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“Nuclear fusion might just be the fanciest way to boil water in all of human history yet!”
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Chapter 1

Introduction

At the time of writing this thesis, the world’s largest tokamak device named the In-

ternational Thermonuclear Experimental Reactor (ITER) is under construction. This

experiment presents a long list of engineering and scientific challenges to be solved.

Among the many scientific questions that it will try to answer throughout its opera-

tional lifetime, demonstrating that the existing ITER design is able to generate 10 times

more fusion power than the power fed into the device is one of the more prominent goals.

In other words, the experiment aims to find out if ITER can achieve a fusion gain factor

Q ≈ 10.

The success of ITER will be seen as a major step towards the future of integrating

nuclear fusion energy into the existing power grid infrastructure, providing a new source

of clean energy production to meet the growing annual energy demands worldwide [10].

As the awareness of the impending climate crisis surfaces, there has been an increase

in clean energy infrastructure investments globally [11]. This is also mirrored in fu-

sion energy research. The 2022 Global Fusion Industry Report by the Fusion Industry

Association (FIA) [12] found that the private sector of fusion energy research had an

increase of 139% in funding from the year before, reaching a record of $4.7bn. Thus, the

drive and motivation towards energy production via nuclear fusion cannot be overstated.

There are multitudes of scientific challenges that must be solved to realise long pulse

high-performance discharges, crucial for providing stable and continuous electricity gen-

eration. Among them is the accumulation of impurities in the plasma core causing insta-

bilities and disruption of the plasma [13], suppression of edge-localised modes (ELMs)

which could cause damage to plasma-facing components (PFC) [14], and thermal stresses

on PFCs due to cyclical heat loading during pulsed operations [15].
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Notable progress was made over the decades of research and they help us better un-

derstand the respective complex physics. However, there are areas of research that

weren’t given due attention, being perceived as having less importance towards the goal

of energy production. One such topic is the plasma initiation during the tokamak startup

process, where it is theorised that charged particle number densities develop over time

as a result of Townsend avalanche breakdown. There have been research works done in

that regard [16–18], but the number of reported studies pale in comparison to the study

of plasma instabilities for example. It should also be noted that the studies of plasma

initiation are mostly numerical or theoretical.

There is a need for additional research work in the area, especially when there are

new tokamaks with record sizes (ITER, and perhaps DEMO for example), in which

the validity of long-established theories could be challenged. Taking advantage of the

impressive computational resources available at the Jülich Supercomputing Center in

Forschungszentrum Jülich, they enabled the possibility of conducting first principles

numerical studies of the plasma initiation process in an ITER-scale tokamak device.

Throughout this study, upward of 18 million core-hours and 5 million core-hours were

consumed on the JURECA Booster and JURECA DC systems respectively. This study

aims to construct a numerical solver that is capable of simulating the growth of charged

particle population via electron-neutral impact ionisation, and provide insight into the

influence of background electric and magnetic fields on the growth rate and time evo-

lution of electrons’ velocity distribution. Adhering to the first principles modelling

paradigm, efforts were committed to avoiding assumptions that reduce the spatial di-

mension of the numerical simulation. Further numerical implementation details and the

supporting motivations are discussed throughout the thesis.

This thesis is separated into chapters that describe the various aspects related to the

developed numerical model. The thesis continues with the theory of tokamak break-

down in Chapter 2, which also details the main goals of this study. This is then followed

by the description of numerical considerations and the implementations of the solver in

Chapter 3. This is then followed by a discussion on the merging algorithm in Chap-

ter 4, developed for high electron number density scenarios. Chapter 5 then discusses

numerical tests of the implemented solver, to choose the scattering angle model which

yields the best approximation of ionisation rate when compared with prior parallel plate

experiment. The benchmarked results inform the choice of scatter model for use in the

tokamak plasma initiation simulation, which is the focus of Chapter 6. Chapter 7 then

extends the numerical studies to the variants of the field geometry within the tokamak,

which is done to improve the understanding of background fields to ionisation fraction
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growth rate, velocity distribution and spatial distribution of charges etc. A summary of

the study and the discussions on future works is covered in Chapter 8.
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Chapter 2

Tokamak breakdown physics

2.1 General description of tokamak

The fusion of lighter two nuclei into heavier nuclei (at the very low nucleon number

range) releases an amount of energy that is equivalent to the mass difference before and

after the reaction. This total energy is in the order of ∼ 10MeV for a fusion event

that produces 4He as a byproduct, which pales in comparison to a fission event that

releases ∼ 100MeV. However, the measure of energy per nucleon paints a very differ-

ent picture. For example, released energy per nucleon from D-T fusion reaction reaches

about 3.5MeV while fission of U-235 into Ba-144 and Kr-89 isotopes is at approximately

0.7MeV, concluding that energy per unit mass of fuel in fusion reaction is clearly higher.

Therefore, it is of interest to tap into such a method to complement the existing en-

ergy production infrastructure. Another key attraction of nuclear fusion as an energy

source is the significantly lower degree of radioactivity of the fusion byproduct (and its

surrounding reactor structure) when compared with nuclear fission [19, 20]. Fusion re-

action between the light nuclei can happen when they overcome the Coulomb potential

barrier which is in the order of 100 keV and above (D-T reaction requires approximately

380 keV in the center-of-mass frame), which translates to a plasma temperature in ex-

cess of 109K for such direct fusion to occur. A silver lining to that immense energy

requirement is that the fusion reaction can already occur at a much lower energy level

due to the quantum tunneling effect. As seen in Fig. 2.1, D-T reaction is the candidate

that has the least energy threshold while having a reasonable cross section from 10 keV

onward, which corresponds to plasma temperature in excess of 108K. As such, this

reaction became the prime candidate for future energy production via fusion.

There are two primary methods to achieve fusion, which are inertial confinement and
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Figure 2.1: Cross sections of the corresponding fusion reactions [1].

magnetic confinement respectively. Among the machines designed for magnetic confine-

ment fusion, the stellator and the tokamak are the two commonly explored methods.

This work focuses on the tokamak and a brief description of its major components is

given here. Since the temperature range of plasma is targeted to be above 10 keV for

a noticeable fusion reaction to occur, the plasma will have to be suspended in vacuum.

Since plasma is a collection of charged particles, the particles will be confined along the

experienced magnetic field. The idea is then to design a magnetic field geometry that is

closed (which loops back to itself). As such, the charged particle will remain confined

for as long as the magnetic field loop is closed. One of the geometries that fulfills this

condition is a torus, which is subsequently reflected in the generic shape of a tokamak.

Alas, perfect confinement property isn’t simple to achieve in reality since the dynamics

of the plasma will interact with the prescribed background field, and stray fields which

causes poor confinement will always be a challenge to overcome. Various forms of in-

stabilities (e.g. from plasma turbulence or some slight imbalance of magnetic forces in

the plasma column, to name a few) will also be ever-present, and they all have to be

controlled to achieve good confinement properties. The following description will ignore

any form of imperfection in the prescribed field so that a singular focus is placed on the

general workings of a tokamak.

During the operation of a tokamak, the toroidally shaped magnetic field is gener-

ated by the passing current through the series of superconducting toroidal field coils

surrounding the vacuum vessel torus. This creates the magnetic field vector that is par-

allel to the torus’ minor axis, whose purpose is to confine the charged particles in the
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Figure 2.2: Sketch of magnetic field in a tokamak plasma column. Torus volume
represents confined plasma.

Figure 2.3: Magnetic coil placements in ITER.

6



Chapter 2: Theory

same direction. An additional magnetic field in the poloidal direction (perpendicular to

the toroidal field) is also required. This is to correct the induced drift motion of charged

particles (multiple drifts have been identified, some of them being the E ×B drift and

∇B drift).

In order to illustrate the need for poloidal fields, assume a quasi-neutral plasma confined

within a torus with a purely toroidal magnetic field. Due to a denser arrangement of the

toroidal field coil near the central solenoid, the resulting toroidal field will have a nega-

tive gradient along the outboard direction. Gyromotion of the charged particles as they

travel along the torus necessarily causes a vertical charged separation between the posi-

tive and negatively charged particles (a manifestation of the ∇B drift). The separation

will, in turn, cause the formation of a vertically aligned self-consistent E field. As the

E field becomes more significant over time, the charged particle’s interaction with both

the vertical E and the purely toroidal B will cause a drift motion (termed E×B drift)

along the horizontal plane of the torus. Such horizontal drift causes poor confinement

as the charged particles will continuously stream out of the plasma column. The exis-

tence of the poloidal field is then required to introduce a helical twist to the otherwise

purely toroidal magnetic field so that the confined charged particles (both negative and

positively charged) will traverse along the now formed magnetic flux surface in Fig. 2.2.

The created magnetic flux surface is a result of the addition of both the toroidal and

poloidal fields, which can be imagined as a thin torus surface where particles will always

reside on. The ratio between the particle’s angular traverse in the poloidal direction ι

and in a single toroidal revolution 2π is termed the field line pitch. Once again, a closed

flux surface example here is a crude simplification. In reality, there will always be mag-

netic stray fields that end at the vessel wall and particle losses are expected before the

plasma current rises to the threshold needed to form a self-consistent closed magnetic

flux surface.

The poloidal field responsible for the formation of a closed magnetic flux surface arises

mainly from the plasma current itself. The PF coils shown in Fig. 2.3 serve a few dif-

ferent functions during tokamak operation. Chief among them is creating the magnetic

null configurations in the vacuum vessel, providing the initial confinement property of

free charges to facilitate plasma initiation. During the later phase of the operation,

the coils contribute and provide control toward the overall equilibrium field of plasma.

PF coils are also capable of providing plasma heating via the inductive current drive

(ramp-up of the current flow in the coils, inducing a toroidal electric field) [21]. Lastly,

the central solenoid is the major component that provides the major toroidal electric

field for the tokamak, which is primarily used for initiating the plasma. The creation of

such an electric field is once again through electromagnetic induction, as the current in
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the solenoid continuously ramps up during the operation.

At the stage when plasma (electron density reaching ∼ 1019m−3) is formed, contin-

uous plasma heating can be augmented via a few different methods. First among the

notable methods is the neutral-beam injection (NBI). This method operates on the con-

sideration that direct injection of ionised fuel (deuterium ions and the like) into the

plasma column is difficult due to deflection from strong magnetic fields, penetration

depth will then be less than ideal and heating from direct ion source is ineffective. As

such, direct delivery of highly energetic neutral molecules into the plasma is favourable.

Such energetic neutrals will then be ionised from collisions with existing ions within the

plasma, and confined by the existing magnetic field structure. The newly ionised high-

energy ions will then deposit their energy to the existing charged particles via Coulomb

interaction, relaxing into a new thermal equilibrium. The plasma temperature is demon-

strably raised as a result of such injection [22, 23].

Another method used for plasma heating would be electron/ion cyclotron resonance

heating (E/ICRH). Effective energy deposition from radio frequency (RF) waves is de-

pendent on the cyclotron frequency of the targeted charged particle species. This is

because energy transfer to the charges occurs when RF frequency is at a specific charge’s

cyclotron frequency (the result of cyclotron resonance) [24]. Since electrons are much

lighter than protons, the electron cyclotron frequency is approximately 1836 higher than

the proton’s, and the electron-ion cyclotron frequency ratio grows larger when the ion

mass is heavier. This dictates the RF range differences required by ECRH and ICRH re-

spectively. In the ITER tokamak, gyrotron for ECRH is targeted to operate at 170GHz

while the ICRH system is in the range of 40 - 55MHz. Heating via RF comes with

higher physical complexity when compared with NBI, due to the dynamic interaction

between the RF wave and the self-consistent fields originating from the plasma itself.

Other considerations, such as the effective propagation of the RF waves into the plasma

core (through the study of plasma dispersion relation), are not discussed here.

In the pursuit of demonstrating that nuclear fusion is a viable energy production source,

the fusion energy gain factor Q is generally used as a metric to measure the perfor-

mance of a tokamak. The following section will elaborate on the expression of Q, as

well as provide a glimpse into the growing trend of tokamak machines towards energy

production-ready prototypes.
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2.1.1 Scaling laws and tokamak dimensions

Assuming a scenario where the plasma within a tokamak is confined in a steady-state

equilibrium, the Q factor can be described as the ratio between the fusion power Pfus and

the external power Pext supplied into the plasma to sustain fusion ready temperatures

(above 10 keV). Pext includes all channels of energy loss over time Ploss, which can be

radiative power loss as well as loss of energetic particles due to poor confinement. This

power loss is then offset by the fraction c of retained fusion power. In order to maintain

the plasma temperature,

Pext = Ploss − cPfus (2.1)

should be fulfilled at all times. The approximate fraction c of power retention that

arises from the energy partition of the nuclear fusion is explained as follows. Since

the considered fusion candidates undergo a neutronic fusion process (where one of the

outcomes of the fusion process is a free energetic neutron), Pfus can be separated into

the power carried by the neutron and another part that is carried by the resulting heavy

nuclei (4He for D-T fusion, T for D-D fusion). Taking the example of D-T fusion, the

nuclear reaction is expressed as

2
1D+3

1 T →4
2 He +1

0 n + 17.6MeV,

where approximately one fifth of the 17.6MeV is carried by 4
2He particle. The remaining

∼ 14.1MeV is carried by the neutrons, which quickly leave the confined plasma as it is

charge neutral. The heavy nuclei can be further ionised within the plasma, thus retaining

that portion of fusion power. As such, c ≈ 1/5 is determined. The final expression for

Q is then

Q =
Pfus

Pext
≈ Pfus

Ploss − 1
5Pfus

. (2.2)

Conventionally, Ploss is treated as the plasma energy W over the energy confinement

time τE. By substituting Eq. 2.2 and definition of Ploss into Eq. 2.1, a simple description

of the energy confinement time is then

Ploss ≈
W

τE
≈ Pfus

(
1

Q
+

1

5

)
. (2.3)

Assuming that the number density of D and T ions are identical and homogeneous in

space, necessarily means that each of them is half of the overall ion density (nD = nT =

n/2). It is also assumed that the ion temperature distribution is Maxwellian, centered

around temperature T . Pfus can then be approximated as the rate of fusion event per

unit time multiplied by the fusion energy release per event Efus. The event rate is
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computed as

Ṅfus =

∫
nD nT σν dV =

n2

4
σνV (2.4)

where V denotes the plasma volume. σ refers to the D-T cross section in Fig. 2.1 and

ν the ion velocity, both these variables are averaged values at ion temperature T . The

expression for Pfus is then

Pfus =
n2

4
σνV Efus, (2.5)

where Efus = 17.6MeV in the case of D-T fusion. The final piece of information required

to derive the energy confinement time τE is the plasma energy W , which is obtained

by simply treating the charged particle ensemble (both ions and electrons) as ideal gas.

The expression comes up to be

W = 3nkBTV, (2.6)

assuming that the ion temperature is the same as the electron temperature. This as-

sumption is valid considering that it is a hot plasma at fusion ready energy threshold.

Substituting Eq. 2.5 and Eq. 2.6 into Eq. 2.3 will yield

τE ≈ 12kB
nσν

1(
1
Q + 1

5

) . (2.7)

Multiplying Eq. 2.7 with nT will give the well-known expression of Lawson’s criterion.

Should a target fusion energy gain Qtarget and above is required from a tokamak, the

triple product requirement is then

nTτE ≥ 12kBT

σν

1(
1

Qtarget
+ 1

5

) .
Even though the energy confinement time is now derived in Eq. 2.7, several crucial as-

sumptions were made along the process. It was known that the neoclassical model (let

alone Lawson’s criterion) is inadequate in explaining experimentally measured energy

confinement behaviour [25]. Thus, showing that a fundamental understanding of the

underlying physics which determines the Pfus and Ploss is rather incomplete. Therefore,

a concise analytical expression for both variable has not been proposed as of yet. How-

ever, one could still attempt to measure the power output of various tokamak operations

and data fit it to a proposed empirical expression.

This is also true for the energy confinement time parameter τE. There is not one stan-

dardised expression for τE and its set of variables encompasses macro observables of the

tokamak geometry and the plasma. Among those variables, two primary limits of the

confined plasma are always incorporated [26]. They are the β limit of the specific toka-

mak (could be derived from the stability condition of Grad-Shafranov equation [27–29])
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and the plasma current limit [30, 31] (written as a function of the safety factor q). One

suggested scaling of τE is reported [32] as

τE = C1τ
xτ
Bohmρ

xρ
∗ νxν∗ βxβMxM qxqεxεκxκ . (2.8)

The above variables are, C1 and the rest of x∗ parameters denote the generic fitting

coefficients, τBohm being the Bohm time, ρ∗ the ion Larmor radius normalised by the

torus minor radius, ν∗ the normalised collisionality (ratio between connection length and

ion mean free path), β is the ratio of plasma pressure and magnetic pressure, M the

average ion mass, q the cylindrical safety factor, ε the inverse torus aspect ratio, and κ

the elongation of the plasma. The formulation for τBohm, ρ∗, ν∗ and q is not elaborated

here. The detailed formulation can be found in the second chapter of ITER physics basis

[32]. As an example of the mentioned data fitting, Zohm et al [33] reported the fitting

of Eq. 2.8 expression using the ITERH.DB3 dataset as

τE ∼ H3.23τBohmρ
−0.7
∗ β−0.9q−3

95 A
−0.73. (2.9)

Here, H is defined as the confinement limit, q95 is the safety factor at the position where

95% of the poloidal flux is covered by a flux surface along the torus’ horizontal plane

and A = 1/ε. Note that τE is no longer dependent on plasma temperature T , which

resulted from an assumption that the tokamak is always operating in the fusion ready

temperature above 10 keV. Zohm also suggested that Pfus can be represented by

Pfus = c1
β2B4R3

0

q295A
4

,

with B representing the toroidal magnetic field strength and R0 the tokamak’s major

radius. Along with the Ploss as

Ploss ∼ c2
β1.9
N R0.3

0 B0.3 q1.195

H3.23A0.47
,

Eq. 2.2 can be computed as a function of R0. Here, βN = βq95A. Fig. 2.4 demonstrated

clearly that one of the ways to raise the Q factor is by increasing the major radius of

the tokamak. This explains the motivation behind the ITER tokamak’s size in pursuit

of reaching Q = 10 at R0 ≈ 6m. The DEMO experimental tokamak that follows in

the footsteps of ITER will likely be larger. The other method of pushing for higher Q

factor is through higher toroidal magnetic field strength [34], as a higher B will be able

to increase the τE through the β, q95, ρ∗ and τBohm in Eq. 2.9.

While the discussions up to this point explore the viability of nuclear fusion as an
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Figure 2.4: Fusion gain Q as a function of major radius R0.

energy source, the very early step of plasma initiation in a tokamak has only been ex-

plored more in-depth in recent years. Much of the underlying physics is in the process

of discovery and not well understood as of yet. The following sections will then focus

on the prior works and the physics related to plasma breakdown avalanche theory.

2.2 Tokamak plasma initiation theory

Creation of plasma within the tokamak vacuum vessel is mainly through the ohmic

heating (OH) startup [35, 36]. Additionally, the plasma current ramp from OH startup

can be accelerated through electron cyclotron heating (ECH) assisted methods [37, 38],

which creates pre-ionised electrons prior to the OH startup scenario. OH startup relies

on the theory of Townsend’s breakdown avalanche. The theory is based on a simple

1D experiment (a parallel plate capacitor experiment) on the electric discharge and it

exerts a dominant influence in shaping the plasma initiation physics. Most notably, the

exponential cascade of the electron from discharge in a tokamak is extrapolated from

the theory. Such approximation is briefly explored here, starting with the expression of

Townsend’s breakdown model expression given as

I

I0
=

eαd

1− γ(eαd − 1)
. (2.10)

Assuming that the electric current of the initial free electron is denoted by I0, the current

I is then the amplified current measured at a distance of d. The amplification factor is
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exponential and governed by the first Townsend coefficient α (which can be interpreted

as the number of ionisations per unit length traveled by electron) and γ describes the

secondary electron emissions from positive ion and surface impact ionisation. A further

simplification is made to Eq. 2.10, such that the secondary electron emissions is ignored

when considering only the areas in the vicinity of the torus’ minor axis (where the

breakdown region is). The simplification can be justified as the main bulk of the created

plasma arises from electron-neutral impact ionisation during the very early phases, since

secondary electron emission only occurs after ion confinement time scale τion has elapsed

(which is approximately 2 orders of magnitude larger than the electron confinement time

[17]). This yields
I

I0
= eαd. (2.11)

The α parameter can be derived analytically, by considering the electrons that have

reached the ionisation energy (due to acceleration from the electric field with a strength

of E), their corresponding mean free path at a given operating pressure p as well as the

probability of collision with the help of known cross sections. This gives the expression

of

α = Ap exp

(
−Bp

E

)
, (2.12)

with A and B constants obtained by experimental fitting [39]. For the work presented

here, the neutral target is purely hydrogen molecules, so A = 3.83m−1 Pa−1 and B =

93.6Vm−1 Pa−1 would normally be used to predict the current growth. The required

breakdown voltage that is conducive for Townsend avalanche (satisfying αd > 1) then

follows from Eq. 2.11, resulting in the Paschen curve, expressed as

VBD =
Bpd

ln (Apd)
. (2.13)

Fig. 2.5 shows a minimum H2 breakdown voltage of approximately VBD = 66.43V at

pd ≈ 0.71Pam. In order to solve for the required minimal travel distance of confined

electrons (dBD) in a tokamak, Eq. 2.13 is recast into breakdown electric field

EBD =
Bp

ln (ApdBD)
.

ITER is planned to operate at a prefill pressure of 1mPa and toroidal electric field

strength of Eloop ∼ 0.3Vm−1. Therefore, EBD < Eloop must be respected in order for

ITER to sustain a breakdown avalanche for an ohmic heating (OH) breakdown scenario.

For the condition to be true, electrons must be ensured to have a minimum confined

distance (can be interpreted as connection length L) of dBD ≈ 357m [18]. One should

realise that this estimate is purely extrapolating from a 1D formulation of Eq. 2.11, the
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Figure 2.5: H2 Paschen curve, calculated with ITER’s operating prefill pressure of
1mPa.

reality will deviate from this proposed connection length due to geometrical considera-

tions and the unavoidable magnetic stray field during the tokamak startup phase.

Papoular provided a theoretical framework to describe the rate of plasma current rise,

considering the balance between Townsend breakdown avalanche and losses [40]. As-

suming that the tokamak operates at E/p ≳ 100VTorr−1 cm−1, the exponential growth

of the current is proportional to α and given as

α ≃ 2.5p. (2.14)

The electron’s parallel drift velocity is also predicted via extrapolation from low E/p

data and it is suggested to settle at

Ve ≃ 3.5× 105E/p. (2.15)

Papoular made a conjecture here that the electron population is unable to accelerate

beyond 10 eV due to continuous energy loss via ionisation.

As mentioned previously, the growth rate of charged particles from the Townsend avalanche

is damped by various other loss channels experienced by the electrons. One such loss is

through diffusion, caused by the random scattering of electrons by background neutrals.
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Papoular proposed that the diffusion loss rate ṅe is given as

ṅe =
D⊥
a2

, (2.16)

where

D⊥ ≈ D0

(ωctm)2

tm =
λ

w̄
≈ 1

σscat.new̄

D0 =
w̄λ

3

a is referring to the torus’ minor radius, w̄ the electron thermal velocity magnitude

(the velocity excluding the parallel component), λ the electron’s mean free path, σscat.

the electron neutral scattering cross section, ωc the gyrofrequency and D0 the diffusion

coefficient in the absence of magnetic field. tm is subsequently the mean time between

collisions. One can interpret Eq. 2.16 as the average time scale for electrons to diffuse

radially away from the minor axis of the torus, covering a distance of a.

Losses due to transverse drift are also considered and given as the time required for

an electron to transversely drift beyond the torus’ minor radius. A slight but important

difference between the diffusion loss and transverse drift loss is that, diffusion loss is

purely from random scattering, while transverse drift loss is the sideways drift velocity

vd of the electron as it gyrates along the toroidal B field. Finally, Papoular also discussed

the contribution of vertical magnetic stray field Bz, inducing a drift velocity vz causing

the loss of electrons. Expression for both vd and vz is given as

vd =
1

R0ωc

(
1

2
∥v⊥∥2 + ∥v∥∥2

)
vz = v∥ ×

Bz

∥B∥ .

The associated loss time is subsequently

τd =
a

vd

τz =
a

vz
,

(2.17)

and can be interpreted as the time for electrons to drift a distance of a from the minor

axis of the torus. Papoular acknowledged that the proposed formulations make use of

assumptions to facilitate an early understanding of plasma initiation physics. At the time

of Papoular’s original publication, verification of the proposed model with experiments

wasn’t feasible due to a lack of comparable results.
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2.3 Tokamak experimental considerations

The criteria to sustain breakdown avalanche in tokamak is shown to be dependent on

the connection length L (interpreted as dBD from given minimum VBD in Eq. 2.13). In

a tokamak setting, L is a function of the toroidal magnetic field strength Bϕ. Mueller

[17] states that connection length can be expressed as

L ∼ aBϕ

⟨Bz⟩
, (2.18)

where a is the transverse length to the vacuum vessel wall and ⟨Bz⟩ refers to the average

magnetic stray field. Even though it seems that one can come up with a prediction of

the current amplification with Eq. 2.18 and Eq. 2.11, the result is quite simplistic and

will not be able to fully describe the breakdown phase as the equations are inherently

1D approximations.

However, such formulation can help provide insight into the tokamak plasma initia-

tion process even with the simplifying assumptions considered. Lloyd et al. [41] studied

the impact of the discussed variables (p, Bz, loop voltage Vloop etc.) on the break-

down duration in the DIII-D tokamak. A commonly used criterion to decide the end

of the breakdown phase of plasma initiation is when the electron-ion Coulomb collision

dominates over electron-neutral collision frequency. It was demonstrated at the prefill

pressure of approximately 5.2mPa, having a higher Vloop (subsequently higher toroidal

electric field) increases the plasma current growth rate in an ohmic heating startup sce-

nario. The breakdown duration shows an exponentially decreasing trend as a direct

result of raising the prescribed Vloop.

It was also demonstrated that there is an optimal prefill pressure range that gives the

shortest breakdown duration. One could surmise that the breakdown process struggles to

start when p is excessive due to high collisional drag experienced by the electron, unable

to freely accelerate to ionising energy threshold. This upward trend in breakdown dura-

tion begins at approximately 4.3mPa and higher. The opposite extreme of having low

pressure (below ∼2.1mPa) also has an adverse effect on the breakdown process, due to

the lack of background neutral molecules for electron-neutral impact ionisation to occur.

Another aspect that was studied is the impact of magnetic stray field strength Bz

on breakdown duration. It is this aspect of the study that showed the most difference

between pure OH startup and ECH-assisted startup, with ECH startup being least af-

fected by stray field and achieving consistently shorter breakdown duration than OH.

However, the study of OH startup proves to be more revealing. It was shown that the
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breakdown duration is demonstrably shorter for low Bz values.

As important as Lloyd’s findings were, attempting to contextualize the findings in terms

of Townsend’s breakdown theory necessarily simplifies the experimental results into the

framework of the 1D model. The final analytical expressions follow closely with the

model proposed by Papoular’s publication. For example, the drift velocity expression

reported in Lloyd’s is similar to Eq. 2.15 which is

Ve = ηE/p,

with η denoting a derived constant. The ionisation rate can then be estimated from this

expression as τ−1
ion = αVe. Similar treatment is performed on the loss rate due to drifts

as discussed in Papoular’s publication. Therefore, Lloyd came to the conclusion that

the net current growth rate over time is adequately described by Townsend theory. The

growth rate is subsequently a balance of τ−1
ion and the tweaked expressions of Eq. 2.17

(with added considerations for the operating parameters of specific tokamak device).

The work by Lloyd and Papoular laid the groundwork for plasma breakdown analy-

sis for later tokamak devices. Example studies were carried out in different capacities

and on various devices, De Vries et al. performed similar analysis on JET-ILW [42] and

Belyakov et al. conducted a study with a 2D simulation code which Lloyd previously

worked on, providing information on various time evolution of physical variables on T-

15 tokamak during the breakdown phase [43]. While the relationship between tokamak

operating parameters and the breakdown duration has been established, there is a lack

of detailed understanding of breakdown physics in much smaller timescales (below ms

scale). Detection of current ramp-up in experimental tokamak is usually already in

the order of kA, which the early development of charged particle populations is simply

glossed over. Questions such as the electron velocity distribution function in the very

early phase were never answered. The difficult issues of runaway electrons and shaping

of the plasma column were insufficiently explored.

There are more recent numerical studies done on the topic of plasma initiation as a

result of the advancement in the field of high-performance computing. The next section

offers a brief recounting of such works.
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2.4 Recent numerical studies

Jiang et al. conducted a simplistic numerical study of the tokamak breakdown phase in

an attempt to answer the question if ITER-like tokamak will be able to achieve break-

down with only ohmic heating [36]. While strong assumptions were made in the study,

it demonstrated the feasibility of simulating the current amplification via Monte-Carlo

collision instead of relying directly on Townsend theory. Among the list of assumptions,

the most notable ones are the treatment of the tokamak as an infinite-length cylinder

volume without proper particle loss mechanism, as well as using argon cross section

instead of H2 molecules.

Yoo et al. developed the BREAK simulation code (a 2D PIC-MCC code) that uses

gyro-averaging in the particle drift description. Implicit time stepping method is also

used within the simulation code [44]. The BREAK code subsequently showed that E×B

mixing avalanche begins at ne ≈ 1013m−3 and serves to damp the current growth rate

during the latter stage of the avalanche process [45].

Hoppe et al. developed a wholly different numerical methodology to simulate the plasma

breakdown and creation of runaway electrons [46]. The method describes the particle

balance and current ramp-up through sets of conservation governing equations. The

specific description of ion-electron balance is done through the interaction exchange rate

from the Atomic Data and Analysis Structure (ADAS) database. Runaway electron

density is then captured by utilising several semi-analytical expressions which compute

the balance between free electron creation and loss rate of highly energetic electrons.

While the mentioned studies provided new insights into the various aspects of the plasma

initiation process, a highly detailed study of the current growth at a high timescale reso-

lution has never been attempted before. This could potentially improve the understand-

ing of the various charged particles’ physical time evolution when the drift behaviour is

mainly from the interaction with background fields and neutral scattering.

2.5 0D ionisation fraction growth rate

As mentioned previously, detailed studies of electrons’ energy and velocity distribution

and their growth rate in the early ms are lacking. The equations proposed by Papoular

(Eq. 2.14, 2.15, 2.16) are commonly used to form a prediction of the observables. The

work by De Vries et al. formulated an equation that describes a net growth rate that is
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inclusive of the losses. The equation is given as

1

fi

dfi
dt

=
1

ne

dne

dt
= νion − νloss = αVe −

Ve

L
, (2.19)

fi denotes the ionisation fraction of the prefill gas, ne the electron number density; νion

and νloss referring to the rate of electron growth (due to ionisation) and electron loss

respectively, α denoting the first Townsend’s coefficient, Ve describing the electron drift

velocity and finally the connection length experienced by electrons represented by L.

An interpretation of Eq. 2.19 is that the ionisation fraction over time is a balance be-

tween ionisation rate (due to electron-neutral impact ionisation) and loss rate of runaway

electrons (always assuming that the electrons will leave the domain after travelling a dis-

tance of L). The first Townsend coefficient α is obtained as a function of E/p in Eq. 2.12.

