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15. Slave-Boson Theories of Multi-Orbital Correlated Systems
Nicola Lanatà
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Preface
In a classic paper 50 years ago, Kugel and Khomskii demonstrated that in strongly-correlated
systems orbital ordering can arise from a purely electronic super-exchange mechanism and not
just the conventional co-operative Jahn-Teller effect. This work opened the field of orbital
physics which, since then, is undergoing continuous growth. It was understood that, besides
orbital ordering, super-exchange can give rise to the orbital analogue of spin-liquid states. It was
shown that the directional character of the orbitals can introduce anisotropic super-exchange
interactions, which, in a simplified setting, are described by compass models, a prototype for
the Kitaev model. More surprising phenomena arise from the entanglement of spin and orbital
degrees of freedom. New developments aim at tuning orbital occupations by pushing the system
out of equilibrium, as well as at orbital-controlled electronics.

The goal of this year’s school is to provide students with an overview of the state-of-the art
in the field of orbital physics and the techniques used to investigate strongly-correlated systems
hosting phenomena stemming from orbital degrees of freedom. After introducing fundamental
models and effects, lectures will focus on their realizations in materials. Advanced lectures will
address orbital phases and Kitaev systems, as well as theoretical approaches and experimental
probes of spin, orbital, and charge degrees of freedom.

A school of this size and scope requires backing from many sources. We are very grateful for
all the practical and financial support we have received. The Institute for Advanced Simulation
at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the major part
of the funding and were vital for the organization of the school as well as for the production
of this book. The Institute for Complex Adaptive Matter (ICAM) continued also this year to
endorse the school and supplied additional funds.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with proof-
reading the manuscripts, often on quite short notice: Elaheh Adibi, Qiwei Li, Neda Samani, and
Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini and Erik Koch

August 2023
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1.2 Eva Pavarini

1 Introduction

The term orbital ordering (OO) indicates the emergence of a broken symmetry state in which
localized occupied orbitals form a regular pattern, in a similar way as spins do in magnetically
ordered structures. Orbital ordering phenomena typically occur in Mott insulators with orbital
degrees of freedom; for transition-metal compounds, the main focus of this lecture, the latter
stem from the partially filled d shells of the transition metal. The perhaps most representative
case is the perovskites KCuF3, shown in Fig. 1. In first approximation KCuF3 is cubic (Oh point
group) with Cu2+ at the center of a regular octahedron of F− ions (anions), enclosed in a cage
of K+ (cations). Due to Oh symmetry at the Cu site, the d manifold, 5-fold degenerate for free
Cu2+, splits into a t2g triplet (xz, yz, xy), lower in energy, and a eg doublet (x2−y2 and 3z2−r2);
the electronic configuration of the Cu2+ ion is thus t62ge

3
g (one 3d hole). The t2g states are

completely filled and do not play any active role in OO; instead, electrons in the e3g configuration
have orbital degeneracy d=2. Making an analogy with spin degrees of freedom, they behave as
an effective τ=1/2 pseudospin; in this view, one of the two eg states, say |x2−y2〉, plays the role
of the pseudospin up, | ↗ 〉, and the other one, |3z2−r2〉, of the pseudospin down, | ↘ 〉. The
two pseudospin states are degenerate and, by symmetry, one could expect them to be equally
occupied. In reality the symmetry is broken and KCuF3 is orbitally ordered with the orbital
structure shown in Fig. 1; depicted are the empty (hole) eg states at each Cu site. Furthermore,
the system exhibits a co-operative Jahn-Teller (JT) distortion, also shown in Fig. 1, with long
and short Cu-F bonds alternating in the ab plane. Indeed, the two phenomena – electronic
OO and structural JT distortion – are concurrent; it is therefore difficult to say which one is
the cause and which one is, instead, the effect. This is a classical case of a chicken-and-egg
problem. The second paradigmatic system showing OO is LaMnO3 (ion Mn3+, configuration
3d4), the mother compound of colossal magnetoresistance manganites, also a perovskite. Due
to the Hund’s rule coupling J, the actual electronic configuration of Mn3+ is t32ge

1
g. The half-

filled t32g state has no orbital degeneracy; the only orbital degrees of freedom are, as for KCuF3,
those associated with eg electrons. Again, the system is orbitally ordered and OO goes hand
in hand with the co-operative JT distortion. Among t2g systems, i.e., materials with partially
filled t2g shells, classical examples of orbitally-ordered crystals are the perovskites LaTiO3 and
YTiO3 (configuration t12g), LaVO3 and YVO3 (t22g), and Ca2RuO4 (t42g); in these cases the t2g
electrons behave as an orbital pseudospin τ=1. Although this is not a prerequisite for orbital
ordering, as we have seen, many orbitally-ordered materials are perovskites; for this reason in
the present lecture we will use the perovskite structure as representative.

The origin of orbital ordering has been investigated for decades. One of the problems in clari-
fying its nature is that, while magnetic order can be directly probed, e.g., via neutron scattering
experiments, orbital ordering is typically only indirectly observed. Indeed, its principal hall-
mark is the presence of the co-operative Jahn-Teller distortion itself. Identifying the origin of
orbital ordering is thus intimately related to finding the cause of the co-operative Jahn-Teller
distortion. In this lecture I will first illustrate the two main mechanisms [1, 2] which have
been proposed as possible explanation for OO phenomena, the classical Jahn-Teller effect [1],
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Fig. 1: Crystal structure, distortions, and orbital ordering in KCuF3. Cu is at the center of
F octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The
pseudocubic axes x, y, z pointing towards neighboring Cu, are shown in the corner. Short (s)
and long (l) CuF bonds alternate between x and y along all pseudocubic axes (co-operative
Jahn-Teller distortion). The distortions are measured by δ=(l−s)/(l+s)/2 and γ=c/a

√
2. R is

the experimental structure (γ=0.95, δ=4.4%), Rδ (γ=0.95) and Iδ (γ=1) two ideal structures
with reduced distortions. In the I0 structure the cubic crystal-field at the Cu site splits the 3d
manifold into a t2g triplet and a eg doublet. In the R structure, site symmetry is lowered further
by the tetragonal compression (γ<1) and the Jahn-Teller distortion (δ 6= 0). The figure shows
the highest-energy 3d orbital. From Ref. [3].

perhaps enhanced by Coulomb repulsion [4], and Kugel-Khomskii (KK) superexchange [2].
Kanamori well illustrated the first mechanism in an influential work [1] in 1960; the main idea
is that electron-phonon coupling yields a static Jahn-Teller distortion, which lowers the symme-
try of the system and produces a crystal-field splitting. As a consequence, electrons preferably
occupy the lower energy states, giving rise to a periodic pattern of occupied orbitals. This is
self-evident in the limit in which the crystal-field splitting is very large, let us say, larger than
the bandwidth; the lower-energy states at each site will be clearly the first ones to be occupied.
If, however, the bandwidth is large in comparison with the crystal-field splitting, the hopping
integrals can strongly reduce such a tendency to orbital ordering. A natural question thus arises
at this point. How large should the crystal-field splitting be to give rise to a orbitally-ordered
state? To answer this question we have to remind ourselves that transition-metal systems with
partially filled d shells are also typical examples of strongly-correlated materials. Their low-
energy properties are believed to be well described by a generalized multi-band Hubbard model

Ĥ = Ĥ0 + ĤU ,
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the sum over a one-electron term Ĥ0 describing the transition-metal d bands and a Coulomb
electron-electron repulsion term ĤU . The one-electron term is

Ĥ0 = −
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ ,

where c†imσ creates an electron at site i with spin σ and orbital quantum number m, and the pa-
rameter ti,i

′

mm′ are the hopping integrals (i6=i′) or the crystal-field splittings (i=i′). The Coulomb
repulsion can be written as

ĤU =
1

2

∑
i

∑
σσ′

∑
mαm

′
α

∑
mβm

′
β

Umαmβm′
αm

′
β
c†imασc

†
imβσ

′cim′
βσ

′cim′
ασ
.

The elements the Coulomb interaction tensor, Umαmβm′
αm

′
β
, can be expressed in terms of the

Slater integrals.1 Here we will restrict the discussion to the eg or t2g manifolds only. In this
case, in the basis of real harmonics, the Hubbard model takes the form

Ĥ=−
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ + U

∑
i

∑
m

n̂im↑n̂im↓

+
1

2

∑
i

∑
σσ′

∑
m6=m′

(U−2J−Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓+c

†
im↑cim↓c

†
im′↓cim′↑

]
, (1)

where m,m′ are here either t2g or eg states, Umm′mm′=Um,m′=U−2J(1−δm,m′) and, for m 6=
m′, Umm′m′m=Jm,m′=J . The last two terms describe the pair-hopping and spin-flip processes
(Ummm′m′=Jm,m′ if we use a basis of real harmonics, while for spherical harmonicsUmmm′m′=0).
Finally, U=U0 and J=J1 (t2g electrons) or J=J2 (eg electrons), with

U0 =F0 +
8

5
Javg, Javg=

5

7

1

14
(F2 + F4)

J1 =
3

49
F2 +

20

9

1

49
F4, J2 =− 2Javg + 3J1 .

In strongly correlated systems described by a Hamiltonian of type (1), it turns out that a small
crystal-field splitting, a fraction of the bandwidth, is sufficient to produce orbital order even at
high temperature. This happens because the Coulomb repulsion effectively enhances it, while
suppressing orbital fluctuations [4]. Hence, the mechanism illustrated by Kanamori becomes
very efficient in the presence of strong correlations (small t/U limit, the typical limit for Mott
insulators; here t is an average hopping integral). This is, however, not the end of the story:
Coulomb electron-electron interaction provides, in addition, an alternative explanation of the
origin of orbital ordering. In a seminal work, Kugel and Khomskii [2] have shown in 1973
that, in the presence of orbital degeneracy, many-body effects can produce orbital ordering

1For a pedagogical introduction see, e.g, Ref. [5].
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Fig. 2: The unit cell of a cubic perovskite ABC3 and its symmetry axes; the lattice con-
stant is a. The transition metal B (red) is at (0, 0, 0); the ligands C (green) are located
at (±a/2, 0, 0), (0,±a/2, 0),(0, 0,±a/2) and form an octahedron; the cations A are located
at (±a/2,±a/2,±a/2), (±a/2,∓a/2,±a/2), (∓a/2,±a/2,±a/2), (±a/2,±a/2,∓a/2) and
form a cube. The bottom figures illustrate the rotational symmetries of the cell.

even in the absence of a static distortion, i.e., of a crystal-field splitting. This happens via
electronic spin-orbital superexchange, the effective low-energy interaction which emerges, in
the small t/U limit, from the orbitally-degenerate Hubbard model. In this picture, the co-
operative Jahn-Teller distortion is rather the consequence than the cause of orbital order. As I
already mentioned, the predictions of the two theories for the final broken-symmetry structure
are basically identical for most systems; thus it is very hard to determine which of the two
mechanisms, Jahn-Teller effect or Kugel-Khomskii superexchange, dominates. In the last part
of the lecture we will see how the problem was recently solved in representative cases [3, 6] by
using a new theoretical approach based on the local-density-approximation + dynamical mean-
field theory (LDA+DMFT) [7–10] method. For the paradigmatic systems KCuF3 and LaMnO3,
it was shown that Kugel-Khomskii superexchange alone, although strong, cannot explain the
presence of the Jahn-Teller distortion above 350 K (KCuF3) [3] and 650 K (LaMnO3) [6];
experimentally, however, the distortion persists in both systems basically up to the melting
temperature. This leads to the conclusion that a mechanism directly generating a static crystal-
field splitting, such as the standard Jahn-Teller effect, is necessary to explain the experimental
findings. In fact, for KCuF3 and other ionic systems, it turns out that even the classical JT
picture fails. A new mechanism, based on Born-Mayer repulsion, has to be invoked to describe
the actual experimental structure and the associated ordering at high temperature [11]. A true
Kugel-Khomskii system was recently identified in LaVO3 [12].
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2 Cubic crystal-field splitting

Let us consider a system with the ideal cubic perovskite structure ABC3, shown in Fig. 2. In
this structure, B is the transition metal with partially filled d shell. The site symmetry at site B is
cubic; thus, as we mentioned before, d states split into eg and t2g. Let us understand how exactly
this happens. For a free ion, the potential vR(r) which determines the single-electron energies
is rotationally invariant, i.e., it has symmetry O(3). This means that all single-electron states
within a given l shell are degenerate, as it happens in the case of hydrogen-like atoms. When the
same ion is inside a molecule or a solid, vR(r) has in general lower symmetry, corresponding
to a finite point group.2 Thus one-electron states within a given shell l, degenerate for the
free atom, can split. The symmetry reduction arises from the crystal field; the latter has two
components, the Coulomb potential generated by the surrounding charged ions, dominant in
ionic crystals, and the ligand field due to the bonding neighbors. In this section we will analyze
the first contribution; the covalent contribution to the crystal-field splitting is discussed in the
next section. Both effects give rise to a similar splitting of levels; which contribution dominates
depends on the system.
Let us thus assume that the crystal is perfectly ionic and that the ions can be treated as point
charges qα (point-charge model). Then, the one-electron potential can be written as

vR(r) =
∑
α

qα
|Rα − r|

= v0(r) +
∑
α6=0

qα
|Rα − r|

= v0(r) + vc(r), (2)

where Rα are the positions of the ions and qα their charges. The term v0(r) is the ionic central
potential at siteR0, with spherical symmetry. The term vc(r) is the electric field generated at a
given siteR0 by all the surrounding ions in the crystal and it is called crystal-field potential.
For the perovskite structure ABC3 we are interested in the crystal-field potential at the site
of the transition metal, B. Let us first assume that only the contribution of nearest neighbors
(the negative C ions, typically oxygens or fluorines) is relevant. The six C ions are located at
positions (±dC , 0, 0), (0,±dC , 0), (0, 0,±dC) and have all the same charge qC , while the B ion
is at (0, 0, 0); in terms of a, the cubic lattice constant, dC=a/2. Then we can write the potential
around ion B as

vR(r) =
qB
r

+
qC
dC

[
∆v

(
x

dC
;
r

dC

)
+∆v

(
y

dC
;
r

dC

)
+∆v

(
z

dC
;
r

dC

)]
where

∆v(ξ; ρ) =
1√

1 + ρ2

 1√
1 + 2ξ

1+ρ2

+
1√

1− 2ξ
1+ρ2

 .
Via the Taylor expansion

1√
1 + η

∼ 1− 1

2
η +

3

8
η2 − 5

16
η3 +

35

128
η4 + . . .

2For a concise introduction to group theory see, e.g., Ref. [13], chapter 6.
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we can find an approximate expression of ∆v(ξ; ρ) for small ξ, i.e., close to ion B; the first
contribution with less than spherical symmetry is

voct(r) =
35

4

qC
d5C

(
x4 + y4 + z4 − 3

5
r4
)

= D

(
x4 + y4 + z4 − 3

5
r4
)
.

We can rewrite this potential as

voct(r) =
7
√
π

3

qC
d5C
r4

[
Y 4
0 (ϑ, ϕ) +

√
5

14

(
Y 4
4 (ϑ, ϕ) + Y 4

−4(ϑ, ϕ)
)]
, (3)

where

Y 4
0 (ϑ, ϕ) =

3

16

1√
π

(
35 cos4 ϑ− 30 cos2 ϑ+ 3

)
=

3

16

1√
π

35z4 − 30z2r2 + 3r4

r4
,

Y 4
±4(ϑ, ϕ) =

3

16

√
35

2π
sin4 ϑe±4iϕ =

3

16

√
35

2π

(x± iy)4

r4
.

To obtain the crystal field due to the cubic cage of cations A (with charge qA), shown in Fig. 2
we repeat the same calculation; the main difference is that there are eight A ions, located at
positions (±dC ,±dC ,±dC),(∓dC ,±dC ,±dC), (±dC ,∓dC ,±dC), (±dC ,±dC ,∓dC), with the
distance from the origin being dA=

√
3a/2. By following the same procedure that we used for

B octahedron, one can show that

vcube(r) = −8

9

qA
qC

(
dC
dA

)5

voct(r),

i.e., vcube(r) has the same form as voct(r); this happens because a cube and an octahedron are
dual polyhedra3 and have therefore the same symmetry properties. If qA/qC > 0, vcube(r) has
opposite sign than voct(r); in the case of a perovskite, however, A positions are occupied by
cations, i.e., positive ions; thus the crystal field due to the A cage has the same sign of the crystal
field generated by the B octahedron.
The crystal-field potential vc(r) lowers the site symmetry and can therefore split the (2l+1)-fold
degeneracy of the atomic levels. To calculate how the l manifold splits, we use two approaches.
The first is exact and based on group theory. We assume for simplicity that the symmetry is only
O (group of the proper rotations which leave a cube invariant); using the full symmetry group
of the cube, Oh = O ⊗ Ci (where Ci is the group made by the identity and the inversion) does
not change the result, because the spherical harmonics are all either even or odd. The character
table of group O is given by

partner functions O E 8C3 3C2 6C ′2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1

A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(Rx, Ry, Rz) (x, y, z) T1 3 0 −1 −1 1

(xy, xz, yz) T2 3 0 −1 1 −1

(4)

3Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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Let us explain this table. The first line yields the group, here O, and the symmetry operations
of the group, collected in classes Ck, here {E}, {C3}, {C2}, {C ′2}, {C4}. For each class only a
representative element is given and the number Nk in front of this element yields the number
of operations in the class; for example 8C3 indicates 8 symmetry operations in class {C3}. The
symmetry operation Cn is an anticlockwise rotation of an angle α = 2π/n. For a finite group
with h elements, the h group operations {O(g)} can be expressed as h matrices {Γ (g)} acting
on an invariant linear space; the basis of this space, {|m〉}, can be, for example, a finite set of
linearly independent functions, such as the spherical harmonics with angular quantum number
l. The collection of matrices {Γ (g)} is a representation of the group; the dimension of the
invariant linear space yields also the dimension of the matrices, i.e., the dimensionality of the
representation. Each group has infinitely many possible representations, but some sets are spe-
cial and play the role of an orthonormal basis in a space of vectors; they are called irreducible.
If G is the group of operations which leave the Hamiltonian invariant, the irreducible represen-
tations of G can be used to classify all eigenstates of the Hamiltonian; eigenstates which build a
basis for different irreducible representations are mutually orthogonal and have typically (leav-
ing the cases of accidental degeneracy and hidden symmetry aside) different energies. The
irreducible representations Γi of group O are listed in the first column of Table 4, below the
group name; they are A1 (trivial representation, made of 1-dimensional identity matrices), A2,
also 1-dimensional, E, two-dimensional, and T1 and T2, both three-dimensional. The numbers
appearing in Table 4 are the characters χi(g), defined as

χi(g) = Tr Γi(g) =
∑
m

〈m|Γi(g)|m〉 =
∑
m

Γmm
i (g) .

For a given representation (corresponding to a line of Table 4) the character for a specific ele-
ment can be found below the corresponding class label (columns of Table 4); all elements in the
same class have the same character. Thus the second column of the character table, showing the
character of the identity, yields also the dimensionality di of the representation itself. Next we
calculate the characters of the matrix representation Γ l constructed using spherical harmonics
with angular quantum number l as a basis. An easy way to do this is to assume that the rotation
axis is also the axis of quantization, i.e., ẑ; the characters do not depend on the actual direction
of the quantization axis but only on the angle α of rotation. Thus for O(g) = Cα we have

Cα Y
l
m(ϑ, ϕ) =Y l

m(ϑ, ϕ−α) = e−imα Y l
m(ϑ, ϕ)

Γ l
mm′(Cα) =δmm′e−imα.

This yields the following expression for the character

χl(Cα) =
l∑

m=−l

e−imα =
sin(l+1

2
)α

sin α
2

.
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The characters for representations Γ l are therefore

O E 8C3 3C2 6C2 6C4

Γ 0 = Γ s 1 1 1 1 1

Γ 1 = Γ p 3 0 −1 −1 1

Γ 2 = Γ d 5 −1 1 1 −1

Γ 3 = Γ f 7 1 −1 −1 −1

In spherical symmetry (group O(3)) representations Γ l are irreducible. In cubic symmetry
(group O), instead, the Γ l can be reducible, i.e., they can be written as the tensorial sum ⊕
of irreducible representations of the group O. The various components can be found by using
the orthogonality properties of irreducible representations, which lead to the decomposition
formula

Γ l =
⊕
i

aiΓi with ai = 〈Γi|Γ l〉 =
1

h

∑
g

[χi(g)]∗χl(g) , (5)

where h, the number of elements in the group, is 24 for group O. Hereafter the symmetry
representations of electronic states are written in lower case to distinguish them from capital
letters which we will use later for labeling vibrational modes. We find

Γ s = a1

Γ p = t1

Γ d = e⊕ t2
Γ f = a2 ⊕ t1 ⊕ t2 .

Thus, in cubic symmetry, the s- and the p-functions do not split, because the a1 irreducible rep-
resentation is one-dimensional and the t1 irreducible representation is 3-dimensional. Instead,
d-functions split into a doublet and a triplet, and f -functions into a singlet and two triplets.
To determine which functions {|m〉i} form a basis (a so-called set of partner functions) for a
specific irreducible representation Γi we can, e.g., use the projector for that representation

P̂i =
di
h

∑
g

[χi(g)]∗O(g). (6)

In our case, we can read directly the partner functions {|m〉i} for a given irreducible repre-
sentation of the group O in the first column of Table 4, on the left. In short, for representa-
tion e possible partner functions are (x2−y2, 3z2−r2) and for representation t2 we can instead
use (xy, xz, yz). A small step is still missing: As we already mentioned, the full symme-
try of the B site is Oh, and the group Oh can be obtained as direct product, Oh = O ⊗ Ci;
with respect to O, group Oh has twice the number of elements and classes, and thus twice the
number of irreducible representations. The latter split into even (a1g, a2g, eg, t1g, t2g) and odd
(a1u, a2u, eu, t1u, t2u). All d-functions are even, and therefore x2−y2 and 3z2−r2 are partners
functions for the eg irreducible representation, while xy, xz, yz are partner functions for the
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t2g irreducible representation. Summarizing, t2g states (xy, xz, and yz) and eg states (x2−y2

and 3z2−r2) have in general (again excluding the cases of accidental degeneracy and hidden
symmetry) different energy.
Group theory tells us if the degenerate 2l + 1 levels split at a given site in a lattice, but not of
how much they do split, and which orbitals are higher in energy. We can, however, calculate
the crystal-field splitting approximately using the potential (3) as a perturbation. This is the
second approach previously mentioned; differently from group theory, it is not exact, but it
gives us an estimate of the size of the effect and the sign of the splitting. For d states we
can calculate the elements of the octahedral potential voct(r) in the basis of atomic functions
ψnlm(ρ, ϑ, ϕ)=Rnl(ρ)Y l

m(ϑ, ϕ), where Rnl(ρ) is the radial part, ρ=Zr, Z is the atomic number,
Y m
l (ϑ, ϕ) a spherical harmonic, and n the principal quantum number (Appendix B). We obtain

〈ψn20 |v̂oct|ψn20 〉 = +6Dq 〈ψn2±1|v̂oct|ψn2±1〉 = −4Dq

〈ψn2±2|v̂oct|ψn2±2〉 = + Dq 〈ψn2±2|v̂oct|ψn2∓2〉 = +5Dq

where Dq=qC〈r4〉/6d5C and 〈rk〉=
∫
r2dr rk R2

n2(Zr). The crystal-field splitting between eg
and t2g-states can be then obtained by diagonalizing the crystal-field matrix

HCF =


Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq

 .

We find two degenerate eg eigenvectors with energy 6Dq

|ψn20〉 = |3z2 − r2〉,
1√
2

(
|ψn2−2〉+|ψn22〉

)
= |x2 − y2〉,

and three degenerate t2g eigenvectors with energy −4Dq

i√
2

(
|ψn2−2〉−|ψn22〉

)
= |xy〉,

1√
2

(
|ψn2−1〉−|ψn21〉

)
= |xz〉,

i√
2

(
|ψn2−1〉+|ψn21〉

)
= |yz〉.

The total splitting is
∆CF = Eeg−Et2g = 10Dq.

Thus the eg-states are actually higher in energy than the t2g-states. This happens because eg
electrons point towards the negative C ions (see Fig. 3), and will therefore feel a larger Coulomb
repulsion than t2g electrons, which have the lobes directed between two negative C ions.
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Fig. 3: The Cu eg and t2g Wannier orbitals for the cubic perovskite KCuF3, obtained from first
principles calculations, using a Wannier basis that spans all bands.

How general is, however, this result? We obtained it via a truncated Taylor expansion of the
potential close to the nucleus. Does this mean that we have perhaps neglected important higher-
order terms? For a generic lattice, we can expand the crystal-field potential (2) in spherical
harmonics using the exact formula

1

|r1 − r2|
=
∞∑
k=0

rk<
rk+1
>

4π

2k + 1

k∑
q=−k

Y k
q (ϑ2, ϕ2)Y

k

q (ϑ1, ϕ1),

where r< ( r>) is the smaller (larger) of r1 and r2. The crystal-field potential takes the form

vc(r) =
∞∑
k=0

k∑
q=−k

Bk
qY

k
q , (7)

where Bk
q = (−1)qB̄k

−q. Although the series in (7) is in principle infinite, one can terminate it
by specifying the wavefunctions, since

〈Y l
m|Y k

q |Y l
m′〉 = 0 if k > 2l.

For example, for p electrons k ≤ 2, for d-electrons, k ≤ 4, and f electrons k ≤ 6. Thus, for
d-electrons andOh symmetry, the terms that appear in the potential (3) are actually also the only
ones to be taken into account, because all other terms yield an expectation value equal to zero.
Finally, the derivation of both equations (3) and (7) presented here might let us think that the
first-nearest neighbors are those that determine the crystal field. This is, however, not always
the case, because Coulomb repulsion is a long-range interaction; for example, in some systems
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Fig. 4: Independent Slater-Koster two-center integrals for s, p, and d atomic orbitals (Appendix
B). The label σ indicates that the bonding state is symmetrical with respect to rotations about
the bond axis; the label π that the bond axis lies in a nodal plane; the label δ that the bond axis
lies in two nodal planes.

the first-nearest neighbors yield cubic symmetry at a given site but further neighbors lower the
symmetry.4 Furthermore, the point-charge model discussed in this section is useful to explain
the relation between crystal field and site symmetry, however yields unsatisfactory results for
the crystal-field splitting in real materials. Corrections beyond the point-charge approximation
turn out to be important. In addition, as we will see in the next section, in many systems
the crystal field has a large, sometimes dominant, covalent contribution, the ligand field. The
modern approach to calculate crystal-field splittings including the ligand-field contribution is
based on material-specific potentials obtained ab-initio via density-functional-theory (DFT) and
the associated DFT localized Wannier functions. Nevertheless, it is worth to point out the
remarkable success of the point-charge model in giving qualitatively correct d crystal-field states
in cubic perovskites; such a success relies on the fact that this approach, even if approximate,
yields the exact symmetry of final states, i.e., the same obtained via group theory, and does not
neglect any relevant (e.g., high-order) term.

4This means that, of course, Oh is not the actual symmetry of the site.
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Fig. 5: Illustration of the decomposition of a general s-p two-center integral in terms of Vspσ.

3 Tight-binding eg and t2g bands of cubic perovskites

In this section we will construct the bands of KCuF3 in the cubic limit using tight-binding
theory. Let us first remind ourselves of the crucial steps of this approach. The one-electron
Hamiltonian can be written as

ĥe(r) = −1

2
∇2 +

∑
iα

v(r−Ti−Rα) = −1

2
∇2+vR(r),

whereRα are the positions of the basis {α} atoms in the unit cell and Ti the lattice vectors. We
take as a basis atomic orbitals with quantum numbers lm (we drop here the principal quantum
number for convenience). For each atomic orbital we construct a Bloch state

ψαlm(k, r) =
1√
N

∑
i

eiTi·k ψlm(r−Ti−Rα), (8)

where N is the number of lattice sites. In the Bloch basis (8), the Hamiltonian and the overlap
matrix are given by

Hα,α′

lm,l′m′(k) = 〈ψαlm(k)|ĥe|ψα
′

l′m′(k)〉,

Oα,α′

lm,l′m′(k) = 〈ψαlm(k)|ψα′

l′m′(k)〉.

These matrices define a generalized eigenvalue problem, the solution of which yields the band
structure. The Hamiltonian matrix is given by

Hα,α′

lm,l′m′(k) = ε0l′α′ O
α,α′

lm,l′m′(k) +∆εαlm,l′m′ δα,α′ − 1

N

∑
iα6=i′α′

ei(Ti′−Ti)·k tiα,i
′α′

lm,l′m′ .

Here ε0lα are the atomic levels, and ∆εαlm,l′m′ the crystal-field matrix elements

∆εαlm,l′m′ =

∫
dr ψlm(r−Rα)

[
vR(r)−v(r−Rα)

]
ψl′m′(r−Rα) , (9)
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Fig. 6: Unit cell of idealized cubic KCuF3 with cubic axes in the left corner.

which are two-center integrals. Finally,

tiα,i
′α′

lm,l′m′ = −
∫
dr ψlm(r−Rα−Ti)

[
vR(r)−v(r−Rα′−Ti′)

]
ψl′m′(r−Rα′−Ti′). (10)

The hopping integrals (10) contain two- and three-center terms; if the basis is sufficiently local-
ized we can, however, neglect the three-center contributions and assume tiα,i

′α′

lm,l′m′ ∼ −V iα,i′α′

lm,l′m′ ,

where

V iα,i′α′

lm,l′m′ =

∫
dr ψlm(r−Rα−Ti)v(r−Rα−Ti)ψl′m′(r−Rα′−Ti′)

is a Slater-Koster two-center integral (Appendix B). A generic Slater-Koster two-center integral
can be expressed as a function of a few independent two-center integrals, shown in Fig. 4 for
s, p, and d-functions. Apart from the σ bond, which is the strongest, other bonds are possible;
the π bonds are made of orbitals which share a nodal plane to which the bond axis belongs,
and the δ bond, for which two nodal planes intersect in the bond axis connecting the two ions.
Fig. 5 shows how to obtain a generic two-center integral involving p and s orbitals.5 Let us
now consider the case of the eg and t2g bands of KCuF3; here we assume for simplicity that the
system is an ideal cubic perovskite, shown in Fig. 6. The primitive cell contains one formula
unit (a single K cube in Fig. 1). The cubic axes are x, y, z, and the lattice constant is a. A Cu
atom at siteRi is surrounded by two apical F atoms, F3 atRi +

1
2
z and F6 atRi− 1

2
z, and four

planar F atoms, F1 and F4 atRi± 1
2
x and F2 and F5 atRi± 1

2
y. In Fig. 7 one can see the effects

of the cubic approximation on the eg bands: the crystal-field splitting of the eg states is zero, the
band width slightly reduced, gaps disappear, and the dispersion relations is sizably modified.
The cubic band structure in Fig. 7 was obtained with a unit cell containing two formula units, in
order to compare it with the band structure of the experimental (Jahn-Teller distorted) structure
of KCuF3; hence we see four (instead of two) eg bands. The band-structure of cubic KCuF3 for

5More details on the tight-binding approach can be found in Ref. [13].
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Fig. 7: LDA eg (blue) and t2g(red) band structure of KCuF3 for the experimental structure (R)
and ideal structures with progressively reduced distortions (see Fig. 1). I0: simple cubic. The
unit cell used in this calculation contains two formula units. The figure is from Ref. [3].

a cell with one formula unit is shown in Fig. 8; in the following we will refer for comparison to
that figure only. Let us take as tight-binding basis the atomic 3d eg orbitals for Cu and the 2p

orbitals for F; we neglect for convenience the overlap integrals (i.e., we assume that our atomic
functions are, approximately, localized Wannier functions). For such a tight-binding basis the
only relevant Slater-Koster parameter is Vpdσ. The |3z2−r2〉i and |x2−y2〉i states of the Cu at
Ri can couple via Vpdσ to |zc〉i, the pz orbitals of F3 and F6, to |xa〉i, the px orbitals of F1 and F4

and to |yb〉i, the py orbitals of F2 and F5. From the basis |α〉i of localized atomic functions we
construct the Bloch states |kα〉 = 1√

N

∑
i e
ik·Ri|α〉i, and obtain the tight-binding Hamiltonian

HTB
eg |k zc〉 |k xa〉 |k yb〉 |k 3z2 − r2〉 |k x2 − y2〉

|k zc〉 εp 0 0 −2Vpdσsz 0

|k xa〉 0 εp 0 Vpdσsx −
√

3Vpdσsx
|k yb〉 0 0 εp Vpdσsy

√
3Vpdσsy

|k 3z2 − r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0

|k x2 − y2〉 0 −
√

3Vpdσsx
√

3Vpdσsy 0 εd

(11)

where sα = ie−ikαa/2 sin kαa/2, α = x, y, z, εp < εd = εp + ∆pd, and Vpdσ < 0. If |Vpdσ|/∆pd

is small, the occupied bands are F p-like, while the partially filled bands Cu eg-like. We now
calculate the bands along high-symmetry lines.6 Along Γ-Z, the eigenvalues εi (εi ≤ εi+1) of

6Special points: Γ = (0, 0, 0), Z= (0, 0, π/a), X= (π/a, 0, 0), M= (π/a, π/a, 0), R= (π/a, π/a, π/a).
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Fig. 8: LDA band structure of cubic KCuF3. The t2g bands are in red and the eg bands in blue.

HTB
eg are

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sz|2

where ε1 (sign −) is bonding and F z-like, while ε5 (sign +) anti-bonding and Cu 3z2−r2-like.
Along Γ-X, we have instead the dispersion relations

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sx|2

where ε1 is bonding and F x-like, while ε5 anti-bonding and Cu x2−y2-like. To obtain the
eg-like bands, instead of diagonalizing HTB

eg as we have done above, we can also use the down-
folding procedure, which, for non-interacting electrons, can be carried out exactly. This method
works as follows. We divide the orbitals in passive (F p) and active (Cu d), and write the
eigenvalues equation as[

Hpp Hpd

Hdp Hdd

][
|k p〉
|k d〉

]
= ε

[
Ipp 0

0 Idd

][
|k p〉
|k d〉

]
,

where Hpp (Ipp) is the Hamiltonian (identity matrix) in the p-electron space (3 × 3), and Hdd

(Idd) the Hamiltonian (identity matrix) in the d-electron space (2× 2). By downfolding to the d
sector we obtain the energy-dependent operator Hε

dd, which acts in the d space only

Hε
dd = Hdd −Hdp(Hpp − εIpp)−1Hpd,
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and a correspondingly transformed and energy-dependent basis set for the active space, |k d〉ε.
The operator Hε

dd has the same eigenvalues and eigenvectors as the original Hamiltonian. In the
case of the eg bands (Hε

dd = Hε
eg) of KCuF3

Hε
eg |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tσε [1
4
(cos kxa+cos kya)+cos kza] 2tσε [

√
3
4

(cos kxa−cos kya)]

|k x2−y2〉ε 2tσε [
√
3
4

(cos kxa−cos kya)] ε′d−2tσε [3
4
(cos kxa+cos kya)]

(12)

where the effective parameters are

tσε =
V 2
pdσ

ε− εp
, ε′d = εd + 3tσε .

The downfolding procedure has renormalized the parameters εd of the original model (11),
but also introduced a new interaction: inter-orbital coupling. Furthermore, Hε

dd and the Bloch
basis are now energy dependent. Along ΓZ, the eigenvalues of (12) are given implicitly by the
equations ε=εd+2tσε−2tε cos kza (band ε5) and ε=εd (band ε4); in second-order perturbation
theory we find

tσε ∼ tσεd =
V 2
pdσ

∆pd

,

ε5 ∼ εd + 2tσεd − 2tσεd cos kza .

From Hamiltonian (12) it is relatively easy to see that the eg bands are 2-fold degenerate along
direction Γ-R, to find the dispersion along Γ-M and R-M, and to obtain the eg-like bands in
Fig. 8. By Fourier transforming the Bloch states |k 3z2−r2〉ε and |k x2−y2〉ε we can build
a set of Wannier functions. They have 3z2−r2 or x2−y2 symmetry as the atomic orbitals,
and, additionally, they span, to arbitrary accuracy, the eg bands. These Wannier functions are
by construction longer range than atomic orbitals, since they have p tails on the downfolded
neighboring F sites.
We can now repeat the same calculation for the t2g bands. The minimal tight-binding basis is
of course different with respect to the case of eg bands. The states |xy〉i of the Cu ion located at
Ri are coupled via Vpdπ to the |ya〉i, the py orbitals of F1 and F4 and to |xb〉i, the px orbitals of
F2 and F5; in a similar way, |xz〉i is coupled via Vpdπ to the |za〉i, the pz orbitals of F1 and F4,
and to the |xc〉i, the px orbitals of F3 and F6; finally |yz〉i is coupled via Vpdπ to the |zb〉i, the pz
orbitals of F2 and F5, and to the |yc〉i, the py orbitals of F3 and F6. After constructing for each
|α〉i the corresponding Bloch state, we obtain the tight-binding Hamiltonian. The latter splits
into three decoupled blocks,

HTB
t2g

|k ya〉 |k xb〉 |k xy〉
|k ya〉 εp 0 2Vpdπsx
|k xb〉 0 εp 2Vpdπsy
|k xy〉 2Vpdπsx 2Vpdπsy εd
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and cyclic permutations of x, y, and z (and, correspondingly, of a, b, and c). In the Γ-X direction
we thus find

ε2′(k) =εd

ε5(k) =εp +
∆pd

2
+

√
∆2
pd + 16V 2

pdπ|sx|2

2

∼εd + 2tπεd − 2tπεd cos kxa

where tπεd = V 2
pdπ/∆pd. By downfolding the oxygen states we obtain

Hε
t2g |k yz〉ε |k xz〉ε |k xy〉ε

|k yz〉ε ε′′d − 2tπε (cos kxa+ cos kya) 0 0

|k xz〉ε 0 ε′′d − 2tπε (cos kxa+ cos kza) 0

|k yz〉ε 0 0 ε′′d − 2tπε (cos kya+ cos kza)

where the parameters in the matrix are

ε′′d =εd + 4tπε ,

tπε =
|Vpdπ|2

ε− εp
.

As in the case of the eg bands, we find renormalized energy levels and effective band disper-
sions; since different Cu t2g states couple to different F p states, and we neglected hopping
integral between oxygens, the xy, xz, and yz bands are totally decoupled in our model. We are
now in the position of calculating the (approximate) expression of the covalent contribution to
the eg-t2g crystal-field splitting, i.e., the energy difference

∆CF ∼ ε′d − ε′′d = 3
|Vpdσ|2

∆pd

− 4
|Vpdπ|2

∆pd

> 0. (13)

As we can see, the sign of the covalent crystal-field splitting is the same as that of the ionic
contribution. This happens for two reasons. First, the so-called d bands are the anti-bonding
states of the p-d Hamiltonian, hence both the energy of the eg and t2g states moves upwards due
to the interaction with the p orbitals. Second, σ bonds are stronger than π bonds, hence eg states
shift to sizably higher energy than t2g states.
The tight-binding model we have used so far is oversimplified, but it already qualitatively well
describes the eg and t2g bands in Fig. 8. A more accurate description can be obtained including
other Slater-Koster integrals, such as the hopping to apical F s states, or between neighboring
F p states. With increasing number of parameters, it becomes progressively harder to estimate
them, e.g., from comparison with experiments; furthermore a large number of fitting parameters
makes it impossible to put a theory to a test. Modern techniques allow us, however, to calculate
hopping integrals and crystal-field splittings ab-initio, using localized Wannier functions as
the basis and the Kohn-Sham potential vR(r) as the one-electron potential; because Wannier
functions are orthogonal, the corresponding overlap matrix is by construction diagonal.
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4 Jahn-Teller effect

In order to introduce the Jahn-Teller effect we have to take a step backwards and start from
the central equation of solid-state physics, the eigenvalue problem ĤΨ = EΨ , defined (in the
non-relativistic limit) by the many-body Hamiltonian

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

T̂e

+
1

2

∑
i6=i′

1

|ri − ri′|︸ ︷︷ ︸
V̂ee

−
∑
iα

Zα
|ri −Rα|︸ ︷︷ ︸
V̂en

−
∑
α

1

2Mα

∇2
α︸ ︷︷ ︸

T̂n

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′|︸ ︷︷ ︸
V̂nn

.

Here {ri} are the coordinates of the Ne electrons, {Rα} those of the Nn nuclei, Zα the atomic
numbers, and Mα the nuclear masses. The Born-Oppenheimer Ansatz

Ψ({ri}, {Rα}) = ψ({ri}; {Rα}) Φ({Rα}) , (14)

splits the Schrödinger equation ĤΨ = EΨ into the system
Ĥeψ({ri}; {Rα}) = ε({Rα})ψ({ri}; {Rα}),

ĤnΦ({Rα}) = EΦ({Rα}),
(15)

where the Hamilton operators for the electrons (Ĥe) and that for the lattice (Ĥn) are

Ĥe = T̂e + V̂ee + V̂en + V̂nn, (16)

Ĥn = T̂n + ε({Rα}) = T̂n + Ûn, (17)

and where in (17) we neglect non-adiabatic corrections.7 In the electronic Hamiltonian (16)
the atomic positions {Rα} are simple parameters. The electronic eigenvalue ε({Rα}) acts as
potential for the nuclei and defines a Born-Oppenheimer (BO) energy surface. While (16) de-
scribes the electronic structure, (17) yields the equilibrium crystal structure and the vibrational
modes. These equations are impossible to solve in the general case. The first difficulty is
that Hamiltonian (16) describes the electronic quantum many-body problem. The latter can
be solved only approximately, for example the energy of the ground state can be obtained
via density-functional theory using one of the known approximations to the universal func-
tional. For strongly-correlated systems, advanced methods combine density-functional theory
with many-body approaches such as the dynamical mean-field theory [7, 8]. The second issue
is the very high number of atoms, and therefore of {Rα} parameters to explore; finally, even
if we solve the electronic many-body problem exactly, we still have to deal with the nuclear
many-body problem, Hamiltonian (17). Despite all these obstacles, let us assume for a moment
that, for a given system, we did solve the electronic problem for general values of {Rα}. Let us
also assume that the set of positions {Rα} = {R0

α} defines a specific crystal structure, whose

7We neglect the operator Λ̂n, with elements 〈m|Λ̂n|m′〉 = −
∑
α

1
Mα

[
1
2 〈ψm|∇

2
αψm′〉+ 〈ψm|∇αψm′〉 · ∇α

]
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electronic ground state (i.e., the lower energy BO surface) has degeneracy d > 1. We can at this
point ask ourself the question: Is structure {R0

α} actually stable?
The Jahn-Teller theorem states that any electronically degenerate system can lower its energy
by undergoing some structural distortions, and therefore is unstable.8 This is due to the cou-
pling between electrons and lattice. In order to better understand the microscopic origin of this
phenomenon, let us consider a system in a high-symmetry structure, {R0

α}, for which the elec-
tronic ground state has energy ε({R0

α}) with degeneracy d > 1. This means that there are d
Born-Oppenheimer surfaces degenerate for {Rα} = {R0

α},

εm({R0
α}) = ε({R0

α}).

In the rest of the chapter we will take ε({R0
α}) as the energy zero. The corresponding degenerate

electronic wavefunctions are ψm({ri}; {R0
α}). Let us expand the nuclear potential Ûn for one

of these surfaces around the symmetric structure {R0
α}. This leads to the Taylor series

Ĥn = T̂n +
∑
αµ

[
∂Ûn
∂uαµ

]
{R0

α}

uαµ +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµ uα′µ′ + . . . ,

where uα = Rα −R0
α are displacement vectors with respect to the equilibrium position, and

µ = x, y, z. If {R0
α} is an equilibrium structure, the gradient is zero and

Ĥn ∼ T̂n +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµuα′µ′ + · · · = T̂n + ÛPH
n ({R0

α}) + . . . , (18)

The standard procedure to diagonalize (18) consists of two steps. First we change coordinates

ũαµ = uαµ
√
Mα.

Second we introduce the dynamical matrix

Dαµ,αµ′ =
1√
Mα

1√
Mα′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

,

and diagonalize it. Its Nm eigenvectors are the normal modesQη,

DQη = ω2
ηQη,

Qην =
Nn∑
α=1

∑
µ=x,y,z

aην,αµuαµ,

with η = 1, . . . Nm, and ν = x, y, z. The normal coordinates {Qnν}, together with the associ-
ated canonically-conjugated momenta {Pnν}, bring (18) in the form

Ĥn ∼
1

2

∑
ην

[
P 2
ην + ω2

ηQ
2
ην

]
. (19)

8The only exceptions are linear molecules and Kramers degeneracy.



Orbital Ordering in Materials 1.21

In a crystal, this Hamiltonian yields the phonon energy levels. Let us now determine the pos-
sible Nm normal modes for a cubic perovskite. For simplicity we consider here only a single
octahedron and the modes associated with the vibrations of its atoms. Given that each atom can
move in three directions, and there are 6 atoms of type C and 1 atom of type B, in principle
such a system has 21 degrees of freedom; eliminating global translations (3 degrees of free-
dom) and global rotations (3 degrees of freedom), i.e., displacements which are not vibrations,
15 degrees of freedom are left, hence the system has 15 possible normal modes. In group the-
ory language, assuming again for simplicity that the group is O instead of Oh, one can show
that these modes can be labeled as belonging to irreducible representations A1, E, T1 or T2.
To obtain this result we first build a matrix representation of the group in the linear space of
all possible displacements; this space is 21-dimensional, and so is the associated matrix repre-
sentation Γtot. The latter can be expressed as the direct product Γtot = Γa.s. ⊗ Γvector, where
Γa.s. is the so-called atomic-site representation. Γa.s. has as a basis the original atomic positions
(without displacements); in our case it is has therefore dimensionality 7. The character of Γa.s.

for a given operation is simply the number of sites left invariant by that operation. Finally, in
group O the irreducible representation for a vector is Γvector = T1; this can be seen from the
partner functions (x, y, z) in Table 4. Summarizing all this in a character table, we have

O E 8C3 3C2 6C2 6C4

Γ a.s. 7 1 3 1 3

Γ tot = Γ a.s. ⊗ Γvector 21 0 −3 −1 3

Once we know the characters for representation Γtot, we can split the latter into irreducible
representations of group O via the decomposition formula Eq. (5). After subtracting (ten-
sor subtraction 	) the representations for mere translations (T1) and mere rotations (T1) of
the octahedron,9 we arrive at the final decomposition of the vibrational-modes representation
Γvibrations = Γtot 	 Γvector 	 Γrotation = A1 ⊕ E ⊕ 2T1 ⊕ 2T2. Normal modes which are a ba-
sis for different irreducible representations have in general different energies. Let us focus on
modes A1 and E. We can obtain mode A1 by using the projector, Eq. (6), for irreducible rep-
resentation A1. As a matter of fact, if we assume that atom F1 (Fig. 9) is displaced by u1, by
applying the projector P̂A1 to u1 we generate automatically the linear combination of atomic
displacements (all having the same length) forming the mode of symmetry A1. This leads to

Q0 = u1(q0) + u2(q0) + u3(q0) + u4(q0) + u5(q0) + u6(q0).

9The representation for an improper vector (rotation) is Γrotation = T1, as can be seen from the corresponding
partner functions (Rx, Ry, Rz) in Table 4.
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Fig. 9: Unit cell (top) and vibrational modes Q0, Q1, and Q2 of cubic KCuF3.

Here ui are the (normalized) displacements for the Ci atom (see Fig. 9) which we rewrite as

u1(q0) = 1√
6
q0(1, 0, 0)

u2(q0) = 1√
6
q0(0, 1, 0)

u3(q0) = 1√
6
q0(0, 0, 1)

u4(q0) = − 1√
6
q0(1, 0, 0)

u5(q0) = − 1√
6
q0(0, 1, 0)

u6(q0) = − 1√
6
q0(0, 0, 1)

The potential energy of such a breathing mode is

UPH
n =

1

2
CA1q

2
0 .

The Q0 mode expands or compresses the unit cell, but does not change its symmetry which
remains cubic. Hence, this mode has no influence on the stability of the structure, at most it can
affect the actual value of the lattice constant. More interesting are the two degenerate modes
of type E. These modes can be obtained in a similar way as we have done for Q0, this time
using the projector for irreducible representation E; within the resulting 2-dimensional space,
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we choose as basis the mutually orthogonal modes that transform as the l = 2 partner functions
of E, x2−y2 and 3z2−r2. These areQ1 andQ2, shown in Fig. 9. They are defined as

Q1 = u1(q1) + u2(q1) + u4(q1) + u5(q1),

Q2 = u1(q2) + u2(q2) + u3(q2) + u4(q2) + u5(q2) + u6(q2),

where the displacements are

u1(q1) = 1√
4
q1(1, 0, 0) u1(q2) = − 1√

12
q2(1, 0, 0)

u2(q1) = − 1√
4
q1(0, 1, 0) u2(q2) = − 1√

12
q2(0, 1, 0)

u3(q1) = (0, 0, 0) u3(q2) = 2√
12
q2(0, 0, 1)

u4(q1) = − 1√
4
q1(1, 0, 0) u4(q2) = 1√

12
q2(1, 0, 0)

u5(q1) = 1√
4
q1(0, 1, 0) u5(q2) = 1√

12
q2(0, 1, 0)

u6(q1) = (0, 0, 0) u6(q2) = − 2√
12
q2(0, 0, 1)

The corresponding quadratic potential has the form

ÛPH
n =

1

2
CE(q21 + q22).

The normal modes T1 and T2 can be obtained in a similar way; since they are not relevant for
structure stability in the example considered here we do not provide their form explicitly.
Up to now we have assumed that the hypothetical high-symmetry structure {R0

α} is a stationary
point. In general, however, this might or might not be true. The behavior of the BO energy
surfaces close to the point in which they are degenerate allows us to separate them into two
classes, the first one in which {R0

α} is a stationary point for all degenerate electronic states m
(Renner-Teller intersection), and the second in which the surface is not a stationary point at
least for some of the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are
those for which ∇Ûn({R0

α}) 6= 0 at least in some direction (see, e.g., Fig. 10). Let us now
calculate the first-order correction to the m degenerate eigenvalues due to a small distortion
around {R0

α}. The electronic Hamiltonian (16) has matrix elements

〈ψm|Ĥe({Rα})|ψm′〉 =
∑
αµ

〈ψm|

[
∂Ĥe

∂uαµ

]
{R0

α}

|ψm′〉uαµ︸ ︷︷ ︸
ÛJT
m,m′

+ · · · = ÛJT
m,m′ + . . . .

The perturbation ÛJT, the Jahn-Teller potential, couples the degenerate BO energy surfaces; it
also couples electrons and lattice vibrations, as we can see from the coordinates uαµ appear-
ing in the expression above. Thus, if there are modes for which ÛJT 6= C Î where Î is the
identity matrix and C a constant, the system gains energy at linear order via a distortion which
lowers the symmetry; the Jahn-Teller theorem states that such modes always exist for electron-
ically degenerate systems (with the exceptions of Kramers degeneracy and linear molecules).
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Fig. 10: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The
slope of the curve at small distortions q1, q2 yields the Jahn-Teller coupling constant λ.

In order to better understand the effect of the electron-lattice coupling, we generalize the Born-
Oppenheimer Ansatz as follows

Ψ({ri}, {Rα}) =
∑
m

ψm({ri}; {Rα}) Φm({Rα}).

To find the equations for the functions {Φm}, we write the Schrödinger equation HΨ = EΨ ,
multiply on the left by ψm, and integrate over the coordinates of the electrons. We obtain

ĤnΦm({Rα}) =
[
T̂n + ÛPH

n

]
Φm({Rα}) +

∑
m′

ÛJT
m,m′Φm′({Rα}) = EΦm({Rα}). (20)

The dynamics of the system close to the degeneracy point is determined by all degenerate
sheets. The minimization of the new potential energy yields a new structure {R̃0

α} in which the
electronic states are not any more degenerate. The modes that can produce such an instability
should satisfy the condition

A1 ∈ ([Γm ⊗ Γm]⊗ (Γvibrations 6= A1)),

where Γm is the irreducible representation to which the electronic degenerate states belong,
and [Γm ⊗ Γm] is the symmetric direct product; for eg states, [eg ⊗ eg]=a1 ⊕ eg. The trivial
representation A1 has to be excluded from Γvibrations because, as already discussed, it does
not lower the symmetry. In the case cubic KCuF3, the relevant normal modes coupling to the
degenerate eg electronic states are thus the E modes; as for the electronic states, if the group
O → Oh, then E → Eg. Thus we can say that KCuF3 is an example of a eg ⊗ Eg Jahn-Teller
system, a system in which an electronic doublet (eg) is coupled to a doublet of normal modes
(Eg). The form of the Jahn-Teller potential ÛJT can be obtained from the effect of perturbations
of typeQ1 andQ2 on the crystal-field matrix. As for the crystal field, there are both a ionic and
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a covalent contribution. For the ionic contribution, we can use once more perturbation theory.
In this case, we have to take into account that the Cu-F distance dC depends on the direction,
i.e,

dC → dC + δdµC ,

where µ = x, y, z; the specific δdµC values for each atom are given by the specific vibrational
mode. After summing up all contribution, the first non-cubic correction due to Eg modes is

∆vJT = λ

(
q2 q1
q1 −q2

)
.

It is, at this point, useful to introduce pseudo-spin operators acting on the eg states, i.e., operators
τ̂µ with µ = x, y, z and

τ̂z| ↘〉 = −| ↘〉, τ̂x| ↘〉 = +| ↗〉, τ̂y| ↘〉 = −i| ↗〉

τ̂z| ↗〉 = +| ↗〉, τ̂x| ↗〉 = +| ↘〉, τ̂y| ↗〉 = +i| ↘〉

where | ↗〉 = |x2 − y2〉 and | ↘〉 = |3z2 − r2〉. In matrix form these operators can be written
as pseudo-Pauli matrices

τ̂z =

(
1 0

0 −1

)
τ̂x =

(
0 1

1 0

)
τ̂y =

(
0 −i
i 0

)
. (21)

We can then rewrite the Jahn-Teller potential as

∆vJT = λ

(
q1τ̂x + q2τ̂z

)
,

where λ ∼ (qC/d
4
C) (36/7

√
3) > 0. This potential expresses both the essence of the Jahn-Teller

theorem and its relation with orbital order; the systems gains energy at linear order by making a
distortion; the latter produces a crystal-field splitting, which leads to preferential occupation of
the lower energy level. For example, if q1 = 0 and q2 < 0 (tetragonal compression) the 3z2− r2

state is higher in energy. Let us now calculate the covalent contribution to the Jahn-Teller
potential. In this case the linear-order correction is

∆εlm,l′m′(0,Rα + u)−∆εlm,l′m′(0,Rα) ∼ ∇∆εlm,l′m′(0,Rα) · u

For eg-states we use for simplicity the following approximations10

∆ε3z2−r2,3z2−r2 ∼
[
n2 − 1

2
(l2+m2)

]2
Ṽddσ,

∆ε3z2−r2,x2−y2 ∼
√

3

2
(l2−m2)

[
n2 − 1

2
(l2+m2)

]
Ṽddσ,

∆εx2−y2,x2−y2 ∼ 3

4
(l2−m2)2Ṽddσ.

