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ABSTRACT
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Learning*

This paper discusses pairing double/debiased machine learning (DDML) with stacking, a 

model averaging method for combining multiple candidate learners, to estimate structural 

parameters. We introduce two new stacking approaches for DDML: short-stacking 

exploits the cross-fitting step of DDML to substantially reduce the computational burden 

and pooled stacking enforces common stacking weights over cross-fitting folds. Using 

calibrated simulation studies and two applications estimating gender gaps in citations and 

wages, we show that DDML with stacking is more robust to partially unknown functional 

forms than common alternative approaches based on single pre-selected learners. We 

provide Stata and R software implementing our proposals.
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1 Introduction

Motivated by their robustness to partially unknown functional forms, supervised ma-

chine learning estimators are increasingly leveraged for causal inference. For example,

lasso-based approaches such as the post-double-selection lasso (PDS lasso) of Belloni,

Chernozhukov, and Hansen (2014) have become popular estimators of causal e�ects un-

der conditional unconfoundedness in applied economics (e.g. Gilchrist and Sands, 2016;

Dhar, Jain, and Jayachandran, 2022). Yet, a recent literature also raises practical concerns

about the use of machine learning for causal inference. Wüthrich and Zhu (2021) find

that lasso often fails to select relevant confounds in small samples while inference based

on linear regression performs relatively well. Giannone, Lenza, and Primiceri (2021) and

Kolesár, Müller, and Roelsgaard (2023) argue that the sparsity assumption, on which the

lasso fundamentally relies, is frequently not plausible in economic data sets. Angrist and

Frandsen (2022) show that conditioning on confounders using random forests may yield

spurious results in IV regressions.1 In an application to the evaluation of active labor

market programs, Goller et al. (2020) find that random forests are not suitable for the

estimation of propensity scores. A key characteristic shared by many of these studies

using machine learning for causal inference is the focus on a single pre-selected machine

learner.

This paper revisits the application of machine learning for causal inference in light of

this recent literature. In particular, we highlight the benefits of pairing double/debiased

machine learning (DDML) estimators of Chernozhukov et al. (2018) with stacking (Wolpert,

1996; Breiman, 1996; Laan, Polley, and Hubbard, 2007). DDML can leverage generic ma-

chine learners meeting mild convergence rate requirements for the estimation of common

(causal) parameters. Stacking improves the robustness to the underlying structure of the

data by allowing the researcher to combine multiple candidate estimators with di�ering

strengths rather than requiring an ad-hoc choice between them. Based on a diverse set

of applications and calibrated simulation studies, we illustrate the finite sample perfor-
1See also Angrist (2022) for additional discussion.

1



mance of stacking-based DDML estimators. The results suggest that stacking with a rich

set of candidate estimators can address some of the shortcomings highlighted in the recent

literature on causal inference with single pre-selected machine learners.

We further introduce two novel ways of combining stacking and DDML aimed at

improving practical feasibility and stability in finite samples: Short-stacking leverages the

cross-fitting step of DDML to reduce the computational burden of stacking substantially.

Pooled stacking decreases the variance of stacking-based learners across the DDML cross-

fitting folds. Both approaches facilitate interpretability compared to conventional stacking

by enforcing common stacking weights. We complement the paper with software packages

for Stata and R that implement the proposed approaches (Ahrens et al., 2023; Wiemann

et al., 2023).

The benefits of combining multiple estimators into a ‘super learner’ via stacking to

improve robustness to the structure of the underlying data-generating process are well-

known in the statistics literature. Loss-minimizing combinations of a pre-specified set of

estimators were introduced by Wolpert (1992) and Breiman (1996) and generalized by

Laan, Polley, and Hubbard (2007). Under appropriate restrictions on the data generating

process and loss-function, Laan and Dudoit (2003) show asymptotic equivalence between

stacking and the best-performing candidate learner.2

Despite its theoretical appeal, stacking has hitherto been rarely used for the estimation

of causal e�ects in economics or other social sciences. Instead, estimators are often based

on parametric (frequently linear) specifications or single pre-selected machine learners.

This can have severe consequences for the properties of causal e�ect estimators if the given

choice is ill-suited for the application at hand. A simple example is shown in Figure 1

which compares the performance of DDML using either cross-validated (CV) lasso or a

feed-forward neural network to estimate a partially linear model across two di�erent data-

generating processes. The results show that the bias associated with each learner strongly

depends on the structure of the data. Since true functional forms are often unknown in
2See also Hansen and Racine (2012) for discussion of jackknife (leave-one-out) stacking. Hastie,

Tibshirani, and Friedman (2009) and Laan and Rose (2011) provide textbook treatments of stacking
and super learning.
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Figure 1: Estimation bias of DDML with cross-validated lasso, feed-forward neural net
and stacking

(a) Non-linear DGP (b) Approximately sparse linear DGP

Notes: The figures compare the bias of DDML paired with either cross-validated lasso, a feed-forward neural net (with
two hidden layers of size 20) or a stacking learner combining 13 candidate learners (including cross-validated lasso and
ridge, random forests, gradient-boosted trees and feed-forward neural nets). See Ahrens et al. (2023), where this example
is taken from, for details on the specification of each learner. With respect to the data-generating processes, we generate
1000 samples of size n = 1000 using the PLM Yi = ◊0Di + cY g(Xi) + Ái, Di = cDg(Xi) + ui where Xi are drawn from
N (0, �) with �i,k = 0.5|j≠k|. Ái and ui are drawn from standard normal distributions. In Figure (a), the nuisance function
is g(Xi) = Xi,1Xi,2 + X2

i,3 + Xi,5Xi,5 + Xi,6Xi,7 + Xi,8Xi,9 + Xi,10 + xX2
i,11 + Xi,12Xi,13. In Figure (b), the nuisance

function is g(Xi) =
q

j
0.9jXij . cY and cD are two constants chosen to ensure that the R2 of the regression of Y onto X

is approximately 0.5.

the social sciences, indiscriminate choices of machine learners in practice can thus result

in poor estimates. DDML with stacking is a practical solution to this problem. As the

example showcases, DDML using stacking is associated with low bias when considering a

rich set of candidate learners that are individually most suitable to di�erent structures of

the data.

We conduct simulation studies calibrated to real economic datasets to demonstrate

that stacking approaches can safeguard against ill-chosen or poorly tuned estimators in

practical settings. Throughout, stacking estimators are associated with relatively low

bias regardless of the simulated data-generating process, strongly contrasting the data-

dependent performance of the causal e�ect estimators based on single pre-selected learn-

ers. The proposed stacking approaches thus appear relevant in the ubiquitous scenario

where there is uncertainty about the set of control variables, correct functional form or

the appropriate regularization assumption.

By revisiting the simulation design of Wüthrich and Zhu (2021), we further show

that stacking can outperform linear regression for even small sample sizes. We argue
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that the poor small sample performance of lasso-based approaches is partially driven by

the choice of covariate transformations and illustrate how stacking can accommodate a

richer set of specifications, including competing parametric models. We also find that

short-stacking and pooled stacking outperform DDML paired with conventional stacking

in small to moderate sample sizes. Paired with its lower computational cost, this finding

suggests that short-stacking may be an attractive baseline approach to select and combine

competing reduced form specifications.

Finally, we demonstrate the value of pairing of DDML with stacking with two applica-

tions. First, we examine gender gaps in citations of articles published in top-30 economic

journals from 1983 to 2020, and assess how the di�erence in citations change when condi-

tioning on content and quality proxied by the abstract text. Estimating these conditional

di�erences is a challenging statistical problem due to the non-standard nature of text

data, which is increasingly encountered in economic applications (see also e.g., Ash and

Hansen, 2023; Chen and Ornaghi, 2023; Eberhardt, Facchini, and Rueda, 2022). Second,

we revisit a UK sample of the OECD Skill Survey to estimate semiparametric Kitagawa-

Oxaca-Binder estimates of the unexplained gender wage gap. Both applications highlight

that estimators of structural parameters based on single learners can be highly sensitive to

the underlying structure of the data and/or poor tuning. The applications further demon-

strate that DDML with stacking is a simple and practical solution to resolve the di�cult

problem of choosing a particular candidate learner in practice. Further, we observe that

the optimal stacking weights often vary across reduced-form equations – meaning that

di�erent conditional expectation functions in the same data set are best estimated using

di�erent learners. This behavior sharply contrasts with common estimation approaches,

such as OLS and PDS lasso, that impose the same form for each conditional expectation

function.

The remainder of the paper is organized as follows: Section 2 provides a brief review

of DDML. Section 3 discusses DDML with stacking, short-stacking, and pooled stacking.

Section 4 presents our calibrated simulation studies. Section 5 discusses the applications,

and Section 6 concludes.
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2 Double/Debiased Machine Learning

This section outlines double/debiased machine learning as discussed in Chernozhukov et

al. (2018). Throughout, we focus on the partially linear model as a natural extension of

commonly applied linear regression methods. Despite its simplicity, the partially linear

model illustrates practical challenges in the application of DDML that can be addressed

by stacking. We highlight, however, that our discussion also applies to the wide range

of models outlined in Chernozhukov et al. (2018) and more generally to estimation of

low-dimensional structural parameters in the presence of high-dimensional nuisance func-

tions.3

The partially linear model is defined by a random vector (Y, D, X€, U) with joint

distribution characterized by

Y = ◊0D + g0(X) + U, (1)

where Y is the outcome, D is the scalar variable of interest, and X is a vector of con-

trol variables. The parameter of interest ◊0 and the unknown nuisance function g0 are

such that the corresponding residual U satisfies the conditional orthogonality property

E[Cov(U, D|X)] = 0. These properties are analogous to the orthogonality properties of

residuals in multiple linear regression with the key di�erence here being that g0 need not

be linear in the controls.

Albeit a seemingly small change in specification, the partially linear model has sev-

eral important advantages over linear regression. For discrete D, for example, results in

Angrist and Krueger (1999) imply that ◊0 can be interpreted as a positively weighted

average of incremental changes in the conditional expectation function E[Y |D = d, X].

Under appropriate conditional unconfoundedness assumptions, ◊0 thus corresponds to a
3A key example not explicitly discussed in Chernozhukov et al. (2018) is doubly-robust estimation of

di�erence-in-di�erence parameters with staggered treatment assignment as in Callaway and Sant’Anna
(2021) and Chang (2020). In settings with conditional parallel trends assumptions, high-dimensional
nuisance functions arise in the estimation of group-time specific average treatment e�ect on the treated.
The pairing of DDML and stacking, as proposed in this paper, also directly applies to the estimator of
Callaway and Sant’Anna (2021) under a conditional unconfoundedness assumption.
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convex combination of conditional average treatment e�ects.4 Importantly, these inter-

pretations remain valid even if the additive separability assumption of the partially linear

model fails. Linear regression coe�cients, in contrast, do not correspond to positively

weighted averages of causal e�ects without imposing strong linearity assumptions that

are questionable in real applications.5

The advantages of the partially linear model in the interpretation of its parameter of

interest come at the cost of a more challenging estimation problem relative to estimating

a model that is linear in a pre-specified set of variables. Estimators for ◊0 are based on

the solution to the moment equation

E [(Y ≠ ¸0(X) ≠ ◊0(D ≠ m0(X))) (D ≠ m0(X))] = 0,

given by

◊0 =
E

Ë1
Y ≠ ¸0(X)

21
D ≠ m0(X)

2È

E [(D ≠ m0(X))2] ,

where ¸0(X) © E[Y |X] and m0(X) © E[D|X] are the conditional expectations of the out-

come and variable of interest given the controls, respectively. Since conditional expecta-

tion functions are high-dimensional in the absence of strong functional form assumptions,

a sample analogue estimator for ◊0 requires nonparametric first-step estimators for the

nuisance parameters ¸0 and m0. While nonparametric estimation generally reduces bias

compared to linear regression alternatives, the increased variance associated with more

flexible functional form estimation introduces additional statistical challenges: To allow

for statistical inference on ◊0, the nonparametric estimators need to converge su�ciently

quickly to the true conditional expectation functions as the sample size increases.
4Similarly, for continuous D, ◊0 corresponds to a positively weighted average of derivatives of the

conditional expectation function E[Y |D = d, X] with respect to d. Under a conditional unconfoundedness
assumption, ◊0 is thus a convex combination of derivatives of the causal response function.