An analytically derived value of Ve is then derived from a few simplifications. First,

is the assumption that the electron drift velocity will eventually settle to a constant,

and this constant is achieved due to the force balance between acceleration and colli-

sional drag, expressed as

Facc = Fdrag. (2.20)

The expression of Facc = eE holds when the electric field is the only acceleration contri-

bution experienced by electrons. The expression for Fdrag then arises from the assump-

tion that the majority of the electron populations have less than 20 eV kinetic energy

and the considered collision cross section is only the dominant elastic scattering cross

section. Tawara et al. provided a fitting function for the elastic scattering cross section

as a function of electron kinetic energy We given as

σelastic =
1.75× 10−16

(W 1.5
e + 750)

√
We

.

As the electron energy remains below the threshold of 20 eV, the following approximation

σelastic ∝
1√
We

∼ 1

Ve

holds and the drag force can be expressed as a function of elastic scattering collision

frequency. The expression is then

Fdrag = meVeνelastic

= meV
2
e nσelastic

∼ CmeVen,

(2.21)
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where C is the coefficient of the fitting function by Tawara et al., me is the electron mass

and n is the neutral number density which can be expressed from the ideal gas equation.

Substituting Eq. 2.21 into Eq. 2.20, the expression is then

eE ∼ CmeVen

eE ∼ p

kBT
CmeVe.

The expected Ve that fulfills the force balance is then given as

Ve ∼
ekBT

meC
E

p
. (2.22)

The expression above is commonly reduced to a function of E and p by fixing the

temperature of the neutral gas, which then coincides with the functional dependence

of α parameter described in Eq. 2.12. Lastly, the connection length L is commonly

assumed to be 1 km for an ITER-like tokamak, it is the distance traveled by electrons

before they collide with the plasma-facing components in the vacuum vessel. fi can now

be approximated from the 0-dimensional (0D) model with all the unknown variables

defined. The core assumption remains that, the main mechanism by which the charged

particle population increases can be described by the Townsend discharge process [17]

during the very early phase of plasma initiation in ITER-like tokamak. However, instead

of an equation that purely considers the ionisation (equally, electron population) growth

rate prescribed by Townsend’s first coefficient α, the growth rate is also dampened by

the runaway electron population.

2.6 Research motivation and goals

Eq. 2.19 is a 0D description of a Townsend discharge in a tokamak setting, since it

uses the known first Townsend coefficient α to determine the rate of ionisation without

concern for the spatial geometry of the considered domain [18]. The connection length

L measure is also given as a single assumed length, which is in contrast with the length

found even within a tokamak device’s Scrape-Off Layer (SOL) which can range between

tens of meters up to the range of kilometers [47, 48]. Additionally, the force balance in

Eq. 2.21 implies that the derived Ve is an averaged electron velocity purely along the

acceleration field vector. The Ve measure in a 3-dimensional (3D) space is different since

the scattering events introduce velocity components perpendicular to the acceleration

field vector. The 0D formulation might introduce an overestimation of the collisional

drag force experienced by the electrons. As it stands, the α variable is the most well-

defined value among the three discussed unknowns in Eq. 2.19, since it is rooted in

experimentally fitted values. Due to the listed differences between the 0D equation and
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the 3D settings, it is expected that both scenarios will produce notable deviations in

ionisation fraction growth rate and Ve.

There is now a need to quantify the differences in the results obtained via the 0D equation

and 3D simulation model, especially in the prediction of plasma initiation in larger-scale

tokamak like ITER. A larger vacuum vessel volume along with unavoidable magnetic

stray fields (primarily from the poloidal magnetic field) during the plasma initiation

phase will introduce a non-negligible runaway electron population. In this situation, a

0D model would be unsuitable for the approximation of runaway electrons, since run-

aways are heavily dependent on electrons’ interaction with complex three-dimensional

field geometry. Based on these considerations, there is a motivation to perform a com-

parative study of ionisation growth rate between the 0D approximation and the 3D

simulation (perhaps providing insight into the main factors that determine the global

growth rate in the tokamak plasma initiation process).

The study of space charge distribution along the tokamak is also a subject of interest.

Establishing a relationship between the observed charge concentration on the poloidal

plane to various external factors will provide a better-informed decision on designing the

scenario of plasma initiation. Before the loop current in the tokamak reaches the thresh-

old which forms magnetic flux tubes, the charged particles will not be properly confined

and losses are expected from the prescribed magnetic stray fields. Through the study,

key criteria such as the location of the first closed magnetic flux surface formations or

the time scale at which Coulomb collision dominates can be identified. Another area

of study would be the formation of charge separation (or lack thereof) due to charge

interaction with background field and collision interactions. The underlying physics of

the development of discussed observables can be understood through numerical studies.

The influence of charged particles’ spatial distribution also drives the need for the devel-

opment of a 3D simulation model. There was a consideration to conduct the simulations

in a simplified 2D domain, taking advantage of the toroidally symmetric field config-

urations in a tokamak. However, due to the sparse charged particle distribution, the

charged particles are strongly coupled by the self-consistent fields. Full representation of

the spatial distances between charged particles becomes an important consideration in

accurately resolving the charged particle motion in the early plasma initiation phase. A

fully three-dimensional (3D) model will be able to simulate the complex charged particle

interactions, as well as particles-fields interaction during Townsend avalanches.

During plasma initiation, the plasma is far from thermal equilibrium, so the electron ve-

locity distribution along the toroidal direction is likely to deviate from the often-assumed
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Maxwellian distribution. Several factors can influence the resulting velocity distribution.

Electrons that carry kinetic energy in the order of 100 eV experience energy loss pre-

dominantly due to impact excitation or ionisation of neutral molecules. During the

plasma breakdown phase, there will be an exponential increase of low energy electron

population from ionisation events, skewing the distribution toward the low-velocity end.

Additionally, there will be a small population of electrons that eventually gain energy

above 1 keV, beyond which the cross sections fall off exponentially, allowing such elec-

trons to continuously gain energy until they collide with plasma-facing components of

the vacuum vessel. These energetic electrons form the high-velocity tail of the velocity

distribution. By continuously recording the electron velocity distribution parallel to the

toroidal direction, a description of the distribution during the initiation phase can be

obtained. Comparison between the perpendicular and parallel velocity distribution will

also provide insight into the drift mechanics as the charges travel in the toroidal geom-

etry.

The current task is to develop a numerical model that can achieve the stated research

goals. Fortunately, Simulation and Data Laboratory Plasma Physics in Forschungszen-

trum Jülich has an existing Coulomb potential solver that was developed in-house.

The solver will be used to resolve the Coulomb forces experienced by charged particles

throughout the simulation. All other aspects of the simulation (electric and magnetic

field calculations, particle motion integration, neutral scattering and ionisations, etc.)

will have to be developed. The next chapter focuses on the all major aspects of the

simulation code that is implemented specifically for this study.
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Implementation of numerical

model

In order to meet the stated research goals in Sec. 2.6, a numerical model that is ca-

pable of modelling charged particle motion in 3D geometry, while reproducing the ex-

pected ionisation growth rates consistent with experimental measurements is needed.

The most important consideration is the type of plasma modelling that the numerical

simulation will use. Magnetohydrodynamic (MHD) models, kinetic models such as the

Vlasov-Maxwell-Fokker-Planck system and particles-based methods like the Barnes-Hut

algorithm or Fast Multipole Method (FMM) are among the commonly known plasma

modelling methodologies. A discussion of the thought process behind the chosen method

for this study is detailed in Sec. 3.1. This is then followed by the details of the numerical

model’s various aspects, such as the Coulomb solver (Sec. 3.2), the equation of motion

integrator (Sec. 3.3), electron-neutral scattering models (Sec. 3.4) and finally the electric

and magnetic field calculations that were implemented.

3.1 Selection of plasma model

As it was mentioned previously, the simulated plasma regime is far from thermal equi-

librium. This already eliminated the use of the magnetohydrodynamic (MHD) model.

The choice is then between the particles-based approach and the kinetic equation. Con-

sidering the goal of studying the ionisation growth rate in a tokamak scenario, it is clear

that impact ionisation between electron-neutral is a key component to be simulated.

Both methods of plasma modelling can sufficiently capture the ionisation rate by incor-

porating electron-neutral cross sections in the computation of collision frequencies, thus

recording the ionisation over time as an emergent behaviour (arising from convolution of
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cross sections and electron energy distribution function). More specifically, such collision

interaction in particle-based approach can be computed in a straightforward manner for

every simulated charge by utilising the particles’ energy. The kinetic formulation can

achieve the same goal by incorporating impact cross sections in its collision operator.

It is also possible for both particle-based and kinetic equation methods to study the

time evolution of electron velocity distribution in 3D. The numerical implementation

to capture such information is rather straightforward with the particle-based method.

This is simply done by recording the velocities of all simulated charges and reproducing

velocity histograms with respect to the aligned direction in the torus (either along the

toroidal or poloidal direction). Kinetic formulations are able to account for such velocity

distributions, provided that the distribution function f includes the description of the

momentum space distribution in both the aforementioned directions, which can then

be updated as the simulation progresses in time. However, this requires discretisations

in both space and velocities which are more computationally involved compared to a

particle-based method. Finally, the goal of studying the charge distribution in space can

equally be sufficiently carried out by either of the models, provided that the collision

operator of kinetic equation includes careful considerations in modelling the scattering

angles during collision events as well. Computation of electromagnetic fields can be com-

puted with methods that fit best for each of the two methods, and the charged particles’

interaction with the fields should be satisfied as long as Maxwell’s equations are solved

in conjunction.

Finally, an important unknown to consider is the initial number density of charges in the

simulation. Since this work aims to understand if Townsend breakdown avalanche can

occur in ITER-like tokamak conditions starting from purely unionised gas without the

aid of auxiliary heating (electron/ion cyclotron resonance heating and neutral beam in-

jection etc.), the simulation should ideally start with approximately ∼ 10m−3 electrons.

At this stage, the major challenge is the proper representation of phase space distri-

bution of charges. The planned dimension of the simulated tokamak breakdown region

will have a major radius of 5.8m and a minor radius of 1.75m. Should the simulated

domain be discretised in the length scale of centimetres, there will be a large number

of cells that carry no charged particles. This is unfavourable to kinetic equations, as

the distribution function cannot properly represent the local charges’ phase space distri-

bution (which can be null in some discretised cells during initial time). Particle-based

approach is therefore more appropriate for the regime of study, even if the exponentially

increasing computational cost can potentially be a problem at a later stage.
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3.1.1 General overview of particle-based models

The justification for the usage of particle-based methods was made and this section now

focuses on a general description of the method itself. This class of method involve the

integration of equation of motion for each individual charged particle within the sys-

tem, subjected to the influence of electromagnetic fields and collisions, either between

charged particles or interactions with neutrals. This method usually employs an explicit

time-stepping scheme to integrate the equation of motion as it marches forward in time.

One commonly used time-stepping algorithm is the Boris pusher [49], a rather direct im-

plementation of the leapfrog algorithm which is computationally economical. Although

it is not symplectic by nature, it does a sufficient job of preserving the simulated sys-

tem’s phase space over time (which provides conservation of momentum and energy of

the system). The Boris pusher solves a generic equation of motion shown in Eq. 3.1,

which describes the forces experienced by charged particles within a magnetised domain

throughout the simulation.

m
dv

dt
= q(E+ v ×B) (3.1)

The equation of motion depends on the mass and charge of the charged particle m, q,

the charged particle’s velocity v; E and B each representing the experienced electric

and magnetic field respectively. The electromagnetic fields are solved via Maxwell’s

equations, given as

∇ ·E =
ρv
ε0

∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µ0

(
J+ ε0

∂E

∂t

)
.

(3.2)

The set of Maxwell’s equations is not commonly solved concurrently as the coupling be-

tween E and B is computationally expensive to solve. Instead, E and B are often times

computed separately. Darwin’s approximation to Maxwell’s equation is one such method

to decouple the two fields. Collision interactions between free electrons and background

neutrals can also be explicitly simulated (assuming that the neutrals are homogeneously

distributed and static), often via prescribed collision frequencies as a function of neu-

tral number density, specific cross sections and the electron’s energy. Collisional drags

experienced by electrons will then arise as an aggregate of a few factors, such as scat-

tered angles with respect to the experienced acceleration field (often prescribed static

background electric field) and the electron energy loss due to excitation or ionisation of

neutrals.
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The particle-based method has a few options to numerically resolve the E and B fields,

Particle-in-Cell (PIC) and the mesh-free algorithms are the typical choices. Particle-in-

Cell method generally follows the computational loop, beginning from interpolating the

electromagnetic field at the grid vertices to the individual particles bounded by the cell,

followed by the pusher algorithm that updates the particles’ velocity and position, then

projection of the resulting current and charge density to the nearest cell grid points and

finally solving Maxwell’s equation to obtain E and B from the projected values for the

next time step loop. Before such a loop can begin, the simulation domain is discretised

into cells where E and B are stored on the cell vertices. There are numerical details

to every step of the computational loop. For example, there is a freedom of choice in

the shape function used to interpolate the field variables to the particles [50]. Aside

from that, one could choose to solve Maxwell-Ampère and Maxwell-Faraday equations

to compute the field variables for the next time step, instead of the set of Maxwell’s

equation. The projection of components of E and B from particles to 3D cartesian grids

can also be done with the Yee lattice [51]. The assignment of the vector components in

cubic grid is derived from expressing the E and B in its cartesian components, realising

that not all the grid points has to carry all components of either E and B in order to

compute the rate of change of electric displacement field D and magnetic field B. One

has to be aware of the possibility of numerical heating and numerically induced instabil-

ities arising from the spatial aliasing of defined grid structure in PIC algorithms [52–54].

It has also been demonstrated that numerical heating occurs in simulations that couples

PIC with binary Monte-Carlo collisions [55].

Mesh-free method side-steps the unphysical effects arising from the grid definition. The

biggest drawback to the mesh-free method is the immense computational cost and it is

usually not feasible to numerically simulate a system with a large number of particles.

Take a simulation which resolves the electrostatic potentials between charged particles,

a straightforward potential evaluations of n particles introduces a computational cost

that scales in the order of O(n2). The expensive nature of particle-based methods often

limits the size of the particle system.

In order to address the issue, two commonly used methods are the fast multipole method

(FMM) [56] and the treecode method (Barnes-Hut algorithm [57] for example). While

both methods involve the construction of the tree structure that establishes parent-child

relation between particles, summation of potential contributions is different. FMM

method has a computational cost of O(n), while the Barnes-Hut algorithm’s compu-

tational cost scales with O(n log n). The difference in cost scaling between the two

methods is due to Barnes-Hut computes particle-particle and particle-cell interactions,
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while FMM also computes cell-cell interactions (between parent and daughter cells) dur-

ing the force computation step [58, 59]. Another feature of FMM is that it is better

suited for a uniform distribution of particles if no additional adaptive treatment is given

[60], while Barnes-Hut algorithm is inherently adaptive as the simulation domain is

decomposed until each particle is its own leaf in the tree structure. Darwin’s approxi-

mation is commonly used to compute the self-consistent magnetic fields [61, 62] instead.

It is entirely possible to carry out n-body simulation without spatial discretisation, since

the net force experienced by charged particles is calculated and stored by each particle

at every time step. Since the n-body simulation method is a fundamental description

of a charged particle system, the resulting system of equations is straightforward with

minimal in-built assumptions. This has the added advantage that such a method can

be applied to a wide range of plasma physics applications.

The computation of self-consistent electric field E in this study is handled by a par-

allel implementation of the Barnes-Hut algorithm. A brief description of the numerical

solver will be given in the following section.

3.2 Pretty Efficient Parallel Coulomb solver

The formation of rarefied magnetised plasma from neutral prefill gas is the main focus of

this simulation study. While the resulting electric field due to space charge separation is

initially negligible, it is still expected to have an appreciable influence on particle trajec-

tories during the early phases of plasma initiation. For this reason, a highly parallelised

numerical solver for electrostatic potential is still a useful tool to have. Comparison

of the magnitude of background electric field and the field due to charge distribution

can provide insight and help extrapolate the threshold when Coulomb collisions become

dominant interaction among the charged particles. Eq. 2.19 fixed at temperature of

373.15K, E/p = 300Vm−1 Pa−1 and p = 2mPa can be used to show that the electron

number density will span from 10m−3 to above 108m−3 in ∼ 1.5ms. A numerical solver

that can efficiently utilise the supercomputing nodes will better cope with the large

number of particles further in simulation time.

Taking all the above considerations in mind, the Pretty Efficient Parallel Coulomb-solver

(PEPC), a hybrid parallel (rank-thread) implementation of Barnes-Hut algorithm de-

veloped at the Jülich Supercomputing Centre [63] is appropriate to be the main tool for

the calculation of collective Coulomb forces. The core of the PEPC code is divided into

three parts: a load-balancing distribution of particles to participating MPI ranks, the

construction of a data tree of simulated charges and associated multipole moments and
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finally the force calculation via a tree traversal [64]. PEPC adopts an implementation

strategy proposed by Warren and Salmon [65], a hashed oct tree algorithm, with the

choice of either Hilbert or Morton (‘Z’) space-filling curves to map particle’s coordinates

to unique keys. The sorting of the assigned keys ensures the spatial ‘closeness’ of parti-

cles and assists in the distribution of particles to participating MPI ranks. This is done

to avoid unnecessary communication between processors and heavy duplication of local

tree data during the tree construction and traversal phase of Barnes-Hut algorithm. De-

tails of the implementation can be found in the work of Gibbon et al. [66] and Winkel

et al. [64].

Simulations are performed on two supercomputers in Forschungszentrum Jülich, namely

the Jureca DC and the Jureca Booster partitions [67]. Fig. 3.1 shows the strong scaling

of the PEPC solver running on both machines. The plots displayed an approximately

inverse linear scaling on wall-clock time as the number of cores is increased on both

machines (shorter wall time with larger number of cores), demonstrating good paral-

lelisation efficiency of the PEPC solver. This behaviour is important to handle large

number of simulated charges during the self-consistent electric field compute step. The

plot on the right showed that the total compute resource (with the unit of core-hour,

defined as the number of cores multiplied by hours of computation) begin to stagnate for

both of the Jureca DC simulations as the number of simulated bodies per core reduces.

This is most noticeable for the simulation case with 1 million particles, both scenarios

of 500 and 1000 compute cores required approximately 6 core-hours to complete the

simulation. This highlights the communication bottleneck between the cores and sug-

gests that there is an optimal number of particles per rank in order for the simulation to

run as efficiently as possible. As such, the number of cores requested will scale properly

with the number of simulated particles to achieve reasonable runtime for each simulation

case.

3.3 Gyrophase corrected Boris pusher algorithm

In order to integrate Eq. 3.1 and compute the updated charged particle velocities, a

numerical integrator that has a suitable bound on the energy conservation error when

both electric and magnetic fields are present has to be selected. The integrator should

also avoid unbounded error accumulation over an arbitrarily large number of time steps.

A very commonly used numerical scheme is the Boris scheme [49]. Although it is not a

symplectic integrator, it does conserve phase space volume as well as exhibiting a global

bounded energy error [68]. However, it is also well-known that the scheme’s phase error

is unbounded. The phase error arises purely from the treatment of the rotation phase
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Figure 3.1: Left: Strong scaling of PEPC on the Jureca-DC and Jureca booster
partitions for a problem size of 106 and 5× 106 particles taken from the tokamak
Townsend discharge scenario run for 100 timesteps, without I/O. All accompanying
physics and in-development merging algorithm are included. Right: The corresponding

required core-hours.

as a result of the Lorentz force.

The relativistic treatment of Eq. 3.1 is repeated here for the sake of convenience, which

is
du

dt
=

q

m
(E+ v ×B) (3.3)

with u = γv the relativistic velocity vector, γ = 1/
√
1− ∥v∥2/c2 and c denoting speed

of light respectively. Numerical evaluation of the acceleration is performed by first

discretising Eq. 3.1 in time t with central differences, which gives

ut+∆t
2
− ut−∆t

2

∆t
=

q

m
(Et + vt ×Bt).

where vt is the effective velocity (commonly treated as average relativistic velocity be-

tween time t+ ∆t
2 and t− ∆t

2 ), this term is not usually used as-is in the implementation.

The time discretised expression is further split into linear and rotational acceleration

steps shown as

u− = ut−∆t
2
+

qEt

2m
∆t (3.4)

u+ − u−

∆t
=

q

m
(vt ×Bt) (3.5)
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ut+∆t
2

= u+ +
qEt

2m
∆t (3.6)

Numerical treatment of Eq. 3.5 proposed by Boris is not used here. Zenitani et al.

instead proposed an analytical solution that solves the rotation exactly [69], which is

given as

u+ = u−
∥ +

(
u− − u−

∥

)
cos θ +

(
u− × B̂t

)
sin θ (3.7)

with

u−
∥ =

(
u− · B̂t

)
B̂t

θ =
q∆t

√
1− ∥vt−∆t

2
∥2/c2

m
∥Bt∥

where B̂t = Bt/∥Bt∥ is the unit vector of magnetic field at time t. The computed ut+∆t
2

is then used to update the position of the particle in the next half step as

x(t+∆t) = x(t) +
ut+∆t

2

γ
∆t, (3.8)

noting that a simplification of γ = γt+∆t
2

= γt−∆t
2

is taken. Staggered update of particle

velocity and position is performed by implementing Eq. 3.4, Eq. 3.7, Eq. 3.6 and finally

Eq. 3.8 in succession.

There is a time step size limit associated with the Boris integration scheme if the gyro-

orbit of the fast-moving electrons is to be resolved by at least 3 points. The limit is

expressed as

∆t <
3

{ωg}max
=

3me

qe|B|max
,

where ωg is the gyro-frequency, qe denotes the charge of electron and me is the electron

rest mass. If the simulation is done with step size larger than ∆t, the electron’s motion

will still be confined along the experienced magnetic field vector, but the gyroradius

will not be scaled correctly and there will be an offset from the actual gyrocenter. The

collision frequency between electrons and neutral molecules also imposes constraint on

the time step size, so that there will only be a maximum of one collision event on average

in a step. This time step size bound will be discussed in detail in Section 3.4.1.

3.4 Scattering and ionisation model

This section describes the implemented calculation of electron-neutral collision probabil-

ities and the treatment of scattering angles during each collision. Since this work is a first

attempt at studying the 3D effects of Townsend avalanche breakdown in a tokamak’s
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very early phase, a major simplification is made such that the ionisation channels are

purely from electron-neutral impact. Three different scattering models are implemented

and later compared in Ch. 5 to quantify their impact on the obtained Townsend’s first

coefficient α. This is crucial as it affects the ionisation growth rate. Detailed discussions

on the considered electron-neutral collision cross sections will be covered in Ch. 6 and 7

respectively.

3.4.1 Collision probability

A common assumption in the treatment of electron-neutral collisions is that the neutral

molecules are static and homogeneously distributed in space. This removes the need for

the neutrals to be explicitly simulated and saves the computational cost enormously as

only the charged particles are modeled. Decisions about when electrons undergo col-

lisions can then be made probabilistically. The following electron collision probability

does not consider charged particles (electron-electron or ion-ion) collisions, which are in

principle handled implicitly by the Coulomb solver.

The mean free path lmfp of an electron in a volume V of neutral gas with pressure

p and temperature T is derived from the number density n of neutrals and the effective

collision cross section σ (which is a function of electron energy ε), expressed as

lmfp =
1

σ(ε)n
=

RT

σ(ε)pV

where R is the ideal gas constant. The collision probability between an electron and

background neutral per time step can then be expressed as a function of lmfp. For an

electron that has kinetic energy ε (and corresponding velocity v), the expected time

between collisions is then

τ =
lmfp

∥v∥ =
1

σ(ε)n∥v∥ .

During an interval of ∆t = τ , one would expect the electron to experience one collision.

That is to say that the probability of collision is 1. The probability of electron not

experiencing a collision during an interval ∆t < τ is then

P (∆t) = 1− ∆t

τ
.

Let’s assume that the end time of the simulation is tend, and a total number of steps

Ntotal is taken from initial time to tend, we have ∆t = tend/Ntotal and the probability of

31



Chapter 3: Implementation of Numerical Model

the electron not experiencing collision at all up to tend is

Pno coll. =

(
1− ∆t

τ

)Ntotal

=

(
1− tend

Ntotalτ

)Ntotal

.

Lemma 1. For every sequence of complex numbers wn with a limit w, it is true that

lim
n→∞

(
1 +

wn

n

)n
=

∞∑
k=0

wk

k!
.

From the lemma [70], Pno coll. simplifies to

Pno coll. ≈ exp

(
− tend

τ

)
= exp [−Ntotal σ(ε)n∥v∥∆t]

when Ntotal approaches infinity. The probability of at least one collision up till arbitrary

Nstep < Ntotal is then

Pcoll. N = 1− exp [−Nstep σ(ε)n ∥v∥∆t] .

Finally, the probability of at least one collision between an electron with ε and v in one

time step is then

Pcoll. = 1− exp [−σ(ε)n ∥v∥∆t] . (3.9)

Considering that there will be multiple different cross sections included in the simulations

and each cross section will have its own collision probability, the expression is then

Pc = 1− exp [−σc(ε)n ∥v∥∆t] = 1− exp [−νc(ε)∆t] , (3.10)

where σc(ε) denotes the cross section for collision outcome of type c and collision fre-

quency expression

νc(ε) = σc(ε)n ∥v∥ (3.11)

is used to further simplify the Eq. 3.10. Representing the background neutrals with a

simple n implies that its degree of ionisation is negligible over the time scale of this study.

In order to avoid potentially costly computation of all individual collision frequencies νc

for every particle at every time step, H. R. Skullerud proposed the null collision method

which involves defining a constant collision frequency, ν ′, that is large enough to encom-

pass all possible collision outcomes over the full range of electron energy [71] in a first
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step. Any measure or definition of ν ′ can be accepted as long as it fulfils

ν ′ ≥ νT(ε), ∀ε.

νT(ε) describes the collision frequency computed from summing all considered cross

sections of electron-hydrogen molecule collisions,

νT(ε) = n∥v∥
∑
c

σc(ε) = n∥v∥σT(ε).

Since it is established that ν ′ should always be equal or larger than νT(ε), the resulting

collision probability is then

1− exp(−ν ′∆t) ≥ 1− exp(−νT(ε)∆t)

P ′ ≥ P (ε), ∀ε.
(3.12)

P ′ denotes the collision probability calculated with ν ′ and P (ε) refers to the actual colli-

sion probabilities computed from the energy ε carried by electron. In this set-up, a ‘null

collision’ outcome with no real interaction between hydrogen molecule and electron is

already included in ν ′. This would mean that only when a random number R1 = [0, 1]

fulfills R1 ≤ P ′, proper computation of each available σc(ε) is done. A second random

number R2 is then used to determine the actual collision outcome via Eq. 3.10.

This implies that choosing an overly large ν ′ will not impose a penalty on the com-

putational cost, it would be the same as not applying this simplification in the first

place. However, one would like to minimise the probability of ‘null collision’ to avoid

excessive calculation of the actual Pc. A specific definition of ν ′ is made throughout this

study, which is

ν ′(ε) = σt.s.(ε)n ∥v∥, (3.13)

where σt.s. refers to the total scattering cross section. This definition is made with the

knowledge that the considered cross sections in the simulation cases will not fully cover

all electron-neutral collision outcomes. The study mainly concerns itself with electron-

hydrogen molecule scattering interactions. Many of the cross sections for H2 metastable

excitations are not considered due to negligible energy transfer from electron to H2.

Aside from that, the ignored cross sections generally have an order (or more) magnitude

smaller cross section value compared to the ionisation cross sections (which is the main

focus of the study). As such, the following condition always holds true

σT(ε) < σt.s.(ε).
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Eq. 3.9 refers to the probability of at least one collision within the time span of ∆t. The

choice of time step size is important to ensure that only one instance of collision occurs

for every charged particle in each simulation step. Vahedi et al. [2] gave an expression

for the probability r of two or more collisions (k ≥ 2) per time step as

r ∼
∞∑
k=2

P k =
P 2

1− P

In order to have less than 1% chance for each simulated particle to have more than one

collision per time step (r < 0.01), then ∆t must necessarily be chosen to fulfil

σT(ε)n ∥v∥∆t ≤ 0.1. (3.14)

3.4.2 Scattering angle

In a quasi-neutral plasma, Coulomb collisions dominate in the collisional drag force ex-

perienced by electrons. However, in the early stages of Townsend discharge, the presence

of ions is scarcely felt within the medium. Most of the collision events experienced by the

electrons are between electron and neutral targets and thus deserve special attention.

Since the differential cross sections related to electron-hydrogen elastic scattering over

the wide energy range of interest are lacking, several methods of computing the scatter

angle are considered in this work. This includes a new method of scatter-angle calcu-

lation along with two others by Vahedi et al. [2] and Okhrimovskyy et al. [3] respectively.

The interaction between simulated charged particles is handled by PEPC described

in Section 3.2. The transition from an elastic collision dominated phase to a primarily

Coulomb collision phase in the ionisation breakdown simulation can therefore be handled

seamlessly.

3.4.2.1 Random Scatter model

This newly proposed method of scattering angle treatment first divides the considered

cross sections into two groups: collision outcomes that do not involve splitting of the

neutral targets, and those that cause ionisation or dissociation to occur. The follow-

ing description details the implementation for the first group, which applies to elastic

scattering and various metastable excitations of H2 molecules.
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Figure 3.2: Simple sketch of hard sphere elastic collision model. This model can easily
be extended to 3D by assuming that the neutral target is spherical, thus the azimuthal

angle θ distribution is uniform.

The treatment of velocities in this scenario is rather simple and it can be illustrated with

Fig. 3.2. Note that all the instances of collisions are between an electron and a neutral

target. A simple assumption is made regarding the model used for collision velocity

updates, which is based on a hard-sphere collision model. Another assumption is that

the electron is treated as a point charge with no radius of its own. Referring to Fig.

3.2, it can be seen that the polar angle ϕ is in the range of [0, π], which is dependent on

the impact parameter, b. Further, for a fixed impact parameter, b, the azimuthal angle

of approach, θ, is in the range of [0, 2π]. Since the neutral targets are not explicitly

simulated, the impact parameter and azimuthal angle for each collision are not known.

As a result, the scattered angle for electrons is determined in a random manner.

In order to ensure that the velocity vector direction is uniformly distributed over a

sphere, θ and ϕ is calculated as

ϕ = arccos(1− 2R1),

θ = 2πR2

(3.15)

where R1 and R2 are two different random numbers in the range of [0, 1]. With the

above θ and ϕ, the unit vector for velocity after collision is then

v̂ =


sin(ϕ) cos(θ)

sin(ϕ) sin(θ)

cos(ϕ)

 (3.16)

The resulting distribution of vector points on unit sphere is then shown in Fig. 3.3, seen

from the side view in the x-z plane and the top view in the x-y plane. It shows an even

35



Chapter 3: Implementation of Numerical Model

distribution of points over the sphere.
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Figure 3.3: a) Front view of unit sphere in x-z plane.(left) b) Top view of unit sphere
in x-y plane. (right)

Once the randomised unit vector is obtained, the post-collision velocity vector of incident

electron v′
inc. is then

v′
inc. = v′inc. · v̂

where

v′inc. =

√
v2inc. −

2εredux
me

, (3.17)

with vinc. denoting the velocity magnitude of incident electron before collision. me refers

to the electron mass and εredux the energy lost during the collision events, which depends

on the type of collision outcome. As an example, εredux = 0 during an elastic scattering

event and εredux = 0.0441 eV for rotational level transition of J = 0 → 2.

The treatment of incident electron’s velocity in the second group (which involves splitting

of neutrals) is markedly different. In the case of electron hydrogen molecule collision,

hydrogen molecule is about 3674 times heavier than electron. The resulting energy

transferred from electron to hydrogen molecule is expressed by

Ekin,H2 =
4memH2

(me +mH2)
2
Ekin,e.

