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We study the heritability of risk, uncertainty, and time preferences using a field experiment 

with a large sample of adult twins. We also offer a meta-analysis of existing findings. 

Our field study introduces a novel empirical approach that marries behavioral genetics 

with structural econometrics. This allows us to, for the first time, quantify the heritability 

of economic preference parameters directly without employing proxy measures. Our 

incentive-compatible experiment is the first twin study to elicit all three types of preferences 

for the same individual. Compared to previous studies, we find a greater role of genes 

in explaining risk and uncertainty preferences, and of the shared familial environment in 

explaining time preferences. Time preferences appear more important from policy and 

parenting perspectives since they exhibit limited genetic variation and are more than twice 

as sensitive to the familial environment as risk and uncertainty preferences.
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1 Introduction

Risk and time preferences are fundamental to economic decision making. A risk lover may

decide to start a new business, while a risk averse person chooses a secure job. A person

with present bias may make a resolution to join a gym and never fulfill it. A more impatient

investor may allocate more of their capital gains to consumption and less to savings. These

choices, driven in part by our economic preferences, will have significant ramifications for

life outcomes.1

Our paper addresses a fundamental question on the nature of economic preferences con-

cerning choice under risk and delay discounting. Where do they come from? To what extent

are di↵erences between people explained by their environments and their genes? This knowl-

edge can help us to better understand the process through which variation in preferences may

lead to inequalities in life outcomes. For example, a major social concern is the intergenera-

tional persistence of socio-economic outcomes like income, wealth, education, occupation and

health (see Blanden, 2013; Corak, 2013; Torche, 2015; Halliday et al., 2021), which are closely

linked to economic preferences. How, and if, policymakers should intervene to address these

inequalities depends on their underlying causes, including the role of genetics (Harden, 2021).

Consider, for example, educational attainment, which is a highly heritable trait (Cesarini

and Visscher, 2017) that is strongly negatively correlated with delay discounting (Golsteyn

et al., 2014). Both our tolerance for and policy response to the link between discounting

and education depend on how discounting behaviors are formed. If interpersonal di↵erences

in discounting are strongly explained by interpersonal genetic variation, we can debate the

fairness of random genetic endowments playing a key role in educational inequalities through

this channel. If discounting is strongly environmental, we should ask what aspects of the

1Risk and time preferences have been shown to predict consequentially important choices such as risky
health behaviors (Anderson and Mellor, 2008; Harrison et al., 2010; Courtemanche et al., 2015; Norrgren,
2022; Cheung et al., 2022), vaccinations (Lepinteur et al., 2023), migration (Jaeger et al., 2010; Ayhan
et al., 2020), investment behavior (Bradford et al., 2017; Wong et al., 2019), altruistic behavior (Angerer
et al., 2015), and job search and occupational selection (Fouarge et al., 2014; Cortés et al., 2021), as well as
inequality in wealth at the societal level (Epper et al., 2020).
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environment matter to evaluate whether this is fair or not. The estimates of heritability for

behavioral traits are important measurements to contextualize the world we live in. Such

information can help us to understand social outcomes, direct future research e↵orts, and

inform social and economic policy decisions.

There have been isolated attempts to estimate the heritability of risk and time prefer-

ences using twin study designs. The results vary substantially across the studies, in part

because of small samples in some papers, but more generally because of wide variation in the

measurement approach used. To provide a structured summary, we conduct a meta-analysis

of available literature (see Section 2.2). The existing studies define and measure preferences

in a variety of ways, but many issues remain to be addressed. To our knowledge, only two

studies (Cesarini et al., 2009; Zhong et al., 2009) use salient monetary incentives to elicit

risk preferences. Crucially, there is no study of heritability which defines risk preferences in

terms of structural parameters such as utility curvature and probability weighting. There

are only two incentivized studies on time preferences (Anokhin et al., 2011; Sparks et al.,

2014), both of them involving samples of adolescents. One study structurally estimates time

preferences in the form of a discounting function (Anokhin et al., 2015), but they do not

apply correction for utility curvature (Andersen et al., 2008). Perhaps more importantly,

their analysis is based on an informal two-step procedure that initially estimates the dis-

counting model without considering heritability, and subsequently uses predictions from this

step as the dependent variable in a regression model of heritability which is otherwise unre-

lated to the discounting model. Despite the ongoing interest in uncertainty and ambiguity

aversion—which concerns outcomes without precise probabilities and is thus distinguished

from risk aversion—in the broad economics literature, we know nothing about heritability

in this domain of preferences, except for findings reported by Cesarini et al. (2012). Finally,

no study with salient incentives accounts for behavioral and measurement errors in observed

responses, which can attenuate the estimates of genetic heritability.

Using a new dataset from an incentivized experiment with adult twins, we provide ev-
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idence on the heritability of economic preferences. We decompose variation, in terms of

nature and nurture, for many di↵erent types of preference—aversion to probabilized un-

certainty (risk aversion), aversion to non-probabilized uncertainty (uncertainty aversion),

long-run discounting, and present bias.2 We develop a novel empirical approach that mar-

ries behavioral genetics with structural econometrics, and estimates structural parameters

in economic theory jointly with heritability and errors in decision making. This allows us to,

for the first time, identify heritabilty in measures of preferences which directly correspond to

parameters in economic models of choice and are relevant to economic research. Specifically

our approach extends the basic twin ACE genetic decomposition model to classes of struc-

tural decision models that are staples of economic decision theory, including expected utility

theory (EUT), rank-dependent utility (RDU), exponential discounting, and quasi-hyperbolic

discounting. We further consider the joint estimation of quasi-hyperbolic and RDU decision

functions, accounting for the counfoundedness of concave utility and delay discounting (An-

dersen et al., 2008). The existing studies define and measure preferences in a non-structural

way, for example by equating risk preferences with the number of safe or sooner choices that

an individual makes in a choice experiment. Compared to such approaches, the advantage

of structural estimation is that it allows us to convert choices into quantitatively meaningful

and theoretically grounded constructs that are primitives in many economic models.

Our paper also addresses another shortcoming of earlier research—measurement error.

Measurement error is a serious concern in twin studies because estimates that do not cor-

rect for measurement error will underestimate the role of genes and overestimate the role

of the unique environment. In the conventional twin study regression model, the unique

2In the literature on decision making under risk and uncertainty, the term risk typically refers to cases
where decision makers make choices knowing probability distributions of outcomes. As Etner et al. (2012)
point out, however, definitions of uncertainty and ambiguity vary from study to study in the current lit-
erature, and sometimes the two terms are used interchangeably. Similarly as Abdellaoui et al. (2011), we
use uncertainty to describe cases where decision makers are making choices involving unknown probability
distributions, and consider ambiguity aversion as a measure that relates to the di↵erence between the same
decision maker’s risk and uncertainty aversion. We acknowledge that studies such as Hey et al. (2010) and
Stahl (2014) do not draw a distinction between uncertainty and ambiguity, and consider our notions of
uncertainty and uncertainty aversion as ambiguity and ambiguity aversion, respectively.
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environment is represented by the usual idiosyncratic disturbance term which captures gen-

uine environmental e↵ects as well as any measurement error. As a result, the presence of the

latter understates the relative importance of genetic e↵ects by construction. Existing studies

are therefore potentially biased against finding a strong role for genes.3 When we estimate

structural choice models, the variance of the error component is estimated and can therefore

easily be deducted from the total variance of the elicited preference. For comparison, we

also estimate preferences using non-structural models in line with the approaches in earlier

research. Additionally, we expand on these earlier approaches by utilizing the fact that par-

ticipants completed similar tasks multiple times. This allows for another method to deal

with measurement error, in which we treat each task as a repeated measure and estimate

the degree of variation due to noise which we purge from the decomposition equation (Ge

et al., 2017).

In our most general structural models, we find that 36%-48% of the variation in risk

aversion parameters is explained by genes, and in contrast to most other research, we also find

a smaller but non-trivial role for the common family environment (8%-15%). In our meta-

analysis of prior research, we find that 25% (95% CI [20%, 30%]) of variation in behaviorally

elicited risk aversion can be explained by interpersonal di↵erences in genes, with most of the

remaining variation explained by unique environmental experiences. The reduced importance

of unique environmental experiences in our study compared to the meta-analysis is consistent

with behavioral and measurement errors inflating this factor. We also estimate a significant

role of genes on parameters governing uncertainty preferences (20%-52%) and ambiguity

aversion (26%-34%).

Results for time preferences are more nuanced. In our preferred specification, which

jointly estimates delay discounting and present orientation along with an RDU decision

function, we find no role for genes but 33% of variation is explained by the common sibling

environment. However, when we estimate the same model without adjusting for risk aversion,

3Gillen et al. (2019) estimate that around 40% of variation in experimentally estimated risk preferences
is due to noise.

4



the loading switches from the common sibling environment to genes. According to our meta-

analysis of prior studies, the importance of genes in the case of delay discounting is quite high

at 38%, but estimated quite imprecisely with a confidence interval [16%, 59%]. This suggests

that the heritability in time preferences found in earlier studies may reflect the heritability

of risk aversion rather than delay discounting per se because these earlier studies did not

control for utility curvature in their estimates of time preference. Overall, our analysis also

suggests that time preferences are quite malleable, and more so than risk aversion, which

may have implications for parenting and education.

Finally, to further demonstrate that the way preferences are conceptualized and estimated

matters for understanding how they form, we assess how our conclusions change under

a variety of alternative modelling approaches. This includes estimating simple structural

models that do not control for widely replicated behavioral phenomena (e.g., expected utility

model without probability weighting) and non-structural regression models based on the

raw counts of safe/sooner choices in the decisions tasks, which is conceptually closer to

the majority of previous studies. Our estimates are highly sensitive to how preferences are

treated, with genes having virtually no influence in some specifications. Consistently, the

importance of unique environmental experiences is considerably larger in non-structural and

parsimonious structural models. This is consistent with estimates of the variance share for

unique environment masking unobserved behavioral and measurement errors in these models.

Our paper is organized as follows. In Section 2 we provide background information

on the estimation of heritability and present the results of our meta-analyses. In Section

3 we discuss our data, including the behavioral decision tasks. In Section 4 we discuss

how we estimate heritability, linking the classic twin study model with the estimation of

heterogenous structural parameters in economic experiments. In Section 5 we present our

new results. Section 6 concludes.
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2 Background

2.1 Methods for estimating heritability

The most popular approach to estimate heritability of economic preference is through the

twin study method using the ACE decomposition model. The basic idea of the ACE de-

composition model is that di↵erences in the strength of correlation of a given phenotype

(observable trait) between monozygotic (identical) versus dizygotic (fraternal) twins can be

used to infer the degree to which that phenotype is formed by additive genetic e↵ect (A),

common sibling environment (C), and unique or individual-specific environment which is

not shared between siblings (E).4 This model yields a tractable formula for measuring the

degree of heritability, which can be interpreted as the share of the phenotype variation due

to genes: �
2
A/(�

2
A + �

2
C + �

2
E), where �

2
k denotes the variance in the phenotype that can be

attributed to e↵ect k. Section 4.1 summarizes a workhorse approach to estimating the three

variance components.

The key statistical insight underpinning the twin study method is that monozygotic

(MZ) twins share 100% of DNA, whereas dizygotic (DZ) twins share on average 50% of seg-

regating genes, as with any sibling. The main assumption—known as the equal environments

assumption—is that MZ and DZ twins are similarly exposed to shared environmental factors

relevant to the phenotype. Under this assumption, MZ twins exhibit a stronger correlation

in the phenotype than DZ twins due to a greater genetic similarity. Combined with the

ACE model, this assumption allows one to rewrite the variance share of genetic e↵ects as

2⇥ (⇢MZ �⇢DZ) (Falconer’s formula), where ⇢MZ and ⇢DZ refer to the phenotype correlation

for the MZ and DZ twin pairs. In practice, however, researchers usually apply structural

equations modelling (SEM) or mixed e↵ects regression to estimate the variance components

directly, in part to ensure that the finite sample estimate of the variance share lies in the

4Dominance genetic e↵ects (D) – a genetic interaction e↵ect between alleles at the same locus – may
also be present but in the classic twin study cannot be identified without assuming no role for common
environment, so are often assumed to be zero. This is often argued to be reasonable when the correlation in
the phenotype for monozygotic twins is not more than double that of dizygotic twins.
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(0, 1) interval as theoretically required.

Genome-wide association studies (GWAS), which directly link genetic code to the phe-

notype, provide a main alternative to the twin study method.5 These studies require genetic

sequencing of study participants which is typically done using single-nucleotide polymor-

phism (SNP) arrays, rather than the whole genome. SNPs are markers for variation in DNA

that occur with high frequency throughout the genome. Variation in these SNPs is then

linked to variation in the phenotype by, for example, running many hundreds of thousands

of regressions, separartely for each SNP. Adjustments are made to p-values for multiple

hypothesis testing when identifying which of specific genetic variations are statistically sig-

nificant. Heritability is estimated by methods that link variation in all SNPs to variation in

the phenotype (see Yang et al., 2017).