5In the context of IV estimation where instrument validity relies on observed confounders, Blandhol
et al. (2022) emphasize that, in the absence of strong functional form assumptions, two stage least
squares does not generally correspond to a convex combination of local average treatment e�ects (LATE).
However, the IV analogue to the partially linear model discussed here does admit a causal interpretation
under the LATE assumptions.

6



DDML defines a class of estimators that allows for statistical inference on the param-

eter of interest ◊0 while only imposing relatively mild convergence requirements on the

nonparametric estimators. These mild requirements are central to the wide applicability

of DDML as they permit the use of a large variety of machine learners.6

Two key devices permit the mild convergence requirements of DDML: Identification

of the parameter of interest based on Neyman-orthogonal moment conditions and estima-

tion using cross-fitting. Neyman-orthogonal moment conditions are insensitive to local

perturbations around the true nuisance parameter.7 Cross-fitting is a sample-splitting

approach that addresses the own-observation bias that arises when the nuisance parame-

ter estimation and the estimation of ◊0 are applied to the same observation. In practice,

cross-fitting is implemented by randomly splitting a sample {(Yi, Di, X€
i )}iœI indexed by

I = {1, . . . , n} into K evenly-sized folds, denoted as I1, . . . , IK . For each fold k, the condi-

tional expectations ¸0 and m0 are estimated using only observations not in the kth fold —

i.e., in Ic
k © I \Ik — resulting in ˆ̧

Ic
k

and m̂Ic
k
, respectively, where the subscript Ic

k indicates

the subsample used for estimation. The out-of-sample predictions for an observation i in

the kth fold are then computed via ˆ̧
Ic

k
(Xi) and m̂Ic

k
(Xi). Repeating this procedure for all

K folds then allows for computation of the DDML estimator for ◊0:

◊̂n =
1
n

qn
i=1

1
Yi ≠ ˆ̧

Ic
ki

(Xi)
21

Di ≠ m̂Ic
ki

(Xi)
2

1
n

qn
i=i

1
Di ≠ m̂Ic

ki
(Xi)

22 ,

where ki denotes the fold of the ith observation.
6The exact convergence rate requirement for nonparametric estimators depends on the parameter of

interest. Chernozhukov et al. (2018) name the crude rate requirement of o(n≠1/4), but provide examples
where the rate requirement is considerably weaker. Recent contributions show that these requirements are
satisfied by specific instances of machine learners; see, e.g., results for lasso (Bickel, Ritov, and Tsybakov,
2009; Belloni et al., 2012), random forests (Wager and Walther, 2016; Wager and Athey, 2018; Athey,
Tibshirani, and Wager, 2019), neural networks (Schmidt-Hieber, 2020; Farrell, Liang, and Misra, 2021),
and boosting (Luo, Spindler, and Kück, 2022). The exact asymptotic properties of many other machine
learners remain an active research area.

7In the context of the partially linear model, the formal Neyman-orthogonality requirement is

0 = ˆ

ˆ⁄
E

Ë!
Y ≠ {¸0(X) + ⁄(¸(X) ≠ ¸0(X))} ≠ ·0(D ≠ {m0(X) + ⁄(m(X) ≠ m0(X))})

"

◊
!
D ≠ {m0(X) + ⁄(m(X) ≠ m0(X))}

"È----
⁄=0

for arbitrary measurable functions ¸ and m, which can easily be verified using properties of the residuals.
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Since the cross-fitting algorithm depends on the randomized fold split, and since some

machine learners rely on randomization too, DDML estimates vary with the underlying

random-number generator and seed. To reduce dependence on randomization, it is thus

worthwhile to repeat the cross-fitting procedure and apply mean or median aggregation

over DDML estimates (see Remark 2 in Ahrens et al., 2023). We show in Section 5 that

repeating the cross-fitting procedure is a useful diagnostic tool, allowing to gauge the

stability of DDML estimators.

Under the conditions of Chernozhukov et al. (2018) — including, in particular, the

convergence requirements on the nonparametric estimators — ◊̂n is root-n asymptotically

normal around ◊0. As already highlighted by the example in Figure 1, however, a poorly

chosen or poorly tuned machine learner for the estimation of nuisance parameters ˆ̧ and

m̂ can have detrimental e�ects on the properties of ◊̂n. Since no machine learner can

be best across all settings, this raises the di�cult question of which learner to apply in a

particular setting. In the next section, we discuss how DDML can be paired with stacking

to provide a practical solution to the choice of learner. We also illustrate how the cross-

fitting structure naturally arising in DDML estimators can be leveraged to substantially

reduce the computational burden otherwise associated with stacking.

3 Pairing DDML with Stacking Approaches

This section discusses the estimation of structural parameters by pairing DDML with

stacking approaches. After the discussion of DDML with conventional stacking, we intro-

duce two stacking variants that leverage the cross-fitting structure of DDML estimators:

short-stacking and pooled stacking. To fix ideas, we focus on the nuisance parameter

¸0(X) = E[Y |X] arising in the partially linear model where we consider an i.i.d. sample

{(Yi, Xi)}iœI . Further, we consider a rich set of J pre-selected base or candidate learners.

The set of learners could include distinct parametric and nonparametric estimators —

e.g., linear or logistic regression, regularized regression such as the lasso, or tree-based

methods such as random forests — as well as the same algorithm with varying (hyper-
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)tuning parameters or di�erent (basis) expansions of the control variables. It is important

to note that the set of candidate learners for stacking can readily incorporate commonly

used unregularized learners such as linear or logistic regression; in practice, sometimes

the best-performing candidate learner may be one such learner.

Figure 2: Cross-fitting with conventional stacking

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each k, define stacking training sample Tk ⌘
I \ Ik, and split into V folds (here V = 3).

Tk,1 Tk,2 Tk,3

3. For each (k, v, j), fit base learner j on T c
k,v ⌘

Tk \ Tk,v and obtain out-of-sample predicted values

ˆ̀(j)
Tc
k,v

(Xi) for i 2 Tk,v .

Tk,1 Tk,2 Tk,3

Learner j = 1

j = 2

j = 3

4. For each k, fit Y against ˆ̀(1)
Tc
k
(Xi), . . . , ˆ̀

(J)
Tc
k
(Xi) with

i 2 Tk to obtain stacking weights ŵk,j . Obtain out-of-

sample predicted values as
P

j
ŵk,j

ˆ̀(j)
Tk

for i 2 Ik.

Notes: The diagram illustrates cross-fitting with K = 5 cross-fitting folds
combined with stacking using V = 3 cross-validation folds and three can-
didate learners. The illustration uses the estimation of ¸0 = E[Y |X] as an
example.

DDML with conventional stacking. Combining DDML with conventional stacking

involves two layers of re-sampling, as we illustrate in Figure 2. The cross-fitting layer

divides the sample into K cross-fitting folds, denoted by I1, . . . , IK . In each cross-fitting

step k œ {1, . . . , K}, the stacking learner is trained on the training sample which excludes

fold Ik and which we label Tk © I \ Ik. Fitting the stacking learner, in turn, requires sub-

dividing the training sample Tk further into V cross-validation folds. This second sample

split constitutes the cross-validation layer. We denote the cross-validation folds in cross-
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fitting step k by Tk,1, . . . , Tk,V . Each candidate learner j œ {1, . . . , J} is cross-validated

on these folds, yielding cross-validated predicted values for each learner.

The final learner fits the outcome Yi against the cross-validated predicted values of

each candidate learner. The most common choice is to construct a convex combination via

constrained least squares (CLS), with weights restricted to be non-negative and summing

to one. Specifically, for each k, candidate learners are combined to solve

min
wk,1,...,wk,J

ÿ

iœTk

Q

aYi ≠
Jÿ

j=1
wk,j

ˆ̧(j)
T c

k,v(i)
(Xi)

R

b
2

s.t. wk,j Ø 0,
Jÿ

j=1
|wk,j| = 1.

Here, ˆ̧(j)
T c

k,v(i)
(Xi) denotes the out-of-sample predicted value for observation i, which is

calculated from training candidate learner j on sub-sample T c
k,v(i) © Tk \ Tk,v(i), i.e., all

step-k cross-validation folds but fold (k, v(i)) which is the fold of the ith observation.

We call the resulting ŵk,j the stacking weights. The stacking predictions are obtained as
q

j ŵk,j
ˆ̧(j)
Tk

(Xi) where each learner j is re-fit on Tk.

Although various options for combining candidate learners are available, CLS facili-

tates the interpretation of stacking as a weighted average of candidate learners (Hastie,

Tibshirani, and Friedman, 2009). Due to this constraint, CLS tends to set some stack-

ing weights to exactly zero. The constraint also regularizes the final estimator, which

is important to mitigate issues arising from potential multicollinearity of the candidate

learners. An alternative to CLS, which we refer to as single-best learner, is to impose the

constraint that wk,j œ {0, 1} and q
j wk,j = 1, implying that only the candidate learner

with lowest cross-validated loss is used as the final estimator. Under appropriate restric-

tions on the data-generating process and loss function, Laan and Dudoit (2003) show

asymptotic equivalence between stacking and the best-performing candidate learner.8

A drawback of DDML with stacking is its computational complexity. Considering the

estimation of a single candidate learner as the unit of complexity (and ignoring the cost

of fitting the final learner), DDML with stacking heuristically has a computational cost
8The scikit-learn (Buitinck et al., 2013) routines StackingRegressor and StackingClassifier im-

plement stacking for Python. In Stata, stacking regression and classification are available via pystacked,
which is a Stata front-end for these Python routines (Ahrens, Hansen, and Scha�er, 2022).
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proportional to K ◊ V ◊ J . For example, when considering DDML with K = 5 cross-

fitting folds and J = 10 candidate learners that are combined based on V = 5 fold cross-

validation, more than 250 candidate learners need to be individually estimated. Although

DDML with stacking is “embarrassingly parallel” and can thus be expected to decrease

in computational time nearly linearly in the number of available computing processes, the

increased complexity limits its application to moderately complex applications. Another

potential concern (which we investigate in Section 4.2) is that DDML with stacking might

not perform well in small samples, given that candidate learners are e�ectively trained on

approximately (K≠1)(V ≠1)
KV % of the full sample (see Figure 2). These two concerns motivate

short-stacking.

DDML with short-stacking. In the context of DDML, we propose to take a short-

cut: Instead of fitting the final learner on the cross-validated fitted values in each step k

of the cross-fitting process, we can directly train the final learner on the cross-fitted values

using the full sample; see Figure 3. Formally, candidate learners are then combined to

solve

min
w1,...,wJ

nÿ

i=1

Q

aYi ≠
Jÿ

j=1
wj

ˆ̧(j)
Ic

k(i)
(Xi)

R

b
2

s.t. wj Ø 0,
ÿ

j

|wj| = 1

where wj are the short-stacking weights. Cross-fitting thus serves a double purpose:

First, it avoids the own-observation bias by avoiding overlap between the samples used

for estimating high-dimensional nuisance functions and the samples used for estimating

structural parameters. Second, it yields out-of-sample predicted values which we leverage

for constructing the final stacking learner. As a consequence, the computational cost of

DDML with short stacking is heuristically only proportional to K◊J in units of estimated

candidate learners. In the example from the previous paragraph, short-stacking thus

requires estimating about 200 fewer candidate learners.