It is assumed that the positive ion (or H atom) after splitting does not gain any of the

incident electron’s energy. Thus, the remaining energy after ionisation is split between
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the original electron and the newly freed electron by satisfying conservation of momen-

tum and energy. In the event of successful ionisation, the required energy for ionisation

is deducted from incident energy via Eq. 3.17 as well.

Figure 3.4: Allowed scattering angle for freed electron.

The freed electron’s scatter direction is then determined randomly, but with the re-

striction that the angle of scattering is restricted to a hemisphere perpendicular to the

incident electron vector shown in Fig. 3.4 (ϕ = [0, π/2]). v̂inc. refers to the initial unit

vector of the incident electron, while v̂freed denotes the unit vector of the freed electron

after ionisation. The incident electron’s vector direction after the impact is calculated

in order to fulfil the conservation conditions. Since it is assumed that ion doesn’t inherit

any energy after ionisation (∥vion∥ = 0), the set of problems to be solved in order to ob-

tain the incident electron’s post-collision velocity reduces to a two-body elastic collision

problem.

Assuming the freed electron’s unit vector is predetermined as v̂′
freed, along with the

knowledge of incident electron’s velocity vector vinc., the resulting post collision velocity

vector of freed electron v′
freed and incident electron v′

inc. is fully described as

v′
inc. = ||v′

inc.||v̂′
inc.

v′
freed = ||v′

freed||v̂′
freed,

where

cos θ′ =
v′
freed · vinc.

||v′
freed|| ||vinc.||

||v′
freed|| =

2minc.

mfreed +minc.
||vinc.|| cos θ′

v′
inc. = vinc. − (mfreed/minc.)v

′
freed

(3.18)
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Eq. 3.18 is solved for every instance where ionisation occurs. In the case of neutral dis-

sociations where no additional electron is freed, the treatment of v′
inc. is simple. Eq. 3.15

and Eq. 3.17 is used instead, but with ϕ restricted to [0, π/2].

Special consideration now applies to H atoms arising from either dissociative ionisation

or neutral dissociation. Since the cross section of neutral dissociation and dissociative

ionisation is comparable, the growth of H atom counts will follow the trend seen in H+

ions. This means that up to the time scale of milliseconds in the plasma initiation pro-

cess, the population of H atoms will still be more than 10 orders of magnitude smaller

than the background H2. For this reason, H atoms are not explicitly simulated. This

extends to not including the electron - H ionisation channel as well. However, the num-

ber of H atoms as the simulation progresses is recorded, so that it can be used to inform

the time when the population is sufficiently large to include electron - H scattering cross

sections.

3.4.2.2 Vahedi & Surendra model

In this case, the calculation of the electron energy loss is still done using Eq. 3.17.

However, the scatter angle is now a function of incident electron’s energy [2]. In the case

of ionisation, the scatter angle has a range of ϕ = [0, π] rather than being restricted to

the forward half hemisphere [0, π/2]. The scatter angle is now computed by

cosϕ =
2 + ε− 2(1 + ε)R

ε
(3.19)

where R denotes random number of the range [0, 1] and ε refers to incident electron’s

energy. The azimuthal angle is then determined randomly with θ = 2πR.

An additional angle χ is also computed with cosχ = vinc · î. The resulting scattered

unit vector is then determined by

v̂′
inc. =v̂inc. cosϕ+ v̂inc. × i

sinϕ sin θ

sinχ

+ v̂inc. × (i× v̂inc.)
sinϕ cos θ

sinχ
.

The post-collision vector v̂′
inc. calculation applies to both ionising and non-ionising

events, with the energy respective to the collision type subtracted from the incident

electron. In ionising events, Eq. 3.18 is used to properly partition the resulting elec-

trons’ energies.
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Figure 3.5: Scatter angle dependence on R = [0, 1], based on Vahedi et al. [2].

Resolving Eq. 3.19 over a range of electron energy will affect the distribution of scattered

angle and this is shown in Fig. 3.5. It is clear that the electrons are more likely to have

scatter angles that are less than π/2 (forward scatter) as ε increases. At an energy of

0.01 eV, that shows an almost equal chance of forward or backward scatter.

3.4.2.3 Ohkrimovvsky model

In this section, the method proposed by Ohkrimovskyy et al. [3] is described. Normalised

differential cross section for screened-Coulomb scattering of electron obtained from first

Born approximation of quantum mechanical theory of scattering gives

I(ε, ϕ) =
1

4π

1 + 8ε

(1 + 4ε− 4ε cosϕ)2

which can be rewritten as

I(ξ, ϕ) =
1

4π

1 + ξ2(ε)

(1− ξ(ε) cosϕ)2
. (3.20)

Thus, by solving

R = P (ξ, χ) =
2π
∫ χ
0 I(ξ, χ) sinχdχ

2π
∫ π
0 I(ξ, χ) sinχdχ

followed by some simple algebraic manipulations, scatter angle is given by

cosϕ = 1− 2R(1− ξ)

1 + ξ(1− 2R)
, R = [0, 1]. (3.21)
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Different interaction potentials will yield different ξ(ϵ) functions, but it can be deduced

from
σm
σ

=
1− ξ

2ξ2

(
(1 + ξ) ln

1 + ξ

1− ξ
− 2ξ

)
, (3.22)

where σm and σ denotes momentum transfer cross section and integral cross section of

electron neutral collision.

Both σm and σ in Fig. 3.6 are plotted using the cross section data of Yoon et al [4],

supplemented by van Wingerden’s work [72] up to 2000 eV for the integral cross section

and MAGBOLTZ code [73] for momentum transfer cross section up to 10 keV. Solving

Eq. 3.22 with the obtained ratio gives ξ. Once ξ is obtained, it is used in Eq. 3.21 to

compute the scatter angle ϕ (shown in Fig. 3.7).
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Figure 3.6: Cross section values of electron-H2 molecule collision and the resulting
ξ(ϵ) plotted over electron energy of 0.0001 - 10 000 eV.
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Figure 3.7: Scatter angle dependence on R = [0, 1], based on Ohkrimovskyy et al.
[3].

The resulting scatter angle distribution is markedly different from Fig. 3.5. This method

produces extremes in both forward and backward scattering tendencies depending on

incident electron’s energy. It is shown in Fig. 3.7 that electron energy of approximately

less than 3.8 eV, there is a higher likelihood that backward scatter would occur. The

backward scatter tendency peaks at an energy of approximately 1 eV. Once the electron

energy is above the threshold of 4 eV, it quickly becomes highly likely to scatter forward

instead as seen in the case of 8 eV and 12 eV respectively.

A detailed study of the described scattering angle model will be presented in Ch. 5.

The model that approximates experimentally obtained measures of α and Ve that is

used in Eq. 2.19 will be chosen for the large scale tokamak plasma initiation simulation.

3.5 Tokamak field calculations

This section describes the implemented calculation of the external electromagnetic fields

in toroidal geometry. As mentioned previously, the simulation is conducted in a 3D

domain. Each simulated particle will then calculate the field vectors as a function of

the particle’s coordinates. This section is divided into 5 subsections, with the first

4 describing the numerical description of the electric and magnetic fields. The last

subsection covers the numerical implementations that reduce the computational cost of

resolving particles’ experienced field values.
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3.5.1 Vector potential of current density in circular loop

Maxwell’s equations (Eq. 3.2) require that all magnetic fields B must be divergence

free. A mathematical property involving the curl operator and divergence operator is

exploited to ensure the divergence free condition is always satisfied. Assuming that there

is vector A, then the following condition holds

∇ · (∇×A) = 0. (3.23)

A is then called the vector potential and its curl is magnetic field B. Assuming that a

magnetic field B is resulting from current density J flowing through a conductor, A can

be deduced directly from the Biot-Savart law

B(x) =
µ0

4π

∫
V ′

J(x′)dV ′ × (x− x′)
|x− x′|3 . (3.24)

By substituting
x− x′

|x− x′|3 = −∇
(

1

|x− x′|

)
into Eq. 3.24, the equation becomes

B(x) =
µ0

4π

∫
V ′

J(x′)×−∇
(

1

|x− x′|

)
dV ′. (3.25)

Since

∇×
(

J(x′)
|x− x′|

)
= ∇

(
1

|x− x′|

)
× J(x′) +

1

|x− x′|(∇× J(x′))

and current density is flowing in a parallel manner through the conductor (no rotation

within an infinitesimal volume at point x′), naturally this means

∇× J(x′) = 0,

Eq. 3.25 can be rewritten as

B(x) = ∇× µ0

4π

∫
V ′

J(x′)
|x− x′|dV

′. (3.26)

Expression for the vector potential A(x) is then

A(x) =
µ0

4π

∫
V ′

J(x′)
|x− x′|dV

′. (3.27)

Fig. 3.8 shows the proposed simulation set-up, the poloidal magnetic field is established

by current in a circular loop which lies in the x-y plane. The circular loop has a radius

of R and the current density J is restricted to only present within the said loop. The
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circular loop will later represent the poloidal field coils in a tokamak scenario. O denotes

the object (charged particle) which is located at r distance from the circular loop’s origin.

The aim is to compute the B experienced by object O.

Figure 3.8: Current loop setting in spherical coordinate system.

Since J only travels along the circular loop, its magnitude is wholly its toroidal compo-

nent, Jϕ
1 which is

Jϕ =
I

R
sin θ′ δ(cos θ′) δ(r′ −R) (3.28)

Performing transformation from Cartesian to spherical coordinate system by substitut-

ing

dV ′ = r′2 sin θ′ dr′ dϕ′ dθ′

Eq. 3.27 is now

Aϕ =
µ0

4π

∫
I cosϕ′

R

sin2 θ′ δ(cos θ′) δ(r′ −R)r′2

|x− x′| dr′ dϕ′ dθ′. (3.29)

Representing x and x′ in spherical coordinate as

x = r [sin θ cosϕ, sin θ sinϕ, cos θ]T ,

and proceed to evaluate |x− x′| directly while keeping in mind that ϕ = 0 yields

|x− x′| =
√

r2 + r′2 − 2rr′(sin θ sin θ′ cosϕ′ + cos θ cos θ′).

1Derivation of Jϕ is in App. B.
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Using this identity, Eq. 3.29 is now

Aϕ(r, θ) =
µ0

4π

∫
I cosϕ′

R

sin2 θ′ δ(cos θ′) δ(r′ −R)r′2√
r2 + r′2 − 2rr′(sin θ sin θ′ cosϕ′ + cos θ cos θ′)

dr′ dϕ′ dθ′.

(3.30)

Evaluating the Dirac delta functions then yields

Aϕ(r, θ) =
µ0IR

4π

∫ 2π

0

cosϕ′√
r2 +R2 − 2rR sin θ cosϕ′ dϕ

′. (3.31)

The expression for vector potential can also be expressed in complete elliptic integral of

the first kind (K) and second kind (E)2, which allows for efficient numerical implemen-

tation. The vector potential can now be written

Aϕ(r, θ) =
µ0IR

π

1√
R2 + r2 + 2rR sin θ

(( 2

k2
− 1
)
K(k)− 2

k2
E(k)

)

with k2 =
4rR sin θ

R2 + r2 + 2rR sin θ

(3.32)

For ease of numerical computation of the eventual magnetic field experienced by charged

particles due to the current loop, transforming Eq. 3.31 into cylindrical coordinate sys-

tem yields

Aϕ(ρ, z) =
µ0I

√
R

2π

(( 2

k
√
ρ
− k√

ρ

)
K(k)− 2

k
√
ρ
E(k)

)

with k2 =
4ρR

z2 + (ρ+R)2

(3.33)

Figure 3.9: Current loop setting in cylindrical coordinate system.

2Steps to express Eq. 3.31 in K(k) and E(k) is in App. B
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3.5.2 Poloidal B field

In a tokamak, it is convenient to describe the overall background magnetic field by the

sum of toroidal and poloidal components. The overall magnetic field will satisfy the

divergence free condition if the prescribed poloidal and toroidal fields are individually

divergence free. This is evident from the distributive property of the divergence operator

∇ · (X+Y) = ∇ ·X+∇ ·Y.

When both ∇ ·X = 0 and ∇ ·Y = 0, the divergence free condition of the overall field

is naturally satisfied.

The poloidal magnetic field at point x (in terms of ρ and z only, ϕ is ignored due to

toroidal symmetry of the current loop.) can be obtained by evaluating the curl of Eq.

3.33 which gives the following relations

Bρ =
1

ρ

∂Az

∂ϕ
− ∂Aϕ

∂z

Bϕ =
∂Aρ

∂z
− ∂Az

∂ρ

Bz =
1

ρ

(
∂(ρAϕ)

∂ρ
− ∂Aρ

∂ϕ

)

Since Aρ and Az are both zero, Bϕ will be zero. Directly performing the differentiation

and some rigorous algebraic manipulations gives

Bρ =
µ0Iz

2πρ
√
z2 + (ρ+R)2

(
z2 + ρ2 +R2

z2 + (ρ−R)2
E(k)−K(k)

)

Bz =
µ0I

2π
√
z2 + (ρ+R)2

(
R2 − z2 − ρ2

z2 + (ρ−R)2
E(k) +K(k)

) (3.34)

The poloidal magnetic field is of course divergence free as a direct result of Eq. 3.23.

The example poloidal field shown here assumes that the current loop is at z = 0.0. In

the actual implementation, multiple loops with various R and vertical placements are

defined such that the combination creates the intended poloidal field geometry.

3.5.3 Toroidal B field

The toroidal magnetic field is implemented as a current running along an infinite length

wire in the ẑ direction, coinciding with the tokamak’s major axis. As such, the analytical
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expression for the toroidal magnetic field in cylindrical coordinates is

B(ρ) =
µ0

2π

I

ρ
ϕ̂ (3.35)

with Bρ and Bz component being zero. The question is whether such description satis-

fies ∇ ·B(ρ) = 0.

Divergence of a vector field in cylindrical coordinate is given as

∇ ·B =
1

ρ

∂(ρBρ)

∂ρ
+

1

ρ

∂Bϕ

∂ϕ
+

∂Bz

∂z
.

Note that Bρ and Bz are zero, thus the expression reduces to

∇ ·B =
1

ρ

∂Bϕ

∂ϕ
=

1

ρ

∂

∂ϕ

(
µ0

2π

I

ρ

)
= 0.

Therefore, the overall magnetic field experienced by charged particles is completely

specified by Eq. 3.34 and 3.35.

3.5.4 Toroidal E field

In general, the electric field need not be divergence free. However, the toroidal electric

field in a tokamak during the plasma initiation phase is a result of the current ramp-up

of the central solenoid. As a result, the prescribed background toroidal electric field

should also be divergence free. The implemented expression of the toroidal electric field

is similar to Eq. 3.35, taking the form of

E(ρ) =
Vloop

2πρ
ϕ̂ (3.36)

Here, one can define a value of Vloop such that the electric field strength at the minor

axis of the torus corresponds to the expected tokamak operating parameter. The proof

that this field definition satisfies the divergence free condition follows from Sec. 3.5.3.

3.5.5 Grid interpolation of poloidal B field

The numerical studies in Ch. 6 and 7 will eventually simulate up to 108 charged par-

ticles. Numerical evaluation of Eq. 3.34 for each particle is therefore unfeasible via

direct evaluation of the integrals of E(k) and K(k), which are computationally expen-

sive. Therefore the set of equations is evaluated once at the start of the simulation and

then tabulated, exploiting the fact that the background magnetic fields are static in time.
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This is done by specifying a 2D grid in the poloidal plane, and computing the poloidal

magnetic field values at each of the grid points. A 2D poloidal plane grid is sufficient

since the poloidal magnetic field is toroidally symmetric. Once the computed values are

saved in the grid points, a linear interpolation of the grid field values can be made to

the particles’ positions. This avoids repeated numerical evaluation of Eq. 3.34 for every

particle at every time step.

Figure 3.10: Extent of the 2D poloidal plane grid.

Figure 3.11: Grid number ordering.
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Figure 3.12: Weights (corresponding labeled rectangular area, Ai) of each corner’s
contribution of Bpol on the red particle.

The linear interpolation of Bpol onto a particle is briefly explained here. Beginning from

the definition of the 2D grid, the extent of the grid covers only the minor radius of the

simulated torus geometry as shown in Fig. 3.10. Conscious ordering of cell number is

made so that each particle’s (ρ, z) coordinate can be used to compute the cell number

directly, using the knowledge of the regular cell size (∆ρ and ∆z) and the number of

cells in both ρ and z direction (Nρ and Nz). Referring to Fig. 3.11, the 2D plane is split

into a total of Ncell cells with the top left grid has the coordinate of (ρ′, z′). The starting

index for both the cell and grid points numbering is 1. The exact cell number Ni that

a particle ‘i’ belongs to is computed as

ηi = ⌊|ρi − ρ′|/∆ρ⌋+ 1

ζi = ⌊|zi − z′|/∆z⌋+ 1

Ni = (ζi − 1)Nρ + ηi.

(3.37)

Once the cell number is known, the corresponding vertices in Fig. 3.12 are then calculated

with

G1 = Ni + ζi − 1

G2 = G1 + 1

G3 = G2 +Nρ

G4 = G3 + 1.

(3.38)
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The labelled areas Aj will have to be normalised with the area of the cell in order to

make sure that the computed weights satisfy partition of unity, thus giving

A′
j =

Aj

∆ρ∆z
4∑

j=1

A′
j = 1

(3.39)

The interpolation step of Bpol,i is then

Bpol,i =

4∑
j=1

A′
jBpol(Gj). (3.40)

In principle, a higher-order interpolation is possible here, but this was ruled out due

to two factors. Firstly, the increased computational cost for second order interpolation

undermines the initiative of this grid interpolation method in the first place. Secondly,

grid resolution can be increased arbitrarily without increasing the computation cost of

the implemented interpolation routine. Thus, Nρ and Nz are chosen for specific simula-

tion cases after convergence tests.

Discussions regarding the numerical components of particle-based Townsend avalanche

breakdown code are concluded with this topic. There are quite a few more implementa-

tions that provide supporting framework which enables the physics based computations

discussed so far. These implementations were omitted from writing in order to limit

the scope of discussions to physical considerations related to Townsend avalanche break-

down and tokamak field geometry. Some examples of the supporting subroutines are

the curation of the list of particles before each time step’s self-consistent E field calcu-

lations, charged particles diagnostic tools and the prescription of the simulation domain

boundary. A simplified overview of the program flow is shown in Fig. 3.13 for reference.

At the start of the program, the 2D grid of resolved Bpol,i is first computed and stored.

Charged particles are then initiated and the respective self-consistent electric field com-

puted. The time stepping loop then begins, with each particle calculating its experienced

background electric and magnetic fields, adding to the computed self-consistent electric

field. Update of the particle’s velocity and position is done via the gyrophase corrected

Boris algorithm. This is then followed by the collision probability and the respective out-

comes. Once all the particles go through the three steps, any newly created electron-ion

pairs are collected and prepared for the next round of self-consistent electric field com-

putation (via PEPC). Results will then be saved for diagnostics and the whole process

repeats.
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Figure 3.13: Simplified overview of Townsend avalanche breakdown code.

Most of the technical aspects of the developed simulation code are covered up to this

point. Some of the technical details are not discussed here, as those require additional

physical considerations related to the simulation study itself. In particular, the collision

cross sections are covered in Ch. 5 and 6 respectively.
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Merging algorithm

4.1 Introduction

The expected growth of the ion/electron population is exponential as seen in Townsend’s

Eq. 2.11, which is also consistent with the analytical solution of Eq. 2.19. Achieving a

numerically manageable problem size during the simulation while maintaining an accu-

rate physical representation of the system is crucial to simulating a near fusion-ready

plasma in tokamak. The background electron number density for such plasma is approx-

imately 1016m−3, a number that is unfeasible to handle numerically for a first principles

particle-based solver. One method to resolve the issue is to merge large number of

simulated charged particles into fewer super-particles, which then reduces the overall

computational cost of the simulation. The process of merging must be handled with

care in order to preserve the physical state of the charged particles system (energy,

momentum distribution etc.). This chapter focuses on the merging algorithm of simu-

lated charged particles in the application of Townsend avalanche simulation in tokamak.

While the present studies will not quite reach density of ∼ 1016m−3, implementation of

merging algorithm is still important to pave the way for future work approaching the

full breakdown regime.

Since the focus of this study is the time evolution of charged particle population in

ITER-like first plasma scenario, a merging algorithm that can preserve the energy dis-

tribution of charged particles in the proximity of the ionisation energy range is of utmost

importance. The main reason is that the likelihood of impact ionisation depends on the

energy carried by electrons. Should the energy distribution of electrons be altered in

the process of merging, the growth rate of the charged particle population may change

as a consequence. There are multiple ways to introduce this unintentional change: one
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example is the improper choice of particle sampling (such as disregarding the proximity

of the sampled particles in momentum phase space), which will produce a super-particle

which can have a vastly different energy and momentum than its predecessors. An-

other contributing factor would be the improper treatment of energy, momentum and

weight partition of the merged super-particle. This is further complicated by the fact

that the super-particles will then be involved in impact ionisation events, affecting the

energy-momentum distribution in future timesteps. Since merging essentially attempts

to represent a highly detailed system with a coarser approximation, discrepancies in

the resulting time evolution of energy-momentum distribution and growth rate cannot

be fully avoided (especially for a scenario where the system is exponentially growing

in time). A discussion on the choices and compromises made during the design of the

merging algorithm will follow in Sec. 4.2.

Another consideration to make is the preservation of the original particles’ spatial dis-

tribution after merging. This condition is easily met in the case of grid-based numerical

methods such as the Particle-in-Cell method, where the merging algorithm can be re-

stricted to sample original particles locally based on the existing grid structure [74, 75].

For mesh-free methods, an alternative methodology is needed to ensure the sampled par-

ticles respect the spatial proximity criteria. One such method is to assign parent-child

relations of the particles via a k-d tree [76], through which one can traverse through

the tree for nearest-neighbour search, only merging particles that share the same par-

ent. The implemented spatial proximity search here operates in a similar vein, taking

advantage of the tree structure created via the Barnes-Hut algorithm instead.

Teunissen et al. [76] proposed a methodology that merges two particles into one at

every merging instance. It can be shown that such merging cannot conserve both en-

ergy and momentum. Beginning with two particles with masses m1 and m2, as well as

velocities v1 and v2, the conservation of mass, momentum and energy is expressed as

m1 +m2 = M

m1v1 +m2v2 = MU

m1v
2
1 +m2v

2
2 = MU2.

M and U denote the mass and the velocity vector of the resulting merged super-particle

respectively. v1 and v2 are the respective velocity magnitudes, as in v1 = ∥v1∥. In the

case where one attempts to respect the momentum conservation, the resulting U would

then be

U =
m1v1 +m2v2

M
.
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It then violates the conservation of energy, as it results in

m1v
2
1 +m2v

2
2 ̸= m2

1v
2
1 +m2

2v
2
2 + 2m1m2v1 · v2

M
.

As such, Teunissen et al. proposed multiple schemes to resolve the energy and momen-

tum assignment of the merged super-particles. The work showed promising results for

the scheme in which one of the particle’s velocities is chosen at random, while scaling the

chosen velocity to fulfil the energy conservation criteria. However, direct alteration of

the super-particles’ velocity magnitude (by extension, its energy) alters the momentum

phase space of the particle system and such impact on overall ionisation rate hasn’t been

tested. Work done by Vranic et al. allows for arbitrary n > 2 particles to be merged

into two super-particles in Particle-in-Cell codes. The work also proposed a detailed

methodology for particle selection for merging in spatial and momentum phase space,

which is additionally constrained by the conservation laws of energy and momentum.

In the shown example, however, an assumption is made such that the weight and mo-

mentum magnitude partition is equivalent between the two resulting super-particles.

This, in turn, introduces fractional weights to super-particles should an odd number of

merging candidates are involved during the merging process. While it is not inherently

detrimental, careful consideration is required when simulating super-particle scattering

events which yield ionisation outcomes.

The proposed algorithm in this work aims to combine the nearest-neighbour search

via the tree structure from the Barnes-Hut algorithm in PEPC with a particle merging

methodology that respects the particles’ spatial, energy and momentum distribution

which allows for variable weights in the resulting merged super-particles. Ideally, this

scheme should also preserve the charged particle growth rate of the original simulation

as well as minimising the changes introduced to the particles’ momentum distribution.

4.2 Particle selection for merging

This section first covers the details related to the selection of merging candidates fol-

lowed by the derivation of the weights and momentum distribution expressions between

the resulting merged super-particles. Merging candidate selection aims to narrow the

choice of particles for merging in order to preserve the original charged particle collec-

tive’s spatial, energy and momentum distribution. Since the simulation also includes

H+ and H+
2 ions as byproducts of e-H2 impact ionisation, the selected candidates to be

merged must also be of the same species to avoid unphysical recombination instances.
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The methodology of imposing multiple selection criteria uses a filter for each crite-

rion that is applied sequentially to the global collection of particles. The first selection

criterion is the spatial proximity filter as this works well with the way particle data is

sorted and stored during the simulation. This will be discussed in detail in the following

Sec. 4.2.1. Once the particles are grouped based on their spatial proximity, each local

process (MPI rank) can apply additional selection criteria to its assigned grouped par-

ticles within a parallelised compute region. This specific ordering of selection criteria

ensures that the merging algorithm will have a good parallel scaling efficiency, which is

crucial so that > 250 compute processes can be used concurrently.

4.2.1 Spatial proximity selection

Among the considered merging candidate selection criteria, the spatial proximity se-

lection criterion is the most complex. At the same time, it provides a straightforward

implementation of the other selection criteria if done well. The core idea of this selection

criterion is to allow merging of particles that are in close proximity to each other.

A brief explanation of the spatial particle sorting is given here to illustrate how each

particle’s coordinate can be used to derive proximity information among neighbours. A

detailed description of the mapping from 3D coordinates into 1D 64-bit integer binary

keys for each particle can be found in the work by Warren et al. [65].

In this example, the particles are distributed on a 2D (m = 2) plane and mapping from

mD to 1D is done via Morton space filling curve. Note that the actual implementation of

the mapping function in PEPC is performed using the Hilbert space-filling curve, which

is obtained by applying another layer of transformation onto the initial Morton order.

Fig. 4.1 shows a cell structure of an n-level subdivisions performed on a square domain.

A quick clarification is made here, that the cells shown in this section are only for visu-

alisation purposes and they are not stored variables during the simulation runs. Integer

coordinates in both x and y are assigned for each of the cells at every level and further

represented in binary notation. The number of subdivisions proceeds until all of the

particles belong in their own cell. For this example, an assumption is made without

loss of generality such that 3 levels of subdivision are sufficient. The particle’s x and

y coordinates are mapped to a 1D integer particle key and it is the chosen mapping

function that determines the space-filling curve traversal pattern across all individual

cells.

This is illustrated from the n1 subdivided domain by first representing the four cells’
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Figure 4.1: 2D cell structure of 3 levels of subdivisions. The red crosses corresponds
to the domains that house the particle located in (1,3) at n3 level.

integer coordinates with binary numbers, the binary number should have the number

of bits that is equivalent to the maximum subdivision level (which is nlev = 3 in this

example). Taking the cell with coordinate of (1,0), the corresponding binary number for

the x coordinate is then bx,1 = x3x2x1 = 001 and the y coordinate is by,1 = y3y2y1 = 000.

The next step is to map the binary coordinates into one binary number by interleaving

the x and y bits with the following rule

particle_key = (ynlev
, xnlev

, ynlev−1, xnlev−1, . . . , y1, x1)2. (4.1)

Hence, the resulting key is 000001. If the operation is repeated for all the cells in

n1 subdivision and the keys are sorted in an ascending order, this corresponds to the

flipped “Z” letter of Morton space-filling curve pattern. This shows that conversion

from Morton to Hilbert space filling curve is possible with a different mapping function

than the presented bit interleaving, provided that the transformation routine only allows

pathways which follow the production rule of Hilbert space-filling curve [77]. While the

Morton space-filling curve seems to provide a pathway for the nearest neighbour search,

there are intermittent spatial “jumps” for high subdivision levels which don’t necessarily

respect spatial proximity. An example is the jump from (7,3) to (0,4) as one goes through
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Figure 4.2: a) Morton space-filling curve traversal pattern at n3 level. b) The corre-
sponding Hilbert space-filling curve.

the sorted particle keys at n3 subdivision (as seen in Fig. 4.2a).

This problem is largely prevented in a Hilbert space-filling curve traversal that provides

a better locality property, which ensures particles that are close to each other in the

sorted 1D key are also in similar proximity once reverse mapped to a higher dimension.

At this point, one could possibly utilise the sorted 1D keys to select merging candidates

by simply truncating the key traversal length to a user-defined particle count. However,

the downside to this fixed-length candidate selection is the inability to correctly gauge

the physical distance between particles, especially when the spatial distribution of parti-

cles is sparse. A clear statement has to be made here, that traversing the 1D sorted keys

only provides a nearest neighbour search. An additional measure is required to actually

determine the distance between particles. In order to avoid merging particles that are

separated beyond a user-defined length scale, the merging candidate selection criterion

must also include the parent-child relation between particles. Establishing such relation

helps provide additional control over the size of the volume that particles share, thus

selected as potential merging candidates.

The implementation follows the idea of using the cell size at the user-defined parent’s

level to limit the selection of merging candidates. In short, only particles that share the

same parent will be considered for merging. Identification of the parent for each particle

is an important but trivial step before such measure can be taken. Referring to Fig. 4.1,

a particle in (1,3) at n3 level is used as an example to demonstrate that the computed

1D particle key from bit interleaving can recover the parent node key through simple

bit operation. The red crosses at n1 and n2 levels are the cells which encompass the

considered particle at n3. The particle keys resulting from Eq. 4.1 for the highlighted
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Figure 4.3: Flowchart for merging candidate selection by spatial proximity.

cells are

keyn1
(0, 0) = 000000

keyn2
(0, 1) = 000010

keyn3
(1, 3) = 001011.

In order for a particle to compute its parent’s key, a simple right shift bit operation is

sufficient. Specifically,

keyparent,n3→n2
(1, 3) = keyn2

(0, 1) = RIGHTSHIFT(keyn3
(1, 3),m)

where m is the number of bits to right shift and it corresponds to the spatial dimension-

ality of the simulation. Similarly, given the 1D integer key, its parent key at the chosen

number of subdivision level n can be computed via ndiff = nmax − n multiples of m bit

shifts.

keyparent,n3→n(1, 3) = RIGHTSHIFT(keyn3
(1, 3), ndiff m) (4.2)

It is worth a reminder at this point that the examples shown have limited the key’s

number of bit representations corresponding to the maximum subdivision level of nmax =

3. In the actual application, the maximum subdivision level is dependent on the bit-

length of the variable that stores the particle key, which is set as a 64-bit integer variable

in this case. For a simulation in a 3D domain, this works out to be a maximum of 20

subdivision levels (or 21-bits per coordinate, giving 63 bit integer keys with 1 placeholder

bit). Another notable mention is that the subdivisions are applied to a parent domain

which is a cuboid that encompasses all the simulated particles.

All the required components for merging candidate selection based on spatial proximity

have been briefly explained so far. The simplified overview of the selection process is

illustrated in Fig. 4.3. All the particles first undergo the 1D integer key computation

(Morton space-filling curve step followed by Hilbert curve transformation). Now that
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the particle keys are stored, the sorting process occurs before the particle collective is

distributed across all participating compute units. The sorting process ensures that all

the particles that are eventually handled by individual compute units are in the same

spatial vicinity (locality property from Hilbert space-filling curve) as well as ensuring

proper load balancing between all compute units. Once the particles are distributed,

each unit loops over all its particles to compute the parent key at chosen n-level subdi-

vision via Eq. 4.2, grouping of the particles is then done by the resulting parent keys.