Both twin and GWAS methods have their own relative strengths and weaknesses and

can be thought of as complements (Friedman et al., 2021). However, when it comes to

estimating the heritability of economic preferences, several considerations make the twin

study design the more attractive option. While GWAS studies can identify specific genetic

variants associated with the phenotype, to do so requires very large samples in the tens, if not

hundreds, of thousands of participants. This is particularly the case for traits that are highly

polygenetic, meaning that the phenotype is influenced by many genetic variants, each with

small independent e↵ects. Most complex human traits are known to be polygenetic (Chabris

et al., 2015). Insu�cient sample size is the main explanation for the so-called ‘missing

heritability’ problem—the tendency for GWAS to estimate considerably smaller amounts of

heritability than twin studies (Maher, 2008). Even with large samples, the presence of rare

genetic variants and the fact that whole-genome sequencing is uncommon means that GWAS

estimates for heritability are likely downward biased (see, for example, Wainschtein et al.,

2021).6

5See Bush and Moore (2012) and U↵elmann et al. (2021) for an overview.
6There is also the possibility that twin study estimates are upward biased, due to for example gene-gene

or gene-environment interactions or violation of the equal environments assumptions. Conley and Fletcher
(2017) discuss these and other possibilities in the context of behavioral genetics and conclude that such
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The large sample requirement of GWAS methods is especially di�cult to meet for studies

that involve the elicitation of economic preferences, which requires participants to complete

extensive decision tasks with meaningful incentives. The financial and practical challenges

associated with administering such tasks across samples of tens or hundreds of thousands of

people make GWAS a prohibitive option. The few GWAS studies that have been conducted

had to rely on hypothetical decisions or attitudinal proxies (e.g., Benjamin et al., 2012;

Sanchez-Roige et al., 2018; Linnér et al., 2019). Most of these studies have been insu�ciently

powered to identify specific genetic variants, and are likely to under-estimate heritability.7

Finally, economists are usually not interested in discovering which particular gene or in-

teraction of genes is associated with a particular economic behavior. They are much more

interested in broader issues rotating around the extent to which economic preferences are

shaped by the collective e↵ects of all genes rather than environmental factors, which can

act as a guide to understanding the reach of parenting, education, and other potentially

preference-shifting interventions. All these reasons make the twin study methodology par-

ticularly attractive to economists and social scientists in general.

2.2 Empirical evidence on the heritability of economic preferences

In Appendix B we summarize the existing studies that directly estimate the heritability of

risk and time preferences (Tables B.1 and B.2).8 To provide the most comprehensive evidence

concerns are unlikely to explain much of the discrepancy. Wainschtein et al. (2021) find that in the case of
BMI and height, once full genome sequencing is utilized, the gap between pedigree and GWAS estimates
largely closes.

7Linnér et al. (2019) is a notable exception with a sample of more than 900,000 individuals for the main
measure of risk aversion (“Would you describe yourself as someone who is willing to take risks” [Yes/No]).
They found 99 unique genetic loci associated with this variable (indicating it is highly polygenetic), although
heritability was estimated to be only 5%. They obtained a higher estimate (16%) when using the first
principal component from a set of questions about risky behaviors, which may reflect bias in their main
estimate due to measurement error. Their study did not involve any quantitative measures of risk aversion
comparable to those we analyze.

8We note that some studies decompose the variation in behaviors closely related to economic preferences,
such as investment and saving decisions (e.g., Barnea et al., 2010; Cronqvist and Siegel, 2014, 2015). However,
since these behaviors have determinants other than preferences, we do not include them in our review. We
also acknowledge the literature that shows parents transmit their preferences to their children (see e.g.,
Dohmen et al., 2012; Alan et al., 2017; Heinrich and Shachat, 2020; Chowdury et al., 2022), but does not
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to date on the heritability of risk and time preferences we meta-analyze the existing estimates

for the share of variance explained by genes (A) and by the unique environment (E). The

former share is based on the formula presented at the beginning of Section 2.1. The latter

share is also based on the same formula, but places �E in the numerator instead of �A.

There are substantial di↵erences across the studies in how results are reported. To

standardize the approach in our meta-analysis, we adopt some rules. First, not all studies

report estimates of all the components of the ACE model, and many report estimates from

more than one model. In our meta-analysis, we use the estimates from the complete ACE

model whenever they are reported. In the remaining cases, we use the estimates from

the best-fitting model among those that were reported. A few studies estimated an ADE

model which distinguishes between additive (A) and dominant (D) genetic e↵ects; in slight

abuse of notation, for such studies, what we refer to as A is in fact an aggregation of the

two types of genetic e↵ects. Second, many studies do not report standard errors. We

used the reported standard error when available, and the inferred standard error based

on the confidence interval in other cases.9 Third, studies use diverse methods to measure

and estimate preferences, and many studies report heritability estimates for more than one

measure of risk attitude. In Tables B.1 and B.2 we classify these measures into behavioral

(incentivized, observational, and not incentivized) which are elicited from risky decisions with

or without consequences, and stated measures which are self-reported responses to questions

about one’s willingness to take risk and one’s tendency to be patient. We separately meta-

analyze the heritability estimates of the behavioral and stated preference measures. If a study

measured preferences using more than one instrument in the same sample, we use only one

estimate. In the case of behavioral preferences, we prioritize estimates from incentivized

elicitations and those that provide the most precise estimates.

Let j be a generic subscript for an existing estimate of the variance share due to genetic

e↵ects (A). To estimate the average role of each component in shaping preferences, we

distinguish between genetic and environmental transmission.
9Further details and sensitivity analyses are in Appendix B.
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estimate the following random e↵ects meta-analysis model

⇥j = ⇥0 + ⇠j + ✏j (1)

where ⇥j is the jth estimate of the variance share due to A. Under this model, each estimate is

decomposed into the average e↵ect parameter of interest ⇥0, which is common to all existing

estimates, and normally distributed sampling errors ⇠j ⇠ N(0, ⌧ 2) and ✏j ⇠ N(0, ⌫̂j
2), where

between-study heterogeneity ⌧ is an unknown parameter to be estimated alongside ⇥0 and ⌫̂j

is the standard error of ⇥j that we obtain from the previous studies. We use the same model

to estimate the average role of the unique environment (E), where ⇥j is then understood to

be an existing estimate of the variance share due to E.

The random e↵ects meta-analysis estimator of ⇥0 can be seen as a weighted average of

all existing estimates in our data set:

⇥RE
0 =

P
j wj⇥jP
j wj

(2)

where the weight for estimate j is the reciprocal of its total variance: wj = 1/(⌫̂2
j +⌧

2
j ). Thus,

the estimates with higher precision (i.e., smaller standard errors ⌫̂j) receive larger weights.

2.2.1 Risk preferences

Nine studies estimated the heritability of risk preferences using twin methodology (see Table

B.1). Three of these studies include preference measures obtained from incentive-compatible

laboratory decision tasks, six include behavioral non-incentivized measures, and five include

stated preferences measured as self-reported responses to questions about one’s attitude to

risk.

The meta-analytic average of heritability (i.e., that of the variance share due to genes

or A) in behaviorally measured risk attitude is 25% (95% CI [20%, 30%]) (see Figure 1).

Common sibling environment (C) appears to be negligible. Most papers do not report this
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Figure 1: Meta-analysis of the genetic role (A) in behavioral risk aversion
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Note: Excluded estimates: Cesarini et al. (2009) behavioral not incentivized measure is not included
because incentivized measure is available from the same sample. The second wave data (at 14 years old)
from the longitudinal study by Anokhin et al. (2009) because the first wave dataset (at 12 years old)
is larger due to attrition. Estimates obtained in the loss domain by Simonson and Sela (2010) because
gain domain estimates are available. Lottery choice estimates from Nicolaou and Shane (2020) because
investment task provides a more precise measure of risk preference. Harden et al. (2017) is excluded
because the multivariate latent factor decomposition in their study is di�cult to compare with the results
from other studies where there is a clearly defined outcome variable.

estimate because models without the C component provide a better fit. The two studies

that do estimate C find that it explains only 0% [0%, 37%] (Zhong et al., 2009) and 9% [1%,

22%] (Cesarini et al., 2009) of the variation. Finally, the most important factor in shaping

preferences is the unique environment (E) explaining 68% of the variation in individual risk

attitudes (95% CI [60%, 77%]) (see Figure 2).

The heterogeneity statistics o↵er a mixed picture. For heritability, I2 = 0 implies that the

between study variance accounts for none of the total variance (which follows from ⌧
2 = 0),

and H
2 = 1 means that the variance implied by the random e↵ects meta analysis is identical

to that of a fixed e↵ects approach that assumes homogeneity. However, a formal test of study

homogeneity rejects the null at the 5% level (p = 0.041) and the mixed results may reflect low

power due to the small number of studies. To the extent there is heterogeneity, it is unclear

11



Figure 2: Meta-analysis of the unique environment role (E) in behavioral risk aversion
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Note: Excluded estimates: Cesarini et al. (2009) behavioral not incentivized measure is not included
because incentivized measure is available from the same sample. The second wave data (at 14 years old)
from the longitudinal study by Anokhin et al. (2009) because the first wave dataset (at 12 years old)
is larger due to attrition. Estimates obtained in the loss domain by Simonson and Sela (2010) because
gain domain estimates are available. Lottery choice estimates from Nicolaou and Shane (2020) because
investment task provides a more precise measure of risk preference. Harden et al. (2017) is excluded
because the multivariate latent factor decomposition in their study is di�cult to compare with the results
from other studies where there is a clearly defined outcome variable.

whether this is due to genes being di↵erently important in di↵erent populations, or due to

di↵erences in elicitation methods. The heterogeneity statistics for E are more equivocal and

indicate di↵erences across studies that are not due to sampling variation alone.

The results from the meta-analysis of the heritability of the stated risk preferences paint

a similar picture with 24% of variation (95% CI [19%, 30%]) attributed to genetic factors

(Figure B.1 in Appendix B). The common sibling environment is only estimated in two

studies and is negligible (0% [0%, 10%] in Nicolaou and Shane (2020) and 5% [0%, 17%] in

Cesarini et al. (2009)). The unique environment is estimated to account for 71% of variation

in stated risk preferences (95% CI [64%, 78%]) (Figure B.2 in Appendix B).
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2.3 Ambiguity preferences

A complete taxonomy on how the decision maker behaves under risk and uncertainty re-

quires elicitation of preferences when the underlying probability distributions of outcomes

are known to the decision maker (risk) as well as unknown to the decision maker (uncer-

tainty). Since the seminal work due to Ellsberg (1961), several studies have reported that

participants in experiments tend to make more conservative choices under uncertainty than

risk, a phenomenon which is often referred to as ambiguity aversion. To date, only one

study has estimated the heritability of ambiguity aversion (Cesarini et al., 2012) using a

hypothetical choice between drawing a colored ball from an urn with known and unknown

distribution of winning and losing balls. The choices in this study were not incentivized and

did not impact participants’ earnings. The heritability of selecting the risky urn in favor of

the uncertain urn was estimated at 16% but is fairly imprecise (95% CI [0%, 29%]).

2.4 Time preferences

Table B.2 summarizes seven studies that estimated the heritability of time preferences. As

with risk attitudes, there are substantial di↵erences across the studies in how time prefer-

ences are elicited and measured. The only two studies that are incentive-compatible involved

one-shot choices between $7 now and $10 in one week and collected data from adolescents

only (Anokhin et al., 2011; Sparks et al., 2014). These studies do not allow for the es-

timation of the individual’s discount rate. Four studies measured time preferences using

hypothetical decisions and two included di↵erent self-reported questions or questionnaires

about impatience or future orientation. Anokhin et al. (2015) is the only study that esti-

mated preferences in a structural model, specifically a one-parameter hyperbolic discounting

model with linear utility (they do not manipulate the front-end delay and hence cannot iden-

tify the quasi-hyperbolic model). Their analysis is based on an informal two-step procedure,

which initially estimates time preferences without considering heritability, and subsequently

uses individual-specific predictions from the first step as the dependent variable in a her-

13



Figure 3: Meta-analysis of the genetic role (A) in behavioral time preferences
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Note: Excluded estimates: The second wave data (at 14 years old) from the longitudinal study by Anokhin
et al. (2011) because the first wave dataset (at 12 years old) is larger due to attrition. From the longitudinal
study by Anokhin et al. (2015) we exclude waves with fewer data points. Harden et al. (2017) is excluded
because the multivariate latent factor decomposition in their study is di�cult to compare with the results
from other studies where there is a clearly defined outcome variable.

itability regression model. No studies distinguish between present bias and impatience or

correct for utility curvature in their estimates of time preferences.

The meta-analytic average of heritability (i.e., the variance share due to A) of time

preferences is 38% with a relatively wide 95% confidence interval of [16%, 59%] (Figure 3).

This is larger than for risk preferences but notably less precise. Like for risk preferences,

estimates for the common sibling environment C are not always reported; the two studies

that do report this find small and imprecise e↵ects of 7% [0%, 26%] (Cesarini et al., 2012)

and 12% [0%, 54%] (Sparks et al., 2014). Unique twin environment (E) accounts for 58%

of variation in behavioral time preference (95% CI [40%, 76%]) (Figure 4). There is a large

degree of heterogeneity across studies. For example, the I
2 implies that 80.4% of the total

variance in the existing estimates is explained by between study variance ⌧ .

Two studies measured heritability using self-reported responses to questionnaires. The

multivariate latent factor decomposition in Harden et al. (2017) makes it di�cult to compare

their results to the traditional approaches with a clearly defined outcome variable. Hubler

(2018) estimates of the genetic influence are substantially di↵erent from those obtained from
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Figure 4: Meta-analysis of the unique environment role (E) in behavioral time preferences
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Note: Excluded estimates: The second wave data (at 14 years old) from the longitudinal study by Anokhin
et al. (2011) because the first wave dataset (at 12 years old) is larger due to attrition. From the longitudinal
study by Anokhin et al. (2015) we exclude waves with fewer data points. Harden et al. (2017) is excluded
because the multivariate latent factor decomposition in their study is di�cult to compare with the results
from other studies where there is a clearly defined outcome variable.

studies that use behaviorally measure time preference, with the A, C, and E components

estimated at 0%, 23%, and 77%, respectively.

Our paper fills a gap in the literature by estimating the heritability of risk and time

preferences of adults from incentive-compatible decisions, while carefully separating risk

preferences from uncertainty attitudes and separating patience from future orientation thus

providing more precise estimates of heritability.

