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Preface

In a classic paper 50 years ago, Kugel and Khomskii demonstrated that in strongly-correlated
systems orbital ordering can arise from a purely electronic super-exchange mechanism and not
just the conventional co-operative Jahn-Teller effect. This work opened the field of orbital
physics which, since then, is undergoing continuous growth. It was understood that, besides
orbital ordering, super-exchange can give rise to the orbital analogue of spin-liquid states. It was
shown that the directional character of the orbitals can introduce anisotropic super-exchange
interactions, which, in a simplified setting, are described by compass models, a prototype for
the Kitaev model. More surprising phenomena arise from the entanglement of spin and orbital
degrees of freedom. New developments aim at tuning orbital occupations by pushing the system
out of equilibrium, as well as at orbital-controlled electronics.

The goal of this year’s school is to provide students with an overview of the state-of-the art
in the field of orbital physics and the techniques used to investigate strongly-correlated systems
hosting phenomena stemming from orbital degrees of freedom. After introducing fundamental
models and effects, lectures will focus on their realizations in materials. Advanced lectures will
address orbital phases and Kitaev systems, as well as theoretical approaches and experimental
probes of spin, orbital, and charge degrees of freedom.

A school of this size and scope requires backing from many sources. We are very grateful for
all the practical and financial support we have received. The Institute for Advanced Simulation
at the Forschungszentrum Jiilich and the Jiilich Supercomputer Centre provided the major part
of the funding and were vital for the organization of the school as well as for the production
of this book. The Institute for Complex Adaptive Matter (ICAM) continued also this year to
endorse the school and supplied additional funds.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jiilich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with proof-
reading the manuscripts, often on quite short notice: Elaheh Adibi, Qiwei Li, Neda Samani, and
Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Holzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini and Erik Koch

August 2023
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1.2 Eva Pavarini

1 Introduction

The term orbital ordering (OO) indicates the emergence of a broken symmetry state in which
localized occupied orbitals form a regular pattern, in a similar way as spins do in magnetically
ordered structures. Orbital ordering phenomena typically occur in Mott insulators with orbital
degrees of freedom; for transition-metal compounds, the main focus of this lecture, the latter
stem from the partially filled d shells of the transition metal. The perhaps most representative
case is the perovskites KCuFs3, shown in Fig. 1. In first approximation KCuFj is cubic (O, point
group) with Cu?* at the center of a regular octahedron of F~ ions (anions), enclosed in a cage
of K* (cations). Due to O;, symmetry at the Cu site, the d manifold, 5-fold degenerate for free
Cu?", splits into a ¢y, triplet (zz, yz, xy), lower in energy, and a e, doublet (2 —y?* and 322 —1?);
the electronic configuration of the Cu®" ion is thus tggez (one 3d hole). The tq, states are
completely filled and do not play any active role in OO; instead, electrons in the eg configuration
have orbital degeneracy d=2. Making an analogy with spin degrees of freedom, they behave as
an effective 7=1/2 pseudospin; in this view, one of the two e, states, say |x?—y?), plays the role
), and the other one, |322—7?), of the pseudospin down, | ). The

two pseudospin states are degenerate and, by symmetry, one could expect them to be equally

of the pseudospin up,

occupied. In reality the symmetry is broken and KCuF; is orbitally ordered with the orbital
structure shown in Fig. 1; depicted are the empty (hole) e, states at each Cu site. Furthermore,
the system exhibits a co-operative Jahn-Teller (JT) distortion, also shown in Fig. 1, with long
and short Cu-F bonds alternating in the ab plane. Indeed, the two phenomena — electronic
OO and structural JT distortion — are concurrent; it is therefore difficult to say which one is
the cause and which one is, instead, the effect. This is a classical case of a chicken-and-egg
problem. The second paradigmatic system showing OO is LaMnOs (ion Mn3*, configuration
3d*), the mother compound of colossal magnetoresistance manganites, also a perovskite. Due
to the Hund’s rule coupling J, the actual electronic configuration of Mn3™ is tgge;. The half-
filled ¢3 , state has no orbital degeneracy; the only orbital degrees of freedom are, as for KCuFj,
those associated with e, electrons. Again, the system is orbitally ordered and OO goes hand
in hand with the co-operative JT distortion. Among o, Systems, i.e., materials with partially
filled t5, shells, classical examples of orbitally-ordered crystals are the perovskites LaTiO3 and
YTiOs (configuration ¢3,), LaVO3 and YVOs (23,), and Ca;RuOy (t5,); in these cases the to,
electrons behave as an orbital pseudospin 7=1. Although this is not a prerequisite for orbital
ordering, as we have seen, many orbitally-ordered materials are perovskites; for this reason in
the present lecture we will use the perovskite structure as representative.

The origin of orbital ordering has been investigated for decades. One of the problems in clari-
fying its nature is that, while magnetic order can be directly probed, e.g., via neutron scattering
experiments, orbital ordering is typically only indirectly observed. Indeed, its principal hall-
mark is the presence of the co-operative Jahn-Teller distortion itself. Identifying the origin of
orbital ordering is thus intimately related to finding the cause of the co-operative Jahn-Teller
distortion. In this lecture I will first illustrate the two main mechanisms [1, 2] which have
been proposed as possible explanation for OO phenomena, the classical Jahn-Teller effect [1],
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Fig. 1: Crystal structure, distortions, and orbital ordering in KCuF3. Cu is at the center of
F octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The
pseudocubic axes X, y, z pointing towards neighboring Cu, are shown in the corner. Short (s)
and long (1) CuF bonds alternate between x and y along all pseudocubic axes (co-operative
Jahn-Teller distortion). The distortions are measured by §=(1—s)/(1+s) /2 and y=c/a/2. R is
the experimental structure (v=0.95, 6=4.4%), Rs (y=0.95) and Is (y=1) two ideal structures
with reduced distortions. In the Iy structure the cubic crystal-field at the Cu site splits the 3d
manifold into a ty triplet and a e, doublet. In the R structure, site symmetry is lowered further
by the tetragonal compression (y<1) and the Jahn-Teller distortion (0 # 0). The figure shows
the highest-energy 3d orbital. From Ref. [3].

perhaps enhanced by Coulomb repulsion [4], and Kugel-Khomskii (KK) superexchange [2].
Kanamori well illustrated the first mechanism in an influential work [1] in 1960; the main idea
is that electron-phonon coupling yields a static Jahn-Teller distortion, which lowers the symme-
try of the system and produces a crystal-field splitting. As a consequence, electrons preferably
occupy the lower energy states, giving rise to a periodic pattern of occupied orbitals. This is
self-evident in the limit in which the crystal-field splitting is very large, let us say, larger than
the bandwidth; the lower-energy states at each site will be clearly the first ones to be occupied.
If, however, the bandwidth is large in comparison with the crystal-field splitting, the hopping
integrals can strongly reduce such a tendency to orbital ordering. A natural question thus arises
at this point. How large should the crystal-field splitting be to give rise to a orbitally-ordered
state? To answer this question we have to remind ourselves that transition-metal systems with
partially filled d shells are also typical examples of strongly-correlated materials. Their low-
energy properties are believed to be well described by a generalized multi-band Hubbard model

H = Hy + Hy,
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the sum over a one-electron term H, describing the transition-metal d bands and a Coulomb
electron-electron repulsion term Hy;. The one-electron term is

=72 2.0 Lo it

o mm'

T

where Cimor

creates an electron at site ¢ with spin ¢ and orbital quantum number m, and the pa-
rameter tn;m, are the hopping integrals (i#i") or the crystal-field splittings (i=i"). The Coulomb

repulsion can be written as

1 T T
- 5 ZZ Z Z Umamﬂm&ml Clm oCim U’szﬁa’czm o

i 00’ memy mymi

The elements the Coulomb interaction tensor, Uy, mgmy, m/,» Can be expressed in terms of the
Slater integrals.! Here we will restrict the discussion to the e, or t5, manifolds only. In this
case, in the basis of real harmonics, the Hubbard model takes the form

Z Z Z tmm’ sza im'oc +U Z Z nzmT”zmi

i’ o mm’/

+ % Z Z Z (U—2J_J5070/) ﬁimaﬁim’a/

i oo’ m#Em/

—J Z Z [c}mTcle 1Cim Cim ¢+Csz¢Cim J,C;rm’ icim’T] , (D
i m#m/
where m, m' are here either ¢y, or e, states, U,m/mm =Up m=U—2J(1—6,, »v) and, for m #
M, Upimmim="Jm n=4J. The last two terms describe the pair-hopping and spin-flip processes
(Unmm/my=Jm m if we use a basis of real harmonics, while for spherical harmonics Uy, =0).
Finally, U=Uj and J=/J; (ty, electrons) or J=J, (e, electrons), with

8 51
=F + = F+ F
UO 0+5L7avg7 javg 714( 2+ )
3 20 1
J=—Fh+ ——F Jo = — 2T ave + 3J71 .
T 2+ 9 49 2 Tavg + 31

In strongly correlated systems described by a Hamiltonian of type (1), it turns out that a small
crystal-field splitting, a fraction of the bandwidth, is sufficient to produce orbital order even at
high temperature. This happens because the Coulomb repulsion effectively enhances it, while
suppressing orbital fluctuations [4]. Hence, the mechanism illustrated by Kanamori becomes
very efficient in the presence of strong correlations (small ¢/U limit, the typical limit for Mott
insulators; here ¢ is an average hopping integral). This is, however, not the end of the story:
Coulomb electron-electron interaction provides, in addition, an alternative explanation of the
origin of orbital ordering. In a seminal work, Kugel and Khomskii [2] have shown in 1973
that, in the presence of orbital degeneracy, many-body effects can produce orbital ordering

'For a pedagogical introduction see, e.g, Ref. [5].
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Fig. 2: The unit cell of a cubic perovskite ABCs and its symmetry axes; the lattice con-
stant is a. The transition metal B (red) is at (0,0,0); the ligands C (green) are located
at (£a/2,0,0), (0,4a/2,0),(0,0,+a/2) and form an octahedron; the cations A are located
at (£a/2,+a/2,+a/2), (£a/2,Fa/2,+a/2), (Fa/2,+a/2,+a/2), (a/2,+a/2,Fa/2) and
form a cube. The bottom figures illustrate the rotational symmetries of the cell.

even in the absence of a static distortion, i.e., of a crystal-field splitting. This happens via
electronic spin-orbital superexchange, the effective low-energy interaction which emerges, in
the small ¢/U limit, from the orbitally-degenerate Hubbard model. In this picture, the co-
operative Jahn-Teller distortion is rather the consequence than the cause of orbital order. As I
already mentioned, the predictions of the two theories for the final broken-symmetry structure
are basically identical for most systems; thus it is very hard to determine which of the two
mechanisms, Jahn-Teller effect or Kugel-Khomskii superexchange, dominates. In the last part
of the lecture we will see how the problem was recently solved in representative cases [3,6] by
using a new theoretical approach based on the local-density-approximation + dynamical mean-
field theory (LDA+DMFT) [7-10] method. For the paradigmatic systems KCuF3; and LaMnOQOs,
it was shown that Kugel-Khomskii superexchange alone, although strong, cannot explain the
presence of the Jahn-Teller distortion above 350 K (KCuFs3) [3] and 650 K (LaMnOs) [6];
experimentally, however, the distortion persists in both systems basically up to the melting
temperature. This leads to the conclusion that a mechanism directly generating a static crystal-
field splitting, such as the standard Jahn-Teller effect, is necessary to explain the experimental
findings. In fact, for KCuF;5 and other ionic systems, it turns out that even the classical JT
picture fails. A new mechanism, based on Born-Mayer repulsion, has to be invoked to describe
the actual experimental structure and the associated ordering at high temperature [11]. A true
Kugel-Khomskii system was recently identified in LaVOg3 [12].



1.6 Eva Pavarini

2 Cubic crystal-field splitting

Let us consider a system with the ideal cubic perovskite structure ABC3, shown in Fig. 2. In
this structure, B is the transition metal with partially filled d shell. The site symmetry at site B is
cubic; thus, as we mentioned before, d states split into e, and t5,. Let us understand how exactly
this happens. For a free ion, the potential vg () which determines the single-electron energies
is rotationally invariant, i.e., it has symmetry O(3). This means that all single-electron states
within a given [ shell are degenerate, as it happens in the case of hydrogen-like atoms. When the
same ion is inside a molecule or a solid, vg(7) has in general lower symmetry, corresponding
to a finite point group.? Thus one-electron states within a given shell /, degenerate for the
free atom, can split. The symmetry reduction arises from the crystal field; the latter has two
components, the Coulomb potential generated by the surrounding charged ions, dominant in
ionic crystals, and the ligand field due to the bonding neighbors. In this section we will analyze
the first contribution; the covalent contribution to the crystal-field splitting is discussed in the
next section. Both effects give rise to a similar splitting of levels; which contribution dominates
depends on the system.

Let us thus assume that the crystal is perfectly ionic and that the ions can be treated as point
charges ¢, (point-charge model). Then, the one-electron potential can be written as

Qo
T):Za:mzvo +Z|R _r|_U0(T)+UC(r)7 2)

where R,, are the positions of the ions and ¢, their charges. The term v,(r) is the ionic central
potential at site Ry, with spherical symmetry. The term v.(r) is the electric field generated at a
given site Ry by all the surrounding ions in the crystal and it is called crystal-field potential.
For the perovskite structure ABC3; we are interested in the crystal-field potential at the site
of the transition metal, B. Let us first assume that only the contribution of nearest neighbors
(the negative C ions, typically oxygens or fluorines) is relevant. The six C ions are located at
positions (+d¢, 0,0), (0, £d¢, 0), (0,0, £d) and have all the same charge g¢, while the B ion
is at (0,0,0); in terms of a, the cubic lattice constant, d-=a/2. Then we can write the potential
around ion B as

x r z T
UR<T>_7+%lAU<dC dc>+A (dc dc)—l—Av(dC dc)]

where

Av(&; p) =

\/1+p

1— -2
1+p 14p2

Via the Taylor expansion

| L8, 5
VI 21T 8" T 16"

%For a concise introduction to group theory see, e.g., Ref. [13], chapter 6.

35 1,
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we can find an approximate expression of Av(¢; p) for small &, i.e., close to ion B; the first
contribution with less than spherical symmetry is

35 3 3
Vot (T) = Zg_g <£U4 +yt+ 2t - 57’4) =D (:1:4 +yt+ 2t — gr4> )
We can rewrite this potential as
(evLs 5
Vot (1) = iq_??“‘ Y50, 0) + 4/ 7 (Vi (0, 90) + Y24(0,9)) | 3)
3 d 14
where
31 3 1 35z% —3022%r% + 3rt
Yy (0 = = (35cos*¥ —30cos?9+3) =——
o(0e) = g \/E( o R AT = ’
, + )4
Y0, 0) = Sy e sin? e = 8 [ty :

16V 2r 16Vor ot

To obtain the crystal field due to the cubic cage of cations A (with charge ¢4), shown in Fig. 2
we repeat the same calculation; the main difference is that there are eight A ions, located at
positions (£d¢, £d¢, £de),(Fde, £do, de), (£de, Fdo, de), (£de, £de, Fde), with the
distance from the origin being d 1=v/3a /2. By following the same procedure that we used for
B octahedron, one can show that

~ 8qa (dc’
Ucube(r>_ §Q_C (a) UOCt(T);

i.e., Ueupe (1) has the same form as v, (7); this happens because a cube and an octahedron are
dual polyhedra® and have therefore the same symmetry properties. If g4 /qc > 0, Veupe(T) has
opposite sign than v,.(7); in the case of a perovskite, however, A positions are occupied by
cations, i.e., positive ions; thus the crystal field due to the A cage has the same sign of the crystal
field generated by the B octahedron.

The crystal-field potential v, () lowers the site symmetry and can therefore split the (2/+1)-fold
degeneracy of the atomic levels. To calculate how the [ manifold splits, we use two approaches.
The first is exact and based on group theory. We assume for simplicity that the symmetry is only
O (group of the proper rotations which leave a cube invariant); using the full symmetry group
of the cube, O, = O ® C; (where C; is the group made by the identity and the inversion) does
not change the result, because the spherical harmonics are all either even or odd. The character
table of group O is given by

partner functions O |E 8C3; 3C, 6C5 604
(2% +y? + 2?) A | 1 1 1 1 1
A1 1 1 -1 -1 @
(22 —y*322—7r?) E|[2 -1 2 0 0
(Rs, Ry, R.) (x,y,2) |3 0 -1 -1 1
(xy,xz,yz) |3 0 -1 1 -1

3Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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Let us explain this table. The first line yields the group, here O, and the symmetry operations
of the group, collected in classes Cy, here { E'}, {C3}, {Cs}, {C4}, {C4}. For each class only a
representative element is given and the number Nj, in front of this element yields the number
of operations in the class; for example 8C} indicates 8 symmetry operations in class {C3}. The
symmetry operation C,, is an anticlockwise rotation of an angle & = 27 /n. For a finite group
with h elements, the h group operations {O(g)} can be expressed as h matrices {I'(g)} acting
on an invariant linear space; the basis of this space, {|m)}, can be, for example, a finite set of
linearly independent functions, such as the spherical harmonics with angular quantum number
[. The collection of matrices {I'(g)} is a representation of the group; the dimension of the
invariant linear space yields also the dimension of the matrices, i.e., the dimensionality of the
representation. Each group has infinitely many possible representations, but some sets are spe-
cial and play the role of an orthonormal basis in a space of vectors; they are called irreducible.
If G is the group of operations which leave the Hamiltonian invariant, the irreducible represen-
tations of G can be used to classify all eigenstates of the Hamiltonian; eigenstates which build a
basis for different irreducible representations are mutually orthogonal and have typically (leav-
ing the cases of accidental degeneracy and hidden symmetry aside) different energies. The
irreducible representations [ of group O are listed in the first column of Table 4, below the
group name; they are A; (trivial representation, made of 1-dimensional identity matrices), Ao,
also 1-dimensional, F, two-dimensional, and 7} and 75, both three-dimensional. The numbers
appearing in Table 4 are the characters y;(g), defined as

Xilg) = Tr Li(g) = Y _(miTi(g)lm) = > I (g).

m

For a given representation (corresponding to a line of Table 4) the character for a specific ele-
ment can be found below the corresponding class label (columns of Table 4); all elements in the
same class have the same character. Thus the second column of the character table, showing the
character of the identity, yields also the dimensionality d; of the representation itself. Next we
calculate the characters of the matrix representation 1" constructed using spherical harmonics
with angular quantum number [ as a basis. An easy way to do this is to assume that the rotation
axis is also the axis of quantization, i.e., Z; the characters do not depend on the actual direction
of the quantization axis but only on the angle « of rotation. Thus for O(g) = C,, we have

COé Y7ln(197 90) :len(ﬁa SO_CO = e*ima len(ﬁa 90)

F,,ilm/ (Ca) :6mm/€7ima.

This yields the following expression for the character

l

: 1
l —ima Sln(l+§)05
C’a — = .
X ( ) m§:l € sm%
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The characters for representations I are therefore

o) E 8C5 3C, 6C, 6C4
I=rs|1 1 1 1 1
mn=rr{3 0 -1 -1 1
I?=rt\s5 -1 1 1 -1
m=rr 1 -1 -1 -1

In spherical symmetry (group O(3)) representations I are irreducible. In cubic symmetry
(group O), instead, the I’ ! can be reducible, i.e., they can be written as the tensorial sum &
of irreducible representations of the group O. The various components can be found by using
the orthogonality properties of irreducible representations, which lead to the decomposition
formula
. 1 N
M=@@al;  with o= (G| =23 hi@)])'(9), (5)
i g

where h, the number of elements in the group, is 24 for group O. Hereafter the symmetry
representations of electronic states are written in lower case to distinguish them from capital
letters which we will use later for labeling vibrational modes. We find

I° = ap
Fp - tl
Fd = e@tg

Ff = &Q@tl@tg.

Thus, in cubic symmetry, the s- and the p-functions do not split, because the a; irreducible rep-
resentation is one-dimensional and the ¢; irreducible representation is 3-dimensional. Instead,
d-functions split into a doublet and a triplet, and f-functions into a singlet and two triplets.
To determine which functions {|m);} form a basis (a so-called set of partner functions) for a
specific irreducible representation /; we can, e.g., use the projector for that representation

P = > o)l 00), ©

In our case, we can read directly the partner functions {|m);} for a given irreducible repre-
sentation of the group O in the first column of Table 4, on the left. In short, for representa-
tion e possible partner functions are (z2—y?, 322—r?) and for representation ¢, we can instead
use (ry, xrz, yz). A small step is still missing: As we already mentioned, the full symme-
try of the B site is Oy, and the group O}, can be obtained as direct product, O, = O ® C};
with respect to O, group Oy, has twice the number of elements and classes, and thus twice the
number of irreducible representations. The latter split into even (a4, asg, €4, 14, t24) and odd
(@14, A2y, €y, tu, tay). All d-functions are even, and therefore z2—y? and 322—r? are partners
functions for the e, irreducible representation, while zy, xz, yz are partner functions for the
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to, irreducible representation. Summarizing, to, states (zy, 2z, and yz) and e, states (z2—y?

and 32%2—r?) have in general (again excluding the cases of accidental degeneracy and hidden
symmetry) different energy.

Group theory tells us if the degenerate 2/ + 1 levels split at a given site in a lattice, but not of
how much they do split, and which orbitals are higher in energy. We can, however, calculate
the crystal-field splitting approximately using the potential (3) as a perturbation. This is the
second approach previously mentioned; differently from group theory, it is not exact, but it
gives us an estimate of the size of the effect and the sign of the splitting. For d states we
can calculate the elements of the octahedral potential v,.¢(7) in the basis of atomic functions
Urim(p, 9, 0)=Ru(p)Y.L (9, ), where R,(p) is the radial part, p=Zr, Z is the atomic number,
Y™ (40, ¢) a spherical harmonic, and n the principal quantum number (Appendix B). We obtain

(n20 |Doct|tnz0 ) = +6Dg (Una1[Doct|Pn2s1) = —4Dq
<¢n2i2|@0%|¢”2i2> =+ Dq <¢n2:|:2|@oct|¢n23|32> = +5Dq
where Dg=qc(r*)/6d and (r*)= [ r?dr r* R2,(Zr). The crystal-field splitting between e,
and t,,-states can be then obtalned by diagonalizing the crystal-field matrix
Dqg O 0 0 5Dq
0 —4Dq 0 0 0
Hep=1 0 0 6Dq 0 0
0 0 0 —4Dq 0
5Dg 0 0 0 Dq

We find two degenerate e, eigenvectors with energy 6 Dgq

Wn20> = |3Z2 - 7”2>7

1 2 2
E(|¢n2_2>+|¢n22>) = [z* —y7),

and three degenerate 5, eigenvectors with energy —4Dq

(an 2> |wn22>) = ‘:Cy>7
(an 1)— |¢n21>) = |z2),

SRS

(|wn2 1>+|7/1n21>) = lyz).

The total splitting is
Acr = E.,—Ey,, = 10Dq.

Thus the e,-states are actually higher in energy than the ¢,,-states. This happens because e,
electrons point towards the negative C ions (see Fig. 3), and will therefore feel a larger Coulomb
repulsion than ¢, electrons, which have the lobes directed between two negative C ions.
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Fig. 3: The Cu e, and tyy Wannier orbitals for the cubic perovskite KCuFs, obtained from first
principles calculations, using a Wannier basis that spans all bands.

How general is, however, this result? We obtained it via a truncated Taylor expansion of the
potential close to the nucleus. Does this mean that we have perhaps neglected important higher-
order terms? For a generic lattice, we can expand the crystal-field potential (2) in spherical
harmonics using the exact formula

|r1__r2| jg: k+1 Qk—%l j{: Y’ 027¢2 (ﬁ17¢1>

where r— ( r5) is the smaller (larger) of r; and r5. The crystal-field potential takes the form

0 k
=2 2. BY; ™
k=0 q=—k

where Bg = (—1)1B* o Although the series in (7) is in principle infinite, one can terminate it
by specifying the wavefunctions, since

(YLIYFYLy =0 if k> 2l

For example, for p electrons k& < 2, for d-electrons, k& < 4, and f electrons k < 6. Thus, for
d-electrons and Oj symmetry, the terms that appear in the potential (3) are actually also the only
ones to be taken into account, because all other terms yield an expectation value equal to zero.
Finally, the derivation of both equations (3) and (7) presented here might let us think that the
first-nearest neighbors are those that determine the crystal field. This is, however, not always
the case, because Coulomb repulsion is a long-range interaction; for example, in some systems
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Fig. 4: Independent Slater-Koster two-center integrals for s, p, and d atomic orbitals (Appendix
B). The label o indicates that the bonding state is symmetrical with respect to rotations about
the bond axis, the label 7 that the bond axis lies in a nodal plane; the label § that the bond axis
lies in two nodal planes.

the first-nearest neighbors yield cubic symmetry at a given site but further neighbors lower the
symmetry.* Furthermore, the point-charge model discussed in this section is useful to explain
the relation between crystal field and site symmetry, however yields unsatisfactory results for
the crystal-field splitting in real materials. Corrections beyond the point-charge approximation
turn out to be important. In addition, as we will see in the next section, in many systems
the crystal field has a large, sometimes dominant, covalent contribution, the ligand field. The
modern approach to calculate crystal-field splittings including the ligand-field contribution is
based on material-specific potentials obtained ab-initio via density-functional-theory (DFT) and
the associated DFT localized Wannier functions. Nevertheless, it is worth to point out the
remarkable success of the point-charge model in giving qualitatively correct d crystal-field states
in cubic perovskites; such a success relies on the fact that this approach, even if approximate,
yields the exact symmetry of final states, i.e., the same obtained via group theory, and does not
neglect any relevant (e.g., high-order) term.

“This means that, of course, Oy, is not the actual symmetry of the site.
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Fig. 5: Illustration of the decomposition of a general s-p two-center integral in terms of Vp,.

3 Tight-binding e, and 5, bands of cubic perovskites

In this section we will construct the bands of KCuFj3 in the cubic limit using tight-binding
theory. Let us first remind ourselves of the crucial steps of this approach. The one-electron
Hamiltonian can be written as

. 1 1
he(r) = =5V + D Jv(r—Ti~Ra) = =5V +up(r),

where R, are the positions of the basis {«} atoms in the unit cell and T} the lattice vectors. We
take as a basis atomic orbitals with quantum numbers /m (we drop here the principal quantum
number for convenience). For each atomic orbital we construct a Bloch state

o (k) \/_Z Tk (r—T—R,), (8)

where N is the number of lattice sites. In the Bloch basis (8), the Hamiltonian and the overlap
matrix are given by

Hyoe (k) = (e, (k) he|vi (k).
O (k) = (U5, (R) U, (k).

These matrices define a generalized eigenvalue problem, the solution of which yields the band
structure. The Hamiltonian matrix is given by

Ha’am/<k):€l/ Oaa /( )+A€lml/ / —_Z . lai?nl.

Im,l’ Im,l'm Im,l’
za;éz ol

Here ¢, are the atomic levels, and Aefy, ., the crystal-field matrix elements

Aeh i :/d'r Yim(r—Ry) |:UR(’I")—U(’I"—RQ):| Uy (r—Ry) 9)
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Fig. 6: Unit cell of idealized cubic KCuF3 with cubic axes in the left corner.

which are two-center integrals. Finally,

t;:{f;’?v;’ = —/d’l" M(T‘—Ra—ﬂ) {UR(T)_U(T_RQ’_E’) 77ZJl’m’(lr'_R0/_T‘i’)' (10)

The hopping integrals (10) contain two- and three-center terms; if the basis is sufficiently local-
ioyi'a! ia,i'o!
) ~ _V ’

ized we can, however, neglect the three-center contributions and assume ¢/, Im.l'm? >

where
ey :/dr Vi (r—Ro=T,)0(r—Ro =T, (r—Ror—Ty)

is a Slater-Koster two-center integral (Appendix B). A generic Slater-Koster two-center integral
can be expressed as a function of a few independent two-center integrals, shown in Fig. 4 for
s, p, and d-functions. Apart from the o bond, which is the strongest, other bonds are possible;
the  bonds are made of orbitals which share a nodal plane to which the bond axis belongs,
and the ¢ bond, for which two nodal planes intersect in the bond axis connecting the two ions.
Fig. 5 shows how to obtain a generic two-center integral involving p and s orbitals.> Let us
now consider the case of the e, and ¢5, bands of KCuF3; here we assume for simplicity that the
system is an ideal cubic perovskite, shown in Fig. 6. The primitive cell contains one formula
unit (a single K cube in Fig. 1). The cubic axes are x, y, z, and the lattice constant is a. A Cu
atom at site R; is surrounded by two apical F atoms, F3 at R; + %z and Fg at R; — %z, and four
planar F atoms, F; and F, at R; + %:c and F; and F5 at R, + %y In Fig. 7 one can see the effects
of the cubic approximation on the e, bands: the crystal-field splitting of the e, states is zero, the
band width slightly reduced, gaps disappear, and the dispersion relations is sizably modified.
The cubic band structure in Fig. 7 was obtained with a unit cell containing two formula units, in
order to compare it with the band structure of the experimental (Jahn-Teller distorted) structure
of KCuF3; hence we see four (instead of two) e, bands. The band-structure of cubic KCuF; for

>More details on the tight-binding approach can be found in Ref. [13].
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Fig.7: LDA e, (blue) and ty4(red) band structure of KCuF'; for the experimental structure (R)
and ideal structures with progressively reduced distortions (see Fig. 1). Iy: simple cubic. The
unit cell used in this calculation contains two formula units. The figure is from Ref. [3].

a cell with one formula unit is shown in Fig. 8; in the following we will refer for comparison to
that figure only. Let us take as tight-binding basis the atomic 3d e, orbitals for Cu and the 2p
orbitals for F; we neglect for convenience the overlap integrals (i.e., we assume that our atomic
functions are, approximately, localized Wannier functions). For such a tight-binding basis the
only relevant Slater-Koster parameter is V,4,. The |[322—7?); and |z2—y?); states of the Cu at
R, can couple via V4, to |2°);, the p, orbitals of F5 and Fg, to |2%);, the p, orbitals of F; and F,
and to |y°);, the p, orbitals of F, and F5. From the basis |«); of localized atomic functions we

construct the Bloch states |ka) = LN >, e®Bijq),;, and obtain the tight-binding Hamiltonian
HeTgB |k z¢) |k x%) |k 1) k322 —r?) |k a? —y?)
|k =€) Ep 0 0 —2Vodo Sz 0
|k z%) 0 Ep 0 VodorSe  —V3VpieSe  (11)
Ik y") 0 0 p Vpdo 5y \/gvpdasy
|k3 322 — T2> _Q%dagz ‘/;)dggx V;)dggy Ed 0
|k $2 - y2> 0 _\/g‘/;odagz \/g‘/;?dagy 0 €d

where s, = ie” %2 sink,a/2, o = 3,y,2, 6, < €4 = £p + Apa, and Vpao < 0. If |Vpao | /Apa
is small, the occupied bands are F p-like, while the partially filled bands Cu e4-like. We now
calculate the bands along high-symmetry lines.® Along I'-Z, the eigenvalues ¢; (; < €;11) of

®Special points: I = (0,0,0), Z= (0,0, 7/a), X= (7/a,0,0), M= (7/a,7/a,0), R= (7/a,7/a,7/a).
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Fig. 8: LDA band structure of cubic KCuF's. The tyy bands are in red and the e, bands in blue.

HQ;B are
€9 = &
£3 = &p
[y = &4

€15 = &+ %Apd + %\/Aid + 16Vp%lo|sz\2

where ¢; (sign —) is bonding and F z-like, while 5 (sign +) anti-bonding and Cu 322 —r2-like.
Along I'-X, we have instead the dispersion relations

€9 = &
€3 = &p
[y = &4

€15 = &p + %Apd + %\/A?)d + 16‘/;;2dg|3x‘2

where ¢; is bonding and F z-like, while €5 anti-bonding and Cu z%—>-like. To obtain the
egq-like bands, instead of diagonalizing H, 61; B as we have done above, we can also use the down-
folding procedure, which, for non-interacting electrons, can be carried out exactly. This method
works as follows. We divide the orbitals in passive (F p) and active (Cu d), and write the
eigenvalues equation as

Hy, Hp |k p) o Iy 0 |k p)
Hy Hu | |kd)| = 0 Lu||lkd)]|

where H,,, (I,,) is the Hamiltonian (identity matrix) in the p-electron space (3 x 3), and Hyq
(144) the Hamiltonian (identity matrix) in the d-electron space (2 x 2). By downfolding to the d
sector we obtain the energy-dependent operator H;,;, which acts in the d space only

Hiy = Hag — Hap(Hpp — 5Izop)ill[[pda
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and a correspondingly transformed and energy-dependent basis set for the active space, |k d)..
The operator Hj; has the same eigenvalues and eigenvectors as the original Hamiltonian. In the
case of the e, bands (Hg; = H¢ ) of KCuF;

H;, ‘ |k 32%—r?). |k 22 —y?).
|k 32%—r?), |el,—2t2[5(cos kya+cos kya)+cos k.al Ztg[\/Tg(cos kya—-cos kya)] (12)
|k 22 —y?). 217[¥3 (cos kpa—cos kya)] el,—2t2[3(cos kya+cos kya)]

where the effective parameters are

2

o __ V;)da

t. = ,
€—¢&p

5:1 =4+ 3t7.

The downfolding procedure has renormalized the parameters ¢, of the original model (11),
but also introduced a new interaction: inter-orbital coupling. Furthermore, H7; and the Bloch
basis are now energy dependent. Along ['Z, the eigenvalues of (12) are given implicitly by the
equations e=e,4+2t7 —2t. cos k,a (band ¢;5) and e=¢,4 (band €,); in second-order perturbation
theory we find

2
o o __ pdo
lg ~t,, = ——

Apa’
€5 ~ €q + 2t — 2t7 cosk.a.

From Hamiltonian (12) it is relatively easy to see that the e, bands are 2-fold degenerate along
direction I'-R, to find the dispersion along I'-M and R-M, and to obtain the e,-like bands in
Fig. 8. By Fourier transforming the Bloch states |k 3z2—7?). and |k z*—y?). we can build

2 or 22—y* symmetry as the atomic orbitals,

a set of Wannier functions. They have 32%—r
and, additionally, they span, to arbitrary accuracy, the ¢, bands. These Wannier functions are
by construction longer range than atomic orbitals, since they have p tails on the downfolded
neighboring F sites.

We can now repeat the same calculation for the ¢5, bands. The minimal tight-binding basis is
of course different with respect to the case of e, bands. The states |zy); of the Cu ion located at
R; are coupled via V4, to the |y*);, the p, orbitals of F; and F, and to |z%);, the p, orbitals of
F, and F;; in a similar way, |xz); is coupled via V,4, to the |2%);, the p, orbitals of F; and Fy,
and to the |x¢);, the p, orbitals of F5 and Fg; finally |yz); is coupled via V,4, to the |2°);, the p,
orbitals of F5 and F;, and to the |y°);, the p, orbitals of F5 and Fs. After constructing for each
|a); the corresponding Bloch state, we obtain the tight-binding Hamiltonian. The latter splits
into three decoupled blocks,

HIP | ky?)  [ka”) |k ay)
ky") | & 0 2VoirSe
|k z°) 0 Ep 2V i Sy
|k3 SL’y> 2‘/pd7r§m 2‘/1)d71'§y Ed
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and cyclic permutations of x, y, and z (and, correspondingly, of a, b, and c). In the I'-X direction
we thus find

Eg/(k) =&q

) \/Ad+16 2 |sa]?
es(k) =ep + p

~Eg + 2257r - 215’T cos kza

where ¢7 = pdﬂ /A,q. By downfolding the oxygen states we obtain
y, Ik yz)e |k 22)e |k zy)e
|k yz)e | €] — 2tT (cos kya+ cos kya) 0 0
|k x2). 0 ell — 2tT (cos kya+ cos k.a) 0
|k yz)e 0 0 ell — 2tT (cos kya+ cos k.a)

where the parameters in the matrix are
=&q + 4t?,

|Vpar|?

T =
£E—¢&p

€
As in the case of the e, bands, we find renormalized energy levels and effective band disper-
sions; since different Cu ¢y, states couple to different F p states, and we neglected hopping
integral between oxygens, the zy, xz, and yz bands are totally decoupled in our model. We are
now in the position of calculating the (approximate) expression of the covalent contribution to
the e,-to, crystal-field splitting, i.e., the energy difference

Voo [Vpar|”
AC "\-’5/—5”:3‘pa —4 p
: d d Apd Apd

> 0. (13)

As we can see, the sign of the covalent crystal-field splitting is the same as that of the ionic
contribution. This happens for two reasons. First, the so-called d bands are the anti-bonding
states of the p-d Hamiltonian, hence both the energy of the e, and ¢,, states moves upwards due
to the interaction with the p orbitals. Second, o bonds are stronger than 7 bonds, hence ¢, states
shift to sizably higher energy than ¢,, states.

The tight-binding model we have used so far is oversimplified, but it already qualitatively well
describes the e, and 7, bands in Fig. 8. A more accurate description can be obtained including
other Slater-Koster integrals, such as the hopping to apical F s states, or between neighboring
F p states. With increasing number of parameters, it becomes progressively harder to estimate
them, e.g., from comparison with experiments; furthermore a large number of fitting parameters
makes it impossible to put a theory to a test. Modern techniques allow us, however, to calculate
hopping integrals and crystal-field splittings ab-initio, using localized Wannier functions as
the basis and the Kohn-Sham potential vz (7) as the one-electron potential; because Wannier
functions are orthogonal, the corresponding overlap matrix is by construction diagonal.
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4 Jahn-Teller effect

In order to introduce the Jahn-Teller effect we have to take a step backwards and start from
the central equation of solid-state physics, the eigenvalue problem HW = EW, defined (in the
non-relativistic limit) by the many-body Hamiltonian

- __ZV2 Z |'rz—n/ Z lr; — R | ZWV2 Z |R R

z;é’

a”

-~

Te vee ven T vm

Here {r;} are the coordinates of the NV, electrons, { R, } those of the N,, nuclei, Z, the atomic
numbers, and M, the nuclear masses. The Born-Oppenheimer Ansatz

({ri} {Ra}) = v({ri}; {Ra}) P({Ra}), (14)

splits the Schrodinger equation HW = EV into the system

IA{JM{W}; {Ra}) = 5({Ra})@/}({rl}, {Ra}>7

(15)
H,9({R.}) = EP({R.}),
where the Hamilton operators for the electrons (I:[ ) and that for the lattice (ﬁn) are
He =T, 4 Vee + Ven + Vium, (16)
H,=T,+c({Ry}) =T, + U,, (17)

and where in (17) we neglect non-adiabatic corrections.” In the electronic Hamiltonian (16)
the atomic positions { R, } are simple parameters. The electronic eigenvalue ¢({R,,}) acts as
potential for the nuclei and defines a Born-Oppenheimer (BO) energy surface. While (16) de-
scribes the electronic structure, (17) yields the equilibrium crystal structure and the vibrational
modes. These equations are impossible to solve in the general case. The first difficulty is
that Hamiltonian (16) describes the electronic quantum many-body problem. The latter can
be solved only approximately, for example the energy of the ground state can be obtained
via density-functional theory using one of the known approximations to the universal func-
tional. For strongly-correlated systems, advanced methods combine density-functional theory
with many-body approaches such as the dynamical mean-field theory [7,8]. The second issue
is the very high number of atoms, and therefore of { R, } parameters to explore; finally, even
if we solve the electronic many-body problem exactly, we still have to deal with the nuclear
many-body problem, Hamiltonian (17). Despite all these obstacles, let us assume for a moment
that, for a given system, we did solve the electronic problem for general values of { R, }. Let us
also assume that the set of positions { R, } = {R"} defines a specific crystal structure, whose

7We neglect the operator A,,, with elements (m|A,|m’) = =3 +} 1 3 WmIVatm) + (Um|Vathm:) - Vo
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electronic ground state (i.e., the lower energy BO surface) has degeneracy d > 1. We can at this
point ask ourself the question: Is structure { R} actually stable?

The Jahn-Teller theorem states that any electronically degenerate system can lower its energy
by undergoing some structural distortions, and therefore is unstable.® This is due to the cou-
pling between electrons and lattice. In order to better understand the microscopic origin of this
phenomenon, let us consider a system in a high-symmetry structure, { R® }, for which the elec-
tronic ground state has energy ({ R }) with degeneracy d > 1. This means that there are d
Born-Oppenheimer surfaces degenerate for { R, } = { R},

em({Ro}) = c({Ry}).

In the rest of the chapter we will take £({ R }) as the energy zero. The corresponding degenerate
electronic wavefunctions are ¢, ({r; }; {R%}). Let us expand the nuclear potential U,, for one
of these surfaces around the symmetric structure { R? }. This leads to the Taylor series

1
oy +5 DD

{RO} au alp!

Uay Ualy! + - - -
{RY}

o°U,
aau(?a’u’
where u, = R, — R are displacement vectors with respect to the equilibrium position, and
p=xz,y,z If {R} is an equilibrium structure, the gradient is zero and

A~

Ul + - =T, + UPR{ROY) + ..., (18)

aauaalﬂl {RO}

The standard procedure to diagonalize (18) consists of two steps. First we change coordinates
Uay = UapV M.
Second we introduce the dynamical matrix

1 1

and diagonalize it. Its IV, eigenvectors are the normal modes @,

DQn = W%Qm

Nn
Qnu = § § Any,apUap,

a=1 p=zy,z

02U,

D
Dos Oty

)

{Rr3}

withn = 1,...N,,, and v = x,y, z. The normal coordinates {(Q),,, }, together with the associ-
ated canonically-conjugated momenta { P, }, bring (18) in the form

2 1 2 2.2

Hy o~ >R +wiQ]. (19)

nv

8The only exceptions are linear molecules and Kramers degeneracy.
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In a crystal, this Hamiltonian yields the phonon energy levels. Let us now determine the pos-
sible /V,,, normal modes for a cubic perovskite. For simplicity we consider here only a single
octahedron and the modes associated with the vibrations of its atoms. Given that each atom can
move in three directions, and there are 6 atoms of type C and 1 atom of type B, in principle
such a system has 21 degrees of freedom; eliminating global translations (3 degrees of free-
dom) and global rotations (3 degrees of freedom), i.e., displacements which are not vibrations,
15 degrees of freedom are left, hence the system has 15 possible normal modes. In group the-
ory language, assuming again for simplicity that the group is O instead of O}, one can show
that these modes can be labeled as belonging to irreducible representations Ay, F, T} or Ts.
To obtain this result we first build a matrix representation of the group in the linear space of
all possible displacements; this space is 21-dimensional, and so is the associated matrix repre-
sentation /... The latter can be expressed as the direct product [iot = [ns @ ectors Where
I, 5. 1s the so-called atomic-site representation. [, s has as a basis the original atomic positions
(without displacements); in our case it is has therefore dimensionality 7. The character of I, .
for a given operation is simply the number of sites left invariant by that operation. Finally, in
group O the irreducible representation for a vector is [yt = 17; this can be seen from the
partner functions (x, y, 2) in Table 4. Summarizing all this in a character table, we have

O \E 8Cs 3C, 6C, 60,
[as. 7 1 3 1 3
et —rasgr.. 121 0 -3 —1 3

Once we know the characters for representation /., we can split the latter into irreducible
representations of group O via the decomposition formula Eq. (5). After subtracting (ten-
sor subtraction ©) the representations for mere translations (77) and mere rotations (77) of
the octahedron,” we arrive at the final decomposition of the vibrational-modes representation
Librations = 1 tot © Lvector © Lrotation = A1 @ E @ 2T, @ 2T5. Normal modes which are a ba-
sis for different irreducible representations have in general different energies. Let us focus on
modes A; and . We can obtain mode A; by using the projector, Eq. (6), for irreducible rep-
resentation A;. As a matter of fact, if we assume that atom F; (Fig. 9) is displaced by u,, by
applying the projector P41 to u; we generate automatically the linear combination of atomic
displacements (all having the same length) forming the mode of symmetry A;. This leads to

Qo = u1(qo) + ua(qo) + us(qo) + ualqo) + us(qo) + ue(qo).

9The representation for an improper vector (rotation) is I'oration = 11, as can be seen from the corresponding
partner functions (R, R,, I?;) in Table 4.
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Fig. 9: Unit cell (top) and vibrational modes @, ()1, and Q5 of cubic KCuFs.

Here wu; are the (normalized) displacements for the C; atom (see Fig. 9) which we rewrite as

ui(q) = za0(1,0,0)
ux(@) = 75%(0,1,0)
us(g) = 75%(0,0,1)
us(q) = —0(1,0,0)
us(qo) = —75(0,1,0)
ug(g0) = —5%(0,0,1)

The potential energy of such a breathing mode is
PH 1 2
U’VL - §CA1 qO .

The QQy mode expands or compresses the unit cell, but does not change its symmetry which
remains cubic. Hence, this mode has no influence on the stability of the structure, at most it can
affect the actual value of the lattice constant. More interesting are the two degenerate modes
of type E. These modes can be obtained in a similar way as we have done for @, this time
using the projector for irreducible representation £'; within the resulting 2-dimensional space,
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we choose as basis the mutually orthogonal modes that transform as the [ = 2 partner functions
of E, 22—1? and 32%2—r2. These are Q; and Q5, shown in Fig. 9. They are defined as

Q1 = ui(q1) +ua(qr) + us(qr) + us(qr),

Q2 = ui(q2) + u2(q2) + us(q2) + wa(q2) + us(q2) + ue(q2),

where the displacements are

ui(q1) = \/%ICH(L 0,0) ui(q) = —\/%(h(l, 0,0)

uz(q1) —5701(0,1,0)  ua(g2) = —542(0,1,0)

uz(q1) = (0,0,0) uz(qa) = V%Qz(& 0,1)
_ 1 _ 1

uy(q1) = —71%(1, 0,0) uy(q) = \/—1—2(]2(17 0,0)

’U,5(q1) = \/qul (Oa ]-7 0) U5(Q2) = \/%(h(oa 17 0)

ug(q) = (0,0,0) ug(qa) = _\/%%(07 0,1)

The corresponding quadratic potential has the form

n

1
Ut — 5%(61? +43).

The normal modes 7} and 75 can be obtained in a similar way; since they are not relevant for
structure stability in the example considered here we do not provide their form explicitly.

Up to now we have assumed that the hypothetical high-symmetry structure { R } is a stationary
point. In general, however, this might or might not be true. The behavior of the BO energy
surfaces close to the point in which they are degenerate allows us to separate them into two
classes, the first one in which { R?} is a stationary point for all degenerate electronic states m
(Renner-Teller intersection), and the second in which the surface is not a stationary point at
least for some of the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are
those for which VU, ({R%}) # 0 at least in some direction (see, e.g., Fig. 10). Let us now
calculate the first-order correction to the m degenerate eigenvalues due to a small distortion
around { R }. The electronic Hamiltonian (16) has matrix elements

. oM, .
<wm|He({Ra})‘wm/> = Z("bm‘ [W] Iwm/)uau 4= U#Em/ 4+ ....
o 1 {RY)

[

o
The perturbation U7, the Jahn-Teller potential, couples the degenerate BO energy surfaces; it
also couples electrons and lattice vibrations, as we can see from the coordinates u,,, appear-
ing in the expression above. Thus, if there are modes for which T # C I where I is the
identity matrix and C a constant, the system gains energy at linear order via a distortion which
lowers the symmetry; the Jahn-Teller theorem states that such modes always exist for electron-
ically degenerate systems (with the exceptions of Kramers degeneracy and linear molecules).
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Fig. 10: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The
slope of the curve at small distortions q,, q- yields the Jahn-Teller coupling constant \.

In order to better understand the effect of the electron-lattice coupling, we generalize the Born-
Oppenheimer Ansatz as follows

U({r} {R}) = D vm{ri}i {Ra}) em({Ra}).

To find the equations for the functions {®,,}, we write the Schrodinger equation HY = EV,
multiply on the left by 1),,,, and integrate over the coordinates of the electrons. We obtain

Pn({Ra}) = T+ 07| €, ({R.D) 2 Ut ({Ra}) = BO0({Re)). QO

The dynamics of the system close to the degeneracy point is determined by all degenerate
sheets. The minimization of the new potential energy yields a new structure { R%} in which the
electronic states are not any more degenerate. The modes that can produce such an instability
should satisfy the condition

Al S ({ m Y Fm] ® (Fvibrations 7A A1>>7

where /), is the irreducible representation to which the electronic degenerate states belong,
and [[},, ® I},,] is the symmetric direct product; for e, states, [¢, @ e,]=a; & e,. The trivial
representation A; has to be excluded from [, .ii0ns Decause, as already discussed, it does
not lower the symmetry. In the case cubic KCuFj, the relevant normal modes coupling to the
degenerate ¢, electronic states are thus the £/ modes; as for the electronic states, if the group
O — Oy, then ¥ — E,. Thus we can say that KCuFs is an example of a ¢, ® I/, Jahn-Teller
system, a system in which an electronic doublet (e,) is coupled to a doublet of normal modes
(E,). The form of the Jahn-Teller potential {/’" can be obtained from the effect of perturbations
of type Q1 and Q- on the crystal-field matrix. As for the crystal field, there are both a ionic and
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a covalent contribution. For the ionic contribution, we can use once more perturbation theory.
In this case, we have to take into account that the Cu-F distance d- depends on the direction,
i.e,

de — de + 0dy,
where ;1 = x,y, 2; the specific dd, values for each atom are given by the specific vibrational
mode. After summing up all contribution, the first non-cubic correction due to £, modes is

A’UJT:/\<Q2 QI).
a1 —Qq2

It is, at this point, useful to introduce pseudo-spin operators acting on the e, states, i.e., operators
7, with i = x,y, z and

TN = =1\, Tal N =+ ), Tyl N = =il )
L =+, ol /) =+ N\, Tyl ) =+l N\

where | ) = |2% — %) and | \,) = [32% — r?). In matrix form these operators can be written
as pseudo-Pauli matrices

(10N . (o1 . (o -
TZ_(O —1) T""’_<1 0) Ty_(z‘ 0)' D

We can then rewrite the Jahn-Teller potential as
AUJT =A (Chﬂ + q27ﬁz> )

where A ~ (qc/d%) (36/7+/3) > 0. This potential expresses both the essence of the Jahn-Teller
theorem and its relation with orbital order; the systems gains energy at linear order by making a
distortion; the latter produces a crystal-field splitting, which leads to preferential occupation of
the lower energy level. For example, if ¢; = 0 and ¢» < 0 (tetragonal compression) the 322 — -2
state is higher in energy. Let us now calculate the covalent contribution to the Jahn-Teller
potential. In this case the linear-order correction is

Aglm,l’m’(oa Roc + ’U,) - Aglm,l’m’(oa Ra) ~ VAf‘:lm,l’m’(oa Ra) -u

For e,-states we use for simplicity the following approximations'®

1 g
A€322—r2,3z2—r2 ~ |:TL2 - §(l2+m2):| Vdd0'7
V3

1 ~
A€322—7‘27J32—y2 ~ 7(l2—m2) |:7’L2 — §(l2+m2):| Vdd07

2 2\271;
A€$2_y2@2_y2 ~ Zl(l —m ) V;ldg.

10The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is
thus still valid, provided that V};/, are replaced by the corresponding crystal-field terms, which we indicate as V.



1.26 Eva Pavarini

Fig. 11: Linear combinations of e,-states, |9) = — sin 2|22 —y?) + cos 2|322—r?). The ¥ = 0°
orbital is the excited state in the presence of a tetragonal compression along the z axis, while
¥ = 127/3 are excited states for a tetragonal compression along x or y. This three-fold
degeneracy (rotation by +21/3) is due to cubic symmetry.

By summing up the contributions from all C ions for each mode, we obtain

AgJT(QM CI2) = A ( © N ) = )\<Q17A—x + qQ%z)a

g1 —4

where A ~ —@Vd’da > (. This is the same form of potential that we have obtained for the
ionic contribution. Again, if ¢; = 0 and ¢» < 0 (tetragonal compression) the 32%—r? is higher
in energy. In conclusion, if we neglect the kinetic energy of the nuclei (limit M, /m. — ©0),
the ground state of the system can be calculated by minimizing a potential energy of the form

A N N 1 ~

Ulqrgn) =0T+ 0P =2 [ 2 T )y —op @+ ) 1, (22)
q —9q2 2

where [ is the 2 x 2 identity matrix. To find the minimum of (22), it is convenient to introduce

polar coordinates, which we define as g = —qcosv,q; = —¢sind, so that for 0 < J < 7/2

we have ¢; < 0 (compression of z axis) and ¢g» < 0 (compression of 2 axis); this corresponds
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to the distortion of the octahedron labeled with number 1 in Fig. 1. In these coordinates

- cos sin v
U = -\ :
1 ( sin —cosv >
The diagonalization of matrix (22) yields two eigenvalues; the lower energy branch
Cg
E_(q) =—-X¢+ 7612
takes the form of a mexican hat, shown in Fig. 10. The minimum of E_(q) is obtained for
q = qo = A/C and has value
EJT = —)\2/QCE;
the quantity Ejyr is defined as the Jahn-Teller energy of the system. The electronic ground state
can be written as

¥ —7

¥ -7

|¥)g = —sin |z%—y?) + cos 1327 —12).

The excited state (hole orbital), with energy

c
Ei(q) =\ + TEQQ,

is then given by
v v
|¥)p = —sin §|x2—y2) + cos §|3z2—7‘2>.

The states |}) g with different ) are shown in Fig. 11. In the simple model discussed so far, all
states |) have the same Jahn-Teller energy. Cubic symmetry, however, only requires states

19), [9+21/3), [9—27/3)

to be degenerate. The additional (accidental) degeneracy is removed when we take into account
anharmonic terms, the lowest order of which has the form

U™ (qy, q5) = A(qg — 3quf) = Aqs(cos3 ¥ — 3 cos ¥ sin? 19) = —Aq> cos 30

and yields the tetragonal distortion as a ground state, with ¢} = 0, £27/3 for positive A and with
¥ = m,m £+ 27/3 for negative A. Higher-order terms can make the @, Jahn-Teller distortion
(¥ = m/2,m/2 £ 2w /3) more stable [1]. For a periodic lattice, mode @, leads to a co-operative
distortion where long and short bonds alternate in the = and y direction; in such a case, the hole
orbital rotates by 7/2 if we move from a Cu site to its Cu first-nearest neighbors in the ab plane.
Let us now analyze the different electronic configurations that can occur in perovskites. For

the electronic configuration 3d! =3t}

29> the procedure is as the one illustrated above, except that

194 states are 3-fold degenerate and form 7 bonds, which are weaker, therefore the splitting
introduced by the Jahn-Teller effect is smaller than for e, states. In the case of electronic
configurations 3d" with n > 1, to determine if the ion is Jahn-Teller active one has to consider
the degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states
are 3d' (Ti** in LaTiOs3) and 3d? (V3 in LaVO3), as also 3ti , 3t5 , 3t3,¢2, 3t e2; strong

2g> “"2g> “V2g-g> V297 g0

Jahn-Teller configurations are, e.g., 3d” (Cu®* in KCuFs) and 3t3,¢} (Mn*" in LaMnOs); the

configurations 3t3, and 33 e? are not degenerate and therefore usually not Jahn-Teller active.
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S5 Kugel-Khomskii superexchange

Let us now start from a totally different perspective, from the Hubbard model for a cubic per-
ovskite with partially filled e, or ¢y, shell. The Hamiltonian takes the form H = Hy+ Hy + Hy
where

H, :5dzzzﬁimg
HT— Zzzt zmo Cim'o

i#i" o mm/

HU _U Z Z nzanzmi + Z Z Z U 2<] J(SJJ ) nzmanzm o’/

oo’ m#m’

=D [Cimcimicimwcimw + Cimrcz'mﬁjmwcz‘m'?] )
i mtm/

and where m labels either the e, or the ¢y, orbitals. Kugel and Khomskii have shown that,
in the large ¢ /U limit, this Hamiltonian can be mapped onto an effective generalized superex-
change Hamiltonian with an orbitally-ordered ground state. The actual general super-exchange
Hamiltonian can be found in Ref. [20], for possible the e; and 3, configurations.

Here, to understand the origin of the orbital super-exchange interaction, let us simplify the
problem and consider first a system with only two atoms (i = A, B) and two orbitals (¢4 = &),
and for which the hopping matrix is diagonal in the orbitals

2 T T
HT =—t Z Z |:CAchm + CBmCAm:| .
o m

Furthermore, let us simplify the Coulomb interaction and neglect the spin-flip and pair-hopping
terms, so that

Hy — Hjy =U > > A iy, + % SN (U =27 = J0eo) rimeiiner.

i=AB m 1=AB oo’ m#m/

Finally, we assume that the systems has one electron per atom (quarter filling, e; configuration).
In the ¢ = 0 or atomic limit there are two types of possible states for this system, those in
which each atom is occupied by one electron, |1,1),, and those in which one atom has two

electrons and the other zero, |2,0),/. The 16 states of type |1, 1),, all degenerate with energy
1 T

E,(1,1) = 2¢,,, can be written as ¢}y, , Cp,. .

|0) with « = (ma0oa, mpog); here m;o; are
the quantum numbers for the electron at site i = A, B. There are 12 states |2, 0),, with one atom

occupied by two electrons; they are listed below together with their energies

12,0) 0 E.(2,0)
12,00im = chycl, 100 2, +U
12,0)i0m = CImTszw‘O) 2e., +U —=2J m' #m

12,0)3, = ¢ 0) 26, +U—3] m' #m

mao Zm e
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Fig. 12: Superexchange energy gain for possible quarter-filling ground states of a two-site
2-fold degenerate Hubbard model with orbital- and spin-diagonal hopping matrices.

The Coulomb repulsion U is positive and J is small with respect to U; therefore the |1, 1),
states define the ground-state manifold. If ¢ is finite but small (/U < 1), we can treat fIT as
a perturbation, and calculate the second-order correction to the energy of states |1,1),. This
correction is always negative (energy gain) and it is given by the matrix

1
En(2,0) — Eo(1,1)

AEO@,OQ(L 1) = = Z a1<17 1|IA{T|2> 0>O/ <27 O’[:[Tua 1>042

There are four interesting cases, depicted in Fig. 12. The first is the ferro-magnetic (same spin)
and antiferro-orbital (different orbitals) state, first line of the figure. The corresponding second
order energy gain (o; = ag = mo, m'o) is

B 2t2
U—-3J

AE,, o, (1,1) =

For the ferro-magnetic (same spin) and ferro-orbital (same orbital) state (second line in the
figure, oy = oy = mo, mo) the energy gain is, instead, zero

AE,, o, (1,1) = 0.
The reason is that no hopping is possible due to the Pauli principle. For the antiferro-magnetic
antiferro-orbital state (third line, oy = ag = mo, m’ — o), we have

2t>
AEa17a1(17 1) - —m,
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and finally for the antiferro-magnetic ferro-orbital state (a; = as = mo, m — o) we find

22
AEOq,oq(la 1) = —7
Among these four states, the ferro-magnetic antiferro-orbital state is thus the lowest in energy.
The main message is that the system gains superexchange energy by occupying preferentially
different orbitals with the same spin, although the orbitals are by themselves degenerate. The
16 x 16 matrix of the second-order energy corrections AFE,, o,(1,1) can be rewritten as the

effective superexchange Hamiltonian

Hlpaps o 1 L caenl|pa. o _ 1L
Noror + var, |1+ so5t] [or.on !

oI KSA .88 g4 Sf) (oA .08 — 04 05) - (s;‘ SB i) (og‘ 0B — i)}

where O; = 7;/2 are operators acting only on orbital degrees of freedom and 7 are the pseudo-

Hep =20, {SA .88 —

spin operators introduced in the previous section, Eq. (21), and

442 4t2 4t2
F_ = — F _ = F__ _- — .
T U T U —3J U—2J

When the second-order Hamiltonian is written in this form it is immediately clear that, among
the four states we considered, the ferro-magnetic antiferro-orbital state is lower in energy. This
happens because the superexchange coupling /7, _ is the largest. If the orbital degeneracy is
one, we can replace the terms O* - OF and O? OF with the ferro-orbital value 1/4; then, the
terms proportional to /. and /" _ drop out and we recover the Heisenberg superexchange
Hamiltonian, as expected for the one-band Hubbard model.

What about KCuF3 and LaMnO3? If we consider only hopping integrals between neighboring
B sites in the cubic perovskite structure, the hopping integral matrices take the simple form

00 3 V3 s
tj;jif—e< ) t:zif—ts(f ) t:;z:ﬂ—te< v ) @)
0 1 v3 —% 1

4 4 4

w
|—

The structure of these matrices can be obtained by using Slater-Koster two-center integrals.
The only non-zero hopping integral in the Z direction is the one between |322—r?) states. As
we have previously seen by using the downfolding approach, it is given by t. = V2, /(e —¢)).

As in the case of the two-site molecule, for integer filling (n electrons per atom) and in the
large ¢./U limit the lattice Hubbard model can be mapped onto an effective superexchange
Hamiltonian by downfolding high-energy states in which some of the atoms have an electron
number larger than n. Only two electronic configurations are relevant for orbital ordering, 651]
(LaMnQOs) and eg (KCuFj3). The remaining partially filled state, eg, is magnetic with S = 1 but,
due to Hund’s rule coupling ./, it exhibits no orbital degeneracy (L = 0). After excluding eg we

can, for simplicity, set / = 0. Let us now construct all atomic states | N, ), with IV, electrons.
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For a single atom they are

|Ne>a Ea’(Ne) d(Ne>
|0) E0)=0 d0) =1
1) = cl,,]0) E(1) = e, d(0) =4
2) = clwcmlgf|o> E(2) =25, +U  d(0)=6
13) = ci,wcm,Tch , i|o> E(3) =3e,,+3U  d(0) =4
|4) = CmTCmC ’TC 20y E(4) =4e., +6U  d(0) =1

The total (spin and orbital) degeneracy of the n-electron sector, d(N,), is given in the third
column. Let us consider two neighboring sites 7 and i’ and their states | N,)?, and |N!)?,, where
a and o' run over all degenerate states in the N.-electron sector. We define the collective
state of such a two-site system as |N, ) |N/)?,. Let us start from an e, configuration. In the
large-U limit, at quarter filling (n=1) the ground state will be within the N.=N/=1 mani-
fold, |G)={|1)?|1)?,}. The latter has a degeneracy 4", where N is the number of sites, here
N=2; this degeneracy can be partially lifted via virtual excitations to the doubly occupied states
IE)={]2)7 |0}, {]0)7|2)%,}, which in turn generate an effective low-energy Hamiltonian Hgp.
We can again calculate Hgp by treating Hrasa perturbation.

Let us consider at first only pairs of sites along the Z axis. In second-order perturbation theory
in Hr, we obtain for the lattice the following effective Hamiltonian

Ay ~ — > | B) (B}
E
— ___ZZZ{ ZTO' ZZ 0|ClTU (Cz T0'|2> <2|Cz TO') + (Z — Z/)} 57’7\(

2t21 o'—o pi i 1 ) i i 4
:_7§ZZ{< 1) PTO‘ U’PTJ —0 2(PTO'O'P—TO'U/+P—TO‘O'PTO'O'>}67-7\(7

where we already replaced in the denominator AE = E(2) + E(0) — 2FE(1) with its value, U,

and where, once more, | \,) = [322—r2), | /) = |2°—¢?). In Hamiltonian HZ, we introduced

the operators P

Too!?

which are given by
P77:0'0 - j’?’o”0> <0|c’i70/ = éiT (ézo’ + §:a" + §;a") ’

In this expression on the right-hand side we rewrote P’ _, as product of an orbital and a spin
term, defined as follows:

0t = (5 1+ (-17°0%) orr 0= (5 1+ (-1)781) door
ot =0"(1—6,) 85, =5 (1= 0ye)

6;7’ IOZ(l - 577") éz;a’ :Si(l - 6‘70/) )
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where (—1)? = +1 for spin (pseudospin) up and —1 otherwise; the operator I is the identity
matrix. Hence, we can express the effective Hamiltonian as

A 4 r . S NN oon, g Ny 1 L MM
b= S -5 o= 5] ot - 5] § oot - 4]
e QZS S il e R A 0

where I = 4¢*/U > 0. If we drop all processes involving orbital | ) we recover the usual
superexchange Heisenberg Hamiltonian for the one-band Hubbard model

rs F i il n;ny
o f S [ s-"].

Let us now consider two neighboring sites and the energy of some possible states |G) =
{]1)?|1)%,}. A ferro-magnetic spin configuration has energy

r
AETT,T’T - _Z(]- - 67,7")7

hence, there is an energy gain if the electrons occupy different orbitals, i.e., if the systems has
antiferro-orbital arrangement. Let us consider now a antiferro-magnetic spin arrangement. The
corresponding energy is
r r
ABrypy = =5 0mm0ny = (1= 0rr0)

The expression above shows that in the antiferro-magnetic case the system gains more energy if
the occupied state is | ) at both sites. Up to now we considered magnetically ordered states.
In LaMnO3; and KCuF3, however, orbital order takes place well above the magnetic transition.
Let us then assume that the system is orbitally ordered but paramagnetic, with occupied state

9 — 9 —
9); = — sin — " |22 —y?) + cos 2”;322—r2>

at site 7 and |J);+; = |9); at the neighboring site i’ = ¢ + 2. This choice corresponds to
ferro-orbital order along Zz, the type of stacking realized in LaMnOj (see Fig. 13). What is the
value of ¢/ than minimizes the energy? We can calculate it using the variational method. The
superexchange energy gain with respect to a paramagnetic paraorbital state is given by

AE(0) = % (C082(19—7r) +2 Cos(19—7r)) :

This function is minimized for ¢ = 0, an angle corresponding to a tetragonal compression. To
determine the optimal angle for the three-dimensional system we have in addition to take into
account the effective Hamiltonian stemming from virtual hoppings in the remaining directions.
Due to cubic symmetry, if we rotate the quantization axis, the superexchange Hamiltonian has
the same form in all directions; to sum up all terms we have merely to rotate back the quantiza-
tion axis to Z. Hence, we have to make the replacements

‘ 1 3
0 & o V3o
N 2

Z—X

. 1 . V3
T % _ T v T
0l o~ 500+ 520;

27
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Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with
the GdFeOs-type structure. From Ref. [6]. This system has the same structure of LaMnQOs.

Let us assume antiferro-orbital order in the plane, again as in the case of LaMnQOg, shown in
Fig. 13. This means that, for i’ = ¢ & & or i’ = i 4 ¢, the occupied state is

9 —
7T]322—7“2).

I—
|9y = + sin —— |22 —y?) + cos

2

We can easily verify that |0),,=|—v + 27),. This is state |¢); rotated by 7/2 (z — y, y — —x).
The total superexchange energy gain with respect to a paramagnetic paraorbital state is then

given by!!

3

AB(Y) = 1—F6 (3 cos2(19—7r)—§>.

This expression has a minimum for ¢ = 7 /2 (Jahn-Teller-like @, distortion). For the eg config-
uration (KCuF3), due to particle-hole symmetry, we obtain the same result. This can be verified
by observing, first of all, that the e, bands obtained from the hopping-integrals matrices (23)
—the bands which we have discussed in detail in Sec. 3— are symmetric with respect to the Fermi
level for half filling. In addition, the energy difference entering in the denominator of the su-
perexchange Hamiltonian for an ¢ ground state, AE = E(4) + E(2) — 2E(3), has the same
value (AE = U) as in the case of an e; ground state. The main difference between LaMnOg (e;)
and KCuF3 (eg), for what concerns the results presented in this section, is that the stacking along
z, ferro-orbital for LaMnOg, can be either antiferro- or ferro-orbital for KCuFj3; Fig. 1 shows
the case of antiferro-orbital arrangement. Remarkably, the variational energy gain AE(1)) is the
same for both types of stacking along Z, i.e., for |¢);+; = |); and for |),+; = |[-9+27);. The
conclusions of this section are thus identical for LaMnO3 and KCuF;.

"For the application of this approach to the general super-exchange Hamiltonian see Ref. [20].
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Fig. 14: Orbital order transition in KCuF'5. Orbital polarization p as a function of temperature
calculated in LDA+DMFT. R: experimental structure. Circles: idealized structures Rs and I
with decreasing crystal-field and U=7 eV. Green/Triangles: U= 9 eV, Iy only. Red/Squares:
two-sites CDMFT. From Ref. [3].

6 The origin of orbital ordering in materials

As we discussed in the introduction, the hallmark of orbital order is the co-operative Jahn-Teller
distortion. This static distortion gives rise to a crystal field, which splits the otherwise degen-
erate e, doublet or ¢y, triplet. Due to Coulomb repulsion, it turns out that even a crystal-field
splitting much smaller than the band width can lead to orbital ordering. The importance of this
effect for real materials has been realized first for LaTiOs and YTiO5 [4]. This reduction of
orbital fluctuation is dynamical, but it can be already understood from the static Hartree-Fock
contribution to the self-energy; the latter yields an effective enhancement of the crystal-field
proportional to orbital polarization p. For an e, system p is defined as the difference in occupa-
tion between the most and the least occupied orbital, |1) and |2), the so-called natural orbitals.
Thus p=n;—ns, and the Hartree-Fock self-energy correction to the crystal-field splitting is

1
Aecp = Xo(w,—00) — X1 (wp—00) ~ §(U—5J)p.

If p > 0, as it happens in the presence of a crystal-field ecp=c3—¢1>0, this term effectively
increases the crystal-field splitting. This effect is at work not only in LaTiO3 and YTiOs, but
also in several other systems with different electronic structure and even smaller crystal-field
splittings. The case of 3d? KCuF; and 3d* LaMnOs is extreme: the e, crystal-field splitting is
~ 0.5—1 eV; with such a large splitting, orbital fluctuations are suppressed up to the melting
temperature. Thus, Coulomb repulsion makes the Jahn-Teller mechanism discussed in the arti-
cle of Kanamori very efficient. This result, however, does not clarify which of the two mech-
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Fig. 15:  Orbital-ordering transition in LaMnQOs. Orbital polarization p (left) and (right)
occupied state |9)= cos 2|322—r?) + sin 2|x>—y?) as a function of temperature. Solid lines:
300 K experimental structure (Ry1) and 800 K experimental structure. Dots: orthorhombic
structures with half (Rg) or no (Ry) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty)
site CDOMFT. Dashes: ideal cubic structure (Iy). Circles: U = 5 eV. Diamonds: U=5.5 eV.
Triangles: U = 6 eV. Squares: U=T eV. Crystal field splittings (meV): 840 (R11), 495 (Rg),
168 (RS X), and 0 (1y). From Ref. [6].

anisms, Kugel-Khomskii superexchange or conventional electron-phonon coupling, plays the
major role in causing orbital order and stabilizing the distortion. Remarkably, in fact, Coulomb
repulsion has also an important effect on structure stabilization. LDA+U total energy calcula-
tions have early on shown that the co-operative Jahn-Teller distortion is stabilized by U [14,15],
a result confirmed recently by LDA+DMFT [16]. This could be — and initially was — taken as
an indication that superexchange is the driving mechanism. If this is the case, it is, however,
hard to explain why the magnetic transition temperature (7x~40 K for KCuF3 and Tx~140 K
for LaMnO3), also determined by superexchange, is relatively low while the co-operative Jahn-
Teller distortion persists up to the melting temperature. On the other hand, if Kugel-Khomskii
superexchange is not the driving mechanism, the associated energy gain should be small with
respect to the total energy gain due to the Jahn-Teller distortion.

To clarify the nature of the dominant mechanism, we disentangled electron-phonon and su-
perexchange effects. To this end we performed LDA+DMFT (single-site and cluster) calcula-
tions for a series of hypothetical structures, in which the distortions (and thus the crystal-field
splitting) are progressively reduced. In the case of KCuFs, these hypothetical structures are
shown in Fig. 1, and the corresponding e, bands are shown in Fig. 7. For each structure we
calculate the order parameter, the orbital polarization p. In Fig. 14 we show p as a function
of temperature. For the experimental structure (R in the figure), we find that p~1 up to the
melting temperature. The empty orbitals on different sites make the pattern shown in Fig. 1.
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Fig. 16: Superexchange energy gain for LaMnOs, AE ~ —Txk /2. From Ref. [6].

For the ideal cubic structure /), we find that p=0 at high temperature, but a transition occurs at
Tk ~ 350 K. This Tk is the critical temperature in the absence of electron-phonon coupling,
i.e., the superexchange critical temperature. Our results show that around 350 K superexchange
alone could indeed drive the co-operative Jahn-Teller distortion; it cannot, however, explain the
presence of a co-operative Jahn-Teller distortion above 350 K. We performed a similar study
fo LaMnOs. For this tgge o System we have to take into account the Hund’s rule coupling be-
tween ¢, electrons and ¢y, spins, S;, . Thus the minimal model to understand orbital order is

the modified Hubbard model [17]

H=- Zzzt m/ cro zmo Citmi o' hznzmT nsz,

i oo’ mm’

+U Z nzanwrw —+ Z Z Z 2J—J5g,g/) ﬁimoﬁim’0'7

v oo’ m(#m’)

Iy > (ijrcjmﬁm%cz’mw + ijﬁcz‘m@mwcim%)-
i metm!
Here the local magnetic field =5}, describes the Hund’s rule coupling to ¢, electrons, and
Uio o' =2/3(1—0; ;) accounts for the disorder in orientation of the 5, spins. By performing the
same type of analysis as for KCuFs, we find the impressively large Tk ~700 K (Fig. 15). There
is a small point neglected so far; besides the co-operative Jahn-Teller distortion and tetragonal
compression, LaMnOj3 exhibits a GdFeOs-type distortion (Fig. 13), which tends to reduce the
ey band width [4]. To account for this we studied the orbital-order transition for the ideal struc-
ture Ry, which retains all distortions except for the Jahn-Teller one. For structure Ry we cannot
obtain Txk from p(7T'), because, due to the ~200 meV crystal-field splitting, Coulomb repulsion
strongly suppress orbital fluctuations even at 1500 K. We can, however, study the evolution with
temperature of the occupied orbital, here defined as [J)= cos 2|322—r?) + sin 2|z*—y?). For
the experimental structure (1211) we find ¥ ~ 108°, in agreement with experiments, while for
the [ structure we obtain ¥ = 90°. For the R, structure we find two regimes: At high temper-
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Fig. 17: Orbital ordering in the t%g system LaVOs. Filled circles: ideal case without crystal-
field splitting. Empty circles: experimental structure. For each temperature, the associated hole
orbital is shown on the Bloch sphere. At high temperature it coincides with the predictions of
crystal-field theory (triangle). At the Kugel-Khomskii transition temperature, Txy, it starts to
move towards the ideal Kugel-Khomskii result (filled blue circle). From Ref. [12].

ature the occupied orbital is the lower-energy crystal-field orbital (9=180°). At Txk ~ 550 K
superexchange rotates this ¥} towards 90°, reaching 130° in the zero-temperature limit; this is
the actual superexchange transition temperature for LaMnOs. Such Tk is still remarkably
large, however not sufficient to explain the persistence of the Jahn-Teller distortion in nanoclus-
ters up to basically melting temperature [18]. Furthermore, the superexchange energy gain
associated with orbital order (Fig. 16) is small compared to the total energy gain due to the
Jahn-Teller distortion, calculated via LDA+U [14, 15] or LDA+DMFT [16]. Thus, as in the
case of KCuFj3, the conclusion is that a static crystal-field splitting, as the one generated by
the electron-lattice coupling, is essential to explain orbital ordering at high temperature. We
obtained a similar conclusion for various families of compounds, including ¢,, systems, an in-
dication that pure Kugel-Khomskii materials are actually rare. The first clear-cut case in which
the super-exchange interaction controls orbital ordering, turning the hole orbital way from the
state expected from crystal-field theory, was recently identified in the tgg system LaVOs; [12].
This is shown in Fig. 17, where the changes in the hole orbital on lowering the temperature
can be followed on the Bloch sphere (empty circles). Decreasing the temperature the color of
the empty circles changes from red to blue, while the associated polarization increases towards
its maximum vale. One may see that at high temperature they overlap with the pink triangle,
representing the state expected from crystal-field theory. Decreasing the temperature they move
towards the filled blue circle, representing the Kugel-Khomskii ideal value.
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Fig. 18: Distortion parameter ¢ as a function of lattice constant a in thermally expanding
KCuFs5 [21], under hydrostatic pressure [22], for RbCuF3 [23] and (NH4)CuF'3 [24], compared
to our calculations and the values obtained assuming a constant short Cu-F distance (Spin).
From Ref. [11].

Let us now return to KCuFs3, the case we have examined in greater detail. The main conclusion
we had reached is that a static distortion is necessary to explain the presence of orbital ordering
at high temperature. Based on the discussion so far, one could at this point conclude that the
latter is determined by the Jahn-Teller effect. However, it turns out that the reality is even more
complex. Indeed, in a second-order transition one would expect that the order parameter goes to
zero at the transition temperature, 7. In the case of electron-phonon-coupling driven orbital
ordering, the order parameter is the Jahn-Teller distortion. If 7o is not yet reached at the
melting temperature, the order parameter should at least decrease with temperature. In KCuFs,
however, it has been found that this simple picture fails to describe experiments. This is shown
in Fig. 18. Increasing the temperature the lattice constant increases by thermal expansion. At the
same time the (dimensionless) Jahn-Teller distortion parameter 9 also increases. This surprising
behavior is due to the fact that the short Cu-F bond remains almost constant while the long Cu-
F bond becomes longer [11], instead of the two changing coherently together as expected via
the Jahn-Teller (; mode. Going to the microscopical origin of this behavior, it turns out that
the Jahn-Teller mode is so soft that the distortion is actually determined by the Born-Mayer
repulsion of the ions. Thus the distortion increases with the lattice constant, and, via thermal
expansion, the order parameter increases with temperature. This new ordering mechanism was
identified in Ref. [11] for the first time. It can operate even in closed-shell systems and would
result in an inverted Landau transition, with symmetry breaking above a critical temperature.
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7 Conclusion

In this lecture we have studied two mechanisms that can lead to orbital ordering phenomena
in Mott insulators. The first is well illustrated in the influential paper of Kanamori, Ref. [1].
In this picture, a co-operative Jahn-Teller distortion generates a static crystal-field, which in
turn splits orbitals otherwise degenerate. This mechanism is made more efficient by Coulomb
repulsion; the latter enhances the orbital polarization, leading to a orbitally-ordered state even
if the crystal-field splitting is a mere fraction of the bandwidth [4]. The second mechanism,
proposed by Kugel and Khomskii [2] in 1973, predicts orbital ordering even in the absence of
a static crystal field; in this picture, orbital ordering is due to the superexchange interaction, the
effective interaction emerging from the orbitally-degenerate Hubbard model in the large U limit.
The general super-exchange Hamiltonians for e, and ?5, systems can be found in Ref. [20],
where the interaction is decomposed in its irreducible tensor components. In paradigmatic
materials, both the Jahn-Teller and super-exchange coupling predict a similar type of order.
Thus identifying which interaction dominates is very difficult. For this reason, the riddle of the
origin of orbital ordering in materials can be viewed an example of a chicken-and-egg problem
— and has been accordingly a matter of debate for decades.