There exists a minor drawback when the particles are distributed across all compute

units (which will now be referred as processes). Specifically, there will be particles that

are spatially close to each other but separated by artificial boundaries as a result of such

distribution, since the processes only handle the set of particles given to them. In order

to remove such artificial boundaries, additional communication between neighbouring

processes is required such that particles that share a parent across the boundaries can

be moved onto the same process. However, having additional communication between

processes introduces further computation overhead. Thus, a decision was made to ignore

such artificial process boundaries. This allows a better parallel efficiency of the merging

algorithm, with the drawback of introducing additional groupings of merging candidates

within the same parent (which spatially span more than one process).

Now that the particles are grouped into their local proximity, subsequent selection cri-

teria can be applied within the same group by individual processes in a straightforward

manner.

4.2.2 Species selection

As mentioned before, there will be multiple species of charged particles that are sim-

ulated throughout the Townsend avalanche breakdown scenario. The selection of the

merging candidate by species is rather straightforward compared to the spatial selection

methodology. The general idea is to restrict the merging of particles to those of the

same species at all times.

Following from the spatially grouped particles in the previous subsection, the parti-

cles are sorted based on the nearest neighbour criteria (a direct result of 1D particle

key sorting via Hilbert space-filling curve traversal pattern). However, the performed

sort does not respect the species type of the particles. In order to separate the particles

according to their species, an additional merge sort algorithm is applied to the grouped
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particles. Merge sort has comparatively the least complexity among comparison sort-

ing algorithms at O(n log n) (n is the number of entries) in both best and worse case

scenarios [78]. It also has the advantage of being highly parallelisable, bringing the

complexity down to O(log n) [79]. The fact that the sorting algorithm is not limited

to sorting integer entries made it a compelling choice as the de facto sorting algorithm

throughout this breakdown avalanche solver. Admittedly, Radix sort would be a better

choice for species sorting as the particle species identifier is an integer based variable.

The algorithm has the complexity of O(n) in this case since the number of species types

is not more than 10 [80] (only 1 digit is required to identify all species). Both merge and

Radix sort are stable sorting algorithm, meaning that the sequential order of repeated

values is preserved. This ensures that the particles with the same type still preserve the

nearest neighbour ordering from the spatial proximity criterion.

An example of the merging candidate selection by species is as follows. Each parti-

cle carries the information of its species type via an integer based variable. Electrons

are labeled with species tag of 0, H+ ions with 1 and H2+ is 2. If the simulation includes

more particle types, the identifier can be extended to accommodate the need. Given

an initial collection of local particles that a process handles, the sorting algorithm is

applied to the particle array to either sort in ascending or descending order based on

the species tag. Once it is done, further grouping of merging candidates based on other

criteria is carried out within the sorted group.

4.2.3 Energy proximity selection

In general, selection of merging candidates based on their proximity in momentum phase

space is sufficient to minimise the changes to the collective’s momentum distribution [74].

The current strategy of achieving the same goal involves the combination of two selec-

tion criteria, namely the grouping of merging candidates based on energy proximity and

the unit vector of the candidates’ velocities. This is motivated by the need to preserve

the energy distribution specifically as it dictates the charged particle population growth

rate in time during avalanche breakdown. In order for the super-particle to better rep-

resent the energy distribution of its merging candidates, it is helpful that the energy

range of the merging candidates themselves is narrow. This way, the merging candi-

dates’ average energy (which the super-particle inherits) can be a good representation

for the eventual calculation of collision outcomes. Otherwise, the super-particles would

have to store the information of the candidates’ original energy distribution to provide

a good approximation of electron-neutral collision outcomes (via convolution with the

given cross sections). A super-particle may not be able to properly represent its merging
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candidates’ energy distribution as well when the super-particle represents a low number

of merging candidates.

In the current implementation, the choice of the energy groupings is based on the energy

resolution of all considered cross sections (refer to App. A). The rationale behind this

definition is based on two points. First is the requirement that the merging process

fulfils conservation of energy and momentum, therefore the energy of the super-particle

per weight lies within the same energy group. Secondly, the knowledge that the changes

in the cross section values are negligible (a maximum difference of approximately 4%

relative to each cross section’s maximum value.) between two adjacent energy levels.

Thus, while the difference of averaged energy between the merging candidates and the

resulting super-particle falls within the width of the cross sections’ energy resolutions,

the changes to the resulting cross section are regarded as negligible.

As an example of the implementation, unique energy entries from all considered cross

sections are combined into a single array in ascending order which is then the energy

levels used to group merging candidates. In the combined energy level table, there is

an energy group in the range of [0.35 eV, 0.4 eV] which all particles whose energy fall

within the range are collected into that group. The resulting super-particle’s energy per

weight would ideally also fall within that range, and such energy will be used to compute

the collision outcomes. Particles whose energies are above the final entry in the energy

grouping will not be merged.

In order to retain the focus of the discussion on the merging candidate selection cri-

teria, the derivation of the momentum of the merged super-particles will be detailed

later in Sec. 4.3, as well as considerations taken to fulfil the above assumptions.

4.2.4 Momentum unit vector selection

The simulation domain of the tokamak breakdown scenario is a simplified 3D torus in

which the charged particles are confined. Since the torus is subjected to a toroidal back-

ground electric field Etor., it is expected that the particles have preferred momentum

directions which are dependent on their charge. Not to mention that each particle expe-

riences scattering events with the background neutral molecules, further contributing to

backscattering or generating momentum perpendicular to the toroidal direction. Selec-

tion of the merging candidates becomes important in order to avoid merging of particles
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Figure 4.4: Schematics of the angle extents (∆θ,∆ϕ) for unit vector merging candi-
date grouping.

with strongly diverging momentum unit vectors. The previous subsection already cov-

ered the merging candidate selection based on energy, the discussion here focuses on the

implemented grouping of particles by their momentum vector.

Referring to Fig. 4.4, it is clear that θ = [0, π] and ϕ = [0, 2π]. In the current implemen-

tation, the unit vector groupings are defined by equally spaced angle ∆Ω = ∆θ = ∆ϕ.

The method of grouping merging candidates starts by calculating each particle’s mo-

mentum orientation in θ and ϕ angle. It is then followed by assigning the particles to

the appropriate discretised unit vector orientation groups.

There are a total of 4 selection criteria and the flow chart of how the selection cri-

teria are applied to a given particle system is shown in Fig. 4.5. Starting from the given

overall particle system, the spatial proximity selection filter is first applied. A localised

group of particles are created for each ‘parent’. From this local particle system, further 3

selection criteria are applied sequentially, each time selecting an ever shrinking number

of particles that met each selection criterion. It should be mentioned again that the 3

selection criteria can be applied in any order. Once all the previously discussed merging

candidate grouping is done, the merging algorithm detailed in Sec. 4.3 is applied.

4.3 Particle merging and momentum partitioning

This section details the derivation of the resulting merged particles’ momentum vectors,

assuming there are n merging candidates and results in 2 super-particles. The following

variables are introduced for the derivation that follows:
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Figure 4.5: Sketch of the flow chart describing the order of applied selection filters to
the initial charged particle system.

� wi, weight of each merging candidate (particles to be merged).

� mi, mass of each merging candidate.

� Wn, total weight of n particles

� pt =
n∑

i=1
wivi

� ϵt =
n∑

i=1
wi∥vi∥2

� W1, weight of the first merged super-particle

� W2, weight of the second merged super-particle

� V1, velocity vector of the first merged super-particle

� V2, velocity vector of the second merged super-particle

Since the merging candidates are selected via the species selection (Sec. 4.2.2), all in-

stances of mi considered here have the same value. The following derivation is done in

non-relativistic framework as the targeted merging candidates are below 1 keV (electron

velocity at approximately 0.06c). Conservation of mass, momentum and energy before
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(LHS) and after (RHS) merging gives

n∑
i=1

wimi = Wnmi = W1mi +W2mi

n∑
i=1

wimivi = mipt = W1miV1 +W2miV2

1

2

n∑
i=1

wimi∥vi∥2 =
1

2
miϵt =

1

2
W1mi∥V1∥2 +

1

2
W2mi∥V2∥2.

Factoring the above equations yield

Wn = W1 +W2

pt = W1V1 +W2V2

ϵt = W1∥V1∥2 +W2∥V2∥2.

(4.3)

Starting with momentum equation in Eq. 4.3, perform a dot product with V2 yields

pt ·V2 = W2∥V2∥2 +W1V1 ·V2.

Substituting the above expression into the energy equation will obtain

ϵt = W1∥V1∥2 + pt ·V2 −W1V1 ·V2.

Continue by substituting the expression of V2 and W2, thus getting

ϵt =
(
W1 +

W 2
1

Wn −W1

)
∥V1∥2 − 2

W1

Wn −W1
pt ·V1 +

∥pt∥2
Wn −W1

.

Rearranging the expression into

0 =
(
W1 +

W 2
1

Wn −W1

)
∥V1∥2 − 2

W1

Wn −W1
∥V1∥pt · V̂1 +

∥pt∥2
Wn −W1

− ϵt.

Thus obtaining the solution to ∥V1∥ as

∥V1∥ =
1

Wn

(
pt · V̂1

)
± 1

Wn

√(
pt · V̂1

)2
− Wn

W1
∥pt∥2 +

(
W 2

n

W1
−Wn

)
ϵt. (4.4)

Shifting the attention to the second term in the solution, ensuring the expression remains

real yields

0 ≤ (pt · V̂1)
2 − Wn

W1
∥pt∥2 +

(
W 2

n

W1
−Wn

)
ϵt.

Noting that

pt · V̂1 = ∥pt∥ cos θ̂,
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the expression becomes

0 ≤ ∥pt∥2 cos2 θ̂ −
Wn

W1
∥pt∥2 +

(
W 2

n

W1
−Wn

)
ϵt

cos2 θ̂ ≥ Wn

W1
−
(
W 2

n

W1
−Wn

)
ϵt

∥pt∥2

θ̂ ≥ cos−1

√
Wn

W1
−
(
W 2

n

W1
−Wn

)
ϵt

∥pt∥2

(4.5)

Naturally, the next step is to ensure that the expression within the square root is greater

than zero. As Wn, ϵt, and pt is already known, this provides a limit to the values that

can be assigned to w1.

Wn

W1
−
(
W 2

n

W1
−Wn

)
ϵt

∥pt∥2
> 0

Wn −W 2
n

ϵt
∥pt∥2

> −WnW1
ϵt

∥pt∥2

W1 > Wn −
∥pt∥2
ϵt

.

(4.6)

It is interesting to note that

Wn −
∥pt∥2
ϵt

≥ 0 (4.7)

is always true and the proof is provided in the following discussion. The idea is to com-

pare the maximum possible value of ∥pt∥2/ϵt with the total merging candidate’s weight

Wn. Should such maximised value be equal to Wn, Eq. 4.7 is unconditionally fulfilled.

Assuming the case with two merging candidates (with w1, v1 and w2, v2 respectively)

and consider once again the expressions of pt and ϵt, which are

n∑
i=1

wivi = pt

n∑
i=1

wi∥vi∥2 = ϵt

∥pt∥2
ϵt

=
w2
1∥v1∥2 + w2

2∥v2∥2 + 2w1w2(v1 · v2)

w1∥v1∥2 + w2∥v2∥2
. (4.8)

As the candidate selection by energy (Sec. 4.2.3) provides a narrow variance in the

candidate’s energy range, a simplifying assumption is made such that the candidates’

velocity magnitudes are equal (∥v1∥ = ∥v2∥). It is known from the Cauchy-Schwarz

inequality that

v1 · v2 ≤ ∥v1∥∥v2∥. (4.9)
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Hence, in order to maximise the third term of the numerator in Eq. 4.8, the merging

candidates’ velocity vectors are necessarily parallel to each other. This results in

∥pt∥2
ϵt

=
(w2

1 + w2
2 + 2w1w2)

(w1 + w2)
= Wn. (4.10)

In reality, it is highly unlikely that the merging candidates’ velocity vector is parallel to

each other. Inferring from Eq. 4.8, Eq. 4.9 and Eq. 4.10,

∥pt∥2
ϵt

≤ Wn

is true (which is identical to Eq. 4.7).

Eq. 4.10 remains true for an arbitrarily large n merging candidates. Finally, the expres-

sion in Eq. 4.6 shows that W1 = Wn/2 is a valid choice in most cases during merging

events and it is defined as the default weight distribution between super-particles. Should

the condition be violated, W1 is redefined to be at least Wn− ∥pt∥2
ϵt

. Since this derivation

doesn’t enforce equal splitting of the super-particles’ weights, merging of odd numbered

candidates will always allow integer weight splits between the super-particles while still

respecting the conservation laws. This simplifies the calculation of weight splitting of

such super-particles in the future, without having to consider fractional weights.

At this point, W1 and θ̂ is obtained (Eq. 4.5 and Eq. 4.6) which enables the calculation

of V̂1. The method to compute V̂1 borrows from the work of Vranic et al.. Introducing

unit vector d̂, which is parallel to the n candidates’ maximum absolute value in vx, vy,

and vz while retaining the signs. V̂1 then deviates from p̂t by angle θ̂ along the plane

bounded by both p̂t and d̂ vectors. The velocity magnitude of the first super-particle

can now be calculated from Eq. 4.4. The solution to V2 is then

V2 =
1

W2
(pt −W1V1) (4.11)

with W2 follows directly from mass conservation. Finally, the super-particle’s spatial

location is chosen at random from the pool of merging candidates.

4.4 Benchmark of the merging algorithm

A series of tests are presented here to gauge the performance of the implemented merg-

ing algorithm. The tests aim to analyse the impact of two discussed candidate selection

criteria, namely the energy and momentum unit vector selection, on simulated particles’

overall energy and momentum distribution preservation. The series of tests are split
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into two setups.

The first is purely on repeated merging instances of artificially created merging can-

didates, a setup which allows complete control over the merging candidates’ energy and

momentum distribution. In this setup, the created candidates have all passed the local-

ity and species filters. The results for this setup are presented in Sec. 4.4.1, Sec. 4.4.2,

and Sec. 4.4.3.

The second setup involves merging tests on a charged particle system in a tokamak

setting, where the merging candidates are extracted from a prior plasma initiation sim-

ulation. Conservation of the energy distribution after the merging process is tested. The

particles are assumed to be collisionless and are not accelerated by any electric field, this

ensures that the total energy of the system is constant in time. Only the background

magnetic field is active, confining the particles within the toroidal geometry. The results

for this setup are discussed in Sec. 4.4.4.

4.4.1 Influence of merging candidates sample size on total energy and

momentum

The focus of this benchmark is to test the merging algorithm’s ability to conserve the

merging candidates’ total energy and momentum, when S number of merging candidates

with the same mass are merged into 2 super-particles. The tests are also conducted with

all S merging candidates sharing the same energy εmc, mimicking the candidates that

have passed the energy selection criterion. Referring to Fig. 4.4, all particles are initiated

with a random velocity vector oriented in the range of ϕ = [0, π/2] and θ = [0, π/2].

This specific setup is a simplified representation of the merging candidates that have

passed all of the discussed selection criteria in Sec. 4.2. Specifically, a defined energy

proximity of εmc and the angular resolution of ∆Ω = π/2 for the momentum unit vector

selection.

The merging candidates themselves are all fixed to the weight of 1 as well, representing

the first instance of merging event during a simulation. The test is conducted with

εmc = [10 eV, 100 eV, 1000 eV] and S = [10, 50, 100, 500, 1000]. For each of the combi-

nations of S and εmc, the difference of total energy and momentum before and after

merging is plotted.

Fig. 4.6 and Fig. 4.7 show the mean and standard deviation of the total energy and
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Figure 4.6: Relative error of total energy for S = [10, 50, 100, 500, 1000] at various
εmc.

momentum magnitude differences after merging. The measure of relative error is calcu-

lated by

Relative errorenergy =
(ϵt − εmcS)

εmcS

Relative errormomentum =
(pt −

∑S
i

√
2miεmc)∑S

i

√
2miεmc

,

(4.12)

where ϵt and pt are the super-particles’ total energy and momentum respectively (see

Eq. 4.3). In Fig. 4.6, a general trend of deterioration in the conservation of total energy is

observed as S increases. It is also observed that εmc has minor impact on the magnitude

of relative error for S = 50 and below. This helps confirm that having a smaller sample S

for each merging instance yields better performance in energy conservation. On the other

hand, Fig. 4.7 shows that the momentum conservation of the merging process is largely

independent of both S and εmc. Relative error magnitude of both energy and momentum

suggests that the computed values are near machine-precision, which is interpreted as

the algorithm’s ability to conserve energy and momentum. It is worth mentioning that

all the resulting super-particles across all scenarios have the same weights, which is

exactly W1 = W2 = S/2. Thus, implying that the conservation of mass is satisfied as

well.
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Figure 4.7: Relative error of total momentum magnitude for S =
[10, 50, 100, 500, 1000] at various εmc.

4.4.2 Influence of ∆Ω on super-particle ∆ε

The previous section had proven that the algorithm preserves the total energy and mo-

mentum of the merging candidates, but did not explore how the candidates’ energy is

distributed among the two super-particles. The aim of this section is to examine the

impact of the chosen angular resolution ∆Ω in the momentum unit vector selection cri-

terion on the shift of the resulting super-particles’ energy per weight. The energy per

weight of a super-particle is labelled as εsp in this section.

First, revisiting the merging algorithm in Sec. 4.3 is helpful to understand the moti-

vation of using the εsp (energy per weight) measure. The energy balance equation in

Eq. 4.3 is equivalent to

n∑
i=1

wi∥vi∥2 = W1∥V1∥2 +W2∥V2∥2. (4.13)

By creating merging candidates which all have the same energy εmc, velocity magnitudes

of all merging candidates are also the same ∥vi∥ = ∥v∥. Eq. 4.13 can be simplified to

Wn∥v∥2 = W1∥V1∥2 +W2∥V2∥2.
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The choice was made in Sec. 4.3 that the weights of the super-particles are distributed

equally W1 = W2 = Wn/2, thus further simplifying the equation to

2∥v∥2 = ∥V1∥2 + ∥V2∥2. (4.14)

Noting that the total energy before and after merging is conserved (from Sec. 4.4.1),

implying that should ∥V1∥2 = ∥v∥2 +∆ε, ∥V2∥2 = ∥v∥2 −∆ε must be true. Eq. 4.14

can be augmented into

∥v∥2 + ∥v∥2 =
(
∥V1∥2 −∆ε

)
+
(
∥V2∥2 +∆ε

)
. (4.15)

Therefore, if energy deviation ∆ε exists between the super-particles, it is obtained

through the difference between the energy of the merging candidate εmc(∥v∥) and the

energy per weight of the super-particles εsp(∥V∥).

The first test involves obtaining the distribution of ∆ε. A small sample of merging

candidates S = 4 is once again created with their unit vectors distributed randomly

in ϕ = [0, π/2] and θ = [0, π/2] (corresponding to ∆Ω = π/2), while defining the

εmc = 10 eV. The ∆ε for each super-particle is computed and recorded. This process is

then repeated for Nrep = 10 000 times and the histogram of ∆ε for each super-particle

is plotted in Fig. 4.8. The symmetry at ∆ε = 0 is expected from the total energy con-

servation. As such, the following results report the |∆ε| of only one super-particle.

Increasing the number of merging candidates S = 100 and 1000 showed that the mean

∆ε is independent of S, but only reduces its standard deviation (seen from Fig. 4.9 and

4.10). It would be interesting now to study the impact of ∆Ω and εmc on the ∆ε mean,

the goal is to identify the variables that can minimise such deviations. Therefore, the

next set of tests is conducted with ∆Ω = [π/2, π/4, π/8, π/16, π/32] in combination with

εmc = [1, 10, 100, 1000].

Fig. 4.11 shows that ∆ε scales proportionally with εmc. At the same time, the mean

∆ε reduces in accordance with convergence of O(∆Ω2). In particular, ∆Ω = π/16

consistently results in mean ∆ε that is 2 orders of magnitude lower than the given εmc

(mean ∆ε ≈ 10 eV for εmc = 1keV).

The choice of ∆Ω during a merging process can now be determined from the resolution

of the energy groupings itself. As an example, examining all the cross sections listed in

App. A, it is clear that the finest energy resolution at the energy level of approximately

1 keV is 50 eV. Therefore, the choice of ∆Ω = π/2 or π/4 isn’t suitable, as they introduce

∆ε ≈ 400 eV and 140 eV respectively. One is then free to choose from ∆Ω = π/8 or
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Figure 4.8: Histogram of ∆ε for super-particle 1 and 2 where Nrep = 10 000 with
εmc = 10 eV and S = 4. The initial merging candidates are initiated with their unit

vector distributed in the range of ϕ = [0, π/2] and θ = [0, π/2].
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Figure 4.9: Distribution of ∆ε with S = 100, accompanied by a fitted Gaussian.
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Figure 4.10: Distribution of ∆ε with S = 1000, accompanied by a fitted Gaussian.

less, in order to ensure that the resulting ∆ε stays within the resolution of the available

cross section data. A minor caution is mentioned here, that the merging algorithm’s

effectiveness in reducing the number of simulated particles diminishes with finer angular

resolution.

4.4.3 Influence of ∆Ω on super-particle momentum

The previous section explored the changes in the super-particles’ energy per weight when

compared to the initial εmc of the merging candidates. In this section, another aspect

of the alteration is explored, specifically the orientation of the merged super-particle

momentum. Recall in Eq. 4.5 that an angle θ̂ is introduced, which is a by-product

of momentum conservation. While one could not avoid such deviation, it is helpful

to establish the relationship between θ̂ distribution and ∆Ω. This ensures that the

resulting trajectories of the super-particles are approximately aligned to the orientation

of the momentum selection group. As mentioned before, all instances of merging will

split the weight between the super-particles evenly and this would mean that the angle

between p̂t and v̂2 will also be approximately the same. Introducing a new variable

θ′ = cos−1(v̂1 · v̂2), (4.16)

this measures the angle between the velocity unit vectors of the two super-particles and

it should be approximately double the value of θ̂. The test will also compute this value
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Figure 4.11: Fitted ∆ε mean with S = 100 at various εmc, compared with ideal
scaling of convergence order O(∆Ω2).

for comparison and verification. The test is conducted in similar fashion to Sec. 4.4.2,

except that the resulting angles are found to be independent of εmc (thus not plotted).

Since the distribution of both θ̂ and θ′ are Gaussians, the mean value of both parameters

is obtained via Gaussian fitting. The result is plotted along with its standard deviation

in Fig. 4.12. Both θ̂ and θ′ have the order of convergence of approximately O(∆Ω1).

The values of θ̂ are indeed approximately half of θ′ as well. Even though the resulting

total momentum magnitude is conserved during the merging process, the introduced

angular deviation from p̂t is something to be aware of.

4.4.4 Conservation of energy in tokamak scenario

The goal of this test is to determine the merging algorithm’s ability to preserve the en-

ergy distribution of the particle system after multiple instances of merging. This will also

be the first test conducted within a toroidal geometry, where the particles are moving

around the torus with a predefined velocity distribution. This is different from the tests

done in Sec. 4.4.1 and 4.4.2, as those already assumed that the merging candidates have

passed all the discussed selection criteria in Sec. 4.2. As such, this section presents the

first instance where the whole process from merging candidates selection to the merging

algorithm is applied to a toroidal domain.

A description of the tokamak setup is given here, before the results are discussed. A
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Figure 4.12: Fitted mean values with S = 100 at various ∆Ω, compared with ideal
scaling of convergence order O(∆Ω1).

H2 Pressure (Pa) 0.002

Wall temperature (K) 373.15

Initial electron number 1000

Major radius (m) 5.8

Minor radius of simulated domain (m) 1.75

Table 4.1: ITER-like tokamak parameters and operating condition.

numerical simulation of Townsend avalanche breakdown is conducted in a tokamak with

dimensions and the initial conditions listed in Tab. 4.1. The electrons are seeded within

the torus homogeneously, while continuously subjected to a background electric field

with an averaged strength of 0.6Vm−1, aligned in the toroidal direction. The electrons

are also subjected to a static background magnetic field in the toroidal direction, and its

magnitude distribution shown in Fig. 4.13. The simulation included cross sections listed

in App. A. At the simulated time of approximately 0.767ms, the simulation reached

approximately 4× 106 charged particles (half of which are electrons).

This set of particles is then subjected to extended simulation run, but the background

electric field and the cross sections are removed. As such, the charged particles will

retain their energy distribution while having zero collisions. The particles are allowed to

traverse their confined pathway around the torus over a duration of 8.75 µs and a total

of 3 merging processes are applied at equal time intervals. Repeated merging performed

onto the given electron population should preserve the initial total energy. Hence, this
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Figure 4.13: Toroidal magnetic field strength in the poloidal plane. Bϕ = 2.6T at
ρ = 5.8m.

can be a good measure to check if any ‘heating’ or ‘cooling’ due to merging algorithm

can be identified.

Before deciding on the spatial resolution for the spatial proximity selection criterion,

the averaged number of local particles at each parent (subdivision) level are computed.

The final choice of subdivision level for merging is made based on the ratio of local

particles and merging groups, satisfying

rmerge ≥
local particles count

merging group count
. (4.17)

The number of merging groups is a product of number of species (species selection cri-

terion), number of energy groups (energy proximity selection), and number of angular

groupings (momentum unit vector selection). As an example, assuming the particle

system included 3 species, with a total of 200 energy groups and a total of 8 angular

groups (at chosen angular resolution of π/2), the total number of merging groups is

4800. The rmerge is set to 4, such that the number of minimum merging candidates is

S = 4 merging into two super-particles. In the case when the particle system has a low

number density, there is a possibility that the chosen level only has eight spatial groups

(or less) subdividing the whole simulation domain. Therefore, a minimum subdivision

level of 6 (or
(
26
)3

spatial groups) is enforced so that there are at least 7 spatial groups

across radial and z direction of the torus section with a minor radius of 1.75m. The

test is also conducted with two different ∆Ω at π/2 and π/16 (for both ϕ and θ) in the
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Figure 4.14: Breakdown of the merged super-particles and the unmerged individual
particles population after each merging process.

momentum selection step.

The results shown in Fig. 4.14 depict the number of simulated particles after each

merging process. It has to be mentioned that both the case of ∆Ω = π/2 and π/16

ended up performing spatial proximity selection at subdivision level 6 due to the low

particle number density (at approximately 105m−3). It is observed that the merging

setting that uses ∆Ω = π/2 shows a larger reduction of simulated particles per merg-

ing step. In comparison, the case of ∆Ω = π/16 shows that the number of simulated

particles remained stagnant after the first instance of merging. Looking at the total

super-particle count for both ∆Ω = π/2 and π/16, both remained stagnant after the

first merging step with ∆Ω = π/2 reporting a higher number of super-particles. This can

be explained by the difference in number of candidate groupings between the two cases

during the momentum unit vector selection step. At the angular resolution of π/2, the

total number of momentum groups created is at 8 while the resolution of π/16 amounts

to 512. Both cases have the same initial local particle number (from spatial proximity

selection), but there are higher number of particles in the π/16 case which occupies

its own merging candidate group, thus cannot be merged (higher unmerged particles,

lower super-particles). The number of super-particles in the case of ∆Ω = π/2 doesn’t

increase despite reporting lower unmerged particles over time, it is due to the particles

merging into existing super-particles (raising the weights of the super-particles).

On the aspect of total energy conservation, it is shown in Fig. 4.15 that the relative error
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Figure 4.15: Relative error of total energy with different ∆Ω.

remains relatively constant after the first instance of merging. Among the two merging

setups, the case with an angular resolution of π/16 shows a lesser degree of deviation

from the initial set of particles, only having its relative errors at the order of magnitude

of 10−14. This meant that the ∆Ω plays a larger role in affecting the total energy con-

servation when the global particles are non-monochromatic in energy. This is further

reinforced by Fig. 4.16, showing the error comparison of energy across the initially given

energy distribution. It is clear that ∆Ω = π/2 is unable to properly preserve the original

energy distribution, introducing changes of up to −95% of the original electron popu-

lation with approximately 1 keV. This is the direct consequence of ∆ε as described in

Sec. 4.4.2. The effect of the energy deviation doesn’t expand past kinetic energy of 1 keV

for the sole reason that merging doesn’t occur for particles that are above 1 keV. There

are occasional spikes of error above 1 keV, but that can be attributed to the initially low

population of energetic particles (poor statistical significance).

The result in Fig. 4.16 clearly shows that having ∆Ω = π/16 largely avoided the is-

sue of energy deviation. This further agrees with the conclusion made in Sec. 4.4.2,

that a proper choice of ∆Ω (which limits the ∆ε below the energy resolution of con-

sidered cross section data) can preserve the energy distribution of the given particle

system. However, the cost of conducting the merging at such resolution is the reduced

effectiveness of total simulated particles reduction.
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Figure 4.16: Relative error of electron kinetic energy distribution between the bench-
mark and the merging cases with its respective ∆Ω.

4.5 Super-particle collision events

With the introduction of super-particles to the simulation, special care is required to

handle the e−H2 collision events. One could simply evaluate Eq. 3.10 once for every

super-particle and replicate the results based on its weight W . This method is pred-

icated on the assumption that the number of super-particles is abundant enough to

correct the crude evaluation of the collision outcome. Therefore, a conscious choice was

made to repeat the evaluation for the collision outcome corresponding to the weight of

the super-particle instead. For example, a super-particle with the weight of 10 would

then have 10 evaluations of its collision probability, using the super-particle’s energy per

weight. The total number of each collision outcome is recorded and the splitting of the

super-particle is done. The newly created super-particles will have their weights defined

by the number of evaluated outcomes. Revisiting the example of a super-particle with a

weight of 10, assuming that 5 evaluations return elastic scattering and the rest resulted

in vibrational excitation, two new super-particles with the weight of 5 each will be cre-

ated. One of the two super-particles will have diminished energy due to the energy loss

from the excitation. For each resulting super-particle, the treatment of the post-collision

velocity vector follows the chosen scattering angle implementation described in Sec. 3.4.2.

While it is true that repeated collision evaluations based on the weight of the super-

particle once again introduce computational costs, it represents less than 1% of the over-

all cost involved within a time step. The computation cost of electrostatic field among
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charged particles far exceeds the collision evaluations, stemming from the O(n log n)

scaling of the Barnes-Hut algorithm. The time saved on the field evaluation from reduc-

tion of n due to merging far outweighs the collision evaluations.

4.6 Benchmark of the super-particle ionisation

In this section, the impact of merging to charged particle growth over time due to impact

ionisation is shown. The initial set of particles is once again the same as those described

in Sec. 4.4.4. The initial time of the data set is at 0.767ms and continues to be simulated

to the end point of 0.942ms. Instead of removing the toroidal electric field and the cross

sections as in Sec. 4.4.4, all of the simulation components remain active. Additionally,

the merging algorithm described in Sec. 4.3 as well as the merging candidate selection

criteria in Sec. 4.2 is applied. Specifically, the momentum unit vector selection is done

with ∆Ω = [π/2, π/4, π/8, π/16].

In order to provide the time for particles at all levels of energy to gain sufficient en-

ergy (thus shuffling the merging candidates during energy grouping) before the next

merging step, the merging is limited to once every 4.375 µs. The interval spacing is also

required as the effectiveness of merging greatly diminishes if done at every step, since

the merging candidates are almost the same set from the previous step. The simulations

of both with and without merging are then compared in the aspect of the electron popu-

lation over time as well as their overall energy distribution. As a reference, the resulting

time between collisions obtained from Eq. 3.14 would be in the order of 1.451 µs assum-

ing the electron carries an energy of 3.25 eV (peak total scattering cross section value

of 16.6× 10−20m−2) with the listed parameters in Tab. 4.1. This would mean that all

electrons would have collided with a background neutral molecule at least once by the

time the merging process is performed once, further shuffling the set of particles within

the momentum unit vector selection criterion. Finally, the simulations of both with and

without merging are then compared in the aspect of the electron population over time

as well as their overall energy distribution.