10The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is
thus still valid, provided that Vll′α are replaced by the corresponding crystal-field terms, which we indicate as Ṽll′α.
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Fig. 11: Linear combinations of eg-states, |ϑ〉 = − sin ϑ
2
|x2−y2〉+ cos ϑ

2
|3z2−r2〉. The ϑ = 0◦

orbital is the excited state in the presence of a tetragonal compression along the z axis, while
ϑ = ±2π/3 are excited states for a tetragonal compression along x or y. This three-fold
degeneracy (rotation by ±2π/3) is due to cubic symmetry.

By summing up the contributions from all C ions for each mode, we obtain

∆εJT(q1, q2) = λ

(
q2 q1
q1 −q2

)
= λ

(
q1τ̂x + q2τ̂z

)
,

where λ ∼ −
√
3
2
Ṽ ′ddσ > 0. This is the same form of potential that we have obtained for the

ionic contribution. Again, if q1 = 0 and q2 < 0 (tetragonal compression) the 3z2−r2 is higher
in energy. In conclusion, if we neglect the kinetic energy of the nuclei (limit Mα/me → ∞),
the ground state of the system can be calculated by minimizing a potential energy of the form

Û(q1, q2) = ÛJT + ÛPH
n = λ

(
q2 q1
q1 −q2

)
+

1

2
CE (q21 + q22) Î , (22)

where Î is the 2× 2 identity matrix. To find the minimum of (22), it is convenient to introduce
polar coordinates, which we define as q2 = −q cosϑ, q1 = −q sinϑ, so that for 0 < ϑ < π/2

we have q1 ≤ 0 (compression of x̂ axis) and q2 ≤ 0 (compression of ẑ axis); this corresponds
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to the distortion of the octahedron labeled with number 1 in Fig. 1. In these coordinates

ÛJT = −λq

(
cosϑ sinϑ

sinϑ − cosϑ

)
.

The diagonalization of matrix (22) yields two eigenvalues; the lower energy branch

E−(q) = −λq +
CE
2
q2

takes the form of a mexican hat, shown in Fig. 10. The minimum of E−(q) is obtained for
q = q0 = λ/C and has value

EJT = −λ2/2CE;

the quantity EJT is defined as the Jahn-Teller energy of the system. The electronic ground state
can be written as

|ϑ〉G = − sin
ϑ− π

2
|x2−y2〉+ cos

ϑ− π
2
|3z2−r2〉.

The excited state (hole orbital), with energy

E+(q) = λq +
CE
2
q2,

is then given by

|ϑ〉E = − sin
ϑ

2
|x2−y2〉+ cos

ϑ

2
|3z2−r2〉.

The states |ϑ〉E with different ϑ are shown in Fig. 11. In the simple model discussed so far, all
states |ϑ〉G have the same Jahn-Teller energy. Cubic symmetry, however, only requires states

|ϑ〉, |ϑ+2π/3〉, |ϑ−2π/3〉

to be degenerate. The additional (accidental) degeneracy is removed when we take into account
anharmonic terms, the lowest order of which has the form

Uanh(q1, q2) = A
(
q32 − 3q2q

2
1

)
= Aq3

(
cos3 ϑ− 3 cosϑ sin2 ϑ

)
= −Aq3 cos 3ϑ

and yields the tetragonal distortion as a ground state, with ϑ = 0,±2π/3 for positiveA and with
ϑ = π, π ± 2π/3 for negative A. Higher-order terms can make the Q1 Jahn-Teller distortion
(ϑ = π/2, π/2± 2π/3) more stable [1]. For a periodic lattice, modeQ1 leads to a co-operative
distortion where long and short bonds alternate in the x and y direction; in such a case, the hole
orbital rotates by π/2 if we move from a Cu site to its Cu first-nearest neighbors in the ab plane.
Let us now analyze the different electronic configurations that can occur in perovskites. For
the electronic configuration 3d1=3t12g, the procedure is as the one illustrated above, except that
t2g states are 3-fold degenerate and form π bonds, which are weaker, therefore the splitting
introduced by the Jahn-Teller effect is smaller than for eg states. In the case of electronic
configurations 3dn with n > 1, to determine if the ion is Jahn-Teller active one has to consider
the degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states
are 3d1 (Ti3+ in LaTiO3) and 3d2 (V3+ in LaVO3), as also 3t42g, 3t52g, 3t42ge

2
g, 3t52ge

2
g; strong

Jahn-Teller configurations are, e.g., 3d9 (Cu2+ in KCuF3) and 3t32ge
1
g (Mn3+ in LaMnO3); the

configurations 3t32g and 3t32ge
2
g are not degenerate and therefore usually not Jahn-Teller active.
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5 Kugel-Khomskii superexchange

Let us now start from a totally different perspective, from the Hubbard model for a cubic per-
ovskite with partially filled eg or t2g shell. The Hamiltonian takes the form Ĥ = Ĥ0 + ĤT + ĤU

where

Ĥ0 =εd
∑
i

∑
σ

∑
m

n̂imσ

ĤT =−
∑
i6=i′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ

ĤU =U
∑
i

∑
m

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
,

and where m labels either the eg or the t2g orbitals. Kugel and Khomskii have shown that,
in the large t/U limit, this Hamiltonian can be mapped onto an effective generalized superex-
change Hamiltonian with an orbitally-ordered ground state. The actual general super-exchange
Hamiltonian can be found in Ref. [20], for possible the eng and tn2g configurations.
Here, to understand the origin of the orbital super-exchange interaction, let us simplify the
problem and consider first a system with only two atoms (i = A,B) and two orbitals (εd = εeg ),
and for which the hopping matrix is diagonal in the orbitals

ĤT = −t
∑
σ

∑
m

[
c†AmcBm + c†BmcAm

]
.

Furthermore, let us simplify the Coulomb interaction and neglect the spin-flip and pair-hopping
terms, so that

ĤU −→ Ĥ ′U =U
∑
i=AB

∑
m

n̂im↑n̂im↓ +
1

2

∑
i=AB

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′ .

Finally, we assume that the systems has one electron per atom (quarter filling, e1g configuration).
In the t = 0 or atomic limit there are two types of possible states for this system, those in
which each atom is occupied by one electron, |1, 1〉α, and those in which one atom has two
electrons and the other zero, |2, 0〉α′ . The 16 states of type |1, 1〉α, all degenerate with energy
Eα(1, 1) = 2εeg , can be written as c†AmAσAc

†
BmBσB

|0〉 with α = (mAσA,mBσB); here miσi are
the quantum numbers for the electron at site i = A,B. There are 12 states |2, 0〉α with one atom
occupied by two electrons; they are listed below together with their energies

|2, 0〉α′ Eα′(2, 0)

|2, 0〉i1m = c†im↑c
†
im ↓|0〉 2εeg + U

|2, 0〉i2m = c†im↑c
†
im′↓|0〉 2εeg + U − 2J m′ 6= m

|2, 0〉i3σ = c†imσc
†
im′σ|0〉 2εeg + U − 3J m′ 6= m
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Fig. 12: Superexchange energy gain for possible quarter-filling ground states of a two-site
2-fold degenerate Hubbard model with orbital- and spin-diagonal hopping matrices.

The Coulomb repulsion U is positive and J is small with respect to U ; therefore the |1, 1〉α
states define the ground-state manifold. If t is finite but small (t/U � 1), we can treat ĤT as
a perturbation, and calculate the second-order correction to the energy of states |1, 1〉α. This
correction is always negative (energy gain) and it is given by the matrix

∆Eα1,α2(1, 1) = −
∑
α′

α1〈1, 1|ĤT |2, 0〉α′
1

Eα′(2, 0)− Eα(1, 1)
α′〈2, 0|ĤT |1, 1〉α2

There are four interesting cases, depicted in Fig. 12. The first is the ferro-magnetic (same spin)
and antiferro-orbital (different orbitals) state, first line of the figure. The corresponding second
order energy gain (α1 = α2 = mσ,m′σ) is

∆Eα1,α1(1, 1) = − 2t2

U − 3J
.

For the ferro-magnetic (same spin) and ferro-orbital (same orbital) state (second line in the
figure, α1 = α2 = mσ,mσ) the energy gain is, instead, zero

∆Eα1,α1(1, 1) = 0.

The reason is that no hopping is possible due to the Pauli principle. For the antiferro-magnetic
antiferro-orbital state (third line, α1 = α2 = mσ,m′ − σ), we have

∆Eα1,α1(1, 1) = − 2t2

U − 2J
,
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and finally for the antiferro-magnetic ferro-orbital state (α1 = α2 = mσ,m− σ) we find

∆Eα1,α1(1, 1) = −2t2

U
.

Among these four states, the ferro-magnetic antiferro-orbital state is thus the lowest in energy.
The main message is that the system gains superexchange energy by occupying preferentially
different orbitals with the same spin, although the orbitals are by themselves degenerate. The
16 × 16 matrix of the second-order energy corrections ∆Eα1,α2(1, 1) can be rewritten as the
effective superexchange Hamiltonian

ĤSE =2Γ−+

[
SA · SB − 1

4

] [
OA
z O

B
z +

1

4

]
+ 2Γ+−

[
1

4
+ SAz S

B
z

] [
OA ·OB − 1

4

]
+2Γ−−

[(
SA · SB − SAz SBz

)(
OA ·OB −OA

z O
B
z

)
−
(
SAz S

B
z −

1

4

)(
OA
z O

B
z −

1

4

)]
where Oi = τi/2 are operators acting only on orbital degrees of freedom and τ are the pseudo-
spin operators introduced in the previous section, Eq. (21), and

Γ−+ =
4t2

U
Γ+− =

4t2

U − 3J
Γ−− = − 4t2

U − 2J
.

When the second-order Hamiltonian is written in this form it is immediately clear that, among
the four states we considered, the ferro-magnetic antiferro-orbital state is lower in energy. This
happens because the superexchange coupling Γ+− is the largest. If the orbital degeneracy is
one, we can replace the terms OA ·OB and OA

z OB
z with the ferro-orbital value 1/4; then, the

terms proportional to Γ+− and Γ−− drop out and we recover the Heisenberg superexchange
Hamiltonian, as expected for the one-band Hubbard model.
What about KCuF3 and LaMnO3? If we consider only hopping integrals between neighboring
B sites in the cubic perovskite structure, the hopping integral matrices take the simple form

ti,i±ẑmm′ = tε

(
0 0

0 1

)
ti,i±x̂mm′ = tε

(
3
4

√
3
4

√
3
4

1
4

)
ti,i±ŷmm′ = tε

(
3
4
−
√
3
4

−
√
3
4

1
4

)
. (23)

The structure of these matrices can be obtained by using Slater-Koster two-center integrals.
The only non-zero hopping integral in the ẑ direction is the one between |3z2−r2〉 states. As
we have previously seen by using the downfolding approach, it is given by tε = V 2

pdσ/(ε−εp).
As in the case of the two-site molecule, for integer filling (n electrons per atom) and in the
large tε/U limit the lattice Hubbard model can be mapped onto an effective superexchange
Hamiltonian by downfolding high-energy states in which some of the atoms have an electron
number larger than n. Only two electronic configurations are relevant for orbital ordering, e1g
(LaMnO3) and e3g (KCuF3). The remaining partially filled state, e2g, is magnetic with S = 1 but,
due to Hund’s rule coupling J , it exhibits no orbital degeneracy (L = 0). After excluding e2g we
can, for simplicity, set J = 0. Let us now construct all atomic states |Ne〉α with Ne electrons.
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For a single atom they are

|Ne〉α Eα′(Ne) d(Ne)

|0〉 E(0) = 0 d(0) = 1

|1〉 = c†mσ|0〉 E(1) = εeg d(0) = 4

|2〉 = c†mσc
†
m′σ′ |0〉 E(2) = 2εeg + U d(0) = 6

|3〉 = c†mσc
†
m′↑c

†
m′↓|0〉 E(3) = 3εeg + 3U d(0) = 4

|4〉 = c†m↑c
†
m↓c

†
m′↑c

†
m′↓|0〉 E(4) = 4εeg + 6U d(0) = 1

The total (spin and orbital) degeneracy of the n-electron sector, d(Ne), is given in the third
column. Let us consider two neighboring sites i and i′ and their states |Ne〉iα and |N ′e〉i

′

α′ , where
α and α′ run over all degenerate states in the Ne-electron sector. We define the collective
state of such a two-site system as |Ne〉iα|N ′e〉i

′

α′ . Let us start from an e1g configuration. In the
large-U limit, at quarter filling (n=1) the ground state will be within the Ne=N

′
e=1 mani-

fold, |G〉={|1〉iα|1〉i
′

α′}. The latter has a degeneracy 4N , where N is the number of sites, here
N=2; this degeneracy can be partially lifted via virtual excitations to the doubly occupied states
|E〉={|2〉iα|0〉i

′}, {|0〉i|2〉i′α′}, which in turn generate an effective low-energy Hamiltonian ĤSE.
We can again calculate ĤSE by treating ĤT as a perturbation.
Let us consider at first only pairs of sites along the ẑ axis. In second-order perturbation theory
in ĤT , we obtain for the lattice the following effective Hamiltonian

Ĥ ẑ
SE ∼ −

1

U

∑
E

ĤT |E〉〈E|Ĥ†T

= − t
2

U

1

2

∑
ii′

∑
σσ′

∑
α

{
c†iτσ|0〉i i〈0|ciτσ′

(
ci′τσ|2〉i

′

α
i′

α〈2|c
†
i′τσ′

)
+ (i←→ i′)

}
δτ,↘

= −2t2

U

1

2

∑
ii′

∑
σσ′

{
(−1)−σ

′−σP i
τσ−σ′P i′

τσ′−σ +
1

2

(
P i
τσσP

i′

−τσ′σ′ + P i
−τσσP

i′

τσ′σ′

)}
δτ,↘,

where we already replaced in the denominator ∆E = E(2) + E(0) − 2E(1) with its value, U,
and where, once more, | ↘ 〉 = |3z2−r2〉, | ↗ 〉 = |x2−y2〉. In Hamiltonian Ĥ ẑ

SE we introduced
the operators P i

τσσ′ , which are given by

P i
τσσ′ = c†iτσ|0〉〈0|ciτσ′ = ôzττ

(
ŝzσσ′ + ŝ+σσ′ + ŝ−σσ′

)
.

In this expression on the right-hand side we rewrote P i
τσσ′ as product of an orbital and a spin

term, defined as follows:

ôzττ ′ =
(ni

2
Î + (−1)τOi

z

)
δττ ′ ŝzσσ =

(ni
2
Î + (−1)σSiz

)
δσσ′

ô+ττ ′ =Oi
+(1− δττ ′) ŝ+σσ′ =Si+(1− δσσ′)

ô−ττ ′ =Oi
−(1− δττ ′) ŝ−σσ′ =Si−(1− δσσ′) ,
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where (−1)σ = +1 for spin (pseudospin) up and −1 otherwise; the operator Î is the identity
matrix. Hence, we can express the effective Hamiltonian as

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si · Si′ − nini′

4

] [
Oi
z −

ni
2

] [
Oi′

z −
ni′

2

]
+

1

2

[
Oi
zO

i′

z −
nini′

4

]
,

where Γ = 4t2/U > 0. If we drop all processes involving orbital | ↗〉 we recover the usual
superexchange Heisenberg Hamiltonian for the one-band Hubbard model

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si · Si′ − nini′

4

]
.

Let us now consider two neighboring sites and the energy of some possible states |G〉 =

{|1〉iα|1〉i
′

α′}. A ferro-magnetic spin configuration has energy

∆Eτ↑,τ ′↑ = −Γ
4

(1− δτ,τ ′),

hence, there is an energy gain if the electrons occupy different orbitals, i.e., if the systems has
antiferro-orbital arrangement. Let us consider now a antiferro-magnetic spin arrangement. The
corresponding energy is

∆Eτ↑,τ ′↓ = −Γ
2
δτ,τ ′δτ,↘ −

Γ

4
(1− δτ,τ ′)

The expression above shows that in the antiferro-magnetic case the system gains more energy if
the occupied state is | ↘〉 at both sites. Up to now we considered magnetically ordered states.
In LaMnO3 and KCuF3, however, orbital order takes place well above the magnetic transition.
Let us then assume that the system is orbitally ordered but paramagnetic, with occupied state

|ϑ〉i =− sin
ϑ− π

2
|x2−y2〉+ cos

ϑ− π
2
|3z2−r2〉

at site i and |ϑ〉i±ẑ = |ϑ〉i at the neighboring site i′ = i ± ẑ. This choice corresponds to
ferro-orbital order along ẑ, the type of stacking realized in LaMnO3 (see Fig. 13). What is the
value of ϑ than minimizes the energy? We can calculate it using the variational method. The
superexchange energy gain with respect to a paramagnetic paraorbital state is given by

∆E(ϑ) =
Γ

16

(
cos2(ϑ−π) + 2 cos(ϑ−π)

)
.

This function is minimized for ϑ = 0, an angle corresponding to a tetragonal compression. To
determine the optimal angle for the three-dimensional system we have in addition to take into
account the effective Hamiltonian stemming from virtual hoppings in the remaining directions.
Due to cubic symmetry, if we rotate the quantization axis, the superexchange Hamiltonian has
the same form in all directions; to sum up all terms we have merely to rotate back the quantiza-
tion axis to ẑ. Hence, we have to make the replacements

Oi
z →︸︷︷︸
ẑ→x̂

− 1

2
Oi
z −
√

3

2
Oi
x

Oi
z →︸︷︷︸
ẑ→ŷ

− 1

2
Oi
z +

√
3

2
Oi
x
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Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with
the GdFeO3-type structure. From Ref. [6]. This system has the same structure of LaMnO3.

Let us assume antiferro-orbital order in the plane, again as in the case of LaMnO3, shown in
Fig. 13. This means that, for i′ = i± x̂ or i′ = i± ŷ, the occupied state is

|ϑ〉i′ = + sin
ϑ−π

2
|x2−y2〉+ cos

ϑ− π
2
|3z2−r2〉.

We can easily verify that |ϑ〉i′=|−ϑ+ 2π〉i. This is state |ϑ〉i rotated by π/2 (x→ y, y → −x).
The total superexchange energy gain with respect to a paramagnetic paraorbital state is then
given by11

∆E(ϑ) =
Γ

16

(
3 cos2(ϑ−π)−3

2

)
.

This expression has a minimum for ϑ = π/2 (Jahn-Teller-likeQ1 distortion). For the e3g config-
uration (KCuF3), due to particle-hole symmetry, we obtain the same result. This can be verified
by observing, first of all, that the eg bands obtained from the hopping-integrals matrices (23)
–the bands which we have discussed in detail in Sec. 3– are symmetric with respect to the Fermi
level for half filling. In addition, the energy difference entering in the denominator of the su-
perexchange Hamiltonian for an e3g ground state, ∆E = E(4) + E(2) − 2E(3), has the same
value (∆E = U ) as in the case of an e1g ground state. The main difference between LaMnO3 (e1g)
and KCuF3 (e3g), for what concerns the results presented in this section, is that the stacking along
ẑ, ferro-orbital for LaMnO3, can be either antiferro- or ferro-orbital for KCuF3; Fig. 1 shows
the case of antiferro-orbital arrangement. Remarkably, the variational energy gain∆E(ϑ) is the
same for both types of stacking along ẑ, i.e., for |ϑ〉i±ẑ = |ϑ〉i and for |ϑ〉i±ẑ = |−ϑ+2π〉i. The
conclusions of this section are thus identical for LaMnO3 and KCuF3.

11For the application of this approach to the general super-exchange Hamiltonian see Ref. [20].
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Fig. 14: Orbital order transition in KCuF3. Orbital polarization p as a function of temperature
calculated in LDA+DMFT. R: experimental structure. Circles: idealized structures Rδ and Iδ
with decreasing crystal-field and U=7 eV. Green/Triangles: U= 9 eV, I0 only. Red/Squares:
two-sites CDMFT. From Ref. [3].

6 The origin of orbital ordering in materials

As we discussed in the introduction, the hallmark of orbital order is the co-operative Jahn-Teller
distortion. This static distortion gives rise to a crystal field, which splits the otherwise degen-
erate eg doublet or t2g triplet. Due to Coulomb repulsion, it turns out that even a crystal-field
splitting much smaller than the band width can lead to orbital ordering. The importance of this
effect for real materials has been realized first for LaTiO3 and YTiO3 [4]. This reduction of
orbital fluctuation is dynamical, but it can be already understood from the static Hartree-Fock
contribution to the self-energy; the latter yields an effective enhancement of the crystal-field
proportional to orbital polarization p. For an eg system p is defined as the difference in occupa-
tion between the most and the least occupied orbital, |1〉 and |2〉, the so-called natural orbitals.
Thus p=n1−n2, and the Hartree-Fock self-energy correction to the crystal-field splitting is

∆εCF = Σ2(ωn→∞)−Σ1(ωn→∞) ∼ 1

2
(U−5J)p.

If p > 0, as it happens in the presence of a crystal-field εCF=ε2−ε1>0, this term effectively
increases the crystal-field splitting. This effect is at work not only in LaTiO3 and YTiO3, but
also in several other systems with different electronic structure and even smaller crystal-field
splittings. The case of 3d 9 KCuF3 and 3d4 LaMnO3 is extreme: the eg crystal-field splitting is
∼ 0.5−1 eV; with such a large splitting, orbital fluctuations are suppressed up to the melting
temperature. Thus, Coulomb repulsion makes the Jahn-Teller mechanism discussed in the arti-
cle of Kanamori very efficient. This result, however, does not clarify which of the two mech-
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Fig. 15: Orbital-ordering transition in LaMnO3. Orbital polarization p (left) and (right)
occupied state |ϑ〉= cos ϑ

2
|3z2−r2〉 + sin ϑ

2
|x2−y2〉 as a function of temperature. Solid lines:

300 K experimental structure (R11) and 800 K experimental structure. Dots: orthorhombic
structures with half (R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty)
site CDMFT. Dashes: ideal cubic structure (I0). Circles: U = 5 eV. Diamonds: U=5.5 eV.
Triangles: U = 6 eV. Squares: U=7 eV. Crystal field splittings (meV): 840 (R11), 495 (R6),
168 (R800 K

2.4 ), and 0 (I0). From Ref. [6].

anisms, Kugel-Khomskii superexchange or conventional electron-phonon coupling, plays the
major role in causing orbital order and stabilizing the distortion. Remarkably, in fact, Coulomb
repulsion has also an important effect on structure stabilization. LDA+U total energy calcula-
tions have early on shown that the co-operative Jahn-Teller distortion is stabilized by U [14,15],
a result confirmed recently by LDA+DMFT [16]. This could be – and initially was – taken as
an indication that superexchange is the driving mechanism. If this is the case, it is, however,
hard to explain why the magnetic transition temperature (TN∼40 K for KCuF3 and TN∼140 K
for LaMnO3), also determined by superexchange, is relatively low while the co-operative Jahn-
Teller distortion persists up to the melting temperature. On the other hand, if Kugel-Khomskii
superexchange is not the driving mechanism, the associated energy gain should be small with
respect to the total energy gain due to the Jahn-Teller distortion.
To clarify the nature of the dominant mechanism, we disentangled electron-phonon and su-
perexchange effects. To this end we performed LDA+DMFT (single-site and cluster) calcula-
tions for a series of hypothetical structures, in which the distortions (and thus the crystal-field
splitting) are progressively reduced. In the case of KCuF3, these hypothetical structures are
shown in Fig. 1, and the corresponding eg bands are shown in Fig. 7. For each structure we
calculate the order parameter, the orbital polarization p. In Fig. 14 we show p as a function
of temperature. For the experimental structure (R in the figure), we find that p∼1 up to the
melting temperature. The empty orbitals on different sites make the pattern shown in Fig. 1.
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Fig. 16: Superexchange energy gain for LaMnO3, ∆E ∼ −TKK/2. From Ref. [6].

For the ideal cubic structure I0, we find that p=0 at high temperature, but a transition occurs at
TKK ∼ 350 K. This TKK is the critical temperature in the absence of electron-phonon coupling,
i.e., the superexchange critical temperature. Our results show that around 350 K superexchange
alone could indeed drive the co-operative Jahn-Teller distortion; it cannot, however, explain the
presence of a co-operative Jahn-Teller distortion above 350 K. We performed a similar study
fo LaMnO3. For this t32ge

1
g system we have to take into account the Hund’s rule coupling be-

tween eg electrons and t2g spins, St2g . Thus the minimal model to understand orbital order is
the modified Hubbard model [17]

H =−
∑
ii′

∑
σσ′

∑
mm′

ti,i
′

m,m′ u
i,i′

σ,σ′ c
†
imσci′m′σ′ − h

∑
im

(n̂im↑ − n̂im↓)

+U
∑
im

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m(6=m′)

(U−2J−Jδσ,σ′) n̂imσn̂im′σ′ ,

−J
∑
i

∑
m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
.

Here the local magnetic field h=JSt2g describes the Hund’s rule coupling to t2g electrons, and
uiσ,i′σ′=2/3(1−δi,i′) accounts for the disorder in orientation of the t2g spins. By performing the
same type of analysis as for KCuF3, we find the impressively large TKK∼700 K (Fig. 15). There
is a small point neglected so far; besides the co-operative Jahn-Teller distortion and tetragonal
compression, LaMnO3 exhibits a GdFeO3-type distortion (Fig. 13), which tends to reduce the
eg band width [4]. To account for this we studied the orbital-order transition for the ideal struc-
ture R0, which retains all distortions except for the Jahn-Teller one. For structure R0 we cannot
obtain TKK from p(T ), because, due to the∼200 meV crystal-field splitting, Coulomb repulsion
strongly suppress orbital fluctuations even at 1500 K. We can, however, study the evolution with
temperature of the occupied orbital, here defined as |ϑ〉= cos ϑ

2
|3z2−r2〉 + sin ϑ

2
|x2−y2〉. For

the experimental structure (R11) we find ϑ ∼ 108◦, in agreement with experiments, while for
the I0 structure we obtain ϑ = 90◦. For the R0 structure we find two regimes: At high temper-
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Fig. 17: Orbital ordering in the t22g system LaVO3. Filled circles: ideal case without crystal-
field splitting. Empty circles: experimental structure. For each temperature, the associated hole
orbital is shown on the Bloch sphere. At high temperature it coincides with the predictions of
crystal-field theory (triangle). At the Kugel-Khomskii transition temperature, TKK, it starts to
move towards the ideal Kugel-Khomskii result (filled blue circle). From Ref. [12].

ature the occupied orbital is the lower-energy crystal-field orbital (ϑ=180◦). At TKK ∼ 550 K
superexchange rotates this ϑ towards 90◦, reaching 130◦ in the zero-temperature limit; this is
the actual superexchange transition temperature for LaMnO3. Such TKK is still remarkably
large, however not sufficient to explain the persistence of the Jahn-Teller distortion in nanoclus-
ters up to basically melting temperature [18]. Furthermore, the superexchange energy gain
associated with orbital order (Fig. 16) is small compared to the total energy gain due to the
Jahn-Teller distortion, calculated via LDA+U [14, 15] or LDA+DMFT [16]. Thus, as in the
case of KCuF3, the conclusion is that a static crystal-field splitting, as the one generated by
the electron-lattice coupling, is essential to explain orbital ordering at high temperature. We
obtained a similar conclusion for various families of compounds, including t2g systems, an in-
dication that pure Kugel-Khomskii materials are actually rare. The first clear-cut case in which
the super-exchange interaction controls orbital ordering, turning the hole orbital way from the
state expected from crystal-field theory, was recently identified in the t22g system LaVO3 [12].
This is shown in Fig. 17, where the changes in the hole orbital on lowering the temperature
can be followed on the Bloch sphere (empty circles). Decreasing the temperature the color of
the empty circles changes from red to blue, while the associated polarization increases towards
its maximum vale. One may see that at high temperature they overlap with the pink triangle,
representing the state expected from crystal-field theory. Decreasing the temperature they move
towards the filled blue circle, representing the Kugel-Khomskii ideal value.
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Fig. 18: Distortion parameter δ as a function of lattice constant a in thermally expanding
KCuF3 [21], under hydrostatic pressure [22], for RbCuF3 [23] and (NH4)CuF3 [24], compared
to our calculations and the values obtained assuming a constant short Cu-F distance (smin).
From Ref. [11].

Let us now return to KCuF3, the case we have examined in greater detail. The main conclusion
we had reached is that a static distortion is necessary to explain the presence of orbital ordering
at high temperature. Based on the discussion so far, one could at this point conclude that the
latter is determined by the Jahn-Teller effect. However, it turns out that the reality is even more
complex. Indeed, in a second-order transition one would expect that the order parameter goes to
zero at the transition temperature, TOO. In the case of electron-phonon-coupling driven orbital
ordering, the order parameter is the Jahn-Teller distortion. If TOO is not yet reached at the
melting temperature, the order parameter should at least decrease with temperature. In KCuF3,
however, it has been found that this simple picture fails to describe experiments. This is shown
in Fig. 18. Increasing the temperature the lattice constant increases by thermal expansion. At the
same time the (dimensionless) Jahn-Teller distortion parameter δ also increases. This surprising
behavior is due to the fact that the short Cu-F bond remains almost constant while the long Cu-
F bond becomes longer [11], instead of the two changing coherently together as expected via
the Jahn-Teller Q1 mode. Going to the microscopical origin of this behavior, it turns out that
the Jahn-Teller mode is so soft that the distortion is actually determined by the Born-Mayer
repulsion of the ions. Thus the distortion increases with the lattice constant, and, via thermal
expansion, the order parameter increases with temperature. This new ordering mechanism was
identified in Ref. [11] for the first time. It can operate even in closed-shell systems and would
result in an inverted Landau transition, with symmetry breaking above a critical temperature.
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7 Conclusion

In this lecture we have studied two mechanisms that can lead to orbital ordering phenomena
in Mott insulators. The first is well illustrated in the influential paper of Kanamori, Ref. [1].
In this picture, a co-operative Jahn-Teller distortion generates a static crystal-field, which in
turn splits orbitals otherwise degenerate. This mechanism is made more efficient by Coulomb
repulsion; the latter enhances the orbital polarization, leading to a orbitally-ordered state even
if the crystal-field splitting is a mere fraction of the bandwidth [4]. The second mechanism,
proposed by Kugel and Khomskii [2] in 1973, predicts orbital ordering even in the absence of
a static crystal field; in this picture, orbital ordering is due to the superexchange interaction, the
effective interaction emerging from the orbitally-degenerate Hubbard model in the largeU limit.
The general super-exchange Hamiltonians for eg and t2g systems can be found in Ref. [20],
where the interaction is decomposed in its irreducible tensor components. In paradigmatic
materials, both the Jahn-Teller and super-exchange coupling predict a similar type of order.
Thus identifying which interaction dominates is very difficult. For this reason, the riddle of the
origin of orbital ordering in materials can be viewed an example of a chicken-and-egg problem
– and has been accordingly a matter of debate for decades.
In the last section we saw how this problem was solved in representative cases. This was done
by disentangling the superexchange Kugel-Khomskii interaction from the rest. For the two
classical text-book examples of orbitally-ordered systems, KCuF3 and LaMnO3, it was shown
via this approach that, although Kugel-Khomskii superexchange is very efficient, it cannot alone
explain the presence of a co-operative Jahn-Teller distortion up to the melting temperature.
The conclusion is that an interaction giving directly rise to a static crystal-field splitting, e.g.,
electron-phonon coupling, is necessary to explain experimental findings [3, 6]. The same result
was obtained for many other materials, with either eg or t2g partially filled shells. This shows
that purely super-exchange driven ordering is rare in nature. A clear cut case of Kugel-Khomskii
material was nevertheless recently identified, LaVO3 [12]. Finally, to complicate the matter, for
KCuF3 it was shown that not even the Jahn-Teller effect alone does explain the evolution of
distortions with temperature. A new ordering mechanism in which the Born-Mayer repulsion
of the ions plays a key role had to be introduced [11]. Only then it could be understood why the
order parameter experimentally increases (instead of decreasing) with temperature.
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Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m0 is the electron mass
(m0 = me), the unit of charge e0 is the electron charge (e0 = e), the unit of length a0 is the
Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time is t0 = 4πε0~a0/e2. In these units,
me, aB, e and 1/4πε0 have the numerical value 1, the speed of light is c = 1/α ∼ 137, and the
unit of energy is 1Ha = e2/4πε0a0 ∼ 27.211 eV.

B Atomic orbitals

B.1 Radial functions

The nlm hydrogen-like atomic orbital is given by

ψnlm(ρ, ϑ, ϕ) = Rnl(ρ)Y l
m(ϑ, ϕ),

where Rnl(ρ) is the radial function and Y l
m(ϑ, ϕ) a spherical harmonic, ρ = Zr and Z the

atomic number. In atomic units, the radial functions are

Rnl(ρ) =

√(
2Z

n

)3
(n−l−1)!

2n[(n+l)!]3
e−ρ/n

(
2ρ

n

)l
L2l+1
n−l−1

(
2ρ

n

)
,

where L2l+1
n−l−1 are generalized Laguerre polynomials of degree n−l−1.

The radial function for n = 1, 2, 3 are

R1s(ρ) = 2 Z3/2 e−ρ

R2s(ρ) = 1
2
√
2
Z3/2 (2− ρ) e−ρ/2

R2p(ρ) = 1
2
√
6
Z3/2 ρ e−ρ/2

R3s(ρ) = 2
3
√
3
Z3/2 (1− 2ρ/3 + 2ρ2/27) e−ρ/3

R3p(ρ) = 4
√
2

9
√
3
Z3/2 ρ(1− ρ/6) e−ρ/3

R3d(ρ) = 2
√
2

81
√
15
Z3/2 ρ2 e−ρ/3

where we used the standard notation s for l=0, p for l=1 and d for l=2. The spherical Harmon-
ics, using the Condon-Shortley convention, are given by

Y `
m(ϑ, ϕ) = (−1)m

√
(2`+1)

4π

(`−m)!

(`+m)!
P `
m(cosϑ) eimϕ (24)

where P `
m(cosϑ) in an associated Legendre polynomial.
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Fig. 19: The s (first row), py, pz, px (second row), and dxy, dyz, d3z2−r2 , dxz, dx2−y2 (last row)
real harmonics.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are
defined in terms of the spherical harmonics as follows:

yl0 = Y l
0 , ylm =

1√
2

(
Y l
−m + (−1)mY l

m

)
, yl−m =

i√
2

(
Y l
−m − (−1)mY l

m

)
, m > 0.

Using the definitions x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ, so that

cosϑ =
z

r
, e±iϕ sinϑ =

(x±iy)

r
, (25)

we can express the l = 0, 1, 2 real harmonics (Fig. 19) as

s = y00 = Y 0
0 =

√
1
4π

py = y1−1 = i√
2
(Y 1
−1 + Y 1

1 ) =
√

3
4π

y/r

pz = y10 = Y 0
2 =

√
3
4π

z/r

px = y11 = 1√
2
(Y 1
−1 − Y 1

1 ) =
√

3
4π

x/r

dxy = y2−2 = i√
2
(Y 2
−2 − Y 2

2 ) =
√

15
4π

xy/r2

dyz = y2−1 = i√
2
(Y 2
−1 + Y 2

1 ) =
√

15
4π

yz/r2

d3z2−r2 = y20 = Y 0
2 =

√
15
4π

1
2
√
3

(3z2−r2)/r2

dxz = y21 = 1√
2
(Y 2
−1 − Y 2

1 ) =
√

15
4π

xz/r2

dx2−y2 = y22 = 1√
2
(Y 2
−2 + Y 2

2 ) =
√

15
4π

1
2

(x2−y2)/r2
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l′m′ =

∫
dr ψlm(r−d)V (r−d)ψl′m′(r).

They can be expressed as a function of radial integrals Vll′α, which scale with the distance d
roughly as d−(l+l′+1) [19], and direction cosines, defined as

l=d · x̂/d, m=d · ŷ/d, n=d · ẑ/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [19] are listed below.

Es,s = Vssσ

Es,x = lVspσ

Ex,x = l2Vppσ +(1−l2)Vppπ
Ex,y = lmVppσ −lmVppπ
Ex,z = lnVppσ −lnVppπ
Es,xy =

√
3lmVsdσ

Es,x2−y2 = 1
2

√
3(l2−m2)Vsdσ

Es,3z2−r2 = [n2−1
2(l2+m2)]Vsdσ

Ex,xy =
√

3l2mVpdσ +m(1−2l2)Vpdπ

Ex,yz =
√

3lmnVpdσ −2lmnVpdπ

Ex,zx =
√

3l2nVpdσ +n(1−2l2)Vpdπ

Ex,x2−y2 =
√
3
2 l[(l

2−m2)]Vpdσ +l(1−l2+m2)Vpdπ

Ey,x2−y2 =
√
3
2 m[(l2−m2)]Vpdσ −m(1+l2−m2)Vpdπ

Ez,x2−y2 =
√
3
2 n[(l2−m2)]Vpdσ −n(l2−m2)Vpdπ

Ex,3z2−r2 = l[n2−1
2(l2+m2)]Vpdσ −

√
3ln2Vpdπ

Ey,3z2−r2 = m[n2−1
2(l2+m2)]Vpdσ −

√
3mn2Vpdπ

Ez,3z2−r2 = n[n2−1
2(l2+m2)]Vpdσ +

√
3n(l2+m2)Vpdπ

Exy,xy = 3l2m2Vddσ +(l2+m2−4l2m2)Vddπ +(n2+l2m2)Vddδ

Exy,yz = 3lm2nVddσ +ln(1−4m2)Vddπ +ln(m2−1)Vddδ

Exy,zx = 3l2mnVddσ +mn(1−4l2)Vddπ +mn(l2−1)Vddδ

Exy,x2−y2 = 3
2 lm(l2−m2)Vddσ 2lm(m2−l2)Vddπ 1

2 lm(l2−m2)Vddδ

Eyz,x2−y2 = 3
2mn(l2−m2)Vddσ −mn[1+2(l2−m2)]Vddπ +mn[1+1

2(l2−m2)]Vddδ

Ezx,x2−y2 = 3
2nl(l

2−m2)Vddσ +nl[1−2(l2−m2)]Vddπ −nl[1−1
2(l2−m2)]Vddδ

Exy,3z2−r2 =
√

3lm[n2−1
2(l2+m2)]Vddσ −2

√
3lmn2Vddπ

√
3
2 lm(1+n2)Vddδ

Eyz,3z2−r2 =
√

3mn[n2−1
2(l2+m2)]Vddσ +

√
3mn(l2+m2−n2)Vddπ −

√
3
2 mn(l2+m2)Vddδ

Ezx,3z2−r2 =
√

3ln[n2−1
2(l2+m2)]Vddσ +

√
3ln(l2+m2−n2)Vddπ −

√
3
2 ln(l2+m2)Vddδ

Ex2−y2,x2−y2 = 3
4(l2−m2)2Vddσ +[l2+m2−(l2−m2)2]Vddπ +[n2+1

4(l2−m2)2]Vddδ

Ex2−y2,3z2−r2 =
√
3
2 (l2−m2)[n2−1

2(l2+m2)]Vddσ +
√

3n2(m2−l2)Vddπ +
√
3
4 (1+n2)(l2−m2)Vddδ

E3z2−r2,3z2−r2= [n2−1
2(l2+m2)]2Vddσ +3n2(l2+m2)Vddπ

3
4(l2+m2)2Vddδ
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http://www.cond-mat.de/events/correl11

[8] E. Pavarini, E. Koch, A. Lichtenstein, D. Vollhardt (eds.):
DMFT at 25: Infinite Dimensions,
Reihe Modeling and Simulation, Vol. 4 (Forschungszentrum Jülich, 2014)
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http://www.cond-mat.de/events/correl22

[11] H. Sims, E. Pavarini, and E. Koch, Phys. Rev. B 96, 054107 (2017)

[12] X-J. Zhang, E. Koch and E. Pavarini, Phys. Rev. B 106, 115110 (2022)

[13] E. Pavarini, E. Koch, F. Anders, M. Jarrell (eds.):
Correlated Electrons: From Models to Materials,
Reihe Modeling and Simulation, Vol. 2 (Forschungszentrum Jülich, 2012)
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2.2 Arnout Ceulemans

1 The Jahn-Teller theorem

In 1937 Jahn and Teller wrote:

Theorem 1. All non-linear nuclear configurations for an orbitally degenerate electronic state
are unstable.

This statement was the beginning of a fruitful line of research both in physics and chemistry.
Over the years, it has provided deep theoretical insights as well as important practical applica-
tions, in spectroscopy, magnetism, superconductivity and chemical reactivity. First and fore-
most, the theorem is a particular example of the more general physical principle of symmetry
breaking. As Pierre Curie once enounced: c’est la dissymmétrie qui crée le phénomène (it is the
lack of symmetry that creates the phenomenon). The world appears where the initial symmetry
is broken, and the phenomena start to abound. This is accompanied by a decrease of tempera-
ture, which suggest that the high symmetry state is also highly energetic, and the spontaneous
breaking of symmetry is driven by a decrease in energy. In this presentation, the focus will be
on the theoretical aspects of the theorem, in particular group theory and topology.1

1.1 The distorted rutile structure

At the molecular level degeneracies are usually linked to the presence of symmetry, described
by the molecular point groups. A textbook case from structural inorganic chemistry concerns
the crystal structures of divalent transition-metal difluorides from CrF2 to ZnF2 [2]. These
difluorides crystallize according to the rutile structure. Rutile is the mineral of TiO2. In this
structure the metal ions are surrounded by a regular octahedron of six ligands, at equal distances
from the central atom. Cr(II) and Cu(II) ions are notable exceptions in the series. For these two
metal ions the rutile lattice is distorted, forming a tetragonal coordination, with four equatorial
ligands at short distance and two axial ones at longer distances, as indicated in Fig. 1. The figure
also shows the crystal field configuration of the d-electrons, with one electron in the eg shell for
Cr(II) and one hole for Cu(II).
The mean value of these distances agrees with the expected trends for the d-metal contraction,
but clearly some force is distorting the ligand sphere around the ion. What distinguishes these
ions form the rest? These are the only two ions in the series for which the ground state con-
figuration is characterized by an odd number of electrons in the eg shell. The resulting ground
states are 2Eg multiplets, hence states that are orbitally twofold degenerate. They thus would
exemplify the Jahn-Teller (JT) theorem, which states that such ground states are unstable, and
will spontaneously distort to lower symmetries. The distortion will lift the degeneracy, and
thus remove the cause of instability. Indeed symmetry breaking from Oh to D4h will split the
multiplets as follows

2Eg → 2A1g +
2B1g. (1)

Further interesting additional observations can also be made:

1The presentation, including several figures and formulas, is based on the recent monograph [1].
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Fig. 1: Jahn-Teller distortions in CrF2 and CuF2

• The origin of the JT effect is clearly attributed to a local on-site orbital characteristic,
which apparently is strong enough to distort the lattice structure. This inscribes the JT
theorem in the broad theme of the lecture course.

• It could be argued that similar considerations would apply to the Fe(II) and Co(II) ions
which have open t2g shells giving rise to threefold degenerate ground states. These ions
are indeed also exemplifying JT instabilities, but the instability is much smaller than in
the case of the instabilities caused by the eg shells. A further distinction is thus in order:
the JT force can give rise to molecular structures which are frozen in a particular distorted
geometry, or can be weaker and give rise to a vibronic ground state, with dynamic fluctu-
ations. Such fluctuations show up as large anisotropic thermal structure factors in X-ray
analysis. We will identify these two regimes as the static versus the dynamic JT effect. In
reality however, systems will adopt all sorts of intermediate stages.

• Finally, the symmetry breaking itself is not complete, but rather tries to conserve as much
symmetry as possible. Indeed the tetragonal subgroup is the maximal subgroup of Oh,
for which dz2 and dx2−y2 are no longer degenerate. It removes the threefold axes that
cause the degeneracy, but keeps all other symmetry elements. This economic principle is
known as the epikernel principle.

1.2 Origin of orbital instability

Why is symmetry breaking a spontaneous process in degenerate states? The standard answer
to this is that in these states there is always an imbalance between the symmetry of the nuclear
charge distribution and the symmetry of the electron density. So electron densities of the indi-
vidual eg orbitals have only tetragonal symmetry, while the nuclear distribution is octahedral.
The result is a force which acts on the nuclei and displaces them to a new equilibrium position
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with D4h symmetry. This argument is based on the fact that for non-degenerate states the elec-
tron density always adopts the symmetry of the nuclear frame. For a non-degenerate state |Ψ〉,
a distortion force along a nuclear coordinate Q, is given by

F =
∂

∂Q
〈Ψ |H|Ψ〉|Q=0 =

〈
Ψ
∣∣ ∂H
∂Q

∣∣Ψ〉∣∣∣
Q=0

. (2)

If Ψ is non-degenerate, the density Ψ ∗Ψ , is totally symmetric and the force matrix element
can only differ from zero if the Hamiltonian part is likewise totally symmetric, i.e., if the Q-
coordinate conserves the symmetry. When extending this argument to degenerate states, it is
argued that the average density still is totally symmetric, but that this is no longer true for
the density associated with individual components. The sum of the densities of the dz2 and
dx2−y2 states is indeed equal along the three coordinate axes of an octahedron, but the separate
densities of the two components is not: it is axial for the dz2 orbital and equatorial for the
dx2−y2 counterpart. In this argument the assumption is made that the electron densities for
individual components of degenerate states cannot possibly have the symmetry of the nuclear
frame. In fact this is not true. For the twofold degenerate component it suffices to rewrite
the components in complex conjugate form, to obtain for both an electron cloud with perfect
octahedral symmetry.

|Ψ±〉 =
1√
2
(dz2 ± idx2−y2) (3)

Indeed the densities of both these components are equal to the average density of dz2 and dx−y2 ,
and thus totally symmetric. The real difference between degenerate and non-degenerate states
is that in the case of degenerate states, the calculation of the distortion force requires to set up
and diagonalize a matrix equation, operating in the degeneracy basis of the state manifold. If for
instance we use the {Ψ+, Ψ−} basis, the JT force will entirely be ‘demoted’ to the off-diagonal
entries of the Hamiltonian matrix.

1.3 The Jahn-Teller Hamiltonian

The potential energy surface in the neighborhood of a JT instability is described by a Taylor
series expansion of the Hamiltonian in the coordinate space of active nuclear distortions. The
very first and essential terms of the expansion are the first-order force term and the harmonic
second-order restoring potential

H = H0 +
∑
Λλ

(
∂H

∂QΛλ

)
0

QΛλ +
1

2

∑
Λλ

KΛQ
2
Λλ. (4)

Here the distortion Q-coordinates are labeled by an irreducible representation Λ of the high-
symmetry molecular point group, and its component or subrepresentation, λ. H0 is the elec-
tronic Hamiltonian in the high-symmetry origin of the coordinate system, relaxed with respect
to symmetry-preserving totally symmetric coordinates. Its eigenfunctions are the states of the
degenerate manifold. The second-order term is the standard harmonic restoring force, with KΛ

being the harmonic force constant. This term holds the molecular frame together and attracts
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the nuclei towards the coordinate origin. The force constant can be obtained from the IR and
Raman spectra. The essential term is the linear term, which describes the interaction between
the electronic states and the nuclear distortion modes. This linear interaction is the force which
pulls the nuclei away from their original symmetry positions. The derivative in this term rep-
resents the slope of the energy as a function of the coordinate displacement, evaluated at the
high-symmetry point. As a derivative of the Hamiltonian with respect to nuclear positions, this
term affects the electron-nuclei Coulomb attraction term, and as a result it is a one-electron
operator. This is an important property, which ultimately explains why the JT phenomenon is
so tightly linked to orbital properties.
At this point a proper definition of the symmetry properties is in order. The coordinates have
already been labeled as QΛλ. Likewise the degenerate manifold will be labeled by the degener-
ate irreducible representation Γ , and its components accordingly by a subrepresentation label γ
as |ΨΓγ 〉. The symmetry labels incorporate the entire action of a symmetry element of the point
group, R̂ ∈ G, on these quantities:

R̂QΛλ =
∑
λ′

DΛ
λ′λ(R)QΛλ′ and R̂|ΨΓγ 〉 =

∑
γ′

DΓ
γ′γ(R) |ΨΓγ′〉. (5)

Here the D-matrix elements refer to the irreducible representation (irrep) matrices D(R) which
describe the transformation of the basis functions under all the elements of the symmetry group.
What makes the JT Hamiltonian tractable, and in fact extremely attractive, is that instead of
working in the entire Hilbert space, it operates in an extremely confined space, comprising
at first only the degenerate manifold. Matrix elements of the linear interaction term in this
manifold may be factorized according to the Wigner-Eckart theorem as a reduced force element,
denoted by the constant FΛ, and a Clebsch-Gordan coupling coefficient, which contains the
entire group-theoretical knowledge of the interaction

〈
ΨΓγa

∣∣∣∣( ∂H

∂QΛλ

)
0

∣∣∣∣ΨΓγb〉 = FΛ 〈Γγa|ΛλΓγb〉. (6)

In the second-quantization formalism, we now introduce creation and annihilation operators for
the electronic states. Since these are fermionic in nature we label them respectively as f † and f .
A normalized N -electron determinant is obtained as a sequence of particles being created from
the vacuum state

f †αf
†
β...f

†
ν |0〉 ≡ |αβ...ν| . (7)

The adjoint of this expression is then

〈0| fν ...fβfα = |αβ...ν|. (8)

Since the linear part of the Hamiltonian involves a one-electron operator, we can express the
coupling in operator form as(

∂H

∂QΛλ

)
0

=
∑
γaγb

f †γa
〈
ΨΓγa

∣∣∣∣( ∂H

∂QΛλ

)
0

∣∣∣∣ΨΓγb〉fγb . (9)
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An alternative view point of the interaction involves a recoupling, where the fermion parts
are first coupled to an excitation operator with symmetry Λ. This recoupling is carried out
by transferring the Γbγb irrep of the ket part to the bra, and corresponds to a basic symmetry
property of the coupling coefficients [1]. One has, apart from an overall Λ-dependent phase
factor which can be incorporated into the force-parameter,

〈Γγa|ΛλΓγb〉 =
(
dimΓ

dimΛ

)1/2

〈ΓγaΓγb|Λλ〉. (10)

Note that the symmetry properties of the annihilation operator, Γγb, appear in the coupling
operator as the complex conjugate component, in view of the transfer from ket to bra. Then,
these results are inserted into the operator expression, yielding(

∂H

∂QΛλ

)
0

= kΛ
∑
γaγb

f †γa〈ΓγaΓγb|Λλ〉fγb , (11)

where kΛ takes over the role of the FΛ force elements, by incorporating the dimensional factor

kΛ =

(
dimΓ

dimΛ

)1/2

FΛ (12)

Vice-versa, since this is a summation over all components, one could as well remove the com-
plex conjugate bar from the coupling coefficient and replace the annihilation operator, fγb by
its time reversed form, which is denoted by the tilde operator as f̃γb . The tilde indicates that
the annihilation operator f̃γb transform in exactly the same way as the corresponding creation
operator f †γb , and as the time reversed of the annihilation operator fγb . The operator expression
then finally becomes

H = kΛ
∑
γaγb

〈ΓγaΓγb|Λλ〉f †γa f̃γb = kΛ
(
f †f
)Λ
λ
. (13)

The bracket in the final line of this equation symbolizes the coupling of the fermion creation
and annihilation operators to the symmetry of the boson. In this formalism the slope parameter
is usually represented as kΛ. In second quantization we now also add the vibrational mode,
expressed in boson creation and annihilation operators

QΛλ =
1√
2

(
b†Λλ + b̃Λλ

)
. (14)

Again note the tilde over the annihilation operator. Indeed, both creation and annihilation parts
must share the Λλ symmetry properties of QΛλ. In order to combine the fermionic and bosonic
parts it must be taken into account that this involves a scalar product over the Λ tensor, as a
fermionic variable and an associated bosonic derivative. Since derivatives and variables trans-
form in conjugate ways, one must write∑

Λλ

(
∂H

∂QΛλ

)
0

QΛλ =
∑
Λ

κΛ
(
f †f
)Λ � (b†+b

)
Λ
. (15)
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Fig. 2: Diagram of coupling schemes for the JT matrix elements in the E × e case (vide infra);
f †x and f †y create an electron in resp. dz2 and dx2−y2 orbitals.

The dot refers to the scalar product of boson and fermion part which guarantees the total symme-
try of the Hamiltonian, due to compensating symmetries in both ingredients. When components
follow the spherical (l,m) quantization, the dot product is defined as(

f †f
)l � (b†+b

)
l
=
∑
m

(−1)m
(
f †f
)l
m

(
b†l,−m+b̃l,−m

)
. (16)

The concise second-quantization formalism in Eq. (15) says it all! The fermion creation-
annihilation double operator is exactly an excitation operator which requires a field of sym-
metry Λλ. This is symbolized for the E-case in Fig. 1.3.
The difference with a proper excitation is that instead of a photon the excitation is brought
about by a vibration. To this interaction element one finally adds the harmonic part of the active
vibrations. This complements the potential energy of the JT surface with the kinetic energy of
the nuclei. The harmonic potential is now replaced by the harmonic oscillator∑

Λλ

~ωΛ
(
b†ΛλbΛλ +

1

2

)
. (17)

The result is a genuine vibronic operator where bosons and fermions meet

H =
∑
Λ

κΛ
(
f †f
)Λ � (b†+b

)
Λ
+
∑
Λλ

~ωΛ
(
b†ΛλbΛλ +

1

2

)
. (18)

1.4 The pseudo-Jahn-Teller effect

When two electronic states are not strictly degenerate but close together in energy, it should be
very surprising that the symmetry breaking mechanism would suddenly be completely quenched.
Instead a non-totally symmetric matrix element between both states is symmetry allowed and
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Si8H8O12 (Oh) Ge8H8O12 (Th)
LUMO 11a1g

HOMO 1a2g

a2g  rotation

Fig. 3: Structural comparison between Si and Ge POSS (left), and, HOMO and LUMO for the
Ge cluster (right).

may perfectly well induce a distortion, providing the relaxation term outweighs the harmonic
force constant. This is the so-called pseudo-JT effect. Following the formalism of Bersuker [3],
let two states be separated by a splitting 2∆ and with an off-diagonal force element FQ, where
Q is a non-totally symmetric distortion coordinate. Assume further that the two states share the
same force constant K0. In that case matrix diagonalization leads to the roots

E± =
1

2
K0Q

2 ±
(
∆2+F 2Q2

)1/2
=

1

2

(
K0±

F 2

∆

)
Q2 ±∆∓

(
F 4

∆3

)
Q4 ± ... (19)

If |∆| < F 2/K0, then the curvature of the lower energy root becomes negative, and the system
will be unstable with respect to Q. An exceptional illustration of this effect is seen in the Oh →
Th symmetry breaking in the polyhedral oligomeric sesquioxane (POSS), Ge8H8O12. While the
Silicon isomer has cubic symmetry Oh, it is found by DFT calculations that the Germanium
isomer is distorted to the rare tetrahedral symmetry group Th [4]. In Fig. 3 we display both
structures, as well as the HOMO (1a2g) and LUMO (11a1g) of the Germanium isomer. The off-
diagonal matrix element between both orbitals transforms as the direct product: a1g×a2g = a2g.
The pseudo-JT effect thus promotes a distortion along the a2g mode. This corresponds precisely
to a rotation of the oxygen bridges in between the Germanium atoms. Neighboring vertices on
the cube will thereby rotate in opposite directions lowering the symmetry to Th.
An important caveat is in order here. In principle, for any symmetry breaking it will always be
possible to find a pair of interacting states with the right combination of irreducible represen-
tations. So the predictive power of the effect is rather limited. A detailed examination of the
composition of the relevant orbitals, and a demonstration of the overlap of their off-diagonal
density and an observed distortion is required.
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Fig. 4: Trigonal Na3 cluster, with doublet ground level; orbitals and distortion modes.