In the last section we saw how this problem was solved in representative cases. This was done
by disentangling the superexchange Kugel-Khomskii interaction from the rest. For the two
classical text-book examples of orbitally-ordered systems, KCuF; and LaMnOs, it was shown
via this approach that, although Kugel-Khomskii superexchange is very efficient, it cannot alone
explain the presence of a co-operative Jahn-Teller distortion up to the melting temperature.
The conclusion is that an interaction giving directly rise to a static crystal-field splitting, e.g.,
electron-phonon coupling, is necessary to explain experimental findings [3,6]. The same result
was obtained for many other materials, with either e, or ¢y, partially filled shells. This shows
that purely super-exchange driven ordering is rare in nature. A clear cut case of Kugel-Khomskii
material was nevertheless recently identified, LaVOs [12]. Finally, to complicate the matter, for
KCuF; it was shown that not even the Jahn-Teller effect alone does explain the evolution of
distortions with temperature. A new ordering mechanism in which the Born-Mayer repulsion
of the ions plays a key role had to be introduced [11]. Only then it could be understood why the
order parameter experimentally increases (instead of decreasing) with temperature.
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Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m is the electron mass
(mo = m.), the unit of charge ¢ is the electron charge (ey = e), the unit of length ay is the
Bohr radius (ag = ap ~ 0.52918 A), and the unit of time is ¢, = 47r50ha0/62. In these units,
Me, ap, € and 1/47ey have the numerical value 1, the speed of light is ¢ = 1/« ~ 137, and the
unit of energy is 1Ha = e?/4meqag ~ 27.211 eV.

B Atomic orbitals

B.1 Radial functions
The nlm hydrogen-like atomic orbital is given by

77Z}nlm(p7 19, 90) - Rnl(p>YTln(197 90>’

where R, (p) is the radial function and Y (9, ) a spherical harmonic, p = Zr and Z the
atomic number. In atomic units, the radial functions are

ra= () s () 5 (),

where Lffj{l are generalized Laguerre polynomials of degree n—[—1.

The radial function for n = 1, 2, 3 are

Ris(p) = 2 AL e’

Raoip) = 55 2°7 (2—p) e
Rop(p) = 505 2°7 per?
Rss(p) = 525 2% (1= 2p/3+2p°/27) e
Ry(p) = 32 77 p(1—p/6) e*/3
Rza(p) = gf—\\/fi, AL prerl?

where we used the standard notation s for [=0, p for [=1 and d for [=2. The spherical Harmon-
ics, using the Condon-Shortley convention, are given by

Vi, ) = (—1)m\/ (22:1) Eﬁ;g;: P! (cos ) e™? (24)

where P (cos ) in an associated Legendre polynomial.
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Fig. 19: The s (first row), py, ., p. (second row), and dyy, d,, ds.2_,2, dys, dy2_y2 (last row)
real harmonics.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are
defined in terms of the spherical harmonics as follows:
i

1
Yio = }/E)la Yim = E(Y—lm + <_1)mYnlw)7 Yi—m = \/E(Y—lm - (_1)mYnIz)> m > 0.

Using the definitions x = 7 sin ) cos ¢, y = rsinvsin ¢, z = r cos 1, so that

cos) = ;, e sing = (a:irzy)’ (25)

we can express the [ = 0, 1, 2 real harmonics (Fig. 19) as

$ =0 =Yy =\/=

Dy =Y11= \/Li(y_ﬂ +Y) = \/g y/r

D= =y =Yy = \/g z/r

Dz =yn = \/A@(Y_ll -YH = \/g x/r

doy =Yoo= (V2% -Y])= \/g zy/r?

dy. Yo—1 = \%(Yzl + Y3 = \/E yz/r?
g2 p2 =yoo =Y = \/gﬁg (322—r?)/r?
dy- =Y = \%(Y_Ql —-Y? = \/g rz/r?
dpryp =12 = \%(Y_Zg +Y2) =1/21  (2P=y?)/r?
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

iy — / dr D (r—d)V (r—d) ().

They can be expressed as a function of radial integrals Vj;,, which scale with the distance d

roughly as d~(++1) [19], and direction cosines, defined as

I=d - i/d,

n=d- 2/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [19] are listed below.

Es s = Vsso

Es . = Wepo

Eew = 1V Vopo +(1- ? )Vppr

Ezy = ImVips —lmVppr

E; - = INVppe —InVppr

Esuy = V3lmVdo

By = A1) Vi,

Eg3.2 42 = n2—1(124+m?)|Vigo

Fow = VmVpy (-2

E; . = V3ImnVpa, —2lmnVpgn

Ep oo = V3PV pao +n(1—-212)Vpir

Eppryp = B =m?)] Voo H(A=12+m?) Vpdr

By w2y = Bm[(?—m?)|Vyao —m (14 =m?) Vydr

E.oyp = Lnl(2=m)]Vodo —n(12=m?) Vi

Ep3.2_r2 = Un*=3(1P4m*)]Vpas —V3In*Vpin

Eys2 2 = m[n?—5(P+m*)| Vo —V/3mn?Vyir

E, 322 = nn?—5(124+m*)|Vpdo +V3n(2+m?)Vygr

By 2y = 3Pm*Vage  +H(P4+m2—41Pm?*)Vyar +(n2+12m?) Vyas
Eryye = 3Im?nVygy +Hin(1—4m?) Vg, +Hin(m?—1)Vygs
Euy e = 312mnVygy +mn(1—41%)Vygx +mn(1?—1)Vygs
Erya2_y2 = SIm (12 —m?)Vais 2lm(m®—1?)Vidr lm(12—m?)Vaas
Epgry = Sn(P—m?)\Vage —mn[14+2(2=m®)|Vaar  +mn[1+3(12=m?)|Vaas
Eopp_p = Snl(P—m*)Vaao  +nl[1-2(12—m?)|Vygr nl[1-1(12=m?)]Vyas
Epys2p2 = V3Im[n? =3 (12+m?)|Vaar —2v/3Imn?Vygx 2 Im(14+n2) Vaas
Ey. 3.2 02 V3mn[n?— 1 (124m?)|Vaas +V3mn(>+m2—n?)Vygr —%mn(lQ—o—mQ)Vddg
E.u3:2 42 V3In[n? =5 (P+m*)|Vage +v3In(I>+m?—n?)Vgn — 3%+ m?) Vaas
Byt gt = (2 Vg + [P (P Vg -+ 1 -2 Vi
By go = (2—m?)[n2—1(1*+m?)Vaso +VBn2(m?—12)Vage +32 (1+n2)(12—m?) Vags
Es.2 25,0 0= (02— 3 (124+m?)]*Vage +3n2(12+m?) Vidr 3(124m?)®Vyas
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2.2 Arnout Ceulemans

1 The Jahn-Teller theorem

In 1937 Jahn and Teller wrote:

Theorem 1. All non-linear nuclear configurations for an orbitally degenerate electronic state
are unstable.

This statement was the beginning of a fruitful line of research both in physics and chemistry.
Over the years, it has provided deep theoretical insights as well as important practical applica-
tions, in spectroscopy, magnetism, superconductivity and chemical reactivity. First and fore-
most, the theorem is a particular example of the more general physical principle of symmetry
breaking. As Pierre Curie once enounced: c’est la dissymmétrie qui crée le phénomene (it 1s the
lack of symmetry that creates the phenomenon). The world appears where the initial symmetry
is broken, and the phenomena start to abound. This is accompanied by a decrease of tempera-
ture, which suggest that the high symmetry state is also highly energetic, and the spontaneous
breaking of symmetry is driven by a decrease in energy. In this presentation, the focus will be
on the theoretical aspects of the theorem, in particular group theory and topology.'

1.1 The distorted rutile structure

At the molecular level degeneracies are usually linked to the presence of symmetry, described
by the molecular point groups. A textbook case from structural inorganic chemistry concerns
the crystal structures of divalent transition-metal difluorides from CrF, to ZnF, [2]. These
difluorides crystallize according to the rutile structure. Rutile is the mineral of TiOs. In this
structure the metal ions are surrounded by a regular octahedron of six ligands, at equal distances
from the central atom. Cr(II) and Cu(Il) ions are notable exceptions in the series. For these two
metal ions the rutile lattice is distorted, forming a tetragonal coordination, with four equatorial
ligands at short distance and two axial ones at longer distances, as indicated in Fig. 1. The figure
also shows the crystal field configuration of the d-electrons, with one electron in the e, shell for
Cr(II) and one hole for Cu(II).
The mean value of these distances agrees with the expected trends for the d-metal contraction,
but clearly some force is distorting the ligand sphere around the ion. What distinguishes these
ions form the rest? These are the only two ions in the series for which the ground state con-
figuration is characterized by an odd number of electrons in the e, shell. The resulting ground
states are *E, multiplets, hence states that are orbitally twofold degenerate. They thus would
exemplify the Jahn-Teller (JT) theorem, which states that such ground states are unstable, and
will spontaneously distort to lower symmetries. The distortion will lift the degeneracy, and
thus remove the cause of instability. Indeed symmetry breaking from O, to Dy, will split the
multiplets as follows

*E, — %A1y +° By, (1)

Further interesting additional observations can also be made:

I'The presentation, including several figures and formulas, is based on the recent monograph [1].
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Fig. 1: Jahn-Teller distortions in CrFy and CuF,

e The origin of the JT effect is clearly attributed to a local on-site orbital characteristic,
which apparently is strong enough to distort the lattice structure. This inscribes the JT
theorem in the broad theme of the lecture course.

e It could be argued that similar considerations would apply to the Fe(Il) and Co(II) ions
which have open ¢y, shells giving rise to threefold degenerate ground states. These ions
are indeed also exemplifying JT instabilities, but the instability is much smaller than in
the case of the instabilities caused by the e, shells. A further distinction is thus in order:
the JT force can give rise to molecular structures which are frozen in a particular distorted
geometry, or can be weaker and give rise to a vibronic ground state, with dynamic fluctu-
ations. Such fluctuations show up as large anisotropic thermal structure factors in X-ray
analysis. We will identify these two regimes as the static versus the dynamic JT effect. In
reality however, systems will adopt all sorts of intermediate stages.

e Finally, the symmetry breaking itself is not complete, but rather tries to conserve as much
symmetry as possible. Indeed the tetragonal subgroup is the maximal subgroup of Oy,
for which d.2» and d,_,
cause the degeneracy, but keeps all other symmetry elements. This economic principle is

2 are no longer degenerate. It removes the threefold axes that

known as the epikernel principle.

1.2 Origin of orbital instability

Why is symmetry breaking a spontaneous process in degenerate states? The standard answer
to this is that in these states there is always an imbalance between the symmetry of the nuclear
charge distribution and the symmetry of the electron density. So electron densities of the indi-
vidual e, orbitals have only tetragonal symmetry, while the nuclear distribution is octahedral.
The result is a force which acts on the nuclei and displaces them to a new equilibrium position
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with Dy, symmetry. This argument is based on the fact that for non-degenerate states the elec-
tron density always adopts the symmetry of the nuclear frame. For a non-degenerate state |¥),
a distortion force along a nuclear coordinate (), is given by

F = S5 lo = ¥ 52 10 . @
Q

If ¥ is non-degenerate, the density ¥*V, is totally symmetric and the force matrix element
can only differ from zero if the Hamiltonian part is likewise totally symmetric, i.e., if the Q-
coordinate conserves the symmetry. When extending this argument to degenerate states, it is
argued that the average density still is totally symmetric, but that this is no longer true for
the density associated with individual components. The sum of the densities of the d.> and
dg2_,» states is indeed equal along the three coordinate axes of an octahedron, but the separate
densities of the two components is not: it is axial for the d.2 orbital and equatorial for the
dg2_,2 counterpart. In this argument the assumption is made that the electron densities for
individual components of degenerate states cannot possibly have the symmetry of the nuclear
frame. In fact this is not true. For the twofold degenerate component it suffices to rewrite
the components in complex conjugate form, to obtain for both an electron cloud with perfect
octahedral symmetry.

Wy) = — (d2 £ idye_ ) 3)

1
V2
Indeed the densities of both these components are equal to the average density of d.» and d,— 2,
and thus totally symmetric. The real difference between degenerate and non-degenerate states
is that in the case of degenerate states, the calculation of the distortion force requires to set up
and diagonalize a matrix equation, operating in the degeneracy basis of the state manifold. If for
instance we use the {¥, ,¥_} basis, the JT force will entirely be ‘demoted’ to the off-diagonal

entries of the Hamiltonian matrix.

1.3 The Jahn-Teller Hamiltonian

The potential energy surface in the neighborhood of a JT instability is described by a Taylor
series expansion of the Hamiltonian in the coordinate space of active nuclear distortions. The
very first and essential terms of the expansion are the first-order force term and the harmonic
second-order restoring potential

1
H = HoJrZ(aQM) QAA+§§;KAQ§1>\- 4)

Here the distortion ()-coordinates are labeled by an irreducible representation A of the high-
symmetry molecular point group, and its component or subrepresentation, A. Hj is the elec-
tronic Hamiltonian in the high-symmetry origin of the coordinate system, relaxed with respect
to symmetry-preserving totally symmetric coordinates. Its eigenfunctions are the states of the
degenerate manifold. The second-order term is the standard harmonic restoring force, with K4
being the harmonic force constant. This term holds the molecular frame together and attracts
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the nuclei towards the coordinate origin. The force constant can be obtained from the IR and
Raman spectra. The essential term is the linear term, which describes the interaction between
the electronic states and the nuclear distortion modes. This linear interaction is the force which
pulls the nuclei away from their original symmetry positions. The derivative in this term rep-
resents the slope of the energy as a function of the coordinate displacement, evaluated at the
high-symmetry point. As a derivative of the Hamiltonian with respect to nuclear positions, this
term affects the electron-nuclei Coulomb attraction term, and as a result it iS a one-electron
operator. This is an important property, which ultimately explains why the JT phenomenon is
so tightly linked to orbital properties.

At this point a proper definition of the symmetry properties is in order. The coordinates have
already been labeled as () 4. Likewise the degenerate manifold will be labeled by the degener-
ate irreducible representation /', and its components accordingly by a subrepresentation label
as |W$ ). The symmetry labels incorporate the entire action of a symmetry element of the point
group, R € G, on these quantities:

RQM_ZDNA )Qav and RW) = ZD R) L), (5)

Here the D-matrix elements refer to the irreducible representation (irrep) matrices D(R) which
describe the transformation of the basis functions under all the elements of the symmetry group.
What makes the JT Hamiltonian tractable, and in fact extremely attractive, is that instead of
working in the entire Hilbert space, it operates in an extremely confined space, comprising
at first only the degenerate manifold. Matrix elements of the linear interaction term in this
manifold may be factorized according to the Wigner-Eckart theorem as a reduced force element,
denoted by the constant /4, and a Clebsch-Gordan coupling coefficient, which contains the
entire group-theoretical knowledge of the interaction

. 8H)
W (aczm )

In the second-quantization formalism, we now introduce creation and annihilation operators for

Wl = Fy (I | AN ). (6)

the electronic states. Since these are fermionic in nature we label them respectively as fT and f.
A normalized N-electron determinant is obtained as a sequence of particles being created from
the vacuum state

Ffhfh0)y = JaB..y). (7)

The adjoint of this expression is then

<O‘fvf5fa: ’Ozﬁy| @)

Since the linear part of the Hamiltonian involves a one-electron operator, we can express the

( ) ‘%wa 9)
0

coupling in operator form as

(0y:), = e

YaVb
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An alternative view point of the interaction involves a recoupling, where the fermion parts
are first coupled to an excitation operator with symmetry A. This recoupling is carried out
by transferring the 737, irrep of the ket part to the bra, and corresponds to a basic symmetry
property of the coupling coefficients [1]. One has, apart from an overall A-dependent phase
factor which can be incorporated into the force-parameter,

dim I
dim A

1/2
(IYa| AN ) = ( ) (a7 AN). (10)

Note that the symmetry properties of the annihilation operator, Iy, appear in the coupling
operator as the complex conjugate component, in view of the transfer from ket to bra. Then,
these results are inserted into the operator expression, yielding

oH
=k (TN T AN £ 11
(aQA)\)O AZf7a< Y ’7b| >f% ( )
YaYb
where k4 takes over the role of the F'4 force elements, by incorporating the dimensional factor
dim 1M\ V/?
ky = F 12
A ( dim A ) A (12)

Vice-versa, since this is a summation over all components, one could as well remove the com-
plex conjugate bar from the coupling coefficient and replace the annihilation operator, f,, by
its time reversed form, which is denoted by the tilde operator as f%. The tilde indicates that
the annihilation operator f% transform in exactly the same way as the corresponding creation
operator f Tb, and as the time reversed of the annihilation operator f.,. The operator expression
then finally becomes

H = ka Y (Tl AN FL F, = ko (£)) (13)
YaVb
The bracket in the final line of this equation symbolizes the coupling of the fermion creation
and annihilation operators to the symmetry of the boson. In this formalism the slope parameter
is usually represented as k4. In second quantization we now also add the vibrational mode,
expressed in boson creation and annihilation operators

1 .
Qar = E(b;A +h,,)- (14)

Again note the tilde over the annihilation operator. Indeed, both creation and annihilation parts
must share the A\ symmetry properties of () 1. In order to combine the fermionic and bosonic
parts it must be taken into account that this involves a scalar product over the A tensor, as a
fermionic variable and an associated bosonic derivative. Since derivatives and variables trans-
form in conjugate ways, one must write

S (5 ) @u =Y ra (o pib), (15)
0 A

AN
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Fig. 2: Diagram of coupling schemes for the JT matrix elements in the E X e case (vide infra);
fI and fJ create an electron in resp. d.» and d>_,» orbitals.

The dot refers to the scalar product of boson and fermion part which guarantees the total symme-
try of the Hamiltonian, due to compensating symmetries in both ingredients. When components
follow the spherical ({,m) quantization, the dot product is defined as

(£1£)' © (bT+b), = Y (~1)™ (£8). (0], +D,_)- (16)
The concise second-quantization formalism in Eq. (15) says it all! The fermion creation-
annihilation double operator is exactly an excitation operator which requires a field of sym-
metry /A\. This is symbolized for the F-case in Fig. 1.3.
The difference with a proper excitation is that instead of a photon the excitation is brought
about by a vibration. To this interaction element one finally adds the harmonic part of the active
vibrations. This complements the potential energy of the JT surface with the kinetic energy of
the nuclei. The harmonic potential is now replaced by the harmonic oscillator

3 hw, (bTAAbAA + %) (17)
AN

The result is a genuine vibronic operator where bosons and fermions meet

A 1
M= XA: ka (£1F)" © (bl+b) | + %: oo (Vb + 5 ) (18)

1.4 The pseudo-Jahn-Teller effect

When two electronic states are not strictly degenerate but close together in energy, it should be
very surprising that the symmetry breaking mechanism would suddenly be completely quenched.
Instead a non-totally symmetric matrix element between both states is symmetry allowed and
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azg rotation

)

SigHgO4, (Op) GegHgO;, (T})

LUMO 11a,,

Fig. 3: Structural comparison between Si and Ge POSS (left), and, HOMO and LUMO for the
Ge cluster (right).

may perfectly well induce a distortion, providing the relaxation term outweighs the harmonic
force constant. This is the so-called pseudo-JT effect. Following the formalism of Bersuker [3],
let two states be separated by a splitting 2A and with an off-diagonal force element F'Q), where
@ is a non-totally symmetric distortion coordinate. Assume further that the two states share the
same force constant K. In that case matrix diagonalization leads to the roots

By = 1r,Q7 + (A4 F2Q%)'? = L <K0iF—2) Q*+AF (F—4) Q'+ ...  (19)
2 2 A A3

If |[A| < F?/ Ky, then the curvature of the lower energy root becomes negative, and the system
will be unstable with respect to (). An exceptional illustration of this effect is seen in the O;, —
T}, symmetry breaking in the polyhedral oligomeric sesquioxane (POSS), GesHgO12. While the
Silicon isomer has cubic symmetry Oy, it is found by DFT calculations that the Germanium
isomer is distorted to the rare tetrahedral symmetry group 7}, [4]. In Fig. 3 we display both
structures, as well as the HOMO (1ay,) and LUMO (11a,,) of the Germanium isomer. The off-
diagonal matrix element between both orbitals transforms as the direct product: a;,xaz, = asy.
The pseudo-JT effect thus promotes a distortion along the as, mode. This corresponds precisely
to a rotation of the oxygen bridges in between the Germanium atoms. Neighboring vertices on
the cube will thereby rotate in opposite directions lowering the symmetry to 7},.

An important caveat is in order here. In principle, for any symmetry breaking it will always be
possible to find a pair of interacting states with the right combination of irreducible represen-
tations. So the predictive power of the effect is rather limited. A detailed examination of the
composition of the relevant orbitals, and a demonstration of the overlap of their off-diagonal
density and an observed distortion is required.
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Fig. 4: Trigonal Nas cluster, with doublet ground level; orbitals and distortion modes.

2 The doublet E X e Paradigm

The icon of the JT theorem is the Mexican hat potential, corresponding to a twofold degenerate
E state, coupled to a twofold degenerate e vibration. This occurs both in cubic and in trigonal
or pentagonal symmetry groups. We examine in some detail the standard case of a triangular
instability.

2.1 The potential energy surface

The system considered is a tri-atomic molecule in an F state, with components £, and F,. The
symmetry at the origin is D3, but since three atoms are coplanar, we could as well work in Cj,
symmetry. The components are represented schematically in Fig. 4. Their symmetry behavior
under the generators of C's, (with right-handed threefold axis) are given by

o) - o o )

(1B2) |Ew) ) ((1) _ﬂ) 0)

Here an active view of symmetry operations is adopted: they displace the functions itself, be it

6. ( |E2) |Ey) )

orbitals or distortions, while leaving the nuclei in place.
The direct product of the orbital state reads

ExXFE= [aﬁ—e] + as. 21)

According to the JT selection rule the activity resides in the non-totally symmetric part of the
symmetrized product, [a;+e¢], being the e-vibration. The components of this vibration are also
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shown in the figure. They are labeled as (), and @),. Using local (z,y) coordinates for the
individual atoms, the expressions for these vibrations are given by:

1 3 1 3 1
Qe = 7 _Qiﬁr (‘%Q%‘g@%) + ( %—Q%—ﬁQé)]

1 1 3 1 3
Q, = 7 )+ <—§Q?]§+ g%) + <—§Q% - g@%)] - (22)

The action of the group generators on these functions is given by

: 12 V3
(o a) = (a %)(_éﬁ _i’g)

w(e @) = (e %)(é_ol). 3)

Note the sign change here as compared to Eq. (20). This is based on the convention that these
modes were chosen to mimic the behavior of central quadrupolar harmonics 2 —y? and w7y, as
opposed to the fermion states which follow the dipolar harmonics x and y. With K, the force
constant of the boson mode, and F, the linear force element, in a fermion basis {|x)|y)} the
Hamiltonian reads

K F(Q. Q
H—;(Q§+Q§)+\/§<Qy —Qi)' (24)

Diagonalization of this Hamiltonian then yields the familiar Mexican hat surface, consisting of
two parabolic sheets, with rotational symmetry along the threefold axis:

F
V2

The central (', point of the diagram is unstable, and the energy gain by distortion into the

K
EL= E(Qi +Q) =+ Q2+ Q2. (25)

trough is the so-called JT energy, given by

e

E;p=— ST (26)
If the system rotates around in the trough the nuclei perform circular motions around the trig-
onal equilibrium positions. This motion is an internal rotation or /ibration as shown in Fig. 5.
Additional higher-order terms to the Hamiltonian will essentially maintain the shape of the sur-
face, but introduce warping. As an example, the second-order terms in Q, @, and Q2 — Q; will
warp the potential energy surface, giving rise to local hill tops, alternating with local minima.
The stationary points correspond to isosceles triangles. Detailed calculations by Cocchini ef

1

al. [5] for the sodium trimer yield a JT stabilization energy in the order of 670 cm™", and a

rotational barrier of 130 cm™!.
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2 A0y AL

Fig. 5: Internal rotation along the trough of the Mexican hat; a 90° anti-clockwise rotation
takes the (), distortion to ().

2.2 The dynamic system

A fascinating aspect of the Mexican hat potential is certainly its obvious rotational symmetry.
This symmetry ultimately goes back to the unitary symmetry of the diabolical degeneracy point
at the origin. For a full grasp of this symmetry, we now rewrite the Hamiltonian in its dynamic
form, including the nuclear kinetic energy term. According to the standard boson-fermion
formalism, the ket functions are generated by the f], f; operators, and the boson modes are
created by b!, bf, with coordinate and momentum operators as

x) Ty’

= % (bl + bx) and P, = % (bI: - bx) : 27

A unit of length is defined as \/h/mw and the oscillator quantum Aw is taken as the unit of
energy. This rescaling absorbs all fundamental constants:

Qe

b ( bib, + bib, + 1+ K (b+b,) K (bi+b,) > | 08)

K (b+b,) bib, +bib, +1 — K (bL+D,)

Here, « is the linear coupling parameter, and 1 is the zero-point energy. Subsequently this is
taken out as the zero of the energy scale. The angular momentum associated with a rotation in

(Qz, Q) is given by
A /) .
L= QuPy— QP = (140, (B),) — (0 +0,) (B1-0,)) = i(blp, —bb,). 29)
To find out the rotational symmetry of the Hamiltonian we calculate the commutator with £,

. ( % (bl+b,) —/{(bl+b$)>

L. H| = 30
M= ) (i) 0

Unexpectedly perhaps, the two operators do not commute! However we should be aware that
the Hamiltonian describes a coupled situation where both boson and fermion fields are affected.
To this aim, we introduce an angular coordinate ¢ in distortion space, with (), = () cos ¢
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and @, = @ sin¢. The ground state wavefunction (with k< 0) of the static Hamiltonian as a
function of ¢ is given by

|_) :COS§|ZE> +sin§|y>. (31)

This shows the rotation of the wavefunction along the trough, but at half speed as compared to
the coordinate change. The wavefunction provides a connection between a base space, provid-
ing the real distortions of the system, and a function space, which for every point in the base
space, gives a fermion vector. As the boson vector is a direct product of the fermion vector
(remember e¢ € [E x E]), we can qualify the fermion space as a fundamental spin space, and
the boson space on top of that as a coupled vector space. The geometry of this connection will
be examined in the next section. Here it suffices to define a rotation operator for the fermion
states in analogy with the pseudo-spin operator S,

8= L (fif~ f11,). (32)

Pursuing this analogy with spin-orbit coupling further, we can define the total momentum oper-
ator as J, by
J.=L.+8.. (33)

This sum operator commutes with the Hamiltonian, as the sum of the commutator of S. and the
commutator with the boson part cancels out: [S,, H] = —[L,,H]. In order to take advantage
of the conservation of angular momentum, we now impose symmetry adapted combinations of
bosons and fermions. One has

1 1
bl = 7 (bf £ibf) and by = 7 (b, Fib,) - (34)

These operators are eigenoperators of L. with opposite eigenvalues
[£..bL] ==£bl and  [L,,b.] = Fb.. (35)

Analogous symmetry adaptation of the fermion operators yields

|¢>=%<|x>+z|y>) and |¢>:%(|x>—z'|y>). 36)

As eigenfunctions of the S, operator, these combinations are like « and 3 spins

ST =42t and SIL) =1L, (37)
The total symmetry-adapted Hamiltonian is now expressed in the transformed fermion basis
( ) ) | Y < b, +b b kV2(b+b,) ) %)
1) kv2(0h+b_)  blb, +blb

To solve this Hamiltonian equation it is of paramount importance to define an Ansatz. An
Ansatz is a general expression of the form of the solution, which holds the symmetry of the



Jahn-Teller 2.13

system, and expresses the coupling scheme between the boson and fermion degrees of freedom.
The Ansatz reads

) ii1s = (01) @1(6) 1) + (b)) @a() [ 4). (39)

Here the variable £ is defined as

=0l (40)

This variable thus corresponds to a two-photon boson excitation, combing two excitations with
opposite angular momentum. The total angular momentum of this variable is thus equal to zero,
and it can be considered as a double purely radial excitation. The Ansatz shows that in order to
obtain a vibronic state with angular momentum [+41/2, on top of an arbitrary number of radial
excitations we can either excite [ quanta of bi and couple this to a spin-up fermion state, or
excite [+1 quanta of bi and couple this with a spin-down fermion. These are the only two
channels to arrive at a state with the desired momentum. This state will always be degenerate
with a time-reversed counterpart, which is given by

@) 11pp = (1) @1(&)|4) + (b1) T dy(6) [1). (41)

The Ansatz clearly shows that the vibronic wavefunction cannot be factorized as a product
of a fermion and a boson part: we have definitely taken leave from the Born-Oppenheimer
approximation. In summary the JT equations to be solved read in matrix form

H|W) = E|W) =
Db, + iy + i (b1+D,) k(b +by) 1) @ (¢) (42)
)(brh) bbbl — () )\ () e )

We refer to [1] for a detailed discussion of the solution of these equations. Interestingly the
equations can ultimately be turned into a form of Heun’s differential equation. Closed solutions
of this equation do not seem to exist, except for some special values of . Eigenvalues are
characterized by half integral values of j and are plotted as a function of the coupling parameter,
in close-up in Fig. 6.

At the left of the diagram, for x = 0, are found the oscillator levels of the e-vibration. When
the coupling sets in, the trough develops, and ultimately — in the strong coupling limit — the
spectrum reduces to a rotational spectrum with a regular sequence of half-integral j-values,
superimposed on a transversal oscillator. Looking in detail at the lowest vibronic levels, in the
limit of zero coupling strength the ground level with j = 1/2 reduces to the product of the
electronic degeneracy and the totally-symmetric zero phonon state. The excited oscillator state
at £ = 1 corresponds to the vector addition of an [ = 1 vibrational level to the fermion spin,
yielding j = 1/2, 3/2. As the coupling is turned on, the j = 1/2 excited state is raised due
to its interaction with the equisymmetric ground state, while the j = 3/2 level is expected to
descent in energy, as seen in the figure.
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Fig. 6: E x ¢ JT Hamiltonian: solutions of the dynamic equation as a function of x*; indi-
vidual lines are characterized by angular momentum j,; ascending dotted lines represent extra
mathematical solutions that are unphysical.

If quadratic warping terms are introduced, the rotational symmetry is broken to Cj5,. Accord-
ingly, the j states subduce trigonal levels as indicated below

j=1/2 = E

In a strong coupling regime with extensive trigonal warping, the vibronic regime in essence
reduces to local oscillations in three localized wells. Depending on the signs of the warping
parameters, the minima are either at ¢ = 0°,120°, 240° with saddle points in between, or vice-
versa. Small vibrational overlap between these wells opens the possibility of tunneling.The
lowest tunneling states are obtained by setting up a 3 X 3 hopping matrix between the wells.
The matrix element between the wells essentially is a Huang-Rhys overlap factor, with a positive
sign. The result is a two state diagram, with an F ground state, and an A excited state, which are
separated by a tunneling splitting. Here the lower E state correlates with the ground j = 1/2
level of the diagram. The upper A state correlates likewise with the j = 3/2 parentage. As
Eq. (43) shows, it can be either A; or A,. For wells located at turning points 0°, 120°, 240°, the
A level is identified as an A; level. When the surface is turned upside down, with minima now
at 60°,180°, 300°, the A level has A; symmetry. These results follow from the electronic part of
the wavefunction in Eq. (31), as the vibrational overlap is symmetric with respect to reflections
in Cj, [6].
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2.3 Berry phase

We already drew attention to the sign change of the wavefunction after revolving around the
conical intersection. The acquired phase is a geometric phase, which is generally known as
a Berry phase, following the seminal work of Michael Berry [7]. Berry’s phase was identi-
fied with the concept of holonomy in geometry. To present this concept, two ingredients are
required: the base space, and the fiber. In the JT case the base space is the coordinate space
{Q., Q, } formed by the two distortion modes. With each point in the base space a wavefunction
can be associated. The phase of this wavefunction may vary over a range 0, 2. The phase vari-
able forms a so-called fiber, associated with a particular point on the base space. The collection
of all these fibers over the entire base space forms a fiber bundle. Now the holonomy is what we
observe in the fiber bundle when a closed loop is performed in the base space. Clearly, in order
to be meaningful, a connection must exist which controls the change of the phase in consecutive
fibers, corresponding to adjacent points on the base space. Berry showed how this connection
is provided by the time-dependent Schrodinger equation, under adiabatic constraints. This is
fulfilled in the case of a circuit driven by slowly moving nuclei along the trough of the potential,
with instantaneous adaptation of the wavefunction, not involving excitations. Ideally we may
think of a slow rotation which is hindered by the surface warping along the circuit. The treat-
ment proceeds as follows: let [n(R)) represent the non-degenerate quantum state of a system,
dependent on external parameters R, which corresponds to a particular nuclear configuration
along the low-energy trough. The eigenvalue is given by

H(R)[n(R)) = En(R)[n(R)). (44)

The wavefunction |n(R)) must be single valued in the relevant parameter domain, and be dif-
ferentiable. The wavefunction which solves the time-dependent Schrodinger equation in the
adiabatic regime is then given by

) = exp (=224 () 45)

Here a time-dependent phase factor, the so-called dynamical phase, is added. This factor mea-
sures the passage of time. In the JT application we consider a closed circuit, C', in a space
defined by nuclear displacements, R(¢), where the distortion varies smoothly and slowly in
time, as the nuclei evolve on a minimal energy path. Since the adiabatic state depends on the
coordinates, it will change accordingly, but continuously, i.e., the Hamiltonian does not change
rapidly enough to allow excitations to other states with energy F.,,,(R). Nonetheless, by slowly
driving the state around in the distortion space, an extra time dependence will appear, as is ev-
ident from the notation [n(R(t))). In order to keep satisfying the time dependent equation, we
must include a further compensatory phase factor. Eq. (45) is thus rewritten as

Wﬁwﬂi%gmcmﬂwmw. (46)
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Here the second exponential represents the geometric phase that is at the core of Berry’s treat-
ment. Applying the time dependent equation yields

d dv, ) F, ) d
1) = Eul) = 12 10 i (= 220) exp (in(0)) Fln(R@)). @)

In order to satisfy the Schrodinger equation, one must require that the sum of the second and
third terms cancel

- d—tW) + i exp (—?t) exp (wn(t)) d_t|n(R(t))> =0. (48)
This can be rewritten as
dyn = i(n(R)[dn(R)) = i(n(R)[Vr[n(R)) - dR (49)

When completing a closed loop, the total build-up of the phase is measured by the line integral
along the path

(€ = § =i Plndn). (50)
c
with |dn) = Vg|n) - dR. Furthermore since the ket function is normalized, one has
d{n|n) = {(dn|n) + (n|dn) = (n|dn) + (nldn) = 0. (51)

This implies that the matrix element (n|dn) is purely imaginary, and thus that , (C') will be
real. This integral is the famous Berry phase. If the path is defined on a curved surface this
phase will be non-trivial. In order to apply this treatment to the JT system, it is first of all noted
that the electronic wavefunction [¢)_) given in Eq. (31) is not single-valued, since

Y- (2m)) = exp(im) |- (0)). (52)

So |¢_) does not correspond to |n(R)). However, by gradually removing the phase of 7 during
the circuit, we obtain the required single-valued function

n(R)) = exp (—@) 6. (6)) = exp (_g) (coso2Es) +sino/2IE)). (53

2
And thus
(R = oo (=7 ) (<Gl + (o)
((R)dn(R)) = —12° 54)

Here we made use of the fact that [¢)_) is real, and hence

d(|y) = 2(¢[dy) = 0. (55)

Inserting the result in Eq. (50) yields

1(C) = fcd% :ij{(n]dm :i]{ <—%>d¢:7r. (56)
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As Berry writes, one might say that the dynamical phase factors in Eq. (45) and v, in Eq. (46)
give the system’s best answers to two questions about its adiabatic circuit. For the dynamical
phase the question is: how long did your journey take? For ~y,(C') it is: where did you go to?
Here we open a brief parenthesis: as the integral (1)|dw) is zero, the function |¢) is said to
follow the law of parallel transport. It means that the change of the function is orthogonal to
the function itself. This implies that the function accumulates during its path the torsion that
is forced upon the system by the path, and as a result its end state after a full circuit will end
up with a net phase difference. Following a function under parallel transport and detecting the
phase change after a full circuit is thus a direct way to obtain the Berry phase.

Now what are the implications of the Berry phase for the JT treatment? In Eq. (49) it is noted
that the gradient element adds an extra phase to the wavefunction, exactly as the vector poten-
tial A does to a charged particle in magnetism. In view of this analogy, we may introduce a
vector field terminology, and write

A = i(n(R)[Vg[n(R)) (57)

and

Wm(C)= ¢ A-dR. (58)
C

A lives in parameter space, and emanates from the topology of this space. As it is dependent on
the phase of the basis vectors, it is not unique, and when applying the formula in Eq. (57), one
must make sure that the basis vector is locally single-valued. In the JT case working out these
expressions yields

— i{n (59)

= 55 ") =
The form of this vector potential is analogous to the field created by a Dirac monopole of
strength 1/2. The source of this monopole is nothing else than the conical intersection itself.
The question thus arises if the dynamic calculations which we performed indeed include the
vector potential associated with the conical intersection, or if an additional field term in the
Hamiltonian is required. The short answer is that the dynamic treatment, which we have pre-
sented, does indeed contain the Berry phase from the start, so there was no need to invoke
it afterwards. This being said, the literature hardly offers explicit demonstrations of this cor-
respondence. An exception is the treatment by Johnsson and Stedman [8]. To spell out the
angular momentum of the nuclear motion in the presence of a vector field, we must include the
term —qA in the vector product R A P

RA(P—gA) =L g5 = 7., (60)

where ¢ = +1 is the charge of the particle. The fact that we recover the angular momentum
operator of the dynamic JT treatment indicates that this treatment indeed fully incorporates the
Berry phase. The angular momentum thus truly reflects the dual boson-fermion characteristic
of the JT Hamiltonian.
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3 The triplet T' X (e + t2) Jahn-Teller system

Triple degeneracies occur in cubic and icosahedral symmetries. The symmetries of the JT
modes are generated as

Oh . [TXT]—Alg:€g+t29
I+ [TxT]—A,=h, 61)

T'-terms have a frequent occurrence in coordination compounds and metal clusters, often with
important implications for magnetism. The strength of the coupling is usually less pronounced
than for E-terms, giving rise to all sorts of dynamic properties. A notable example of an icosa-
hedral T-system is the ground state of the fulleride anion, C, due to the occupation of the ¢,
LUMO of Buckminsterfullerene by a single electron.

3.1 The Hamiltonian

As before two spaces are to be considered: the fermion basis defines a three-dimensional sphere,
with unit vectors |1}), |1,),|T.), and the boson space, forming a five-dimensional Euclidean
space, with unit vectors (g, () for the e,-modes and ()¢, (), Q)¢ for the t5,-modes.

In the linear coupling regime, the Hamiltonian is given by

1 1
H = Kp (Qf+ Q%) + 5 Kn, (QF + Q)+ Q) + 7 (62)
with
~3Qo+ Q. 0 0\ g (0 - -
H = Fi 0 —3Q=%Qc 0|+ 2| -Qc 0 Q| (3
0 0 Qo —@y —Q¢ 0

The potential energy surface is defined in 5D coordinate space. However a concise view of the
topography of the surface can be achieved by projection in 3D fermion space. The procedure is
as follows: consider an electronic eigenvector (z, y, z), normalized to unity

|T(r)) = x|Ty) + y|Ty,) + 2|T%). (64)

Antipodal points (z,y, z) and (—z, —y, —z) describe the same solution, hence the electronic
space is restricted to a hemisphere. This surface has the topology of a projective plane. Now
minimize the energy for every direction on this sphere

0 OH
0Q ax 0 ax

This yields a set of equations from which we may determine the stationary coordinates, denoted

r=0 V QuelP-TIp. (65)

(rT’Hr) =rf

as ||@Qax||,. Reinserting these coordinates in the energy expressions yields the function || E],.
This function does not represent eigenenergies, except in the stationary points where it is indeed
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Fig. 7: Jahn-Teller distortions for a cubic triplet, projected on a hemisphere; the z-axis is the
upright axis.

a root of the matrix equation! Hence this function is isostationary, i.e., it coincides with the
hypersurface in the stationary points. As an example, for the cubic T-terms, the isostationary
function is given by

1 6
(ElDe = < (2E5 +3E7) + = (Bg' —Ex, ) fi (66)
with
1 F} 1 Fp 1
By = - 2= = _§K_T2 fi=35 <x4+y4+z4 ~3 (a:2y2+:1:222+y2z2)>. (67)
E Tz

The f, polynomial, which controls the topography, is recognized here as the cubic invariant of
the fourth-order spherical harmonics, which also provides the crystal field potential in octahe-
dral symmetry. The term preceding f, involves the difference of the JT stabilization energies. If
the stabilization along e-modes is more pronounced, the surface is characterized by tetragonal
minima, with orthorhombic saddle points in between. The trigonal extrema in this case are hill
tops on the surface. In contrast if the ¢5-modes prevail, the surface will be turned upside down,
as shown in Fig. 7. Additional second-order terms in the Hamiltonian will produce a further
warping of the surface. As an example, when both e and ¢, modes are active, and there is a
strong second-order interaction term between them, the next cubic invariant of rank 6 will take
over control, and produce a surface with six orthorhombic D5, minima and twelve Cs;, saddle
points in between.

In the icosahedral case the linear JT Hamiltonian is isotropic and the hypersurface corresponds
to a 3D sphere. However upon introduction of second-order warping terms minima and maxima
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Fig. 8: Jahn-Teller distortions for an isosahedral triplet, in a projective plane, consisting of six
vertices and ten triangular faces: the vertices correspond to Ds, points, and the faces to Dsg
points; left is shown the crystal structure of TDAE™ Cy, (taken from [9]).

appear. These are governed by an icosahedral invariant of rank 6. Again two regimes are
possible: either ten trigonal minima, and six pentagonal hill tops, or vice-versa. The pentagonal
points are all equidistant and form the complete graph of six nodes. The nine neighbors of
each trigonal point split into two orbits of orders three and six. A case in point is the anion of
Cgo. Fulleride ions may be formed by reduction with alkali metals, or electron donors such as
tetrakis(dimethylamino)ethylene [9] TDAE, see Fig. 8.

3.2 Dynamics

For an understanding of the dynamics we turn to the high-symmetry case, where the Hamilto-
nian is limited to the linear force elements, and with — in case of cubic symmetry — degenerate
coupling between e and ¢, modes: E/7 EJ T As the isostationary function demonstrates, the
potential energy minimum in this case forms a continuum. This corresponds to a 3D spherical
trough in the 5D coordinate space. In analogy to the circular motion of atoms in the JT-trough
for a triangle shown before in Fig. 5, in the present case of a spherical trough the loci of dis-
placements of individual atoms form a sphere, centered at their high-symmetry positions. Judd
has provided a detailed analysis of this internal rotation in the case of a T'-type JT surface in
an octahedron [10]. The motions of equivalent atoms are locked and concerted so that the to-
tal degree of freedom corresponds to the symmetry group of a 3D sphere, which is the special
orthogonal group in 3D: SO(3).

The Hamiltonian for the highly symmetric limit, also known as the P x d Hamiltonian, describes
the coupling between a dipolar fermion part and its symmetrized square which corresponds to
a quadrupolar tensor. It consists of a harmonic part, H,, and the standard linear coupling term,
‘H', which is the scalar product of the fermion tensor and the coordinate tensor

— kz UETF)2Q, . (68)

Here k is the coupling parameter. The coordinates are written in their complex format, defined
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as

Qo=0Qs, Qi1 = (69)

1 7 1 1
:FEQW - EQE and Qi = EQE + EQC.

In matrix form, acting in the space of the fermions, ordered as |+1),| 0),|—1), the coupling
Hamiltonian reads

\/Lng \/LgQ—l Q-2
H =k —\%QH —%Qo —\%Qfl : (70)
Q12 %QH \/%-QO

As this is a scalar product of spherical tensors, the coupling Hamiltonian will be SO(3) invari-
ant. The secular equation of H’ reduces to

E 1
E3 — §Q2 + %Jg =0 (71)

where
Q* =Q5—2Q+1Q_1+2Q12Q_»
3v/3

I3 =Q0(Q3—6Q+2Q2—3Q1Q_1) + W(QHQZ"‘Q&QL»

The interesting aspect of this secular equation is that it contains two SO(3) invariants: () is the

(72)

squared norm of the distortion space and thus measures the extent of the distortion, while /3 is
a third-order invariant, proportional to the determinant of the JT Hamiltonian. The roots of the
eigenvalue equation can be expressed using the angle representation. Rewrite /3 as:

I3 = Q% cos 3. (73)

The equation can then easily be solved by the trigonometric expressions for the three roots

E, = —kQ% COS (7—27%) n=20,1,2. (74)
What is the meaning of the angle v which appears when solving the secular equation? The
answer to this question takes us to the 5D oscillator formed by the quadrupolar (),,,, JT modes.
The parent symmetry of the 5D oscillator is the special unitary group SU(5) which allows for
all possible unitary transformations of the five quadrupolar modes. This group can conveniently
be restricted to its subgroup of orthogonal transformations, SO(5). However, when considering
the JT Hamiltonian, symmetry is restricted to an even lower subgroup, corresponding to the
sphere in 3D, with symmetry group SO(3). A clear understanding of the embedding of SO(3)
in SO(5) is offered by the surface oscillations of a vibrating sphere, which have been studied
extensively in nuclear physics as a model for the vibrating nucleus. Low-energy nuclear vi-
brations indeed match the five quadrupolar modes (and likewise for the tidal waves on earth),
dipoles being removed as they correspond to spurious translations. On the other hand the totally
symmetric scalar mode, which corresponds to a breathing mode, is way higher in energy, since
it stretches the surface everywhere. Besides, in the JT context it is inactive as it doesn’t break
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the symmetry. The model of the vibrating hollow sphere thus provides a complete description
of the quadrupolar modes. Since the quadrupolar modes have the smallest allowed L value, they
can only introduce a minimal symmetry breaking: they distort a sphere into an ellipsoid. An el-
lipsoid is a surface characterized by three orthogonal axes of different length. The sum of these
lengths must be constant in time, in order to avoid any admixture of the radial breathing mode.
Hence proper ellipsoidal distortions have only two degrees of freedom. These correspond to
the tetragonal ()y mode and the orthorhombic (). mode. The tetragonal mode leads to a prolate
(Qy > 0) or oblate (Q)y < 0) ellipse, which still has cylindrical symmetry along the z-axis. The
radius of this ellipse is thus described as

d(0,¢) = R(1+ c¢(3cos® 0 — 1)), (75)

where R is the radius of the sphere, and c is scaling constant which oscillates in time with the
vibration. The orthorhombic mode will further break this axial symmetry, by repartitioning the
distortion between the z- and y- directions. A general ellipsoidal distortion with principal axes
along the Cartesian directions is thus described by a vector in the space formed by these two
coordinates. This is a bimodal distortion [11]. Turning to polar coordinates, the parametric
description of this distortion reads

Qo cos 7y

Qe sin 7y

Qe | = 0 |- (76)
Qn 0

Q¢ 0

The angle which appears here refers to the balance between tetragonal and orthorhombic modes,
and this is precisely the angle v which appeared in the secular equation. The ellipsoid which is
obtained by this bimodal distortion is still aligned with the Cartesian reference frame. Spherical
symmetry of course requires that the ellipsoid is free to rotate in 3D space. This is where
the three remaining quadrupolar modes come in. The general orientation of the ellipsoidal
distortion can be performed by the Euler rotation matrix in the full space of the five L=2 modes.
In summary a symmetry adaptation has been performed of the five degrees of freedom: three
angles describe the orientation in 3D space and present the spherical SO(3) symmetry of the
vibrating sphere. A radius and an extra angle v define the ellipsoidal distortion. As this extra
angular degree of freedom appears in the secular equation, the total Hamiltonian has only SO(3)
symmetry, and does not form a spherical surface in 5D. The 7'-term JT problem is thus at its core
a symmetry breaking chain SU(5) | SO(5) | SO(3). The relevant irreducible representations
(irreps) for each of these groups are as follows:

e Excitations of n oscillator quanta in SU(5) correspond to irrep [n].

e Relevant irreps in SO(5) are denoted as (v, 0). Here v is a whole number, which is known
as the Racah seniority number.

e Irreps in SO(3) are characterized by the angular momentum quantum number L.
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Fig. 9: 3D assignments of the surface vibrations of a sphere; the vertical axis represents the
oscillator states of a 5D oscillator; the horizontal axis decomposes these states in SO(5) senior-
ities; spherical components are indicated by S,D,F,. .. angular momentum; note the repetition
of the SD D pattern, with a period of three.

The branching scheme along the symmetry lowering chain is shown in Fig. 9. It represents
the energy of the boson spectrum at zero JT coupling. As the coupling sets in, the L levels are
coupled with the P fermion level, according to the usual vector addition rules. As an example, in
order to realize a vibronic state with P symmetry, only S and D levels are involved: Sx P = P
and Dx P = P+D+F. Interestingly the diagram shows that the initial SD D pattern shows a
perfect repetition with a period of three. This observation allows to construct an Ansatz, with
spherical symmetry and the two extra-spherical degrees of freedom which appear in the secular
equation: the radius () which measures the vertical radial excitations in the diagram, and the
angle v which takes us through the horizontal seniority period in the diagram. We conclude by
providing the Ansatz

(VB A +(bibh)2, R
W = (f0_2bTo-F1 —2(bTbe)20.7:2)f(J)r and
(VB F+V6(bb!)2, o) £
(Fo +bly 7 +(bibh? 7o) f14 (VB ,F+v/B(bTbN2,F) 1,
Vo= | (VB F-VBBB)L ) S| s | (V3L F- V3B, A
(- VBbLFAvVE(bBIBYL, F) 1, (Fo +0 A +(bTb, Fo) 1

Here the F functions depend only on the SO(5) constants () and ~y. F, provides the coupling
with the S states with seniority (3v, 0), F; takes care of coupling with the D states with seniority
(3v+1,0), and F5 runs over the D states with seniority (3v+2,0).
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1 Introduction

1.1 Orbital degrees of freedom in transition-metal compounds

Transition-metal compounds exhibit rich physical properties which have been attracting over-
whelming research activities in the field of condensed matter physics [1—4]. Their electrical and
magnetic properties are governed by the transition-metal d electrons. The d orbitals have five-
fold degeneracy in the atomic limit and are split into three-fold degenerate o, (zy, yz, and zx)
and two-fold degenerate e, (3z2—r? and 2*—y?) orbitals under the cubic ligand field. When the
d electrons become itinerant in transition-metal compounds with octahedral or tetrahedral coor-
dination, they are accommodated by the ¢, and/or ¢, bands creating multiple Fermi surfaces. In
quasi one-dimensional materials such as TaS3, a charge-density wave or modulation of charge
density is induced by a Peierls transition in which the Fermi-surface nesting and the electron-
lattice interaction play essential roles [5]. Also spin-density wave or modulation of spin density
and direction in metallic transition-metal compounds such as LaFeAsO can be explained by
nesting of the Fermi surfaces and the weak or moderate d-d Coulomb interaction [6]. On the
other hand, the d electrons can be localized due to the strong d-d Coulomb interaction (Mott
insulators and Wigner crystal states). In the localized case, the valence electrons are accom-
modated by the atomic like ¢, and e, orbitals. The partially occupied ¢, or e, orbitals exhibit
orbital orderings due to Jahn-Teller effect [7], Kugel-Khomskii mechanism [8], and spin-orbit
interaction [9]. For example, one of the e, orbitals is occupied in multiferroic TbMnOj3 pro-
viding the 3x2—7r2/3y*—r? orbital ordering which is stabilized by the strong Jahn-Teller effect,
breaking the e, orbital degeneracy through elongation of the MnOg octahedra [10]. As for the
194 orbitals, the Jahn-Teller effect is relatively weak and the Kugel-Khomskii mechanism plays
more important roles in determining the spin and orbital states via the superexchange interac-
tion [4]. When one or two of the t,, orbitals are occupied/unoccupied in 3d and 4d oxides, the
Jahn-Teller effect, the Kugel-Khomskii mechanism, and the spin-orbit interaction may com-
pete to determine the orbital ordering [11]. In YTiO3, LaVOg3, and YVO3 with one or two of
the 75, orbitals occupied, the orbital ordering is governed by the Kugel-Khomskii mechanism
with possible interplay with the Jahn-Teller distortion and the tilting of the M Og octahedron
(M=transition metal). In LaTiO3 and Ca;RuQy, the spin-orbit interaction can play an impor-
tant role with the Kugel-Khomskii effect and the Jahn-Teller distortion [12]. When one or two
of the ¢, orbitals are occupied/unoccupied in insulating 5d oxides such as SryIrOy, the orbital
degeneracy is lifted by the strong spin-orbit interaction [13].

Transition-metal compounds with M/ Og octahedra harbor various crystal structures such as per-
ovskite, rocksalt, rutile, corundum, and spinel structures. In the perovskite (or layered per-
ovskite) structure, the M Og octahedra share their corners and the transition-metal sites form a
simple cubic lattice (or a square lattice). The transfer terms between o, orbitals at the neigh-
boring sites are effectively given by the M-ligand-M hybridization governed by the transfer
integral (pdm) and the ligand-to-d charge-transfer energy A [4]. In the spinel systems (or trian-
gular lattice systems such as Cdl,-type and NaFeO,-type structure), the M Og octahedra share
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Fig. 1: (a) Spinel structure of CulryS4 and its pyrochlore lattice of Ir. (b) Ir 5d yz, zx, and xy or-
bitals form one-dimensional bands along (0,1, 1) or (0,1, —1) direction, (1,0,1) or (1,0, —1)
direction, and (1,1,0) or (1, —1,0) direction, respectively. (c) 5.5 electrons (0.5 holes) per Ir
are distributed to the three one-dimensional bands of yz, zx, and xy orbitals.

their edges and the transition-metal sites form a pyrochlore lattice (or a triangular lattice) as
shown in Fig. 1. The transfer integrals between ¢y, orbitals at the neighboring sites are given by
the direct M-M transfer integral (ddo) or the indirect M -ligand-M transfer governed by (pdm)
and A.

1.2 Metal-insulator transitions in transition-metal compounds

Both in the corner-sharing and edge-sharing systems, once the d electrons are localized (Mott
insulators and Wigner crystal states), their magnetic properties are primarily described by mod-
els made up from localized spins and orbitals. The inter-site charge excitation across the band
gap provides the superexchange interaction between the localized spins and orbitals. In this
situation, the interplay between spin ordering and orbital ordering is described by the Kugel-
Khomskii model [8]. Several systems including V503, Ca;RuO,4, YNiOs, and NiS, exhibit
metal-insulator transitions with cooling which can be viewed as Mott transitions [1-3]. The d
electrons are localized below the transition temperature. Interestingly, the transitions of V,0s3,
CasRuOy4, and YNiOg3 are accompanied by strong lattice distortions associated with orbital or-
dering (V203 and CasRuO,) or charge disproportionation (YNiOs). In general, local-density
approximation (LDA) band structure calculations fail to explain the magnitude of band gap
(Mott gap).

When the d electrons are itinerant, the edge-sharing systems often exhibit more complicated be-
haviors than the corner-sharing ones due to the direct M -M transfer terms. Most of the metallic
perovskites such as SrVOj3, SrCoOs, StRuOj3, SroRuO,, ReO3, and SrlrO3 are paramagnetic or
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ferromagnetic metals without any metal-insulator transitions. On the other hand, several spinel
or triangular lattice systems such as MgTi;O4, LiRh,Oy4, Culr,S,, and LiVS, are metallic at
room temperature and undergo exotic metal-insulator transitions with cooling. Their metal-
insulator transitions are accompanied by strong lattice distortion which will be discussed in the
following chapters. The insulating phases are nonmagnetic and can be described by LDA band
structure calculations if the lattice distortion are properly taken into account (There are some
exceptions: It is still difficult to describe the nonmagnetic insulating states of MgTi,O, and
LiVO, by LDA). The lattice distortion is often characterized by the metal-metal dimerization
or trimerization which is driven by the direct M-M transfer. It is expected that the geome-
try of Fermi surfaces plays an important role in the metal-insulator transitions of the relatively
itinerant systems.

2 Orbitally induced Peierls mechanism

2.1 Case study on Culr,S,

In the itinerant case, the moderate Coulomb interaction between the d electrons (d-d Coulomb
interaction) remains and, therefore, a possible instability towards spin and/or charge ordering
may occur due to Fermi-surface nesting. In addition, even without the d-d Coulomb interaction,
the electron-lattice interaction can provide a lattice modulation and consequent charge modu-
lation with a periodicity corresponding to the Fermi-surface nesting. Such charge and/or spin
ordering (charge-density wave and/or spin-density wave) as well as the lattice modulation can
open an energy gap at the Fermi level. Especially when the Fermi surfaces are purely one-
dimensional (planes in the k-space), Fermi-surface nesting is always realized and the system
inevitably undergoes a Peierls transition in which an energy gap is formed at the Fermi level
due to the charge and/or spin and/or lattice modulation. Even though the band structure near
the Fermi level is changed by the modulation to open the energy gap, the d orbital occupation
is not drastically changed by the charge/spin/lattice modulation. Usually, there is no interplay
between spin/charge/lattice modulation and the d-orbital degrees of freedom in the itinerant
transition-metal compounds. Yet there are several transition-metal compounds such as Culr,Sy
and LiRh,O,4 which exhibit a charge/lattice modulation and band Jahn-Teller like distortion,
suggesting an interaction between the charge ordering and the orbital ordering. Since the t5,
bands are degenerate near the Fermi level in the cubic systems, the tetragonal distortion can
be stabilized by removing the band degeneracy due to band Jahn-Teller effect. Motivated by
these peculiar phase transitions, the idea of an orbitally induced Peierls mechanism has been
introduced [14, 15]. Historically, it has been applied to explain the complicated charge and or-
bital ordering in spinel-type ¢, transition-metal compounds in which the transition-metal sites
form a pyrochlore lattice. Among them, Culr,S, with a pyrochlore lattice structure shows a
metal-insulator transition around 230 K [16] with tetragonal distortion and octamer charge or-
dering [17]. In this subsection, we consider the orbitally induced Peierls description of CulryS;.
Under octahedral coordination, the lobes of the e, (t2,) orbitals are directed towards (between)
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the ligands. Therefore, in an edge-sharing octahedron, the ¢, orbitals have substantial transfer
integrals between the neighboring transition-metal sites. Let us neglect the indirect transfer
between the 5, and e, orbitals via the ligand orbitals and consider the direct ones between the
194 orbitals on the pyrochlore lattice. Here, the transfer integrals between the t, orbitals are
restricted by the cubic symmetry. As shown in Fig. 1(a), the Ir sites form a pyrochlore lattice
in which Ir, tetrahedra share their corners. Along the (1,41,0) direction of the pyrochlore
lattice, only the transfer integrals between the zy orbitals survive by symmetry. Also along the
(1,0,41) and (0, 1, £1) directions, only the zx and yz orbitals have non-zero transfer integrals,
respectively. Consequently, the zy, yz, and zz orbitals form one-dimensional bands along the
(1,£1,0), (1,0,41), or (0, 1, £1) directions, respectively. In Culr,S, there are 5.5 electrons
(0.5 holes) in the ¢y, bands. If the 0.5 holes are distributed in the three one-dimensional bands,
each band accommodates 1/6 holes. The six pairs of one-dimensional Fermi surfaces (six pairs
of parallel planes in the three-dimensional k-space) have a Peierls instability due to electron-
lattice or electron-electron interaction. Since the paired parallel planes are spanned by the wave
vectors along (1,+1,0), (1,0,%1), (0,1, +£1) with a magnitude of 7/6 (the unit of the wave
vectors is 1/a where a is the Ir-Ir distance.), the pyrochlore lattice undergoes a distortion with
12 times periodicity along the (1,+1,0), (1,0,%1), and (0, 1, £1) directions. Such a Peierls
instability of the pyrochlore lattice has two disadvantages from a theoretical point of view. First,
the 12-times lattice modulation along the six directions is very complicated and the elastic-
energy loss is expected to be large. Second, the indirect Ir-Ir transfers via the ligands, which are
neglected in the above argument, are not negligibly small in Culr,S,. There are finite transfer
integrals between the different ¢, orbitals. Since the one-dimensional xy, yz, zx bands are
degenerate in energy, the one-dimensional Fermi surfaces can be strongly deformed by the xy-
yz, yz-zx, and zz-zy indirect transfer terms. Indeed, the calculated Fermi surfaces for the cubic
CulryS, have no Fermi-surface nesting [18-20]. In addition, the predicted charge ordering is
inconsistent with the octamer charge-ordering observed in Culr,S,. Here, it should be noted that
the calculated band structure (and the Fermi surfaces) for the high temperature metallic phase
are roughly consistent with the yz, zz, and xy bands mixed with the xy-yz, yz-zx, and zz-1y
indirect transfer terms [18]. For the low temperature insulating phase, the band gap opening by
the lattice distortion is partially explained by band structure calculations [19,20]. In addition,
the unique electronic and lattice properties of CulryS, harbor the metastable disordered state
induced by light or x-ray illumination [21-24]. In the metastable state, the crystal symmetry
is at least partially recovered indicating that the long-range charge-order is destructed [21].
However, the electrical conductivity is much smaller than that of the high temperature metallic
phase, and the energy gap at the Fermi level remains [22]. In the weak coupling limit, the
energy gap should be closed once the long-range order of the charge and lattice modulation is
destroyed. The observation of the metastable disordered state with bad conductivity suggests
that the Ir-Ir dimers can survive without long-range order and that the conductivity is derived
from a kind of bi-polaron hopping in the valence-bond liquid state.

The multi-orbital Fermi surfaces of CulryS, can be reorganized in a band Jahn-Teller manner
to enhance their nesting character for spin- and/or charge-density wave formation. When the
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Fig. 2: (a) Sketch of the yz, zx, and xy bands under a band Jahn-Teller distortion (elongated
along the z-axis) for CulryS4. (b) Charge and orbital ordering with the octamer on the Ir py-
rochlore lattice in CulryS,. The Ir 5d xy orbitals of the Ir*t site form the strong Ir-Ir bonds
along the (1,1,0) and (1,—1,0) directions. (c) Charge and orbital ordering on the Rh py-
rochlore lattice in LiRhyO,. (d) Ir*™ or Rh*T tetramer model for CulryS, or LiRhyO,.

cubic lattice is elongated along the z direction (c axis) while keeping its volume, the transfer
integral between the xy orbitals becomes larger than that between the yz orbitals (and that
between the zx orbitals) as illustrated in Fig. 2(a). Consequently, the width of xy band is
much larger than that of the yz and zz bands. When the 0.5 holes are accommodated by the
zy band, one-dimensional Fermi surfaces are formed along the (1, +1,0) directions which are
spanned by (Q = 7/2. Then the pyrochlore lattice shows modulation with four-times periodicity
along (1,41, 0) which can stabilize the I[r*"-Ir*"-Ir*-Ir** charge ordering. The Ir**-Ir** bond
length is shortened due to the molecular orbital formation of the zy orbitals. The four Ir**-Ir**
dimers created along the (1, 4-1,0) directions form the Ir** octamer as shown in Fig. 2(b). The
predicted charge ordering is consistent with the x-ray diffraction result reported by Radaelli et
al. [17] Also the charge disproportionation between Ir** and Ir** is confirmed by core-level
x-ray photoemission spectroscopy [22]. In this sense, the charge contrast along the (1,+1,0)
chains is much stronger than that of the weak coupling charge-density wave. The observed Ir 5d
band width is comparable to that predicted by LDA [22], indicating weak electronic correlation.
Therefore, the localized Ir**-Ir** dimers are stabilized by the strong electron-lattice interaction
rather than the electronic correlation. The fluctuations of the Ir-Ir dimers are observed even
above 7. in Culr,S, by means of pair distribution function measurements [25].
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2.2 Square lattice models for orbitally induced Peierls transition

In the present subsection, we extend the idea of the orbitally induced Peierls mechanism and
apply it to simplified two- and three-band models of transition-metal compounds with a square
lattice. In order to introduce the basic idea of the orbitally induced Peierls mechanism, we
start from a yz/zx two-band model on a square lattice [see Fig. 3(a)]. The transfer term along
the = (y) direction for the neighboring zx (yz) orbitals is given by t., (t,.). Note that the
transfer integrals between the neighboring zx (or yz) orbitals are positive. The zx and yz
orbitals form one-dimensional bands with energy dispersions of £ = 2t,, cos(k,) and £ =
2t,,, cos(k,), respectively. Here, the unit for &k, and k, is 1/a where a is the lattice constant
of the square lattice. When the two one-dimensional bands accommodate some holes, one-
dimensional Fermi surfaces are created as displayed in the middle panel of Fig. 3(b). In a
realistic system, however, the two bands are mixed by the transfer term between the yz and
zx orbitals (,.-.,) and consequently the Fermi surfaces become two-dimensional as shown in
the right panel of Fig. 3(b). Such two-dimensional Fermi surfaces have a hidden instability by
the combination of band Jahn-Teller and Peierls effect. Let us assume that the square lattice is
compressed along the x-axis and elongated along the y-axis. Then the magnitude of ¢,, becomes
larger than that of ¢,, under the distortion. If the ratio of ¢,,,/t,, is large enough, only the wider
zx band can accommodate the holes (band Jahn-Teller effect). Without ¢,,_.,, the zx band
forms a one-dimensional band with nesting vector () [see the middle panel of Fig. 3(c)]. The
orbitally induced Peierls state is robust against the indirect transfer term .., due to the energy
splitting between the yz and zx orbitals. Under the effect of ¢,. .., a quasi one-dimensional
Fermi surface dominated by zx character is formed as shown in the right panel of Fig. 3(c)
and gives nesting vector ()’ rather than (). In addition to the charge and/or spin modulation
along the z-axis, the unit cell is doubled along the y-axis. In this scenario, by introducing the
band Jahn-Teller distortion and ferro-type orbital ordering, charge- and/or spin-density waves
are realized due to the Fermi-surface nesting. When the band Jahn-Teller distortion alone is
enough to lower the energy, the orbital is restricted by it and then the Peierls instability follows
(orbital restrictive case). On the other hand, the energy gain by the band Jahn-Teller distortion
is not a necessary condition for the orbitally induced Peierls transition. Depending on the band
width ratio ¢, /t,. and the elastic-energy loss, the band Jahn-Teller distortion alone may not
be enough to lower the energy since the system remains metallic. A Fermi-surface change by
virtual Jahn-Teller distortion can be followed by a Peierls transition with wave vector @) or )’ to
stabilize an insulating state with charge and lattice modulation. If the energy gain by the Peierls
gap opening is large enough to compensate the elastic-energy loss by the band Jahn-Teller and
Peierls distortion, one of the yz and zx orbitals is selected and the square lattice is distorted in
a band Jahn-Teller manner (orbital selective case).

The orbitally induced Peierls state is robust against the interlayer transfer term ¢,. With the
t, term illustrated in the right panel of Fig. 3(a), the zz and yz band dispersions are &/ =
2t,, cos(ky) + 2t,cos(k,) and E = 2t,, cos(k,) + 2t, cos(k,) providing the warped Fermi
surfaces as shown in Fig. 4(a). Here, the unit for k. is 1/c where c is the lattice constant along



3.8 Takashi Mizokawa

g (Ity” yZ 1t
[8'{'8\’8‘ é( ....... 99

X X
top view side view
b
® Ey t .=t ky tyz-zx 0
t,=0 zx~lyz eeeanas S I
tyz-zx=0 : ;
yz/zx

/ onr 'ky er

C
©) E, Ky tysr=0 Kyp  byzzx>0
tZ—O tzx>tyz s S
tyy_,x=0
- yZ-2X Q

Fig. 3: (a) Two-band model with yz/zx orbitals on a square lattice. 1., (t,.) is a transfer
integral along the x (y) between zx (yz) orbitals. t,._., is a transfer integral along the diagonal
direction between zx and yz orbitals. (b) Left and middle: Band structure and Fermi surface
without yz-zx mixing by t,, and band Jahn-Teller effect. Right: Fermi surface with yz-zx
mixing by t,._., and without band Jahn-Teller effect. (c) Left and middle: Band structure and
Fermi surface without yz-zx mixing by t,._., and with band Jahn-Teller effect. Right: Fermi
surface with yz-zx mixing by t,._., and band Jahn-Teller effect.

the z direction. With the band Jahn-Teller effect, the yz orbital is more stabilized and has
smaller band width to be fully occupied. The holes are taken by the zz orbitals and their Fermi
surfaces have the nesting vector )" as illustrated in Fig. 4(b). The yz band may reach the Fermi
level around k, = 7 creating a small hole pocket as shown in the right panel of in Fig. 4(b).
Under the Peierls distortion along the x and z directions due to the zx Fermi surface, the zx
Fermi surface disappears while the yz Fermi pocket can remain. Such a metallic state with
charge-orbital modulation would be relevant for several layered materials including IrTe,.
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Fig. 4: (a) Fermi surfaces of a yz/zx two-band model with interlayer transfer integral t, and
without band Jahn-Teller effect. (b) Fermi surfaces of a yz/zx two-band model with interlayer
transfer integral t, and band Jahn-Teller effect. (c) Left and middle: Band dispersion and Fermi
surface of a yz/zx/xy three-band model with yz and zx fully occupied. Right: Fermi surface of
a yz/zx/xy three-band model with anisotropic xy-zx mixing.

In the next step, let us extend the idea of orbitally induced Peierls mechanism to a yz/zx/xy
three-band model with a xy Fermi surface. Let us assume that the yz and zx bands are fully
occupied by electrons and the remaining zy band with E = 2t,, cos(k,) + 2t,, cos(k,) +
2tyy-wy c0s(ky+k,) forms a closed Fermi surface. Note that ¢,, and ¢,, ,, are positive and
negative, respectively. With such a circular Fermi surface without orbital degeneracy, an orbital
instability or band Jahn-Teller effect is not expected. However, if a large energy gain by Peierls
gap-opening is expected after a geometrical change of the Fermi surface (Lifshitz transition) by
a sort of orbital anisotropy, the system may find its way to lower the symmetry for better Fermi-
surface nesting. In the present model, a slight rhombic distortion lifts the degeneracy between
the yz/zz bands and the xy-yz and zy-zx couplings become nonequivalent. Consequently, the
Fermi surface of the zy band undergoes a Lifshitz transition and obtains good nesting character
as schematically shown in Fig. 4(c).
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2.3 Triangular lattice models for orbitally induced Peierls transition

Let us consider a yz/zx/ry three-band model on a triangular lattice. The transfer terms along the
(1,0,0), (1/2,4/3/2,0), and (—1/2,+/3/2,0) directions (under the X-, Y-, and Z-coordinates
with X = 1/v2(z+y), Y = 1/V6(—2+y+22), Z = 1/V/3(xz—y+2)) are given by t,,,,, t,,., and
t,. for the neighboring xy, yz, zx orbitals. The xy, zx and yz orbitals form one-dimensional
bands with energy dispersions with E = 2t,, cos(k,), B = 2t., cos(k,/2+/3k,/2), and
E = 2t,,cos(—k,/ 2+\/§ky /2), respectively, as shown in the left panel of Fig. 5(a). Here,
the unit for k, and k, is 1/a where a is the lattice constant of the triangular lattice. When the
three one-dimensional bands accommodate one hole as shown in Fig. 5(a), one-dimensional
Fermi surfaces with 5/6 filling are created as illustrated in the middle panel of Fig. 5(a). In a
realistic system, the three bands are mixed by the transfer terms between them (..., t.0-2y,
and ¢,,_,.) and consequently, the Fermi surfaces become two-dimensional as shown in the right
panel of Fig. 5(a). When the three one-dimensional bands accommodate one electron as shown
in Fig. 5(b), one-dimensional Fermi surfaces with 1/6 filling are created as illustrated in the
middle panel of Fig. 5(b). With the transfer terms ¢,. .., t.7-4y, and t,,_,., six electron pockets
around the M point and one hole pocket at the zone center are created as shown in the right panel
of Fig. 5(b). Similarly to the square lattice model, the triangular lattice can by deformed along
one of the bond directions (The equilateral triangle is deformed into an isosceles one). Let us
assume that the triangle is compressed along the horizontal axis (X-axis). Since t,, > 1. = t.,
under the lattice distortion, only the wider xy band can accommodate the electron as illustrated
in the left panel of Fig. 5(c). The zy band forms a one-dimensional band with nesting vector
@ [see the middle panel of Fig. 5(c)]. The orbitally induced Peierls state is robust against the
indirect transfer terms ¢,,_,. and t,,,. due to the Jahn-Teller energy splitting between the xy

and yz/zx orbitals. Under the effect of ¢, and ¢ a quasi one-dimensional Fermi surface

TY-Y2s
dominated by zy character still keeps the nesting condition. Since the xy band accommodates
one electron and is half-filled, the periodicity along the X -axis is doubled with zy-zy dimers as

shown in the right panel of Fig. 5(c).

Under the strong trigonal ligand field, the yz, zz, and xy orbitals are reconstructed to be the ay,
and ey orbitals. This situation is relevant for the corundum system where the //Og octahedra
share their faces along the c-axis. Yet, in several triangular lattice systems such as Na,CoO,,
the a,, and e;r orbitals are also more convenient to describe their Fermi surfaces. For example,
when 7 is larger than 0.5 in Na,CoO,, the pudding-mold like a;, bands form isotropic Fermi
surfaces and the e7 orbitals are fully occupied [see the left and middle panels of Fig. 5(d)]
[26,27]. If the anisotropic hybridization between the a;, and one of the ej orbitals deforms
the Fermi surface for better nesting with ) as illustrated in the right panel of Fig. 5(d), then
the orbitally induced Peierls mechanism is triggered to provide charge and orbital ordering.
Such an anisotropic a4-¢7 coupling would be induced, for example, by the anisotropic Na ion
arrangement in Na,CoO, [28,29].
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Fig. 5: (a) Left: Band dispersion for a triangular lattice three-band model (yz/zx/xy orbitals)
with one hole per site. k represents k, or k:x/2+\/§k:y/2 or k;x/2—\/§ky/2. byzzar Lrm-ay
and t,,,_,. are the inter-orbital transfer terms between the yz/zx/xy orbitals. Middle and right:
Fermi surfaces without and with interorbital transfer terms. (b) Band dispersion, Fermi surfaces
without and with inter-orbital transfer terms for the three-band model with one electron per
site. (c) Left and middle: Band structure and Fermi surfaces with band Jahn-Teller effect.
Right: Orbital ordering by the orbitally induced Peierls effect on the triangular lattice (half
filled case). (d) Left and middle: Band dispersion and a4 Fermi surface with fully occupied e7.
Right: Fermi surfaces deformed by anisotropic a,4-e; mixing. () indicates a possible nesting
vector.



3.12 Takashi Mizokawa

(a) ®)
xy band
\ / \ I/band gap

NN }
Vyz,szands v

charge modulation (xy hole) charge modulation (xy hole)

dimer

Fig. 6: (a) Band gap opening and charge modulation for the weak coupling case. (b) Band gap
opening and charge modulation for the strong coupling case.

2.4 Effect of strong coupling

In the previous arguments, it is implicitly assumed that the electron lattice interaction (or the d-d
Coulomb interaction) responsible for the Peierls transition is assumed to be a weak perturbation
to the metallic state. Therefore, perfect Fermi-surface nesting is a necessary condition for the
Peierls transition. In such a weak-coupling case, the charge and lattice modulation is sinusoidal
with relatively small amplitude as shown in Fig. 6(a). The mean field treatment works well
to describe the transition, and the energy gap E¢ and the transition temperature 7. should
satisfy Eg/kgT,. ~ 3.5. However, even in one of the most weakly correlated systems Culr,yS,,
E¢/kpT. is about 10 (E¢ is about 0.2 eV and T, is 230 K). This indicates that the electron-
lattice interaction is rather strong and that local charge- and lattice-fluctuations can survive even
in the disordered phase. Under strong coupling, the charge is localized at the strongly distorted
bond as shown in Fig. 6(a), and its fluctuation remains above 7.. Indeed, Ir-Ir dimers are
observed in the cubic phase above 7. for Culr,S, [25]. Most of the transition-metal compounds
discussed in the next chapter fall in the strong coupling regime.

3 Application of the orbitally induced Peierls mechanism
to transition-metal compounds

3.1 Spinel systems

Apart from the metal-insulator transition in CulryS,, the orbitally induced Peierls mechanism
can be applied to that of LiRh,O, around 170 K accompanied by the Rh3*/Rh** charge order-
ing [30,31]. The charge ordering with four-times periodicity of Rh3*-Rh3+-Rh**-Rh** occurs
along the (1,1,0) and (1, —1,0) chains of the Rh pyrochlore lattice. This is similar to that of
Cul,S, and can be explained by the orbitally induced Peierls instability. However, the experi-
mentally observed charge-ordering pattern of LiRh,Oy is different from the octamer structure
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of Culr,S, and satisfies the Anderson condition where each Rhy tetrahedron exactly accommo-
dates two Rh** to minimize the Coulomb repulsion energy between them [31]. As a result, the
Rh3*-Rh3*-Rh**-Rh** arrangement along the (1, 1, 0) chain is shifted relative to that along the
neighboring (1, —1,0) chain as shown in Fig. 2(c). Shiomi et al. proposed that the electronic
correlation, which is expected to be stronger in the 4d oxides than the 5d sulfides, is responsible
for destabilization of the octamer structure which does not satisfy the Anderson condition [31].
If the electronic correlation is negligibly weak, the Rh, tetrahedron can be fully occupied by
Rh** keeping the Rh®*"-Rh?*"-Rh*"-Rh** arrangement along the (1, 41, 0) chains as illustrated
in Fig. 2(d).

