and the availability of the COVID-19 vaccine when the COVID-19 vaccine 
could not affect behavior. Using the same Poisson regression in Section 3, we estimate the effect 
of the flu vaccine (in lieu of the COVID-19 vaccine) on the number of risky activities. We find 
that the flu vaccine has a small and statistically insignificant association with risk-taking in wave 
3 (0.014, s.e.=0.036).18 In short, the evidence supports our claim that unobservables have no 
discernible effect on our results. 
 
4.4 Reverse causality 
 
One might still be concerned that the results are being driven by reverse causality whereby being 
vaccinated did not cause individuals to take more risk, but instead, how risky an individual is, 
drives their decision to be vaccinated. In this regard, we recall the evidence presented from the 
literature that showed that individuals who are risk-takers, when defined as less likely to comply 
with mask-wearing and social distancing, are less likely to get vaccinated (Dabla-Norris et al., 
2021). This implies therefore that the presence of reverse causality would, if anything, introduce a 
downward bias on the coefficients of interest, making the observed effect smaller than it should 

                                                 
17 The new flu vaccine released for 2020 should ideally be taken in September/October which coincided with the 
start of the pandemic.  
18 This finding is unchanged even if we consider the effect in wave 4 when COVID-19 vaccine becomes available and 
could possibly be affected by potential challenges introduced by the availability of the COVID-19 vaccine (0.042, 
s.e.=0.050).  
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be. The results from the aggregate measures for early vaccinated (Table 3, Panel A) show that the 
lagged effect, which cannot be affected by reverse causality, is more than twice the magnitude of 
the contemporaneous effect. A relatively smaller contemporaneous effect supports the claim that 
reverse causality causes a downward bias in the estimates. With a downward bias, if one believes 
we are unable to fully control for all potential bias from risk-taking on vaccination, the results 
presented should be accepted as at least conservative estimates of vaccination on risk-taking. 
 
 
5. Conclusion 
 
This research is one of the first to estimate the impact of vaccines on COVID-19 risk-taking 
behavior. Although previous research examines the relationship between health interventions and 
risky behavior, the findings vary by the type of intervention, the context in which it is implemented, 
and the specific behaviors under consideration. We evaluate eleven COVID-19 risky behaviors 
that are believed to pose a high risk of COVID-19 transmission. Using the first individual-level 
panel data available, we address endogenous biases resulting from pre-vaccine differences 
between vaccinated and unvaccinated groups through a variety of panel methods and tests. This 
creates an environment where both groups are sufficiently comparable allowing us to identify the 
effect of vaccination on COVID-19 risk-taking. Several tests validate our approach. 
 
We provide two basic findings. First, being vaccinated induces risk-taking in some risky activities 
and not others. Specifically, the effects seem to be more pronounced for dining indoors, attending 
religious services in person, attending campaigns, and shopping. Second, these results are 
heterogeneous in the timing of vaccination. Early vaccinated groups (typically vulnerable or 
essential workers with early vaccine access) participate in more risky behaviors than those 
vaccinated later (typically the general public without early vaccine access) and they do so at 
different periods relative to the time of vaccination. However, at the time of vaccination, the later 
vaccinated individuals showed a greater increase in the magnitude of the risk-taking effect (7-
17%) than those who received the vaccine earlier (4-8%). 
 
This behavioral response could be rational risk-taking behavior arising from the lower likelihood 
of contracting COVID-19 after vaccination. Alternatively, it might be that people overestimate the 
efficacy of the vaccine. The resulting increased risky behavior in the presence of safety devices is 
what Viscusi (1984) termed the “lulling effect”. Thus, while the vaccine availability may reduce 
the risk of contracting COVID-19, it also contributes to the further spread of the virus by 
incentivizing risk-taking in the short term. While this study does not suggest that the vaccine was 
a bad policy choice, our findings show the importance of accounting for the unintended effects 
that might result from policy implementation of a similar nature. This is especially important when 
dealing with a highly contagious and life-threatening virus like coronavirus, which involves unique 
issues for individual behavior.  
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Figures and Tables 
 

 
Figure 1 Survey period and Vaccination. Source: Constructed by the author. Data for COVID cases and vaccination 
retrieved from Global Change Lab – Oxford University 
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Figure 2 Shows the density plots of the distribution of the probability of vaccination among vaccinated and 
unvaccinated groups for early and late vaccinated groups. 
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Figure 3 A check for balance in covariates between vaccinated and unvaccinated individuals using the absolute 
standardized mean difference with and without IPW adjustment for early and late vaccinated.  
 