We recommend DDML with short-stacking in settings where the number of candidate

learners is small relative to the sample size, i.e., J π n. If instead the number of

considered learners is very large relative to the sample size — i.e., settings in which
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inference for standard linear regression on J variables is invalid — pairing DDML with

short-stacking may introduce bias.9 Since current applications of machine learning in

economics and other social sciences rarely consider more than a few candidate learners,

however, this is unlikely to be a strong concern in practice.

Figure 3: Cross-fitting with short-stacking

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each (k, j), fit learner j on the train-
ing sample j and obtain cross-fitted values as
ˆ̀(j)
Ic
k
(Xi) for i 2 Ik.

3. Use final learner to fit Y against ˆ̀(1)
Ic
k
(Xi), . . . , ˆ̀

(J)
Ic
k
(Xi) on

full sample, obtain short-stacking weights ŵj and cross-fitted

short-stacked values as
P

j
ŵj

ˆ̀(j)
Ic
k
(Xi).

Notes: The diagram illustrates cross-fitting combined with short-stacking
with K = 5 cross-fitting folds. The illustration uses the estimation of
¸0 = E[Y |X] as an example.

DDML with pooled stacking. While DDML with conventional stacking has one vec-

tor of weights per cross-fitting fold, short-stacking yields a single weight for each learner.

A single weight for each learner decreases the variance of the final estimator and fa-

cilitates the interpretation of the stacking weights. Another way of achieving common

stacking weights is DDML with pooled stacking. Pooled stacking relies on the two-layer
9Suppose, for simplicity, we consider ordinary (unconstrained) least squares as the final learner. Heuris-

tically, the regression of Yi against J sets of cross-fitted predicted values is akin to a conventional least
squares regression of Yi against J observed regressors where good performance would require J/n æ 0,
ignoring that the cross-fitted predicted values are estimated. The additional regularization by constrained
least squares should further weaken this rate requirement.
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re-sampling strategy outlined above, but combines candidate learners to solve

min
w1,...,wJ

ÿ

iœI

ÿ

k ”=k(i)

Q

aYi ≠
Jÿ

j=1
wj

ˆ̧(j)
T c

k,v(i)
(Xi)

R

b
2

s.t. wj Ø 0,
Jÿ

j=1
|wj| = 1.

That is, pooled stacking collects the cross-validated predicted values that are calculated in

each step k of the cross-fitting process for each learner j and estimates the stacking weights

based on the pooled data set. We note that the computational costs are approximately

the same as for DDML with conventional stacking.

4 The Practical Benefits of DDML with Stacking:

Two Simulation Studies

In this section, we discuss two simulation studies illustrating the advantages of pairing

DDML with stacking over alternative approaches based on single pre-selected learners.

We begin with a simulation calibrated to household data on wealth and 401k eligibility

from the 1991 wave of the Survey of Income and Program Participation (SIPP) in Section

4.1. In Section 4.2, we revisit the simulation of Wüthrich and Zhu (2021) to assess the

robustness of DDML with stacking approaches in very small samples.

4.1 Simulation calibrated to the SIPP 1991 household data

To assess the performance of DDML with conventional stacking, short-stacking and pooled

stacking in a realistic setting, we consider the analysis of 401(k) eligibility and total finan-

cial assets in Poterba, Venti, and Wise (1995) as the basis for an empirically calibrated

Monte Carlo simulation. The application has recently been revisited by Belloni et al.

(2017), Chernozhukov et al. (2018), and Wüthrich and Zhu (2021) to approximate high-

dimensional confounding factors using machine learning. We focus on estimating the

partially linear model discussed in the previous section. The outcome is measured as

net financial assets, the treatment variable is an indicator for eligibility to the 401(k)

13



Let {(yi, di, xi)}i=1,...,n denote the observed sample, where i is a household in the 1991
SIPP and yi, di, and xi respectively denote net financial assets, an indicator for 401(k)
eligibility, and the vector of control variables.

1. Using the full sample, obtain the slope coe�cient ◊̂OLS ¥ 5 896 from linear regression
of di against di, and xi in the original data. Construct the partial residuals y(r)

i
=

yi ≠ ◊̂OLSdi, ’i.
2. Fit a supervised learning estimator (either linear regression or gradient boosting) to

predict y(r)
i

with the controls xi. Denote the fitted estimator by g̃. Similarly, fit a
supervised learning estimator to predict di with xi and denote the fitted estimator
by h̃.

3. Repeat to generate simulated samples of size nb:
(a) Sample from the empirical distribution of xi by bootstrapping nb observations

from the original data. Denote the bootstrapped sample by Db.
(b) Draw ‹i

iid≥ N (0, Ÿ1) and Ái

iid≥ N (0, Ÿ2), where Ÿ1 and Ÿ2 are simulation
hyperparameters. Define

d̃(b)
i

= {h̃(xi) + ‹i Ø 0.5}

ỹ(b)
i

= ◊0d̃(b)
i

+ g̃(xi) + Ái ’i œ Db

where we set ◊0 = 6 000 to roughly resemble the magnitude of the regression
coe�cient of 401(k) eligibility in the full data.

Notes: We set the hyper-parameter Ÿ1 and Ÿ2 to approximately match variance of 401(k) eligibility and log-wealth in the
data. The values of the simulation hyperparameters (Ÿ1, Ÿ2) di�er slightly depending on the supervised learning estimator
used to fit the reduced form equations in the data. We take Ÿ1 = 0.35 in both scenarios but take Ÿ2 = 55 500 when using
linear regression and Ÿ2 = 54 000 when using gradient boosting. Di�erences arise because gradient boosting reduces residual
variance in the true data.

Algorithm 1: Algorithm for the calibrated Monte Carlo simulation

pension scheme, and the set of controls includes age, income, education in years, family

size, as well as indicators for two-earner status, home ownership, and participation in two

alternative pension schemes.

The simulation involves three steps. In the calibration step, we fit two generative

models to the n = 9 915 households from the 1991 wave of the Survey of Income and

Program Participation. The first generative model is fully linear while the second is

partially linear, allowing controls to enter non-linearly through gradient-boosted trees

fitted to the real data. This approach is aimed at extracting and magnifying the linear or

non-linear structures in the empirical conditional distributions, respectively, enabling us

to compare the performance of estimators across favorable and unfavorable structures of

the data. The generative step then simulates datasets of size nb = {9 915, 99 150} from the

14



respective fully linear model and the partially linear model. Throughout, we set the e�ect

of 401(k) eligibility on total financial wealth to ◊0 = 6 000. Finally, in the estimation step,

we fit various estimators to bootstrapped samples of the generated datasets and assess

their statistical properties. We outline the steps used for constructing the two generative

models in more detail in Algorithm 1.

For each bootstrap sample, we calculate estimates of the e�ect of 401(k) eligibility on

simulated net financial assets. The estimators we consider are linear regression, the post-

double selection (PDS) lasso estimator proposed by Belloni, Chernozhukov, and Hansen

(2014), as well as DDML estimators with and without stacking. The candidate learners

of the DDML estimators are linear regression, cross-validated lasso and ridge regression

with interactions and second-order polynomial expansions of the controls, cross-validated

lasso and ridge with no interactions but 10th-order polynomial expansions of the controls,

two versions of random forests, two versions of gradient-boosted trees, and feed-forward

neural nets with three hidden layers of size five (see Table 1 notes for details). We

estimate DDML paired with conventional stacking, short-stacking and pooled stacking,

and consider di�erent methods to construct the final conditional expectation function

estimator: CLS, unconstrained linear regression (OLS), selecting the single best estimator,

and an unweighted average.

Table 1 presents the mean bias, median absolute bias (MAB) and coverage rates of a

95% confidence interval associated with estimates of the e�ect of 401(k) eligibility on net

financial assets. The left and right panels correspond to results based on data simulated

from the linear (Panel A) and non-linear (Panel B) generative models, respectively. The

CLS weights associated with each candidate learner are shown in Table 2.10

Given the construction of the generative models, we would expect that linear regression

performs best in the fully linear setting and that DDML with gradient boosting performs

best in the nonlinear setting where the nuisance function is generated by gradient boost-

ing. The simulation results confirm this intuition, showing that the two procedures achieve
10Further results are provided in the Appendix. Tables A.3 and A.2 show the stacking weights when

using single-best and OLS as the final learner. Table A.1 in the Appendix gives the mean-squared
prediction errors (MSPE) for each candidate learner for comparison.
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among the lowest bias and median absolute bias in the data-generating processes that are

based on them. Researchers are rarely certain of the functional structure in economic ap-

plications, however, so that it is more interesting to consider their respective performance

in the non-favorable setting. In the non-linear data-generating process, linear regression

is among the estimators with the worst performance across all three measures. Similarly,

gradient boosting-based DDML is non-optimal in the linear data-generating process. It is

outperformed by linear regression and CV lasso, both of which enforce a linear functional

form on the control variables, in terms of MAB.

The simulation results are consequences of the “no free lunch” theorem in machine

learning (Wolpert, 1996). Informally, the theorem states that there exists no estimator

that performs best across all empirical settings. Researchers must, therefore, carefully

match estimators to their application. However, with limited knowledge about underlying

data-generating processes and few functional form restrictions implied by economic theory,

the number of plausibly suitable estimators is typically large.

The bottom section of Table 1 reports results for DDML combined with the three stack-

ing approaches outlined in Section 3. For each stacking approach, we consider stacking

weights estimated by (CLS) as outlined in Section 3, set equal to 1/J (Average), estimated

without constraint by OLS (OLS), and by selecting only the single best candidate learner

(Single-best). We find that short-stacking performs similarly to, and sometimes better

than, conventional and pooled stacking, while being computationally much cheaper (as

shown in Table A.4). For example, at K = 10 and V = 5, DDML combined with short-

stacking ran around 4.4 times faster on the full sample than DDML with conventional or

pooled stacking, which is roughly in line with a speed improvement by a factor of 1/V .11

Even though the simulation set-up should favor single-best as the final learner, since

there is one ‘true’ candidate learner, single-best does not clearly outperform CLS. The

bias of the OLS final learner is overall similar to CLS, except when employing conventional
11The computations were performed on the high-performance cluster of the ETH Zurich. Each instance

used a single core of an AMD EPYC processor with 2.25-2.6GHz (nominal)/3.3-3.5 GHz (peak) and 4GB
RAM. The run time of DDML with conventional stacking was 2 393s on the full sample, while short-
stacking ran in only 540s.
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Table 2: Average stacking weights with CLS

Stacking Pooled stacking Short-stacking

Panel (A): Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0.768 0.329 0.820 0.349 0.768 0.287
Lasso with CV (2nd order poly) 0.069 0.021 0.057 0.011 0.069 0.015
Ridge with CV (2nd order poly) 0.072 0.041 0.057 0.028 0.093 0.051
Lasso with CV (10th order poly) 0.016 0.206 0.013 0.221 0.012 0.198
Ridge with CV (10th order poly) 0.023 0.112 0.017 0.098 0.020 0.128
Random forest (low regularization) 0.003 0.003 0.002 0.002 0.002 0.002
Random forest (high regularization) 0.007 0.009 0.005 0.006 0.005 0.006
Gradient boosting (low regularization) 0.018 0.162 0.014 0.178 0.013 0.190
Gradient boosting (high regularization) 0.004 0.007 0.003 0.004 0.002 0.002
Neural net 0.020 0.110 0.011 0.104 0.015 0.122

Panel (B): Non-Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0. 0. 0. 0. 0. 0.
Lasso with CV (2nd order poly) 0. 0. 0. 0. 0. 0.
Ridge with CV (2nd order poly) 0. 0.034 0. 0.035 0. 0.026
Lasso with CV (10th order poly) 0. 0.001 0. 0.001 0. 0.
Ridge with CV (10th order poly) 0. 0.038 0. 0.037 0. 0.027
Random forest (low regularization) 0.153 0.003 0.154 0.001 0.180 0.001
Random forest (high regularization) 0. 0.061 0. 0.065 0. 0.070
Gradient boosting (low regularization) 0.845 0.852 0.846 0.856 0.820 0.870
Gradient boosting (high regularization) 0. 0. 0. 0. 0. 0.
Neural net 0.002 0.011 0. 0.006 0. 0.006

Notes: The table shows the average stacking weights associated with the candidate learner for DDML with conventional
stacking, pooled stacking and short-stacking. The final learner is CLS. The bootstrap sample size is nb = 9, 915 and the
number of cross-fitting folds is K = 2. Results are based on 1,000 replications. See Table 1 for more information.

stacking under the non-linear DGP for nb = 9 915 where the average bias is almost four

times as large. The unweighted average appears sub-optimal for nb = 99 150 under the

non-linear DGP, and its performance likely deteriorates further if many poorly chosen

candidate learners are included.