2 The doublet E×e Paradigm

The icon of the JT theorem is the Mexican hat potential, corresponding to a twofold degenerate
E state, coupled to a twofold degenerate e vibration. This occurs both in cubic and in trigonal
or pentagonal symmetry groups. We examine in some detail the standard case of a triangular
instability.

2.1 The potential energy surface

The system considered is a tri-atomic molecule in an E state, with components Ex and Ey. The
symmetry at the origin is D3h, but since three atoms are coplanar, we could as well work in C3v

symmetry. The components are represented schematically in Fig. 4. Their symmetry behavior
under the generators of C3v (with right-handed threefold axis) are given by

Ĉ3

(
|Ex〉 |Ey〉

)
=

(
|Ex〉 |Ey〉

)( −1/2 −√3/2√
3/2 −1/2

)

σ̂x

(
|Ex〉 |Ey〉

)
=

(
|Ex〉 |Ey〉

)( 1 0

0 −1

)
. (20)

Here an active view of symmetry operations is adopted: they displace the functions itself, be it
orbitals or distortions, while leaving the nuclei in place.
The direct product of the orbital state reads

E × E =
[
a1+e

]
+ a2. (21)

According to the JT selection rule the activity resides in the non-totally symmetric part of the
symmetrized product, [a1+e], being the e-vibration. The components of this vibration are also
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shown in the figure. They are labeled as Qx and Qy. Using local (x, y) coordinates for the
individual atoms, the expressions for these vibrations are given by:

Qx =
1√
3

[
Qx
A +

(
−
√
3

2
Qy
B −

1

2
Qx
B

)
+

( √
3

2
Qy
C −

1

2
Qx
C

)]

Qy =
1√
3

[
Qy
A +

(
−1

2
Qy
B +

√
3

2
Qx
B

)
+

(
−1

2
Qy
C −
√
3

2
Qx
C

)]
. (22)

The action of the group generators on these functions is given by

Ĉ3

(
Qx Qy

)
=

(
Qx Qy

)( −1/2
√
3/2

−
√
3/2 −1/2

)

σ̂x

(
Qx Qy

)
=

(
Qx Qy

)( 1 0

0 −1

)
. (23)

Note the sign change here as compared to Eq. (20). This is based on the convention that these
modes were chosen to mimic the behavior of central quadrupolar harmonics x2−y2 and xy, as
opposed to the fermion states which follow the dipolar harmonics x and y. With Ke the force
constant of the boson mode, and Fe the linear force element, in a fermion basis {|x〉|y〉} the
Hamiltonian reads

H =
K

2

(
Q2
x +Q2

y

)
+
Fe√
2

(
Qx Qy

Qy −Qx

)
. (24)

Diagonalization of this Hamiltonian then yields the familiar Mexican hat surface, consisting of
two parabolic sheets, with rotational symmetry along the threefold axis:

E± =
K

2

(
Q2
x +Q2

y

)
± Fe√

2

√
Q2
x +Q2

y . (25)

The central C3v point of the diagram is unstable, and the energy gain by distortion into the
trough is the so-called JT energy, given by

EJT = −1

2

F 2
e

K
. (26)

If the system rotates around in the trough the nuclei perform circular motions around the trig-
onal equilibrium positions. This motion is an internal rotation or libration as shown in Fig. 5.
Additional higher-order terms to the Hamiltonian will essentially maintain the shape of the sur-
face, but introduce warping. As an example, the second-order terms in QxQy and Q2

x−Q2
y will

warp the potential energy surface, giving rise to local hill tops, alternating with local minima.
The stationary points correspond to isosceles triangles. Detailed calculations by Cocchini et
al. [5] for the sodium trimer yield a JT stabilization energy in the order of 670 cm−1, and a
rotational barrier of 130 cm−1.
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QyQx

Fig. 5: Internal rotation along the trough of the Mexican hat; a 90◦ anti-clockwise rotation
takes the Qx distortion to Qy.

2.2 The dynamic system

A fascinating aspect of the Mexican hat potential is certainly its obvious rotational symmetry.
This symmetry ultimately goes back to the unitary symmetry of the diabolical degeneracy point
at the origin. For a full grasp of this symmetry, we now rewrite the Hamiltonian in its dynamic
form, including the nuclear kinetic energy term. According to the standard boson-fermion
formalism, the ket functions are generated by the f †x, f

†
y operators, and the boson modes are

created by b†x, b
†
y, with coordinate and momentum operators as

Qx =
1√
2

(
b†x + bx

)
and Px =

i√
2

(
b†x − bx

)
. (27)

A unit of length is defined as
√
~/mω and the oscillator quantum ~ω is taken as the unit of

energy. This rescaling absorbs all fundamental constants:

H =

(
b†xbx + b†yby + 1 + κ

(
b†x+bx

)
κ
(
b†y+by

)
κ
(
b†y+by

)
b†xby + b†yby + 1− κ

(
b†x+bx

) ) . (28)

Here, κ is the linear coupling parameter, and 1 is the zero-point energy. Subsequently this is
taken out as the zero of the energy scale. The angular momentum associated with a rotation in
(Qx, Qy) is given by

L̂z = QxPy −QyPx =
i

2

((
b†x+bx

)(
b†y−by

)
−
(
b†y+by

)(
b†x−bx

))
= i
(
b†ybx − b†xby

)
. (29)

To find out the rotational symmetry of the Hamiltonian we calculate the commutator with Lz

[
L̂z,H

]
= i

(
κ
(
b†y+by

)
−κ
(
b†x+bx

)
−κ
(
b†x+bx

)
−κ
(
b†y+by

) ) . (30)

Unexpectedly perhaps, the two operators do not commute! However we should be aware that
the Hamiltonian describes a coupled situation where both boson and fermion fields are affected.
To this aim, we introduce an angular coordinate φ in distortion space, with Qx = Q cosφ
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and Qy = Q sinφ. The ground state wavefunction (with κ< 0) of the static Hamiltonian as a
function of φ is given by

|ψ−〉 = cos
φ

2
|x〉+ sin

φ

2
|y〉. (31)

This shows the rotation of the wavefunction along the trough, but at half speed as compared to
the coordinate change. The wavefunction provides a connection between a base space, provid-
ing the real distortions of the system, and a function space, which for every point in the base
space, gives a fermion vector. As the boson vector is a direct product of the fermion vector
(remember e ∈ [E×E]), we can qualify the fermion space as a fundamental spin space, and
the boson space on top of that as a coupled vector space. The geometry of this connection will
be examined in the next section. Here it suffices to define a rotation operator for the fermion
states in analogy with the pseudo-spin operator Sz

Ŝz =
i

2

(
f †yfx − f †xfy

)
. (32)

Pursuing this analogy with spin-orbit coupling further, we can define the total momentum oper-
ator as Ĵz by

Ĵz = L̂z + Ŝz . (33)

This sum operator commutes with the Hamiltonian, as the sum of the commutator of Ŝz and the
commutator with the boson part cancels out: [Sz,H] = −[Lz,H]. In order to take advantage
of the conservation of angular momentum, we now impose symmetry adapted combinations of
bosons and fermions. One has

b†± =
1√
2

(
b†x ± ib†y

)
and b± =

1√
2

(
bx ∓ iby

)
. (34)

These operators are eigenoperators of L̂z with opposite eigenvalues[
L̂z, b†±

]
= ±b†± and

[
L̂z, b±

]
= ∓b± . (35)

Analogous symmetry adaptation of the fermion operators yields

|↑ 〉 = 1√
2

(
|x〉+ i|y〉

)
and |↓ 〉 = 1√

2

(
|x〉 − i|y〉

)
. (36)

As eigenfunctions of the Ŝz operator, these combinations are like α and β spins

Ŝz|↑ 〉 = +
1

2
|↑ 〉 and Ŝz|↓ 〉 = −

1

2
|↓ 〉. (37)

The total symmetry-adapted Hamiltonian is now expressed in the transformed fermion basis(
|↑ 〉
|↓ 〉

)
: H =

(
b†+b+ + b†−b− κ

√
2
(
b†−+b+

)
κ
√
2
(
b†++b−

)
b†+b+ + b†−b−

)
. (38)

To solve this Hamiltonian equation it is of paramount importance to define an Ansatz. An
Ansatz is a general expression of the form of the solution, which holds the symmetry of the
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system, and expresses the coupling scheme between the boson and fermion degrees of freedom.
The Ansatz reads

|Ψ〉l+1/2 =
(
b†+
)l
Φ1(ξ) |↑ 〉+

(
b†+
)l+1

Φ2(ξ) |↓ 〉. (39)

Here the variable ξ is defined as

ξ = b†+b
†
−. (40)

This variable thus corresponds to a two-photon boson excitation, combing two excitations with
opposite angular momentum. The total angular momentum of this variable is thus equal to zero,
and it can be considered as a double purely radial excitation. The Ansatz shows that in order to
obtain a vibronic state with angular momentum l+1/2, on top of an arbitrary number of radial
excitations we can either excite l quanta of b†+ and couple this to a spin-up fermion state, or
excite l+1 quanta of b†+ and couple this with a spin-down fermion. These are the only two
channels to arrive at a state with the desired momentum. This state will always be degenerate
with a time-reversed counterpart, which is given by

|Ψ〉−l−1/2 =
(
b†−
)l
Φ1(ξ) |↓ 〉+

(
b†−
)l+1

Φ2(ξ) |↑ 〉. (41)

The Ansatz clearly shows that the vibronic wavefunction cannot be factorized as a product
of a fermion and a boson part: we have definitely taken leave from the Born-Oppenheimer
approximation. In summary the JT equations to be solved read in matrix form

H|Ψ〉 = E|Ψ〉 =(
b†xbx + b†yby + κ

(
b†x+bx

)
κ
(
b†y+by

)
κ
(
b†y+by

)
b†xby + b†yby − κ

(
b†x+bx

) )( (
b†+
)l

Φ1(ξ)(
b†+
)l+1

Φ2(ξ)

)
.

(42)

We refer to [1] for a detailed discussion of the solution of these equations. Interestingly the
equations can ultimately be turned into a form of Heun’s differential equation. Closed solutions
of this equation do not seem to exist, except for some special values of κ. Eigenvalues are
characterized by half integral values of j and are plotted as a function of the coupling parameter,
in close-up in Fig. 6.

At the left of the diagram, for κ = 0, are found the oscillator levels of the e-vibration. When
the coupling sets in, the trough develops, and ultimately – in the strong coupling limit – the
spectrum reduces to a rotational spectrum with a regular sequence of half-integral j-values,
superimposed on a transversal oscillator. Looking in detail at the lowest vibronic levels, in the
limit of zero coupling strength the ground level with j = 1/2 reduces to the product of the
electronic degeneracy and the totally-symmetric zero phonon state. The excited oscillator state
at E = 1 corresponds to the vector addition of an l = 1 vibrational level to the fermion spin,
yielding j = 1/2, 3/2. As the coupling is turned on, the j = 1/2 excited state is raised due
to its interaction with the equisymmetric ground state, while the j = 3/2 level is expected to
descent in energy, as seen in the figure.
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Fig. 6: E× e JT Hamiltonian: solutions of the dynamic equation as a function of κ2; indi-
vidual lines are characterized by angular momentum j; ascending dotted lines represent extra
mathematical solutions that are unphysical.

If quadratic warping terms are introduced, the rotational symmetry is broken to C3v. Accord-
ingly, the j states subduce trigonal levels as indicated below

j = 1/2 → E

j = 3/2 → A1 + A2 . (43)

In a strong coupling regime with extensive trigonal warping, the vibronic regime in essence
reduces to local oscillations in three localized wells. Depending on the signs of the warping
parameters, the minima are either at φ = 0◦, 120◦, 240◦ with saddle points in between, or vice-
versa. Small vibrational overlap between these wells opens the possibility of tunneling.The
lowest tunneling states are obtained by setting up a 3× 3 hopping matrix between the wells.
The matrix element between the wells essentially is a Huang-Rhys overlap factor, with a positive
sign. The result is a two state diagram, with anE ground state, and anA excited state, which are
separated by a tunneling splitting. Here the lower E state correlates with the ground j = 1/2

level of the diagram. The upper A state correlates likewise with the j = 3/2 parentage. As
Eq. (43) shows, it can be either A1 or A2. For wells located at turning points 0◦, 120◦, 240◦, the
A level is identified as an A1 level. When the surface is turned upside down, with minima now
at 60◦, 180◦, 300◦, the A level hasA2 symmetry. These results follow from the electronic part of
the wavefunction in Eq. (31), as the vibrational overlap is symmetric with respect to reflections
in C3v [6].
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2.3 Berry phase

We already drew attention to the sign change of the wavefunction after revolving around the
conical intersection. The acquired phase is a geometric phase, which is generally known as
a Berry phase, following the seminal work of Michael Berry [7]. Berry’s phase was identi-
fied with the concept of holonomy in geometry. To present this concept, two ingredients are
required: the base space, and the fiber. In the JT case the base space is the coordinate space
{Qx, Qy} formed by the two distortion modes. With each point in the base space a wavefunction
can be associated. The phase of this wavefunction may vary over a range 0, 2π. The phase vari-
able forms a so-called fiber, associated with a particular point on the base space. The collection
of all these fibers over the entire base space forms a fiber bundle. Now the holonomy is what we
observe in the fiber bundle when a closed loop is performed in the base space. Clearly, in order
to be meaningful, a connection must exist which controls the change of the phase in consecutive
fibers, corresponding to adjacent points on the base space. Berry showed how this connection
is provided by the time-dependent Schrödinger equation, under adiabatic constraints. This is
fulfilled in the case of a circuit driven by slowly moving nuclei along the trough of the potential,
with instantaneous adaptation of the wavefunction, not involving excitations. Ideally we may
think of a slow rotation which is hindered by the surface warping along the circuit. The treat-
ment proceeds as follows: let |n(R)〉 represent the non-degenerate quantum state of a system,
dependent on external parameters R, which corresponds to a particular nuclear configuration
along the low-energy trough. The eigenvalue is given by

H(R)|n(R)〉 = En(R)|n(R)〉. (44)

The wavefunction |n(R)〉 must be single valued in the relevant parameter domain, and be dif-
ferentiable. The wavefunction which solves the time-dependent Schrödinger equation in the
adiabatic regime is then given by

|Ψ〉 = exp

(
−iEn

~
t

)
|n(R)〉. (45)

Here a time-dependent phase factor, the so-called dynamical phase, is added. This factor mea-
sures the passage of time. In the JT application we consider a closed circuit, C, in a space
defined by nuclear displacements, R(t), where the distortion varies smoothly and slowly in
time, as the nuclei evolve on a minimal energy path. Since the adiabatic state depends on the
coordinates, it will change accordingly, but continuously, i.e., the Hamiltonian does not change
rapidly enough to allow excitations to other states with energy Em(R). Nonetheless, by slowly
driving the state around in the distortion space, an extra time dependence will appear, as is ev-
ident from the notation |n(R(t))〉. In order to keep satisfying the time dependent equation, we
must include a further compensatory phase factor. Eq. (45) is thus rewritten as

|Ψ〉 = exp

(
−iEn

~
t

)
exp

(
iγn(t)

)
|n(R(t))〉. (46)
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Here the second exponential represents the geometric phase that is at the core of Berry’s treat-
ment. Applying the time dependent equation yields

i~
d

dt
|Ψ〉 = En|Ψ〉 − ~

dγn
dt
|Ψ〉+ i~ exp

(
−iEn

~
t

)
exp

(
iγn(t)

)
d

dt
|n(R(t))〉. (47)

In order to satisfy the Schrödinger equation, one must require that the sum of the second and
third terms cancel

− dγn
dt
|Ψ〉+ i exp

(
−iEn

~
t

)
exp

(
iγn(t)

)
d

dt
|n(R(t))〉 = 0 . (48)

This can be rewritten as

dγn = i〈n(R)|dn(R)〉 = i〈n(R)|∇R|n(R)〉 · dR (49)

When completing a closed loop, the total build-up of the phase is measured by the line integral
along the path

γn(C) =

∮
C

dγn = i

∮
〈n|dn〉, (50)

with |dn〉 = ∇R|n〉 · dR. Furthermore since the ket function is normalized, one has

d〈n|n〉 = 〈dn|n〉+ 〈n|dn〉 = 〈n|dn〉+ 〈n|dn〉 = 0 . (51)

This implies that the matrix element 〈n|dn〉 is purely imaginary, and thus that γn(C) will be
real. This integral is the famous Berry phase. If the path is defined on a curved surface this
phase will be non-trivial. In order to apply this treatment to the JT system, it is first of all noted
that the electronic wavefunction |ψ−〉 given in Eq. (31) is not single-valued, since

|ψ−(2π)〉 = exp(iπ)|ψ−(0)〉. (52)

So |ψ−〉 does not correspond to |n(R)〉. However, by gradually removing the phase of π during
the circuit, we obtain the required single-valued function

|n(R)〉 = exp

(
−iφ

2

)
|ψ−(φ)〉 = exp

(
−iφ

2

)(
cosφ/2|Ex〉+ sinφ/2|Ey〉

)
. (53)

And thus

d|n(R)〉 = exp

(
−iφ

2

)(
−idφ

2
|ψ−(φ)〉+ d|ψ−(φ)〉

)
〈n(R)|dn(R)〉 = −i dφ

2
. (54)

Here we made use of the fact that |ψ−〉 is real, and hence

d〈ψ|ψ〉 = 2〈ψ|dψ〉 = 0 . (55)

Inserting the result in Eq. (50) yields

γn(C) =

∮
C

dγn = i

∮
〈n|dn〉 = i

∮ (
− i
2

)
dφ = π . (56)
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As Berry writes, one might say that the dynamical phase factors in Eq. (45) and γn in Eq. (46)
give the system’s best answers to two questions about its adiabatic circuit. For the dynamical
phase the question is: how long did your journey take? For γn(C) it is: where did you go to?
Here we open a brief parenthesis: as the integral 〈ψ|dψ〉 is zero, the function |ψ〉 is said to
follow the law of parallel transport. It means that the change of the function is orthogonal to
the function itself. This implies that the function accumulates during its path the torsion that
is forced upon the system by the path, and as a result its end state after a full circuit will end
up with a net phase difference. Following a function under parallel transport and detecting the
phase change after a full circuit is thus a direct way to obtain the Berry phase.
Now what are the implications of the Berry phase for the JT treatment? In Eq. (49) it is noted
that the gradient element adds an extra phase to the wavefunction, exactly as the vector poten-
tial A does to a charged particle in magnetism. In view of this analogy, we may introduce a
vector field terminology, and write

A = i〈n(R)|∇R|n(R)〉 (57)

and

γn(C) =

∮
C

A · dR . (58)

A lives in parameter space, and emanates from the topology of this space. As it is dependent on
the phase of the basis vectors, it is not unique, and when applying the formula in Eq. (57), one
must make sure that the basis vector is locally single-valued. In the JT case working out these
expressions yields

Aφ = i
〈
n
∣∣ δ
δφ

∣∣n〉 = 1

2
. (59)

The form of this vector potential is analogous to the field created by a Dirac monopole of
strength 1/2. The source of this monopole is nothing else than the conical intersection itself.
The question thus arises if the dynamic calculations which we performed indeed include the
vector potential associated with the conical intersection, or if an additional field term in the
Hamiltonian is required. The short answer is that the dynamic treatment, which we have pre-
sented, does indeed contain the Berry phase from the start, so there was no need to invoke
it afterwards. This being said, the literature hardly offers explicit demonstrations of this cor-
respondence. An exception is the treatment by Johnsson and Stedman [8]. To spell out the
angular momentum of the nuclear motion in the presence of a vector field, we must include the
term −qA in the vector product R ∧P

R ∧ (P−qA) = L − q1
2
= Jz , (60)

where q = ±1 is the charge of the particle. The fact that we recover the angular momentum
operator of the dynamic JT treatment indicates that this treatment indeed fully incorporates the
Berry phase. The angular momentum thus truly reflects the dual boson-fermion characteristic
of the JT Hamiltonian.
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3 The triplet T × (e+ t2) Jahn-Teller system

Triple degeneracies occur in cubic and icosahedral symmetries. The symmetries of the JT
modes are generated as

Oh : [T × T ]− A1g = eg + t2g

Ih : [T × T ]− Ag = hg (61)

T -terms have a frequent occurrence in coordination compounds and metal clusters, often with
important implications for magnetism. The strength of the coupling is usually less pronounced
than for E-terms, giving rise to all sorts of dynamic properties. A notable example of an icosa-
hedral T -system is the ground state of the fulleride anion, C−60, due to the occupation of the t1u
LUMO of Buckminsterfullerene by a single electron.

3.1 The Hamiltonian

As before two spaces are to be considered: the fermion basis defines a three-dimensional sphere,
with unit vectors |Tx〉, |Ty〉, |Tz〉, and the boson space, forming a five-dimensional Euclidean
space, with unit vectors Qθ, Qε for the eg-modes and Qξ, Qη, Qζ for the t2g-modes.
In the linear coupling regime, the Hamiltonian is given by

H =
1

2
KE

(
Q2
θ +Q2

ε

)
+

1

2
KT2

(
Q2
ξ +Q2

η +Q2
ζ

)
+H′ (62)

with

H′ = FE

−1
2
Qθ+

√
3
2
Qε 0 0

0 −1
2
Qθ−

√
3
2
Qε 0

0 0 Qθ

+
FT2√
2

 0 −Qζ −Qη

−Qζ 0 −Qξ

−Qη −Qξ 0

 . (63)

The potential energy surface is defined in 5D coordinate space. However a concise view of the
topography of the surface can be achieved by projection in 3D fermion space. The procedure is
as follows: consider an electronic eigenvector (x, y, z), normalized to unity

|T (r)〉 = x|Tx〉+ y|Ty〉+ z|Tz〉. (64)

Antipodal points (x, y, z) and (−x,−y,−z) describe the same solution, hence the electronic
space is restricted to a hemisphere. This surface has the topology of a projective plane. Now
minimize the energy for every direction on this sphere

δ

δQΛλ

(
r†Hr

)
= r†

δH
δQΛλ

r = 0 ∀ QΛλ ∈ [Γ ]2−Γ0 . (65)

This yields a set of equations from which we may determine the stationary coordinates, denoted
as ‖QΛλ‖r. Reinserting these coordinates in the energy expressions yields the function ‖E‖r.
This function does not represent eigenenergies, except in the stationary points where it is indeed
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Fig. 7: Jahn-Teller distortions for a cubic triplet, projected on a hemisphere; the z-axis is the
upright axis.

a root of the matrix equation! Hence this function is isostationary, i.e., it coincides with the
hypersurface in the stationary points. As an example, for the cubic T -terms, the isostationary
function is given by

〈‖E‖〉r =
1

5

(
2EJT

E +3EJT
T2

)
+

6

5

(
EJT
E −EJT

T2

)
f4 (66)

with

EJT
E = −1

2

F 2
E

KE

EJT
T2

= −1

3

F 2
T2

KT2

f4 =
1

2

(
x4+y4+z4 − 3

(
x2y2+x2z2+y2z2

))
. (67)

The f4 polynomial, which controls the topography, is recognized here as the cubic invariant of
the fourth-order spherical harmonics, which also provides the crystal field potential in octahe-
dral symmetry. The term preceding f4 involves the difference of the JT stabilization energies. If
the stabilization along e-modes is more pronounced, the surface is characterized by tetragonal
minima, with orthorhombic saddle points in between. The trigonal extrema in this case are hill
tops on the surface. In contrast if the t2-modes prevail, the surface will be turned upside down,
as shown in Fig. 7. Additional second-order terms in the Hamiltonian will produce a further
warping of the surface. As an example, when both e and t2 modes are active, and there is a
strong second-order interaction term between them, the next cubic invariant of rank 6 will take
over control, and produce a surface with six orthorhombic D2h minima and twelve C2h saddle
points in between.
In the icosahedral case the linear JT Hamiltonian is isotropic and the hypersurface corresponds
to a 3D sphere. However upon introduction of second-order warping terms minima and maxima
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a

Fig. 8: Jahn-Teller distortions for an isosahedral triplet, in a projective plane, consisting of six
vertices and ten triangular faces: the vertices correspond to D5d points, and the faces to D3d

points; left is shown the crystal structure of TDAE+C−60 (taken from [9]).

appear. These are governed by an icosahedral invariant of rank 6. Again two regimes are
possible: either ten trigonal minima, and six pentagonal hill tops, or vice-versa. The pentagonal
points are all equidistant and form the complete graph of six nodes. The nine neighbors of
each trigonal point split into two orbits of orders three and six. A case in point is the anion of
C60. Fulleride ions may be formed by reduction with alkali metals, or electron donors such as
tetrakis(dimethylamino)ethylene [9] TDAE, see Fig. 8.

3.2 Dynamics

For an understanding of the dynamics we turn to the high-symmetry case, where the Hamilto-
nian is limited to the linear force elements, and with – in case of cubic symmetry – degenerate
coupling between e and t2 modes: EJT

e = EJT
t2

. As the isostationary function demonstrates, the
potential energy minimum in this case forms a continuum. This corresponds to a 3D spherical
trough in the 5D coordinate space. In analogy to the circular motion of atoms in the JT-trough
for a triangle shown before in Fig. 5, in the present case of a spherical trough the loci of dis-
placements of individual atoms form a sphere, centered at their high-symmetry positions. Judd
has provided a detailed analysis of this internal rotation in the case of a T -type JT surface in
an octahedron [10]. The motions of equivalent atoms are locked and concerted so that the to-
tal degree of freedom corresponds to the symmetry group of a 3D sphere, which is the special
orthogonal group in 3D: SO(3).
The Hamiltonian for the highly symmetric limit, also known as the P×dHamiltonian, describes
the coupling between a dipolar fermion part and its symmetrized square which corresponds to
a quadrupolar tensor. It consists of a harmonic part, H0, and the standard linear coupling term,
H′, which is the scalar product of the fermion tensor and the coordinate tensor

H′ = k
∑
q

(−1)q(f †f)2qQ−q . (68)

Here k is the coupling parameter. The coordinates are written in their complex format, defined
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as
Q0 = Qθ , Q±1 = ∓

1√
2
Qη −

i√
2
Qξ and Q±2 =

1√
2
Qε ±

i√
2
Qζ . (69)

In matrix form, acting in the space of the fermions, ordered as |+1〉, | 0 〉, |−1〉, the coupling
Hamiltonian reads

H′ = k


1√
6
Q0

1√
2
Q−1 Q−2

− 1√
2
Q+1 − 2√

6
Q0 − 1√

2
Q−1

Q+2
1√
2
Q+1

1√
6
Q0

 . (70)

As this is a scalar product of spherical tensors, the coupling Hamiltonian will be SO(3) invari-
ant. The secular equation ofH′ reduces to

E3 − E

2
Q2 +

1

3
√
6
I33 = 0 (71)

where

Q2 =Q2
0−2Q+1Q−1+2Q+2Q−2

I3 =Q0

(
Q2

0−6Q+2Q−2−3Q+1Q−1
)
+

3
√
3√
2

(
Q+2Q

2
−1+Q−2Q

2
+1

)
.

(72)

The interesting aspect of this secular equation is that it contains two SO(3) invariants: Q is the
squared norm of the distortion space and thus measures the extent of the distortion, while I3 is
a third-order invariant, proportional to the determinant of the JT Hamiltonian. The roots of the
eigenvalue equation can be expressed using the angle representation. Rewrite I3 as:

I3 = Q3 cos 3γ . (73)

The equation can then easily be solved by the trigonometric expressions for the three roots

Ek = −kQ
2√
6
cos

(
γ−2nπ

3

)
n = 0, 1, 2. (74)

What is the meaning of the angle γ which appears when solving the secular equation? The
answer to this question takes us to the 5D oscillator formed by the quadrupolar Qml

JT modes.
The parent symmetry of the 5D oscillator is the special unitary group SU(5) which allows for
all possible unitary transformations of the five quadrupolar modes. This group can conveniently
be restricted to its subgroup of orthogonal transformations, SO(5). However, when considering
the JT Hamiltonian, symmetry is restricted to an even lower subgroup, corresponding to the
sphere in 3D, with symmetry group SO(3). A clear understanding of the embedding of SO(3)
in SO(5) is offered by the surface oscillations of a vibrating sphere, which have been studied
extensively in nuclear physics as a model for the vibrating nucleus. Low-energy nuclear vi-
brations indeed match the five quadrupolar modes (and likewise for the tidal waves on earth),
dipoles being removed as they correspond to spurious translations. On the other hand the totally
symmetric scalar mode, which corresponds to a breathing mode, is way higher in energy, since
it stretches the surface everywhere. Besides, in the JT context it is inactive as it doesn’t break
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the symmetry. The model of the vibrating hollow sphere thus provides a complete description
of the quadrupolar modes. Since the quadrupolar modes have the smallest allowed L value, they
can only introduce a minimal symmetry breaking: they distort a sphere into an ellipsoid. An el-
lipsoid is a surface characterized by three orthogonal axes of different length. The sum of these
lengths must be constant in time, in order to avoid any admixture of the radial breathing mode.
Hence proper ellipsoidal distortions have only two degrees of freedom. These correspond to
the tetragonal Qθ mode and the orthorhombic Qε mode. The tetragonal mode leads to a prolate
(Qθ > 0) or oblate (Qθ < 0) ellipse, which still has cylindrical symmetry along the z-axis. The
radius of this ellipse is thus described as

d(θ, φ) = R
(
1 + c(3 cos2 θ − 1)

)
, (75)

where R is the radius of the sphere, and c is scaling constant which oscillates in time with the
vibration. The orthorhombic mode will further break this axial symmetry, by repartitioning the
distortion between the x- and y- directions. A general ellipsoidal distortion with principal axes
along the Cartesian directions is thus described by a vector in the space formed by these two
coordinates. This is a bimodal distortion [11]. Turning to polar coordinates, the parametric
description of this distortion reads 

Qθ

Qε

Qξ

Qη

Qζ

 = Q


cos γ

sin γ

0

0

0

 . (76)

The angle which appears here refers to the balance between tetragonal and orthorhombic modes,
and this is precisely the angle γ which appeared in the secular equation. The ellipsoid which is
obtained by this bimodal distortion is still aligned with the Cartesian reference frame. Spherical
symmetry of course requires that the ellipsoid is free to rotate in 3D space. This is where
the three remaining quadrupolar modes come in. The general orientation of the ellipsoidal
distortion can be performed by the Euler rotation matrix in the full space of the five L=2 modes.
In summary a symmetry adaptation has been performed of the five degrees of freedom: three
angles describe the orientation in 3D space and present the spherical SO(3) symmetry of the
vibrating sphere. A radius and an extra angle γ define the ellipsoidal distortion. As this extra
angular degree of freedom appears in the secular equation, the total Hamiltonian has only SO(3)
symmetry, and does not form a spherical surface in 5D. The T -term JT problem is thus at its core
a symmetry breaking chain SU(5) ↓ SO(5) ↓ SO(3). The relevant irreducible representations
(irreps) for each of these groups are as follows:

• Excitations of n oscillator quanta in SU(5) correspond to irrep [n].

• Relevant irreps in SO(5) are denoted as (ν, 0). Here ν is a whole number, which is known
as the Racah seniority number.

• Irreps in SO(3) are characterized by the angular momentum quantum number L.
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Fig. 9: 3D assignments of the surface vibrations of a sphere; the vertical axis represents the
oscillator states of a 5D oscillator; the horizontal axis decomposes these states in SO(5) senior-
ities; spherical components are indicated by S,D,F,. . . angular momentum; note the repetition
of the SDD pattern, with a period of three.

The branching scheme along the symmetry lowering chain is shown in Fig. 9. It represents
the energy of the boson spectrum at zero JT coupling. As the coupling sets in, the L levels are
coupled with the P fermion level, according to the usual vector addition rules. As an example, in
order to realize a vibronic state with P symmetry, only S and D levels are involved: S×P = P

and D×P = P+D+F . Interestingly the diagram shows that the initial SDD pattern shows a
perfect repetition with a period of three. This observation allows to construct an Ansatz, with
spherical symmetry and the two extra-spherical degrees of freedom which appear in the secular
equation: the radius Q which measures the vertical radial excitations in the diagram, and the
angle γ which takes us through the horizontal seniority period in the diagram. We conclude by
providing the Ansatz

Ψ0 =


( √

3b†−1F1 +(b†b†)2−1F2

)
f †+1(

F0−2b†0 F1 −2(b†b†)20 F2

)
f †0( √

3b†+1F1+
√
6(b†b†)2+1F2

)
f †−1

 and

Ψ+1=


(
F0 +b†0 F1 +(b†b†)20 F2

)
f †+1(

−
√
3b†+1F1−

√
3(b†b†)2+1F2

)
f †0( √

6b†+2F1+
√
6(b†b†)2+2F2

)
f †−1

 , Ψ−1=


( √

6b†−2F1+
√
6(b†b†)2−2F2

)
f †+1(

−
√
3b†−1F1−

√
3(b†b†)2−1F2

)
f †0(

F0 +b†0 F1 +(b†b†)20 F2

)
f †−1

.
Here the F functions depend only on the SO(5) constants Q and γ. F0 provides the coupling
with the S states with seniority (3ν, 0),F1 takes care of coupling with theD states with seniority
(3ν+1, 0), and F2 runs over the D states with seniority (3ν+2, 0).
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1 Introduction

1.1 Orbital degrees of freedom in transition-metal compounds

Transition-metal compounds exhibit rich physical properties which have been attracting over-
whelming research activities in the field of condensed matter physics [1–4]. Their electrical and
magnetic properties are governed by the transition-metal d electrons. The d orbitals have five-
fold degeneracy in the atomic limit and are split into three-fold degenerate t2g (xy, yz, and zx)
and two-fold degenerate eg (3z2−r2 and x2−y2) orbitals under the cubic ligand field. When the
d electrons become itinerant in transition-metal compounds with octahedral or tetrahedral coor-
dination, they are accommodated by the t2g and/or eg bands creating multiple Fermi surfaces. In
quasi one-dimensional materials such as TaS3, a charge-density wave or modulation of charge
density is induced by a Peierls transition in which the Fermi-surface nesting and the electron-
lattice interaction play essential roles [5]. Also spin-density wave or modulation of spin density
and direction in metallic transition-metal compounds such as LaFeAsO can be explained by
nesting of the Fermi surfaces and the weak or moderate d-d Coulomb interaction [6]. On the
other hand, the d electrons can be localized due to the strong d-d Coulomb interaction (Mott
insulators and Wigner crystal states). In the localized case, the valence electrons are accom-
modated by the atomic like t2g and eg orbitals. The partially occupied t2g or eg orbitals exhibit
orbital orderings due to Jahn-Teller effect [7], Kugel-Khomskii mechanism [8], and spin-orbit
interaction [9]. For example, one of the eg orbitals is occupied in multiferroic TbMnO3 pro-
viding the 3x2−r2/3y2−r2 orbital ordering which is stabilized by the strong Jahn-Teller effect,
breaking the eg orbital degeneracy through elongation of the MnO6 octahedra [10]. As for the
t2g orbitals, the Jahn-Teller effect is relatively weak and the Kugel-Khomskii mechanism plays
more important roles in determining the spin and orbital states via the superexchange interac-
tion [4]. When one or two of the t2g orbitals are occupied/unoccupied in 3d and 4d oxides, the
Jahn-Teller effect, the Kugel-Khomskii mechanism, and the spin-orbit interaction may com-
pete to determine the orbital ordering [11]. In YTiO3, LaVO3, and YVO3 with one or two of
the t2g orbitals occupied, the orbital ordering is governed by the Kugel-Khomskii mechanism
with possible interplay with the Jahn-Teller distortion and the tilting of the MO6 octahedron
(M=transition metal). In LaTiO3 and Ca2RuO4, the spin-orbit interaction can play an impor-
tant role with the Kugel-Khomskii effect and the Jahn-Teller distortion [12]. When one or two
of the t2g orbitals are occupied/unoccupied in insulating 5d oxides such as Sr2IrO4, the orbital
degeneracy is lifted by the strong spin-orbit interaction [13].

Transition-metal compounds with MO6 octahedra harbor various crystal structures such as per-
ovskite, rocksalt, rutile, corundum, and spinel structures. In the perovskite (or layered per-
ovskite) structure, the MO6 octahedra share their corners and the transition-metal sites form a
simple cubic lattice (or a square lattice). The transfer terms between t2g orbitals at the neigh-
boring sites are effectively given by the M -ligand-M hybridization governed by the transfer
integral (pdπ) and the ligand-to-d charge-transfer energy ∆ [4]. In the spinel systems (or trian-
gular lattice systems such as CdI2-type and NaFeO2-type structure), the MO6 octahedra share
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Fig. 1: (a) Spinel structure of CuIr2S4 and its pyrochlore lattice of Ir. (b) Ir 5d yz, zx, and xy or-
bitals form one-dimensional bands along (0, 1, 1) or (0, 1,−1) direction, (1, 0, 1) or (1, 0,−1)
direction, and (1, 1, 0) or (1,−1, 0) direction, respectively. (c) 5.5 electrons (0.5 holes) per Ir
are distributed to the three one-dimensional bands of yz, zx, and xy orbitals.

their edges and the transition-metal sites form a pyrochlore lattice (or a triangular lattice) as
shown in Fig. 1. The transfer integrals between t2g orbitals at the neighboring sites are given by
the direct M -M transfer integral (ddσ) or the indirect M -ligand-M transfer governed by (pdπ)
and ∆.

1.2 Metal-insulator transitions in transition-metal compounds

Both in the corner-sharing and edge-sharing systems, once the d electrons are localized (Mott
insulators and Wigner crystal states), their magnetic properties are primarily described by mod-
els made up from localized spins and orbitals. The inter-site charge excitation across the band
gap provides the superexchange interaction between the localized spins and orbitals. In this
situation, the interplay between spin ordering and orbital ordering is described by the Kugel-
Khomskii model [8]. Several systems including V2O3, Ca2RuO4, YNiO3, and NiS2 exhibit
metal-insulator transitions with cooling which can be viewed as Mott transitions [1–3]. The d
electrons are localized below the transition temperature. Interestingly, the transitions of V2O3,
Ca2RuO4, and YNiO3 are accompanied by strong lattice distortions associated with orbital or-
dering (V2O3 and Ca2RuO4) or charge disproportionation (YNiO3). In general, local-density
approximation (LDA) band structure calculations fail to explain the magnitude of band gap
(Mott gap).
When the d electrons are itinerant, the edge-sharing systems often exhibit more complicated be-
haviors than the corner-sharing ones due to the direct M -M transfer terms. Most of the metallic
perovskites such as SrVO3, SrCoO3, SrRuO3, Sr2RuO4, ReO3, and SrIrO3 are paramagnetic or
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ferromagnetic metals without any metal-insulator transitions. On the other hand, several spinel
or triangular lattice systems such as MgTi2O4, LiRh2O4, CuIr2S4, and LiVS2 are metallic at
room temperature and undergo exotic metal-insulator transitions with cooling. Their metal-
insulator transitions are accompanied by strong lattice distortion which will be discussed in the
following chapters. The insulating phases are nonmagnetic and can be described by LDA band
structure calculations if the lattice distortion are properly taken into account (There are some
exceptions: It is still difficult to describe the nonmagnetic insulating states of MgTi2O4 and
LiVO2 by LDA). The lattice distortion is often characterized by the metal-metal dimerization
or trimerization which is driven by the direct M -M transfer. It is expected that the geome-
try of Fermi surfaces plays an important role in the metal-insulator transitions of the relatively
itinerant systems.

2 Orbitally induced Peierls mechanism

2.1 Case study on CuIr2S4

In the itinerant case, the moderate Coulomb interaction between the d electrons (d-d Coulomb
interaction) remains and, therefore, a possible instability towards spin and/or charge ordering
may occur due to Fermi-surface nesting. In addition, even without the d-d Coulomb interaction,
the electron-lattice interaction can provide a lattice modulation and consequent charge modu-
lation with a periodicity corresponding to the Fermi-surface nesting. Such charge and/or spin
ordering (charge-density wave and/or spin-density wave) as well as the lattice modulation can
open an energy gap at the Fermi level. Especially when the Fermi surfaces are purely one-
dimensional (planes in the k-space), Fermi-surface nesting is always realized and the system
inevitably undergoes a Peierls transition in which an energy gap is formed at the Fermi level
due to the charge and/or spin and/or lattice modulation. Even though the band structure near
the Fermi level is changed by the modulation to open the energy gap, the d orbital occupation
is not drastically changed by the charge/spin/lattice modulation. Usually, there is no interplay
between spin/charge/lattice modulation and the d-orbital degrees of freedom in the itinerant
transition-metal compounds. Yet there are several transition-metal compounds such as CuIr2S4

and LiRh2O4 which exhibit a charge/lattice modulation and band Jahn-Teller like distortion,
suggesting an interaction between the charge ordering and the orbital ordering. Since the t2g
bands are degenerate near the Fermi level in the cubic systems, the tetragonal distortion can
be stabilized by removing the band degeneracy due to band Jahn-Teller effect. Motivated by
these peculiar phase transitions, the idea of an orbitally induced Peierls mechanism has been
introduced [14, 15]. Historically, it has been applied to explain the complicated charge and or-
bital ordering in spinel-type t2g transition-metal compounds in which the transition-metal sites
form a pyrochlore lattice. Among them, CuIr2S4 with a pyrochlore lattice structure shows a
metal-insulator transition around 230 K [16] with tetragonal distortion and octamer charge or-
dering [17]. In this subsection, we consider the orbitally induced Peierls description of CuIr2S4.
Under octahedral coordination, the lobes of the eg (t2g) orbitals are directed towards (between)
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the ligands. Therefore, in an edge-sharing octahedron, the t2g orbitals have substantial transfer
integrals between the neighboring transition-metal sites. Let us neglect the indirect transfer
between the t2g and eg orbitals via the ligand orbitals and consider the direct ones between the
t2g orbitals on the pyrochlore lattice. Here, the transfer integrals between the t2g orbitals are
restricted by the cubic symmetry. As shown in Fig. 1(a), the Ir sites form a pyrochlore lattice
in which Ir4 tetrahedra share their corners. Along the (1,±1, 0) direction of the pyrochlore
lattice, only the transfer integrals between the xy orbitals survive by symmetry. Also along the
(1, 0,±1) and (0, 1,±1) directions, only the zx and yz orbitals have non-zero transfer integrals,
respectively. Consequently, the xy, yz, and zx orbitals form one-dimensional bands along the
(1,±1, 0), (1, 0,±1), or (0, 1,±1) directions, respectively. In CuIr2S4 there are 5.5 electrons
(0.5 holes) in the t2g bands. If the 0.5 holes are distributed in the three one-dimensional bands,
each band accommodates 1/6 holes. The six pairs of one-dimensional Fermi surfaces (six pairs
of parallel planes in the three-dimensional k-space) have a Peierls instability due to electron-
lattice or electron-electron interaction. Since the paired parallel planes are spanned by the wave
vectors along (1,±1, 0), (1, 0,±1), (0, 1,±1) with a magnitude of π/6 (the unit of the wave
vectors is 1/a where a is the Ir-Ir distance.), the pyrochlore lattice undergoes a distortion with
12 times periodicity along the (1,±1, 0), (1, 0,±1), and (0, 1,±1) directions. Such a Peierls
instability of the pyrochlore lattice has two disadvantages from a theoretical point of view. First,
the 12-times lattice modulation along the six directions is very complicated and the elastic-
energy loss is expected to be large. Second, the indirect Ir-Ir transfers via the ligands, which are
neglected in the above argument, are not negligibly small in CuIr2S4. There are finite transfer
integrals between the different t2g orbitals. Since the one-dimensional xy, yz, zx bands are
degenerate in energy, the one-dimensional Fermi surfaces can be strongly deformed by the xy-
yz, yz-zx, and zx-xy indirect transfer terms. Indeed, the calculated Fermi surfaces for the cubic
CuIr2S4 have no Fermi-surface nesting [18–20]. In addition, the predicted charge ordering is
inconsistent with the octamer charge-ordering observed in CuIr2S4. Here, it should be noted that
the calculated band structure (and the Fermi surfaces) for the high temperature metallic phase
are roughly consistent with the yz, zx, and xy bands mixed with the xy-yz, yz-zx, and zx-xy
indirect transfer terms [18]. For the low temperature insulating phase, the band gap opening by
the lattice distortion is partially explained by band structure calculations [19, 20]. In addition,
the unique electronic and lattice properties of CuIr2S4 harbor the metastable disordered state
induced by light or x-ray illumination [21–24]. In the metastable state, the crystal symmetry
is at least partially recovered indicating that the long-range charge-order is destructed [21].
However, the electrical conductivity is much smaller than that of the high temperature metallic
phase, and the energy gap at the Fermi level remains [22]. In the weak coupling limit, the
energy gap should be closed once the long-range order of the charge and lattice modulation is
destroyed. The observation of the metastable disordered state with bad conductivity suggests
that the Ir-Ir dimers can survive without long-range order and that the conductivity is derived
from a kind of bi-polaron hopping in the valence-bond liquid state.

The multi-orbital Fermi surfaces of CuIr2S4 can be reorganized in a band Jahn-Teller manner
to enhance their nesting character for spin- and/or charge-density wave formation. When the
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Fig. 2: (a) Sketch of the yz, zx, and xy bands under a band Jahn-Teller distortion (elongated
along the z-axis) for CuIr2S4. (b) Charge and orbital ordering with the octamer on the Ir py-
rochlore lattice in CuIr2S4. The Ir 5d xy orbitals of the Ir4+ site form the strong Ir-Ir bonds
along the (1, 1, 0) and (1,−1, 0) directions. (c) Charge and orbital ordering on the Rh py-
rochlore lattice in LiRh2O4. (d) Ir4+ or Rh4+ tetramer model for CuIr2S4 or LiRh2O4.

cubic lattice is elongated along the z direction (c axis) while keeping its volume, the transfer
integral between the xy orbitals becomes larger than that between the yz orbitals (and that
between the zx orbitals) as illustrated in Fig. 2(a). Consequently, the width of xy band is
much larger than that of the yz and zx bands. When the 0.5 holes are accommodated by the
xy band, one-dimensional Fermi surfaces are formed along the (1,±1, 0) directions which are
spanned byQ = π/2. Then the pyrochlore lattice shows modulation with four-times periodicity
along (1,±1, 0) which can stabilize the Ir3+-Ir3+-Ir4+-Ir4+ charge ordering. The Ir4+-Ir4+ bond
length is shortened due to the molecular orbital formation of the xy orbitals. The four Ir4+-Ir4+

dimers created along the (1,±1, 0) directions form the Ir4+ octamer as shown in Fig. 2(b). The
predicted charge ordering is consistent with the x-ray diffraction result reported by Radaelli et
al. [17] Also the charge disproportionation between Ir3+ and Ir4+ is confirmed by core-level
x-ray photoemission spectroscopy [22]. In this sense, the charge contrast along the (1,±1, 0)
chains is much stronger than that of the weak coupling charge-density wave. The observed Ir 5d
band width is comparable to that predicted by LDA [22], indicating weak electronic correlation.
Therefore, the localized Ir4+-Ir4+ dimers are stabilized by the strong electron-lattice interaction
rather than the electronic correlation. The fluctuations of the Ir-Ir dimers are observed even
above Tc in CuIr2S4 by means of pair distribution function measurements [25].
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2.2 Square lattice models for orbitally induced Peierls transition

In the present subsection, we extend the idea of the orbitally induced Peierls mechanism and
apply it to simplified two- and three-band models of transition-metal compounds with a square
lattice. In order to introduce the basic idea of the orbitally induced Peierls mechanism, we
start from a yz/zx two-band model on a square lattice [see Fig. 3(a)]. The transfer term along
the x (y) direction for the neighboring zx (yz) orbitals is given by tzx (tyz). Note that the
transfer integrals between the neighboring zx (or yz) orbitals are positive. The zx and yz

orbitals form one-dimensional bands with energy dispersions of E = 2tzx cos(kx) and E =

2tyz cos(ky), respectively. Here, the unit for kx and ky is 1/a where a is the lattice constant
of the square lattice. When the two one-dimensional bands accommodate some holes, one-
dimensional Fermi surfaces are created as displayed in the middle panel of Fig. 3(b). In a
realistic system, however, the two bands are mixed by the transfer term between the yz and
zx orbitals (tyz9zx) and consequently the Fermi surfaces become two-dimensional as shown in
the right panel of Fig. 3(b). Such two-dimensional Fermi surfaces have a hidden instability by
the combination of band Jahn-Teller and Peierls effect. Let us assume that the square lattice is
compressed along the x-axis and elongated along the y-axis. Then the magnitude of tzx becomes
larger than that of tyz under the distortion. If the ratio of tzx/tyz is large enough, only the wider
zx band can accommodate the holes (band Jahn-Teller effect). Without tyz9zx, the zx band
forms a one-dimensional band with nesting vector Q [see the middle panel of Fig. 3(c)]. The
orbitally induced Peierls state is robust against the indirect transfer term tyz9zx due to the energy
splitting between the yz and zx orbitals. Under the effect of tyz9zx, a quasi one-dimensional
Fermi surface dominated by zx character is formed as shown in the right panel of Fig. 3(c)
and gives nesting vector Q′ rather than Q. In addition to the charge and/or spin modulation
along the x-axis, the unit cell is doubled along the y-axis. In this scenario, by introducing the
band Jahn-Teller distortion and ferro-type orbital ordering, charge- and/or spin-density waves
are realized due to the Fermi-surface nesting. When the band Jahn-Teller distortion alone is
enough to lower the energy, the orbital is restricted by it and then the Peierls instability follows
(orbital restrictive case). On the other hand, the energy gain by the band Jahn-Teller distortion
is not a necessary condition for the orbitally induced Peierls transition. Depending on the band
width ratio tzx/tyz and the elastic-energy loss, the band Jahn-Teller distortion alone may not
be enough to lower the energy since the system remains metallic. A Fermi-surface change by
virtual Jahn-Teller distortion can be followed by a Peierls transition with wave vectorQ orQ′ to
stabilize an insulating state with charge and lattice modulation. If the energy gain by the Peierls
gap opening is large enough to compensate the elastic-energy loss by the band Jahn-Teller and
Peierls distortion, one of the yz and zx orbitals is selected and the square lattice is distorted in
a band Jahn-Teller manner (orbital selective case).

The orbitally induced Peierls state is robust against the interlayer transfer term tz. With the
tz term illustrated in the right panel of Fig. 3(a), the zx and yz band dispersions are E =

2tzx cos(kx) + 2tz cos(kz) and E = 2tyz cos(ky) + 2tz cos(kz) providing the warped Fermi
surfaces as shown in Fig. 4(a). Here, the unit for kz is 1/c where c is the lattice constant along
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Fig. 3: (a) Two-band model with yz/zx orbitals on a square lattice. tzx (tyz) is a transfer
integral along the x (y) between zx (yz) orbitals. tyz9zx is a transfer integral along the diagonal
direction between zx and yz orbitals. (b) Left and middle: Band structure and Fermi surface
without yz-zx mixing by tzx and band Jahn-Teller effect. Right: Fermi surface with yz-zx
mixing by tyz9zx and without band Jahn-Teller effect. (c) Left and middle: Band structure and
Fermi surface without yz-zx mixing by tyz9zx and with band Jahn-Teller effect. Right: Fermi
surface with yz-zx mixing by tyz9zx and band Jahn-Teller effect.

the z direction. With the band Jahn-Teller effect, the yz orbital is more stabilized and has
smaller band width to be fully occupied. The holes are taken by the zx orbitals and their Fermi
surfaces have the nesting vector Q′′ as illustrated in Fig. 4(b). The yz band may reach the Fermi
level around kz = π creating a small hole pocket as shown in the right panel of in Fig. 4(b).
Under the Peierls distortion along the x and z directions due to the zx Fermi surface, the zx
Fermi surface disappears while the yz Fermi pocket can remain. Such a metallic state with
charge-orbital modulation would be relevant for several layered materials including IrTe2.
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Fig. 4: (a) Fermi surfaces of a yz/zx two-band model with interlayer transfer integral tz and
without band Jahn-Teller effect. (b) Fermi surfaces of a yz/zx two-band model with interlayer
transfer integral tz and band Jahn-Teller effect. (c) Left and middle: Band dispersion and Fermi
surface of a yz/zx/xy three-band model with yz and zx fully occupied. Right: Fermi surface of
a yz/zx/xy three-band model with anisotropic xy-zx mixing.