 
  



 

21 
 

Table 1 
Weighted average of baseline characteristics 

  Vaccination Status   
Overall Early Late Never 

 

A. Controls:  
 

   
 

18 to 29 years 0.08 0.05 0.05 0.14 *** 
30 to 44 years 0.23 0.18 0.20 0.29 *** 
45 to 64 years 0.40 0.27 0.46 0.41 *** 
65 and older 0.29 0.50 0.29 0.15 *** 
Female 0.53 0.47 0.49 0.61 *** 
Income  95238 108778 97932 82174 *** 
High school or less 0.29 0.20 0.28 0.36 *** 
College but no Bachelor 0.30 0.28 0.29 0.34  
Bachelor or higher 0.41 0.52 0.43 0.31 *** 
White 0.62 0.62 0.62 0.63  
Married 0.58 0.60 0.62 0.52 *** 
Have kid(s) <6 yrs. in HH 0.06 0.03 0.05 0.08 *** 
Enrolled in school 0.11 0.14 0.09 0.12 * 
Elderly (65+) in household  0.40 0.60 0.39 0.27 *** 
Any chronic illness in HH 0.39 0.50 0.41 0.29 *** 
Have disability 0.17 0.16 0.16 0.18  
Work in person 0.35 0.35 0.34 0.36  
HH member test COVID positive  0.04 0.06 0.03 0.04  
Fear of COVID 0.58 0.70 0.63 0.44 *** 
Perceived chance of COVID illness/death (0-100) 33.3 41.5 33.5 27.1 *** 
Friend/family died from COVID 0.09 0.13 0.08 0.06 *** 
Liberal 0.29 0.34 0.31 0.24 *** 
Moderate 0.35 0.33 0.35 0.36  
Conservative 0.36 0.33 0.33 0.41 ** 
Republican 0.32 0.29 0.28 0.40 *** 
Democrat 0.39 0.47 0.44 0.29 *** 
Independent 0.25 0.22 0.25 0.28  
Other Political Party 0.03 0.02 0.03 0.04  
Willing to get vaccinated 0.64 0.84 0.72 0.40 *** 
      
Observations 2722 720 1100 902  

Notes: All values reported in the table represent average proportions unless otherwise stated. *p < 0.10, **p < 0.05, 
***p < 0.01 indicates significant difference between the three groups. The baseline is wave 3 which is immediately 
prior to vaccine availability. 
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Table 2 
Estimated effect of vaccine status on risk taking measured by type of social-distancing activity done  

Visit 
friends/fa

m 

Dining 
indoor 

Dining 
outdoor 

Attend 
religious 
service 

Visit bar Travel 
by 

airplane 

Attend 
campaig

n 

Attend 
protest 

Use 
public 
transit 

In-person 
work 

shoppi
ng 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Overall average effect 0.038 0.106*** 0.002 0.108*** 0.046* -0.014 0.027* 0.022 0.028 0.030 0.045* 
 (0.029) (0.025) (0.029) (0.035) (0.026) (0.024) (0.015) (0.014) (0.018) (0.025) (0.025) 
            
Panel A: Early vaccinated            
Exposure            
1 period before  0.005 0.024 -0.019 -0.038 -0.059** -0.009 -0.018 -0.043* -0.021 -0.010 -0.012  

(0.039) (0.035) (0.044) (0.031) (0.025) (0.027) (0.023) (0.026) (0.025) (0.027) (0.024) 
Period of vaccination 0.020 0.049 -0.015 0.037 0.014 -0.022 0.038* 0.027 0.023 0.079*** 0.017  

(0.034) (0.032) (0.046) (0.045) (0.038) (0.030) (0.021) (0.019) (0.024) (0.030) (0.025) 
1 period later -0.019 0.200** -0.047 0.150* 0.089 0.064 -0.002 0.020 0.092 0.024 0.049  

(0.061) (0.079) (0.075) (0.080) (0.069) (0.074) (0.039) (0.036) (0.059) (0.044) (0.061)  
           

Observations 7741 7732 7727 7740 7734 7725 7726 7737 7731 7729 7747 
            
Panel B: Late vaccinated            
Exposure            
2 periods before  -0.110** -0.010 -0.041 0.024 0.044 -0.021 0.033 -0.012 -0.005 0.003 -0.039  

(0.051) (0.043) (0.053) (0.045) (0.040) (0.037) (0.022) (0.025) (0.028) (0.034) (0.029) 
1 period before  -0.092** -0.010 -0.032 0.015 0.046 0.012 0.009 -0.007 -0.006 -0.008 0.009  

(0.041) (0.038) (0.053) (0.047) (0.035) (0.033) (0.018) (0.019) (0.021) (0.027) (0.030) 
Period of vaccination 0.018 0.156*** 0.001 0.168*** 0.070* -0.021 0.020 -0.004 0.013 -0.024 0.062  