Fig. 4.17 shows the comparison of electron population over time between the merging

tests with various ∆Ω and the benchmark unmerged simulation. It shows that all the

merging cases manage to approximate the exponential growth rate of the benchmark to

some varying degree of success. It would seem that the case of ∆Ω = π/4 and π/8 per-

formed the worst. It is difficult to decide the best approximation between the remaining

two cases. It seems that the growth rate is artificially exaggerated initially but then

78



Chapter 4: Merging Algorithm

0.80 0.85 0.90

Time, ms

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

E
le
ct
ro
n
p
op

u
la
ti
on

1e7

benchmark

π/2

π/4

π/8

π/16

0.80 0.85 0.90

Time, ms

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
el
at
iv
e
er
ro
r,

%

π/2

π/4

π/8

π/16

Figure 4.17: The electron growth over with various ∆Ω in the momentum selection
resolution, the respective relative errors compared to the case without merging are also

shown.
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Figure 4.19: Cumulative distribution functions of the aforementioned comparisons.

underestimated over time (observed from the case of ∆Ω = π/2 and π/4). However, the

simulated time is limited and proper extrapolation of the growth rate still requires more

information from longer simulation runs.

Even though the limited simulation duration provided an inconclusive outcome of which

∆Ω yields the best approximation, the comparison of electron kinetic energy distribution

can help shed some light. Fig. 4.18 shows the kinetic energy distribution of the electrons

for the benchmark unmerged case, as well as its cumulative distribution function. Sim-

ilar distribution functions are obtained for each ∆Ω case and the results are compared

in Fig. 4.19.

The results show that the deviation of the electron energy distribution is predominantly

in the energy range below 1 keV, which corresponds to the final entry of the candidate

selection by energy. While the electron population over time approximation is among

the more reasonable by ∆Ω = π/2, the energy distribution approximation is the worst.

Most notably, the electron population with energies below ionisation is much higher than

the benchmark case, thus suggesting that the growth rate is diminished moving forward

in time. The merging case of ∆Ω = π/16 in contrast has the best approximation of the

benchmark energy distribution. Thus, able to capture the growth rate more accurately.

This demonstrates that, in the scenario where stochastic scattering and ionisation events

are involved, fulfilling the conservation laws (during individual merging events) is insuf-

ficient in ensuring the preservation of the energy distribution over time. This is true
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even for the case of ∆Ω = π/16, which shows that the energy distribution preservation is

good in a scenario when scattering events are removed (see Fig. 4.16). Poor preservation

of energy distribution introduces a knock-on effect on the eventual ionisation rate as any

minor deviation in the energy distribution will continuously build up. A conscious deci-

sion to not extend the tests with ∆Ω < π/16 is made, due to the data set’s low initial

particle number at only ∼ 4× 106. Further increase to the resolution of ∆Ω could yield

negligible reduction in total simulated particles count (observed from a stagnant count

of total simulated particles over time for ∆Ω = π/16 case in Fig.4.14). Existing results

are too limited to provide a future estimate of the accuracy of the approximation. The

next step is to implement an alternative merging algorithm to see the impact on the

growth rate approximation.

4.6.1 Unphysical merge test

The unsatisfactory results shown in Fig. 4.17 open the question of Sec. 4.3 merging

algorithm’s effectiveness in approximating the correct ionisation rate. In the work of

Teunissen et al., it was concluded that scaling the randomly chosen velocity from a pool

of merging candidates to fulfil the energy conservation criterion yielded results that pro-

vide good approximation of the system’s original energy and momentum distribution. As

such, the merging algorithm used for this ionisation test follows the same line of thought.

This version of the merging algorithm assumes that both super-particles inherit the

same kinetic energy after merging. An assumption is also made such that the weights

are both equal, thus W1 = W2 = Wn/2. The velocity unit vector for each super-particle

is then randomly chosen among its merging candidates. Finally, the velocity magnitude

for each of the super-particles is

∥V1∥ = ∥V2∥ =

√
ϵt
Wn

. (4.18)

This assignment of the super-particles’ velocity magnitude and weight distribution guar-

antees the conservation of charge and energy, but does not respect the momentum of

the merging candidates. This method is then tested in a similar setup as described in

Sce. 4.6. Additionally, the merging process is conducted with the angular resolution of

∆Ω = π/16. The difference in electron population over time between the benchmark

simulation and the unphysical merge case is shown in Fig. 4.20. The prior results from

Sec. 4.6 are also included for easy reference.
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Figure 4.20: The comparison of the computed errors in electron population compared
to the benchmark unmerged plasma initiation simulation.

Unfortunately, the relative error of electron population’s growth rate for this merging

algorithm is the worst performing among the merging simulations. The result suggests

that the merging algorithm discussed in Sec. 4.3 remains the better option. The focus

of further study perhaps lies in the improvement of the super-particle collision and

ionisation treatment.

4.7 Compute resources comparison

Even though the growth rate approximation in merging cases is not satisfactory, it is

still of interest to examine the potential savings in computational resources. The result

presented in Fig. 4.21 is a measure of the total core-hours (defined as the number of

hours that a number of compute cores took to complete the simulation) required to

complete the simulations, using various ∆Ω for the merging events. The set of data

is obtained from the simulations described in Sec. 4.6. As a point of reference, the

benchmark simulation from the time of 0.767ms to 0.942ms required approximately

158k core-hours in total to complete, performed on the JURECA-DC module in Jülich

Supercomputing Center.

Fig. 4.21 shows that the coarsest of the chosen ∆Ω consumed the smallest amount of

core-hours, approximately 41% of the benchmark case. Even the finest resolution of ∆Ω
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Figure 4.21: The relative consumed core-hours for the ionisation simulations with
various ∆Ω, compared to the benchmark case over the same simulated duration.

only required approximately 51% of the benchmark’s core-hours consumption. Natu-

rally, this points to the fact that a more aggressive reduction of simulated particles’

number will reduce the corresponding computational cost as well. While one might be

tempted to employ aggressive merging for a large reduction in computational cost, there

is a theoretical hard limit to the minimal number of simulated particles. Each one of

the introduced selection criteria in Sec. 4.2 raises the minimum super-particle counts.

A theoretical count of the final merging candidate groups is presented here, this is

an important consideration since each group will have a minimum of 2 super-particles.

Assuming that the spatial proximity selection is applied to a collection of particles in

3D at subdivision level 6, the total number of groups is at (26)
3
= 262144. Further

assuming that the particles occupy only one third of the cuboid volume, the number

of groups that contain particles then reduces to ∼ 87381. Next, assuming that the

resolution of ∆Ω = π/2 is chosen for momentum selection, this results in 8 groups for

each individual spatial group (resulting in ∼ 699048 groups). Finally, assuming that

the defined energy resolution has 200 groupings, the total merging candidate group now

stands at ∼ 1.4× 108 groups. Thus, the minimum number of simulated particles after

merging is ∼ 2.8× 108, if the following conditions are met:

� There is only one species of simulated particles.

� The particles’ momentum orientation is isotropic.
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� The particles’ energy distribution is uniform in the range of the considered energy

selection groups.

However, the specific simulation case of tokamak avalanche breakdown means that the

orientation of charged particles momentum is approximately aligned with the back-

ground electric field. The minimum super-particle number is then greatly reduced. In

addition, the particle’s energy distribution in a electron-neutral collision dominant sce-

nario is centred at low energy ranges. This means that the super-particle counts are

further reduced as most of the energy groups will not have merging candidates in them.

Regardless, it is important to note that a minimum limit of the simulated particle exists.

4.8 Conclusion

A new merging algorithm for meshless methods is proposed and its various aspects are

studied in detail. The proposed merging algorithm is able to conserve mass, energy and

momentum of the merging candidates in scenarios where particle scattering is absent.

However, preservation of the merging candidates’ energy distribution is not satisfactory

when scattering and ionisation are involved. As such, this introduces a knock on effect

where smaller deviations in electron energy distribution in earlier times are exaggerated

as simulation continues. The approximation of the growth rate slowly worsens as a result

(see Fig. 4.17).

It is clear at this point that the merging test in Sec. 4.6 is too limited in time. Fur-

ther continuation of the simulation will be helpful in understanding the growth rate

approximation and its dependence on ∆Ω or the defined energy grouping resolution. It

is also imperative to improve the treatment of super-particle collisions and scattering

discussed in Sec. 4.5. The poor preservation of electron energy distribution with scat-

tering/ionisation scenarios may point to the inadequacy of the super-particle collision

models to accurately represent the scattering interactions. As the simulation is centred

around persistent exponential growth of the charged particle medium in the early stage

of plasma initiation, a posteriori correction of the energy distribution from merging

could be possible if assumptions about the expected plasma parameters at the end of

the avalanche breakdown process are made.

On a more positive note, results in Sec. 4.7 show that even the finest ∆Ω (which re-

sults in the least effective particle number reduction) consumed only 51% of the total

compute resources for the benchmark simulation. This is a worthwhile endeavour that
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could accelerate the simulation runs and extend the range of possible mesh-free tokamak

plasma numerical studies.
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Townsend avalanche benchmark

5.1 Introduction

As discussed in Sec. 3.4, a Monte-Carlo collision model is chosen to simulate the dis-

charge process. Several key components in discharge simulation such as the numeri-

cal representation of charged particles, determination of electron-neutral collision likeli-

hoods, calculation of the self-consistent electric field arising from spatial distribution of

charges and numerical integration of equation of motion follow conventional treatments

described in Ch. 3. For the ionisation process, there are some aspects that require more

scrutiny, namely the choice of the scatter angle model and the electron-H2 cross-sections.

It is important to assess the impact of the scatter angle models on the α and the electron

drift velocity Ve by comparing with existing experimental results before choosing one

suitable for the tokamak scenario. This is rather crucial for a few reasons, first among

them is the fact that two established models by Vahedi and Okhrimovskyy were derived

for larger and heavier nonpolar neutral targets (Ar, CH4 and N2 etc.). This means

that the resulting scatter angle distribution might be unsuitable for smaller and lighter

molecules such as H2 (whose Van der Waals radius is approximately 120 pm compared

to Argon’s 188 pm [81], and approximately 40 times lighter). Additionally, different

scatter angle distribution introduced by each model will alter the mean collisional drag

experienced by electrons. For example, a model that has a strong forward scattering

bias will introduce less mean collisional drag than a purely isotropic model. The altered

collisional drag can affect the obtained α and Ve. Lack of prior numerical experiments

in electron-H2 collision applications signifies the need to conduct such study before com-

mitting to the tokamak scenario.
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The choice of cross section will naturally affect the effective α measured throughout the

discharge simulation, because its magnitude dictates the likelihood of collision outcomes.

Since the neutral target is a molecule, there exist a number of channels of metastable

excitations and ionisation paths. Inclusion of all available electron-H2 impact cross sec-

tions would be ideal to represent the collision processes best, but unnecessary here since

the focus is on the current amplification from the discharge process. Therefore, one of

the goals of this numerical benchmark is to ensure the chosen selection of cross sections

sufficiently approximates the expected α from experimental records. This study also

serves as a proof-of-concept of a complete discharge simulation with all charged parti-

cles (electrons and positive ions that arise from ionisation events) simulated and tracked

in 3 dimensions in both space and momentum, in combination with a parallel tree code

algorithm in the evaluation of the self-consistent electric field. Comparisons of the nu-

merically obtained α with those from parallel plate experiments will help choose the

most suitable scattering angle model to approximate the avalanche breakdown process

in tokamak geometry.

Before getting into the details of the numerical study, this chapter will first discuss

the prior experimental work forming the benchmark for the numerical setup to com-

pare with. This is then followed by the description of the numerical configuration. The

considered electron-H2 collision cross sections in the numerical setup are explained after-

wards. Finally, a comparison of the obtained α and Ve between the scatter angle models

is made to determine the most suitable choice for the Townsend avalanche simulation in

a tokamak setting. The results of this numerical study are published in Plasma Physics

and Controlled Fusion [82].

5.2 Parallel plate experiment

As noted in Sec. 2.2 where Eq. 2.11 was derived, the ion confinement time scale in

a tokamak during plasma initiation phase is at least two orders of magnitude longer

than the electron confinement time. This allows us to assume that secondary electron

emission due to ion-surface impact ionisation is negligible. In this case, the γ factor is

treated as 0 in Eq. 2.10, repeated here for convenience

I

I0
=

eαd

1− γ(eαd − 1)
.

Adopting this assumption severely limits the number of relevant prior experimental

works that we can compare with. Majority of the parallel plate experiments measure

the overall current between the electrode plates, which include contributions of both
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α and γ. The respective contributions of α and γ are difficult to be distinguished.

This difficulty arises naturally since parallel plate experiments are conducted with a

limited distance between electrode plates (order of cm in length). Ions that came from

electron-neutral impact ionisation will gain energy from the potential difference between

electrodes, until eventual impact with the cathode causing further secondary ionisation.

Thus, studies that purely measure α have to operate at a low range of potential differ-

ences in order to limit the ion energy gain below the secondary emission threshold.

It turns out that works by D. J. Rose [83] and Tagashira et al. [84] fit the above

criteria perfectly, both obtaining experimentally measured α parameters in a range of

E/p ratios. The significance of E/p arises from the fact that this parameter can be

interpreted as the ratio of energy gain through electric field acceleration and loss via

collisional drag, dictated by the collisional frequency as a function of the prefill gass

pressure p. Recall that both α and Ve are also functions of this E/p parameter (See

Eq. 2.12 and Eq. 2.22), repeated here for convenience

α = Ap exp

(
−Bp

E

)
Ve ∼

ekBT

meC
E

p
.

Fig. 5.1 illustrates two parallel electrodes separated by a distance of d, connected to a

variable voltage source that creates a potential difference between them. Free charges

that lie between the plates are then accelerated by the resulting electric field E. In

Rose’s work, the electrodes are 5 cm in diameter and placed in a glass vacuum tube.

The anode is perforated, allowing ultraviolet light to shine through and interact with a

molybdenum cathode to produce free electrons via photoemission. One of the operating

scenarios of the ITER tokamak startup is E/p value of approximately 300Vm−1 Pa−1,

which happens to fall within the range of the experiment. A benchmark numerical

simulation at the relevant range is certainly most helpful to determine the proper setting

for the eventual tokamak simulation. Fortunately, Rose’s work reports α values over a

large range of E/p and the numerical results will be compared against it. The following

sections will provide explanation on the choice of cross sections followed by the setup of

the numerical experiment.

5.3 Electron-Hydrogen cross sections

The cross sections of electron-H2 molecule collisions used in the plate experiment are

based mainly on the reported values from J. S. Yoon et al. [4]. They are a compilation
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Figure 5.1: Townsend avalanche experiment setup.

of decades of experimental work and recommended cross sectional data for an electron

energy ranging from 0.001 eV to 1000 eV as shown in Fig. 5.2. Aside from the case of

elastic scattering, a portion of the incident electron’s kinetic energy is spent (εredux)

during the collision event as described by Eq. 3.17. For the current work, the following

reactions and corresponding εredux [85] are included for the simulated collision outcomes:

� e+H2 → e+H2

(elastic scattering)

� e+H2 → e+H∗
2

(vibrational level transition, εredux = 0.516 eV)

(rotational level transition, εredux = 44.1meV)

� e+H2 → 2e+H+
2

(non-dissociative ionisation, εredux = 15.426 eV)

� e+H2 → 2e+H+H+

(dissociative ionisation, εredux = 18.075 eV)

The included collision cross sections are chosen to focus primarily on the ionisation of

zero-point ground state of hydrogen molecules, where its rovibrational level v and J

is both at 0. The cross sections for rovibrational level transition for v = 0 → 1 and

J = 0 → 2 are also included, considering the sizeable cross sections in the lower en-

ergy range between 10−1 and 101 eV. It should be noted that the prefilled neutral gas
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Figure 5.2: Cross section values of electron-H2 molecule collision reaction types plot-
ted over electron energy of 0.001 - 1000 eV [4].

molecules are not explicitly simulated in general, in an effort to save computational re-

sources.

Note that the e + H2 → e + H + H cross section is absent in this work. A deliber-

ate choice is made not to include this, since its overall contribution to α via ionisation of

hydrogen atoms is negligible due to its low number density compared to H2 molecules.

At the end of a typical simulation run, the estimated number density of H is at least 1011

times smaller than for H2 at 273.15K and 333.31Pa. The hydrogen molecule number

density is also assumed to be constant throughout the simulation. This assumption is

made since the simulated currents reach an equilibrium at a time scale of O(1 µs), thus

it is assumed that the ionisation fraction is negligible.

The cross section for total scattering σT is included in Fig. 5.2, as it plays a role in

the computation of electron - H2 collision probabilities which is presented previously in

Section 3.4.1. More specifically, the value of σT is used in the calculation of the null

collision frequency.
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5.4 Numerical experiment

In our model setup, the simulation domain is a cylinder geometry with a diameter of

7 cm and height (aligned in the z direction) equivalent to the plate separation d. The

position of the cathode is assumed to be at z = 0, while the anode is simply a numerical

offset d in the −z direction, prescribed at the start of the simulation. A preset number

of electrons to be “added” at z = −0.01 for every time step is used to emulate the

photoemitted current from the cathode due to ultraviolet radiation. These electrons are

only inserted in a circular area with diameter of 5 cm similar to the electrodes’ dimension

used by Rose [83]. Tagashira et al. [84] reported a photoemitted current at the order of

5× 10−12A, due to the nature of time discretisation in numerical simulations, it would

mean that the number of photoemitted electrons per time step at a resolution of picosec-

onds is less than one. Instead, a series of convergence tests found that a prescribed 20

electrons per time step is sufficient to reach statistical stability for the obtained mean

value of first Townsend coefficient α. Their x and y coordinates are resolved by a process

of rejection sampling to ensure a uniform spatial distribution of electron source from the

cathode.

Considering the fact that there will be at least four random numbers required for each

simulated electron for every time step (two in the determination of the collision like-

lihood and its outcome, two in the calculation of the incident electron’s post-collision

velocity vector), a pseudo random number generator that has sufficiently long period

and is highly parallelisable has to be chosen. As such, every instance of random number

used in this work is generated through ‘Random123’, a counter-based random number

generator [86]. For ease of comparison with Rose’s work, the physical units used until

the end of this chapter will be in Torr for pressure and cm for length.

Determination of the electrode separation d used in the simulation is derived from re-

ported values of Rose’s experimental work, with E/p value ranging between 15 and

1000V cm−1Torr−1 and pressure at the range of 0.5 < p < 10.5Torr. One set of re-

ported parameters is E/p = 156V cm−1Torr−1 with voltage across electrodes measured

at 50V and the pressure of 2.7Torr. As such, the electrode separation d worked out

to be approximately 0.12 cm. All simulations presented in this work are performed at

a temperature of 0 °C which then determines the neutral number density. The electric

field created by potential difference between separated electrodes is simulated by pre-

scribing a constant Eext which all simulated charged particles will experience. In all the

presented simulation cases, Eext is parallel to the +z direction.

Each of the added electrons near the cathode is assumed to carry an initial energy
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Figure 5.3: a) X-Y plane view of electrons, anode in background. Each individual
electron is represented by a black dot. Note that the electrode edges are highlighted
as a visual guide. They are only charge collection boundaries in simulations. b) X-Z
plane view of electrodes and electron spatial distribution in a typical simulation run.

Close up view of the electrode edge shown in the box.

of 1 eV, travelling in the −z direction. Any particle that crosses the boundary of z = 0

or z = −d and within the 5 cm diameter area is removed from the simulation and sub-

sequently counted for the calculation of the current amplification factor. The electrons

that have moved laterally away from the 5 cm diameter area are removed but ignored

for the current amplification factor counts. Fig. 5.3a shows the typical spatial distri-

bution of the simulated electrons in the x-y plane during a simulation run. It is worth

mentioning that H+ and H+
2 ions are not shown in this figure to avoid cluttering. Of

interest in Fig. 5.3b are the electrons that are scattered away from the electrode regions

(outside of the 5 cm diameter area) as they near the anode, which arises naturally from

the electron-neutral elastic scattering and Coulomb scattering effects experienced by

the electrons as they travel between the electrodes. These electrons will not be counted

toward the measure of α value.

At every time step, the sum of all the charges carried by charged particles (electrons,

H+ and H+
2 ) that cross the anode boundary is recorded as qan. Fig. 5.4 shows the

recorded sum of the charges (measured with the unit of 1e) at the anode under E/p

92



Chapter 5: Townsend Avalanche Benchmark

Figure 5.4: Recorded charge at the anode (with unit of 1 e) for each simulation time
step, simulation performed at a total time step count of 60,000. Data shown for the

E/p = 400V cm−1 Torr−1 case.

of 400V cm−1Torr−1, note that the recorded qan is mostly from electrons. It can be

observed that the recorded charge settles to a steady fluctuation about a constant mean

value.

It was shown in Section 3.4.2 that the implemented scattering angle models allow

backscattering. As such, rather than the expected 20 photoemitted electrons at every

time step as described earlier, the measured net photoemitted electrons q0 also fluctuate

as shown in Fig. 5.5. The expression for q0 at every time step is

q0 = 20− qb.s., (5.1)

where qb.s. describes the number of back-scattered electrons recorded at the cathode. It

should be noted that the spread of the recorded q0 reduces as E/p increases. Higher E/p

can be achieved by either increasing Eext or reducing gas pressure p. Having larger Eext

will cause electrons to experience larger downward acceleration (away from the cathode

at z = 0). As such, electrons are less likely to reach the cathode after back-scattering

events. On the other hand, lowering the pressure p effectively reduces the collision fre-

quency between electrons and neutrals, allowing electrons to move unobstructed over a
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Figure 5.5: Net photoemitted electrons (|q0|) at each simulation time step, simu-
lation performed at a total time step count of 60,000. Data shown for the E/p =

400V cm−1 Torr−1 case.

longer distance.

The mean charges at the anode Qan and the mean net photoemitted electrons Q0 are

computed (along with their standard deviations), followed by the first Townsend coeffi-

cient α obtained through

α =
1

d
ln(I/I0) =

1

d
ln(Qan/Q0). (5.2)

The uncertainty of α is then calculated through propagation of errors.

5.5 Results

The explicit representation of electrons enables a detailed study of their spatial distri-

bution, as well as the influence of cross sections and scattering angle calculations on

the energy at any chosen time step. Fig. 5.6 shows the electron number density and

averaged energy over distance for E/p = 400V cm−1Torr−1.

An interesting observation can be made regarding the high electron number density

near the cathode, which diminishes rather abruptly over a short distance. This is ex-

plained by the lack of low energy electrons’ mobility as they are initially introduced into

the system. As they travel along the accelerating electric field, a spread in the energy
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Figure 5.6: Electron number density and average energy over distance. Measurement
is taken from E/p = 400V cm−1 Torr−1 case at the simulation time step of 60,000.

distribution occurs due to the probability of collisions with the neutral background (de-

termined by collision frequency ν) and the distribution of the resulting scattering angle.

This spread affects the spatial distribution of electrons since they do not move at the

same velocity.

It is noted that the electron energy gain over distance is smooth up to approximately

15 eV, which can be attributed to the lack of major energy sink within that energy

range. Referring to the cross section plot in Fig. 5.2, the only other reactions that can

act as energy sink in the energy range below 15 eV are vibrational and rotational level

transitions. However, their impact on electron energy is small as the rotational level

transition ∆ε is 44.1meV and the cross section for vibrational level transition is 1 order

of magnitude smaller than elastic scattering at best.

Once the electron’s energy threshold goes above the requirement for ionisation, ad-

ditional cross sections are considered during collision events. The number density and

the average electron energy continue to rise as the travel distance increases. There is

a small but noticeable drop in number density beginning from a distance of approxi-

mately 0.11 cm as well as a rise in average electron energy. This can be attributed to

slightly diminishing cross sections above 40 eV, meaning that the electrons encounter

fewer collisions thus more likely to move unimpeded.
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5.5.1 Influence of ∆t on obtained α

Recall that the choice of time step size has an upper bound given in Eq. 3.14. This

implies that a pre-filled pressure of 2.5Torr (0.33 kPa) would require a maximum time

step size of O(1 ps) in order to keep the probability of more than one collision per time

step per particle below 1%. The influence of electric field strength on time step size

is also considered. However, the corresponding limit is much larger than the suggested

picosecond scale.

In order to choose the proper time step size for the simulation, a set of tests is done

with the initial choice of 1 ps, 0.4 ps, 0.25 ps and finally 0.1 ps. The convergence tests are

done at E/p = 400V cm−1Torr−1 with pressure of 2.5Torr, using the presented random

scatter model. A comparison of the obtained α/p for each of the chosen time step sizes

is made and the result is tabulated in Table 5.1.

Table 5.1: Mean α/p values for E/p = 400V cm−1 Torr−1

Time Step Size [ps] Mean α/p [cm−1Torr−1]

1.0 3.46 ± 0.51

0.4 3.53 ± 0.51

0.25 3.56 ± 0.51

0.1 3.57 ± 0.52

The tabulated results show that the obtained mean values are within 1 standard devia-

tion of each other. This suggested that the choices of time step sizes are all acceptable.

However, the variation of obtained mean α/p values as the step sizes get smaller do show

a trend of convergence. In light of that, the lower time step size choices of 0.25 ps and

0.1 ps are preferred. For the following simulation cases, 0.25 ps is chosen to help reduce

the total time required to complete the simulations.

5.5.2 Influence of E/p on obtained α

Rose performed the experiment with various combinations of electric field strengths E

and pre-filled gas pressures p. In order to compare with those results, appropriate values

for electric field strength and pressure are chosen for the numerical simulations. Specif-

ically, the chosen E/p are 60, 100, 200, 400 and 600V cm−1Torr−1. All the cases were

benchmarked at a plate separation of d = 0.12 cm.

Note that the simulation severely underestimates the mean α/p at the E/p ratio of

60V cm−1Torr−1 for all three implemented scattering angle models. However, good
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Table 5.2: Comparison of obtained mean α/p values. The columns labeled with
‘Rose’, ‘Random’, ‘Vahedi’, and ‘Okhrimovskyy’ denote values obtained from D. J.
Rose’s experiment, numerical experiments using Random Scatter model, Vahedi model

and Okhrimovskyy model to describe scattering angle distribution respectively.

Mean α/p [cm−1Torr−1]

E/p Rose Random Vahedi Okhrimovskyy

60 0.50 0.10± 1.19 0.09± 1.06 0.08± 1.30

100 1.26 1.24± 0.89 1.07± 0.82 0.97± 0.97

200 2.55 2.57± 0.62 2.18± 0.59 2.00± 0.67

400 3.60 3.56± 0.51 2.94± 0.52 2.71± 0.57

600 4.10 3.85± 0.40 3.14± 0.44 2.95± 0.47

agreement with Rose’s reported α/p is observed in the range of 100 to 400V cm−1Torr−1

for the newly proposed random scatter model, while the models by Vahedi and Okhri-

movskyy result in lower mean α/p values. Another interesting observation is that the

uncertainty of α/p reduces as E/p increases. This is due to diminishing value of qb.s. in

Eq. 5.1, thus giving a narrower spread of q0 as E/p increases. Similar trend of reduc-

tion in the uncertainty of recorded qan is observed as well. The obtained mean α/p are

also noticeably lower compared to Rose’s reported value at E/p of 600V cm−1Torr−1,

this could be attributed to the neglected hydrogen dissociations that produce hydrogen

atoms, which in turn provide another channel for additional impact ionisation.

One could attempt to explain the underestimation of α/p by both Vahedi and Okhri-

movskyy’s model via the anisotropic scattering angle distribution in Fig. 3.5 and Fig.

3.7 respectively. In the event of ionisation, random scatter model enforces a forward

scatter of the incident electrons, which is markedly different from the other two mod-

els. Should the ionisation event occur for an incident electron that is just above the

ionisation energy threshold, there is a non-negligible probability that the incident elec-

tron will backscatter after the energy is spent to ionise an H2 molecule. For example,

Vahedi’s model would have equal chance for forward and backward scatter for electrons

that have approximately 0.01 eV while Okhrimovskyy’s model actually favours backward

scatter for electrons below 1 eV. This causes a markedly higher drag experienced by low

energy incident electron that is fresh from ionisation events compared to the random

scatter model, leading to longer time intervals when electrons reach the energy thresh-

old required for further ionisation (thus, the diminished α/p value). This suggests that

Vahedi’s and Okhrimovskyy’s models require different methods to account for energy

partitions during ionisation events, other than the classical treatment of energy and

momentum conservation presented at Eq. 3.18.

In the current work, the mean electron drift velocity VDE is obtained by taking the last
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Figure 5.7: Comparison of our results for the mean electron drift velocity using all
three models to reported values from: Simulation data obtained from Saelee et al. [5],
derived data from Schlumbohm [6] and Lisovskiy et al. [7], measured data from Blevin

et al. [8], and Roznerski et al. [9].

simulated time step of the electron population, followed by averaging all the electrons’

velocities. Fig. 5.7 shows the comparison of measured VDE from presented scattering

angle models and the various prior works [5–9]. It can be observed that the models for

calculating the scattering angle by Vahedi and Okhrimovskyy give good agreement to

other previously reported results. Note that the measured drift velocity using Okhri-

movskyy’s model gives a slightly lower mean result when compared to Vahedi’s model

at E/p = 60V cm−1Torr−1 whereas it exhibits a higher value above 100V cm−1Torr−1,

while the random scatter model gives an overall lower estimation. It might seem to

be a direct contradiction to the arguments made in the diminished α/p value for Va-

hedi and Okhrimovskyy’s model, as one could come to the belief that higher Ve should

correspond to higher α. Reality is less straightforward, since the majority of the elec-

tron population is below the ionisation energy threshold. This can be seen in the case

of 400V cm−1Torr−1, as Okhrimovskyy’s model (which gives the highest recorded Ve

among the three models) reports a mean drift velocity of 1.92× 108 cm s−1, which corre-

sponds to approximately 10.5 eV. This can also be observed from Fig. 5.6 where the low

energy electrons dominate the simulated population. The resulting Ve is mostly affected
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by the scattering angle distribution at energy range below the ionisation threshold. Since

the random scatter model assumes isotropic angle distribution for non-ionising case, Ve in

such model is naturally lower than Vahedi’s model (which is consistently forward scatter

biased for electrons above 0.01 eV). Comparison between Vahedi and Okhrimovskyy’s

model also shows noticeable correspondence of the resulting Ve with the angle distri-

bution of respective models at low eV values. More specifically, Okhrimovskyy’s model

reports lower Ve at lower E/p range and overtakes the reported values at higher range.

This is a result of the extremes in angle distribution seen in Fig. 3.7

Even though the random scatter model underestimates reported values of previous

works at E/p ≤ 200V cm−1Torr−1, it is seen that the agreement improves at 400

and 600V cm−1Torr−1. The comparison between the three presented models shows

that both energy dependent scattering angle calculations give a better approximation of

VDE.

5.5.3 Discussion

In the simulations, electrodes are only defined as boundaries where charge collection

occurs. Intricate interaction between charged particles and electrodes taking place in

actual experiments, such as charged particle sheath formation in close proximity to elec-

trodes or secondary electron creation through ion collision on cathodes, are not captured.