The CLS weights in Table 2 indicate that stacking approaches successfully assign the

highest weights to the estimators aligning with the data-generating process (i.e., either

OLS or gradient boosting) among the ten included candidate learners, illustrating the

ability to adapt to di�erent data structures. Specifically, the stacking methods applied to

the linear data-generating process assign the largest weight to linear models while they

assign the largest weights to the gradient-boosting estimators and the lowest weights to

estimators that impose a linear functional form on the control variables in the non-linear

data-generating process.12 We conclude that DDML paired with stacking approaches

reduces the burden of choice researchers face when selecting between candidate learners
12The rates at which each candidate learner is selected by the single-best final learner are shown in

Table A.3 in the appendix and provide similar insights.
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and specifications by allowing for the simultaneous consideration of multiple options, thus

implying attractive robustness properties across a variety of data-generating processes.

4.2 DDML and Stacking in Very Small Samples

A possible concern for estimators relying on machine learning is that they might not per-

form well for very small samples, given that their flexibility comes at the cost of increased

variance compared to parametric estimators. Wüthrich and Zhu (2021, henceforth WZ)

use two simulations to demonstrate that PDS lasso tends to underselect controls, which

may result in a substantial small-sample bias. They also show that the bias heavily

depends on the exact lasso penalty chosen (i.e., whether the plugin penalty of Belloni,

Chernozhukov, and Hansen 2014 is scaled by 0.5 or 1.5), and argue in favor of OLS with

appropriately chosen standard errors over PDS lasso in high-dimensional settings.

We revisit the 401(k) simulation set-up in WZ to assess if DDML with stacking su�ers

from similar issues in small samples and to compare the performance of DDML paired

with stacking with PDS lasso and OLS. Following WZ, we run simulations on bootstrap

samples of the data for nb = {200, 400, 800, 1600} and approximate the bias as the mean

di�erence relative to the full-sample estimates (n = 9 915).13 WZ consider two sets of

controls: two-way interactions (TWI), and quadratic splines with interactions (QSI) (as

in Belloni et al., 2017). The number of predictors is 167 and 272, respectively. Figure 4

replicates the main results of WZ (Figure 8 in their paper). Panels (a) and (b) show

the bias relative to the full sample estimate for the TWI and QSI specification based

on OLS and PDS lasso with tuning parameter equal to the plugin penalty of Belloni,

Chernozhukov, and Hansen 2014 scaled by c for c œ {0.5, 1, 1.5}. It is noteworthy that the

speed at which the bootstrapped estimates converge to the full-sample estimate depends

on the set of controls for the PDS lasso, but less so for OLS. While PDS lasso with

c = {0.5, 1} and OLS perform similarly if QSI controls are used, PDS lasso converges

much more slowly to the full-sample estimate with TWI controls.
13The full-sample estimates are reported in Table B.1.
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Figure 4: Replication of Figure 8 in Wüthrich and Zhu (2021).

(a) Bias (TWI) (b) Bias (QSI)

Notes: The figures report the mean bias calculated as the mean di�erence to the full sample estimates. Full sample estimates
reported in Table B.1. Following WZ, we draw 1 000 bootstrap samples of size nb = {200, 400, 600, 800, 1200, 1600}. ‘TWI’
indicates that the predictors have been expanded by two-way interactions. ‘QSI’ refers to the quadratic spline & interactions
specification of Belloni et al. (2017).

The DDML-stacking framework allows us to choose between, and combine, OLS and

lasso with both the TWI and QSI set of controls. Another advantage of DDML over PDS

lasso is that we can leverage lasso with cross-validated penalization for a fully data-driven

penalization approach. Table 3 compares the performance of the full-sample estimators

OLS and PDS lasso (shown in Panel A) to DDML-stacking estimators only relying on

OLS and CV lasso with TWI and QSI controls as candidate learners (Panel B). We again

consider conventional stacking, short-stacking and pooled stacking together with either

CLS or single-best as the final learner. We set the number of cross-fitting folds to K = 10

(but also consider K = 2 below for comparison in Panel E).

Across all sample sizes, the DDML-stacking estimators strictly outperform both OLS

specifications, as well as PDS lasso with TWI, and exhibit overall similar performance to

PDS lasso utilizing OLS controls and c = {0.5, 1}. The di�erences across DDML-stacking

estimators are relatively minor. The CLS short-stacking weights reported in Table 4, Panel

A-B, reveal that CV-lasso with QSI controls receives the largest weights, while both OLS

specifications contribute jointly between nearly zero (at nb = 200) and only up to 15% (for

nb = 1600 and the estimation of E[D|X]). When selecting only a single candidate learner,

CV-lasso with QSI is chosen in more than 90% of bootstrap iterations for the estimation of

E[Y |X] and E[D|X] (Panel C-D in Table 4), suggesting that CV-lasso with QSI controls
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Table 3: Mean bias relative to full-sample estimates

Bootstrap sample size nb

200 400 600 800 1200 1600

Panel A. Full-sample estimators

OLS QSI ≠2083.5 ≠910.2 ≠806.4 ≠809.9 ≠677.2 ≠626.5
OLS TWI ≠1694.5 ≠475.4 13.2 ≠366 ≠320.3 ≠91.3
Post double Lasso QSI c=0.5 409.2 ≠308.9 ≠204 ≠503.1 ≠571.6 ≠354.1
Post double Lasso QSI c=1 ≠179.1 ≠1113.5 ≠639.4 ≠1063.2 ≠1000.5 ≠523.5
Post double Lasso QSI c=1.5 8021.3 739.9 ≠1526.2 ≠2434.4 ≠2255.4 ≠1863.5
Post double Lasso TWI c=0.5 3611.2 2484.4 2347.2 1748.3 1270.4 1197.5
Post double Lasso TWI c=1 6303.3 3501.1 3453.1 2523.9 1702.4 1871.8
Post double Lasso TWI c=1.5 14 386.1 8981.9 6317.9 4802.2 3939 3094.5

Panel B. DDML-stacking with only OLS and CV lasso (K = 10)

Short-stacking: CLS 1020 ≠113.8 ≠181.1 ≠538.2 ≠575.6 ≠292.4
Short-stacking: Single-best 1002.3 ≠122.2 ≠270.1 ≠499.7 ≠550.3 ≠197.7
Pooled stacking: CLS 925.7 ≠237.3 ≠319.1 ≠628.1 ≠711 ≠370.5
Pooled stacking: Single-best 782.3 ≠200.5 ≠358.9 ≠541.2 ≠580.2 ≠237.5
Stacking: CLS 1155.8 ≠254.7 ≠266.9 ≠645 ≠633 ≠315.1
Stacking: Single-best 999.5 ≠23.6 ≠184.9 ≠503.9 ≠571.1 ≠248.2

Panel C. DDML-stacking will all candidate learners (K = 10)

Short-stacking: CLS 1355.1 342.2 403.3 34.2 ≠103.9 43.8
Short-stacking: Single-best 669.2 113.5 144.6 ≠182.3 ≠272.6 48.9
Pooled stacking: CLS 2849.3 1345.7 1197 383.8 ≠102.3 ≠10.6
Pooled stacking: Single-best 724.1 ≠69.4 45 ≠250.7 ≠309 ≠19.4
Stacking: CLS 1394.1 296.9 344.5 2.8 ≠168.5 56.9
Stacking: Single-best 718.4 ≠47 104.3 ≠141.5 ≠318.6 42.5

Panel D. DDML with candidate learners (K = 10)

OLS 963 ≠150.8 210 ≠161.7 ≠235.5 31.8
Lasso with CV (TWI) 5948.6 3223.1 2589.1 1706.2 872.2 734.1
Ridge with CV (TWI) 4137.3 1853.8 1617.5 951.8 657.5 879.2
Lasso with CV (QSI) 297.5 ≠343.9 ≠311.9 ≠551.8 ≠597.1 ≠239.8
Ridge with CV (QSI) 426.1 ≠111 85.3 ≠240.8 ≠294.4 ≠7.8
Random forest (low regularization) 1852.8 618.3 709.6 259.7 7.7 95.5
Random forest (high regularization) 9987.4 4270.1 2940.2 1919.5 1037.8 925
Gradient boosting (low regularization) 772.3 ≠25 306.3 70.7 ≠127.2 113
Gradient boosting (high regularization) 1060.8 94.3 564.6 292.5 44.2 228.6
Neural net 8892.3 7481.2 6915.4 5653.2 3716.5 2224.2

Panel E. DDML-stacking will all candidate learners (K = 2)

Short-stacking: CLS 1842.3 1078.3 ≠144.4 61.2 446.7 282.9
Short-stacking: Single-best 1303.5 582.3 ≠436.4 ≠248.8 194 111.1
Pooled stacking: CLS 2799 1471.3 159.5 209.8 572.7 508.8
Pooled stacking: Single-best 1791.9 622.9 ≠542.3 ≠296.3 144.7 84.8
Stacking: CLS 1924.6 1196.1 ≠191.2 59.4 390.3 310.9
Stacking: Single-best 1173.4 549.6 ≠604.2 ≠285 181.8 138.3

Notes: The table reports the mean bias calculated as the mean di�erence to the full sample estimates. Following WZ, we
draw 1 000 bootstrap samples of size nb. In Panel A, we show results for the full-sample estimators OLS and PDS lasso
using either two-way interactions as controls (denoted TWI) or the quadratic spline & interactions specification of Belloni
et al. (2017, denoted as QSI). We scale the PDS lasso penalty by c = 0.5, 1 or 1.5. In Panel B, we report results for
DDML with stacking approaches and only relying on OLS and CV lasso. In Panel C, we consider a larger set of candidate
learners. These are: OLS, CV lasso and CV ridge with either TWI or QSI controls, random forest with low regularization (8
predictors considered at each leaf split, no limit on the number of observations per node, bootstrap sample size of 70%) or
high regularization (5 splitting predictors, at least 10 observation per node, bootstrap sample size of 70%), gradient-boosted
tree with either low (500 trees, learnings rate of 0.01) or high (250 trees, learning rate of 0.01) regularization, and a neural
net with three hidden layers of size 5. Panel D shows results for these individual candidate learners. In Panels B–D, we use
K = 10 cross-fitting folds and R = 5 cross-fitting repetitions. Panel D uses the same specifications as Panel C, but uses
K = 2.
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is strictly preferable over OLS and lasso with TWI controls in this application. This

simulation exercise again highlights that relying on poorly chosen specifications that are

not validated against other choices might be sub-optimal. In practice, the researcher does

not know whether TWI or QSI controls perform better and whether to use OLS or lasso.

Crucially, DDML paired with stacking allows for simultaneous consideration of OLS and

lasso with both TWI and QSI controls and thus resolves the choice between learners and

control specifications in a data-driven manner.