LiRh,O,4 undergoes the cubic to tetragonal transition (¢ > a) at 220 K which is followed by
a Rh*"/Rh** charge ordering and the Rh**-Rh** dimerization. The Rh3"-Rh** charge fluc-
tuations [32] and the local Rh*t-Rh** dimers [31] are observed between 220 K and 170 K,
indicating that orbital symmetry-breaking plays a more important role in LiRh,O,. In the case
of CulrySy, the local Ir-Ir dimers are observed even in the cubic phase [25], while the Rh-
Rh dimers are observed only in the tetragonal phase. Most probably, the bond directions of
the Rh-Rh dimers tend to be aligned through the stronger electronic correlation. While the
electron-lattice interaction (or the dimerization) drives the distortion with the four-times peri-
odicity of the chains in CulrySy, the inter-site electron-electron interaction plays a primary role
in LiRhyOy.

MgTi, O, exhibits a metal-insulator transition around 260 K which is accompanied by a struc-
tural transition from cubic to tetragonal (¢ < a) [33]. The metal-insulator transition is accom-
panied by the Ti**-Ti** dimerization with suppression of magnetic susceptibility. The nearest-
neighbor Ti-Ti distances become nonequivalent and spirals of long and short Ti-Ti bonds are
formed [34]. In the itinerant picture, the yz and zz bands get wider than the xy band under the
tetragonal distortion and accommodate the Ti 3d electrons. Consequently, the one-dimensional
yz and zx bands are formed along the (0,1, £1) and (1,0, +1) directions which respectively
accommodate 0.5 electron per Ti site. The quarter filled yz and zx bands are stabilized by the
orbital ordering with four-times periodicity of yz-yz and zz-zx dimers as shown in Fig. 7(a).
The orbital ordering is consistent with the spirals of long and short Ti-Ti bonds. It is also pos-
sible to explain the orbital ordering based on the Kugel-Khomskii mechanism in the localized
picture [35] although it is difficult to describe the metal-insulator transition. Starting from the
itinerant picture, Heitler-London like correlation effects can be included to provide the Ti-Ti
dimer with the spin-singlet bond character. The localized nature of the Ti-Ti dimer has ex-
perimentally been suggested from the survival of the local Ti-Ti dimers above the transition
temperature [36] and the multiplet structure of the Ti 2p x-ray absorption spectrum [37]. Inter-
estingly, both the itinerant model and the localized model provide the same conclusion on the
orbital ordering of MgTi,O4. Also it should be noted that the LDA+U like approach cannot
describe the spin-singlet ground state of MgTi5O,.

AlV,0, harbors VZT/V3*t charge ordering along the (1,1, 1) direction [38, 39] and exhibits
peculiar V37 trimerization and V** tetramerization [40]. (The combination of the trimer and
the tetramer can be viewed as a heptamer [39].) Along the (1,1,0), (1,0,1), and (0, 1, 1) chains



3.14 Takashi Mizokawa

(a)

yz

Fig.7: (a) yz-yz-zx-zx orbital ordering for MgTi> Oy. (b) V2/V3+* charge ordering for AlV,0,.
The yellow circles indicate the orbitally disordered V3" sites. In the left panel for the V3*
Kagome layer, the V3T trimers are formed by the yz/zx, zx/vy, and yz/vy orbital ordering.
In the right panel for the V*T Kagome layer, the tetramers are formed with the V** sites
(yz/zx/xy) in the neighboring triangular lattice layer.

which cross the (1,1,1) Kagome and triangular lattice layers, the xy, zz, and yz bands are
quarter filled, respectively. Similarly to Culr,S, and MgTi» Oy, each chain is expected to have
a lattice distortion with four-times periodicity due to V**(Kagome)-V2*(tri)-V3*(Kagome)-
V3 (tri) charge ordering. Along the (1,—1,0), (1,0, —1), and (0, 1, —1) chains in the Kagome
layers, the xy, zx, and yz bands are half filled respectively. The Peierls instability gives lattice
distortion with two-times periodicity (alternating short and long bonds) to each chain, resulting
in the trimer formation. As a result, while the V37 sites harbor the trimers confined in the
Kagome layer, the V2" sites form the tetramers between the Kagome and triangular lattice
layers. We speculate that the quarter-filled chains trigger this peculiar charge ordering and
multimer formation.

The magnetite Fe30,4 harbors Fe3*-Fe?"-Fe3™ trimers below the Verwey transition temperature
at 125 K [41-43]. In Fe30y, since the minority spin 54 electrons are tied to the majority spin ¢y,
and e, electrons via Hund coupling at the Fe?* site, it is not straightforward to apply the orbitally
induced Peierls mechanism to describe the trimer. However, it is still possible to discuss the
Fe?*-Fe?'-Fe®t arrangement along the chains based on a half filled spin-polarized ¢», band. For
example, when the yz band is selected by the minority spin electron, it provides site-centered
charge modulation along the (0, 1, 1) chains forming an Fe*>"-Fe*"-Fe3" arrangement.
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3.2 Pyrochlore systems

Several pyrochlore systems exhibit interesting metal-insulator transitions with possible charge
or orbital ordering. However, none of them exhibit band Jahn-Teller like distortions. Since
MOg octahedra share their conners in the pyrochlore structure, their 5, band dispersions are
strongly affected by the indirect ¢5,-ligand-ty, transfer terms and become more complicated
than those of the spinel structure. Therefore, the energy gain by the band Jahn-Teller distortion,
if it may exist, tends to be reduced.

Among the transition-metal oxides with pyrochlore structure, CsW,Og exhibits a unique metal-
insulator transition around 215 K which is accompanied by W trimers [44—46]. The crystal sym-
metry of the insulating phase just below the transition is still cubic although the tetrahedron of
W sites in the pyrochlore lattice is strongly distorted by the trimerization [46]. While Ir**/Ir**
(Rh®**/Rh**) charge disproportionation is observed in Culr,S, (LiRhyO4), W5/ W charge
disproportionation is absent in CsW5Og [47]. The absence of the band Jahn-Teller effect and the
charge disproportionation is consistent with the complicated band structure. Streltsov et al. pro-
posed that the Fermi surfaces calculated with the W 5d spin-orbit interaction satisfy nesting con-
ditions with (7,0, 0), (0,7,0), and (0,0, 7) and the metal-insulator transition can be explained
by the simple Peierls mechanism [48]. However, it is still difficult to explain the trimer forma-
tion. Nakai and Hotta emphasized the electronic correlation effect due to a flat band created by
the pyrochlore lattice geometry and the spin-orbit interaction [49]. Under the strong spin-orbit
i?teraction, there are \%(y’z’—l—iz’x’) T, \/Li(y’z’—iz’x/) 4 \/Lé 22"y 1 —(y'2'+i2'2") ]], and
%[Qx’y’ 1 +(y'2'—iz'2") 1] in the j = 3/2 branch. (Here, the a'-, 3/'-, and z’-axes are along the
M-0O bonds of the octahedron. In the spinel case, they are identical to the x-, y-, and z-axes in
the figures.) The former two orbitals have substantial transfer integrals along the 2’-axis which
is roughly along the M-ligand-M bond or the chain direction. If such orbitals are selectively
occupied, they can form a quasi one-dimensional band along one of the chains. The virtual
one-dimensional bands are quarter filled and provide the lattice distortion with four-times peri-
odicity along the chain. Once the short W-W bond is created, the two WOg octahedra with the
shortened W-W bond are rotated and the other WOg octahedron connected to the two octahedra
gets closer to the W-W bond. As a result, W trimers can be formed as shown in Fig. 8(a). In
addition, such orbitals would be consistent with the zigzag chain order which was proposed by
Hirai et al. for the low temperature phase [45]. If 2’2’ +1z'y’ and (2'y’ +1iy’2") orbitals are occu-
pied in the (0,1, 1) and (1,0, 1) chains (or (0,1, —1) and (1,0, —1) chains), the zigzag structure
of the short W-W bonds can be formed through the distortion with the four-times periodicity
along the chains.

There is no clear understanding for the difference between the multimer case and the zigzag
chain case. Most probably, the rotation and Jahn-Teller distortion of the M/ Og octahedra should
be analyzed more carefully. The zigzag chains are also formed in the nonmagnetic insulating
phase of Tl;Ru,05 [50].
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(a)

Fig. 8: (a) W trimers and possible orbital ordering for CsWy0g¢. (b) Zigzag chains of short
W-W bonds. The thick solid lines indicate the short bonds.

3.3 Triangular lattice systems

The MOg octahedra share their corners and form a triangular lattice of M sites as shown in
Fig. 9(a). Among the triangular lattice systems, NaTiO, exhibits a transition to the nonmag-
netic insulating state with lattice distortion from trigonal to monoclinic [51,52]. The direct
l94-t24 transfer term would be important just like in the spinel systems. However, in band struc-
ture calculations for NaTiO, [53] as well as CoOs, the 5, band dispersion is upwardly convex
around the I point indicating the indirect M-O-M transfer is dominant. In addition, the trig-
onal ligand field can break the three-fold degeneracy and the 75, orbitals are split into the a,
[\/ig(a:y—iryz—l—zx)] and €] [\/Lg(xy—keﬁ“i/ 3y z+e*4m/322)] orbitals. As shown in the left panel
of Fig. 5(b), the zy, yz, and zz orbitals may form one-dimensional bands along the (1,0, 0),
(1/2,4/3/2,0), and (—1/2,/3/2,0) directions of the X-, Y-, and Z-coordinates. Inclusion of
the mixing between the zy, yz, and zx orbitals provide the one hole pocket at the zone center
(with ay, character ) and the six hole pockets around the M points (with e7 character) for the t ’
system as shown in the right panel of Fig. 5(b). The Fermi surfaces calculated for the trigonal
phase by Subedi [53] are roughly consistent with this simple picture except the hole pocket at
the zone center. The absence of the hole pocket can be assigned to the trigonal ligand field
which stabilizes the a,, orbital. If the xy orbital has larger band width due to the contraction
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Fig. 9: (a)Triangular lattice layers of edge-sharing M Og octahedra. (b) Electronic configura-
tions for Ti** and Ir*™. (c) Orbital ordering for the monoclinic phase.

along the X direction [X = (z—y)/+/2], the Ti 3d electron is accommodated by the quasi one-
dimensional xy band. Since the xy band is half-filled [Fig. 9(b)], the Ti-Ti dimerization with
the two-times lattice modulation is realized by the Peierls transition [Fig. 9(c)]. However, the
triangular lattice of NaTiOs is not clearly deformed from equilateral to isosceles. Instead, the
TiOg octahedron is compressed to stabilize the zy orbital [52].

IrTe, with the Ir triangular lattice exhibits a structural phase transition at ~ 270 K from trigonal
to monoclinic, accompanied by anomalies in electrical resistivity and magnetic susceptibil-
ity [54-57] An electron diffraction study by Yang et al. shows that the structural transition is
accompanied by a superstructure with wave vector of @ = (1,0, —1)/5 [57]. Such a super-
structure can be explained by a charge-density wave driven by a perfect or partial nesting of
multi-band Fermi surfaces [57]. However, the monoclinic distortion can be attributed to a band
Jahn-Teller like instability, suggesting the orbitally induced Peierls mechanism. In addition, a
charge modulation of Ir charge disproportionation is indicated by an Ir 4 f x-ray photoemission
study [58]. Although the formal valence of Ir is +4, partial charge transfer from Te to Ir induces
a Ir*™/Ir*" mixed valence and the Ir*"-Ir** dimers are arranged as illustrated in Fig. 10(b).
LiVO, is a classical system with V3 (t%g) which exhibits a magnetic-nonmagnetic transition
around 500 K with V trimerization [1,59-61]. Pen et al. pointed out that the zy, yz, and zx or-
bitals are occupied at the V sites connected by the (1,0, 0), (1/2,v/3/2,0), and (—1/2,/3/2,0)
bonds of the X-, Y-, and Z-coordinates (see Fig. 5) [62]. When yz/zx, zx/zy, and zy/yz or-
bitals are occupied, respectively, at the three V sites in the trimer, the three V3 form three
singlet bonds resulting in the nonmagnetic ground state with the trimer. Although the multiplet
structure of V 2p x-ray absorption spectroscopy of LiVO, indicates localized V 3d electrons
with Hund coupling, it is still possible to make a spin-singlet ground-state from three V3* in the
trimer [63]. Interestingly, such trimerization can be described by the orbitally induced Peierls
mechanism or the orbital selective Peierls mechanism [64] in a manner similar to MgTiyO,.
The triangular lattice can be decomposed into chains running along (1,0, 0), (1/2,/3/2,0),
and (—1/2,/3/2,0) directions. Therefore, the 2y, zz, and yz orbitals can form quasi one-
dimensional bands along the three directions which are 2/3 filled and can induce orbital order-



3.18 Takashi Mizokawa

(a) (c)

ZX/Xy

xy/lyz
yz/zx
z
I

(b) (d)

zx/xy

Fig. 10: (a) Orbital ordering in NaTiO, (b) Charge and orbital ordering in IrTe;. (¢ and d)
Orbital ordering in LiVO, and LiVS,. The thick solid lines indicate the short bonds.

ing and dimerization with three-times periodicity. The xy-zy, zz-zx, and yz-yz dimers are
formed along the (1,0,0), (1/2,v/3/2,0), and (—1/2,+/3/2,0) chains, respectively. Here, the
degenerate xy, yz, and zx bands are strongly modified by the inter-orbital transfer terms (...,
l22-2y> and ;. -,) and lose the nesting condition as illustrated in Fig. 5(a) or (b). Therefore, the
electron-lattice interaction should be strong enough to stabilize the dimer bonds even without
perfect Fermi-surface nesting.

The dimer bonds are indicated by the thick lines in Fig. 10(c). The xy-ry and zx-zz dimers
overlap at the intersection site of the (1,0,0) and (1/2,1/3/2,0) chains where both of the zy
and zx orbitals are occupied. The (—1/2,+/3/2,0) chain goes through the other site of the zy-
xy (zx-zz) dimer, and the xy and yz (2 and yz) orbitals are occupied at the site. As a result,
the three V3T sites are connected by the xy-zy, zz-zz, and yz-yz singlet bonds as shown in
Fig. 10(c). Here, it should be noted that the singlet bond picture is inconsistent with the Hund
coupling of the tgg configuration which may weaken the V-V bond. It is still an open question
whether the trimer is sustainable against the electronic correlation although its stability was
suggested by cluster model calculations [63]. Liy_,MoO3 with Mo?* (¢3 ,ona triangular lattice
also exhibits Mo trimers similar to LiVO, [65]. The Mo trimers can survive up to the highest
temperature indicating the trimer due to the orbitally induced Peierls mechanism or the orbital
selective Peierls mechanism is more stable in the more itinerant systems. Orbitally induced
Peierls transitions can be classified into two categories: orbital restrictive or orbital selective.
In case of Culr,S, and LiRh,Oy, the ¢y, orbital is restricted by band Jahn-Teller effect. As for
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AlV;,0, and LiVO,, one of the ¢y, orbitals is selected depending on the bond direction.
Katayama et al. found that LiVS, undergoes a metal-insulator transition at 314 K which is
accompanied by V trimerization similar to LiVO, [66]. Since the V 3d electrons are more
itinerant in LiVS, than LiVO,, the orbitally induced Peierls description is more suitable. Also in
LiVS,, the xy-xy, zx-zx, and yz-yz singlet bonds are stabilized by the strong lattice distortion.
E¢/kpT. (E¢ is the magnitude of the band gap, and 7., is the transition temperature.) is about
6 indicating strong coupling [67]. Indeed, short range order of the zigzag chain structure and
lattice fluctuations are observed above the transition temperature [68]. Interestingly, the zigzag
chain structure can be stabilized by the ferro-type orbital order as shown in Fig. 10(d). In the
figure, the xy and zx orbitals are occupied at every V site and the zy-ry and zx-zx dimers
form the zigzag chains. There are two other domains where the zx and yz orbitals or yz and
xy orbitals are occupied at every site. Since the d electrons in LiVS, are rather itinerant, the
band Jahn-Teller effect and the Fermi-surface nesting can collaborate to provide the ferro-type
orbital order and the lattice modulation with three-times periodicity.

BaV,00;5 with V**/V3T mixed valence exhibits a structural transition at 123 K driven by V
trimerization [69] and V 3d orbital order similar to LiVO, [70]. At the three V3* sites in the
trimer, the xy, yz, and zx orbitals are unoccupied respectively. It is possible to create molecular
orbitals from them and to put an extra electron in the bonding molecular orbital. Therefore,
the trimer is expected to be stable against electron doping (up to the doping level of 1/3 per V
site). Indeed, the V trimer in BaV 13015 is likely to accommodate one extra electron. The extra
electron is shared by the three V sites. In addition, V2*/V3* charge fluctuation is observed
by x-ray photoemission spectroscopy [71] indicating that the ground state is a superposition of
V2HV3tv3t V3t V2HoyEt and V3T-V3t-V2t configurations.

3.4 Honeycomb lattice systems

Since the honeycomb lattice cannot be decomposed into chains, it is not straightforward to apply
the orbitally induced Peierls description to its charge-orbital ordering. The dimerization on the
honeycomb lattice can be more exactly described by the theory of Jackeli and Khomskii [72] in
which the orbital degeneracy is broken by the bond selection. However, in this subsection, fol-
lowing the idea of orbitally induced Peierls mechanisms, we would like to discuss dimerization
induced by possible orbital order.

Assuming ferro-type orbital order of xy, local xy-xry bonds can be created for tég or t‘;’g Sys-
tems as shown in Fig. 11(a). Since the number of xy-xry bonds is limited, the energy gain by
the singlet bond formation may not be enough for a metal-insulator transition by orbitally in-
duced Peierls mechanism. However, several insulating systems undergo magnetic-nonmagnetic
transitions by dimerization. TiCls and TiBrs with Ti** (t3,) become nonmagnetic with Ti-Ti
dimerization below 217 K [73] and below 178 K [74], respectively . The dimerization can be
described by ab-initio band structure calculations [75,76]. Ilmenite MgVO; with V4+ (tég) also
exhibits V-V dimers on the honeycomb lattice below 500 K [77]. Similar to TiCls and TiBrs,
ferro-type orbital order is expected as shown in Fig. 11(a).
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(2)

(b) (d)

yz/zx/xy

Fig. 11: (a) Orbital ordering for tég on a honeycomb lattice. (b and c) Orbital ordering for tgg
on a Kagome lattice in LioRuQOs. (d) Orbital ordering for tgg on a Kagome lattice in MoCls.
The thick solid lines indicate the short bonds.

4d and 5d honeycomb systems with tég and tgg configurations (such as NayIrO3 and RuCls) do
not show dimerization at ambient pressure due to the strong spin-orbit interaction [78,79]. In
this context, it is striking that Li;RuO3 exhibits a metal-insulator transition about 540 K due
to Ru-Ru dimerization on the honeycomb lattice [80]. In Li;RuQOs, the Ru** (t;*g) ion has two
holes in the ¢, orbitals. Assuming ferro-type orbital order of xy and yz holes, zy-zy and yz-
yz singlet bonds can be created as illustrated in Fig. 11(b). Although the arrangement of the
short Ru-Ru bonds (indicated by the thick lines in the figure) is consistent with the experimental

result [80], the number of these bonds is limited, and the energy gain by the singlet bonds may
1

v

to the zy-zy o-bonds [81]. Under the orbital order with vz, \/% (za+2y) and 2y, \/% (yz+zx), the

not be enough. Kimber et al. pointed out that the —=(yz+zx) orbitals form 7-bonds in addition
short Ru-Ru bonds are stabilized by the double bonding in the nonmagnetic phase of Li;RuOj.
Interestingly, a recent experimental work reports that the xy-zy o-bonding is more robust than
the m-bonding by the yz and zx orbitals and that the partially disordered phase can be created
by optical breaking of the 7 bonding [82]. TcCls with Tc3+ (tgg) has the Tc-Tc dimers on the
honeycomb lattice [83]. The arrangement of the dimers is the type of Fig. 11(a) rather than that
of Fig. 11(c).

Another striking system is MoCl3 which undergoes a magnetic-nonmagnetic transition around
585 K with the strong Mo-Mo dimerization below 585 K [84-86]. The Mo-Mo dimerization
in the honeycomb lattice is illustrated in Fig. 11(d). The Mo®* ion has three holes in the ¢,
orbitals in MoCls. Therefore, in addition to the xy-xy o-bonds and the \%(yz%—zx) m-bonds,
the \%(yz—zx) orbitals may form J-bonds although J-bonding is usually weak.



Orbitally Induced Peierls Mechanism 3.21

(a)

Xy

&y

X

Fig. 12: (a) Orbital ordering for t%g on a Kagome lattice. (b) Orbital ordering for Na;TisCls.
The thick solid lines indicate the short bonds.

3.5 Kagome lattice systems

Na,Ti;Clg consists of a Ti%* (tgg) Kagome lattice and undergoes a two step structural phase
transitions around 210 K (partial trimerization) and 190 K (full trimerization) on cooling [87-
89]. It is possible to describe the spin singlet trimer based on localized spins [90]. On the other
hand, the substantial lattice distortion of the trimerization by itself suggests that a strong Ti-Ti
interaction plays a vital role beyond the localized picture. Therefore, it is also useful to describe
the trimerization based on the itinerant picture: an orbitally induced Peierls mechanism [91]. In
contrast to the honeycomb lattice, the Kagome lattice can be decomposed into chains running
along the (1,0,0), (1/2,4/3/2,0), and (—1/2,/3/2,0) directions. Therefore, the yz, zz, and
xy orbitals can form quasi one-dimensional bands along the three directions. As illustrated in
Fig. 12(a), each one-dimensional band is half filled and induces a lattice modulation with two-
times periodicity (The short Ti-Ti bonds are indicated by the thick lines). The short Ti-Ti bonds
along the three directions form the trimers in agreement with the experimental observation.

The Mo** (¢3 ;) Kagome lattice in Zn,Mo30g hosts Mo trimers similar to NayTizClg [92, 93].
The Mo trimers with six ¢y, electrons are stable up to the highest temperature available indi-
cating that the trimer is more stable in the more itinerant system. At the three Mo sites in the
trimer, one can construct a molecular orbital with bonding character from the unoccupied 5,
orbitals to accommodate an extra electron. Indeed, the Mo trimers can survive in LiZn,Mo3Og
with seven Mo 4d electrons in the Mo trimer [92,93]. The Mo trimers have localized spin-1/2
due to the extra electron and form a geometrically frustrated spin-1/2 triangular lattice. This
can be viewed as a cluster Mott insulating state [94, 95] providing exotic spin-liquid behav-
iors [92,93]. Very recently, Mo®*"/Mo** charge fluctuation were observed by x-ray photoemis-
sion spectroscopy [96]. This situation is similar to the V trimer in BaV,70O;5 and is different
from the W trimer in CsW5QOg4. A possible relationship between the charge-fluctuation and the
spin-liquid behavior should be examined by further studies. Nb3Clg has a Kagome lattice with
Nb trimers. Since Nb?T:Nb?+ = 1:2 in NbsClg, the Nb trimer accommodates seven log €lec-
trons and hosts localized spin-1/2 [97-99]. The spin-1/2 triangular lattice of the cluster Mott
insulating state is a new playground to study spin liquids and exotic superconductivity [100].
Interestingly, Nb3Clg exhibits a further magnetic-nonmagnetic transition around 90 K although
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orbital degeneracy is already lifted. Haraguchi et al. proposed charge disproportionation be-
tween the trimers [99]. Apart from the fabrication of atomic layer systems, the origin of this
exotic phase transition will be a target of future work.

4 Conclusion

By combining band Jahn-Teller effect (or local orbital polarization) and Peierls instability (or lo-
cal singlet bond formation), the orbitally induced Peierls mechanism can explain charge-orbital
ordering in a wide range of nonmagnetic (spin singlet) transition-metal compounds with edge-
sharing octahedra and ¢,, orbital degrees of freedom. With the ferro-type ¢, orbital ordering
mostly due to the band Jahn-Teller effect, quasi one-dimensional bands are created by one of the
toq orbitals. Consequently, charge ordering and/or dimerization are induced by Fermi-surface
nesting. In some cases, intervening quasi one-dimensional bands provide trimers or tetramers.
Without ferro-type orbital ordering, collaboration between local orbital polarization and singlet
bond formation can stabilize nonmagnetic ground states with multimers. In most of the cases,
both the itinerant model and the localized model predict the same charge-orbital order, prob-
ably due to the approximate one-to-one correspondence between the Fermi surface geometry
and the bond direction. However, there are still several unsolved questions even in the most
studied CulryS4. The energy landscape for various lattice distortion should be elucidated in
order to fully understand the space and time fluctuation and evolution of the Ir-Ir dimers and the
orbital polarization. Since the electronic correlation is stronger in the Ti oxides (NaTiO, and
MgTi,0O,) than the Ir chalcogenides, the Heitler-London like wave function should be taken into
accounts to describe their electronic properties. Such a theoretical approach on the multiband
lattice model is highly challenging. As for the ¢3 , and t5 ; Systems such as LiVO; and Li;RuOs3,
the effect of Hund coupling should be clarified theoretically and experimentally.
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4.2 Robert Eder

1 Introduction

Compounds containing 3d or 4 f transition-metal or rare-earth ions have been intriguing solid
state physicists ever since the appearance of solid state physics as a field of research. In fact,
already in the 1930’s NiO became the first known example of a correlated insulator in that it
was cited by deBoer and Verwey as a counterexample to the then newly invented Bloch theory
of electron bands in solids [1]. During the last 25 years 3d and 4 f compounds have become one
of the central fields of solid state physics following the discovery of heavy fermion compounds,
cuprate superconductors, the colossal magnetoresistance phenomenon in the manganites and,
most recently, the iron-pnictide superconductors.

It was conjectured early on that the reason for the special behavior of these compounds is the
strong Coulomb interaction between electrons in their partially filled 3d or 4 f shells. The 3d
wave functions are orthogonal to those of the inner-shells, such as 1s, 2s, 2p, 3s and 3p, solely
due to their angular part Y5 ,,, (¥, ¢). Their radial part R () therefore is not pushed out to re-
gions far from the nucleus by the requirement to be orthogonal to the inner shell wave functions
and therefore is concentrated close to the nucleus (the situation is exactly the same for the 4 f
wave functions). Any two electrons in the 3d shell thus are forced to be close to each other
on average so that their mutual Coulomb repulsion is strong (the Coulomb repulsion between
two 3d electrons is small, however, when compared to the Coulomb force due to the nucleus
and the inner shells so that the electrons have to stay close to one another!). For clarity let us
mention that the Coulomb repulsion between electrons in the inner shells of heavier elements
is actually much stronger than that in the 3d shell of transition metals or the 4 f shell of rare
earths. This, however, is irrelevant because these inner shells are several 100—1000 eV below
the Fermi energy so that they are simply completely filled and inert. On the other hand, the 3d
orbitals in transition metal compounds and the 4 f orbitals in rare earth compounds participate
in the bands at the Fermi level so that the strong Coulomb interaction in these orbitals directly
influences the conduction electrons. The conduction bands in such compounds therefore form
dense many-body-systems of strongly interacting electrons, where the average energy of inter-
action is large compared to the average kinetic energy. This dominance of the interaction energy
implies a propensity to show ordering phenomena and the ensuing quantum phase transitions
and superconducting domes. It is therefore ultimately the Coulomb repulsion in the partially
filled 3d shells of the transition metals and the 4 f shells of the rare earths which gives rise to
the wide variety of spectacular phenomena observed in compounds containing these elements.
Let us therefore discuss this Coulomb interaction in more detail.

2 Multiplets of a free ion

2.1 General considerations

In the following we restrict ourselves to 3d transition metal ions for definiteness, but the theory
is easily adapted to other atomic shells. We consider a Ni®** ion in vacuum which has the
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Term | J | E (eV)
SE | 4| 0.000

3| 0.169

2| 0.281

D1 2] 1.740
3P| 2| 2.066

1| 2.105

0] 2.137

G| 4| 2865
1510| 6514

Table 1: Energies of the multiplets of Ni** from Ref. [2]. J is the total angular momentum
quantum number and the J = 4 member of 3F has been taken as the zero of energy.

electron configuration [Ar] 3d® It is a standard exercise in textbooks of atomic physics to show
that the d® configuration has the following multiplets or terms: *F, *P, G, ' D and ' S, whereby
according to the first two Hund’s rules ®F is the ground state. ‘Multiplets’ thereby is simply
another word for ‘eigenstates of 8 electrons in the electric field of the Ni nucleus and the Ar
core’ (the electrons in the shells below 3d may be considered as inert due to the large binding
energies of these shells). The energies of the multiplets can be deduced experimentally for
example by analyzing the optical spectrum of Ni vapor and are listed in Table 1. They span
a range of several eV whereby multiplets with nonzero spin are in addition split by spin-orbit
coupling which results in intervals of order 0.1 eV. All of these eigenstates correspond to the
same electron configuration, namely [Ar] 3d®, so that the fact that, say, P has a higher energy
than 3F is not due to an electron having been promoted from a state with low energy to one
with high energy as in an optical transition. Rather, the excited multiplets — 3P, 'G, ' D and
1S — should be viewed as collective excitations of the 8-electron system, similar in nature
to a plasmon in an electron gas. And just as a plasmon can exist only due to the Coulomb
interaction between electrons, the multiplet splitting in atomic shells also originates from the

Coulomb interaction between electrons. This is what we discuss next.
T

n,l,m,o

an electron with z-component of spin o in the orbital with principal quantum number n, orbital

As a first step we introduce Fermionic creation and annihilation operators c which create
angular momentum [, and z-component of orbital angular momentum m. In the case of a partly
filled 3d shell all n; = 3 and all /; = 2 identically, so that these two indices could be omitted, but

we will keep them for the sake of generality. In the following we will often contract (n, [, m, o)
.|.

to the ‘compound index’ v for brevity, so that, e.g., CL = Cp limyon
The procedure we follow is degenerate first-order perturbation theory as discussed in practically
any textbook of quantum mechanics. The unperturbed Hamiltonian H, thereby corresponds to

the energies of the different atomic shells

_ E § T
HO - 8n7l Cn,l,m,acn,l,m,a
n,l m,o
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W
Y

m=—2 m=-1 m=0 m=1 m=2

Fig. 1: Coulomb scattering of two electrons in the d-shell. In the initial state |v) (top) the elec-
trons are distributed over the five d-orbitals which are labeled by their m-values. Due to their
Coulomb interaction two electrons scatter from each other and are simultaneously transferred
to different orbitals, resulting in the state |u) (bottom).

whereas the Coulomb interaction is considered as the perturbation /; (we ignore spin-orbit
coupling for the time being). The d" configuration comprises all states which are obtained by
distributing n electrons over the 2 - 5 = 10 spin-orbitals:

V) = v, v . ) :cj,lcj/Q...cltn|0>, (1)
and the number of these states obviously is n. = 10!/(n! (10—n)!). In writing the basis states
as in (1) we need to specify an ordering convention for the creation operators on the right hand
side. For example, only states are taken into account where m; < my < mg--- < m,,. More-
over, if two m; are equal the cjﬂ ,-operator is assumed to be to the left of the cjnm-operator.
If we adopt this convention, every possible state obtained by distributing the n electrons over
the 10 spin-orbitals is included exactly once in the basis. If the n; and /; were to take different
values we could generalize this, e.g., by demanding that the (n;, [;, m;)-triples be ordered lexi-
cographically. As will be seen later, strict application of an ordering convention for the Fermi
operators is necessary to determine the correct Fermi signs for the matrix elements.

If only H, were present all states (1) would be degenerate with energy £ = E[Ar| +n - €32,
where E[Ar] is the energy of the Argon core. The Coulomb interaction H; between the elec-
trons (partially) lifts this degeneracy and this is the physical reason for the multiplet splitting.
The standard procedure in degenerate first order perturbation theory is to set up the secular ma-
trix h,,,, = (u|H:|v) and diagonalize it to obtain the first order energies and wave functions [3].
The diagonal matrix elements (v|H;|v) describe the fact that the Coulomb repulsion between
two electrons in different orbitals depends on the spatial character of these orbitals, whereas the
off-diagonal matrix elements (u|H;|v) describe the scattering of two electrons ‘within the 3d
shell’ as shown in Figure 1.
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In second quantization the Coulomb Hamiltonian H; takes the form

_ T oAt
H, = E V(v1,va,v3,1) €, )¢, .c,.,

V(v1, v, V3, v4) /dx/dx Uy, (x) Yy, (2) Ve(z, ') ¥, (x) 1), (2),

Vo(z,2') =

N | —

ra r,‘ @)
Here © = (7, 0) is the combined position and spin coordinate with [dx--- = > [dr...
and V, is the Coulomb interaction between electrons. Note the factor of 1/2 in front of H; and
the correspondence of indices and integration variables v, <> = and v3 <> 2’ in the Coulomb
matrix element, see textbooks of many-particle physics such as Fetter-Walecka [6].

2.2 Matrix elements of the Coulomb interaction

Our single-particle basis consists of atomic spin-orbitals so if we switch to spherical coordinates
(r, 9, ) for r the wave functions in (2) are

¢V2<x) = Rni,li (T) Yii,mi (797 90) 50,01' (3)

For a table of spherical harmonics Y], see Ref. [4]. The radial wave functions R, ;, are as-
sumed to be real — as is the case for the true radial wave function of bound states in a central
potential. Apart from that we do not really specify them. It will turn out that these radial wave
functions enter the Coulomb matrix elements only via a discrete and rather limited set of real
numbers which are often obtained by a fit to experiment.

In addition to (3), we use the familiar multipole expansion of the Coulomb interaction [5]

47 r’i
’l",| Z Z 21{5 + 1 k+1 k,m(ﬁa 90) (4)
k=0 m=—k
We now insert (3) and (4) into (2). We recall that f dr- - = ZU f dr ... and first carry out

the sums over spin variables:

E 50,01 50’,0260,0450’,03 = 501,04 502703‘
!

This reflects the fact that since the Coulomb interaction does not depend on spin, the spins of
the two electrons are conserved in the Coulomb scattering. Next, we pick one term with given k
and m from the multipole expansion (4) and proceed to the integration over the spatial variables
(r, 9, ) and (r', 9, ). Let us first consider (¢, ¢) and adopt the compact notation (¢, p) = {2.
These variables always come as arguments of spherical harmonics and there is one from ¢}, (),
one from the multipole expansion (4), and one from %, (x). We obtain the integral

[42Y;, (D Vin( @ Vi, (2), ®)
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where [df2--- = Ozﬂ dy fj1 dcos(?¥) . ... Such a dimensionless integral over three spherical
harmonics is called a Gaunt coefficient and it follows from the Wigner-Eckart theorem that it is
proportional to a Clebsch-Gordan coefficient [7, 8].

Next we recall Y, (9, ¢) = P, (V) €% [3] whence the integral (5) is proportional to

2m
/ dgp e_i(ml_m_mél)@ = 5m mi—maq-
0 )
We introduce the following notation for nonvanishing Gaunt coefficients

, | 4w
lm I'm k1 /dQ Yk,m—m’(Q) Y/7m/(_Q),

where we have also included ‘half of the factor 2;:11 > from (4). Then, (5) becomes

[ A
2%t 1 /dQ l1 ml Yk,m(Q) Y24,m4(9) = 5m,m17m4 Ck<l1m1; l4m4)- (6)

Since the remaining ¥-dependent factors P, ,,, (1)) are real [3] it follows that all Gaunt coefficients

are real as well. Using this property the integral over (7', ¢’) becomes

47
Vot 42 Vol ) Vi) Vi @) = Gy Hlmailama). D)

Since both (6) and (7) must be different from zero for the same m in order to obtain a nonvan-

ishing contribution, we must have m; —m4 = mg—msg or my;+ms = ms+my, i.e., the total L?
is conserved in the scattering process. This could have been expected from the very beginning
and our formalism incorporates this.

It remains to do the integral over the two radial variables r and /. These two integrations cannot
be disentangled so we find a factor of

’f’k

R¥(nyly, noly, ngls, nyly) /drr /dr' 2 Ry 1y (1) Ry, (77) T,k_il Ryy1s (1) Rig s (1"). (8)

>

These integrals have the same dimension as V,, i.e., energy. Collecting everything we find

V(v s, va) =Y (loma; Lima) ¢ (Isma; lyma) R (naly, naly, nals, nals) - (9)
k=0

X 501,04 502,!73 (5m1+m2,m3+m4 .

The number of relevant multipole orders & in this sum is severely limited by the properties
of the Gaunt coefficients c*(Im;!'m’). First, since these are proportional to Clebsch-Gordan
coefficients the three [-values appearing in them have to obey the so-called triangular condition
[3] £ < min(l,!") whence k& < min(l;+l4,l5+I3). For Coulomb scattering in a d shell all
l; = 2 whence k < 4. Second, the parity of the spherical harmonic Y,, is (—1)’. For Coulomb
scattering within a given atomic shell all /; are equal and for integrals such as (5) or (7) to
be different from zero the spherical harmonic Y}, from the multipole expansion must have
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positive parity whence £ must be even. For Coulomb scattering within a d shell therefore only
RY, R? and R* are relevant. This shows that the sloppy definition of the radial wave function
R, ;;(r) is not a real problem because details of this wave function are irrelevant anyway. In a
way, these three parameters may be viewed as a generalization of the Hubbard-U in that R* is
something like the ‘the Hubbard-U for k-pole interaction’. Lastly we note that the c*(Im; I'm/)
are tabulated in Appendix 20a of the textbook by Slater [7] or Table 4.4 of the textbook by
Griffith [8], and also in the Appendices I and II of the present note.

2.3 Diagonal matrix elements

The expression (9) is exact but somewhat complicated so let us try to elucidate its physical
content and thereby also make contact with various approximate ways to describe the Coulomb
interaction which can be found in the literature. We recall

H, = % Z V (1, v, v3, 1) cllc,t?cygcm,
V1,v2,03,04

and pick those terms from H; where either v, = v and 5 = v (case 1) or 3 = vy and vy = 1
(case 2). Notice that the Pauli principle requires 1y # v, — otherwise H; contains the product
cl ) cl . = 0. In both cases the four Fermion operators can be permuted to give the product of
number operators n,,n,, (with n, = clc,) whereby in case 2 an odd number of interchanges
of Fermion operators is necessary so that an additional factor of (—1) appears. Since vy # 15
no nonvanishing anticommutators arise in this permutation of operators. Whereas for case 1 the
product 04, 5, 0sy.04 i (9) always is 1, it vanishes for case 2 unless o3=09. We had 14, # 15
so that for case 1 the two orbitals may have the same orbital quantum numbers n, [, m but then
must differ in their spin, whereas in case 2 the spins have to be equal so that the orbital quantum
numbers definitely must be different. Using (9) the respective matrix elements are

o0

V(vi,va,v0,11) = ch(hml; I, m1) ¢ (lamy; Iy, ma) RF(n1ly, nala, naly, nyly),
k=0

V<V1>V27 Vi, V2) = 501,022 Ck(llm1§ l2,m2) Ck(l1m1§ 12,m2)Rk(n1117n212,n111,n212)~ (10)
k=0

It is customary to introduce the abbreviations

a*(Im;I'm') = F(Ilm;lm) F(U'm’;I'm))

VE(Im; I'm') = cF(lm; 'm’) c* (Im; 'm!)

Frnl;n'l') = R¥(nl, 0l )0/, nl)

GF(nl;n'l') = RE(nl, 0l ,nl,n'l) (11)

The F* and G* are called Slater-Condon parameters. The a* and b* are listed in Appendix 20a
of Slater’s textbook [7] and also in the Appendix of the present note.

We want to bring these diagonal matrix elements to a more familiar form and continue to spe-
cialize to a partly filled 3d shell. In this case all n; = 3 and [; = 2 so that for each £ there
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is only one F* and one G* and, in fact, G¥ = F*. For brevity we omit the n- and [ quantum
numbers in the rest of the paragraph so that, e.g., the electron operators become ci,w where m
is the z-component of L. The sum of all diagonal matrix elements then becomes

1
Hl,dz’ag - § Um,m N AN, | + 5 § Um,m’ E Nm,oMm! o' — Jm,m’ E Nm,eMm! o | »
m o,0’ o

m#£m/

U = Y a*m,m) F*, g = > U (m,m) F*. (12)
ke{0,2,4} kc{0,2,4}

The first term on the r.h.s. originates from case 1 with m; = my and the factor of % in front of
this term is cancelled because there are two identical terms of this type with either v; = (m, 1)
and vy = (m,|) orv; = (m,|) and v, = (m, 1). We introduce the operators of electron density
T = Tt + Ny, and electron spin S7, = $(ny, 4+ — Ny, and rewrite

N Mo
E Nm,o Mm! o' = Tom Nm/ E Nm,o M/, = 2 (Sﬁl an/ + A ) )
o

o0’

so that

1 1
Higiag = Y Unnn ant T,y + 3 > ((Umm, -5 Tonant ) oot — 2Tt S m) . (13)

m##m/

This is the sum of a density-density interaction oc U, ., and an Ising-like spin interaction
X Jm,m. The interaction parameters depend on the orbitals and can be expressed in terms of
the Slater-Condon parameters F'* and the products of Gaunt coefficients a* and b*. It is obvious
from (11) and (12) that J,,, ,,,, > 0 so that the spin interaction is ferromagnetic — this is in fact
the physical origin of the first Hund’s rule.

To complete the Hund’s rule term we pick those terms in H; where vy = (m, o), vo = (m/,5),
v3 = (m,o) and vy = (m’, o). In these terms the product d,, »,05,.05 iS NON-vanishing as well
and for both values of ¢ the matrix element (2) is

Z F(m,m’) ¥ (m, m')F* = Z v (m, m'\E* = T
ke{0,2,4} ke{0,2,4}

The Fermion operators are cjmcin,v 1Cm i Cor 1 T cjm ¢Cin/,¢cm,¢cm/, L= —(SES, + 5,5, e,
the transverse part of the Heisenberg exchange. Combining these terms with the Ising-like spin
exchange term we obtain

1 1

HI,H - Z Um,m N A Tm, | + 5 Z ((Um,m’ - §Jm,m’)nmnm’ - 2Jm,m’ Sm : Sm’) . (14)
m m#m/

This is now the sum of a density-density interaction and a spin-rotation invariant ferromagnetic

spin exchange. It has to be kept in mind that this Hamiltonian has been obtained by retaining

only a relatively small subset of matrix elements in the original Coulomb Hamiltonian. A
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further simplification which is often used is to replace U,, ,,; and J,, ,,» by their averages over
all corresponding pairs (m,m’). Using the a* and b* in the Appendix one readily obtains

-y _ o
T2 & Ut -
1 1
U-J = 2—0 7% / (Um,m’ - Jm,m’) = FO — ﬁ(F2+F4),

so that J = (F2+F*)/14.

To conclude the discussion we consider the diagonal matrix elements (v|H;|v) in the basis
of n-electron states |v) defined in (1). Since v; and 15 in (10) can be any two out of the n
occupied orbitals in |v) the total diagonal matrix element of H; is obtained by summing over
all n(n—1)/2 pairs (i, j) formed from the occupied orbitals

(v|Hy|v) ZZ( (L, L, mg ) F*(nli, mly) = 8,0, 0 (L, L, my ) GF (i, mgl )) (15)

1<j

As will be seen in the next paragraph, this formula is actually sufficient to calculate the multiplet
energies.

2.4 Analytical calculation of multiplet energies by the diagonal sum-rule

We now show that the theory developed so far is in fact sufficient to give analytical formulas
for the energies of the multiplets which can be compared to experiment. The first ingredi-
ent is the so-called diagonal sum-rule. This is simply the well-known theorem that the sum
of the eigenvalues of a Hermitean matrix H is equal to its trace tr(H) = ). H;;. It follows
immediately by noting that the trace of a matrix is invariant under basis transformations, i.e.,
tr(H) = t(UHU ") for any unitary matrix U. By choosing U to be the matrix which trans-
forms to the basis of eigenvectors of H the diagonal sum-rule follows immediately.

Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by their
values of L* and S* — this is the consequence of the J-functions in (9). The diagonal sum-
rule then can be applied separately for each of these blocks. In addition, the dimension of the
blocks decreases as L* and S* approach their maximum possible values so that the number of
multiplets contained in a given block decreases and the multiplet energies are easy to read off.

As an example for the procedure let us consider a p? configuration (by particle-hole symmetry
T

this is equivalent to a p* configuration). We write the Fermion operators in the form ¢ _,

i.e., we suppress the principal quantum number n. Since we have 6 possible states for a single
p-electron - three m-values and two spin directions per m-value — we have 15 states for two
electrons. The triangular condition for the Gaunt coefficients now restricts the multipole order
k to be < 2. Again, only even k contribute, so that we have two Slater-Condon parameters, F°
and F? (and G*¥ = F*). Table 2, which is taken from Slater’s textbook [7], gives the values of
the coefficients a*(1,m; 1, m’) and b*(1,m; 1,m’).



4.10 Robert Eder

m m | a® 25a® B° 25b°
+1 +1] 1 1 1 1
+1 0 1 -2 0 3

0 0] 1 4 1 4
+1 F1 | 1 1 0 6

Table 2: The coefficients a* and b* for two p-electrons.

We first consider the sector with S* = 1. The highest possible L* is L* = 1 which is realized
only for a single state, |1) = CI,O,TCLI,T|O>‘ We can conclude that one of the multiplets is * P and
its energy is equal to the diagonal matrix element of |1) which by (15) is

)

ECP) = Y <ak(1, 1;1,0) — b*(1, 1; 1,0))F’f =P -

ke{0,2}
We proceed to the sector S* = (. Here the highest possible L* is L = 2 again obtained for
only single state namely 01,1, ¢CI,1,T’O>' We conclude that we also have ' D with energy

1
= > dLLLY)FF=F"4 _F°.

ke{0,2} 25

The two multiplets that we found so far, 1D and 3P, comprise 5 + 9 = 14 states; we thus have
just one state missing, which can only be 1S. To find its energy, we need to consider the sector
S* = 0 and L* = 0. There are three states in this sector: CJ{,O,J,CJ{,(),T‘O)’ C;_LTC]LLJ(» and
017_17 ¢CL,HO>- Two out of the three eigenvalues of the 3x3 Hamiltonian in the basis spanned
by these states must be F(3P) and E(!D), because these multiplets also have members with
S* = (0and L* = 0. To obtain F(*S) we accordingly compute the sum of the diagonal elements
of the 33 matrix using (15) and set

BEP)+ BCD)+B(8) = 3 (a"(1,0:1,0)+ 2051, 111 P,
ke{0,2}

10
— B(S)=F"+ %FQ.

This example shows the way of approach for multiplet calculations using the diagonal sum-
rule: one starts out with a state with maximum L?* or S* for which there is usually only a
single basis state. This basis state belongs to some multiplet whose energy simply equals the
‘diagonal element’ of the 1x1 Hamiltonian. Then one proceeds to lower S and/or L* and
obtains energies of additional multiplets by calculating the trace of the respective block of the
Hamilton matrix and using the known energies of multiplets with higher L* or S*. It turns out
that in this way the energies of all multiplets involving s, p, d or f electrons can be expressed
in terms of the Slater-Condon parameters by analytical formulas. A rather complete list can be
found for example in the Appendices 21a and 21 of the textbook by Slater [7].

Multiplet theory was originally developed to discuss the spectra of atoms or ions in the gas
phase. The question then arises, as to what are the values of the Slater-Condon parameters.
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Si Pt St S Cl+
3P | 0.0000 0.0000 0.0000 | 0.0000 0.0000
1D 10.7809 1.1013 1.4038 | 1.1454 1.4449
1511.9087 2.6750 3.3675 | 2.7500 3.4564

r| 1.4442 1.4289 1.3988 | 1.4010 1.3921

Table 3: Energies (in eV) of multiplets for different atoms and ions with p* or p* configurations
outside a closed shell (taken from the NIST data base [2]) and the resulting values of r in (16).

Of course one might attempt to compute these parameters using, e.g., Hartree-Fock wave func-
tions in the expression (8). It turns out, however, that very frequently the number of multiplets
considerably exceeds the number of relevant Slater-Condon parameters. In the case of the p?
configuration we had three multiplets, 3P, D and 15, but only two Slater-Condon parameters
F° and F2. This would suggest to obtain the values of the Slater-Condon parameters by fit to
the spectroscopic data and the textbook by Slater [7] contains a vast amount of experimental
data which are analyzed in this way. For the p? configuration we restrict ourselves to a simple
cross check. Using the above expressions we find

r =

1ay oyl
BCS)-BCD) 3 6

E('D) - E(P)

independently of the values of F° and F. This relation therefore should be obeyed by all ions
with two p-electrons outside filled shells, such as the series Si, P'*, S2¥, or two holes in a filled
p-shell such as the series S, C1*. The energies of the multiplets of these atoms/ions are available
in the database [2] and Table 3 shows the energies and the resulting values of r.

They are in fact quite close 3/2. Notice that the width of the multiplet spectrum increases
considerable when going to the positively charge ions. This is because in positively charged
ions the radial wave functions are more contracted, whence the values of the Slater-Condon
parameters increase. Despite this, the ratio 7 is quite constant and in good agreement with
multiplet theory.

2.5 Solution of the Coulomb problem by exact diagonalization

Using the diagonal sum rule one can derive analytical formulae for the energies of the multiplets.
For further applications of multiplet theory, however, it is often useful to solve the problem
numerically, using the method of exact diagonalization which will be outlined in the following.
The basis states (1) correspond to all possible ways of distributing n electrons over the 10 spin-
orbitals of the 3d-shell (two spin directions for each m € {—2,—1,...,2}). As illustrated in
Figure 2 we can code each of these basis states by an integer 0 < ¢ < 20, If we really use
all of these integers we are actually treating all states with 0 < n < 10 simultaneously but this
will be convenient for generalizations of the theory. Next, for a given initial state vy, vs, . . . 1)
we can let the computer search for all possible transitions of the type shown in Figure 2 and
compute the corresponding matrix elements from (9) using, say, the ¢*(Im;!'m’) copied from
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m=-2 -1 0 1 2

0011111010 =250

Fig. 2: The coding of basis states by integers and a scattering process.

Slater’s textbook and some given R°, R? and R*. Let us consider the following matrix element
of a term in H; between two states with n electrons:

</’[‘| V<>\17 >\27 >\37 )\4) CTAlcTAQC/\Q,C/\gl ’V> -

V (A1, Aoy Az, \g) 6316126)\30)\4 ol cj,z . C,T/n|0>.

(Ole,, .. N

w1

For this to be nonzero, the operators 013 and CL must be amongst the ¢} , otherwise the anni-

hilation operators in the Hamiltonian, Cys and Coyo could be commuted to the right where they
annihilate |0). In order for c,, to ‘cancel’ 014 it must first be commuted to the position right in
front of CL. If this takes n, interchanges of Fermion operators we get a Fermi sign of (—1)™.
Bringing next ¢, right in front of cig by n3 interchanges of Fermion operators gives a sign of

(—=1)". Analogously, c,, and c,, must be amongst the c,, and the creation operators cil and

012 in the Hamiltonian have to be commuted to the left to stand to the immediate right of their
respective ‘partner annihilation operator’ so as to cancel it. If this requires an additional number
of Fermion interchanges n; for c:r\l and n, for CL there is an additional Fermi sign of (—1)"%"2,
The total matrix element therefore is (—1)" ™24tV (\; /Ay A3, A\4). The correct Fermi sign
is crucial for obtaining correct results and must be evaluated by keeping track of all necessary
interchanges of Fermion operators. The necessity to determine the Fermi sign is the very reason
why we have to adopt an ordering convention and strictly adhere to it.

Once the matrix (u|H;|v) has been set up it can be diagonalized numerically. The following
Table 4 gives the resulting multiplet energies for d® and d’, the values of L and S for each mul-
tiplet and the degeneracy n. The values of the R* parameters have been calculated [9] by using
Hartree-Fock wave functions R3 5 for Ni*™ and Co*" in (8). The energy of the lowest multiplet
is taken as the zero of energy and it turns out that all energy differences depend only on R?
and R*. Note the increasing complexity of the level schemes with increasing number of holes
in the d-shell. Comparing the energies of the multiplets for d® with the experimental values in
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E S L n Term E S L n Term
0.0000 1 3 21 3F10.0000 32 3 28 iR
1.8420 0 2 5 'D{1.8000 372 1 12 ip
19200 1 1 9 3p 21540 172 4 18 i
27380 0 4 9 1@ 127540 12 5 22 ’H

132440 0 0 1 15127540 12 1 8 2p
3.0545 172 2 10 ’D
45540 1/2 3 14 F
99774 1/2 2 10 D

Table 4: Energies of the d® multiplets calculated with R*> = 10.479 eV, R* = 7.5726 eV (Left),
and energies of the d” multiplets calculated with R* = 9.7860 eV, R* = 7.0308 eV (Right).

Table 1 one can see good agreement with deviations of order 0.1 eV. The only exception is
LS. This is hardly a surprise because here the theoretical energy is ~13 eV which is compa-
rable to the difference in energy between the 3d and the 4s shell in Ni (which is =10 eV). It
follows that the basic assumption of the calculation, namely that the separation between atomic
shells is large compared to the multiplet splitting, is not fulfilled for this special multiplet. To
treat 1.S more quantitatively it would likely be necessary to include basis states with configura-
tions like 3d” 4s!, or, put another way, to consider the screening of the Coulomb interaction by
particle-hole excitations from the 3d into the 4s shell.

Finally, the Table shows that the ground states indeed comply with the two first Hund’s rules:
they have maximum spin and maximum orbital angular momentum for this spin. It can be
shown that this is indeed always the case as long as one uses Coulomb and exchange integrals
with the correct, i.e. positive, sign [7, 8].

2.6 Spin-orbit coupling

So far we have neglected spin-orbit coupling but this can be included easily into the formalism.
The corresponding Hamiltonian is

Hgo = )\sozn:li -8 = /\SOzn: (lfoJr %(lj_si_ +li_5i+>) :
=1 =1

where [; (S;) are the operators of orbital (spin) angular momentum of the ‘" electron. The
spin-orbit coupling constant Ago can be written as [3]

h? AV

2m2ccr,,  dr

Aso =

T=Torb

where m, is the electron mass, c the velocity of light, V,, is the atomic potential acting on the
electron and r,,;, the spatial extent of the radial wave function.

The first term on the right hand side can be translated into second quantized form easily

l
[ M f
Hyo =Aso D 5 (el = el i) a7

m=—1
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As regards the transverse part, we note the matrix elements of the orbital angular momentum

raising/lowering operator [3]: (I, m + 1[I*|l,m) = \/(IFm)(l£m+1) whence

-1
Aso
Hyp = N Z \/(l_m)(l+m+1>(C;r,m+1,¢cl,m,T+C;r7m,Tcl,m+l,¢)' (18)

m=—I

Spin-orbit coupling can be implemented rather easily into the exact diagonalization formalism
discussed above, the main difficulty again is keeping track of the Fermi sign. Due to the fact
that neither L* nor S are conserved anymore the corresponding reduction of the Hilbert space
is no longer possible. In 3d transition-metal compounds the spin-orbit coupling constant Ago
for the 3d shell is rather small, of order Asp ~ 0.05 eV and can be neglected for many purposes.
In the rare-earth elements spin-orbit coupling in the 4 f shell is quite strong, Ago ~ 0.5 eV, and
spin-orbit coupling must be taken into account.

3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Next, we discuss how the results must be
modified if the ion is embedded in a solid. We will see that the small spatial extent of the 3d
or 4 f radial wave functions R,, ;(r) suppresses the effects of the environment in a solid, so that
in many cases the main effect of embedding the ion into a solid is the partial splitting of the
multiplets of the free ion. As in the preceding chapter we write down everything explicitly for
a 3d shell but the theory is easily transferred to other shells.

In many transition-metal compounds the 3d ions are surrounded by an approximately octahedral
or tetrahedral ‘cage’ of non-metal ions such as oxygen, sulphur, arsenic. These nearest neighbor
ions, which will be called ‘ligands’ in the following, have a twofold effect: first, they produce
a static electric field, the so-called crystalline electric field or CEF, and second there may be
charge transfer that means an electron can tunnel back and forth between a ligand orbital and
a 3d-orbital of the transition metal ion due to the overlap of the respective wave functions. We
discuss these effects one by one.

3.1 Crystalline electric field

Let us first consider the crystalline electric field, whereby we model the ligands by n. point
charges Z, e at the positions R,,. The corresponding term in the Hamiltonian for the electrons
on the ion in question is (recall that the electron charge is negative)

Ne [e%9) k k
z Ln Lay Z Z r Am
n=1 n av k av

k=0 m=-—

[ &N Z, [ Ra\"™
= L d Y (0 ) 1
’Yk,m 2]€+1 nz; Zav (Rn) k,m( n,SOn) ( 9)
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Here we have again used multipole expansion (4) of the Coulomb potential and introduced the
average distance and charge of the ligands, R,, and Z,,. Going over to 2"¢ quantization the
Hamiltonian becomes [6]

Hcer = E Veer(vi, v5) C,T/icyja

4,
WWng:/m¢mmwwww%@x (20)

where the wave functions v, () are again given by (3). In calculating Vgr (11, v2) we start with
the sum over o and find a factor of d,, ,,. The integral over the polar angles (), ) again gives
a factor of 0,,, m+m, and a Gaunt coefficient. As for the integral over r we note that the radial
dependence of the wave functions ¢, () is given by Rs (), which differs appreciably from
zero only in a narrow range r < r34. Then we find

VCEF(Vla VQ) = 601,0'2 Z Vi, mi—meo Ck(27 may; 2a m2) Ik7
k

=2 () [ e g e
Rav Rav 0 n '

Here we have introduced the dimensionless variable p = r/rs;, and the dimensionless wave
function R, (p) = Tngnl (prsq). Since this has a range of unity and

/ dp p* B2y (p) = 1

0

Ra’u
As expected, a small r3; < R,, suppresses the effect of the environment and the sum over k

k
we expect that the dimensionless radial integral in [ is of order unity so that [, (“—d> .

usually can be terminated after the lowest k& > 0 for which ~; ,,, does not vanish for some m.
Moreover, for a d-shell it again follows from the triangular condition for the Gaunt coefficients
that £ < 4 and from parity that k£ only be even. The term with £ = 0 gives merely a constant
shift and can be omitted so that only £ = 2 and £ = 4 need to be considered. As was the case
for the Coulomb interaction, the CEF can be described by very few — in fact only one if only
the lowest order in r3;/R,, is kept — parameters I, which depend on the radial wave function
Rs3 (7). These parameters again are frequently fitted to experiment. The actual form of the
matrix elements then depends on the geometry of the ‘cage’ of ligands via the sums v, ,.

As an example let us consider the case of an ideal octahedron of identical charges. More pre-
cisely, let the nucleus of the transition-metal ion be the origin of the coordinate system, and
six identical charges eZ be located at (+R,0,0), (0, £R,0) and (0,0,+R). This means that
R,=R=R, and 7, = Z = Z,,, whence

6
4
_— Yy . 22
Tem % + 1 ; wom (Uns @n) (22)

We divide the six charges into two groups: group 1 comprises the four charges in the z-y plane
at (£R,0,0) and (0,%+R,0). These have ¥, = 7 and ¢, = %F withn = 0,1,2,3. Since
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Yim(9,9) = Prm(9) ™2, we find that the contribution of group 1 to 74, is proportional to

3 <€2m')m -1 i

imm \ T e — 0 1,
E (6 2 ) = e 2 — ]_ 6_2 ?é
n=0 4 e =1.

The four charges of group 1 therefore give a nonvanishing contribution only for m = 0, 4.
Group 2 comprises the two charges at (0, 0, =R). Inspection of tables of spherical harmonics [4]
shows that always

Yim (9, @) o< sin™ () ™? = (m—i—nzy) ;
so that the charges of group 2 contribute only for m = 0.
Combining everything we see that for the ideal octahedron we need to actually evaluate the sum
(22) only for Y5, Y, and Yy 14 whereby for the last case only the charges in the x-y plane
need to be considered. We start with Y5 o and note that Y5 o(, ) o 3 cos?(9)—1 [4]. It follows
that 2221 Y50(0n,pn) x 4-(—1)+2-2 = 0, so that Y5, does not contribute. Using the
expressions [4]

3

1
Yio(d,9) = 5 \/; (35 cos* ¥ — 30 cos® ¥ + 3)

3 35 ~
Yia(d, ) = 6 Vo sin® ) - %

we then find after straightforward calculation

49 35
R and Va4 =\ = (23)

Y40 = ] ’

as well as 744 = 744. Using the tabulated values of the ¢*(2,m;2,m’) (see Appendix),
Veer(v1, v2) can be written as d,, », times a matrix in the indices m, and my

1 0 0 0 5
I 0-40 0 O
Veer(my,ma) = 64 0O 0 6 0 O (24)
0 0 0-40
5 0 0 0 1

This matrix has the eigenvalues [, (twofold degenerate) with corresponding eigenfunctions

1 15 2%2—y?
o) = = (Voral) +Vaal) = 1 5L
[ 5 322—r?

d3z2—r2(9) = }/2,0(9) - E 2 5 (25)
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and —21, /3 (threefold degenerate) with eigenfunctions

() = 2=V () = Vaal @) = | 2.
4(2) = 5 (V2 (2) + Yaa () = @ ,
dy2 (02) %(Yg,_lm) —Y21(0)) = 1—7‘2% (26)

The two eigenfunctions for eigenvalue /, are called e, orbitals, whereas the three eigenfunctions
for eigenvalue —21,/3 are called ¢, orbitals. If the ligands are O?~ ions, Z=—2 whence I, > 0,
i.e., the e, orbitals are higher in energy than the ¢,, orbitals. This can be readily understood by
comparing the d,, and the d,>_,» orbital. In the -y plane the lobes of d,:_, are along the axes
and point directly towards the negative charges at (=R, 0,0) and (0, =R, 0), whereas the lobes
of the d,, orbital point along the diagonals and thus optimally avoid these negative charges.
For the negatively charged electron, it is therefore energetically advantageous to be in the d,,
orbital. The splitting between the eigenvalues is frequently called 10Dg = E(e,) — E(ta,), so
that in our point-charge model Dq = 1,/6.

Note that the five functions d,({2) in (25) and (25) are pairwise orthogonal. This means that
they are obtained by a unitary transformation from the five original spherical harmonics Y3 ,,,(2)
and can be used as basis functions. These functions are of utmost importance in the theoretical
discussion of elements with partially filled d-shells and are can be found again and again in the
literature. Polar plots of these functions also can be found in the literature [4].

We see that for octahedral coordination the effect of the CEF on a 3d level can be summarized in
a single parameter 10 D¢, which may for example be obtained by a fit to experiment. This way
of dealing with the CEF is very similar in spirit to our treatment of the Coulomb interaction, in
that details of the radial wave functions R, ;(r) are absorbed into numerical parameters which
can be adjusted to experiment. Alternatively, the numerical value of 10 Dq for a given solid may
also be obtained from a fit to a density functional band structure.

By adding Hcgr, which is a quadratic form in the operators cf /c,, to the Hamiltonian for the
intra-atomic Coulomb interaction discussed above we can now discuss the splitting of the origi-
nal multiplets of the free ion under the influence of the electrostatic potential of the environment.
The following should be noted: the above discussion refers to the wave function of a single
electron. The multiplets, however, are collective eigenstates of all n electrons in an atomic shell
which are created by the Coulomb interaction between electrons. The question of how these
collective states split in a cubic environment is not at all easy to answer. One way would be
exact diagonalization including the term Hcgr.

Plots of the energies of the resulting ‘crystal-field multiplets’ versus 10Dq are called Tanabe-
Sugano diagrams [10]. An example is shown in Figure 3.1 which shows the eigenenergies of
the d® and d” configuration with Coulomb interaction and increasing cubic CEF, 10Dg. One
realizes that the highly degenerate multiplets of the free ion are split into several levels of lower
degeneracy by the CEF, which is to be expected for a perturbation which lowers the symmetry.
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d° (left) and d’
(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table 2.

Note that the components into which a given multiplet splits all have the same spin as the
multiplet itself. This is because the spin of an electron does not ‘feel’ an electrostatic potential;
or, more precisely, because the operator of total spin commutes with any operator which acts
only on the real-space coordinates 7; of the electrons.

An interesting example for the application of the Tanabe-Sugano diagrams are transition-metal
ions in aqueous solution. In fact, the preference of transition-metal ions for an environment
with cubic symmetry is so strong that such immersed ions often surround themselves with
an octahedron of water molecules. Thereby the dipole moments of these six molecules all
point away from the ion and thus create an electric field which cubic symmetry which again
gives rise to an e4-to, splitting. Optical transitions between the CEF-split multiplets, which
are possible only due to slight distortions of the octahedron or the generation/annihilation of
vibrational quanta during the transition, correspond to frequencies in the visible range and result
in the characteristic colors of such solutions. The Tanabe-Sugano diagrams have proved to be
a powerful tool to understand the absorption spectra of such solutions [8]. By matching the
energies of the observed transitions to energy differences in the Tanabe-Sugano diagrams one
can extract estimates for the Slater-Condon parameters and for 10Dq. The values of the Slater-
Condon parameters turn out to be somewhat smaller than those for ions in vacuum due to
dielectric screening in the solution. An independent estimate for 10Dq can also be extracted
from measured heats of hydration — this is because both 10 Dq and the electrostatic energy of the
system ‘ion plus octahedron’ depend on the distance between the transition-metal ion and the
water molecules — and compared to the estimate from the absorption spectrum whereby good
agreement is usually obtained [11].
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3.2 Charge transfer

We continue our discussion of a transition-metal ion at the origin of the coordinate system
surrounded by a ‘cage’ of n ligands at R,,. The second mechanism by which the ligands may
influence the energy levels of the transition metal ion is charge transfer. This means that the 3d
levels of the transition metal ion hybridize with atomic orbitals on the ligands which shifts the
energies of the 3d levels. To understand how this happens, let us consider a toy Hamiltonian
which describes just a single ‘d-orbital’ |¢)1) with energy ¢; coupled to a single ‘ligand orbital’
|15) with energy €y

2
H = Zei c;-rci — (t CJ{CQ + H.c.)
i=1

We have suppressed the spin index and the meaning of the creation/annihilation operators
should be self-evident). The hybridization matrix element —t = (¢);|H |1)) thereby origi-
nates from the overlap of the atomic wave functions and facilitates the transfer of an electron
between the two orbitals. The ansatz [¢)) = ul|i);)+v|iy) for an eigenstate readily leads to the

h_<51 _t>, 27)
—t E9
e1+e€ £E1—€ 2
B, o= e 1—&2 2
+ 9 ( 5 +

. . o2 _
We may assume without loss of generality that £, > &5, whence |/ (£5%2)" + 2 = 9522 + A,

with some A > 0. It follows that £ = g5 — A < e and E, = ¢ + A > ¢;. This means
that the lower level is shifted downwards by A, whereas the upper level is shifted upwards by

2% 2 matrix

whose eigenvalues are

the same amount, an effect known as level repulsion. This mechanism can split the degeneracy
of the 3d-level because, depending on the geometry of the cage, different 3d orbitals can have
different hybridization matrix elements with the ligand orbitals.

Note that the eigenstates now are a mixture of the two orbitals. For ¢ < £;—e5, however, the

t
E1—€2

weight of [¢5) in the eigenstate for F_ is ( )2 which means the state still has predominant
|1)1) character.

To describe charge transfer quantitatively we need to enlarge our set of Fermion operators ¢/, /c,,
by operators ZL /1 ., Which create/annihilate electrons in orbitals centered on the ligands. We
simplify matters by assuming that only 2p orbitals are relevant for the ligands, as would be the
case for oxygen ligands. For the rest of this paragraph on charge transfer we switch to a new set
of basis functions which is more suitable for the discussion of hybridization. First, we use 3d

wave functions whose angular part is given by the real-valued spherical harmonics (25) and (26)
%4 (ill') = R3,2 (’I") da(Q) 50’,01'7 (28)

with o« € {zy, z2,yz, 22 —y?, 322 —7r?}, so that now v; = («, 7).
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For the ligand orbitals we use wave functions whose angular part is given by the real-valued
p-like spherical harmonics

Yia(Q) + Yi(Q)) = 4/ > f (29)

/3y
py(£2) = \/5( Vi1(02) +Y11(02)) = I (30)
z
p-($2) = Yi0(£2) =\ i €29)
and are centered on the ligands

wﬂj <x> = R2,1<Tnj) pgj((?n) 60,0]" (32)

Here, r,, = r—R,, and 5 € {z,y, 2} so that u; = (n;, 5;,0;). The obvious generalization of
the toy Hamiltonian then is

Her = ZEWOLCW + Zeujl;&jluj — Z (t,,i,#j cliluj + H.c.) _ (33)
i J

i7j
This would still not be very useful because it contains a large number of parameters, in partic-

ular the hybridization integrals —t The crucial simplification comes about because these

Vi *
hybridization integrals can be expressed in terms of very few parameters by using the cele-
brated Slater-Koster tables [12]. For example, for the present case where only the p orbitals of
the ligands are taken into account there are just two relevant parameters: V,q, and V4. More

precisely, a typical entry in the Slater-Koster tables looks like
_tla;,2xy = \/§l2m V;Jda +m (1—2l2) V;)dﬂ.

This gives the hopping integral —t,, 2., between a p,, orbital on atom 1 and a d, orbital on atom
2 as a function of the components of the unit vector (I, m,n) pointing from atom 1 to atom 2.
Thereby the parameters V,q, and V4. depend only on the distance between the two atoms. It
is obvious from this that the hopping orbitals —¢,, ,,. in Eq. (33) depend on the geometry of
the ‘cage’ of ligands. By inserting the unitary transformation (25) and (26) as well as (31),
Hcr now could be transformed to the original complex spherical harmonics Y5 ,,({2) and then
be easily included into exact diagonalization formalism discussed above. The main problem is
that the number of orbitals in the cluster and hence the dimension of the Hilbert space increases
considerably so that one has to resort to numerical methods such as the Lanczos algorithm [13].
To illustrate the procedure and thereby show how to alleviate the problem of the increase of the
Hilbert space dimension, we specialize again to the case where the ligands form an ideal octa-
hedron, with the transition metal ion in the center of gravity. In other words, the ligands again
are located at (R, 0,0), (0, £R,0) and (0,0, £R). We want to solve the Hamiltonian (33) for
this cluster of seven ions assuming that the parameters Vyiy, Viar, €4, and €, are given. For
simplicity we set the energies ¢,, of the 3d orbitals equal to zero and assume thate,, = ¢ > 0
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for all ligand orbitals. V4, and V,,4, depend only on the distance between ligand and transition-
metal ion and therefore are the same for all six ligands. Since we are retaining three p-orbitals
on each ligand and the five d-orbitals on the transition-metal ion, the total number of orbitals in
the cluster would be 5 + 6 - 3 = 23. What we would have to do is to go through all six ligands,
determine (I, m, n) for each of them, set up the hopping integral between each of the five 3d
orbitals and each of the three 2p orbitals on the respective ligand using the Slater-Koster tables.
This would give us a 23x23 matrix instead of the 2x2 matrix (27), the eigenvalues of which
would tell us how the 3d orbitals are shifted by the hybridization. Fortunately enough, the high
symmetry of the octahedral cluster allows us to bring the Hamiltonian to block-diagonal form
and obtain analytical expressions for the energies. The key simplification comes about by con-
structing hybridizing combinations of 2p orbitals on the six ligands. Consider the d, orbital in
Figure 4. Using symmetry arguments or the Slater-Koster tables one can show that out of the
18 p orbitals on the ligands only the four p-orbitals shown in the Figure have a nonvanishing
hybridization integral with the d,,, orbital. These four orbitals moreover hybridize with no other
d orbital. Then, we form the following linear combinations of these four orbitals:

1) = 5 (41(0) + () — W5, (2) — 010(0)),
2) = 5 ($0(&) + 1) 5 2) + (),
3) = 5 (10(0) = aal2) — 5y(0) + ¥10(0)),
14) = 5 (b14(2) — ) s,y (@) — V().

where we have dropped the spin index of the 1, () for brevity. If p orbitals on different ligands
are orthogonal to each other, (1; |1 5) = 0; 04,5, these four combinations are orthonormal,
that means we can use them as new basis functions. Next, using the matrix elements of H
indicated in Figure 4, which can be easily verified using the Slater-Koster tables, we see that

<d:cy’HCT|Z> = _2‘/20d7r 57L,1-

This means that the states |2),
with any other of the five d-orbitals, they are eigenstates of Hcr with energy € by construction.

3) and |4) do not mix with d,, and since they also do not mix

We thus need to keep only |d,,) and |1) and thus arrive at exactly the same 22 matrix Eq. (27)
as for the toy model

—2V
. Voar ) (34)
—2‘/;9(1” g
with eigenvalues £ = 5 + (%)2 + 4Vp2d7r. To simplify our expressions we assume weak

hybridization, V4, < €, whence the energy of the lower eigenstate, which for ¢ > 0 has
predominantly |d,,) character, becomes
4V2

E(tgg) ~ _Tpdw
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Fig. 4: p orbitals on ligands with nonvanishing hybridization with the d,,, orbital in the center.
The figure shows the x-y plane, lobes with positive (negative) sign are drawn by full (dashed)
lines. The labels of the ligands are given next to the p orbitals, the hybridization integrals
obtained from the Slater-Koster tables are indicated for each bond.

The upper eigenstate, which predominantly has ligand-p character, has energy ¢ + 4V pd7r /€.
We could have proceeded in exactly the same way if instead of the x-y plane we would have
considered the z-z or y-z plane and the d,, or d,,, orbitals. Therefore, all of the three ¢,, orbitals
are shifted by the same energy and remain degenerate in the presence of hybridization!

In a similar but slightly more complicated way one finds that the e -orbitals d,2_,2 and d3,2_,2
also remain degenerate and are shifted to

vda
E(ey) ~ — ;

We have thus found the energy levels of the Hamiltonian (33) for the octahedral cluster with
only p orbitals on the ligands: there are five states with predominant 3d character and energies

4V% /€ (tag, 3-fold degenerate) or —4V”

o/ € (eg, 2-fold degenerate) We also have five cor-

V2. /e (3-fold degenerate)
/e (2-fold degenerate). And finally we have the non-bonding combinations which

respondmg states with predominant p-character and energies € + 4V,
ore + 4V,
have pure p character and retain their energy of . Obviously there must be 13 of these.

pdcr

We see that charge transfer results in the same splitting into Z5, and e, orbitals as the electrostatic
potential due to the charges on the ligands. (In fact, it follows from the theory of irreducible
representations of symmetry groups [3, 8, 10, 11] that this holds true for any perturbation with
cubic symmetry). Therefore, if we are only interested in the energies of the eigenstates we may
as well drop the ligand orbitals from the Hamiltonian and describe the splitting due to charge
transfer by an ‘effective 10Dq’ given by

4
10Dger = — (Vi = Vo)

This would have to be added to the ‘electrostatic 10D¢q’ discussed earlier.
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To conclude this section, we mention that using the octahedron-shaped cluster discussed in the
preceding section by the exact diagonalization method has been an extraordinarily successful
method for the simulation of valence band photoemission spectra, X-ray absorption spectra, and
core-level photoemission spectra of 3d transition-metal compounds [14-20]. In many cases, the
spectra calculated in a mere octahedron can be compared peak-by-peak to experimental spectra.
This also provides unambiguous evidence that the multiplets of the free ion, slightly modified
by CEF and charge transfer, do persist in the solid.

4 Multiband Hubbard models

We have now discussed all necessary parts of the Hamiltonian to describe transition-metal and
rare-earth compounds, i.e., multiband Hubbard models. We view the solid as an array of ions
with a certain number of atomic orbitals on each of them and assume that these orbitals are
labeled by some index i. The position of the ion on which orbital ¢ is centered is R;. Then,
we split the orbitals in the solid into two groups: the correlated and the uncorrelated orbitals.
The correlated orbitals have radial wave functions with small spatial extent and the Coulomb
interaction between electrons in these orbitals is strong. The uncorrelated orbitals are more
extended and the Coulomb interaction between electrons in these orbitals is weak enough to be
neglected. Of course, this division of the orbitals is arbitrary to some extent. In principle, one
might also include Coulomb interaction between electrons in orbitals on different ions but we
neglect this because it will in general be much weaker than the interaction between electrons on
the same ion.

Then, the problem arises how to choose these orbitals. For example for a d shell we could
choose orbitals whose radial part is given by the spherical harmonics Y5 ,,({2) but we might
as well choose the real-valued spherical harmonics d,({2) in (25) and (26). The preceding
discussion has shown that the Y;,,({2) are convenient for the discussion of ‘purely atomic’
aspects of the problem, such as the Coulomb interaction within atomic shells and the spin-orbit
coupling, whereas the real-valued spherical harmonics d, ({2) are more convenient for ‘solid
related” aspects such as inter-ion hopping and CEF splitting. Since the Y} ,,,({2) and the d,,({2)
are related by a unitary transformation this is more of a notational problem. Next, we introduce
creation/annihilation operators cii /c,, for electrons in these orbitals. Thereby we choose the
compound index v; = (R;, ny, l;, m;, ;) for Coulomb interaction and spin-orbit coupling and
vi = (Ri,ng,l;, 0u,07) with o € {s, ps, Dy, Pz, dsy, - .. } for the inter-ion hopping and CEF.
The inter-ion hopping is obtained be generalizing (33)

Hy = Zg,,ic;cw — Z (tui’uj ciicyj + H.c.) . (35)
i i#j

The hopping integrals —t,, ,. again can be expressed in terms of relatively few V -parameters
via the Slater-Koster tables, the numerical values of the V -parameters and the energies ¢,, can

be obtained by fit to a density functional band structure. For the correlated orbitals thereby extra
care is necessary due to the ‘double counting problem’ (see, e.g., Ref. [21]).
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Moreover, we add for each ion the electrostatic part of the CEF, (20). So far the Hamiltonian is
a quadratic form in Fermion operators and can always be solved after Fourier transform.

Next, for the correlated orbitals we add the Coulomb interaction (2) with the matrix elements (9).
Since we are considering only the Coulomb interaction within a given atomic shell, all four
CL /c,. operators in each term of (2) must have the same R;. The Hamiltonian now is quartic
in Fermion operators and thus not solvable anymore. Rather, we have to resort to one of the
many approximation schemes known so far for correlated electrons. Finally we may also add
the spin-orbit coupling. Whether this is necessary depends on the magnitude of the spin-orbit
coupling constant A\gp. Since spin-orbit coupling is a relativistic effect, Agp is larger for heavy
elements. It is more or less negligible for 3d ions, but important for 5d transition metals or 4 f
rare earths.

It is obvious that the resulting Hamiltonian is quite complicated and it is highly desirable to
simplify it. There are several possible ways to do so.