With that in mind, the current study chooses to benchmark the proposed model with

experimental work focusing on measuring the first Townsend coefficient α. As such, the

presented set of benchmark simulations are performed with the shortest separation dis-

tance d derived from Rose’s work as well as using the lower ranges of operating pressure.

A number of modifications to the numerical setup are required to extend the pressure

and electric field range of validity for α measurements in electrode plate experiments.

Chief among them is the modelling of the electric field via potential difference over a

defined separation distance rather than a prescribed constant Eext. Electric potential

changes across the electrodes at longer separation distances would then be modelled

correctly.

However, the current model is suitable in the simulation of tokamak ohmic breakdown

since the electric field experienced by charged particles is induced by the current ramp

up in the central solenoid rather than the potential difference between electrodes. Es-

tablishing a method to predict the rise of electron population via electron-neutral col-

lisions, as demonstrated in this work, is one of the components required to capture the
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very early phases of tokamak plasma initiation where the electron number density is

well below 103m−3. Since the obtained α presented in this work has good agreement

with reported values in high E/p ranges, it fits the ohmic breakdown phase of toka-

mak devices such as NSTX at E/p ≈ 500V cm−1Torr−1 [17] or ITER at a predicted

E/p ≈ 400V cm−1Torr−1 [18].

On a separate note, Townsend’s work [39] reported different values of current ampli-

fication with experiments at the same E/p ratio with differing operating pressure. This

trend is noted in the simulation as well, but not explicitly reported in studies conducted

by different authors [87]. More work could be done to study the effect on obtained α

at different pressure settings while maintaining a constant E/p ratio as well as constant

electrode separation d.

This study showed that the choice of implemented scattering angle model plays a ma-

jor role in the simulated Townsend discharge in a full 3D application. In light of the

eventual simulation of an ITER-like tokamak breakdown, a conscious choice is made to

implement the random scatter model to simulate the electron-H2 ionisation events as

it provides the best approximation of α value among the considered models as well as

acceptable accuracy of Ve.

5.6 Conclusion

A 3D first principles simulation of Townsend discharge is presented and benchmarked

against prior experimental work. The study shows that the choice of implemented scat-

tering angle model plays a major role in the simulated Townsend discharge in a full

3D application. It is found that the proposed random scatter model produces good

agreement in obtained α/p values when compared to Rose’s reported values. However,

the random scatter model produced mean electron drift velocities that are lower than

reported values from other works for E/p < 400V cm−1Torr−1. Both Vahedi et al.

and Okhrimovskyy et al. scattering model produced α/p that is lower than the results

presented in Rose’s work, while producing good approximations of the resulting mean

electron drift velocities. In order to improve the approximation in both α/p and VDE

further, a combination of forward scatter restriction presented in Section 3.4.2.1 during

ionisation events, with Eq. 3.19 or Eq. 3.21 in other scenarios could be studied further.

It should be reiterated that the recorded current amplifications are for situations where

the primary means of ionisation is through electron-neutral collisions. The implemented
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ionisation model is then suitable for tokamak breakdown scenario where secondary ion-

isation sources are absent near the magnetic null (breakdown region). A decision was

made to adopt the random scatter model in modelling the ionisation fraction growth

rate during the plasma initiation phase of tokamak ohmic breakdown. The E/p for the

following tokamak simulations is approximately 400V cm−1Torr−1. Among the three

considered scattering models, the random scatter model is found to approximate both

α/p and Ve the best in the given E/p.
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ITER-like breakdown scenario

The previous chapters (specifically Ch. 3 and Ch. 5) laid the foundation for a large

scale simulation of the plasma initiation process in a tokamak geometry. The discussed

0D ionisation fraction model (reproduced in Sec. 6.1) does not consider the geometry

of the volume that the charged particles inhabit. The main goal of this study is to

provide a first-principles 3D simulation of the Townsend avalanche process in ITER-like

tokamak scenario. In this chapter, we introduce a benchmark simulation to produce an

initial picture of 3D breakdown dynamics with the new model. The obtained results are

compared to the 0D model to further understand the differences between theory and

simulation. Parts of the results presented in this chapter were reported in the 47th EPS

Conference on Plasma Physics [88]. Before proceeding with the content of the chapter,

a clarification of terminologies is made here to avoid confusion. Any mention of external

or background fields refers to induced fields created via the tokamak’s superconducting

magnets and current ramp up in the central solenoid. In contrast, internal or self-

consistent fields denote those that arise from space charge distribution and currents

from charged particle motions.

6.1 0D ionisation fraction equation

The 0D model is first described in Sec. 2.5, where the interpretation of the equation

as well as the variable definition is given. Additional detailed consideration is provided

here. For the sake of convenience, Eq. 2.19 is repeated here

1

fi

dfi
dt

=
1

ne

dne

dt
= αVe −

Ve

L
.
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The right hand side of the equation is equivalent to the exponential coefficient of the

analytical solution of either fi(t) or ne(t),

fi(t) = fi,0 exp

(
αVe −

Ve

L

)
t.

As such, a variable is introduced as the growth constant, representing the exponential

coefficient with

γ0D = αVe −
Ve

L
. (6.1)

During the operation of the ITER tokamak, the wall temperature of the vacuum vessel

will initially be baked at 100 °C. Eq. 2.22 is then found to be

Ve ∼ 5730
E

p
. (6.2)

Furthermore, it is assumed that the vacuum vessel is filled with hydrogen molecules and

the corresponding α parameter is determined via Eq. 2.12. Next, ITER’s first plasma

operation will have E/p ≈ 300Vm−1 Pa−1 and this parameter is sufficient to describe

the ionisation fraction growth rate. Finally, it is usually assumed that the charged parti-

cles will have a connection length L of approximately 1 km in such a model. Clearly, the

variables in Eq. 2.19 completely neglect both the spatial dimensionality that the charged

particles inhabit and their velocity distribution, thus the 0D naming of the model. With

the stated parameters, the ionisation fraction over time is plotted in Fig. 6.1.

Early on in the plasma initiation process (before 4ms), the electric field E experienced

by charges is dominated by the imposed external fields due to low ionisation fraction fi.

However, as the number density of charged particles (as well as the current density j)

rises, E drops due to mutual-inductance of rising plasma current and the surrounding

magnetic components [18]. To account for this, a correction factor to E given by

E = Eloop

(
1 +

Ltor

R

1

I

dI

dt

)−1

, (6.3)

can be introduced, where Eloop refers to the electric field strength of external field, Ltor

denotes the inductance of the torus, R represents the total resistance experienced by

charged particles and I the corresponding plasma current. Substituting Eq. 6.3 into

Eq. 6.2 then causes the observed tapering of the fi in Fig. 6.1.

The focus of this study is up to ∼ 1ms time scale, allowing a study of ionisation fraction

in time comparing to Eq. 2.19 in a simplified 3D model which neglects the aforemen-

tioned inductance influence (partly due to lack of information in the actual electrical
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Figure 6.1: Ionisation fraction in time, calculated from Eq. 2.19 with E/p ≈
300Vm−1 Pa−1. Blue vertical line refers to the time scale of this study.

current profile of ITER’s superconducting magnets during operation). This restricted

timescale nevertheless provides insight into several key properties, such as the resulting

mean electron drift velocity Ve distribution, the space charge and current distributions,

and lastly their corresponding self-consistent electric and magnetic field structures re-

spectively.

6.2 Numerical setup of the benchmark case

The simulation domain throughout this numerical study is a simplified torus as shown

in Fig. 6.2. Following consultation with collaborators at ITER’s plasma operations and

control division, a benchmark numerical setup for a breakdown scenario was proposed

with parameters given in Tab. 6.1, representing a simplified version of the first plasma

scenario for the upcoming ITER tokamak. An assumption is made here that there are

preexisting free electrons present within the torus at the start of the simulation. Since

the regime of tokamak operation considered here is the very initial phase of Townsend

avalanche breakdown, a low number density of initial electrons at 10m−3 is seeded within

the blue torus. Considering that there could be continuous source of free electrons within

the tokamak device in reality (possibly from muon decay, since muon flux is estimated

to be 1 cm−2min−1 at sea level [89]), only having an initial free electron population

at the start of the simulation will serve as a lower bound of the required free charges

population for plasma initiation if successfully demonstrated.
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Figure 6.2: Bisected view of the torus domain used in the numerical simulation. Torus
with red surface denotes the simulation domain, the blue surface denotes the boundary

where initial electrons are seeded.

Table 6.1: ITER-like tokamak parameters and operating condition.

H2 Pressure (Pa) 0.002

Wall temperature (K) 373.15

Initial electron number density (m−3) 10

Major radius (m) 5.8

Minor radius of electron seeding (m) 1.0

Minor radius of simulated domain (m) 1.75

6.2.1 Field configurations

The configuration of the external electric and magnetic fields is discussed in this section.

The numerical implementation for these fields has already been discussed in detail in

Sec. 3.5. Specifically, the toroidal magnetic field is expressed with Eq. 3.35. In order to

yield 2.6T at major radius ρ = 5.8m, the value of I = 75.24MA is used. Since Bϕ is an

inverse ρ function, there is a field strength gradient anti-parallel to the radial direction as

seen in Fig. 6.3. The toroidal magnetic field vector is aligned in the clockwise direction

when viewed from the top. Correspondingly, the vector points out from the image in

Fig. 6.3.

The poloidal magnetic field Bθ is then a combination of magnetic fields created via

predefined currents running through 4 field coils. The derived expression for such field
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Figure 6.3: Toroidal magnetic field strength in the poloidal plane. Bϕ = 2.6T at
ρ = 5.8m.

Table 6.2: Coil positions/dimensions and the corresponding current for quadrupole
poloidal magnetic field configuration

Coil no. z′ (m) R (m) I (A)

1 3.0 5.8 2357.366
2 -3.0 5.8 2357.366
3 0.0 3.0 100 000.0
4 0.0 8.3 15 230.96

definition is detailed in Sec. 3.5.2, only the parameters are reported in Tab. 6.2 for the

sake of brevity. One important point is mentioned here, Eq. 3.34 assumes that the

coil is located at z = 0. Therefore, the poloidal magnetic field experienced by charged

particles is determined simply by particle’s vertical coordinate z. The coil positions in

this benchmark simulation are not strictly at z = 0, a new variable z′ is defined to

denote the vertical offset of the poloidal coil. Thus, the variable z in Eq. 3.34 is then

z = zp − z′, (6.4)

where zp refers to the particle’s vertical coordinate. The resulting poloidal magnetic

field due to the 4 poloidal field coils is shown in Fig. 6.4. This creates a single null point

at ρ = 5.8m and z = 0.0m with the strength of ∼ 3.5× 10−5T. The averaged poloidal

magnetic field strength at the red boundary is Bθ,edge = 3.613mT.

Finally, the electric field strength is computed with Eq. 3.36 which is very similar to the

toroidal magnetic field equation. Vloop = 22V is chosen such that the toroidal electric
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Figure 6.4: Bθ in the poloidal plane.
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Figure 6.5: Toroidal electric field strength in the poloidal plane, Eϕ is pointing out
of the figure.

field strength Eϕ = 0.6Vm−1 at ρ = 5.8m. The Eϕ distribution in poloidal plane is

shown in Fig. 6.5 and the field is parallel to Bϕ. The combination of the stated pressure

and Eϕ gives 250 < E/p < 425Vm−1 Pa−1.

The electric and magnetic fields involved in this benchmark simulation run are now fully

described. The accompanying numerical details are explained in the following section.
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Figure 6.6: Ion kinetic energy distribution at the time of 1.1375ms.

6.2.2 Electron - H2 impact cross sections

Since the simulation now involves a toroidal magnetic field geometry, confinement prop-

erties experienced by charged particles are now vastly different from the plate experiment

scenario discussed in Ch. 5. Specifically, the charged particles are now subjected to the

background magnetic fields within the torus with the field line length scale upwards

of kilometres, as opposed to centimetres in the plate experiment setting. This alone

extends the lifetime of charged particles within the system significantly. The longer

confinement time enables the existence of highly energetic particles and additional cross

sections that can alter the energy distribution of charged particles should be considered.

An additional caveat here is that the ionisation in this study is purely from electron-H2

collisions. It is true for this study (as seen in Fig. 6.6) since it is found a posteriori that

H+ and H+
2 ions’ kinetic energy peaks around 29 eV and 16 eV respectively at ∼1.14ms.

The energies are well below the ionisation threshold for ion-H2 impact ionisations [90].

Regarding the collision cross sections of electron-H2, the main reference of the cross sec-

tion values is the data from Yoon et al.. While there are other more extensive databases

(such as EIRENE’s hydhel [91] and NIST’s Binary-Encounter-Bethe (BEB) model [92]),

a conscious choice was made to follow Yoon’s data as it is the most recent and a result of

compilation/comparisons of prior experimental measurements. In the instances where a

cross section has limited range of electron’s energy, it is then supplemented by EIRENE’s

fitted data. This is the case for the neutral dissociation of hydrogen molecules.
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Figure 6.7: Black lines are cross sections from Yoon et al. published data. Coloured
lines are from EIRENE’s hydhel data fittings.

� e+H2 → e+ 2H(1s)

� e+H2 → e+H(1s) + H(2s)

Dissociative attachment cross-sections are ignored in this study, due to the cross section

values being at least 3 orders of magnitude smaller than the elastic scattering cross-

section. Thus, it is highly unlikely for such responses to occur. Assuming that the

initial electron population is at 1000 in a toroidal volume of 115m3, Eq. 2.19 predicts

that electron number density ne ≈ 5× 104m−3 at 1.1ms. This translates to attachment

frequency in the order of ∼ 10−14Hz, making it negligible for consideration. The emis-

sion cross section in Yoon’s work is also ignored because the cross section values are 3

orders of magnitude smaller than elastic scattering. Finally, the excitation cross sections

are neglected as the hydrogen molecules are not explicitly simulated, so it is assumed

that all molecules are at the ground state. Finally, the included cross sections in this

study are plotted in Fig. 6.7.

There is one other consideration that is specific to the tokamak scenario. Since the

connection length is in the order of kilometres, electrons will have the possibility to gain

energy above the 1 keV threshold. Should the cross sections presented in Fig. 6.7 be ap-

plied to the simulation, there is then a rise in the population of highly energetic electrons

above 1 keV (seen in Fig. 6.8) due to such electrons having a free unobstructed continuous
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Figure 6.8: Electron parallel velocity Vpar distribution at time of ∼1.14ms. The
distribution is a result of cross section values set to 0 for energetic electrons with

energies above 1 keV.

Table 6.3: Gradient mg for each considered cross section.

Cross section mg

Dissociative ionisation -0.994
Nondissociative ionisation -0.753

Elastic scattering -1.311
J: 0 → 2 -1.073
v: 0 → 1 -1.281

Total scattering -0.941

acceleration. The negative velocity sign is assigned to electrons that are moving against

the direction of acceleration arising from the time independent background electric field.

Rather than introducing a zero cross section value directly for electrons with energies

above available data range, an assumption is made such that the cross sections diminish

exponentially as energy increases. In order to make such extrapolations, numerical fit

of a linear function to the logscale of both cross section and energy from existing data

points is done. The key parameter from this fitting is the gradient mg for each cross

section, from which the extrapolation from the last known data values can be done eas-

ily. The result of the fitting is tabulated in Tab. 6.3. It is worth mentioning that the

data from EIRENE doesn’t require such treatment, other than making sure that the

electrons’ energies are within the valid range of the fit given in the database.
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Figure 6.9: The extended cross sections.

The extrapolation of cross section σ to arbitrary electron energy εkin. larger than the

last known data point εlast is then calculated with

log10 σ(εkin.) = mg

(
log10

(
εkin.σlast
εlast

))
, (6.5)

where σlast denoting the cross section value of the last known data point. One can refer

to the appendix to obtain εlast and σlast for each cross section. The extended cross

sections are plotted in Fig. 6.9.

6.2.3 Time step restriction

The next numerical consideration is the choice of time step size. In this specific case,

there are several competing factors to be considered. Chief among them is the collision

frequency between electrons and neutral particles. Assuming that the neutral gas pres-

sure and temperature remain constant in time, the collision frequency then depends on

the energy of the electron (collision cross section solely depended on the electron en-

ergy). In order to provide an estimate of the minimum time scale between collisions, an

electron with energy which corresponds to the maximum total scattering cross section

with background H2 is used as an example. Referring to Eq. 3.14, the resulting time

between collisions would be in the order of 1.451 µs assuming the electron carries energy

of 3.25 eV (peak total scattering cross section value of 16.6× 10−20m−2) with the listed
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parameters in Tab. 6.1. As such, a time step size in the order of µs is sufficient to ensure

that not more than one collision has occurred for an electron per step on average.

Next, the time step sizing is also dependent on the gyrofrequency of the electron sub-

jected to the background magnetic field. Should one attempt to capture at least 3 points

of the gyromotion in one period, the time step size is then limited to

∆t ≤ 3me

|q|∥B∥ , (6.6)

where me refers to the electron rest mass, q denoting the electron charge and B the

magnetic field experienced by said electron. A further simplification is made such that

∥B∥ is purely a function of the toroidal magnetic field strength. This is justified by the

magnitude of the poloidal field strength relative to the toroidal component. Referring

to Fig. 6.3, it is clear that the time step size is in the order of picoseconds. Thus, this

provides an upper bound to the chosen ∆t for the simulation.

Due to the picosecond scale of the time step size, reaching the end time of ∼1ms would

require number of time steps in the order of 109 and above. Resolving the self-consistent

electric field among the charged particles at every time step would be too expensive com-

putationally. As such, a less frequent calculation of the internal fields is performed. The

time between such computations is initially bound to the plasma frequency of the sys-

tem. Consider an electron number density of 105m−3 once again and assuming majority

of the electrons are stationary, the resulting plasma frequency would be at 2839.30Hz

via

fplasma =
1

2π

√
neq2

meε0
. (6.7)

Even if the electron number density increases to 107m−3, this results in a frequency

of ∼30 kHz. This then corresponds to a step size upper limit of ∼33 µs between each

computation for the self-consistent electric field. Even though this step size provides

relief to the overall computational cost of the simulation, another careful consideration is

made here. Assuming an electron with energy of 10 eV travelling in the toroidal direction,

it would have travelled 624m in the span of 33 µs (or have made ∼17 revolutions in a

torus with a major radius of 5.8m). The significance of 10 eV is suggested by Papoular

as the energy barrier that electrons cannot overcome in an electron-neutral collision

dominated setting [40]. As such, a specific choice of computing the internal fields at an

interval of ∼ 2 µs is made, so that the updates are done at least once every revolution for

the fast moving electrons. In the case of a scenario with 1017m−3, the plasma frequency

assuming stationary electrons is then ∼3GHz. Even so, the gyrofrequency of electrons is

still higher. As such, saving computational costs by not computing the internal electric
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fields at every step is possible. One should also come to the realisation that the charged

particle medium is far from the familiar plasma medium after the burn-through phase.

Given a charged particle density of the order of 107m−3, the Debye length is found to be

approximately 7.4m assuming quasi-neutral charge temperature at T = 10 eV. This is

already longer than the major radius of the torus, far longer from what is conventionally

recognised as a plasma Debye length scale within a tokamak device.

6.3 Results and discussions

In this section, various physical aspect of the charged particle collective is presented.

Comparisons with the 0D model will be made where possible. Since the simulation

results are obtained from a 3D spatial setting, some variables could not be compared

directly in a meaningful way. As such, specific definitions are proposed and explained.

In order to distinguish the values from both 0D model and the numerical simulation,

subscript notations will be used. Specifically, subscript of sim. is used to denote results

from simulation and the subscript of 0D refers to values from 0D model.

6.3.1 Electron velocities

First of the comparisons with 0D model is the mean electron drift velocity Ve. In the

0D model, Ve,0D is derived from the balance between collisional drag and background

field acceleration. This implies that Ve,0D is an averaged electron velocity that is along

the subjected electric field. Since the simulation study is carried out in a domain with

3 spatial dimensions, there will be a velocity distribution in both parallel Vpar and

perpendicular Vperp direction w. r. t. the torus’ minor axis. Furthermore, a positive

sign is assigned to velocities that are parallel to the direction of acceleration. Since it is

expected that some electrons will be back-scattered, portions of the electron population

will have negative velocities. The definition of Ve,sim. in the context of 3D simulation is

then the averaged electron Vpar. With this, the discussion moves onto the time evolution

of Ve,sim..

6.3.1.1 Ve,sim. over time

Fig. 6.10 shows the time evolution of Ve,sim. over the course of the simulation. The jagged

data points at the early time steps are due to low electron population present in the

simulation. Losses of energetic electrons are reflected in the slight drops in Ve,sim.. As

the simulation proceeds, electron losses persist (as seen later in Fig. 6.13) but the high
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Figure 6.10: Ve,sim. over time plot. At the last time step, Ve,sim. is calculated to be
2.74× 106 ms−1 while Ve,0D = 1.776× 106 ms−1.

population count of electrons average out the impact of such losses on overall Ve,sim..

It is seen that Ve,sim. settles to a constant value after peaking at about 0.2ms, settling

at 2.740× 106ms−1. As previously mentioned, the 0D model also predicts Ve,0D via

Eq. 6.2. With the given distribution of Eϕ in Fig. 6.5, the averaged value within the red

boundary is ∼0.62Vm−1, thus giving E/p ≈ 310Vm−1 Pa−1. As such, the resulting

drift velocity is then Ve,0D = 1.776× 106ms−1. This value is approximately 35.2% lower

than Ve,sim.. The cause for the lower Ve,0D value arises from the assumption that the

averaged electron energy in a neutral collision dominated system is at 20 eV. This can

be seen in Eq. 2.21, where this assumption is used in the calculation of collisional drag

force experienced by electrons.

6.3.1.2 Velocity distribution

The electron’s velocity distributions f(Vpar) and f(Vperp) from the simulation are plotted

at the same time of 1.1375ms in Fig. 6.11. It should be noted that the perpendicular

velocity distribution is strictly positive since there isn’t a preferred orientation due to

the periodic nature of electron’s Vperp velocity vector, arising from the gyration motion

centring around the background magnetic field (recall that toroidal electric and magnetic

fields are parallel to each other). The electron energy distribution is also shown on the

right plot of Fig. 6.11 with an averaged kinetic energy of 98 eV. It should be mentioned

here that the value is noticeably higher than the 20 eV assumed in the derivation of

Eq. 2.22 (subsequently Eq. 6.2).
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Figure 6.11: Plot on the left shows distribution of f(Vpar) and f(Vperp) at t =
1.1375ms. Right plot is the corresponding electron energy distribution f(K.E.).

It is important to note that the simulation is performed with the random scatter model

described in Sec. 3.4.2.1 since it matched closely with the experimental results discussed

in Sec. 5.5.2. The major drawback of this model is the use of a simplified classical in-

terpretation of a hard sphere model to describe the scattering angle distribution. One

should be aware that the observed f(V ) in Fig. 6.11 would be different should an-

other scattering model is applied instead. An example of such distribution is shown in

Fig. 6.12, where the scattering angle distribution arises from the first Born approxima-

tion calculation using Ohkrimovvsky et. al. model. In such a model, electrons with

energies above 12 eV will almost certainly scatter forward which contributes to a much

lower population of electrons which are back-scattered (assigned a negative sign). This

observation signifies the need for future refinements in which the scattering angle model

is derived from a quantum mechanical framework while being able to match the exper-

imentally obtained α in Tab. 5.2.

6.3.2 Growth rate comparison

Fig. 6.13 shows the growth of various charged particle species in time. One notable

feature is the discrepancy between the growth rate of electron population as predicted

by the theoretical model and the result from simulation. The analytical solution to

Eq. 2.19 is

ne(t) = ne,0 exp (γ0Dt) . (6.8)
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Figure 6.12: Comparison of the resulting electron parallel velocity distribution f(Vpar)
scaled by total electrons between the two implemented scattering angle model.
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Table 6.4: Growth constants for both ions and electron, as well as the value from 0D
model. All values are in the unit of s−1

γ0D γi,sim. γe,sim.

8257.85 10604.226(16) 10591.848(19)

Applying the operating conditions listed in Tab. 6.1 to Eq. 6.1 yields the value of γ0D =

8257.85 s−1. The growth rate of fi (equivalent to ne in Eq. 2.19) in this study can be

obtained by calculating γe,sim., the growth constant of electron density in time. It is

obtained via numerical fitting with a test function that has a similar form to Eq. 6.8,

that is

ne,sim.(t) = ne,sim.(t0) exp (γe,sim.t) . (6.9)

The extent of numerical data used for the fitting is determined from Fig. 6.10. Specifi-

cally, only the data which the Ve,sim. has settled to a constant is used (that is, from the

time of t0 = 0.8ms onward). Similar numerical fit can be applied to the ions to obtain

γi,sim. using a function akin to Eq. 6.9. Instead of obtaining γ for each species of positive

ions, a deliberate choice of combining all ion species in the fitting is made. This is driven

by the interest of eventually deriving the electron loss constant γe,loss. The result of the

numerical fitting is shown in Tab. 6.4.

In the 0D ionisation fraction model, the electron density growth factor in Eq. 6.1 is

the difference between the rate of ionisation and the electron loss rate. Following this

idea, noticing that γe,sim. represents the net growth of electrons that remain in the simu-

lation domain, it is straightforward to see that this value implicitly includes the electron

loss factor as well. As such, the electron loss constant γe,loss is then

γe,loss = γi,sim. − γe,sim.. (6.10)

Eq. 6.10 is valid, so long as the following conditions hold true. Firstly, the considered

ionisation channels only produce one ion-electron pair per event, so that the total ions

represent the total electrons produced as if there were no electron losses. Secondly, γi,sim.

is obtained from the created ions over time throughout the numerical simulation, rather

than the net ion population over the time measure. Eq. 6.10 works well since there were

no ion losses up to the time of ∼1.14ms (as seen in Fig. 6.13).

The value of γe,sim. is approximately 28% higher than γ0D. Assuming that α from

Eq. 2.12 holds true for both 0D model and 3D simulation, the difference in Ve is a sub-

stantial contributing factor to the diminished γ0D. In the discussion in Sec. 6.3.1.1, the

lower value of Ve,0D is a result of an overestimation of the collisional drag experienced by

the electrons in the 0D model. 3D scattering events introduce perpendicular component
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Figure 6.14: Density of charges in the poloidal plane. The left shows the ion density
while the right plot displays the electron density spatial distribution. The densities are

obtained at the time of 1.1375ms.

to the electrons’ velocity vector in the event of scattering, rather than imposing a strict

back-scatter which exaggerates the drag force. Lastly, the difference in the assumed con-

nection length L between the 0D model (Eq. 6.1) and the numerical simulation hasn’t

been examined. This will be covered in the following section.

6.3.3 Charged particle spatial distribution

The definition of the external fields as discussed in Sec. 3.5 implies toroidal symmetry

in the simulated domain. As such, the charged particle’s density distribution in the

poloidal plane is assumed to also inherit such symmetry. The result in Fig. 6.14 shows

the distribution of positive ions and electrons respectively at the time of 1.1375ms. The

shape of the charge concentration is influenced by two factors. The first influence is

from the poloidal magnetic field Bθ, and can be represented by a measure akin to the

conventional connection length. The second is the internal electric field due to charge

imbalance between electrons and ions, which will rise in strength as loss of electrons

persists while the heavier ions remain within the simulation domain.

6.3.3.1 Backtraced connection length Lbt

There are multiple definitions of connection length L, depending on the context. In the

study of scrape-off layers, connection length is defined as the shortest path length of
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the field line, which connects the outer midplane and the divertor target in the tokamak

[47, 48]. Conversely, the connection length in the study of tokamak startup is the

approximated distance along magnetic field line which charged particles are accelerated

before coming into contact with the vessel wall [17, 93]. The L by this definition is

scaled by

L ∝ a
Bϕ

Bθ
,

where a refers to the minor radius of the vacuum vessel (or the transverse distance to the

vessel wall). The computed L is often a single measure which does not fully represent

the spatial distribution of Bθ.

In an attempt to explain the charge distribution as shown in Fig. 6.14, it is found that

the backtraced connection length Lbt provides a good measure to predict spatial distri-

bution of charges over time. The backtraced connection length Lbt is defined as the path

length of the background magnetic field line in the orientation parallel to Eϕ, connecting

an arbitrarily chosen poloidal plane to the boundary of the domain (e. g. vessel wall).

This definition is motivated by the fact that the charged particle spatial distribution

is a result of electron-H2 impact ionisation, meaning that the electron’s trajectory will

dictate the locations where one can find positive ions. Additionally, the positive ions are

found to have energies of less than 29 eV (referring once again to Fig. 6.6). Considering

the mass ratio between the electrons and ions, one can safely assume that the ions’

motion in a span of ∼1ms is minimal. This implies that ionisation events determine the

distribution of ion density in Fig. 6.14, rather than the ion’s own motion. For additional

context, it takes a stationary H+
2 ion approximately 3.4ms to gain 100 eV, which then

only travels at approximately ∼133m s−1 in the transverse direction (along the poloidal

plane). Consider the time scale of the simulation at 1ms, a H+
2 ion with 100 eV will only

travel a total of 13.3 cm transversely in that duration.

The computed Lbt for the given fields in Sec. 6.2.1 is shown in the left plot of Fig. 6.15,

which also shows the different Lbt one can obtain by simply flipping the orientation

of Eϕ while keeping the definition of Bϕ identical. First thing to note is that Lbt can

reach 10 km, much higher than the assumed L = 1km used in the 0D model. Should

Lbt be used in Eq. 6.1, this would help increase γ0D value. Revisiting the case where

Eϕ is flipped, the resulting electron density spatial distribution is shown in Fig. 6.16.

It corresponds to an earlier time at 0.65ms and the charge concentration agrees with

the Lbt map shown in the right plot of Fig. 6.15. The diagonal band of the electron

density is wider than seen in Fig. 6.14. This is due to the influence of the second factor

mentioned earlier, which is the charge imbalance between electrons and ions. This topic

will be discussed further in the following section.
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Figure 6.15: Map of Lbt in the poloidal plane. Eϕ is parallel to Bϕ in the left plot,
while Eϕ is anti-parallel on the right plot.
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Figure 6.16: Electron density in the poloidal plane at 0.65ms, Eϕ is anti-parallel to
the prescribed Bϕ.
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Figure 6.17: Eint. due to charge imbalance between electrons and ions.

6.3.3.2 Internal fields

While Fig. 6.14 shows similar magnitude of density between the electrons and ions, there

is in fact a charge imbalance. Specifically, electron density is lower than ion density due

to the continuous electron loss in time (seen in Fig. 6.13). The charge imbalance is clearly

demonstrated by the resulting internal electric field Eint. shown in Fig. 6.17. Such field

then encourages the electrons to move toward the diagonal axis. The impact of the

resulting Eint. on the spatial distribution of electrons is demonstrated via an identical

simulation setup, but with the absence of such field. The result is shown in Fig. 6.18,

which shows a larger concentration of electrons at the edge of the simulation domain.

Due to the internal field, the electron loss rate is reduced. This can be seen in Fig. 6.19,

when the recorded number of lost electrons (blue solid line) is compared to a data fitted

reference exponential losses in time (black dashed line). The plot on the right highlights

the reducing electron loss over time when compared to a purely exponential function.

This shows the importance of computing Eint., even though the field strength is two

orders of magnitude smaller than the dominant toroidal electric field.

Aside from the internal electric field, another important consideration is the resulting

internal magnetic field Bint. due to the current density J . Fig. 6.20 shows the measured

current density and the corresponding internal magnetic field. Considering that the

magnitude ofBθ is of mT, Bint. is negligible as it is approximately 10 orders of magnitude

lower. Thus, neglecting the computation of Bint. is justified up to the order of ∼1ms.