Table 4: Short-stacking weights

Estimator Observations

200 400 600 800 1200 1600 9915
Panel A. Constrained least squares. E[Y |X], K = 10

OLS (TWI) .01 .042 .062 .078 .098 .113 .013
OLS (QSI) 0 0 .002 .008 .023 .032 .128
Lasso with CV (TWI) .249 .2 .196 .171 .158 .14 .214
Lasso with CV (QSI) .74 .758 .74 .742 .721 .716 .645

Panel B. Constrained least squares. E[D|X], K = 10
OLS (TWI) .005 .037 .055 .074 .1 .127 .13
OLS (QSI) 0 0 .001 .003 .011 .022 .134
Lasso with CV (TWI) .264 .163 .137 .119 .114 .111 .232
Lasso with CV (QSI) .731 .8 .807 .803 .775 .74 .504

Panel C. Single-best. E[Y |X], K = 10
OLS (TWI) 0 0 0 0 .001 0 0
OLS (QSI) 0 0 0 0 0 0 0
Lasso with CV (TWI) .186 .141 .128 .112 .09 .081 0
Lasso with CV (QSI) .814 .859 .872 .888 .909 .919 1

Panel D. Single-best. E[D|X], K = 10
OLS (TWI) 0 0 0 0 0 0 0
OLS (QSI) 0 0 0 0 0 0 0
Lasso with CV (TWI) .239 .126 .098 .079 .06 .068 .003
Lasso with CV (QSI) .761 .874 .902 .921 .94 .932 .997

Notes: The table reports the stacking weights corresponding to the DDML short-stacking estimators in Figure 3. Panel
A-B use constrained least squares. Panel C-D rely on the single-best final learner. Panel A and C refer to the estimation
of E[Y |X]; Panel C and D to the estimation of E[D|X]. See notes below Table 3 for more information.

In the next step, we expand the set of candidate learners by two types of random

forests, two types of gradient-boosted trees and a feed-forward neural net. In principle,

widening the set of candidate learners increases robustness to a larger class of unknown

confounding structures. We show the results in Panel C, Table 3. When measuring

performance based on the di�erence to the full-sample estimates, we find there are ben-

efits of extending the set of candidate learners for bootstrap sample sizes of nb = 800 or

larger. The results are generally comparable across conventional, short and pooled stack-

ing. However, single-best exhibits a lower bias for small bootstrap sample sizes vs. CLS,
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while pooled stacking with CLS appears to perform worse. The CLS weights reported

in Appendix Table B.2 illustrate how DDML-stacking estimators adapt to the sample

size. For example, for smaller sample sizes, a larger weight is put on OLS in the esti-

mation of E[Y |X]. In Panel D, we report results for each candidate learner individually.

DDML-stacking approaches perform better than most individual candidate learners and

similar to the best-performing individual learner, which is DDML with CV lasso and QSI

controls. In Panel E, we also show results if we reduce the number of folds to K = 2.

The performance deteriorates drastically for smaller sample sizes, indicating that—while

DDML stacking appears competitive for small sample sizes—it is important to increase

the number of folds to ensure larger training samples for the CEF estimators.

A drawback of measuring the bias as the di�erence to the full-sample estimate is that

we do not gain insights about convergence to the true parameter. We thus revisit the

calibrated simulation exercise from Section 4.1, which allows us to measure the bias as

the di�erence to the true parameter. When the DGP is linear (see Figure 5a), DDML

with short-stacking or pooled stacking perform overall similarly to OLS. DDML with

conventional stacking exhibits relatively large bias with nb = 400. If the true DGP is

non-linear, see Figure 5b, OLS and PDS-Lasso are unable to recover the true e�ect, while

DDML with short and pooled stacking yield reasonably close approximations of the true

parameter even for small sample sizes. DDML with conventional stacking is competitive

only for larger samples. We provide extensive results for mean bias and coverage rates in

Tables B.3 and B.4 in the Appendix.

To conclude, the results highlight the risks of relying on inappropriate functional form

assumptions. DDML paired with stacking approaches—when combined with a diverse

set of candidate learners—imposes weaker conditions on the underlying data-generating

process compared to relying on a single pre-selected learner. Short-stacking and pooled

stacking outperform conventional stacking in small samples. We conjecture the improve-

ment is due to short and pooled stacking imposing common weights across cross-fitting

folds.
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Figure 5: Mean bias for very small sample sizes

(a) Linear DGP (b) Non-linear DGP

Notes: The figure shows results from the calibrated simulation in Table 1, but with smaller bootstrap sample sizes. See
table notes in Table 1 for more information. Full results for bias and coverage in small samples can be found in Table B.3
and B.4.

5 Applications

In this section, we use two applications to illustrate how pairing DDML and stacking

can increase the robustness of structural parameter estimates to the underlying structure

of the data. In the first application, we estimate gaps in citations of articles in top

economics journals across di�erent gender compositions among the authors. We condition

on the abstract to proxy for the content and quality of the paper and demonstrate that

stacking-based DDML is a practical solution to challenging estimation problems using

text data. In the second application, we revisit the UK sample of the OECD Skills

Survey for Kitagawa-Oaxaca-Binder estimates of the unexplained gender wage gap where

we condition on a large set of individual characteristics. Both applications pertain to

the literature on gender gaps in various domains, e.g., entry to STEM programs (Card

and Payne, 2021), ICT literacy (Siddiq and Scherer, 2019) or wages (Strittmatter and

Wunsch, 2021; Bonaccolto-Töpfer and Briel, 2022), and are methodologically also closely

related to the broader literature on discriminatory attitudes towards minority groups (e.g.,

Hangartner, Kopp, and Siegenthaler, 2021).
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5.1 Gender gap in citations

This section uses DDML with stacking to estimate a partially linear model applied to

average di�erences in citations of articles published in top-30 economic journals from

1983 to 2020 by the gender composition of the authors. Following Card et al. (2020),

we distinguish between papers with (imputed) all-male, all-female, and mixed-gender

authorship.14 Instead of conditioning on hand-coded characteristics such as JEL codes,

we leverage the abstract text as a proxy for the topic and quality of the article. Estimating

these conditional di�erences is a challenging statistical problem due to the non-standard

nature of text data, and researchers are faced with two key decisions when operationalizing

an estimator using text data: how to encode the text data into numerical features, and how

to select a suitable learner given the encoded data. Both decisions are ex-ante challenging,

but also practically highly relevant as text data is becoming increasingly encountered

in economic applications (e.g., Gentzkow and Shapiro, 2010; Chen and Ornaghi, 2023;

Widmer, Galletta, and Ash, 2023). We show that these decisions can be consequential and

that by simultaneously considering di�erent encoding procedures and multiple learners,

DDML with stacking provides a simple practical solution to both problems.

In documenting average di�erences in citations, the analysis presented also contributes

to the broader literature on gender biases in academia (e.g., Lundberg and Stearns, 2019;

Card et al., 2020; Hengel, 2022). It is well-documented that women are under-represented

in academia, especially in senior positions (Ceci et al., 2014; Lundberg and Stearns, 2019).

A possible reason for the persistent gap in representation include is that scholarly work

produced by women faces more sceptical scrutiny compared to work produced by their

male counterparts (Hengel, 2022; Krawczyk and Smyk, 2016). Higher scrutiny could be,

for example, reflected at the refereeing stage when a publication decision is made and, as

we examine here, after publication when scholarly work is attributed by other scholars

through citations (Card et al., 2020; Roberts, Stewart, and Nielsen, 2020; Grossbard,

Yilmazer, and Zhang, 2021).
14As we explain below, we impute the gender mix of authors from the authors’ names.
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Throughout our analysis, we focus on a descriptive characterization of the average gaps

in citations across di�erent gender compositions of the authors as given by ◊0 in the par-

tially linear model of Equation (1) where Y denotes log-citations, D is a two-dimensional

vector whose first component is an indicator for all-female authorship and whose second

component is an indicator for mixed-gender authorship. The vector X collects the con-

tent of the abstract and a set of year-of-publication indicators. The two components of ◊0

may thus be interpreted as summarizing the average relative di�erence in total citations

between all-male and all-female authorship, and all-male and mixed-gender authorship,

respectively, conditional on the article’s year of publication and abstract. Throughout, we

make no conditional unconfoundedness assumptions that would be necessary for causal

interpretations.

We consider a sample of 29 185 articles that have been published between 1983–2020.

The data was sourced from Scopus and is a sub-sample of the data analyzed in Advani

et al. (2021), who kindly shared their data with us. For each article, we have a record of

the citation count and the authors’ names, which we use to infer the authors’ gender.15 In

the sample, 6.2% of articles are authored by only female authors and 23.5% have authors

from both genders.

Before turning to estimation, the text of the abstract needs to be transformed into a

numerical vector. To admit estimation conditional on the content of the abstract, it is

necessary to find a representation (referred to as embedding) of the text that is lower-

dimensional but captures its core meaning. An active literature in statistics and computer

science provides solutions to this problem, suggesting a large variety of algorithms to

construct text embeddings (see the overview in Ash and Hansen, 2023). Thus, in addition

to the choice of candidate learner, researchers intent on using text data for their analysis

are faced with the additional choice of embedding algorithm. To illustrate how stacking-

based DDML can help support this choice, we consider two procedures for encoding the
15We use the software Namsor which ranks among the best-performing algorithms for gender clas-

sification using names (Sebo, 2021). Articles of authors whose gender could not be classified with a
probability of less than 70% were excluded. Our sample includes 620 articles for which no citation is
recorded. These were excluded from the analysis. We also provide results using the number of citations
in Appendix Table C.1.
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text of the abstract into numerical features: First, we consider a bag-of-word model

summarizing the text as (stemmed) word counts (as used in, e.g., Enke, 2020; Esposito

et al., 2023). In our data, this results in a 211-dimensional vector of word counts for each

abstract. Second, since the bag-of-word approach disregards the word order and context,

we construct word embeddings generated by a pre-trained BERT model, a transformer-

based large-language model (Devlin et al., 2018). In particular, for each abstract, we

extract the 768-dimensional vector of weights from the last hidden layer of the BERT

model that was pre-trained on a large corpus of (uncased) English text data.16 Instead

of embedding individual words, BERT attempts to reconstruct both whole sentences and

the context of these sentences, making it particularly suitable to characterize the content

of the abstracts. Recently, Bajari et al. (2023) use BERT to construct embeddings of

product descriptions on Amazon.com.

The numerical abstract embeddings are then used in several base learners. We consider

OLS, PDS lasso and DDML with CV lasso, CV ridge, XGBoost (Chen and Guestrin,

2016), random forests and a feed-forward neural net (see table notes for details).17 The

base learners are aggregated by pairing DDML with either conventional stacking or short-

stacking, and with either CLS or single-best.18 The final estimator thus simultaneously

aggregates across both the text embedding algorithm and the base learner.