1. ‘Integrating out’ uncorrelated orbitals which act only to connect correlated orbitals.

To see what this means, consider the toy Hamiltonian for three orbitals |d;), |ds) and |1):
H=Alll—t (d{z +td, + dil + sz2) ,

where we have dropped the spin index for simplicity and the meaning of the Fermion
operators should be obvious. It may be viewed as describing a ‘bond’ connecting the
two ‘d-orbitals’ |d;) and |dy) (which have an energy of zero) via the ‘bridging orbital’ |[)
which has energy A. We introduce the bonding/antibonding combinations di. = \/% (di +

d;) whence the Hamiltonian becomes
H= Al —va(dli+1id, ).
the ansatz |p) = (A.dl + Ajlt + A_d")|0) then leads to the 3x3 Hamilton matrix

0 —+v2t 0
h=|—-vV2t A 0 |,
0 0 0

which has eigenvalues £ = 0, (A ++/A2+8¢2) /2. For the sake of simplicity we consider
the limit A >> t whence the energies become E = 0, A+2t?/A, —t*/A. The eigenfunc-
tion for £y = 0is |1b1) = d'|0), the one for Ey = —2t%/Ais [1),) ~ d|0) and the one
for B3 = A+2t2/Ajs |1)3) ~ [1]0). In other words, the wave function for the high energy
state F’5 has mainly ‘bridging orbital’ character, whereas those of the two low energy
states E'; and F5 have predominant d-character. Now consider the effective Hamiltonian

Hoyp= —— Z did, - <de +He).

It is obvious that the eigenenergies and corresponding eigenstates of [, are the same as
the two low energy eigenstates of the original Hamiltonian. In other words, H,; describes
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the low energy sector of the full Hamiltonian and the high-energy bridging orbital has
disappeared.

With this reasoning, one is often omitting uncorrelated ‘bridging orbitals’ from the Hamil-
tonian H, and uses an effective H,, that comprises only the correlated orbitals and ‘effec-
tive hopping integrals’. The latter can again be obtained by a fit to the band structure,
whereby however only bands with predominant d-character must be taken into account.
Clearly, this reduces the number of orbitals which is important if one uses numerical
methods.

2. Taking the limit of large CEF or, in the simplest case where the correlated electrons are
in octahedral coordination, the limit of large 10D¢q. Then, one may restrict the basis to
states where the numbers of electrons in the 5, and e, orbitals are fixed. For example,
for Ni?* (i.e. d®) in cubic symmetry one may assume in the limit of large 10Dq that the
six tog-orbitals always are completely filled. Then, one needs to consider only the two
electrons in the partially filled e, level, resulting in a significant reduction of the number
of possible basis states. Similarly, for compounds containing early transition metals such
as Scandium, Titanium or Vanadium, one often assumes that the e, orbitals are so high in
energy that only the 5, orbitals need to be taken into account.

3. Finally, one may use the simplified form of the Coulomb interaction as in Eq. (14).

An example for this ‘reduction process’ can be found in the paper by Craco et al. [22] where
the authors discuss the photoemission and inverse photoemission spectrum of SmO;_,F,FeAs
thereby using a Hamiltonian which contains only the five Fe 3d orbitals and a Coulomb inter-
action of precisely the form (14) where U, ,,» and .J,,, .,y are replaced by average values.

5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells
leads to multiplet splitting. The multiplets may be viewed as collective excitations of the ‘not-
so-many-body-system’ formed by the electrons in the shell. We have seen that a relatively
simple theory—essentially degenerate first order perturbation theory—describes the energies
of the multiplets quite well and gives a good description of the line spectra of free atoms. If
transition metal atoms are embedded into a solid the collective excitations of the electrons in
their partly filled 3d shells are modified by the crystalline electric field of their environment and
by hybridization with orbitals on neighboring atoms. If these effects are taken into account,
which is relatively easy if one uses the exact diagonalization method, the resulting ‘extended
multiplet theory’ turns out to be quite successful in reproducing a wide variety of experimental
results for transition metal compounds. While this ‘extended multiplet theory’ refers to a single
transition metal ion, we have also seen that there are simplifications and extensions of this
theory to lattice systems, i.e., the multiband Hubbard models. These then are the appropriate
models to describe compounds containing 3d or 4d transition metal ions.
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A  Gaunt coefficients

m m | T 21t a® 49a? 441 a* 0 4902 441 b*
+2 +2[ 1 =2 1 1 4 1 1 4 1
+2 4110 V6 —/5 1 =2 -4 0 6 5
+2 0] 0 =2 V15 1 —4 6 0 4 15
+1 411 1 1 -4 1 1 16 1 1 16
+1 0| 0 1 V30 1 2 —24 0 1 30
0 0] 1 2 6 1 4 26 1 4 36
+2 F2| 0 0 V70 1 4 1 0 0 70
+2 F1| 0 0 —v35 1 =2 -4 0 0 35
+1 F1| 0 —v6 —v40 1 1 16 0 6 40

Table 5: Gaunt coefficients c*(2,m; 2, m’), and the a*(2, m; 2, m’) and b*(2, m; 2, m’)

m m' | 15¢2 33 ¢ %cﬁ
+3 +3 | 1 -5 3 -1
+3 42| 0 5 —v/30 VT
+3 +1| 0 V10 54 —/28
+3 0] 0 0 —v63 V84
+2 42| 1 0 -7 6
+2 4+1] 0 V15 V32 =105
+2 0] 0 —vV20 —vV3 414
+1 41 1 3 1 -15
+1 0 V2 V15 514
0 0] 1 4 6 20
+3 F3| 0 0 0 —v924
+3 F21| 0 0 0 462
+3 F1| 0 0 V42 —/210
+2 F21| 0 0 V70 /504
+2 F1| 0 0 —v14 —/378
+1 F1| 0 —/24 —V40 —V420

Table 6: The Gaunt coefficients c*(3,m; 3, m’)
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52 Erik Koch

1 Introduction

One of the profound Surprises in Theoretical Physics [1] is that magnetism is an inherently
quantum mechanical effect. Classically, magnetic moments originate from electric currents: A
current density j(F ) generates a magnetic moment

= 3 X jdor. (D)
These moments interact via the dipole-dipole interaction. The magnetostatic interaction energy
between two dipoles at a distance R, R being the unit-vector from the position of the first to
that of the second dipole,

po fi- iz —3(R- i) (R-pn)  fix - fia — 3(R - fir) (R - fi2)

AE = — = 2
47 R3 dregc? R3 2)

depends on their distance and relative orientation. This can, however, not be the origin of the
magnetism found in actual materials: In a classical system charges cannot flow in thermody-
namic equilibrium, the celebrated Bohr-van Leeuwen theorem, and hence there are no magnetic
moments to begin with [2].

In quantum mechanics, however, non-vanishing charge currents in the ground state are not
uncommon: An electron in state ¥ (7") corresponds to a current density

-, _ (&
J(r) = S

(2@ Vo) - w(r) vem) 3)
which, for a complex wave function ¥(7"), is usually non-vanishing. According to (1) it pro-

duces a magnetic moment proportional to the expectation value of the angular momentum

eh
2me

—

o= ) = () @

The constant of proportionality is the Bohr magneton pp. In particular, an atomic orbital
|n, [, m) has a magnetic moment proportional to its magnetic quantum number ji = —pp m 2.
Also the electron spin S carries a magnetic moment

fis = —gepin (S) . (5)

The constant of proportionality between spin and magnetic moment differs from that between
orbital momentum and moment by the gyromagnetic ratio gy. Dirac theory gives g. = 2, which
is changed to g. ~ 2.0023 ... by QED corrections.

Atomic moments are thus of the order of ;5. For two such moments at a distance of 1 A the
magnetostatic energy (2) is of the order of 0.05 meV, corresponding to a temperature of less
than 1 K. Therefore, magnetic ordering which, e.g., in magnetite (Fe3O,), persists till about
860 K, must originate from an interaction other than the magnetostatic interaction of dipoles.
Indeed, it is the interplay of electronic properties which are apparently unrelated to magnetism,
the Pauli principle in combination with the Coulomb repulsion (Coulomb exchange) as well



Exchange Mechanisms 5.3

as the hopping of electrons (kinetic exchange) that leads to an effective coupling between the
magnetic moments in a solid.

The basic mechanisms of the exchange coupling are quite simple: Since many-body wave func-
tions must change sign under the permutation of Fermions, electrons of the same spin cannot be
at the same position. Electrons of like spin thus tend to avoid each other, i.e., the probability of
finding them close to each other tends to be lower than for electrons of opposite spin (exchange
hole). In that sense the Coulomb energy between two electrons depends on their relative spins.
By this argument, aligning electron spins tends be energetically favorable. This Coulomb ex-
change is the basis of Hund’s first rule. When more than one atom is involved, electrons can
hop from one site to its neighbor. This kinetic term is, again, modified by the Pauli principle,
as the hopping to an orbital on the neighboring atom will only be possible, if there is not al-
ready an electron of the same spin occupying that orbital and by the Coulomb repulsion among
the electrons. This is the idea of kinetic exchange. When Coulomb exchange and kinetic terms
work together we speak of double exchange. In that case the electron-hopping serves to mediate
the spin-correlation created on an atom to its neighbors.

Exchange mechanisms are idealizations of characteristic situations found in real materials. As
such they are merely approximations, but they afford a simplification of the complicated real-
istic description, which provides a good basis for thinking about the relevant effects in a real
material. We will start by discussing the effect of Coulomb exchange matrix elements (Sec. 2).
To keep things simple, we will discuss a two-orbital model and only mention atomic multiplets
and Hund’s rule. Next we turn to exchange mechanisms involving also hopping (Sec. 3). We
start by looking at the a simple two-site model with two electrons. Focussing on the limit of
strong electronic correlations (Coulomb repulsion dominating electron hopping), we introduce
the method of downfolding to derive an effective Hamiltonian in which an explicit coupling
of the electron spins appears. While conceptually simple, this direct exchange mechanism is
rarely found in real materials. There hopping between correlated orbitals is usually mediated
by a weakly correlated orbital. This is the superexchange mechanism. The derivation is very
similar to that of kinetic exchange. However, the number of states involved, makes explicit
book-keeping tedious. To simplify our work, we introduce second quantization as a simple no-
tation of many-electron states. This also enables us to easily discuss double exchange, which
combines direct exchange on an atom with coupling to the neighbors via electron hopping. Ex-
amples are the superexchange between transition metal atoms bridged by an oxygen at a right
angle, which arises from the Coulomb exchange on the oxygen, as well as the exchange in
mixed-valence compounds (Sec. 4). The competition between kinetic and double exchange is
described by the Goodenough-Kanamori rules. Finally we show that exchange is not restricted
to coupling spins, but can also produce interactions between orbital occupations (Sec. 5).

How exchange gives rise to an effective coupling of momenta is most easily shown for single-
or two-site models. To see how these results carry over to solids, we consider the case of direct
exchange (Sec. 6). Starting from the Hubbard model we show how taking the limit of strong
correlations leads to the ¢-.J-model, which, for half-filling, simplifies to the Heisenberg model.
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2 Coulomb exchange

The Coulomb repulsion between electrons,

Hy=Y — ©)
= |7 = 7]

is manifestly spin-independent. Nevertheless, because of the antisymmetry of the many-electron
wave function, the eigenenergies of Hy depend on spin. This is the basis of the multiplet struc-
ture in atoms and of Hund’s first two rules.
To understand the mechanism of this Coulomb exchange we consider a simple two-electron
model. In the spirit of tight-binding, we assume that we have solved the two-electron Hamil-
tonian H, replacing the interaction term Hy, e.g., as a self-consistent potential ), U(7}), ob-
taining an orthonormal set of one-electron eigenstates ¢, (7) with eigenvalues ¢,. We now ask
for the effect of re-introducing the interaction Hy — ) . U(7;). The largest effect we will find
for states that are degenerate.
Let us consider two orbitals & = a, b. Then the two-electron Slater determinants with spins o
and o’

©a(T1) 0(51)  @alT2) 0(52)
ou(T1) 0'(s1)  pp(72) 0'(82)

= 5 (2l @u72) 0(52) ' (52) = @0(7) 9ul) o' (51) 7 (52))

are degenerate eigenstates of Hj with eigenvalue ¢, + ¢, independent of the spin orientations.

(7

wa,a;ba’(Fly 513 FQa 82) -

1

H<||H
[\)

To see how this degeneracy is lifted, we calculate the matrix elements of H; in the basis of the
Slater determinants ¥, . o'
When both electrons have the same spin (0 = ¢’), we can factor out the spin functions

]' — — — —
Vaoitr = == (PalF)@u(72) = 0(7)a() ) o(51)0(52) ®)
V2
and obtain
1 1
<Lpa,a; bo | 7= -y Wa,a;b,a> = _(Uab - Jab - Jba + Uba) = Uab - Jab (9)
|71 — 75| 2

where the direct terms are the Coulomb integral

=\ (2 =\ (2
Uab — /d3rl/d3r2 |§0a(rlz| |Sib(r2)| (10)
|71 — 7]
while the cross terms give the exchange integral
T = /d3r1/d3r2 Pa(T1) %(il) 903(7“2) Palr2) (11)
|71 — 7]
For the states where the electrons have opposite spin (¢/ = —0)
1
<Wa,o; b—o |75 = Lpa,a; b,—a> = Uab (12)
|71 — 7]
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the diagonal matrix element has no exchange contribution, as the overlap of the spin functions
for the cross terms vanish. There are however off-diagonal matrix elements

<%¢; by

Since Hy does not change the spins, these are the only non-zero matrix elements. In the basis

1

|71 —

L-Dai;bT> =—Jap - (13)

)|

of the states ¥4, ¥;, ¥ 4+ and ¥ the Coulomb term is thus given by

U — Jap 0 0 0
0 Uab —Jab 0
Hy = . 14
v 0 —Jab Uab 0 ( )
0 0 0 Uw — Jup

The triplet states ¥4+ and V|| are obviously eigenstates of Hy with eigenenergy

Agtriplet = Uab - Jab . (15)
Diagonalizing the 2x2 submatrix, we obtain the third triplet state (¥, + 1)/ v/2 and the
singlet state (¥, — ¥)1)/v/2

1 1

75 W =) = = (@l)anl) +afeam)) (1) -110) (e

-

with energy
Agsinglet = Uab + Jab . (17)

To see whether the triplet or the singlet is lower in energy, we need to know the sign of the
exchange matrix element. While the Coulomb integral U,;, having a positive integrand, is

obviously positive, it is less obvious that also J,;, > 0. Introducing @(77) = ¢, (7)ps(7) and
Fourier transforming to #(k ) = [ d3k &(7) e~*" we obtain [3,4]:

—_— 1
Jab = /dg’l“l @(771) /dSTQ ﬁ@(’f_"g) (18)
G ‘T.l - 712‘ J/
=(2mr)—3 fdk:;(k:)eik’“l47r/k:2
1 3 3. ikmarey gy AT
= (27?)3/d k/d re 1@(7“1295(/@ 2 (19)
20
1 - 4T
= Ek|P(k)|* = 2
o [ 0E)R > 0 0)

Thus the triplet states are below the singlet state by an energy 2.J,,. If the ¢, are degenerate
atomic orbitals, this is an example of Hund’s first rule: For an atomic shell, the lowest state will
have maximum spin.

Since Hy; only contains interactions within the system of electrons, it commutes with the total
orbital momentum [Hy, Etot] = (. Obviously it also commutes with the total spin §t0t. The
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number of electrons

Fig. 1: Angular momenta of the Hund’s rules ground state *> 'L ; for d-shells.

eigenstates of Hy + Hy can thus be classified by their quantum numbers L and S. These
terms are written as 25*1L. For p- and d-shells they are listed in table 1. Hund’s rules give
the multiplet term with the lowest energy: For a given shell, this lowest state has the largest
possible spin (Hund’s first rule). If there are several terms of maximum multiplicity, the one
with lowest energy has the largest total orbital momentum (Hund’s second rule). There is a
third Hund’s rule, which, however, is not related with the electron-electron repulsion but with
spin-orbit coupling: Within L-S Couphng Hgo splits the atomic orbitals into eigenstates of the
total angular momentum J = Ly + Sior. The multiplets 25T1L thus split into 257L ;. The term
with the lowest energy is the one with smallest .J if the shell is less than half-filled and largest
J if it is more than half-filled (Hund’s third rule). These rules are illustrated for d-shells in
Fig. 2. A more detailed discussion of multiplet effects and the Coulomb interaction in atomic-
like systems can be found in [35, 6], calculations of multiplets including spin-orbit coupling can
be performed online, at http://www.cond-mat .de/sims/multiplet.

s °S
pt or p° ’pP
p2 or p4 15 lD 3P
P3 2/:) 2D 4S
d* or d° ’D
d? or d® IS1p G 3P 3F
2%
d® or d” P D FGH ‘P AF
2X 2% 2% 2%
¢ or d° 151D 1 i Y P 3D 3F 3G °H D
3x 2x 2X
d° 5% D2F G *H7 ‘P D *F ‘G °S

Table 1: Atomic multiplets for open s-, p-, and d-shells. For terms that appear multiple times
the number of distinct terms is indicated. The Hund’s rules ground state is indicated in bold.
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3 Kinetic exchange

When electron-hopping plays the main role in the exchange mechanism, we speak of kinetic
exchange. In contrast to Coulomb exchange the resulting interactions are usually antiferro-
magnetic, i.e., they prefer antiparallel spins. The physical principle of kinetic exchange can be
understood in a simple two-site system. We discuss this problem in some detail and introduce
two key concepts along the way: downfolding and second quantization. As we will see in the
subsequent sections, realistic exchange mechanisms are natural generalizations of this simple
mechanism [7-9].

3.1 A toy model

As a toy model, we consider the minimal model of an Hy molecule. We restrict ourselves to
two (orthonormal) orbitals, ¢, and -, separated by some distance. If we add an electron to the
system, that electron will be able to move between the two orbitals, with a matrix element —t.
Because we allow the electron to only occupy two orbitals, the Hamiltonian is a 2 X 2 matrix

0 —t
H= : 21
< ¢ 0 ) 21
This tight-binding Hamiltonian is easily diagonalized giving the linear combinations

1
Y+ = E <901 + @2) (22)

as eigenstates with eigenenergies e = Ft. We have written the hopping matrix element as —t,
so that for ¢ > 0 the state without a node, ¢, is the ground state.

Pictorially we can write the basis states by specifying which orbital the electron occupies. For
a spin-up electron we then write

¢1:’T7‘> and 902:‘7T> (23)

where we now represent the basis states by where the electron is located.

If there are two electrons in the system, i.e., one electron per orbital, we can again use basis
states which just specify, which orbitals the electrons occupy. For two electrons of opposite
spin we then find two states where the electrons are in different orbitals

11, 4) L, 1) “covalent states”

and two states where the electrons are in the same orbital

i, ) |- 1) “lonic states”.
In this basis the Hamiltonian matrix for our simple model of the H, molecule has the form
0 0 —t — 1, 4)
- 0 0 +t +t 4, 1) 24)
—t +t U 0 I, <)

—t +t 0 U |- 1)
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10

e/t

U/t

Fig. 2: Spectrum of the two-site Hubbard model as a function of U. For large U there are two
levels with energy close to zero. Their energy difference corresponds to the exchange energy.
The remaining two states with ionic character have an energy roughly proportional to U.

As before, moving an electron to a neighboring orbital gives a matrix element —¢, with an
additional sign when the order of the electrons is changed (Fermi statistics!). For the ionic states,
where both electrons are in the same orbital, we have the Coulomb matrix element U. Coulomb
matrix elements involving electrons on different sites are, for reasonably large distance between
the sites, negligible. So there is no Coulomb exchange, just the local Coulomb repulsion in our
model. Diagonalizing H we find the energy spectrum and the corresponding eigenstates:

v, voreE (- n =gl 0+ w])

5i:_i

2 2 ’ T 2+ 22/(22)
1
Eeov = 0 s WCOV:E(‘T7\L>+‘\L7T>>
1
€ion = U s !pionzﬁ(ﬁia >_|7T\L>)

The eigenenergies as a function of U are shown in figure 2.

3.2 Direct exchange

Again, we have found that the energy of two-electron states depends on the relative spin of the
electrons. To understand this more clearly we analyze the limit when U is much larger than ¢.
From Fig. 2 we see that there are two states with energies that increase with U. They are the
states V., and ¥, that have considerable contributions of the ionic states. Then there are two
states whose energy is close to zero. They are the states that have mainly covalent character.
To find the energy and the character of these levels in the limit U — oo we can just expand
€. — —4t*/U and e, — U + 4t*>/U. We thus see that while the purely covalent state, the
spin-triplet state ¥,,,, is independent of U, ¥_ has a slightly lower energy due to some small
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L LA
T ~

\/
Fig. 3: Simple picture of direct exchange: The antiparallel alignment of the spins (left) is

favored, since it allows the electrons to hop to the neighboring site. For parallel spins (right)
hopping is suppressed by the Pauli principle.

direct exchange

)
|

admixture of the ionic states. In the limit U — oo it becomes the maximally entangled state
(|11, 4) = |4, 1))/v/2. We see that for large U, ¥_ cannot be expressed, even approximately,
as a Slater determinant, see also Sec. 3.4. This is the reason why strongly correlated systems
are so difficult to describe.

An instructive method to analyze the large-U limit, which can readily be generalized to more
complex situations, where we can no longer diagonalize the full Hamiltonian, is the down-
folding technique. The mathematical background is explained in the appendix. The idea of
downfolding is to partition the Hilbert space into parts that are of interest, here the low-energy
covalent type states, and states that should be projected out, here the high-energy ionic states.
With this partitioning we can view the Hamiltonian matrix (24) as built of 2 X 2 submatrices.
Calculating the inverse on the space of covalent states (see Eqn. (89) in the appendix) we find
an effective Hamiltonian which now operates on the covalent states only:

-1
—t —t\[e-U 0 —t +t 22 [ 1 —1
Heﬁ(g)_<+t +t>( 0 5—U> <—t +t>N_7<—1 1)' 25)

In the last step we have made an approximation by setting ¢ to zero, which is roughly the energy
of the states with covalent character.

The process of eliminating the ionic states thus gives rise to an effective interaction between
the covalent states, which was not present in the original Hamiltonian (24). Diagonalizing the
effective Hamiltonian, we find

(=2 v= (1t -1 1)
w=0 . m=—(I1 0L D)

These states correspond to the singlet and triplet states in the hydrogen molecule. Here the
singlet-triplet splitting is 2Jgi,ecc = —4t2/U. The other states in the triplet are those with two
electrons of parallel spin: | T , 1) and | | , | ). They, of course, also have energy zero, as
hopping is impossible due to the Pauli principle.
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To understand the nature of the effective interaction in the low-energy Hamiltonian we observe
that the off-diagonal matrix elements in (25) correspond to flipping the spin of both electrons
(“exchange”). Remembering that

Sy -8y = S7S5 + (Serz_ + Sl_S;) (26)
we see that the effective interaction will contain a spin-spin coupling term.

3.3 Second quantization for pedestrians

A systematic way for obtaining the form of the effective interaction is by using second quantiza-
tion, which will also help us simplify our notation. For a mathematically rigorous introduction
see, e.g., [10]. In second quantization we use operators to specify in which orbital an electron
is located. As an example, ch puts a spin-up electron in orbital ;. Denoting the system with
no electrons by |0), the basis states that we have considered so far are written as

[ 1) = o)
for the single-electron states, and
I1T,1) = C;ﬁh’m
(L1 = el ]0) o
M, ) = dcil0)
[ 1) = cyehl0)

for the two-electron states. In order to describe the hopping of an electron from one orbital to
another, we introduce operators that annihilate an electron. For example ¢,, removes a spin-up
electron from orbital ;. The hopping of an up electron from ¢, to 5 is thus described by the
operator C;TCM that first takes an electron out of orbital 1 and then creates one in orbital 2. The
Hamiltonian for a spin-up electron hopping between two orbitals can thus be written as

H= —t<c}Tc2T + c;T01T> . (28)

Calculating the matrix elements with the single-electron basis states, we recover the matrix (21).
For the calculation we need to know that the operators that describe the electrons anticommute.
This reflects the fact that a many-electron wave function changes sign when two electrons are
exchanged. Using the notation {a, b} = ab + ba we have

{Cios ¢jr} =0 {cl, c}a, =0 {cio c}o_, = 0;.i00.5"

Moreover, trying to annihilate an electron in a state where there is no electron, results in zero:
¢,,|0) = 0. Finally, as the notation implies, ¢! _ is the adjoint of ¢, and (0|0) = 1.
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To describe the Coulomb repulsion between two electrons in the same orbital we use that
Nig = cgacw returns 0 when operating on a basis state with no spin-o electron in orbital ¢;,
and has eigenvalue 1 for a basis state with a spin-o electron in orbital ;. It is thus called the
occupation-number operator. The Coulomb repulsion in orbital ¢, is then described by the op-
erator Un;4nq, which is non-zero only when there is a spin-up and a spin-down electron in ;.
The Hamiltonian for our two-orbital model, where both up- and down-spin electrons can hop,

and including the Coulomb repulsion for two electrons in the same orbital, is thus given by
H = -t (cITc2T + C£¢C1T + chcu + cgicu> + U(annu + nng%)

= —t Z C;f’ocia +U Z NNy - (29)

,3,0

You should convince yourself that when you calculate the matrix elements for the two-electron
states, you recover the matrix (24). The great advantage of writing the Hamiltonian in second-
quantized form is that it is valid for any number of electrons, while the matrix form is restricted
to a particular number of electrons.

Coming back to the effective Hamiltonian (25), we can rewrite H.g in second quantized form:

2t2
_ Toor ToT Tt Toor
Hyg = s (cQTCMCHCQT — (9 C4Cy | Cop — CopCp CipCop + CQicchchu) (30)
2t2

S (N T it T _f T T T
U (CHCNC?TC?T 01T01¢C2¢02T CuClTC%C?i + CchlTCZiCQl)
Looking at equation (82) in the appendix we see that the spin operators are given in second
quantization by

1 1 1
ST = 3 (c%cw + CLCZ-T> Sy = —5 (c;.rTcZ.i — ijﬂ) S; = 3 <nz¢ — nu>. (31

From this we find (after some calculation) that the effective Hamiltonian can be written in terms
of the spin operators

4t2 = = 1 N9
Heﬂ—v(sl'sz— . ) (32)

To conclude, we again find that the completely spin-independent Hamiltonian (29), in the limit
of large U, gives rise to a spin-spin interaction. Since the exchange coupling J = 4t2/U
is positive, states with antiparallel spins have lower energy. Thus direct exchange leads to
antiferromagnetism.

It is important to realize that the singlet-triplet splitting for the effective Hamiltonian really
arises from the admixture of ionic states into the singlet. By downfolding we eliminate the
high-energy ionic states, i.e., charge fluctuations, from our Hilbert space. The eliminated states
then give rise to an effective spin-spin interaction on the new reduced low-energy Hilbert space.
We must therefore keep in mind that, when working with the effective Hamiltonian (32), we are
considering slightly different states than when working with the original Hamiltonian (29).
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3.4 Mean-field treatment

To conclude our discussion of the simplest kinetic exchange mechanism, it is instructive to
consider the results of a mean-field treatment. For the two-electron Hamiltonian (24) it is
straightforward to find the Hartree-Fock solution by directly minimizing the energy expec-
tation value for a two-electron Slater determinant. The most general ansatz is a Slater de-
terminant constructed from an orbital p(64) = sin(6;) p1 + cos(6+) o for the spin-up, and
©(0)) =sin(d)) p1 + cos(d}) s, for the spin-down electron:

W(0;,0,)) = (sin(@i)chjtcos(@)ch) (smwT)ciﬁcos(eT)ch) 0. (33)

Translating the second quantized states via (27) into the basis used for writing the Hamiltonian
matrix (24), we find the expectation value

(U(6+,0)|HW(04,0,)) = —2t(sinbysinb; + cosbscosb)) (cosbysinf) + sin by cosb))
+U (sin® 6 sin® 0) + cos® 6y cos® 6, ) . (34)

If the Slater determinant respects the mirror symmetry of the H, molecule, it follows that the
Hartree-Fock orbitals for both spins are the bonding state ¢ (¢ = m/4). This is the restricted
Hartree-Fock solution. The corresponding energy is E(mw/4,7/4) = —2t + U/2. The excited
states are obtained by replacing occupied orbitals ¢, with ¢_. Altogether we obtain the re-
stricted Hartree-Fock spectrum

E( w/4, ©/4)= —-2t4+U/2
E( n/4,—7/4) = U/2
E(—7/4, ©/4) = U/2 33)
E(—7/4,—7m/4) = 2t+U/2

Comparing to the energy for a state with both electrons of the same spin (£ = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry. The states (35) are spin-
contaminated [11]. Even worse, the Hartree-Fock ground state, and consequently all the states,
are independent of U. The weight of the ionic states is always 1/2, leading to an increase of the
energy with U/2.

To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. For U < 2t this does not lead to a state of
lower energy. For larger U there is a symmetry-broken ground state

1 2t
Yypr =¥(0,7/2—0) with 0(U) = % + 5 arceos (ﬁ) : (36)
Its energy is Eyyr = —2t2/U. This looks similar to the singlet energy ¢,, however, with a

different prefactor. Still there is no triplet state (spin contamination) and, for U — oo, the
overlap with the true singlet ground state goes to |(Uygr|¥_)|*> = 1/2. In an extended system

the breaking of the symmetry implies long-range order.
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0 /4 /2
0

Fig. 4: Energy expectation value for a Slater determinant W (0,7 /2—0) for U=0, t, 2t, ..., 6t.
When U < 2t the minimum is at 0 = 7 /4. This is the Hartree-Fock solution with the bonding
orbitals ¢ occupied. For U > 2t, = 1 /4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

3.5 Superexchange

For the direct exchange mechanism discussed above, it is crucial that there is hopping between
the orbitals. These orbitals are typically localized d-orbitals of transition-metals. However,
direct exchange cannot explain the antiferromagnetism of most transition-metal compounds:
Since the d-orbitals are so localized, hopping can only occur between orbitals on different atoms
that are very close to each other. But most antiferromagnetic insulators are transition-metal
oxides, so that the transition-metal cations are separated by large oxygen anions. In such a
situation, shown in figure 5, direct hopping between the d-orbitals is very unlikely. The concept
of direct exchange can, however, be extended to these cases by taking into account hopping via
the intermediate p-orbital. This mechanism is called superexchange.

To understand superexchange, we consider two d-orbitals with an oxygen p-orbital in-between.

We introduce the operator ¢!, which creates a spin-o electron in the d-orbital at site 7, where

© = 1 denotes the d-orbital on the left and © = 2 the one on the right (see Fig. 5). Likewise
c;fw creates an electron in the p-orbital. The energy of an electron in a d- or p-orbital is €; and
&p, respectively. The Coulomb repulsion between two electrons in a d-orbital is Uy, while we
neglect the repulsion between electrons in the p-orbital. Finally, —¢,, is the hopping between p

and d orbitals. The Hamiltonian for the system of figure 5 is then given by

H = Z (5d Z Njo + Ep Npe — tpd Z (Cl‘Lach + C;EJCZ-U> ) + Ud Z NNy - (37)

In the absence of hopping, the ground state will have singly occupied d-orbitals, corresponding
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Fig. 5: In superexchange an oxygen p-orbital mediates the exchange interaction between two
transition-metal d-orbitals.

to a positively charged transition-metal ion, and a doubly occupied p-orbital, corresponding to
an O~ ion. To study a possible coupling between the spins on the d-orbitals, we first look at
the case where both d-spins point upwards (see the far right of Fig. 6). The Hamiltonian matrix
in the corresponding Hilbert space is then given by

0 ‘ tpd tpd CETCL¢CLTCIT|O>
H=| ty| Ui+l 0 chiclicl cli|0) (38)
tpa 0 Uigt+Apa cl ¢chcLTcJ{T |0)

where we have chosen 2(g,4¢4) as the zero of our energy scale and defined A,y = €4 —¢,. The
basis states of the Hilbert space are given on the right and the lines indicate the partitioning of
the Hilbert space for downfolding. The effective Hamiltonian for parallel spins on d-orbitals is

)

For antiparallel spins the Hilbert space is nine-dimensional. We sort the basis states into groups

g — (Ud+Apd> 0
0 g — (Ud+Apd>

tpa

Heff = (tpchtpd) ( (39)

Lpd Ud+Apd

where in the last step we have set ¢ to zero.

that are connected by the hopping of one electron. Starting from the two states with singly oc-
cupied d-orbitals, the second group has one of the p-electrons transferred to a d-orbital, leading
to one doubly occupied d, while the last group has a second electron hopped, leading to either
an empty p- or an empty d-orbital. The corresponding Hamiltonian matrix is

0 0 | +tpa 4t 0 0 0 0 0 chyel el el o)
0 0 0 0  +tpg 4t | O 0 0 chicl clel [0)
ttpa 0 |[UgtApy 0 0 0 | ~tw 0  —tp e elcl el ]0)
+tpa O 0 Ui+A, O 0 0 —tpa tpd cy ¢C2TC; iCIT |0)
0 4tpa| O 0 Ustdpa 0 |+t 0+t checl el el o)
0 +tpq| O 0 0 Uptdpa| 0 +ta +tp ch chiclicl [0)
0 0 | —tpa 0 4ty 0 Us 0O 0 ch el cli|o)
0 0 0 —tw 0 At | O Uy 0 ch chacl ch |0)
0 0 | —tyg —tya +tpg +ta | O 0 2(Us+Ap))  cbchicl cl]0)
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% ‘ _ superexchange

Fig. 6: Simple picture of superexchange. Here the orbital on the central site is different from
the orbitals on the sides. Typically, in the center there is an oxygen p-orbital coupling two
d-orbitals. This situation is illustrated in Fig. 5. For antiparallel spins on the d-orbitals there
are two ways that two consecutive hopping processes are possible. For parallel spins the Pauli
principle suppresses the second hopping process.

Downfolding the high energy states with at least one doubly occupied d-orbital, setting ¢ = 0
and expanding in 1/U,; (remembering (A + A)™' ~ A=*(1 — AA™')), which is equivalent to
second-order perturbation theory, leads to

Hyg = Hyp+1n (5 - (Hu + T2 (e — H22y1 T21)>_1 Tho

~ Hy — T01H1_11T10 — T01H1_11T12H2_21T21H1_11T10 (40)

_ _Zt—lz’d 1.0 _2t—;l’d(i+;) L (41)
Us+24,a\0 1 (Ug+ Apa)? \ Uy Uyj+ Ay -1 1)

The first term is the same as for parallel spins (39). The additional term is of the same type
as that found for the direct exchange mechanism. Again, it can be written in terms of spin
operators. In the present case they are the spin operators for the d-orbitals, while the p-orbital
does no longer appear in the spin Hamiltonian. The spin coupling is now given by

4¢4 1 1
J=—r (- —) , 42
(Ud+Apd)2 (Ud Ud—i—Apd (42)

which reflects that the superexchange mechanism involves four hopping processes (see Fig. 6),
while direct exchange only involves two hoppings (see Fig. 3). The hopping process involving
only a single doubly occupied d-orbital (middle of Fig. 6) is a generalization of the simple direct
exchange with an effective hopping t.g = tzd /(Ua+4A,4) between the d-orbitals and gives the
first term, 4¢%; /Uy, in (42), while the hopping process involving two occupied d-orbitals (left in
Fig. 6) gives the second term 4t /(Uag+24,4)°.
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3.6 Ferromagnetic superexchange

In the discussion of superexchange we have, so far, assumed that the oxygen ion lies between
the two d-orbitals. This 180° geometry is shown on the left of Fig. 7. The situation is quite
different, when the oxygen forms a 90° bridge between the two d-orbitals, see the right of
Fig. 7. By symmetry, there is only hopping between the d- and the p-orbital that point towards
each other (cf. the Slater-Koster integrals). As there is also no hopping between the p-orbitals
on the same site, the Hamiltonian for the system separates into two parts, one involving only
the d orbital on site 1 and the p, orbital and the other only involving d on site 2 and p,, e.g.:

H, - 0 +tpa cjwc;Tch\O) 43)
+tpa Ui+ Apg clic&cm())

Since it is not possible for an electron on site 1 to reach site 2, none of the superexchange
processes discussed above are operational. Nevertheless, the energy for the system depends
on the relative orientation of the electron spins in the two d-orbitals. To see this, we have to
remember that Coulomb exchange prefers a triplet for two electrons in different orbitals on the
same site (Hund’s first rule). Including J,, on the oxygen (but neglecting U, for simplicity),
we get, for the triplet state with two up-electrons, the Hamiltonian (note that there is no Hund’s
rule term for the states with three electrons, i.e. one hole, on the two oxygen orbitals p, and p,)

0 tpd tpa 0 CJ{TCL iCI:TCL iCLTCET |0)

tpa | UstApa 0 tpa ) ¢CITCLTCL \LCLTCEH(» a4)
tpd 0 Ug+Apa tpd CJ{TCIQCLTCLTC%CJ;HO) '

0 tpd tpd 2(Ua+Apa) — Juy CLCITCLTCLTC;C;JO)

The first state has the two up-electrons on the d-orbitals. The second group of states has one
d-orbital doubly occupied, while the last state has both d doubly occupied, i.e., two electrons
on the two p-orbitals — the situation discussed in Sec. 2. Calculating the effective Hamiltonian
as in (40) gives the energy of the triplet state

2 4
Hog = — U 2tpd — 4tpd 5 ! — 45
dt+ A (Ug+ Apa)? 2(Ug+Apa) — Joy
Starting from singly occupied d orbitals with opposite spin, we obtain

0 0 tpd 0 tpd 0 0 0 CITCIE icchCy icch2 110)

0 0| 0 ta 0  ty 0 0 chyel el i<y T02¢|0)

tpa 0 |Ugt+Apg 0 0 0 tpd 0 ) iCITCICTC;L Lcy,FCQ 110)

0 tpa 0 Ug+Ap 0 0 0 tpd CJ{ ¢chcjs ¢c;r, icyTC% |0)

tpa O 0 0 Ui+Ap 0 tpa 0 C];TCL icchcJr 1C ¢C2T |0)

0ty 0 0 0 Ugt+Apa 0 tpa CLCLCLTCTTCNCQT |0)

0 0| tg 0  tg 0 |[2Us+Ap) —Juy chyelichiel ¢02¢|0>

0 0| 0 ta 0 ty ~Joy 2Ua+2Aa)) el jelich elich e o)
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Fig. 7: Dependence of superexchange on geometry: When the d-orbitals interact via an oxygen
in-between (the 180° geometry shown on the left), both d-orbitals couple to the same p-orbital,
while the hopping to the two other p-orbitals vanishes by symmetry. The result is antiferromag-
netic superexchange. When the angle of the M-O-M group is 90° (right), the d-orbitals couple
to orthogonal p-orbitals, making it impossible for an electron on one d-orbital to reach the d-
orbital on the other site. In this case, superexchange is mediated via the Coulomb exchange on
the connecting oxygen.

giving the effective Hamiltonian

Moo 2ot <1 0)_ At5a 1 QUstApa)  +Jay
BT U+ A \0 1) Uy + Apa)? 4(UgtApa)? — T2, Ty 20U+ |

Rearranging the matrices, we can bring this to the canonical form

Hop e — ( 212, N 4t 1 )
¢ Ui+ Apa (Ug+ Apa)? 2Ug+Apa) — Ty
+ A Ty bl (46)
(Ug+ Apa)?* 4(Ug + Dpa)? = J2, \ -1 1)

The first term is just the energy of the triplet state (45). The second gives the difference in
energy to the singlet. Despite the fact that the electrons cannot be transferred between the d
orbitals we thus get a singlet-triplet splitting. This coupling of the spins originates from the
states with both d-orbitals doubly occupied: the two remaining electrons, one each on the p,-
and p,-orbital, respectively, form a triplet of energy 2.J,, lower than that of the singlet (see
Eqn. (15)). When the electrons hop back from the d-orbital, the entanglement of the spins is
transferred to the remaining electron on the d. Originating from the Coulomb exchange on the
oxygen, the exchange coupling is ferromagnetic
4t 2y

J=— | 47
(Ua + Apa)? 4(Ug + Apa)? — J2, @7

It tends to be significantly weaker than the antiferromagnetic 180° superexchange coupling (42).
When the angle of the M-O-M group is larger than 90°, hopping to both p-orbitals becomes
possible according to the Slater-Koster rules and the antiferromagnetic superexchange processes
of Fig. 6 start to compete with the ferromagnetic superexchange mediated by the Coulomb
exchange on the oxygen. This is one basis of the Goodenough-Kanamori rules [7, 12].
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4 Double exchange

Double exchange takes its name from the fact that it results from a combination of Coulomb-
and kinetic-exchange. In that sense the 90° superexchange mechanism discussed above is a
double exchange mechanism. More commonly, double exchange is encountered in mixed-
valence compounds. So far we have considered systems with an integer number of electrons
per site. When correlations are strong the lowest energy state will essentially have the same
number of electrons on every site and hopping will be strongly suppressed by the Coulomb
repulsion energy U as we have seen for the simple two-site model of kinetic exchange. In a
mixed valence system the number of electrons per site is non-integer, so even for large U some
site will have more electrons than others. Thus electrons can hop between such sites without
incurring a cost U. Hence these compounds are usually metallic.

As a simple example we consider two sites with two orbitals of the type discussed in Sec. 2.
We assume that each site has one electron in orbital a, and that there is only a single electron
in the b-orbitals. This electron can hop between the sites via a hopping matrix element ¢;,. The
situation is illustrated in Fig. 8.

When all three spins are up, S¢, = 3/2, we have a simple 2 x 2 Hamiltonian, taking U, as our

g e ) 48)
—lw  —Jab

The eigenstates are the bonding/antibonding linear combinations of the Hund’s rule triplets.

zero of energy

Their dispersion is +t:
€+ = —Jop £ty . (49)

We see that the hopping couples the two sites into a state with the electrons in the a-orbital in a
triplet state:

1 1
V2 V2

In the language of quantum information, the hopping electron teleports the local Hund’s rule

o= (11Dt [t ) = == (11 B D) [ 1 1e (5O)

triplet to the a-orbitals.
To obtain the Hamiltonian for the SZ, = 1/2 states, we arrange the basis states in the order they
are connected by matrix elements, see Fig. 8. We obtain the tridiagonal Hamiltonian

—Jw —tw 0 0 0 0
—twp 0 —Jap 0 0 0
o 0 —Jup 0 —twp 0 0 51)
0 0 —tp 0 —Ju 0
0 0 0 —Ja 0 —ty
0 0 0 0 —tw —Juw

The ground-state is the equally weighted linear combination of all basis states. It has energy
e = —Jap — tpp and belongs to the sector with Sy, = 3/2. Again, the hopping electron teleports
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Fig. 8: Matrix elements entering the double-exchange Hamiltonian. Hopping matrix elements
ty, are indicated as double arrows, Coulomb-exchange matrix elements J,, as double lines.
Note that the right half of the states are obtained from the left by flipping all spins.

the triplets from the sites into a triplet state of the spins in the a-orbitals:
1

\/6<H\7T>1| 7\L>2+‘ 7T>1|Ta\L>2+| 7T>1’\L7T>2+|¢?T>1‘ 7T>2+H\7¢>1| 7T>2+| 7\1/>1|T7T>2>

1 1 1
= = 5 + |- ) > _< ’ a + ’ a) + _< ) " + |- ) > 3 a
\/§<|T o+l T 7 [T e+ [ 1) NG Lo+ D) [T 1)
As in the S, = 3/2-sector, there is a corresponding eigenstate of energy ¢ = —Jy, + tu

with the b-electron antibonding. Again, we find that the triplet state is centered at —.J,, with
dispersion +t;,. Thus the hopping electron in orbital b tends to align the spins in orbital a.
While the total spin is conserved, this is not true for the spin on site i, gi,a + §i,b or for the
spin in the a-orbitals Sia + Sa. Consequently the hopping mixes the Hund’s rule singlets and
triplets and therefore does not produce a singlet state of the a electrons. Instead, for t;, << Jy,
we find in first order perturbation theory

— Ty — tw (1, 1, 1, 1, 1, 1)'/V6

—Jw—tw/2 (2, 1, 1,-1,-1,-2)" /12

T+ tw/2  (2,-1,-1, -1, -1, 2)"/V/12

A (1,-1,-1, 1, 1,-1)"/v6 (52)
i —tw/2 (0, 1,-1,-1, 1, 0)'/2

i +tw/2 (0, 1,-1, 1,-1, 0)7/2

While the triplet states, Sy, = 3/2, are centered around —.J,;, with dispersion +t,, states with
singlet character are centered at the same energy, but have smaller dispersion, /2.

We can look at the situation from a different perspective, focusing on the effect of the spins
in the a-orbitals on the hopping electron. This is another source of Goodenough-Kanamori
rules [12]. We choose the quantization-axis on site 2 rotated relative to that on site 1 by an
angle ¢. Taking the original quantization axis as Z and the direction from site 1 to site 2 as z,
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Fig. 9: With quantization axes tilted between the sites, all states couple. Matrix elements are
indicated by arrows: Hopping only couples sites with the same occupation of the a-orbitals.
Full lines stand for ty, cos(V/2), dotted lines for matrix elements proportional to ty, sin(1J/2).
These states are coupled by off-diagonal Coulomb exchange matrix elements J,,, shown as
double lines.

the rotation in spin space is given by exp(—io, /2) (see appendix A). Introducing operators
dope 1n the rotated basis, we have, in terms of the original operators,

dopy = c0s8(0/2) copy — sin(/2) copy (53)
dapy = sin(V/2) copr + cos(V/2) capy (54)
so the hopping becomes
~tw Chpcy = —tw <+ cos(9/2) dy; + sin(9/2) d;m) Cut (55)
—tup C;uclm = —tlw (— sin(9/2) d;bT + cos(V/2) dh) Cpy - (56)

Obviously, such a change of basis does not change the spectrum of the resulting Hamiltonian.
We do get a new situation, however, when we assume that the spin on orbital a is fixed. This
is, e.g., a good approximation when the spin in the a-orbital arises actually not a from a single
electron, but from many electrons coupled by Hund’s rule, e.g., in a half-filled ¢, -level, like in
the manganites. Then there are no off-diagonal exchange terms (double lines in Fig. 9) and the
Hamiltonian splits into 4 x 4 blocks with only hopping (solid and dotted lines in Fig. 9) and
on-site Coulomb exchange J,;,. The Hamiltonian then becomes

—Jab +tp, cos(V/2) | +ty, sin(d/2) 0
+tpy cos(¥/2) —Ja 0 —tp, sin(d/2) 57)
+typ sin(d/2) 0 0 +ty, cos(9/2) |’
0 —tp sin(V/2) | +tp cos(V/2) 0

where the a-spin simply produces a Zeeman splitting of orbital b, proportional to the exchange
coupling J,;. In the limit ¢, < J,; we can neglect the states with misaligned spins and obtain

E=—dJab + tbb COS(Q9/2) R (58)

i.e., for parallel spins, ¥y = 0, the gain in kinetic energy is maximized, giving the ground-state
energy of the full Hamiltonian, while for anti-parallel spins, ¥/ = 7 the dispersion vanishes.
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S Orbital-ordering

Exchange mechanisms are not restricted to the coupling of spins. As pointed out by Kugel and
Khomskii [13], also orbital occupations can interact. Such a coupling leads, besides an ordering
of the spins, to an ordering of the orbitals.

To understand the mechanism of orbital-ordering, we consider an e,-molecule, i.e., two sites
with two orbitals a and b, as discussed in Sec. 2. The Hamiltonian on the sites is thus given by
(14). In addition, the two sites are coupled by hopping matrix elements ¢,, and %y, i.e., hopping
does not change the type, a or b, of the occupied orbital. We now consider the case of one
electron in orbital a and the other in orbital b.

First, we consider the situation when both electrons have the same spin, e.g., spin-up. The basis
states are shown in Fig. 10. Setting up the Hamiltonian is analogous to setting up (24)

0 0 —ty e
0 0 toa t
HIT = + e (59)
_tbb +taa Uab_Jab 0
_taa +tbb 0 Uab_Jab

Downfolding to the states without doubly occupied sites, we obtain

1 2 412 —2tu.at taa — tn)?  2taat —
HQ%— ( aaTlhp bb)z_( bb) _ bb (_1 1).(60)

Ub — Jab \ —2taaten  12,+13, U —Jap U — Jap 1

Thus we find that there is an interaction between the states with exchanged orbital-occupation,
i.e., an orbital-exchange. For the present case of ferromagnetically aligned spins, the direct
orbital exchange coupling favors the orbital singlet, when the hopping matrix elements are of
the same sign. In analogy with the situation in kinetic exchange, this is called antiferro orbital
exchange. To make the relation with kinetic exchange even more explicit, we can introduce, in
analogy to (31), pseudo-spin operators Ty

1 ) 1
7% = 5 (Cliacbia + Cltia'caia) ’ 7—’;{7 - _% (leiacbia - CZm%w) ) CZ_ZT = 5 (naia - nbiU) (61)
so that we can write
taa - tbb)2 4taattbb = = 1
HTT:—( T -Tor — = ). 62
eff Uab - Jab * Uab - Jab H i 4 ( )

Fig. 10: Basis states for an up-electron in orbital a and another up-electron in orbital b. Note
that the states are ordered as in Eqn. (24).

—+ = - -t
t— —+ +— —+
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Fig. 11: Basis states for electrons of opposite spin. The numbering used for the matrix (63)
is indicated. Spin exchange is indicated by the full, orbital exchange by the dotted arrow. The
states with both electrons on the same site are coupled via Coulomb exchange (double arrows).

When the two electrons have opposite spin, we can study the interplay of spin- and orbital-

exchange. The basis states are shown in Fig. 11. We expect orbital exchange to operate between

the first two states in each row and spin exchange between the states between the rows. The

Hamiltonian is

0 0 0 0 —tw  —tua 0 0
0 0 0 0 Htoa  +tw 0 0
0 0 0 0 0 0 —tw  —taa
0 0 0 0 0 0 taa t
HY = oo Tl (63)
_tbb +taa 0 0 Uab 0 —Jab 0
_taa +tbb O 0 0 Uab 0 —Jab
0 0 _tbb +taa —Jab 0 Uab 0
0 0 —taa  +iop 0 —Jub 0 U
from which we obtain
(2,42 ) Uab —2taater Usy  (E2,+t0) Ty —2taator Jap
HT,L ~ — 1 _Qtaatbb Uab (t2a+t2b)Uab _2taatbb Jab (t2a+t§b)‘]ab
off U2 — J2 | (2 4t5) T —2taatey Jao (g +12)Uss —2taater Uap
~2taatep Jay (o Ht5) Ty —2taaty Usy  (2,4t5) Jap
1 Uwp g 2 412 2.t
S - b b ® aa T o ; be (64)
Uab - Jab Jab Uab _2taatbb taa+tbb
1 1 -1 9 1 -1
_Ugb — sz |:Uab + Jab — Jap < 1 1 )} ® [(taa — tbb) + 2t aatin < 1 1 )} .

Le., we get a simultaneous coupling of the spin- and orbital degrees of freedom. The first

term describes the coupling of the spins, which is antiferromagnetic, while the coupling of the

orbitals is, for hopping matrix elements of the same 51gn ferro, i.e., orbital triplet. In terms of

the spin and pseudo-spin operators we can write, with T, = Yo T,y and S; = Y ac {a.b} Sa i

M|
UL - TG

- S 1 [ 1
Uab + Jab) + 2Jab (Sl'SQ - Z>:| |:(taa - tbb>2 - 4taatbb (Tl'TQ - _):| .

4

There will be additional terms when we allow states with both electrons in the same orbital.
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6 Extended systems

6.1 Hubbard model

We now turn to extended systems. For this we consider the Hubbard model [14] on an infinite
lattice. Note that now the Hilbert space is infinitely dimensional, so we can no longer write
down the Hamiltonian in its matrix form but have to rely on the second quantized form (29)

H = —tZC}ng + U Znnnw ) (65)

/[’7.]70-

As in our toy model we still assume that each atom has only a single relevant orbital. There
are links between the neighboring atoms with matrix elements ¢, which can be intuitively in-
terpreted as hopping from site to site. In the absence of other terms the hopping gives rise to a
band. A second energy scale is given by the Coulomb repulsion U between two electrons on
the same atom. If this on-site Coulomb repulsion is comparable to or even larger than the band
width, the electrons can no longer be considered independent; since the double occupation of an
atom is energetically very costly, the movement of an electron will be hindered by the Coulomb
repulsion. One says that the electrons move in a correlated way. We should note that also the
Pauli principle hinders the movement of an electron. This effect can, however, be efficiently
described by constructing a Slater determinant of independent-electron wave functions. Corre-
lations, on the other hand, are notoriously difficult to describe since no simple wave functions
for such systems are available. In the case of strong correlations, i.e., for U > t, we will treat
the hopping as a perturbation. This is called the atomic limit, since the sites behave as almost
independent atoms. Thus it is most appropriate to describe strongly correlated electrons in a
local picture, i.e., in terms of electron configurations, which are the states that diagonalize the
Coulomb term.

6.2 Mott transition

The physics described by the Hubbard model is the interplay between kinetic energy and
Coulomb repulsion. Writing the Hubbard-Hamiltonian either in real or in k-space

H= -t Zc}acw +U Z”iTnii

i7j7o—

_ f u f f

= Zek CioCis T M Z Cht Cro— gt Chr | O/ g 0
ko kK’ .q

where M is the number of lattice sites, we see that there are obviously two limiting cases:
There is the non-interacting- or band-limit, when ¢ > U. In that case, only the hopping term
survives, i.e., there are no interactions, and the Hamiltonian can be solved easily in k-space. The
energy levels then form a band and the system is metallic, except when the band is completely
filled. In the opposite case, the atomic limit, the interaction term dominates. In that limit, to
minimize the Coulomb energy, the electrons will be distributed over the lattice sites as uniformly
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parameter range physical picture behavior
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£>U: band-limit \\\I// _ filling of a band
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Fig. 12: Metal-insulator transition for half-filling, i.e., one electron per site.

as possible. For a non-degenerate, half-filled system this means, that every site carries exactly
one electron, and hopping is suppressed, because it would create a doubly occupied site, which
would increase the energy by U > ¢. Thus in the atomic limit the half-filled system will be
an insulator. Clearly, in-between these two limiting cases there must be, at some value U,, the
so-called critical U, a transition from a metallic to an insulating state — the Mott transition [15].
Usually this transition is expected when U becomes of the order of the (non-interacting) band
width W.

As the criterion for determining the metal-insulator transition we can use the opening of the gap
for charge-carrying single-electron excitations

E, = E(N+1) — 2E(N) + E(N—1), (66)

where F/(N) denotes the total energy of a cluster of M atoms with N electrons. For the half-
filled system we have N = M. It is instructive to again consider the two limiting cases. In the
non-interacting limit the total energy is given by the sum over the eigenvalues of the hopping
Hamiltonian
partly filled band, will vanish in the limit of infinite system size. On the other hand, in the

nioc En- Thus, in the non-interacting limit £0** = eyy — ey, which, for a
atomic limit, the Coulomb energy for a single site with n electrons is Un(n — 1)/2. Thus, for
half-filling of we have

B =y (67)

i.e., the insulating state in the atomic limit is characterized by a finite gap.

For an infinite system the gap F,; can be rewritten in terms of the chemical potential. In the
thermodynamic limit (M — oo with N/M constant) we have to distinguish two types: the
energy needed to add an electron to the system (electron affinity)

de(n)

pt =lim (E(N+1) — E(N)) = —— : (68)
dn !
and the energy required to extract an electron from the system (ionization energy)
d
p~ =lim (E(N) — E(N-1)) = dem)) (69)
dn |, 1

The gap is then given by the discontinuity in the left- and right-derivative of the energy per site
e(n) =lmE(N)/M: E; = p" —u~.
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6.3 Heisenberg model

We now consider the Hubbard model in the limit of large U. This is the generalization of the dis-
cussion of direct kinetic exchange in Sec. 3.2 to an extended system. For large U we work with
the electron configurations, in which the interaction term is diagonal. Configurations with dou-
bly occupied sites will have energies of the order of U or larger, so these are the configurations
that we would like to project out. For downfolding we thus partition the configuration basis,
and hence the Hilbert space, into the set of low-energy states which have no doubly occupied
sites

S = {|n1T,n1¢,n2T,n2¢,...>"v’i: N+ < 1} (70)

and the set of high-energy states with one or more doubly occupied sites

D= {|n1T,n1¢,n2T,n2¢, .. >‘ di : Ny +nz¢ = 2} . (71)

The hopping term 7', which for large U is a perturbation to the interaction term /, couples
the subspaces by hopping an electron into or out of a doubly occupied site. In addition it lifts
the degeneracies within the subspaces. Hence the Hamiltonian can be partitioned as (note that
I = 0 on subspace 5)

(72)

i Py T Py PsT Pp
-\ PpTPs Pr(T+1)Pp |’

Since we are dealing with an extended system, the subspaces are infinite, so we cannot write the
Hamiltonian on the subspaces as matrices. Instead we restrict the operators to the appropriate
subspace by using projection operators, P projecting on the low-energy configurations S, Pp
projecting on D. Just like in 3.2 we can then write down an effective Hamiltonian operating on
the low-energy configurations only:

Het = PsT Ps+ PsT Pp [Pp(e —(I+1T)) PD]_1 PpT Ps , (73)

Unlike in the derivation of direct exchange, for the extended system we have no way of cal-
culating the inverse in the second term explicitly. We can, however, expand in powers of ¢/U.
This is Kato’s method for perturbation theory (see, e.g., section 16.3 of [16]). Essentially we
only need to consider configurations with a single double-occupancy — these correspond to the
states of lowest energy in D). On this subspace the interaction term is diagonal with eigenvalue
U and can thus be easily inverted. We then obtain the Hamiltonian

Ht_J = PS T— 5 Z CLU/C]-U/ Ny C}acia PS y (74)

(i) (ik)oo’

which is called the ¢-J Hamiltonian. The first term describes the hopping, constrained to con-
figurations with no doubly occupied sites. Thus it essentially describes the hopping of empty
sites (holes). To understand what the second term does, we observe that, because of the oper-
ators n;yn;|, there are only contributions for states with a singly occupied site j: n;, = 0 and
n;_, = 1. After applying the second term, site j will again be singly occupied with n,» = 0
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Fig. 13: Processes contained in the three-site term T": indirect hopping processes to a second-
nearest neighbor site with an intermediate (virtual) doubly occupied state. In the first process
the two hopping processes are performed by the same electron, in the second process each
electron hops once and thus the spin on the intermediate site is flipped.

and n; _,» = 1. Hence, for o # ¢’ the spin on site j will be flipped. Moreover, we distinguish
the contributions where only two different sites are involved (k = ¢) from the three-site terms
(k # 1i). The terms for £ = i are just the ones we already know from the kinetic exchange
mechanism. The three-site terms describe a second-nearest neighbor hopping of an electron
from site i to site k& via a singly occupied intermediate site j. For o = ¢’ the spin of the hopping
electron is opposite to that on the intermediate site. For o # ¢’ the spin of the intermediate site
is flipped — as is that of the hopping electron. This is shown in Fig. 13. The ¢-J Hamiltonian is

H,_; = Pg [T+HH+T’] P (75)
with
T = —t Z c}acw (76)
(ig),0
4¢? e i
Hy = — (Sj~5i—""]) (77)
U 4 4
(i5)
t2
T/ = _ﬁ Z Z (620(1 - nja)cia - C‘L,—UC}O'C]‘,*UCiO'> Nj—o (78)
(ij)(ik) o
i#k

In the case of half-filling, when n; = 1, all hopping processes are suppressed, i.e., the projection
Pg annihilates 7" and 7”. Thus for a Mott insulator the ¢-J model reduces to the spin 1/2
Heisenberg model

Hy =JY S-S+ const. (79)

(i)

with the exchange coupling J = 4t%/U given by the direct kinetic exchange mechanism. We
again stress that the spin-spin interaction is a result of projecting out the states with double
occupancies.
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7 Conclusion

We have seen that magnetic interactions in matter arise from the interplay of the Pauli principle
and Coulomb interaction, kinetic energy, or both. The resulting effective couplings between
magnetic moments are thus not fundamental interactions and, usually, take quite complex forms.
However, in limiting cases they can become quite simple and transparent. These scenarios are
called exchange mechanisms, of which we have discussed here a small selection. They give
an idea of what magnetic interactions can be expected in real materials. Thus, despite their
simplicity, exchange mechanisms provide vital guides for understanding the physics of complex
ordering phenomena, of spins and orbital-occupations, from simple concepts.
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Appendices

A Pauli matrices

Here we collect the most important properties of the Pauli matrices. The Pauli or spin matrices

0 1 0 —i 10
Ux:<1 0) Uy:(i 0) gz:<0—1> (50)

They are hermitian, i.e. a;r = 0,, and 6} = 1. Therefore their eigenvalues are +1. The

are defined as

eigenvectors of o, are |m,), m, = +1:
1 0
|><0>an|><1> @)

orlmy) =] —m,) oylm,) =im,| —m,) o,lm,) =m,|m,). (82)

For these vectors we find

The products of the Pauli matrices are o, 0, = i0,, where the indices can be permuted cycli-
cally. From this follows for the commutator

(04, 0y] = 2i0,, (83)

while the anticommutator vanishes:
{04,04} =0 (84)

Finally a rotation by an angle ¢ about the axis n changes the spin matrices

Ri(p) = e 9%9/2 = cos(p/2) —isin(p/2)n - 7. (85)
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B Downfolding

To integrate-out high-energy degrees of freedom, we partition the Hilbert space of the full sys-
tem into states of interest (low-energy states) and ‘other’ states, which will be integrated out.
The Hamiltonian is then written in blocks

Hy T
H— o0 do1 7 (86)
TlO Hll
where H is the Hamiltonian restricted to the states of interest (reduced Hilbert space), Hi;

the Hamiltonian for the ‘other’ states, and the 1’ matrices describe transitions between the two
subspaces. The resolvent is partitioned likewise

-1
w — Hy —Tu ) (87)

Glu) = lw= H)_l B ( —Typ w—Hn

Its elements are easily determined by solving the system of two linear matrix equations

w — Hyg —Tn GOO GOl _ 0 (88)
_T10 w—Hll GIO Gll O 1 7

keeping track of the order of the sub-matrix products. The resolvent on the reduced Hilbert

space is thus given by
—1

Goo(w) = | w — [Hoo + Tor(w — Hy1) ™" Tho) : (89)

N

— Hog ()

This expression looks just like the resolvent for a Hamiltonian H.g on the reduced Hilbert
space. This effective Hamiltonian describes the physics of the full system, but operates only on
the small reduced Hilbert space: For an eigenvector H|¥) = E|?) on the full Hilbert space

[ Ho Ton %) \ %)
Hi) = (Tm HH> <|w1>> - ( |w1>> e

its projection |¥,) onto the reduced Hilbert space is an eigenstate of Hez(FE). On the other
hand, we can construct the full eigenstate from a solution H.g(F)|%) = F|%) on the reduced
Hilbert space by upfolding ) o< (1 + (E — Hy1) ' Tio)|Wo).

Of course, this drastic simplification comes at a price: the effective Hamiltonian is energy
dependent. If the hopping matrix elements in 7j; are small, and/or if the states in the part of the
Hilbert space that has been integrated out are energetically well-separated from the states that
are explicitly considered, this energy dependence can, to a good approximation, be neglected.
We can then replace w by some characteristic energy ¢, for the states in the reduced Hilbert
space to obtain an energy-independent Hamiltonian

Hegr(w) = Hoo + Tt (w — Hiy) ™ Tho &~ Hoo + Tor (g0 — Hir) ' Tho = Her(20) O
that gives a good description of the electrons in the reduced Hilbert space, i.e., the states with

an energy close to £9. Expanding (w — Hy;)~! about £y, we can systematically improve the
approximation (linear and higher-order methods).
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6.2 Andrzej M. Oles

1 Entangled superexchange: SU(2) ® SU(2) model

1.1 Spin-orbital Hilbert space in a Mott insulator

At large on-site Coulomb repulsion U, electrons in a transition metal oxide localize and have no
kinetic energy. The new state of electronic matter which emerges under strong Coulomb repul-
sion is a Mott insulator. Then the electron state is given by the spin component and the orbital
occupied by this electron. It was one of the great achievements of Kugel and Khomskii [1] to
realize that in the case of two orbitals available at each site 7, the Hilbert space of a Mott insula-
tor is spanned by spin-orbital states, i.e., it suffices to specify a spin and a pseudospin (orbital)
component of each electron to define its quantum state at site z. Such localized electrons in the
absence of kinetic energy interact by superexchange [2, 3].

To illustrate these concepts, we begin with a study of a one-dimensional (1D) spin-orbital su-
perexchange model Hgg defined in a Mott insulator with on-site repulsion U by the spin-orbital
Hilbert space spanned by the eigenstates { 1), |{)}, of spin S = 1/2, and orbital (pseudospin)
operator 7' = 1/2, with the eigenstates { |+), |—)}. Such states at two neighboring sites 7 and
1+1 are coupled by 1D spin-orbital (‘Kugel-Khomskii’) superexchange [4—6],

Hsp = JZ Si-Sip1+a)(T;, T+ 5) —af+e, ZTi(C) , (1)

where Ti(c) = Ti(c) = 07 /2, and we take the orbital splitting Je, = E, = 0. Here a constant term
a3 is eliminated and the Hamiltonian Hgg, includes only operator terms. The 1D kinetic energy
is given by the orbital-flavor (a«=+, —) conserving hopping ¢, and the interaction energy
is given by either Un;qo1niq) Or UnjasNias, Which both cost the Coulomb repulsion energy U.
Of particular interest is the strongly correlated regime U > ¢, where electrons localize and

interact by antiferromagnetic (AF) superexchange [2],
A
=

For two degenerate orbitals one needs to introduce a doubly-degenerate Hubbard model [7].

J 2)

One finds then again the same exchange constant J (2) as in the derivation of the ¢-J model
from the Hubbard model in the limit U > ¢ [8].

It was a great achievement to realize that spin and orbital states are entangled and are parts
of the same Hilbert space [9, 10]. Thus the superexchange Hgsg in Eq. (1) is not just a scalar
product of two involved subspaces, spin and orbital, but describes joint quantum fluctuations of
these two operators [9-12]. The superexchange model (1) depends on two parameters {c, 5},
and they decide about the type of order. It describes a competition between four spin-orbital
phases, where the order in each sector can be either ferro- or antiferro-. The phases where
quantum fluctuations exist in the ground state only in at most one sector (spin or orbital) are
disentangled, as the phases I-1II, see the phase diagram in Fig. 1. Otherwise, we recognize
one entangled phase IV-VI which has three different regimes. Here spin-orbital entanglement
increases when the quantum critical point (QCP) (—1/4, —1/4) is approached along the diagonal
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Fig. 1: Spin-orbital entanglement in the 1D SU(2) ® SU(2) model (1) at £, = 0. Left—The von
Neumann entropy per site S,y / L (3) for the ground state at L = 8 as a function of x and y. The
phase boundaries (solid and dashed lines) are drawn to guide the eye. Right—Phase diagram of
a coupled 1D spin-orbital chain. The diamond point is located at (3/4,3/4). Quantum phases are
distinguished by entanglement: I, I, and 111 are disentangled, 1V is weakly, and V& VI stronger
entangled. The parameters (x,vy) are the same as («, ) in Fig. 2. Images after Ref. [6].

line z = y. At the QCP itself, spin-orbital entanglement is maximal within the phase V, changes
to a plateau in IV, and next drops towards zero in IV beyond the QCP (o = < —1/4).

A standard measure of entanglement between two subsystems A and B in the ground state
|GS) of a system of size L is the von Neumann entropy [13]: Syx = —Tra{palnpa}/L, see
Fig. 1. Here our two subsystems are spins and orbitals and the entanglement concerns the
entire system (in other applications the system would frequently be separated into A and B by
cutting one bond). The von Neumann entropy is obtained by integrating the density matrix,
pa = Trp|GS)(GS| over subsystem B. Consequently, we use here the following definition of
the von Neumann spin-orbital entanglement entropy:

1
SN = —ETYS{PS In ps}, (3)

where

is the reduced spin-only density matrix (4), with the orbital {7} degrees of freedom being
integrated out.

1.2 Modifications due to finite spin-orbit coupling A

Spin and orbital operators may also couple directly on-site via the spin-orbit interaction [14].
It is in general quantum but we present the Ising coupling here for more clarity. Then the 1D
model Hamiltonian consists of two qualitatively distinct terms [15],

H = Hse + Hsoc, (5)
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Fig. 2: The von Neumann spin-orbital entanglement entropy, Syx (3), calculated using ED on
an L=12-site periodic chain for the spin-orbital model Eq. (5) and for the increasing value of
the spin-orbit coupling X [15]: (a) \/J =0, (b) \/J = 0.1, and (c¢) A/ J — oc.

Image by courtesy of Dorota Gotfryd.

and includes next to the superexchange Hgg (1), the spin-orbit Ising interaction oc A. The model
Hamiltonian (5) depends then on three parameters {«, 5, A\}. Altogether, our choice means
that the spin-orbital exchange interaction has the simplest possible form that can, nevertheless,
simulate a realistic situation found in the transition metal oxides. We note that the spin-orbital
exchange (1) would have in general a more complex form. For instance, this would be the case
if, e.g. three instead of two active orbitals were taken into account, and the corrections from
finite Hund’s exchange were included (as relevant for the 5d iridates).

The second term in Eq. (5) stands for the on-site spin-orbit coupling (SOC) and reads,

Hsoc =2X ) SiT7. (©)

Here the parameter A\ measures the strength of the on-site spin-orbit coupling (of relativistic
origin). The above Ising form of the spin-orbit coupling was chosen as the simplest possible
and yet nontrivial term. Moreover, exactly such a form of the spin-orbit coupling is typically
realized in systems with two active orbitals. This is the case, for instance, of the active ¢y,
doublets in YVO3 [16, 17] and SroVO, [18], or in optical lattices [19]. In fact, such a highly
anisotropic form of spin-orbit coupling is valid for any system with an active orbital doublet,
either two directional p (p, and p,) or two planar t,, (zz and yz) orbitals.

The line S=—a plays a special role in the phase diagram of Fig. 1. In order to better understand
the physical consequences of increasing A\, we display the onset of the spin-orbital entanglement
once S=—a. As shown in Fig. 2 for increasing )\, the region of finite spin-orbital entanglement
increases dramatically and includes both previously disentangled phases, II and III [15]. In fact,
the largest entanglement is found in the vicinity of the line f/=—q«, when a+5 > —1/1. At
a+f = —1/4 the spin-orbital entanglement entropy jumps from S,x = 0 to a maximal value
and that happens at the QCP. Thus, the qualitative result of Fig. 1 breaks down. We conclude
that finite spin-orbit coupling transfers on-site entanglement to on-bond entanglement in the
phases antiferromagnetic/ferro-orbital (AF/FO, phase II) and ferromagnetic/alternating-orbital
(FM/AOQ, phase III) which are initially disentangled (at A=0, see Fig. 3.)
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A

log scale

Fig. 3: Schematic quantum phase diagram of Hamiltonian (1) in the («, ) plane, see Fig. 1.
The colorful vertical plane shows how spin-orbital entanglement extends to the highly entangled
state, with on-bond entanglement in two disentangled phases: FMQRAO and AFQFO, see Fig. 2.
Increasing spin-orbit coupling )\ generates on-bond entangled states (the green region marks
entangled states; note that the vertical scale is logarithmic). Image reproduced from Ref. [15].

2 Orbital physics for partly filled e, orbitals

It is important to realize that modeling of transition-metal oxides [3] can be performed on differ-
ent levels of sophistication. We shall present here some effective orbital-only and spin-orbital
superexchange models for correlated 3d orbitals. In a perovskite lattice they are coupled by
hopping ¢ between nearest neighbor ions, while the hopping to more distant neighbors and for
other lattices may be generated using the general rules formulated by Slater and Koster [20].
The orbitals have particular shapes and belong to two irreducible representations of the Oy, cu-
bic point group:

(4) a two-dimensional (2D) representation of eg-orbitals {|322—72)//6, |z2—y?)/v/2}, and
(i7) a three-dimensional (3D) representation of ¢, -orbitals {|zy), [yz), |zx) }.

In the absence of any tetragonal distortion or crystal-field (CF) due to surrounding oxygens,
the 3d-orbitals are degenerate within each irreducible representation of the O}, point group and
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have typically a large splitting oc 10D, = 2.0 eV between them. When some of such degenerate
orbitals are partly filled, electrons (or holes) have both spin and orbital degree of freedom. The
kinetic energy H; in a perovskite follows from the hybridization between 3d- and 2p-orbitals.
In an effective d-orbital model, the oxygen 2p-orbitals are not included explicitly and we de-
fine the largest hopping element ¢ obtained between two orbitals of the same type, which both
belong to the nearest neighbor 3d ions in a lattice.
We begin with conceptually simpler ¢5, orbitals where finite hopping ¢ results from the d-p
hybridization along 7-bonds and each element couples a pair of identical orbitals active along
a given bond. Each t,, orbital is active along two cubic axes, while the hopping is forbidden
along the axis perpendicular to the plane of this orbital, e.g. the hopping between two xy-
orbitals vanishes along the c axis (due to the cancellations caused by orbital phases). It is
therefore convenient to introduce the following short-hand notation for the orbital degree of
freedom [12],

) = lyz),  [b) =lz2), o) = [ay). @)

The labels v = a, b, c refer here to the cubic axes where the hopping is absent between two

t2!] :_tz Z zao Cjoo> )

orbitals of a given type,

o (ij)|lv#a
Here aIM is an electron creation operator in a ¢y -orbital a € {yz, zx, xy} with spin 0 =1, | at
site 7, and the local electron density operator for a spin-orbital state is n,,, = ajaa Ao FOT tog

electrons not only spin but also orbital flavor is conserved in each hopping process o t.
The hopping Hamiltonian for e, electrons concerns o-bands and couples here two directional
eg-orbitals {|i(,), |i(,) } along a bond (ij) ||y (we use again the same notation t) [21],

Hy( 69 = _tz Z i¢oojcao )

a (ij)|la,o

Indeed, a hopping with amplitude —¢ between two sites 7 and 7 occurs only when an electron
with spin o transfers between the two directional orbitals |(,) oriented along the bond (ij)
direction, i.e., |[¢,) o [3z*—7r?), |3y*—r?), or |3z2—r?), along the cubic axis v = {a,b,c}.
We will similarly denote by |£,) an orthogonal orbital to |(,). It is perpendicular to the bond
) o [yP=2%), |2°

P —x2>, and |x2—y2> along the cubic axis v € {a,b, c},
and (&,|¢,) = 0. For the moment we consider only electrons with one spin component, o =T,

(1j) direction, i.e.,

to focus on the orbital problem. While such a choice of an over-complete basis {(,, (5, (.} is
convenient, for writing down the kinetic energy a particular orthogonal basis is needed.
The usual choice is to take

2) = 13212, |2) = F5la* =), (10)
1.e., the basis of real e, orbitals [21]. However, this basis is the natural one only for the bonds

parallel to the c-axis but not for those within the (a, b) plane, and for 1-spin electrons the hop-
ping reads (here for clarity we omit spin index o),

HT (€g) ——t Z [3@32%2 + alzajz F V3 (alzajz + azzajg)} -t Z a;, 0, (11

(mmny)||ab (i) le
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Fig. 4: Schematic representation of 3d orbitals: Top—e, orbital basis {|3z*—r?) , |x*—y*)}.
Bottom—three tsy, orbital states {|zx) ,|yz),|zy)} = {|b),|a),|c)}. These representations
are split in a regular octahedron [3]. Image by courtesy of Yoshinori Tokura.

Although this expression is of course cubic invariant, it does not manifest this symmetry but
takes a very different appearance depending on the bond direction.
However, the symmetry is better visible using the basis of complex e, orbitals at each site ¢ [21],

li+) = 55 (liz) —1i2)), i—) = 55 (liz) +1li2)), (12)

standing for “up” and“down” pseudospin flavors, with the local pseudospin operators being
defined as follows,

+ — - _ —1 1
= chcZ»_, T=c ¢y, = s(eici— e )= 5(iy—mn,). (13)

7 — 1—

The three directional {|i(,)} and three planar {|i{,)} orbitals at site 7, associated with the three
cubic axes (y € {a, b, c}), are the real orbitals,

li¢y) = \/Li [e710e/2)jt) 4 eti0e/2|i—)] = cos(da/2)]iz) — sin(Va/2)]iZ), (14)
li&y) = \/Li [e71Pa/2]i4+) — etiPa/2]i—)] = sin(dy/2)]i2) + cos(da/2)]iZ), (15)

with the phase factors ,, = —4n/3, ¥;, = +4m/3, and ;. = 0, and thus correspond to the
pseudospin lying in the equatorial plane and pointing in one of the three equilateral “cubic”
directions defined by the angles {1, }.

Using the above complex-orbital representation (12), we can write the orbital Hubbard model
for e, electrons with only one spin flavor o =1 in a form similar to the spin Hubbard model,

t . . _

v @y
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Fig. 5: Virtual charge excitations leading to the e,-orbital superexchange model for a strongly
correlated system with |z) and |x) = |Z) real e, orbitals (10) in the subspace of 1-spin states:
(a) for a bond along the c axis (ij) || ¢; (b) for a bond in the ab plane (ij) || ab. In a FM plane
of KCuF3 (LaMnOs) the superexchange favors AO state of |AO=+) orbitals (not shown).