This means that the magnetic stray field Bθ continuously causes the loss of electrons,

121



Chapter 6: ITER-like breakdown scenario

4 5 6 7

ρ (m)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
z
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
−
3

1e7

Figure 6.18: Density of electron in the poloidal plane in the absence of Eint..
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Figure 6.20: Left plot is the measured current density J (Am−2), followed by the
corresponding internal magnetic field Bint. (T) at the time of 1.1375ms.

until the current density develops to the threshold needed to form a closed magnetic flux

surface (which the confinement property of charges drastically improves). Referring to

Fig. 6.20, one can surmise that the first location of such closed flux surface is likely to

form at the top left quadrant of the poloidal plane. For this numerical study to remain

valid while neglecting the computation of the internal magnetic field, an estimate of the

time when Bint. becomes comparable in magnitude with Bθ is required. This will be

discussed in the following section.

6.3.4 Extrapolation in time

The results shown so far mostly focused on the very last time step of the simulation,

which corresponds to the time of ∼1.14ms. However, the time evolution of the charged

particle system is recorded throughout the simulation. Thus, it is possible to extrapolate

the various quantities to a future time.

6.3.4.1 Time evolution of electron Vpar

The 0D ionisation fraction model considered the velocity component parallel to the field

of acceleration as the electron drift velocity. As such, the time evolution of electrons’

Vpar distribution is of interest and the result at the time of 1.1375ms were presented

in Fig. 6.11. The Vpar result suggests that the electrons settle to a Gaussian distribu-

tion. However, study on the variations of background Bθ (later in Ch. 7) yielded Vpar
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Figure 6.21: Vpar distribution of electrons (f(V ′
par)) at different times. The right

plot is the corresponding velocity distribution scaled by the total electron population
of respective times.

distributions that deviate from Gaussian distribution. This showed that the Gaussian

distribution cannot be generalised to the obtained Vpar distribution. Even so, parame-

terisation of the distribution can be useful to project the expected velocity distribution

to future times. Since the larger sample size of electrons at later times suit better for

numerical fit, the data from the time of 1.1375ms is the chosen candidate for parame-

terisation.

It is found that the distribution of Vpar remains consistent over time after the value

of Ve,sim. has settled, as shown in Fig. 6.21. The major difference is the vertical offset

between the measured times, which can be predicted if γe,sim. is known. The scaled Vpar

distribution of electrons (f ′(V ′
par)) is fitted using the help of Padé approximant, which

has the following form

f ′(V ′
par) =

∑m
i=0 ciV

′i
par

1 +
∑m

j=1 djV
′j
par

, (6.11)

where

f ′(V ′
par) = log

(
f(V ′

par)
2/Ne

)
V ′
par = (Vpar − Vpar, min)10

−7,

f(V ′
par) is the number of electrons that moves at a scaled velocity of V ′

par. A deliberate

choice is made here to cap the terms of denominator and numerator by the same number

m, in order to reduce the number of variables for the numerical fitting process. Once

the fitting parameters ci and dj are found, the fitted electron numbers can be computed
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Table 6.5: Fit parameters to reconstruct electron Vpar distribution at t = 1.1375ms.
Vpar range is also provided.

c0 -1.87662460e+01 d1 -9.63739644e+00
c1 1.99571755e+02 d2 5.98349954e+00
c2 -2.32624103e+02 d3 -9.72059062e-01
c3 1.02000897e+02 d4 -9.36906534e-02
c4 -1.96568263e+01 d5 3.74309256e-02
c5 1.38798155e+00 d6 -3.13912751e-03

Vpar, min −3.044× 107ms−1 Vpar, max 4.555× 107ms−1

Ne 169708704

via

ffit(V
′
par) =

√√√√Ne exp

( ∑m
i=0 ciV

′i
par

1 +
∑m

j=1 djV
′j
par

)
. (6.12)

Once ffit(V
′
par) is computed, it is directly the value corresponding to the Vpar that was

used to compute V ′
par. The optimal m terms in Eq. 6.11 and Eq. 6.12 is chosen by

minimising the relative error ∆f , defined as

∆f =
∑
k

√(
ffit(V

′
par,k)− f(V ′

par,k)
)2

f(V ′
par,k)

.

The fitted parameters for the presented Vpar distribution in Fig. 6.21 are tabulated in

Tab. 6.5. In order to construct the electron Vpar distribution at an arbitrary time t′,

perform the numerical evaluation of

fnum(V
′
par, t

′) = ffit(V
′
par) exp

(
γe,sim.(t

′ − t0)
)
, (6.13)

where t0 is the time point of the data that was parameterised, which is 1.1375ms in this

case. Note that the resulting fnum(V
′
par, t

′) is valid for t′ = [0.80ms, 2.75ms]. Fig. 6.22

shows the comparisons between f(V ′
par) and fnum(V

′
par) at different times, which shows

good agreement between actual and fitted distribution. Since electrons are counted in

integers, it is recommended to round down fnum(V
′
par) values. Such rounding will have

minimal impact to the overall Vpar distribution since the total electron population is

above 106 from 0.8ms onward.

6.3.4.2 Formation of closed magnetic field

As mentioned briefly before, continuous loss of electrons is expected in the absence of

closed magnetic flux surfaces, therefore it is interesting to estimate the time when such

surfaces emerge. In order to do so, a time series of Bint. poloidal map (specifically the
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Figure 6.22: Comparison between actual electron Vpar distribution and fitted distri-
bution ffit at different times.

top left quadrant) over time is taken. The time series taken ranges from 0.8ms up to

1.1ms. An assumption is made such that the unit vector map of Bint. is time invariant

from t = 0.8ms onward. Aside from that, it is observed that the magnitude rises in an

exponential manner akin to the fitted γsim. (See Fig. 6.23). Numerical fitting is then

performed onto the ∥Bint.∥ poloidal map time series with a test function of the form

∥Bint.(x, t)∥ = ∥Bint.(x, t0)∥ exp(CB(x) t), (6.14)

with x denoting the spatial coordinates of grid points on the poloidal map, t0 = 0.8ms

and CB the fitted exponential growth factor of ∥Bint.∥.

The critical time tcrit. that closed magnetic field is formed, is approximately when the

condition

∥Bint.(x, tcrit.)∥ ≥ ∥Bθ(x)∥, ∀x (6.15)

is fulfilled. Combining Eq. 6.14 and Eq. 6.15, then tcrit. is

tcrit. = min ({t(x) : log (∥Bθ(x)∥ − ∥Bint.(x, t0)∥) /CB(x), ∀x}) . (6.16)

Numerically evaluating Eq. 6.16 yields a tcrit. = 2.75ms, which the computation of Bint.

becomes crucial for the proper plasma breakdown to be simulated. Fig. 6.24 shows the

map of computed tcrit. in the poloidal plane. The electron number density is projected

to reach 1.27× 1013m−3 with a corresponding Debye length of 6.6mm at such tcrit..
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Figure 6.23: Time evolution of local ∥Bint.∥ at ρ = 6.05m and z = −1m. The
numerical fit of Eq. 6.14 is shown as well. This numerical extrapolation is performed

at every grid point in Fig. 6.24.

The electron plasma frequency ωpe will then be approximately 201 × 106 rad s−1 and the

total current is 63(7)A at tcrit.. The plasma frequency has already been discussed prior

that it is orders of magnitude lower than the frequency of the calculation of Eint.. It is

also interesting to consider the effects of Coulomb collision at this point. The expression

for electron-ion scattering frequency νei [94] due to Coulomb collision is given as

νei ≈
√
2ω4

pe

64πne

(
kBTe

me

)−3/2

. (6.17)

ne refers to the electron number density, me denotes the electron rest mass and Te

is the electron temperature. The resulting νei is then approximately 1.2× 10−2Hz,

which is clearly much lower than either ωpe and electron’s gyrofrequency. As such, the

prescribed frequency of the calculation of Eint. is more than enough to capture the effects

of Coulomb collision.

6.3.4.3 Extrapolation of Eint.

The self-consistent electric field Eint. due to ion-electron charge imbalance at the time of

1.14ms is shown in Fig. 6.17. The prior observation is that the existence of Eint. reduces

the loss of electrons over time. It is of specific interest to predict the maximum Eint.

should the electron loss rate up to 1.14ms is sustained.
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Figure 6.24: Computed tcrit. across the poloidal plane.
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Figure 6.25: Time series plot of maximum Eint.. The numerically fitted data is also
shown for comparison.

The steps involved start by identifying the location where Eint. is maximum at the

time of 1.14ms. This is then followed by the time record of ∥Eint.∥ at that specific

location. A numerical fitting is performed and the resulting parameters are used to

extrapolate the predicted magnitude at tcrit.. Fig. 6.25 shows the result. The obtained

∥Eint.∥ at the time of 2.75ms is then approximately 0.49Vm−1. However, this value is

likely an over-exaggeration.
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Consider an extreme case of highly energetic electron with an initial energy of 6 keV

positioned at a minor radius of 1m moving in the toroidal direction, the predicted ∥Eint.∥
required to deter said electron from leaving the simulation domain can be calculated.

The averaged poloidal field strength on the edge of the simulation domain ∥Bθ,edge∥
is calculated to be 3.6mT, the electron’s transverse velocity V⊥ is then approximately

63.6 km s−1 assuming that ∥Bϕ∥ = 2.6T. The value of V⊥ is obtained via

V⊥ ∝ V∥
Bθ

Bϕ
(6.18)

where Bθ and Bϕ denote the poloidal and toroidal magnetic field strength respectively.

Recalling that the shortest distance to the simulation edge is just 0.75m for this partic-

ular electron, a rudimentary calculation of the required ∥Eint.∥ to decelerate and confine

this electron is done through kinematic equations. The required ∥Eint.∥ comes out to be

approximately 0.03Vm−1, which is an order of magnitude lower than the 0.49Vm−1

obtained via simple time series extrapolation. In other words, electron losses will di-

minish significantly once ∥Eint.∥ is in the order of 10−2Vm−1, and ion-electron charge

imbalance will not increase to the point where ∥Eint.∥ reaches 0.49Vm−1.

A more detailed methodology or model is needed, should one insist on predicting the

time evolution of ∥Eint.∥ without committing to the detailed numerical simulation.

6.4 Conclusion

A numerical study of the first plasma scenario in ITER-like tokamak has been con-

ducted. The simulation is performed with a simplified quadrupole magnetic stray field

Bθ. Comparisons with the discussed 0D ionisation fraction model are made, focusing on

the Ve and L variable. It is found that the 0D model underestimates both the measures,

which leads to an overall lower γ0D compared to the simulation results. The spatial

distribution of charges in the poloidal plane is also found to correspond closely with the

newly defined Lbt measure. This is true so long as Bθ remains dominant.

The computed internal magnetic field at 1.1375ms shows that it falls far short in com-

parison to the background poloidal field Bθ. Approximately 10 orders of magnitude

lower, thus it can still be considered negligible. However, assuming the exponential

growth rate of charged particles in Fig. 6.13 continues, the gap in magnitude will be

narrowed significantly in the timescale of milliseconds. It is then possible to have a

closed magnetic field structure which will significantly alter the confinement property of

charged particles, reducing the overall charged particle loss rate. This is estimated to
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happen approximately at the time of 2.75ms.

The parallel velocity distribution of electrons f(Vpar) exhibits self-similar behaviour

provided that the electron mean drift velocity Ve,sim. has already settled to a constant.

Combining the obtained γe,sim. and the ffit data, one could predict the electron Vpar

distribution at a given time (Eq. 6.13). Additionally, one must recall that the f(Vpar)

distribution is a result of a hard-sphere collision assumption. Switching to a scattering

angle model derived via first Born approximation gives a starkly different distribution

(Fig. 6.12) at the cost of a diminished ionisation fraction growth rate. A new and

improved scattering angle model which is more physically accurate while best approxi-

mating the first Townsend coefficient α is required.

It should be mentioned that numerical fitting via the use of Padé approximant pro-

vides a good approximation of the actual f(Vpar) distribution. Gaussian distribution fit

is ultimately discarded for the reason that it cannot be generalised to all the variant

configurations of Bϕ and Bθ. More details are shared in the following chapter, where

the influence of prescribed Bϕ and Bθ on the different γ values will be explored.
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Variants of ITER-like plasma

breakdown

The field configuration and the operating conditions of an ITER-like tokamak have been

discussed in Ch. 6. A multitude of various magnetic field configurations will now be

explored in order to understand the impact of different Bϕ and Bθ onto the calculated

Lbt as well as the resulting γ values. The discussed configurations are idealisation

of the magnetic fields during an operation of ITER-like tokamak. The various field

configurations will be detailed first, which is then followed by the respective results from

the simulations.

7.1 ITER-like tokamak scenario variants

In order to easily identify the various scenarios, they will be assigned a number indi-

vidually. Since one such scenario has already been discussed in Ch. 6, it will now be

referred to as scenario Sce. 0 moving forward. The specific Bϕ and Bθ configurations are

discussed first. Five additional configurations are simulated, and two of them involve an

octupole Bθ configuration. The three quadrupole configurations are first described.

The positions of the coils are identical to the tabulated data in Tab. 7.1, but carry

different currents I. Combined with the prescribed IBϕ
value for use in Eq. 3.35, the

parameters fully describe the magnetic field configurations in 3D.

All the listed scenarios share the same null point at ρ = 5.8m and z = 0m. The resulting

Bθ vector map is similar to Fig. 6.4, the respective poloidal magnetic field strength at

null point Bθ,null, averaged poloidal field strength within the minor radius of 1.75m ⟨Bθ⟩
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Table 7.1: Currents (A) running through the numbered coils for quadrupole Bθ con-
figuration, as well as the IBϕ

for Bϕ.

Coil no. Sce. 1 Sce. 2 Sce. 3

1 2357.4 2357.4 1178.7
2 2357.4 2357.4 1178.7
3 100 000.0 100 000.0 50 000.0
4 14 999.9 14 999.9 7499.9

IBϕ
7.524× 107 1.505× 108 7.524× 107

Table 7.2: Computed Bθ,null, ⟨Bθ⟩, ⟨Bθ,edge⟩ and Bϕ in Tesla for each scenario, Sce. 0
is included as a reference.

Sce. 0 Sce. 1 Sce. 2 Sce. 3

Bθ,null 3× 10−5 10−8 10−8 10−8

⟨Bθ⟩ 2.205× 10−3 2.193× 10−3 2.193× 10−3 1.096× 10−3

⟨Bθ,edge⟩ 3.613× 10−3 3.596× 10−3 3.596× 10−3 1.798× 10−3

Bϕ,null 2.6 2.6 5.2 2.6

Table 7.3: Coil positions/dimensions and the corresponding current for Sce. 4 octupole
Bθ configuration

Coil no. z′ (m) R (m) I (kA)

1 3.0 5.905 19.94
2 -3.0 5.905 19.94
3 0.0 2.905 21.1
4 0.0 8.905 20.1
5 2.121 7.976 −20
6 -2.121 7.976 −20
7 2.121 3.834 −20
8 -2.121 3.834 −20

and the averaged strength on the domain edge ⟨Bθ,edge⟩ are tabulated in Tab. 7.2. The

toroidal field strength at the null Bϕ,null is also included for reference.

The two remaining cases with octupole Bθ field configuration is detailed here. The coil

positions and the respective currents are listed in Tab. 7.3 and Tab. 7.4. As with the

previously discussed setup, the values are used in conjunction with Eq. 3.34 to compute

the Bθ values. It should be mentioned that 4 of the 8 coils have their current flowing

in the opposite direction, so that a circular area with minimal Bθ field vector is created

around the torus’ minor axis. This can be seen in Fig. 7.1, which shows the resulting

Bθ for the Sce. 5 configuration. Tab. 7.5 shows the corresponding overview variables of

Bθ in Sce. 4 and Sce. 5 for comparison. Drawing attention to the difference between

⟨Bθ⟩ and ⟨Bθ,edge⟩ among the quadrupole and octupole configuration, it is immediately

clear that the differences are lesser in Sce. 4 and Sce. 5. This is an indication that the

octupole configuration has less ∥∇Bθ∥ radially.
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Table 7.4: Coil positions/dimensions and the corresponding current for Sce. 5 octupole
Bθ configuration

Coil no. z′ (m) R (m) I (kA)

1 3.625 6.01 19.97
2 -3.625 6.01 19.97
3 0.0 2.385 20.95
4 0.0 9.635 20
5 2.562 8.484 −19.9775
6 -2.562 8.484 −19.9775
7 2.584 3.557 −19.9805
8 -2.584 3.557 −19.9805
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Figure 7.1: Bθ vector field of Sce. 5.

Table 7.5: Computed Bθ,null, ⟨Bθ⟩, ⟨Bθ,edge⟩ and Bϕ in Tesla.

Sce. 4 Sce. 5

Bθ,null 1.07× 10−8 1.02× 10−8

⟨Bθ⟩ 0.832× 10−3 0.382× 10−3

⟨Bθ,edge⟩ 0.896× 10−3 0.402× 10−3

Bϕ,null 2.6 2.6
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The remaining operating conditions, such as Eϕ and those listed in Tab. 6.1 remain

unchanged. Due to the immense computational cost involved, we cannot afford to do

detailed parameter scans. As a reference, the presented simulation in Ch. 6 consumed

upwards of 3 million core-hours in computation resources on FZJ’s Jureca-Booster mod-

ule. Some of the data sets shown here were truncated in time, due to the depletion

of available computational resources. Specifically, Sce. 1 reached the same termination

point of Sce. 0 at 1.1375ms, while Sce. 2 and 3 stopped at 1ms. Sce. 4 and 5 terminate

earliest at the time of 0.9ms. Ideally, we would like to extend the simulation to each

scenario’s respective tcrit. when local closed magnetic flux surfaces start to form. In

order to achieve that, the discussed merging algorithm in Ch. 4 can be used to reduce

the computational load introduced by an exponentially increasing number of charged

particles. This provides an avenue for future extended study.

7.2 Lbt comparison

It should be mentioned here that the implemented streakline integral algorithm imposes

an upper limit on the maximum Lbt that can be computed. It is due to a combina-

tion of the limited duration (a full 24 h run) allowed for a submitted computation on

the supercomputer, as well as the algorithm’s inability to save the results and resume

computation at a later time. Thus, the streakline integral terminates upon Lbt reaching

10 km. A total of 100 points are computed in both z and ρ direction. This problem can

be alleviated if the total number of points to compute the streakline integral is reduced,

so that the numerical computation can be completed within the time limit. The result

of Lbt map for all secnarios are shown in Fig. 7.2, areas coloured white have at least

10 km in Lbt.

The given quadrupole magnetic field configuration of Sce. 1 is very similar to Sce. 0, aside

from the lower Bθ,null value. Since the resulting ⟨Bθ⟩, Bθ,edge and Bϕ,null are all compa-

rable, the resulting Lbt for Sce. 1 is expected to look similar to Sce. 0. Since the null

point is located at the middle of the highlighted circles, it is expected that the longest

Lbt is in the same proximity. In the case of Sce. 0, the maximum Lbt within the blue

circle is recorded at 8.5 km while Sce. 1 records multiple locations where Lbt = 10 km.

This result is due to Sce. 1 having a much lower Bθ,null.

The computed Lbt of Sce. 2 and Sce. 3 shows a notable difference to both Sce. 0 and

Sce. 1. Although the Lbt remains capped at 10 km, the result shows a much larger

area that has such maximum measure. This result demonstrates that doubling Bϕ has

similar effect to halving Bθ, both increasing the obtained Lbt. Finally, the obtained
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Figure 7.2: Map of Lbt for all scenarios.
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Table 7.6: Computed ⟨Lbt, seed⟩ for all scenarios.

Sce. 0 Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5

⟨Lbt, seed⟩, km 1.880 1.880 3.760 3.760 5.833 11.32

Table 7.7: Ve,sim. for all scenarios.

Sce. 0 Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5

Ve,sim., 10
6ms−1 2.74 2.75 3.02 3.02 3.30 3.37

Lbt for an octupole field configuration shows such field creates a pattern which has 4

‘limbs’ where fast moving electrons can travel and eventually leave the simulated domain.

Although the results in Fig. 7.2 showed the Lbt for different Bθ and Bϕ, it is rather

unfortunate that an uncapped Lbt map is not available at the time of writing. How-

ever, it is still helpful to understand the magnitude of the expected Lbt for the different

setups. As such, a measure of ⟨Lbt, seed⟩ is introduced and defined as the average of

the computed Lbt on the torus surface which encapsulates all seeded electrons at the

initial state of the simulations. This corresponds to the blue circle in Fig. 7.2. ⟨Lbt, seed⟩
is defined because it can be interpreted as the averaged minimum Lbt experienced by

the electrons at the start of the simulations. Additionally, such value can be computed

without imposing the artificial 10 km cap since 256 evenly distributed compute points

along the blue circle are used for the streakline integral, which is much lower than 10 000

points required to produce a full Lbt map. The results of such measure for all considered

scenarios are tabulated in Tab. 7.6.

7.3 Electron Vpar distribution

The averaged electron drift velocity Ve was previously defined in Sec. 6.3.1 and the same

definition applies here. Even though the simulation time is truncated for Sce. 2, 3, 4 and

5, the recorded Ve,sim. already settle to a constant value at the time of 0.8ms. Ve,sim. for

each scenario is tabulated in Tab. 7.7. Comparing the results in Tab. 7.7 and Tab. 7.6,

it can be observed that Ve,sim. tend to be higher with a longer ⟨Lbt, seed⟩. However, the

relationship between the two observables cannot be clearly established. Doubling the

⟨Lbt, seed⟩ (between Sce. 1 and Sce. 2) resulted in approximately 9.81% rise in Ve,sim..

This trend does not apply to the comparison between Sce. 4 and Sce. 5, which only

recorded a rise of 2.12%. This may suggest that there is a threshold of ⟨Lbt, seed⟩ where
higher values don’t have a notable impact on the resulting Ve,sim..

Comparison of normalised electron parallel velocity distribution f(Vpar) at the final sim-

ulated time (obtained by dividing the distribution with the respective total electron
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Figure 7.3: Normalised electron parallel velocity distribution f(Vpar) for all scenarios,
taken at the final time step of respective simulations.

population) is shown in Fig. 7.3. The shown normalised distribution can be broadly cat-

egorised into 3 groups. The first group involves Sce. 0 and Sce. 1 which share identical

⟨Lbt, seed⟩. This is followed by Sce. 2 and Sce. 3 which also have the same ⟨Lbt, seed⟩.
Finally, the last group consists of Sce. 4 and Sce. 5 which both have the octupole con-

figuration as well as significantly longer ⟨Lbt, seed⟩ measure.

It is plausible to represent the Vpar distribution with a Gaussian function for Sce. 0 up

to Sce. 3, but the last two scenarios have a more notable electron population with highly

positive Vpar. A Gaussian function may no longer be suitable for these cases. Regardless,

the methodology explained in Sec. 6.3.4.1 still provides a good representation to all

considered scenarios as well as providing a time extrapolation of the electron’s parallel

velocity distribution. An example of such fit to Sce. 6 data is shown in Fig. 7.4. The

fitting parameters for respective scenarios are given in Tab. C.1 to C.6

The representation of the distribution via a fitted equation enables the calculation of

the Full Width Half Maximum for Vpar of each scenario. This value is computed via the

gradient ascent method to find the maximum population, combined with the Newton’s

method to find the corresponding velocities at half maximum value. The results are

tabulated in Tab. 7.8. This provides a straightforward measure of the spread of the

electron population’s parallel velocity magnitude, approximately 2/3 of the electron’s
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Figure 7.4: Electron Vpar distribution for Sce. 5 at 0.91ms.

total population falls within the measured width.

One can draw the conclusion that having a longer ⟨Lbt, seed⟩ results in a larger spread of

the Vpar distribution. This is a direct consequence of electrons having a longer confine-

ment length, thus able to gain more energy before leaving the simulated domain. The

widening of the negative velocity tail can be attributed to the electron-H2 collisions.

During elastic scatterings, electrons preserve the total kinetic energy before and after

the scattering event while only altering its velocity vector. Thus, backscattering of highly

energetic electrons adds to the long negative velocity tail. In the case of ionisation, the

remaining energy is split purely between the incident and freed electrons. Since it was

assumed in Eq. 3.18 that both the electrons is strictly forward scattered (relative to the

incident electron’s vector), this adds to the positive tail when coupled with continuous

acceleration by Eϕ.

As was previously discussed in Sec. 6.3.1.2, it is important to recall that the presented

velocity distributions are obtained with a classical hard sphere model assumption when

resolving the electron-neutral scattering angle. Changing the scattering angle model will

impact the velocity distribution profile (as shown in Fig. 6.12) as well as the measured

growth rates γ.
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Table 7.8: FWHM for all scenarios.

Sce. 0 Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5

FWHM, 106ms−1 6.03 5.83 6.41 6.42 6.68 6.58

7.3.1 Bimodal distribution fit of electrons’ f(Vpar)

Electron’s parallel velocity distribution f(Vpar) for all scenarios were presented in Fig. 7.3,

and the discussion that followed was focused on the accurate reproduction of the results

via numerical fitting. However, the fitting has difficulties in providing intuitive physical

interpretations. Therefore, this section focuses on further analysis in an attempt to rec-

tify such difficulty.

For ease of analysis, the presented f(Vpar) are first rescaled into the unit of energy

eV. A simplification is further introduced such that only the population of electrons

which moves in the direction parallel to the direction of acceleration is considered. This

originates from two specific considerations, the first is that the back-scattered electrons

are considered as numerical artefacts (arising from the classical hard sphere model). The

second is the additional consideration that the back-scattered electrons lose energy over

time due to the background acceleration field vector opposing the direction of motion.

The interest here is only on the portion of electrons that experience continuous energy

gain over time. The corresponding distributions are shown in Fig. 7.5.

An assumption that the electron energy distribution consists of two distinct electron

populations is made here. The first group describes the energetic electrons whose av-

erage kinetic energy is well above 1 keV, thus experiencing a significantly diminished

probability of scattering with a neutral molecule and are able to freely accelerate. The

other group describes electrons whose energies are below said energy threshold. By as-

suming that the energetic electrons are thermalised, their mean and standard deviation

in energy can be found by fitting the distribution with a bimodal distribution function.

Fig. 7.6 shows an example (Sce. 0) of the comparison between the results obtained from

simulation and the numerically fitted bimodal distribution.

It is clear from Fig. 7.5 that the scenarios can once again be grouped into 3 distinct

groups. As such, fitted Gaussian function parameters that represent the high energy

tail of the distributions reflected such grouping as well (shown in Tab. 7.9). This is also

proportional to the Lbt measures, which indicates that a better confinement property

results in a longer acceleration duration for electrons before leaving the simulated do-

main. Thus, these conditions result in higher values of the mean energy for the energetic

electron population.
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Figure 7.5: Normalised electron Vpar distribution in kinetic energy scale for all sce-
narios at their respective simulation end time.
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Figure 7.6: Electron Vpar distribution in kinetic energy scale for Sce. 0 at 1.1375ms,
a bimodal distribution function is fitted to the simulation data.
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Table 7.9: Gaussian function parameters for energetic electron group.

Mean, keV Standard deviation, keV

Sce. 0 1.9 1.5
Sce. 1 2.4 1.4
Sce. 2 3.3 2.2
Sce. 3 3.5 2.7
Sce. 4 4.3 4.3
Sce. 5 4.9 3.8
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Figure 7.7: Total net electrons over time for all considered scenarios.

7.4 Numerically fitted γ coefficient

In every scenario, the growth constant γsim. for both electron and ions are obtained via

the described methodology in Sec. 6.3.2 and the results are tabulated in Tab. 7.10. The

total net electron population over time for each scenario is shown in Fig. 7.7 to provide

a visual reference to the obtained γ factors. It is observed that there are once again 3

distinct group of scenarios which gives near identical electron growth over time, namely

the group of Sce. 0 and Sce. 1, Sce. 2 and Sce. 3, and finally the third group which

includes Sce. 4 and Sce. 5. The respective plot for the total ion population over time is

omitted as it is nearly identical to the electrons. Subsequently, Fig. 7.8 shows a plot of

the γe,sim. value with their respective ⟨Lbt, seed⟩ (a measure that was discussed in detail

in Sec. 7.2).

At the first glance of Fig. 7.8, one might draw the conclusion that γe,sim. tapers off

after ⟨Lbt, seed⟩ reaches above ∼6 km. This might suggest that the Lbt has a limited
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Table 7.10: Numerically fitted γe,sim. and γi,sim. for all scenarios.

Sce. 0 Sce. 1 Sce. 2

γe,sim., s
−1 10 591.848(19) 10 529.070(54) 11 811.069(25)

γi,sim., s
−1 10 604.226(17) 10 536.928(22) 11 865.999(25)

Sce. 3 Sce. 4 Sce. 5

γe,sim., s
−1 11 756.204(76) 12 912.475(52) 13 233.720(63)

γi,sim., s
−1 11 815.001(90) 12 966.321(48) 13 235.817(64)
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Figure 7.8: γe,sim. with its respective ⟨Lbt, seed⟩ for all considered scenarios.

influence on γe,sim. beyond this point. However, caution is urged when interpreting the

plot in Fig. 7.8, as Sce. 4 and Sce. 5 are simulations with the octupole field configuration.

Direct comparison based solely on the ⟨Lbt, seed⟩ measure could be misguided since the

distribution of Bθ across the poloidal plane (subsequently Lbt map) is distinctly different

from a quadrupole configuration. In order to make a conclusive statement on whether

the γe,sim. saturates at high Lbt values, a future extended numerical study is suggested

here. The study can be conducted with a series of simulations using the same quadrupole

configuration while doubling the Lbt values for each subsequent simulation. Calculation

and comparisons of the resulting γe,sim. should help show if it grows indefinitely as Lbt

increases. As was alluded to earlier in Sce. 7.1, the annually allocated compute resources

had already been depleted while obtaining the results in Tab. 7.10. Thus, the suggested

numerical study could not be carried out.
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Table 7.11: Computed tcrit. and physical parameters related to the maximum pre-
dicted local electron number density ne for all scenarios.

Sce. 0 Sce. 1 Sce. 2

tcrit., ms 2.75 2.73 2.07
Max. local ne, m

−3 3.4439× 1014 2.4927× 1014 1.4364× 1012

ωpe, rad s
−1 1.0469× 109 8.9068× 108 6.7614× 107

λD, mm 3.97 4.68 66.73

Sce. 3 Sce. 4 Sce. 5

tcrit., ms 2.04 1.85 1.77
Max. local ne, m

−3 1.1410× 1012 6.5655× 1011 3.2778× 1011

ωpe, rad s
−1 6.0261× 107 4.5712× 107 3.2298× 107

λD, mm 74.86 107.22 155.87

7.5 Prediction of tcrit.

The time when a closed magnetic flux surface is formed tcrit. for the case of Sce. 0

had already been discussed in Sec. 6.3.4.2. The same steps are now applied to all the

discussed scenarios. The resulting tcrit. is tabulated in Tab. 7.11. The corresponding

physical parameters related to the maximum local electron density ne at respective tcrit.

are also calculated.

Making a direct comparison of the previously computed ⟨Lbt, seed⟩ and the results of

tcrit., it is clear to see that the measures are inversely proportional to each other. This

is rather expected, since the longer backtraced connection length is an indication of a

longer confined distance of charged particles. Thus, resulting in a higher local charged

particle number density over time (subsequently higher current density). This creates a

conducive environment for faster growth of self-consistent magnetic field Bint. magnitude.

The chosen simulation time step sizing for all considered scenarios is also shown to

be sufficiently fine to properly capture the plasma frequencies of the charged particles

system at tcrit., since the electron gyrofrequency is orders of magnitude higher than other

frequency measures.