3 Data

3.1 Recruitment and survey design

We use data from the Australian Twins Economic Preferences Survey (ATEPS) (Kettlewell

and Tymula, 2021). ATEPS was created in cooperation with Twins Research Australia

(TRA), the custodians for Australia’s largest twin registry. TRA were involved with recruit-

ing twins into the study, while administration of the online survey was handled by authors

Nathan Kettlewell and Agnieszka Tymula.
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At the time of the survey – September 2020-March 2021 – there were around 70,000 adult

twin pairs in TRA’s registry. Participation in the registry is voluntary, and over its history

TRA have used a variety of methods of recruitment including advertising with the Australian

Multiple Birth Association, news releases, print media and other media engagements, word of

mouth, the TRA website, newsletter and social media pages, and events such as information

forums (Murphy et al., 2019).

TRA approached 6,848 adult twin pairs to take part in the study. These were adult twin

pairs aged 18-65 years where both twins were active members of the registry with up-to-date

contact details. Recruitment primarily occurred through email invites and SMS reminders.

A limited number of phone calls were used to maximize the sample size. These calls were

primarily used when one twin agreed to be contacted by the research team but the co-twin

did not respond to the email or SMS invitation. Ultimately, 803 twin pairs agreed to be

contacted by the research team, and 560 of those twin pairs fully completed the survey.

The survey was first emailed to participants on 8 September 2020 and then progressively

sent to additional participants until 25 February 2021 before closing on 1 March 2021. Par-

ticipants received unique survey links and were able to complete the survey at a time of their

choosing. Due to the length of the survey, we allowed participants to pause at any point and

recommence at a later time.

The survey began with general information about study protocols.10 To proceed past the

first page, participants needed to correctly answer a series of yes/no questions to ensure they

understood that (1) they could earn real money from their decisions, (2) that they would

need to provide bank details at the end of the survey to facilitate this, (3) that both twins

needed to complete the survey before payments could be made, and (4) that they should not

discuss their answers with their co-twin until both had completed the survey. Participants

answered a series of questions about twin similarity, which were used to determine zygosity

10The complete questionnaire is available at https://dataverse.ada.edu.au/dataset.xhtml?persistentId=doi-
:10.26193/TTQEBQ.
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status.11 They then completed a series of incentivized behavioral preference tasks. They were

told that one task would be chosen at random at the end of the survey and that for all twin

pairs who completed the survey, their choices in this task would determine their payment.

In total, there were 15 separate behavioral tasks that could be selected for payment, with

potential payo↵s ranging from AUD$0 to $37.50 (approximately USD$29), depending on

their decisions and the outcomes of the games when played out for real. For the multiple

price list tasks, participants were told that if this task is chosen for payment, one row will be

selected at random and played out for real. All randomization was done using randomization

branch logic through the Qualtrics survey software, although this was not explicitly described

to participants. Payments were processed once a week via bank transfers and participants

were told that payments would be received within 10 days of both twins completing the

survey.12 The average payment was AUD$15. To emphasize the importance of participants’

decisions, participants were only paid based on the behavioral tasks (no show-up fee). The

median completion time for the survey was 55 minutes.

All protocols and procedures were approved by the University of Technology Sydney

Human Research Ethics Committee (application numbers ETH19-4381 and ETH20-5410)

and by TRA.

3.2 Descriptive statistics

Five hundred and sixty Australian twin pairs completed the online survey (401 MZ, 159

DZ). The average age in the sample is 45 years (range 18-66) and 81% of participants are

female. Of the DZ pairs, 42 (26%) are mixed sex. Table 1 presents descriptive statistics for

11Of the 518 same-sex twin pairs who fully completed the survey, the zygosity status of 184 (35%) is
determined by self-reported genetic test results, 25 pairs (4.8%) are classified as dizygotic due to di↵erent
blood type and the remainder are classified using the peas-in-a-pod questionnaire, which has been shown to
predict zygosity with more than 90% accuracy (Ooki et al., 1990).

12Twenty-one participants completed the survey but were not paid, either because they declined the
payment (e.g., by preferring the money be donated back to the research project) or provided incorrect bank
details but could not be contacted to correct this. We retain these people in our sample because in such
cases it is clear the participant had a strong intrinsic motivation to contribute to the research, and we have
no reason to doubt the integrity of their responses.
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Table 1: Descriptive statistics by zygosity

Mean MZ SD MZ Mean DZ SD DZ Di↵ P-val

Age 44.03 12.89 46.29 12.57 2.26 0.058
Male 0.14 0.35 0.25 0.43 0.10 0.002
Twin years together 22.38 5.40 20.40 3.91 -1.98 0.000
Born in Australia 0.87 0.34 0.90 0.30 0.03 0.260
Lives in a city 0.65 0.48 0.66 0.48 0.01 0.759
Couple 0.65 0.48 0.69 0.46 0.04 0.304
Household members 4.51 1.83 4.44 1.84 -0.08 0.577
Dependent children 1.89 1.42 2.02 1.52 0.13 0.289
University degree 0.59 0.49 0.60 0.49 0.01 0.816
Employed 0.86 0.35 0.84 0.37 -0.02 0.409
Retired 0.08 0.27 0.09 0.28 0.01 0.822
Income 1256.90 703.32 1321.91 719.97 65.01 0.246
Financially secure 3.16 0.76 3.18 0.75 0.02 0.748
Long-term health condition 0.22 0.41 0.19 0.39 -0.03 0.316
COVID-19 worry 2.82 2.70 2.81 2.66 -0.01 0.956
COVID-19 prob 10.92 15.54 9.57 13.30 -1.35 0.177
COVID-19 mort 14.04 20.34 13.51 19.07 -0.53 0.719
COVID-19 job loss 0.07 0.25 0.06 0.24 0.00 0.848
COVID-19 reduced income 0.13 0.33 0.14 0.34 0.01 0.660
COVID-19 work home 0.35 0.48 0.35 0.48 -0.01 0.806
COVID-19 reduced hours 0.14 0.34 0.13 0.34 -0.01 0.831
Num. COVID-19 positive friends 1.88 2.56 1.73 2.48 -0.15 0.371
Risk MPL1 num safe 8.03 3.29 8.32 3.35 0.29 0.228
Risk MPL2 num safe 5.17 2.11 5.34 2.13 0.17 0.238
Uncertainty MPL1 num safe 8.51 3.34 8.69 3.40 0.18 0.449
Uncertainty MPL2 num safe 5.41 2.19 5.52 2.27 0.11 0.488
Time MPL1 num sooner 3.82 3.31 3.48 3.24 -0.34 0.130
Time MPL2 num sooner 3.49 2.99 3.38 3.02 -0.11 0.605
Time MPL3 num sooner 4.00 3.36 3.88 3.39 -0.12 0.605
Time MPL4 num sooner 3.99 3.30 3.86 3.37 -0.13 0.569

Note: Descriptive statistics based on samples of 802 MZ twins (401 pairs) and 318 DZ twins (159 pairs).
See Appendix Table C.1 for detailed variable definitions.

the analysis sample by zygosity status.

MZ and DZ twins are similar across most of the characteristics measured in our demo-

graphic and socioeconomic questionnaire. They are of similar age, are equally likely to be

born in Australia, live in a city, and live as a couple. They have similar household charac-

teristics (household size, number of children), education, work status, and COVID-related

18



experiences. DZ twins are more likely to be male (14% versus 25%) so we control for sex

in our analysis. MZ twins on average report living longer with their co-twin than DZ twins

(22.4 years versus 20.4 years), which is a potential threat to the equal environments assump-

tion and could upward bias the estimates of heritability if MZ twins have more common

experiences that influence economic preferences than DZ twins. We do not view this dif-

ference as particularly concerning because it has been widely replicated across behavioral

genetics research that common environment plays a relatively small role in behavioral out-

comes (Chabris et al., 2015). Indeed, also in our sample the correlations between years spent

living together and the absolute di↵erence in economic preferences are small, inconsistent

in direction, and never statistically significant (Appendix Table C.2). MZ and DZ twins

are generally very similar in their risk and time preferences, with no statistically significant

di↵erences. Altogether, our samples of MZ and DZ twins are highly similar, which is helpful

in meeting the equal environments assumption embedded in our analysis.

3.3 Risk and uncertainty preference tasks

To measure risk preferences, we asked participants to choose between a sure payo↵ and a

50/50 lottery using a multiple price list (MPL) format. The lottery in each MPL remained

fixed and the value of the sure payo↵ increased in each row (see Table 2).13 Participants

completed two MPLs, which di↵ered in their payo↵s and number of rows, following advice in

Gillen et al. (2019) in relation to identifying measurement error. The lottery was framed as

an urn with black and red balls (there were 20 balls in MPL1 and 30 in MPL2, half of each

color), out of which one ball would be picked and its color would determine if the participant

won or lost the lottery.

To measure uncertainty preferences, we used the exact same MPLs with the same payo↵s

13ATEPS also includes other measures of risk aversion: the Gneezy and Potters (1997) investment task,
and Eckel and Grossman (2002) single lottery selection task. In this paper, we focus on the MPL for
several reasons. MPL tasks are the most popular method to elicit preferences in field and lab research. We
administered MPL also under uncertainty. It matches our time preference task in structure. Finally, it is
ideal for structural estimation in the random utility framework as it involves many decisions from the same
participant.
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Table 2: Risk preference tasks

MPL1 MPL2
Sure thing 50/50 chance Sure thing 50/50 chance

$2 $30/$0 $2.50 $25/$0
$4 $30/$0 $5 $25/$0
$6 $30/$0 $7.50 $25/$0
$8 $30/$0 $10 $25/$0
$10 $30/$0 $12.50 $25/$0
$12 $30/$0 $15 $25/$0
$14 $30/$0 $17.50 $25/$0
$16 $30/$0 $20 $25/$0
$18 $30/$0 $22.50 $25/$0
$20 $30/$0 $25 $25/$0
$22 $30/$0
$24 $30/$0
$26 $30/$0
$28 $30/$0
$30 $30/$0

but the proportion of each ball color in the urn was unkonwn to participants. Participants

could choose the ball color that would be associated with a win to ensure that they do not

think that the number of balls in uncertain urns is skewed against them. The intuition for

this task is that more uncertainty-averse participants will choose the sure payo↵ more often.

On average, our participants exhibited practically neutral attitudes to risk and uncer-

tainty. They selected the sure payo↵ 53% of the time in the risk task and 56% in the

uncertainty task, whereas a risk and uncertainty neutral person would choose the sure pay-

o↵ 54% of the time in both types of tasks. While the respective sample frequencies are

significantly smaller (p = 0.011) and greater (p = 0.000) than this benchmark, indicating

risk seeking and uncertainty aversion, neither di↵erence is large in magnitude.

3.4 Time preference tasks

To elicit time preferences, we asked participants to choose between sooner and smaller or

later and larger payments, also using a MPL format. In total we used four MPLs. In the first
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Table 3: Time preference tasks

MPL1 (MPL 3) MPL2 (MPL4)
Now (4 weeks) 8 weeks (12 weeks) Now (12 weeks) 6 weeks (18 weeks)

$15 $15.50 $13 $13.50
$15 $16.50 $13 $15
$15 $17.50 $13 $16.50
$15 $18.50 $13 $18
$15 $19.50 $13 $19.50
$15 $20.50 $13 $21
$15 $21.50 $13 $22.50
$15 $22.50 $13 $24
$15 $23.50 $13 $25.50
$15 $24.50 $13 $27

MPL, participants chose between a payment ‘now’ versus in eight weeks and in the second

MPL they chose between a payment ‘now’ and in 12 weeks. The third and fourth MPLs

had the same payments and delay between the sooner and later payment, but the front-end

delay (the delay to the sooner payment) was four and six weeks respectively (see Table 3

for the list of all decision scenarios). The addition of the longer front-end delay allows us to

identify time preferences that are non-stationary (Halevy, 2015).14

On average, participants selected the sooner payment 36% of the time when its timing

was framed as now, and 40% when the front-end payment was delayed. The significant

di↵erence between the two sample frequencies (p = 0.000) indicates that on average our

participants have future-oriented, hence non-stationary, time preferences.

4 Econometric approach

We propose a new approach to measuring heritability in economic preferences. The ACE

model has been widely used in twin studies to analyze the heritability of observable traits.

However, the deep parameters of economic models, such as the Arrow-Pratt coe�cient of

14We do not identify present bias because our “now” payments were processed within 10 days of both
twins completing the survey due to practical constraints. Balakrishnan et al. (2020) empirically demonstrate
the importance of administering immediate payments.
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risk aversion and individual discount rates, are latent constructs that do not lend themselves

to direct observation. We identify the latent preference parameters in the framework of be-

havioral econometrics and measure heritability in those parameters by integrating the ACE

model with the random coe�cient discrete choice model of interpersonal preference hetero-

geneity. In the remainder of this section, we describe the three pillars of our econometric

approach—the ACE model, the behavioral econometric framework, and the integrative ran-

dom coe�cient model.

4.1 Behavioral genetics

The first building block of our econometric approach is the ACE model, which is the

workhorse model for twin studies in the behavioral genetics literature. This model was

introduced to twin research in economics by Cesarini et al. (2009). The acronym ACE refers

to the key modeling assumption that variation in an observed trait of interest can be de-

composed into three latent sources, namely the additive genetic factor (A), the common

environment factor (C), and the unique environmental factor (E).

From an econometric perspective, the ACE model is similar to a two-way random e↵ects

model that considers twin siblings from the same family as two data points that make up

the same panel unit. Let n 2 {1, 2, · · · , N} denote di↵erent twin pairs and s 2 {1, 2} be the

index of individual siblings within a twin pair. Suppose that ysn is an individual’s observed

trait, such as a measure of an individual’s educational attainment. The ACE model of

variation in this trait can be specified as

ysn = ↵ + Asn + Cn + Esn (3)

where ↵ is the overall intercept; and Asn, Cn and Esn represent three independent error

components. The additive genetic factor, Asn ⇠ N(0, �2
A), captures all genetic influences

on the individual’s trait (assuming no dominance genetic e↵ects). It is constant within
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an MZ (that is, identical) twin pair (A1n = A2n) but varies between two siblings of a DZ

(non-identical) twin pair (A1n 6= A2n). The common environmental factor, Cn ⇠ N(0, �2
C),

captures those environmental influences that are shared by both siblings regardless of whether

they are MZ or DZ twins, such as their childhood neighborhood and home environment.