(c) The transition from FOr to OL found at d = < at finite U, and at U = oo (dashed line).
Images (a-b) are reproduced from Ref. [22]; image (c) is reproduced from Ref. [23].

with x, = +27/3, xp» = —27/3, and x. = 0, and where the parameter -y, explained below, takes
for e, orbitals the value v = 1. The appearance of the phase factors e*™X is characteristic of
the orbital problem—these factors occur because the orbitals have an actual shape in real space
so that each hopping process depends on the bond direction and may change the orbital flavor.
The inter-orbital Coulomb interaction oc U [22] is then the only Coulomb term which couples

the electron densities in two basis orbitals n;, = a;-r“a with p € {4, —}; its form in invariant

i
under any local basis transformation to a pair of orthogonal orbitals, i.e., it gives energy U for a
double occupancy, either when two real orbitals are simultaneously occupied Un;.n;z, or when
two complex orbitals are both occupied, U 5 PR P

A charge excitation between two transition metal ions with partly filled e,-orbitals will arise by
a hopping process between two active orbitals, |i¢,) and |j(,). To capture such processes we

introduce two projection operators on the orbital states for each bond,

1 1 1 1
e ) () () o)
() _ L_ o) (1_ o
ng) = 2(§—TZ_7> <§—Tj7) . (18)

Recently a generalization of the e, -orbital Hubbard model (16) was proposed to d = oo di-
mension [23]. Since the work of Metzner and Vollhardt [24] appeared, it is well known that the
limit of d = oo is simpler for the correlation problems than any finite dimension as the diagrams
addressing the correlations collapse to a single point and the Gutzwiller approximation to the
variational ground state wave function [25] becomes exact [26]. The e, orbital Hubbard model
describes spinless fermions which propagate on a lattice and have two degenerate orbitals. Any
double occupancy costs the same energy U, exactly as in Eq. (16). A crucial observation is now
that any orbital polarized state has no double occupancies, while the orbital liquid (OL) state
has double occupancies and has to be renormalized.
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The orbital Hubbard model (16) suggests that additional kinetic energy arises from the flavor-
nonconserving hopping o ~¢. Indeed, the only stable phase in the 3D e, -orbital model is the
orbital liquid (OL) phase [21]. In contrast, for the e -orbital model in d = oo dimensions [23],
the OL dominates for most but not for all electron fillings. Indeed, close to half-filling n = 1,
a FO phase is more stable. This phase has real e, orbitals and is labeled as FOr in Fig. 5(c).
Qualitatively this result is similar to the Nagaoka’s theorem [27] for the spin Hubbard model,
where a FM state is found close to half-filling. However, the mechanism is qualitatively different
as the orbital-nonconserving hopping contributes and destabilizes the OL.

The resulting phase diagram of the e,-orbital Hubbard model in the (n, U) plane obtained in the
Gutzwiller approximation contains mostly the OL phase, see Fig. 5(c). Here the FOr phase is
more stable than the OL phase for U > U.(n)if n > n.. One finds the critical value n, = 0.8746
of the electron density at which the energies of the OL and FOr are equal at U = oo, and below
which the OL phase is therefore always stable.

3 Coulomb interactions in spin-orbital Hilbert space

3.1 Kanamori parameters: Coulomb U and Hund’s exchange J

The full spin-orbital problem involves both degrees of freedom, as in Sec. 1. But in contrast
to the simplified case of only one excitation energy U, one has to distinguish between different
possible excitations, high-spin (HS) and low-spin (LS). Next to the Coulomb on-site repulsion U
known from the Hubbard model, the degenerate Hubbard Hamiltonian [7] includes Hund’s
exchange J. In general, on-site Coulomb interactions between two electrons in 3d orbitals
depend both on spin and orbital indices. Note that the electron interaction parameters in this
model are effective ones, i.e., the 2p-orbital parameters of O (or F) ions renormalize on-site
Coulomb interactions between two electrons in 3d orbitals. A general form which includes
only two-orbital interactions and the anisotropy of Coulomb and exchange elements is [28,29]

Hint = Uznioﬂ*niai + Z ( Clyﬂ - %Jaﬁ> NiaNig — 2 Z Ja,@ gia : @ﬁ

,a<f ,a<f

T Tt
+ § Jap (aiaTaiaﬂwﬂim + aimawﬂmﬂicm) . (19)
i,a< B

Here a!, is an electron creation operator in any 3d orbital, o€ {zy, yz, 2z, 322—12, 22—y2},
with spin states ¢ =1, ] at site 7, and we shall use & = —o. The parameters {U, U(’lﬁ, Jap}
depend in general on the three Racah parameters { A, B, C'} [30], which may be derived from
somewhat screened atomic values. While the intra-orbital Coulomb element is identical for all
3d orbitals,

U=A+4B +3C, (20)

the inter-orbital Coulomb U], ; and exchange J, 4 elements are anisotropic and depend on the in-
volved pair of orbitals {«, 5}; the values of J,4 are given in Table 1. The inter-orbital Coulomb
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Table 1: On-site inter-orbital exchange elements J,z for 3d orbitals as functions of the Racah
parameters B and C' (for more details see Ref. [30]).

3d orbital Ty Yz 2 r?—y?  32%—r?
xy 0 3B+C 3B+C C 4B+ C
Yz 3B+C 0 3b+C 3B+C B+C
zx 3B+C 3B+C 0 3B+C B+C

2 —y? C 3B+C 3B+C 0 4B+ C

322—r? 4B+C B+C B+C 4B+C 0

U,,s and Hund’s exchange J.s3 elements satisfy a relation with intra-orbital element U which
guarantees the rotational invariance of interactions in the orbital space,

U=Uls+2Jus 1)

In all situations where only the orbitals belonging to a single irreducible representation of the
cubic group (e, or ty,) are partly filled, e.g. in the titanates, vanadates, nickelates, or copper
fluorides, the filled (empty) orbitals do not contribute to the dynamics, and the relevant exchange
elements J, 4 are all the same (see Table 1), i.e., either a pair of ¢y, or for e, orbitals,

J, = 3B+C, (22)
Jg = 4B+C. (23)

Then one may use a simplified degenerate Hubbard model [7] with isotropic on-site interactions
(for a given subset of 3d orbitals),

Hi(gz = Uznirﬁ”iai + (U - gJH> Z NiaNig — 2Ju1 Z gm : gm

i i,a<f i,a<p

+Ju Z (a}aTajwaimaiﬁT + ajma;@iamﬂiw) ) (24)
i,a<f
Eq. (24) has two Kanamori parameters: the Coulomb intra-orbital element U (20) and Hund’s
exchange Jy, and we parametrize the interactions by

n=Ju/U (25)

which stands either for J}; (22) or for J§; (23), depending on the electronic filling of 3d orbitals
at site 7. Here we also obtain the celebrated element U = U—3.J%, used before in Eq. (16) when
only HS states occur. We emphasize that in a general case when both types of orbitals are partly
filled, as in the colossal magnetoresistance (CMR) manganites [31], and both thus participate
in charge excitations of Fig. 6, the above Hamiltonian with a single Hund’s exchange element
J§ 1s insufficient and the full anisotropy given in Eq. (24) has to be used instead to generate the
correct charge excitation spectra for a given transition metal ion [30].
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Fig. 6: Energies of charge excitations ¢,, (26) for selected cubic transition metal oxides, for:
(a) e, excitations to Cu®* (d®) and Mn** (d°) ions; (D) to, excitations to Ti** (d*) and V**
(d?) ions. The splittings between different states are due to Hund’s exchange element Jy which
refers to a pair of eq and tyg electrons in (a) and (b). Image reproduced from Ref. [28].

In a strongly correlated regime ¢t<<U, we consider the case of partly filled degenerate 3d orbitals
and large Hund’s exchange Jy. This guarantees that electrons localize in high-spin ionic states,
and effective low-energy superexchange interactions consist of all the contributions which orig-
inate from possible virtual charge excitations, d?,d? = dP"'dP~1 —they take the form of a
spin-orbital model. The charge excitation n costs the energy

£n = B (dP™) + Eo(dP™t) — 2Ey(dP), (26)

where the d” ions are in the initial high-spin ground states with spins S = £ and have the
Coulomb interaction energy Eo(d¥) = () (U — 3J§) each if p < 5 (otherwise if p > 5 one has
to consider p holes instead). The case of p = 5 electrons is special and will not be considered
here as in the tggeg configuration the orbital degree of freedom is quenched.

The same formula for the ground state energy applies as well to Mn3* ions in d* configuration
with S = 2 spin HS ground state, see Sec. 2. By construction, also the ion with less electrons
(holes) for p < 5 (p > 5) is in the HS state and Eo(dP~!) = (*,')(U — 3Jy). The excitation
energies (26) are thus defined by the multiplet structure of an ion with more electrons (holes)
in the configuration dP*!, see Fig. 6. The lowest energy excitation is always given by U—3.Jy
—it is obtained from the HS state of the 3dP™! ion with total spin S = S+!/2 and energy
Ey(dPt) = ("1 (U — 3Jg), with J being Hund’s exchange element for the electron (hole)
involved in the charge excitation, either e, or t5,. Indeed, one recovers the lowest excitation
energy in the HS subspace, ;. We emphasize that this lowest excitation energy ¢; is universal
and is found both in ¢y, and e, subspaces, i.e., it does not depend on the electron valence p,
see Fig. 6. In contrast, the remaining energies {¢,} for n>1 are all for LS excitations and
are specific to a given valence p of the considered insulator with d” ions. They have to be
determined from the full local Coulomb interaction Hamiltonian (19), in general including also

the anisotropy of the {U,3} and {.J,3} elements.
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Effective interactions in a Mott (or charge transfer) insulator with orbital degeneracy take the
form of spin-orbital superexchange [1,12]. Its general structure is given by the sum over all the
nearest neighboring bonds (ij) || v connecting two transition metal ions and over the excitations
n possible for each of them as,

t2
H=-> — > Pup(8) 0. (27)

where P;;;y(S) is the projection on the total spin S = S +1/2 and (’)zij) is the projection operator
on the orbital state at the sites ¢+ and j of a given bond. Following this general procedure,
one finds a spin-orbital model with Heisenberg spin interactions for spins S = »/2 of SU(2)
symmetry coupled to the orbital operators which have much lower cubic symmetry, with the
general structure of spin-orbital superexchange o .J (2) [28],

HJ_JZZ{ (S S+SQ>+NW}. 28)

@iy

It connects ions at sites ¢ and j along the bond (ij) || v and involves orbital operators, IC('Y) nd

N()

ij
in a cubic crystal. The spin scalar product, S - Sj, is coupled to orbital operators IC ™) which

which depend on the bond direction v = a, b, c for the three a priori equivalent directions

together with the other “decoupled” orbital operators, M ]7), determine the orbital state in a Mott
insulator. The form of these operators depends on the type of orbital degrees of freedom in
a given model. They involve active orbitals on each bond (ij) || v along direction . Thus the
orbital interactions are directional and have only the cubic symmetry of a (perovskite) lattice
provided the symmetry in the orbital sector is not broken by other interactions, for instance by
CF or Jahn-Teller (JT) terms.
The magnetic superexchange constants along each cubic axis J,;, and J,. in the effective spin
model,
=Ju > Si-Sj+. Zs .S, (29)
(ig)llab (ig)lle

are obtained from the spin-orbital model (28) by decoupling spin and orbital operators and next
averaging the orbital operators over an underlying orbital (ordered or disordered) state. It gives
effective magnetic exchange interactions: J. for a bond along the ¢ axis, and J,;, for bonds
within the ab plane. The latter ones J,;, could in principle still be different between the a and
b axes in case of finite lattice distortions due to the JT effect or octahedra tilting, but we limit
ourselves to idealized structures, with .J,; being the same for both planar directions. We show
below that the spin-spin correlations along the ¢ axis and within the ab planes,

se=(Si-S)) . sw=1(S-5;) (30)

ab’

next to the orbital correlations, play an important role in the intensity distribution in optical
spectroscopy.
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In correlated insulators with partly occupied degenerate orbitals, not only the structure of the
superexchange (28) is complex, but also the optical spectra exhibit strong anisotropy and tem-
perature dependence near the magnetic transitions, as found, e.g., in LaMnOs [32, 33] or in
the cubic vanadates, LaVO3; and YVO3; [28]. In such systems several excitations contribute
to the excitation spectra, so one may ask how the spectral weight redistributes between indi-
vidual subbands originating from these excitations. The spectral weight distribution is in gen-
eral anisotropic already when orbital order (OO) [34] sets in and breaks the cubic symmetry,
but even more so when A-type or C-type AF spin order occurs below the Néel temperature 7.
At orbital degeneracy the superexchange consists of the terms o< ay (7) as a superposition of
individual contributions on each bond (ij) due to charge excitation n (26) [35],

H = JZZH” ij), (31)

no (ig)|ly

with the energy unit for each individual HY (i) term given by the superexchange constant .J,
see Eq. (2). It follows from d-d charge excitations with an effective hopping element ¢ between
neighboring transition metal ions and is the same as that obtained in a Mott insulator with
nondegenerate orbitals in the regime of U >> t. The spectral weight in optical spectroscopy is
determined by the kinetic energy, and reflects the onset of spin order (SO) and/or OO [35]. In
a correlated insulator, electrons are almost localized and the only kinetic energy which is left
is associated with the same virtual charge excitations that contribute also to the superexchange.

)

Therefore, the individual kinetic energy terms K. O may be directly determined from the super-

exchange (31) using the Hellmann-Feynman theorem,

K = —2J (H(i5)) . (32)

n
For convenience, we define here the K, ,(ﬁ)

as positive quantities. Each term K’ m (32) originates
from a given charge excitation n along a bond direction (ij) || 7. These terms are straightfor-

wardly related to the partial optical sum rule for individual Hubbard subbands, which reads [35]

n* [
ag / af])(w) dw — gK(ﬁ (33)
0

e2

™ (w) is the contribution of excitation n to the optical conductivity for polarization

where oy,
along the v axis, ag is the distance between transition metal ions, and the tight-binding model
with nearest neighbor hopping is implied. Using Eq. (32) one finds that the intensity of each
band is indeed determined by the underlying OO together with the spin-spin correlation along
the direction corresponding to the polarization.

One has to distinguish the above partial sum rule (33) from the full sum rule for the total spectral

weight in the optical spectroscopy for polarization along a cubic direction -y, involving

KW = —QJZ 7) ’Lj (34)

which stands for the total intensity in the optical d-d excitations. This quantity is usually of
less interest as it does not allow for a direct insight into the nature of the electronic structure
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being a sum over several excitations ¢,, (26) and has a much weaker temperature dependence.
In addition, it might also be more difficult to deduce the quantity from experiment.

3.2 Goodenough-Kanamori rules

While a rather advanced treatment of the quantum many-body physics is required in general
for spin-orbital models, we want to present here certain principles which help to understand the
heart of the problem and to give simple guidelines for interpreting experiments and for finding
relevant physical parameters of the spin-orbital models of undoped cubic insulators. We will
argue that such an approach based upon classical OO is well justified in many known cases,
as quantum phenomena are often quenched by the JT coupling between orbitals and by lattice
distortions, which are present below structural phase transitions and induce OO, either in spin-
disordered, in spin-ordered phases, or in spin-liquid.

From the derivation of the Kugel-Khomskii (KK) model in Sec. 4.1, we observe that pairs of
directional orbitals {|i(,), [j¢,)} on neighboring ions favor AF SO, while pairs of orthogonal
orbitals such as {|i¢,), |j&,) } favor FM SO. This is known as classical Goodenough-Kanamori
rules (GKR) [36] predicting that the state with AF SO has simultaneously FO order, while FM
SO is accompanied by AO order, see Figs. 7(a) and 7(b). Indeed, these rules emphasizing the
complementarity of spin-orbital correlations are frequently employed to explain the observed
spin-orbital order in several systems, particularly in those where spins are large, like in CMR
manganites [31]. They agree with the general structure of spin-orbital superexchange in the KK
model, where it is sufficient to consider the flavor-conserving hopping between pairs of direc-
tional orbitals {|i(,),|7¢,)} [29,37]. The excited states are then doubly occupied in one of the
directional orbitals, while no effective interaction arises for two parallel spins (in triplet states),
so the superexchange is AF. In contrast, for a pair of orthogonal orbitals, e.g. {|i(,), |7&,)},
two different orbitals are singly occupied and the FM term is stronger than the AF one as the
excitation energy is lower. Therefore, configurations with AO order support FM SO.

The above complementarity of spin-orbital order is frustrated by inter-orbital hopping, or may
be modified by spin-orbital entanglement [11], see below. In such cases the order in both
channels could be the same, either FM/FO, see Fig. 7(c), or AF/AQO, see Fig. 7(d). Again, when
different orbitals are occupied in the excited state, the spin superexchange is weakly FM and
when the same orbital is doubly occupied, the spin superexchange is stronger and AF. The
latter AF exchange coupling dominates because antiferromagnetism, which is due to the Pauli
principle, does not have to compete here with ferromagnetism. On the contrary, FM exchange is
caused by the energy difference o 7 between triplet and singlet excited states, with two different
orbitals occupied.

This modification of the GKR is of importance in alkali RO, hyperoxides (R = K, Rb, Cs) [38].
The JT effect is crucial for this generalization of the GKR—without it large inter-orbital hopping
orders the 7'*-orbital-mixing pseudospin component instead of the 7 component in a single
plane. Altogether, such generalized GKR can arise whenever the OO on a bond is not solely
stabilized by the same spin-orbital superexchange interaction that determines the spin exchange.
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Fig. 7: Artist’s view of the GKR [36] for: (a) FOz and AF spin order and (b) AOz and FM spin
order in a system with orbital flavor conserving hopping as alkali RO, hyperoxides (R = K, Rb,
Cs) [38]. The charge excitations generated by inter-orbital hopping fully violate the GKR and
support the states with the same spin-orbital order: (c) FOz and FM spin order and (d) AOz
and AF spin order. Image reproduced from Ref. [38].

On a geometrically frustrated lattice, for instance, another route to this behavior can occur when
the ordered orbital component preferred by superexchange depends on the direction and the
relative strengths fulfill certain criteria.

o[- - . @ PR

N W
Fig. 8: Schematic representation of the orbital motion and the spin-orbital separation in a 1D
spin-orbital model. The first hop of the excited state (a)—(b) creates a spinon (wavy line) that

moves via spin exchange < J. The next hop (b)—(c) gives an “orbiton” freely propagating as
a “holon” with an effective hopping t ~ J/2. Image reproduced from Ref. [39].
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While a hole doped to the FM chain propagates freely, it creates a spinon and a holon in an AF
background described by the ¢-J model. A similar situation occurs for an orbital excitation in
an AF/FO spin-orbital chain [39]. An orbital excitation may propagate through the system only
after creating a spinon in the first step, see Figs. 8(a) and 8(b). The spinon itself moves via spin
flips < J > t, faster than the orbiton, and the two excitations get well separated, see Fig. 8(c).
The orbital-wave picture of Sec. 2, on the other hand, would require the orbital excitation to
move without creating the spinon in the first step. Note that this would be only possible for
imperfect Néel AF SO. Thus, one concludes that the symmetry between spin and orbital sector
is broken also for this reason and orbitals are so strongly coupled to spin excitations in realistic
spin-orbital models with AF/FO order. In conclusion the mean field picture separating these
two sectors of the Hilbert space breaks down.

4 Kugel-Khomskii model for Mott insulators

4.1 Kugel-Khomskii model: 3D for KCuF3 and 2D for K,;CuF,

The simplest and seminal spin-orbital model is obtained when a fermion has two flavors, spin
and orbital, and both have two components, i.e., spin and pseudospin are S = T = 1/2. The
physical realization is found in cuprates with degenerate e, orbitals, such as KCuF3 or K;CuF,
[1], where Cu®* ions are in the d” electronic configuration, so charge excitations dd] = d;°d;
are made by holes. By considering the degenerate Hubbard model for two e, orbitals one finds
that d® ions have an equidistant multiplet structure, with three excitation energies which differ
by 2.y [here Jy stands for the J7; given by Eq. (23)], see Table 2. We emphasize that the correct
spectrum has a doubly degenerate energy U—.Jy, and the highest non-degenerate energy is
U+Jy, see Fig. 6(a). Note that this result follows from the diagonalization of the local Coulomb
interactions in the relevant subspaces—it reflects the fact that a double occupancy (|sz¢> or
|212])) in either orbital state (|z) or |Z)) is not an eigenstate of the degenerate Hubbard model
in the atomic limit (24), so the excitation energy U is absent in the spectrum, see Table 2.

The total spin state on the bond (ij) corresponds to S=1 or 0, so the spin projection operators
Pyijy(1) and Py, (0) are easily deduced, see Table 2. The orbital configuration on a bond (i)

is given by one of the orbital operators in Sec. 2, either P&% for the doubly occupied states

involving different orbitals, or QEZ}) for a double occupancy in a directional orbital at site 7 or j.
This gives the rather transparent structure of one HS and three LS excitations in Table 2. The
3D KK model then follows from Eq. (27) [9,40]:

t2 -~ = 3 2 = a 1
9\ __ 2:2: Q0] ()
v (i)

i)y
(L + e §.5-Nanlipg S0 39)
U-Juy  Utdy) \"" 7 4) ~0 [ raat s

The last term o< £, is the CF which splits off the degenerate e, orbitals when a JT lattice

distortion occurs, and is together with Hund’s exchange 7, a second parameter to construct
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Table 2: Elements needed for the construction of the KK model from charge excitations on the
bond (ij): excitation n, its type (HS or LS) and energy ¢, total spin state (triplet or singlet)
and the spin projection operator Py;y(S), and the orbital state and the corresponding orbital
projection operator.

charge excitation spin state orbital state orbital
n  type En S P onabond (ij) | v  projection
LoHS U=y 1 (S-S+3) lic)lie) (i&) i) P
2 LS U=Jy 0 —(Si-8—3) LG ig) (i) 1i6)) P
30LS U—Jy 0 —(8-5§-1 [iG) 136y) Q)
4 LS Uty 0 —(5-8-1 i6,) 1i6,) )

phase diagrams, see below. Here it refers to holes, i.e., large £, > 0 favors hole occupation in
Z) = |22—y?)/V/2 orbitals, as in La,CuO,4. On the other hand, while £, ~ 0, both orbitals
have almost equal hole (electron) density.

Another form of the Hamiltonian (35) is obtained by introducing the coefficients,

1

1
_— ro =1r3 = ——, r
1-3n 2 3 4

1
=—, (36)
1-—n 1+n

T =
and defining the superexchange constant .J in the same way as in the ¢-J model Eq. (2). With
the explicit representation of the orbital operators 738])) and Q% in terms of {7(7)} one finds,

)

1 + & .3 - 2 1\]/1
Hd) = 57Y Y {[—7’1 (Si S+ Z) + 7 (Si S — Z)} <Z —Tﬁ%;”)
v (il
1

L1 1 .
+ (r3+ry) (Si - Sj — Z) (Tiw) + 5) (Tjw + 5) } + FE, ZT} ). (37)

In the FM state spins are integrated out and one finds from the first term just the superexchange
in the e, orbital model analyzed above in Sec. 2.

The magnetic superexchange constants .J,, and J. employed in the effective spin-orbital model
(37) are obtained by decoupling spin and orbital operators and next averaging the orbital opera-
tors <I€§7)> over the classical state |®g) as given by Eq. (12). The relevant averages are given in
Table 3, and they lead to the following expressions for the superexchange constants in Eq. (29),

J. = %J{ — rysin® 6 + (ro+73)(1 + cos 6) + r4(1 + cos 9)2}7 (38)

2
Ty = %J {—7"1 G + sin? 9) + (ro+73) (1 - %Cos 9) + 74 (% — cos 9) } , (39

which depend on two parameters: J from Eq. (2) and 7 as in Eq. (25), as well as on the OO
of |+) orbitals specified by the orbital angle . It is clear that the FM term o< 7, competes
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Fig. 9: Spin-orbital entanglement in the KK model includes orbitals and spins: Left—schematic
view of the four simplest e4-orbital configurations on a representative cube of the 3D lattice:

(a) alternating orbital (AO) order with <T-(a’b)> = +1/2 changing from site to site, and (1) = /4,

obtained for E, < 0, (b) AO order with <Ti(“’b)> = —1/3, alternating between sites and <TZ-(C)> =
—1/4, obtained for E, >0, (c) FO order with occupied z orbitals and (1{) = 1/2 (cigar-shaped
orbitals), and (d) FO order with occupied z orbitals and (1f) = —1/2 (clover-shaped orbitals).
Right—schematic view of four spin configurations (arrows for up or down spins; {a,b,c} are
crystallographic directions) in phases with SO: (i) A-AF, (ii) C-AF, (iii) FM, and (iv) G-AF.
Image by courtesy of Wojciech Brzezicki.

with all the other AF LS terms. Nevertheless, in the ab planes, where the occupied hole e,
orbitals alternate, the larger FM contribution dominates and makes the magnetic superexchange
Jo» weakly FM (J,;, < 0 when sin?f ~ 1), while the stronger AF superexchange along the c
axis (J. > |Ju|) favors quasi one-dimensional (1D) spin fluctuations. Thus KCuF; exhibits
spinon excitations for 7" > Tx.

Table 3: Averages of the orbital projection operators standing in the spin-orbital interactions
in the KK model (37) and determine the spin interactions in H (29) for the C-type OO of
occupied ey orbitals which alternate in the ab planes, as given by Egs. (14). Nonequivalent
cubic directions along the (ij) bonds are labeled by v = ab, c.

operator average ab c
2 2
oy 2(G—""G-17))  HE-cosh) H(1+cost)
778]% <}l — TZ-(’Y)T]'(’Y)> i(% + sin? 9) : sin’ @
RO (G (G+7) A +eosd)”  H(1—cost)’
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(a) (b)

(c)

Fig. 10: Spin-orbital phase diagram and entanglement in the 2D KK model: (a) phase diagram
in the plaquette mean field (solid lines) and ERA (dashed lines) variational approximation,
with insets showing representative spin and orbital configurations on a 2x2 plaquette—z-like

(te=— <TZ-(C) )=1) and z-like (t“’cz—<7i(c’a)>:—%) orbitals are accompanied either by AF long

range spin order (arrows) or by spin singlets on bonds in the PVB phase (ovals); (b) view of
an exotic four-sublattice ortho-AF phase near the onset of FM (or FMz) phase; (c) artist’s
view of the ortho-AF phase—spin singlets (ovals) are entangled with either one or two orbital
excitations |z) — |Z) (clovers). Images reproduced from Ref. [41].

Consider first the 2D KK model on a square lattice, with v = a, b in Eq. (37), as in Ky;CuF,.
In the absence of Hund’s exchange, interactions between S = 1/2 spins are AF. However, they
are quite different depending on which of the two e, orbitals are occupied by holes: JZ, = %J
for |z) and J7, = £ .J for |z) hole orbitals. As a result, the AF phases with SO in Fig. 9(iv) and
the FO order shown in Figs. 9(c) and 9(d) are degenerate at finite CF E, = —%J . This defines
a quantum critical point (QCP) Qop = (—1/2,0) in the (E./J,n) plane [while Q3p = (0,0)].
Actually, at this point also one more phase has the same energy—the FM spin phase of Fig. 9(i)
with AO order of |+) orbitals, shown in Figs. 5(a&b) [40].

To capture the corrections due to quantum fluctuations, one may construct a plaquette mean
field approximation or entanglement renormalization ansatz (ERA) [41]. One finds important
corrections to the mean field phase diagram near the QCP ()op, and a plaquette valence bond
(PVB) state is stable in between the above three phases accompanied by spin-orbital long range
order, with spin singlets on the bonds || @ (||b) and stabilized by the directional orbitals |(,)
(I¢))- A novel ortho-AF phase appears as well when the magnetic interactions change from
AF to FM ones due to increasing Hund’s exchange 7, and for F,/J < —1.5, see Fig. 10(a).
Since the nearest neighbor magnetic interactions are very weak, exotic four-sublattice ortho-AF
SO emerges due to second and third nearest neighbor interactions, shown in Fig. 10(b). Such
further neighbor interactions follow from spin-orbital excitations shown in Fig. 10(c). Note
that both approximate methods employed in Ref. [41] (plaquette mean field approximation and
ERA) give very similar range of stability of the ortho-AF phase.
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4.2 Entanglement in the ferromagnetic excitations of K,CuF,

To investigate magnons (spin waves), we create a spin excitation at site ¢ = 0 by decreasing the
value of the order parameter (S§) from S to S—1. In the simplest approach we disentangle [29]
spin-orbital superexchange both in the ground and excited state, and use the same frozen AO
order as in the initial state to determine spin exchange .J;. A spin excitation (a magnon) itself
is best described by the transformation to Holstein-Primakoff (HP) bosons. In linear spin-wave
theory, the magnon energy consists of two contributions and we introduce:

(i) Ising energy for a localized HP boson I®) = 4.J,.5, and
(ii) the propagating term P©) (k) = —4Jy Sz

The latter originates from quantum fluctuations oc — 2 J, (S; S'J_ jS’[ Sj), where v = 1 > 5 eif-d
determines the dispersion and depends on the 2D momentum k = (k,, k) with k, € [—7, 7).
Here ¢ stands for one of four nearest neighbors of the central site ¢ = 0 shown in Fig. 11(a).
The above two terms determine the magnon dispersion in a 2D ferromagnet,

w,(;o) — 1O 4 PO(E) = 40,5 (1—;), (40)

which serves as a reference below. The breaking of SU(2) symmetry is reflected by a Goldstone
mode (at k= 0), and w; = Jo,Sk* for k — 0 —we find that this result is insensitive to spin-
orbital coupling. It is crucial that the above dispersion (40) is improved and the variational
approximation (VA) is performed for each value of momentum k independently. One might
expect that this reduces spin exchange, J, — J, and the magnon dispersion would soften.
In this way we obtain the renormalized magnon dispersion which replaces Eq. (40),

wi({0iL}) = I({0:L}: k) + P({0:1}; K). (41)

Note that the angles {6;.} are real and L. = A, B refers to the sublattice. If in addition it
is assumed that orbital optimization for both sublattices is equivalent, we use the constraint
0; = 0,4 = 06;5 (1 = 1,2,3) which defines the Simplified Variational Approximation (SVA). Fi-
nally, we have verified the predictions of the VA by exact diagonalization employing a Numer-
ical Ansatz (NA) with six states per sublattice: a spin defect with or without orbital excitation,
and four spin-orbital states with spin excitation at the central site together with an orbital excita-
tion at one of the nearest neighbors. The state with excitations within a shaded cluster depicted
in Fig. 11(b) may be thus expressed in terms of these six states.

Taking as an example the K,CuF, state at £, = —0.8 J shown in Fig. 11(b), one finds that
the orbital renormalization is appreciable—at the central site with spin excitation it is largely
modified to ~ (z?—y?), and the orbitals at the four neighboring sites are also changed. The
latter orbitals found within the VA are only weakly changed as these latter sites have three
neighbors belonging to the neighbors with undisturbed AO order in Fig. 11(a), but the one at
the site of spin excitation itself is radically different. For this reason, we introduce a cutoff and
assume that the orbitals at further neighbors of the excited spin are unchanged. One expects then
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Fig. 11: Artist’s view of a spin excitation (inverted red arrow at the central site) in the FM plane
of KoCuF 'y (green arrows) and AO order of the orbitals occupied by holes at E, = —0.8.J, with:
(a) frozen orbitals, (b) optimized orbitals at the central site and at four its neighboring sites in
the square lattice, forming a quasiparticle (dressed magnon). The above value of I, leads to
the expected AO order in KoCuFy, with 0., ~ 71° in Egs. (14). When the VA is used, case (a)

is still realized at k ~ 0, while case (b) represents a dressed magnon with k ~ M where orbital
states in the shaded cluster are radically different from those shown for frozen orbitals in (a).
Image reproduced from Ref. [42].

a large dressing of the magnon, with the corresponding reduction of the effective FM interaction
to Jy, particularly in the neighborhood of the M point. This is confirmed by the results shown
in Fig. 12(a)—the magnon energy w,, is reduced by ~ 27% from w](g). Internal consistency
of the theory is confirmed by this reduction being nearly the same in all three methods used to

treat spin-orbital coupling: VA, SVA, and NA.

At the X point we recognize the importance of independent optimization of orbitals on the two

sublattices—the energy wx is reduced by ~ 25% from wﬁ?)

in the VA, while it stays almost
unrenormalized in the SVA, see Fig. 12(a). The NA agrees very well with the results of the VA
except for the points close to the M point along the M-1" path. While the VA may underestimate
somewhat the magnon dressing effect, altogether we find a comparison of the VA with the NA
very encouraging indeed. The renormalization of the magnon energy increases fast when the
orbital splitting | F.| is reduced, and one finds that the magnon energy reduction is large for
E, = —0.3J, e.g. by ~ 60% at the M point, see Fig. 12(b). The agreement between the
VA and the NA is somewhat worse here, but still one may say that both methods qualitatively
agree. Altogether, we suggest that the magnon softening may be very large for spin-orbital
systems with low spin S = 1/2 as in K,CuF,. Note that similar softening is expected in the FM

planes of LaMnO3 and would represent an interesting future research topic.
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Fig. 12: The magnon energy wy/J obtained for the FM state of KsCuF 4 at Jy /U = 0.2 and:
(a) £, = —0.80J and (b) E, = —0.30J. Results are presented for four approximations: frozen
orbitals (black line and grey background), the VA (green line), the SVA (red line), and the 12-
state NA (purple dots). The high symmetry points are: I' = (0,0), X = (7,0), M = (7, 7).
Image reproduced from Ref. [42].

4.3 Weak spin-orbital entanglement for large spins S=2 in LaMnQO3

Electronic structure calculations predict A-AF SO, in agreement with experiment [32]. It fol-
lows from the spin-orbital superexchange between large spins S = 2 in LaMnOg, due to the
excitations involving e, electrons. The energies of the five possible excited states [30] shown
in Fig. 6(a) are: (i) the HS (S = 2) 4, state, and (i7) the LS (S = 3) states: A, *E (*E.,
“Fy), and *A,. They are parameterized again by the intra-orbital Coulomb element U and by
Hund’s exchange J§, between a pair of e, electrons at a Mn?* (d°) ion. The Racah parameters
B =0.107eV and C' = 0.477 eV justify an approximate relation C' ~ 4B, and we find the LS
excitation spectrum: £(*A;) = U 4 3.Jy, e(*E) = U 4 Jy (twice), and e(*Ay) = U + L2Jy.
Using the spin algebra (Clebsch-Gordan coefficients) and considering again two possible e, or-
bital configurations on the bonds, see Eqs. (17) and (18), and charge excitations by 5, electrons,
one finds a compact expression [43],

- = t2 3 t2 ~ .

15 2 2 {5 (5 5+0) P00+ gy + 3z (55 -9) 70
12 12 L

! L(LLE) " 5(4142)1 (Si 55— 4) QE:]))} + B ZTi(c)~ 42)

In addition, t,, electrons also contribute with H; = %J Bry <§1§] — 4). Here 8 = (t./t)?
follows from the difference between the effective d-d hopping elements along the ¢ and 7
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(A) (B)

Fig. 13: Kinetic energies per bond K Eq. (32) for increasing temperature 'I' obtained from
the respective spin-orbital models for FM (top) and AF (bottom) bonds along the axis v: (A)
LaMnOs3 (with J = 150 meV, n ~ 0.18 [28], and experimental points [33]); (B) LaVOs with
1n=0.13 [35] and experimental points [44]. The kinetic energies in HS states (n = 1, red lines)
are compared with the experiment (filled circles). Vertical dotted lines indicate values of I.
Images reproduced from Ref. [28].

bonds, i.e., § =~ %, while the coefficient 7, stands for a superposition of all ¢5, excitations
involved in the ¢y, superexchange [28]. Note that spin-projection operators for high (low) total
spin § = 2 (S = 1) cannot be used, but again the HS term stands for a FM contribution
which dominates over the LS terms when <77<(;)>> ~ 1. Charge excitations by 5, electrons give
double occupancies in active t,, orbitals, so H; is AF but this term is small—as a result FM
interactions may dominate but again only along two spatial directions. Indeed, this happens for
the realistic parameters of LaMnOj for the ab planes where SO is FM and coexists with AO
order, while along the c axis SO is AF accompanied by FO order, in agreement with GKR, 1.e.,
spin-orbital order is A-AF/C-AO. Indeed, this type of order is found both from the theory for
realistic parameters and from electronic structure calculations [45]. The JT orbital interactions
are responsible for the enhanced value of the orbital transition temperature [46].

Spin- and orbital-energy scale separately here, and the OO is mainly triggered by JT distortions

[45]. The optical spectral weight due to HS states in LaMnO3 may be easily derived from
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the present model (42), following the general theory, see Eq. (32). One finds a very satisfactory
agreement between the present theory and the experimental results [33], as shown in Fig. 13(A).
We emphasize, that no fit is made here, i.e., the kinetic energies (32) are calculated using the
same parameters as those used elsewhere for the magnetic exchange constants [28]. Therefore,
such a good agreement with experiment suggests that indeed the spin-orbital superexchange
may be disentangled for large S = 2 spins. Summarizing, we have found that spin-orbital
entanglement is weak in this case [46]. A posteriori, this conclusion could be also drawn from
a good agreement of spin excitations predicted by the theory with experimental data [47].

S Spin-orbital entanglement in ¢,, electron models

5.1 Entangled phases of LaVO3; and YVO3;

In this case one uses the degenerate Hubbard model for three ¢, orbitals with Jt (22) [48].
Spin-orbital entanglement is stronger for ¢, than for e, systems [29]. Due to large Coulomb in-
teraction, the spin-orbital entangled state in RVO3 (R = La,. .. ,Lu) satisfies in a Mott insulator
the local constraint at V37 site 1,

Nig + Nip + Nje = 2, (43)

and G-type OO competes with the spin-orbital entangled state. Rare earth site disorder favors
the spin-orbital entanglement rather than a cooperative JT distortion [49]. The entanglement
is best seen in the coupling between the spin and orbital phase transition [50]. Due to Hund’s
exchange Jy, one has here coupled S = 1 spins and 7 = /2 orbitals for three (n = 1,2, 3)
charge excitations ¢,, arising from the transitions to [see Fig. 6(b)]:

(i) a high-spin state 4, at energy U—3.Jy,
(ii) two degenerate low-spin states >7; and ?E at U, and

(iii) a 2T, low-spin state at U+2.Jy [16].

Using 717 (25), we parametrize this multiplet structure by 71, Eq. (36), and the top multiplet state,

1

- 44
1427 44

s
The cubic symmetry is broken and the CF induces orbital splitting in RVOs3, hence (n;.) = 1
and the orbital degrees of freedom are given by the doublet {a, b}, with n;, + n; = 1, which
defines the pseudospin operators 7; at site . One derives a HS contribution H 1(0) (17) for a bond

(ij) along the c axis, and H f“b) (2j) for a bond in the ab plane:

H?(if) = =3I (S8 +2) (7 - 7o), (45)
H™(ij) = —1Jr(S-S;+2) (2 —7777). (46)

In Eq. (45) pseudospin operators 7; describe the low-energy dynamics of (initially degenerate)
{zz,yz} orbital doublet at site 7; this dynamics is quenched in the plane, see H 1(ab) Eq. (46).
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Here %(5‘; : 57] +2) is the projection operator on the HS state for S = 1 spins. The terms H (15)

for LS excitations (n = 2, 3) contain instead the spin operator (1 — S, - §j) (which guarantees
that these terms cannot contribute for fully polarized spins <§Z . §J> =1):

7 22 T T Y.y
V(5 — 717 — 1T 45707,

) (5 + 77T iy =TT, 47)

1

HGj) = -4 7(1
H{(ij) = —1Jrs(1

_ §Z§]
Again the terms J2 S (17) differ from HY (7j) only by the orbital operators,

—

Hy"(ij) = =3 (1= 8:8) (B F 57 F477 —3777),

L - 5i-S;
H™(ij) = —1Jrs(1=8;-8)) (3 F 377 F 177 + 7777), (48)
where upper (lower) sign corresponds to bonds along the a (b) axis.
First, we present a mean field approximation for the spin and orbital bond correlations which

are determined self-consistently after decoupling them from each other in H ; (28). Spin inter-
actions in Eq. (29) are given by two exchange constants:

Jo = {1 = (ri—nry —nrs) (5 + (7 75)) — 205 () 7Y) }
Jgp = }lj {1 —nry —nrs + (r, —nry — 777"5)(}1 + (7'57?))} , (49)
determined by orbital correlations (7;-7;) and (77*75"). By evaluating them one finds J. < 0 and

Jap > 0 and the C-AF SO is supported.
In the orbital sector one finds at the same time,

H. = Y [JI7 7= JQ = somrstid] + 03, Y 7777, (50)
<7’.7>C <ij>ab
JI = 2T+ s )+ (1= se)n(ri+rs)] (51)
o = 3 [(1 = sa)r1 + (1 + sa)n(ri+rs)] (52)
depending on spin correlations: s. = <5’Z . gj)c and s, = —<5’Z . §j>ab. In a classical C-AF

state (s, = s = 1) this mean field procedure becomes exact, and the orbital problem maps to
Heisenberg pseudospin chains along the ¢ axis, weakly coupled (as 7 < 1) along a and b bonds,

1 r
[0 — E‘f.". - 5 E z%
7(_ =Jr < Ti T]+2n<1+7“1) TiTi | s (53)
ij

(if)ab

releasing large zero-point energy. Thus, spin C-AF and G-AO order with quasi-1D orbital
quantum fluctuations support each other in RVOs. Orbital fluctuations play here a prominent
role and amplify the FM exchange J., making it even stronger than the AF exchange .J,; [16].
Having the individual terms H. O of the spin-orbital model, one may derive the spectral weights
of optical spectra, see Eq. (32). The HS excitations have remarkable temperature dependence
and the spectral weight decreases in the vicinity of the magnetic transition at 7y, see Fig. 13(B).
The observed behavior is reproduced in the theory only when spin-orbital interactions are
treated in a cluster approach, i.e., they cannot be disentangled.
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Fig. 14: Phase transitions in the vanadium perovskites RVOs: (a) phase diagram with the
orbital Too and Néel [N transition temperatures obtained from the theory with and with-
out orbital-lattice coupling (solid and dashed lines) [50], and from experiment (circles) [51];
(b) spin (S?) (solid) and G-type orbital (7}7)¢ (dashed) order parameters, vanishing at Ty, and
Too, respectively, and the transverse orbital polarization (1) (dashed-dotted lines) for LaVOs
and SmVOs (thin and heavy lines). Images reproduced from Ref. [50].

Unlike in LaMnOg3 where the spin and orbital phase transitions are well separated [46], in the
RVO3 (R = Lu, Yb,. .. ,La) the two above transitions are close to each other [51]. It is not easy
to reproduce the observed dependence of the transition temperatures 7Ho and the Néel T, on
the ionic radius rp (in the VO3 compounds with small 7 there is also another magnetic tran-
sition at T [52] which is not discussed here). The spin-orbital model was extended by the cou-
pling to the lattice to unravel a nontrivial interplay between superexchange, the orbital-lattice
coupling due to the GdFeOs-like rotations of the VO4 octahedra, and orthorhombic lattice dis-
tortions [50]. One finds that the lattice strain affects the onset of the magnetic and orbital order
by partial suppression of orbital fluctuations, and the dependence of 7THo is non-monotonous,
while T is reduced, see Fig. 14(a). Thereby the orbital polarization o< (7%) increases with
decreasing ionic radius rg, see Fig. 14(b). The theoretical approach [50] demonstrates that
orbital-lattice coupling is very important and reduces both THo and Néel T, for small ionic
radii. Simultaneously, 7T decreases to the left due to spin-orbital entanglement.

It has also been shown that the ¢y, perovskite LaVO3 is a unique case where the KK phase
transition drives orbital order, in contrast to the usual case where the OO is controlled by the
CF splitting enhanced by Coulomb interaction and both OO and SO transition are well sepa-
rated [53]. As a consequence, the magnetic transition is close to (and even above) the superex-
change driven OO order transition, and Ty > Tk ~ Tpo, whereas typically magnetism arises
at much lower temperatures than orbital ordering. In contrast, in YVOj; the CF is sufficiently
large to suppress the KK phase transition and spin-orbital interactions disentangle.
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5.2 Spin-orbital entanglement on a triangular lattice

Finally, we wish to discuss here two rather interesting examples going also beyond the per-
ovskite lattice, involving d' configurations. Two operators are entangled if their states at tem-
perature 7' = 0 cannot be factorized into parts belonging to different subspaces. This happens
precisely in some spin-orbital models and is the source of spin-orbital entanglement [29]. To
verify whether entanglement occurs or not, it suffices to compute and analyze the spin, orbital
and spin-orbital (four-operator) correlation functions for a bond (ij) along +y axis, given by

Si = g 2n(n|Si- Siln). S
Ty = § S.(nl(T;- T)P|n), (55)
Cy = 5 2,(n[(S; ;= 8y) (T - T; = Tyy) D |n) (56)

= 5 X, (8- ST Ty ) = (552, (o] S-S ) (4 5, (] (B T5) )

where d is the ground state degeneracy, and the pseudospin scalar product in Egs. (55) and (56)
is relevant for a model with active t5, orbital degrees of freedom. As a representative example
we evaluate here such correlations for a 2D spin-orbital model derived for a NaTiO, plane [54];
other situations with spin-orbital entanglement are discussed in Ref. [29].

To explain the physical origin of the spin-orbital model for NaTiO, [54], we consider a rep-
resentative bond along the ¢ axis shown in Fig. 15. For the realistic parameters of NaTiO,
the ¢, electrons are almost localized in d* configurations of Ti3* ions, hence their interactions
with neighboring sites can be described by the effective superexchange and kinetic exchange
processes. Virtual charge excitations between the neighboring sites, djdj = d7dj, generate
magnetic interactions which arise from two different hopping processes for active #,, orbitals:
(7) the effective hopping ¢ = t;d /A which occurs via oxygen 2p, orbitals with the charge trans-
fer excitation energy 4\, in the present case along the 90° bonds, and (i7) direct hopping ¢’
which couples the t5, orbitals along the bond and gives a kinetic exchange interaction, as in the
Hubbard model (2). Note that the latter processes couple orbitals with the same flavor, while
the former ones couple different orbitals (for this geometry) so the occupied orbitals may be
interchanged as a result of a virtual charge excitation—these processes are shown in Fig. 15.
The effective spin-orbital model considered here for NaTiO, reads [54],

H =7 ((1-0) H+ v/ (I—a)a Hp +a Ha) (57)

The parameter « in Eq. (57) is given by the hopping elements as follows,
o= )/ [t"+ ()], (58)

and interpolates between the superexchange H, (o = 0) and kinetic exchange H,; (o = 1), while
in between these two exchange elements and mixed exchange #,,, contributes simultaneously;
these terms are explained in Ref. [54]. This model is considered here in the absence of Hund’s
exchange 7 (25), i.e., at n = 0. One finds that all the orbitals contribute equally in the entire
range of «, and each orbital state is occupied at two out of six sites in the entire regime of



6.28 Andrzej M. Oles

Fig. 15: Left — (a) Hopping processes between ty, orbitals along a bond parallel to the c axis
in NaTiOy: (i) tpq between Ti(ty,) and O(2p.) orbitals—two t, transitions define an effective
hopping t, and (ii) direct d-d hopping t'. The t,, orbitals (7) are shown by different color. The
bottom part gives the hopping processes along the v = a, b, c axes that contribute to Eq. (57):
(b) superexchange and (c) direct exchange. Right — Ground state for a free hexagon as a func-
tion of a: (a) bond correlations—spin S;; Eq. (54) (circles), orbital T;; Eq. (55) (squares), and
spin—orbital C;; Eq. (56) (triangles); (b) orbital electron densities n,., at a representative site
1 = 1 (left-most site): ny, (circles), nyy, (squares), ny. (triangles). The insets indicate the orbital
configurations favored by the superexchange (o« = 0), by mixed interactions 0.44 < o < 0.63,
and by the direct exchange (o = 1). The vertical lines indicate an exact range of configurations
due to the degeneracy. Images reproduced from Ref. [55].

«, see Fig. 15. The orbital state changes under increasing o and one finds as a result four
distinct regimes, with abrupt transitions between them. In the superexchange model (o« = 0)
there is precisely one orbital at each site which contributes, e.g. n;. = 1 as the c orbital is
active along both bonds. Having a frozen orbital configuration, the orbitals decouple from spins
and the ground state is disentangled, with C;; = 0, and one finds that the spin correlations
Si; = —0.4671, as for the AF Heisenberg ring of L. = 6 sites. Orbital fluctuations increase
gradually with increasing o and this results in finite spin-orbital entanglement C;; ~ —0.12 for
0.10 < o < 0.44; simultaneously spin correlations weaken to S;; ~ —0.27.

In agreement with intuition, when o = 0.5 and all inter-orbital transitions shown in Fig. 15
have equal amplitude, there is large orbital mixing which is the most prominent feature in the
intermediate regime of 0.44 < a < 0.63. Although spins are coupled by AF exchange, the
orbitals fluctuate here strongly and reduce further spin correlations to .S;; ~ —0.21. The orbital
correlations are negative, 7;; < 0, the spin-orbital entanglement is finite, C;; ~ —0.13, and the
ground state is unique (d = 1). Here all the orbitals contribute equally and n,, = 1/3 which
may be seen as a precursor of the spin-orbital liquid state which dominates the behavior of the

triangular lattice. The regime of larger values of o > 0.63 is dominated by the kinetic exchange
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Fig. 16:  Phase diagram of the Kitaev-Heisenberg model Eq. (59) with parametrization
(J, K) = (cos a, sin «) as obtained from exact diagonalization data. Solid lines show the map-
ping between two Klein-dual points. Red lines mark the location of the four SU(2)—symmetric
points. Yellow diamonds mark the two Kitaev points. Image reproduced from Ref. [56].

in Eq. (57), and the ground state is degenerate with d = 2 [55], with strong scattering of possible
electron densities {b;, }, see Fig. 15. Weak entanglement is found for a > 0.63, where C;; ~ 0.
Summarizing, except for the regimes of @ < 0.09 and o > 0.63, the ground state of a single
hexagon is strongly entangled, i.e., C;; < —0.10, see Fig. 15.

As the last example we would like to highlight briefly the Heisenberg-Kitaev (HK) Hamiltonian
on the triangular lattice [56]. Here spin-orbital entanglement is triggered by formation of ef-
fective j = 1/2 spins in a Mott insulator observed for the recently synthesized BayIrTioOg. The
model is frustrated, both by its interactions and by geometry, see Fig. 16. The description of the
microscopic physics is given here by a superposition of Heisenberg and Kitaev interaction,

Hie =73 (S 5) + K3 878], (59)
@)

VII€é)

where §Z 1s a spin operator located on site 7 of the triangular lattice spanned by the lattice vectors
a; = (1,0)1, @, = (=1/2,v3/2)?, and @, = —d, — d,, for the lattice constant @ = 1. The first
term is the Heisenberg coupling o< ./, while the Kitaev term oc K explicitly breaks spin-rotation
invariance and acts only between the same spin components S;’ S} at nearest neighbor sites.

First, we observe that an infinitesimal Kitaev exchange removes the 120° order of the quantum
Heisenberg model [56]. Second, the phase diagram of Fig. 16 is very rich and instead of 120°
order, an extended Zs-vortex crystal phase arises which could be identified experimentally.
Third, the phase diagram exhibits a duality, similar to the HK model on the honeycomb lattice
[57]. This duality relates a pair of interactions on the right-hand side of the circle to a pair of
interactions on the left-hand side, i.e., / — —J and K — 2J+K. The corresponding dual
states are related by a four-sublattice basis transformation. For more explanation see Ref. [56].
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6 Experimental consequences of spin-orbital entanglement

The field of spin-orbital physics is recently growing and becoming richer due to new exper-
iments. Understanding them is possible within simple models, mainly developed in low di-
mension. Also there entanglement is the strongest as quantum phenomena domininate in low
dimension. We shall concentrate on them here as they uncover important principles of treating
spin-orbital entanglement, both in the ground and in excited states. Spin-orbital entangled states
occur in several quantum materials and the proper understanding of them becomes crucial for
the quantitative analysis of the observed thermodynamic phase transitions.

Let us summarize briefly entanglement properties which could modify the experiment. First, I
would like to recall the 1D chain, where each of the fractional quasiparticles carries both spin
and orbital quantum numbers, and the two variables (spin and orbital) are always entangled in
the collective excitations [58]. The spin-orbital chain with two orbital flavors has been carefully
studied, both without the orbital spitting [e.g. in the SU(4) case] and for large splitting F£.,.

Second, the 1D cuprate CaCu,0s3 is a good example for the spin-orbital fractionalization along
the chain direction, while at the same time no fractionalization is observed for the xy orbital
which extends in both leg and rung direction [59]. Thus different degrees of dimensionality may
be selected by orbitals and thus the entanglement depends on particular orbitals involved in the
hopping. In a realistic 1D model for CaCu,Oj3 the splitting between the LS and HS terms occurs
for finite Hund’s exchange Jy. In fact, any spin-orbital model requires to include a finite, but
realistic Hund’s exchange to explain the experimental data [60].

Third, another important competitor to the spin-orbital physics and on-bond entanglement is the
strong JT effect which is found as well in KCuF; [61]. It drives the orbital order and does change
d-d excitations which become highly localized. At the same time, the low-energy excitations
present clear dispersion. They match extremely well with the two-spinon continuum. So, we
suggest that spin-orbital entanglement is a subtle property which is easily destroyed by some
stronger local interaction, and the entanglement depends then strongly on the possible coupling
to the lattice.

Fourth, spin-orbital coupling may lead to the disappearance of magnetic properties if it is suf-
ficiently strong, removes the orbital degrees of freedom, and generates local singlets [62]. It is
then challenging to study exchange interactions between these local singlets. In perovskites one
finds a conventional Bose condensation of excitons into a magnetic state, while an unexpected
1D behavior supporting spin-liquid states emerges in honeycomb lattices. When spin and or-
bital channels are decoupled and orbital frustration induces then frustration in the spin channel,
opening up the possibility of spin-orbital liquids with both spin and orbital entanglement [63].

Finally, the physics will change completely when spin-orbit interaction dominates over the su-
perexchange. Then local singlets form and are only weakly coupled by inter-site terms [64].
As we have shown on the example of a 1D spin-orbital chain, entanglement is then strong but
preferably limited to a single site, while the inter-site spin-orbital entanglement (which involves
superexchange bonds) might be still induced as shown in Sec. 1.
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7 Summary

Here we have focused on the interplay of spin and orbital degrees of freedom in realistic Mott
insulators and have shown that even when the entanglement is absent, these two types of degrees
of freedom (spin and orbital) decide about rather complex behavior, with competing tendencies
to localize due to strong correlations and to delocalize to gain more kinetic energy. Quantum
fluctuations are particularly well developed in the ¢, systems where they partly even destroy
00. As a result, a second order phase transition from the spin-orbital entangled state to a
C-O0/G-AF ground state is induced in LaVO3, where the long-range OO suppresses the spin-
orbital entanglement [49]. On the other hand, entanglement may be easily removed by phase
transitions, as a more fragile property of Mott insulators. It is near a phase transition that spin-
orbital entanglement is quenched locally [41]. The detailed energy balance depends as well on
the distribution of charge defects which also destroy spin-orbital entanglement locally.
Spin-orbital entanglement in the excited states is almost unexplored and awaits careful future
studies. It may be responsible for the modified dispersion of spin (and orbital) excitations
when either the spin or the orbital background is modified [42]. Yet, such modifications do not
require that the local degrees of freedom factorize, but it suffices that their coupling is modified
and causes measurable yet still unexplored properties.

Summarizing, spin-orbital entanglement is an important yet subtle property of Mott insulators.
It is fragile and helps to understand how spins and orbitals complement each other and behave in
the opposite way in ordered 3D materials. Perhaps the best example is the orbital liquid where
orbital disorder coexists with FM order of spins in the ground state of CMR manganites. Then
the spin-orbital entanglement is removed and the coherent spin FM order decouples from the
orbitals [21]. Many properties of correlated insulators are still unexplored and hopefully will
be investigated in the future. This concerns in particular the spin and orbital excitations. We
should be prepared that this field has still some hidden surprises to discover and that some of
them will be revealed gradually in the future.
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1 Introduction

Strongly correlated materials show a wide variety of physical phenomena which include uncon-
ventional superconductivity, heavy fermion behavior, various forms of magnetism and multifer-
roicity, as well as colossal magneto-resistance and metal-insulator transitions. These materials
usually contain transition-metal, rare-earth or actinide elements: the presence of the atomic-
like d or f orbitals provides the degrees of freedom to generate those intriguing phenomena.
Here the intricate interplay of band formation with the local correlation and atomic multiplet
effects leads to phases that are nearly iso-energetic, making the materials properties highly tun-
able by doping, temperature, pressure or magnetic field. Understanding the behavior of the d
and f electrons is therefor essential. The orbitals that actively participate in the formation of
the ground state and low energy excitations need to be identified. So far, these orbitals have
mostly been deduced from optical, x-ray and neutron spectroscopies in which spectra must be
analyzed using theory or modelling. This, however, is also a challenge in itself, since ab-initio
calculations hit their limits due to the many-body nature of the problem.

Here we developed a new experimental method that circumvents the need for involved analysis
and instead provides the information as measured [1-3]. With this technique, we can make
a direct image of the active orbital and determine what the actual atomic-like object looks
like in the solid of interest. The method is based on non-resonant inelastic x-ray scattering
(NIXS, also known as x-ray Raman scattering). Essential is that we involve an s core hole
(s-NIXS) in the experiment as we will explain below. The transitions s — d and s — f
are, however, dipole-forbidden, and therefore we have to utilize high momentum transfers in
the inelastic scattering process so that the beyond-dipole terms gain spectral weight. In this
chapter we will present the basic principles of s-NIXS and its experimental implementation. To
demonstrate the strength of the technique, we will show how we can obtain the image of a text-
book example, the 3d(z%—y?)(322—r?) hole orbital of the Ni** ion in a NiO single crystal [1].
We will also illustrate how s-NIXS can be used to directly identify the orbital character of
excited states so that the relevant energy parameters which determine the low energy excitations
can be extracted [3]. We will explain how s-NIXS can unveil covalency effects [3] and show the
power of the direct-imaging capability of s-NIXS for the study of metallic systems where strong
inter-site charge fluctuations hamper a reliable quantitative analysis of spectroscopic data.

2 Non-resonant inelastic scattering using an s core hole

The theoretical description of inelastic x-ray scattering can be found in a number of publica-
tions, see e.g. [4—7]. The double differential cross-section is the product of the Thomson photon
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The dynamical structure factor is a function of the scattering vector ¢ = lgz—k} and the energy
loss w = w;—wy

i) 6 (hews—hw s —hw). )

S(Gw) = |{f]e'T"
f

Here i and f are the initial and final states. The transition operator €'¢” can be expressed by
its Taylor terms 1 + ig'7 + (ig'7)® + - -, thereby showing directly that for small values of
|¢’| the monopole and dipole transitions will dominate the signal while for large |G| values the
beyond-dipole transitions will also contribute significantly. In our experiment, we will utilize
excitations involving a core level. It is therefore useful to expand the transition operator e
in terms of semi-normalized (Racah’s normalization) spherical harmonics C’g; and C7 . This
results in a sum over spherical Bessel functions jj(¢*7) and the wave functions can be factorized
into a radial and angular part so that S(¢,w) can be written as

2
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Not all terms in the above equation contribute to the sum. In fact, the non-zero terms are subject
to the so-called triangle condition and parity selection rules

|lf—li’ <k <ly+l; and ‘lf+lz-+k:} = even, 4)

where [; — [ labels the angular momenta in the transition. For example, a d — f transition
has contributions only from terms with k£ =1 (dipole), 3 (octupole), and 5 (triakontadipole).
An s — d or s — f transition, on the other hand, has only one term each, namely k=2
(quadrupole) or k = 3 (hexapole).

In the following we focus our attention to transitions involving an s core hole. Our particular
interest originates from the fact that the s core hole is spherically symmetric. With the scattering
vector ¢ being the only quantity that determines the quantization axis, we can expect that the
intensity of the transition will be determined by the hole density of the atomic-like final state
in the direction of the scattering vector. In other words, we may expect that by rotating the
atomic-like object while keeping the measurement geometry fixed, we can obtain an intensity
profile that reflects the shape of the hole density of that object. A mathematical proof that the
intensity profile is proportional to the hole density is given by Sundermann and Haverkort [8].

3 Experimental set-up

The s-NIXS measurements were performed at the High-Resolution Dynamics Beamline PO1 of
the PETRA-III synchrotron facility in Hamburg, Germany. Fig. 1 illustrates the experimental
setup, showing the incoming beam (EZ, w;), single crystal sample, scattered beam (IZ 7,wr), and
the corresponding momentum transfer vector (¢). The energy of the x-ray photon beam incident
on the sample was tuned with a Si(311) double-reflection crystal monochromator (DCM). The
photons scattered from the sample were collected and energy-analyzed by an array of twelve
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Fig. 1: Experimental set-up and scattering geometry of the s-NIXS measurements at the POl
Beamline of the PETRA-III synchrotron facility in Hamburg, Germany. Schematic representa-
tion (right) from [1, 3].

spherically bent Si(660) crystal analyzers. The analyzers are arranged in a 3x4 configuration.
The energy of the analyzers (hwy) was fixed at 9690 eV; the energy loss spectra were measured
by scanning the energy of the DCM (Aw;). Each analyzer signal was individually recorded
by a position-sensitive custom-made LAMBDA detector. The energy calibration was regularly
checked by measuring the zero-energy-loss position of each spectrum. The best possible energy
resolution was guaranteed by pixel-wise analysis of the detector recordings and measured as
0.7eV (FWHM).

The positioning of the analyzer array determines the momentum transfer vector and the corre-
sponding scattering triangle, which is defined by the incident and scattered photon momentum
vectors, EZ and k ¢, respectively. The large scattering angle (20 ~ 155°) chosen for the current
study assured a large momentum transfer of |7| = (9.6 +0.1) A~ when averaged over all ana-
lyzers. k 7 and 260 were kept constant by fixing the energy and the position of the analyzer array.
Since the energy transfer range of interest (100 to 120eV) was small with respect to the inci-
dent and final energies (~9700¢eV), variation of E, during energy scanning was insignificant.
This guaranteed that the scattering triangle was virtually unchanged throughout the course of
the experiment with |¢’| & constant.

The core of the experimental work is the measurement of S(¢, w) as a function of the orientation
of the single crystal sample with respect to the fixed experimental geometry as shown in Fig. 1.
Here we define the sample angle ¢ as the angle between the fixed momentum transfer vector ¢
and the single crystal surface normal.

4 Compton intensity and data treatment

To demonstrate the feasibility and accuracy of the s-NIXS method, we used a single crystal
of NiO as a model system. It crystallizes in the rocksalt structure and is an antiferromagnetic
insulator, with a well-understood high-spin Ni d® configuration. The measurements were carried
out at 20 K in a He gas cryostat. The left panel of Fig. 2 shows a collection of NIXS spectra
of a NiO single crystal measured for many different sample angles. The spectra show the sharp
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NiO

3s>3d

3p~>3d

Fig. 2: (left panel) Experimental NIXS spectra of NiO for a variety of crystal rotations p with
respect to the geometrically fixed momentum transfer vector §. (right panel) Calculated and
measured Compton intensity as function of sample angle p with respect to specular geometry
(o =77.5°) for a scattering angle 20 = 155°. Reproduced from [1]

M, 5 edge (3p — 3d) of nickel at around 70 eV and, important for the present study, the dipole-
forbidden M; (3s — 3d) excitations at around 110eV. These features are on top of the broad
Compton profile which peaks at about 350 eV energy transfer. The spectra are all normalized
to this Compton signal.

We note that the line shape of the Compton profile does not change with angle. This is fully
consistent with the fact that the scattering geometry is kept constant while rotating the sample.
What does vary is the intensity of the Compton signal. This is related to how the x-rays are
absorbed when entering the sample and when scattered out of the sample. This process can be
modeled quantitatively since the NiO crystals used have well defined flat and shiny surfaces.
The result of this modeling and the comparison with the experiment is displayed in the right
panel of Fig. 2. The calculations were done for the actual scattering geometry of 26 =155°
so that for ¢ =77.5° specular geometry is fulfilled. Turning the sample towards (away from)
the analyzer, increases (decreases) the intensity. One can observe a very good overall match
between the experiment and the modeling. We thus can state that we understand fully the details
of the scattering process, and in particular, that the intensity variations of the Compton profile is
due to the absorption processes in the sample. We therefore can safely use the Compton profile
to normalize our s-NIXS spectra.

To extract the M; edge intensities for further analysis, the Compton profile has been subtracted
from each spectrum using a simple linear background.

S5 Orientational dependence of the s-NIXS intensities

A close-up of the M; edge and its orientational dependence on ¢ || [001] — [101] — [100] is
displayed in panel (a) of Fig. 3, and for ¢ || [001] — [111] — [110] in panels (b) and (c). The
spectra consist of a single line and the line shape does not change with the angle. What does
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Fig. 3: Stack of the Ni M, NIXS spectra acquired for ¢ || [001] — [101] — [100] (orange, panel
a)and G || [001] —[111] — [110] (green, panels b and c). Adapted from [1].

change is the intensity. To quantitatively analyze these intensity variations, we determined the
integrated intensity of each spectrum and placed it on a polar plot as displayed in the left and
right panels of Fig. 4: the data points for ¢ sweeping in the [001] — [101] — [100] plane are in
orange, and for ¢ in the [001] — [111] — [110] plane in green. They fall accurately on top of the
orbital shapes which denote ’cuts’ through the [001] — [101] — [100] (orange) and [001] — [111]
— [110] (green) planes of the calculated three-dimensional orbital hole-density (square of the
wave function) of the Ni high-spin 3d® configuration in octahedral coordination, namely the 34,
3d(z?—y*)3d(32%—1r?) as shown in the center panel of Fig. 4. This means that we indeed have
generated a purely experimental method that can directly visualize the fundamental atomic-like
quantum mechanical objects in solids. The information that we have obtained is extremely
detailed; for example, we can clearly see the small lobes of the 3d(3z2—7?) contribution. We
would like to remark that the 3d(x?—y?) contribution vanishes in the [001] — [111] — [110]
plane, while both the 3d(x?—y?) and 3d(3z?—r?) contribute in the [001] — [101] — [100] plane.
Here we note that we have used two orbital shapes in the inset in the right panel of Fig. 4: the
blue dashed line is the 3d(x%—y?)3d(32%—1?) function and the solid line is the same function
convoluted with the angular acceptance of the 3x4 analyzers we used in our experiment. The
near perfect agreement further demonstrates the accuracy of the method.
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~ NiO single crystal r

3d® high spin:
A, = (322-r2)(x*-y?)

Fig. 4: Left and right panels: polar plots of the integrated Ni M, intensities for ¢ sweeping
in the [001] — [101] — [100] plane (orange) and for ¢ in the [001] — [111] — [110] plane
(green). Central panel: theoretical three-dimensional orbital hole density of the Ni high-spin
3d® configuration in octahedral coordination: 3A, 3d(x®—1?)3d(32*—r?). Adapted from [1].

6 Ground state properties

The orientational dependence of the integrated s-NIXS intensity at the Ni M edge (3s — 3d)
directly maps the local orbital hole density of the ion in the ground state. There is no need to
carry out a multiplet analysis of the spectral line shape to extract this information, in contrast
to, for example, the non-s edges (e.g. Lo 3(2p), Ma3 (3p), My (3d), Ny (4d), and Oy 5 (5d))
in both NIXS [5-7,9-14] and XAS experiments [15-19]. The reason is fundamental: The
M (3s — 3d) quadrupolar excitation process involves a spherically symmetric s orbital, so the
angular distribution of the intensity is solely determined by the hole charge distribution in the
initial state with respect to the sole quantization axis which is given by the momentum transfer
¢ [8]. This is similar to the dipole-allowed s — p transition in XAS, where an angular sweep of
the polarization dependence maps out the orientation of the p hole directly.

We would like to emphasize that we do not need to perform complex configuration-interaction
calculations to analyze or simulate the line shape of the spectra in order to obtain the local
orbital hole density of the ion in the ground state. Details of the s-NIXS final states in fact do
not matter because the information is extracted from the integrated intensity of the spectra (i.e.,
from the sum of the intensities of all final states). This can be understood as follows. Carrying
out the energy integration of the dynamical structure factor S(¢,w) of Eq. (2), we obtain

where we have made use of the closure theorem ) . | f)(f| = 1, assuming that the final states
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MnS single crystal

Mn-M, Mn-M,

Fig. 5: Stack of the Mn M, NIXS spectra acquired for ¢ || [100] — [111] — [011] (panel a) and
[100] — [110] — [010] (panel b). The grey lines are the result of the fit procedure explained in
the text. Reproduced from [3].

|f) are complete. As a result, only the properties of the initial state are probed. Here we note
that in this experiment we are considering only final states that can be reached in the (s — d)
transition channel, so that what we have obtained is the d hole density in the initial state. This
d hole density is a locally projected quantity since the final states carry the presence of the s
core hole. The procedure is analogous to using linear and circular dichroism sum rules in x-
ray absorption spectroscopies to extract expectation values of relevant quantum numbers of the
system in the ground state [18,20-22].

We would like to remark that the intensity distribution in s-NIXS is not what would be measured
in an x-ray diffraction (XRD) experiment, even if such an experiment could be carried out with
sufficient accuracy. In fact, s-NIXS provides information complementary to that from an XRD
experiment by elucidating which local orbital or atomic wave function is active. The s-NIXS
method presented here is not limited to ionic materials. In cases where configuration interaction
effects play an important role due to covalency or itineracy, the image of the probed local orbital
will reflect these effects directly as we will show below.

7 From ground state to excited states

Having established that s-NIXS is a powerful method for the investigation of the ground state,
we will now explore the spectroscopy aspect of s-NIXS in order to study the excited states
which are most often dominated by many-body atomic multiplet interactions in the d- and f-
electron materials. In particular we aim to determine the orbital character of those states. The
idea is that the use of an s core hole should simplify the analysis of the spectra in two significant
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3d® high spin:
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Fig. 6: Left and right panels: polar plots of the integrated intensity of the Mn M in the [100]
—[111] - [011] plane (magenta) and in the [100] — [110] — [010] plane (dark cyan). Central
panel: theoretical three-dimensional orbital hole density of the Mn high-spin 3d° configura-
tion in octahedral coordination: the spherical shaped °A; 3d(x?>—y?)(32*—7)(zy)(yz)(y2).
Adapted from [3].

aspects. First, the presence of the s hole does not add an extra orbital angular momentum so
that use can be made of the well-established and readily available Sugano-Tanabe-Kamimura
diagrams that depict the multiplet energy scheme of 3d ions for varying values of the crystal
field [23]. Second, the identification of the orbital character of the multiplet state can be done
in a direct manner by the imaging ability of the s-NIXS method. To exemplify these points, we
have carried out the experiment on a-MnS, a rock salt type antiferromagnetic insulator with far
from complete filling of the d shell so that orbital degrees of freedom are present in its excited
states.

The a-MnS single crystal sample was grown by chemical vapor transport and during the mea-
surements the sample was kept at a temperature of 50 K. The Mn M, edge spectra acquired
at different angles are shown in panel (a) of Fig. 5 for the set ¢ || [100] — [111] — [011] and in
panel (b) for ¢ || [100] — [110] — [010]. Also here the Compton contribution was used for nor-
malization and has been subtracted from the spectra using a linear background. At first glance,
there are no prominent variations in the peak intensities, but, as highlighted by the colors, the
overall peak energy position varies as a function of angle, i.e., as a function the orientation of ¢
with respect to the crystallographic axes.

Plotting first the integrated intensities as a function of angle in a polar plot, we indeed can
observe from the left and right panels of Fig. 6 that there is essentially no orientational depen-
dence, i.e., the hole charge density is constant in all directions. The spherical shape of the Mn
3d charge density as shown in the middle panel of Fig. 6 is fully consistent with the scenario in
which all five spin-up or all five spin-down 3d orbitals are unoccupied, i.e., in which the Mn?*
3d® ion is in its Hund’s rule high-spin ®4; ground state.
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Mn-M,

Fig. 7: The experimental spectrum for a given angle © (black dots) is decomposed using the
weighted sum of ¢ || [111] (blue dots) and G || [100] (orange dots) spectra that provides the
best fit (grey line). Reproduced from [3].

8 Analysis of excited states

While the integrated intensity of the spectra is constant with angle, the energy position of the M;
peak as displayed in panels (a) and (b) of Fig. 5 does vary with the orientation, between 82.37 eV
(blue vertical line) for the ¢ || [111] spectrum and 83.15 eV (orange vertical line) for ¢ || [100].
Since no discernible dispersion can be expected for core-hole excitations, such a variation in
energy indicates that the ), signal consists of features positioned at different energies whose
relative intensities change with angle. With the Mn ion coordinated octahedrally by six S ions,
we expect that the energy differences in the final states must be related to 10Dq, the octahedral
crystal field splitting between the ¢5, and e, orbitals.

We now assume that the two spectra acquired at ¢’ || [111] and ¢ || [100], which show the extreme
peak positions and narrowest line shapes, are the basic components making up the M; NIXS
signal for every other orientation. We performed fits to all spectra using a linear combination
of these two experimental spectra and determined their relative weights, so that each spectrum
is described as S(©) = ¢111(0)Sq11 + €100(6)Sqj100 Where ci11 and ¢y are the free fitting
parameters, as depicted in Fig. 7. The resulting fits are shown with gray lines in Fig. 5.

The weights ¢111(©) and ¢100(©) obtained by the fits are plotted in left panels Fig. 8 for the two
sample orientations. We can observe that the angular dependence follows the shape of the ¢y,
and e, states with great accuracy, allowing us to directly identify the orbitals reached in each
excitation. In particular, the ¢5, orbital shape is drawn by the angular dependence of ¢;11(©), the
weight of the Sz111 component peaking at 82.37 eV. Likewise, the excitation into e, orbitals is
represented by c190(©), the weight of the Sgj100 component peaking at 83.15 eV. The difference
between these two energies is due to the e,-t, splitting, and it is therefore a direct measurement
of the crystal field parameter 10Dq = 83.15eV—82.37eV= 0.78¢V as also illustrated in the
right panel of Fig. 8.
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single components: multiplet / crystal-field states

Fig. 8: Left panels: the intensity of the ¢ || [100] (orange) and ¢ || [111] (blue) components
follow the angular dependence of the e, (orange) and 1o, (blue) orbitals, respectively. Right
panels: The ey-to, energy splitting is about 10Dq = 0.78 eV. Adapted from [3].

9 Many-body energy-level diagram

A proper interpretation of the spectra must include the effects of Coulomb and exchange inter-
actions between the electrons within the d shell, meaning that we need to put our results in a
many body framework which takes into account both the full atomic multiplet theory and the
local effect of the lattice. In particular, starting from the 3s23d® configuration for the ground
state of the Mn ion in a-MnS, the s-NIXS process leads to a 3s'3d° final state. Since the s core
hole does not add an extra orbital angular momentum component, the multiplet structure of the
final state will be closely related to the one of the 3d° configuration. Therefore, one could make
use of the well-established Sugano-Tanabe-Kamimura diagrams [23] for a quantitative analysis
of s-NIXS spectra, after taking into account for some modifications due to the presence of the
extra 3s spin. We exemplify this in Figs. 9 (a) and (b), where we reproduce the total energy dia-
grams for a Mn ion in 3d° and 3s'3d° configuration calculated with the Quanty code [24]. The
corresponding Slater integrals Fiz;, 5, and Fy; ., (and G2, ., for the 35'3d° configuration) have
been obtained using the code by R.D. Cowan [25] and reduced to 80% of their Hartree-Fock
value to account for configuration interaction effects not included in the calculation [16, 17].

To ease the comparison between the diagrams of the two configurations, the lowest energy state
is not fixed at 0 eV for every 10Dq like it was done in the Sugano-Tanabe-Kamimura book [23].
Instead, the lowest state of the 3d° configuration is put to zero only for 10D¢ = 0 eV, and serves
as reference energy. In this way, the multiplets are split by the action of 10 D¢, but the average
energy of the diagram is kept constant. The energy levels are labeled for zero crystal field
(10Dq = 0 eV, spherical symmetry) with the (?%+1) [ ; term symbols, where S; and L, represent
the quantum numbers of the 3d shell and the orbital quantum numbers L, are indicated with the
usual letter notation (S, P, D, F, G...). The subscript in parenthesis indicates the degeneracy
of each term symbol, also including the degeneracy given by the 3s hole. In total, the 3d°
configuration has (160) = 210 states, while 35'3d® has 2 x (160) = 420 states, due to the extra
multiplicity of the 3s' spin. The colors group the states in the diagrams according to their 3d
spin multiplicity (2S54+1): singlets are purple, triplets green, and quintets orange.
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Fig. 9: Modified Sugano-Tanabe-Kamimura diagrams showing the dependence on 10Dq of the
energy levels of (a) Mn 3d° (in absence of the core 3s hole) and of (b) Mn 3s'3d° (the s-NIXS
final state). Each multiplet is labeled with the corresponding term symbol at 10Dq=0¢eV and
in parenthesis its degeneracy. The colors indicate each state’s spin multiplicity: purple for
singlets, green for triplets and orange for quintets. In panel (b), the thick full lines represent the
states having parallel Sy and S, the thin dashed lines the states with S, anti-parallel to S,
and the thin full lines the states not affected by S. The stars indicate, for several 10Dq values,
the possible final states of the s-NIXS process, and the vertical gray line at 10Dq=2.7 eV is the
transition between the high and low spin configurations of the 3d°® ground state. Reproduced

from [3].

Starting from the singlets, it is straightforward to notice that the energy scheme within the set of
singlets, as well as the dependence of each state on 10Dgq, is essentially the same between the
two configurations 3d° and 3s'3d°. This agrees with the fact that singlet states cannot be mod-
ified by an interaction with a 3s spin, given by (S’d . SS>, which is zero for S; = 0. The minor
changes between the two groups (< 10% of the energy splittings) is due to the different values
of the Slater integrals F, 5, and Fy, 5, between the two configurations. The sets of triplets
(green lines) and quintets (orange) of the 35'3d° configuration, instead, are further divided in
two subgroups depending on the relative alignment of S; and S;. The states having the two
spins parallel are represented with thick lines, while the thin dashed lines represent the states
with opposite Sy and S,. These subgroups are each a replica of the corresponding 3d° triplet or
quintet set, rigidly shifted in energy due to the spin interaction.

To understand and predict these energy shifts due to the Coulomb interaction between the d
electrons and the electron of the open 3s shell one can relate the Coulomb operator to the spin
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Table 1: Eigenvalues of S-S, related to the energy splitting due to the Coulomb interaction of
pure spin multiplets (i.e., neglecting spin-orbit interaction) in the d shell with the open 3s' core
shell for states with the d spin either parallel (S,,; = Sq+Ss) or anti-parallel (S,,; = Sq—Ss)
to the core s spin. Reproduced from [3].

operators of the d shell and s shell. We have

/N 1
H?)Csofl??crlnb = _gsd : SS Ggs—?)d + g (Figs—?)d - 1_0Gi2’)s—3d) . (6)

The last term in the equation is constant for all multiplets within a 3s' 3d" configuration and as
such does not lead to a splitting between the different states. The eigenvalues of S, - S, can be
obtained simply by inverting the formula [26] (Si)2 = (Sq)% + (S,)? + 28, - S,, where Sy
can be Sy +S55 = Sg+ 5 or [S;—S,| = |Sq —3/|, and remembering that the eigenvalue of (5)2
is S(S+1). The resulting eigenvalues are listed in Table 1 for each possible value of S,.