In the next step, let us extend the idea of orbitally induced Peierls mechanism to a yz/zx/xy
three-band model with a xy Fermi surface. Let us assume that the yz and zx bands are fully
occupied by electrons and the remaining xy band with E = 2txy cos(kx) + 2txy cos(ky) +

2txy9xy cos(kx+ky) forms a closed Fermi surface. Note that txy and txy9xy are positive and
negative, respectively. With such a circular Fermi surface without orbital degeneracy, an orbital
instability or band Jahn-Teller effect is not expected. However, if a large energy gain by Peierls
gap-opening is expected after a geometrical change of the Fermi surface (Lifshitz transition) by
a sort of orbital anisotropy, the system may find its way to lower the symmetry for better Fermi-
surface nesting. In the present model, a slight rhombic distortion lifts the degeneracy between
the yz/zx bands and the xy-yz and xy-zx couplings become nonequivalent. Consequently, the
Fermi surface of the xy band undergoes a Lifshitz transition and obtains good nesting character
as schematically shown in Fig. 4(c).
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2.3 Triangular lattice models for orbitally induced Peierls transition

Let us consider a yz/zx/xy three-band model on a triangular lattice. The transfer terms along the
(1, 0, 0), (1/2,

√
3/2, 0), and (−1/2,

√
3/2, 0) directions (under the X-, Y -, and Z-coordinates

withX = 1/
√
2(x+y), Y = 1/

√
6(−x+y+2z), Z = 1/

√
3(x−y+z)) are given by txy, tyz, and

tzx for the neighboring xy, yz, zx orbitals. The xy, zx and yz orbitals form one-dimensional
bands with energy dispersions with E = 2txy cos(kx), E = 2tzx cos(kx/2+

√
3ky/2), and

E = 2tyz cos(−kx/2+
√
3ky/2), respectively, as shown in the left panel of Fig. 5(a). Here,

the unit for kx and ky is 1/a where a is the lattice constant of the triangular lattice. When the
three one-dimensional bands accommodate one hole as shown in Fig. 5(a), one-dimensional
Fermi surfaces with 5/6 filling are created as illustrated in the middle panel of Fig. 5(a). In a
realistic system, the three bands are mixed by the transfer terms between them (tyz9zx, tzx9xy,
and txy9yz) and consequently, the Fermi surfaces become two-dimensional as shown in the right
panel of Fig. 5(a). When the three one-dimensional bands accommodate one electron as shown
in Fig. 5(b), one-dimensional Fermi surfaces with 1/6 filling are created as illustrated in the
middle panel of Fig. 5(b). With the transfer terms tyz9zx, tzx9xy, and txy9yz, six electron pockets
around theM point and one hole pocket at the zone center are created as shown in the right panel
of Fig. 5(b). Similarly to the square lattice model, the triangular lattice can by deformed along
one of the bond directions (The equilateral triangle is deformed into an isosceles one). Let us
assume that the triangle is compressed along the horizontal axis (X-axis). Since txy > tyz = tzx
under the lattice distortion, only the wider xy band can accommodate the electron as illustrated
in the left panel of Fig. 5(c). The xy band forms a one-dimensional band with nesting vector
Q [see the middle panel of Fig. 5(c)]. The orbitally induced Peierls state is robust against the
indirect transfer terms txy9yz and txy9yz due to the Jahn-Teller energy splitting between the xy
and yz/zx orbitals. Under the effect of txy9yz and txy9yz, a quasi one-dimensional Fermi surface
dominated by xy character still keeps the nesting condition. Since the xy band accommodates
one electron and is half-filled, the periodicity along the X-axis is doubled with xy-xy dimers as
shown in the right panel of Fig. 5(c).

Under the strong trigonal ligand field, the yz, zx, and xy orbitals are reconstructed to be the a1g
and eπg orbitals. This situation is relevant for the corundum system where the MO6 octahedra
share their faces along the c-axis. Yet, in several triangular lattice systems such as NaxCoO2,
the a1g and eπg orbitals are also more convenient to describe their Fermi surfaces. For example,
when x is larger than 0.5 in NaxCoO2, the pudding-mold like a1g bands form isotropic Fermi
surfaces and the eπg orbitals are fully occupied [see the left and middle panels of Fig. 5(d)]
[26, 27]. If the anisotropic hybridization between the a1g and one of the eπg orbitals deforms
the Fermi surface for better nesting with Q′ as illustrated in the right panel of Fig. 5(d), then
the orbitally induced Peierls mechanism is triggered to provide charge and orbital ordering.
Such an anisotropic a1g-eπg coupling would be induced, for example, by the anisotropic Na ion
arrangement in NaxCoO2 [28, 29].
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Fig. 5: (a) Left: Band dispersion for a triangular lattice three-band model (yz/zx/xy orbitals)
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Fermi surfaces without and with interorbital transfer terms. (b) Band dispersion, Fermi surfaces
without and with inter-orbital transfer terms for the three-band model with one electron per
site. (c) Left and middle: Band structure and Fermi surfaces with band Jahn-Teller effect.
Right: Orbital ordering by the orbitally induced Peierls effect on the triangular lattice (half
filled case). (d) Left and middle: Band dispersion and a1g Fermi surface with fully occupied eπg .
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vector.
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2.4 Effect of strong coupling

In the previous arguments, it is implicitly assumed that the electron lattice interaction (or the d-d
Coulomb interaction) responsible for the Peierls transition is assumed to be a weak perturbation
to the metallic state. Therefore, perfect Fermi-surface nesting is a necessary condition for the
Peierls transition. In such a weak-coupling case, the charge and lattice modulation is sinusoidal
with relatively small amplitude as shown in Fig. 6(a). The mean field treatment works well
to describe the transition, and the energy gap EG and the transition temperature Tc should
satisfy EG/kBTc ∼ 3.5. However, even in one of the most weakly correlated systems CuIr2S4,
EG/kBTc is about 10 (EG is about 0.2 eV and Tc is 230 K). This indicates that the electron-
lattice interaction is rather strong and that local charge- and lattice-fluctuations can survive even
in the disordered phase. Under strong coupling, the charge is localized at the strongly distorted
bond as shown in Fig. 6(a), and its fluctuation remains above Tc. Indeed, Ir-Ir dimers are
observed in the cubic phase above Tc for CuIr2S4 [25]. Most of the transition-metal compounds
discussed in the next chapter fall in the strong coupling regime.

3 Application of the orbitally induced Peierls mechanism
to transition-metal compounds

3.1 Spinel systems

Apart from the metal-insulator transition in CuIr2S4, the orbitally induced Peierls mechanism
can be applied to that of LiRh2O4 around 170 K accompanied by the Rh3+/Rh4+ charge order-
ing [30, 31]. The charge ordering with four-times periodicity of Rh3+-Rh3+-Rh4+-Rh4+ occurs
along the (1, 1, 0) and (1,−1, 0) chains of the Rh pyrochlore lattice. This is similar to that of
CuI2S4 and can be explained by the orbitally induced Peierls instability. However, the experi-
mentally observed charge-ordering pattern of LiRh2O4 is different from the octamer structure
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of CuIr2S4 and satisfies the Anderson condition where each Rh4 tetrahedron exactly accommo-
dates two Rh4+ to minimize the Coulomb repulsion energy between them [31]. As a result, the
Rh3+-Rh3+-Rh4+-Rh4+ arrangement along the (1, 1, 0) chain is shifted relative to that along the
neighboring (1,−1, 0) chain as shown in Fig. 2(c). Shiomi et al. proposed that the electronic
correlation, which is expected to be stronger in the 4d oxides than the 5d sulfides, is responsible
for destabilization of the octamer structure which does not satisfy the Anderson condition [31].
If the electronic correlation is negligibly weak, the Rh4 tetrahedron can be fully occupied by
Rh4+ keeping the Rh3+-Rh3+-Rh4+-Rh4+ arrangement along the (1,±1, 0) chains as illustrated
in Fig. 2(d).
LiRh2O4 undergoes the cubic to tetragonal transition (c > a) at 220 K which is followed by
a Rh3+/Rh4+ charge ordering and the Rh4+-Rh4+ dimerization. The Rh3+-Rh4+ charge fluc-
tuations [32] and the local Rh4+-Rh4+ dimers [31] are observed between 220 K and 170 K,
indicating that orbital symmetry-breaking plays a more important role in LiRh2O4. In the case
of CuIr2S4, the local Ir-Ir dimers are observed even in the cubic phase [25], while the Rh-
Rh dimers are observed only in the tetragonal phase. Most probably, the bond directions of
the Rh-Rh dimers tend to be aligned through the stronger electronic correlation. While the
electron-lattice interaction (or the dimerization) drives the distortion with the four-times peri-
odicity of the chains in CuIr2S4, the inter-site electron-electron interaction plays a primary role
in LiRh2O4.
MgTi2O4 exhibits a metal-insulator transition around 260 K which is accompanied by a struc-
tural transition from cubic to tetragonal (c < a) [33]. The metal-insulator transition is accom-
panied by the Ti3+-Ti3+ dimerization with suppression of magnetic susceptibility. The nearest-
neighbor Ti-Ti distances become nonequivalent and spirals of long and short Ti-Ti bonds are
formed [34]. In the itinerant picture, the yz and zx bands get wider than the xy band under the
tetragonal distortion and accommodate the Ti 3d electrons. Consequently, the one-dimensional
yz and zx bands are formed along the (0, 1,±1) and (1, 0,±1) directions which respectively
accommodate 0.5 electron per Ti site. The quarter filled yz and zx bands are stabilized by the
orbital ordering with four-times periodicity of yz-yz and zx-zx dimers as shown in Fig. 7(a).
The orbital ordering is consistent with the spirals of long and short Ti-Ti bonds. It is also pos-
sible to explain the orbital ordering based on the Kugel-Khomskii mechanism in the localized
picture [35] although it is difficult to describe the metal-insulator transition. Starting from the
itinerant picture, Heitler-London like correlation effects can be included to provide the Ti-Ti
dimer with the spin-singlet bond character. The localized nature of the Ti-Ti dimer has ex-
perimentally been suggested from the survival of the local Ti-Ti dimers above the transition
temperature [36] and the multiplet structure of the Ti 2p x-ray absorption spectrum [37]. Inter-
estingly, both the itinerant model and the localized model provide the same conclusion on the
orbital ordering of MgTi2O4. Also it should be noted that the LDA+U like approach cannot
describe the spin-singlet ground state of MgTi2O4.
AlV2O4 harbors V2+/V3+ charge ordering along the (1, 1, 1) direction [38, 39] and exhibits
peculiar V3+ trimerization and V2+ tetramerization [40]. (The combination of the trimer and
the tetramer can be viewed as a heptamer [39].) Along the (1, 1, 0), (1, 0, 1), and (0, 1, 1) chains
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The yellow circles indicate the orbitally disordered V 3+ sites. In the left panel for the V 3+

Kagome layer, the V 3+ trimers are formed by the yz/zx, zx/xy, and yz/xy orbital ordering.
In the right panel for the V 2+ Kagome layer, the tetramers are formed with the V 2+ sites
(yz/zx/xy) in the neighboring triangular lattice layer.

which cross the (1, 1, 1) Kagome and triangular lattice layers, the xy, zx, and yz bands are
quarter filled, respectively. Similarly to CuIr2S4 and MgTi2O4, each chain is expected to have
a lattice distortion with four-times periodicity due to V2+(Kagome)-V2+(tri)-V3+(Kagome)-
V3+(tri) charge ordering. Along the (1,−1, 0), (1, 0,−1), and (0, 1,−1) chains in the Kagome
layers, the xy, zx, and yz bands are half filled respectively. The Peierls instability gives lattice
distortion with two-times periodicity (alternating short and long bonds) to each chain, resulting
in the trimer formation. As a result, while the V3+ sites harbor the trimers confined in the
Kagome layer, the V2+ sites form the tetramers between the Kagome and triangular lattice
layers. We speculate that the quarter-filled chains trigger this peculiar charge ordering and
multimer formation.
The magnetite Fe3O4 harbors Fe3+-Fe2+-Fe3+ trimers below the Verwey transition temperature
at 125 K [41–43]. In Fe3O4, since the minority spin t2g electrons are tied to the majority spin t2g
and eg electrons via Hund coupling at the Fe2+ site, it is not straightforward to apply the orbitally
induced Peierls mechanism to describe the trimer. However, it is still possible to discuss the
Fe3+-Fe2+-Fe3+ arrangement along the chains based on a half filled spin-polarized t2g band. For
example, when the yz band is selected by the minority spin electron, it provides site-centered
charge modulation along the (0, 1,±1) chains forming an Fe3+-Fe2+-Fe3+ arrangement.
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3.2 Pyrochlore systems

Several pyrochlore systems exhibit interesting metal-insulator transitions with possible charge
or orbital ordering. However, none of them exhibit band Jahn-Teller like distortions. Since
MO6 octahedra share their conners in the pyrochlore structure, their t2g band dispersions are
strongly affected by the indirect t2g-ligand-t2g transfer terms and become more complicated
than those of the spinel structure. Therefore, the energy gain by the band Jahn-Teller distortion,
if it may exist, tends to be reduced.

Among the transition-metal oxides with pyrochlore structure, CsW2O6 exhibits a unique metal-
insulator transition around 215 K which is accompanied by W trimers [44–46]. The crystal sym-
metry of the insulating phase just below the transition is still cubic although the tetrahedron of
W sites in the pyrochlore lattice is strongly distorted by the trimerization [46]. While Ir3+/Ir4+

(Rh3+/Rh4+) charge disproportionation is observed in CuIr2S4 (LiRh2O4), W5+/ W6+ charge
disproportionation is absent in CsW2O6 [47]. The absence of the band Jahn-Teller effect and the
charge disproportionation is consistent with the complicated band structure. Streltsov et al. pro-
posed that the Fermi surfaces calculated with the W 5d spin-orbit interaction satisfy nesting con-
ditions with (π, 0, 0), (0, π, 0), and (0, 0, π) and the metal-insulator transition can be explained
by the simple Peierls mechanism [48]. However, it is still difficult to explain the trimer forma-
tion. Nakai and Hotta emphasized the electronic correlation effect due to a flat band created by
the pyrochlore lattice geometry and the spin-orbit interaction [49]. Under the strong spin-orbit
interaction, there are 1√

2
(y′z′+iz′x′) ↑, 1√

2
(y′z′−iz′x′) ↓, 1√

6
[2x′y′ ↑ −(y′z′+iz′x′) ↓], and

1√
6
[2x′y′ ↓ +(y′z′−iz′x′) ↑] in the j = 3/2 branch. (Here, the x′-, y′-, and z′-axes are along the

M -O bonds of the octahedron. In the spinel case, they are identical to the x-, y-, and z-axes in
the figures.) The former two orbitals have substantial transfer integrals along the z′-axis which
is roughly along the M -ligand-M bond or the chain direction. If such orbitals are selectively
occupied, they can form a quasi one-dimensional band along one of the chains. The virtual
one-dimensional bands are quarter filled and provide the lattice distortion with four-times peri-
odicity along the chain. Once the short W-W bond is created, the two WO6 octahedra with the
shortened W-W bond are rotated and the other WO6 octahedron connected to the two octahedra
gets closer to the W-W bond. As a result, W trimers can be formed as shown in Fig. 8(a). In
addition, such orbitals would be consistent with the zigzag chain order which was proposed by
Hirai et al. for the low temperature phase [45]. If z′x′± ix′y′ and (x′y′± iy′z′) orbitals are occu-
pied in the (0, 1, 1) and (1, 0, 1) chains (or (0, 1,−1) and (1, 0,−1) chains), the zigzag structure
of the short W-W bonds can be formed through the distortion with the four-times periodicity
along the chains.

There is no clear understanding for the difference between the multimer case and the zigzag
chain case. Most probably, the rotation and Jahn-Teller distortion of the MO6 octahedra should
be analyzed more carefully. The zigzag chains are also formed in the nonmagnetic insulating
phase of Tl2Ru2O7 [50].
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Fig. 8: (a) W trimers and possible orbital ordering for CsW2O6. (b) Zigzag chains of short
W-W bonds. The thick solid lines indicate the short bonds.

3.3 Triangular lattice systems

The MO6 octahedra share their corners and form a triangular lattice of M sites as shown in
Fig. 9(a). Among the triangular lattice systems, NaTiO2 exhibits a transition to the nonmag-
netic insulating state with lattice distortion from trigonal to monoclinic [51, 52]. The direct
t2g-t2g transfer term would be important just like in the spinel systems. However, in band struc-
ture calculations for NaTiO2 [53] as well as CoO2, the t2g band dispersion is upwardly convex
around the Γ point indicating the indirect M -O-M transfer is dominant. In addition, the trig-
onal ligand field can break the three-fold degeneracy and the t2g orbitals are split into the a1g
[ 1√

3
(xy+yz+zx)] and eπg [ 1√

3
(xy+e±2πi/3yz+e±4πi/3zx)] orbitals. As shown in the left panel

of Fig. 5(b), the xy, yz, and zx orbitals may form one-dimensional bands along the (1, 0, 0),
(1/2,

√
3/2, 0), and (−1/2,

√
3/2, 0) directions of the X-, Y -, and Z-coordinates. Inclusion of

the mixing between the xy, yz, and zx orbitals provide the one hole pocket at the zone center
(with a1g character ) and the six hole pockets around theM points (with eπg character) for the t12g
system as shown in the right panel of Fig. 5(b). The Fermi surfaces calculated for the trigonal
phase by Subedi [53] are roughly consistent with this simple picture except the hole pocket at
the zone center. The absence of the hole pocket can be assigned to the trigonal ligand field
which stabilizes the a1g orbital. If the xy orbital has larger band width due to the contraction
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Fig. 9: (a)Triangular lattice layers of edge-sharing MO6 octahedra. (b) Electronic configura-
tions for Ti3+ and Ir4+. (c) Orbital ordering for the monoclinic phase.

along the X direction [X = (x−y)/
√
2], the Ti 3d electron is accommodated by the quasi one-

dimensional xy band. Since the xy band is half-filled [Fig. 9(b)], the Ti-Ti dimerization with
the two-times lattice modulation is realized by the Peierls transition [Fig. 9(c)]. However, the
triangular lattice of NaTiO2 is not clearly deformed from equilateral to isosceles. Instead, the
TiO6 octahedron is compressed to stabilize the xy orbital [52].
IrTe2 with the Ir triangular lattice exhibits a structural phase transition at∼ 270 K from trigonal
to monoclinic, accompanied by anomalies in electrical resistivity and magnetic susceptibil-
ity [54–57] An electron diffraction study by Yang et al. shows that the structural transition is
accompanied by a superstructure with wave vector of Q = (1, 0,−1)/5 [57]. Such a super-
structure can be explained by a charge-density wave driven by a perfect or partial nesting of
multi-band Fermi surfaces [57]. However, the monoclinic distortion can be attributed to a band
Jahn-Teller like instability, suggesting the orbitally induced Peierls mechanism. In addition, a
charge modulation of Ir charge disproportionation is indicated by an Ir 4f x-ray photoemission
study [58]. Although the formal valence of Ir is +4, partial charge transfer from Te to Ir induces
a Ir3+/Ir4+ mixed valence and the Ir4+-Ir4+ dimers are arranged as illustrated in Fig. 10(b).
LiVO2 is a classical system with V3+ (t22g) which exhibits a magnetic-nonmagnetic transition
around 500 K with V trimerization [1,59–61]. Pen et al. pointed out that the xy, yz, and zx or-
bitals are occupied at the V sites connected by the (1, 0, 0), (1/2,

√
3/2, 0), and (−1/2,

√
3/2, 0)

bonds of the X-, Y -, and Z-coordinates (see Fig. 5) [62]. When yz/zx, zx/xy, and xy/yz or-
bitals are occupied, respectively, at the three V sites in the trimer, the three V3+ form three
singlet bonds resulting in the nonmagnetic ground state with the trimer. Although the multiplet
structure of V 2p x-ray absorption spectroscopy of LiVO2 indicates localized V 3d electrons
with Hund coupling, it is still possible to make a spin-singlet ground-state from three V3+ in the
trimer [63]. Interestingly, such trimerization can be described by the orbitally induced Peierls
mechanism or the orbital selective Peierls mechanism [64] in a manner similar to MgTi2O4.
The triangular lattice can be decomposed into chains running along (1, 0, 0), (1/2,

√
3/2, 0),

and (−1/2,
√
3/2, 0) directions. Therefore, the xy, zx, and yz orbitals can form quasi one-

dimensional bands along the three directions which are 2/3 filled and can induce orbital order-
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Fig. 10: (a) Orbital ordering in NaTiO2 (b) Charge and orbital ordering in IrTe2. (c and d)
Orbital ordering in LiVO2 and LiVS2. The thick solid lines indicate the short bonds.

ing and dimerization with three-times periodicity. The xy-xy, zx-zx, and yz-yz dimers are
formed along the (1, 0, 0), (1/2,

√
3/2, 0), and (−1/2,

√
3/2, 0) chains, respectively. Here, the

degenerate xy, yz, and zx bands are strongly modified by the inter-orbital transfer terms (tyz9zx,
tzx9xy, and txy9yz,) and lose the nesting condition as illustrated in Fig. 5(a) or (b). Therefore, the
electron-lattice interaction should be strong enough to stabilize the dimer bonds even without
perfect Fermi-surface nesting.

The dimer bonds are indicated by the thick lines in Fig. 10(c). The xy-xy and zx-zx dimers
overlap at the intersection site of the (1, 0, 0) and (1/2,

√
3/2, 0) chains where both of the xy

and zx orbitals are occupied. The (−1/2,
√
3/2, 0) chain goes through the other site of the xy-

xy (zx-zx) dimer, and the xy and yz (zx and yz) orbitals are occupied at the site. As a result,
the three V3+ sites are connected by the xy-xy, zx-zx, and yz-yz singlet bonds as shown in
Fig. 10(c). Here, it should be noted that the singlet bond picture is inconsistent with the Hund
coupling of the t22g configuration which may weaken the V-V bond. It is still an open question
whether the trimer is sustainable against the electronic correlation although its stability was
suggested by cluster model calculations [63]. Li2−xMoO3 with Mo4+ (t22g) on a triangular lattice
also exhibits Mo trimers similar to LiVO2 [65]. The Mo trimers can survive up to the highest
temperature indicating the trimer due to the orbitally induced Peierls mechanism or the orbital
selective Peierls mechanism is more stable in the more itinerant systems. Orbitally induced
Peierls transitions can be classified into two categories: orbital restrictive or orbital selective.
In case of CuIr2S4 and LiRh2O4, the t2g orbital is restricted by band Jahn-Teller effect. As for
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AlV2O4 and LiVO2, one of the t2g orbitals is selected depending on the bond direction.
Katayama et al. found that LiVS2 undergoes a metal-insulator transition at 314 K which is
accompanied by V trimerization similar to LiVO2 [66]. Since the V 3d electrons are more
itinerant in LiVS2 than LiVO2, the orbitally induced Peierls description is more suitable. Also in
LiVS2, the xy-xy, zx-zx, and yz-yz singlet bonds are stabilized by the strong lattice distortion.
EG/kBTc (EG is the magnitude of the band gap, and Tc is the transition temperature.) is about
6 indicating strong coupling [67]. Indeed, short range order of the zigzag chain structure and
lattice fluctuations are observed above the transition temperature [68]. Interestingly, the zigzag
chain structure can be stabilized by the ferro-type orbital order as shown in Fig. 10(d). In the
figure, the xy and zx orbitals are occupied at every V site and the xy-xy and zx-zx dimers
form the zigzag chains. There are two other domains where the zx and yz orbitals or yz and
xy orbitals are occupied at every site. Since the d electrons in LiVS2 are rather itinerant, the
band Jahn-Teller effect and the Fermi-surface nesting can collaborate to provide the ferro-type
orbital order and the lattice modulation with three-times periodicity.
BaV10O15 with V2+/V3+ mixed valence exhibits a structural transition at 123 K driven by V
trimerization [69] and V 3d orbital order similar to LiVO2 [70]. At the three V3+ sites in the
trimer, the xy, yz, and zx orbitals are unoccupied respectively. It is possible to create molecular
orbitals from them and to put an extra electron in the bonding molecular orbital. Therefore,
the trimer is expected to be stable against electron doping (up to the doping level of 1/3 per V
site). Indeed, the V trimer in BaV10O15 is likely to accommodate one extra electron. The extra
electron is shared by the three V sites. In addition, V2+/V3+ charge fluctuation is observed
by x-ray photoemission spectroscopy [71] indicating that the ground state is a superposition of
V2+-V3+-V3+, V3+-V2+-V3+, and V3+-V3+-V2+ configurations.

3.4 Honeycomb lattice systems

Since the honeycomb lattice cannot be decomposed into chains, it is not straightforward to apply
the orbitally induced Peierls description to its charge-orbital ordering. The dimerization on the
honeycomb lattice can be more exactly described by the theory of Jackeli and Khomskii [72] in
which the orbital degeneracy is broken by the bond selection. However, in this subsection, fol-
lowing the idea of orbitally induced Peierls mechanisms, we would like to discuss dimerization
induced by possible orbital order.
Assuming ferro-type orbital order of xy, local xy-xy bonds can be created for t12g or t52g sys-
tems as shown in Fig. 11(a). Since the number of xy-xy bonds is limited, the energy gain by
the singlet bond formation may not be enough for a metal-insulator transition by orbitally in-
duced Peierls mechanism. However, several insulating systems undergo magnetic-nonmagnetic
transitions by dimerization. TiCl3 and TiBr3 with Ti3+ (t12g) become nonmagnetic with Ti-Ti
dimerization below 217 K [73] and below 178 K [74], respectively . The dimerization can be
described by ab-initio band structure calculations [75,76]. Ilmenite MgVO3 with V4+ (t12g) also
exhibits V-V dimers on the honeycomb lattice below 500 K [77]. Similar to TiCl3 and TiBr3,
ferro-type orbital order is expected as shown in Fig. 11(a).
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Fig. 11: (a) Orbital ordering for t12g on a honeycomb lattice. (b and c) Orbital ordering for t22g
on a Kagome lattice in Li2RuO3. (d) Orbital ordering for t32g on a Kagome lattice in MoCl3.
The thick solid lines indicate the short bonds.

4d and 5d honeycomb systems with t12g and t52g configurations (such as Na2IrO3 and RuCl3) do
not show dimerization at ambient pressure due to the strong spin-orbit interaction [78, 79]. In
this context, it is striking that Li2RuO3 exhibits a metal-insulator transition about 540 K due
to Ru-Ru dimerization on the honeycomb lattice [80]. In Li2RuO3, the Ru4+ (t42g) ion has two
holes in the t2g orbitals. Assuming ferro-type orbital order of xy and yz holes, xy-xy and yz-
yz singlet bonds can be created as illustrated in Fig. 11(b). Although the arrangement of the
short Ru-Ru bonds (indicated by the thick lines in the figure) is consistent with the experimental
result [80], the number of these bonds is limited, and the energy gain by the singlet bonds may
not be enough. Kimber et al. pointed out that the 1√

2
(yz+zx) orbitals form π-bonds in addition

to the xy-xy σ-bonds [81]. Under the orbital order with yz, 1√
2
(zx+xy) and xy, 1√

2
(yz+zx), the

short Ru-Ru bonds are stabilized by the double bonding in the nonmagnetic phase of Li2RuO3.
Interestingly, a recent experimental work reports that the xy-xy σ-bonding is more robust than
the π-bonding by the yz and zx orbitals and that the partially disordered phase can be created
by optical breaking of the π bonding [82]. TcCl3 with Tc3+ (t42g) has the Tc-Tc dimers on the
honeycomb lattice [83]. The arrangement of the dimers is the type of Fig. 11(a) rather than that
of Fig. 11(c).

Another striking system is MoCl3 which undergoes a magnetic-nonmagnetic transition around
585 K with the strong Mo-Mo dimerization below 585 K [84–86]. The Mo-Mo dimerization
in the honeycomb lattice is illustrated in Fig. 11(d). The Mo3+ ion has three holes in the t2g
orbitals in MoCl3. Therefore, in addition to the xy-xy σ-bonds and the 1√

2
(yz+zx) π-bonds,

the 1√
2
(yz−zx) orbitals may form δ-bonds although δ-bonding is usually weak.



Orbitally Induced Peierls Mechanism 3.21

x

z

(b)(a)

y

zx/xyxy
xy/yz

yz/zx
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The thick solid lines indicate the short bonds.

3.5 Kagome lattice systems

Na2Ti3Cl8 consists of a Ti2+ (t22g) Kagome lattice and undergoes a two step structural phase
transitions around 210 K (partial trimerization) and 190 K (full trimerization) on cooling [87–
89]. It is possible to describe the spin singlet trimer based on localized spins [90]. On the other
hand, the substantial lattice distortion of the trimerization by itself suggests that a strong Ti-Ti
interaction plays a vital role beyond the localized picture. Therefore, it is also useful to describe
the trimerization based on the itinerant picture: an orbitally induced Peierls mechanism [91]. In
contrast to the honeycomb lattice, the Kagome lattice can be decomposed into chains running
along the (1, 0, 0), (1/2,

√
3/2, 0), and (−1/2,

√
3/2, 0) directions. Therefore, the yz, zx, and

xy orbitals can form quasi one-dimensional bands along the three directions. As illustrated in
Fig. 12(a), each one-dimensional band is half filled and induces a lattice modulation with two-
times periodicity (The short Ti-Ti bonds are indicated by the thick lines). The short Ti-Ti bonds
along the three directions form the trimers in agreement with the experimental observation.
The Mo4+ (t22g) Kagome lattice in Zn2Mo3O8 hosts Mo trimers similar to Na2Ti3Cl8 [92, 93].
The Mo trimers with six t2g electrons are stable up to the highest temperature available indi-
cating that the trimer is more stable in the more itinerant system. At the three Mo sites in the
trimer, one can construct a molecular orbital with bonding character from the unoccupied t2g
orbitals to accommodate an extra electron. Indeed, the Mo trimers can survive in LiZn2Mo3O8

with seven Mo 4d electrons in the Mo trimer [92, 93]. The Mo trimers have localized spin-1/2
due to the extra electron and form a geometrically frustrated spin-1/2 triangular lattice. This
can be viewed as a cluster Mott insulating state [94, 95] providing exotic spin-liquid behav-
iors [92, 93]. Very recently, Mo3+/Mo4+ charge fluctuation were observed by x-ray photoemis-
sion spectroscopy [96]. This situation is similar to the V trimer in BaV10O15 and is different
from the W trimer in CsW2O6. A possible relationship between the charge-fluctuation and the
spin-liquid behavior should be examined by further studies. Nb3Cl8 has a Kagome lattice with
Nb trimers. Since Nb2+: Nb3+ = 1 : 2 in Nb3Cl8, the Nb trimer accommodates seven t2g elec-
trons and hosts localized spin-1/2 [97–99]. The spin-1/2 triangular lattice of the cluster Mott
insulating state is a new playground to study spin liquids and exotic superconductivity [100].
Interestingly, Nb3Cl8 exhibits a further magnetic-nonmagnetic transition around 90 K although
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orbital degeneracy is already lifted. Haraguchi et al. proposed charge disproportionation be-
tween the trimers [99]. Apart from the fabrication of atomic layer systems, the origin of this
exotic phase transition will be a target of future work.

4 Conclusion

By combining band Jahn-Teller effect (or local orbital polarization) and Peierls instability (or lo-
cal singlet bond formation), the orbitally induced Peierls mechanism can explain charge-orbital
ordering in a wide range of nonmagnetic (spin singlet) transition-metal compounds with edge-
sharing octahedra and t2g orbital degrees of freedom. With the ferro-type t2g orbital ordering
mostly due to the band Jahn-Teller effect, quasi one-dimensional bands are created by one of the
t2g orbitals. Consequently, charge ordering and/or dimerization are induced by Fermi-surface
nesting. In some cases, intervening quasi one-dimensional bands provide trimers or tetramers.
Without ferro-type orbital ordering, collaboration between local orbital polarization and singlet
bond formation can stabilize nonmagnetic ground states with multimers. In most of the cases,
both the itinerant model and the localized model predict the same charge-orbital order, prob-
ably due to the approximate one-to-one correspondence between the Fermi surface geometry
and the bond direction. However, there are still several unsolved questions even in the most
studied CuIr2S4. The energy landscape for various lattice distortion should be elucidated in
order to fully understand the space and time fluctuation and evolution of the Ir-Ir dimers and the
orbital polarization. Since the electronic correlation is stronger in the Ti oxides (NaTiO2 and
MgTi2O4) than the Ir chalcogenides, the Heitler-London like wave function should be taken into
accounts to describe their electronic properties. Such a theoretical approach on the multiband
lattice model is highly challenging. As for the t22g and t42g systems such as LiVO2 and Li2RuO3,
the effect of Hund coupling should be clarified theoretically and experimentally.

Acknowledgement

The authors would like to thank Prof. D.I. Khomskii and Prof. S.V. Streltsov for long term col-
laborations and their theoretical supports. Also the authors would like to thank Prof. L.H. Tjeng,
Prof. G.A. Sawatzky, Dr. K. Takubo, Dr. M. Okawa, and Dr. D. Ootsuki for long term collabo-
rations on synchrotron spectroscopy studies of various transition-metal compounds. This work
was partially supported by Grants-in-Aid from the Japan Society of the Promotion of Science
(JSPS) (No. JP22H01172).



Orbitally Induced Peierls Mechanism 3.23

References

[1] J.B. Goodenough: Magnetism and the Chemical Bond, (Interscience, New York, 1963)

[2] N.F. Mott: Metal-insulator transitions (Taylor-Francis, London, 1974)

[3] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039-1263 (1998)

[4] D.I. Khomskii: Transition Metal Compounds (Cambridge University Press, 2014)

[5] P. Monceau, Adv. Phys. 61, 325 (2012)

[6] D.J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008)

[7] H.A. Jahn and E. Teller, Proc. Royal Soc. A 161, 220 (1937)

[8] K.I. Kugel and D.I. Khomskii, Usp. Fiz. Nauk. 136, 621 (1982)
[Sov. Phys. Usp. 231, 25 (1982)]

[9] J. Kanamori, Prog. Theor. Phys. 17, 177 (1957)

[10] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
Nature 426, 55 (2003)

[11] T. Mizokawa and A. Fujimori, Phys. Rev. B 54, 5368 (1996)

[12] T. Mizokawa, L.H. Tjeng, G.A. Sawatzky, G. Ghiringhelli, O. Tjernberg, N.B. Brookes,
H. Fukazawa, S. Nakatsuji, and Y. Maeno, Phys. Rev. Lett. 87, 077202 (2001)

[13] B.J. Kim, H. Jin, S.J. Moon, J.-Y. Kim, B.-G. Park, C.S. Leem, J. Yu, T.W. Noh,
C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rotenberg,
Phys. Rev. Lett. 101, 076402 (2008)

[14] D.I. Khomskii and T. Mizokawa, Phys. Rev. Lett. 94, 156402 (2005)

[15] D.I. Khomskii and S.V. Streltsov, Chem. Rev. 121, 2992 (2021)

[16] S. Nagata, T. Hagino, Y. Seki, and T. Bitoh, Physica B 194-196, 1077 (1994)

[17] P.G. Radaelli, Y. Horibe, M.J. Gutmann, H. Ishibashi, C.H. Chen, R.M. Ibberson,
Y. Koyama, Y.S. Hor, V. Kirykhin, and S.-W. Cheong, Nature 416, 155 (2002)

[18] T. Oda, M. Shirai, N. Suzuki and K. Motizuki, J. Phys.: Condens. Matter 7, 4433 (1995)

[19] T. Sasaki, M. Arai, T. Furubayashi, and T. Matsumoto, J. Phys. Soc. Jpn. 73, 1875 (2004)

[20] S. Sarkar, M. De Raychaudhury, and T. Saha-Dasgupta, Phys. Rev. B 79, 113104 (2009)

[21] H. Ishibashi, T.Y. Koo, Y.S. Hor, A. Borissov, P.G. Radaelli, Y. Horibe, S.-W. Cheong, and
V. Kiryukhin, Phys. Rev. B 66, 144424 (2002)

[22] K. Takubo, S. Hirata, J.-Y. Son, J.W. Quilty, T. Mizokawa, N. Matsumoto, and S. Nagata,
Phys. Rev. Lett. 95, 246401 (2005)



3.24 Takashi Mizokawa

[23] V. Kiryukhin, Y. Horibe, Y.S. Hor, H.J. Noh, S.-W. Cheong, and C.H. Chen,
Phys. Rev. Lett. 97, 225503 (2006)

[24] M. Naseska, P. Sutar, Y. Vaskivskyi, I. Vaskivskyi, D. Vengust, D. Svetin, V.V. Kabanov,
D. Mihailovic, and T. Mertelj, New J. Phys. 23, 053023 (2021)

[25] E.S. Bozin, W.G. Yin, R.J. Koch, M. Abeykoon, Y.S. Hor, H. Zheng, H.C. Lei,
C. Petrovic, J.F. Mitchell, and S.J.L. Billinge, Nat. Commun. 10, 3638 (2019)

[26] K. Kuroki and R. Arita, J. Phys. Soc. Jpn. 76, 083707 (2007)

[27] K. Ikedo, Y. Wakisaka, S. Hirata, K. Takubo, and T. Mizokawa,
J. Phys. Soc. Jpn. 78, 063707 (2009)

[28] D.N. Argyriou, O. Prokhnenko, K. Kiefer, and C.J. Milne, Phys. Rev. B 76, 134506 (2007)

[29] B. Raveau and Md.M. Seikh, Z. Anorg. Allg. Chem. 641, 1385 (2015)

[30] Y. Okamoto, S. Niitaka, M. Uchida, T. Waki, M. Takigawa, Y. Nakatsu, A. Sekiyama,
S. Suga, R. Arita, and H. Takagi, Phys. Rev. Lett. 101, 086404 (2008)

[31] M. Shiomi, K. Kojima, N. Katayama, S. Maeda, J.A. Schneeloch, S. Yamamoto,
K. Sugimoto, Y. Ohta, D. Louca, Y. Okamoto, and H. Sawa,
Phys. Rev. B 105, L041103 (2022)

[32] Y. Nakatsu, A. Sekiyama, S. Imada, Y. Okamoto, S. Niitaka, H. Takagi, A. Higashiya,
M. Yabashi, K. Tamasaku, T. Ishikawa, and S. Suga, Phys. Rev. B 83, 115120 (2011)

[33] M. Isobe and Y. Ueda, J. Phys. Soc. Jpn. 71, 1848 (2002)

[34] M. Schmidt, W. Ratcliff, P.G. Radaelli, K. Refson, N.M. Harrison, and S.-W. Cheong,
Phys. Rev. Lett. 92, 056402 (2004)

[35] S. Di Matteo, G. Jackeli, C. Lacroix, and N.B. Perkins, Phys. Rev. Lett. 93, 077208 (2004)

[36] L. Yang, R.J. Koch, H. Zheng, J.F. Mitchell, W. Yin, M.G. Tucker, S.J.L. Billinge, and
E.S. Bozin, Phys. Rev. B 102, 235128 (2020)

[37] T. Yamaguchi, M. Okawa, H. Wadati, T.Z. Regier, T. Saitoh, Y. Takagi, A. Yasui, M. Isobe,
Y. Ueda, and T. Mizokawa, J. Phys. Soc. Jpn. 91, 074704 (2022)

[38] K. Matsuno, T. Katsufuji, S. Mori, M. Nohara, A. Machida, Y. Moritomo,
K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Kitazawa, and H. Takagi,
Phys. Rev. Lett. 90, 096404 (2003)

[39] Y. Horibe, M. Shingu, K. Kurushima, H. Ishibashi, N. Ikeda, K. Kato, Y. Motome,
N. Furukawa, S. Mori, and T. Katsufuji, Phys. Rev. Lett. 96, 086406 (2006)

[40] A.J. Browne, S.A.J. Kimber, and J.P. Attfield, Phys. Rev. Materials 1, 052003(R) (2017)

[41] J.P. Wright, J.P. Attfield, and P.G. Radaelli, Phys. Rev. Lett. 87, 266401 (2001)

[42] M.S. Senn, J.P. Wright, and J.P. Attfield, Nature 481, 173 (2012)



Orbitally Induced Peierls Mechanism 3.25

[43] M. Taguchi, A. Chainani, S. Ueda, M. Matsunami, Y. Ishida, R. Eguchi, S. Tsuda,
Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, H. Daimon, S. Todo,
H. Tanaka, M. Oura, Y. Senba, H. Ohashi, and S. Shin,
Phys. Rev. Lett. 115, 256405 (2015)

[44] R.J. Cava, R.S. Roth, T. Siegrist, B. Hessen, J.J. Krajewski, and W.F. Peck, Jr.,
J. Solid State Chem. 103, 359 (1993)

[45] D. Hirai, M. Bremholm, J.M. Allred, J. Krizan, L.M. Schoop, Q. Huang, J. Tao, and
R.J. Cava, Phys. Rev. Lett. 110, 166402 (2013)

[46] Y. Okamoto, H. Amano, N. Katayama, H. Sawa, K. Niki, R. Mitoka, H. Harima,
T. Hasegawa, N. Ogita, Y. Tanaka, M. Takigawa, Y. Yokoyama, K. Takehana, Y. Imanaka,
Y. Nakamura, H. Kishida, and K. Takenaka, Nat. Commun. 11, 3144 (2020)

[47] R. Nakamura, D. Takegami, A. Melendez-Sans, L.H. Tjeng, M. Okawa, T. Miyoshino,
N.L. Saini, M. Kitamura, D. Shiga, H. Kumigashira, M. Yoshimura, K.-D. Tsuei,
Y. Okamoto, and T. Mizokawa, Phys. Rev. B 106, 195104 (2022)

[48] S.V. Streltsov, I.I. Mazin, R. Heid, and K.-P. Bohnen, Phys. Rev. B 94, 241101(R) (2016)

[49] H. Nakai and C. Hotta, Nat. Commun. 13, 579 (2022)

[50] S. Lee, J.-G. Park, D.T. Adroja, D. Khomskii, S. Streltsov, K.A. McEwen, H. Sakai,
K. Yoshimura, V.I. Anisimov, D. Mori, R. Kanno, and R. Ibberson,
Nat. Mater. 5, 471 (2006)

[51] K. Takeda, K. Miyake, K. Takeda, and K. Hirakawa, J. Phys. Soc. Jpn. 61, 2156 (1992)

[52] S.J. Clarke, A.J. Fowkes, A. Harrison, R.M. Ibberson, and M.J. Rosseinsky,
Chem. Mater. 10, 372 (1998)

[53] A. Subedi, Phys. Rev. B 95, 195149 (2017)

[54] S. Jobic, P. Deniard, R. Brec, J. Rouxel, A. Jouanneaux, and A.N. Fitch,
Z. Anorg. Allg. Chem. 598, 199 (1991)

[55] N. Matsumoto, K. Taniguchi, R. Endoh, H. Takano, and S. Nagata,
J. Low Temp. Phys. 117, 1129 (1999)

[56] S. Pyon, K. Kudo, and M. Nohara, J. Phys. Soc. Jpn. 81, 053701 (2012)

[57] J.J. Yang, Y.J. Choi, Y.S. Oh, A. Hogan, Y. Horibe, K. Kim, B.I. Min, and
S.-W. Cheong, Phys. Rev. Lett. 108, 116402 (2012)

[58] D. Ootsuki, Y. Wakisaka, S. Pyon, K. Kudo, M. Nohara, M. Arita, H. Anzai, H. Namatame,
M. Taniguchi, N.L. Saini, and T. Mizokawa, Phys. Rev. B 86, 014519 (2012)

[59] W. Tian, M.F. Chisholm, P.G. Khalifah, R. Jin, B.C. Sales, S.E. Nagler, and D. Mandrus,
Mater. Res. Bull. 39, 1319 (2004)

[60] T. Jin-no, Y. Shimizu, M. Itoh, S. Niitaka, and H. Takagi, Phys. Rev. B 87, 075135 (2013)



3.26 Takashi Mizokawa

[61] K. Kojima, N. Katayama, S. Tamura, M. Shiomi, and H. Sawa,
Phys. Rev. B 100, 235120 (2019)

[62] H.F. Pen, J. van den Brink, D.I. Khomskii, and G.A. Sawatzky,
Phys. Rev. Lett. 78, 1323 (1997)

[63] H.F. Pen, L.H. Tjeng, E. Pellegrin, F.M.F. de Groot, G.A. Sawatzky, M.A. van Veenendaal,
and C.T. Chen, Phys. Rev. B 55, 15500 (1997)

[64] S.V. Streltsov and D.I. Khomskii, Phys. Rev. B 89, 161112(R) (2014)

[65] A.C.W.P. James and J.B. Goodenough, J. Solid State Chem. 76, 87 (1988)

[66] N. Katayama, M. Uchida, D. Hashizume, S. Niitaka, J. Matsuno, D. Matsumura,
Y. Nishihata, J. Mizuki, N. Takeshita, A. Gauzzi, M. Nohara, and H. Takagi,
Phys. Rev. Lett. 103, 146405 (2009)

[67] T. Tanaka, Y. Kawasaki, S. Endou, S. Kimura, Y. Ideta, Y. Kishimoto, T. Ohno,
N. Katayama, M. Nohara, and H. Takagi, J. Phys. Soc. Jpn. 78, 054709 (2009)

[68] N. Katayama, K. Kojima, T. Yamaguchi, S. Hattori, S. Tamura, K. Ohara, S. Kobayashi,
K. Sugimoto, Y. Ohta, K. Saitoh, and H. Sawa, npj Quantum Mater. 6, 16 (2021)

[69] T. Kajita, T. Kanzaki, T. Suzuki, J.E. Kim, K. Kato, M. Takata, and T. Katsufuji,
Phys. Rev. B 81, 060405(R) (2010)

[70] K. Takubo, T. Kanzaki, Y. Yamasaki, H. Nakao, Y. Murakami, T. Oguchi, and T. Katsufuji,
Phys. Rev. B 86, 085141 (2012)

[71] T. Yoshino, M. Okawa, T. Kajita, S. Dash, R. Shimoyama, K. Takahashi, Y. Takahashi,
R. Takayanagi, T. Saitoh, D. Ootsuki, T. Yoshida, E. Ikenaga, N.L. Saini, T. Katsufuji,
and T. Mizokawa, Phys. Rev. B 95, 075151 (2017)

[72] G. Jackeli and D.I. Khomskii, Phys. Rev. Lett. 100, 147203 (2008)

[73] S. Ogawa, J. Phys. Soc. Jpn. 15, 1901 (1960)

[74] S. Pei, J. Tang, C. Liu, J. Mei, Z. Guo, B. Lyu, N. Zhang, Q. Huang, D. Yu, L. Huang,
J. Lin.L. Wang, and M. Huang, Appl. Phys. Lett. 117, 133103 (2020)

[75] K. Motizuki, S. Miyata, and N. Suzuki, J. Phys. Soc. Jpn. 45, 1613 (1978)

[76] V.V. Gapontsev, D.D. Gazizova, and S.V. Streltsov,
J. Phys.: Condens. Matter 33, 495803 (2021)

[77] H. Yamamoto, S. Kamiyama, I. Yamada, and H. Kimura,
J. Am. Chem. Soc. 144, 1082 (2022)

[78] K. Foyevtsova, H.O. Jeschke, I.I. Mazin, D.I. Khomskii, and R. Valenti,
Phys Rev B 88, 035107 (2013)

[79] S.V. Streltsov and D.I. Khomskii, PNAS. 113, 10491 (2016)



Orbitally Induced Peierls Mechanism 3.27

[80] Y. Miura, Y. Yasui, M. Sato, N. Igawa, and K. Kakurai,
J. Phys. Soc. Jpn. 76, 033705 (2007)

[81] S.A.J. Kimber, I.I. Mazin, J. Shen, H.O. Jeschke, S.V. Streltsov, D.N. Argyriou, R. Valenti,
and D.I. Khomskii, Phys. Rev. B 89, 081408(R) (2014)

[82] P. McArdle, F.-T. Huang, J. Yang, M.-W. Chu, S.-W. Cheong, and M.M. Qazilbash,
Phys. Rev. B 105, 245148 (2022)

[83] F. Poineau, E.V. Johnstone, P.F. Weck, P.M. Forster, E. Kim, K.R. Czerwinski, and
A.P. Sattelberger, Inorg. Chem. 51, 4915 (2012)
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1 Introduction

Compounds containing 3d or 4f transition-metal or rare-earth ions have been intriguing solid
state physicists ever since the appearance of solid state physics as a field of research. In fact,
already in the 1930’s NiO became the first known example of a correlated insulator in that it
was cited by deBoer and Verwey as a counterexample to the then newly invented Bloch theory
of electron bands in solids [1]. During the last 25 years 3d and 4f compounds have become one
of the central fields of solid state physics following the discovery of heavy fermion compounds,
cuprate superconductors, the colossal magnetoresistance phenomenon in the manganites and,
most recently, the iron-pnictide superconductors.
It was conjectured early on that the reason for the special behavior of these compounds is the
strong Coulomb interaction between electrons in their partially filled 3d or 4f shells. The 3d

wave functions are orthogonal to those of the inner-shells, such as 1s, 2s, 2p, 3s and 3p, solely
due to their angular part Y2,m(ϑ, ϕ). Their radial part R3,2(r) therefore is not pushed out to re-
gions far from the nucleus by the requirement to be orthogonal to the inner shell wave functions
and therefore is concentrated close to the nucleus (the situation is exactly the same for the 4f

wave functions). Any two electrons in the 3d shell thus are forced to be close to each other
on average so that their mutual Coulomb repulsion is strong (the Coulomb repulsion between
two 3d electrons is small, however, when compared to the Coulomb force due to the nucleus
and the inner shells so that the electrons have to stay close to one another!). For clarity let us
mention that the Coulomb repulsion between electrons in the inner shells of heavier elements
is actually much stronger than that in the 3d shell of transition metals or the 4f shell of rare
earths. This, however, is irrelevant because these inner shells are several 100−1000 eV below
the Fermi energy so that they are simply completely filled and inert. On the other hand, the 3d

orbitals in transition metal compounds and the 4f orbitals in rare earth compounds participate
in the bands at the Fermi level so that the strong Coulomb interaction in these orbitals directly
influences the conduction electrons. The conduction bands in such compounds therefore form
dense many-body-systems of strongly interacting electrons, where the average energy of inter-
action is large compared to the average kinetic energy. This dominance of the interaction energy
implies a propensity to show ordering phenomena and the ensuing quantum phase transitions
and superconducting domes. It is therefore ultimately the Coulomb repulsion in the partially
filled 3d shells of the transition metals and the 4f shells of the rare earths which gives rise to
the wide variety of spectacular phenomena observed in compounds containing these elements.
Let us therefore discuss this Coulomb interaction in more detail.

2 Multiplets of a free ion

2.1 General considerations

In the following we restrict ourselves to 3d transition metal ions for definiteness, but the theory
is easily adapted to other atomic shells. We consider a Ni2+ ion in vacuum which has the
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Term J E (eV)
3F 4 0.000

3 0.169
2 0.281

1D 2 1.740
3P 2 2.066

1 2.105
0 2.137

1G 4 2.865
1S 0 6.514

Table 1: Energies of the multiplets of Ni2+ from Ref. [2]. J is the total angular momentum
quantum number and the J = 4 member of 3F has been taken as the zero of energy.

electron configuration [Ar] 3d8. It is a standard exercise in textbooks of atomic physics to show
that the d8 configuration has the following multiplets or terms: 3F , 3P , 1G, 1D and 1S, whereby
according to the first two Hund’s rules 3F is the ground state. ‘Multiplets’ thereby is simply
another word for ‘eigenstates of 8 electrons in the electric field of the Ni nucleus and the Ar
core’ (the electrons in the shells below 3d may be considered as inert due to the large binding
energies of these shells). The energies of the multiplets can be deduced experimentally for
example by analyzing the optical spectrum of Ni vapor and are listed in Table 1. They span
a range of several eV whereby multiplets with nonzero spin are in addition split by spin-orbit
coupling which results in intervals of order 0.1 eV. All of these eigenstates correspond to the
same electron configuration, namely [Ar] 3d8, so that the fact that, say, 3P has a higher energy
than 3F is not due to an electron having been promoted from a state with low energy to one
with high energy as in an optical transition. Rather, the excited multiplets — 3P , 1G, 1D and
1S — should be viewed as collective excitations of the 8-electron system, similar in nature
to a plasmon in an electron gas. And just as a plasmon can exist only due to the Coulomb
interaction between electrons, the multiplet splitting in atomic shells also originates from the
Coulomb interaction between electrons. This is what we discuss next.

As a first step we introduce Fermionic creation and annihilation operators c†n,l,m,σ which create
an electron with z-component of spin σ in the orbital with principal quantum number n, orbital
angular momentum l, and z-component of orbital angular momentum m. In the case of a partly
filled 3d shell all ni = 3 and all li = 2 identically, so that these two indices could be omitted, but
we will keep them for the sake of generality. In the following we will often contract (n, l,m, σ)

to the ‘compound index’ ν for brevity, so that, e.g., c†νi = c†ni,li,mi,σi .

The procedure we follow is degenerate first-order perturbation theory as discussed in practically
any textbook of quantum mechanics. The unperturbed Hamiltonian H0 thereby corresponds to
the energies of the different atomic shells

H0 =
∑
n,l

εn,l
∑
m,σ

c†n,l,m,σcn,l,m,σ
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m=−2 m=−1 m=0 m=1 m=2

Fig. 1: Coulomb scattering of two electrons in the d-shell. In the initial state |ν〉 (top) the elec-
trons are distributed over the five d-orbitals which are labeled by their m-values. Due to their
Coulomb interaction two electrons scatter from each other and are simultaneously transferred
to different orbitals, resulting in the state |µ〉 (bottom).

whereas the Coulomb interaction is considered as the perturbation H1 (we ignore spin-orbit
coupling for the time being). The dn configuration comprises all states which are obtained by
distributing n electrons over the 2 · 5 = 10 spin-orbitals:

|ν〉 = |ν1, ν2 . . . νn〉 = c†ν1c
†
ν2
. . . c†νn|0〉, (1)

and the number of these states obviously is nc = 10!/(n! (10−n)!). In writing the basis states
as in (1) we need to specify an ordering convention for the creation operators on the right hand
side. For example, only states are taken into account where m1 ≤ m2 ≤ m3 · · · ≤ mn. More-
over, if two mi are equal the c†mi,↓-operator is assumed to be to the left of the c†mi,↑-operator.
If we adopt this convention, every possible state obtained by distributing the n electrons over
the 10 spin-orbitals is included exactly once in the basis. If the ni and li were to take different
values we could generalize this, e.g., by demanding that the (ni, li,mi)-triples be ordered lexi-
cographically. As will be seen later, strict application of an ordering convention for the Fermi
operators is necessary to determine the correct Fermi signs for the matrix elements.

If only H0 were present all states (1) would be degenerate with energy E = E[Ar] + n · ε3,2,
where E[Ar] is the energy of the Argon core. The Coulomb interaction H1 between the elec-
trons (partially) lifts this degeneracy and this is the physical reason for the multiplet splitting.
The standard procedure in degenerate first order perturbation theory is to set up the secular ma-
trix hµ,ν = 〈µ|H1|ν〉 and diagonalize it to obtain the first order energies and wave functions [3].
The diagonal matrix elements 〈ν|H1|ν〉 describe the fact that the Coulomb repulsion between
two electrons in different orbitals depends on the spatial character of these orbitals, whereas the
off-diagonal matrix elements 〈µ|H1|ν〉 describe the scattering of two electrons ‘within the 3d

shell’ as shown in Figure 1.
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In second quantization the Coulomb Hamiltonian H1 takes the form

H1 =
1

2

∑
ν1,ν2,ν3,ν4

V (ν1, ν2, ν3, ν4) c
†
ν1
c†ν2cν3cν4 ,

V (ν1, ν2, ν3, ν4) =

∫
dx

∫
dx′ ψ∗ν1(x)ψ∗ν2(x

′) Vc(x, x
′) ψν4(x)ψν3(x

′),

Vc(x, x
′) =

1

|r − r′|
. (2)

Here x = (r, σ) is the combined position and spin coordinate with
∫
dx · · · =

∑
σ

∫
dr . . .

and Vc is the Coulomb interaction between electrons. Note the factor of 1/2 in front of H1 and
the correspondence of indices and integration variables ν4 ↔ x and ν3 ↔ x′ in the Coulomb
matrix element, see textbooks of many-particle physics such as Fetter-Walecka [6].