Figure 6 shows estimates of the average relative di�erence in total citations between

all-male and all-female authorship (top-panel) and all-male and mixed-gender authorship

(bottom-panel), respectively, for di�erent control specifications and estimators. When we

only condition on the publication year, the citation penalty for all-female authorship is

close to zero, while there is a large positive e�ect of +21.2% (s.e. = 1.7) for mixed-gender

authorship. We next employ PDS lasso to add the abstract text either in the form of word

counts or as BERT features. Using the latter, the citation gap increases to ≠8.1% (2.8)
16The model bert-base-uncased is freely available from, among others, the Python library

huggingface.
17To reduce the run time, we use regression approaches both for the estimation of E[Y |D, X] and

E[D|X]).
18We omit pooled stacking from this application since the R package ddml, which was used for this

application, does currently not support pooled stacking.
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Figure 6: The citation gap by authors’ gender composition

Full-sample estimators DDML with candidate learners DDML and stacking

Notes: The figure shows estimates of ◊0 summarizing average relative di�erence in total citations between all-male and all-
female authorship, and all-male and mixed-gender authorship, respectively, conditional on the article’s year of publication
and abstract. Error-bars show heteroskedasticity-robust 95% confidence intervals. We consider the following estimators:
OLS, PDS lasso and DDML with the following candidate learners: OLS, CV ridge, CV lasso, XGBoost (using 500 trees,
learning rate of 0.3), random forest (using 500 trees) and feed-forward neural net (early stopping with 15 rounds, 0.5 dropout,
0.1 learning rate, 0.1 validation split, 50 epochs, 500 batch size and 3 hidden layers of size 10). Finally, we pair DDML
with either conventional stacking or short-stacking, and with either CLS or single-best as the final learner based on the
above candidate learners. Throughout, we use five cross-fitting repetitions, five cross-validation folds and five cross-fitting
folds. Results from each cross-fitting replication are illustrated in green, and median aggregates across the cross-fitting
replications are shown in orange. The sample includes 29 185 articles published between 1983–2020 in top-30 economics
journals. A tabular version is provided in Table C.1.
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for articles with all-female authorship, while the average relative di�erence of articles with

mixed-gender authorship reduces to +8.6% (1.6). The estimates are qualitatively similar

when using word counts instead of BERT features.

In the figure, we also show five cross-fitting repetitions of pairing DDML with each

candidate learner (in green) and the median aggregates over these repetitions (in orange).

There are considerable di�erences across DDML estimators, with the median estimates

of the citation gap ranging between ≠4.2% (4.3) and ≠13.4 (3.2) for articles with all-

female authorship and between ≠4.4 (14.3) and +9.3 (1.7) for articles with mixed-gender

authorship, highlighting that di�erent candidate learner specifications can yield vastly

di�erent e�ect sizes. These stark di�erences emphasize the need to choose and tune CEF

estimators carefully. Without thoroughly validating each candidate learner, judging which

results are more credible is di�cult. Furthermore, it is noteworthy that some candidate

learners exhibit substantial instability across cross-fitting repetitions, especially the neural

net learners, which is also reflected in the large median-aggregate standard errors.

We show results from pairing DDML and stacking approaches on the right-hand side

of the same figure. Relative to the DDML estimates based on the individual candidate

learners, the stacking approaches yield lower variability over cross-fitting repetitions, sug-

gesting higher stability. All four stacking-based approaches agree on an average relative

di�erence in citations of ≠7.7% (2.8) for articles with all-female authorship and suggest

a citation advantage of between +5.4 (1.6) and +6.4 (1.7) for articles with mixed-gender

authorship.

Table 5 shows that stacking weights of conventional and short-stacking with con-

strained least squares as the final learner. The stacking estimators assign small weights to

learners exhibiting a relatively large MSPE and large variability over cross-fitting repeti-

tions. For example, in the CEF estimation of log citations, the neural nets have an MSPE

that is over twice as large as that of other learners. Stacking assigns, as desired, zero

weights to the neural nets, whereas OLS leveraging BERT as one of the best-performing

learners receives the largest weights. It is noteworthy that the stacking weights often

vary markedly across CEFs, highlighting that there is no reason to assume that the same
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Table 5: Stacking weights in the gender citation gap application.

Citations All female Mixed gender

Conv. Short Conv. Short Conv. Short

Panel A. Stacking and short-stacking weights

OLS & Unigrams 0.109 0.053 0.026 0.158 0.004 0.128
OLS & BERT 0.307 0.389 0.063 0.105 0.153 0.216
CV-lasso & Unigrams 0. 0. 0. 0. 0. 0.
CV-lasso & BERT 0.207 0.142 0.138 0.336 0.079 0.28
CV-ridge & Unigrams 0. 0. 0. 0. 0. 0.
CV-ridge & BERT 0. 0. 0.118 0.378 0.066 0.192
XGBoost & Unigrams 0.212 0.256 0.011 0.002 0.039 0.026
XGBoost & BERT 0.052 0.07 0.005 0.015 0.016 0.036
Random forest & Unigrams 0.037 0.093 0. 0.024 0. 0.139
Random forest & BERT 0. 0. 0.164 0. 0.022 0.
Neural net & Unigrams 0. 0. 0. 0. 0.081 0.
Neural net & BERT 0. 0. 0. 0. 0.124 0.

Citations All female Mixed gender

Panel B. Mean-squared prediction error

OLS & Unigrams 1.335 0.058 0.169
OLS & BERT 1.287 0.058 0.168
CV-lasso & Unigrams 1.334 0.057 0.168
CV-lasso & BERT 1.268 0.056 0.164
CV-ridge & Unigrams 1.335 0.057 0.168
CV-ridge & BERT 1.276 0.056 0.164
XGBoost & Unigrams 1.428 0.074 0.198
XGBoost & BERT 1.517 0.068 0.196
Random forest & Unigrams 1.347 0.059 0.17
Random forest & BERT 1.629 0.059 0.172
Neural net & Unigrams 4.269 0.149 1.424
Neural net & BERT 5.576 0.058 0.184

Notes: Panel A shows stacking weights for conventional stacking (labelled ‘Conv.’) and short-stacking (labelled ‘Short’) by
candidate learners and by variable. Panel B reports the mean-squared prediction error. The final learner is constrained
least squares. The stacking weights are averaged over cross-fitting repetitions. Treatment variables are an indicator for
all-female authors and mixed-gender authors.

learner is best suited for estimating both E[Y |X] and E[D|X]. This insight is especially

important since most estimation approaches (including OLS and PDS lasso) impose the

same structure for each CEF.

The results on the citation gaps in top economic journals conditional on the content

of the abstract are consistent with a citation penalty for all-female authored articles,

possibly due to a higher degree of skepticism towards all-female author teams compared

to all-male author teams. However, similar to Card et al. (2020) and Maddi and Gingras

(2021), the estimates also suggest a conditional citation advantage of articles with mixed-

gender authorship.
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5.2 Gender gap in wages

The gap in wages between men and women is a central measure of economic gender

equality and has been the focus of an extensive empirical literature (see, e.g., the review

in Blau and Kahn, 2017). The classic approach to estimating the unexplained gender wage

gap relies on a linear version of the Kitagawa-Oaxaca-Binder decomposition (Kitagawa,

1955; Oaxaca, 1973; Blinder, 1973; for an overview, see Fortin, Lemieux, and Firpo, 2011).

Several recent articles by Bonaccolto-Töpfer and Briel (2022), Strittmatter and Wunsch

(2021), Böheim and Stöllinger (2021) and Bach, Chernozhukov, and Spindler (2023),

among others, focus instead on semi-parametric decompositions of the wage gap leveraging

more flexible machine learning algorithms. Much of this literature focuses, however,

on lasso-based approaches, even though there is no apparent reason to favor sparsity-

based approaches over learners relying on other regularization assumptions. In contrast

to the recent literature that primarily focuses on lasso-based approaches to estimate the

high-dimensional nuisance functions, we consider a diverse set of candidate learners and

aggregate them via stacking.

The parameter of interest in this application is the unexplained gender wage gap,

which is the expected di�erence in wages after conditioning on observed characteristics.

Formally,

◊0 © E [E [Y |D = 1, X] ≠ E [Y |D = 0, X] |D = 1] ,

where Y denotes the logarithm of wages, D is an indicator equal to one for women, and X

is a vector of potentially many individual characteristics. The parameter is well-defined

if P (D = 1|X) > 0 with probability 1.19

In the absence of functional form assumptions, estimation of ◊0 is a challenging statis-

tical problem due to its dependence on unknown conditional expectation functions that

need to be nonparametrically estimated. Analogous to the DDML estimator for the par-
19As in the previous section, we focus our analysis on a descriptive parameter of interest and do not

make conditional unconfoundedness assumptions that would be necessary for causal interpretations.
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tially linear model outlined in Section 2, we consider estimation of ◊0 via the split-sample

analogue of the e�cient score function for ◊0 – i.e.,

◊̂n = 1
n

nÿ

i=1

Q

a
Di(Yi ≠ ĝIc

ki
(0, Xi))

p̂Ic
ki

≠
m̂Ic

ki
(Xi)(1 ≠ Di)(Yi ≠ ĝIc

ki
(0, Xi))

p̂Ic
ki

(1 ≠ m̂Ic
ki

(Xi))

R

b ,

where ĝIc
k

and m̂Ic
k

are cross-fitted estimators for g0(D, X) © E[Y |D, X] and m0(X) ©

E[D|X], and p̂Ic
k

is a cross-fitted estimator of P (D = 1).

Following Forshaw et al. (2023), we take the data for this application from the UK

sample of the OECD Skills Survey, which was collected in 2011-12 and comes with a rich

set of covariates, including age, experience, education, occupation, and industry. The final

data includes 4 836 British respondents, allowing us to test the performance of DDML

with stacking on a relatively small sample. We specify three sets of control variables:

The reduced set of controls only includes a selection of essential covariates: age (in levels

and squared), years of education, a literacy and numeracy test score, years of tenure

in the current job (in levels and squared), education level, hours worked per week, and

number of children. The base set of controls adds, among others, management level, age

of children, and parents’ education level. Furthermore, we interact age and tenure with

all categorical covariates. The expanded set comprises all variables and interacts each

continuous covariate with each categorical covariate.20

We include a diverse set of candidate learners to allow for a high level of flexibil-

ity. We employ regression approaches for the estimation of the CEF of log wages (i.e.,

E[Y |D, X]) and classification approaches for the CEF estimation of gender (i.e., E[D|X]).

Our candidate learners are linear (or logistic) regression with the reduced and base set

of controls; linear (or logistic) CV-lasso and CV-ridge with the base and extended set of

controls; three random forests with 500 regression (or classification) trees and minimum

leaf sizes of 1, 50 and 100; two types of gradient-boosted regression (or classification) trees
20The base set adds the following variables to the reduced set: area of study, part of larger organization,

management position, type of contract, job satisfaction, health status, living with a partner, age of
youngest child, immigration age, mother’s and father’s highest level of education, immigration status of
parents, informal job-related education in last 12 months, informal non-job-related education in last 12
months.
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with and without early stopping; two feed-forward neural nets with hidden layer sizes of

(40, 20, 1, 20, 50) and (30, 30, 30), and early stopping. Finally, we aggregate the candidate

learners via conventional, short and pooled stacking, and using either CLS or single-best

as the final learner.

Figure 7: Unexplained gender wage gap

Notes: The figure reports DDML estimates of the unexplained gender wage gap based. 95% heteroskedasticity-robust
confidence intervals are shown. The candidate learners (shown on the left-hand side) are as follows: OLS (for the outcome
equation) and logit (for the propensity scores) with the reduced and base set of controls; CV-lasso and CV-ridge with the
base and extended set of controls; three random forests with 500 trees and minimum leaf sizes of 1, 50 and 100; two gradient-
boosted trees with and without early stopping; two feed-forward neural nets with hidden layer sizes of (40, 20, 1, 20, 50) and
(30, 30, 30), and early stopping. On the right-hand side, we show DDML paired with conventional, short and pooled stacking
based on the above candidate learners, and with either CLS or single-best as the final learner. We use 10 cross-fitting folds
and 10 cross-fitting repetitions. Results from each cross-fitting replication are illustrated in green, and median aggregates
across the cross-fitting replications are shown in orange. A tabular version is provided in Table D.4-D.5.