Typical values of G3,_,, for the 3d series, after a reduction to 80 % of their Hartree-Fock values,
range from 8.5 to 10.2eV. In general, AFE is larger for larger spin multiplicities. With these
ingredients, one can easily build the Sugano-Tanabe-Kamimura diagrams of the NIXS final
configuration from the ones without the 3s core hole, listed, for example, in Figs. 5.1-5.7 of the
famous book of S. Sugano, Y. Tanabe and H. Kamimura [23]. This allows the diagram of the
possible s-NIXS final states to be reproduced without the need for performing new calculations
and, by comparing the diagrams to the spectra, quantitatively determine the value 10Dq.

10 Spectral lineshape

The next step towards a complete understanding of the s-NIXS spectra is to realize that not all
states depicted in Fig. 9 (b) can be reached starting from the ground state of Mn?* in a-MnS.
In our case, the addition of one extra 3d electron (s = 1/2) to the high-spin 64, (S; =5 /2)
ground state can only lead to quintet final states (S; = 2), with the 3s' spin parallel to the
majority spin of the 3d. Therefore, —2G3,_,, (§;-8,) < 0, and the low energy replica of
the quintet set is reached. The possible s-NIXS final states for different values of 10Dq are
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indicated with stars in Fig. 9 (b), where the values of 10D¢q corresponding to the initial 3d°
high-spin configuration ®A4; are to the left of the gray vertical line, and low-spin on the right.
The size of each star is proportional to the intensity of the corresponding peak on the s-NIXS
spectra, averaged over the two sets of directions presented here (i.e., g || [100] — [111] — [011]
and q || [100] — [110] — [010]). There are only two states in the diagrams that can be reached
with a s-NIXS excitation, namely the °T5 (the extra 3d electron occupying to, orbitals) and ° £
(the extra electron in the e;). From the shape of the final state orbitals as imaged in Fig. 8,
we can identify immediately that the lower energy peak belongs to the 5T} state and the higher
to the °E. It is then straightforward to understand, as predicted above, that in our case the
experimental peak energy separation of 0.78 eV corresponds one-to-one to the 10Dq value.

It is worth looking into Fig. 9 (b) in more detail. For 10 Dq values on the right of the gray vertical
line, the ground state will no longer be the high-spin but the low-spin 3d°. The consequence for
the s-NIXS spectrum is dramatic. It switches from a two-peak structure (two stars) into a five-
peak features (three small stars, two large stars). This demonstrates that the line shape of the
s-NIXS spectrum is an extremely sensitive indicator of the ground state symmetry. The value

of 10Dq can be determined directly from the spread of the five peaks. Consequently, the ground
396521'
like) to highly non-spherical (¢} ,-like), which can be revealed directly by the image obtained

state hole density will also change in going from high to low-spin, i.e., from spherical (¢

from the directional dependence of the integrated s-NIXS intensity.

11 Covalency

We now investigate the influence of covalency on the s-NIXS image of the local d hole den-
sity and the spectra. To this end, we have carried out configuration-interaction calculations
[16,17,24] using an octahedral MnSq cluster which includes explicitly the hybridization be-
tween the Mn 3d and the S 3p orbitals. We have set the hopping integrals for the e, orbital
at 1.92 eV and for the ¢, at 1.15eV [24] and varied the energy difference between the d° and
d°L configurations (charge transfer energy A). Here L denotes the S 3p ligand hole states. The
results are shown in Fig. 10.

Starting with the ionic calculation, we have in the ground state an electron occupation of 3.000
for the t, orbital and 2.000 for the e, (values listed in the central panel). The corresponding
ground state hole density is spherical (Fig. 10, left panel, red line), and the directional depen-
dence of the low and high energy peaks in the calculated s-NIXS spectra follow (Fig. 10, two
right panels) the Z, (blue) and e, (orange) orbital shapes, respectively, as we have seen already
in Fig. 8. Switching on the hybridization between the d° and d° L configurations, we can see that
the electron occupation in the ground state increases with lowering the A values. It increases
faster for the e, than for the ¢5, (values listed in the central panel), consistent with the fact that
the hopping integral with the ligand is larger for the e, than for the ¢5,. In the strongly cova-
lent case of A = 1eV we have 3.136 in the t5, and 2.287 for the e,. Accordingly, the ground
state hole density, proportional to the NIXS signal, decreases for lower A values and becomes
strongly non-spherical (left panel). This also means that the amount of hybridization can be
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Fig. 10: Mn M, simulations using a MnSg cluster calculated for various degrees of covalency.
Left panel: Polar plot of the integrated intensity of the Mn M, in the [100] — [110] — [010]
plane: from ionic (most outer circle) to strongly covalent (most inner distorted circle, A =
1 eV) case. Middle panel: Mn M spectra along the ¢ || [100] (orange) and ¢ || [111] (blue)
directions: from ionic (bottom curves) to strongly covalent (top curve, A = 1¢eV). The A and
corresponding ionic 10Dq values are indicated, together with the resulting e, and to, occupa-
tion numbers. The energy splitting between the ¢ || [100] (orange) and ¢ || [111] (blue) peaks is
fixed at 0.78 eV. Right panel: polar plot of the final state resolved Mn M intensities (high en-

ergy peak in orange and low energy peak in blue), for the ionic (bottom) and strongly covalent
(top, A = 1eV) cases. Adapted from [3].

extracted from the precise shape of the hole density as measured by s-NIXS.

Perhaps a surprising result is that the presence of hybridization does not have much influence
on the s-NIXS spectrum, even for the A = 1eV case. It shows the same two peak structure,
and the directional dependence of the low and high energy peaks still follows the ¢, (blue) and
eg4 (orange) orbital shapes, respectively. It may seem surprising that hybridization or covalency
does little to the spectrum, but we can draw a parallel to x-ray absorption spectroscopy (XAS),
which is also a core-level spectroscopy in which a core electron is excited into the valence
shell. It is known that the M, 5 edges of Ce and the Lo 3 of the 3d transition metal ions can
be well reproduced using ionic calculations despite the fact that there is covalency. The reason
is that the energy orderings of the electron configurations are identical in the initial state and
in the XAS final state. Thus the spectral weights of the other local configurations are strongly
suppressed due to quantum mechanical interference effects [16,27]. Therefore, both XAS and
NIXS, generally produce a spectrum that is very similar to the one that belongs to the main local
configuration, e.g., the ionic configuration. Despite the fact that the overall s-NIXS spectrum is
rather insensitive to hybridization, a closer look at the line shape and the intensities does reveal
details that contain information about the hybridization strength. The middle panel of Fig. 10
show that the intensity of the high energy peak (e,, orange) becomes smaller relative to that
of the low energy peak (to4, blue) with decreasing A values. The s-NIXS spectrum can there-
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fore be used to help determine quantitatively the parameter values describing the hybridization
process.

In the ionic calculations, we have used a 10Dq value of 0.78 eV in order to get a separation of
0.78 eV between the two peaks in the Mn M NIXS spectrum. We will name this the ionic-10Dg
parameter. Upon switching-on the hybridization, we must decrease the value of the ionic-10Dq
parameter in our calculations to maintain the 0.78 eV separation between the two peaks in the
NIXS spectrum. A larger decrease is required when A gets smaller, i.e., when the hybridization
gets stronger (see the values in the cental panel). This can be understood if one considers the
fact that the hopping integral with the ligand is larger for e, than for t,,, and that the resulting
difference in hybridization energy contributes to the energy splitting between the e, bonding
state and the 5, equivalent. It is the combined effect of hybridization and the ionic-10Dq that
produces the 0.78 eV splitting in the NIXS spectrum, which we can define as the effective-
10Dgq. NIXS, like XAS, can thus provide direct access to the effective crystal field energy [16,
17,28,29]. The horizontal axis of the Sugano-Tanabe-Kamimura diagram presented in Fig. 5
can therefore be understood as the energy scale for the effective-10Dq in covalent materials.

12 Metallic systems: ground state properties

The s-NIXS data presented so far concern insulating materials. We now will investigate the
capabilities of this method for highly metallic systems. To this end, we have carried out mea-
surements on elemental metals such as Cr, Fe, and Ni. For each metal we have used two single
crystals, one having a surface with the (100) normal and the other the (111), in order to cover a
sufficiently wide range of angles. All surfaces were epi-polished to mirror quality.

The results are shown in Fig. 11. The top panel displays the polar plot of the integrated M,
intensities from scans collected from the (100) surface, and the middle panel from the (111)
surface. The bottom panel summarizes the data in a 3-dimensional (3D) representation. Making
use of the sum-rule argument explained above (since the quantities of concern are integrated
intensities), we can assert that the images show the shape of the local 3d hole density of the
metals in the ground state. We can clearly observe that there are significant differences between
Cr, Fe, and Ni. These data can then be compared with ab-initio theoretical calculations in order
to unveil to what extent electron correlation effects beyond mean field affect the ground state
3d charge density.

We would like to remark that information about the 3d charge density in highly metallic systems
is in general very difficult to extract from spectroscopic data. In the presence of correlations, a
quantitative analysis of the spectra is severely hampered by the large number of configurations
that need to be included associated with the strong inter-site charge fluctuations. The use of
integrated intensities in s-NIXS circumvents all these difficulties.
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Fig. 11: Shape of the hole density in the 3d shell of elemental Cr, Fe, and Ni metal. Top and mid-
dle panels: polar plots of the integrated intensity of the M, edge from the single crystal samples
with the (100) and (111) surfaces, respectively. Bottom panel: a 3-dimensional representation
of the measurement results.

13 Concluding remarks

In conclusion, we have shown that s-NIXS has the unique ability to directly provide a spatial
image of the local orbitals that are active in the formation of the ground state as well as of the
excited states. This purely experimental method is especially valuable for tackling problems
in complex systems where band formation and electron correlation effects are both important.
s-NIXS can even provide direct information about the ground state properties of highly metallic
systems, where spectroscopic techniques hit their limitations. The prospects of s-NIXS as a new
experimental method need to be further explored. It is has, for example, the advantage that it is
element-specific, and also allows for sophisticated sample environments, e.g., involving small
samples, high pressures, and high/low temperatures.
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1 Introduction

The properties of quantum materials, such as 3d transition-metal oxides, are largely governed
by the collective behavior of their strongly interacting electrons and the material’s response is
subject to a complex interplay of the local spin, charge, and orbital quantum degrees of free-
doms [1]. This manifests itself in various properties such as Mott metal-to-insulator transitions,
different types of magnetic order (ferro-, ferri-, and anti-ferromagnetic), orbital order, and un-
conventional superconductivity [2,3]. These diverse properties have been extensively studied
in bulk materials over the past decades and are of great importance for both, fundamental and
applied solid state research.

In recent years, technological advances have enabled the synthesis of heterostructures of quan-
tum material oxides with ultra-thin layers and atomic layer precision, thereby providing differ-
ent opportunities to manipulate correlated electron systems [4,5]. Research is primarily aimed
at rational materials design through the targeted realization of interfacial reconstructions. The
investigation of model systems with specific reconstructions, the generation and understanding
of new materials properties, in particular the stabilization of technologically interesting phases
under ambient conditions are central motivations of the research area [6-8].

In heterostructures, electronic and magnetic phases that are inaccessible in the bulk can be sta-
bilized and controlled by biaxial strain induced by epitaxy with a single-crystalline substrate,
electronic confinement, interfacial doping, or magnetic interactions [9]. The success of these
efforts depends on a detailed understanding of the interfacial interactions and reconstructions in
these artificially layered materials, which often span only a few atomic layers. The presence of
only a very small volume of the material of interest poses a problem for many solid-state spec-
troscopy methods, such as neutron scattering, muon spin relaxation, or optical spectroscopy,
which are normally used to study bulk materials.

In this lecture I like to introduce soft X-ray spectroscopy, with special focus on X-ray absorption
and resonant elastic X-ray scattering and reflectivity, as a non-destructive spectroscopic method,
which provides important insights into the physics and chemistry of transition-metal oxide het-
erostructures. As these methods require soft X-rays with variable energy and polarization, it is a
synchrotron technique. The rather shallow probing depth of soft X-ray spectroscopy compared
to, e.g., neutron scattering, which is sometimes considered a disadvantage in the study of bulk
materials, proves to be extremely advantageous for the study of epitaxial heterostructures that
are typically not much thicker than 100 nm.

2 Spin, charge, orbital, and lattice degrees of freedom in
epitaxial multilayers

A large number of 3d transition-metal oxides with strongly-correlated spin, charge, and orbital
degrees of freedom crystallize in the perovskite structure with composition ABQOj3, where B is
a transition-metal ion, i.e., Sc — Zn, and A either an alkaline-earth (Mg — Ba), or a rare-earth ion
(La—Lu) (Fig. 1(a)). This relatively simple, pseudo-cubic structure allows to combine different
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Fig. 1: When combining different transition-metal oxide perovskites, ABOj3 (a), in an epitax-
ially strained heterostructure (b), different lattice (c), charge (d), orbital (e), and magnetic (f)
reconstructions can occur at their interfaces.

compounds in a cube-on-cube fashion in an epitaxial heterostructure (Fig. 1(b)). In this way, an
artificially layered material can be created with emergent phases that are not present in the bulk
phase diagrams of the individual components.

In fully strained heterostructures, the different B cation positions have a defined in-plane re-
lationship resulting from the adaptation of the lattices at growth temperature. For cube-on-
cube growth of the perovskite structure on a cubic substrate, exerting isotropic, biaxial strain
(Fig. 1(b)), the simplest modification of the unit cell is a tetragonal distortion. This then leads to
elongation (green material) or compression (blue material) of atomic distances along the growth
direction, depending on the elastic properties of the material. However, the structural degrees
of freedom in transition-metal oxide perovskites allow far more complex distortions, which can
be understood in good approximation as tilts and rotations of rigid octahedra around the three
cubic axes [10], as indicated in Fig. 1(c). These are determined by the lattice mismatch with the
substrate, its crystal symmetry, the choice of the facet, and the connectivity conditions at the
interfaces, and thus affect the lengths and angles of the B-O bonds. Therefore, it is important
to consider structural distortions in the design, and to study them in detail in the grown het-
erostructures. Ab-initio theories such as density functional theory (DFT) have been shown to
provide good predictions for structural modifications (see, e.g., Ref. [11]). Lower-energy scale
electronic reconstructions, such as interfacial charge transfer or charge order can occur between
multi-valence B ions (Fig. 1(d)). In addition, orbital polarization due to electronic confinement
or reduced hopping across the interface due to a change in chemical bonding (Fig. 1(e)), as well
as magnetic reconstruction, e.g., due to interfacial exchange coupling, can occur (Fig. 1(f)).
The examples in Fig. 1 sketchily show different possible reconstructions, but in section 4 I will
give concrete examples for different spin, charge, and orbital reconstruction mechanisms in
heterostructures that our group has synthesized and studied in the past years.

The combination of theory, either by considering minimal models that capture the essential
properties and ab-initio calculations that can investigate small, but relevant material differences,
together with different experimental spectroscopy methods has proven to be a very powerful ap-
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Fig. 2: Scanning transmission electron microscopy (STEM) images of YVOs3-LaAlOs super-
lattices. (a) Low magnification image, (b,c) High-resolution images for two different crystal-
lographic projections, revealing small structural distortions. (e) STEM-EELS maps show the
elemental order in the layers. Reproduced from Refs. [19, 18].

proach to predict and describe the properties of new material combinations. In addition, tremen-
dous progress in the growth of epitaxial complex oxide heterostructures with atomic-layer pre-
cision by pulsed-laser deposition [4, 12,9], magnetron sputtering [13, 14], and molecular-beam
epitaxy [15-17] has been made. Nowadays it is possible to grow superlattices with altering
layers of only a few unit cells (about 1 nm) of two materials with very high structural and
chemical precision. As an example the scanning transmission electron microscopy (STEM) im-
ages of a YVO3-LaAlOjs superlattice, grown by pulsed-laser deposition on a NdGaOjs substrate
is shown in Fig. 2. The low-magnification annular dark-field STEM image, shown in Fig. 2(a)
covers a lateral range of more than half a um and the superlattice structure, i.e., the six-times
repeated stacking of four unit cells of YVOj3 and eight unit cells of LaAlOg, is highly ordered.
The images with atomic resolution Fig. 2(b,c), which were taken in different projections with
reference to the orthorhombic NdGaOs substrate structure, reveal structural distortions in form
of tilts and rotations also in the superlattice layers. These structural modifications were repro-
duced by DFT+U calculations [18]. Based on the DFT-relaxed structures, the layer-resolved
band structures were then calculated and brought into agreement with the orbital occupations
determined in the experiment [19] (see section 4). In general, STEM is an important experimen-
tal method to study the structural distortions in heterostructures. In addition, electron energy
loss spectroscopy (STEM-EELS) allows to study the element specific electronic structure with
atomic resolution. However, typically only small spatial volumes are studied (often only a
cross-section of 50 nm x 50 nm of a sample of 20 nm thickness is analyzed). Furthermore,
the preparation of the electron-transparent TEM-lamella and high-energy electron beam dam-
age can be critical issues for oxides, where the oxygen content is variable and often crucial for
physical properties such as conductivity and magnetism.

Non-destructive X-ray spectroscopy, which includes X-ray absorption, resonant elastic and in-
elastic scattering, provides important additional and complementary experimental information,
which I will discuss in detail in the following.
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Fig. 3: Schematic of X-ray absorption (XAS; left) and resonant elastic X-ray scattering pro-
cesses (REXS; right).

3 Soft X-ray spectroscopy

This lecture deals with the study of the spin, charge and orbital degrees of freedom of 3d
transition-metal oxides. Therefore, we focus on the soft X-ray range as the relevant transition-
metal L3, oxygen K, and the rare-earth M5 4 absorption edges fall into this energy window.
The latter often occupy the A-cation sides in the ABOQOj3 perovskites and can lead to interesting
exchange interactions between the localized Lanthanoide 4 f and the transition-metal 3d mo-
ments (see section 4 and [20]). The soft X-ray range typically covers X-ray energies in the
range from 50 to 1500 eV, corresponding to a wavelength range of 413-8.3 A. We are inter-
ested in the spectroscopic information contained in the absorption fine structure that arises from
dipole transitions of photo-exited core electrons to empty final states (Fig. 3). Fermi’s golden
rule provides the transition rate up to second order perturbation theory [21]

2

Hiny | n){n | Hine | 0)

2m ‘ (f
W= == ((f | Hin | 1) + Z O(E—Ey), (1)
where | n) denotes the intermediate (virtual) state and the sum runs over all possible intermedi-
ate states with energy [,,. The delta function reflects energy conservation and only depends on
the energy of the initial and final state, and not on the energy of the virtual, intermediate states.
The interaction Hamiltonian of X-rays with matter can be approximated by [22,23]

2

~ e ~ A
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where m denotes the electron mass, p the electron momentum, and A is the vector potential
which characterizes the radiation field

~ 1 ) )
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The first term in (2) is linear in creation ay,; (emission) and annihilation az,i (absorption) of a
photon (with polarization vector €), i.e., it describes processes with changes of 1 photons and
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Fig. 4: Schematic of the scattering geometry in a REXS experiment. 0 is the scattering angle
and k;, and k., are the momentum vectors of incident and scattered waves, respectively. The
scattering vector is defined by q = k;,—Kk,,. The components of the polarization vectors
are defined parallel 7 (1) and perpendicular o (c') to the scattering plane for the incident
(scattered) beam. Absorption can be measured in fluorescence yield (FY) by a photodiode, or in
total electron yield (TEY) by the drain current. REXS intensities are detected by a photodiode
moving with the 20 angle.

therefore is relevant for the description of X-ray absorption spectroscopy (XAS). In the second
term in (2) the vector potential is applied twice, i.e., it describes processes that change the
number of photons by + 2, or 0. That is the case in the scattering process (photon-in-photon-
out). Resonant X-ray scattering thus is sensitive to the intermediate state (or the final state of
the absorption). When the energy is conserved in the scattering process, i.e., hwi, = hwoy,
we refer to it as being elastic and call it resonant elastic X-ray scattering (REXS) or in the
case of hwi, # hwey to resonant inelastic X-ray scattering (RIXS). In the following we only
consider elastic scattering. Restricting our self to electric dipole transitions (£1-E1 transitions
in Ref. [24]) the interaction Hamiltonian simplifies to H;,; o €'ré, where r is the dipole operator
and € and € are again the polarization vectors of the incident and scattered light, respectively.
They can be expressed by the orthogonal basis vectors perpendicular é, and parallel ¢, to the
scattering plane, € = o€, + mé,, and accordingly for the one of the scattered photon (see sketch
in Fig. 4).

In a crystal, each lattice site acts as a scattering center for the incident X-rays and is described
by the atomic scattering amplitude

F(E,q) = fola) + fae * + f'(E) +if"(E). (4)

Here q = ki, —Kkoy is the scattering vector. The first term in (4), fo(q) o< Zrg, is the so-called
Thomson scattering, which is due to elastic scattering by a free charged particle. It arises from
the scalar, isotropic polarizability of the scatterer, fo(q) = f(q) € - €, where f(q) is the form
factor, i.e., the Fourier transform of the particle’s charge distribution. The second term is the
non-resonant magnetic scattering amplitude f{8"* that contains the interaction between the
magnetic field of the incoming wave with the spin of the electrons. As this term is usually
small compared to the resonant terms, we will neglect it in the following. The last two terms

in (4) are the so-called energy-dependent anomalous dispersion corrections f'(E) and f”(E).
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The imaginary part f”(E) is proportional to the XAS cross section, as we will see in the next
section, and both terms, f'(F) and f”(FE), determine the energy-dependent scattering studied in
REXS. In a single-crystal diffraction experiment, photons are scattered with individual atomic
scattering amplitudes F;(F, q) at different lattice sites 7 at position r; in the lattice and interfere.
The scattering cross-section then is proportional to ‘ S e TiE(E, q) ‘2 and in the most general
form F(E,q) is a 3x3 tensor with complex entries

F:E:E F.ty Fa:z
F=| Fv Fw Fpve |. (5)
sz Fzy Fzz

3.1 X-ray absorption and dichroism

The X-ray mass absorption coefficient ;(£) is defined by the Lambert-Beer law that describes
the transmitted intensity through a material of density p and thickness d

I = [he HEwrd, (6)

The atomic absorption coefficient is energy dependent and in the region between the absorption
edges a continuous function, p(E) o« Z*/E®, where Z is the atomic number. This means
that X-rays with higher energy penetrate deeper. The inverse 1/u(FE) is called the attenuation
length as it describes the X-ray penetration depth into the material measured along the surface
normal, where the intensity of the X-rays falls to 1/e of the value at the surface. Soft X-rays
are strongly absorbed by matter, and typically the attenuation lengths in materials are less than
0.5 um.! This means that the experiments have to be carried out in ultra-high vacuum and
transmission measurements are not possible for most samples, except for powders or ultra-thin
films on transparent membranes such as SiN. However, the decay products of the absorption
process can be used to estimate the absorption. There are two principle decay processes of
the created core hole: (i) emission of a fluorescence photon, and (ii) Auger decay, followed by
secondary processes that emit electrons. The absorption cross section is then proportional to
the (total) fluorescence yield (FY) that can be measured by using a photodiode that is placed
at a position where elastic scattering is minimal (see Fig. 4). Alternatively, and optimally in
addition to FY, the so-called total electron yield (TEY) can be measuring, e.g., by the drain
current. When the photoelectrons leave the sample surface, a (small) current is generated by
grounding the sample (Fig. 4). Both methods have advantages and disadvantages. Total FY
measurements are bulk sensitive, but saturation effects in the vicinity of strong absorption lines
can falsify the relative intensities in the fine structure. There are very interesting alternative
measurement methods, which are, however, experimentally more complex [25]. The problem
of saturation is less relevant in TEY measurements [26], but this type of detection is rather
surface sensitive, because it depends on the effective escape depth of the photoelectrons, which
is often less than 5 nm, and can vary strongly [27]. Since we focus on thin-film structures,
which are usually thinner or about 5 nm thick, surface sensitivity is not a critical issue.

'The X-ray attenuation length for different solids can be looked up, for example, at https://henke.lbl.gov.
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Fig. 5: L-edge XAS spectra of a series of 3d transition-metal oxides. Taken from Ref. [29]

By varying the energy, which can be done with high resolution (a typical energy band width is
~100 meV) and over a wide energy range at a synchrotron beamline, one can observe the above
discussed absorption edges, when the energy of the incoming X-rays match the intra-atomic
transition energies (see the X-ray data booklet [28]). These transitions have well separated
energies, which is the reason for the element sensitivity of the method. As mentioned above,
we will focus on electric-dipole transitions, since they have the largest cross section. In forward
direction q ~ 0, the imaginary part of the scattering amplitude is related to the absorption cross
section .

Taas o —Im[e- F(E)] oc [(f | & | )| 6(Bi—Ep—hw). )

Only transitions are allowed, which fulfill the dipole selection rules: AL = 1, Am = +1. It
1s common to use spectroscopic notation to label specific transitions depending on the involved
core level, i.e., the K-edge corresponds to 1s to, e.g., 2p or 4p, the L3 to 2p — 3d,4d, ...,
and the M54 edge to 3d — 4f,5f orbital transitions, where the indices refer to the spin-orbit
split core levels p; /2, p3/2, and dsj o, ds/o, respectively. For the energy of K-edges Ex ~
Z(Z—1)x13.6 eV provides a good approximation. Here Z is the atomic number of the element
and the Z—1 term accounts for the screening of the nuclear charge by the second 1s electron.
The L- and M-edges have a more pronounced fine structure. Here separated absorption lines
are observed due to the spin-orbit splitting of the core levels, e.g., the two Ljo lines arise
from the spin-orbit splitting of the 2p3/, and 2p, » core levels (see Fig. 3). Their separation
accordingly increases in the 3d transition-metal row from Sc to Zn as Z increases (Fig. 5). The
XAS fine structure measured with higher energy resolution then provides detailed information
about the valence state of a particular ion, its spin state, orbital occupation, as well as spin and
orbital contribution to the magnetic moment and possible antiferromagnetism. For this purpose,
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however, the fine structure must be examined closely, as its interpretation depends on whether
the final states are more localized (like f-states) or delocalized (like p-states). The d-states,
which are of particular interest to us here, lie somewhere in between, i.e., they are neither fully
localized nor fully itinerant [1], which is precisely the cause of the strong correlation of local
degrees of freedom that gives rise to their interesting physics.

While K -edge spectra corresponding to transitions from the single 1s core level to rather de-
localized, empty p states, reflect the site- and symmetry projected unoccupied density of states
and are often sufficiently described by mean-field approaches, e.g., local density approximation
(LDA) or DFT, the M edges of the rare-earth ions have strong, sharp peaks near the edges that
show strong atomic multiplet effects. These multiplet effects show when a core other than a
1s is present in the initial state and because of the strong 4 f localization, since then there is
significant overlap of core and valence wave functions in the ground state. This also applies for
transition-metal L edges, where the multiplet structure, which is hardly screened in the solid as
compared to the core potential, determines the spectral shape and influences the L35 or M5 4
branching ratio [30]. Different valence states show in a shift of spectral weight of the absorp-
tion lines. For anions (cations) with different valence state the absorption edge is shifted to
lower (higher) photon energies, because of the lower (higher) ionization potential. Information
on orbital occupations and magnetic moments can be obtained from the polarization-dependent
fine structure. To describe the fine structure of L or M edges, many-body ligand-field cluster
calculations have been shown to be particularly successful to determine important parameters,
such as the crystal field splittings in NiO and spin states in cobaltates from the comparison with
the experimental data [29]. When deriving a minimal tight-binding model from downfolding
the DFT band structure to localized Wannier orbitals, important hopping parameters to the lig-
and ions can be derived in an ab-initio fashion from DFT(4U) [31]. X-ray dichroism, that is
the dependence of X-ray absorption on the polarization of the incident photons, occurs when
the spherical symmetry at the site of the atom is broken by a magnetic or (crystalline) electric
field [35]. Then the charge density around an atom becomes anisotropic. Depending on its ori-
gin and the light polarization used to detect it, one distinguishes X-ray natural linear dichroism
(charge anisotropy due to crystal field), X-ray magnetic linear dichroism (charge anisotropy
parallel and perpendicular to the magnetization axis) [36], and X-ray magnetic circular dichro-
ism [35]. In the first case, for example, the scattering tensor of an atom whose 3d states are split
by a tetragonal crystal field has unequal diagonal elements along the = and z direction

Frz 0
F = 0 F* 0 . (8)
0 0 F#

Therefore, the linear polarization dependence of transition-metal L edge XAS provides infor-
mation on the 3d orbital occupation of the system. The intensity of polarized XAS along x, y
and z direction is proportional to the number of holes (k) in xz, yz, xy, x°—y?, and 3z°—r?
orbitals that have lobes along that direction. Sum rules allow to relate the d-orbital occupations

(h to the total, integrated intensities /; measured with ¢ = x, y and z linear polarized X-rays
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Fig. 6: (a) Example for natural XLD in a Lay_,Sr,CuQy thin film measured in FY (taken with
permission from Ref. [32]), where the data were reproduced from Ref. [33]). (b-d) Exam-
ple for circular magnetic dichroisms measured in a iron thin film (taken with permission from

Ref. [34]).
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For clarity, we write these for symmetric eg-orbitals 22, y?, 2%, which are related to the real
wave functions as given in Ref. [29]. For 3d electron systems with fully filled ¢5, and partially
filled e, orbitals, the sum rules simplify, and we can directly relate the ratio of e, holes to the

(€))

1 1
]z :_hzz =h z
2 + 2Y +

integrated XAS intensities for in-plane (I, ,) and out-of-plane (/) polarization

31,
AL, -1

B
X: 3z .

(10)

hg_y

where h,2_.2 and hs.2_,2 denote the number of holes in the d,2_.2 and ds.2_,2 orbitals, respec-
tively. Since for ¢5,-systems the e,-orbitals have finite hole occupations, the orbital occupations
cannot be determined directly from the measured spectra, but cluster calculations can be used,
as we will see in section 4.

The Cu-L3 2 XAS data measured by Chen et al. [33], which are reproduced in Fig. 6(a), pro-
vide a very clear example for X-ray natural linear dichroism that originates from differences in
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orbital occupation. In the parent compound (x = 0) of the high-temperature superconductor
La,_,Sr,CuO, the valence configuration of Cu is 3d°. The Cu ions are square-planar coor-
dinated by four oxygen ions, and the Dy, crystal field splitting results in one hole occupying
the highest-energy d,2_,2 orbital in the ground state. The 2p core electrons can be excited to
this empty state with in-plane z or y polarization (& L c in Fig. 6(a)), but no empty states are
available for excitation with z polarization (F || ¢ in Fig. 6(a)).

X-ray magnetic circular dichroism (XMCD) is the difference in absorption spectra measured
with circular positive (o*) and negative (c~) polarization, and allows to study magnetism.
Again, we consider the 3d transition metal L edges, since the magnetic properties are mainly
determined by their d-valence electrons. In the absorption process, o+ and o~ polarized pho-
tons transfer their angular momentum, +h, respectively, to the excited photoelectron. Due to
spin-orbit coupling in the core level, which is [+s for 2p3/, and [—s for 2p, s, i.e., opposite in
sign, the angular momentum is in part transferred to spin momentum, and the different polar-
izations create photoelectrons with opposite spins at L3 and L,. The spin-split 3d final states
can then only be reached by excited photoelectrons with the appropriate spin. The quantization
axis is given by the magnetization direction, i.e., the maximum dichroism is measured, when
magnetization axis and photon momentum are parallel.

Considering the scattering tensor for cubic, ferromagnetic materials with in-plane aligned mag-
netization in the scattering plane, the diagonal elements are equal, but two off-diagonal elements
are non-zero and proportional to the XMCD signal measured in an absorption experiment [37]

Fee jf2y ()
F=|—iFw pez . (11)
0 0 Fo

Important sum rules can also be derived for circular dichroism. The sum of the integrated
intensities /73 and I, of the polarization-averaged spectrum is again proportional to the total
number of d-holes (charge sum rule). Following the notation in Ref. [35], we label energy
integrals over the XMCD difference spectrum as A for the energy range of the L3 edge and
B for the L, edge, respectively. Then the sum rules allows to quantitatively determine the
spin moment from the measured intensity A—2B5, and the orbital moment is obtained from the
dichroic intensity A+ B [35].

An example for X-ray magnetic circular dichroism in ferromagnetic iron is given in Ref. [34].
The spectra are shown Fig. 6(b), where intensities measured with right and left circular polarized
light (labelled with ™ and 11—, respectively) show a clear difference. In the XMCD spectrum
(Fig. 6(c)) it can clearly be seen that this difference has an opposite sign for L3 and L, edges.
By integrating the spectrum over the respective energy ranges and integrating the polarization-
averaged spectrum over the whole energy range (Fig. 6(d)), spin and orbital moments of M, =
1.98 and myp = 0.085 pup/Fe were determined from the sum rules [34].
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3.2 Resonant X-ray scattering

Resonant scattering combines information on spatial modulation from diffraction with the spec-
troscopic information provided by X-ray absorption in a single experiment [38,23]. Resonant
scattering is element sensitive due to the strong enhancement of the cross section. Furthermore,
the strong dependence of the intermediate state on the spin, orbital, and charge configuration of
the resonant scattering centers provides access to local properties that I have already discussed
in the context of XAS. This information is contained in the energy-dependent f'(F) and f"(E)
terms, which are connected via the Kramers-Kronig relation. Both, real and imaginary part are
required for the description of resonant elastic X-ray scattering (REXS). If the incident photon
energy /w; is very different from the resonance energy E;,—FE; of the system, we say that we
are in the non-resonant regime and assume that the scattering is largely independent of energy.
Here, however, one must be careful when analyzing scattering intensities as a function of en-
ergy, since strong, sharp intensity variation across the resonances in the imaginary part f”(FE),
(which is proportional to the absorption cross section as discussed above) lead to broader struc-
tures in the real part. Depending on how the real and imaginary part mix for a given momentum
transfer, anomalous scattering signals can already occur for incident photon energies smaller
than those in f”(F). To make this point a little clearer we can look at the example in Fig. 7.
Since the fine structure is not captured by tabulated theoretical values [39,40], the real part is
usually obtained via the Kramers-Kronig relation from the imaginary part by including mea-
sured or calculated resonance lines. The example shows the procedure for La-M5 4. These
correspond to transitions from the La 3d core electron to completely empty 4 f states. There-
fore, the f”(E) fine structure consists essentially of two sharp Lorentzian lines (middle panel in
Fig. 7). When using the Kramers-Kronig relation, sufficient extrapolation of the data outside the
measurement range is important, since the integral runs over frequencies from zero to infinity.
Therefore, the measured or calculated absorption fine structure data are scaled to tabulated data
that are available over a wide energy range (up to 400 keV [40]). From the example in Fig. 7
it can be seen that if we choose an energy well before or in between the resonances in f”(E),
intensity variations in f’ are still clearly visible, i.e., scattering signals measured even more than
100 eV away from the absorption resonance lines measured in XAS cannot generally be called
“non-resonant”. Since the REXS cross section

gorn)n|é 1)
]REXSo(Z (f | | n)(n | | i)

is sensitive to the intermediate state |n), which is the final state in XAS, all spectral infor-

§(Ei—E;—hw), (12)

mation that can be gained from XAS, and was discussed above, is contained in the scattered
intensity. Moreover, in the REXS experiment, one sees the spatial modulation of the respective
properties due to the ¢ dependence. To exploit this, different scan types are used to measure
the moment-, energy- and polarization-dependent scattering intensity, which then need to be
carefully analyzed, and simulations are often required to obtain quantitative information about
modulations of the orbital occupation, charge order, or direction and magnitude of the mag-
netic moments [23]. However, element-specific electronic and magnetic properties can then be
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Fig. 7: Real and imaginary part of the energy-dependent scattering factor for the compound
LaAlOj3 in the energy range of the La-Ms5 4 absorption edge. The real f'(E) with resonance (red
curve in the top panel) was obtained by Kramers-Kronig transformation of the experimentally
determined XAS scaled and extrapolated with the tabulated data of f"(E) (middle panel). The
bottom panel shows the normalized X-ray reflectivity of a 30 nm thick film of LaAlO3 on SrTiO3
substrate at two different, fixed q. values over the same energy range.

determined, especially in transition-metal heterostructures, which are not accessible with other
experimental techniques, as I will show in the examples in section 4. A disadvantage of REXS
in the soft X-ray range is the relatively limited, accessible Ewald sphere, i.e., the limitation
of momentum transfer by the wavelength of the incoming X-rays. For soft X-rays, the Ewald
sphere is in the order of 0.1 A=, which is sufficient to probe Bragg planes with separation of at
least 10 A.

3.3 X-ray resonant reflectometry

X-ray reflectometry, usually measured in the hard X-ray range far away from strong resonances,
is an established method for the structural characterization of thin films and multilayers (see
sketch in Fig. 8). It is based on the simple concept of multiple reflection and refraction of ra-
diation at a surface and interfaces. In a typical experiment, the intensity of a scattered beam
R(#), normalized to the incoming intensity /o, is measured as a function of the incident angle 6.
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Fig. 8: Specular scattering geometry (0;, = 0,4, q. parallel to the surface normal) and typical
set of structural parameters used to simulated XRR data. The sketch shows an example of an
ABOs-A' B'O3 superlattice with two repetitions of the bilayer, and with energy-dependent op-
tical constants 61 5(E) and (1 2(E). The layer thicknesses d and root-mean-square roughnesses
o of different layers are usually fitting parameters.

In such a scattering process, a momentum ¢ = 4 sin(6)/\ is transferred.> The term reflec-
tometry refers to specular scattering with 6;, = 0y, i.e., ¢, points along the surface normal z
(Fig. 8). As 1s known from optics, when light emerges from an optically denser medium into
an optically thinner one, there is a critical angle 6. (depending on the wavelength \), below
which all incoming intensity is reflected on the surface (total internal reflection). Above 6., part
of the radiation penetrates the material, interacts and parallel beams obtain a phase difference
and interfere [41]. This results in characteristic features in the X-ray reflectivity of multilayers,
such as Kiessig fringes, superlattice peaks, and changes in slope due to surface and interface
roughness. By fitting the structures using calculated scattering factors (see Refs. [40,39]) struc-
tural parameters, such as the individual layer thicknesses and roughnesses (d; and o; in Fig. 8),
can be determined with high precision. When analyzing X-ray resonant reflectivity (XRR) data
measured at energies near or at the resonances, and where one aims to determine layer-resolved
changes in the energy-dependent scattering factors, the structural parameters are kept fixed.
Since only an out-of-plane momentum transfer is considered, the layers can be treated as a ho-
mogeneous medium and the reflectivity can be described in the so-called optical approach. To
do this, we introduce the complex refractive index in the X-ray range?

Mt is practical to note the conversion between wavelength \ and energy E: A[A] = 12398.4244/E[eV]
3In some references the refractive index is defined by n = 1—§—i/3, consistent with an opposite sign in the
wave equation.
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Fig. 9: Example for the momentum-dependent XRR from a superlattice composed of ten rep-
etitions of a [SrVO3 (30 nm) / SrCrO3 (30 nm)] bilayer on a SrTiOs substrate. The labels
indicate characteristic features in the reflectivity curve, such as the total thickness D, the bi-
layer thickness dg;, and possible surface roughness o. The simulated XRR curves are shown for
X-ray energies at 8 keV, i.e., far from resonances, and close to the V-Ls-resonance at 523 eV to
demonstrate the effect of the energy-dependent change of contrast from the scattering factors.
Since both materials have very similar electron densities the superlattice reflections (000)s,
are invisible in the non-resonant data, but clearly show in the V-L, data (see Fig. 12(a)). Note
that the (002)gy, reflection is not allowed in this specific superlattice structure with identical
thicknesses of SrCrO3 and SrVOs3 and no interface roughness.

n=1-48+i3. (13)

At energies () close to the resonance edges in a material, the atomic scattering factor (Eq. 4)
shows strong variations in the energy-dependent real f’(F) and imaginary f”(FE) part of the
dispersion corrections. In case of forward scattering (Q ~ 0) and negligible non-resonant
magnetic scattering fma¢  [42], equation (4) reduces to

F(qr0,E)=2"+ f(E) +if"(E), (14)

where Z* = Z — (Z/82.5)*37 is the atomic number Z with a small relativistic correction [28].
The optical theorem connects the imaginary part of the scattering factor to the dielectric function
e(F) by )
" E
JE) == 27(ch)2N,
where c is the speed of light, i the Planck constant, /V,, the number of photons, and E the energy
of the X-rays. Just like the F'(F) (Eq. 5), £(F) has the form of a 3x3 tensor

Imy/e(E), (15)

eIT  STY T2
E=| ¥ W g¥* |, (16)
e Y R
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with complex entries €/ = (g1)% + i(g2)¥ (i,j = x,y,2) that are related to 6 and 3% by
£ = (1—67)2 — (B)? and €5 = 2(1—6")3%. In a compound consisting of N different atoms,
0 and f are then given by the sums of atomic scattering factors weighted by the density p of the
material

5(E) = ZrProlch)” (ch)” i (Z: + 17
27Tp7’0 (ch)? al
BE) == Z (18)

Here C' denotes the number of atoms of type j per formula unit, M is the molar weight of
the compound, and 7 is the Thompson scattering amplitude (classical electron radius). Fur-
thermore, we know from equation (7) that f”(FE) is proportional to the X-ray absorption cross
section Ixas. Therefore, we can combine both relations to obtain reliable resonant tensor entries
0 and S, for the different layer stacks, as shown in Fig. 7 for LaAlO3. These can then be further
modeled to obtain layer-specific optical constants, corresponding to the different reconstruction
scenarios in a given material system. These can be, for example, different, layer-dependent
orbital polarizations, as we have studied in the examples I will show in the next section 4.

Depending on the symmetry of the material, the dielectric tensor (Eq. 16), just like the scatter-
ing tensor takes on a simplified form [43]. For example, for materials with cubic, tetragonal
and orthorhombic symmetries, all non-diagonal elements are zero. Going from orthorhombic
to tetragonal and cubic symmetry, the tensor further simplifies with ¢,, = ¢, for tetragonal
and ¢, = ¢,, = €., for cubic symmetries. Just as for F'(E), the dielectric tensor of ferromag-
netic materials has specific, non-zero off-diagonal elements that are proportional to the X-ray
magnetic circular dichroism (XMCD). Therefore, X-ray resonant magnetic reflectivity allows
to measure magnetic moments of deeply buried atomic, magnetic layers in a multilayer [44].

4 Case studies

In the following, I will present some of our studies on complex oxide heterostructures, each with
a different type of interface reconstruction as outlined in the introductory Fig. 1, and which
we investigated using the different X-ray spectroscopy techniques presented in the previous
section. In the first example, we show how the element sensitivity of XAS can be used to
investigate an interfacial doping mechanism in a cuprate-nickelate hybrid structure. The second
example shows how linearly polarized resonant X-ray reflectometry can be used to determine
depth-resolved orbital polarization profiles in a quantitative manner. The last example shows
how resonant elastic X-ray scattering provides unique information about noncollinear magnetic
orderings and how such ordered moments can interact with other moments across interfaces.
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(La,Cu0,),,-; /La0/(LaNiO;),_,

Fig. 10: Left panel: High-angle annular dark field (HAADF) STEM image of the m = 3,
n = 4 cuprate-nickelate hybrid structure grown on (LaAlOs)g 3(Sr2AlTaOg)o.7 (LSAT) substrate.
Middle panel: Sketch of the bilayer structure with the composition indicated in the above label.
Right panel: Spatially-resolved elemental distribution extracted from the electron energy loss
spectra (EELS) with color code: La—green, Cu—blue, and Ni-red, respectively. Reproduced
with permission from Ref. [45].

4.1 Interfacial doping in La;CuQ,4-LaNiO3 hybrid structures

Layer-by-layer oxide molecular-beam epitaxy allows to grow complex oxides with atomic layer
precision. We used this technique to synthesize a cuprate-nickelate multilayer structure (Fig. 10)
and showed that these structures allow a clean separation of dopant and doped layers. The mul-
tilayer growth of La,CuO4 and LaNiOj can only be achieved with two LaO layers separating
cuprate and nickelate blocks. This translates to an extra La**O?~ atomic layer in the bilayer
formula (LayCuQy),,/LaO/(LaNiOs),, (m, n integers), resulting in an additional charge of +1
at each interface, which we suspected to lead to a change in the nickel or copper electronic
structure. We investigated this in detail using XAS and explicitly exploited element sensitiv-
ity. The spectra measured with soft X-rays across the Cu-L3 2 and Ni-L3 5 absorption edges
are shown in Fig. 11(a,b). The measurements were performed with linearly polarized X-rays
parallel (/,,) and perpendicular (/,) to the interfaces. While the Cu-L spectra are characteristic
of Cu?* [46], the Ni-L edge spectrum shows signs of a mixture of Ni>* and Ni**. The oc-
tahedral crystal field splits the Cu and Ni 3d levels into energetically lower ¢5, and higher ¢,
orbitals. An additional elongation of the CuOg and NiOg octahedra along the [001] direction,
observed by STEM [45], leads to a further splitting of the e, orbitals. This is reflected in the
polarization dependence, where I, (I.) probes holes in the d,2_,2 (ds,2_,2) orbital. The result-
ing normalized linear dichroic difference spectrum (I,—1.)/(21,+1,) at the Cu-L edge is very
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Fig. 11: XAS spectra measured with the polarized X-rays parallel (orange curves) and per-
pendicular (black curves) to the sample surface across (a) the Cu-Ls o (b) the Ni-Lj o edges
for the m=3, n=4 cuprate-nickelate hybrid structure shown in Fig. 10. In the bottom pan-
els the normalized dichroic signals (grey curves) are shown. (c) Temperature-dependent
resistivity of [(LasCuQy),,/LaO/(LaNiO3),]; (m=1 n=2,3,4, and |="7,10,9) with average
formal Ni valences of 2.5+, 2.67+, and 2.75+ for n=2,3,4, respectively, compared to
[(LaNiOs3),(LaAlOs),, |i. superlattices with n=2,4 and k=6, 3 with 3.0+ Ni valence. Taken
with permission from Ref. [45].

pronounced (Fig. 11(a) to be compared with Fig. 6(a)) and arises from a Jahn-Teller distortion
2 orbital for the
XAS final state. The Ni-L edge spectra also show linear dichroism, although less pronounced.
To quantify this effect, we used the sum rules for e, linear dichroism (Eq. 10). While DFT+U
results show X = 1 for bulk LaNiO3 with rhombohedral structure (space group R3c, where all

that lowers the energy of the ds.2_,2 orbital [32], leaving a hole in the d,2_

Ni-O distances are equal), we find a smaller X,, = 0.94 from XAS, corresponding to a higher
ds.2_,2 occupation on average in the LaNiOj stacks in the hybrid structures [45]. The layer-
resolved DFT+U calculations show that the effect is most pronounced in the interface layers
(X;r = 0.84), which correlates with the stronger elongation of the interfacial NiOg octahedra
in the [001] direction as seen by STEM [45]. The corresponding value in the central layers is
Xe =0.91.

In addition, DFT+U predicts a charge disproportionation between neighboring in-plane Ni
sites that occurs predominantly in the interface layers and causes a band gap in the density of
states of the interface layers. To test this prediction we preformed in-plane electronic transport
measurements on different hybrid structures with m=1 and decreasing LaNiOs layer thickness
n=4,3,2 (Fig. 11 (c). The temperature-dependent resistivity shows metallic behavior for n=4,
which we attribute to currents running through the inner, at most weakly disproportionated,
metallic LaNiO3 layers. When decreasing LaNiO3 from four to three monolayers, we observe a
metal-to-semiconductor transition, and finally, for n=2, a semiconducting behavior. Consistent
with this observation, DFT+U results for n=2 indicate a band gap of 0.28 eV [45]. To dis-
tinguish confinement and doping effects, we compare the (La;CuQO,),,/LaO/(LaNiO3),, hybrid
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structures with [(LaNiO3), (LaAlO3), ] (n=2,4 and k=6, 3) superlattices, where the nickelate
layers are confined to the same thickness, while remaining undoped (Ni**). The latter superlat-
tices will be discussed in detail in the next section. Leaving differences in the lattice parameters
of the two systems aside, it is interesting to note that the resistivity of the LaNiO3-LaAlOj su-
perlattice with two nickelate layers is comparable to the nickelate-cuprate hybrid structure with
four nickelate layers. This implies that only the inner two layers are conducting, as predicted
by the DFT calculations. In conclusion, our study on the cuprate-nickelate hybrid structures
showed that doped electrons are accommodated primarily in the interfacial nickelate layers,
where they induce a digital modulation of the Ni valence state and a rearrangement of the Ni-3d
orbital occupation.

4.2 Orbital reflectometry of nickelate and vanadate superlattices

The d orbital occupations and the strength of hybridization with the oxygen ligands determine
the electronic transport properties and the magnetic exchange interactions and their anisotropy,
via the Goodenough-Kanamori-Anderson (GKA) rules for superexchange [47,48]. As pointed
out in the introductory section a common effect created at interfaces is the confinement of elec-
trons. We have studied heterostructures of two prototypical correlated oxides, Mott-Hubbard
insulting YVO3; and the negative charge-transfer system RNiOj (R = rare-earth ion) [49]. While
the vanadates are a 3d-t,, electron system, in the nickelate the higher-lying e, states are partially
occupied. If we consider an interface of LaNiO3 (YVO3) with a wide band-gap insulator, such
as LaAlQs, the (virtual) hopping of electrons along the Ni(V)-O-Al bond is largely suppressed,
due to the band-gap of LaAlO3, which leads to the preferential occupation of the orbitals with
lobes in the plane of the interface. In addition, the character of the Ni-O-Al or V-O-Al chemical
bond changes, which is accompanied by a change in the oxygen hybridization of the d states.
Last but not least, the modification of the local crystal fields impacts orbital polarization, as
at the interface it is expected to be different from both, the bulk as well as in layers deeper in
the stack that are further away from the interfaces. In superlattices of LaNiO3 or YVOj3 with
LaAlQg, this interface is repeated several times periodically (see Fig. 2), which facilitates the
investigation by means of XRR. The modulation in the electronic structure of interface and
central layer in stacks of LaNiO3 or YVOs is seen in so-called orbital reflectometry, where one
measures the XRR with linear polarized light. A simple calculation of the structural factors
shows this sensitivity (Fig. 12). If we consider a symmetric superlattice with the same thick-
ness of stacks of two compounds ABO3 and AB’O; (the example in Fig. 12(a) show a (6/6)
superlattice, with six pseudo-cubic unit cell of each material), without any symmetry breaking
the even-order, (00(), [=2,4, ... superlattice peak intensities vanish. If, however the electronic
structure of interface (IF) and central (C) layers are different, resulting in different scattering
factors f/F and f¢ due to interface reconstructions, this selection rule is broken and the intensity
becomes proportional to the difference in the scattering factors (Fig. 12(b)). The same sensi-
tivity for interface reconstructions arises in asymmetric (8/4) and (4/8) at the (003) reflection
(Fig 12(c)). We take advantage of this in orbital reflectometry and simulate the polarization-
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Fig. 12: Scattering factors for different stacking of two materials ABOs3 (green) and AB'Os
(blue) in a superlattice (the shown bilayer is repeated several times). (a) In case of a symmetric
SL (dapos=dapo,) the (002) reflection of the SL structure vanishes. (b) When the ABOj in-
terface layers reconstruct, resulting in different scattering factors in interface ( f'f') and central
layers (f€), the (002) reflection becomes allowed. (c) In the case of an asymmetric stacking se-
quence with (2d spo,=dap 0, (left) or dapo,=2d g0, (right)), the (003) superlattice reflection
is most sensitive to a difference of f'f and fC.

dependent spectra, measured at fixed momentum transfer at (002) or (003) as a function of
energy over the corresponding L edges of Ni or V. To ensure a unique fitting result, we only
allow a redistribution of the dichroism in ¥ and f, so that the layer-weighted average, mea-
sured in XAS is fixed, i.e., Ixas o< nIm(fF) +m Im(f) with n, m the number of unit cells of
IF and C layers, respectively. The results of the simulations that best match the experimentally
measured XRR then provide layer-specific linear dichroism spectra that can be quantitatively
evaluated using the sum rules or cluster calculations to obtain orbital occupancies.

Since the t,, orbital lobes point between the B-O bonds, while for e, orbitals they point along
the bonds, it is interesting to systematically compare reconstructions at YVO3-LaAlO3 and
RNiO;3-LaAlOj interfaces. as I will discuss in the following. Our studies on LaNiO3/LaAlOg
superlattices showed that both, epitaxial strain and confinement effects at the interface lead to
changes in the Ni-e, orbital polarization depth profiles [50, 51]. In YVO3-LaAlOs superlat-
tices the interface effects produce an inverted orbital polarization in the layers next to LaAlOs,
compared to the central part of the YVOs layer stack [19].

4.2.1 Orbital polarization profiles in nickelate superlattices

The Ni** ion in RNiO3 with R = rare-earth ion has nominally a 3d" electron configuration and
the octahedral crystal-field of the perovskite structure splits the atomic 3d orbital manifold into
a lower-lying triply degenerate ¢, level that is fully occupied by six electrons, and a higher-
lying doubly degenerate e, level with a single electron. In bulk RNiOj3 the two Ni-e, orbitals
with d,2_,2 and d3,s_,2 symmetry are equally occupied. Model calculations have shown that
the in-plane d,2_,» orbital occupation can be stabilized by epitaxial strain and confinement in
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Fig. 13: Experimental data and simulations of XRR data of a LaNiO3-DyScOs3 (4/4) superlat-
tice. (a) q,-dependent reflectivity at fixed energy: non-resonant (Cu-K ) and resonant to Ni- L.
(b) Linear dichroism measured in XAS. (c,d) Energy-dependent linear-polarized reflectivity at
(002) and the dichroic difference spectrum. Data reproduced from Ref. [50].

a superlattice geometry, resulting in an electronic structure similar to that of the cuprate high-
temperature superconductors [52-54]. In order to gain experimental insight on the relative
effects of strain and confinement, we have grown superlattices with four-unit-cell-thick layers
of metallic LaNiOj3 and layers of different band-insulating RXO3 (R = La, Gd, Dy and X =
Al, Ga, Sc) by pulsed-laser deposition on substrates that impose either compressive or tensile
strain. Using such a symmetric superlattice geometry allows to determine depth-resolved orbital
polarization profiles in a quantitative manner by exploiting the depth-dependence of reflectivity
at momentum transfer ¢, close to the (002) reflection. As introduced in section 3, the XRR
analysis relies on optical constants and a structural model. For the analysis we used the software
package ReMagX [55]. The structural parameters are obtained by fitting non-resonant, q,-
dependent hard X-ray reflectivity data (Fig. 13(a)), which are then fixed in the following analysis
steps. To implement the energy-dependent fine structure across the relevant La-M and Ni-L
absorption edges, we used the measured linear polarized XAS (Fig. 13(b)) to build the optical
constants of LaNiO3 in the way shown in Fig. 7.* Then we simulated the reflected intensity
measured with fixed ¢, as a function of energy (F) (Fig. 13 (c)) and its normalized dichroic
difference spectrum (Fig. 13 (d)). To this end, we considered models with different tetragonal
scattering tensors (Eq. 8) for fF in interface layers (B), and f€ in central layers (A) of the
LaNiOg stacks, keeping the averaged value from XAS fixed. In this way, we were able to
determine the redistribution of dichroism between the IF and C layers and the layer-dependent
spectra [51]. Then we evaluated them using the sum rule for linear dichroism (Eq. 10), and

4 X—-1
pP= —1)=—,
Ne, X+1
“For superlattices with the band insulator LaAlOj it is important to include the La- M resonances in their optical
constants (see Fig. 7), as they are very close to the Ni-L3 resonance.

defined the orbital polarization as
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Fig. 14: Layer-resolved orbital polarization, Pc and Pp, as a function of in-plane lattice
parameter agy, for LaNiOs-RX O3 superlattices, grown on different strain-inducing substrates
and with different composition of the buffer layers as indicated in the labels. The open symbols
show the orbital polarization Pyss obtained from the linear dichroism measured in XAS. Data
reproduced from Refs. [50,51].

where n., =4—h,, is the sum of e, electrons. The nickelates are negative charge-transfer insu-
lators with a dominant 3d® L contribution in the ground state [56,49], where L denotes an oxygen
ligand hole. Therefore the local, atomic Ni-¢, orbitals have rather n.,~ 2. However, to compare
superlattices with possibly different hybridization, i.e., possibly different n. , we calculated or-
bital polarization with n. =1 for all different compositions. This means that the orbital polar-
izations we compare in Fig. 14 can be understood as those of the extended Wannier orbitals,
which also have d-orbital symmetry. An illustration of the wave functions, obtained from DFT
calculations, and further discussion can be found in Ref. [50]. The layer-resolved orbital po-
larizations Pc and Pjr, together with the layer-averaged values obtained from XAS, Pxas, are
shown in Fig. 14 as a function of their in-plane lattice parameters ag;. The lattice parame-
ters have been determined by X-ray diffraction for various (4/4) LaNiOs-RX O3 superlattices
grown on substrates with different lattice mismatch. We observed a tendency in all superlattices
for the IF layers to have higher orbital polarization than the C layers with values up to 25%,
which can be attributed to the confinement effect. However, it can be seen that the strain is the
more effective control parameter (yellow line in Fig. 14), while the polarization attributed to
the confinement effect from the band insulator layers falls into a comparatively narrow band of
~ 5% width (grey shaded area in Fig. 14).
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Fig. 15: (a) YVO3-LaAlO3 superlattices with three different stacking sequences, with (8/4),
(6/6) and (4/8) consecutive unit cells, were investigated to be as sensitive as possible to orbital
reconstructions in interface layers (modelled with scattering factors f'¥) and central layers
(f€). (b) Representative q,-dependent and (c) E-dependent scans at momenta fixed to the
superlattice reflections (001) with | = 1,2,3 for the (4/8) superlattice at room temperature.
Reproduced from Ref. [19].

4.2.2 Vanadates - A t,, system

To extend the methodology of orbital reflectometry to a ?5, system we have studied YVOs-
LaAlO; superlattices [19]. The compound YVOs; is a strongly-correlated Mott-Hubbard in-
sulator that shows no metal-insulator transition up to its melting point. The bulk crystallizes
in an orthorhombic crystal structure (space group Pbnm with lattice parameters a,, b,, and
¢,) at room temperature with a V3* electronic configurations shown in the left of Fig. 16(b).
The low-temperature properties are governed by different orbital (OO) and spin (SO) ordered
phases, which arise from competing crystal-field and superexchange interactions. Below 200 K
C-type OO is observed, i.e., there is antiferro-orbital order in the orthorhombic ab, plane, while
along c, there is ferro-orbital coupling. At 115 K the onset of corresponding G-type SO, and
at 77 K a change to G-type OO and C-type SO phase was found [57]. In Ref. [19] we ex-
plored possible changes in the orbital occupations in YVO3-LaAlO;3 superlattices. While the
STEM(-EELS) images shown in Fig. 2 confirmed the high quality of the superlattice structure
and the V3* valence state, detailed X-ray diffraction characterization showed that Pbnm-type
distortions are also present in the superlattice and that its structure follows the orientation of
the substrate, i.e., the orthorhombic ¢, axis lies in the interface planes. Accordingly, we ro-
tate the coordinate system for the ¢, orbitals for better comparison with the bulk configuration
(Fig. 16(b)). To obtain the depth-resolved information, we choose three superlattice struc-
tures, with (YVO3),/(LaAlO3),, bilayers with varying thicknesses of n=4,6,8 and m=8,6,4
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Fig. 16: (a) Experimental (symbols) and fitted (lines) linear dichroism profiles between two
polarization pairs for the central (C) layers of all three superlattices (top) and the interfacial
(IF) layers of the (8/4), (6/6), and (4/8) superlattices. (b) Schematic representation of the
orbital polarization for the bulk, C and IF layers of the superlattices. Taken from [19].

pseudo-cubic unit cells (Fig. 15(a)) to be maximally sensitive to interface reconstructions in the
XRR measurements (Fig. 12). We simulated the linear dichroic reflectivity (¢, and £ depen-
dent, Fig. 15(b,c)) for different models of the heterostructure, again with fF' and f ¢ but now
of orthorhombic symmetry, i.e., non-zero F,, # F,, # F.,, in the scattering tensor (5). This is
necessary because the o4, d,, d,. and d,, orbitals have pairwise lobes in the same spatial di-
rections. In comparison, in the e, system the d,2_,» orbital with z polarization is not accessible.
By comparing the results, and then iteratively refining the model we obtained layer-resolved
X-ray linear dichroism profiles (Fig. 16(a)) that were then compared with ligand-field cluster
calculations to obtain the layer-dependent ¢y4-orbital polarizations (P; and P, in Fig. 16(b)).
As explained in section 3, the sum rules are not applicable to determine ¢5g occupations. The
results show that d,. and d,,. orbital degeneracy is lifted in the superlattices unlike in bulk at
room temperature, the d,.-d,. polarization is inverted between the C and IF layers, and the
d, occupation in the IF layers depends on the number of YVOj; layers (Fig. 16(b)). We also
measured the temperature dependence of the spectra shown in Fig. 15(c) and found that the
reconstructed orbital occupations are preserved down to 30 K [19].

4.3 Noncollinear magnetic order in nickel oxide heterostructures

As mentioned in the introduction, the accessible Ewald sphere in the soft X-ray region is of-
ten limiting for the study of perovskites with comparatively small lattice constants around 4 A.
For example, the ordering vector ¢ = (/2 1/2 1/2) for the G-type antiferromagnetic order in
YVOgs; is not accessible at energies near the V-L edge. The unusual magnetic order observed
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Fig. 17: (a) Sketch of the magnetic order and REXS scattering geometry to study the magnetic
order in LaNiOs superlattices. The sketch shows the wave vectors of the incoming and out-
going photons (light arrows), the corresponding momentum transfer q, the incoming photon
polarization vectors €, and €, and the azimuthal angle 1. (b) Scans around q™* at T'=10 K
and E = 853.4 eV for LaNiO3-LaAlO3 superlattices with (2/2) and (4/4) consecutive unit cells.
(c) Comparison between XAS and energy dependence of the magnetic Bragg intensity around
the Ni-L3 edge at 1 =0°. (d) Sketch of the Ni-Dy exchange interaction at the interface of a
LaNiO3-DyScOs3 superlattice derived from the azimuthal dependence (e) of the scattering at
q"*, measured resonant to the Dy-Ms and Ni-L3 edge at T'=4 K. The azimuthal dependence
measured at Ni-Lg at T'= 25 K corresponds to that of LaNiOs-LaAlOs (2/2). Figures (a-c) and
(d,e) were reproduced from data published in Ref. [58] and Ref. [20], respectively.

in bulk rare-earth nickelates (R # La) with an ordering vector ¢™¢ = (1/4 1/4 1/4) in cubic
notation is a fortunate exception. It was first studied in NdNiO3 by REXS at the Ni-L edge
in Ref. [59]. We used REXS at the Ni-L edge to study the LaNiO3-R.X O3 superlattices that
I already introduced in the previous section. LaNiOj is the only bulk rare-earth nickelate that
is paramagnetic and metallic down to the lowest temperatures [60]. We have shown that when
this compound is grown epitaxially between RX Os layers in a superlattice, and the thickness is
reduced to two unit cells, a magnetic order with ¢™* is observed [58]. Figure 17(a) shows the
scattering geometry used to access the magnetic Bragg peak at energies resonant to the Ni-Ls
edge. While a magnetic Bragg reflection is observed for the (2/2) with two consecutive unit
cells each of LaNiO3 and LaAlOs, this is not the case in (4/4) superlattices with thicker layer
stacks (Fig. 17(b)). The scattered intensity is strongly enhanced at the Ni- L3 energy (Fig. 17(c))
and shows an azimuthal dependence (Fig. 17(e)) that is characteristic for a commensurate, non-
collinear magnetic order with a (t—]</)-type order of moments along the cubic perovskite
[111] direction (see sketch in Fig. 17(a)). In such an azimuthal scan, the Bragg condition is
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preserved and the scattered intensity is measured, while the sample rotates around gp,e. During
this, the projection of the polarization vectors €, and €, onto the magnetization axis is changed.
In the case of the noncollinear order in bulk nickelates, one therefore observes a m-periodic
intensity modulation as a function of ¢ [59]. For superlattices that are under biaxial strain from
the substrate, the direction of the sublattice moments changes due to the changes in d-orbital oc-
cupation that controls the magneto-crystalline anisotropy via the spin-orbit coupling [58]. The
precise direction of the sublattice magnetization can be determined by simulating the azimuthal
dependence (solid lines in Fig. 17(e)). From this and the fact that we observed considerable
conductivity in the magnetically ordered state, we conclude that a spin-density wave phase is
stabilized in the epitaxial LaNiOj superlattice, which has no bulk analogue.

In a second REXS study we examined more closely the (2/2) LaNiO3-DyScOs superlattice,
which, as pointed out above, shows noncollinear ¢™*¢ order in the Ni spin system below 100 K
[20]. Taking advantage of the element sensitivity of REXS by measuring the azimuthal depen-
dence of the scattered intensity at ¢™*¢ and at energies resonant to Ni-L and Dy-M (Fig. 17(e)),
we derived the following scenario. Upon cooling below 18 K, Dy-Ni exchange interactions at
the LaNiO3-DyScOj interfaces lead to a collinear magnetic ordering of the interface Dy mo-
ments (note the 27-periodicity in intensity in the ¢/ scan) as well as a reorientation of the Ni
spins in a direction dictated by the strong magnetocrystalline anisotropy of Dy (Fig. 17(d)).
Such exchange interactions between local, paramagnetic rare-earth moments with the magnetic
order of transition-metal ions is potentially interesting for manipulating spin structures in de-
vices, as the large Dy moments provide anchoring points to external magnetic fields.
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9.2 Jak Chakhalian

A prime goal for this lecture is to provide you with a reasonably self-sufficient answer to the
question of what interesting effects can happen if you join two dissimilar materials with cor-
related carriers to construct a ‘sandwich’ with the interface across those layers. Through the
lens of physical phenomena, we will delve into the design ideas that lead to the creation of new
synthetic quantum materials with properties primarily governed by the interface.

About the structure of the lecture: After introducing key concepts from the physics of correlated
electrons, I switch to the guiding notions for building new synthetic materials with properties
unattainable in bulk. Next, I briefly discuss the nucleation and growth of thin films based on
the pulsed laser deposition method (PLD) or laser molecular beam epitaxy (MBE). After that, I
illustrate those design ideas by several recent examples, ranging from a correlated polar metal
to a quantum spin liquid. The lecture concludes with a list of ten currently unsolved problems
that are worth further exploration.

1 Primer on the physics of correlated oxides.

Why transition metal oxides? Transition metal ions (TM) are commonly found in complex
oxides, which make up the largest group of crystals on Earth. Besides oxygen, these compounds
contain an element from the d-series in the periodic table, specifically 3d, 4d, or 5d TM oxides.
In contemporary notation, many complex oxides with TM ions belong to the family of quantum
materials with correlated electrons [1]. In general, it is the variation in the outermost d-shell
configuration of these elements that gives rise to the great complexity in the crystal structures,
electronic properties, and magnetic interactions in TMOs. There are many informative reviews
on this topic, but as a one-stop source I recommend [2] as a comprehensive resource.

What crystal structures exist, and why are they formed? TMOs have numerous types of
crystal structures, spanning all seven crystal systems! Although the most rigorous language
of determining a crystal structure is to identify a conventional unit cell and the corresponding
space group, going through all 230 space groups is certainly not the purpose of this lecture.
Instead, as TMOs are predominately regarded as ionic crystals, the driving force of stabilizing
a specific structure is the lattice energy: namely, for an ion located in a lattice, it experiences
an overall electrostatic potential from the other ions (both cations and anions), which is the so-
called Madelung potential V;. The associated electrostatic energy of the ion is the product of
its net charges with the Madelung potential. By summing over all ionic sites, we calculate the
lattice energy. Broadly speaking, to determine the minimal value of the lattice energy we need
to know the specific details of the crystal structure. However, since the Coulomb interaction
between cation and anion is attractive, it is natural to assume that the lattice energy dramatically
decreases as more anions surround a cation. On the other hand, as we place more and more
anions near the cation, the repulsive interaction between anions increases the lattice energy.
Moreover, if the anions are packed in such a way that the cation is rattling inside a void formed
by the anions, this effect also increases the lattice energy. Collectively, to reach a balance among
these competing effects and rationalize the ionic crystal structure, Linus Pauling proposed his
famous five principles, also known as the ‘Pauling rules’ [3,4].
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Fig. 1: Coordination number and type of polyhedral geometry determined by the cation-anion
radius ratio in TMOs. The central cation is displayed with a small blue cycle, the oxygen ions
with a big red cycle. The black rod between each cation and oxygen represents ionic bonding.

Can we predict a crystal structure? According to the Pauling rules, the structure of a complex
ionic crystal is mainly controlled by two factors: the local coordination number (CN) together
with the polyhedral geometry of a cation and the network of the polyhedra spanning the crystal.
First, Pauling’s rule determines CN and its polyhedral geometry: this is the cation-anion radius
ratio rule. Figure 1 summarizes the typical CN values and the corresponding polyhedrons.
Why is coordination so important? After you learned about the local polyhedra of cations,
the next step is to understand how these polyhedra are interconnected. In real TMO solids, three
common polyhedral networks can exist: corner-sharing polyhedra, edge-sharing polyhedra, and
face-sharing polyhedra. An important principle pointed out by Pauling is that sharing of edges
and especially faces by two polyhedra cost more energy than sharing corners. This is because
in edge-sharing and face-sharing cases, the cations are located in closer proximity, increasing
the electrostatic repulsion among them. In addition, for TMOs with multiple cations, those of
high chemical valency and small coordination numbers tend not to share polyhedron elements,
increasing their distance and thus reducing the repulsive interaction between them.

At this point, let me introduce two popular TM compounds to make the discussion more con-
crete. Perovskites ABOs. The perovskite structure is relatively simple and common for com-
pounds with the chemical formula ABO3. Here we find two alternative combinations of A and
B cations. If the A site is a rare-earth ion and the B site is a transition metal ion (e.g., RENiOs
with RE = La to Yb), the charge state of each ion is A3*B3+03 . Alternatively, if the A site
is an alkaline-earth ion (e.g., ATiO3 with A = Mg to Ba) and the B site is a transition metal
ion, the charge state is given by A2*B4*03~. No matter what combination, the A ion must be
larger than the transition metal B ion, and it should be coordinated by fwelve oxygens. At the
same time, the B transition-metal ion is surrounded by six oxygens forming the octahedral co-
ordination, and the network of corner-sharing B octahedra is the hallmark motif for perovskites
(see Fig. 2¢). Thus, a perovskite’s ideal conventional unit cell is cubic with a B-O-B bond
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angle of 90°. Of course, depending on the relative size of different ions, an actual unit cell can
deviate from the cubic structure and it usually stabilizes in a lower-symmetry lattice. To predict
if the structure deviates from the ideal cubic, in 1926, Goldschmidt introduced an index called
the tolerance factor tg, to quantify distortions in a perovskite crystal and predict the possible
structure t = (r4+70)/v2(rp+ro), where r is an ionic radius.

Spinels AB>O,4. Compared to perovskite, the spinel structure is more complicated (see Figs. 2c
and 8b). The general chemical formula for the spinel structure is A;_;Bs[AsB2_5]04. When
0 is 0, it is known as the normal spinel AB,O,, in which all A cations are tetrahedrally coor-
dinated, while all B cations are octahedrally coordinated. When ¢ equals to 1, the chemical
formula is B[AB]O,, and known as the inverse spinel. In this case, the tetrahedral sites are
occupied by half of the B cations, while the other half of the B cations and all the A cations
occupy the octahedral sites. Finally, when 0 < § < 1, A and B cations mix up in both the
tetrahedral and the octahedral sites. Unlike perovskite which assume many lattice structures
and space groups, spinels usually stabilize into a cubic structure (with space group Fd3m). As
for the charge state, assuming O?~ as is predominantly true in TMOs, there are two allowed
ionic charge patterns for A and B ions: A2"/B3* (common in almost all cases) or A**/B** (rare
but does exist, e.g., in GeZn,0y).

How do electrons behave inside TMOs? TMOs have a vast range of electronic behaviors,
including those found in conventional metals and insulators, which are classified according to
band theory. In addition, you can find various exotic phases such as high-temperature super-
conductivity, correlations-driven metal-insulator or Mott transitions, and topological states of
quantum matter. The very diversity of TMOs makes them almost impossible to fit into a uni-
versal theory of their electronic properties. The usual approach in physics is to focus on the
dominant term in the Hamiltonian while treating other terms as corrections or perturbations.
Following this logic, in practice, the challenge of describing the electronic properties lies in
selecting a starting point: whether the electrons are localized about corresponding ions or itin-
erant over the whole solid. Starting from those two extremes, several theoretical models have
been developed, which I briefly introduced below (also see [5]).

lonic Model. This simple but powerful model treats electrons from a local point of view. When
we place a transition metal cation inside a solid, besides the Madelung potential, valence elec-
trons of this cation experience additional Coulomb interactions stemming from surrounding
oxygens, which we call the crystal field. Serving as a perturbation source, the degenerate en-
ergy levels obtained for isolated atoms are now split. Since the d sub-shell is the outmost shell
of a transition metal ion, the crystal field can significantly affect its energy. As a result, the five
spherical harmonics labeled by their quantum numbers (n, [, m) are no longer the eigenfunc-
tions in the presence of a crystal field. Instead, we introduce new eigenfunctions that are linear
combinations of those spherical harmonics.

These eigenfunctions’ shapes (or electron density distributions) are plotted in Fig. 2a. Figure 2b
displays a few distinct d orbital energy splitting patterns under different crystal field symmetry.
Depending on the crystal field’s local symmetry or the polyhedral coordination’s geometry, the
splitting sequences can be quite different. In this lecture, I will mainly discuss two types of
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Fig. 2: a: Shapes of the d orbitals. The notion of x, y, and z refer to the wave-function
variables written in the Cartesian coordinate system. b: Energy splitting of the d orbitals under
different crystal field symmetry. The notation for e,, ta, are defined according to group theory.
c¢: Perovskite ABQOs lattice and AB5Qy spinel unit cell. d: (a)—(e) Evolution of the electronic
energy levels of TMOs in the ionic model. O and M refer to oxygen and transition metal ion,
respectively. e: A schematic of the d band in the Hubbard model. For a half-filled band,
the electron correlations (Hubbard U) are able to open a gap when its strength reaches the
critical value, resulting in the lower (UHB) and upper Hubbard (LHB) bands separated by the
correlated gap of U. f: (left top) Energy level diagram of a standard Mott-Hubbard insulator
(MHI). In this case, the gap E, is defined by U. (left bottom) Energy level diagram of the charge-
transfer insulator (CTI). In this case, the gap E, is defined by the charge-transfer A energy and
intimately involves states on oxygen or anion in general. (right) Zaanen-Sawatzky-Allen phase
diagram. Note, U and A represent the electron-electron correlation and charge-transfer energy,
respectively. t is the electron hopping strength, a measure of the electronic bandwidth.

crystal fields: octahedral and tetrahedral. In the octahedral field, the orbitals are split into an

upper doublet e, group including d,2_,2 and ds,2_,2 orbital states and a lower triplet ty, group
with d,, d,., and d,. states.
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How can we intuitively understand the origin of the energy splitting without relying on a group
theory analysis? Recall that oxygen p orbitals are dumbbell-shaped and point along the Carte-
sian axes. In an octahedral environment, the lobes of e, orbitals always point towards those of
p orbitals, effectively increasing the Coulomb repulsions between e, and p electrons and thus
lifting up the energy levels. In contrast, ty, orbitals have lobes pointing away from those of oxy-
gen. Therefore, all ty, levels are shifted downward. The energy gap between these two groups
is denoted as Agp (or 10Dq in chemistry). A similar analysis can be applied in the case of a
tetrahedral environment, where the splitting pattern is reversed compared to that of octahedral
coordination.

Hubbard model. The combination of the ionic model with the traditional band theory can suc-
cessfully describe the electronic structure of many TMOs reasonably well. However, as early as
1937, it has been recognized that several transition metal compounds (e.g., CoO, NiO, Fe,03),
which are expected to be metallic, instead are wide-gap insulators. This failure in predicting the
ground state in these materials signals that some critical factors are missing. The main reason
is that in the ionic model, the electrons are considered independent and Coulomb repulsion is
therefore omitted. This interaction, also known as electron correlation, is weak when electrons
move in broad bands. However, in TMOs, the partially filled bands derived from d-electrons
are usually very narrow, and the electrons appear more localized. Under this circumstance, the
electron-electron correlations are inevitably amplified, exerting significant influence on the band
structures and the overall physical properties of the materials. To quantitatively account for this
observation, in 1963 Martin Gutzwiller, Junjiro Kanamori and John Hubbard independently
proposed a new model Hamiltonian H = —t ZUJW(CZUCMA—C;UCW) + U, niyni, [6-8].
In this Hubbard Hamiltonian, the first term describes the usual hopping effect of electrons from
a site to its nearest-neighbors without spin-flip (so called kinetic term), whereas the second term
accounts for the extra repulsive energy cost due to double occupation of the same lattice site.
In this sense, the Hubbard model includes two competing processes (localization vs. delocal-
ization), and the true ground state is determined by the relative strength between Hubbard U
and hopping integral ¢, which is proportional to the electronic bandwidth W. The influence of
Hubbard U on the electronic band structure is shown in Fig. 2e.

Mott insulators and Mott transitions. Now let us recap that in accordance with the original band
theory, if a valence band with 2V capacity is half filled, the system is a metal. Nevertheless,
now electron-electron correlations act to open a correlated or Coulomb gap in the valence band.
If the correlation effect is weak compared to the bandwidth (U/t <1), the band will not be
split, and the material remains metallic. However, if the correlations are strong or U/t >>1,
a correlated band-gap emerges and separates the 2/NV valence band into two new bands, called
upper Hubbard band (UHB) and lower Hubbard band (LHB), each with /V electron capacity [9].
For this reason, the material turned into an insulator, is collectively known as a Mott insulator
or Mott-Hubbard insulator. I must stress that the Mott insulator is a highly non-trivial state, and
many of the transition metal insulating compounds, which are predicted to be metallic, belong
to this new class of quantum materials. It is also helpful to remember that for trivial band
insulators or semiconductors, the energy gap is defined by the periodic potential of the crystal
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lattice. In sharp contrast, in Mott crystals, the energy gap arises solely from electron-electron
correlations.