2.2 Matrix elements of the Coulomb interaction

Our single-particle basis consists of atomic spin-orbitals so if we switch to spherical coordinates
(r, ϑ, ϕ) for r the wave functions in (2) are

ψνi(x) = Rni,li(r) Yli,mi(ϑ, ϕ) δσ,σi . (3)

For a table of spherical harmonics Yl,m see Ref. [4]. The radial wave functions Rni,li are as-
sumed to be real — as is the case for the true radial wave function of bound states in a central
potential. Apart from that we do not really specify them. It will turn out that these radial wave
functions enter the Coulomb matrix elements only via a discrete and rather limited set of real
numbers which are often obtained by a fit to experiment.
In addition to (3), we use the familiar multipole expansion of the Coulomb interaction [5]

1

|r − r′|
=
∞∑
k=0

k∑
m=−k

Y ∗k,m(ϑ′, ϕ′)
4π

2k + 1

rk<
rk+1
>

Yk,m(ϑ, ϕ). (4)

We now insert (3) and (4) into (2). We recall that
∫
dx · · · =

∑
σ

∫
dr . . . and first carry out

the sums over spin variables:∑
σ,σ′

δσ,σ1δσ′,σ2δσ,σ4δσ′,σ3 = δσ1,σ4 δσ2,σ3 .

This reflects the fact that since the Coulomb interaction does not depend on spin, the spins of
the two electrons are conserved in the Coulomb scattering. Next, we pick one term with given k
and m from the multipole expansion (4) and proceed to the integration over the spatial variables
(r, ϑ, ϕ) and (r′, ϑ′, ϕ′). Let us first consider (ϑ, ϕ) and adopt the compact notation (ϑ, ϕ) = Ω.
These variables always come as arguments of spherical harmonics and there is one from ψ∗ν1(x),
one from the multipole expansion (4), and one from ψν4(x). We obtain the integral∫

dΩ Y ∗l1,m1
(Ω)Yk,m(Ω)Yl4,m4(Ω), (5)
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where
∫
dΩ · · · =

∫ 2π

0
dϕ

∫ 1

−1 dcos(ϑ) . . . . Such a dimensionless integral over three spherical
harmonics is called a Gaunt coefficient and it follows from the Wigner-Eckart theorem that it is
proportional to a Clebsch-Gordan coefficient [7, 8].
Next we recall Yl,m(ϑ, ϕ) = Pl,m(ϑ) eimϕ [3] whence the integral (5) is proportional to∫ 2π

0

dϕ e−i(m1−m−m4)ϕ = δm,m1−m4 .

We introduce the following notation for nonvanishing Gaunt coefficients

ck(lm; l′m′) =

√
4π

2k+1

∫
dΩ Y ∗l,m(Ω) Yk,m−m′(Ω) Yl′,m′(Ω),

where we have also included ‘half of the factor 4π
2k+1

’ from (4). Then, (5) becomes√
4π

2k+1

∫
dΩ Y ∗l1,m1

(Ω)Yk,m(Ω)Yl4,m4(Ω) = δm,m1−m4 c
k(l1m1; l4m4). (6)

Since the remaining ϑ-dependent factors Pl,m(ϑ) are real [3] it follows that all Gaunt coefficients
are real as well. Using this property the integral over (ϑ′, ϕ′) becomes√

4π

2k+1

∫
dΩ′ Y ∗l2,m2

(Ω′)Y ∗k,m(Ω′)Yl3,m3(Ω
′) = δm,m3−m2 c

k(l3m3; l2m2). (7)

Since both (6) and (7) must be different from zero for the same m in order to obtain a nonvan-
ishing contribution, we must have m1−m4 = m3−m2 or m1+m2 = m3+m4, i.e., the total Lz

is conserved in the scattering process. This could have been expected from the very beginning
and our formalism incorporates this.
It remains to do the integral over the two radial variables r and r′. These two integrations cannot
be disentangled so we find a factor of

Rk(n1l1, n2l2, n3l3, n4l4) =

∫ ∞
0

dr r2
∫ ∞
0

dr′ r′2 Rn1,l1(r)Rn2,l2(r
′)

rk<
rk+1
>

Rn4,l4(r)Rn3,l3(r
′). (8)

These integrals have the same dimension as Vc, i.e., energy. Collecting everything we find

V (ν1, ν2, ν3, ν4) =
∞∑
k=0

ck(l1m1; l4m4) c
k(l3m3; l2m2)R

k(n1l1, n2l2, n3l3, n4l4) (9)

× δσ1,σ4 δσ2,σ3 δm1+m2,m3+m4 .

The number of relevant multipole orders k in this sum is severely limited by the properties
of the Gaunt coefficients ck(lm; l′m′). First, since these are proportional to Clebsch-Gordan
coefficients the three l-values appearing in them have to obey the so-called triangular condition
[3] k ≤ min(l, l′) whence k ≤ min(l1+l4, l2+l3). For Coulomb scattering in a d shell all
li = 2 whence k ≤ 4. Second, the parity of the spherical harmonic Ylm is (−1)l. For Coulomb
scattering within a given atomic shell all li are equal and for integrals such as (5) or (7) to
be different from zero the spherical harmonic Yk,m from the multipole expansion must have
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positive parity whence k must be even. For Coulomb scattering within a d shell therefore only
R0, R2 and R4 are relevant. This shows that the sloppy definition of the radial wave function
Rni,li(r) is not a real problem because details of this wave function are irrelevant anyway. In a
way, these three parameters may be viewed as a generalization of the Hubbard-U in that Rk is
something like the ‘the Hubbard-U for k-pole interaction’. Lastly we note that the ck(lm; l′m′)

are tabulated in Appendix 20a of the textbook by Slater [7] or Table 4.4 of the textbook by
Griffith [8], and also in the Appendices I and II of the present note.

2.3 Diagonal matrix elements

The expression (9) is exact but somewhat complicated so let us try to elucidate its physical
content and thereby also make contact with various approximate ways to describe the Coulomb
interaction which can be found in the literature. We recall

H1 =
1

2

∑
ν1,ν2,ν3,ν4

V (ν1, ν2, ν3, ν4) c
†
ν1
c†ν2cν3cν4 ,

and pick those terms from H1 where either ν4 = ν1 and ν3 = ν2 (case 1) or ν3 = ν1 and ν4 = ν2
(case 2). Notice that the Pauli principle requires ν1 6= ν2 — otherwise H1 contains the product
c†ν1c

†
ν1

= 0. In both cases the four Fermion operators can be permuted to give the product of
number operators nν1nν2 (with nν = c†νcν) whereby in case 2 an odd number of interchanges
of Fermion operators is necessary so that an additional factor of (−1) appears. Since ν1 6= ν2
no nonvanishing anticommutators arise in this permutation of operators. Whereas for case 1 the
product δσ1,σ4 δσ2,σ3 in (9) always is 1, it vanishes for case 2 unless σ1=σ2. We had ν1 6= ν2
so that for case 1 the two orbitals may have the same orbital quantum numbers n, l,m but then
must differ in their spin, whereas in case 2 the spins have to be equal so that the orbital quantum
numbers definitely must be different. Using (9) the respective matrix elements are

V (ν1, ν2, ν2, ν1) =
∞∑
k=0

ck(l1m1; l1,m1) c
k(l2m2; l2,m2)R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1,σ2

∞∑
k=0

ck(l1m1; l2,m2) c
k(l1m1; l2,m2)R

k(n1l1, n2l2, n1l1, n2l2). (10)

It is customary to introduce the abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′) (11)

The F k and Gk are called Slater-Condon parameters. The ak and bk are listed in Appendix 20a
of Slater’s textbook [7] and also in the Appendix of the present note.
We want to bring these diagonal matrix elements to a more familiar form and continue to spe-
cialize to a partly filled 3d shell. In this case all ni = 3 and li = 2 so that for each k there



4.8 Robert Eder

is only one F k and one Gk and, in fact, Gk = F k. For brevity we omit the n- and l quantum
numbers in the rest of the paragraph so that, e.g., the electron operators become c†m,σ where m
is the z-component of L. The sum of all diagonal matrix elements then becomes

H1,diag =
∑
m

Um,m nm,↑nm,↓ +
1

2

∑
m6=m′

(
Um,m′

∑
σ,σ′

nm,σnm′,σ′ − Jm,m′

∑
σ

nm,σnm′,σ

)
,

Um,m′ =
∑

k∈{0,2,4}

ak(m,m′)F k, Jm,m′ =
∑

k∈{0,2,4}

bk(m,m′)F k. (12)

The first term on the r.h.s. originates from case 1 with m1 = m2 and the factor of 1
2

in front of
this term is cancelled because there are two identical terms of this type with either ν1 = (m, ↑)
and ν2 = (m, ↓) or ν1 = (m, ↓) and ν2 = (m, ↑). We introduce the operators of electron density
nm = nm,↑ + nm,↓ and electron spin Szm = 1

2
(nm,↑ − nm,↓) and rewrite∑

σ,σ′

nm,σ nm′,σ′ = nm nm′

∑
σ

nm,σ nm′,σ = 2
(
Szm Szm′ +

nmnm′

4

)
,

so that

H1,diag =
∑
m

Um,m nm,↑ nm,↓ +
1

2

∑
m 6=m′

((
Um,m′ − 1

2
Jm,m′

)
nmnm′ − 2Jm,m′ SzmS

z
m′

)
. (13)

This is the sum of a density-density interaction ∝ Um,m′ and an Ising-like spin interaction
∝ Jm,m′ . The interaction parameters depend on the orbitals and can be expressed in terms of
the Slater-Condon parameters F k and the products of Gaunt coefficients ak and bk. It is obvious
from (11) and (12) that Jm,m′ > 0 so that the spin interaction is ferromagnetic — this is in fact
the physical origin of the first Hund’s rule.
To complete the Hund’s rule term we pick those terms in H1 where ν1 = (m,σ), ν2 = (m′, σ̄),
ν3 = (m, σ̄) and ν4 = (m′, σ). In these terms the product δσ1,σ4δσ2,σ3 is non-vanishing as well
and for both values of σ the matrix element (2) is∑

k∈{0,2,4}

ck(m,m′) ck(m,m′)F k =
∑

k∈{0,2,4}

bk(m,m′)F k = Jm,m′

The Fermion operators are c†m,↑c
†
m′,↓cm,↓cm′,↑ + c†m,↓c

†
m′,↑cm,↑cm′,↓ = −(S+

mS
−
m′ + S−mS

+
m′), i.e.,

the transverse part of the Heisenberg exchange. Combining these terms with the Ising-like spin
exchange term we obtain

H1,H =
∑
m

Um,m nm,↑nm,↓ +
1

2

∑
m 6=m′

((
Um,m′ − 1

2
Jm,m′

)
nmnm′ − 2Jm,m′ Sm · Sm′

)
. (14)

This is now the sum of a density-density interaction and a spin-rotation invariant ferromagnetic
spin exchange. It has to be kept in mind that this Hamiltonian has been obtained by retaining
only a relatively small subset of matrix elements in the original Coulomb Hamiltonian. A
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further simplification which is often used is to replace Um,m′ and Jm,m′ by their averages over
all corresponding pairs (m,m′). Using the ak and bk in the Appendix one readily obtains

U =
1

25

∑
m,m′

Um,m′ = F 0,

U−J =
1

20

∑
m 6=m′

(
Um,m′ − Jm,m′

)
= F 0 − 1

14

(
F 2+F 4

)
,

so that J = (F 2+F 4)/14.
To conclude the discussion we consider the diagonal matrix elements 〈ν|H1|ν〉 in the basis
of n-electron states |ν〉 defined in (1). Since ν1 and ν2 in (10) can be any two out of the n
occupied orbitals in |ν〉 the total diagonal matrix element of H1 is obtained by summing over
all n(n−1)/2 pairs (i, j) formed from the occupied orbitals

〈ν|H1|ν〉 =
∑
i<j

∑
k

(
ak(limi, lj,mj)F

k(nili, njlj)− δσiσjbk(limi, lj,mj)G
k(nili, njlj)

)
. (15)

As will be seen in the next paragraph, this formula is actually sufficient to calculate the multiplet
energies.

2.4 Analytical calculation of multiplet energies by the diagonal sum-rule

We now show that the theory developed so far is in fact sufficient to give analytical formulas
for the energies of the multiplets which can be compared to experiment. The first ingredi-
ent is the so-called diagonal sum-rule. This is simply the well-known theorem that the sum
of the eigenvalues of a Hermitean matrix H is equal to its trace tr(H) =

∑
iHii. It follows

immediately by noting that the trace of a matrix is invariant under basis transformations, i.e.,
tr(H) = tr(UHU−1) for any unitary matrix U. By choosing U to be the matrix which trans-
forms to the basis of eigenvectors of H the diagonal sum-rule follows immediately.
Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by their
values of Lz and Sz — this is the consequence of the δ-functions in (9). The diagonal sum-
rule then can be applied separately for each of these blocks. In addition, the dimension of the
blocks decreases as Lz and Sz approach their maximum possible values so that the number of
multiplets contained in a given block decreases and the multiplet energies are easy to read off.
As an example for the procedure let us consider a p2 configuration (by particle-hole symmetry
this is equivalent to a p4 configuration). We write the Fermion operators in the form c†l,m,σ,
i.e., we suppress the principal quantum number n. Since we have 6 possible states for a single
p-electron - three m-values and two spin directions per m-value — we have 15 states for two
electrons. The triangular condition for the Gaunt coefficients now restricts the multipole order
k to be ≤ 2. Again, only even k contribute, so that we have two Slater-Condon parameters, F 0

and F 2 (and Gk = F k). Table 2, which is taken from Slater’s textbook [7], gives the values of
the coefficients ak(1,m; 1,m′) and bk(1,m; 1,m′).
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m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1
±1 0 1 −2 0 3

0 0 1 4 1 4
±1 ∓1 1 1 0 6

Table 2: The coefficients ak and bk for two p-electrons.

We first consider the sector with Sz = 1. The highest possible Lz is Lz = 1 which is realized
only for a single state, |1〉 = c†1,0,↑c

†
1,1,↑|0〉. We can conclude that one of the multiplets is 3P and

its energy is equal to the diagonal matrix element of |1〉 which by (15) is

E(3P ) =
∑

k∈{0,2}

(
ak(1, 1; 1, 0)− bk(1, 1; 1, 0)

)
F k = F 0 − 5

25
F 2.

We proceed to the sector Sz = 0. Here the highest possible Lz is Lz = 2 again obtained for
only single state namely c†1,1,↓c

†
1,1,↑|0〉. We conclude that we also have 1D with energy

E(1D) =
∑

k∈{0,2}

ak(1, 1; 1, 1)F k = F 0 +
1

25
F 2.

The two multiplets that we found so far, 1D and 3P , comprise 5 + 9 = 14 states; we thus have
just one state missing, which can only be 1S. To find its energy, we need to consider the sector
Sz = 0 and Lz = 0. There are three states in this sector: c†1,0,↓c

†
1,0,↑|0〉, c

†
1,−1,↑c

†
1,1,↓|0〉 and

c†1,−1,↓c
†
1,1,↑|0〉. Two out of the three eigenvalues of the 3×3 Hamiltonian in the basis spanned

by these states must be E(3P ) and E(1D), because these multiplets also have members with
Sz = 0 and Lz = 0. To obtainE(1S) we accordingly compute the sum of the diagonal elements
of the 3×3 matrix using (15) and set

E(3P ) + E(1D) + E(1S) =
∑

k∈{0,2}

(
ak(1, 0; 1, 0) + 2 ak(1,−1; 1, 1)

)
F k,

→ E(1S) = F 0 +
10

25
F 2.

This example shows the way of approach for multiplet calculations using the diagonal sum-
rule: one starts out with a state with maximum Lz or Sz for which there is usually only a
single basis state. This basis state belongs to some multiplet whose energy simply equals the
‘diagonal element’ of the 1×1 Hamiltonian. Then one proceeds to lower Sz and/or Lz and
obtains energies of additional multiplets by calculating the trace of the respective block of the
Hamilton matrix and using the known energies of multiplets with higher Lz or Sz. It turns out
that in this way the energies of all multiplets involving s, p, d or f electrons can be expressed
in terms of the Slater-Condon parameters by analytical formulas. A rather complete list can be
found for example in the Appendices 21a and 21 of the textbook by Slater [7].
Multiplet theory was originally developed to discuss the spectra of atoms or ions in the gas
phase. The question then arises, as to what are the values of the Slater-Condon parameters.
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Si P+ S2+ S Cl+
3P 0.0000 0.0000 0.0000 0.0000 0.0000
1D 0.7809 1.1013 1.4038 1.1454 1.4449
1S 1.9087 2.6750 3.3675 2.7500 3.4564

r 1.4442 1.4289 1.3988 1.4010 1.3921

Table 3: Energies (in eV) of multiplets for different atoms and ions with p2 or p4 configurations
outside a closed shell (taken from the NIST data base [2]) and the resulting values of r in (16).

Of course one might attempt to compute these parameters using, e.g., Hartree-Fock wave func-
tions in the expression (8). It turns out, however, that very frequently the number of multiplets
considerably exceeds the number of relevant Slater-Condon parameters. In the case of the p2

configuration we had three multiplets, 3P , 1D and 1S, but only two Slater-Condon parameters
F 0 and F 2. This would suggest to obtain the values of the Slater-Condon parameters by fit to
the spectroscopic data and the textbook by Slater [7] contains a vast amount of experimental
data which are analyzed in this way. For the p2 configuration we restrict ourselves to a simple
cross check. Using the above expressions we find

r =
E(1S)− E(1D)

E(1D)− E(3P )
=

3

2
, (16)

independently of the values of F 0 and F 2. This relation therefore should be obeyed by all ions
with two p-electrons outside filled shells, such as the series Si, P1+, S2+, or two holes in a filled
p-shell such as the series S, Cl+. The energies of the multiplets of these atoms/ions are available
in the database [2] and Table 3 shows the energies and the resulting values of r.
They are in fact quite close 3/2. Notice that the width of the multiplet spectrum increases
considerable when going to the positively charge ions. This is because in positively charged
ions the radial wave functions are more contracted, whence the values of the Slater-Condon
parameters increase. Despite this, the ratio r is quite constant and in good agreement with
multiplet theory.

2.5 Solution of the Coulomb problem by exact diagonalization

Using the diagonal sum rule one can derive analytical formulae for the energies of the multiplets.
For further applications of multiplet theory, however, it is often useful to solve the problem
numerically, using the method of exact diagonalization which will be outlined in the following.
The basis states (1) correspond to all possible ways of distributing n electrons over the 10 spin-
orbitals of the 3d-shell (two spin directions for each m ∈ {−2,−1, . . . , 2}). As illustrated in
Figure 2 we can code each of these basis states by an integer 0 ≤ i ≤ 210. If we really use
all of these integers we are actually treating all states with 0 ≤ n ≤ 10 simultaneously but this
will be convenient for generalizations of the theory. Next, for a given initial state |ν1, ν2, . . . νn〉
we can let the computer search for all possible transitions of the type shown in Figure 2 and
compute the corresponding matrix elements from (9) using, say, the ck(lm; l′m′) copied from
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−2 −1 0 1 2m=

459 = 0 1 1 1 0 0 1 0 1 1

0 1 1 1 0 0 1 0 1 1

−2 −1 0 1 2m=

0 0 1 1 1 1 1 0 1 0 = 250

Fig. 2: The coding of basis states by integers and a scattering process.

Slater’s textbook and some given R0, R2 and R4. Let us consider the following matrix element
of a term in H1 between two states with n electrons:

〈µ| V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2cλ3cλ4 |ν〉 =

〈0|cµn . . . cµ1 V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2cλ3cλ4 c

†
ν1
c†ν2 . . . c

†
νn|0〉.

For this to be nonzero, the operators c†λ3 and c†λ4 must be amongst the c†νi , otherwise the anni-
hilation operators in the Hamiltonian, cλ3 and cλ4 , could be commuted to the right where they
annihilate |0〉. In order for cλ4 to ‘cancel’ c†λ4 it must first be commuted to the position right in
front of c†λ4 . If this takes n4 interchanges of Fermion operators we get a Fermi sign of (−1)n4 .
Bringing next cλ3 right in front of c†λ3 by n3 interchanges of Fermion operators gives a sign of
(−1)n3 . Analogously, cλ1 and cλ2 must be amongst the cµi and the creation operators c†λ1 and
c†λ2 in the Hamiltonian have to be commuted to the left to stand to the immediate right of their
respective ‘partner annihilation operator’ so as to cancel it. If this requires an additional number
of Fermion interchanges n1 for c†λ1 and n2 for c†λ2 there is an additional Fermi sign of (−1)n1+n2 .
The total matrix element therefore is (−1)n1+n2+n3+n4V (λ1, λ2, λ3, λ4). The correct Fermi sign
is crucial for obtaining correct results and must be evaluated by keeping track of all necessary
interchanges of Fermion operators. The necessity to determine the Fermi sign is the very reason
why we have to adopt an ordering convention and strictly adhere to it.
Once the matrix 〈µ|H1|ν〉 has been set up it can be diagonalized numerically. The following
Table 4 gives the resulting multiplet energies for d8 and d7, the values of L and S for each mul-
tiplet and the degeneracy n. The values of the Rk parameters have been calculated [9] by using
Hartree-Fock wave functions R3,2 for Ni2+ and Co2+ in (8). The energy of the lowest multiplet
is taken as the zero of energy and it turns out that all energy differences depend only on R2

and R4. Note the increasing complexity of the level schemes with increasing number of holes
in the d-shell. Comparing the energies of the multiplets for d8 with the experimental values in
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E S L n Term E S L n Term
0.0000 1 3 21 3F 0.0000 3/2 3 28 4F
1.8420 0 2 5 1D 1.8000 3/2 1 12 4P
1.9200 1 1 9 3P 2.1540 1/2 4 18 2G
2.7380 0 4 9 1G 2.7540 1/2 5 22 2H

13.2440 0 0 1 1S 2.7540 1/2 1 8 2P
3.0545 1/2 2 10 2D
4.5540 1/2 3 14 2F
9.9774 1/2 2 10 2D

Table 4: Energies of the d8 multiplets calculated with R2 = 10.479 eV, R4 = 7.5726 eV (Left),
and energies of the d7 multiplets calculated with R2 = 9.7860 eV, R4 = 7.0308 eV (Right).

Table 1 one can see good agreement with deviations of order 0.1 eV. The only exception is
1S. This is hardly a surprise because here the theoretical energy is ≈13 eV which is compa-
rable to the difference in energy between the 3d and the 4s shell in Ni (which is ≈10 eV). It
follows that the basic assumption of the calculation, namely that the separation between atomic
shells is large compared to the multiplet splitting, is not fulfilled for this special multiplet. To
treat 1S more quantitatively it would likely be necessary to include basis states with configura-
tions like 3d7 4s1, or, put another way, to consider the screening of the Coulomb interaction by
particle-hole excitations from the 3d into the 4s shell.
Finally, the Table shows that the ground states indeed comply with the two first Hund’s rules:
they have maximum spin and maximum orbital angular momentum for this spin. It can be
shown that this is indeed always the case as long as one uses Coulomb and exchange integrals
with the correct, i.e. positive, sign [7, 8].

2.6 Spin-orbit coupling

So far we have neglected spin-orbit coupling but this can be included easily into the formalism.
The corresponding Hamiltonian is

HSO = λSO

n∑
i=1

li · Si = λSO

n∑
i=1

(
lziS

z
i +

1

2

(
l+i S

−
i + l−i S

+
i

))
.

where li (Si) are the operators of orbital (spin) angular momentum of the ith electron. The
spin-orbit coupling constant λSO can be written as [3]

λSO =
~2

2m2
ec

2rorb

dVat

dr

∣∣∣∣
r=rorb

where me is the electron mass, c the velocity of light, Vat is the atomic potential acting on the
electron and rorb the spatial extent of the radial wave function.
The first term on the right hand side can be translated into second quantized form easily

H
‖
SO = λSO

l∑
m=−l

m

2

(
c†l,m,↑cl,m,↑ − c

†
l,m,↓cl,m,↓

)
. (17)
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As regards the transverse part, we note the matrix elements of the orbital angular momentum
raising/lowering operator [3]: 〈l,m± 1|l±|l,m〉 =

√
(l∓m)(l±m+1) whence

H⊥SO =
λSO

2

l−1∑
m=−l

√
(l−m)(l+m+1)

(
c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓

)
. (18)

Spin-orbit coupling can be implemented rather easily into the exact diagonalization formalism
discussed above, the main difficulty again is keeping track of the Fermi sign. Due to the fact
that neither Lz nor Sz are conserved anymore the corresponding reduction of the Hilbert space
is no longer possible. In 3d transition-metal compounds the spin-orbit coupling constant λSO
for the 3d shell is rather small, of order λSO ≈ 0.05 eV and can be neglected for many purposes.
In the rare-earth elements spin-orbit coupling in the 4f shell is quite strong, λSO ≈ 0.5 eV, and
spin-orbit coupling must be taken into account.

3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Next, we discuss how the results must be
modified if the ion is embedded in a solid. We will see that the small spatial extent of the 3d

or 4f radial wave functions Rn,l(r) suppresses the effects of the environment in a solid, so that
in many cases the main effect of embedding the ion into a solid is the partial splitting of the
multiplets of the free ion. As in the preceding chapter we write down everything explicitly for
a 3d shell but the theory is easily transferred to other shells.
In many transition-metal compounds the 3d ions are surrounded by an approximately octahedral
or tetrahedral ‘cage’ of non-metal ions such as oxygen, sulphur, arsenic. These nearest neighbor
ions, which will be called ‘ligands’ in the following, have a twofold effect: first, they produce
a static electric field, the so-called crystalline electric field or CEF, and second there may be
charge transfer that means an electron can tunnel back and forth between a ligand orbital and
a 3d-orbital of the transition metal ion due to the overlap of the respective wave functions. We
discuss these effects one by one.

3.1 Crystalline electric field

Let us first consider the crystalline electric field, whereby we model the ligands by nc point
charges Zne at the positions Rn. The corresponding term in the Hamiltonian for the electrons
on the ion in question is (recall that the electron charge is negative)

−VCEF(r) = −
nc∑
n=1

Zn
|r−Rn|

= −Zav

Rav

∞∑
k=0

k∑
m=−k

γk,m

(
r

Rav

)k√
4π

2k+1
Yk,m(ϑ, ϕ),

γk,m =

√
4π

2k+1

nc∑
n=1

Zn
Zav

(
Rav

Rn

)k+1

Y ∗k,m(ϑn, ϕn). (19)
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Here we have again used multipole expansion (4) of the Coulomb potential and introduced the
average distance and charge of the ligands, Rav and Zav. Going over to 2nd quantization the
Hamiltonian becomes [6]

HCEF =
∑
i,j

VCEF(νi, νj) c
†
νi
cνj ,

VCEF(ν1, ν2) =

∫
dx ψ∗ν1(x)VCEF(r)ψν2(x), (20)

where the wave functions ψν(x) are again given by (3). In calculating VCEF(ν1, ν2) we start with
the sum over σ and find a factor of δσ1,σ2 . The integral over the polar angles (ϑ, ϕ) again gives
a factor of δm1,m+m2 and a Gaunt coefficient. As for the integral over r we note that the radial
dependence of the wave functions ψν(x) is given by R3,2(r), which differs appreciably from
zero only in a narrow range r ≤ r3d. Then we find

VCEF(ν1, ν2) = δσ1,σ2
∑
k

γk,m1−m2 c
k(2,m1; 2,m2) Ik,

Ik = −Zave
2

Rav

(
r3d
Rav

)k∫ ∞
0

dρ ρk+2 R̃2
nl(ρ). (21)

Here we have introduced the dimensionless variable ρ = r/r3d, and the dimensionless wave
function R̃nl(ρ) = r

3/2
3d Rnl(ρr3d). Since this has a range of unity and∫ ∞

0

dρ ρ2 R̃2
nl(ρ) = 1

we expect that the dimensionless radial integral in Ik is of order unity so that Ik ∝
(
r3d
Rav

)k
.

As expected, a small r3d � Rav suppresses the effect of the environment and the sum over k
usually can be terminated after the lowest k > 0 for which γk,m does not vanish for some m.
Moreover, for a d-shell it again follows from the triangular condition for the Gaunt coefficients
that k ≤ 4 and from parity that k only be even. The term with k = 0 gives merely a constant
shift and can be omitted so that only k = 2 and k = 4 need to be considered. As was the case
for the Coulomb interaction, the CEF can be described by very few – in fact only one if only
the lowest order in r3d/Rav is kept – parameters Ik which depend on the radial wave function
R3,2(r). These parameters again are frequently fitted to experiment. The actual form of the
matrix elements then depends on the geometry of the ‘cage’ of ligands via the sums γk,m.
As an example let us consider the case of an ideal octahedron of identical charges. More pre-
cisely, let the nucleus of the transition-metal ion be the origin of the coordinate system, and
six identical charges eZ be located at (±R, 0, 0), (0,±R, 0) and (0, 0,±R). This means that
Rn = R = Rav and Zn = Z = Zav, whence

γk,m =

√
4π

2k + 1

6∑
n=1

Y ∗k,m(ϑn, ϕn). (22)

We divide the six charges into two groups: group 1 comprises the four charges in the x-y plane
at (±R, 0, 0) and (0,±R, 0). These have ϑn = π

2
and ϕn = nπ

2
with n = 0, 1, 2, 3. Since
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Yl,m(ϑ, ϕ) = Pl,m(ϑ) eimϕ, we find that the contribution of group 1 to γk,m is proportional to

3∑
n=0

(
e
imπ
2

)n
=


(e2πi)

m − 1

e
imπ
2 − 1

= 0 e
imπ
2 6= 1,

4 e
imπ
2 = 1.

The four charges of group 1 therefore give a nonvanishing contribution only for m = 0, 4.
Group 2 comprises the two charges at (0, 0,±R). Inspection of tables of spherical harmonics [4]
shows that always

Ylm(ϑ, ϕ) ∝ sinm(ϑ) eimϕ =

(
x+iy

r

)m
,

so that the charges of group 2 contribute only for m = 0.
Combining everything we see that for the ideal octahedron we need to actually evaluate the sum
(22) only for Y2,0, Y4,0 and Y4,±4 whereby for the last case only the charges in the x-y plane
need to be considered. We start with Y2,0 and note that Y2,0(ϑ, ϕ) ∝ 3 cos2(ϑ)−1 [4]. It follows
that

∑6
n=1 Y2,0(ϑn, ϕn) ∝ 4 · (−1) + 2 · 2 = 0, so that Y2,0 does not contribute. Using the

expressions [4]

Y4,0(ϑ, ϕ) =
3

16

√
1

π
·
(
35 cos4 ϑ− 30 cos2 ϑ+ 3

)
Y4,4(ϑ, ϕ) =

3

16

√
35

2π
· sin4 ϑ · e4iϕ

we then find after straightforward calculation

γ4,0 =

√
49

4
and γ4,4 =

√
35

8
, (23)

as well as γ4,−4 = γ4,4. Using the tabulated values of the c4(2,m; 2,m′) (see Appendix),
VCEF(ν1, ν2) can be written as δσ1,σ2 times a matrix in the indices m1 and m2

VCEF(m1,m2) =
I4
6


1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1

 . (24)

This matrix has the eigenvalues I4 (twofold degenerate) with corresponding eigenfunctions

dx2−y2(Ω) =
1√
2

(
Y2,−2(Ω) + Y2,2(Ω)

)
=

√
15

16π

x2−y2

r2
,

d3z2−r2(Ω) = Y2,0(Ω) =

√
5

16π

3z2−r2

r2
, (25)
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and −2I4/3 (threefold degenerate) with eigenfunctions

dxy(Ω) =
i√
2

(
Y2,−2(Ω)− Y2,2(Ω)

)
=

√
15

4π

xy

r2
,

dyz(Ω) =
i√
2

(
Y2,−1(Ω) + Y2,1(Ω)

)
=

√
15

4π

yz

r2
,

dxz(Ω) =
1√
2

(
Y2,−1(Ω)− Y2,1(Ω)

)
=

√
15

4π

xz

r2
. (26)

The two eigenfunctions for eigenvalue I4 are called eg orbitals, whereas the three eigenfunctions
for eigenvalue−2I4/3 are called t2g orbitals. If the ligands are O2− ions, Z=−2 whence I4 > 0,
i.e., the eg orbitals are higher in energy than the t2g orbitals. This can be readily understood by
comparing the dxy and the dx2−y2 orbital. In the x-y plane the lobes of dx2−y2 are along the axes
and point directly towards the negative charges at (±R, 0, 0) and (0,±R, 0), whereas the lobes
of the dxy orbital point along the diagonals and thus optimally avoid these negative charges.
For the negatively charged electron, it is therefore energetically advantageous to be in the dxy
orbital. The splitting between the eigenvalues is frequently called 10Dq = E(eg) − E(t2g), so
that in our point-charge model Dq = I4/6.
Note that the five functions dα(Ω) in (25) and (25) are pairwise orthogonal. This means that
they are obtained by a unitary transformation from the five original spherical harmonics Y2,m(Ω)

and can be used as basis functions. These functions are of utmost importance in the theoretical
discussion of elements with partially filled d-shells and are can be found again and again in the
literature. Polar plots of these functions also can be found in the literature [4].
We see that for octahedral coordination the effect of the CEF on a 3d level can be summarized in
a single parameter 10Dq, which may for example be obtained by a fit to experiment. This way
of dealing with the CEF is very similar in spirit to our treatment of the Coulomb interaction, in
that details of the radial wave functions Rn,l(r) are absorbed into numerical parameters which
can be adjusted to experiment. Alternatively, the numerical value of 10Dq for a given solid may
also be obtained from a fit to a density functional band structure.
By adding HCEF, which is a quadratic form in the operators c†ν/cν , to the Hamiltonian for the
intra-atomic Coulomb interaction discussed above we can now discuss the splitting of the origi-
nal multiplets of the free ion under the influence of the electrostatic potential of the environment.
The following should be noted: the above discussion refers to the wave function of a single
electron. The multiplets, however, are collective eigenstates of all n electrons in an atomic shell
which are created by the Coulomb interaction between electrons. The question of how these
collective states split in a cubic environment is not at all easy to answer. One way would be
exact diagonalization including the term HCEF.
Plots of the energies of the resulting ‘crystal-field multiplets’ versus 10Dq are called Tanabe-
Sugano diagrams [10]. An example is shown in Figure 3.1 which shows the eigenenergies of
the d8 and d7 configuration with Coulomb interaction and increasing cubic CEF, 10Dq. One
realizes that the highly degenerate multiplets of the free ion are split into several levels of lower
degeneracy by the CEF, which is to be expected for a perturbation which lowers the symmetry.
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d8 (left) and d7

(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table 2.

Note that the components into which a given multiplet splits all have the same spin as the
multiplet itself. This is because the spin of an electron does not ‘feel’ an electrostatic potential;
or, more precisely, because the operator of total spin commutes with any operator which acts
only on the real-space coordinates ri of the electrons.

An interesting example for the application of the Tanabe-Sugano diagrams are transition-metal
ions in aqueous solution. In fact, the preference of transition-metal ions for an environment
with cubic symmetry is so strong that such immersed ions often surround themselves with
an octahedron of water molecules. Thereby the dipole moments of these six molecules all
point away from the ion and thus create an electric field which cubic symmetry which again
gives rise to an eg-t2g splitting. Optical transitions between the CEF-split multiplets, which
are possible only due to slight distortions of the octahedron or the generation/annihilation of
vibrational quanta during the transition, correspond to frequencies in the visible range and result
in the characteristic colors of such solutions. The Tanabe-Sugano diagrams have proved to be
a powerful tool to understand the absorption spectra of such solutions [8]. By matching the
energies of the observed transitions to energy differences in the Tanabe-Sugano diagrams one
can extract estimates for the Slater-Condon parameters and for 10Dq. The values of the Slater-
Condon parameters turn out to be somewhat smaller than those for ions in vacuum due to
dielectric screening in the solution. An independent estimate for 10Dq can also be extracted
from measured heats of hydration – this is because both 10Dq and the electrostatic energy of the
system ‘ion plus octahedron’ depend on the distance between the transition-metal ion and the
water molecules – and compared to the estimate from the absorption spectrum whereby good
agreement is usually obtained [11].
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3.2 Charge transfer

We continue our discussion of a transition-metal ion at the origin of the coordinate system
surrounded by a ‘cage’ of n ligands at Rn. The second mechanism by which the ligands may
influence the energy levels of the transition metal ion is charge transfer. This means that the 3d

levels of the transition metal ion hybridize with atomic orbitals on the ligands which shifts the
energies of the 3d levels. To understand how this happens, let us consider a toy Hamiltonian
which describes just a single ‘d-orbital’ |ψ1〉 with energy ε1 coupled to a single ‘ligand orbital’
|ψ2〉 with energy ε2

H =
2∑
i=1

εi c
†
ici −

(
t c†1c2 +H.c.

)
We have suppressed the spin index and the meaning of the creation/annihilation operators
should be self-evident). The hybridization matrix element −t = 〈ψ1|H|ψ2〉 thereby origi-
nates from the overlap of the atomic wave functions and facilitates the transfer of an electron
between the two orbitals. The ansatz |ψ〉 = u|ψ1〉+v|ψ2〉 for an eigenstate readily leads to the
2×2 matrix

h =

(
ε1 −t
−t ε2

)
, (27)

whose eigenvalues are

E± =
ε1+ε2

2
±

√(
ε1−ε2

2

)2

+ t2.

We may assume without loss of generality that ε1 > ε2, whence
√(

ε1−ε2
2

)2
+ t2 = ε1−ε2

2
+ ∆,

with some ∆ > 0. It follows that E− = ε2 − ∆ < ε2 and E+ = ε1 + ∆ > ε1. This means
that the lower level is shifted downwards by ∆, whereas the upper level is shifted upwards by
the same amount, an effect known as level repulsion. This mechanism can split the degeneracy
of the 3d-level because, depending on the geometry of the cage, different 3d orbitals can have
different hybridization matrix elements with the ligand orbitals.
Note that the eigenstates now are a mixture of the two orbitals. For t � ε1−ε2, however, the

weight of |ψ2〉 in the eigenstate for E− is
(

t
ε1−ε2

)2
which means the state still has predominant

|ψ1〉 character.
To describe charge transfer quantitatively we need to enlarge our set of Fermion operators c†ν/cν
by operators l†µ/lµ which create/annihilate electrons in orbitals centered on the ligands. We
simplify matters by assuming that only 2p orbitals are relevant for the ligands, as would be the
case for oxygen ligands. For the rest of this paragraph on charge transfer we switch to a new set
of basis functions which is more suitable for the discussion of hybridization. First, we use 3d

wave functions whose angular part is given by the real-valued spherical harmonics (25) and (26)

ψνi(x) = R3,2(r) dα(Ω) δσ,σi , (28)

with α ∈ {xy, xz, yz, x2−y2, 3z2−r2}, so that now νi = (α, σ).
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For the ligand orbitals we use wave functions whose angular part is given by the real-valued
p-like spherical harmonics

px(Ω) =
1√
2

(
− Y1,1(Ω) + Y1,−1(Ω)

)
=

√
3

4π

x

r
, (29)

py(Ω) =
i√
2

(
Y1,1(Ω) + Y1,−1(Ω)

)
=

√
3

4π

y

r
, (30)

pz(Ω) = Y1,0(Ω) =

√
3

4π

z

r
, (31)

and are centered on the ligands

ψµj(x) = R2,1(rnj) pβj(Ωn) δσ,σj . (32)

Here, rn = r−Rn and β ∈ {x, y, z} so that µj = (nj, βj, σj). The obvious generalization of
the toy Hamiltonian then is

HCT =
∑
i

ενic
†
νi
cνi +

∑
j

εµj l
†
µj
lµj −

∑
i,j

(
tνi,µj c

†
νi
lµj +H.c.

)
. (33)

This would still not be very useful because it contains a large number of parameters, in partic-
ular the hybridization integrals −tνi,µj . The crucial simplification comes about because these
hybridization integrals can be expressed in terms of very few parameters by using the cele-
brated Slater-Koster tables [12]. For example, for the present case where only the p orbitals of
the ligands are taken into account there are just two relevant parameters: Vpdσ and Vpdπ. More
precisely, a typical entry in the Slater-Koster tables looks like

−t1x,2xy =
√

3 l2mVpdσ +m (1−2l2)Vpdπ.

This gives the hopping integral−t1x,2xy between a px orbital on atom 1 and a dxy orbital on atom
2 as a function of the components of the unit vector (l,m, n) pointing from atom 1 to atom 2.
Thereby the parameters Vpdσ and Vpdπ depend only on the distance between the two atoms. It
is obvious from this that the hopping orbitals −tνi,µj in Eq. (33) depend on the geometry of
the ‘cage’ of ligands. By inserting the unitary transformation (25) and (26) as well as (31),
HCT now could be transformed to the original complex spherical harmonics Y2,m(Ω) and then
be easily included into exact diagonalization formalism discussed above. The main problem is
that the number of orbitals in the cluster and hence the dimension of the Hilbert space increases
considerably so that one has to resort to numerical methods such as the Lanczos algorithm [13].
To illustrate the procedure and thereby show how to alleviate the problem of the increase of the
Hilbert space dimension, we specialize again to the case where the ligands form an ideal octa-
hedron, with the transition metal ion in the center of gravity. In other words, the ligands again
are located at (±R, 0, 0), (0,±R, 0) and (0, 0,±R). We want to solve the Hamiltonian (33) for
this cluster of seven ions assuming that the parameters Vpdσ, Vpdπ, ενi and εµj are given. For
simplicity we set the energies ενi of the 3d orbitals equal to zero and assume that εµj = ε > 0
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for all ligand orbitals. Vpdσ and Vpdπ depend only on the distance between ligand and transition-
metal ion and therefore are the same for all six ligands. Since we are retaining three p-orbitals
on each ligand and the five d-orbitals on the transition-metal ion, the total number of orbitals in
the cluster would be 5 + 6 · 3 = 23. What we would have to do is to go through all six ligands,
determine (l,m, n) for each of them, set up the hopping integral between each of the five 3d

orbitals and each of the three 2p orbitals on the respective ligand using the Slater-Koster tables.
This would give us a 23×23 matrix instead of the 2×2 matrix (27), the eigenvalues of which
would tell us how the 3d orbitals are shifted by the hybridization. Fortunately enough, the high
symmetry of the octahedral cluster allows us to bring the Hamiltonian to block-diagonal form
and obtain analytical expressions for the energies. The key simplification comes about by con-
structing hybridizing combinations of 2p orbitals on the six ligands. Consider the dxy orbital in
Figure 4. Using symmetry arguments or the Slater-Koster tables one can show that out of the
18 p orbitals on the ligands only the four p-orbitals shown in the Figure have a nonvanishing
hybridization integral with the dxy orbital. These four orbitals moreover hybridize with no other
d orbital. Then, we form the following linear combinations of these four orbitals:

|1〉 =
1

2

(
ψ1,y(x) + ψ2,x(x)− ψ3,y(x)− ψ4,x(x)

)
,

|2〉 =
1

2

(
ψ1,y(x) + ψ2,x(x) + ψ3,y(x) + ψ4,x(x)

)
,

|3〉 =
1

2

(
ψ1,y(x)− ψ2,x(x)− ψ3,y(x) + ψ4,x(x)

)
,

|4〉 =
1

2

(
ψ1,y(x)− ψ2,x(x) + ψ3,y(x)− ψ4,x(x)

)
,

where we have dropped the spin index of the ψµj(x) for brevity. If p orbitals on different ligands
are orthogonal to each other, 〈ψi,α|ψj,β〉 = δi,jδα,β , these four combinations are orthonormal,
that means we can use them as new basis functions. Next, using the matrix elements of H
indicated in Figure 4, which can be easily verified using the Slater-Koster tables, we see that

〈dxy|HCT|i〉 = −2Vpdπ δi,1.

This means that the states |2〉, |3〉 and |4〉 do not mix with dxy and since they also do not mix
with any other of the five d-orbitals, they are eigenstates of HCT with energy ε by construction.
We thus need to keep only |dxy〉 and |1〉 and thus arrive at exactly the same 2×2 matrix Eq. (27)
as for the toy model

h =

(
0 −2Vpdπ

−2Vpdπ ε

)
. (34)

with eigenvalues E± = ε
2
±
√(

ε
2

)2
+ 4V 2

pdπ. To simplify our expressions we assume weak
hybridization, Vpdπ � ε, whence the energy of the lower eigenstate, which for ε > 0 has
predominantly |dxy〉 character, becomes

E(t2g) ≈ −
4V 2

pdπ

ε
.
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x

Fig. 4: p orbitals on ligands with nonvanishing hybridization with the dxy orbital in the center.
The figure shows the x-y plane, lobes with positive (negative) sign are drawn by full (dashed)
lines. The labels of the ligands are given next to the p orbitals, the hybridization integrals
obtained from the Slater-Koster tables are indicated for each bond.

The upper eigenstate, which predominantly has ligand-p character, has energy ε + 4V 2
pdπ/ε.

We could have proceeded in exactly the same way if instead of the x-y plane we would have
considered the x-z or y-z plane and the dxz or dyz orbitals. Therefore, all of the three t2g orbitals
are shifted by the same energy and remain degenerate in the presence of hybridization!
In a similar but slightly more complicated way one finds that the eg-orbitals dx2−y2 and d3z2−r2
also remain degenerate and are shifted to

E(eg) ≈ −
4V 2

pdσ

ε
.

We have thus found the energy levels of the Hamiltonian (33) for the octahedral cluster with
only p orbitals on the ligands: there are five states with predominant 3d character and energies
−4V 2

pdπ/ε (t2g, 3-fold degenerate) or −4V 2
pdσ/ε (eg, 2-fold degenerate). We also have five cor-

responding states with predominant p-character and energies ε + 4V 2
pdπ/ε (3-fold degenerate)

or ε + 4V 2
pdσ/ε (2-fold degenerate). And finally we have the non-bonding combinations which

have pure p character and retain their energy of ε. Obviously there must be 13 of these.
We see that charge transfer results in the same splitting into t2g and eg orbitals as the electrostatic
potential due to the charges on the ligands. (In fact, it follows from the theory of irreducible
representations of symmetry groups [3, 8, 10, 11] that this holds true for any perturbation with
cubic symmetry). Therefore, if we are only interested in the energies of the eigenstates we may
as well drop the ligand orbitals from the Hamiltonian and describe the splitting due to charge
transfer by an ‘effective 10Dq’ given by

10DqCT =
4

ε

(
V 2
pdπ − V 2

pdσ

)
.

This would have to be added to the ‘electrostatic 10Dq’ discussed earlier.
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To conclude this section, we mention that using the octahedron-shaped cluster discussed in the
preceding section by the exact diagonalization method has been an extraordinarily successful
method for the simulation of valence band photoemission spectra, X-ray absorption spectra, and
core-level photoemission spectra of 3d transition-metal compounds [14–20]. In many cases, the
spectra calculated in a mere octahedron can be compared peak-by-peak to experimental spectra.
This also provides unambiguous evidence that the multiplets of the free ion, slightly modified
by CEF and charge transfer, do persist in the solid.

4 Multiband Hubbard models

We have now discussed all necessary parts of the Hamiltonian to describe transition-metal and
rare-earth compounds, i.e., multiband Hubbard models. We view the solid as an array of ions
with a certain number of atomic orbitals on each of them and assume that these orbitals are
labeled by some index i. The position of the ion on which orbital i is centered is Ri. Then,
we split the orbitals in the solid into two groups: the correlated and the uncorrelated orbitals.
The correlated orbitals have radial wave functions with small spatial extent and the Coulomb
interaction between electrons in these orbitals is strong. The uncorrelated orbitals are more
extended and the Coulomb interaction between electrons in these orbitals is weak enough to be
neglected. Of course, this division of the orbitals is arbitrary to some extent. In principle, one
might also include Coulomb interaction between electrons in orbitals on different ions but we
neglect this because it will in general be much weaker than the interaction between electrons on
the same ion.
Then, the problem arises how to choose these orbitals. For example for a d shell we could
choose orbitals whose radial part is given by the spherical harmonics Y2,m(Ω) but we might
as well choose the real-valued spherical harmonics dα(Ω) in (25) and (26). The preceding
discussion has shown that the Yl,m(Ω) are convenient for the discussion of ‘purely atomic’
aspects of the problem, such as the Coulomb interaction within atomic shells and the spin-orbit
coupling, whereas the real-valued spherical harmonics dα(Ω) are more convenient for ‘solid
related’ aspects such as inter-ion hopping and CEF splitting. Since the Yl,m(Ω) and the dα(Ω)

are related by a unitary transformation this is more of a notational problem. Next, we introduce
creation/annihilation operators c†νi/cνi for electrons in these orbitals. Thereby we choose the
compound index νi = (Ri, ni, li,mi, σi) for Coulomb interaction and spin-orbit coupling and
νi = (Ri, ni, li, αi, σi) with αi ∈ {s, px, py, pz, dxy, . . . } for the inter-ion hopping and CEF.
The inter-ion hopping is obtained be generalizing (33)

H0 =
∑
i

ενic
†
νi
cνi −

∑
i 6=j

(
tνi,νj c

†
νi
cνj +H.c.

)
. (35)

The hopping integrals −tνi,νj again can be expressed in terms of relatively few V -parameters
via the Slater-Koster tables, the numerical values of the V -parameters and the energies ενi can
be obtained by fit to a density functional band structure. For the correlated orbitals thereby extra
care is necessary due to the ‘double counting problem’ (see, e.g., Ref. [21]).
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Moreover, we add for each ion the electrostatic part of the CEF, (20). So far the Hamiltonian is
a quadratic form in Fermion operators and can always be solved after Fourier transform.
Next, for the correlated orbitals we add the Coulomb interaction (2) with the matrix elements (9).
Since we are considering only the Coulomb interaction within a given atomic shell, all four
c†νi/cνi operators in each term of (2) must have the same Ri. The Hamiltonian now is quartic
in Fermion operators and thus not solvable anymore. Rather, we have to resort to one of the
many approximation schemes known so far for correlated electrons. Finally we may also add
the spin-orbit coupling. Whether this is necessary depends on the magnitude of the spin-orbit
coupling constant λSO. Since spin-orbit coupling is a relativistic effect, λSO is larger for heavy
elements. It is more or less negligible for 3d ions, but important for 5d transition metals or 4f

rare earths.
It is obvious that the resulting Hamiltonian is quite complicated and it is highly desirable to
simplify it. There are several possible ways to do so.

1. ‘Integrating out’ uncorrelated orbitals which act only to connect correlated orbitals.

To see what this means, consider the toy Hamiltonian for three orbitals |d1〉, |d2〉 and |l〉:

H = ∆ l†l − t
(
d†1l + l†d1 + d†2l + l†d2

)
,

where we have dropped the spin index for simplicity and the meaning of the Fermion
operators should be obvious. It may be viewed as describing a ‘bond’ connecting the
two ‘d-orbitals’ |d1〉 and |d2〉 (which have an energy of zero) via the ‘bridging orbital’ |l〉
which has energy∆. We introduce the bonding/antibonding combinations d†± = 1√

2
(d†1±

d†2) whence the Hamiltonian becomes

H = ∆ l†l −
√

2t
(
d†+l + l†d+

)
.

the ansatz |ψ〉 = (A+d
†
+ + All

† + A−d
†
−)|0〉 then leads to the 3×3 Hamilton matrix

h =

 0 −
√

2t 0

−
√

2t ∆ 0

0 0 0

 ,

which has eigenvalues E = 0, (∆±
√
∆2+8t2)/2. For the sake of simplicity we consider

the limit ∆ � t whence the energies become E = 0, ∆+2t2/∆,−t2/∆. The eigenfunc-
tion for E1 = 0 is |ψ1〉 = d†−|0〉, the one for E2 = −2t2/∆ is |ψ2〉 ≈ d†+|0〉 and the one
for E3 = ∆+2t2/∆ is |ψ3〉 ≈ l†|0〉. In other words, the wave function for the high energy
state E3 has mainly ‘bridging orbital’ character, whereas those of the two low energy
states E1 and E2 have predominant d-character. Now consider the effective Hamiltonian

Heff = − t
2

∆

∑
i=1,2

d†idi −
t2

∆

(
d†1d2 +H.c.

)
.

It is obvious that the eigenenergies and corresponding eigenstates of Heff are the same as
the two low energy eigenstates of the original Hamiltonian. In other words, Heff describes
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the low energy sector of the full Hamiltonian and the high-energy bridging orbital has
disappeared.

With this reasoning, one is often omitting uncorrelated ‘bridging orbitals’ from the Hamil-
tonian H0 and uses an effective H̃0 that comprises only the correlated orbitals and ‘effec-
tive hopping integrals’. The latter can again be obtained by a fit to the band structure,
whereby however only bands with predominant d-character must be taken into account.
Clearly, this reduces the number of orbitals which is important if one uses numerical
methods.

2. Taking the limit of large CEF or, in the simplest case where the correlated electrons are
in octahedral coordination, the limit of large 10Dq. Then, one may restrict the basis to
states where the numbers of electrons in the t2g and eg orbitals are fixed. For example,
for Ni2+ (i.e. d8) in cubic symmetry one may assume in the limit of large 10Dq that the
six t2g-orbitals always are completely filled. Then, one needs to consider only the two
electrons in the partially filled eg level, resulting in a significant reduction of the number
of possible basis states. Similarly, for compounds containing early transition metals such
as Scandium, Titanium or Vanadium, one often assumes that the eg orbitals are so high in
energy that only the t2g orbitals need to be taken into account.

3. Finally, one may use the simplified form of the Coulomb interaction as in Eq. (14).

An example for this ‘reduction process’ can be found in the paper by Craco et al. [22] where
the authors discuss the photoemission and inverse photoemission spectrum of SmO1−xFxFeAs
thereby using a Hamiltonian which contains only the five Fe 3d orbitals and a Coulomb inter-
action of precisely the form (14) where Um,m′ and Jm,m′ are replaced by average values.