Figure 7 reports results for individual candidate learners (on the top) and stacking

approaches (on the bottom). We show results from 10 cross-fitting repetitions (in green)

and the median aggregates (in orange). We again find that some candidate learners exhibit

substantial variability over cross-fitting repetitions, which is also reflected in the large

median-aggregate standard errors. The variability is especially large for CV-ridge with the

extended set of controls and the neural nets, which are the candidate learners exhibiting

the largest MSE (see Appendix Table D.1). The stacking results are, in contrast, relatively
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stable over cross-fit repetitions when using CLS as the final learner and a little less stable

when relying on single-best as the final learner, indicating that a combination of candidate

learners seems to better fit the data than a single learner. The stacking weights and MSE

in Appendix Table D.1 confirm that there is no single candidate learner dominating the

others. The instability of the single-best final learner is reflected in the stacking standard

errors. Given this potential for instability of choosing a single candidate learner, we

recommend favoring constrained least squares over single-best if one is not confident that

one of the chosen learners will be significantly better than the rest, and thus stably

selected, which seems likely to be the most common setting in practice.

6 Conclusion

This article assesses the performance of DDML estimators in realistic settings using ap-

plications and simulation studies calibrated to real economic data. We highlight that

estimators of structural parameters based on single pre-selected (machine) learners can

be highly sensitive to the underlying structure of the data and/or poor tuning, and we

show that pairing DDML with stacking can help alleviate these concerns, provided that

a su�ciently diverse set of candidate learners is considered.

We discuss pairing DDML with conventional stacking but also suggest two novel stack-

ing approaches: Short-stacking, which substantially reduces the computational burden by

leveraging the cross-fitting naturally arising in the computation of DDML estimates, and

pooled stacking, which decreases the variance of the stacking estimator by imposing com-

mon stacking weights over cross-fitting folds. In our simulations, both strategies are

competitive with conventional stacking in settings with large and moderate sample sizes

and are better in small samples. The advantages of short-stacking are particularly worth

highlighting, given its substantially lower computational cost.

A key advantage of the DDML-stacking approach is that it accommodates both tra-

ditional parametric and nonparametric specifications by allowing simultaneous considera-

tion of, for example, OLS with several sets of controls, sparsity-based learners, tree-based
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ensembles and neural networks. In this sense, researchers are not forcibly deviating from

standard (often linear) specifications unless the data suggests there is reason to. While

machine-learning-based causal methods may yield fundamentally di�erent results from

linear regression only in specific examples, the additional robustness to unexpected struc-

tures in the data thus seems to come at relatively little cost.
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Supplementary material

A The benefits of pairing DDML and stacking

Table A.1: Mean-squared prediction error

nb = 9,915 nb = 99,150

Panel (A): Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X]

Candidate learners

OLS 3.095 0.200 3.089 0.200
Lasso with CV (2nd order poly) 3.097 0.200 3.089 0.200
Ridge with CV (2nd order poly) 3.101 0.200 3.089 0.200
Lasso with CV (10th order poly) 3.213 0.202 3.095 0.200
Ridge with CV (10th order poly) 3.347 0.205 3.094 0.200
Random forest (low regularization) 3.613 0.233 3.699 0.239
Random forest (high regularization) 3.183 0.205 3.197 0.207
Gradient boosting (low regularization) 3.131 0.201 3.102 0.200
Gradient boosting (high regularization) 3.152 0.202 3.138 0.200
Neural net 1.238 0.167 1.248 0.168

Panel (B): Non-Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X]

Candidate learners

OLS 3.685 0.203 3.673 0.203
Lasso with CV (2nd order poly) 3.482 0.201 3.451 0.200
Ridge with CV (2nd order poly) 3.480 0.201 3.450 0.200
Lasso with CV (10th order poly) 5.955 0.225 3.423 0.200
Ridge with CV (10th order poly) 7.062 0.235 3.425 0.200
Random forest (low regularization) 3.795 0.231 3.515 0.236
Random forest (high regularization) 3.591 0.204 3.252 0.205
Gradient boosting (low regularization) 3.353 0.200 3.095 0.198
Gradient boosting (high regularization) 3.405 0.200 3.216 0.199
Neural net 1.433 0.174 1.618 0.175

Notes: The table shows the mean-squared prediction error of each candidate learner. The
bootstrap sample size is nb = 9 915 or 99 150. Results are based on 1 000 replications. See
Table 1 for more information.
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Table A.2: Average stacking weights using OLS as the final learner

Stacking Pooled stacking Short-stacking

Panel (A): Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 1.180 0.937 1.042 0.820 0.910 0.692
Lasso with CV (2nd order poly) –0.025 0.004 0.035 0.049 0.144 0.074
Ridge with CV (2nd order poly) –0.145 –0.186 –0.093 –0.128 –0.062 –0.076
Lasso with CV (10th order poly) –0.018 0.107 –0.017 0.089 –0.042 0.096
Ridge with CV (10th order poly) –0.025 –0.021 –0.007 –0.005 0.023 0.036
Random forest (low regularization) 0.002 –0.006 0.002 –0.007 0.003 –0.007
Random forest (high regularization) –0.011 0.003 –0.008 0.007 –0.016 0.011
Gradient boosting (low regularization) –0.065 –0.132 –0.052 –0.120 –0.032 –0.081
Gradient boosting (high regularization) 0.101 0.292 0.097 0.292 0.079 0.249
Neural net –248.176 0.015 0.008 0.031 0. 0.033

Panel (B): Non-Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0.012 0.049 0. 0.040 –0.044 0.028
Lasso with CV (2nd order poly) –0.125 –0.319 –0.136 –0.202 0.016 –0.375
Ridge with CV (2nd order poly) 0.369 0.534 0.395 0.453 0.166 0.564
Lasso with CV (10th order poly) –0.008 0.122 0.019 0.106 0.095 0.109
Ridge with CV (10th order poly) 0.066 0.027 0.047 0.001 –0.017 0.034
Random forest (low regularization) 0.048 –0.015 0.052 –0.016 0.052 –0.017
Random forest (high regularization) –0.097 0.071 –0.102 0.077 –0.096 0.065
Gradient boosting (low regularization) 1.114 0.024 1.167 0.054 1.345 0.164
Gradient boosting (high regularization) –0.551 0.525 –0.618 0.506 –0.715 0.429
Neural net –11.432 0.028 0.156 0.040 0.173 0.052

Notes: The table shows the (average) stacking weights of each candidate learner for conventional stacking, pooled stacking
and short-stacking using OLS as the final learner. The bootstrap sample size is nb = 9 915 or 99 150. Results are based on
1 000 replications. See Table 1 for more information.

Table A.3: Average stacking weights using single-best

Stacking Pooled stacking Single-Best
Panel (A): Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0.825 0.649 0.901 0.758 0.793 0.665
Lasso with CV (2nd order poly) 0.155 0.271 0.097 0.228 0.174 0.251
Ridge with CV (2nd order poly) 0.016 0.019 0.002 0.003 0.031 0.032
Lasso with CV (10th order poly) 0.002 0.040 0. 0.009 0.001 0.023
Ridge with CV (10th order poly) 0.002 0.014 0. 0.001 0.001 0.028
Random forest (low regularization) 0. 0. 0. 0. 0. 0.
Random forest (high regularization) 0. 0. 0. 0. 0. 0.
Gradient boosting (low regularization) 0. 0.004 0. 0.001 0. 0.001
Gradient boosting (high regularization) 0. 0.004 0. 0. 0. 0.
Neural net 0. 0. 0. 0. 0. 0.

Panel (B): Non-Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0. 0. 0. 0. 0. 0.
Lasso with CV (2nd order poly) 0.097 0.152 0.072 0.142 0.051 0.079
Ridge with CV (2nd order poly) 0.104 0.116 0.100 0.095 0.059 0.080
Lasso with CV (10th order poly) 0.089 0.055 0.052 0.031 0.044 0.033
Ridge with CV (10th order poly) 0.022 0.045 0.007 0.012 0.004 0.035
Random forest (low regularization) 0. 0. 0. 0. 0. 0.
Random forest (high regularization) 0.002 0.001 0.001 0. 0.001 0.
Gradient boosting (low regularization) 0.672 0.364 0.766 0.409 0.831 0.637
Gradient boosting (high regularization) 0.014 0.268 0.002 0.311 0.008 0.136
Neural net 0.001 0.001 0. 0. 0.002 0.

Notes: The table shows the (average) rates at which each candidate learner is selected by the single-best final learner when
using conventional stacking, pooled stacking and short-stacking. The bootstrap sample size is nb = 9 915 or 99 150. Results
are based on 1 000 replications. See Table 1 for more information.
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Table A.4: Computational time of DDML with conventional and short-stacking

Folds K Obs.
DDML

Stacking OLS PDS RatioConv. Short lasso

2 200 24.69 6.34 0.0072 0.0617 0.2567
400 26.02 6.76 0.0073 0.0640 0.2597
800 29.51 7.67 0.0074 0.0665 0.2598

1600 41.23 10.53 0.0082 0.0780 0.2554
9915 210.78 53.01 0.0170 0.2131 0.2515

99150 3434.07 778.17 0.1094 1.6571 0.2266
5 200 59.41 13.46 0.0069 0.0588 0.2266

400 69.18 15.76 0.0070 0.0617 0.2278
800 88.57 20.77 0.0074 0.0662 0.2345

1600 137.77 31.92 0.0082 0.0781 0.2317
9915 848.27 196.97 0.0148 0.1841 0.2322

10 200 120.47 26.01 0.0068 0.0583 0.2159
400 141.29 30.95 0.0070 0.0608 0.2191
800 189.87 42.98 0.0075 0.0677 0.2264

1600 295.87 68.22 0.0082 0.0778 0.2306
9915 1962.00 453.13 0.0159 0.1998 0.2310

Notes: The table reports the computational time in seconds of DDML
paired with conventional stacking (‘Conv.’) or short-stacking (‘Short’)
as implemented in Ahrens et al. (2023), OLS as implemented in
Stata’s regress, post-double-selection lasso as implemented in pdslasso
(Ahrens, Hansen, and Scha�er, 2018). DDML uses V = 5 cross-
validation folds and K cross-fitting folds as indicated. Times reported
are in seconds (average over 1 000 replications). The computations were
performed on the high-performance cluster of the ETH Zurich. Each in-
stance used a single core of an AMD EPYC processor with 2.25-2.6GHz
(nominal)/3.3-3.5 GHz (peak) and 4GB RAM.
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B DDML and stacking in very small samples

Table B.1: Estimates based on the full sample (N = 9,915).