(0.048) (0.046) (0.045) (0.060) (0.037) (0.037) (0.026) (0.022) (0.029) (0.044) (0.046)   
          

Observations 7099 7093 7080 7089 7095 7086 7081 7097 7085 7093 7098 
Notes: The table reports estimated coefficients and standard errors derived by running separate fixed effects linear regressions with IPW and county-by-wave fixed effects, for each 
vaccinated group and each type of COVID-19 risky activity. Dependent variable is each risky measure shown in columns (1) to (11), defined as an indicator variable where 1= 
individual participated in the respective behavior at least one or two times and 0=otherwise. Controls used for IPW weights adjustment are those listed in Table 1 as well as dummies 
for an individual’s sector of employment.  Results are all weighted with ACS population weights provided as a part of survey. Bootstrapped standard errors clustered at the individual 
level are in parenthesis. The number of bootstrap replications is 1,000. *, **, *** indicate statistical significance at 10%, 5% and 1% level. 
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Table 3 
Estimated effect of vaccine status on COVID-19 risky activities/risk 

 Count of 
COVID 
Risky 

Activities 

 COVID Risk 

 (1)  (2) (3) (4)  
Sum  PCF OLS Probit 

Overall average effect 0.120***  0.158*** 0.166** 0.162** 
 (0.036)  (0.053) (0.079) (0.070) 
      
Panel A: Early vaccinated      
Length of exposure      
1 period before  -0.037  -0.002 0.019 0.050  

(0.048)  (0.078) (0.119) (0.101) 
Period of vaccination 0.074**  0.156** 0.134 0.130  

(0.035)  (0.074) (0.107) (0.091) 
1 period later 0.173**  0.417** 0.513* 0.481**  

(0.077)  (0.172) (0.264) (0.235) 
      
Observations 7758  7383 7383 7383 
      
Panel B: Late vaccinated      
Length of exposure      
2 periods before  -0.023  0.004 0.024 0.003  

(0.056)  (0.082) (0.145) (0.123) 
1 period before  -0.011  -0.023 0.096 0.059  

(0.044)  (0.070) (0.103) (0.091) 
Period of vaccination 0.137**  0.108 0.164 0.166  

(0.067)  (0.083) (0.111) (0.104) 
 

     
Observations 7110  6810 6810 6810 

Notes: Estimated coefficients and standard errors obtained from individual fixed effects Poisson regressions 
as specified in equation (1). Dependent variables: number of COVID-19 risky activities (column 1); risk-
weighted average of COVID risky activities (columns 1-3), where the weights are generated using principal 
component factor analysis, OLS, and probit, model, respectively. Each regression adjusts for inverse 
propensity weights and individual, wave, and county-by-wave fixed effects. Controls used for IPW are those 
listed in Table 1 as well as dummies for an individual’s sector of employment. Results are all weighted with 
ACS population weights provided as a part of the survey. Bootstrapped standard errors clustered at the 
individual level are in parenthesis. The number of bootstrap replications is 1,000.  *, **, *** indicate 
statistical significance at 10%, 5% and 1% level.  
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Appendices 
 

Table A1 
National Representativeness of Sample (Adults 18+)  

Baseline Sample 
Average  

ACS 2020 (5-Yr 
average) 

Demographic Variables 
 

 
Age (yrs.) 53 48 
18 to 29 years 0.08 0.21 
30 to 44 years 0.23 0.25 
45 to 64 years 0.40 0.33 
65 and older 0.29 0.21 
Female 0.53 0.51 
HH Income ($) 95238 95395 
High school or less (25+) 0.29 0.38 
College but no Bachelor (25+) 0.30 0.29 
Bachelor or higher (25+) 0.41 0.33 
White 0.62 0.60 
Black 0.11 0.12 
Hispanic 0.15 0.18 
Other race 0.12 0.10 
Married 0.58 0.50 
Liberal 0.29 0.261 
Moderate 0.35 0.3651 
Conservative 0.36 0.3751 
   
Observations 2720  

Notes: The table compares demographic characteristics of the sample with those 
of the population of adults 18+ in the U.S. as measured by the Census Bureau’s 
2020 (and 2019 when 2020 not available) American Community Survey (ACS) 
(5-year average estimates) unless otherwise indicated. All values reported in the 
table represent proportions unless otherwise stated. Baseline sample averages 
calculated using wave 3 which is the wave immediately prior to vaccine 
availability. All averages reported in the table are weighted using individual 
weights from respective surveys. 1Retrieved from Gallup poll 2020 publication; 
Normalized to add to 100% for comparability with baseline sample; originally 
added to 96% since 4% indicated no opinion. 
 
 
 
 
 
 
 
 
 
 