Finally, the unique environmental factor, Esn ⇠ N(0, �2
E), captures the remaining influences

that are unique to each sibling, such as individual-specific episodes of illnesses or other life

events.

In this framework, heritability in trait ysn refers to the proportion of total variation in

this trait which is explained by variation in the additive genetic factor. Put another way,

heritability is quantified as

⇡A = �
2
A/(�

2
A + �

2
C + �

2
E) (4)

where variance parameters �2
A, �

2
C and �

2
E are to be estimated from the data alongside the

intercept ↵ by applying, for instance, a method of maximum likelihood. To disentangle

additive genetic factor Asn and unique environmental factor Esn, which share the same

dimensions of variation as per the subscripts, structural constraints are placed on between-

sibling correlations in these error components. Let cov(X,Z) denote the covariance between

random variables X and Z. In the ACE model, cov(A1s, A2s) = �
2
A for MZ twins who share

the same genetic variation, and cov(A1s, A2s) = 0.5�2
A for DZ twins who tend to share half the

genetic variation in common cases where the two biological parents are genetically unrelated.

By contrast, since the unique environmental factor accounts for individual-specific variation,

cov(E1s, E2s) = 0 for any twin pair, regardless of whether they are MZ or DZ twins.

The ACE model in equation (3) does not distinguish Esn from the usual regression

disturbance term, meaning that �
2
E absorbs not only variation in the unique environment

but also any other idiosyncratic variation such as deliberation errors in decision making

and statistical measurement errors. This may lead to overestimation of the variance in the

unique environmental factor, �2
E, hence underestimation of heritability based on equation

(4). When multiple measures of the same trait are observed within a short span of time
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during which Esn can be expected to remain invariant, one may exploit this invariance to

improve the identification of �2
E. Let t = 1, 2, · · · , T be the index of di↵erent repetitions

in the measurement of the same trait, and ysnt denote the measurement outcome in each

repetition. Then, the ACE model may be generalized as

ysnt = ↵ + Asn + Cn + Esn + esnt (5)

to accommodate a dedicated idiosyncratic disturbance, esnt ⇠ N(0, �2
e), which is distin-

guished from Esn by having an extra dimension of variation across repetition t. This speci-

fication, inspired by Ge et al. (2017), is e↵ectively a multi-level model that sees twin pair n

as an upper-level panel unit that nests each sibling s as a sub-unit which consists of T data

points.

In the analysis of the heritability of economic preferences, a key limitation of the ACE

model, be it in the form of equation (3) or (5), is its fundamental assumption that the trait in

question is observable, univariate, and measurable without the knowledge of other traits. The

structural preference parameters of interest in economic forecasting and welfare evaluation

(known as the “deep” parameters, especially in the macroeconomics literature) do not fit

into this framework. In most cases, these parameters (e.g., measures of utility curvature

and long-run discount rates) are latent constructs that make up a theorized decision making

process rather than observable characteristics of an individual.15 Moreover, many behavioral

models characterize a given domain of preferences in terms of multiple parameters—consider,

for instance, non-expected utility models that attribute risk preferences to utility curvature

and probability weighting—which defy a univariate measurement approach. Finally, the

logic of an assumed behavioral model often makes it desirable to estimate several structural

parameters jointly, even when they are referring to seemingly disjoint domains of preferences.

15Observed choice patterns in a preference elicitation experiment, summarized by descriptive measures
such as the number of safe choices or the switching point in an MPL, often provide a useful insight into
individual choice behavior. However, it is di�cult to relate the observed choice patterns directly to latent
preference parameters, unless one assumes away deliberation errors in the subject’s responses.
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Perhaps the most well-known example is due to Andersen et al. (2008) who show that one

can draw more plausible inferences about the discount rates elicited in a time preference

experiment by conditioning such inferences on utility curvature that is identified with the

aid of a risk preference experiment.

To address this limitation, we propose a new modeling strategy that integrates the ACE

model with the structural parameters in decision-theoretic models of economic preferences.

4.2 Behavioral econometrics

The second building block of our econometric approach is behavioral econometric modeling,

which acts as a bridge between economic theory at one end and experimental data at the

other end (Harrison, 2019). In each of our risk, uncertainty, and time preference tasks, an

individual sibling in a twin pair provided a series of binary choice responses. Behavioral

econometrics o↵ers a logically coherent framework that enables us to take each choice re-

sponse directly as a data point and model these data points as realizations of a stochastic

process that incorporates theoretical predictions based on structural parameters, as well as

errors in decision-making that can induce potential violations of such predictions.

From an econometric perspective, the behavioral econometric model for each type of

experiment can be represented as a latent dependent variable model with a non-linear index

function. We first lay out a generic notation that applies to all three experiments. Let

subscript snt identify the data point on sibling s 2 {1, 2} from twin pair n 2 {1, 2, · · · , N}

in binary choice task t 2 {1, 2, · · · , T}. Let csnt indicate an observed binary indicator that

equals one if the observed choice is Option A and zero if Option B. Consider latent dependent

variable, c⇤snt, which is specified as

c
⇤
snt = VA,snt[✓sn]� VB,snt[✓sn] + ✏snt (6)

where Vj,snt[✓sn] is the index component that represents the individual sibling’s preference
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for Option j 2 {A,B} under an assumed theory of decision making; ✓sn denotes a vector of

relevant structural parameters in that theory, and ✏snt is an idiosyncratic disturbance term

which accounts for behavioral errors. We assume that ✏snt follows a logistic distribution

with mean zero and potentially heteroskedastic scale factor µsnt, where the latter can be

seen as the behavioral noise parameter. Typically, economic theory makes deterministic

predictions such as the sibling chooses Option A if VA,snt[.] is greater than VB,snt[.] and Option

B if the inequality is reversed. By applying the observation rule csnt = 1[c⇤snt > 0] where

1[.] denotes an indicator function, we allow for violations of these deterministic predictions

due to behavioral errors. Technically, each term in equation (6) can also carry superscript

type 2 {risk, unc, time} to clarify the type of experiment being studied because the assumed

theory, relevant structural parameters and the extent of behavioral noises may vary from

experiment to experiment. We omit this extra superscript for now to avoid notational

cluttering.

Our analysis of the risk preference task is based on the Rank-Dependent Utility model

(RDU) due to Quiggin (1982). Let U [M ; rsn] denote a utility function for monetary outcome

M

U [M ; rsn] = M
1�rsn (7)

where rsn is a measure of concavity in this function, which would be equivalent to the Arrow-

Pratt coe�cient of relative risk aversion had we assumed Expected Utility Theory (EUT).

Given RDU and our experimental design that prompts a choice between a 50:50 prospect of

MA,snt or nothing and a sure payo↵ of MB,snt, the preference index for each option j can be

specified as a function of two preference parameters, ✓sn = {rsn,!sn}, as follows

VA,snt[✓sn] = !snU [MA,snt; rsn]� (1� !sn)U [0; rsn] and

VB,snt[✓sn] = U [MB,snt; rsn]
(8)

where the new parameter !sn is a decision weight which results from probability weight-
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ing.16 If the decision weight coincides with the objective probability of MA,snt (that is, if

!sn = 0.5), RDU simplifies to EUT. If the sibling displays pessimism (!sn < 0.5), however,

probability weighting enhances risk aversion by reducing the certainty equivalent of Option

A relative to what EUT predicts. Similarly, if the sibling displays optimism (!sn > 0.5),

probability weighting enhances risk-seeking by increasing the certainty equivalent. We com-

plete the model specification by adopting the Contextual Utility model of behavioral errors

due to Wilcox (2011), which posits that the behavioral noise parameter is proportional to

the maximal utility di↵erence in the choice task: µsnt = (U [MA,snt; rsn]�U [0; rsn])µ, where µ

denotes the baseline noise parameter. When each risky choice task involves three outcomes

(0 < MB,snt  MA,snt) as with our design, this heteroskedastic specification ensures that the

implied probability of choosing the sure payo↵ is monotone increasing in the parameter rsn

that measures how risk-averse the sibling is in terms of the utility function.17

Our analysis of the uncertainty preference task is based on equations (7) and (8), but we

allow the preference parameters and the baseline scale of behavioral errors (rsn, !sn and µ)

to take di↵erent values from their risk preference counterparts. The resulting model spec-

ification is consistent with RDU as well as several other models of uncertainty preferences

cataloged by Hey et al. (2010) and Kothiyal et al. (2014). For instance, given our exper-

imental design that prompts a choice between an uncertain prospect of MA,snt or nothing

and a sure payo↵ of MB,snt, decision weight !sn can be seen directly as the subjective proba-

bility of MA,snt in Subjective Expected Utility (SEU). It can be also seen as a reduced-form

parameter which jointly accounts for the e↵ects of the alpha weight and relevant priors in

16With an experimental design that considers two or more interior probabilities, one may identify a prob-
ability weighting function (PWF), w[P ], and use this function to derive a decision weight that substitutes
for any objective probability P . Since there is only one interior probability in our design (P 2 {0, 0.5, 1})
and w[0] = 0 and w[1] = 1 by definition, we can identify w[0.5] = !, the decision weight at P = 0.5, but
cannot trace how w[P ] varies over P to identify the PWF itself. While it is straightforward to choose any
of one-parameter PWFs and solve the equation w[0.5] = ! for the value of a shape parameter that produces
the target decision weight, it remains the case that we cannot tell apart those alternative PWFs. For this
reason, we directly consider the decision weight as a structural parameter.

17As shown by Wilcox (2011) and re-iterated by Apesteguia and Ballester (2018), the Fechner model of
behavioral errors (µsnt = µ for all data points) violates this type of monotonicity.
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Alpha MaxMin Expected Utility (Alpha-MEU).18 Alternatively, one may drop the assump-

tion of probabilistic sophistication shared by these models and consider !sn as a capacity

weight in Choquet Expected Utility. Regardless of its behavioral content, a decrease in !sn

enhances uncertainty aversion by reducing the certainty equivalent of the uncertain prospect.

For convenience of reference, we will call parameter !sn the decision weight even when it

pertains to choice under uncertainty. At a substantive level, we remain agnostic about the

exact interpretation of !sn since our study is not intended to evaluate alternative theories of

uncertainty preferences.

Finally, our analysis of the time preference task is based on a discounted utility model

with the quasi-hyperbolic (QH) discounting function due to Phelps and Pollak (1968). Also

known as the �-� discounting function, the QH discounting function assumes that a sure

payment to be received in q periods from now is discounted by a factor of

D[q; �sn, �sn] = 1 if q = 0

= �sn�
q
sn if q > 0

(9)

where �sn is a measure of non-stationary time preferences that relates to the notion of present

bias, and �sn is a baseline discount factor that can be inverted to obtain a long-run discount

rate.19 We code time horizon q in weeks so that equation (9) defines a weekly discount

factor. If preferences are stationary (�sn = 1), this function simplifies to the exponential

discounting function with a constant discount factor of �sn. Typically the decision maker is

said to exhibit present bias if � < 1, and future bias if � > 1.20 As summarized in Section

3.4, our payment protocol introduces some discrepancy between the “now” (q = 0) frame

18Stahl (2014) provides a related discussion in the context of his two-parameter stochastic choice model,
which is consistent with multiple theories of uncertainty preferences including Alpha-MEU.

19The baseline discount factor �sn can be seen as a measure of the sibling’s long-run delay aversion. Let
d denote the implied discount rate which solves 1/(1 + d)q = ��q. As q tends to infinity, d tends to 1/� � 1
and the e↵ect of � vanishes.

20Consider a choice between a smaller-sooner payment (SS) and a larger-later payment (LL). A present-
biased individual may prefer SS to LL if SS is immediately available, but prefer LL to SS if both payments
are scheduled for future dates. A future-biased individual may display the reverse choice pattern.
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and the actual date of payment. To avoid making claims to incentivized identification of

present or future bias, we will use “present-orientation” or “future-orientation” to describe

the respective cases. Given the QH function and our experimental design that prompts a

choice between a smaller payment of MA,snt in qsnt weeks and a larger payment of MB,snt

in qsnt + psnt weeks, the preference index for each option j can be specified as a function of

three preference parameters, ✓sn = {�sn, �sn, rsn}, as follows

VA,snt[✓sn] = D[qsnt; �sn, �sn]U [MA,snt; rsn] and

VB,snt[✓sn] = D[qsnt + psnt; �sn, �sn]U [MB,snt; rsn]
(10)

where utility function U [.] uses the same curvature parameter rsn as the RDU model of risk

preferences. Intuitively, it is di�cult to disentangle the e↵ects of QH discounting and of

utility curvature from the discounting choice tasks alone because both heavier delay dis-

counting and more concave utility can make the smaller-sooner payment more attractive.

The joint estimation of risk and time preferences, proposed by Andersen et al. (2008), helps

us distinguish discounting function D[.] from utility function U [.]. We complete the model

specification by adopting the Fechner model of behavioral errors (µsnt = µ for all data points

in the time preference experiment) and allow behavioral noise parameter µ to take a di↵er-

ent value from the baseline noise parameters in the Contextual Utility models of risk and

uncertainty preferences.

4.3 Structural estimation of heritability

The third and final building block of our econometric approach is the random coe�cient

model of unobserved interpersonal heterogeneity in preferences (McFadden and Train, 2000).