Estimator Estimate

Panel A. No sample splitting

OLS TWI 6751.907
OLS QSI 5988.413
Post double Lasso TWI c=0.5 6562.923
Post double Lasso QSI c=0.5 5648.14
Post double Lasso TWI c=1 6630.751
Post double Lasso QSI c=1 4646.575
Post double Lasso TWI c=1.5 7474.508
Post double Lasso QSI c=1.5 4472.324

Panel B. DDML with candidate learners

Neural net 6433.092
OLS 6463.73
Lasso with CV (TWI) 6780.161
Ridge with CV (TWI) 6760.134
Lasso with CV (QSI) 5722.624
Ridge with CV (QSI) 5995.346
Random forest (low regularization) 6089.389
Random forest (high regularization) 6552.221
Gradient boosting (low regularization) 7003.373
Gradient boosting (high regularization) 7992.538

Panel C. DDML with stacking approaches

Neural net 6433.092
OLS 6463.73
Lasso with CV (TWI) 6780.161
Ridge with CV (TWI) 6760.134
Lasso with CV (QSI) 5722.624
Ridge with CV (QSI) 5995.346
Random forest (low regularization) 6089.389
Random forest (high regularization) 6552.221
Gradient boosting (low regularization) 7003.373
Gradient boosting (high regularization) 7992.538

Notes: In the case of DDML estimators, the average estimates and standard errors are
based on 50 replications. Panel A is reproduced from Table 1 in WZ.
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Table B.2: Short-stacking weights using CLS

Estimator Observations

200 400 600 800 1200 1600 9915
Panel A. E[Y |X], K = 10

OLS .164 .152 .115 .079 .037 .019 0
Neural net .047 .045 .048 .067 .098 .05 .076
Lasso with CV (TWI) .043 .034 .034 .035 .03 .033 .091
Ridge with CV (TWI) .056 .048 .041 .025 .011 .006 .032
Lasso with CV (QSI) .252 .274 .266 .264 .271 .297 .639
Ridge with CV (QSI) .194 .252 .297 .328 .341 .357 .153
Random forest (low regularization) .095 .097 .113 .131 .161 .2 .01
Random forest (high regularization) .081 .04 .025 .021 .018 .016 0
Gradient boosting (low regularization) .041 .04 .049 .041 .03 .021 0
Gradient boosting (high regularization) .028 .019 .013 .009 .002 .001 0

Panel B. E[D|X], K = 10

OLS .132 .196 .234 .252 .245 .257 .163
Neural net .04 .041 .038 .036 .031 .029 .038
Lasso with CV (TWI) .053 .031 .025 .02 .016 .012 .106
Ridge with CV (TWI) .038 .018 .013 .015 .008 .005 .029
Lasso with CV (QSI) .173 .225 .25 .248 .25 .228 .413
Ridge with CV (QSI) .202 .124 .072 .06 .068 .064 0
Random forest (low regularization) .103 .123 .144 .187 .249 .307 .006
Random forest (high regularization) .159 .129 .107 .09 .051 .031 .102
Gradient boosting (low regularization) .043 .046 .054 .047 .045 .041 .144
Gradient boosting (high regularization) .059 .065 .064 .046 .038 .025 0

Panel C. E[Y |X], K = 10

OLS .122 .098 .066 .026 .003 .001 0
Neural net 0 0 0 0 0 0 0
Lasso with CV (TWI) .03 .022 .01 .013 .014 .023 0
Ridge with CV (TWI) .074 .077 .079 .052 .03 .013 0
Lasso with CV (QSI) .323 .376 .361 .381 .393 .405 .995
Ridge with CV (QSI) .239 .314 .379 .428 .478 .479 .005
Random forest (low regularization) .129 .058 .05 .049 .049 .044 0
Random forest (high regularization) .022 .005 .001 .001 0 .001 0
Gradient boosting (low regularization) .025 .033 .046 .046 .032 .034 0
Gradient boosting (high regularization) .035 .016 .009 .004 0 0 0

Panel D. E[D|X], K = 10

OLS .038 .108 .17 .189 .173 .132 .005
Neural net 0 0 0 0 0 0 0
Lasso with CV (TWI) .058 .032 .017 .011 .005 .003 .002
Ridge with CV (TWI) .06 .013 .009 .01 .002 .001 0
Lasso with CV (QSI) .232 .309 .313 .287 .261 .168 .754
Ridge with CV (QSI) .242 .105 .032 .034 .05 .032 0
Random forest (low regularization) .079 .028 .011 .008 .004 .003 0
Random forest (high regularization) .185 .249 .256 .304 .344 .507 0
Gradient boosting (low regularization) .009 .022 .048 .064 .115 .141 .24
Gradient boosting (high regularization) .098 .135 .143 .092 .046 .013 0

Notes: The table reports the stacking weights corresponding to the DDML stacking estimator in Figure 3. The stacking
weights are averaged over folds, based on 10-fold cross-fitting and shows for the estimation of E[Y |X] and E[D|X] in Panel A
and B, respectively. See notes below Table 3 for more information.
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C Gender citation gap

Table C.1: Estimates for the citation penalty of all-female and mixed-gender authored
articles

Log citations Citation counts
All female Mixed gender All female Mixed gender

OLS & base controls 0.007 0.212* -9.839** 11.368*
(0.029) (0.017) (4.299) (2.889)

PDS-lasso & base controls 0.009 0.214* -9.608** 11.558*
(0.029) (0.017) (4.293) (2.886)

PDS-lasso & Unigrams -0.069** 0.097* -15.77* 2.809
(0.028) (0.016) (4.141) (2.896)

PDS-lasso & BERT -0.081* 0.086* -14.634* 2.459
(0.028) (0.016) (4.236) (2.89)

OLS & Unigrams -0.062** 0.094* -12.227** 2.464
(0.029) (0.017) (5.957) (3.48)

OLS & BERT -0.082* 0.061* -10.43** 1.58
(0.029) (0.017) (5.968) (3.608)

CV-lasso & Unigrams -0.061** 0.093* -12.512** 2.359
(0.029) (0.017) (5.948) (3.477)

CV-lasso & BERT -0.077* 0.063* -10.055** 2.054
(0.029) (0.017) (5.967) (3.495)

CV-ridge & Unigrams -0.062** 0.093* -12.398** 1.859
(0.029) (0.017) (5.947) (3.479)

CV-ridge & BERT -0.074* 0.066* -10.108** 1.893
(0.029) (0.017) (5.961) (3.499)

XGBoost & Unigrams -0.087* 0.058* 32.376* 19.504*
(0.029) (0.018) (6.153) (3.622)

XGBoost & BERT -0.075** 0.053* 7.336 7.883**
(0.031) (0.018) (7.049) (3.894)

Random forest & Unigrams -0.11* 0.034** 0.037 4.672
(0.029) (0.017) (5.912) (3.469)

Random forest & BERT -0.134* 0.002 6.671 6.319**
(0.032) (0.018) (6.025) (3.53)

Neural net & Unigrams -0.042 -0.029 -15.544 -11.383**
(0.043) (0.057) (10.062) (5.62)

Neural net & BERT -0.061 -0.044 -17.923* -11.332*
(0.08) (0.143) (6.154) (3.682)

Single-best & stacking -0.077* 0.064* -10.177** 1.981
(0.028) (0.017) (5.969) (3.512)

CLS & stacking -0.077* 0.057* -13.085** -2.618
(0.028) (0.016) (5.978) (3.454)

Single-best & short-stacking -0.076* 0.063* -10.108** 1.893
(0.029) (0.017) (5.961) (3.499)

CLS & short-stacking -0.075* 0.054* -9.556 1.507
(0.028) (0.016) (5.933) (3.492)

Notes: The table shows median-aggregated estimates of the gender citation gap for all–female and mixed-gender authored
articles. We show results using both log citations and citation counts as the outcome variable. Standard errors are robust
to heteroskedasticity. See Table C.1 for information on the candidate learners and stacking approaches.
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D Gender wage gap

Table D.1: Stacking weights in the gender wage gap application.

Conventional stacking Short-stacking Mean-squared error

g0(0, X) g0(1, X) m0(X) g0(0, X) g0(1, X) m0(X) g0(0, X) g0(1, X) m0(X)

OLS/logit 0.023 0.012 0.242 0.027 0.013 0.211 0.369 0.347 0.161
OLS/logit (simple) 0.004 0. 0. 0. 0. 0. 0.267 0.204 0.223
CV-lasso 0.103 0.136 0.109 0.03 0.076 0.047 0.236 0.178 0.16
CV-ridge 0.189 0.04 0.064 0.225 0.024 0.108 0.237 0.18 0.161
CV-lasso (extended) 0.041 0.157 0.016 0.035 0.266 0.002 0.238 0.18 0.161
CV-ridge (extended) 0.011 0.04 0.011 0.003 0.024 0.022 0.336 0.194 0.161
Random forest 1 0.435 0.506 0.275 0.483 0.507 0.28 0.23 0.176 0.161
Random forest 2 0. 0. 0. 0. 0. 0. 0.258 0.19 0.171
Random forest 3 0. 0. 0. 0. 0. 0. 0.274 0.199 0.179
Gradient boosting 1 0.025 0.008 0.039 0.011 0.003 0.022 0.239 0.183 0.16
Gradient boosting 2 0.15 0.059 0.216 0.175 0.063 0.285 0.254 0.196 0.161
Neural net 1 0.013 0.022 0. 0. 0. 0. 0.349 0.263 0.241
Neural net 2 0.008 0.02 0.027 0.01 0.023 0.023 0.643 0.357 0.176

Notes: The table shows weights of conventional and short-stacking along with the mean-squared prediction error by can-
didate learners and by variable. The final learner is constrained least squares. The stacking weights are averaged over
cross-fitting repetitions. Pooled stacking weights are shown in Appendix Table D.2.

Table D.2: Stacking weights of pooled stacking using constrained least squares.

Pooled stacking

g0(0, X) g0(1, X) m0(X)

OLS/logit 0.014 0.001 0.257
OLS/logit (simple) 0. 0. 0.
CV-lasso 0.15 0.23 0.136
CV-ridge 0.205 0.064 0.063
CV-lasso (extended) 0. 0.078 0.
CV-ridge (extended) 0. 0.019 0.
Random forest 1 0.462 0.521 0.288
Random forest 2 0. 0. 0.
Random forest 3 0. 0. 0.
Gradient boosting 1 0. 0. 0.008
Gradient boosting 2 0.165 0.071 0.23
Neural net 1 0. 0. 0.
Neural net 2 0.004 0.016 0.018

Notes: The table shows pooled stacking weights for each of the considered
candidate learners. The final learner is constrained least squares. The
stacking weights are averaged over cross-fitting repetitions.

Table D.4: Median aggregate estimates by stacking approach and by final learner

Final learner

Unweighted
CLS OLS

Single-

average best

Regular stacking -0.101 -0.075 -0.197 -0.061
(0.017)* (0.028)* (11.894) (0.069)

Short- stacking -0.101 -0.076 -0.001 -0.085
(0.017)* (0.028)* (0.184) (0.065)

Notes: The table reports median aggregate estimates by stacking
type and final learner. See Figure 7 for more information.
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Table D.3: Stacking weights using single-best final learner.

Conventional stacking Short-stacking Pooled stacking

g0(0, X) g0(1, X) m0(X) g0(0, X) g0(1, X) m0(X) g0(0, X) g0(1, X) m0(X)

OLS/logit 0. 0. 0. 0. 0. 0. 0. 0. 0.
OLS/logit (simple) 0. 0. 0. 0. 0. 0. 0. 0. 0.
CV-lasso 0.06 0.03 0.79 0. 0. 1. 0. 0. 0.4
CV-ridge 0.07 0. 0.04 0. 0. 0. 0. 0. 0.1
CV-lasso (extended) 0.02 0.06 0.03 0. 0. 0. 0. 0. 0.1
CV-ridge (extended) 0. 0. 0.01 0. 0. 0. 0. 0. 0.
Random forest 1 0.85 0.91 0.02 1. 1. 0. 1. 1. 0.
Random forest 2 0. 0. 0. 0. 0. 0. 0. 0. 0.
Random forest 3 0. 0. 0. 0. 0. 0. 0. 0. 0.
Gradient boosting 1 0. 0. 0.11 0. 0. 0. 0. 0. 0.4
Gradient boosting 2 0. 0. 0. 0. 0. 0. 0. 0. 0.
Neural net 1 0. 0. 0. 0. 0. 0. 0. 0. 0.
Neural net 2 0. 0. 0. 0. 0. 0. 0. 0. 0.

Notes: The table shows weights of conventional stacking, short-stacking and pooled stacking by candidate learners and by
conditional expectation function. The stacking weights are averaged over cross-fitting repetitions.

Table D.5: Median aggregate estimates for each candidate learner

Gender wage

gap

OLS/logit -0.12
(0.094)

CV-lasso -0.067
(0.063)

CV-ridge -0.064
(0.09)

OLS/logit (simple) -0.12
(0.016)*

CV-lasso (extended) -0.055
(0.076)

CV-ridge (extended) -0.173
(0.19)

Random forest 1 -0.079
(0.023)*

Random forest 2 -0.105
(0.016)*

Random forest 3 -0.11
(0.015)*

Gradient boosting 1 -0.075

Observations 4836

Notes: The table reports median aggregate esti-
mates by candidate learner. See Figure 7 for more
information.
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