Let me dig deeper into the excitation spectrum of Mott compounds. Naturally, starting from
the noninteracting side (U= 0) and gradually increasing U, we should sooner or later reach
a critical point U, where a metal-to-insulator transition takes place. This transition is called
the Mott transition. Among TMOs, a significant number of compounds undergo such a transi-
tion. It has been observed that several factors, such as temperature, pressure, and electric and
magnetic field, can trigger the Mott transition. Another important fact is that even though the
Hubbard Hamiltonian is not explicit about the underlying crystal structure, this Mott transition
is usually accompanied by structural distortions and long-range spin orderings. Because of the
entwined couplings, the question of a driving force behind the Mott transition, including the
role of electronic correlations, is still not entirely understood.

Charge transfer insulators. Up to this point, I have considered only the effects of transition
metal d bands. You should remember that anions and, specifically, oxygens are also very im-
portant. In fact, in many TMOs, the oxygen 2p bands are slightly lower in energy than the
d bands. Here we can also ask, once the UHB and LHB are formed, what are their relative po-
sitions with respect to the oxygen p bands? As illustrated in Fig. 2f, there are mainly two cases
of energy level diagrams expressing their relative positions. The oxygen p-band can either be
lower than both of the Hubbard bands or in between these two bands. TMOs in the former
case are a standard Mott insulator, whereas those in the latter case are given a new name, a
change-transfer insulator (for an excellent discussion see [10, 11]).

To explain the difference, it is necessary to introduce a new energy scale, the so-called charge-
transfer energy Acr. As there are n electrons in the d levels, d” configuration, two types of
excitations exist. First, the electron can either hop onto another already occupied site in the
same d level, say d"d" <+ d"*d"*!, or an electron from oxygen 2p band can hop onto the
empty d-state, d"p® <+ d"*1p°. The first process costs us the energy U, while the second one
cost a certain amount of charge-transfer energy, which is Aoy = Ey—E,.

The lowest charge excited state can be different depending on the ratio of U to Agr. When
Acr > U [see Fig. 2f(left)], the oxygen p band lies lower than the LHB. The band gap
is now determined by U. d"d" <> d" 'd"*! costs less energy, as is typically the case for a
conventional Mott insulator. However, when Axp < U, the electron hopping between oxygen
and TM ion d"p® <+ d"*1p° costs less energy and results in the lowest excited state. Here, the
band gap is defined by the charge-transfer energy Acr and not by U. The related materials
are called charge-transfer insulators; in this case, the excited electrons are from the oxygen
p levels. Moreover, it turns out that many of the physically interesting TMOs belong not to
the Mott but to the charge-transfer family; the prototypical examples are the high-temperature
superconducting cuprates, e.g., La;CuO,4 or YBayCu3O;_s.

Even more complicated situations occur if you consider the bandwidth, which is proportional
to the electron hopping strength ¢. Specifically, what I considered so far was based on the
assumption that Aoy > t and also U > ¢ so that one can expect the insulating ground state
to emerge. However, you can imagine that if the bandwidth is large enough, the correlated
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gap may fail to open, resulting in a metallic ground state. These ideas are rationalized in the
so-called Zaanen-Sawatzky-Allen (ZSA) phase diagram, which is shown in Fig. 2f(right). For
most transition metal compounds, their electronic structure can be qualitatively explained by
this phase diagram. One significant effect is still missing from my discussion — the spin-orbit
effect. The subject is so vast and important that instead, I refer the reader to the reviews [9, 12].

2 What are correlated oxide interfaces?

One of the prime goals of basic condensed matter physics is to seek out and explore new col-
lective quantum states. Towards this goal, ultra-thin heterostructures composed of two or more
structurally, chemically, and electronically dissimilar constituent oxides have been developed
into a powerful approach over the past few decades [13—18].

Here, the main idea is that at the interface where the dissimilarities meet, the frustration caused
by mismatches between the arrangement of atoms, charges, orbitals, or spins can trigger the
emergence of phenomena with electronic and magnetic properties which non-trivially differ
from the bulk compositions. For many research groups, the correlated interface engineering has
opened a route to new materials behaviors using those mismatches as the control parameters.
Paraphrasing the Nobel Prize winner Herbert Kroemer, ‘The interface is a new material.’

A summary of the potential mismatches at oxide interfaces is shown in Fig. 3(left). As seen, at
the oxide interfaces, the following degrees of freedom, can be rationally designed:

(1) Epitaxial strain. Strain results from lattice mismatches between the atomic arrangement of
two different TMOs. By delicately applying strain, the M-O-M bond length and bond angle can
be effectively tuned, which in turn may trigger electronic and magnetic phase transitions. For
instance, using epitaxial strain as the control parameter, ultra-thin NdNiOjs films have supported
a remarkably enlarged phase diagram with several new states not observed in bulk [19];

(2) Local symmetry. As discussed in the previous section, TMOs have a variety of local sym-
metry or coordinate polyhedrons. Suppose we want two components with different local sym-
metries to grow as a heterostructure. To achieve growth, each subsystem needs to compromise,
and the interfacial structure will deviate dramatically from their bulk counterparts. A robust
example is the y-Al,O3/SrTiOj3 interface: v-Al,Og has a spinel structure with tetrahedral and
octahedral local symmetries, whereas SrTiOs is a perovskite with only octahedral symmetry.
However, at the interface, an anomalous square pyramid local symmetry emerges for Ti ions,
which strongly alters the electronic band structures;

(3) Polar mismatch. Even with the same lattice structure, the net charge of each atomic layer
can be distinct from the naive ionic pictures. If a heterointerface consists of entities with dif-
ferent net charges per atomic plane, in this case the so-called ‘polar mismatch’ may occur, and
the charges near the interface must rearrange to satisfy a condition of charge neutrality. This
phenomenon has been found in many complex oxide heterostructures and for example was con-
jectured to be the source of the two-dimensional electron gases (2DEG) emerging between two
insulating TMOs [14];
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(4) Orbital reconstruction. Quite often, we find a variation of the orbital occupation at ox-
ide interfaces that stems from the modulations of the atomic structure or charges due to the
mismatches. As a result, unusual orbital configurations can be realized at the interface. To
illustrate, in ultra-thin LaNiO3/LaAlO; superlattices, it was found that unlike the bulk LaNiO;
(Ni®*, 3d"), where valence electron equally occupies the d,2_,2 and d., orbitals, at the super-
lattices interfaces d o, is preferentially occupied [20];

(5) Magnetic coupling. Oxide interfaces can be an effective tool to tune or even design mag-
netic interactions. You can imagine that if materials with a different kind of exchange coupling
(for instance, FM vs. AFM) are attached in atomic proximity, their incompatible order param-
eters may eventually drive them to form a new magnetically balanced state (e.g., helical or
canted spin arrangements). For example, an interesting phenomenon has been discovered at
the interface of a high-7, superconducting cuprate with a colossal magnetoresistance mangan-
ite, YBayCuzOr/Lay/3Ca;/3sMnO3, where surprisingly superconductivity and ferromagnetism
coexist [21].

3 New quantum materials by geometrical lattice engineering

Inspired by the success of those interface engineering methods, recently another promising
method, collectively known as “geometrical lattice engineering” (GLE), has been presented as
a powerful tool to forge new topological and quantum many-body states. In close synergy with
interface and strain engineering, where mismatches between layers induce unusual interactions,
the key idea behind the GLE is to design fully epitaxial ultra-thin films and heterostructures
with an artificial lattice geometry generated by stacking of a precise number of atomic planes
along a specific orientation [22].
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This concept can be illustrated by recognizing that the properties of a three-dimensional (3D)
material can be drastically altered by changing parameters such as: the stacking of two-dimen-
sional (2D) atomic planes, the specific arrangement of ions in those planes, their sequence,
and the periodicity of layers fulfilling the charge neutrality condition. Conventionally, for thick
bulk-like films, the effect of those variations is often negligible (maybe apart from anisotropy).
In sharp contrast, for ultra-thin films, the directional stacking of atomic planes becomes domi-
nant in defining the electronic and magnetic properties. Following this idea, many exciting ma-
terials systems have been theoretically proposed in pursuing exotic quantum states. At the same
time, the experimental work on GLE has been primarily focused on the growth of cubic or pseu-
docubic (111)-oriented artificial lattices. In general, throughout the process of heteroepitaxial
fabrication, to be able to design a new material by the GLE, you can follow three controllable
routes. To explain this further, I will use a 3D simple cubic unit cell model to illustrate those
control parameters (see Fig. 3b).

Growth orientation. Starting with the same bulk compound, its 3D crystal structure can be
viewed as atomic layers stacking with different in-plane lattice geometries along different crys-
tallographic directions. For example, as illustrated in Fig. 3 (right), while the (001) planes have
square symmetry, the (110) and (111) planes have rectangular and triangular geometries, re-
spectively. The required in-plane lattice geometry by design can be determined by selecting a
proper structure and orientation of the substrate surface, which acts as a guiding template during
the initial nucleation and growth stages. A typical example is the realization of a 2D magnetic
lattice with extreme frustration derived from the ultra-thin (111)-oriented spinel-type structure
AB50,. This example I will describe in detail in Sec. 5.5.

Out-of-plane stacking sequence. In bulk crystals, the periodicity of the atomic planes can vary
dramatically based on the choice of crystallographic direction to fulfill the requirement of trans-
lational symmetry and the relative atomic positions of neighboring lattice planes . For instance,
the stacking of the adjacent layers can be either right on top of each other [the (001) stacking
in Fig. 3], or shifted [the (110) stacking], or even entirely reversed [the (111) stacking]. This
observation is at the heart of the design of artificial heterostructures since by controlling the
number of stacking planes within that period you can forge unique quasi-2D lattices that do not
exist in the naturally formed crystals. Among the prominent examples of GLE, I want to men-
tion the generalized graphene lattice, which can be obtained by digitally tuning the number of
atomic layers of (111)-oriented ABOj perovskite-type structures. I will present this case later
in Sections 5.3 and 5.4.

Isostructural superlattices approach. Combining isostructural materials to establish superlat-
tice structures with digital control over the individual number of layers adds another practical
dimension to applying GLE. This approach can be very useful for achieving materials with
complex chemical compositions or even thermodynamically unstable phases in the bulk form. A
representative test case is the fabrication of (111)-oriented IABO3/1AB’Oj3 superlattices [here
“1” refers to a single cubic (or pseudocubic) unit cell] that gives rise to an A, BB’Og double
perovskite [23].
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4 How can we grow perfect interfaces?

In Section 1 we briefly discussed many theoretical concepts; now it is time to turn to something
more applied. In this section, I want to focus on the question: ‘How can we grow multi-layer
structures with high-quality interfaces to match existing theoretical proposals?’ Here, I describe
one of the most popular methods for synthesizing such artificial complex oxide structures, called
pulsed laser deposition or PLD. Despite its relatively young age, PLD has proven a versatile
method for fabricating exceptionally high-quality epitaxial thin films and heterostructures dur-
ing the last two decades (see [24] and the comprehensive references [25,26]).

Compared with other popular physical vapor deposition (PDV) techniques, such as magnetron
sputtering or all-oxide molecular beam epitaxy, several advantages make PLD particularly suc-
cessful in growing complex oxide films. These include modestly priced instrumentation, stoi-
chiometric transfer of ions from targets onto a substrate, an energetic forward-directed plume,
and hyper-thermal interaction of the ablated species with the background gas (e.g., oxygen, ni-
trogen, argon). In other words, it is a PVD process performed in a high vacuum or low-pressure
system using a pulsed laser as the heating source of ionic and molecular species.

What does a typical growth cycle look like? During the deposition, a pulsed laser with a pulse
duration of ~ 20 ns operating in the UV spectrum (A= 248 nm) is focused on a small portion
of a ceramic/polycrystalline target, which usually contains a stoichiometrically correct mixture
of atoms to be synthesized on the substrate as the desired film. With a sufficiently high energy
fluence of 1-2 J/cm?, the ejected ions/molecules from the target vaporized by each laser pulse
produce a directional plasma plume. Next, this highly forward-directed plume moves towards
the substrate in a background gas atmosphere ranging from the ultra-high vacuum of 10~® Torr
and up to 1 Torr. This flux of oxidized and cooled to thermal energies ionic/molecular species
rapidly propagate, reach the substrate, and eventually nucleate and crystallize into atomic layers
of epitaxial solid films. To make a high-quality structure, you need to optimize several control
parameters. Let me start with the targets. Since a complex oxide compound typically contains
two or more kinds of atoms, a solid target suitable for PLD should be uniform and highly
dense, possessing identical cation stoichiometry to the desired film. If the laser ablates a loose
target, the resultant film will have a rough surface with microscopic molten droplets ejected
from the target. The substrate crystal should closely match the lattice parameter and symmetry
of the desired film. Finally, the crystallographic orientation of the substrate surface is critical
as it determines the epitaxial orientation of the film; the substrate serves as the atomic template
during the nucleation and the initial stage of film growth.

Once you select a substrate and the target, the remaining factors affecting the deposition process
are laser energy and fluency, the distance between the target to the substrate, background gas
pressure, and substrate temperature. As for the laser fluency, if we set it too low, the result of
each laser pulse would be similar to thermal heating. In this case, the ejected flux of ionized
species may deviate from the desired stoichiometry of the target due to the differences in vapor
pressure among each constituent chemical element. To avoid this issue, we need to increase the
laser fluence high enough to overcome the ablation threshold for a specific target, above which
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the evaporation is independent of the vapor pressure, and the plume can maintain its proper
stoichiometry. At the other extreme, running deposition with too high fluence would render
the formation of macroscopic droplets or even damage the target. As a result, the typical laser
fluence range is set around 1—4 J/cm?. Next, to grow complex oxide films, molecular oxygen is
often introduced into the chamber as the background gas for two reasons. First, the ejected low-
mass molecular species needs to interact with O, to get the desired phase (remember, there is
no solid oxygen!). Secondly, the background gas is required to reduce the high kinetic energies
of the plume from several tens of eV down to meV; without a reduction of the kinetic energy,
the complex ions of the plume would collide with the substrate’s surface, potentially sputtering
off the newly created island of crystalline phase and/or creating defects.

The substrate temperature is another critical factor in determining the quality of the films. How-
ever, temperature’s role during the deposition process is rather complicated. On the one hand, a
high substrate temperature is usually favored since it enhances the mobility of adatoms so that
they can rearrange, forming a flat surface morphology. On the other hand, high temperatures
can evaporate constituents with high vapor pressures out of the film, resulting in oxygen va-
cancy defects or missing cations. Another issue occurs when growing a superlattice structure
composed of various oxide components. The thermally active atoms of each constituent layer
can diffuse across the interface, destroying the atomic sharpness of the interface. In addition,
for many complex oxides with low crystal symmetry, the epitaxial orientation of the film is very
sensitive to the substrate temperature, often leaving a relatively narrow window for each phase.

Finally, under typical growth conditions, the deposition rate varies from a few tenths to one
angstrom per laser pulse. This feature ensures precise control of growth on the sub-monolayer
level and makes PLD a good choice for fabricating multilayers and superlattices of complex
multi-element materials.

I only have discussed the most general trends for each essential control parameter. The specific
values of those parameters are truly material- and growth chamber-dependent. This means that
for every new material of interest and for each specific growth machine, finding and optimizing
a comprehensive phase diagram for the best growth condition is necessary.

S Examples of correlated oxide interfaces

In what follows there are some interesting examples of recent correlated oxide interfaces. The
prime criterion for such a selection is to present the reader with the synthetic quantum materials
that harbor emergent states or phases not seen in the bulk constituent layers. Also, unlike the
previous sections, this section is more technical because it necessarily relies on the application
of multiple state-of-the-art probes and advanced computational methods; as such, I suggest to
treat those examples as a show-and-tell.
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Fig. 4: a: Diagram of a BTO/STO/LTO superlattice, where the yellow layer indicates the for-
mation of a 2DEG. In-situ RHEED images confirm high crystallinity. b: STEM/EELS image
reveals high-quality interfaces. Inset: extracted out-of-plane lattice parameters for each indi-
vidual layer. c: High-resolution STEM imaging reveals significant Ti-O polar displacements,
resulting in 8% enlargement of the lattice parameters. d: Summary of strength and direction of
polarization.

5.1 Artificial ferroelectric metal

Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are
thought to be scarce [27,28], because long-range electrostatic fields favoring the polar structure
are expected to be fully screened by the conduction electrons of a metal. Generally, based
on the type of atomic displacements, polar metals with perovskite structure fall into two main
categories: A-site driven (e.g., positional shifts of Li, Nd, and Ca ions in LiOsOg3 [29], NdNiOg
[30], and CaTiO3_s [28], respectively) or B-site driven (e.g., a shift of Ti ions in BaTiO3_;
[31,32]) kinds. For the former category, recent theoretical work [28] has suggested the absence
of a fundamental incompatibility between the polarity and metallicity, whereas, for the latter,
polar displacements show a rapid decrease with increasing carrier concentration [32].
Moreover, in reducing from three to two dimensions, it remains an open question whether a po-
lar metal can exist at all. Here, I describe the realization of a room temperature two-dimensional
(2D) polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO3/SrTiO3/LaTiOs.
Such an explicitly non-centrosymmetric 2D metal provides a template to engineer an interesting
quantum many-body state with three coexisting phases — ferroelectricity, ferromagnetism, and
superconductivity.

Let us start with the design idea. First, we use tri-color rare-earth titanate heterostructures (see
Fig. 4a) made of a layered arrangement of the ferroelectric alkaline-earth titanate BaTiO3 (BTO,
green), the paraelectric alkaline-earth titanate SrTiO3 (STO, gray), and the Mott insulator rare-
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earth titanate LaTiO3 (LTO, red). Bulk BaTi*" O3 with 3d° electron configuration is a well-
known ferroelectric material, which can undergo complex structural and ferroelectric phase
transitions on cooling, e.g., from cubic to tetragonal near 400 K, tetragonal to orthorhombic
near 280 K, and orthorhombic to rhombohedral near 210 K [33] (ferroelectric properties are
present in the latter three phases). Bulk SrTi*"O3z with 3d° electron configuration is a band
insulator with a charge gap size of ~ 3.3 eV. In contrast, bulk LaTi**O3 with 3d' electron
configuration is a Mott insulator and undergoes a G-type antiferromagnetic transition below
146 K [34]. In bulk, the lattice parameters are a = 3.905 A for cubic SrTiOs; 4.00 A for cubic
BaTiOs; 3.958 A for pseudocubic TbScOs; and 3.956 A for pseudocubic LaTiO3. Based on
these lattice parameters, the SrTiO3 layers of BTO/STO/LTO superlattices grown on a TSO
substrate are under tensile strain, whereas the BaTiO3 layers are under compressive strain.
Another interesting feature of these designer superlattices is in the transfer of electrons from
LTO (3d") into the STO (3d°) layers leading to the formation of a two-dimensional electron
gas (2DEG) [35] at the interfaces (yellow layer in Fig. 4a), which have a shared polar structure
due to the presence of ferroelectric BTO. As clearly seen, this design has two inequivalent
interfaces, BTO/STO and STO/LTO. What is interesting is the fact that both bi-color BTO/STO
and BTO/LTO interfaces are insulating. Therefore, the metallicity in the 3-color BTO/STO/LTO
structure comes from the 2DEG formed at the vicinity of the STO/LTO interface alone. Also,
in contrast to itinerant electrons of the STO/LTO interface, the electrons at BTO/LTO interfaces
are still localized, forming no 2DEG.

To monitor the crystal structures of the BTO/STO/LTO superlattice during growth, the mea-
surements of in-situ reflection high-energy electron diffraction (RHEED) were performed. As
seen in Fig.4a ultra-thin tri-color superlattices consisting of (BTO),¢/(STO)3/(LTO)3 (here the
subscript refers to the number of unit cells) as well as reference samples of (BTO),¢/(LTO)3
superlattice and BTO thin film were synthesized on TbScOj3 (110) single-crystal substrates by
pulsed layer deposition in a layer-by-layer mode. During growth, the RHEED diffraction pat-
terns for substrates, BTO, STO, and LTO layers stayed sharp, confirming the high crystallinity
and epitaxy of BTO/STO/LTO superlattices.

Further, to determine the atomic-scale structures of the superlattices, their interfacial structure,
and their chemical composition, the authors applied cross-sectional scanning transmission elec-
tron microscopy (STEM) with electron energy-loss spectroscopy (EELS). Figure 4b shows the
tri-color superlattice’s high-angle annular dark-field (HAADF) STEM image, revealing high-
quality continuous and coherent interfaces without phase separation. In the Z-contrast HAADF
image, the expected layer thickness and designed sequence of three layers are clearly distin-
guishable from the different intensities due to the difference in the scattering power of the
layers. Additionally, as seen in the inset (red dots) in Fig. 4b, the periodicity of the growth
sequence was determined from the periodic variation of the extracted out-of-plane lattice pa-
rameters for individual BTO, STO, and LTO layers. As engineered for the interfacial charge
transfer, low-temperature electrical transport measurements of BTO/STO/LTO revealed the ex-
pected metallicity and large carrier density of conduction electrons, n. in all tri-color samples
(n, ~ 10 cm™2).
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Next, I want to discuss the microscopic details of the centro-symmetric breaking of TiOg octahe-
dra leading to the formation of a 2D polar metal in this structure. To address this, high-resolution
HAADF- and ABF-STEM imaging were carried out, which allowed for the direct observation
and extraction of precise atomic positions of all constituent atoms, including oxygen, across
the interfaces. As shown in Fig. 4c, significant Ti-O polar displacements, i.e., relative shifts of
Ti and O along the out-of-plane direction, are found in the BTO/STO/LTO tri-color structure.
Additionally, a detailed quantitative analysis of the ABF-STEM image was performed to deter-
mine the amplitudes and directions of the polar displacements. The Ti-O polar displacements
are found to be as large as 0.3 A (!), which is an almost 8% enlargement of the lattice param-
eters. Moreover, these large Ti-O polar displacements not only exist in BTO but also extend
deep into the STO and LTO layers, where the 2D metallic layer resides, thus inducing polar
displacements into the metallic interface.

What about microscopic polarization and the connection to orbitals? Figure 4d summarizes the
strength and direction of polarization labeled by the color map from blue to yellow. A striking
feature is the periodic reversal of polar directions across the Mott LTO layers. It can be attributed
to atomic displacements driven by local up-down symmetry breaking, typical of perovskite sur-
faces, at the STO/LTO interface [36]. More specifically, as seen in Fig. 4d, the authors find that
around the LTO region, d, states are predominantly occupied. This orbital polarization decays
exponentially. However, in the BTO region, d,./d, . states are mainly occupied with the density
shifted towards the left BTO/STO interface. The spatial separation of d,, and d,./d,. states is
the combined effect of the electrostatic energy and the crystal field splitting [37]; namely, in
the LTO region, the electrostatic potential from positively charged (LaO)'* layers dominates
and is screened by d, electrons having in-plane dispersion. However, in the BTO region, the
out-of-plane (or apical) Ti-O distances become substantially larger compared to the in-plane
Ti-O distances due to the elongated c-lattice constant. This, in turn, lowers the on-site energy
of d,./d, orbitals and results in the large increase in the d,./d,. orbital occupancy compared to
STO/LTO heterostructures.

5.2 Orbital assisted Kondo lattice and spin-polarized 2D electron gas

Magnetic interactions between the localized spins and conduction electrons are fundamental
in many quantum many-body effects. Phenomenologically, in materials with localized spins
coupled to conduction electrons, the Kondo interaction [38—40] competes with the magnetic
Rudderman-Kittel-Katsuya-Yosida (RKKY) interaction [41], conceptualized in the so-called
Doniach phase diagram [42] and Kondo lattice models [41]. In real transition metal crystals,
however, the ground state depends on the strength of exchange interaction .J, the electronic
density ratio n,, /n. of the localized magnetic moments n,, to conduction electrons 7., and the
orbital character of magnetically active electrons [43]. In the strong-coupling regime with large
|.J|, the Kondo interaction prevails and results in a Kondo singlet state [1], whereas on the weak-
coupling side (small |.J|), depending on the ratio n,,/n. [44], the RKKY interaction may give
rise to either a ferromagnetic (FM) or antiferromagnetic (AFM) order between the localized
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spins. Notably, in the limiting case of n,,/n. > 1, the localized spins tend to form ferromag-
netic order by polarizing the conduction electrons [45]. In short, if we devise such a Kondo
active structure with the specific set of control parameters described above, we should realize a
highly desired artificial quantum material for spintronics with spin-polarized 2D metallicity.

In correlated d-electron heterointerfaces, the density ratio of n,,/n., the dimensionality, and
the orbital polarization of the magnetic interactions are all vital components for the formation
of a ground state [2]. Considering the splitting of the Ti ty, band between d,, and d,./d,.
subbands is a prime cause for the interesting emergent phenomena in the SrTiOs-based het-
erostructures [46]. This raises an important question: What is an experimental phase diagram
for the emerging magnetic interactions at the nanoscale in the tri-color system?

To answer this question, a set of tri-layer (tri-color) superlattices composed of [3 u.c. LaTiOg/
nSrTiOs/3 u.c. YTiO3] (n = 2, 3, 6 unit cells or u.c.) and reference bi-layer samples [mLaTiOs/
nSrTiOs] (here m = 3,20 u.c. and n = 2, 3,6 u.c.) and [3u.c. YTiO3/nSrTiO3] (n = 2 and 6
u.c.) were epitaxially synthesized by PLD on TbScOs3 (110) substrates. Again, in this designer
system, the interfacial charge transfer is used to create a two-dimensional electron gas at the
interface between LaTiO3 and SrTiO3 (LTO/STO) connected to a spatially separated interface
with localized magnetic moments at the YTiO3/SrTiO3 interface (YTO/STO) (see Fig. 5b).
Before I discuss the ground state of such a tri-color structure, let us investigate each component
of the superlattice. Figure 5a shows the magnetic phase diagram of RTiO3 (R=La, Pr, Nd, Sm),
which exhibits an antiferromagnetic (AFM)-to-ferromagnetic (FM) phase transition across the
series of rare-earth titanates [47]. For our tri-color design, we select LaTiO3 (~0.2 eV gap,
Ti 3d') with the smallest distortion, which undergoes a G-type AFM phase transition below
146 K [34]. SrTiOj is a 3d° system with no magnetism. And finally, for the third layer, the
authors selected a significantly distorted YTiO3 (~1.2 eV gap, Ti 3d'), where the FM order
forms below 30 K [48].

To summarize the design idea: In this structure, the action is supposed to happen at the LTO/STO
and STO/YTO interfaces. The STO layer acts as an active spacer which depending on its thick-
ness, brings the 2DEG from LTO/STO closer or further away from the magnetic moments of
the STO/YTO interface. That is why I name this unique tri-color design the structure to explore
interacting in space order parameters.

Now, what about the tri-color system? Figure 5b shows a high-angle annular dark-field (HAADF)
STEM image of the tricolor superlattice, revealing high-quality coherent interfaces without
phase separation. The atomic positions of the elements La (large yellow dots), Sr (large white
dots), Y (large blue dots), and Ti (small green dots) are labeled schematically. To check for
the presence of the interfacial charge transfer across the two LTO/STO and STO/YTO inter-
faces, the layer-resolved electronic structure of 3LTO/6STO/3YTO was investigated by atomic
scale STEM-EELS line scanning across the interfaces. As shown in Fig. 5b, by scanning atomic
layer-resolved Ti L 3-edge spectra across LTO/STO and STO/YTO interfaces [along the white-
dashed line in Fig. 5b] with a high energy resolution of 0.4 eV and a high spatial resolution of
0.8 A, the evolution of the Ti electronic structure across the interfaces was mapped out. The
bottom panel of Fig. 5b shows the reference spectra for Ti** and Ti** acquired from bulk-like
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Fig. 5: a: Magnetic phase diagram of RTiO3. b: HAADF-STEM image of the tricolor super-
lattice reveals high-quality interfaces. STEM-EELS shows the layer-resolved chemical compo-
sition. c: All three samples display metallic behavior which agrees with theoretical fits. d: A
view of the electron density distribution across the STO layer as dependent on layer thickness n
and atomic plane i.

SrTiOs and LaTiOs films. As seen in Fig. 5c, the Ti** spectra weight estimated from the fit-
ting parameters of solid curves in Fig. 5b immediately reveal that in addition to the previously
reported charge transfer from LTO into STO [49], there is an unexpected large charge transfer
from YTO into STO which leads to a localized electron layer at the YTO/STO interface [50].

Next, the authors investigated the properties of interfacial electrons arising from the interfa-
cial charge transfer by measuring temperature-dependent electrical transport. As clearly seen
in Fig. 5c all three samples 3LTO/nSTO/3YTO (n=2,3,6) show characteristic metallic behav-
ior with a weak upturn at a lower temperature. To rule out possible contributions from cation
defects and oxygen vacancies, bilayer YTO/STO and LTO/STO samples were synthesized, and
their transport properties were used as references [50,51]. In sharp contrast to the highly insu-
lating YTO/STO the sheet resistances of all the LTO/STO samples [51] show a 2D electron gas
behavior.



9.18 Jak Chakhalian

The other interesting feature seen in transport is the pronounced upturn in the sheet resis-
tance at the lower temperature. Previous work on rare-earth titanate heterojunctions has at-
tributed such an upturn to the Kondo lattice effect after carefully ruling out the contributions
from weak localization [52] and electron-electron interactions [53]. One of the key features
of the Kondo effect that immediately differentiates it from weak localization and electron-
electron interactions is the universal scaling behavior. As shown in Fig. Sc, all tri-layer sam-
ples agree well with theoretical fits [solid red line, numerical renormalization group (NRG)]
scaled Kondo resistances [ Rx(1"/Tk)/Rkl. The inset in Fig. 5c shows the extracted n-unit-
cell dependent Kondo temperature Tk by fitting the experimental data of [mLTO/nSTO] and
[3u.c. LTO/nSTO/3 u.c. YTO] superlattice. Based on the fact that the YTO/STO interface is
highly insulating [50], the observed Kondo scaling behavior lends support to the formation
of the interfacial lattice of localized magnetic moments located at the YTO/STO interface of
LTO/STO/YTO. So overall, in the tri-color LTO/STO/YTO structures, the authors created
metallic carriers at the LTO/STO interface facing the lattice of magnetic moments formed at
the YTO/STO interface.

To better understand the magnetic interactions in the tri-color LTO/STO/YTO, we can look
at the STO layer thickness (n-dependent) and atomic plane (i-dependent) electronic density
distribution plus d-orbital occupancy across the STO layer. In other words the question is what
happens when we move the 2DEG closer towards the magnetic lattice. The conceptual picture
is given in the top panel of Fig. 5d.

First, because we deal with a two-dimensional electron gas, the carriers have very specific
orbital types to let ‘light’ electrons rapidly move along the interface in the x-y-plane. In other
words, for a thicker STO layer, we got n.(d,,) > n,, near the LTO/STO interface, resulting
in the formation of a Kondo singlet state (fully screened magnetic moments) since light d,,
conduction electrons (dashed yellow line) with large carrier density are bound to the LTO/STO
interface.

On the other hand, there is a low concentration of ‘heavy’ electrons (red arrows) with d,./d,.
character (here z is perpendicular to the interface), which slowly disperse away from the LTO/
STO interface and appear near the magnetic STO/YTO interface (solid red line). Upon reaching
the STO/YTO interface, these mobile heavy electrons interact with the localized magnetic mo-
ments n,,(d,, ). What is remarkable is that this orbital-dependent ferromagnetic interaction can
proceed via two possible channels: (1) based on the Hund’s rule, the interaction between the
dyy and d,./d, . electrons results in the FM ground state [20] and (2) the Zener kinetic exchange,
which can win the competition against the Kondo and RKKY interactions, again leading to the
formation of a localized ferromagnetic ground state with spin-polarized conduction electrons.
Finally, when the STO layer becomes ultra-thin, e.g., n=2, we have n. ~ n,, and the conduc-
tion carriers lose their distinct orbital character resulting in the mixed orbital state d,./d,./d,.
In this case, in the ground state we have a direct competition between the Kondo screening,
RKKY coupling, and Hund’s energy. Based on this picture, the control of the STO thickness n
indeed modulates the critical ratio between magnetic sites and mobile carriers 7., /n. and their
orbital character or orbital polarization to exert decisive control over the magnetic interactions.
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5.3 New orbital order in graphene-like nickelates

In bulk, perovskite oxides have many exciting properties, including metal-insulator transitions,
magnetism, superconductivity, charge and orbital orderings, and multi-ferroicity, to name a few.
These infinite layer ABO3 perovskite compounds consist of alternating AO/BOy, ABO/O,, and
AO3/B atomic planes along the pseudo-cubic [001], [110], and [111] directions, respectively.
Thus, the precise control during the growth of two or three pseudo-cubic (pc) unit cells of
ABOj along the (111) direction leads to new lattice geometries with vertically shifted triangular
planes of B sites and results in buckled honeycomb lattice as shown in Fig. 6a. The emergence
of striking topological phases, including a quantum anomalous Hall state, was initially predicted
for a honeycomb lattice by Haldane [54]. Recently, there was a spark of interest in the search
for an artificially stabilized graphene-like quasi-2D lattice that can provide an ideal playground
for interacting topological phases in complex oxides (for details, see [55]). Here I describe the
case of rare-earth nickelates that illustrates the opportunities for designer topological phases by
geometrical lattice engineering (GLE).

The first member of the rare earth nickelates series, LaNiO3 (LN), is a paramagnetic metal. The
other members of the family of nickelates (RENiO3, RE=Pr, Nd.,..., Lu, and Y) in bulk form
exhibit metal-insulator transitions, E’-type antiferromagnetic ordering, charge ordering, and
structural transitions with a strong dependence of the transition temperature on the size of the
RE ion. Several theoretical works (see Refs. [57—60] for review) further emphasized the possi-
bility of realizing interaction-driven topological phases without spin-orbit ions (e.g., Dirac half
semimetal phase, anomalous quantum Hall insulator phase, or ferromagnetic nematic phase) in
the weakly correlated limit on the buckled honeycomb lattice of RENiO3 as shown in Fig. 6b-c.
Moreover, in sharp contrast to bulk LaNiO3, where orbital ordering is absent, theoretical mod-
eling in the strongly correlated limit predicted the presence of an orbitally ordered magnetic
phase as the novel ground state for the buckled honeycomb lattice of LaNiOs.

How hard is it to grow (111) oriented films? Despite the conceptual simplicity, the growth
of perovskites along the [111]-direction presents a formidable challenge. Contrary to the con-
ventional [001]-direction, the epitaxial stabilization along the [111] direction is far less under-
stood due to unavoidable surface/chemical reconstruction effects. This can be seen as all per-
ovskite substrates are strongly polar along this direction, e.g., SrTiOs: [SrO3]*~, Ti**; LaAlOs:
[LaO3]3~, AI*T, and so on. A possible solution to this polar catastrophe problem is to grow a
thin metallic buffer layer at the beginning of the growth sequence to effectively screen the charge
dipoles. However, one should pay particular attention as unwanted interfacial effects (between
buffer layer and desired material) can significantly influence the buffered heterostructure.

As the reconstruction effect often appears only at the substrate and vacuum interfaces, choosing
a substrate with the same sequence of charges per atomic plane as the desired material is another
solution that does not require growing a metallic buffer layer. To investigate this, Middey et al.
have grown LaNiOs films on (111) SrTiO3 (with a polar jump at the film/substrate interface) and
compared it to the growth of LaNiO3 on (111) oriented LaAlO5 (without any polar jump at the
film/substrate interface) [56]. It was clearly demonstrated that while a thick bulk-like LaNiO3
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film is metallic and effectively screens charge dipoles, a thinner film becomes insulating. Using
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS), the authors uncovered mas-
sive amounts of oxygen vacancies within the thinner films. With the increased LNO thickness,
the increased metallicity screens the polar jump, and the relative amount of proper Ni** ions
rapidly increases. Finally, good stoichiometric LaNiO3 along [111] can be only obtained when
the film thickness reaches 15 unit cells. In sharp contrast, Ni** was stabilized from the very ini-
tial stage of growth of LNO on the LAO (111) substrate and thus confirmed that the absence of
a polar jump at the film-substrate interface is critically important for the epitaxial stabilization
along [111]. As a result, the desired generalized graphene-like crystal of RENiO3 with RE=La
to Nd has been successfully achieved for the first time on the LAO (111) substrate [60].

What about the ground state? According to theoretical calculations, the QAH topological
phase should be accompanied by spontaneous ferromagnetism. However, X-ray resonant mag-
netic scattering measurements on (111) oriented [2u.c. NdNiOs/4u.c. LaAlO3] (2NNO/4LAO
after that) superlattice ruled out the possibility of a long-range ferromagnetic ground state and
instead established the presence of antiferromagnetic correlations (see Fig. 6d). In addition to
magnetism, the orbital structure was investigated by the X-ray linear dichroism (XLD) tech-
nique. The XLD spectroscopy allows for uncovering different kinds of orbital ordering and
the symmetry of a specific orbital state per chemical element of the film. In this resonant X-
ray spectroscopy, one measures the difference in absorption with vertical polarization 1z vs.
horizontal one Iy. If orbitals are preferentially aligned along one of the X-ray polarizations,
the XLD signal becomes strongly enhanced. Conversely, for the orbitally disordered state, the
X-ray linear dichroism is zero.

Despite its conceptual simplicity, the geometrical arrangement between the sample and X-ray
polarization vector requires careful consideration for detecting orbital ordering. Specifically, as
illustrated in Fig. 6e, all the e, orbitals (3d.2_y2, 3dz2—r2, and 3d,2_,o ) are oriented at ¢ =54.7°
with respect to the [111] growth axis of a NiOg octahedron. Because of this specific geometrical
arrangement, the XLD signal is expected to be very small even for a ferro-orbital ordered (FOO)
state with 100% orbital polarization.

To maximize the XLD signal, the samples can be mounted on a copper wedge (Fig. 6f), which
‘mechanically’ reorients the Ni-O bonds along the vertical polarization V and the in-plane hori-
zontal polarization H. This specific sample orientation on the wedge aligns the 3d.5_,o orbitals
almost along V polarization, giving a finite dichroic signal. On the other hand, 3d,s .o or-
bitals are almost in the plane of H polarization with a small but finite angle with respect to the
polarization vector H, resulting in an opposite and strongly reduced XLD signal. As a result,
instead of perfect cancellation of linear dichroism, a finite XLD is expected to be present for
the antiferro-orbital ordered (AFO) state. Fig. 6e-f shows resonant Ni L-edge X-ray absorption
spectra (XAS) (Iy; and 1) and the XD spectra (difference between Iy, and 1) obtained in the
flat (¢ = 0°) and the wedge (¢ = 45°) geometries.

As anticipated from the discussion above, the XLD signal indeed strongly increased when the
measurement was conducted for the ¢ = 45° geometry. As a control experiment, for the thick
bulk-like (111) NNO film, the XLD measurement shows no significant orbital polarization.
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Fig. 6: a: Growth of ABO3 along [111] leads to new lattice geometries. b-c: The weakly-
correlated limit of RENiOs has been theorized to host interaction-driven topological phases
such as a ferromagnetic nematic phase, Dirac half semimetal, and anomalous quantum Hall
insulator. d: XRMS measurements on 2NNO/4LAO establish the presence of antiferromagnetic
correlations. e-f: XLD spectra for ¢ = 0° (flat) and ¢ = 45° (wedge) geometries. The XLD sig-
nal was greatly increased for the wedge geometry, a sign of orbital polarization in 2NNO/4LAO.

This control experiment emphasizes that the observed orbital polarization in the 2NNO/4LAO
(111) superlattice is not a measurement artifact, and this buckled honeycomb lattice geome-
try engineered the orbitally polarized ground state. The obtained value of XLD around 9% is
large as the finite bandwidth of the e, bands and strong covalency strongly reduce the orbital
polarization from the atomic limit. I need to mention, however, that by the nature of the spec-
troscopic probe, XLD can only establish the presence of orbital ordering or orbital polarization



9.22 Jak Chakhalian

but cannot resolve a specific type of orbital pattern present in the system. This can be done by
using synchrotron-based resonant X-ray scattering on the Ni L-edge and by using density func-
tional theory (DFT). Combined with the DFT prediction the experimental data revealed a novel
kind of anti-ferro-orbital ordering with staggered 3d oo orbitals rotated by 90° in subsequent
layers. This new quantum state is absent in the bulk nickelates.

5.4 Electronic structure of graphene-like nickelates

Probing buried graphene-like [111] perovskite layers using soft and hard X-ray photoemission.
As we have seen in the previous section, artificial heterostructures comprised of ultra-thin
complex-oxide layers grown in the pseudo-cubic [111] direction have been predicted to har-
bor a wide range of extraordinary quantum states stemming from the unique lattice geometry
resembling graphene and the interplay between strong electronic correlations and band topol-
ogy [60]. However, studying such atomic layers’ electronic and structural properties remains a
formidable challenge due to the limitations of conventional surface-sensitive techniques, which
typically probe depths of only a few Angstroms.

In this section, I want to discuss a new experimental methodology that combines bulk-sensitive
soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron
spectroscopy (HAXPES), and first-principles DFT+U calculations. This powerful set is used to
establish a direct and reliable method for extracting momentum-resolved and angle-integrated
valence-band electronic structures of an ultra-thin buckled graphene-like layer of NdNiOs-
(111) sandwiched between two 4-unit-cell thick layers of insulating LaAlO3-(111) (see Fig. 6a).
Clearly, this is a challenging system for measurements as the active monolayer of NdNiO3-(111)
is buried under the capping layer of LaAlO3-(111) [61].

First, soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) measurements shown
in Figure 7b were performed using the high-resolution ADRESS beamline at the Swiss Light
Source. To enhance the information depth and enable a momentum-resolved analysis of the
hexagonal NdNiOs, the measurements were conducted at high incoming photon energies rang-
ing from 642 to 874 eV, far beyond conventional UV ARPES. Using such high photon energies
effectively increases the inelastic mean-free paths of the photoelectrons within the superlattice
by a factor of 3—-5 compared to typical home ARPES investigations, substantially improving
the probing depth. Theoretical calculations suggest the existence of two possible orbital ar-
rangements in this material: one characterized by P1 symmetry in a 1x1 unit cell (P1 1x1)
and another featuring P3 symmetry in a larger v/3x+/3R30° lateral unit cell. Bulk-sensitive
momentum-resolved measurements reveal excellent agreement with the band structure calcu-
lated using DFT+U for the Ni sites’ antiferromagnetic (AFM) ordering with P1 1x1 symmetry
shown in Figure 7c. These measurements provide direct evidence supporting the P1 1x1 sym-
metry, which perfectly aligns with the findings previously suggested by X-ray linear dichroism
data (see Sec. 5.3) [61-63].

To investigate the entire sample depth, angle-integrated hard X-ray photoemission spectroscopy
(HAXPES) measurements of the valence bands were carried out at a photon energy of 6.45 keV.
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Fig. 7: a: Schematic diagram of the sample and the SX-ARPES and HAXPES experimental
geometries. b: Momentum-resolved SX-ARPES map of the Ni 3d states near the Fermi level.
c: Isoenergetic cuts through the band structure in reciprocal space for the majority and mi-
nority bands. d: Bulk-sensitive HAXPES spectrum of the valence-band DOS. Inset shows a
high-statistics spectrum of the valence-band maximum (at ~ 265 meV), referenced to the Au
Fermi edge. e: Cross-section-weighted element-projected and total DOS of the superlattice,
calculated in the GGA+U framework of DFT and broadened to account for both experimental
and hole lifetime broadening.

At this hard X-ray energy, the estimated inelastic mean-free path is approximately 9 nanome-
ters, enabling direct probing of the density of states across the entire sample. This approach
facilitates a straightforward comparison between experimental data (Fig. 7d) and theoretical
predictions (Fig. 7e). The experimental HAXPES valence-band spectrum shows remarkable
agreement with the first-principles calculations regarding relative intensities and the positions
of key features. Moreover, the experimental valence-band maximum is observed at a binding
energy of ~265 meV below the Fermi level. This value corresponds to the magnitude of the
valence-band bandgap, indicating that the full bandgap of NdNiO3-(111) is at least of this size.
I remind the reader that in bulk (above 150 K), NdNiOs is a paramagnetic metal [61-63].

In conclusion, a combination of bulk-sensitive soft and hard X-ray photoemission techniques
can be utilized to investigate the momentum-resolved electronic band dispersion of a buried
two-dimensional NdNiO3-(111) layer within a designed superlattice below a cap layer. Ad-
ditionally, the density of states of this structure can be directly measured using HAXPES.
Combined with first-principles DFT+U calculations, this new methodology provides direct and
definitive evidence for an antiferro-orbital (AFO) order characterized by P1 symmetry within a
1x1 unit cell [64].

We learn from this example that we finally have a practical experimental approach to investigate
the momentum resolved electronic structure of new quantum metals and semimetals as thin as a
single atomic plane.
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5.5 Artificial quantum spin liquid on lattices with extreme frustration

Can we make a new exotic state of matter? In what follows, I will discuss the, in my view,
most enigmatic yet least experimentally understood state of matter called a spin liquid. To
make things even more intriguing, we should look at its quantum version, a quantum spin liquid
or QSL. If there is something that we do not fully understand microscopically, it would be
the concept of liquid (e.g., water). These days, experimentalists are very good at finding and
describing long-range order (LRO) by sharp Bragg intensities in reciprocal space. Conversely,
a disordered spin gas phase (paramagnet) can be reliably detected. But the precise nanoscopic
description of something which fluctuates in space and time with numerous short-range ordered
(SRO) configurations of spins is still beyond our current computational capabilities.
Nevertheless, one can bravely embrace the idea and think, at least theoretically, if such a liquid
of quantum spins is thermodynamically stable, what would be a Landau-kind order parameter
if at all, and most importantly, how could we detect such a state experimentally (for a theory
discussion see [65-70]).

As for the question of stability, we have one example of a true quantum spin liquid, *He, which
exists only outside of the solid-state setting. Even theoretically, we still do not have complete
answers to those questions. For example, we do know that a QSL cannot be described by the
conventional Landau theory of phase transitions relying on spontaneously broken symmetry.
Instead, one can introduce the idea of ‘entanglement entropy’ as a topological order parameter.
Despite its novelty and usefulness for theory, experimentally, we do not have probes that couple
to such a ’topological order parameter.” Thus, we mostly rely on negative statements about a
quantum material in question for practical reasons. At best, we can verify in a magnetometer or
via some sort of magnetic scattering that our magnetic crystal has no long-range spin order down
to the lowest experimentally accessible temperature. This is hardly a satisfactory situation, but
we need to say what would constitute a set of positive statements as an alternative. Here I list a
few popular ones:

e Definition 1: a QSL is a state in which the spin-spin correlations decay to zero at large dis-
tances or <Si“Sjﬁ ) — 0 when |r;—7r;| — oo. Objection: A classical liquid, spin nematic,
or valence bond crystal also satisfies this definition.

e Definition 2: a QSL is a state without any spontaneously broken symmetry, but so is a
valence-bond solid.

e Definition 3: a QSL is a Mott insulator that possesses no long-range magnetic order, lacks
any spontaneously broken symmetry, and carries a spectrum of fractional excitations. At
present, this is the definition most amicable for experimental verification. I recap that
fractional excitations are quasi-particles, e.g., spinons, carrying a half-odd-integer spin,
and fractionalized fermions are coupled to an emergent gauge field.

Why do we care about such exotics? Here is a short list of reasons: (1) Most SQLs are ‘flat-
band’ systems; if doped, they may harbor high or potentially even room-temperature supercon-
ductivity, (2) for dimensionality greater than one, fractional excitations interact with each other
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through emerging gauge fields, giving rise to string- and loop-like excitations akin to physics
of quark-gluon plasma and (3) QSLs sustain a new type of topological non-local order and
new spin excitations (anyons) which can be useful as an unconventional platform for quantum
computing with topological qubits beyond silicon, aluminum, or ion traps.

How to make a QSL? As for the experimental realization of a QSL, the currently existing
“recipes’ are illuminating but very limited. On the one hand, a general guiding principle is that
to reach a QSL, significant frustration resulting from the lattice geometry, multiple exchange
terms, or bond conflict are the most essential prerequisites. After tremendous, decades-long
efforts, promising candidate materials have been proposed and synthesized [71]. Interestingly,
the underlying lattices of almost all known QSL candidates are bound to five types of geome-
tries: triangular, pyrochlore, kagome, hyperkagome, and honeycomb lattices. This, in turn,
limits the pursuit of new QSL materials and brings to the focus an open question of whether any
additional lattice motifs can host a QSL and how it can be achieved experimentally?

Figure 8a illustrates the new approach for making such exotic phases called geometrical lattice
engineering (GLE) (see Sec. 3 and Ref. [22]). GLE principally aims to design and fabricate
lattices of artificial geometry by stacking on demand a specific number of atomic planes along
unconventional crystallographic directions to facilitate unattainable in the bulk configuration of
charges, orbitals, and spins. You had already seen this concept in action in subsection 5.3 where
I described how to create graphene-like NdNiO3 with a new anti-ferro orbital order.

Is there a real QSL based on the GLE? Here, I introduce a generic design of a new (quasi-2D)
lattice derived from the spinel structure (chemical formula AB,O,) and demonstrate its feasibil-
ity for a QSL phase [72]. Concretely, I will use CoCr,O4 as a prototype; we fabricated a series
of (111)-oriented ultra-thin films confined by non-magnetic Al;O3 layers into a quantum well
geometry. Compared to its bulk counterpart, the onset of the ferrimagnetic transition decreases
monotonically with reduced thickness and eventually shuts off in a single-unit slab of (111)
CoCry0y,. In this quasi-2D limit, the degree of magnetic frustration becomes enhanced by al-
most 3 orders of magnitude with persisting spin fluctuations down to 30 mK. CoCr,O4 belongs
to the normal spinel chromite family, M Cr,O4 (M=Mn, Fe, Co, and Ni) where the magneti-
cally active M2 ions occupy the tetrahedral A sites of the diamond sublattice and the Cr** ions
occupy the octahedral B sites of the pyrochlore sublattice, possessing complex spin configura-
tion of the ground state. Note, in bulk, CoCr,0O,4 has a collinear ferrimagnetic state first formed
with the Curie temperature of ~93 K, it transforms into an incommensurate spiral ferrimagnetic
state at ~26 K, and finally, an incommensurate to commensurate lock-in transition takes place
at ~14 K.

Now on to the GLE. As seen in Fig. 8a/b, when viewed along the [111] direction, the structure
is an intrinsic stacking of triangle (T) and Kagome (K) cation planes from Co and Cr ions em-
bedded in the oxygen cubic close-packed frame. This leads to a sequence ‘-O-Cr(K)-O-Co(T)-
Cr(T’)-Co(T)-’ in a single unit with four cation layers, which we denote as one quadruplet layer
(1 QL). Based on this design idea, [n QL CoCry04/1.3 nm Al;,O3] (n=1,2,4; 1 QL ~ 0.48 nm)
superlattices were fabricated by pulsed laser deposition on (0001)-oriented single crystal Al,O3
substrates.
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What is the ground state of this new synthetic magnet? The investigation of the magnetic
behavior of each sublattice was done by recording the resonant X-ray absorption spectroscopy
(XAS) taken with left- and right-circularly polarized beams. The difference between those two
spectra, called X-ray magnetic circular dichroism (XMCD), reflects the net magnetization of
a specifically probed element. To make the statement even more contrasty, I will 1 compare
the 4QL sample (bulk-like) to the most intriguing 1QL sample. As seen in Fig. 8c, the sat-
urated magnetic signal is indeed observed in the thicker 4 QL CoCr,0O,4 and also it exhibits
clear hysteresis loops at both Co and Cr L3 edges. These findings signal for the long-range
magnetic order even in 4QL thin samples. However, in sharp contrast, no hysteresis loop but a
linear XMCD versus H relationship is found on both Co and Cr in 1 QL CoCr,0y, typical of a
paramagnetic behavior!

To further examine if any long-range spin ordering emerges at extremely low temperatures,
we performed the torque magnetometry measurements on 1 QL CoCr,0O4 from 30 K down to
30 mK. This technique quantifies the magnetic torque response of a sample with respect to the
applied magnetic field (7 o« M x H). It is an exquisitely sensitive utility to probe vanishingly
small magnetic signals from ultra-thin samples and interfaces. The result confirms that within
the resolution of measurement and the entire temperature range, no hysteresis but a reversible
parabolic 7 o< (1o H )? relationship is observed for 1 QL, which implies a quantum paramagnetic
behavior persisting down to 30 mK. Moreover, if we plot torque vs. 7' (see Fig. 8c (right)),
we can immediately see that even at 30 mK, the ground state has large spin entropy, and its
spectrum of excitations is gapless or spin-metal like. To make this story even more compelling,
an extensive set of neutron reflectivity and mount spin resonance data affirms these conclusions.
Why does this quasi-2D artificial magnet enter a gapless QSL state? To obtain a micro-
scopic insight into how the designer lattice topology and quantum confinement alter the ex-
change interactions and, consequently, the magnetic ground state, a set of DFT calculations
and Monte-Carlo simulations were performed on bulk, 2, and 1 QL of (111) CoCry0y4. As seen
in Fig. 8d (left), the theory revealed that the new emergent QSL ground state is a consequence of
the markedly smaller exchange interaction along (111) because it is blocked by the vacuum-like
spacer of Al,O3 with a gap of 4 eV in the ultrathin films compared to bulk. In fact, for 1 QL,
this interaction is completely suppressed (!), while the in-plane interactions remain essentially
bulk-like, all in contrast to the behavior in bulk. And now we understand that due to the entire
blocked exchange along (111), our 1QL magnet turned into a 2D system with a pure Kagome-
triangular motive of extremely large magnetic frustration. Fig. 8d (right) shows that the system
reaches the frustration factor f = Ty /Ty of about 1000 (!) compared to the value in the bulk
of 4-6.

Here is what we learned from GLE. The ground state is a well-defined long-range magnetically
ordered state in bulk (QL — o). As the number of QLs is reduced, it becomes more and more
difficult to stabilize a conventional ordered state due to the enhancement of magnetic frustration.
Eventually, the ground state becomes highly degenerate in 1 QL, unleashing dynamical spin
fluctuations. I remind you that this is the regime where quantum effects play a pivotal role in
bringing the system into a QSL (quantum paramagnet) state without a spin gap.
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Fig. 8: a: The spinel lattice is made of a stack of triangle and kagome planes when viewed along
the [111] direction. b: View of cation triangle and kagome planes. c: XMCD measurements
show long-range magnetic ordering even in 4QL CCO films, but paramagnetic behavior in 1QL
CCO. Torque measurements reveal that even at 30 mK, the 1QL sample is gapless. d: Theory
reveals the emergent QSL ground state is a consequence of the suppression of out-of-plane
exchange interaction.
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6 Problems to solve, ideas to try

In this section, I want to point in ten directions, which is my challenge to you. Frankly, I do not
have answers to any of those questions, so I leave it to you to seek possible solutions.

1. If you replace a conventional nano-second UV laser with a femtosecond one, what new
synthesis regime can you reach? The intrigue here is that in the femtosecond regime, there
is no time for laser heat dissipation as phonons are too slow (pico-second timescale).

2. How can we grow uniaxially strained structures?
3. Apart from GLE, how do we design structures with extreme frustration from interactions?

4. Can you think of a way to combine different classes of interesting quantum materials,
such as TMO with TM dichalcogenides, TM oxyfluoride, and TM nitrites?

5. What happens if you combine different topological classes and antagonistic orders such
as Dirac electrons-Cooper pairs or Cooper pairs and magnetic monopoles of a spin-ice?

6. Can you think of a design approach for structures that can ‘zoom in’ on a specific term of
a Hamiltonian?

7. Can you create structures holding quantum chaos?
8. What about structures that reach a regime of quantum hydrodynamics?

9. How can you measure a spectrum of excitations (e.g., magnons, phonons, plasmons, or-
bitons) right at the interface?

10. What designer structures can directly reveal the quantum entanglement of fermions?
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10.2 Matthias Vojta

1 Introduction

This chapter is devoted to phase transitions at zero temperature, usually called quantum phase
transitions (QPT), their critical behavior, and its changes arising from frustration and the pres-
ence of orbital degrees of freedom [1].

QPT and quantum criticality define an active field of research which goes back to the work
of Hertz in 1976 [2] who considered magnetic ordering transitions in metals. Much progress
was made in the 1990s and 2000s [3], such that many classes of symmetry-breaking QPT in
insulators are reasonably well understood by now, with agreement between experiment and
theory. In contrast, transitions in metals remain only partially understood [3,4]. Moreover,
and most relevant to this chapter, recent developments in the field of frustrated and topological
systems have brought into focus entirely new forms of quantum criticality which are under
intense investigation today [5]. For some of them, microscopic ingredients beyond the simplest
non-relativistic single-orbital picture are crucial, defining an extremely fruitful and rich avenue
of research.

In the following, we will focus on interacting electrons in solids and thus on collective phe-
nomena. In contrast, we will not cover transitions driven by the topology of band electrons;
similarly, we will not be concerned with transitions driven by quenched disorder. Our primary
interest is on thermodynamic and linear-response spectral properties of systems in the vicinity of
a QPT. The non-equilibrium quantum dynamics near QPTs as well as genuine non-equilibrium
phase transitions have become an intense research field on its own, but are beyond the scope of
this chapter.

Given the complexity of material, we will mainly discuss conceptual ideas and qualitative as-
pects of theory; for concrete computations we refer the reader to the literature. Experimental
results will be mentioned when appropriate.

2 Quantum phase transitions

Before turning to frustration, orbitals, and the like, we will summarize the main aspects of
“conventional” quantum criticality. For reasons of space, this review can be nowhere close to
complete. However, many extensive texts on this subject are available [3,4, 6] which we refer
the reader to for a more detailed exposure.

2.1 Phenomenology and Landau-Ginzburg-Wilson theory

A quantum phase transition (QPT) is a phase transition taking place at temperature 7'= 0 upon
tuning a non-thermal control parameter like pressure or magnetic field. The finite-temperature
properties near a continuous QPT are highly unusual: Due to the peculiar properties of the
quantum ground state at the transition point, dubbed quantum critical point (QCP), the so-called
quantum critical regime located at finite 7" above the QCP, Fig. 1, displays properties distinct
from that of any stable phase of matter. These properties include power-law behavior with



Orbitals, Frustration & Quantum Criticality 10.3

T A non-universal
thermally - //,
disordered » duantum critical

classical/v

critical

;" quantum

ordered disordered

r

Fig. 1: Generic phase diagram in the vicinity of a quantum critical point as function of a non-
thermal control parameter v and temperature . An ordered phase exists for r < 0 and low
bounded by a line of classical phase transitions which terminates at the QCP atr = 0, T' = 0.
The quantum critical regime is defined by kgT > |r|"*, where v and z are the correlation
length and dynamical exponents.

unconventional exponents of thermodynamic and transport quantities as function of absolute
temperature as well as scaling behavior, where suitably rescaled observables depend only on
dimensionless ratios of external parameters.

From a theoretical perspective, the universal properties of QPTs can often be described using
a continuum quantum field theory for the transition’s order parameter. The choice of the latter
is dictated by the way in which symmetries of the Hamiltonian are spontaneously broken at
the transition. This goes back to Landau who pioneered the ideas of symmetry breaking and
local order parameters in the context of phase transitions. This concept was later extended to
quantum phase transitions by taking into account temporal order-parameter fluctuations, i.e.,
quantum fluctuations — this leads to the so-called Landau-Ginzburg-Wilson (LGW) approach.

For Mott-insulating quantum magnets the LGW theory for a zero-temperature transition be-
tween a featureless paramagnet and, e.g., a collinear ordered antiferromagnet takes the form of
a quantum ¢* model with the action

B8 2
s= [t [(ar (Zaer+ 007+ 2o+ i) 0
0 |

where 0; = 0/0z;, and J(Z,7) is a local N-component order-parameter field which is as-
sumed to vary slowly in space and time and encodes the ordering tendency at a microscopic
wavevector @ Further, 7 is imaginary time, and ¢y, &y, and u, are parameters. Decreasing the
non-thermal control parameter d, at low temperature tunes a transition between a disordered
and an ordered phase, with the O(/N) symmetry spontaneously broken in the latter; N = 3 for
collinear Néel order in the presence of SU(2) spin symmetry. More precisely, dy acquires a
temperature-dependent renormalization, and the transition occurs at 6y = J. where the renor-
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malized 0 vanishes. The distance to the QCP can be expressed as
r = 50 — (50<T:O) (2)

and may be tuned by pressure or chemical composition. Eq. (1) can also describe non-magnetic
ordering transitions, such as the onset of charge order accompanied by the breaking of lattice
translation symmetry.

The thermodynamic properties of Eq. (1) are essentially understood, as they can be computed
analytically using renormalization-group techniques as well as numerically. The critical expo-
nents of the QPT are known to a good accuracy in all space dimensions. Similarly, dynamical
and spectral properties have been considered, and a detailed exposition is given in Ref. [3].

In Eq. (1) space and time enter symmetrically, corresponding to a dynamical exponent z = 1.
The time direction in the integral may be interpreted as an additional space direction, such that
the quantum theory in d dimensions at 7' = 0 is equivalent to a classical theory in D = d + 2
dimensions. While the local order-parameter description with z = 1 applies to many QPT
in insulators, the situation in metals is more complicated due to the presence of low-energy
fermionic excitations. Two additional remarks are in order: (i) QPTs into ferromagnetic or
polarized phases in the presence of SU(2) spin symmetry follow a quantum dynamics different
from that of the ©* model because a conserved density changes across the transition. (ii) Berry-
phase terms, which are generically present in a field-theory description of spin systems, do not
appear in Eq. (1) because they are irrelevant for the transition between featureless paramagnet
and antiferromagnet. They are, however, responsible for much of the physics beyond LGW
which will be described in Sec. 6.

For finite-temperature (i.e. classical) transitions, the upper critical dimension above which mean-
field critical behavior is realized is D = 4 for a standard (? theory. In the quantum case, the
presence of temporal fluctuations implies that the upper critical dimension for QPTs is given by
df = 4—~z. For instance, continuous QPTs in d=3 with z=1 display mean-field behavior with
logarithmic corrections. For phase transitions involving fermions the situation may be more
complicated, though.

A last parenthetical remark here: Zero-temperature phase transitions, both continuous and dis-
continuous, can also occur in purely classical models. Obvious examples occur classical models
of vector spins: For instance, the field-driven transition to saturation in a classical Heisenberg
model is typically continuous.

2.2 An example: Coupled dimers and TICuClj

A class of simple microscopic models displaying magnetic QPTs is given by coupled dimers,
i.e., lattice systems with a crystallographic unit cell containing two spins 1/2. Consider the
Heisenberg Hamiltonian
H=JY 5-S;+XI> S5 3)
(ig) (ig)’
where the first sum runs over all dimers, whereas the second sum covers all inter-dimer bonds.
A square-lattice realization is shown in Fig. 2. The limit A = 0 corresponds to disconnected



Orbitals, Frustration & Quantum Criticality 10.5

|

|

|

|

|

|

|

|

I

|
®
A.~0.52

C

>V

Fig. 2: Square-lattice coupled-dimer model (3) with phase diagram: The two Heisenberg cou-
pling J and \J are shown as thick and thin lines, respectively. The ellipsoids represent singlet
pairs of spins 1/2. At a critical value \. the system transits from a gapped singlet paramagnet
(left) to a Néel antiferromagnet (right).

spin pairs, each of them having a singlet S = 0 ground state and a triplet S = 1 excited state,
separated by an excitation energy .J. The full lattice model has two distinct phases, which can
be easily discussed:

Limit A < 1: This implies weakly coupled dimers, leading to a disordered (i.e. quantum
paramagnetic) phase with no broken symmetries and exponentially decaying spin corre-
lations.

Limit A ~ 1: Here the dimers are strongly coupled, and long-range antiferromagnetic order
with broken SU(2) symmetry emerges. For the lattice shown in Fig. 2, A = 1 represents
a square lattice which is known to display long-range order.!

A quantum phase transition must occur at an intermediate value of A, Fig. 2. As the order
parameter is the staggered magnetization, the QPT is described by the LGW theory (1) with
N = 3 components. The excitation gap of the quantum paramagnet closes upon approaching
the QCP. The ordered phase displays two gapless Goldstone modes corresponding to the broken
spin rotation symmetry as well as a gapped Higgs mode corresponding to amplitude fluctuations
of the order parameter.

A paradigmatic experimental realization of coupled dimers, here in three space dimensions, is
found in the Mott-insulating material TICuCls [7]. The magnetic Cu ions form dimers, and at
ambient pressure and low temperature the material is in the quantum paramagnetic phase. Upon
applying hydrostatic pressure, the inter-dimer interactions increase (i.e. A in Eq. (3) increases)
such that the system eventually reaches a state with antiferromagnetic long-range order. Ignor-
ing the (weak) spin-orbit coupling, the QPT between the two states is described by the LGW
theory (1) as above. Given that D = d + z = 4, the QPT is of mean-field character.

I'The system in Fig. 2 becomes disordered again for A > 1, as this limit corresponds to decoupled spin ladders.
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Fig. 3: Experimental results for the coupled-dimer system TICuCls, showing the magnetic ex-
citation gap A and the Néel temperature Ty as function of applied pressure p. The magnetic
QPT is located at p. = 1.07 kbar. (Figure taken from Ref. [7])

2.3 Frustrated systems: What is different?

The considerations so far cover “simple” symmetry-breaking transitions, i.e., transitions be-
tween a symmetric — and also otherwise featureless — state and a state which can be character-
ized by a local order parameter and spontaneously breaks one or more symmetries of the Hamil-
tonian. While such transitions can of course also occur in frustrated systems, more complicated
situations frequently arise which cannot be captured by a simple LGW theory. Important cases
are:

1. If a quantum paramagnetic phase is a fractionalized spin liquid, it is not featureless, be-
cause it is characterized by topological order.

2. The ordered-state manifold may be unconventional, i.e., not be characterized by a local
order parameter or by a unique ordering wavevector. Long-range order may arise exclu-
sively from fluctuation effects.

3. A transition might occur between states without spontaneous symmetry breaking.

4. The active quantum degrees of freedom can be different from the fluctuations of the order
parameter, i.e., if a local order parameter exists, it might be a composite when expressed
in the elementary degrees of freedom.

5. Frustration may enhance fluctuations such that the transition is rendered first order.

In Sec. 5 and 6 we will cover some of these cases in more detail.
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3 Frustration and novel states

Frustration refers to the presence of multiple constraints which cannot be simultaneously sat-
isfied. An important arena is frustrated magnetism where the constraints arise from the mini-
mization of (pairwise) interaction energies: In a frustrated magnet, not all interactions can be
simultaneously minimized. The perhaps simplest example is given by antiferromagnetically
coupled Ising spins on a triangle. Frustration can arise from the geometry of the underlying
lattice and/or from the nature of the interactions. The most obvious effect of frustration is to
counteract the usual tendency towards symmetry-breaking order at low temperatures. As a re-
sult, a frustrated system may either have a strongly reduced ordering temperature or show no
order at all, the latter often leading to exotic liquid-like phases. In addition, the suppression
of conventional ordering phenomena can induce a competition of multiple less conventional
phases, resulting in complex phase diagrams, non-trivial crossover phenomena, an accumula-
tion of entropy at low temperature, and a large sensitivity to tuning parameters.

The past decade has seen a flurry of interest in frustrated systems [8—13], primarily driven
by the search for novel states of matter. Prime examples are spin liquids with fractionalized
degrees of freedom, skyrmion lattices with emergent artificial electrodynamics, fractionalized
Fermi liquids, and their descendants. Many of these phases are characterized by non-trivial
topological properties.

In this section, we introduce important concepts for frustrated magnets. The discussion here
will focus on Mott insulators with local moments; frustrated metals define a large separate topic
on its own, and we will only touch upon this in Sec. 7. We will consider lattice systems of local
moments, i.e., quantum-mechanical spins transforming as SU(2) vectors, with a Hamiltonian
containing two-spin interactions plus, perhaps, multi-spin exchange terms. The most generic
model Hamiltonian is an antiferromagnetic Heisenberg model of spins .S with nearest-neighbor
interactions .J,

H=T) S-S )
(i)

The Heisenberg interaction in Eq. (4) favors antiparallel moments on neighboring lattice sites.
Consequently, this interaction is non-frustrated on lattices where all closed loops of interac-
tion paths have even length, such that an alternating up—down arrangement, corresponding to
collinear magnetic order, can cover the lattice. This applies to the square and cubic lattices as
well as, e.g., the honeycomb lattice. In contrast, frustration is induced on lattices with odd-
length loops, e.g., the triangular, kagome, bcc, fcc, and pyrochlore lattices. On some of these
lattices, a magnetically ordered ground state — often non-collinear — is realized for any S de-
spite the existence of frustration, the triangular lattice with its 120° order being an established
example, while in other cases order may be entirely absent.

In addition to the described geometric frustration, rooted in the geometry of the underlying lat-
tice, incompatible constraints may be caused by the nature of the exchange interactions, leading
to exchange frustration. A prominent case are so-called Kitaev interactions [14], to be described
in Sec. 4 below.
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Fig. 4: Two-dimensional lattices with geometric frustration: triangular (left), kagome (right).

Given that frustration tends to suppress magnetic order, a popular experimental way to quantify
frustration in a given system is the so-called frustration ratio, f = |O@cw/|/TN, where Ty is the
ordering temperature and Ocw the Curie-Weiss temperature, the latter being a measure for the
strength of exchange interactions [8]. Materials with f > 5 are commonly called “frustrated”.
The extreme case of no long-range order (LRO) down to 7" =0, formally f = oo, then corre-
sponds to a ground state with only short-range correlations. A regime with highly correlated
but fluctuating spins and no LRO at temperatures 1" < |Ocw| is often dubbed “spin liquid”
(although more precise definitions are available, see below).

3.1 Classical spin liquids

In the classical limit, formally obtained for spin size S — oo, spins can be viewed as unit
vectors, and non-trivial commutators vanish. Frustration may lead to a classical ground state
which is either unique up to global symmetry transformations — in this case the system is called
“weakly frustrated” — or which has degeneracies scaling with the system size, rendering the
system “strongly frustrated”.? In the latter case, the resulting manifold of lowest-energy states
defines a classical spin liquid. A celebrated example is spin ice, referring to moments with
local Ising anisotropy and ferromagnetic interactions on a pyrochlore lattice, viz. a lattice of
corner-sharing tetrahedra [15].

Often, a classical spin liquid can be characterized by a set of local conditions which define
the ground-state manifold (but not a unique state up to global symmetry transformations, as
explained above). Examples are the conditions “two in, two out” for the Ising configurations
of individual tetrahedra of spin ice or the condition ) . S; = 0 for the spin configurations
of a kagome-lattice Heisenberg model. Hence, these conditions underconstrain the manifold
of states; recall that the original problem of minimizing all Hamiltonian terms simultaneously
overconstrains the manifold of states if frustration is present. Local constraints can often be
formulated as an emergent lattice gauge theory. For instance, the “two in, two out” condition
can be translated into div b = 0 where b is an artificial magnetic field and div a suitably defined
lattice divergence.

For Ising spins (i.e. with countable number of states) a classical spin liquid can be characterized
by an extensive ground-state entropy Sy/N where N is the number of lattice sites. Typical

’Intermediate cases with sub-extensive degeneracies exist as well.



Orbitals, Frustration & Quantum Criticality 10.9

examples are the Ising model on a triangular lattice, with Sy /(Nkp) ~ 0.323 [16], and classical
spin ice, with Sy /(Nkg) ~ 1/21n(3/2) ~ 0.203 [17]. For classical spin liquids made from XY
or Heisenberg spins a residual entropy cannot be defined, but the degeneracy may be quantified
via the difference between the number of continuous degrees of freedom and the number of
local constraints.

Elementary excitations of classical spin liquids correspond to configurations which violate one
(or more) of the local ground-state conditions; in the gauge-theory language these become ele-
mentary charges. For spin ice, the excitations are tetrahedra with “three-in, one-out” or “one-in,
three-out” configurations; these have been shown to behave like magnetic monopoles upon in-
cluding dipolar interactions [18].

3.2 Quantum spin liquids

With quantum fluctuations included, frustrated systems may realize local-moment states with-
out symmetry breaking and only short-range order down to lowest temperatures. Such quantum
spin liquids (QSLs) [9,11,12] display some differences compared to their classical counterparts:
(1) Quantum fluctuations typically remove the extensive ground-state degeneracy of strongly
frustrated systems by quantum tunnelling, resulting in unique ground states (up to global sym-
metry transformations or topological degeneracies). (ii) QSLs are thermodynamically stable
phases of matter, characterized by emergent dynamic gauge fields and topological order. This
implies the existence of fractionalized excitations which are coupled to the gauge field. Despite
this coupling, the fractionalized excitations are asymptotically free, i.e., deconfined. (ii1) The
wavefunctions of QSLs can be characterized by long-range entanglement [19,20]. Importantly,
QSLs need to be distinguished from “trivial” quantum paramagnets without topological order
and fractionalization, like the coupled-dimer magnets of Sec. 2.2.

Different types of QSLs can be distinguished depending on the spectrum and statistics of the
emergent excitations and on the gauge structure. Prominent examples are fully gapped Z, spin
liquids, for which topological order can be sharply defined, and algebraic U(1) spin liquids with
gapless excitations. For an in-depth discussion of topological order and attempts of classifica-
tions we refer the reader to the literature [9, 11,21]. Relevant to the existence of non-trivial
many-body states is a theorem due to Lieb-Schulz-Mattis [22] and its higher-dimensional gen-
eralization by Hastings [23]. It states that in a system with half-odd-integer spin per unit cell
and global U(1) symmetry, the excitation spectrum in the thermodynamic limit cannot simulta-
neously fulfill the two conditions: (a) the ground state is unique and (b) there is a finite gap to
all excitations. This implies that a gapped symmetry-unbroken state must have a ground-state
degeneracy which is topological in nature. We finally note that, conceptually, topological order
and fractionalization may co-exist with spontaneous symmetry breaking: For instance, broken
time-reversal symmetry on top of a spin liquid leads to a chiral spin liquid, while magnetic
long-range order leads to a fractionalized ordered magnet.

An intuitive picture of a QSL with underlying SU(2) symmetry is provided by the resonating
valence-bond (RVB) idea, Fig. 5, originally proposed by Anderson for the triangular-lattice
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(a) (b)

Fig. 5: Illustration of an RVB state, here on the kagome lattice. (a) Nearest-neighbor dimer
covering, with the ellipsoids representing singlet pairs of spins 1/2. The RVB state is given
by an equal-weighted superposition of different such coverings. (b) Pair of spinon excitations,
each carrying spin 1/2.

Heisenberg model [24]. RVB refers to pairing spins on a lattice into singlets and then forming a
quantum superposition of many different pairings, i.e., different dimer coverings of the lattice,
such that the symmetries of the Hamiltonian are preserved.® This picture captures the aspect
of fractionalized excitations, as the breaking of a dimer leads to two monomer excitations with
independent dynamics: These monomers are objects carrying charge 0 and spin 1/2, typically
called spinons. In a Z spin liquid, they are coupled to an emergent Z, gauge field, whose
excitations are Zo vortices (or fluxes) called visons.

A well-studied spin model with geometric frustration is the Heisenberg model on the kagome
lattice. For quantum spins 1/2, with antiferromagnetic interactions as in Eq. (4), there is strong
numerical evidence that this realizes a fractionalized QSL. However, the nature of this QSL has
not been conclusively clarified to date, as numerical results have been interpreted in favor of
either a gapped Z, spin liquid [26] or a U(1) spin liquid with a Dirac-cone spectrum [27,28]. A
candidate material realizing the kagome-lattice spin-1/2 Heisenberg model is Herbertsmithite,
ZnCu3(OH)(Cl,, which indeed displays spin-liquid-like behavior [29,30]. However, the role of
quenched disorder is debated [30]. Numerical evidence for QSL phases in Heisenberg models
of spins 1/2 has also been found for square [31] and triangular-lattice models [32] with first and
second-neighbor interaction, so-called .J;-J, models. Close experimental realizations of the
triangular-lattice .J;-J> model appear in the delafossite family NaYb.X, (X=S, Se, O) which
show spin-liquid behavior at low 7' [33,34].

3.3 Valence-bond solids

An alternative quantum paramagnetic state of spins 1/2 that can be constructed from dimer
coverings of the underlying lattice is a so-called valence-bond solid (VBS). In this state, the
wavefunction is dominated by a single covering with a periodic arrangement of dimers. As a

3The first existence proof of a Z, spin liquid was given for a triangular-lattice quantum dimer model which
realizes an RVB phase [25].
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result, the state spontaneously breaks translation and rotation symmetry of the lattice, hence the
label solid. Excitations of VBS states carry integer spin, i.e., spinons are confined.

VBS variants can be constructed for larger constituent spins and/or from larger units, the com-
mon theme being that the state in the resulting magnetic unit cell represents a spin singlet. For
instance, plaquette VBS with unit cells of four spins 1/2 have been discussed for the square-
lattice checkerboard and .J;-J, models.

3.4 Order by disorder and unconventional types of order

In addition to phases with unbroken spin symmetry, like spin liquids and valence-bond solids,
frustrated spin systems can of course display phases with broken spin symmetry, both conven-
tional and unconventional [13].

First, conventional magnetic order can emerge in an unconventional way. Most prominent is So-
called “order by disorder” which refers to a situation where a frustration-induced degeneracy
of the classical ground-state manifold is lifted by fluctuations, either thermal or quantum [35].
A well-studied example is the easy-plane pyrochlore antiferromagnet, where long-range order
emerges due to fluctuations from a one-parameter manifold of classically degenerate states [36].
Second, less conventional magnetic order can appear as a result of large crystallographic unit
cells or non-Heisenberg interactions. Among the possibilities are so-called multi-() states where
the ordering pattern results from the superposition of modulations with multiple inequivalent
wavevectors, among which skyrmion lattices have attracted particular attention [37].

Third, ordered states may spontaneously break spin symmetry not by dipolar order, but by order
in higher multipole channels. The simplest form is quadrupolar or spin-nematic order which
breaks SU(2) symmetry and is described by a local rank-2 tensor order parameter [38,39]. Such
order is known to be realized in certain spin-1 Heisenberg models with additional biquadratic
interactions [40].