In the random coe�cient framework, each individual sibling’s preference vector ✓sn is mod-

eled as a draw from a common statistical distribution, which represents the distribution of

preferences across individuals in the population of twin siblings. To bring together the behav-

ioral genetic models of heritability and behavioral econometric models of decision-making,
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we first specify the structural parameters in the latter models as random coe�cients. Then,

we assume that each random coe�cient is distributed in the population according to an

ACE model, and estimate that ACE model to infer heritability in the relevant structural

parameter.

Our behavioral econometric models are characterized by six structural parameters—

namely r
risk
sn , !

risk
sn , r

unc
sn , !

unc
sn , �

time
sn and �

time
sn —where the superscripts have been added

to clarify the domains of preferences. We specify the population distribution of each param-

eter as an SB distribution due to Johnson (1949). Algebraically, an SB distribution is derived

by applying a logit transformation to a normally distributed random variable. Similarly as

a beta distribution, it allows the estimation results to capture a wide range of distributional

features (e.g., uniformity, unimodality, bimodality, and left and right skewness) without re-

quiring us to impose any particular shape restriction a priori (Harrison et al., 2023). For our

purposes, its connection to a normal distribution is another attractive aspect because this

provides a convenient pathway to integrating the ACE model into the structural parameters.

We assume that variation in the structural parameters across individual siblings can be

decomposed into variation in the genetic (A), common (C), and unique (E) environmental

factors. To operationalize this assumption, we apply the ACE model in equation (3) to

the primitive normal variate for each structural parameter’s population distribution. For

example, consider the RDU decision weight !risk
sn which must fall into the unit interval. In

our analysis, this parameter is specified as

!
risk
sn = ⇤[↵{!risk}+ Asn{!risk}+ Cn{!risk}+ Esn{!risk}] (11)

where ⇤[z] = exp[z]/(1+exp[z]) is the standard logistic distribution function; each summand

in its argument is defined analogously as the corresponding term in equation (3); and su�x

{.} emphasizes that the values of these terms vary from structural parameter to structural

parameter even within the same individual. Then, heritability in the decision weight can be
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measured by evaluating the earlier formula in equation (4) at the variances of Asn{!risk},

Csn{!risk}, and Esn{!risk}, the three independent error components which make up the

primitive normal variate.

More generally, consider generic structural parameter ✓sn which lies in interval (L,U).

This parameter can be specified as ✓sn = L+(U �L)⇤[y⇤sn], where y
⇤
sn denotes a primitive

normal variate which follows an ACE model specific to that parameter. We assume that

the decision weight in the uncertainty experiment (!unc
sn ) belongs to the unit interval, just

as its risk counterpart (!risk
sn ). We also place the baseline discount factor (�time

sn ) in the unit

interval, following the conventional assumption that long-run discount rates are positive.

Each of utility curvature parameters rrisksn and r
unc
sn is assumed to fall into interval (�10, 1),

based on the algebraic structure of our choice tasks.21 Finally, the present bias parameter

(�time
sn ) is assumed to fall into interval (0.75, 1.25), based on parametric estimates reported

by previous studies (Andersen et al., 2014; Augenblick et al., 2015).

As discussed, the canonical ACE regression model in equation (3) potentially confounds

the unique environmental factor E with the idiosyncratic variation that accounts for be-

havioral errors. The panel ACE regression in equation (5) introduces a distinction between

the two types of unobservables by assuming that the E factor remains constant within an

individual across decision tasks, whereas the idiosyncratic variation is task-specific. Our

econometric approach, based on equations (6) through (11), maintains this statistical dis-

tinction, and also adds a more visible distinction in terms of functional specification: Since

the E factor operates via economic preference parameters that enter the model as power or

multiplicative coe�cients, it has non-linear e↵ects on the latent dependent variable c
⇤
snt in

equation (6), in contrast to the idiosyncratic variation that has linear e↵ects.

Our econometric approach involves a total of 27 primitive parameters to be estimated.

21Consider a participant who acts on EUT preferences without making errors in decision-making. If this
subject’s switching points are located in the interior of our risk MPLs, we can infer that rrisksn belongs to
a sub-interval of (�9.05, 0.74). If a participant acts similarly on SEU preferences and under the belief that
each ambiguous outcome is equally probable, interior switching points in our uncertainty MPLs allow us to
locate runcsn in the same interval.
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Each ACE decomposition of a structural parameter like equation (11) entails estimation

of four primitive parameters—the intercept and the variances of the three normal error

components—and we consider six structural parameters. In addition, we include a distinct

behavioral noise parameter (µ) for each of the risk, uncertainty, and time preference exper-

iments. We compute the maximum simulated likelihood (MSL) estimates of the primitive

parameters which maximize a simulated analogue to a sample likelihood function that pools

choice observations across individuals and over choice tasks. As documented in Appendix

A, the likelihood function resembles that of a multi-level mixed e↵ects model, once choice

tasks, individual siblings and twin pairs are seen as three successive levels. We adjust all

standard errors and test statistics for clustering at the twin pair level, thereby addressing

the highest panel dimension of our data at both the inferential and the modeling stages.22

5 Results

5.1 Risk preferences

Our main estimates for the risk and uncertainty preference tasks are reported in Table

4. For each structural parameter of the RDU decision function, we report the shares of

variance explained by the A,C, and E components as specified in equation (4). We also

report estimates that constrain the common environment to be zero (the AE model) and the

genetic heritability to be zero (the CE model). By definition, the A, C, and E shares fall

into the [0, 1] interval. We calculate 95% confidence intervals which satisfy this boundary

condition by applying 10,000 repetitions of a parametric bootstrapping procedure due to

Krinsky and Robb (1986). We compare the fit of the alternative specifications using the

Akaike and Bayesian Information Criteria (AIC and BIC) statistics.

22Similarly as the random intercept in the random e↵ects probit model induces panel correlation within
an individual, the ACE components of our random coe�cient model induce correlation across repeated
observations on the same individual as well as the same twin pair. The remark on the modeling stage refers
to this aspect of our econometric approach.
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Table 4: ACE share decomposition results: structural risk preference parameters

A C E LL AIC BIC

RDU Risk preferences

r
risk

0.36 (0.34, 0.39) 0.15 (0.13, 0.18) 0.48 (0.45, 0.52) -7706.91 15431.83 15470.78
0.43 (0.37, 0.49) – 0.57 (0.51, 0.63) -7721.67 15457.34 15487.64

– 0.53 (0.39, 0.67) 0.47 (0.33, 0.61) -7721.91 15457.83 15488.12
w

risk

0.48 (0.42, 0.54) 0.08 (0.06, 0.11) 0.44 (0.39, 0.48)
0.46 (0.36, 0.57) – 0.54 (0.43, 0.64)

– 0.44 (0.31, 0.58) 0.56 (0.42, 0.69)

RDU Uncertainty preferences

r
unc

0.52 (0.41, 0.63) 0.02 (0.00, 0.06) 0.46 (0.32, 0.58) -7190.85 14399.71 14438.66
0.51 (0.44, 0.57) – 0.49 (0.43, 0.56) -7204.32 14422.63 14452.93

– 0.48 (0.43, 0.54) 0.52 (0.46, 0.57) -7191.73 14397.46 14427.76
w

unc

0.20 (0.10, 0.31) 0.26 (0.02, 0.57) 0.54 (0.32, 0.70)
0.49 (0.38, 0.60) – 0.51 (0.40, 0.62)

– 0.43 (0.39, 0.48) 0.57 (0.52, 0.61)

RDU Ambiguity preferences

r
unc � r

risk

0.26 (0.21, 0.30) 0.11 (0.08, 0.13) 0.64 (0.57, 0.70) -14897.76 29831.54 29909.44
0.30 (0.25, 0.35) – 0.70 (0.65, 0.75) -14925.99 29879.97 29940.57

– 0.30 (0.21, 0.39) 0.70 (0.61, 0.79) -14913.64 29855.29 29915.88
w

unc � w
risk

0.34 (0.29, 0.40) 0.06 (0.04, 0.08) 0.60 (0.55, 0.65)
0.32 (0.24, 0.43) – 0.68 (0.57, 0.76)

– 0.37 (0.26, 0.48) 0.63 (0.52, 0.74)

Note: The estimation sample comprises 560 twin pairs (401 MZ and 156 DZ). Variance
shares are derived from MSL regression estimates from structural choice models (see eq.
8) using choices in the decision tasks outlined in Table 2. Column A is the estimated
fraction of variance explained by additive genetic e↵ects. Column C is the estimated
fraction of variance explained common environment. Column E is the estimated fraction of
variance explained by unique environment. Krinsky and Robb (1986) confidence intervals
in parenthesis.

The top panel of Table 4 reports the results for choice under risk, that is when the

probability distribution of outcomes is known to the decision maker. We find that the
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variance in risk preferences is explained in large part by additive genetic e↵ects. The results

indicate that genes explain 36% of the variation in the utility curvature parameter r and 48%

in the probability weighting parameter !. We also find a smaller, but non-trivial role for

common family environment (15% and 8% respectively). These results imply only around

45 to 50% of variation in risk preferences is due to unique environmental experiences –

substantially less than the 68% estimate from the meta-analysis (Figure 1).

The second panel reports the corresponding results for choice under uncertainty, that

is when the probability distribution of outcomes is unknown to the decision maker. Our

estimates show that the unique environment accounts for around 50% of the variance in

uncertainty preferences, and this share is similar across ACE, AE, and CE models. Although

the best fitting model constrains the role of genes to be zero, the amount of improvement in

model fit that the resulting CE model o↵ers over the unconstrained ACE model is relatively

small.23 We therefore focus on the ACE model, which avoids the strong assumption that

genes explain none of the variation. We find that 52% of variation in the utility curvature

parameter and 20% of the variation in the weighting parameter is explained by genes.

Our last set of estimates is based on the notion of ambiguity attitude similar to Abdellaoui

et al. (2011). We measure ambiguity attitude in terms of the di↵erence between structural

parameters estimated for the risk and uncertainty preference tasks. As discussed in the

previous section, the interpretation of such parameters depends on the theoretical model

one chooses to adopt. In our case, ambiguity attitude pertains to either greater curvature of

the utility function under uncertainty compared to risk (runc� r
risk) or higher weight placed

on the best outcome under uncertainty compared to risk (!unc�!
risk). Our estimates imply

that 26% of the variation in the di↵erence in curvature is explained by genes, and 11% by

common environment. 34% of the variation in the di↵erence in the weighting parameter is

explained by genes, and 6% by common environment. This leaves a slightly larger role for

unique environment in the formation of ambiguity preferences than risk preferences – the

23According to Burnham and Anderson (2002), a di↵erence in AIC statistics (AICj �AICmin) of at least
4 is required to strongly support the alternative model (this value is only 2.25 in our setting).
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Table 5: ACE share decomposition results: time preferences

A C E LL AIC BIC

Quasi-hyperbolic discounting with RDU risk

�

0.00 (0.00, 0.00) 0.33 (0.32, 0.34) 0.67 (0.66, 0.68) -18940.12 37916.23 37994.14
0.23 (0.21, 0.25) – 0.77 (0.75, 0.79) -19006.79 38041.59 38102.18

– 0.33 (0.32, 0.35) 0.67 (0.65, 0.68) -18947.80 37923.60 37984.19
�

0.00 (0.00, 0.01) 0.33 (0.21, 0.44) 0.67 (0.55, 0.78) -18940.12 37916.23 37994.14
0.42 (0.22, 0.63) – 0.58 (0.37, 0.78) -19006.79 38041.59 38102.18

– 0.31 (0.17, 0.43) 0.69 (0.57, 0.83) -18947.80 37923.60 37984.19

Note: The estimation sample comprises 560 twin pairs (401 MZ and 156 DZ). Variance
shares are derived from MSL regression estimates from structural choice models (see eq.
9) using choices in the decision tasks outlined in Table 3. Column A is the estimated
fraction of variance explained by additive genetic e↵ects. Column C is the estimated
fraction of variance explained common environment. Column E is the estimated fraction of
variance explained by unique environment. Krinsky and Robb (1986) confidence intervals
in parenthesis.

E component accounts for 60 (!unc � !
risk) to 64% (runc � r

risk) of ambiguity preferences

compared to 44 (!risk) to 48% (rrisk) of risk preferences.

5.2 Time preferences

Our main results for time preferences are presented in Table 5. Here we see that under the

best fitting models (CE and ACE depending on the criteria), the variation due to genes is

estimated to be zero for both long-run discounting factor � and future orientation �, while

the common environment explains as much as 1/3 of the variation in both parameters.

The lack of genetic heritability in time preferences that we have found contrasts with

our meta-analysis of the existing studies. As reported in Section 2, the previous estimates

suggest that genetics accounts for 38% of variation in choices made in delay discounting

(Figure 3). The discount utility model, such as equation (10), o↵ers a structural explanation

that may reconcile these two sets of findings: The choice between a smaller-sooner reward

and a larger-later reward depends not only on the discounting function that captures time
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preferences, but also on the utility function that transforms the raw reward amounts into

undiscounted utility flows. Thus, as long as the utility function exhibits genetic variation,

so will the observed choices between the two rewards, regardless of whether the discounting

function exhibits genetic variation. By contrast, since our joint estimation approach formally

distinguishes between the discounting function and the utility function, the results in Table

5 only capture genetic variation in the discounting function. We return to this issue when

we discuss related findings in Figure 8.

5.3 Alternative measurement models

In the previous section, we presented results using our most general behavioral choice models,

which allowed for utility curvature, probability weighting, delay aversion, and non-stationary

time preferences. In this section, we consider how our results change when we adopt simpler

behavioral models—such as expected utility and exponential discounting models— that omit

one or more of these features. We also report estimates using a standard regression approach

comparable to the earlier literature, where risk and time preferences are equated with the

count of safe and sooner choices in raw data.