5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells
leads to multiplet splitting. The multiplets may be viewed as collective excitations of the ‘not-
so-many-body-system’ formed by the electrons in the shell. We have seen that a relatively
simple theory—essentially degenerate first order perturbation theory—describes the energies
of the multiplets quite well and gives a good description of the line spectra of free atoms. If
transition metal atoms are embedded into a solid the collective excitations of the electrons in
their partly filled 3d shells are modified by the crystalline electric field of their environment and
by hybridization with orbitals on neighboring atoms. If these effects are taken into account,
which is relatively easy if one uses the exact diagonalization method, the resulting ‘extended
multiplet theory’ turns out to be quite successful in reproducing a wide variety of experimental
results for transition metal compounds. While this ‘extended multiplet theory’ refers to a single
transition metal ion, we have also seen that there are simplifications and extensions of this
theory to lattice systems, i.e., the multiband Hubbard models. These then are the appropriate
models to describe compounds containing 3d or 4d transition metal ions.
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A Gaunt coefficients

m m′ c0 7 c2 21 c4 a0 49 a2 441 a4 b0 49 b2 441 b4

±2 ±2 1 −2 1 1 4 1 1 4 1

±2 ±1 0
√

6 −
√

5 1 −2 −4 0 6 5

±2 0 0 −2
√

15 1 −4 6 0 4 15
±1 ±1 1 1 −4 1 1 16 1 1 16

±1 0 0 1
√

30 1 2 −24 0 1 30
0 0 1 2 6 1 4 26 1 4 36

±2 ∓2 0 0
√

70 1 4 1 0 0 70

±2 ∓1 0 0 −
√

35 1 −2 −4 0 0 35

±1 ∓1 0 −
√

6 −
√

40 1 1 16 0 6 40

Table 5: Gaunt coefficients ck(2,m; 2,m′), and the ak(2,m; 2,m′) and bk(2,m; 2,m′)

m m′ c0 15 c2 33 c4 429
5
c6

±3 ±3 1 −5 3 −1

±3 ±2 0 5 −
√

30
√

7

±3 ±1 0
√

10
√

54 −
√

28

±3 0 0 0 −
√

63
√

84
±2 ±2 1 0 −7 6

±2 ±1 0
√

15
√

32 −
√

105

±2 0 0 −
√

20 −
√

3 4
√

14
±1 ±1 1 3 1 −15

±1 0 0
√

2
√

15 5
√

14
0 0 1 4 6 20

±3 ∓3 0 0 0 −
√

924

±3 ∓2 0 0 0
√

462

±3 ∓1 0 0
√

42 −
√

210

±2 ∓2 0 0
√

70
√

504

±2 ∓1 0 0 −
√

14 −
√

378

±1 ∓1 0 −
√

24 −
√

40 −
√

420

Table 6: The Gaunt coefficients ck(3,m; 3,m′)
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5.2 Erik Koch

1 Introduction

One of the profound Surprises in Theoretical Physics [1] is that magnetism is an inherently
quantum mechanical effect. Classically, magnetic moments originate from electric currents: A
current density ~j(~r ) generates a magnetic moment

~µ =
1

2

∫
~r ×~j d3r . (1)

These moments interact via the dipole-dipole interaction. The magnetostatic interaction energy
between two dipoles at a distance R, R̂ being the unit-vector from the position of the first to
that of the second dipole,

∆E =
µ0

4π

~µ1 · ~µ2 − 3(R̂ · ~µ1)(R̂ · ~µ2)

R3
=
~µ1 · ~µ2 − 3(R̂ · ~µ1)(R̂ · ~µ2)

4πε0c2 R3
(2)

depends on their distance and relative orientation. This can, however, not be the origin of the
magnetism found in actual materials: In a classical system charges cannot flow in thermody-
namic equilibrium, the celebrated Bohr-van Leeuwen theorem, and hence there are no magnetic
moments to begin with [2].
In quantum mechanics, however, non-vanishing charge currents in the ground state are not
uncommon: An electron in state Ψ(~r ) corresponds to a current density

~j(~r ) = − e~
2ime

(
Ψ(~r )∇Ψ(~r )− Ψ(~r )∇Ψ(~r )

)
(3)

which, for a complex wave function Ψ(~r ), is usually non-vanishing. According to (1) it pro-
duces a magnetic moment proportional to the expectation value of the angular momentum

~µL = − e~
2me

〈~L 〉 = −µB 〈~L 〉 . (4)

The constant of proportionality is the Bohr magneton µB. In particular, an atomic orbital
|n, l,m〉 has a magnetic moment proportional to its magnetic quantum number ~µ = −µBm ẑ.
Also the electron spin ~S carries a magnetic moment

~µS = −geµB 〈~S 〉 . (5)

The constant of proportionality between spin and magnetic moment differs from that between
orbital momentum and moment by the gyromagnetic ratio g0. Dirac theory gives ge = 2, which
is changed to ge ≈ 2.0023 . . . by QED corrections.
Atomic moments are thus of the order of µB. For two such moments at a distance of 1 Å the
magnetostatic energy (2) is of the order of 0.05 meV, corresponding to a temperature of less
than 1 K. Therefore, magnetic ordering which, e.g., in magnetite (Fe3O4), persists till about
860 K, must originate from an interaction other than the magnetostatic interaction of dipoles.
Indeed, it is the interplay of electronic properties which are apparently unrelated to magnetism,
the Pauli principle in combination with the Coulomb repulsion (Coulomb exchange) as well
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as the hopping of electrons (kinetic exchange) that leads to an effective coupling between the
magnetic moments in a solid.

The basic mechanisms of the exchange coupling are quite simple: Since many-body wave func-
tions must change sign under the permutation of Fermions, electrons of the same spin cannot be
at the same position. Electrons of like spin thus tend to avoid each other, i.e., the probability of
finding them close to each other tends to be lower than for electrons of opposite spin (exchange
hole). In that sense the Coulomb energy between two electrons depends on their relative spins.
By this argument, aligning electron spins tends be energetically favorable. This Coulomb ex-
change is the basis of Hund’s first rule. When more than one atom is involved, electrons can
hop from one site to its neighbor. This kinetic term is, again, modified by the Pauli principle,
as the hopping to an orbital on the neighboring atom will only be possible, if there is not al-
ready an electron of the same spin occupying that orbital and by the Coulomb repulsion among
the electrons. This is the idea of kinetic exchange. When Coulomb exchange and kinetic terms
work together we speak of double exchange. In that case the electron-hopping serves to mediate
the spin-correlation created on an atom to its neighbors.

Exchange mechanisms are idealizations of characteristic situations found in real materials. As
such they are merely approximations, but they afford a simplification of the complicated real-
istic description, which provides a good basis for thinking about the relevant effects in a real
material. We will start by discussing the effect of Coulomb exchange matrix elements (Sec. 2).
To keep things simple, we will discuss a two-orbital model and only mention atomic multiplets
and Hund’s rule. Next we turn to exchange mechanisms involving also hopping (Sec. 3). We
start by looking at the a simple two-site model with two electrons. Focussing on the limit of
strong electronic correlations (Coulomb repulsion dominating electron hopping), we introduce
the method of downfolding to derive an effective Hamiltonian in which an explicit coupling
of the electron spins appears. While conceptually simple, this direct exchange mechanism is
rarely found in real materials. There hopping between correlated orbitals is usually mediated
by a weakly correlated orbital. This is the superexchange mechanism. The derivation is very
similar to that of kinetic exchange. However, the number of states involved, makes explicit
book-keeping tedious. To simplify our work, we introduce second quantization as a simple no-
tation of many-electron states. This also enables us to easily discuss double exchange, which
combines direct exchange on an atom with coupling to the neighbors via electron hopping. Ex-
amples are the superexchange between transition metal atoms bridged by an oxygen at a right
angle, which arises from the Coulomb exchange on the oxygen, as well as the exchange in
mixed-valence compounds (Sec. 4). The competition between kinetic and double exchange is
described by the Goodenough-Kanamori rules. Finally we show that exchange is not restricted
to coupling spins, but can also produce interactions between orbital occupations (Sec. 5).

How exchange gives rise to an effective coupling of momenta is most easily shown for single-
or two-site models. To see how these results carry over to solids, we consider the case of direct
exchange (Sec. 6). Starting from the Hubbard model we show how taking the limit of strong
correlations leads to the t-J-model, which, for half-filling, simplifies to the Heisenberg model.
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2 Coulomb exchange

The Coulomb repulsion between electrons,

HU =
∑
i<j

1

|~ri − ~rj|
, (6)

is manifestly spin-independent. Nevertheless, because of the antisymmetry of the many-electron
wave function, the eigenenergies of HU depend on spin. This is the basis of the multiplet struc-
ture in atoms and of Hund’s first two rules.
To understand the mechanism of this Coulomb exchange we consider a simple two-electron
model. In the spirit of tight-binding, we assume that we have solved the two-electron Hamil-
tonian H0, replacing the interaction term HU , e.g., as a self-consistent potential

∑
i U(~ri), ob-

taining an orthonormal set of one-electron eigenstates ϕα(~r ) with eigenvalues εα. We now ask
for the effect of re-introducing the interaction HU −

∑
i U(~ri). The largest effect we will find

for states that are degenerate.
Let us consider two orbitals α = a, b. Then the two-electron Slater determinants with spins σ
and σ′

Ψa,σ; bσ′(~r1, s1; ~r2, s2) =
1√
2

∣∣∣∣∣ ϕa(~r1) σ(s1) ϕa(~r2) σ(s2)

ϕb(~r1)σ
′(s1) ϕb(~r2)σ

′(s2)

∣∣∣∣∣ (7)

=
1√
2

(
ϕa(~r1)ϕb(~r2) σ(s1)σ

′(s2)− ϕb(~r1)ϕa(~r2) σ
′(s1)σ(s2)

)
are degenerate eigenstates of H0 with eigenvalue εa + εb, independent of the spin orientations.
To see how this degeneracy is lifted, we calculate the matrix elements of HU in the basis of the
Slater determinants Ψa,σ; bσ′ .
When both electrons have the same spin (σ = σ′), we can factor out the spin functions

Ψa,σ; bσ =
1√
2

(
ϕa(~r1)ϕb(~r2)− ϕb(~r1)ϕa(~r2)

)
σ(s1)σ(s2) (8)

and obtain 〈
Ψa,σ; b,σ

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa,σ; b,σ

〉
=

1

2

(
Uab − Jab − Jba + Uba

)
= Uab − Jab (9)

where the direct terms are the Coulomb integral

Uab =

∫
d3r1

∫
d3r2

|ϕa(~r1)|2 |ϕb(~r2)|2

|~r1 − ~r2|
(10)

while the cross terms give the exchange integral

Jab =

∫
d3r1

∫
d3r2

ϕa(~r1)ϕb(~r1) ϕb(~r2)ϕa(~r2)

|~r1 − ~r2|
. (11)

For the states where the electrons have opposite spin (σ′ = −σ)〈
Ψa,σ; b,−σ

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa,σ; b,−σ

〉
= Uab (12)
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the diagonal matrix element has no exchange contribution, as the overlap of the spin functions
for the cross terms vanish. There are however off-diagonal matrix elements〈

Ψa↑; b↓

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa↓; b↑〉 = −Jab . (13)

Since HU does not change the spins, these are the only non-zero matrix elements. In the basis
of the states Ψ↑↑, Ψ↑↓, Ψ↓↑ and Ψ↓↓ the Coulomb term is thus given by

HU =


Uab − Jab 0 0 0

0 Uab −Jab 0

0 −Jab Uab 0

0 0 0 Uab − Jab

 . (14)

The triplet states Ψ↑↑ and Ψ↓↓ are obviously eigenstates of HU with eigenenergy

∆εtriplet = Uab − Jab . (15)

Diagonalizing the 2×2 submatrix, we obtain the third triplet state
(
Ψ↑↓ + Ψ↓↑

)
/
√
2 and the

singlet state
(
Ψ↑↓ − Ψ↓↑

)
/
√
2

1√
2
(Ψ↑↓ − Ψ↓↑) =

1√
2

(
ϕa(~r1)ϕb(~r2) + ϕb(~r1)ϕa(~r2)

) 1√
2

(
|↓↑〉 − |↑↓〉

)
(16)

with energy
∆εsinglet = Uab + Jab . (17)

To see whether the triplet or the singlet is lower in energy, we need to know the sign of the
exchange matrix element. While the Coulomb integral Uab, having a positive integrand, is
obviously positive, it is less obvious that also Jab > 0. Introducing Φ(~r ) = ϕa(~r )ϕb(~r ) and
Fourier transforming to Φ(~k ) =

∫
d3k Φ(~r ) e−i

~k·~r we obtain [3, 4]:

Jab =

∫
d3r1 Φ(~r1)

∫
d3r2

1

|~r1 − ~r2|
Φ(~r2)︸ ︷︷ ︸

=(2π)−3
∫
dk Φ(k)eikr14π/k2

(18)

=
1

(2π)3

∫
d3k

∫
d3r1 e

i~k·~r1Φ(~r1)︸ ︷︷ ︸
=Φ(k)

Φ(~k )
4π

k2
(19)

=
1

(2π)3

∫
d3k |Φ(~k )|2 4π

k2
> 0 (20)

Thus the triplet states are below the singlet state by an energy 2Jab. If the ϕα are degenerate
atomic orbitals, this is an example of Hund’s first rule: For an atomic shell, the lowest state will
have maximum spin.
Since HU only contains interactions within the system of electrons, it commutes with the total
orbital momentum [HU , ~Ltot] = 0. Obviously it also commutes with the total spin ~Stot. The
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Fig. 1: Angular momenta of the Hund’s rules ground state 2S+1LJ for d-shells.

eigenstates of H0 + HU can thus be classified by their quantum numbers L and S. These
terms are written as 2S+1L. For p- and d-shells they are listed in table 1. Hund’s rules give
the multiplet term with the lowest energy: For a given shell, this lowest state has the largest
possible spin (Hund’s first rule). If there are several terms of maximum multiplicity, the one
with lowest energy has the largest total orbital momentum (Hund’s second rule). There is a
third Hund’s rule, which, however, is not related with the electron-electron repulsion but with
spin-orbit coupling: Within L-S coupling HSO splits the atomic orbitals into eigenstates of the
total angular momentum ~J = ~Ltot + ~Stot. The multiplets 2S+1L thus split into 2S+1LJ . The term
with the lowest energy is the one with smallest J if the shell is less than half-filled and largest
J if it is more than half-filled (Hund’s third rule). These rules are illustrated for d-shells in
Fig. 2. A more detailed discussion of multiplet effects and the Coulomb interaction in atomic-
like systems can be found in [5, 6], calculations of multiplets including spin-orbit coupling can
be performed online, at http://www.cond-mat.de/sims/multiplet.

s 2S

p1 or p5 2P

p2 or p4 1S 1D 3P

p3 2P 2D 4S

d1 or d9 2D

d2 or d8 1S 1D 1G 3P 3F

d3 or d7 2P
2×
2D 2F 2G 2H 4P 4F

d4 or d6
2×
1S

2×
1D 1F

2×
1G 1I

2×
3P 3D

2×
3F 3G 3H 5D

d5 2S 2P
3×
2D

2×
2F

2×
2G 2H 2I 4P 4D 4F 4G 6S

Table 1: Atomic multiplets for open s-, p-, and d-shells. For terms that appear multiple times
the number of distinct terms is indicated. The Hund’s rules ground state is indicated in bold.

http://www.cond-mat.de/sims/multiplet
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3 Kinetic exchange

When electron-hopping plays the main role in the exchange mechanism, we speak of kinetic
exchange. In contrast to Coulomb exchange the resulting interactions are usually antiferro-
magnetic, i.e., they prefer antiparallel spins. The physical principle of kinetic exchange can be
understood in a simple two-site system. We discuss this problem in some detail and introduce
two key concepts along the way: downfolding and second quantization. As we will see in the
subsequent sections, realistic exchange mechanisms are natural generalizations of this simple
mechanism [7–9].

3.1 A toy model

As a toy model, we consider the minimal model of an H2 molecule. We restrict ourselves to
two (orthonormal) orbitals, ϕ1 and ϕ2, separated by some distance. If we add an electron to the
system, that electron will be able to move between the two orbitals, with a matrix element −t.
Because we allow the electron to only occupy two orbitals, the Hamiltonian is a 2× 2 matrix

H =

(
0 −t
−t 0

)
. (21)

This tight-binding Hamiltonian is easily diagonalized giving the linear combinations

ϕ± =
1√
2

(
ϕ1 ± ϕ2

)
(22)

as eigenstates with eigenenergies ε± = ∓t. We have written the hopping matrix element as −t,
so that for t > 0 the state without a node, ϕ+, is the ground state.
Pictorially we can write the basis states by specifying which orbital the electron occupies. For
a spin-up electron we then write

ϕ1 = |↑ , · 〉 and ϕ2 = | · , ↑ 〉 (23)

where we now represent the basis states by where the electron is located.
If there are two electrons in the system, i.e., one electron per orbital, we can again use basis
states which just specify, which orbitals the electrons occupy. For two electrons of opposite
spin we then find two states where the electrons are in different orbitals

|↑ , ↓ 〉 |↓ , ↑ 〉 “covalent states”

and two states where the electrons are in the same orbital

|↑↓ , · 〉 | · , ↑↓〉 “ionic states”.

In this basis the Hamiltonian matrix for our simple model of the H2 molecule has the form

H =


0 0 −t −t
0 0 +t +t

−t +t U 0

−t +t 0 U


|↑ , ↓ 〉
|↓ , ↑ 〉
|↑↓ , · 〉
| · , ↑↓〉

(24)
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Fig. 2: Spectrum of the two-site Hubbard model as a function of U . For large U there are two
levels with energy close to zero. Their energy difference corresponds to the exchange energy.
The remaining two states with ionic character have an energy roughly proportional to U .

As before, moving an electron to a neighboring orbital gives a matrix element −t, with an
additional sign when the order of the electrons is changed (Fermi statistics!). For the ionic states,
where both electrons are in the same orbital, we have the Coulomb matrix element U . Coulomb
matrix elements involving electrons on different sites are, for reasonably large distance between
the sites, negligible. So there is no Coulomb exchange, just the local Coulomb repulsion in our
model. Diagonalizing H we find the energy spectrum and the corresponding eigenstates:

ε± =
U

2
±
√
U2 + 16 t2

2
, Ψ± =

(
|↑ , ↓ 〉 − |↓ , ↑ 〉 − ε±

2t

[
|↑↓ , · 〉+ | · , ↑↓〉

])√
2 + ε2

±/(2t
2)

εcov = 0 , Ψcov =
1√
2

(
|↑ , ↓ 〉+ |↓ , ↑ 〉

)
εion = U , Ψion =

1√
2

(
|↑↓ , · 〉 − | · , ↑↓〉

)
The eigenenergies as a function of U are shown in figure 2.

3.2 Direct exchange

Again, we have found that the energy of two-electron states depends on the relative spin of the
electrons. To understand this more clearly we analyze the limit when U is much larger than t.
From Fig. 2 we see that there are two states with energies that increase with U . They are the
states Ψion and Ψ+ that have considerable contributions of the ionic states. Then there are two
states whose energy is close to zero. They are the states that have mainly covalent character.
To find the energy and the character of these levels in the limit U → ∞ we can just expand
ε− → −4t2/U and ε+ → U + 4t2/U . We thus see that while the purely covalent state, the
spin-triplet state Ψcov, is independent of U , Ψ− has a slightly lower energy due to some small
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direct exchange

Fig. 3: Simple picture of direct exchange: The antiparallel alignment of the spins (left) is
favored, since it allows the electrons to hop to the neighboring site. For parallel spins (right)
hopping is suppressed by the Pauli principle.

admixture of the ionic states. In the limit U → ∞ it becomes the maximally entangled state
(| ↑ , ↓ 〉 − |↓ , ↑ 〉)/

√
2. We see that for large U , Ψ− cannot be expressed, even approximately,

as a Slater determinant, see also Sec. 3.4. This is the reason why strongly correlated systems
are so difficult to describe.
An instructive method to analyze the large-U limit, which can readily be generalized to more
complex situations, where we can no longer diagonalize the full Hamiltonian, is the down-
folding technique. The mathematical background is explained in the appendix. The idea of
downfolding is to partition the Hilbert space into parts that are of interest, here the low-energy
covalent type states, and states that should be projected out, here the high-energy ionic states.
With this partitioning we can view the Hamiltonian matrix (24) as built of 2 × 2 submatrices.
Calculating the inverse on the space of covalent states (see Eqn. (89) in the appendix) we find
an effective Hamiltonian which now operates on the covalent states only:

Heff(ε) =

(
−t −t
+t +t

)(
ε− U 0

0 ε− U

)−1(
−t +t

−t +t

)
≈ −2t2

U

(
1 −1
−1 1

)
. (25)

In the last step we have made an approximation by setting ε to zero, which is roughly the energy
of the states with covalent character.
The process of eliminating the ionic states thus gives rise to an effective interaction between
the covalent states, which was not present in the original Hamiltonian (24). Diagonalizing the
effective Hamiltonian, we find

εs = −
4t2

U
, Ψs =

1√
2

(
|↑ , ↓ 〉 − |↓ , ↑ 〉

)
εt = 0 , Ψt =

1√
2

(
|↑ , ↓ 〉+ |↓ , ↑ 〉

)
These states correspond to the singlet and triplet states in the hydrogen molecule. Here the
singlet-triplet splitting is 2Jdirect = −4t2/U . The other states in the triplet are those with two
electrons of parallel spin: | ↑ , ↑ 〉 and | ↓ , ↓ 〉. They, of course, also have energy zero, as
hopping is impossible due to the Pauli principle.
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To understand the nature of the effective interaction in the low-energy Hamiltonian we observe
that the off-diagonal matrix elements in (25) correspond to flipping the spin of both electrons
(“exchange”). Remembering that

~S1 · ~S2 = Sz1S
z
2 +

1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
(26)

we see that the effective interaction will contain a spin-spin coupling term.

3.3 Second quantization for pedestrians

A systematic way for obtaining the form of the effective interaction is by using second quantiza-
tion, which will also help us simplify our notation. For a mathematically rigorous introduction
see, e.g., [10]. In second quantization we use operators to specify in which orbital an electron
is located. As an example, c†1,↑ puts a spin-up electron in orbital ϕ1. Denoting the system with
no electrons by |0〉, the basis states that we have considered so far are written as

|↑ , · 〉 = c†1↑|0〉
| · , ↑ 〉 = c†2↑|0〉

for the single-electron states, and

|↑ , ↓ 〉 = c†2↓c
†
1↑|0〉

|↓ , ↑ 〉 = c†2↑c
†
1↓|0〉

|↑↓ , · 〉 = c†1↓c
†
1↑|0〉

| · , ↑↓〉 = c†2↓c
†
2↑|0〉

(27)

for the two-electron states. In order to describe the hopping of an electron from one orbital to
another, we introduce operators that annihilate an electron. For example c1↑ removes a spin-up
electron from orbital ϕ1. The hopping of an up electron from ϕ1 to ϕ2 is thus described by the
operator c†2↑c1↑ that first takes an electron out of orbital 1 and then creates one in orbital 2. The
Hamiltonian for a spin-up electron hopping between two orbitals can thus be written as

H = −t
(
c†1↑c2↑ + c†2↑c1↑

)
. (28)

Calculating the matrix elements with the single-electron basis states, we recover the matrix (21).
For the calculation we need to know that the operators that describe the electrons anticommute.
This reflects the fact that a many-electron wave function changes sign when two electrons are
exchanged. Using the notation {a, b} = ab+ ba we have{

ciσ, cjσ′
}
= 0

{
c†iσ, c

†
jσ′

}
= 0

{
ciσ, c

†
jσ′

}
= δi,jδσ,σ′

Moreover, trying to annihilate an electron in a state where there is no electron, results in zero:
ciσ|0〉 = 0. Finally, as the notation implies, c†iσ is the adjoint of ciσ and 〈0|0〉 = 1.
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To describe the Coulomb repulsion between two electrons in the same orbital we use that
niσ = c†iσciσ returns 0 when operating on a basis state with no spin-σ electron in orbital ϕi,
and has eigenvalue 1 for a basis state with a spin-σ electron in orbital ϕi. It is thus called the
occupation-number operator. The Coulomb repulsion in orbital ϕ1 is then described by the op-
erator Un1↑n1↓, which is non-zero only when there is a spin-up and a spin-down electron in ϕ1.
The Hamiltonian for our two-orbital model, where both up- and down-spin electrons can hop,
and including the Coulomb repulsion for two electrons in the same orbital, is thus given by

H = −t
(
c†1↑c2↑ + c†2↑c1↑ + c†1↓c2↓ + c†2↓c1↓

)
+ U

(
n1↑n1↓ + n2↑n2↓

)
= −t

∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (29)

You should convince yourself that when you calculate the matrix elements for the two-electron
states, you recover the matrix (24). The great advantage of writing the Hamiltonian in second-
quantized form is that it is valid for any number of electrons, while the matrix form is restricted
to a particular number of electrons.
Coming back to the effective Hamiltonian (25), we can rewrite Heff in second quantized form:

Heff = −2t2

U

(
c†2↑c

†
1↓c1↓c2↑ − c

†
2↓c
†
1↑c1↓c2↑ − c

†
2↑c
†
1↓c1↑c2↓ + c†2↓c

†
1↑c1↑c2↓

)
(30)

= −2t2

U

(
c†1↓c1↓c

†
2↑c2↑ − c

†
1↑c1↓c

†
2↓c2↑ − c

†
1↓c1↑c

†
2↑c2↓ + c†1↑c1↑c

†
2↓c2↓

)
Looking at equation (82) in the appendix we see that the spin operators are given in second
quantization by

Sxi =
1

2

(
c†i↑ci↓ + c†i↓ci↑

)
Syi = − i

2

(
c†i↑ci↓ − c

†
i↓ci↑

)
Szi =

1

2

(
ni↑ − ni↓

)
. (31)

From this we find (after some calculation) that the effective Hamiltonian can be written in terms
of the spin operators

Heff =
4t2

U

(
~S1 · ~S2 −

n1 n2

4

)
. (32)

To conclude, we again find that the completely spin-independent Hamiltonian (29), in the limit
of large U , gives rise to a spin-spin interaction. Since the exchange coupling J = 4t2/U

is positive, states with antiparallel spins have lower energy. Thus direct exchange leads to
antiferromagnetism.
It is important to realize that the singlet-triplet splitting for the effective Hamiltonian really
arises from the admixture of ionic states into the singlet. By downfolding we eliminate the
high-energy ionic states, i.e., charge fluctuations, from our Hilbert space. The eliminated states
then give rise to an effective spin-spin interaction on the new reduced low-energy Hilbert space.
We must therefore keep in mind that, when working with the effective Hamiltonian (32), we are
considering slightly different states than when working with the original Hamiltonian (29).
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3.4 Mean-field treatment

To conclude our discussion of the simplest kinetic exchange mechanism, it is instructive to
consider the results of a mean-field treatment. For the two-electron Hamiltonian (24) it is
straightforward to find the Hartree-Fock solution by directly minimizing the energy expec-
tation value for a two-electron Slater determinant. The most general ansatz is a Slater de-
terminant constructed from an orbital ϕ(θ↑) = sin(θ↑)ϕ1 + cos(θ↑)ϕ2 for the spin-up, and
ϕ(θ↓) = sin(θ↓)ϕ1 + cos(θ↓)ϕ2 for the spin-down electron:

|Ψ(θ↑, θ↓)〉 =
(
sin(θ↓) c

†
1↓ + cos(θ↓) c

†
2↓

) (
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

)
|0〉 . (33)

Translating the second quantized states via (27) into the basis used for writing the Hamiltonian
matrix (24), we find the expectation value

〈Ψ(θ↑, θ↓)|H|Ψ(θ↑, θ↓)〉 = −2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)

+U
(
sin2 θ↑ sin

2 θ↓ + cos2 θ↑ cos
2 θ↓
)
. (34)

If the Slater determinant respects the mirror symmetry of the H2 molecule, it follows that the
Hartree-Fock orbitals for both spins are the bonding state ϕ+ (θ = π/4). This is the restricted
Hartree-Fock solution. The corresponding energy is E(π/4, π/4) = −2t + U/2. The excited
states are obtained by replacing occupied orbitals ϕ+ with ϕ−. Altogether we obtain the re-
stricted Hartree-Fock spectrum

E( π/4, π/4) = −2t+ U/2

E( π/4,−π/4) = U/2

E(−π/4, π/4) = U/2

E(−π/4,−π/4) = 2t+ U/2

(35)

Comparing to the energy for a state with both electrons of the same spin (E = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry. The states (35) are spin-
contaminated [11]. Even worse, the Hartree-Fock ground state, and consequently all the states,
are independent of U . The weight of the ionic states is always 1/2, leading to an increase of the
energy with U/2.
To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. For U < 2t this does not lead to a state of
lower energy. For larger U there is a symmetry-broken ground state

ΨUHF = Ψ(θ, π/2−θ) with θ(U) =
π

4
± 1

2
arccos

(
2t

U

)
. (36)

Its energy is EUHF = −2t2/U . This looks similar to the singlet energy εs, however, with a
different prefactor. Still there is no triplet state (spin contamination) and, for U → ∞, the
overlap with the true singlet ground state goes to |〈ΨUHF |Ψ−〉|2 = 1/2. In an extended system
the breaking of the symmetry implies long-range order.
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Fig. 4: Energy expectation value for a Slater determinant Ψ(θ, π/2−θ) for U=0, t, 2t, . . . , 6t.
When U ≤ 2t the minimum is at θ = π/4. This is the Hartree-Fock solution with the bonding
orbitals ϕ+ occupied. For U ≥ 2t, θ = π/4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

3.5 Superexchange

For the direct exchange mechanism discussed above, it is crucial that there is hopping between
the orbitals. These orbitals are typically localized d-orbitals of transition-metals. However,
direct exchange cannot explain the antiferromagnetism of most transition-metal compounds:
Since the d-orbitals are so localized, hopping can only occur between orbitals on different atoms
that are very close to each other. But most antiferromagnetic insulators are transition-metal
oxides, so that the transition-metal cations are separated by large oxygen anions. In such a
situation, shown in figure 5, direct hopping between the d-orbitals is very unlikely. The concept
of direct exchange can, however, be extended to these cases by taking into account hopping via
the intermediate p-orbital. This mechanism is called superexchange.
To understand superexchange, we consider two d-orbitals with an oxygen p-orbital in-between.
We introduce the operator c†iσ, which creates a spin-σ electron in the d-orbital at site i, where
i = 1 denotes the d-orbital on the left and i = 2 the one on the right (see Fig. 5). Likewise
c†pσ creates an electron in the p-orbital. The energy of an electron in a d- or p-orbital is εd and
εp, respectively. The Coulomb repulsion between two electrons in a d-orbital is Ud, while we
neglect the repulsion between electrons in the p-orbital. Finally, −tpd is the hopping between p
and d orbitals. The Hamiltonian for the system of figure 5 is then given by

H =
∑
σ

(
εd
∑
i

niσ + εp npσ − tpd
∑
i

(
c†iσcpσ + c†pσciσ

))
+ Ud

∑
i

ni↑ni↓ . (37)

In the absence of hopping, the ground state will have singly occupied d-orbitals, corresponding
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Fig. 5: In superexchange an oxygen p-orbital mediates the exchange interaction between two
transition-metal d-orbitals.

to a positively charged transition-metal ion, and a doubly occupied p-orbital, corresponding to
an O2− ion. To study a possible coupling between the spins on the d-orbitals, we first look at
the case where both d-spins point upwards (see the far right of Fig. 6). The Hamiltonian matrix
in the corresponding Hilbert space is then given by

H =

 0 tpd tpd

tpd Ud+∆pd 0

tpd 0 Ud+∆pd

 c†2↑c
†
p↓c
†
p↑c
†
1↑|0〉

c†2↑c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↑c
†
1↑|0〉

(38)

where we have chosen 2(εp+εd) as the zero of our energy scale and defined ∆pd = εd−εp. The
basis states of the Hilbert space are given on the right and the lines indicate the partitioning of
the Hilbert space for downfolding. The effective Hamiltonian for parallel spins on d-orbitals is
then

Heff = (tpd, tpd)

(
ε− (Ud+∆pd) 0

0 ε− (Ud+∆pd)

)(
tpd
tpd

)
≈ −

2t2pd
Ud+∆pd

(39)

where in the last step we have set ε to zero.
For antiparallel spins the Hilbert space is nine-dimensional. We sort the basis states into groups
that are connected by the hopping of one electron. Starting from the two states with singly oc-
cupied d-orbitals, the second group has one of the p-electrons transferred to a d-orbital, leading
to one doubly occupied d, while the last group has a second electron hopped, leading to either
an empty p- or an empty d-orbital. The corresponding Hamiltonian matrix is

0 0 +tpd +tpd 0 0 0 0 0

0 0 0 0 +tpd +tpd 0 0 0

+tpd 0 Ud+∆pd 0 0 0 −tpd 0 −tpd
+tpd 0 0 Ud+∆pd 0 0 0 −tpd −tpd
0 +tpd 0 0 Ud+∆pd 0 +tpd 0 +tpd
0 +tpd 0 0 0 Ud+∆pd 0 +tpd +tpd

0 0 −tpd 0 +tpd 0 Ud 0 0

0 0 0 −tpd 0 +tpd 0 Ud 0

0 0 −tpd −tpd +tpd +tpd 0 0 2(Ud+∆pd)



c†2↓c
†
p↓c
†
p↑c
†
1↑|0〉

c†2↑c
†
p↓c
†
p↑c
†
1↓|0〉

c†2↓c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↓c
†
1↑|0〉

c†2↑c
†
p↓c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↑c
†
1↓|0〉

c†p↓c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↓c
†
p↑|0〉

c†2↓c
†
2↑c
†
1↓c
†
1↑|0〉
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superexchange

Fig. 6: Simple picture of superexchange. Here the orbital on the central site is different from
the orbitals on the sides. Typically, in the center there is an oxygen p-orbital coupling two
d-orbitals. This situation is illustrated in Fig. 5. For antiparallel spins on the d-orbitals there
are two ways that two consecutive hopping processes are possible. For parallel spins the Pauli
principle suppresses the second hopping process.

Downfolding the high energy states with at least one doubly occupied d-orbital, setting ε = 0

and expanding in 1/Ud (remembering (A + ∆)−1 ≈ A−1(1 − ∆A−1)), which is equivalent to
second-order perturbation theory, leads to

Heff = H00 + T01

(
ε−

(
H11 + T12 (ε−H22)

−1 T21

))−1
T10

≈ H00 − T01H
−1
11 T10 − T01H

−1
11 T12H

−1
22 T21H

−1
11 T10 (40)

= −
2t2pd

Ud +∆pd

(
1 0

0 1

)
−

2t4pd
(Ud +∆pd)2

(
1

Ud
+

1

Ud +∆pd

)(
1 −1
−1 1

)
. (41)

The first term is the same as for parallel spins (39). The additional term is of the same type
as that found for the direct exchange mechanism. Again, it can be written in terms of spin
operators. In the present case they are the spin operators for the d-orbitals, while the p-orbital
does no longer appear in the spin Hamiltonian. The spin coupling is now given by

J =
4t4pd

(Ud +∆pd)2

(
1

Ud
+

1

Ud +∆pd

)
, (42)

which reflects that the superexchange mechanism involves four hopping processes (see Fig. 6),
while direct exchange only involves two hoppings (see Fig. 3). The hopping process involving
only a single doubly occupied d-orbital (middle of Fig. 6) is a generalization of the simple direct
exchange with an effective hopping teff = t2pd/(Ud+∆pd) between the d-orbitals and gives the
first term, 4t2eff/Ud, in (42), while the hopping process involving two occupied d-orbitals (left in
Fig. 6) gives the second term 4t4pd/(Ud+∆pd)

3.
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3.6 Ferromagnetic superexchange

In the discussion of superexchange we have, so far, assumed that the oxygen ion lies between
the two d-orbitals. This 180◦ geometry is shown on the left of Fig. 7. The situation is quite
different, when the oxygen forms a 90◦ bridge between the two d-orbitals, see the right of
Fig. 7. By symmetry, there is only hopping between the d- and the p-orbital that point towards
each other (cf. the Slater-Koster integrals). As there is also no hopping between the p-orbitals
on the same site, the Hamiltonian for the system separates into two parts, one involving only
the d orbital on site 1 and the px orbital and the other only involving d on site 2 and py, e.g.:

H1 =

(
0 +tpd

+tpd Ud +∆pd

)
c†x↓c

†
x↑c
†
1↓|0〉

c†x↓c
†
1↓c
†
1↑|0〉

(43)

Since it is not possible for an electron on site 1 to reach site 2, none of the superexchange
processes discussed above are operational. Nevertheless, the energy for the system depends
on the relative orientation of the electron spins in the two d-orbitals. To see this, we have to
remember that Coulomb exchange prefers a triplet for two electrons in different orbitals on the
same site (Hund’s first rule). Including Jxy on the oxygen (but neglecting Up for simplicity),
we get, for the triplet state with two up-electrons, the Hamiltonian (note that there is no Hund’s
rule term for the states with three electrons, i.e. one hole, on the two oxygen orbitals px and py)

0 tpd tpd 0

tpd Ud+∆pd 0 tpd
tpd 0 Ud+∆pd tpd

0 tpd tpd 2(Ud+∆pd)− Jxy


c†1↑c

†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↑c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↑c
†
2↓c
†
2↓|0〉

. (44)

The first state has the two up-electrons on the d-orbitals. The second group of states has one
d-orbital doubly occupied, while the last state has both d doubly occupied, i.e., two electrons
on the two p-orbitals – the situation discussed in Sec. 2. Calculating the effective Hamiltonian
as in (40) gives the energy of the triplet state

Heff = −
2t2pd

Ud +∆pd

−
4t4pd

(Ud +∆pd)2

1

2(Ud+∆pd)− Jxy
. (45)

Starting from singly occupied d orbitals with opposite spin, we obtain

0 0 tpd 0 tpd 0 0 0

0 0 0 tpd 0 tpd 0 0

tpd 0 Ud+∆pd 0 0 0 tpd 0

0 tpd 0 Ud+∆pd 0 0 0 tpd
tpd 0 0 0 Ud+∆pd 0 tpd 0

0 tpd 0 0 0 Ud+∆pd 0 tpd

0 0 tpd 0 tpd 0 2(Ud+∆pd) −Jxy
0 0 0 tpd 0 tpd −Jxy 2(Ud+∆pd)



c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0〉

c†1↓c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0〉

c†1↓c
†
1↑c
†
x↓c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0〉

c†1↓c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↓c
†
y↑c
†
2↓c
†
2↑|0〉
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Fig. 7: Dependence of superexchange on geometry: When the d-orbitals interact via an oxygen
in-between (the 180◦ geometry shown on the left), both d-orbitals couple to the same p-orbital,
while the hopping to the two other p-orbitals vanishes by symmetry. The result is antiferromag-
netic superexchange. When the angle of the M-O-M group is 90◦ (right), the d-orbitals couple
to orthogonal p-orbitals, making it impossible for an electron on one d-orbital to reach the d-
orbital on the other site. In this case, superexchange is mediated via the Coulomb exchange on
the connecting oxygen.

giving the effective Hamiltonian

Heff = −
2t2pd

Ud +∆pd

(
1 0
0 1

)
−

4t4pd
(Ud +∆pd)2

1

4(Ud+∆pd)2 − J2
xy

(
2(Ud+∆pd) +Jxy

+Jxy 2(Ud+∆pd)

)
.

Rearranging the matrices, we can bring this to the canonical form

Heff =−
(

2t2pd
Ud +∆pd

+
4t4pd

(Ud +∆pd)2

1

2(Ud+∆pd)− Jxy

)
+++

4t4pd
(Ud +∆pd)2

Jxy
4(Ud +∆pd)2 − J2

xy

(
1 −1
−1 1

)
. (46)

The first term is just the energy of the triplet state (45). The second gives the difference in
energy to the singlet. Despite the fact that the electrons cannot be transferred between the d
orbitals we thus get a singlet-triplet splitting. This coupling of the spins originates from the
states with both d-orbitals doubly occupied: the two remaining electrons, one each on the px-
and py-orbital, respectively, form a triplet of energy 2Jxy lower than that of the singlet (see
Eqn. (15)). When the electrons hop back from the d-orbital, the entanglement of the spins is
transferred to the remaining electron on the d. Originating from the Coulomb exchange on the
oxygen, the exchange coupling is ferromagnetic

J = −
4t4pd

(Ud +∆pd)2

2Jxy
4(Ud +∆pd)2 − J2

xy

. (47)

It tends to be significantly weaker than the antiferromagnetic 180◦ superexchange coupling (42).
When the angle of the M-O-M group is larger than 90◦, hopping to both p-orbitals becomes
possible according to the Slater-Koster rules and the antiferromagnetic superexchange processes
of Fig. 6 start to compete with the ferromagnetic superexchange mediated by the Coulomb
exchange on the oxygen. This is one basis of the Goodenough-Kanamori rules [7, 12].
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4 Double exchange

Double exchange takes its name from the fact that it results from a combination of Coulomb-
and kinetic-exchange. In that sense the 90◦ superexchange mechanism discussed above is a
double exchange mechanism. More commonly, double exchange is encountered in mixed-
valence compounds. So far we have considered systems with an integer number of electrons
per site. When correlations are strong the lowest energy state will essentially have the same
number of electrons on every site and hopping will be strongly suppressed by the Coulomb
repulsion energy U as we have seen for the simple two-site model of kinetic exchange. In a
mixed valence system the number of electrons per site is non-integer, so even for large U some
site will have more electrons than others. Thus electrons can hop between such sites without
incurring a cost U . Hence these compounds are usually metallic.
As a simple example we consider two sites with two orbitals of the type discussed in Sec. 2.
We assume that each site has one electron in orbital a, and that there is only a single electron
in the b-orbitals. This electron can hop between the sites via a hopping matrix element tbb. The
situation is illustrated in Fig. 8.
When all three spins are up, Sztot = 3/2, we have a simple 2× 2 Hamiltonian, taking Uab as our
zero of energy

H =

(
−Jab −tbb
−tbb −Jab

)
. (48)

The eigenstates are the bonding/antibonding linear combinations of the Hund’s rule triplets.
Their dispersion is ±t:

ε± = −Jab ± tbb . (49)

We see that the hopping couples the two sites into a state with the electrons in the a-orbital in a
triplet state:

Ψ± =
1√
2

(
| ↑, ↑〉1 | · , ↑〉2 ± | · , ↑〉1 | ↑, ↑〉2

)
=

1√
2

(
| ↑, · 〉b ± | · , ↑〉b

)
| ↑, ↑〉a . (50)

In the language of quantum information, the hopping electron teleports the local Hund’s rule
triplet to the a-orbitals.
To obtain the Hamiltonian for the Sztot = 1/2 states, we arrange the basis states in the order they
are connected by matrix elements, see Fig. 8. We obtain the tridiagonal Hamiltonian

H =



−Jab −tbb 0 0 0 0

−tbb 0 −Jab 0 0 0

0 −Jab 0 −tbb 0 0

0 0 −tbb 0 −Jab 0

0 0 0 −Jab 0 −tbb
0 0 0 0 −tbb −Jab


(51)

The ground-state is the equally weighted linear combination of all basis states. It has energy
ε = −Jab− tbb and belongs to the sector with Stot = 3/2. Again, the hopping electron teleports
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tbb

Jab

Fig. 8: Matrix elements entering the double-exchange Hamiltonian. Hopping matrix elements
tbb are indicated as double arrows, Coulomb-exchange matrix elements Jab as double lines.
Note that the right half of the states are obtained from the left by flipping all spins.

the triplets from the sites into a triplet state of the spins in the a-orbitals:

1√
6

(
|↑, ↑〉1|· , ↓〉2+|· , ↑〉1|↑, ↓〉2+|· , ↑〉1|↓, ↑〉2+|↓, ↑〉1|· , ↑〉2+|↑, ↓〉1|· , ↑〉2+|· , ↓〉1|↑, ↑〉2

)
=

1√
2

(
|↑, · 〉b + |· , ↑〉b

) 1√
2

(
|↑, ↓〉a + |↓, ↑〉a

)
+

1√
2

(
|↓, · 〉b + |· , ↓〉b

)
|↑, ↑〉a

As in the Sztot = 3/2-sector, there is a corresponding eigenstate of energy ε = −Jab + tbb
with the b-electron antibonding. Again, we find that the triplet state is centered at −Jab with
dispersion ±tbb. Thus the hopping electron in orbital b tends to align the spins in orbital a.
While the total spin is conserved, this is not true for the spin on site i, ~Si,a + ~Si,b or for the
spin in the a-orbitals ~S1a + ~S2a. Consequently the hopping mixes the Hund’s rule singlets and
triplets and therefore does not produce a singlet state of the a electrons. Instead, for tbb � Jab,
we find in first order perturbation theory

−Jab − tbb
(

1, 1, 1, 1, 1, 1
)T
/
√
6

−Jab − tbb/2
(

2, 1, 1, −1, −1, −2
)T
/
√
12

−Jab + tbb/2
(

2, −1, −1, −1, −1, 2
)T
/
√
12

−Jab + tbb
(

1, −1, −1, 1, 1, −1
)T
/
√
6

+Jab − tbb/2
(

0, 1, −1, −1, 1, 0
)T
/2

+Jab + tbb/2
(

0, 1, −1, 1, −1, 0
)T
/2

(52)

While the triplet states, Stot = 3/2, are centered around −Jab with dispersion ±tbb, states with
singlet character are centered at the same energy, but have smaller dispersion, ±tbb/2.
We can look at the situation from a different perspective, focusing on the effect of the spins
in the a-orbitals on the hopping electron. This is another source of Goodenough-Kanamori
rules [12]. We choose the quantization-axis on site 2 rotated relative to that on site 1 by an
angle ϑ. Taking the original quantization axis as ẑ and the direction from site 1 to site 2 as x̂,



5.20 Erik Koch

Fig. 9: With quantization axes tilted between the sites, all states couple. Matrix elements are
indicated by arrows: Hopping only couples sites with the same occupation of the a-orbitals.
Full lines stand for tbb cos(ϑ/2), dotted lines for matrix elements proportional to tbb sin(ϑ/2).
These states are coupled by off-diagonal Coulomb exchange matrix elements Jab, shown as
double lines.

the rotation in spin space is given by exp(−iσy ϑ/2) (see appendix A). Introducing operators
d2bσ in the rotated basis, we have, in terms of the original operators,

d2b↑ = cos(ϑ/2) c2b↑ − sin(ϑ/2) c2b↓ (53)

d2b↓ = sin(ϑ/2) c2b↑ + cos(ϑ/2) c2b↓ (54)

so the hopping becomes

−tbb c†2b↑c1b↑ = −tbb
(
+cos(ϑ/2) d†2b↑ + sin(ϑ/2) d†2b↓

)
c1b↑ (55)

−tbb c†2b↓c1b↓ = −tbb
(
− sin(ϑ/2) d†2b↑ + cos(ϑ/2) d†2b↓

)
c1b↓ . (56)

Obviously, such a change of basis does not change the spectrum of the resulting Hamiltonian.
We do get a new situation, however, when we assume that the spin on orbital a is fixed. This
is, e.g., a good approximation when the spin in the a-orbital arises actually not a from a single
electron, but from many electrons coupled by Hund’s rule, e.g., in a half-filled t2g-level, like in
the manganites. Then there are no off-diagonal exchange terms (double lines in Fig. 9) and the
Hamiltonian splits into 4 × 4 blocks with only hopping (solid and dotted lines in Fig. 9) and
on-site Coulomb exchange Jab. The Hamiltonian then becomes

H =


−Jab +tbb cos(ϑ/2) +tbb sin(ϑ/2) 0

+tbb cos(ϑ/2) −Jab 0 −tbb sin(ϑ/2)
+tbb sin(ϑ/2) 0 0 +tbb cos(ϑ/2)

0 −tbb sin(ϑ/2) +tbb cos(ϑ/2) 0

 , (57)

where the a-spin simply produces a Zeeman splitting of orbital b, proportional to the exchange
coupling Jab. In the limit tbb � Jab we can neglect the states with misaligned spins and obtain

ε = −Jab ± tbb cos(ϑ/2) , (58)

i.e., for parallel spins, ϑ = 0, the gain in kinetic energy is maximized, giving the ground-state
energy of the full Hamiltonian, while for anti-parallel spins, ϑ = π the dispersion vanishes.
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5 Orbital-ordering

Exchange mechanisms are not restricted to the coupling of spins. As pointed out by Kugel and
Khomskii [13], also orbital occupations can interact. Such a coupling leads, besides an ordering
of the spins, to an ordering of the orbitals.
To understand the mechanism of orbital-ordering, we consider an eg-molecule, i.e., two sites
with two orbitals a and b, as discussed in Sec. 2. The Hamiltonian on the sites is thus given by
(14). In addition, the two sites are coupled by hopping matrix elements taa and tbb, i.e., hopping
does not change the type, a or b, of the occupied orbital. We now consider the case of one
electron in orbital a and the other in orbital b.
First, we consider the situation when both electrons have the same spin, e.g., spin-up. The basis
states are shown in Fig. 10. Setting up the Hamiltonian is analogous to setting up (24)

H↑↑ =


0 0 −tbb −taa
0 0 +taa +tbb

−tbb +taa Uab−Jab 0

−taa +tbb 0 Uab−Jab

 . (59)

Downfolding to the states without doubly occupied sites, we obtain

H↑↑eff ≈ −
1

Uab − Jab

(
t2aa+t

2
bb −2taatbb

−2taatbb t2aa+t
2
bb

)
= −(taa − tbb)2

Uab − Jab
− 2taatbb
Uab − Jab

(
1 −1
−1 1

)
. (60)

Thus we find that there is an interaction between the states with exchanged orbital-occupation,
i.e., an orbital-exchange. For the present case of ferromagnetically aligned spins, the direct
orbital exchange coupling favors the orbital singlet, when the hopping matrix elements are of
the same sign. In analogy with the situation in kinetic exchange, this is called antiferro orbital
exchange. To make the relation with kinetic exchange even more explicit, we can introduce, in
analogy to (31), pseudo-spin operators ~Tiσ

T xiσ =
1

2

(
c†aiσcbiσ + c†biσcaiσ

)
, T yiσ = − i

2

(
c†aiσcbiσ − c

†
biσcaiσ

)
, T ziσ =

1

2
(naiσ − nbiσ) (61)

so that we can write

H↑↑eff = −(taa − tbb)2

Uab − Jab
+

4taatbb
Uab − Jab

(
~T1↑ · ~T2↑ −

1

4

)
. (62)

Fig. 10: Basis states for an up-electron in orbital a and another up-electron in orbital b. Note
that the states are ordered as in Eqn. (24).
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1 2

3 4

5 6

7 8

Fig. 11: Basis states for electrons of opposite spin. The numbering used for the matrix (63)
is indicated. Spin exchange is indicated by the full, orbital exchange by the dotted arrow. The
states with both electrons on the same site are coupled via Coulomb exchange (double arrows).

When the two electrons have opposite spin, we can study the interplay of spin- and orbital-
exchange. The basis states are shown in Fig. 11. We expect orbital exchange to operate between
the first two states in each row and spin exchange between the states between the rows. The
Hamiltonian is

H↑↓ =



0 0 0 0 −tbb −taa 0 0

0 0 0 0 +taa +tbb 0 0

0 0 0 0 0 0 −tbb −taa
0 0 0 0 0 0 +taa +tbb
−tbb +taa 0 0 Uab 0 −Jab 0

−taa +tbb 0 0 0 Uab 0 −Jab
0 0 −tbb +taa −Jab 0 Uab 0

0 0 −taa +tbb 0 −Jab 0 Uab


(63)

from which we obtain

H↑↓eff ≈ − 1

U2
ab − J2

ab


(t2aa+t

2
bb)Uab −2taatbb Uab (t2aa+t

2
bb)Jab −2taatbb Jab

−2taatbb Uab (t2aa+t
2
bb)Uab −2taatbb Jab (t2aa+t

2
bb)Jab

(t2aa+t
2
bb)Jab −2taatbb Jab (t2aa+t

2
bb)Uab −2taatbb Uab

−2taatbb Jab (t2aa+t
2
bb)Jab −2taatbb Uab (t2aa+t

2
bb)Jab


= − 1

U2
ab − J2

ab

(
Uab Jab
Jab Uab

)
⊗

(
t2aa+t

2
bb −2taatbb

−2taatbb t2aa+t
2
bb

)
(64)

= − 1

U2
ab − J2

ab

[
Uab + Jab − Jab

(
1 −1
−1 1

)]
⊗
[
(taa − tbb)2 + 2taatbb

(
1 −1
−1 1

)]
.

I.e., we get a simultaneous coupling of the spin- and orbital degrees of freedom. The first
term describes the coupling of the spins, which is antiferromagnetic, while the coupling of the
orbitals is, for hopping matrix elements of the same sign, ferro, i.e., orbital triplet. In terms of
the spin and pseudo-spin operators we can write, with ~Ti =

∑
σ
~Tiσ and ~Si =

∑
α∈{a,b}

~Sα,i

H↑↓eff = − 1

U2
ab − J2

ab

[
(Uab + Jab) + 2Jab

(
~S1 ·~S2 −

1

4

)][
(taa − tbb)2 − 4taatbb

(
~T1 · ~T2 −

1

4

)]
.

There will be additional terms when we allow states with both electrons in the same orbital.
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6 Extended systems

6.1 Hubbard model

We now turn to extended systems. For this we consider the Hubbard model [14] on an infinite
lattice. Note that now the Hilbert space is infinitely dimensional, so we can no longer write
down the Hamiltonian in its matrix form but have to rely on the second quantized form (29)

H = −t
∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (65)

As in our toy model we still assume that each atom has only a single relevant orbital. There
are links between the neighboring atoms with matrix elements t, which can be intuitively in-
terpreted as hopping from site to site. In the absence of other terms the hopping gives rise to a
band. A second energy scale is given by the Coulomb repulsion U between two electrons on
the same atom. If this on-site Coulomb repulsion is comparable to or even larger than the band
width, the electrons can no longer be considered independent; since the double occupation of an
atom is energetically very costly, the movement of an electron will be hindered by the Coulomb
repulsion. One says that the electrons move in a correlated way. We should note that also the
Pauli principle hinders the movement of an electron. This effect can, however, be efficiently
described by constructing a Slater determinant of independent-electron wave functions. Corre-
lations, on the other hand, are notoriously difficult to describe since no simple wave functions
for such systems are available. In the case of strong correlations, i.e., for U � t, we will treat
the hopping as a perturbation. This is called the atomic limit, since the sites behave as almost
independent atoms. Thus it is most appropriate to describe strongly correlated electrons in a
local picture, i.e., in terms of electron configurations, which are the states that diagonalize the
Coulomb term.