4 More ingredients: Orbitals and spin-orbit coupling

While the Heisenberg model provides a useful and rich arena for quantum magnetism, the de-
scription of real materials often requires to include physics beyond. Two important ingredients
are spin-orbit coupling (SOC) and orbital degrees of freedom, which we discuss in turn.

4.1 Magnetic anisotropies and novel forms of frustration

In the non-relativistic limit, SOC is not present, implying that real space and spin space are
entirely separate, with SU(2) spin rotation symmetry in the absence of a magnetic field. In
contrast, non-vanishing SOC couples real space and spin space, such that symmetry transfor-
mations in general act on both position and spin. Consequently, the symmetry of spin—spin
interactions in a solid is lowered (compared to Heisenberg) and is dictated by the lattice struc-
ture. The simplest forms of anisotropic interactions are (i) Ising, Sij , (i) XY, Sfo + 57 S]y,
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and (iii) Dzyaloshinskii-Moriya li-j (S x 5}) The latter is antisymmetric under exchange
1 < 7 and hence requires broken inversion symmetry to exist; this does not apply to the former.
In addition to anisotropic interactions, magnetic anisotropies may also arise at the single-ion
level. Such single-ion anisotropies are rooted in the orbital character of the magnetic state,
combined with SOC. A common single-ion term in the Hamiltonian is D.S7*, where D > 0
(D < 0) corresponds to an easy-plane (easy-axis) anisotropy, respectively. On a non-Bravais
lattice, different sites can have distinct local anisotropy axes.

Importantly, magnetic anisotropies enable forms of frustration different from that of Heisenberg
models. Some of those have already been mentioned above: An easy-axis anisotropy on the
pyrochlore lattice, combined with ferromagnetic interactions, leads to spin-ice behavior. The
corresponding easy-plane situation results in a U(1) classical degeneracy and order by disorder.
Anisotropic interactions may even induce frustration on lattices whose geometry is unfrustrated.
Such exchange frustration is the key ingredient for the route to QSLs proposed by Kitaev [14].
The Kitaev honeycomb model features bond-dependent Ising interactions,

H=—J") SISy—Jvy SYSY—J) S8 (5)
(ij)a (id)y (i)

where the bonds of the underlying honeycomb lattice have been divided into three sets of mu-
tually parallel bonds, labeled & = x,y, z, and (ij), refers to a summation over the bonds of
a type. The Kitaev model has attracted tremendous attention, as it realizes an exactly solvable
Zs spin liquid whose emergent excitations are Majorana fermions and static Z, gauge fluxes.
It has been subsequently generalized to other lattices and space dimensions [41]. Experimen-
tally, strong Kitaev interactions on the honeycomb lattice have been deduced for the materials
a-RuClj [42,43], NayIrO3 [44,45], and various polytypes of LioIrO3 [46—48]; however, all of
these materials display magnetic LRO at low temperatures due to the presence of additional
interactions.

4.2 Orbitals and spin-orbital liquids

The ground state of ions with partially filled shells may contain, in addition to spin degrees
of freedom, also orbital degrees of freedom. The latter arise from orbital degeneracies which
themselves depend on the crystalline electric field arising from the potential of the surrounding
ions. For example, Cu in octahedral coordination may realize a 3d° configuration, with one
hole in doubly degenerate e, orbitals, leading to S = 1/2 spin and 7 = 1/2 orbital degrees
of freedom. More complicated is V in a cubic environment with a 3d* configuration in triply
degenerate ¢, orbitals, resulting in S = 1 (by Hund’s rule) and 7 = 1.

Insulators with orbital degrees of freedom require to write down spin-orbital exchange models
[49]. While these are typically complicated and have low symmetry, reflecting the influence of
both lattice and orbital structure on exchange processes, a qualitative understanding can often
be gained by simpler more symmetric models. An example is the SU(4)-symmetric Kugel-
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Khomskii model,

(i)

with 7; representing the orbital degrees of freedom. While such spin-orbital models often ex-
hibit phases with coexisting orbital and magnetic order, it has been suggested early on that,
if combined with either geometric frustration or exchange frustration, they may also produce
low-temperature states devoid of symmetry breaking in both the spin and orbital sector. Such
states have consequently been dubbed spin-orbital liquids [50]. Indeed, the bond-dependent
interactions of the Kitaev honeycomb model can be used to construct an exactly solvable model
for a spin-orbital liquid [51].

5 Conventional quantum criticality in frustrated systems

Quantum phase transitions in frustrated magnetic insulators may be conventional in the sense
that they involve symmetry breaking and local order parameters. Less conventional cases in-
volving fractionalization and topology will be postponed to the next section.

5.1 Magnetic ordering transitions

The simplest case, a quantum transition from a featureless paramagnet to a symmetry-broken
phase with antiferromagnetic or VBS order, is expected to be described by an LGW theory
of ©* type, Eq. (1), with dynamical exponent z = 1. Symmetry and wavevector of the order
parameter determine the effective number of order-parameter components and the structure of
the interaction terms in the field theory.

Frustration enters in a non-trivial way, because the order-parameter structure of non-collinear
or non-coplanar states is much richer than that of simple collinear magnets. Most straightfor-
wardly, this translates into a larger number of components N in the corresponding * theory.
This is not all: For instance, a non-collinear ordered state often breaks both SU(2) spin rotation
symmetry and a Z, chiral symmetry, and both symmetries can be broken either in a single or
in two separate transitions. For the classical case, this has been studied for stacked triangular-
lattice Heisenberg antiferromagnets: Monte Carlo simulations have observed a single transition
with non-trivial critical exponents, different from that of standard O(/V) universality, consis-
tent with a proposal by Kawamura [52]. Numerical results for the quantum case are, to our
knowledge, not available due to the notorious sign problem.

More seriously, frustration can render invalid the concept of discrete well-defined wavevector
for critical fluctuations: Upon approaching an ordered state, fluctuations may become soft on
a manifold of wavevectors, e.g., owing to frustration-induced degeneracies. Strong fluctuation
effects may then cause the transition to be first order. Alternatively, exotic novel intermediate

“More recent theory works predict the transition in stacked triangular-lattice Heisenberg antiferromagnets to be
weakly first order [53].
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phases might emerge. An interesting open problem in this context constitutes the quantum melt-
ing of a skyrmion crystal [37]. Such a phase has been observed in a number of helical magnets.
One prominent material is MnSi where the lack of inversion symmetry enables Dzyaloshinskii-
Moriya interactions to produce long-wavelength helical order which in turn yields a skyrmion
crystal in a small window of magnetic field and temperature [54]. In MnSi, long-range magnetic
order can be suppressed by the application of pressure, giving way to an extended non-Fermi
liquid phase at low temperature [55]. It has been speculated that this behavior is related to
partial order, e.g., a skyrmion liquid, but a concise theory is not known.

A further complication, frequently present in strongly frustrated systems, arises due to order-
by-disorder physics (Sec. 3.4): If the actual ordered state is selected by fluctuation effects from
a larger (e.g. classically degenerate) manifold, then some or all properties of the transition
may be determined by the larger symmetry of this manifold. This type of physics is known
from Z,, clock models, or alternatively XY models with Z,, anisotropy. Here, anisotropies with
n > n. are irrelevant at criticality, such that the critical behavior is that of the XY model. For
d =2 (or D = 1+ 1) this even changes the phase diagram, as an intermediate critical phase
intervenes between the disordered and the Z,-ordered phases for n > 5 [56]. An example
of recent interest are the finite-temperature intermediate phases present in the two-dimensional
(2D) Heisenberg-Kitaev model [57] where the relevant ordered phases are sixfold degenerate
as a result of Kitaev interactions reflecting spin-orbit coupling [58]. Theoretical results for the
quantum phase transitions in this model indicate first-order behavior both on analytical [59] and
numerical [60, 61] grounds, but the numerics has not reached conclusive accuracy yet.

Strong frustration may, in addition, lead to dimensional reduction: This refers to a situation
where the effective spatial dimension of the order-parameter fluctuations is smaller than that ex-
pected from the microscopic model. For instance, a three-dimensional (3D) layered system with
inter-layer frustration may display 2D critical behavior. Such dimensional reduction typically
does not reach down to lowest energies and temperatures, due to residual higher-dimensional
couplings, such that a dimensional crossover to fully 3D critical behavior at lowest temperatures
occurs [62].

5.2 Field-driven transitions and BEC phenomena

Local-moment magnets can display a variety of QPTs as function of applied magnetic field.
The simplest case is the transition at the saturation field of an SU(2)-symmetric Heisenberg
magnet: Upon lowering the field, a high-field magnon becomes soft at a particular wavevector,
and the transition can be understood as magnon Bose-Einstein condensation (BEC) which turns
the fully polarized state into a canted antiferromagnet. The latter breaks the U(1) spin rotation
symmetry about the field axis and is therefore also understood as a spin superfluid. The boson
condensation nature of the QPT implies that this is in the universality class of the dilute Bose
gas, with z = 2 [3]. A similar field-driven transition occurs between the low-field singlet and
intermediate-field canted phases of the coupled-dimer magnets of Sec. 2.2 [63].

While these transitions involve only trivial magnetization plateaus at M /M, = 0 and 1, frus-
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trated magnets often display intermediate magnetization plateaus. The QPTs in and out of such
a magnetization plateau may be of BEC type, but are more complicated if the plateau phase
spontaneously breaks lattice translation symmetry. Then, the plateau phase and the adjacent
canted phase break different symmetries, possibly resulting in two continuous transitions with
an intermediate coexistence (i.e. supersolid) phase or a first-order transition [64]. Experimen-
tally, such field-induced supersolidity has been discussed for the Shastry-Sutherland compound
SrCuy(BOg3), [65] and for the spinel MnCr,S, [66].

Strong frustration often renders the magnon bandwidth small, paving the way for more exotic
field-driven transitions. As has been discussed for a variety of frustrated Heisenberg models, it
is possible that the high-field phase displays multi-magnon bound states whose minimal energy
lies below that of the single-magnon branch. Then, upon lowering the field, the first instability is
in this multi-magnon sector, and the resulting ordered state can be understood as a condensate of
magnon bound states [67]. The most important case is that of two-magnon bound states whose
condensation induces a spin-nematic state: This is a state with quadrupolar order whose order
parameter is a traceless rank-2 tensor. The QPT from the high-field state is either continuous of
BEC type, with z = 2, or is of first order due to large fluctuations.

Last not least, we note that spin-orbit coupling drastically modifies the physics described above.
First, magnetization is no longer conserved, such that the fully polarized state is not an eigen-
state of the Hamiltonian. As a result, the magnetization in the high-field phase is not saturated
even as T' — 0. Second, the lower symmetry typically implies that field-driven transitions break
discrete symmetries only. The corresponding QPT are then of Z,, type, with dynamic exponent
z = 1. For instance, this applies to the Kitaev material a-RuCls: Although its field-induced
phases are not fully understood to date, it is clear that the magnetization in the asymptotic high-
field phase receives substantial quantum corrections [68], and it can be expected that the QPT
to the asymptotic high-field phase is either of Ising type or of first order.

6 Transitions involving topological states

Phase transitions in and out of topologically non-trivial states (more precisely, states with intrin-
sic topological order) can in general not be captured by LGW theory, as topology is associated
with global instead of local properties. Nevertheless, topological states and their transitions can
often be described by local quantum field theories which then involve novel emergent degrees
of freedom coupled to gauge fields. We will discuss a few of such transitions in turn.

6.1 Confinement transitions and fractionalized criticality

QPTs in and out of topological liquid states are fundamentally different from the conventional
transitions, as they necessarily involve the fractionalized degrees of freedom of the (spin) liquid.
In many cases, these are spinons (i.e. fractionalized constituents of the microscopic spins) and
excitations of the emergent gauge field in its deconfined phase. Continuous transitions out of
a spin liquid can often be understood as a condensation transition of one of these particles (or
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bound states thereof) [11,69]. Physical spins are then composite objects in terms of the critical
degrees of freedom. As a result, spin correlation functions display critical power laws with large
anomalous exponents: While standard O(/V) universality yields numerically small anomalous
exponents, e.g. 7 = 0.06 for the 3D Heisenberg model, many of the exotic transitions discussed
below have 7 values for physical correlators of order unity.

Starting from a fractionalized spin liquid, one can envision the following options for QPTs: (i) a
confinement transition to a featureless paramagnet, (ii) a confinement transition with concomi-
tant symmetry breaking, leading to e.g. magnetic or VBS order — typically these are Higgs-type
transitions driven by the condensation of a particle with gauge charge, (iii) a condensation tran-
sition which leaves the deconfinement intact, which then leads to exotic fractionalized magnetic
(AF7) or VBS states (VBS™), (iv) a transition to a different fractionalized spin liquid.

In the following, we list a few examples from the theory literature. The field theories are typi-
cally written down in terms of fractionalized particles coupled to gauge fields (a simple exam-
ple being the CP! model (7) specified below); in some cases topological quantum field theories
(most importantly, Chern-Simons theories) have also proven useful. Most considerations apply
to two space dimensions; less work has been done for d = 3.

Transitions in group (i) require the presence of a featureless paramagnetic phase in addition
to a topological spin liquid: The former can be realized, e.g., by application of a magnetic
field or by the formation of singlet dimers as in bilayer models. A concrete example is the 2D
toric-code model [70] in a longitudinal field [71]: It displays a continuous transition from a Z,
topological spin liquid to a featureless high-field phase. The transition has been shown to be
in the Ising® universality class in D = 2 4 1 dimensions [72]. Here, Ising* refers the fact that
the critical degrees of freedom have Ising symmetry, but are very different from a conventional
order parameter, as they derive from the fractionalized excitations of the spin liquid. Hence,
thermodynamic properties are that of Ising criticality in D = 2 + 1, but correlation functions
of physical spins strongly differ from the conventional case as spins are composite objects
here. This can be expected to generically apply to confinement transitions of Z, spin liquids.
A second example is the ferromagnetic honeycomb-lattice Kitaev model in a magnetic field
[73,74]: This displays a single transition between a Zs spin liquid and a featureless high-
field phase as well, Fig. 6. However, it is open whether this transition is weakly first order or
continuous.

Transitions in group (ii) have been mainly discussed within effective field theories, and candi-
date models are known in many cases. A typical situation is that of vison condensation in a 2D
Zy spin liquid; if the vison has non-trivial transformation properties under lattice symmetries, its
condensation generically breaks translation symmetry and induces VBS order. Such transitions
have been argued to be of O(NV)* type (where * again refers to the fact that the primary fields
are fractionalized) — supplemented by lattice anisotropy terms which are irrelevant at criticality
— where the number of components N of the vison-derived field depends on the lattice and the
resulting VBS state. For example, the transition to a columnar VBS on both the square and hon-
eycomb lattices is of 3D XY™ type [25,75,76], while on the triangular lattice the transition to a
columnar VBS is proposed to be of 3D O(6)* type [77]. In contrast, transitions to staggered VBS



Orbitals, Frustration & Quantum Criticality 10.17

Gapless Z, QSL Gapless U(1) QSL
?
l Gapped Z, QSL ) polarized
Antiferromagnetic J ; I i P>
0 0.4 0.6 h/J
Ferromagnetic J I I e
0 0.03 h/J

Fig. 6: Schematic phase diagram of the isotropic Kitaev honeycomb model in a magnetic field
along [111], i.e., with h, = h, = h.. For antiferromagnetic coupling (top) the Z; spin liquid is
rather robust, and an intermediate second QSL emerges which is possibly of U(1) character. In
contrast, for ferromagnetic coupling (bottom) a small field destroys the Z spin liquid in favor
of a polarized phase [74].

phases have been argued to be of first order [76]. Generally, liquid—VBS transitions may be real-
ized in Heisenberg models with further-neighbor (e.g. .J;-.J>-.J3) exchange interactions. Instead
of condensing visons one can consider condensing spinons in SU(2)-symmetric Z, spin liquids.
This produces a confined antiferromagnet with spiral order via an O(4)* transition [75,78,79]
where the symmetry arises from a doublet of complex spinon fields. A resulting “global” phase
diagram is shown in Fig. 7. Finally, condensing bound states of spinons and visons may induce
conventional two-sublattice Néel order. At the latter transition, which is of more exotic type,
both magnetic and VBS correlation functions acquire critical power laws [79]. In the absence
of SU(2) symmetry, quantum numbers need to be reconsidered, but the general picture remains
valid. One example here is the 2D toric-code model perturbed by an Ising interaction which has
been shown to display a continuous transition of Ising* type from a Z, liquid to a ferromagnetic
phase driven by defect condensation [80]. A second example is the transition between a Z,
spin liquid and a superfluid phase in a Kagome-lattice XY model. This transition is in the XY*
universality class and has been studied numerically in some detail in Ref. [81].

A transition in group (iii) is realized upon condensing objects which do not carry gauge charge,
then leading to the coexistence of symmetry-breaking order and fractionalization. Hence, the
transition involves the onset of symmetry breaking on the background of a fractionalized topo-
logical state — this has also been dubbed fractionalized quantum criticality. For instance, con-
densing a gauge-neutral Néel vector in a spin liquid yields an AF* phase, and a spin-Peierls
instability of a spin liquid can result in a VBS* state. A nice example of the former has been
proposed to occur in certain Kitaev-based spin-orbital liquids [82], while an example of the
latter is the instability of Majorana Fermi surfaces in 3D Kitaev-based spin liquids [83].

Transitions between different spin-liquid phases, group (iv), have also been considered on the
level of effective field theories. Ref. [84] has developed a theory for transitions between chiral
and Z, spin liquids in two space dimensions; such transitions have been argued to be equivalent
to the condensation of an XY field coupled to a U(1) gauge field, where the critical XY field
represents a singlet combination of spinons. A second case is the transition from a U(1) to a
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Fig. 7: Global phase diagram for a 2D model of spinons with emergent Z, gauge field, here
shown for an anisotropic triangular lattice. The two parameters s, and s, represent masses of
visons and spinons, respectively, in the doubled Chern-Simons theory considered in Ref. [75].
The spiral-Z. spin liquid transition is described by a three-dimensional O(4)* theory, while the
transition from VBS to Zs spin liquid is of XY* type, see text. Further, the Néel-VBS transition is

captured by a CP" theory (see Sec. 6.2 below), and the Néel-spiral transition is mean-field-like.
(Figure taken from Ref. [75])

Zs spin liquid which is driven by the condensation of pairs of gauge-charged particles, akin to
superconducting pairing. Such a transition has in fact been suggested to occur in the antiferro-
magnetic honeycomb Kitaev model in an applied magnetic field, Fig. 6: The small-field gapped
Zs spin liquid transits into a different spin liquid, suggested to be gapless and of U(1) type,
before reaching the high-field phase [74, 85].

Among the few experimental examples of spin-liquid-related QPTs are field-driven transitions
in suitable candidate materials, most notably in «-RuCl; and NaYb.X, (X =S, Se, O). In a-
RuCl; an intermediate-field spin liquid has been suggested to transit into the asymptotic high-
field phase, with the transition being of first order [86]. In NaYb.X5, the zero-field spin liquid
gives way to field-induced ordered states, but the nature of the quantum transition has not been
probed in detail [34].

6.2 Deconfined quantum criticality

An interesting scenario for unconventional transitions between symmetry-broken states is that
of deconfined quantum criticality [87]. It describes the possibility of a direct generic continuous
QPT between two ordered states which break different symmetries. According to Landau theory
and without fine-tuning, such a transition is forbidden, as it would be either of first order or split
into two continuous transitions. At a deconfined quantum critical point, the critical degrees of
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Fig. 8: Schematic renormalization group flow proposed for the transition between a Néel an-
tiferromagnet and a VBS in an SU(2)-symmetric magnet, as realized e.g., by the square-lattice
spin-1/2 J-Q model. Increasing g destabilizes magnetic order; the parameter )\, represents the
fugacity of monopoles in the U(1) gauge field. The horizontal axis \y = O corresponds to the
non-compact CP* theory of Eq. (7), with g to be identified with the spinon mass s. (Figure taken
from Ref. [89])

freedom are fractionalized particles, and the order parameters of both phases are composites
of these particles. This automatically leads to large anomalous exponents for order-parameter
correlations.

The most thoroughly studied instance of deconfined quantum criticality is the transition between
a Néel-ordered antiferromagnet and a valence-bond solid on the square lattice. The proposed
field theory employs a CP! representation of spins, with deconfined bosonic spinons z, and a
U(1) gauge field A, resulting in the action

S = /ddxdT [{(%—i/l“)zaf + 5|2a|* + g(|zal2)2 + %(EWA((LA,\)Z] (7)
with the last term encoding the gauge-field dynamics. The primary transition, accessed by the
variation of the mass parameter s, is that between a U(1) spin liquid and a Néel antiferromagnet.
It is driven by the condensation of the z spinons which induces confinement via a Higgs mech-
anism; at this transition the gauge field can be assumed to be non-compact, as in the continuum
limit of Eq. (7). However, the U(1) gauge field microscopically emerges from a complex-
phase degree of freedom of the spinons and is therefore compact. This implies the existence of
monopoles, and their condensation renders the U(1) spin liquid unstable towards a dimerized
confined VBS phase, Fig. 8. Hence, deconfined spinons exist only at criticality [87-89].

The above proposal has been tested in detailed numerical simulations of the so-called J-()
model on the square lattice, where () denotes the strength of a ring-exchange term [90]. While
these simulations have verified a large part of the phenomenology of deconfined quantum criti-
cality [90,91], they have also found evidence for large logarithmic corrections to scaling which
are not predicted by the field-theoretical framework [92]. We also note that direct numerical
simulations of the proposed CP! field theory have found indications for the transition being
weakly first order [93], a tendency which could not be confirmed in the .J-() model simulations.
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The reasons for these discrepancies in numerical results are open, see Ref. [94] for a discussion.

Recent developments in the context of field-theoretical dualities have led to additional insights
[95]. It has been conjectured that the non-compact CP! model is dual to a so-called QED;
Gross-Neveu model at criticality, the latter describing Dirac fermions coupled to both a U(1)
gauge field and local Ising degrees of freedom. This duality suggests that the deconfined QCP
between a Néel antiferromagnet and a VBS displays an emergent SO(5) symmetry, which is
supported by numerical results [94]. A weak first-order transition with quasi-universal behavior
in its vicinity appears as a plausible scenario [96].

In addition to the Néel-VBS transition, various other Landau-forbidden transitions between two
differently ordered phases have been discussed in the context of deconfined criticality. For
instance, the transitions between a Z, spin liquid and a VBS discussed in Sec. 6.1, as well as a
transition between a Z, spin liquid and a Néel state, also belong to this class, as a Zs spin liquid
displays topological order. Emergent higher symmetries, which can be rationalized via suitable
dualities, appear to be common to many of the deconfined critical points [95].

Although a clear-cut experimental example realizing deconfined quantum criticality is lacking,
arecently identified candidate is the frustrated Shastry-Sutherland magnet SrCuy(BOs)2. Under
applied pressure, it displays a transition from a plaquette VBS to an antiferromagnetic phase
[97] which has been argued to be a deconfined QPT [98].

7 Mott and Kondo transitions

While all material presented so far was devoted to Mott insulators with local moments, we now
turn to QPTs involving metallic phases [4]. For metals, the concepts of symmetry breaking
and local order parameters apply equally, hence symmetry-breaking QPTs can be defined and
characterized in analogy to insulators. However, the presence of low-energy particle-hole exci-
tations and their coupling to order-parameter fluctuations complicates the theoretical analysis:
Following the spirit of LGW theory requires to integrate out the particle-hole excitations to
arrive at a theory for the order parameter alone; this approach has been developed in detail in
the works of Hertz [2], Millis [99], and Moriya [100]. However, it was later realized that such
an LGW theory is plagued with singularities. Consequently, more refined approaches keep-
ing both order-parameter and fermionic fluctuations are required, and some progress has been
made [101-104].

In this section, we will exclusively deal with even more intricate types of QPT, namely those
involving the onset or loss of metallicity. Historically, the interaction-driven Mott transition has
been discussed extensively. A younger topic is that of partial Mott transitions in multi-band or
multi-orbital systems, with a subclass being transition where the Kondo effect breaks down. We
will discuss these transitions — together with their relation to frustration — below.
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7.1 Fermi liquids and non-Fermi liquids

Before diving into the physics of Mott transitions, we need to review some aspects of the low-
energy physics of metals. The key concept is that of a Fermi liquid, which asserts a one-to-
one correspondence of the low-energy many-body states between the interacting system under
consideration and a hypothetical system of non-interacting electrons. This implies in particular
the existence of quasiparticle excitations with charge +e and spin 1/2 (and forbids the existence
of other low-energy excitations!). It also implies the existence of a Fermi surface, defined by
the location of jumps in the momentum distribution (ny,) (or, equivalently, poles of the single-
particle spectral function at w = 0). This Fermi surface then obeys Luttinger’s theorem, i.e., has
a momentum-space volume given by the total density of electrons n, (modulo filled bands):

where factors of 2 account for spin degeneracy, i.e., a full band corresponds to n = 2, and
K4 = (2m)%/(2V,) where V; is the unit-cell volume [105]. Under these conditions, the standard
low-temperature Fermi-liquid properties C'(T') = ~T, p(T) = po + AT? etc., with -y, A being
constants, follow immediately.’

Violations of Fermi-liquid behavior at low temperature, generically dubbed non-Fermi liquid,
can have various sources. In clean systems, interaction effects can produce stable non-Fermi-
liquid phases. One scenario is that the low-energy excitations display quantum numbers differ-
ent that of from electron or holes, leading to distinct low-temperature properties. While such
behavior is generic and well understood in d = 1, resulting in Luttinger liquids with spin-charge
separation, similarly controlled descriptions in higher dimensions are scarce. A viable route to
spin-charge-fractionalized metals is the doping of spin liquids [106].

Another scenario for stable non-Fermi liquids in d > 2 has been termed fractionalized Fermi
liquid [107, 108]. In such a phase, charged excitations have conventional quantum numbers
(charge +e and spin 1/2), but these coexist with additional deconfined fractionalized degrees of
freedom. A generic construction starts from a fractionalized spin liquid and adds conventional
carriers in a second band. If these subsystems remain weakly coupled, they realize a FL* phase
(which has also been characterized as metallic spin liquid in the literature). Importantly, such a
phase displays a Fermi surface with a volume violating Luttinger’s theorem (8) in a quantized
fashion, often [107]

Ve = Kq((nor—1) mod 2) 9)

where the —1 accounts for the electrons forming the spin-liquid component. Low-temperature
properties may or may not be Fermi-liquid-like, depending on whether the emergent excitations
of the spin-liquid component are gapped or gapless. Fractionalized Fermi liquids may display
a variety of instabilities driven by the strong correlations in the local-moment sector, including
unconventional superconductivity [107,109].

SA T? behavior of the resistivity requires the existence of Umklapp scattering processes, i.e., a sufficiently
large Fermi surface.
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Importantly, fractionalized Fermi liquids as well as other doped spin liquids are symmetric
states (i.e. without spontaneously broken symmetries) with fractionalized excitations, much like
insulating spin liquids. Given the insights into topological properties of fractionalized insulating
phases, one may wonder about the topological characterization of non-Fermi-liquid metals.
To our knowledge, relatively little work has been done in this direction. A sharp distinction
between FL and FL* is the Fermi volume, and this can be considered a topological distinction.
In contrast, some of the indicators established for insulators, like ground-state degeneracies and
entanglement, cannot be easily applied because of the absence of an excitation gap [109], and
more work is needed to clarify the topological nature of non-Fermi liquid metals.

7.2 Mott transitions

A Mott transition is an interaction-driven metal-to-insulator transition: It transforms a half-
filled metallic band into an insulator of local moments. The most generic Hamiltonian for this
physics is the Hubbard model of spinful electrons

H=—t Z (czgcjg + h.c.) + UZ“@'T”Q (10)

(ij)o g

where the Mott insulator occurs for U >> ¢. The Mott-insulating state is often accompanied
by antiferromagnetic long-range order, and the quantum transition from a paramagnetic metal
to an antiferromagnetic Mott insulator is generically of first order (or involves an intermediate
antiferromagnetic metallic phase). This is different in the case of a spin-liquid Mott insulator:
A “genuine” zero-temperature Mott transition from a paramagnetic metal to an insulating spin
liquid can be continuous. As the existence of the spin liquid requires frustration, such transi-
tions are expected to occur in half-filled Hubbard models on frustrated lattices upon varying
U/t. In fact, a metal-to-spin liquid transition has been found in numerical simulations of the
triangular-lattice Hubbard model which, however, appears to be first order [110, 111], Fig. 9,
with superconductivity possibly appearing on the metallic side before the Mott transition [111].
A candidate experimental realization is in the organic compound x-(ET)2Cuy(CN)3 under pres-
sure [112].

A defining criterion for a Mott transition is a quantized change in the Fermi volume: In a Fermi
liquid, the momentum-space volume enclosed by the Fermi surface is given by the total number
of electrons according to Luttinger’s theorem (8). In a Mott insulator, there is no Fermi sur-
face$ and hence the Fermi volume changes at a single-band Mott transition by Ky x 1. Such an
abrupt change is nevertheless compatible with the QPT being continuous: Upon approaching a
continuous Mott transition from the metallic side, the quasiparticle weight on the Fermi surface
will vanish continuously, while the charge gap opens continuously on the insulating side. At
criticality, one expects a critical Fermi surface, i.e., a well-defined (d — 1)-dimensional mani-

SWe do not consider the so-called Luttinger volume, Vi = jG( k)>0 dk, which accounts for both poles and

zeroes of the Green’s function. For an in-depth discussion on aspects of the Luttinger volume in Mott insulators
see Ref. [113].
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Fig. 9: Cluster-DMFT phase diagram of the Hubbard model on an anisotropic triangular lat-
tice as function of Hubbard interaction U and hopping ratio t'/t, where t' = 0 and t' =t
correspond to the square and triangular lattices, respectively. M, SC, AF, SL denote metal, su-
perconductor, antiferromagnetic insulator, and spin-liquid phases, respectively. Solid (dashed)
lines correspond to first-order (continuous) transitions. (Figure taken from Ref. [111])

fold in momentum space where the electronic spectral function displays (possibly momentum
dependent) power-law singularities [114].

A concise theoretical understanding of continuous zero-temperature Mott transitions is lacking
to date. Most theoretical descriptions are based on slave-particle theories which involve separate
degrees of freedom representing spin and charge of the electrons. Often, the charge degrees of
freedom are encoded by bosons which are gapless and condensed in the metal, but gapped and
disordered in the insulator. Hence, the insulator-to-metal transition becomes a BEC transition
of charged bosons coupled to a gauge field [115]. However, such a description (at least in its
simplest version) does not account for possible non-trivial momentum dependencies along the
Fermi surface. Moreover, the fermionic character of the Mott phenomenon might require a
formulation using non-bosonic critical degrees of freedom, but to our knowledge a successful
theory of this type has not been formulated.

It is worth noting that apparent quantum critical behavior at elevated temperatures has been
detected above the finite-temperature endpoint of a first-order Mott transition line. This re-
markable observation, manifest, e.g., in scaling behavior of the resistivity, was first made in
DMFT simulations of the single-band Hubbard model on a Bethe lattice [116], and later ver-
ified experimentally in three pressure-tuned organic compounds [117]. Subsequent work has
linked this behavior to a 7" = 0 scale-invariant quantum critical insulator at the boundary of the
metal—insulator phase coexistence regime [118].
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7.3 Kondo and orbital-selective Mott transitions

In a multi-band or multi-orbital system, there is the possibility for a partial Mott transition.
This is a transition between two metallic phases where the Fermi surface undergoes a quan-
tized change. In the simplest case, one band (or orbital) changes its character from metallic
to Mott-insulating while other bands remain metallic. Consequently, such a transition has also
been dubbed orbital-selective Mott transition [119—121]. If stable in the low-temperature limit,
the partial Mott phase violates Luttinger’s theorem (8) and, hence, is a non-Fermi liquid metal.
This is precisely the fractionalized Fermi-liquid phase (FL*) introduced in Sec. 7.1 above, and a
transition between FL and FL* is an orbital-selective Mott transition (or a deconfinement tran-
sition in the language of the underlying gauge theory). Phenomenologically, such a transition
can be expected to be accompanied by a jump in the Hall constant [122].

A natural territory for orbital-selective Mott physics are heavy-fermion metals [4, 123], as de-
scribed by the Kondo-lattice Hamiltonian

H=—t> (che,+he)+JY S5, (11)
(ig)o i

with J the Kondo coupling and §; = Zao_, cfo,ﬁm/ Cior /2 the conduction-electron spin density on
site 7. As pointed out early on by Doniach [124], the heavy-fermion phase diagram is governed
by the competition between Kondo screening and RKKY interactions between local moments,
leading to heavy Fermi liquids and ordered magnetic states, respectively. Later on, it has been
suggested [108, 125—-127] to consider, in addition to the ratio between Kondo temperature and
RKKY interaction, a second tuning parameter which acts to suppress magnetic order in the
local-moment subsystem — this is loosely labelled as “frustration” (alternatively: “quantum
fluctuations”). This tuning parameter naturally enables access to fractionalized states. If RKKY
interactions are sufficiently frustrated, then increasing them w.r.t. the Kondo scale leads to a
breakdown of the Kondo effect without concomitant magnetic order, generically resulting in an
FL* phase.

The resulting “global” phase diagram of heavy fermions is shown in Fig. 10. It features two
transition lines, one involving the onset of antiferromagnetism and one involving the onset of de-
confinement. Importantly, the onset of deconfinement in the paramagnetic metallic phase corre-
sponds to an orbital-selective Mott transition into an FL* phase as advocated above, as FL* fea-
tures deconfined fractionalized excitations in the local-moment sector. Such an orbital-selective
Mott transition is easily driven by the reduction of Kondo screening in a frustrated regime,
because it is Kondo screening which renders the local-moment electrons metallic. Hence, the
onset of deconfinement also corresponds to a breakdown of the Kondo effect. The two transi-
tion lines define four phases: In addition to the paramagnetic phases FL and FL; there are a
conventional (AF) and a fractionalized (AF*) antiferromagnet. The Fermi volume is “large” in
the FL phase, i.e., encloses both conduction and local-moment electrons, while it is “small” in
FL* because it is determined by conduction electrons alone, hence violating Luttinger’s theo-
rem. In the metallic AF and AF* phase, translation symmetry breaking enlarges the unit cell,



Orbitals, Frustration & Quantum Criticality 10.25

Deconfinement

transition

FL

Local-
moment Itineran

AF

Quantum fluct./Frustration

AF transition
T /1
Fig. 10: “Global” phase diagram for heavy-fermion metals (with one [ electron per crystallo-
graphic unit cell), with two transitions for the onset of antiferromagnetism and for the break-
down of the Kondo effect (equivalently the onset of deconfinement). FL* is the fractionalized
Fermi-liquid phase described in Sec. 7.1. Inside the AF phase, a crossover from more itiner-
ant to more localized behavior occurs, which may be accompanied by one or more transitions
where the Fermi-surface topology changes. Lastly, AF* refers to a fractionalized magnet, with
magnetic LRO and fractionalized excitations coexisting. (Figure taken from Ref. [127])

such that Luttinger’s theorem is generically fulfilled. The transition from FL to AF is hence a
conventional ordering transition, accompanied by the backfolding of bands.

A slightly different version of the global phase diagram has been put forward in Ref. [125], the
main difference being that the coincidence of the Kondo-breakdown and magnetic transition
lines is not considered accidental, but systematic. Ref. [128] has developed a corresponding ex-
tended DMFT description of a Kondo breakdown driven by magnetic criticality. Alternatively,
this might be viewed as a case of deconfined criticality [129].

8 Summary

Frustrated magnetism and quantum criticality both constitute highly active fields of research in
condensed matter physics, and both have received additional fuel in the last two decades by the
improved understanding of topological phenomena in solids. This chapter aimed at an overview
of the interplay of both, frustration and quantum criticality, with focus on theoretical ideas and
concepts as well as links to current experiments in correlated-electron materials. While quantum
criticality in clean insulators is mainly well understood, frustration brings in new ingredients —
large degeneracies, order by disorder, and fractionalization — which often change the rules of the
game, and we have discussed a few particularly fascinating outcomes. In metallic systems, the
physics of quantum phase transitions is more complicated in general, due to the presence of low-
energy fermions, with many open questions even without frustration. Clearly, this fascinating
field invites more work, both theoretical and experimental.
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11.2 Jeroen van den Brink and Zohar Nussinov

1 Introduction to compass models

Compass models are theories of matter in which the couplings between the internal spin (or other
relevant field) components are inherently spatially (typically, direction) dependent. A simple
illustrative example is furnished by the 90° compass model on a square lattice in which only
couplings of the form 77§ (where {7/}, denote Pauli operators at site 4) are associated with
nearest neighbor sites ¢ and j separated along the x axis of the lattice while Tin]y couplings
appear for sites separated by a lattice constant along the y axis. A very well-known compass
model is the honeycomb Kitaev Hamiltonian. Such compass-type interactions can appear in
diverse physical systems. This includes Mott insulators with orbital degrees of freedom where
interactions sensitively depend on the spatial orientation of the orbitals involved, the low energy
effective theories of frustrated quantum magnets, vacancy centers and cold atomic gases. Kitaev
models, in particular the compass variant on the honeycomb lattice, realize basic notions of
topological quantum computing. The fundamental inter-dependence between internal (spin,
orbital, or other) and external (i.e. spatial) degrees of freedom which underlies compass models
generally leads to very rich behaviors including the frustration of (semi-)classical ordered
states on non-frustrated lattices and to enhanced quantum effects prompting, in certain cases, the
appearance of zero temperature quantum spin liquids. As a consequence of these frustrations, new
types of symmetries and their associated degeneracies may appear. In particular, these systems
feature intermediate (more recently also referred to (especially in the high-energy and quantum
information communities) and further classified as “higher form” or “subsystem’) symmetries
that lie midway between the extremes of global symmetries and local gauge symmetries and lead
to effective dimensional reductions. We consider compass models in a unified manner, paying
close attention to consequences of these symmetries, and to thermal and quantum fluctuations
that stabilize orders via order out of disorder effects. We review non-trivial statistics and the
appearance of topological quantum orders in compass systems in which, by virtue of their
intermediate symmetry, standard orders do not arise.

Different physical contexts motivate compass models and they can emerge as low-energy effective
models of systems with strongly interacting electrons. There are quite a few classes of materials
where the microscopic interactions between electrons are described by an extended Hubbard
model. Typically such materials contain transition-metal ions. Hubbard-type models incorporate
both the hopping of electrons from lattice-site to lattice-site and the Coulomb interaction U
between electrons that meet on the same site, typically the transition-metal ion. Particularly in
the situation that electron-electron interactions are strong, effective low-energy models can be
derived by expanding the Hubbard Hamiltonian in 1/U, the inverse interaction strength. In such
a low-energy model the interactions are only between the remaining spin and orbital degrees of
freedom of the electrons. Compass model Hamiltonians arise when orbital degrees of freedom
interact with each other.

In the situation that both orbital and spin degrees of freedom are present and their interactions
are intertwined, the Kugel-Khomskii models arise [1]. Such models are relevant for strongly
correlated electron systems such as transition metal (TM) oxides, when the low-energy electronic
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behavior is dominated by the presence of very strong electron-electron interactions. The orbital
degrees of freedom can be represented via pseudo-spins.

So-called e, and t5, orbital degrees of freedom that can emerge in transition metal compounds
with electrons in partially filled TM d-shells, give rise to two-flavor compass models (for e,)
and to three-flavor compass models (for ¢,) [2-5]. Precisely these type of compass models also
emerge in the study of systems of cold atoms in optical traps.

1.1 Definition of compass models

In order to define quantum compass models, we start by considering a lattice with sites on
which quantum degrees of freedom live. Throughout this chapter the total number of lattice
sites is denoted by N. Each lattice site has a vector pointing to it that is denoted by . When
square (or cubic) lattices will be involved, these will be considered of dimension N = Lx L
(or N = LxLxL). On more general lattices, L denotes the typical linear dimension (i.e.,
linear extent along one of the crystal axis). We set the lattice constant to unity. The spatial
dimensionality of the lattice is denoted by D (e.g., D = 2 for the square and honeycomb lattices,
D = 3 in cubic and pyrochlore lattices etc.).

Depending on the problem at hand, we will refer to these degrees of freedom at the lattice sites
as spins, pseudospins or orbitals. We denote these degrees of freedom by 7;, where ¢ labels the
lattice sites and T = 3 (0", 0¥, 07), where 0”, 0¥ and ¢ are the Pauli matrices. In terms of the
creation (c,) and annihilation (c,) operator for an electron in state «, the pseudospin operator 7
can be expressed as 7 = £ > s cl o505, where the sum is over the two different possibilities for
each o and 3. Here 7 is the fundamental 7" = 1/2 representation of SU(2), for 7' > 1/2 we use
T A representation in terms of Pauli matrices is particularly useful for degrees of freedom that
have two flavors, for instance two possible orientations of a spin (up or down) or two possible
orbitals that an electron can occupy, as the Pauli matrices are generators of SU(2), the group of
2x 2 matrices with determinant one. In most works in the field, it is common to explicitly label
components of 7' = 1/2 degrees of freedom at different sites by o7. Following suite, we will at
times (especially when discussing excitations in Kitaev’s honeycomb model and its non-Abelian
phase), interchangeably also use this more conventional notation. For degrees of freedom with n
flavors, it makes sense to use a representation in terms of the generators of SU(n), which for the
particular case of n = 3 are the eight Gell-Mann matrices \;, with¢ = 1, 8.

The name that one chooses to bestow upon the degree of freedom (whether spin, pseudospin,
color, flavor or orbital) is of course mathematically irrelevant. For SU(2) quantum compass
models it is important that the components of 7 obey the well-known commutation relation
[7%, 7Y]=i7* and its cyclic permutations, and that (77)*=1/4 for any component y=x, y or
z. In the case of SU(3), in the fundamental representation 7' is the eight component vector
T=1%" 5 ¢l Xapcs, with commutation relations governed by those of the Gell-Mann matrices.
Compass models are characterized by the specific form that the interaction between the degrees
of freedom assumes: (7) there is only an interaction between certain vector components of T and
(1) on different bonds in the lattice, different vector components interact. When, for instance,
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Fig. 1: Left: The planar 90° compass model on a square lattice: the interaction of (pseudo-)spin
degrees of freedom T = (7%, 1Y) along horizontal bonds that are connected by the unit vector e,
is TFTY, ... Along vertical bonds ey it is V7)., . Middle: The 90° compass model on a cubic
lattice: the interaction of (pseudo-)spin degrees of freedom T = (7%, 7Y, 7%) along horizontal
bonds that are connected by the unit vector e, is J7'7",, . On bonds connected by e, it is
JT!T] +e and along the vertical bonds it is JTT7, .. nght. Frustration in the 90° compass
model on a cubic lattice. The interactions between pseudospins T are such that they tend to align

their components 7%, 7Y and 77 along the x, y and z-axis, respectively. This causes mutually
exclusive ordering patterns.

a site ¢ is linked to nearest neighbor sites j and k, the interaction along the lattice link (ij)
can be of the type 7,777, whereas on the link (ik) it is 7;'7;/. In the following sections specific
Hamiltonians corresponding to various quantum compass models are introduced, in particular
the 90° compass models, Kitaev’s honeycomb model, 120° compass models and a number of
generalizations thereof.

1.2 90° compass models

A basic realization of a quantum compass model can be set up on a two-dimensional square
lattice, where every site has two horizontal and two vertical bonds. If one defines the interaction
along horizontal lattice links (i) to be J 77} and along the vertical links (ij)y to be J 777,
we have constructed the so-called two-dimensional 90° quantum compass model also known as
the planar 90° orbital compass model, see Fig. 1. Its Hamiltonian is

oY = -1, Z Tt =, Y Tl (1)

(ig)v
The isotropic variant of this system has equal couplings along the vertical and horizontal
directions (J, = J, = J). The minus signs that appear in this Hamiltonian were chosen such that
the interactions between the pseudospins 7 tend to stabilize uniform ground states with “ferro”
pseudospin order. (In D = 2 the 90° compass models with “ferro” and “antiferro” interactions are

directly related by symmetry). For clarity, we note that the isotropic two-dimensional compass
model is very different from the two-dimensional Ising model

Iszng _J Z 7_:(:7_9: J Z TZ-IT;C _ _JZ TixTx’
(ig)v (i)
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where on each horizontal and vertical vertex of the square lattice the interaction is the same and
of the form 7;°7;. It is also very different from the two-dimensional XY model

HXY = —J Z TS +Tyy>

(i) mr,(i5) v

because also in this case the interaction terms in the Hamiltonian are the same on all bonds.
One can rewrite the 90° compass Hamiltonian in a more compact form by introducing the unit
vectors e, and e, that denote the bonds along the x- and y-direction in the 2D lattice, so that

HEIOO = _JZ Ty 'r+e +T7Z'J7_7y+ey>7 (2)

where the sum over r represents the sum over lattice sites and every is bond counted only once.
With this notation the compass model Hamiltonian can be cast in the more general form

HY = —JZTZT,,L_SW, 3)

where for the 90° square lattice compass model, HX”, we have v = 1,2, {77} = {7, 7%} =
{r*, 7Y} and {e,} = {e1,ex} = {e,, e, }.

This generalized notation allows for different compass models and the more well-known models
such as the Ising or Heisenberg model to be cast in the same form, see Table 1. For instance the
two-dimensional square-lattice Ising model H5™® corresponds to y = 1,2 with {77} = {7* 7%}
and {e,} = {e,,e,}. The Ising model on a three dimensional cubic lattice is then given
by v = 1.3, {77} = {7%, 7%, 7"} and {e,} = {e,, ey, e.}. The XY model on a square
lattice H3Y corresponds to v = 1.4, {77} = {7, 7%, 7%, 7Y} and {e,} = {e., €., e, €e,}.
Another example is the square lattice Heisenberg model, where we have v = 1...6, {77} =
{ro, v, 7%, 7%, 7%, 7%} and {e,} = {e,, €;, e;,€,, e, €,}, so that in this case ) 7)7,/ . is
equal to > L Tr Trie,-

This class of compass models can be further generalized in a straightforward manner by allowing
for a coupling strength J, between the pseudospins 77 that depends on the direction of the bond
7y (anisotropic compass models [6]) and by adding a field & that couples to 77 linearly [7, 8].
This generalized class of compass models is then defined by the Hamiltonian

7-lcompass = - Z (J’YT:T;}:IFEW + h»YT,;,Y) . “4)
Ty

From a historical (as well as somewhat practical) Viewpoint the three dimensional 90° compass
model is particularly interesting. Denoted by H3 , it is customarily defined on a cubic lattice
and given by Hompass» Eq. (4), where v spans three Cartesian directions: v = 1,2,3 with
{T}={r* v, 7%}, J,=J =1,h,=0and {e,} = {e,, ey, €.}, so that

90° _ Y.y z, z
- _JE Tr r+e +TrTr+ey +7—1'T'r‘+ez)‘ (5)

Thus, by allowing v to assume values v = 1, 2, 3, the square lattice 90 degree compass model of
Eq. (3) is trivially extended to three spatial dimensions. Similarly, by allowing v = 1,2, ..., D,
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Model Hamiltonian: H = — > )

Y
T T,

roy Tr Trve,
{m"} {e,} model name symbol | dim
{r*} {e.} Ising chain HP™"s 1
{re, v} {es e} XY chain HXY 1
{r*, ¥, 7%} {es,e., e} Heisenberg chain | H{s 1
{r*, 7%} {es,e,} square Ising HE™ 2
{r®, 7%, 7%} {e., e, e.} cubic Ising e 3
{r*, ¥, 7%, 7Y} {es, e e, e} square XY HXY 2
{re, v, 7%, 7%, 79,7} | {es, e, e, e, €,,e,} | square Heisenberg | HA 2
{r% v} {e.,e,} square 90° compass | H2 2
{r*, v, 7%} {e,, e, e.} cubic 90° compass | HyY 3
{”*2“37”, Tw_;/gTy} {e.,e,} square 120° compass | H12" 2

With {0, } = {0, 2r/3, 47 /3}:

{r% 7% 7%} e, cosf, + e, sind, honeycomb Ising Hging 5

{r*, 7,77} e, cosf, + e, sinb, honeycomb Kitaev | HE“” | 2

{r*, 7%, 7%} e, cosf., + e, sind, honeycomb XXZ Hé(XZ )

7 = T%cos 0y + T¥sin b, {es, ey €2} cubic 120° 2 | 3
7 e, cost., + e, sind, honeycomb 120° Hgoo 2

With {0,} = {0,27/3,47/3} and n = +1:

>

> | triangular Kitaev | HXiaer

{r*, 7Y, 7%} ne, cos %” + ey sin 5
: triangular 120° H*

>

0. .
7 ne; cos 5 + ne, sin -

Table 1: Generalized notation that casts compass models and the more well-known model
Hamiltonians such as the Ising, XY or Heisenberg models in the same form. Additional spatial
anisotropies can be introduced, for instance by coupling constants .J., that depend on the bond
direction e,. Doing so would change the strengths of the interaction on different links, but not
the form of those interactions: these are determined by how different vector components of T,
and Ty .., couple.

it can be extended to arbitrary spatial dimension D (which we will return to in later sections).
The structure of H3Y is schematically indicated in Fig. 1. This compass model is actually the
one that was originally proposed by [1] in the context of orbital ordering. At that time it was
noted that even if the interaction on each individual bond is Ising-like, the overall symmetry of
the model is considerably more complicated.

It is typical for compass models that even the ground state structure is non-trivial. For a system
governed by H3Y%, pairs of pseudospins on lattice links parallel to the z-axis, for instance, favor
pointing their pseudospins 7 along x so that the expectation value (7%) # 0, see Fig. 1. Similarly,
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on bonds parallel to the y-direction, it is advantageous for the pseudospins to align along the y
direction, so that (1Y) # 0. It is clear that at any given site the bonds along x, y and z cannot be
satisfied at the same time. Therefore the interactions are strongly frustrated. This situation bears
resemblance with the dipole-dipole interactions between magnetic needles that are positioned on
a lattice, hence the name compass models.

Such a frustration of interactions is typical of compass models, but of course also appears in
numerous other systems. Indeed, on a conceptual level, many of the ideas and results that will be
discussed, such as renditions of thermal and quantum fluctuation-driven ordering effects, unusual
symmetries and ground state sectors labeled by topological invariants, have similar incarnations
in frustrated spin, charge, cold atom and Josephson junction array systems. Although these
similarities are mostly conceptual there are also instances where there are exact correspondences.
For instance, the two dimensional 90° compass model is, in fact, dual to the Xu-Moore model
describing Josephson coupling between superconducting grains in a square lattice [9-11,6, 12].

2 Global, topological, and intermediate symmetries and
invariances

In terms of symmetries, compass systems are particularly rich. In what follows, we will discuss
the invariances that these systems exhibit, but first recall the classification of orders and their
relation to symmetry:

(i) Global symmetry. In many condensed matter systems (e.g. ferromagnets, liquids), there is an
invariance of the basic interactions with respect to global symmetry operations (e.g., continuous
rotations in the case of ferromagnets, uniform translations and rotations in liquids) that are
to be simultaneously performed on all of the constituents of the system. At sufficiently low
temperatures (or strong enough interactions), such symmetries might be spontaneously broken.
(11) Topological invariants and orders. Topological orders have been the object of some fasci-
nation in more recent years [13]. In the condensed matter community, part of the activity in
analyzing these types of order is stimulated by the prospects of fault-tolerant quantum computa-
tion. What lies at the crux of topological order is the observation is that even if, in some cases,
global symmetry breaking cannot occur, systems may nevertheless still exhibit a robust order of
a non-local, topological, type.

The most prominent examples of topological order — long studied by high energy theorists — are
afforded by gauge theories [14, 15, 13]. Some of the current heavily studied quintessential models
of topological quantum order in condensed matter and quantum information lattice theories,
e.g., [16,13] share much in common with the early pioneering lattice gauge theory concept along
with the explicit simplest lattice gauge model first introduced by Franz Wegner [14].

Gauge theories display local gauge symmetries and indeed, in pure gauge theories — theories
that have only gauge bosons yet no matter sources — the only measurable quantities pertain
to correlators defined on loops, the so-called Wilson loops. Related products pertain to open
contours in some cases when matter sources are present [15,17,18].



11.8 Jeroen van den Brink and Zohar Nussinov

(iii) Intermediate symmetry. The crucial point is that many compass systems display symmetries
which, generally, lie midway between the above two extremes of global symmetries and local
gauge symmetries. These symmetries are sometimes known as “sliding” symmetries and aside
from compass models are also present in numerous other systems. These include, amongst
many others, arrays of Luttinger liquids [19, 20], quantum Hall smectic phases [21, 22], ring
exchange models of frustrated models [23], and Kondo lattice systems [24]. In the past few
years, there been an extremely intense resurgence of interest in such (in particular, “higher-form”
type) symmetries that has been triggered anew by their study in the high energy community [25].
To clarify the distinction between these different symmetries, we can rephrase it in a formal way
as it applies to general systems [26,27]. Consider a theory with fields {¢;} that is characterized
by a Hamiltonian H (or action §).

Definition: A d-dimensional gauge-like symmetry of a theory is a group of symmetry transfor-
mations such that the minimal non-empty set of fields {¢;} changed by the group operations
occupies a d-dimensional subset (C) of the full D-dimensional region on which the theory is
defined. In the following we will refer to such symmetries as d-dimensional symmetries.

To exercise this notion it is useful to make contact with known cases. Clearly local gauge
symmetries correspond to symmetries of dimension d = 0. That is, gauge transformations can
be applied locally at any point in space — a region of dimension d = 0. At the opposite extreme,
e.g., in a nearest neighbor ferromagnet on a D-dimensional lattice, described by the Heisenberg
Hamiltonian H = —J Z@. i) S; - S, the system is invariant under a global rotation of all spins.
As the volume influenced by the symmetry operation occupies a D-dimensional region and in
this case d = D.

In their simplest form, one which typically appears in compass models, d-dimensional symmetries

119 6)

jepP

are of the form

where g; are group elements associated with a site j and P is a d-dimensional spatial region. In
many cases, depending on the boundary conditions of the system, P correspond to entire open
d-dimensional planes (as in 90° compass models; see, e.g., Fig. 2) or closed contours (when
compass models are endowed with periodic boundary conditions). Defect creation operators
(those that restore symmetries) and translations of defects are typically products of local group
elements that do not span such an entire region P but rather a fragment of it (see, e.g., the open
finite string in Fig. 2 with domain wall boundaries) generally leading to defects at the boundaries
where the group element operations are applied [28].

2.1 Exact and emergent symmetries

A Hamiltonian H, and by extension the system it describes, can have two principal kinds of
symmetries: exact and emergent ones. These are defined as follows.

(1) Exact symmetries. By this, one refers to the existence operators O that commute with the
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(A)
R
S >< S
S >< X

Fig. 2: (A) The 90° square lattice compass model. The action of the d = 1 symmetry operation
of Eq. (16) when the “plane” P is chosen to lie along the vertical axis. (B) A d = 0 (local)
gauge symmetry. Defects within a gauge theory cost a finite amount of energy. Local symmetries
such as the one depicted above for an Ising lattice gauge theory cannot be broken. (C) A defect
in a semi-classical ground state of the two dimensional orbital compass model. Defects such as
this do not allow for a finite on-site magnetization. The energy penalty for this defect is finite
(there is only one bad bond — the dashed line) whereas, precisely as in d = 1 Ising systems, the
entropy associated with such defects is monotonically increasing in system size [28].

Hamiltonian
[H, O] =0. (7)

Such operators, indicated by a hat, *, reflect symmetries of the Hamiltonian.
(i1) Emergent symmetries. In many compass (and numerous other) systems, there are operators
O that do not commute with the Hamiltonian,

[H,0] #0 (8)

1.e., do not satisfy Eq. (7) and are therefore indicated by a tilde, ~. Yet these operators do become
symmetries when projected to a particular sector — a particular subset of states on which the
Hamiltonian acts. That is,

[H,POP] =0, )

where P is the relevant projection operator to that sector. In this case, if one defines POP = O
then O will be an exact symmetry satisfying Eq. (7).

The most prominent cases in condensed matter systems, including compass models in particular
(yet also many others, e.g., [24,29, 30]) relate to symmetries that appear in the ground state
sector alone. In such instances, the symmetries are sometimes said to emerge in the low energy
sector of the theory.

Although the formulation above is for quantum Hamiltonians, the same can, of course, be said for
classical systems. There are numerous classical systems in which the application of a particular
operation on an initial configuration will yield, in general, a new configuration with a differing
energy. However, when such an operation is performed on a particular subset of configurations,
such as the classical ground states, it will lead to other configurations that have precisely the same
energy as the initial state. Similarly, certain quantum systems exhibit such particular symmetries
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only in their large pseudo-spin (or classical) limit. In such cases, symmetries may be said to
emerge in the large pseudo-spin (or classical) limit.

One should note that emergent low-energy symmetries are notably different from the far more
standard situation of spontaneous symmetry breaking, wherein an invariance of the Hamiltonian
(or action) is spontaneously broken in individual low energy states (which are related to one
another by the symmetry operation at hand). In the condensed matter arena, the canonical
example is rotationally symmetric ferromagnets in a spatial dimension larger than two, in which at
sufficiently low temperature a finite magnetization points along a certain direction — thus breaking
the rotational symmetry. Another canonical example is the discrete (up <> down or) time reversal
symmetry which is broken in Ising ferromagnets in dimensions large than one. Spontaneous
symmetry breaking appears in systems that exhibit long-range order of some sort such as
crystallization (breaking translational and rotational symmetries), superconductors (local gauge
invariance and a Anderson-Higgs mechanism), or superfluid Helium. Other examples include the
Higgs mechanism of particle physics, chiral symmetry breaking in quantum chromodynamics,
nucleon pairing in nuclei, electro-weak symmetry breaking at low energies, and related mass
generation.

In all of these textbook examples, the system is symmetric at high energies and exhibits low-
energy states that do not have that symmetry. However, in low energy emergent symmetries, the
situation is reversed: the system may become more symmetric in the low-energy sector. We will
discuss explicit examples of exact and emergent symmetries in compass models in the following
sections.

2.2 Consequences of intermediate symmetry

2.2.1 Degeneracy of spectrum

We now briefly discuss how the presence of a d-dimensional intermediate symmetry, either
classical or quantum, implies an exponential degeneracy of the energy spectrum that corresponds
to the Hamiltonian. The application of intermediate symmetries on disparate d-dimensional
planes leads to inequivalent states that all share the same energy. If a symmetry transformation
Op has its support on a d-dimensional plane P, then one can define the composite symmetry
operators

Ocomposite = O~P1 O~P2 .. OPR . (10)

For a hypercubic lattice in D dimensions which is of size LxXL XL --- x L, the number of
independent planes (R) in Eq. (10) scales as R = O(L%) where

d=D-d. (1D

If each individual d-dimensional symmetry operation (exact or emergent) Up, leads to a degener-
acy factor of m then the composite operation of Eq. (10) can lead to a degeneracy (of any state
(for exact symmetries) or of the ground state (for emergent symmetries)) whose logarithm is of
magnitude

log,,, degeneracy = O(L”~%). (12)
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That this is indeed the case is clearer for classical systems with discrete symmetries than for
quantum systems. Nevertheless, in the thermodynamic limit and/or on lattices whose boundaries
are tilted the degeneracy factor of Eq. (12) associated with the intermediate d-dimensional
symmetries becomes exact [31]. On hypercubic lattices, such as the square lattice of the planar
90° compass model discussed in subsection 2.3, whose boundaries are the same along the d’
directions orthogonal to the planes P, the application of the operators of Eq. (10) does not lead to
independent states for finite size systems. However, in the thermodynamic limit, the application
of disparate operators of the form of Eq. (10) on a given initial state may lead to orthogonal
states.

2.2.2 Dimensional reduction

The existence of intermediate symmetries has important consequences: it implies a dimensional
reduction. The corresponding dimensional reduction is only with respect to expectation values
of local quantities: the free energies of these systems and the transitions that they exhibit are
generally those of systems in high dimensions [26,27].

Theorem on Dimensional Reduction More precisely, the expectation value of any such
quantity (f) in the original system (of dimension D) is bounded from above by the expectation
value of the same quantity evaluated on a d dimensional region:

[vpl=lvplis (13)

The expectation value (f) refers to that done in the original system (or lattice) that resides in D
spatial dimensions. The Hamiltonian H, on the right-hand side is defined on a d dimensional
subregion of the full lattice (system). The dimensionality d < D. The Hamiltonian H, preserves
the range of the interactions of the original systems. It is formed by pulling out of the full
Hamiltonian on the complete (D dimensional) lattice, the parts of the Hamiltonian that appear
within the d dimensional sub-region (C) on which the symmetry operates. Fields (spins) external
to C act as non-symmetry breaking external fields in H,;. The bound of Eq. (13) becomes most
powerful for quantities that are not symmetry invariant as then the expectation values (f) ;, need
to vanish for low spatial dimensions d (as no spontaneous symmetry breaking can occur). This,
together with Eq. (13), then implies that the expectation value of (f) on the full D dimensional
spatial lattice must vanish. By “non invariant” we mean that f(¢;) vanishes when summed over
all arguments related to each other a d dimensional symmetry operation, » , f[g:x(¢;)] = 0.
For continuous symmetries, non-invariance explicitly translates into an integral over the group

elements [ fg;(¢;)] dg = 0.
We will now summarize general corollaries of such symmetry based analysis for general systems.

Corollaries By choosing f to be the order parameter or a two-particle correlator, one arrives
at the following general corollaries [26,32,27]:

Corollary I: Any local quantity that is not invariant under local symmetries (d = 0) or symmetries
that act on one dimensional regions (d = 1) has a vanishing expectation value (f), at any finite
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temperature. This follows as both zero- and one-dimensional systems cannot exhibit symmetry
breaking: in one and two dimensional systems, the expectation value of any local quantities not
invariant under global symmetries: (f) = 0.

Physically, entropy overwhelms energetic penalties and forbids a symmetry breaking. Just as in
zero- and one-dimensional systems, much more entropy is gained by introducing defects (e.g.,
domain walls in discrete systems), the same energy-entropy calculus is replicated when these
symmetries are embedded in higher dimensions. An example with d = 1 domain walls in a
two-dimensional systems is afforded by the planar 90° compass model (see Fig. 2); even though
the planar compass model is two-dimensional, the energy cost of these domain walls is identical
to that in a d = 1 system. The particular case of local (d = 0) symmetry is that of Elitzur’s
theorem [33] so well known in gauge theories. We may see it more generally as a consequence
of dimensional reduction.

A discussion of how, by virtue of this consequence, such symmetries may protect and lead to
topological quantum orders in systems at both finite and zero temperature appears in [34,28].
Corollary I1: One can push the consequences further by recalling that no symmetry breaking
occurs for continuous symmetries in two spatial dimensions. Here again, free energy penalties are
not sufficiently strong to induce order. When embedding continuous two dimensional symmetries
in higher dimensions, the energy entropy balance is the same and the same result is attained
(f) = 0 at all finite temperatures for any quantity f that is not invariant under continuous d < 2
symmetries.

Further noting that order does not exist in continuous two dimensional systems also at zero
temperature in the presence of a gap between ground and the next excited state, one similarly
finds that for a d < 2 dimensional continuous symmetry the expectation value of any local
quantity not invariant under this symmetry, strictly vanishes at zero temperature. Though local
order cannot appear, multi-particle (including topological) order can exist. In standard gauge
(d = 0) theories, the product of gauge degrees of freedom along a closed loop (the Wilson loop)
can attain a non-zero value as it may be invariant under all d = 0 symmetries. In more general
theories with higher d dimensional symmetries, similar considerations may lead to loop (or
“brane”) type correlators that involve multiple fields and are invariant under all low dimensional
symmetries. Precisely such non-local correlation functions appear in Kitaev’s honeycomb model
and many other systems with topological orders [35, 28, 34,36]. Symmetry breaking in the
highly degenerate compass models often transpires by a fluctuation driven mechanism (“order by
disorder”) [37-39]. In this mechanism, entropic contributions to the free energy play a key role.
Corollary III: Not only can one make statements about the absence of symmetry breaking, we
can also adduce fractionalization of non-symmetry invariant quantities in high dimensional
system. That occurs if no (quasi-particle type) resonant terms appear in the lower dimensional
spectral functions [32].

This corollary allows for fractionalization in quantum systems, where d = 1, 2. It enables sym-
metry invariant quasi-particles excitations to coexist with non-symmetry invariant fractionalized
excitations. Fractionalized excitations may propagate in D—d dimensional regions. Examples
afforded by several frustrated spin models where spinons may drift along lines on the square
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lattice [29] and in D dimensional regions on the pyrochlore lattice [30].

In what follows, we explicitly enumerate the symmetries that appear in various compass models.
The physical origin of dimensional reduction in these systems can be seen examining intermediate
symmetry restoring defects.

2.3 Symmetries of the 90° compass model

We now classify symmetries of the 90° compass model in various spatial dimensions, considering
both quantum and classical versions. To highlight some aspects of the symmetries of this system,
it is profitable to discuss the general anisotropic compass model, as given for D = 2 in Eq. (1)
with general couplings J, and J, and in general spatial dimension D given by Eq. (4), without
field
HYY == J, 7, - (14)
Y

The equivalent classical Hamiltonian on a D-dimensional hyper cubic lattice is

FOclass Z Ty TT . 15)

T?’Y

In the quantum systems, 7" are generators of the representations of SU(2) of size (27'+1). For a
pseudo-spin 1/2 system, 77 = 77 /2. In the classical arena, 7" are the Cartesian components of
normalized vector T'. These classical and quantum Hamiltonian systems exhibit both exact and
emergent symmetries.

2.3.1 Exact discrete intermediate symmetries

Exact symmetries of both the square lattice and cubic lattice 90° compass model in any pseudo-
spin representation are given by [26,40-42,6,43]

O = TJ & (16)

rekby

where P, is any line (in the case of the two-dimensional model) or plane (in the case of the cubic
lattice model) which is orthogonal to the external e, axis of the lattice. A schematic for the
D = 2 dimensional case is provided in panel (a) of Fig. 2.

The exact nature of the symmetries of Eq. (16) is readily seen: the operators of Eq. (16) commute
with the general Hamiltonian of Eq. (15): [0, H]| = 0. Thus, rotations of individual planes
about an orthogonal axis leave the system invariant. Written generally, for a 90° compass model
in D dimensions, the planes P, are objects of spatial dimensionality d = D—1. Inthe D = 3
dimensional system, the symmetries of Eq. (16) are of dimension d = 2 as the planes P, are
two-dimensional objects. On the square lattice, the symmetries are of dimension d = 1 as P, are
lines. These symmetries hold for both the quantum system with arbitrary size pseudo-spin as well
as the classical system in a high number of dimensions D. A consequence of these symmetries
is an exponential in L”~! degeneracy of each eigenstate of the Hamiltonian (including but
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not limited to ground states) in systems with “tilted” boundary conditions that emulate the
thermodynamic limit [31]. In pseudo-spin one-half realizations of this system, Eq. (14), on an
Lx L square lattice, a 2% degeneracy was numerically adduced for anisotropic systems (.J,, # J,)
in the thermodynamic limit [43]. Correlation functions involving the symmetry operators were
examined in [44].

Now, here is an important point to which we wish to reiterate — that of the physical origin of the
dimensional reduction in this system. In a D = 2 dimensional 90° compass model system, the
energy cost for creating defects (domain walls) is identical to that in a d = 1 dimensional system
(see Fig. 2). With the aid of the bound of Eq. (13), we then see the finite temperature expectation
value (07) = 0 within the D = 2 orbital compass model. The physical engine behind the loss
of on-site order of (07) is the proliferation of solitons, see Fig. 2. Just as in d = 1 dimensional
systems, domain walls (solitons) cost only a finite amount of energy while their entropy increases
with system size. A schematic is provided in panel (c) of Fig. 2. The Hamiltonian f,;_, defined
on the vertical chain of Fig. 2 where these operations appear is none other than a one dimensional
Ising Hamiltonian augmented by transverse fields generated by spins outside the vertical chain.
Any fixed values of the spins outside the d = 1 dimensional chain lead to transverse fields that
act on the chain. These along the Ising exchange interactions between neighboring spins along
the chain lead in this case to the pertinent H;_, in Eq. (13): that of a transverse field Ising model
Hamiltonian. By virtue of their location outside the region where the symmetry of Eq. (16)
operates, the spins o, do not break the discrete d = 1 symmetry associated with the plane P,.
These defects do not enable a finite temperature symmetry breaking.

2.3.2 Exact discrete global symmetries

When the couplings are not completely anisotropic (e.g., J, = J, # J,or J, = J, = J,
on the cubic lattice or J, = J, on the square lattice) there are additional discrete symmetries
augmenting the d = D—1 Ising symmetries detailed above. For instance, when J, = J, # J, a
global discrete rotation of all pseudo-spins on the lattice by an angle of 90° about the 7% direction
leaves the Hamiltonian of Eq. (15) invariant. Such a discrete rotation essentially permutes the x
and y oriented bonds which are all of equal weight in the isotropic case when these are summed
over the entire square lattice. The same, of course, also applies for the square lattice model when
Jo = Jy.

Yet another possible representation of essentially the same symmetry as it is pertinent to the
exchange of couplings in the compass model is that of a uniform global rotation by 180° about
the (1,1)/+/2 direction of the pseudo-spins. Similarly, when .J, = J, = J., a uniform global
rotation by 120° of all pseudo-spins about the internal (1,1, 1)/+/3 pseudo-spin direction is also
a discrete symmetry; this latter symmetry is of the Z3 type — if performed three times in a row,
this will give back the identity operation.

These additional discrete symmetries endow the system with a higher degeneracy. For isotropic
systems (J, = .J,), numerically a 25! fold degeneracy is seen in the pseudo-spin 7" = 1/2
system [43]; this additional doubling of the degeneracy is related to a global Ising operation of a
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rotation by 180° about a chosen pseudo-spin direction that leaves the system invariant. These
additional symmetries are global symmetries and thus of a dimension d = D which is higher
than that of the discrete lower dimensional that are present in both the anisotropic and isotropic
systems (d = D—1). As aresult, in, e.g., the isotropic D = 2 dimensional 90° compass model
may exhibit a finite temperature breaking of such a discrete global symmetry associated with
such a discrete rotation. By contrast, the d = 1 symmetries of the two-dimensional 90° compass
model cannot be broken as discussed in section 2.2.2.

We note that in the classical anisotropic rendition of this system the degeneracy is exactly the
same — i.e., 2%, aside from continuous emergent symmetries that will be discussed in the next
section. The classical isotropic case is somewhat richer. There, each uniform pseudo-spin state

22L

has an additional degeneracy factor of associated with the 2L independent classical d = 1

Ising symmetries.

2.3.3 Emergent intermediate discrete symmetries: cubic 90° model

We now turn to intermediate symmetries that appear in the large pseudo-spin (or classical) limit
of the 90° compass model in three dimensions. In its classical limit, the 90° compass model on
the cubic lattice has d = 1 inversion (or reflection) symmetries along lines parallel to each of
the three Cartesian axes z,. Along these lines, we may set 7' — —7;* and not touch the other
components. This corresponds to, e.g, a reflection in the internal xy pseudo-spin plane when we
invert 77 and not alter the x or y components.

We explicitly note that this transformation is not canonical and does not satisfy the commutation
relation and is thus disallowed quantum mechanically; indeed, this appears only as an emergent
symmetry in the classical limit of large pseudo-spin. Instead in the 90° compass model on the
cubic lattice, quantum mechanically we have the d = 2 symmetries which we wrote earlier
(which of course trivially also hold for the classical system). Thus, the quantum system is less
symmetric than its classical counterpart.

By contrast to the cubic lattice case, for the square lattice 90° compass model, the intermediate
d = 1 symmetries of Eq. (16) are are not emergent symmetries but rather exact quantum (as well
as classical) symmetries.

2.3.4 Emergent continuous global symmetries

In addition to its exact symmetries, the 90° model also exhibits emergent symmetries in its
isotropic version. As mentioned earlier, globally uniform pseudo-vector configurations are
ground states of any classical isotropic ferromagnetic compass model. Thus any global rotation
of all pseudo-spins is an emergent symmetry of the 90° models. In the D = 2 system, this
corresponds to a global U(1) rotation of all angles of the planar pseudo-spins. In the D = 3
cubic lattice system, any SO(3) rotation of the three-dimensional pseudo-spins is an emergent
symmetry. That a rotation does not change the energy of any uniform configuration is clear
in the 90° model. Imagine that all pseudo-spins in the planar 90° model are oriented at an
angle 6 relative to the 7™ axis. In such a case, the energy associated with the horizontal bonds,
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T=Te

r+ey

J. = Jy, = J in the isotropic system and as sin? § + cos? § = 1, any uniform pseudo-spin state

will vary as cos?  whereas that associated with the vertical bonds varies as sin? . As

will have the same energy and global rotations will not alter this energy.

3 Kitaev’s honeycomb model

In 2006, Alexei Kitaev introduced a type of compass model that has interesting topological
properties and excitations, which are relevant and much studied in the context of topological
quantum computing [45]. The model is defined on a honeycomb lattice and is referred to either
as Kitaev’s honeycomb model or the XYZ honeycomb compass model. The lattice links on a
honeycomb lattice may point along three different directions, see Fig. 3. One can label the bonds
along these directions by e;, e; and es, where the angle between the three unit lattice vectors is
120°. With these preliminaries, the Kitaev’s honeycomb model Hamiltonian H, g’“ev reads

Kitaev __ xr__x y_y z_z
e —bonds e —bonds e3—bonds
One can re-express this model in the form of H . introduced above, where
{T’Y} = {Tx’ 7Y, TZ}
{J’Y} - {Jx, ‘]y’ Jz}

e, = egcost,+e,sind,
{Q'Y} = {07 27T/37 47T/3}

HE“ = =" L, 7)., with (17)
77

It was proven that for large .J., the model Hamiltonian /7 6”“” maps onto a square lattice model
known as Kitaev’s toric code model [16].

3.1 Features of Kitaev’s honeycomb model

By its very nature, Kitaev’s honeycomb model is very similar to the 90° compass models and
other 120° models [4]. However, the Kitaev-model system has a number of very remarkable
properties. These can be assessed in a crisp manner because the model is exactly solvable: it
can be mapped exactly onto a system of non-interacting Majorana (as well as Dirac) fermions,
as will be detailed in Sec. 3.2.2. This allows the derivation of all of the beautiful topological
characteristics — its gapped bulk states, computable Chern numbers and Majorana excitations.
Moreover, it will make evident that these Majorana excitations are coupled to a gauge field which
embodies the topological charges, i.e., magnetic and electric like charges.

For future purposes it is useful to define an extension to this Hamiltonian H 6 which actually
becomes relevant if the model is studied in an external field . This term involves three pseudo-
spins on sites ¢, 7 and k, and is the of form

HY = -k 7iri7 (18)

ijk
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Fig. 3: Left: Kitaev’s compass model on a honeycomb lattice: the interaction of (pseudo-)spin
degrees of freedom T = (1%, 7Y, 7%) along the three bonds that each site is connected to are

X T yY 22 .
To T ey ToTrve, and 77T, .., where the bond-vectors of the honeycomb lattice {e1, ey, e3}

are {e,, (—e,+V3e,)/2, (—e.—/3e,)/2}, respectively. Right: The 120° compass model on
a cubic lattice: the interaction of (pseudo-)spin degrees of freedom T = (7%, 7Y, 77) along

s ~1a1 ~242 3.3
the three bonds that each site is connected to are T, T, . , T, T, . and T, . , where the
2

different components {#', 7%, 73} of the vector & = (7%, (—=7%4+/37Y)/2, (—7*—/37%)/2)
interact along the different bonds {e,, e, e,}.

where the sum over ijk is a sum over all sites connected by the two links (ij) and (jk). So
here the link (i) connects neighboring sites 7 and j, similarly for (jk), but sites i and & are next
nearest neighbors. This form of the Hamiltonian might seem rather particular at this point, but
when adding it, the model will stay exactly solvable. This term is essential in order to endow the
non-Abelian excitations of Kitaev’s honeycomb model with a gap. The Kitaev model reduces to
the toric code model in the limit in which one coupling constant is far larger than all of the rest,
e.g., |J.| > |J.,|- The excitations in the toric code model, precisely have magnetic and electric
charges.

3.1.1 Majorana excitations

The existence of edge-states in the Kitaev model constitutes an analogue to quantum Hall systems
and other topological insulators. However, in integer quantum Hall systems, the edge-modes are
bona fide fermions and not Majorana fermions. It is the Majorana character of the excitations that
in principle enables the aforementioned fault tolerance relative to all local fluctuations — “errors”
in the setting of quantum computing. The excitations of the Kitaev model flesh out the notions
of anyonic statistics and afford very crisp realizations of non-trivial topology. The system also
realizes one of the simplest examples of exotic ideas concerning fractionalization in strongly
correlated electronic and spin systems. In its Abelian phase, the magnetic and electric excitations
in the model may, respectively, be viewed [47] as counterparts of vison and spinon excitations
in theories of doped quantum antiferromagnets [48] with relative “semionic” statistics which
requires that when an excitation of one type is moved around another it picks up a phase factor
of —1.
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It should be stressed that while the existence of excitations of Majorana-type is a special feature
of the Kitaev model, it is not necessarily a unique feature. In special situations three dimensional
topological insulators may also exhibit Majorana fermion type of excitations, for instance on their
surface when placed at an interface with a superconductor [49]. Majorana fermions may also
manifest in some of the systems that we earlier referred to in the context of non-trivial statistics:
the fractional quantum Hall systems such that of the state of filling fraction v = 5/2 [50],
at cores of half-vortices in p-wave superconductors [S1] and in semi-conductor [52, 53] and
semi-conductor/(s-wave) superconductor systems [54].

3.2 Majorana representation — Abelian phases

As was emphasized earlier, the Kitaev model is exactly solvable in its ground state sector,
for any set of coupling constants J,, J, and J,. The original solution in [45] hinged on
introducing several Majorana fermion degrees of freedom per site and making a projection on
to a physical Hilbert space and symmetrization. Later approaches invoked a Jordan-Wigner
(JW) transformation in two dimensions [55, 35, 56, 57], perturbative methods, e.g., [58] and
slave fermion methods [59, 60]. Another approach, which will be followed here, is based on
the direct use of a bond algebra [61]. It is rather straightforward and keeps directly track of
the local symmetries that the Hamiltonian harbors, which are crucial to the solutions of Hg
(and the same model augmented by H %). The explicit solution via the JW transformation [35]
largely inspired the bond algebraic approach, but it is not as 