7.6 0D L and ⟨Lbt, seed⟩ comparison

Both the connection length L0D and Ve,0D in the 0D ionisation fraction equation (Eq. 2.19)

are shown to underestimate the results obtained from the present numerical simulations.

However, there is still an interest in assessing the applicability of the 0D ionisation frac-

tion model to a 3D setting.
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Figure 7.9: Comparison between L′
0D and ⟨Lbt, seed⟩ for given Ve (Tab. 7.7) and γe,sim.

(Tab. 7.10).

The idea is to assess whether the connection length L′
0D calculated from Eq. 2.19 (using

the average electron drift velocity from the 3D simulation Ve,sim. and the fitted electron

growth rate γe,sim.) yields comparable trend as seen in Lbt. If L
′
0D shows a similar trend

compared to Lbt, a correction term added to the 0D equation could be proposed in order

to adapt it to 3D scenarios. L′
0D is computed via

L′
0D =

Ve,sim.

αVe,sim. − γe,sim.
.

The results are plotted in comparison to ⟨Lbt, seed⟩ as shown in Fig. 7.9. It is immediately

clear that γe,sim. is proportional to Ve,sim. (Tab. 7.10 and Tab. 7.7), and this results in

a near constant L′
0D value across differing values of γe,sim.. This sufficiently informs us

that simple corrections to Eq. 6.1 (subsequently Eq. 2.19) could not adapt the 0D model

to a 3D setting, due to the stark difference. A new analytical model that sufficiently

captures the ionisation fraction growth rate in 3D scenario is required.

7.7 Conclusion

Multiple variants of the background magnetic field (Bθ and Bϕ) configuration were sim-

ulated and various aspects of the simulation were analysed. Due to a numerical challenge

preventing the full computation of the Lbt map for the whole poloidal plane, ⟨Lbt, seed⟩
is introduced as the averaged minimum Lbt that initial electron population experiences.
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Lbt depended purely on the external magnetic field B, thus provide a link to the result-

ing Ve,sim., γe,sim. and γi,sim. observables.

It was found that Ve,sim., γe,sim. and γi,sim. are proportional to ⟨Lbt, seed⟩, while tcrit.

is inversely proportional. However, the effects on the growth rates (γe,sim. and γi,sim.)

are little, since they only increased by approximately 2% while doubling ⟨Lbt, seed⟩.
Aside from that, the longer ⟨Lbt, seed⟩ also broadens the electron Vpar distribution. This

is due to a longer connection length experienced by charged particles, allowing a longer

duration of acceleration and gaining higher energies. The minimum time tcrit. when

self-consistent magnetic field strength ∥Bint.∥ becomes comparable to the background

Bθ is also computed, demonstrating that magnetic field configurations that lengthen the

Lbt will shorten tcrit.. Lastly, it was found that the 0D model’s calculated connection

length L′
0D using numerically obtained γe,sim. does not compare well with the backtraced

connection length Lbt (which is a good indicator of the charged particles’ spatial distri-

bution over time). The 0D model also consistently underestimates the Ve, as well as the

growth rate of ne.

As pointed out earlier, a full Lbt map in the poloidal plane is required to fully un-

derstand the impact of Bθ and Bϕ on the overall charged particle growth rate as well

as the resulting Ve. Two proposed directions of further investigation are suggested here

to improve the presented findings. The first is a re-implementation of the streakline

integral function that calculates Lbt, allowing the calculation to resume at later times.

This would remove the cap on the Lbt, thus obtaining an accurate picture of the ex-

pected electron ionisation path length. Secondly, a further extension of the series of

quadrupole field configuration simulation, reducing ⟨Bθ⟩ by half (thus, increasing the

measure of Lbt) at every subsequent simulation. This effectively doubles the overall Lbt,

thus able to provide an insight into whether γsim. saturates and no longer rises when Lbt

drastically increase.
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Summary and outlook

The creation of plasma medium from neutral prefill gas during the breakdown process is

not well understood. This motivated the development of a first principles particle-based

model, in an attempt to capture the time evolution of the electron growth rate and its

velocity distribution. The influence of the prescribed 3D magnetic field geometry on

the charged particle growth rate and spatial distribution is also a subject of study. The

output of this research work can be categorised into three major areas. First among them

is quantifying the resulting ionisation rate (represented by αVe) from each considered

scattering angle model and selecting the suitable model for tokamak plasma breakdown

simulation. This is followed by an in-depth study on the influence of Bϕ, Bθ and Eint.

on the rate of ionisation as well as the charge and current density spatial distribution

in an ITER-scale tokamak. Finally, an attempt to develop a new merging algorithm is

done for a full 3D3V particle code to provide a way forward to simulate high number

density systems (upward of 1010m−3). The following three sections provide summaries

and outlooks for respective areas. This is then followed by a concluding remark to put

the findings into context for ITER’s eventual plasma initiation campaign.

8.1 Parallel plate experiment benchmark

The implemented particle-based model is tested in comparison with a parallel plate ex-

periment. The goal of this exercise is to identify the scattering angle model that best

approximates the first Townsend coefficient α and the resulting mean electron drift ve-

locity VDE. It was found that the Random Scatter model, which assumes a classical hard

sphere collision model, provides the α measure that is closest to the reported values from

D. J. Rose’s work for E/p ≈ 300Vm−1 Pa−1. However, the obtained VDE lies in the

lower ranges of reported experimental values. The stated E/p ratio is important as it
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corresponds to ITER’s operating condition.

The isotropic elastic scatter angle distribution which originates from the classical hard

sphere collision model is not physically correct. Switching to the Ohkrimovskyy model,

which scatter angle distribution is derived from the first Born approximation, would yield

a more physically correct description of electron-neutral scattering. However, Ohkri-

movskyy’s model has been shown to perform the worst in approximating the experimen-

tally obtained α value. Probable future works would be to reexamine Ohkrimovskyy’s

derived scatter angle mode. Ohkrimovskyy’s model was originally tested in simulations

with larger nonpolar gases (for example, CH4 and Ar), modification to the model for

use in lighter nuclei can possibly yield better results.

8.2 ITER-like plasma initiation simulations

Variant simulations of Townsend avalanche breakdown in a 3 spatial dimensional torus,

which incorporate prescribed 3D magnetic and electric fields were done. The model

includes a tree code Coulomb potential solver in the computation of charged particle’s

electrostatic fields. The self-consistent magnetic field is excluded from the simulation

as its strength is in the order of 10−13T, at least 10 orders lower than the prescribed

poloidal magnetic field. Prior to the tokamak simulations, a benchmark of the scatter-

ing angle models was done and the Random Scatter model was chosen due to its good

approximation of the first Townsend’s coefficient α and the resulting mean electron drift

velocity VDE in the E/p ≈ 300Vm−1 Pa−1 range, which is the operating condition of

the ITER tokamak.

The simulation of plasma initiation in ITER-sized torus at E/p ≈ 300Vm−1 Pa−1 in

Ch. 6 showed that the electron population growth rate γe,sim. is higher than the 0D

ionisation fraction model γ0D predicted. The 3D nature of the electron-neutral scat-

tering is a major factor contributing to the discrepancy, which is also reflected in the

higher mean electron drift velocity Ve,sim. compared to Ve,0D. It was also found that

the assumed connection length of L0D = 1km in the 0D model is an underestimation of

the connection length near the magnetic null region. Another factor that increases the

population growth rate is the averaged strength of poloidal magnetic stray field ⟨Bθ⟩.
It is observed that the depth of the magnetic null mattered less than the ⟨Bθ⟩ measure,

and the lower the ⟨Bθ⟩, the better the growth rate is. At the same time, a larger toroidal

magnetic field Bϕ strength will contribute to better growth rate. Since there is an in-

terplay between Bϕ and Bθ in determining the overall growth rate, a single variable is

defined to encapsulate the two variables into one. A proposed measure of backtraced
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connection length Lbt summarises the influence of both Bϕ and Bθ on ionisation rate,

which a longer Lbt increases the rate and vice versa. It is also observed that the longer

Lbt will cause a wider spread of the electron’s velocity distribution f(V ) in the direction

parallel to the torus’ minor axis, as well as a higher mean electron drift velocity Ve.

Extrapolation of the self-consistent magnetic field showed that the higher the value of

Lbt, the shorter the time when it grows to be comparable in strength with the prescribed

poloidal magnetic stray field.

Detailed simulation of the Townsend avalanche process during the early phase of plasma

initiation had been done. However, one must be reminded that the electron veloc-

ity measures were obtained using the Random Scatter model. This approximates the

electron-neutral scattering via a hard sphere collision model, which introduces excessive

back-scattering due to its isotropic scatter angle distribution. More work is needed to

replace the scattering model with a quantum mechanical description and thus improve

upon the velocity distribution results discussed so far. This will also impact the obtained

electron growth rates as a result of the altered mean electron drift velocity. Aside from

that, the self-consistent magnetic field is not incorporated into the simulation itself, but

rather obtained from post-processed results. It is a valid simplification up to the time

scale of 1ms, as the magnitude is approximately 10−13T across all simulation variants.

In order to progress further into the time scale of 2ms and beyond, it is necessary to

resolve the self-consistent magnetic field in order to capture the formation of closed

magnetic flux surfaces.

8.3 Merging algorithm

The implementation of merging algorithm is done as a preparation for high charged num-

ber density scenarios found in later stages of the breakdown process. It is unfeasible to

simulate and compute the electrostatic potential of 1012 electrons and above. Therefore,

a merging algorithm that preserves the system’s energy and momentum phase space is

implemented. The algorithm is proven to be able to preserve the energy and momentum

of the merging candidates at every merging instance. The global energy and momentum

of the system are also conserved. However, introduction of electron-neutral scattering

and ionisation into the merged super-particles produced unsatisfactory results, causing

the approximation of the ionisation fraction to deviate from the unmerged case. This

suggests that the scatterings/ionisations experienced by super-particles introduce ad-

ditional alteration to the energy distribution over time. This is despite the fact that

careful selection of the merging candidates ensures the preservation of the charged par-

ticles system’s energy distribution.
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Alternate scattering and ionisation models for super-particles need to be explored. The

current model’s artificial splitting of super-particles based on the collision outcomes

could be the culprit behind the deviation. Another avenue of investigation is the in-

fluence of super-particles population. It is currently uncertain if the existing number

of super-particles is abundant enough to offset the errors in ionisation rate. It may be

that the low population of charged particles (approximately 4 × 107 total particles) in-

validates the use of super-particles. Future benchmarks with a system that has a much

higher charged particle number density can provide more insight into the applicability of

the merging algorithm. Regardless, the continued development of the merging algorithm

is necessary to push the simulation of plasma breakdown to a much longer time scale.

8.4 Remark on ITER’s plasma initiation

The findings in Ch. 6 and Ch. 7 are obtained for an ITER-scale tokamak with the

toroidal magnetic field strength Bϕ of approximately 2.6T. As was demonstrated in the

comparison between Sce. 1 and Sce. 2 in Fig. 7.7, the electron population growth rate

(indicative of the ionisation fraction growth rate) improves when Bϕ is doubled. ITER’s

superconducting toroidal field coils are designed to reach a nominal peak field of 11.8T

[95]. Assuming that the pressure and the nominal loop voltage in ITER are compara-

ble to the simulated cases, the initial ionisation growth rate during plasma initiation

in ITER is expected to exceed the reported numbers in this study. The exponential

growth of electron population in Fig. 7.7 shows no sign of slowing down and will likely

sustain itself despite the constant electron losses. The internal electric field Eint. (seen

in Fig. 6.17 and 6.25) which grows as the charge imbalance between electrons and ions

rises will then assist in keeping the electrons confined (seen in Fig. 6.19). Optimistically,

this shows that successful plasma initiation towards fusion ready plasma within ITER

is possible.

Naturally, the simulations were done using a rather simplified representation of the

actual magnetic field structures in ITER. All the metallic components of ITER (includ-

ing those for the purposes of diagnostics, load-bearing support structures etc.) were

excluded from the simulation. The current ramp-up phase during ITER’s operation will

induce additional stray fields not captured by the simulations. This will then affect the

electron loss rates as well as the shape of the plasma column prior to the formation of

closed magnetic flux surfaces. However, as long as the stray fields’ strength remains in

the order of mT (as done in the simulations), the simulated exponential growths of the

ionisation fraction should remain relevant during the actual ITER operation.
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Appendix A

Cross Sections

Table A.1: Vibrational excitation (v = 0 → 1) cross section of electron-hydrogen
molecule collision [4].

Energy(eV) Cross Section (Å2) Energy(eV) Cross Section (Å2)

0.55 0.01 5.0 0.343

0.6 0.017 5.3 0.324

0.66 0.027 5.6 0.302

0.74 0.038 6.1 0.27

0.8 0.047 7.0 0.21

0.85 0.059 15.0 0.0565

1.0 0.094 20.0 0.0332

1.25 0.172 25.0 0.0242

1.48 0.24 30.0 0.017

2.0 0.367 40.0 0.0112

2.46 0.442 50.0 0.00968

3.0 0.486 60.0 0.00817

3.8 0.461 80.0 0.00609

4.6 0.38 100.0 0.00451
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Table A.2: Total scattering cross section of electron-hydrogen molecule collision [4].

Energy(eV) Cross Section (Å2) Energy(eV) Cross Section (Å2)

0.1 9.23 12. 9.61

0.12 9.47 15. 8.19

0.15 9.76 17. 7.46

0.17 9.93 20. 6.6

0.2 10.1 25. 5.61

0.25 10.5 30. 4.97

0.3 10.7 35. 4.54

0.35 11. 40. 4.19

0.4 11.2 45. 3.91

0.45 11.4 50. 3.68

0.5 11.6 60. 3.36

0.6 11.9 70. 3.06

0.7 12.3 80. 2.86

0.8 12.8 90. 2.68

0.9 13.2 100. 2.54

1.0 13.5 120. 2.25

1.2 14.2 150. 1.98

1.5 15. 170. 1.84

1.7 15.5 200. 1.66

2. 16. 250. 1.43

2.5 16.5 300. 1.24

3. 16.6 350. 1.11

3.5 16.6 400. 1.

4. 16.3 450. 0.914

4.5 15.9 500. 0.841

5. 15.4 600. 0.7

6. 14.4 700. 0.614

7. 13.3 800. 0.516

8. 12.4 900. 0.464

9. 11.6 1000. 0.422

10. 10.9
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Table A.3: Elastic scattering cross section of electron-hydrogen molecule collision [4].

Energy(eV) Cross Section (Å2) Energy(eV) Cross Section (Å2)

0.02 7.41 2.0 14.11

0.03 7.71 3.0 14.12

0.04 8.08 4.0 13.2

0.05 8.32 5.0 12.51

0.06 8.51 6.0 11.45

0.07 8.69 8.0 9.85

0.08 8.84 10.0 8.58

0.09 8.99 12.0 7.61

0.1 9.13 14.0 6.92

0.12 9.33 16.0 6.32

0.15 9.55 18.0 5.78

0.2 9.83 20.0 5.26

0.25 10.04 25.0 4.23

0.3 10.24 30.0 3.40

0.4 10.61 35.0 2.81

0.5 10.95 40.0 2.36

0.6 11.28 50.0 1.73

0.7 11.59 60.0 1.31

0.8 11.88 70.0 1.06

0.9 12.16 80.0 0.89

1.0 12.36 90.0 0.81

1.25 13.00 100.0 0.74

1.5 13.55
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Table A.4: Rotational excitation (J = 0 → 2) cross section of electron-hydrogen
molecule collision [4].

Energy(eV) Cross Section (Å2) Energy(eV) Cross Section (Å2)

0.0439 0.0 0.6 0.323

0.047 0.0185 0.7 0.394

0.05 0.027 0.8 0.469

0.055 0.035 0.9 0.555

0.06 0.042 1.0 0.638

0.065 0.048 1.2 0.796

0.07 0.053 1.5 1.036

0.08 0.062 2.0 1.37

0.09 0.068 2.5 1.585

0.1 0.074 3.0 1.704

0.11 0.079 3.5 1.755

0.13 0.088 4.0 1.758

0.15 0.097 4.5 1.732

0.2 0.115 5.0 1.689

0.25 0.132 6.0 1.579

0.3 0.152 7.0 1.462

0.35 0.175 8.0 1.35

0.4 0.2 9.0 1.248

0.45 0.228 10.0 1.156

0.5 0.26 15.0 0.73
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Table A.5: Dissociative ionisation cross section of electron-hydrogen molecule collision
[4].

Energy(eV) Cross Section (Å2) Energy(eV) Cross Section (Å2)

30 0.0086 200 0.0545

35 0.0176 225 0.0505

40 0.0287 250 0.045

45 0.0408 275 0.0412

50 0.0482 300 0.0392

55 0.0572 350 0.0339

60 0.0625 400 0.0294

65 0.0682 450 0.026

70 0.0705 500 0.0241

75 0.0737 550 0.0211

80 0.0739 600 0.0197

85 0.0751 650 0.0181

90 0.0754 700 0.0171

95 0.0761 750 0.0159

100 0.0759 800 0.0149

110 0.0744 850 0.0137

120 0.0724 900 0.0135

140 0.0671 950 0.0125

160 0.0639 1000 0.0117

180 0.0592
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Table A.6: Nondissociative ionisation cross section of electron-hydrogen molecule
collision [4].

Energy(eV) Cross Section (Å2) Energy(eV) Cross Section (Å2)

16 0.0299 80 0.863

16.5 0.0607 85 0.853

17 0.0924 90 0.843

17.5 0.123 95 0.835

18 0.156 100 0.824

18.5 0.187 110 0.797

19 0.22 120 0.78

19.5 0.249 140 0.739

20 0.28 160 0.699

20.5 0.31 180 0.655

21 0.336 200 0.622

21.5 0.362 225 0.585

22 0.39 250 0.551

22.5 0.414 275 0.515

23 0.439 300 0.49

23.5 0.461 350 0.443

24 0.484 400 0.407

24.5 0.505 450 0.372

25 0.524 500 0.349

30 0.642 550 0.317

35 0.742 600 0.298

40 0.812 650 0.284

45 0.839 700 0.266

50 0.859 750 0.256

55 0.874 800 0.242

60 0.882 850 0.234

65 0.88 900 0.222

70 0.879 950 0.21

75 0.871 1000 0.199

155



Appendix B

Derivations

B.1 Current Density in a Circular Loop

Since the current is restricted to flow in a circular loop, current density is then

J = Jϕϕ̂.

The loop’s radius is predefined as R and it is in plane with the origin (which lies on x-y

plane). These conditions are expressed by δ(r′ − R) and δ(θ′ − π/2). Since θ′ = [0, π],

this leads to

δ(θ′ − π/2) = δ(cos θ′)

where only θ′ = π/2 is allowed.

Hence, Jϕ can now be expressed as

Jϕ = λ sin θ′ δ(cos θ′) δ(r′ −R).

Before proceeding with the next step, it is important to recognise that since the current

travels only within the loop,∫ ∞

0

∫ 2π

0

∫ π

0
Jr′2 sin θ′ dθ′ dϕ′ dr′ =

∫
C
Idl
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holds and the current magnitude is conserved. dl refers to a vector that is always tangent

to the circular loop. Substituting the expression of Jϕ and evaluating the integral

∫
C
Idl =

∫ ∞

0

∫ 2π

0

∫ π

0
λ sin θ′ δ(cos θ′) δ(r′ −R)r′2 sin θ′ dθ′ dϕ′ dr′∫

C
Idl =

∫ 2π

0
λR2dϕ′

∫ 2π

0
IRdϕ′ = 2πR2λ

2πIR = 2πR2λ

λ =
I

R

The complete expression of Jϕ is then

Jϕ =
I

R
sin θ′ δ(cos θ′) δ(r′ −R).

B.2 Expressing Vector Potential in Complete Elliptic In-

tegral of 1st & 2nd Kind

The expression for complete elliptic integral of the first kind is

K(k) =

∫ π
2

0

dγ√
1− k2 sin2 γ

.

The expression for complete elliptic integral of the second kind is

E(k) =

∫ π
2

0

√
1− k2 sin2 γ dγ

Hence it is prudent to transform the variable ϕ′ = [0, 2π] into γ variable that is in the

range of [−π/2, π/2]. It then follows

ϕ′ = π − 2γ.

Subsequently,

cosϕ′ = 2 sin2 γ − 1 and dϕ′ = −2dγ.
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Starting from Eq. 3.31,

Aϕ(r, θ) =
µ0IR

4π

∫ 2π

0

cosϕ′√
r2 +R2 − 2rR sin θ cosϕ′ dϕ

′

=
µ0IR

4π

∫ −π
2

π
2

2− 4 sin2 γ√
r2 +R2 − 2rR sin θ(2 sin2 γ − 1)

dγ

=
µ0IR

2π

∫ −π
2

π
2

1− 2 sin2 γ√
r2 +R2 − 4rR sin θ sin2 γ + 2rR sin θ

dγ

=
µ0IR

2π

1√
r2 +R2 + 2rR sin θ

∫ −π
2

π
2

1− 2 sin2 γ√
1− 4rR sin θ sin2 γ

r2+R2+2rR sin θ

dγ

= C(θ)

∫ −π
2

π
2

1− 2 sin2 γ√
1− 4rR sin θ sin2 γ

r2+R2+2rR sin θ

dγ; C(θ) =
µ0IR

2π

1√
r2 +R2 + 2rR sin θ

= C(θ)

∫ −π
2

π
2

1− 2 sin2 γ√
1− k2 sin2 γ

dγ; k2 =
4rR sin θ

R2 + r2 + 2rR sin θ

= C(θ)

∫ π
2

−π
2

2 sin2 γ − 1√
1− k2 sin2 γ

dγ

= 2C(θ)

∫ π
2

0

2 sin2 γ − 1√
1− k2 sin2 γ

dγ

= 2C(θ)

(∫ π
2

0

2 sin2 γ√
1− k2 sin2 γ

dγ −K(k)

)

= 2C(θ)

(
2

k2

∫ π
2

0

k2 sin2 γ√
1− k2 sin2 γ

dγ −K(k)

)

= 2C(θ)

(
2

k2

(∫ π
2

0

1√
1− k2 sin2 γ

dγ −
∫ π

2

0

1− k2 sin2 γ√
1− k2 sin2 γ

dγ
)
−K(k)

)

= 2C(θ)

(
2

k2

(
K(k)− E(k)

)
−K(k)

)

=
µ0IR

π

1√
r2 +R2 + 2rR sin θ

(
2

k2

(
K(k)− E(k)

)
−K(k)

)
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Numerical Fit Coefficients

C.1 Vpar distributions

Table C.1: Fit parameters to reconstruct Sce. 0 electron Vpar distribution at t =
1.1375ms.

c0 -1.87662460e+01 d1 -9.63739644e+00
c1 1.99571755e+02 d2 5.98349954e+00
c2 -2.32624103e+02 d3 -9.72059062e-01
c3 1.02000897e+02 d4 -9.36906534e-02
c4 -1.96568263e+01 d5 3.74309256e-02
c5 1.38798155e+00 d6 -3.13912751e-03

Vpar, min −3.044× 107ms−1 Vpar, max 4.555× 107ms−1

Ne 169708704

Table C.2: Fit parameters to reconstruct Sce. 1 electron Vpar distribution at t =
1.1375ms.

c0 -1.66961859e+01 d1 1.56360320e+03
c1 -2.73821291e+04 d2 -1.68299949e+03
c2 4.69093293e+04 d3 7.02533218e+02
c3 -3.15585329e+04 d4 -1.36081179e+02
c4 1.07617619e+04 d5 8.60760931e+00
c5 -1.96014800e+03 d6 1.35671039e+00
c6 1.81189413e+02 d7 -2.79407048e-01
c7 -6.68008773e+00 d8 1.44924052e-02

Vpar, min −2.868× 107ms−1 Vpar, max 5.095× 107ms−1

Ne 160741535
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Table C.3: Fit parameters to reconstruct Sce. 2 electron Vpar distribution at t =
0.987ms.

c0 -1.69339300e+01 d1 -3.17026032e+05
c1 6.10351832e+06 d2 1.39769196e+06
c2 -2.85328074e+07 d3 -1.19755359e+06
c3 2.94192916e+07 d4 5.19132328e+05
c4 -1.30633035e+07 d5 -1.38156021e+05
c5 2.86814068e+06 d6 2.21106324e+04
c6 -2.99262219e+05 d7 -1.80865097e+03
c7 1.15889190e+04 d8 5.70983165e+01

Vpar, min −3.643× 107ms−1 Vpar, max 5.831× 107ms−1

Ne 90441558

Table C.4: Fit parameters to reconstruct Sce. 3 electron Vpar distribution at t =
1.014ms.

c0 -1.73092738e+01 d1 4.32889722e+03
c1 -8.33342338e+04 d2 -3.90296058e+03
c2 9.97318004e+04 d3 1.57793785e+03
c3 -4.59793642e+04 d4 -3.77061519e+02
c4 1.01906127e+04 d5 5.43927138e+01
c5 -1.06800729e+03 d6 -4.00480888e+00
c6 4.18363030e+01 d7 1.10202887e-01

Vpar, min −3.726× 107ms−1 Vpar, max 5.956× 107ms−1

Ne 131603446

Table C.5: Fit parameters to reconstruct Sce. 4 electron Vpar distribution at t =
0.987ms.

c0 -1.89403331e+01 d1 3.02151891e+02
c1 -5.82025402e+03 d2 -2.14466171e+03
c2 4.16197848e+04 d3 5.42923583e+03
c3 -1.06539714e+05 d4 -6.53625185e+03
c4 1.30101455e+05 d5 4.13968892e+03
c5 -8.33612016e+04 d6 -1.44759733e+03
c6 2.87598572e+04 d7 2.97211982e+02
c7 -5.36150811e+03 d8 -3.58894685e+01
c8 5.07297989e+02 d9 2.29972420e+00
c9 -1.89552631e+01 d10 -5.48247689e-02

Vpar, min −5.474× 107ms−1 Vpar, max 7.337× 107ms−1

Ne 168470572

Table C.6: Fit parameters to reconstruct Sce. 5 electron Vpar distribution at t =
0.91ms.

c0 -1.61146858e+01 d1 -7.91744026e-01
c1 1.49079451e+01 d2 2.74321710e-01
c2 -5.06550011e+00 d3 -5.17478716e-02
c3 7.49167227e-01 d4 4.97953656e-03
c4 -3.99691944e-02 d5 -1.62070559e-04

Vpar, min −4.365× 107ms−1 Vpar, max 6.960× 107ms−1

Ne 65326685
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Curriculum Vitae
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Education
2018–2022 PhD study in progress, Ruhr-Universität Bochum, Germany, (Thesis in

progress, tentative submission in December 2022).
Thesis 3D first-principles simulation of plasma initiation in ITER-like tokamak.

Supervisors Prof. Dr. Paul Gibbon, Dr. Dirk Brömmel, Prof. Dr. Bernhard Unterberg,
Prof. Dr. Rainer Grauer

2015–2018 Masters in Simulation Sciences, Rheinisch-Westfälische Technische
Hochschule Aachen, Germany, Overall Grade – 1.6 (grade ranges from 1.0
- 4.0, highest to lowest).

Thesis Numerical modelling of the early phase of plasma breakdown in JET-like tokamak.
Supervisors Prof. Dr. Paul Gibbon, Dr. Dirk Brömmel

2008–2012 Bachelor of Aerospace Engineering, University Putra Malaysia, Serdang,
GPA – 3.866 (grade ranges from 4.0 - 1.0, highest to lowest).

Thesis Study of Magnetohydrodynamics flow in Combined Attitude and Thermal Control
System (CATCS) for Satellites.

Supervisor Professor Renuganth Varatharajoo

Academic Conferences/Summer School
2021 47th Conference on Plasma Physics, online conference.
2021 ISC High Performance 2021, online conference.
2019 The Scalasca Scalable Parallel Performance Analysis Toolset – for

POP assessments and beyond, Webinar - JSC, Forschungszentrum Jülich.
2019 GPU Programming - JSC Guest Student Programme, JSC,

Forschungszentrum Jülich.
2018 55th Culham Plasma Physics Summer School, Culham Science Centre,

Oxford.

Publications
{ Chew, J., Gibbon, P., Brömmel, D., de Vries, P. & Gribov, Y. (2021). First principles 3D

simulation of tokamak plasma breakdown. Plasma Physics. EPS Conference. 47th 2021.
(EPS 2021), 141-144

{ Chew, J., Gibbon, P., Brömmel, D., Wauters T., Gribov Y., de Vries, P (2021). Three-
dimensional first principles simulation of a hydrogen discharge. Plasma Physics and Controlled
Fusion, 63(4), 045012.

{ Romli, F., Kian, H. C., Chew, J. & Rafie, A. (2011). Subsystem Change Ranking Methodology
(SCRaM) for Complex Product Redesign Process. Advanced Materials Research, 308, 167-173.

Talks/Presentations
{ Oral contribution in 47th EPS Conference on Plasma Physics, First principles 3D simulation
of tokamak plasma breakdown.

{ Numerical Modelling of the Electron-Hydrogen Molecule Impact Ionisation in Tokamak,



Remote Collaborative Seminar with ITER Science Division, 2020.
{ Poster Presentation of Simulation of MHD fluid in Combined Attitude and Thermal Control
System (CATCS), Department of Aerospace Engineering, University Putra Malaysia, 2012.

Work Experience
Oct, 2018 -

present
Scientific staff, SimLab Plasma Physics, Jülich Supercomputing Centre (JSC),
FZJ.
Completed tasks:
{ Implemented parallel calculation of external electric and magnetic fields in a tokamak

geometry.
{ Implementation of charge and current density interpolation onto uniform grid, similar

to Particle-in-Cell methods diagnostic purposes.
{ Charge and current density interpolation onto unstructured grid for better approxi-

mation of simulated domain.
{ Profiling the computational costs of the code’s various components to improve

compute efficiency.
{ Derivation and implementation of a particle merging algorithm to reduce computa-

tional cost.
{ Writing and submission of annual JARA-HPC/VSR proposal.
{ Conduct large scale simulations for avalanche breakdown ionisation in tokamak

scenarios, on both JURECA DC (> 40 nodes) and booster module (> 120 nodes).
Oct, 2017 -
Sept, 2018

Academic Assistant(HiWi), SimLab Plasma Physics, Jülich Supercomputing
Centre (JSC), FZJ.
Completed tasks:
{ Programming a new parallelised frontend code that supports new particle injection

or ionisation instances.
{ Integration of existing meshless Pretty Efficient Parallel Coulomb (PEPC) solver into

said frontend.
{ Integration of the highly parallelisable Random123 RNG library into the fronted,

interfacing C in Fortran.
{ Implementation of an explicit particle motion integrator.
{ Implemented Monte-Carlo simulations for electron-neutral impact ionisation simula-

tions.

Feb, 2016 -
April, 2017

Academic Assistant(HiWi), Institute of Aerodynamics, RWTH Aachen.
Assigned tasks:
{ Debug & implement subroutines which assist with Lattice-Boltzmann portion of

in-house C++ solver code (Zonal-Flow-Solver, ZFS).
{ Implementation of various boundary condition for cell lattice configurations in MPI

parallel environment.
{ Identify/compute simulation input parameters and run simulations, along with results

post-processing.
Sept, 2012 -
Sept, 2015

Applications Engineer, Drawbridge Technologies (M) Private Limited,
Malaysia.
Assigned tasks:
{ Provide technical support to customers using Autodesk Simulation CFD and Simula-

tion Mechanical products
{ Perform technical demonstration to potential customers in regards to Simulation

Mechanical & CFD’s capabilities
{ Simulation applications problem solving and fulfilling client’s simulation requests.
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