6.2 Mott transition

The physics described by the Hubbard model is the interplay between kinetic energy and
Coulomb repulsion. Writing the Hubbard-Hamiltonian either in real or in k-space

H = −t
∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓

=
∑
kσ

εk c
†
kσckσ +

U

M

∑
k,k′,q

c†k↑ck−q↑c
†
k′↓ck′+q↓ ,

where M is the number of lattice sites, we see that there are obviously two limiting cases:
There is the non-interacting- or band-limit, when t � U . In that case, only the hopping term
survives, i.e., there are no interactions, and the Hamiltonian can be solved easily in k-space. The
energy levels then form a band and the system is metallic, except when the band is completely
filled. In the opposite case, the atomic limit, the interaction term dominates. In that limit, to
minimize the Coulomb energy, the electrons will be distributed over the lattice sites as uniformly
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parameter range physical picture behavior

t�U: band-limit
k

ε
filling of a band
⇒ metal

t�U: atomic limit
no hopping for
integer filling
⇒ insulator

Fig. 12: Metal-insulator transition for half-filling, i.e., one electron per site.

as possible. For a non-degenerate, half-filled system this means, that every site carries exactly
one electron, and hopping is suppressed, because it would create a doubly occupied site, which
would increase the energy by U � t. Thus in the atomic limit the half-filled system will be
an insulator. Clearly, in-between these two limiting cases there must be, at some value Uc, the
so-called critical U , a transition from a metallic to an insulating state – the Mott transition [15].
Usually this transition is expected when U becomes of the order of the (non-interacting) band
width W .
As the criterion for determining the metal-insulator transition we can use the opening of the gap
for charge-carrying single-electron excitations

Eg = E(N+1)− 2E(N) + E(N−1) , (66)

where E(N) denotes the total energy of a cluster of M atoms with N electrons. For the half-
filled system we have N = M . It is instructive to again consider the two limiting cases. In the
non-interacting limit the total energy is given by the sum over the eigenvalues of the hopping
Hamiltonian

∑
n:occ εn. Thus, in the non-interacting limit Eband

g = εN+1 − εN , which, for a
partly filled band, will vanish in the limit of infinite system size. On the other hand, in the
atomic limit, the Coulomb energy for a single site with n electrons is Un(n − 1)/2. Thus, for
half-filling of we have

Eatml
g = U , (67)

i.e., the insulating state in the atomic limit is characterized by a finite gap.
For an infinite system the gap Eg can be rewritten in terms of the chemical potential. In the
thermodynamic limit (M → ∞ with N/M constant) we have to distinguish two types: the
energy needed to add an electron to the system (electron affinity)

µ+ = lim
(
E(N+1)− E(N)

)
=
dε(n)

dn

∣∣∣∣
n↘1

, (68)

and the energy required to extract an electron from the system (ionization energy)

µ− = lim
(
E(N)− E(N−1)

)
=
dε(n)

dn

∣∣∣∣
n↗1

. (69)

The gap is then given by the discontinuity in the left- and right-derivative of the energy per site
ε(n) = limE(N)/M : Eg = µ+ − µ−.
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6.3 Heisenberg model

We now consider the Hubbard model in the limit of large U . This is the generalization of the dis-
cussion of direct kinetic exchange in Sec. 3.2 to an extended system. For large U we work with
the electron configurations, in which the interaction term is diagonal. Configurations with dou-
bly occupied sites will have energies of the order of U or larger, so these are the configurations
that we would like to project out. For downfolding we thus partition the configuration basis,
and hence the Hilbert space, into the set of low-energy states which have no doubly occupied
sites

S =
{
|n1↑, n1↓, n2↑, n2↓, . . .〉

∣∣∣ ∀i : ni↑ + ni↓ ≤ 1
}

(70)

and the set of high-energy states with one or more doubly occupied sites

D =
{
|n1↑, n1↓, n2↑, n2↓, . . .〉

∣∣∣ ∃i : ni↑ + ni↓ = 2
}
. (71)

The hopping term T , which for large U is a perturbation to the interaction term I , couples
the subspaces by hopping an electron into or out of a doubly occupied site. In addition it lifts
the degeneracies within the subspaces. Hence the Hamiltonian can be partitioned as (note that
I ≡ 0 on subspace S)

Ĥ =

(
PS T PS PS T PD
PD T PS PD (T + I)PD

)
, (72)

Since we are dealing with an extended system, the subspaces are infinite, so we cannot write the
Hamiltonian on the subspaces as matrices. Instead we restrict the operators to the appropriate
subspace by using projection operators, PS projecting on the low-energy configurations S, PD
projecting on D. Just like in 3.2 we can then write down an effective Hamiltonian operating on
the low-energy configurations only:

Heff = PS T PS + PS T PD [PD (ε− (I + T )) PD]
−1 PD T PS , (73)

Unlike in the derivation of direct exchange, for the extended system we have no way of cal-
culating the inverse in the second term explicitly. We can, however, expand in powers of t/U .
This is Kato’s method for perturbation theory (see, e.g., section 16.3 of [16]). Essentially we
only need to consider configurations with a single double-occupancy – these correspond to the
states of lowest energy in D. On this subspace the interaction term is diagonal with eigenvalue
U and can thus be easily inverted. We then obtain the Hamiltonian

Ht−J = PS

T − t2

U

∑
〈ij〉〈jk〉σσ′

c†kσ′cjσ′ nj↑nj↓ c
†
jσciσ

 PS , (74)

which is called the t-J Hamiltonian. The first term describes the hopping, constrained to con-
figurations with no doubly occupied sites. Thus it essentially describes the hopping of empty
sites (holes). To understand what the second term does, we observe that, because of the oper-
ators nj↑nj↓, there are only contributions for states with a singly occupied site j: njσ = 0 and
nj,−σ = 1. After applying the second term, site j will again be singly occupied with njσ′ = 0
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Fig. 13: Processes contained in the three-site term T ′: indirect hopping processes to a second-
nearest neighbor site with an intermediate (virtual) doubly occupied state. In the first process
the two hopping processes are performed by the same electron, in the second process each
electron hops once and thus the spin on the intermediate site is flipped.

and nj,−σ′ = 1. Hence, for σ 6= σ′ the spin on site j will be flipped. Moreover, we distinguish
the contributions where only two different sites are involved (k = i) from the three-site terms
(k 6= i). The terms for k = i are just the ones we already know from the kinetic exchange
mechanism. The three-site terms describe a second-nearest neighbor hopping of an electron
from site i to site k via a singly occupied intermediate site j. For σ = σ′ the spin of the hopping
electron is opposite to that on the intermediate site. For σ 6= σ′ the spin of the intermediate site
is flipped – as is that of the hopping electron. This is shown in Fig. 13. The t-J Hamiltonian is

Ht−J = PS [T +HH + T ′] PS (75)

with

T = −t
∑
〈ij〉,σ

c†jσciσ (76)

HH =
4t2

U

∑
〈ij〉

(
~Sj · ~Si −

ninj
4

)
(77)

T ′ = − t
2

U

∑
〈ij〉〈jk〉

i 6=k

∑
σ

(
c†kσ(1− njσ)ciσ − c

†
k,−σc

†
jσcj,−σciσ

)
nj,−σ (78)

In the case of half-filling, when ni = 1, all hopping processes are suppressed, i.e., the projection
PS annihilates T and T ′. Thus for a Mott insulator the t-J model reduces to the spin 1/2

Heisenberg model
HH = J

∑
〈ij〉

~Sj · ~Si + const. (79)

with the exchange coupling J = 4t2/U given by the direct kinetic exchange mechanism. We
again stress that the spin-spin interaction is a result of projecting out the states with double
occupancies.
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7 Conclusion

We have seen that magnetic interactions in matter arise from the interplay of the Pauli principle
and Coulomb interaction, kinetic energy, or both. The resulting effective couplings between
magnetic moments are thus not fundamental interactions and, usually, take quite complex forms.
However, in limiting cases they can become quite simple and transparent. These scenarios are
called exchange mechanisms, of which we have discussed here a small selection. They give
an idea of what magnetic interactions can be expected in real materials. Thus, despite their
simplicity, exchange mechanisms provide vital guides for understanding the physics of complex
ordering phenomena, of spins and orbital-occupations, from simple concepts.
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Appendices

A Pauli matrices

Here we collect the most important properties of the Pauli matrices. The Pauli or spin matrices
are defined as

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(80)

They are hermitian, i.e. σ†i = σi , and σ2
i = 1. Therefore their eigenvalues are ±1. The

eigenvectors of σz are |mz〉, mz = ±1:

|+ 1〉 =

(
1

0

)
and | − 1〉 =

(
0

1

)
. (81)

For these vectors we find

σx|mz〉 = | −mz〉 σy|mz〉 = imz| −mz〉 σz|mz〉 = mz|mz〉. (82)

The products of the Pauli matrices are σx σy = iσz, where the indices can be permuted cycli-
cally. From this follows for the commutator

[σx, σy] = 2iσz, (83)

while the anticommutator vanishes:
{σx, σy} = 0 (84)

Finally a rotation by an angle ϕ about the axis n̂ changes the spin matrices

Rn̂(ϕ) = e−in̂·~σ ϕ/2 = cos(ϕ/2)− i sin(ϕ/2) n̂ · ~σ . (85)
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B Downfolding

To integrate-out high-energy degrees of freedom, we partition the Hilbert space of the full sys-
tem into states of interest (low-energy states) and ‘other’ states, which will be integrated out.
The Hamiltonian is then written in blocks

H =

(
H00 T01

T10 H11

)
, (86)

where H00 is the Hamiltonian restricted to the states of interest (reduced Hilbert space), H11

the Hamiltonian for the ‘other’ states, and the T matrices describe transitions between the two
subspaces. The resolvent is partitioned likewise

G(ω) = (ω −H)−1 =

(
ω −H00 −T01

−T10 ω −H11

)−1

. (87)

Its elements are easily determined by solving the system of two linear matrix equations(
ω −H00 −T01

−T10 ω −H11

)(
G00 G01

G10 G11

)
=

(
1 O

O 1

)
, (88)

keeping track of the order of the sub-matrix products. The resolvent on the reduced Hilbert
space is thus given by

G00(ω) =

ω − [H00 + T01(ω −H11)
−1 T10︸ ︷︷ ︸

=Heff(ω)

]


−1

. (89)

This expression looks just like the resolvent for a Hamiltonian Heff on the reduced Hilbert
space. This effective Hamiltonian describes the physics of the full system, but operates only on
the small reduced Hilbert space: For an eigenvector H|Ψ〉 = E|Ψ〉 on the full Hilbert space

H|Ψ〉 =

(
H00 T01

T10 H11

)(
|Ψ0〉
|Ψ1〉

)
= E

(
|Ψ0〉
|Ψ1〉

)
(90)

its projection |Ψ0〉 onto the reduced Hilbert space is an eigenstate of Heff(E). On the other
hand, we can construct the full eigenstate from a solution Heff(E)|Ψ0〉 = E|Ψ0〉 on the reduced
Hilbert space by upfolding |Ψ〉 ∝ (1+ (E −H11)

−1T10)|Ψ0〉.
Of course, this drastic simplification comes at a price: the effective Hamiltonian is energy
dependent. If the hopping matrix elements in T01 are small, and/or if the states in the part of the
Hilbert space that has been integrated out are energetically well-separated from the states that
are explicitly considered, this energy dependence can, to a good approximation, be neglected.
We can then replace ω by some characteristic energy ε0 for the states in the reduced Hilbert
space to obtain an energy-independent Hamiltonian

Heff(ω) = H00 + T01(ω −H11)
−1 T10 ≈ H00 + T01(ε0 −H11)

−1 T10 = Heff(ε0) (91)

that gives a good description of the electrons in the reduced Hilbert space, i.e., the states with
an energy close to ε0. Expanding (ω − H11)

−1 about ε0, we can systematically improve the
approximation (linear and higher-order methods).
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1 Entangled superexchange: SU(2) ⊗ SU(2) model

1.1 Spin-orbital Hilbert space in a Mott insulator

At large on-site Coulomb repulsion U, electrons in a transition metal oxide localize and have no
kinetic energy. The new state of electronic matter which emerges under strong Coulomb repul-
sion is a Mott insulator. Then the electron state is given by the spin component and the orbital
occupied by this electron. It was one of the great achievements of Kugel and Khomskii [1] to
realize that in the case of two orbitals available at each site i, the Hilbert space of a Mott insula-
tor is spanned by spin-orbital states, i.e., it suffices to specify a spin and a pseudospin (orbital)
component of each electron to define its quantum state at site i. Such localized electrons in the
absence of kinetic energy interact by superexchange [2, 3].
To illustrate these concepts, we begin with a study of a one-dimensional (1D) spin-orbital su-
perexchange modelHSE defined in a Mott insulator with on-site repulsion U by the spin-orbital
Hilbert space spanned by the eigenstates {|↑〉 , |↓〉}, of spin S = 1/2, and orbital (pseudospin)
operator T = 1/2, with the eigenstates {|+〉 , |−〉}. Such states at two neighboring sites i and
i+1 are coupled by 1D spin-orbital (‘Kugel-Khomskii’) superexchange [4–6],

HSE = J
∑
i

[
(Si · Si+1 + α) (Ti · Ti+1 + β)− αβ + εz

∑
i

τ
(c)
i

]
, (1)

where τ (c)
i = T

(c)
i = σzi /2, and we take the orbital splitting Jεz = Ez = 0. Here a constant term

αβ is eliminated and the HamiltonianHSE includes only operator terms. The 1D kinetic energy
is given by the orbital-flavor (α=+,−) conserving hopping ∝ t, and the interaction energy
is given by either Uniα↑niα↓ or Uniασniασ̄, which both cost the Coulomb repulsion energy U.
Of particular interest is the strongly correlated regime U � t, where electrons localize and
interact by antiferromagnetic (AF) superexchange [2],

J =
4t2

U
. (2)

For two degenerate orbitals one needs to introduce a doubly-degenerate Hubbard model [7].
One finds then again the same exchange constant J (2) as in the derivation of the t-J model
from the Hubbard model in the limit U � t [8].
It was a great achievement to realize that spin and orbital states are entangled and are parts
of the same Hilbert space [9, 10]. Thus the superexchange HSE in Eq. (1) is not just a scalar
product of two involved subspaces, spin and orbital, but describes joint quantum fluctuations of
these two operators [9–12]. The superexchange model (1) depends on two parameters {α, β},
and they decide about the type of order. It describes a competition between four spin-orbital
phases, where the order in each sector can be either ferro- or antiferro-. The phases where
quantum fluctuations exist in the ground state only in at most one sector (spin or orbital) are
disentangled, as the phases I-III, see the phase diagram in Fig. 1. Otherwise, we recognize
one entangled phase IV-VI which has three different regimes. Here spin-orbital entanglement
increases when the quantum critical point (QCP) (−1/4,−1/4) is approached along the diagonal
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Fig. 1: Spin-orbital entanglement in the 1D SU(2)⊗ SU(2) model (1) at Ez = 0. Left—The von
Neumann entropy per site SvN/L (3) for the ground state at L = 8 as a function of x and y. The
phase boundaries (solid and dashed lines) are drawn to guide the eye. Right—Phase diagram of
a coupled 1D spin-orbital chain. The diamond point is located at (3/4, 3/4). Quantum phases are
distinguished by entanglement: I, II, and III are disentangled, IV is weakly, and V& VI stronger
entangled. The parameters (x, y) are the same as (α, β) in Fig. 2. Images after Ref. [6].

line x = y. At the QCP itself, spin-orbital entanglement is maximal within the phase V, changes
to a plateau in IV, and next drops towards zero in IV beyond the QCP (α = β < −1/4).
A standard measure of entanglement between two subsystems A and B in the ground state
|GS〉 of a system of size L is the von Neumann entropy [13]: SvN = −TrA{ρA ln ρA}/L, see
Fig. 1. Here our two subsystems are spins and orbitals and the entanglement concerns the
entire system (in other applications the system would frequently be separated into A and B by
cutting one bond). The von Neumann entropy is obtained by integrating the density matrix,
ρA = TrB|GS〉〈GS| over subsystem B. Consequently, we use here the following definition of
the von Neumann spin-orbital entanglement entropy:

SvN = − 1

L
TrS{ρS ln ρS}, (3)

where
ρS = TrT |GS〉〈GS| (4)

is the reduced spin-only density matrix (4), with the orbital {T} degrees of freedom being
integrated out.

1.2 Modifications due to finite spin-orbit coupling λ

Spin and orbital operators may also couple directly on-site via the spin-orbit interaction [14].
It is in general quantum but we present the Ising coupling here for more clarity. Then the 1D
model Hamiltonian consists of two qualitatively distinct terms [15],

H = HSE +HSOC, (5)
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Fig. 2: The von Neumann spin-orbital entanglement entropy, SvN (3), calculated using ED on
an L=12-site periodic chain for the spin-orbital model Eq. (5) and for the increasing value of
the spin-orbit coupling λ [15]: (a) λ/J = 0, (b) λ/J = 0.1, and (c) λ/J →∞.
Image by courtesy of Dorota Gotfryd.

and includes next to the superexchangeHSE (1), the spin-orbit Ising interaction∝ λ. The model
Hamiltonian (5) depends then on three parameters {α, β, λ}. Altogether, our choice means
that the spin-orbital exchange interaction has the simplest possible form that can, nevertheless,
simulate a realistic situation found in the transition metal oxides. We note that the spin-orbital
exchange (1) would have in general a more complex form. For instance, this would be the case
if, e.g. three instead of two active orbitals were taken into account, and the corrections from
finite Hund’s exchange were included (as relevant for the 5d iridates).
The second term in Eq. (5) stands for the on-site spin-orbit coupling (SOC) and reads,

HSOC = 2λ
∑
i

Szi T
z
i . (6)

Here the parameter λ measures the strength of the on-site spin-orbit coupling (of relativistic
origin). The above Ising form of the spin-orbit coupling was chosen as the simplest possible
and yet nontrivial term. Moreover, exactly such a form of the spin-orbit coupling is typically
realized in systems with two active orbitals. This is the case, for instance, of the active t2g
doublets in YVO3 [16, 17] and Sr2VO4 [18], or in optical lattices [19]. In fact, such a highly
anisotropic form of spin-orbit coupling is valid for any system with an active orbital doublet,
either two directional p (px and py) or two planar t2g (xz and yz) orbitals.
The line β=−α plays a special role in the phase diagram of Fig. 1. In order to better understand
the physical consequences of increasing λ, we display the onset of the spin-orbital entanglement
once β=−α. As shown in Fig. 2 for increasing λ, the region of finite spin-orbital entanglement
increases dramatically and includes both previously disentangled phases, II and III [15]. In fact,
the largest entanglement is found in the vicinity of the line β=−α, when α+β > −1/4. At
α+β = −1/4 the spin-orbital entanglement entropy jumps from SvN = 0 to a maximal value
and that happens at the QCP. Thus, the qualitative result of Fig. 1 breaks down. We conclude
that finite spin-orbit coupling transfers on-site entanglement to on-bond entanglement in the
phases antiferromagnetic/ferro-orbital (AF/FO, phase II) and ferromagnetic/alternating-orbital
(FM/AO, phase III) which are initially disentangled (at λ=0, see Fig. 3.)
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Fig. 3: Schematic quantum phase diagram of Hamiltonian (1) in the (α, β) plane, see Fig. 1.
The colorful vertical plane shows how spin-orbital entanglement extends to the highly entangled
state, with on-bond entanglement in two disentangled phases: FM⊗AO and AF⊗FO, see Fig. 2.
Increasing spin-orbit coupling λ generates on-bond entangled states (the green region marks
entangled states; note that the vertical scale is logarithmic). Image reproduced from Ref. [15].

2 Orbital physics for partly filled eg orbitals

It is important to realize that modeling of transition-metal oxides [3] can be performed on differ-
ent levels of sophistication. We shall present here some effective orbital-only and spin-orbital
superexchange models for correlated 3d orbitals. In a perovskite lattice they are coupled by
hopping t between nearest neighbor ions, while the hopping to more distant neighbors and for
other lattices may be generated using the general rules formulated by Slater and Koster [20].
The orbitals have particular shapes and belong to two irreducible representations of the Oh cu-
bic point group:
(i) a two-dimensional (2D) representation of eg-orbitals {|3z2−r2〉/

√
6, |x2−y2〉/

√
2}, and

(ii) a three-dimensional (3D) representation of t2g-orbitals {|xy〉, |yz〉, |zx〉}.
In the absence of any tetragonal distortion or crystal-field (CF) due to surrounding oxygens,
the 3d-orbitals are degenerate within each irreducible representation of the Oh point group and
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have typically a large splitting ∝ 10Dqh 2.0 eV between them. When some of such degenerate
orbitals are partly filled, electrons (or holes) have both spin and orbital degree of freedom. The
kinetic energy Ht in a perovskite follows from the hybridization between 3d- and 2p-orbitals.
In an effective d-orbital model, the oxygen 2p-orbitals are not included explicitly and we de-
fine the largest hopping element t obtained between two orbitals of the same type, which both
belong to the nearest neighbor 3d ions in a lattice.
We begin with conceptually simpler t2g orbitals where finite hopping t results from the d-p
hybridization along π-bonds and each element couples a pair of identical orbitals active along
a given bond. Each t2g orbital is active along two cubic axes, while the hopping is forbidden
along the axis perpendicular to the plane of this orbital, e.g. the hopping between two xy-
orbitals vanishes along the c axis (due to the cancellations caused by orbital phases). It is
therefore convenient to introduce the following short-hand notation for the orbital degree of
freedom [12],

|a〉 ≡ |yz〉, |b〉 ≡ |zx〉, |c〉 ≡ |xy〉. (7)

The labels γ = a, b, c refer here to the cubic axes where the hopping is absent between two
orbitals of a given type,

Ht(t2g) = −t
∑
α

∑
〈ij〉‖γ 6=α

a†iασajασ, (8)

Here a†iασ is an electron creation operator in a t2g-orbital α ∈ {yz, zx, xy} with spin σ =↑, ↓ at
site i, and the local electron density operator for a spin-orbital state is niασ = a†iασaiασ. For t2g
electrons not only spin but also orbital flavor is conserved in each hopping process ∝ t.
The hopping Hamiltonian for eg electrons concerns σ-bands and couples here two directional
eg-orbitals {|iζγ〉, |iζγ〉} along a bond 〈ij〉 ‖γ (we use again the same notation t) [21],

Ht(eg) = −t
∑
α

∑
〈ij〉‖α,σ

a†iζασajζασ. (9)

Indeed, a hopping with amplitude −t between two sites i and j occurs only when an electron
with spin σ transfers between the two directional orbitals |ζγ〉 oriented along the bond 〈ij〉
direction, i.e., |ζγ〉 ∝ |3x2−r2〉, |3y2−r2〉, or |3z2−r2〉, along the cubic axis γ = {a, b, c}.
We will similarly denote by |ξγ〉 an orthogonal orbital to |ζγ〉. It is perpendicular to the bond
〈ij〉 direction, i.e., |ξγ〉 ∝ |y2−z2〉, |z2−x2〉, and |x2−y2〉 along the cubic axis γ ∈ {a, b, c},
and 〈ξγ|ζγ〉 = 0. For the moment we consider only electrons with one spin component, σ =↑,
to focus on the orbital problem. While such a choice of an over-complete basis {ζa, ζb, ζc} is
convenient, for writing down the kinetic energy a particular orthogonal basis is needed.
The usual choice is to take

|z〉 ≡ 1√
6
|3z2−r2〉, |z̄〉 ≡ 1√

2
|x2−y2〉, (10)

i.e., the basis of real eg orbitals [21]. However, this basis is the natural one only for the bonds
parallel to the c-axis but not for those within the (a, b) plane, and for ↑-spin electrons the hop-
ping reads (here for clarity we omit spin index σ),

H↑t (eg) = −1

4
t
∑
〈mn〉‖ab

[
3a†iz̄ajz̄ + a†izajz ∓

√
3
(
a†iz̄ajz + a†izajz̄

)]
− t

∑
〈ij〉‖c

a†izajz. (11)
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Fig. 4: Schematic representation of 3d orbitals: Top—eg orbital basis {|3z2−r2〉 , |x2−y2〉}.
Bottom—three t2g orbital states {|zx〉 , |yz〉 , |xy〉} ≡ {|b〉 , |a〉 , |c〉}. These representations
are split in a regular octahedron [3]. Image by courtesy of Yoshinori Tokura.

Although this expression is of course cubic invariant, it does not manifest this symmetry but
takes a very different appearance depending on the bond direction.
However, the symmetry is better visible using the basis of complex eg orbitals at each site i [21],

|i+〉 = 1√
2

(
|iz〉 − i |iz̄〉

)
, |i−〉 = 1√

2

(
|iz〉+ i |iz̄〉

)
, (12)

standing for “up” and“down” pseudospin flavors, with the local pseudospin operators being
defined as follows,

τ+
i ≡ c†i+ci−, τ−i ≡ c†i−ci+, τ zi ≡ 1

2
(c†i+ci+− c

†
i−ci−) = 1

2
(ni+−ni−). (13)

The three directional {|iζγ〉} and three planar {|iξγ〉} orbitals at site i, associated with the three
cubic axes (γ ∈ {a, b, c}), are the real orbitals,

|iζγ〉 = 1√
2

[
e−iϑα/2|i+〉+ e+iϑα/2|i−〉

]
= cos(ϑα/2)|iz〉 − sin(ϑα/2)|iz̄〉, (14)

|iξγ〉 = 1√
2

[
e−iϑα/2|i+〉 − e+iϑα/2|i−〉

]
= sin(ϑα/2)|iz〉+ cos(ϑα/2)|iz̄〉, (15)

with the phase factors ϑia = −4π/3, ϑib = +4π/3, and ϑic = 0, and thus correspond to the
pseudospin lying in the equatorial plane and pointing in one of the three equilateral “cubic”
directions defined by the angles {ϑiα}.
Using the above complex-orbital representation (12), we can write the orbital Hubbard model
for eg electrons with only one spin flavor σ =↑ in a form similar to the spin Hubbard model,

H↑eg = − t
2

∑
γ

∑
〈ij〉‖γ

[(
a†i+aj++a†i−aj−

)
+γ
(
e−iχγa†i+aj−+e+iχγa†i−aj+

)]
+ Ū

∑
m

ni+ni−, (16)
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Fig. 5: Virtual charge excitations leading to the eg-orbital superexchange model for a strongly
correlated system with |z〉 and |x〉 ≡ |z̄〉 real eg orbitals (10) in the subspace of ↑-spin states:
(a) for a bond along the c axis 〈ij〉 ‖ c; (b) for a bond in the ab plane 〈ij〉 ‖ ab. In a FM plane
of KCuF3 (LaMnO3) the superexchange favors AO state of |AO±〉 orbitals (not shown).
(c) The transition from FOr to OL found at d =∞ at finite U, and at U =∞ (dashed line).
Images (a-b) are reproduced from Ref. [22]; image (c) is reproduced from Ref. [23].

with χa = +2π/3, χb = −2π/3, and χc = 0, and where the parameter γ, explained below, takes
for eg orbitals the value γ = 1. The appearance of the phase factors e±iχγ is characteristic of
the orbital problem—these factors occur because the orbitals have an actual shape in real space
so that each hopping process depends on the bond direction and may change the orbital flavor.
The inter-orbital Coulomb interaction ∝ Ū [22] is then the only Coulomb term which couples
the electron densities in two basis orbitals niµ = a†iµaiµ, with µ ∈ {+,−}; its form in invariant
under any local basis transformation to a pair of orthogonal orbitals, i.e., it gives energy Ū for a
double occupancy, either when two real orbitals are simultaneously occupied Ūnizniz̄, or when
two complex orbitals are both occupied, Ū

∑
i ni+ni−.

A charge excitation between two transition metal ions with partly filled eg-orbitals will arise by
a hopping process between two active orbitals, |iζγ〉 and |jζγ〉. To capture such processes we
introduce two projection operators on the orbital states for each bond,

P(γ)
〈ij〉 ≡

(
1

2
+ τ

(γ)
i

)(
1

2
− τ (γ)

j

)
+

(
1

2
− τ (γ)

i

)(
1

2
+ τ

(γ)
j

)
, (17)

Q(γ)
〈ij〉 ≡ 2

(
1

2
− τ (γ)

i

)(
1

2
− τ (γ)

j

)
. (18)

Recently a generalization of the eg-orbital Hubbard model (16) was proposed to d = ∞ di-
mension [23]. Since the work of Metzner and Vollhardt [24] appeared, it is well known that the
limit of d =∞ is simpler for the correlation problems than any finite dimension as the diagrams
addressing the correlations collapse to a single point and the Gutzwiller approximation to the
variational ground state wave function [25] becomes exact [26]. The eg orbital Hubbard model
describes spinless fermions which propagate on a lattice and have two degenerate orbitals. Any
double occupancy costs the same energy Ū , exactly as in Eq. (16). A crucial observation is now
that any orbital polarized state has no double occupancies, while the orbital liquid (OL) state
has double occupancies and has to be renormalized.
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The orbital Hubbard model (16) suggests that additional kinetic energy arises from the flavor-
nonconserving hopping ∝ γt. Indeed, the only stable phase in the 3D eg-orbital model is the
orbital liquid (OL) phase [21]. In contrast, for the eg-orbital model in d =∞ dimensions [23],
the OL dominates for most but not for all electron fillings. Indeed, close to half-filling n = 1,
a FO phase is more stable. This phase has real eg orbitals and is labeled as FOr in Fig. 5(c).
Qualitatively this result is similar to the Nagaoka’s theorem [27] for the spin Hubbard model,
where a FM state is found close to half-filling. However, the mechanism is qualitatively different
as the orbital-nonconserving hopping contributes and destabilizes the OL.
The resulting phase diagram of the eg-orbital Hubbard model in the (n, Ū) plane obtained in the
Gutzwiller approximation contains mostly the OL phase, see Fig. 5(c). Here the FOr phase is
more stable than the OL phase for Ū > Uc(n) if n > nc. One finds the critical value nc = 0.8746

of the electron density at which the energies of the OL and FOr are equal at Ū =∞, and below
which the OL phase is therefore always stable.

3 Coulomb interactions in spin-orbital Hilbert space

3.1 Kanamori parameters: Coulomb U and Hund’s exchange J

The full spin-orbital problem involves both degrees of freedom, as in Sec. 1. But in contrast
to the simplified case of only one excitation energy U, one has to distinguish between different
possible excitations, high-spin (HS) and low-spin (LS). Next to the Coulomb on-site repulsionU
known from the Hubbard model, the degenerate Hubbard Hamiltonian [7] includes Hund’s
exchange J . In general, on-site Coulomb interactions between two electrons in 3d orbitals
depend both on spin and orbital indices. Note that the electron interaction parameters in this
model are effective ones, i.e., the 2p-orbital parameters of O (or F) ions renormalize on-site
Coulomb interactions between two electrons in 3d orbitals. A general form which includes
only two-orbital interactions and the anisotropy of Coulomb and exchange elements is [28, 29]

Hint = U
∑
iα

niα↑niα↓ +
∑
i,α<β

(
U ′αβ −

1

2
Jαβ

)
niαniβ − 2

∑
i,α<β

Jαβ ~Siα · ~Siβ

+
∑
i,α<β

Jαβ

(
a†iα↑a

†
iα↓aiβ↓aiβ↑ + a†iβ↑a

†
iβ↓aiα↓aiα↑

)
. (19)

Here a†iασ is an electron creation operator in any 3d orbital, α∈{xy, yz, zx, 3z2−r2, x2−y2},
with spin states σ =↑, ↓ at site i, and we shall use σ̄ ≡ −σ. The parameters {U,U ′αβ, Jαβ}
depend in general on the three Racah parameters {A,B,C} [30], which may be derived from
somewhat screened atomic values. While the intra-orbital Coulomb element is identical for all
3d orbitals,

U ≡ A+ 4B + 3C, (20)

the inter-orbital Coulomb U ′αβ and exchange Jαβ elements are anisotropic and depend on the in-
volved pair of orbitals {α, β}; the values of Jαβ are given in Table 1. The inter-orbital Coulomb
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Table 1: On-site inter-orbital exchange elements Jαβ for 3d orbitals as functions of the Racah
parameters B and C (for more details see Ref. [30]).

3d orbital xy yz zx x2−y2 3z2−r2

xy 0 3B + C 3B + C C 4B + C
yz 3B + C 0 3B + C 3B + C B + C
zx 3B + C 3B + C 0 3B + C B + C

x2−y2 C 3B + C 3B + C 0 4B + C
3z2−r2 4B + C B + C B + C 4B + C 0

U ′αβ and Hund’s exchange Jαβ elements satisfy a relation with intra-orbital element U which
guarantees the rotational invariance of interactions in the orbital space,

U = U ′αβ + 2Jαβ. (21)

In all situations where only the orbitals belonging to a single irreducible representation of the
cubic group (eg or t2g) are partly filled, e.g. in the titanates, vanadates, nickelates, or copper
fluorides, the filled (empty) orbitals do not contribute to the dynamics, and the relevant exchange
elements Jαβ are all the same (see Table 1), i.e., either a pair of t2g or for eg orbitals,

J tH ≡ 3B + C, (22)

JeH ≡ 4B + C. (23)

Then one may use a simplified degenerate Hubbard model [7] with isotropic on-site interactions
(for a given subset of 3d orbitals),

H
(0)
int = U

∑
iα

niα↑niα↓ +

(
U − 5

2
JH

) ∑
i,α<β

niαniβ − 2JH
∑
i ,α<β

~Siα · ~Siβ

+JH
∑
i,α<β

(
a†iα↑a

†
iα↓aiβ↓aiβ↑ + a†iβ↑a

†
iβ↓aiα↓aiα↑

)
. (24)

Eq. (24) has two Kanamori parameters: the Coulomb intra-orbital element U (20) and Hund’s
exchange JH , and we parametrize the interactions by

η = JH/U (25)

which stands either for J tH (22) or for JeH (23), depending on the electronic filling of 3d orbitals
at site i. Here we also obtain the celebrated element Ū ≡ U−3JeH , used before in Eq. (16) when
only HS states occur. We emphasize that in a general case when both types of orbitals are partly
filled, as in the colossal magnetoresistance (CMR) manganites [31], and both thus participate
in charge excitations of Fig. 6, the above Hamiltonian with a single Hund’s exchange element
JeH is insufficient and the full anisotropy given in Eq. (24) has to be used instead to generate the
correct charge excitation spectra for a given transition metal ion [30].
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Fig. 6: Energies of charge excitations εn (26) for selected cubic transition metal oxides, for:
(a) eg excitations to Cu3+ (d8) and Mn2+ (d5) ions; (b) t2g excitations to Ti2+ (d2) and V2+

(d3) ions. The splittings between different states are due to Hund’s exchange element JH which
refers to a pair of eg and t2g electrons in (a) and (b). Image reproduced from Ref. [28].

In a strongly correlated regime t�U, we consider the case of partly filled degenerate 3d orbitals
and large Hund’s exchange JH . This guarantees that electrons localize in high-spin ionic states,
and effective low-energy superexchange interactions consist of all the contributions which orig-
inate from possible virtual charge excitations, dpmd

p
n 
 dp+1

m dp−1
n —they take the form of a

spin-orbital model. The charge excitation n costs the energy

εn = En(dp+1) + E0(dp−1)− 2E0(dp), (26)

where the dp ions are in the initial high-spin ground states with spins S = p
2

and have the
Coulomb interaction energy E0(dp) =

(
p
2

)
(U − 3JeH) each if p < 5 (otherwise if p > 5 one has

to consider p holes instead). The case of p = 5 electrons is special and will not be considered
here as in the t32ge

2
g configuration the orbital degree of freedom is quenched.

The same formula for the ground state energy applies as well to Mn3+ ions in d4 configuration
with S = 2 spin HS ground state, see Sec. 2. By construction, also the ion with less electrons
(holes) for p < 5 (p > 5) is in the HS state and E0(dp−1) =

(
p−1

2

)
(U − 3JH). The excitation

energies (26) are thus defined by the multiplet structure of an ion with more electrons (holes)
in the configuration dp+1, see Fig. 6. The lowest energy excitation is always given by U−3JH
—it is obtained from the HS state of the 3dp+1 ion with total spin S = S+1/2 and energy
E1(dp+1) =

(
p+1

2

)
(U − 3JH), with JH being Hund’s exchange element for the electron (hole)

involved in the charge excitation, either eg or t2g. Indeed, one recovers the lowest excitation
energy in the HS subspace, ε1. We emphasize that this lowest excitation energy ε1 is universal
and is found both in t2g and eg subspaces, i.e., it does not depend on the electron valence p,
see Fig. 6. In contrast, the remaining energies {εn} for n>1 are all for LS excitations and
are specific to a given valence p of the considered insulator with dp ions. They have to be
determined from the full local Coulomb interaction Hamiltonian (19), in general including also
the anisotropy of the {Uαβ} and {Jαβ} elements.
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Effective interactions in a Mott (or charge transfer) insulator with orbital degeneracy take the
form of spin-orbital superexchange [1,12]. Its general structure is given by the sum over all the
nearest neighboring bonds 〈ij〉‖γ connecting two transition metal ions and over the excitations
n possible for each of them as,

H = −
∑
n

t2

εn

∑
〈ij〉‖γ

P〈ij〉(S)Oγ〈ij〉, (27)

where P〈ij〉(S) is the projection on the total spin S = S± 1/2 andOγ〈ij〉 is the projection operator
on the orbital state at the sites i and j of a given bond. Following this general procedure,
one finds a spin-orbital model with Heisenberg spin interactions for spins S = p/2 of SU(2)
symmetry coupled to the orbital operators which have much lower cubic symmetry, with the
general structure of spin-orbital superexchange ∝ J (2) [28],

HJ = J
∑
γ

∑
〈ij〉‖γ

{
K̂(γ)
ij

(
~Si · ~Sj + S2

)
+ N̂ (γ)

ij

}
. (28)

It connects ions at sites i and j along the bond 〈ij〉 ‖ γ and involves orbital operators, K̂(γ)
ij and

N̂ (γ)
ij , which depend on the bond direction γ = a, b, c for the three a priori equivalent directions

in a cubic crystal. The spin scalar product, ~Si · ~Sj , is coupled to orbital operators K̂(γ)
ij which

together with the other “decoupled” orbital operators, N̂ (γ)
ij , determine the orbital state in a Mott

insulator. The form of these operators depends on the type of orbital degrees of freedom in
a given model. They involve active orbitals on each bond 〈ij〉 ‖ γ along direction γ. Thus the
orbital interactions are directional and have only the cubic symmetry of a (perovskite) lattice
provided the symmetry in the orbital sector is not broken by other interactions, for instance by
CF or Jahn-Teller (JT) terms.
The magnetic superexchange constants along each cubic axis Jab and Jc in the effective spin
model,

H = Jab
∑
〈ij〉‖ab

~Si · ~Sj + Jc
∑
〈ij〉‖c

~Si · ~Sj, (29)

are obtained from the spin-orbital model (28) by decoupling spin and orbital operators and next
averaging the orbital operators over an underlying orbital (ordered or disordered) state. It gives
effective magnetic exchange interactions: Jc for a bond along the c axis, and Jab for bonds
within the ab plane. The latter ones Jab, could in principle still be different between the a and
b axes in case of finite lattice distortions due to the JT effect or octahedra tilting, but we limit
ourselves to idealized structures, with Jab being the same for both planar directions. We show
below that the spin-spin correlations along the c axis and within the ab planes,

sc =
〈
~Si · ~Sj

〉
c
, sab =

〈
~Si · ~Sj

〉
ab
, (30)

next to the orbital correlations, play an important role in the intensity distribution in optical
spectroscopy.
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In correlated insulators with partly occupied degenerate orbitals, not only the structure of the
superexchange (28) is complex, but also the optical spectra exhibit strong anisotropy and tem-
perature dependence near the magnetic transitions, as found, e.g., in LaMnO3 [32, 33] or in
the cubic vanadates, LaVO3 and YVO3 [28]. In such systems several excitations contribute
to the excitation spectra, so one may ask how the spectral weight redistributes between indi-
vidual subbands originating from these excitations. The spectral weight distribution is in gen-
eral anisotropic already when orbital order (OO) [34] sets in and breaks the cubic symmetry,
but even more so when A-type or C-type AF spin order occurs below the Néel temperature TN.
At orbital degeneracy the superexchange consists of the terms ∝ H

(γ)
n (ij) as a superposition of

individual contributions on each bond 〈ij〉 due to charge excitation n (26) [35],

H = J
∑
n

∑
〈ij〉‖γ

H(γ)
n (ij), (31)

with the energy unit for each individual H(γ)
n (ij) term given by the superexchange constant J,

see Eq. (2). It follows from d-d charge excitations with an effective hopping element t between
neighboring transition metal ions and is the same as that obtained in a Mott insulator with
nondegenerate orbitals in the regime of U � t. The spectral weight in optical spectroscopy is
determined by the kinetic energy, and reflects the onset of spin order (SO) and/or OO [35]. In
a correlated insulator, electrons are almost localized and the only kinetic energy which is left
is associated with the same virtual charge excitations that contribute also to the superexchange.
Therefore, the individual kinetic energy terms K(γ)

n may be directly determined from the super-
exchange (31) using the Hellmann-Feynman theorem,

K(γ)
n = −2J

〈
H(γ)
n (ij)

〉
. (32)

For convenience, we define here the K(γ)
n as positive quantities. Each term K

(γ)
n (32) originates

from a given charge excitation n along a bond direction 〈ij〉 ‖ γ. These terms are straightfor-
wardly related to the partial optical sum rule for individual Hubbard subbands, which reads [35]

a0~2

e2

∫ ∞
0

σ(γ)
n (ω) dω =

π

2
K(γ)
n , (33)

where σ(γ)
n (ω) is the contribution of excitation n to the optical conductivity for polarization

along the γ axis, a0 is the distance between transition metal ions, and the tight-binding model
with nearest neighbor hopping is implied. Using Eq. (32) one finds that the intensity of each
band is indeed determined by the underlying OO together with the spin-spin correlation along
the direction corresponding to the polarization.
One has to distinguish the above partial sum rule (33) from the full sum rule for the total spectral
weight in the optical spectroscopy for polarization along a cubic direction γ, involving

K(γ) = −2J
∑
n

〈
H(γ)
n (ij)

〉
, (34)

which stands for the total intensity in the optical d-d excitations. This quantity is usually of
less interest as it does not allow for a direct insight into the nature of the electronic structure
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being a sum over several excitations εn (26) and has a much weaker temperature dependence.
In addition, it might also be more difficult to deduce the quantity from experiment.

3.2 Goodenough-Kanamori rules

While a rather advanced treatment of the quantum many-body physics is required in general
for spin-orbital models, we want to present here certain principles which help to understand the
heart of the problem and to give simple guidelines for interpreting experiments and for finding
relevant physical parameters of the spin-orbital models of undoped cubic insulators. We will
argue that such an approach based upon classical OO is well justified in many known cases,
as quantum phenomena are often quenched by the JT coupling between orbitals and by lattice
distortions, which are present below structural phase transitions and induce OO, either in spin-
disordered, in spin-ordered phases, or in spin-liquid.
From the derivation of the Kugel-Khomskii (KK) model in Sec. 4.1, we observe that pairs of
directional orbitals {|iζγ〉, |jζγ〉} on neighboring ions favor AF SO, while pairs of orthogonal
orbitals such as {|iζγ〉, |jξγ〉} favor FM SO. This is known as classical Goodenough-Kanamori
rules (GKR) [36] predicting that the state with AF SO has simultaneously FO order, while FM
SO is accompanied by AO order, see Figs. 7(a) and 7(b). Indeed, these rules emphasizing the
complementarity of spin-orbital correlations are frequently employed to explain the observed
spin-orbital order in several systems, particularly in those where spins are large, like in CMR
manganites [31]. They agree with the general structure of spin-orbital superexchange in the KK
model, where it is sufficient to consider the flavor-conserving hopping between pairs of direc-
tional orbitals {|iζγ〉, |jζγ〉} [29, 37]. The excited states are then doubly occupied in one of the
directional orbitals, while no effective interaction arises for two parallel spins (in triplet states),
so the superexchange is AF. In contrast, for a pair of orthogonal orbitals, e.g. {|iζγ〉, |jξγ〉},
two different orbitals are singly occupied and the FM term is stronger than the AF one as the
excitation energy is lower. Therefore, configurations with AO order support FM SO.
The above complementarity of spin-orbital order is frustrated by inter-orbital hopping, or may
be modified by spin-orbital entanglement [11], see below. In such cases the order in both
channels could be the same, either FM/FO, see Fig. 7(c), or AF/AO, see Fig. 7(d). Again, when
different orbitals are occupied in the excited state, the spin superexchange is weakly FM and
when the same orbital is doubly occupied, the spin superexchange is stronger and AF. The
latter AF exchange coupling dominates because antiferromagnetism, which is due to the Pauli
principle, does not have to compete here with ferromagnetism. On the contrary, FM exchange is
caused by the energy difference∝ η between triplet and singlet excited states, with two different
orbitals occupied.
This modification of the GKR is of importance in alkaliRO2 hyperoxides (R = K, Rb, Cs) [38].
The JT effect is crucial for this generalization of the GKR—without it large inter-orbital hopping
orders the T x-orbital-mixing pseudospin component instead of the T z component in a single
plane. Altogether, such generalized GKR can arise whenever the OO on a bond is not solely
stabilized by the same spin-orbital superexchange interaction that determines the spin exchange.
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Fig. 7: Artist’s view of the GKR [36] for: (a) FOz and AF spin order and (b) AOz and FM spin
order in a system with orbital flavor conserving hopping as alkaliRO2 hyperoxides (R = K, Rb,
Cs) [38]. The charge excitations generated by inter-orbital hopping fully violate the GKR and
support the states with the same spin-orbital order: (c) FOz and FM spin order and (d) AOz
and AF spin order. Image reproduced from Ref. [38].

On a geometrically frustrated lattice, for instance, another route to this behavior can occur when
the ordered orbital component preferred by superexchange depends on the direction and the
relative strengths fulfill certain criteria.

(c)

(b)

(a)

Fig. 8: Schematic representation of the orbital motion and the spin-orbital separation in a 1D
spin-orbital model. The first hop of the excited state (a)→(b) creates a spinon (wavy line) that
moves via spin exchange ∝ J . The next hop (b)→(c) gives an “orbiton” freely propagating as
a “holon” with an effective hopping t ∼ J/2. Image reproduced from Ref. [39].
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While a hole doped to the FM chain propagates freely, it creates a spinon and a holon in an AF
background described by the t-J model. A similar situation occurs for an orbital excitation in
an AF/FO spin-orbital chain [39]. An orbital excitation may propagate through the system only
after creating a spinon in the first step, see Figs. 8(a) and 8(b). The spinon itself moves via spin
flips ∝ J > t, faster than the orbiton, and the two excitations get well separated, see Fig. 8(c).
The orbital-wave picture of Sec. 2, on the other hand, would require the orbital excitation to
move without creating the spinon in the first step. Note that this would be only possible for
imperfect Néel AF SO. Thus, one concludes that the symmetry between spin and orbital sector
is broken also for this reason and orbitals are so strongly coupled to spin excitations in realistic
spin-orbital models with AF/FO order. In conclusion the mean field picture separating these
two sectors of the Hilbert space breaks down.

4 Kugel-Khomskii model for Mott insulators

4.1 Kugel-Khomskii model: 3D for KCuF3 and 2D for K2CuF4

The simplest and seminal spin-orbital model is obtained when a fermion has two flavors, spin
and orbital, and both have two components, i.e., spin and pseudospin are S = T = 1/2. The
physical realization is found in cuprates with degenerate eg orbitals, such as KCuF3 or K2CuF4

[1], where Cu2+ ions are in the d9 electronic configuration, so charge excitations d9
i d

9
j 
 d10

i d
8
j

are made by holes. By considering the degenerate Hubbard model for two eg orbitals one finds
that d8 ions have an equidistant multiplet structure, with three excitation energies which differ
by 2JH [here JH stands for the JeH given by Eq. (23)], see Table 2. We emphasize that the correct
spectrum has a doubly degenerate energy U−JH , and the highest non-degenerate energy is
U+JH , see Fig. 6(a). Note that this result follows from the diagonalization of the local Coulomb
interactions in the relevant subspaces—it reflects the fact that a double occupancy

(
|z↑z↓〉 or

|z̄↑z̄↓〉
)

in either orbital state (|z〉 or |z̄〉) is not an eigenstate of the degenerate Hubbard model
in the atomic limit (24), so the excitation energy U is absent in the spectrum, see Table 2.
The total spin state on the bond 〈ij〉 corresponds to S=1 or 0, so the spin projection operators
P〈ij〉(1) and P〈ij〉(0) are easily deduced, see Table 2. The orbital configuration on a bond 〈ij〉
is given by one of the orbital operators in Sec. 2, either P(γ)

〈ij〉 for the doubly occupied states

involving different orbitals, orQ(γ)
〈ij〉 for a double occupancy in a directional orbital at site i or j.

This gives the rather transparent structure of one HS and three LS excitations in Table 2. The
3D KK model then follows from Eq. (27) [9, 40]:

H(d9) =
∑
γ

∑
〈ij〉‖γ

{
− t2

U−3JH

(
~Si · ~Sj +

3

4

)
P(γ)
〈ij〉 +

t2

U−JH

(
~Si · ~Sj −

1

4

)
P(γ)
〈ij〉

+

(
t2

U−JH
+

t2

U+JH

)(
~Si · ~Sj −

1

4

)
Q(γ)
〈ij〉

}
+ Ez

∑
i

τ
(c)
i . (35)

The last term ∝ Ez is the CF which splits off the degenerate eg orbitals when a JT lattice
distortion occurs, and is together with Hund’s exchange η, a second parameter to construct
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Table 2: Elements needed for the construction of the KK model from charge excitations on the
bond 〈ij〉: excitation n, its type (HS or LS) and energy εn, total spin state (triplet or singlet)
and the spin projection operator P〈ij〉(S), and the orbital state and the corresponding orbital
projection operator.

charge excitation spin state orbital state orbital
n type εn S P〈ij〉 on a bond 〈ij〉 ‖ γ projection

1 HS U−3JH 1
(
~Si · ~Sj + 3

4

)
|iζγ〉 |jξγ〉 (|iξγ〉 |jζγ〉) P(γ)

〈ij〉

2 LS U − JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jξγ〉 (|iξγ〉 |jζγ〉) P(γ)

〈ij〉

3 LS U − JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jζγ〉 Q(γ)

〈ij〉

4 LS U + JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jζγ〉 Q(γ)

〈ij〉

phase diagrams, see below. Here it refers to holes, i.e., large Ez > 0 favors hole occupation in
|z̄〉 ≡ |x2−y2〉/

√
2 orbitals, as in La2CuO4. On the other hand, while Ez ' 0, both orbitals

have almost equal hole (electron) density.
Another form of the Hamiltonian (35) is obtained by introducing the coefficients,

r1 =
1

1−3η
, r2 = r3 =

1

1−η
, r4 =

1

1+η
, (36)

and defining the superexchange constant J in the same way as in the t-J model Eq. (2). With
the explicit representation of the orbital operators P(γ)

〈ij〉 and Q(γ)
〈ij〉 in terms of

{
τ

(γ)
i

}
one finds,

H(d9) =
1

2
J
∑
γ

∑
〈ij〉‖γ

{[
−r1

(
~Si · ~Sj +

3

4

)
+ r2

(
~Si · ~Sj −

1

4

)](
1

4
− τ (γ)

i τ
(γ)
j

)

+ (r3+r4)

(
~Si · ~Sj −

1

4

)(
τ

(γ)
i +

1

2

)(
τ

(γ)
j +

1

2

)}
+ Ez

∑
i

τ
(c)
i . (37)

In the FM state spins are integrated out and one finds from the first term just the superexchange
in the eg orbital model analyzed above in Sec. 2.
The magnetic superexchange constants Jab and Jc employed in the effective spin-orbital model
(37) are obtained by decoupling spin and orbital operators and next averaging the orbital opera-
tors

〈
K̂(γ)
ij

〉
over the classical state |Φ0〉 as given by Eq. (12). The relevant averages are given in

Table 3, and they lead to the following expressions for the superexchange constants in Eq. (29),

Jc =
1

8
J
{
− r1 sin2 θ + (r2+r3)(1 + cos θ) + r4(1 + cos θ)2

}
, (38)

Jab =
1

8
J

{
−r1

(
3

4
+ sin2 θ

)
+ (r2+r3)

(
1− 1

2
cos θ

)
+ r4

(
1

2
− cos θ

)2
}
, (39)

which depend on two parameters: J from Eq. (2) and η as in Eq. (25), as well as on the OO
of |±〉 orbitals specified by the orbital angle θ. It is clear that the FM term ∝ r1 competes
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a

b
c

Fig. 9: Spin-orbital entanglement in the KK model includes orbitals and spins: Left—schematic
view of the four simplest eg-orbital configurations on a representative cube of the 3D lattice:
(a) alternating orbital (AO) order with 〈τ (a,b)

i 〉= ±1/2 changing from site to site, and 〈τ ci 〉= 1/4,
obtained for Ez < 0, (b) AO order with 〈τ (a,b)

i 〉= −1/2, alternating between sites and 〈τ (c)
i 〉=

−1/4, obtained for Ez> 0, (c) FO order with occupied z orbitals and 〈τ ci 〉 = 1/2 (cigar-shaped
orbitals), and (d) FO order with occupied z̄ orbitals and 〈τ ci 〉 = −1/2 (clover-shaped orbitals).
Right—schematic view of four spin configurations (arrows for up or down spins; {a, b, c} are
crystallographic directions) in phases with SO: (i) A-AF, (ii) C-AF, (iii) FM, and (iv) G-AF.
Image by courtesy of Wojciech Brzezicki.

with all the other AF LS terms. Nevertheless, in the ab planes, where the occupied hole eg
orbitals alternate, the larger FM contribution dominates and makes the magnetic superexchange
Jab weakly FM (Jab . 0 when sin2 θ ' 1), while the stronger AF superexchange along the c
axis (Jc � |Jab|) favors quasi one-dimensional (1D) spin fluctuations. Thus KCuF3 exhibits
spinon excitations for T > TN.

Table 3: Averages of the orbital projection operators standing in the spin-orbital interactions
in the KK model (37) and determine the spin interactions in Hs (29) for the C-type OO of
occupied eg orbitals which alternate in the ab planes, as given by Eqs. (14). Nonequivalent
cubic directions along the 〈ij〉 bonds are labeled by γ = ab, c.

operator average ab c

Q(γ)
〈ij〉 2

〈(
1
2
−τ (γ)

i

)(
1
2
−τ (γ)

j

)〉
1
2

(
1
2
− cos θ

)2 1
2

(
1 + cos θ

)2

P(γ)
〈ij〉

〈
1
4
− τ (γ)

i τ
(γ)
j

〉
1
4

(
3
4

+ sin2 θ
)

1
4

sin2 θ

R(γ)
〈ij〉 2

〈(
1
2
+τ

(γ)
i

)(
1
2
+τ

(γ)
j

)〉
1
2

(
1
2

+ cos θ
)2 1

2

(
1− cos θ

)2
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(a) (b)

(c)

Fig. 10: Spin-orbital phase diagram and entanglement in the 2D KK model: (a) phase diagram
in the plaquette mean field (solid lines) and ERA (dashed lines) variational approximation,
with insets showing representative spin and orbital configurations on a 2×2 plaquette—z̄-like(
tc=−

〈
τ

(c)
i

〉
=1

2

)
and z-like

(
ta,c=−

〈
τ

(c,a)
i

〉
=−1

2

)
orbitals are accompanied either by AF long

range spin order (arrows) or by spin singlets on bonds in the PVB phase (ovals); (b) view of
an exotic four-sublattice ortho-AF phase near the onset of FM (or FMz) phase; (c) artist’s
view of the ortho-AF phase—spin singlets (ovals) are entangled with either one or two orbital
excitations |z〉 → |z̄〉 (clovers). Images reproduced from Ref. [41].

Consider first the 2D KK model on a square lattice, with γ = a, b in Eq. (37), as in K2CuF4.
In the absence of Hund’s exchange, interactions between S = 1/2 spins are AF. However, they
are quite different depending on which of the two eg orbitals are occupied by holes: Jzab = 1

16
J

for |z〉 and J z̄ab = 9
16
J for |z̄〉 hole orbitals. As a result, the AF phases with SO in Fig. 9(iv) and

the FO order shown in Figs. 9(c) and 9(d) are degenerate at finite CF Ez = −1
2
J . This defines

a quantum critical point (QCP) Q2D = (−1/2, 0) in the (Ez/J, η) plane [while Q3D = (0, 0)].
Actually, at this point also one more phase has the same energy—the FM spin phase of Fig. 9(i)
with AO order of |±〉 orbitals, shown in Figs. 5(a&b) [40].