Figure 5 summarizes the ACE decompositions of risk preferences using alternative esti-

mation approaches.24 For comparability, we only present results from the full ACE speci-

fications. The estimates ‘MPL 1’ and ‘MPL 2’ are based on the number of safe choices in

the first and second MPL respectively (see Table 2). For those outcomes, we estimate the

ACE shares using the standard ACE regression model in equation (3) that does not draw a

distinction between the unique environment and the idiosyncratic behavioral/measurement

errors. The estimates ‘Panel’ refer to the panel ACE regression model in equation (5), where

the two counts of safe choices are treated as repeated measures and the unique environment

is distinguished from the idiosyncratic errors by the usual random e↵ects assumption. Since

the two MPLs are not exactly the same, the panel specification includes MPL fixed e↵ects to

24The estimates are also reported in Table C.3.
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improve comparability between the two count measures. Comparing the panel estimates to

the MPL-by-MPL estimates allows us to gauge the importance of measurement error when

the ACE decomposition is obtained from a non-structural regression model. The ‘RDU’ esti-

mates are our structural estimates discussed in Sections 5.1 and 5.2, and the ‘EUT’ estimates

are obtained by estimating a special case of the RDU model that assumes no probability

distortion.

The results in Figure 5 call for caution against a naive dichotomy between regression-

based and structural estimation of heritability. The results of a restricted structural model

which neglects the joint presence of alternative behavioral phenomena (here EUT which

assumes no probability distortion and equates risk preferences with utility curvature) are

more comparable to the standard and/or panel ACE regression models than to our gen-

eral structural model (RDU which accommodates the joint e↵ects of utility curvature and

probability weighting on choice under risk). None of our standard regression specifications

indicates a significant role for genes in explaining risk preferences; instead, 85-90% of vari-

ation is attributed to unique environment and a small share to common environment. The

panel regression model, which accounts for measurement error, slightly reduces the role of

the unique environment, as expected. We obtain similar results in the EUT specification.

However, a more general decision function that allows for probability weighting overturns

these findings; indicating a large role for genes and the unique environment explaining less

than 50% of the variation. Compared to EUT, the RDU model has considerably better fit

(the log-likelihood increases from -9965.98 to -7706.91).

The corresponding decompositions of uncertainty preferences yield a similar pattern of

findings (see Figure 6). Across standard and panel regression specifications, we estimate

heritability between 10-20%, with around 70 to 80% of the variance explained by unique

environment. The EUT estimates agree that the unique environment explains around 80%

of the variance, though it attributes most of the remaining variation to the common environ-

ment instead of genes. In contrast, the RDU estimates indicate that the unique environment
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Figure 5: Alternative estimates of ACE shares: Risk preferences
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Note: The estimation sample comprises 560 twin pairs (401 MZ and 156 DZ). Variance
shares are derived from regression estimates using choices in the decision tasks outlined in
Table 2 where probability distributions are known. A is the estimated fraction of variance
explained by additive genetic e↵ects. C is the estimated fraction of variance explained
common environment. E is the estimated fraction of variance explained by unique envi-
ronment. MPL 1-MPL 2 : estimates from the classical ACE model with the number of
‘safe’ choices in the respective MPL used as the dependent variable. Panel : estimates from
the classical ACE model with repeat measures with the number of ‘safe’ choices in MPL
tasks used as the dependent variable. The panel regression equation includes a separate
intercept for each task and individual intercepts modeled as a normally distributed ran-
dom parameter. The variance of this parameter is interpreted as measurement error and
subtracted from the overall variance when estimating the A, C and E shares. EUT : MSL
regression estimates from a structural choice model using choices in both MPL tasks as-
suming a single parameter expected utility theory decision function with constant relative
risk aversion (see eq. 7). RDU r and RDU w : MSL regression estimates from a structural
choice model using choices in both MPL tasks assuming a two parameter rank-dependent
utility theory decision function (see eq. 8). r is utility curvature and w is probability
weighting. Error bars are Krinsky and Robb (1986) confidence intervals.
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Figure 6: Alternative estimates of ACE shares: Uncertainty preferences
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Note: See Figure 5. The only di↵erence is that here we use the MPL tasks with unknown
(rather than known) probability distribution of outcomes.

accounts for less than 50% of the variance in either uncertainty preference parameter, with

genes explaining 52% and 20% of variations in utility curvature and probability weighting,

respectively.

We next examine ambiguity preferences in Figure 7. The standard ACE regression mea-

sures ambiguity attitude in terms of sample choice frequencies by taking the di↵erence in the

number of safe choices between risk and uncertainty versions of MPL 1 or MPL 2. The re-

sults indicate a small role for genes (around 5%), with the rest of the variation attributed to

the unique environment. In this case, using the panel ACE regression to deal with measure-

ment error has a marked impact, increasing the role of genes to 24% and reducing the role

of the unique environment by the same amount. The EUT model agrees with the standard

ACE regression that genes play virtually no role. By contrast the more general RDU model
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Figure 7: Alternative estimates of ACE shares: Ambiguity preferences
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Note: See Figure 5. The only di↵erence is that here as the dependent variable in MPL
1-MPL 2 and Panel we use the di↵erence between the number of ‘safe’ choices in the
respective MPL when probabilities are unknown versus known.

indicates that genes explain as much as 34% of the variation in ambiguity preferences.

Figure 8 displays alternative decompositions of time preferences. In the standard ACE

regression (MPL 1 to MPL 4), this is measured by the number of sooner choices in each

MPL. As earlier, the panel ACE regression (‘Panel’) allows for MPL fixed e↵ects but oth-

erwise treats the four counts as repeat measures. We present estimates from four di↵erent

structural models: ‘EXP’ assumes a simple exponential discounting function and a linear

utility function; ‘EUTEXP’ assumes a simple exponential discounting function but esti-

mates this jointly with risk preferences under EUT to control for utility curvature; ‘QH’

assumes quasi-hyperbolic discounting and linear utility; and finally ‘QHRDU’ (our most

general specification) jointly estimates the quasi-hyperbolic discounting function along with
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Figure 8: Alternative estimates of ACE shares: Time preferences (Delay aversion)
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Note: Variance shares are derived from regression estimates using choices in the decision
tasks outlined in Table 3. MPL 1-MPL 4 : estimates from the classical ACE model with
the number of ‘sooner’ choices in the respective MPL used as the dependent variable.
Panel : estimates from the classical ACE model with repeat measures with the number of
‘sooner’ choices in MPL tasks used as the dependent variable. The regression equation in-
cludes a separate intercept for each task and individual intercepts modelled as a normally
distributed random parameter. The variance of this parameter is interpreted as measure-
ment error and subtracted from the overall variance when estimating the A, C and E
shares. EXP : MSL regression estimates from a structural choice model using choices in all
MPL tasks assuming an exponential discount function (i.e., eq. 9 with � = 1) with linear
utility. EUTEXP : MSL regression estimates from a structural choice model using choices
in all MPL tasks assuming an exponential discount function (i.e., eq. 9 with � = 1) with
constant relative risk aversion utility (i.e., eq. 7) estimated from risky choice MPLs. QH :
MSL regression estimates from a structural choice model using choices in all MPL tasks
assuming a quasi-hyperbolic discount function (i.e., eq. 9) with linear utility. RDUQU :
MSL regression estimates from a structural choice model using choices in all MPL tasks
assuming a quasi-hyperbolic discount function (i.e., eq. 9) with rank dependent utility
(see eq. 8) estimated from risky choice MPLs. Error bars are Krinsky and Robb (1986)
confidence intervals. See Figure 5 for further details.

utility curvature and probability weighting under RDU.
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We continue to observe the importance of adopting a general model specification which

recognizes that an individual’s response to a decision task is jointly influenced by several

latent behavioral phenomena. The standard and panel ACE regression models attribute

around 20% of variation to genes and 80% to unique environment. However, in the structural

specifications the loading moves from genes to the common environment. Interestingly, this

is not the case for the quasi-hyperbolic decision function when we do not control for utility

curvature (‘QH’). One interpretation of this is that genes do matter for the choice between

a smaller-sooner reward and a later-larger reward, but they operate through the utility

function (which is shared between risk and time preferences) instead of the discounting

function (which is a direct measure of time preferences in relation to delay discounting). We

also see that the role of the unique environment is smallest when we use our most general

structural specification (‘RDUQH’).

Figure 9 reports estimates for the measures of non-stationary time preferences. In the

context of the standard and panel ACE regression models, this measure refers to the di↵er-

ence in the number of sooner choices between MPLs with and without front-end delays. The

estimates ‘QH’ and ‘RDUQH’ refer to the � parameter in the quasi-hyperbolic discounting

function—also known as the �-� discounting function— based on the specifications described

above. Again, the results caution against a naive regression versus structural dichotomy. The

standard ACE regression indicates the dominant role of the unique environment, which ac-

counts for more than 90% of the variance. Both the panel ACE regression and the QH

structural model indicate a somewhat diminished role of the unique environment at 80%,

with the remaining variation split between genes and the common environment. Once we

control for utility curvature by adopting the general RDUQH specification, we find yet a

smaller role for the unique environment (67%) and more a prominent role for the common

environment (33%).

42



Figure 9: Alternative estimates of ACE shares: Time preferences (Non-stationarity)
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Note: Variance shares are derived from regression estimates using choices in the decision
tasks outlined in Table 3. MPL i - MPL j: estimates from the classical ACE model
with the di↵erence in the number of ‘sooner’ choices between MPL i and j used as the
dependent variable. Panel : estimates from the classical ACE model with repeat measures
with the di↵erence in the number of ‘sooner’ choices between MPL i and j used as the
dependent variable. The regression equation includes a separate intercept for each task
and individual intercepts modelled as a normally distributed random parameter. The
variance of this parameter is interpreted as measurement error and subtracted from the
overall variance when estimating the A, C and E shares. QH and RDUQU : see Figure 8
(estimates correspond to the future orientation parameters). Error bars are Krinsky and
Robb (1986) confidence intervals. See Figure 5 for further details.

6 Discussion

Risk and time preferences are ubiquitous in economic research. In economic theory, struc-

tural parameters representing these preferences are fundamental primitives that drive indi-

vidual decision making and influence the welfare consequences of changes in the state of the

world. Macroeconomists employ the estimates of these preference parameters as inputs to
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operationalize their computational models of the economy. Empirical economists use the

structural and proxy measures of risk and time preferences as key control variables to model

insurance, occupational, and health-related choices. Behavioral economists believe that un-

derstanding the determinants of risk and time preferences is necessary for e↵ective policy

that needs to take into account how malleable preferences are.

We quantify the influence of nature and nurture on economic preferences by developing a

novel econometric approach to measuring heritability. Ours is the first paper to marry struc-

tural estimation of economic preference parameters with the canonical twin study method

that decomposes variation in individual traits into genetic and environmental sources (the

ACE model). Structural estimation has been widely embraced in the economic analysis of

decision-making, and the structural parameter estimates have many desirable properties,

including direct mapping to economic theory. Importantly, these parameters have a clear

quantitative interpretation and are comparable across studies.

Our analysis highlights three major limitations in the existing approaches to estimat-

ing heritability in economic preferences. First, accurate estimation of heritability needs to

properly account for the behavioral and measurement errors which can be substantial in pref-

erence elicitation tasks (Hey and Orme, 1994; Gillen et al., 2019). Importantly, these errors

are indistinguishable from the notion of unique environment in the standard ACE regression

model that is frequently used to establish heritability. This may lead to over-estimation of

the role of unique environment. Structural estimation deals with these concerns by explic-

itly considering choice errors as part of the data generating process, so that that they are

e↵ectively controlled for when preferences are estimated. Second, accurate estimation of the

heritability needs to use preference measures that are as close to their intended economic

interpretations and uses as possible. Equating raw survey or experimental response measures

with risk or time preferences is unsatisfactory in this regard since it is often di�cult, if not

impossible, to infer the precise values of relevant preference parameters from such measures.

Finally, the regression analysis with just a single response variable, by construction, makes
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it di�cult to accommodate the joint e↵ects of well-documented behavioral phenomena, such

as probability distortion, utility curvature, and non-stationarity of time preferences, which

simultaneously shape the individual’s risk and time preferences.

Indeed, in our preferred structural model of preferences, we find that the importance of

genes to risk attitudes is substantially greater, and that of the unique environment smaller,

than what we observe in our meta-analysis of the standard ACE estimates. When we apply

a panel data extension of the ACE regression to account for measurement errors without a

further departure from the standard approach, we also find a diminished role of the unique en-

vironment but the di↵erence from the standard estimates is rather small. This suggests that

controlling for measurement errors from a statistical perspective and modeling a structural

decision making process from an economic perspective both make contributions to accurate

estimation of heritability. The second channel is particularly important to the identifica-

tion of time preferences (Andersen et al., 2008), and we speculate that the relatively high

meta-analytic estimate of the heritability of time preferences (38% with a wide 95% CI of

[16%,59%]) is driven by the heritability of risk preferences, which a↵ects raw responses in

time preference tasks via the utility function. In accordance with this view, when we control

for utility curvature, our structural estimates of the genetic influence on delay discounting

are practically 0%. When we estimate a restricted structural model that does not control for

the utility curvature, our estimate is in the 27% range, closer to the meta-analytic estimate.

At first glance, our findings suggest that risk and time preferences are influenced more

strongly by each individual’s own interaction with a wider society than by their genetic lot-

teries or upbringing. Across all of our empirical estimates and also in our meta-analysis, the

unique environment—which captures individual-specific variation that is not shared between

twin siblings—is always the most influential source of variation in people’s preferences. For

delay discounting, our preferred estimates even indicate no role of genes. Nevertheless, on

top of finding greater heritability in risk preferences compared to existing studies, our struc-

tural analysis suggests that time preferences may be more malleable than risk preferences,
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an important insight for policy making. When reviewing previous literature, we have found

that the common twin environment—which captures non-genetic variation that is shared

between twin siblings—has negligible e↵ects on shaping individual preferences. Is the home

environment indeed irrelevant and can we ditch all of our parenting books? Our preferred

structural models, accounting for non-expected utility and non-stationary discounting be-

havior, paint a slightly di↵erent picture than the previous studies. We estimate the role of

common environment to be 15% for risk preferences and 33% for time preferences, both of

which are much larger than previously estimated. The fact that the common environment

has twice as large of an e↵ect on shaping time preferences as risk preferences o↵ers another

important policy and parenting insight.

From an empirical perspective, our paper provides new benchmark evidence on the forma-

tion of economic preferences. From a methodological perspective, our paper demonstrates

the importance of how preferences are defined and measured. An understanding of the

anatomy of risk and time preferences has clear value for applied and theoretical research,

considering that most economic studies relate to the allocation of resources over time under

risk and uncertainty. Admittedly the twin study method, on its own, does not identify spe-

cific drivers of preference heterogeneity—say, particular genetic variants or transformative

experiences. It does, nevertheless, provide bounds on how much variation those drivers are

likely to explain, which can help to direct and frame future research e↵orts. There is an

undeniable human curiosity in understanding why we are the way that we are. This may

even a↵ect how we interpret others’ behaviors, and interact with them. For example, it

might be easier to empathize with gambling addiction as a chronic health condition if we

view that behavior in light of genetic e↵ects on preferences. Studies like ours can help to

contextualize the social worlds we exist in.
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Appendix A. Sample likelihood function

This appendix summarizes the algebraic structure of our sample likelihood functions. To

convey the main ideas without excessive notational cluttering, we focus on an illustrative

example that considers structural estimation of utility curvature parameter rsn under EUT.

Continuing with the notation defined in Section 4 of the main text, this theory of risk

preferences is derived by assuming that decision weight !sn in the risk preference experiment

equals the objective probability of 0.5 for all sibling s 2 {1, 2}, twin pair n 2 {1, 2, · · · , N}

and choice task t 2 {1, 2, · · · , T}.

Let csnt denote a binary indicator that equals 1 if sibling s of pair n selected Option A

in task t and 0 if Option B. Conditional on structural parameter rsn and behavioral noise

parameter µ, the likelihood of this choice observation can be specified as

Psnt[rsn, µ] = ⇤[�Vsnt[rsn]/µsnt]
csnt⇤[��Vsnt[rsn]/µsnt]

(1�csnt) and

µsnt = (U [MA,snt; rsn]� U [0; rsn])µ
(A1)

where �Vsnt[.] = VA,snt[.] � VB,snt[.] denotes an expected utility di↵erence, which is derived

by evaluating the RDU index functions in equation (8) at !sn = 0.5, and other notations are

defined in Section 4.

Our econometric approach considers structural parameter rsn as a draw from an SB dis-

tribution, which in turn is generated from an ACE model. We can represent this chain

of modeling assumptions by writing rsn = r[↵, Asn, Cn, Esn], where function r[.] denotes a

mapping of the ACE components to the structural parameter.25 Recall that unique envi-

ronmental factor Esn is uncorrelated between two siblings of the same twin pair; common

environmental factor Cn displays perfect positive correlation; and additive genetic factor

Asn displays perfect or imperfect positive correlation, depending on whether the twins are

identical (MZ) or non-identical (DZ). Accordingly, we initially write out a sibling-level like-

25To state r[.] explicitly, suppose that rsn falls into interval (L,U ). Then, r[↵, Asn, Cn, Esn] = L +
(U � L)⇤[↵+Asn + Cn + Esn].
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lihood function which is conditional on the knowledge of error components shared by both

siblings—Cn and part of Asn that is correlated between the siblings—before progressing to

integrate out these two error components to derive a twin pair-level likelihood function.

Consider first MZ twins who share the same genetic factor so that A1s = A2s = An. Con-

ditional on shared error components An and Cn, the joint likelihood of T choice observations

on sibling s of MZ pair n is given by

l
MZ
sn [↵, �2

E, µ;An, Cn] =

Z TY

t=1

Psnt[r[↵, An, Cn, Esn], µ]f [Esn|0, �2
E]dEsn (A2)

where f [.|0, �2
E] denotes the density function for a normally distributed random variable

with mean 0 and variance �
2
E. Apart from the conditioning on An and Cn, equation (A2)

represents what an individual-level likelihood function for the random coe�cient EUT model

looks like in typical applications that do not consider twins data.26 We can derive the joint

likelihood of 2⇥ T choice observations on pair n as follows

L
MZ
s [↵, �2

A, �
2
C , �

2
E, µ] =

Z Z
l
MZ
1s [↵, �2

E, µ;An, Cn]l
MZ
2s [↵, �2

E, µ;An, Cn] ⇥

f [An|0, �2
A]f [Cn|0, �2

C ]dAndCn

(A3)

by integrating out the shared error components.

Consider DZ twins who only share half the genetic variation, in the sense of cov[A1s, A2s] =

�
2
A/2. To operationalize the implied imperfect correlation, we specify Asn as a sum of two

independent normal error components: Asn = asn + bn, where asn ⇠ N(0, �2
A/2) account

for genetic influences unique to sibling s and bn ⇠ N(0, �2
A/2) account for genetic influ-

ences which are shared by both siblings. This decomposition does not change the overall

distribution of Asn, which is normal with mean zero and variance �
2
A as it is for MZ twins.

Conditional on shared error components bn and Cn, the joint likelihood of T choice observa-

26Put another way, suppose that both An and Cn take values of zero. Then, equation (A2) coincides with
an individual-level likelihood function in such applications.
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tions on sibling s of DZ pair n is given by

l
DZ
sn [↵, �2

a, �
2
E, µ; bn, Cn] =

Z Z TY

t=1

Psnt[r[↵, (asn + bn), Cn, Esn], µ] ⇥

f [asn|0, �2
a]f [Esn|0, �2

E]dasndEsn

(A4)

where �2
a = �

2
A/2. Equation (A4) is identical to equation (A2), apart from that As has been

replaced with (asn + bn) thereby adding one more unique error component (namely ans) to

be integrated out at the sibling level. Similarly as with the MZ case, we can derive the joint

likelihood of 2⇥ T choice observations on pair n as follows

L
DZ
s [↵, �2

A, �
2
C , �

2
E, µ] =

Z Z
l
DZ
1s [↵, �2

a, �
2
E, µ; bn, Cn]l

DZ
2s [↵, �2

a, �
2
E, µ; bn, Cn] ⇥

f [bn|0, �2
A/2]f [Cn|0, �2

C ]dbndCn

(A5)

by integrating out the remaining, shared error components.

To estimate primitive parameters in the argument list of LMZ
s [.] and L

DZ
s [.], we maximize

a sample log-likelihood function which adds up the natural log of either likelihood function

as appropriate across all twin pairs in the sample. As this sample log-likelihood function

does not have an analytic expression, in practice we maximize its simulated analogue instead.

Each pair-level likelihood function can be simulated in the same sequence as our discussion

has progressed. In the first step, a sibling-level likelihood function is simulated by making

repeated draws of the unique error components, holding fixed a particular set of draws of the

shared error components. In the second step, the product of the two sibling-level simulated

likelihood functions is averaged across repeated draws of the shared error components to

simulate a pair-level likelihood function. Our likelihood evaluator uses 100 Halton draws per

each sibling-level error component which carries subscript sn, and another set of 100 Halton

draws per each pair-level error component which carries index n.

The logic of this illustrative example extends to other models of economic preferences. In

a nutshell, for each structural parameter in the analysis, one must include a distinct set of
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ACE parameters ↵, �2
A, �

2
C , and �

2
E. Thus, the number of integrals in each equation above

is doubled if one is to estimate the RDU model of risk preferences that we present in the

main text; and quadrupled if one is to jointly estimate the RDU model of risk preferences

with the QH discounting model of time preferences. Allowing behavioral noise parameter µ

to vary from model to model does not a↵ect the number of integrals because this parameter

is a primitive parameter to be estimated directly rather than a random coe�cient which is

to be integrated out.
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Appendix B. Meta analysis

B.1 Identifying studies for inclusion

To identify studies for inclusion, we searched Google Scholar using the following search terms:

“risk attitudes/preferences”, “risk aversion”, “time preferences”, “intertemporal choice”,

“temporal discounting”, “delay discounting”, “present bias” + “heritability”, “genetic ba-

sis”, “twin studies”. We supplemented the results from this search with by adding additional

studies that we were aware of. We also searched additional databases such as PsycINFO

but did not find any further studies to include. The studies we identified are summarized in

Tables B.1 and B.2.
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Table B.1: Literature summary of the heritability of risk attitudes

Study Measurement method MZ/DZ F/M Registry Age

Cesarini
et al. (2009)

B (I) Certainty equivalent determined by six choices
between a 50/50 gamble for SEK100 and vary-
ing sure payo↵s

307/135 20/80 Swedish Twin
Registry

B (NI) Proportion of £1m invested (options: 0, 200k,
400k, 600k, 800k, 1m)

319/139 20/80

S Dohmen et al. (2005) (10-point scale) 317/139 20/80
Anokhin
et al. (2009)

B (I) Number of pumps in BART 82/71 0/100 US 12.5 (0.21)

B (I) Number of pumps in BART 87/49 100/0 12.5 (0.21)
B (I) Number of pumps in BART 41/41 0/100 14.6 (0.64)
B (I) Number of pumps in BART 57/24 100/0 14.6 (0.64)

Zhong et al.
(2009)

B (I) Ranking of 3 options: (1) 50/50 of getting 40
or 0, (2) 20 for sure, (3) 15 for sure (high risk
taking if (1) was ranked highest, medium if (2),
low if (3))

158/62 50/50 China 30 (14.63)

Zyphur et al.
(2009)

B (NI) Composite score based on: (1) choice between
$2k for sure, 50% chance of $5k, and 20%
chance of $15k, (2) choice between 3 retirement
funds ranging from safe to risky, (3) hypotheti-
cal trade of salary for company stock (3 options,
more risky=more stocks).

111/89 0/100 Minnesota Twin
Registry

36.7 (1.12)

Simonson &
Sela (2011)

B (NI) % of safe choices in lottery choice (gain domain) 110/70 78/22 North Carolina
Twin Registry

MZ: 46.6
DZ:49

B (NI) % of safe choices in lottery choice (loss domain) 110/70 78/22
Harden et al.
(2017)

B (NI) Count of plays in Iowa Gambling task 153/284 48/52 Texas Twin
Project

15.9 (1.4)

B (NI) Number of pumps in BART 153/284 48/52
B (NI) % failed stops at crossroads in Stoplight Task 153/284 48/52
S Risk perceptions (28 items on 7 activities) 153/284 48/52
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Beauchamp
et al. (2017)

B (NI) Four ordinal categories based on a hypothetical
choice between a sure payo↵ and a 50/50 gamble
to decide the lifetime monthly salary

1000/1083 54/46 Swedish Twin
Registry

R=52-67

S “Are you generally a person who is fully pre-
pared to take risks or do you try to avoid taking
risks?” (10-point scale)

1128/1200 54/46

S 11 response categories (10-point scale) 1134/1212 54/46
Nicolaou &
Shane (2020)

B (NI) Proportion of £100k invested (options: 0, 20k,
40k, 60k, 80k, 100k)

1898/1344 92/8 TwinsUK Reg-
istry

B (NI) Choice between 3 lotteries (Zyphur et al.., 2009) 1898/1344 92/8
S “Are you generally a person who is fully pre-

pared to take risks or do you try to avoid taking
risks?” (10-point scale)

1898/1344 92/8

S Domain-specifc: financial matters, car driv-
ing, leisure and sports, health, career (10-point
scale)

1898/1344 92/8

Le et al.
(2010)

S “How much risk are you willing to tolerate when
deciding how to invest your money?” (10-point
scale)

867/1008 57/43 Australian
Twin Registry
Younger Cohort

37.7
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Table B.2: Literature summary of the heritability of impatience

Study Measurement method MZ/DZ F/M Registry Age

Anokhin
et al. (2011)

B (I) $7 today or $10 in 7 days (categorical) 169/203 48/52 US 12.5 (0.21)

B (I) $7 today or $10 in 7 days (categorical) N=606 48/52 14.6 (0.24)
Sparks et al.
(2014)

B (I) $7 today or $10 in 7 days 239/159 50/50 Minnesota Twin
Registry

⇠ 17y.o.

Cesarini
et al. (2012)

B (NI) Number of times immedate option was cho-
sen (money today or more money in a week,
3 items)

1150/2362 54/46 Swedish Twin
Registry

R=51-66

Isen et al.
(2014)

B (NI) $0.5-$10 now or $10 after a delay of 1, 2, 10, 30,
180 or 365 days (AUC)

148/97 45/55 Minnesota Twin
Registry

15.1 (0.55)

Anokhin
et al. (2015)

B (NI) 138 choices between $X now or $100 in Y days
(AUC)

50/39 51/49 US 16.6 (0.26)

B (NI) 138 choices between $X now or $100 in Y days
(AUC)

113/125 51/49 18.5 (0.21)

B (NI) 138 choices between $X now or $100 in Y days
(hyperbolic k)

50/38 51/49 16.6 (0.26)

B (NI) 138 choices between $X now or $100 in Y days
(hyperbolic k)

108/124 51/49 18.5 (0.21)

Harden et al.
(2017)

B (NI) Indi↵erence point in smaller sooner and larger
later choices (staircase approach)

153/284 48/52 Texas Twin
Project

15.9 (1.4)

S UPPS Impulsivity Scale (45 items, 4 dimen-
sions)

S Future Orientation Scale (15 items, 3 dimen-
sions)

Hubler
(2018)

S “Would you describe yourself as a patient or
impatient person?” (11-point scale)

703/775 56/44 German Twin-
Life

17.1 (5.1)
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B.2 E↵ect sizes and standard errors

If a study measured preferences using more than one instrument in the same sample, we

use only one estimate. In the case of behavioral preferences, we prioritize estimates from

incentivized elicitations and those that provide the most precise estimates.

Two major challenges arise when summarising estimates from AC(D)E models. These are

di↵erences in the models that are estimated, and inconsistent reporting of standard errors.

Some papers only report estimates from the best fitting model (often an AE model,

with C constrained to zero), while others estimate the full ACE specification. Our preferred

approach is to use the full ACE estimates to avoid constraining C, so we use the estimates

from the complete ACE model whenever they are reported. In the remaining cases, we use

the estimates of from the best-fitting model among those that were reported. In the few

papers that estimated an ADE model, in slight abuse of notation, what we refer to as A is

in fact an aggregation of the additive (A) and dominant (D) genetic e↵ects. One concern

with our adopted approach is that studies that only report AE estimates may get higher

weight than they should, since constraining C will often lower the standard error for A%.

We address this concern with sensitivity analysis below.

For conventional meta-analysis we need the standard error for each study; however, it

is a common convention in twin studies to only report confidence intervals. In situations

where the confidence interval is symmetric, the standard error can be recovered if we assume

that it was constructed as ±1.96 ⇥ SE. But in some studies the confidence intervals are

constructed to respect the fact that variance shares are bounded [0,1], so are not symmetric.

Details on how confidence intervals were constructed were frequently missing in the studies

we reviewed. We suspect that in many cases likelihood-based intervals (see Neale and Miller,

1997) were used, since this is the default in popular open-source R programs used for twin

studies.

Table B.3 shows, for each study included in our analyses, the point estimate, the standard

error we used, and how that standard error was obtained.
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Table B.3: Estimates and standard errors used in meta-analyses

Study A%
(SE)

E%
(SE)

Details

Behavioral risk preference studies
Cesarini et al.
(2009)

0.16
(0.077)

0.75
(0.056)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% credible intervals. The inter-
vals were approximately symmetric.

Anokhin et al.
(2009)*, M 12 y.o.

0.28
(0.071)

0.72
(0.071)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were symmetric.

Anokhin et al.
(2009)*, F 12 y.o.

0.17
(0.087)

0.83
(0.087)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric (slight
asymmetry possibly due to rounding).

Zhong et al.
(2009)

0.54
(0.226)

0.46
(0.111)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were not symmetric.

Zyphur et al.
(2009)#

0.63
(0.25)

0.37
(0.290)

Reported SE for A%. SE not reported for the E
variance share, but was reported for the E path
coe�cient (e). Since E=e2, we used the delta
method (SEe ⇥ f

0(E)).
Simonson & Sela
(2011)*

0.33
(0.158)

0.67
(0.158)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric, but not
close enough to be explained by rounding.

Beauchamp et al.
(2017)#

0.42
(0.226)

0.58
(0.036)

Reported SE for E. For A%, because an ADE
model was estimated this was A+D. SE is calcu-
lated as

p
SE

2
A + SE

2
D using the reported SEA

and SED.
Nicolaou & Shane
(2020)*

0.25
(0.031)

0.75
(0.031)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric, but not
close enough to be explained by rounding.

Stated risk preference studies
Cesarini et al.
(2009)

0.29
(0.077)

0.65
(0.051)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% credible intervals. The inter-
vals were approximately symmetric.

Beauchamp et al.
(2017)#

0.36
(0.176)

0.65
(0.031)

Reported SE for E. For A%, because an ADE
model was estimated this was A+D. SE is calcu-
lated as

p
SE

2
A + SE

2
D using the reported SEA

and SED.

62



Nicolaou & Shane
(2020)

0.22
(0.066)

0.78
(0.046)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The A%
intervals were approximately symmetric, but
not close enough to be explained by rounding.
The E interval was symmetric.

Le et al. (2010)* 0.23
(0.033)

0.77
(0.033)

SE for A% obtained by dividing the estimate
by the reported t-statistic. The regression ap-
proach used in this paper did not directly es-
timate E, so we set its SE equal to the SE for
A%.

Behavioral time preference studies
Anokhin et al.
(2011)*

0.30
(0.097)

0.70
(0.097)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric, but not
close enough to be explained by rounding.

Sparks et al.
(2014)

0.37
(0.189)

0.51
(0.107)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric, but not
close enough to be explained by rounding.

Cesarini et al.
(2012)

0.18
(0.092)

0.75
(0.056)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric but not
by construction (obtained using likelihood ap-
proach).

Anokhin et al.
(2015)*

0.62
(0.056)

0.38
(0.056)

SE = max [UL� Est., Est.� LL]/1.96 using
the reported 95% confidence intervals. The in-
tervals were approximately symmetric, but not
close enough to be explained by rounding.

Note: *Estimates from an AE model. #Estimates from an ADE model.

An alternative to using the available information about parameter uncertainty reported in

the papers is to approximate standard errors using a standardized approach. For example, in

Polderman et al. (2015) the authors transform variance shares into Fisher Z-values with the

approximate standard errors depending only on the sample size, conduct the meta-analysis

and then back-transform the estimates at the end. This approach can also be used on the

MZ/DZ correlations with heritability estimated using Falconer’s formula, rather than the

usual SEM or multi-level regression approach; however, we do not do this since the Falconer

63



approach does not compare neatly to our own analysis of deep parameters.

We explored the possibility of using transformed Z-values for our study but ultimately

rejected this due to unsatisfactory weights given to the di↵erent studies. Using the Fisher

approach, our meta-estimate for behavioral risk preference is 36% (95% CI [23%,48%]),

which is larger than our preferred estimate of 25% [20%,30%]. This di↵erence is driven by

the fact that the studies received nearly identical weights using the Fisher approach, even

though some studies were much less precise than others. For example, the study by Zyphur

et al. (2009) (A%=63% with 95% CI [15%,100%] in the original study) received a weight

of 0.96% in our preferred approach, reflecting the large degree of uncertainty, compared to

12.16% in the Fisher approach. In contrast, Nicolaou and Shane (2020) (A%=30% with 95%

CI [19%,30%] in the original study) received a weight of 64.21% in our preferred approach,

reflecting its far greater precision than other studies, compared to 13.67% in the Fisher

approach – a weighting only slightly larger than that given to Zyphur et al. (2009).

B.3 Sensitivity

One concern with using the reported parameter uncertainty details is that A% estimates will

be more precise in studies that only report AE model estimates because constraining the C

component reduces uncertainty. To gauge whether this is likely to meaningfully a↵ect our

results in practice, we conducted a bounding exercise by scaling the standard errors in studies

that use the AE model by a (relatively large) factor of 1.5. For behavioural risk preference,

our meta-estimate is identical but with a slightly larger confidence interval as expected

(25% [18%,32%]). Our estimates are also nearly identical for stated risk (25% [18%,31%])

and for behavioral time preference (37% [16%,59%]), di↵ering by only one percentage point

from what we report in the paper. We therefore conclude that any bias from using the AE

estimates is likely to be small.

B.4 Additional meta-analysis results

64



Figure B.1: Meta-analysis of the genetic role (A) in stated risk aversion
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Figure B.2: Meta-analysis of the unique environment (E) role in stated risk aversion
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Appendix C. Additional results

Table C.1: Variable descriptions

Variable Definition MZ obs. DZ obs.

Age Age at last birthday 802 318
Male = 1 if male 802 318
Twin years together How many years (including your child-

hood) lived with your twin
802 318

Australia born = 1 if born in Australia 802 318
Lives in a city = 1 if currently live in a major city

(Sydney, Melbourne, Brisbane, Ade-
laide, Perth, Canberra)

795 317

Couple = 1 if married or in a defacto relation-
ship

800 314

Household members How many people live in your household 799 315
Dependent children Number of dependent children 766 310
University degree = 1 if highest level of education obtained

is a university degree
802 318

Employed = 1 if worked any time in the last 7 days
or if had a job but did not work in the
last 7 days due to holidays, sickness or
any other reason

802 318

Retired = 1 if currently retired from the work-
force

802 318

Income Average usual weekly own income in
the last month using midpoint value
for the following categories: $1-$149,
$150-$299, $300-$399, $400-$499, $500-
$649, $650-$799, $800-$999, $1,000-
$1,249, $1,250-$1,499, $1,500-$1,749,
$1,750-$1,999, $2,000-$2,999, $3,000 or
more (coded as $3000). Negative or nil
coded as missing.

692 275

Financially secure Given your current needs and financial
responsibility, would you say that you
and your family are: = 1 if Poor, = 2 if
Just getting along, = 3 if Comfortable,
= 4 if Very comfortable, = 5 if Prosper-
ous.

802 318

Long-term health
condition

= 1 if has a long-term health condition,
impairment or disability that has lasted
more than 6 months

800 318
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COVID-19 worry Worry or concern about contracting
COVID-19 on a scale of 1 to 10

798 318

COVID-19 prob Probability participant believes they
will get COVID-19 in the next 3 months

796 315

COVID-19 mort If you do get COVID-19, what is the per-
cent chance you will die from it?

795 317

COVID-19 job loss = 1 if experienced job loss due to
COVID-19

802 318

COVID-19 reduced
income

= 1 if experienced reduction in income
due to COVID-19

802 318

COVID-19 work
home

= 1 if experienced working from home
due to COVID-19

802 318

COVID-19 reduced
hours

= 1 if experienced a reduction in working
hours due to COVID-19

802 318

Num. COVID-19
positive friends

How many relatives or close friends have
tested positive for COVID-19

799 318

Risk MPL1 num safe Number of safe choices in MPL task 1
(known probabilities)

802 318

Risk MPL2 num safe Number of safe choices in MPL task 2
(known probabilities)

802 318

Uncertainty MPL1
num safe

Number of safe choices in MPL task 1
(unknown probabilities)

802 318

Uncertainty MPL2
num safe

Number of safe choices in MPL task 2
(unknown probabilities)

802 318

Time MPL1 num
sooner

Number of sooner choices in MPL task
1

802 318

Time MPL2 num
sooner

Number of sooner choices in MPL task
2

802 318

Time MPL3 num
sooner

Number of sooner choices in MPL task
3

802 318

Time MPL4 num
sooner

Number of sooner choices in MPL task
4

802 318
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Table C.2: Correlations between number of years living with twin and absolute di↵erence
between twin pairs in economic preference variables

Correlation P-val

Risk MPL1 num safe -0.063 0.054
Risk MPL2 num safe -0.049 0.113
Uncertainty MPL1 num safe -0.021 0.514
Uncertainty MPL2 num safe -0.029 0.364
Time MPL1 num sooner -0.026 0.376
Time MPL2 num sooner -0.05 0.104
Time MPL3 num sooner -0.005 0.889
Time MPL4 num sooner -0.024 0.432
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Table C.3: ACE share decomposition results: additional models

Model A C E

Risk preferences

MPL1 0.01 (0.00, 0.18) 0.10 (0.02, 0.22) 0.89 (0.73, 0.95)
MPL2 0.04 (0.00, 0.19) 0.05 (0.00, 0.13) 0.91 (0.75, 0.98)
Panel 0.01 (0.00, 0.10) 0.14 (0.05, 0.25) 0.86 (0.73, 0.93)
EUT 0.01 (0.00, 0.14) 0.09 (0.03, 0.17) 0.90 (0.75, 0.96)

Uncertainty preferences

MPL1 0.11 (0.01, 0.30) 0.06 (0.00, 0.24) 0.83 (0.67, 0.91)
MPL2 0.23 (0.10, 0.27) 0.05 (0.00, 0.18) 0.73 (0.60, 0.81)
Panel 0.21 (0.06, 0.40) 0.04 (0.00, 0.21) 0.75 (0.59, 0.85)
EUT 0.00 (0.00, 0.13) 0.19 (0.10, 0.28) 0.81 (0.67, 0.88)

Ambiguity preferences

MPL1 0.05 (0.00, 0.16) 0.00 (0.00, 0.03) 0.95 (0.83, 1.00)
MPL2 0.05 (0.00, 0.19) 0.00 (0.00, 0.02) 0.95 (0.80, 1.00)
Panel 0.24 (0.01, 0.52) 0.07 (0.00, 0.46) 0.69 (0.42, 0.77)
EUT 0.00 (0.00, 0.08) 0.05 (0.02, 0.08) 0.95 (0.86, 0.98)

Time preferences (Delay aversion)

MPL1 0.15 (0.07, 0.25) 0.00 (0.00, 0.02) 0.85 (0.75, 0.93)
MPL2 0.16 (0.08, 0.26) 0.01 (0.00, 0.03) 0.83 (0.73, 0.92)
MPL3 0.22 (0.14, 0.32) 0.00 (0.00, 0.01) 0.78 (0.68, 0.86)
MPL4 0.24 (0.15, 0.34) 0.00 (0.00, 0.05) 0.76 (0.65, 0.85)
Panel 0.21 (0.11, 0.33) 0.00 (0.00, 0.03) 0.79 (0.66, 0.89)
EXP 0.00 (0.00, 0.01) 0.20 (0.17, 0.22) 0.80 (0.77, 0.82)
EUTEXP 0.01 (0.00, 0.03) 0.24 (0.22, 0.26) 0.75 (0.73, 0.76)
QH 0.27 (0.23, 0.31) 0.01 (0.00, 0.02) 0.72 (0.68, 0.75)

Time preferences (Non-stationary)

MPL1-MPL3 0.04 (0.00, 0.12) 0.01 (0.00, 0.35) 0.95 (0.62, 0.99)
MPL2-MPL4 0.08 (0.02, 0.16) 0.00 (0.00, 0.16) 0.91 (0.76, 0.97)
Panel 0.14 (0.00, 0.48) 0.09 (0.00, 0.46) 0.77 (0.46, 0.85)
QH 0.10 (0.02, 0.23) 0.10 (0.03, 0.18) 0.81 (0.71, 0.87)

Note: See Figure 5–9 for further details.
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