To capture the corrections due to quantum fluctuations, one may construct a plaquette mean
field approximation or entanglement renormalization ansatz (ERA) [41]. One finds important
corrections to the mean field phase diagram near the QCP Q2D, and a plaquette valence bond
(PVB) state is stable in between the above three phases accompanied by spin-orbital long range
order, with spin singlets on the bonds ‖ a (‖b) and stabilized by the directional orbitals |ζa〉
(|ζb〉). A novel ortho-AF phase appears as well when the magnetic interactions change from
AF to FM ones due to increasing Hund’s exchange η, and for Ez/J < −1.5, see Fig. 10(a).
Since the nearest neighbor magnetic interactions are very weak, exotic four-sublattice ortho-AF
SO emerges due to second and third nearest neighbor interactions, shown in Fig. 10(b). Such
further neighbor interactions follow from spin-orbital excitations shown in Fig. 10(c). Note
that both approximate methods employed in Ref. [41] (plaquette mean field approximation and
ERA) give very similar range of stability of the ortho-AF phase.
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4.2 Entanglement in the ferromagnetic excitations of K2CuF4

To investigate magnons (spin waves), we create a spin excitation at site i = 0 by decreasing the
value of the order parameter 〈Sz0〉 from S to S−1. In the simplest approach we disentangle [29]
spin-orbital superexchange both in the ground and excited state, and use the same frozen AO
order as in the initial state to determine spin exchange J♦. A spin excitation (a magnon) itself
is best described by the transformation to Holstein-Primakoff (HP) bosons. In linear spin-wave
theory, the magnon energy consists of two contributions and we introduce:

(i) Ising energy for a localized HP boson I(0) ≡ 4J♦S, and

(ii) the propagating term P (0)(~k) ≡ −4J♦Sγ~k.

The latter originates from quantum fluctuations∝ −1
2
J♦
(
Ŝ+
i Ŝ
−
j +Ŝ−i Ŝ

+
j

)
, where γ~k = 1

4

∑
~δ e

i~k·~δ

determines the dispersion and depends on the 2D momentum ~k = (ka, kb) with kα ∈ [−π, π).
Here ~δ stands for one of four nearest neighbors of the central site i = 0 shown in Fig. 11(a).
The above two terms determine the magnon dispersion in a 2D ferromagnet,

ω
(0)
~k

= I(0) + P (0)(~k) = 4J♦S (1−γ~k), (40)

which serves as a reference below. The breaking of SU(2) symmetry is reflected by a Goldstone
mode (at ~k = 0), and ω~k = J♦Sk

2 for ~k → 0 —we find that this result is insensitive to spin-
orbital coupling. It is crucial that the above dispersion (40) is improved and the variational
approximation (VA) is performed for each value of momentum ~k independently. One might
expect that this reduces spin exchange, J♦ → J�, and the magnon dispersion would soften.
In this way we obtain the renormalized magnon dispersion which replaces Eq. (40),

ω~k({θiL}) = I({θiL};~k) + P ({θiL};~k). (41)

Note that the angles {θiL} are real and L = A,B refers to the sublattice. If in addition it
is assumed that orbital optimization for both sublattices is equivalent, we use the constraint
θi ≡ θiA = θiB (i = 1, 2, 3) which defines the Simplified Variational Approximation (SVA). Fi-
nally, we have verified the predictions of the VA by exact diagonalization employing a Numer-
ical Ansatz (NA) with six states per sublattice: a spin defect with or without orbital excitation,
and four spin-orbital states with spin excitation at the central site together with an orbital excita-
tion at one of the nearest neighbors. The state with excitations within a shaded cluster depicted
in Fig. 11(b) may be thus expressed in terms of these six states.
Taking as an example the K2CuF4 state at Ez = −0.8 J shown in Fig. 11(b), one finds that
the orbital renormalization is appreciable—at the central site with spin excitation it is largely
modified to ∼ (x2−y2), and the orbitals at the four neighboring sites are also changed. The
latter orbitals found within the VA are only weakly changed as these latter sites have three
neighbors belonging to the neighbors with undisturbed AO order in Fig. 11(a), but the one at
the site of spin excitation itself is radically different. For this reason, we introduce a cutoff and
assume that the orbitals at further neighbors of the excited spin are unchanged. One expects then
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Fig. 11: Artist’s view of a spin excitation (inverted red arrow at the central site) in the FM plane
of K2CuF4 (green arrows) and AO order of the orbitals occupied by holes at Ez = −0.8J , with:
(a) frozen orbitals; (b) optimized orbitals at the central site and at four its neighboring sites in
the square lattice, forming a quasiparticle (dressed magnon). The above value of Ez leads to
the expected AO order in K2CuF4, with θopt ' 71◦ in Eqs. (14). When the VA is used, case (a)
is still realized at ~k ' 0, while case (b) represents a dressed magnon with ~k 'M where orbital
states in the shaded cluster are radically different from those shown for frozen orbitals in (a).
Image reproduced from Ref. [42].

a large dressing of the magnon, with the corresponding reduction of the effective FM interaction
to J�, particularly in the neighborhood of the M point. This is confirmed by the results shown
in Fig. 12(a)—the magnon energy ωM is reduced by ∼ 27% from ω

(0)
M . Internal consistency

of the theory is confirmed by this reduction being nearly the same in all three methods used to
treat spin-orbital coupling: VA, SVA, and NA.

At the X point we recognize the importance of independent optimization of orbitals on the two
sublattices—the energy ωX is reduced by ∼ 25% from ω

(0)
X in the VA, while it stays almost

unrenormalized in the SVA, see Fig. 12(a). The NA agrees very well with the results of the VA
except for the points close to theM point along theM -Γ path. While the VA may underestimate
somewhat the magnon dressing effect, altogether we find a comparison of the VA with the NA
very encouraging indeed. The renormalization of the magnon energy increases fast when the
orbital splitting |Ez| is reduced, and one finds that the magnon energy reduction is large for
Ez = −0.3 J , e.g. by ∼ 60% at the M point, see Fig. 12(b). The agreement between the
VA and the NA is somewhat worse here, but still one may say that both methods qualitatively
agree. Altogether, we suggest that the magnon softening may be very large for spin-orbital
systems with low spin S = 1/2 as in K2CuF4. Note that similar softening is expected in the FM
planes of LaMnO3 and would represent an interesting future research topic.
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Fig. 12: The magnon energy ω~k/J obtained for the FM state of K2CuF4 at JH/U = 0.2 and:
(a) Ez = −0.80J and (b) Ez = −0.30J . Results are presented for four approximations: frozen
orbitals (black line and grey background), the VA (green line), the SVA (red line), and the 12-
state NA (purple dots). The high symmetry points are: Γ = (0, 0), X = (π, 0), M = (π, π).
Image reproduced from Ref. [42].

4.3 Weak spin-orbital entanglement for large spins S=2 in LaMnO3

Electronic structure calculations predict A-AF SO, in agreement with experiment [32]. It fol-
lows from the spin-orbital superexchange between large spins S = 2 in LaMnO3, due to the
excitations involving eg electrons. The energies of the five possible excited states [30] shown
in Fig. 6(a) are: (i) the HS (S = 5

2
) 6A1 state, and (ii) the LS (S = 3

2
) states: 4A1, 4E (4Eε,

4Eθ), and 4A2. They are parameterized again by the intra-orbital Coulomb element U and by
Hund’s exchange JeH between a pair of eg electrons at a Mn2+ (d5) ion. The Racah parameters
B = 0.107 eV and C = 0.477 eV justify an approximate relation C ' 4B, and we find the LS
excitation spectrum: ε(4A1) = U + 3

4
JH , ε(4E) = U + 5

4
JH (twice), and ε(4A2) = U + 13

4
JH .

Using the spin algebra (Clebsch-Gordan coefficients) and considering again two possible eg or-
bital configurations on the bonds, see Eqs. (17) and (18), and charge excitations by t2g electrons,
one finds a compact expression [43],

He =
1

16

∑
γ

∑
〈ij〉‖γ

{
−8

5

t2

ε(6A1)

(
~Si · ~Sj + 6

)
P(γ)
〈ij〉 +

[
t2

ε(4E)
+

3

5

t2

ε(4A1)

](
~Si · ~Sj − 4

)
P(γ)
〈ij〉

+

[
t2

ε(4E)
+

t2

ε(4A2)

](
~Si · ~Sj − 4

)
Q(γ)
〈ij〉

}
+ Ez

∑
i

τ
(c)
i . (42)

In addition, t2g electrons also contribute with Ht = 1
8
Jβrt

(
~Si ·~Sj − 4

)
. Here β = (tπ/t)

2

follows from the difference between the effective d-d hopping elements along the σ and π
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(A) (B)

Fig. 13: Kinetic energies per bond K(γ)
n Eq. (32) for increasing temperature T obtained from

the respective spin-orbital models for FM (top) and AF (bottom) bonds along the axis γ: (A)
LaMnO3 (with J = 150 meV, η ' 0.18 [28], and experimental points [33]); (B) LaVO3 with
η=0.13 [35] and experimental points [44]. The kinetic energies in HS states (n = 1, red lines)
are compared with the experiment (filled circles). Vertical dotted lines indicate values of TN.
Images reproduced from Ref. [28].

bonds, i.e., β ' 1
9
, while the coefficient rt stands for a superposition of all t2g excitations

involved in the t2g superexchange [28]. Note that spin-projection operators for high (low) total
spin S = 2 (S = 1) cannot be used, but again the HS term stands for a FM contribution
which dominates over the LS terms when

〈
P(γ)
〈ij〉
〉
' 1. Charge excitations by t2g electrons give

double occupancies in active t2g orbitals, so Ht is AF but this term is small—as a result FM
interactions may dominate but again only along two spatial directions. Indeed, this happens for
the realistic parameters of LaMnO3 for the ab planes where SO is FM and coexists with AO
order, while along the c axis SO is AF accompanied by FO order, in agreement with GKR, i.e.,
spin-orbital order is A-AF/C-AO. Indeed, this type of order is found both from the theory for
realistic parameters and from electronic structure calculations [45]. The JT orbital interactions
are responsible for the enhanced value of the orbital transition temperature [46].

Spin- and orbital-energy scale separately here, and the OO is mainly triggered by JT distortions
[45]. The optical spectral weight due to HS states in LaMnO3 may be easily derived from
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the present model (42), following the general theory, see Eq. (32). One finds a very satisfactory
agreement between the present theory and the experimental results [33], as shown in Fig. 13(A).
We emphasize, that no fit is made here, i.e., the kinetic energies (32) are calculated using the
same parameters as those used elsewhere for the magnetic exchange constants [28]. Therefore,
such a good agreement with experiment suggests that indeed the spin-orbital superexchange
may be disentangled for large S = 2 spins. Summarizing, we have found that spin-orbital
entanglement is weak in this case [46]. A posteriori, this conclusion could be also drawn from
a good agreement of spin excitations predicted by the theory with experimental data [47].

5 Spin-orbital entanglement in t2g electron models

5.1 Entangled phases of LaVO3 and YVO3

In this case one uses the degenerate Hubbard model for three t2g orbitals with J tH (22) [48].
Spin-orbital entanglement is stronger for t2g than for eg systems [29]. Due to large Coulomb in-
teraction, the spin-orbital entangled state in RVO3 (R = La,. . . ,Lu) satisfies in a Mott insulator
the local constraint at V3+ site i,

nia + nib + nic = 2, (43)

and G-type OO competes with the spin-orbital entangled state. Rare earth site disorder favors
the spin-orbital entanglement rather than a cooperative JT distortion [49]. The entanglement
is best seen in the coupling between the spin and orbital phase transition [50]. Due to Hund’s
exchange JH , one has here coupled S = 1 spins and τ = 1/2 orbitals for three (n = 1, 2, 3)
charge excitations εn arising from the transitions to [see Fig. 6(b)]:

(i) a high-spin state 4A2 at energy U−3JH ,

(ii) two degenerate low-spin states 2T1 and 2E at U, and

(iii) a 2T2 low-spin state at U+2JH [16].

Using η (25), we parametrize this multiplet structure by r1, Eq. (36), and the top multiplet state,

r5 =
1

1+2η
. (44)

The cubic symmetry is broken and the CF induces orbital splitting in RVO3, hence 〈nic〉 = 1

and the orbital degrees of freedom are given by the doublet {a, b}, with nia + nib = 1, which
defines the pseudospin operators ~τi at site i. One derives a HS contribution H(c)

1 (ij) for a bond
〈ij〉 along the c axis, and H(ab)

1 (ij) for a bond in the ab plane:

H
(c)
1 (ij) = −1

3
Jr1

(
~Si ·~Sj + 2

)(
1
4
− ~τi ·~τj

)
, (45)

H
(ab)
1 (ij) = −1

6
Jr1

(
~Si ·~Sj + 2

)(
1
4
− τ zi τ zj

)
. (46)

In Eq. (45) pseudospin operators ~τi describe the low-energy dynamics of (initially degenerate)
{xz, yz} orbital doublet at site i; this dynamics is quenched in the plane, see H(ab)

1 Eq. (46).
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Here 1
3
(~Si · ~Sj+2) is the projection operator on the HS state for S = 1 spins. The termsH(c)

n (ij)

for LS excitations (n = 2, 3) contain instead the spin operator (1 − ~Si · ~Sj) (which guarantees
that these terms cannot contribute for fully polarized spins 〈~Si ·~Sj〉 = 1):

H
(c)
2 (ij) = − 1

12
J
(
1− ~Si ·~Sj

)(
7
4
− τ zi τ zj − τxi τxj + 5τ yi τ

y
j

)
,

H
(c)
3 (ij) = −1

4
Jr5

(
1− ~Si ·~Sj

)(
1
4

+ τ zi τ
z
j + τxi τ

x
j − τ

y
i τ

y
j

)
. (47)

Again the terms H(ab)
n (ij) differ from H

(c)
n (ij) only by the orbital operators,

H
(ab)
2 (ij) = −1

8
J
(
1− ~Si ·~Sj

)(
19
12
∓ 1

2
τ zi ∓ 1

2
τ zj − 1

3
τ zi τ

z
j

)
,

H
(ab)
3 (ij) = −1

8
Jr5

(
1− ~Si ·~Sj

)(
5
4
∓ 1

2
τ zi ∓ 1

2
τ zj + τ zi τ

z
j

)
, (48)

where upper (lower) sign corresponds to bonds along the a (b) axis.
First, we present a mean field approximation for the spin and orbital bond correlations which
are determined self-consistently after decoupling them from each other in HJ (28). Spin inter-
actions in Eq. (29) are given by two exchange constants:

Jc = 1
2
J
{
ηr1 − (r1 − ηr1 − ηr5)(1

4
+ 〈~τi ·~τj〉)− 2ηr5〈τ yi τ

y
j 〉
}
,

Jab = 1
4
J
{

1− ηr1 − ηr5 + (r1 − ηr1 − ηr5)(1
4

+ 〈τ zi τ zj 〉)
}
, (49)

determined by orbital correlations 〈~τi·~τj〉 and 〈ταi ταj 〉. By evaluating them one finds Jc < 0 and
Jab > 0 and the C-AF SO is supported.
In the orbital sector one finds at the same time,

Hτ =
∑
〈ij〉c

[
Jτc ~τi · ~τj − J(1− sc)ηr5τ

y
i τ

y
j

]
+ Jτab

∑
〈ij〉ab

τ zi τ
z
j , (50)

Jτc = 1
2
J [(1 + sc )r1 + (1− sc )η(r1+r5)] , (51)

Jτab = 1
4
J [(1− sab)r1 + (1 + sab)η(r1+r5)] , (52)

depending on spin correlations: sc = 〈~Si · ~Sj〉c and sab = −〈~Si · ~Sj〉ab. In a classical C-AF
state (sc = sab = 1) this mean field procedure becomes exact, and the orbital problem maps to
Heisenberg pseudospin chains along the c axis, weakly coupled (as η � 1) along a and b bonds,

H(0)
τ = Jr1

∑
〈ij〉c

~τi · ~τj +
1

2
η

(
1 +

r5

r1

) ∑
〈ij〉ab

τ zi τ
z
j

 , (53)

releasing large zero-point energy. Thus, spin C-AF and G-AO order with quasi-1D orbital
quantum fluctuations support each other in RVO3. Orbital fluctuations play here a prominent
role and amplify the FM exchange Jc, making it even stronger than the AF exchange Jab [16].
Having the individual terms H(γ)

n of the spin-orbital model, one may derive the spectral weights
of optical spectra, see Eq. (32). The HS excitations have remarkable temperature dependence
and the spectral weight decreases in the vicinity of the magnetic transition at TN, see Fig. 13(B).
The observed behavior is reproduced in the theory only when spin-orbital interactions are
treated in a cluster approach, i.e., they cannot be disentangled.
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Fig. 14: Phase transitions in the vanadium perovskites RVO3: (a) phase diagram with the
orbital TOO and Néel TN1 transition temperatures obtained from the theory with and with-
out orbital-lattice coupling (solid and dashed lines) [50], and from experiment (circles) [51];
(b) spin 〈Szi 〉 (solid) and G-type orbital 〈τ zi 〉G (dashed) order parameters, vanishing at TN1 and
TOO, respectively, and the transverse orbital polarization 〈τxi 〉 (dashed-dotted lines) for LaVO3

and SmVO3 (thin and heavy lines). Images reproduced from Ref. [50].

Unlike in LaMnO3 where the spin and orbital phase transitions are well separated [46], in the
RVO3 (R = Lu, Yb,. . . ,La) the two above transitions are close to each other [51]. It is not easy
to reproduce the observed dependence of the transition temperatures TOO and the Néel TN1 on
the ionic radius rR (in the RVO3 compounds with small rR there is also another magnetic tran-
sition at TN2 [52] which is not discussed here). The spin-orbital model was extended by the cou-
pling to the lattice to unravel a nontrivial interplay between superexchange, the orbital-lattice
coupling due to the GdFeO3-like rotations of the VO6 octahedra, and orthorhombic lattice dis-
tortions [50]. One finds that the lattice strain affects the onset of the magnetic and orbital order
by partial suppression of orbital fluctuations, and the dependence of TOO is non-monotonous,
while TN1 is reduced, see Fig. 14(a). Thereby the orbital polarization ∝ 〈τx〉 increases with
decreasing ionic radius rR, see Fig. 14(b). The theoretical approach [50] demonstrates that
orbital-lattice coupling is very important and reduces both TOO and Néel TN1 for small ionic
radii. Simultaneously, TN1 decreases to the left due to spin-orbital entanglement.

It has also been shown that the t2g perovskite LaVO3 is a unique case where the KK phase
transition drives orbital order, in contrast to the usual case where the OO is controlled by the
CF splitting enhanced by Coulomb interaction and both OO and SO transition are well sepa-
rated [53]. As a consequence, the magnetic transition is close to (and even above) the superex-
change driven OO order transition, and TN > TKK ∼ TOO, whereas typically magnetism arises
at much lower temperatures than orbital ordering. In contrast, in YVO3 the CF is sufficiently
large to suppress the KK phase transition and spin-orbital interactions disentangle.
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5.2 Spin-orbital entanglement on a triangular lattice

Finally, we wish to discuss here two rather interesting examples going also beyond the per-
ovskite lattice, involving d1 configurations. Two operators are entangled if their states at tem-
perature T = 0 cannot be factorized into parts belonging to different subspaces. This happens
precisely in some spin-orbital models and is the source of spin-orbital entanglement [29]. To
verify whether entanglement occurs or not, it suffices to compute and analyze the spin, orbital
and spin-orbital (four-operator) correlation functions for a bond 〈ij〉 along γ axis, given by

Sij ≡ 1
d

∑
n

〈
n
∣∣~Si · ~Sj∣∣n〉 , (54)

Tij ≡ 1
d

∑
n

〈
n
∣∣(~Ti · ~Tj)(γ)

∣∣n〉 , (55)

Cij ≡ 1
d

∑
n

〈
n
∣∣(~Si · ~Sj − Sij) (~Ti · ~Tj − Tij)(γ)

∣∣n〉 (56)

= 1
d

∑
n

〈
n
∣∣(~Si · ~Sj)(~Ti · ~Tj)(γ)

∣∣n〉−(1
d

∑
n

〈
n
∣∣~Si ·~Sj∣∣n〉)(1

d

∑
m

〈
m
∣∣(~Ti · ~Tj)(γ)

∣∣m〉),
where d is the ground state degeneracy, and the pseudospin scalar product in Eqs. (55) and (56)
is relevant for a model with active t2g orbital degrees of freedom. As a representative example
we evaluate here such correlations for a 2D spin-orbital model derived for a NaTiO2 plane [54];
other situations with spin-orbital entanglement are discussed in Ref. [29].
To explain the physical origin of the spin-orbital model for NaTiO2 [54], we consider a rep-
resentative bond along the c axis shown in Fig. 15. For the realistic parameters of NaTiO2

the t2g electrons are almost localized in d1 configurations of Ti3+ ions, hence their interactions
with neighboring sites can be described by the effective superexchange and kinetic exchange
processes. Virtual charge excitations between the neighboring sites, d1

i d
1
j 
 d2

i d
0
j , generate

magnetic interactions which arise from two different hopping processes for active t2g orbitals:
(i) the effective hopping t = t2pd/∆ which occurs via oxygen 2pz orbitals with the charge trans-
fer excitation energy ∆, in the present case along the 90◦ bonds, and (ii) direct hopping t′

which couples the t2g orbitals along the bond and gives a kinetic exchange interaction, as in the
Hubbard model (2). Note that the latter processes couple orbitals with the same flavor, while
the former ones couple different orbitals (for this geometry) so the occupied orbitals may be
interchanged as a result of a virtual charge excitation—these processes are shown in Fig. 15.
The effective spin-orbital model considered here for NaTiO2 reads [54],

H = J
(

(1−α) Hs +
√

(1−α)α Hm + α Hd

)
. (57)

The parameter α in Eq. (57) is given by the hopping elements as follows,

α = (t′)2/
[
t2 + (t′)2

]
, (58)

and interpolates between the superexchangeHs (α = 0) and kinetic exchangeHd (α = 1), while
in between these two exchange elements and mixed exchange Hm contributes simultaneously;
these terms are explained in Ref. [54]. This model is considered here in the absence of Hund’s
exchange η (25), i.e., at η = 0. One finds that all the orbitals contribute equally in the entire
range of α, and each orbital state is occupied at two out of six sites in the entire regime of
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Fig. 15: Left — (a) Hopping processes between t2g orbitals along a bond parallel to the c axis
in NaTiO2: (i) tpd between Ti(t2g) and O(2pz) orbitals—two tpd transitions define an effective
hopping t, and (ii) direct d-d hopping t′. The t2g orbitals (7) are shown by different color. The
bottom part gives the hopping processes along the γ = a, b, c axes that contribute to Eq. (57):
(b) superexchange and (c) direct exchange. Right — Ground state for a free hexagon as a func-
tion of α: (a) bond correlations—spin Sij Eq. (54) (circles), orbital Tij Eq. (55) (squares), and
spin–orbital Cij Eq. (56) (triangles); (b) orbital electron densities n1γ at a representative site
i = 1 (left-most site): n1a (circles), n1b (squares), n1c (triangles). The insets indicate the orbital
configurations favored by the superexchange (α = 0), by mixed interactions 0.44 < α < 0.63,
and by the direct exchange (α = 1). The vertical lines indicate an exact range of configurations
due to the degeneracy. Images reproduced from Ref. [55].

α, see Fig. 15. The orbital state changes under increasing α and one finds as a result four
distinct regimes, with abrupt transitions between them. In the superexchange model (α = 0)
there is precisely one orbital at each site which contributes, e.g. n1c = 1 as the c orbital is
active along both bonds. Having a frozen orbital configuration, the orbitals decouple from spins
and the ground state is disentangled, with Cij = 0, and one finds that the spin correlations
Sij = −0.4671, as for the AF Heisenberg ring of L = 6 sites. Orbital fluctuations increase
gradually with increasing α and this results in finite spin-orbital entanglement Cij ' −0.12 for
0.10 < α < 0.44; simultaneously spin correlations weaken to Sij ' −0.27.

In agreement with intuition, when α = 0.5 and all inter-orbital transitions shown in Fig. 15
have equal amplitude, there is large orbital mixing which is the most prominent feature in the
intermediate regime of 0.44 < α < 0.63. Although spins are coupled by AF exchange, the
orbitals fluctuate here strongly and reduce further spin correlations to Sij ' −0.21. The orbital
correlations are negative, Tij < 0, the spin-orbital entanglement is finite, Cij ' −0.13, and the
ground state is unique (d = 1). Here all the orbitals contribute equally and n1γ = 1/3 which
may be seen as a precursor of the spin-orbital liquid state which dominates the behavior of the
triangular lattice. The regime of larger values of α > 0.63 is dominated by the kinetic exchange
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Fig. 16: Phase diagram of the Kitaev-Heisenberg model Eq. (59) with parametrization
(J,K) = (cosα, sinα) as obtained from exact diagonalization data. Solid lines show the map-
ping between two Klein-dual points. Red lines mark the location of the four SU(2)—symmetric
points. Yellow diamonds mark the two Kitaev points. Image reproduced from Ref. [56].

in Eq. (57), and the ground state is degenerate with d = 2 [55], with strong scattering of possible
electron densities {biγ}, see Fig. 15. Weak entanglement is found for α > 0.63, where Cij ' 0.
Summarizing, except for the regimes of α < 0.09 and α > 0.63, the ground state of a single
hexagon is strongly entangled, i.e., Cij < −0.10, see Fig. 15.

As the last example we would like to highlight briefly the Heisenberg-Kitaev (HK) Hamiltonian
on the triangular lattice [56]. Here spin-orbital entanglement is triggered by formation of ef-
fective j = 1/2 spins in a Mott insulator observed for the recently synthesized Ba2IrTi2O9. The
model is frustrated, both by its interactions and by geometry, see Fig. 16. The description of the
microscopic physics is given here by a superposition of Heisenberg and Kitaev interaction,

HHK = J
∑
〈ij〉

(
~Si · ~Sj

)
+K

∑
γ‖〈ij〉

Sγi S
γ
j , (59)

where ~Si is a spin operator located on site i of the triangular lattice spanned by the lattice vectors
~ax = (1, 0)T, ~ay = (−1/2,

√
3/2)T, and ~az = −~ax − ~ay, for the lattice constant a = 1. The first

term is the Heisenberg coupling∝ J , while the Kitaev term∝ K explicitly breaks spin-rotation
invariance and acts only between the same spin components Sγi S

γ
j at nearest neighbor sites.

First, we observe that an infinitesimal Kitaev exchange removes the 120◦ order of the quantum
Heisenberg model [56]. Second, the phase diagram of Fig. 16 is very rich and instead of 120◦

order, an extended Z2-vortex crystal phase arises which could be identified experimentally.
Third, the phase diagram exhibits a duality, similar to the HK model on the honeycomb lattice
[57]. This duality relates a pair of interactions on the right-hand side of the circle to a pair of
interactions on the left-hand side, i.e., J → −J and K → 2J+K. The corresponding dual
states are related by a four-sublattice basis transformation. For more explanation see Ref. [56].
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6 Experimental consequences of spin-orbital entanglement

The field of spin-orbital physics is recently growing and becoming richer due to new exper-
iments. Understanding them is possible within simple models, mainly developed in low di-
mension. Also there entanglement is the strongest as quantum phenomena domininate in low
dimension. We shall concentrate on them here as they uncover important principles of treating
spin-orbital entanglement, both in the ground and in excited states. Spin-orbital entangled states
occur in several quantum materials and the proper understanding of them becomes crucial for
the quantitative analysis of the observed thermodynamic phase transitions.

Let us summarize briefly entanglement properties which could modify the experiment. First, I
would like to recall the 1D chain, where each of the fractional quasiparticles carries both spin
and orbital quantum numbers, and the two variables (spin and orbital) are always entangled in
the collective excitations [58]. The spin-orbital chain with two orbital flavors has been carefully
studied, both without the orbital spitting [e.g. in the SU(4) case] and for large splitting Ez.

Second, the 1D cuprate CaCu2O3 is a good example for the spin-orbital fractionalization along
the chain direction, while at the same time no fractionalization is observed for the xy orbital
which extends in both leg and rung direction [59]. Thus different degrees of dimensionality may
be selected by orbitals and thus the entanglement depends on particular orbitals involved in the
hopping. In a realistic 1D model for CaCu2O3 the splitting between the LS and HS terms occurs
for finite Hund’s exchange JH . In fact, any spin-orbital model requires to include a finite, but
realistic Hund’s exchange to explain the experimental data [60].

Third, another important competitor to the spin-orbital physics and on-bond entanglement is the
strong JT effect which is found as well in KCuF3 [61]. It drives the orbital order and does change
d-d excitations which become highly localized. At the same time, the low-energy excitations
present clear dispersion. They match extremely well with the two-spinon continuum. So, we
suggest that spin-orbital entanglement is a subtle property which is easily destroyed by some
stronger local interaction, and the entanglement depends then strongly on the possible coupling
to the lattice.

Fourth, spin-orbital coupling may lead to the disappearance of magnetic properties if it is suf-
ficiently strong, removes the orbital degrees of freedom, and generates local singlets [62]. It is
then challenging to study exchange interactions between these local singlets. In perovskites one
finds a conventional Bose condensation of excitons into a magnetic state, while an unexpected
1D behavior supporting spin-liquid states emerges in honeycomb lattices. When spin and or-
bital channels are decoupled and orbital frustration induces then frustration in the spin channel,
opening up the possibility of spin-orbital liquids with both spin and orbital entanglement [63].

Finally, the physics will change completely when spin-orbit interaction dominates over the su-
perexchange. Then local singlets form and are only weakly coupled by inter-site terms [64].
As we have shown on the example of a 1D spin-orbital chain, entanglement is then strong but
preferably limited to a single site, while the inter-site spin-orbital entanglement (which involves
superexchange bonds) might be still induced as shown in Sec. 1.
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7 Summary

Here we have focused on the interplay of spin and orbital degrees of freedom in realistic Mott
insulators and have shown that even when the entanglement is absent, these two types of degrees
of freedom (spin and orbital) decide about rather complex behavior, with competing tendencies
to localize due to strong correlations and to delocalize to gain more kinetic energy. Quantum
fluctuations are particularly well developed in the t2g systems where they partly even destroy
OO. As a result, a second order phase transition from the spin-orbital entangled state to a
C-OO/G-AF ground state is induced in LaVO3, where the long-range OO suppresses the spin-
orbital entanglement [49]. On the other hand, entanglement may be easily removed by phase
transitions, as a more fragile property of Mott insulators. It is near a phase transition that spin-
orbital entanglement is quenched locally [41]. The detailed energy balance depends as well on
the distribution of charge defects which also destroy spin-orbital entanglement locally.
Spin-orbital entanglement in the excited states is almost unexplored and awaits careful future
studies. It may be responsible for the modified dispersion of spin (and orbital) excitations
when either the spin or the orbital background is modified [42]. Yet, such modifications do not
require that the local degrees of freedom factorize, but it suffices that their coupling is modified
and causes measurable yet still unexplored properties.
Summarizing, spin-orbital entanglement is an important yet subtle property of Mott insulators.
It is fragile and helps to understand how spins and orbitals complement each other and behave in
the opposite way in ordered 3D materials. Perhaps the best example is the orbital liquid where
orbital disorder coexists with FM order of spins in the ground state of CMR manganites. Then
the spin-orbital entanglement is removed and the coherent spin FM order decouples from the
orbitals [21]. Many properties of correlated insulators are still unexplored and hopefully will
be investigated in the future. This concerns in particular the spin and orbital excitations. We
should be prepared that this field has still some hidden surprises to discover and that some of
them will be revealed gradually in the future.
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1 Introduction

Strongly correlated materials show a wide variety of physical phenomena which include uncon-
ventional superconductivity, heavy fermion behavior, various forms of magnetism and multifer-
roicity, as well as colossal magneto-resistance and metal-insulator transitions. These materials
usually contain transition-metal, rare-earth or actinide elements: the presence of the atomic-
like d or f orbitals provides the degrees of freedom to generate those intriguing phenomena.
Here the intricate interplay of band formation with the local correlation and atomic multiplet
effects leads to phases that are nearly iso-energetic, making the materials properties highly tun-
able by doping, temperature, pressure or magnetic field. Understanding the behavior of the d
and f electrons is therefor essential. The orbitals that actively participate in the formation of
the ground state and low energy excitations need to be identified. So far, these orbitals have
mostly been deduced from optical, x-ray and neutron spectroscopies in which spectra must be
analyzed using theory or modelling. This, however, is also a challenge in itself, since ab-initio
calculations hit their limits due to the many-body nature of the problem.

Here we developed a new experimental method that circumvents the need for involved analysis
and instead provides the information as measured [1–3]. With this technique, we can make
a direct image of the active orbital and determine what the actual atomic-like object looks
like in the solid of interest. The method is based on non-resonant inelastic x-ray scattering
(NIXS, also known as x-ray Raman scattering). Essential is that we involve an s core hole
(s-NIXS) in the experiment as we will explain below. The transitions s → d and s → f

are, however, dipole-forbidden, and therefore we have to utilize high momentum transfers in
the inelastic scattering process so that the beyond-dipole terms gain spectral weight. In this
chapter we will present the basic principles of s-NIXS and its experimental implementation. To
demonstrate the strength of the technique, we will show how we can obtain the image of a text-
book example, the 3d(x2−y2)(3z2−r2) hole orbital of the Ni2+ ion in a NiO single crystal [1].
We will also illustrate how s-NIXS can be used to directly identify the orbital character of
excited states so that the relevant energy parameters which determine the low energy excitations
can be extracted [3]. We will explain how s-NIXS can unveil covalency effects [3] and show the
power of the direct-imaging capability of s-NIXS for the study of metallic systems where strong
inter-site charge fluctuations hamper a reliable quantitative analysis of spectroscopic data.

2 Non-resonant inelastic scattering using an s core hole

The theoretical description of inelastic x-ray scattering can be found in a number of publica-
tions, see e.g. [4–7]. The double differential cross-section is the product of the Thomson photon
cross section

(
dσ
dΩ

)
Tho

and the dynamical structure factor S(~q, ω)

d2σ

dΩdω
=

(
dσ

dΩ

)
Tho

S(~q, ω). (1)
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The dynamical structure factor is a function of the scattering vector ~q = ~ki− ~kf and the energy
loss ω = ωi−ωf

S(~q, ω) =
∑
f

∣∣〈f ∣∣ei~q·~r ∣∣i〉∣∣2 δ(~ωi−~ωf−~ω). (2)

Here i and f are the initial and final states. The transition operator ei~q·~r can be expressed by
its Taylor terms 1 + i~q·~r + (i~q·~r)2 + · · · , thereby showing directly that for small values of
|~q | the monopole and dipole transitions will dominate the signal while for large |~q | values the
beyond-dipole transitions will also contribute significantly. In our experiment, we will utilize
excitations involving a core level. It is therefore useful to expand the transition operator ei~q·~r

in terms of semi-normalized (Racah’s normalization) spherical harmonics C q̂∗

km and C r̂
km. This

results in a sum over spherical Bessel functions jk(~q·~r) and the wave functions can be factorized
into a radial and angular part so that S(~q, ω) can be written as

S(~q, ω) =
∑
f

∣∣∣∣ ∞∑
k

ik(2k+1)
〈
Rf

∣∣jk(~q·~r)∣∣Ri

〉 k∑
m=−k

〈
φf
∣∣C q̂∗

kmC
r̂
km

∣∣φi〉∣∣∣∣2δ(~ωi−~ωf−~ω) . (3)

Not all terms in the above equation contribute to the sum. In fact, the non-zero terms are subject
to the so-called triangle condition and parity selection rules∣∣lf−li∣∣ ≤ k ≤ lf+li and

∣∣lf+li+k∣∣ = even, (4)

where li → lf labels the angular momenta in the transition. For example, a d → f transition
has contributions only from terms with k=1 (dipole), 3 (octupole), and 5 (triakontadipole).
An s → d or s → f transition, on the other hand, has only one term each, namely k=2

(quadrupole) or k=3 (hexapole).
In the following we focus our attention to transitions involving an s core hole. Our particular
interest originates from the fact that the s core hole is spherically symmetric. With the scattering
vector ~q being the only quantity that determines the quantization axis, we can expect that the
intensity of the transition will be determined by the hole density of the atomic-like final state
in the direction of the scattering vector. In other words, we may expect that by rotating the
atomic-like object while keeping the measurement geometry fixed, we can obtain an intensity
profile that reflects the shape of the hole density of that object. A mathematical proof that the
intensity profile is proportional to the hole density is given by Sundermann and Haverkort [8].

3 Experimental set-up

The s-NIXS measurements were performed at the High-Resolution Dynamics Beamline P01 of
the PETRA-III synchrotron facility in Hamburg, Germany. Fig. 1 illustrates the experimental
setup, showing the incoming beam (~ki, ωi), single crystal sample, scattered beam (~kf , ωf ), and
the corresponding momentum transfer vector (~q). The energy of the x-ray photon beam incident
on the sample was tuned with a Si(311) double-reflection crystal monochromator (DCM). The
photons scattered from the sample were collected and energy-analyzed by an array of twelve



7.4 Liu Hao Tjeng

-q

detector

3x4 crystal
Si(660) analyzers

Fig. 1: Experimental set-up and scattering geometry of the s-NIXS measurements at the P01
Beamline of the PETRA-III synchrotron facility in Hamburg, Germany. Schematic representa-
tion (right) from [1, 3].

spherically bent Si(660) crystal analyzers. The analyzers are arranged in a 3×4 configuration.
The energy of the analyzers (~ωf ) was fixed at 9690 eV; the energy loss spectra were measured
by scanning the energy of the DCM (~ωi). Each analyzer signal was individually recorded
by a position-sensitive custom-made LAMBDA detector. The energy calibration was regularly
checked by measuring the zero-energy-loss position of each spectrum. The best possible energy
resolution was guaranteed by pixel-wise analysis of the detector recordings and measured as
0.7 eV (FWHM).
The positioning of the analyzer array determines the momentum transfer vector and the corre-
sponding scattering triangle, which is defined by the incident and scattered photon momentum
vectors, ~ki and ~kf , respectively. The large scattering angle (2θ≈ 155◦) chosen for the current
study assured a large momentum transfer of |~q | = (9.6± 0.1) Å−1 when averaged over all ana-
lyzers. ~kf and 2θ were kept constant by fixing the energy and the position of the analyzer array.
Since the energy transfer range of interest (100 to 120 eV) was small with respect to the inci-
dent and final energies (∼9700 eV), variation of ~ki during energy scanning was insignificant.
This guaranteed that the scattering triangle was virtually unchanged throughout the course of
the experiment with |~q | ≈ constant.
The core of the experimental work is the measurement of S(~q, ω) as a function of the orientation
of the single crystal sample with respect to the fixed experimental geometry as shown in Fig. 1.
Here we define the sample angle ϕ as the angle between the fixed momentum transfer vector ~q
and the single crystal surface normal.

4 Compton intensity and data treatment

To demonstrate the feasibility and accuracy of the s-NIXS method, we used a single crystal
of NiO as a model system. It crystallizes in the rocksalt structure and is an antiferromagnetic
insulator, with a well-understood high-spin Ni d8 configuration. The measurements were carried
out at 20 K in a He gas cryostat. The left panel of Fig. 2 shows a collection of NIXS spectra
of a NiO single crystal measured for many different sample angles. The spectra show the sharp
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3s→3d

3p→3d

NiO

Fig. 2: (left panel) Experimental NIXS spectra of NiO for a variety of crystal rotations ϕ with
respect to the geometrically fixed momentum transfer vector ~q. (right panel) Calculated and
measured Compton intensity as function of sample angle ϕ with respect to specular geometry
(ϕ= 77.5◦) for a scattering angle 2θ= 155◦. Reproduced from [1]

M2,3 edge (3p→ 3d) of nickel at around 70 eV and, important for the present study, the dipole-
forbidden M1 (3s→ 3d) excitations at around 110 eV. These features are on top of the broad
Compton profile which peaks at about 350 eV energy transfer. The spectra are all normalized
to this Compton signal.
We note that the line shape of the Compton profile does not change with angle. This is fully
consistent with the fact that the scattering geometry is kept constant while rotating the sample.
What does vary is the intensity of the Compton signal. This is related to how the x-rays are
absorbed when entering the sample and when scattered out of the sample. This process can be
modeled quantitatively since the NiO crystals used have well defined flat and shiny surfaces.
The result of this modeling and the comparison with the experiment is displayed in the right
panel of Fig. 2. The calculations were done for the actual scattering geometry of 2θ = 155◦

so that for ϕ= 77.5◦ specular geometry is fulfilled. Turning the sample towards (away from)
the analyzer, increases (decreases) the intensity. One can observe a very good overall match
between the experiment and the modeling. We thus can state that we understand fully the details
of the scattering process, and in particular, that the intensity variations of the Compton profile is
due to the absorption processes in the sample. We therefore can safely use the Compton profile
to normalize our s-NIXS spectra.
To extract the M1 edge intensities for further analysis, the Compton profile has been subtracted
from each spectrum using a simple linear background.

5 Orientational dependence of the s-NIXS intensities

A close-up of the M1 edge and its orientational dependence on ~q ‖ [001] – [101] – [100] is
displayed in panel (a) of Fig. 3, and for ~q ‖ [001] – [111] – [110] in panels (b) and (c). The
spectra consist of a single line and the line shape does not change with the angle. What does
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q
→

q
→

NiO single
crystal

Fig. 3: Stack of the Ni M1 NIXS spectra acquired for ~q ‖ [001] – [101] – [100] (orange, panel
a) and ~q ‖ [001] – [111] – [110] (green, panels b and c). Adapted from [1].

change is the intensity. To quantitatively analyze these intensity variations, we determined the
integrated intensity of each spectrum and placed it on a polar plot as displayed in the left and
right panels of Fig. 4: the data points for ~q sweeping in the [001] – [101] – [100] plane are in
orange, and for ~q in the [001] – [111] – [110] plane in green. They fall accurately on top of the
orbital shapes which denote ’cuts’ through the [001] – [101] – [100] (orange) and [001] – [111]
– [110] (green) planes of the calculated three-dimensional orbital hole-density (square of the
wave function) of the Ni high-spin 3d8 configuration in octahedral coordination, namely the 3A2

3d(x2−y2)3d(3z2−r2) as shown in the center panel of Fig. 4. This means that we indeed have
generated a purely experimental method that can directly visualize the fundamental atomic-like
quantum mechanical objects in solids. The information that we have obtained is extremely
detailed; for example, we can clearly see the small lobes of the 3d(3z2−r2) contribution. We
would like to remark that the 3d(x2−y2) contribution vanishes in the [001] – [111] – [110]
plane, while both the 3d(x2−y2) and 3d(3z2−r2) contribute in the [001] – [101] – [100] plane.
Here we note that we have used two orbital shapes in the inset in the right panel of Fig. 4: the
blue dashed line is the 3d(x2−y2)3d(3z2−r2) function and the solid line is the same function
convoluted with the angular acceptance of the 3×4 analyzers we used in our experiment. The
near perfect agreement further demonstrates the accuracy of the method.
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q
→

q
→

NiO single crystal

3d8 high spin:
3A1 = (3z2-r2)(x2-y2)

Fig. 4: Left and right panels: polar plots of the integrated Ni M1 intensities for ~q sweeping
in the [001] – [101] – [100] plane (orange) and for ~q in the [001] – [111] – [110] plane
(green). Central panel: theoretical three-dimensional orbital hole density of the Ni high-spin
3d8 configuration in octahedral coordination: 3A2 3d(x2−y2)3d(3z2−r2). Adapted from [1].

6 Ground state properties

The orientational dependence of the integrated s-NIXS intensity at the Ni M1 edge (3s→ 3d)
directly maps the local orbital hole density of the ion in the ground state. There is no need to
carry out a multiplet analysis of the spectral line shape to extract this information, in contrast
to, for example, the non-s edges (e.g. L2,3(2p), M2,3 (3p), M4,5 (3d), N4,5 (4d), and O4,5 (5d))
in both NIXS [5–7, 9–14] and XAS experiments [15–19]. The reason is fundamental: The
M1 (3s→ 3d) quadrupolar excitation process involves a spherically symmetric s orbital, so the
angular distribution of the intensity is solely determined by the hole charge distribution in the
initial state with respect to the sole quantization axis which is given by the momentum transfer
~q [8]. This is similar to the dipole-allowed s→ p transition in XAS, where an angular sweep of
the polarization dependence maps out the orientation of the p hole directly.
We would like to emphasize that we do not need to perform complex configuration-interaction
calculations to analyze or simulate the line shape of the spectra in order to obtain the local
orbital hole density of the ion in the ground state. Details of the s-NIXS final states in fact do
not matter because the information is extracted from the integrated intensity of the spectra (i.e.,
from the sum of the intensities of all final states). This can be understood as follows. Carrying
out the energy integration of the dynamical structure factor S(~q, ω) of Eq. (2), we obtain∫

S(~q, ω) dω =
∑
f

∣∣〈f ∣∣ei~q·~r∣∣i〉∣∣2 =∑
f

〈
i
∣∣ei~q·~r∣∣f〉〈f ∣∣ei~q·~r∣∣i〉 = 〈i∣∣ei~q·~rei~q·~r∣∣i〉, (5)

where we have made use of the closure theorem
∑

f |f〉〈f | = 1, assuming that the final states
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MnS single crystal

Mn-M1 Mn-M1

Fig. 5: Stack of the Mn M1 NIXS spectra acquired for ~q ‖ [100] – [111] – [011] (panel a) and
[100] – [110] – [010] (panel b). The grey lines are the result of the fit procedure explained in
the text. Reproduced from [3].

|f〉 are complete. As a result, only the properties of the initial state are probed. Here we note
that in this experiment we are considering only final states that can be reached in the (s→ d)
transition channel, so that what we have obtained is the d hole density in the initial state. This
d hole density is a locally projected quantity since the final states carry the presence of the s
core hole. The procedure is analogous to using linear and circular dichroism sum rules in x-
ray absorption spectroscopies to extract expectation values of relevant quantum numbers of the
system in the ground state [18, 20–22].
We would like to remark that the intensity distribution in s-NIXS is not what would be measured
in an x-ray diffraction (XRD) experiment, even if such an experiment could be carried out with
sufficient accuracy. In fact, s-NIXS provides information complementary to that from an XRD
experiment by elucidating which local orbital or atomic wave function is active. The s-NIXS
method presented here is not limited to ionic materials. In cases where configuration interaction
effects play an important role due to covalency or itineracy, the image of the probed local orbital
will reflect these effects directly as we will show below.

7 From ground state to excited states

Having established that s-NIXS is a powerful method for the investigation of the ground state,
we will now explore the spectroscopy aspect of s-NIXS in order to study the excited states
which are most often dominated by many-body atomic multiplet interactions in the d- and f -
electron materials. In particular we aim to determine the orbital character of those states. The
idea is that the use of an s core hole should simplify the analysis of the spectra in two significant



Orbital Imaging 7.9

3d5 high spin:
6A1 = (3z2-r2)(x2-y2)(xy)(yz)(zx)

MnS single crystal

M1 integrated intensity M1 integrated intensity

Fig. 6: Left and right panels: polar plots of the integrated intensity of the Mn M1 in the [100]
– [111] – [011] plane (magenta) and in the [100] – [110] – [010] plane (dark cyan). Central
panel: theoretical three-dimensional orbital hole density of the Mn high-spin 3d5 configura-
tion in octahedral coordination: the spherical shaped 6A1 3d(x2−y2)(3z2−r2)(xy)(yz)(yz).
Adapted from [3].

aspects. First, the presence of the s hole does not add an extra orbital angular momentum so
that use can be made of the well-established and readily available Sugano-Tanabe-Kamimura
diagrams that depict the multiplet energy scheme of 3d ions for varying values of the crystal
field [23]. Second, the identification of the orbital character of the multiplet state can be done
in a direct manner by the imaging ability of the s-NIXS method. To exemplify these points, we
have carried out the experiment on α-MnS, a rock salt type antiferromagnetic insulator with far
from complete filling of the d shell so that orbital degrees of freedom are present in its excited
states.

The α-MnS single crystal sample was grown by chemical vapor transport and during the mea-
surements the sample was kept at a temperature of 50 K. The Mn M1 edge spectra acquired
at different angles are shown in panel (a) of Fig. 5 for the set ~q ‖ [100] – [111] – [011] and in
panel (b) for ~q ‖ [100] – [110] – [010]. Also here the Compton contribution was used for nor-
malization and has been subtracted from the spectra using a linear background. At first glance,
there are no prominent variations in the peak intensities, but, as highlighted by the colors, the
overall peak energy position varies as a function of angle, i.e., as a function the orientation of ~q
with respect to the crystallographic axes.

Plotting first the integrated intensities as a function of angle in a polar plot, we indeed can
observe from the left and right panels of Fig. 6 that there is essentially no orientational depen-
dence, i.e., the hole charge density is constant in all directions. The spherical shape of the Mn
3d charge density as shown in the middle panel of Fig. 6 is fully consistent with the scenario in
which all five spin-up or all five spin-down 3d orbitals are unoccupied, i.e., in which the Mn2+

3d5 ion is in its Hund’s rule high-spin 6A1 ground state.
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Mn-M1

Fig. 7: The experimental spectrum for a given angle Θ (black dots) is decomposed using the
weighted sum of ~q ‖ [111] (blue dots) and ~q ‖ [100] (orange dots) spectra that provides the
best fit (grey line). Reproduced from [3].

8 Analysis of excited states

While the integrated intensity of the spectra is constant with angle, the energy position of theM1

peak as displayed in panels (a) and (b) of Fig. 5 does vary with the orientation, between 82.37 eV
(blue vertical line) for the ~q ‖ [111] spectrum and 83.15 eV (orange vertical line) for ~q ‖ [100].
Since no discernible dispersion can be expected for core-hole excitations, such a variation in
energy indicates that the M1 signal consists of features positioned at different energies whose
relative intensities change with angle. With the Mn ion coordinated octahedrally by six S ions,
we expect that the energy differences in the final states must be related to 10Dq, the octahedral
crystal field splitting between the t2g and eg orbitals.
We now assume that the two spectra acquired at ~q ‖ [111] and ~q ‖ [100], which show the extreme
peak positions and narrowest line shapes, are the basic components making up the M1 NIXS
signal for every other orientation. We performed fits to all spectra using a linear combination
of these two experimental spectra and determined their relative weights, so that each spectrum
is described as S(Θ) = c111(Θ)Sq‖111 + c100(Θ)Sq‖100 where c111 and c100 are the free fitting
parameters, as depicted in Fig. 7. The resulting fits are shown with gray lines in Fig. 5.
The weights c111(Θ) and c100(Θ) obtained by the fits are plotted in left panels Fig. 8 for the two
sample orientations. We can observe that the angular dependence follows the shape of the t2g
and eg states with great accuracy, allowing us to directly identify the orbitals reached in each
excitation. In particular, the t2g orbital shape is drawn by the angular dependence of c111(Θ), the
weight of the S~q‖111 component peaking at 82.37 eV. Likewise, the excitation into eg orbitals is
represented by c100(Θ), the weight of the S~q‖100 component peaking at 83.15 eV. The difference
between these two energies is due to the eg-t2g splitting, and it is therefore a direct measurement
of the crystal field parameter 10Dq = 83.15 eV−82.37 eV= 0.78 eV as also illustrated in the
right panel of Fig. 8.
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single components: multiplet / crystal-field states

Fig. 8: Left panels: the intensity of the ~q ‖ [100] (orange) and ~q ‖ [111] (blue) components
follow the angular dependence of the eg (orange) and t2g (blue) orbitals, respectively. Right
panels: The eg-t2g energy splitting is about 10Dq = 0.78 eV. Adapted from [3].

9 Many-body energy-level diagram

A proper interpretation of the spectra must include the effects of Coulomb and exchange inter-
actions between the electrons within the d shell, meaning that we need to put our results in a
many body framework which takes into account both the full atomic multiplet theory and the
local effect of the lattice. In particular, starting from the 3s23d5 configuration for the ground
state of the Mn ion in α-MnS, the s-NIXS process leads to a 3s13d6 final state. Since the s core
hole does not add an extra orbital angular momentum component, the multiplet structure of the
final state will be closely related to the one of the 3d6 configuration. Therefore, one could make
use of the well-established Sugano-Tanabe-Kamimura diagrams [23] for a quantitative analysis
of s-NIXS spectra, after taking into account for some modifications due to the presence of the
extra 3s spin. We exemplify this in Figs. 9 (a) and (b), where we reproduce the total energy dia-
grams for a Mn ion in 3d6 and 3s13d6 configuration calculated with the Quanty code [24]. The
corresponding Slater integrals F 2

3d−3d and F 4
3d−3d (andG2

3s−3d for the 3s13d6 configuration) have
been obtained using the code by R.D. Cowan [25] and reduced to 80% of their Hartree-Fock
value to account for configuration interaction effects not included in the calculation [16, 17].

To ease the comparison between the diagrams of the two configurations, the lowest energy state
is not fixed at 0 eV for every 10Dq like it was done in the Sugano-Tanabe-Kamimura book [23].
Instead, the lowest state of the 3d6 configuration is put to zero only for 10Dq=0 eV, and serves
as reference energy. In this way, the multiplets are split by the action of 10Dq, but the average
energy of the diagram is kept constant. The energy levels are labeled for zero crystal field
(10Dq=0 eV, spherical symmetry) with the (2Sd+1)Ld term symbols, where Sd and Ld represent
the quantum numbers of the 3d shell and the orbital quantum numbers Ld are indicated with the
usual letter notation (S, P , D, F , G...). The subscript in parenthesis indicates the degeneracy
of each term symbol, also including the degeneracy given by the 3s hole. In total, the 3d6

configuration has
(
10
6

)
= 210 states, while 3s13d6 has 2 ×

(
10
6

)
= 420 states, due to the extra

multiplicity of the 3s1 spin. The colors group the states in the diagrams according to their 3d
spin multiplicity (2Sd+1): singlets are purple, triplets green, and quintets orange.
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Fig. 9: Modified Sugano-Tanabe-Kamimura diagrams showing the dependence on 10Dq of the
energy levels of (a) Mn 3d6 (in absence of the core 3s hole) and of (b) Mn 3s13d6 (the s-NIXS
final state). Each multiplet is labeled with the corresponding term symbol at 10Dq=0 eV and
in parenthesis its degeneracy. The colors indicate each state’s spin multiplicity: purple for
singlets, green for triplets and orange for quintets. In panel (b), the thick full lines represent the
states having parallel Sd and Ss, the thin dashed lines the states with Sd anti-parallel to Ss,
and the thin full lines the states not affected by Ss. The stars indicate, for several 10Dq values,
the possible final states of the s-NIXS process, and the vertical gray line at 10Dq=2.7 eV is the
transition between the high and low spin configurations of the 3d5 ground state. Reproduced
from [3].

Starting from the singlets, it is straightforward to notice that the energy scheme within the set of
singlets, as well as the dependence of each state on 10Dq, is essentially the same between the
two configurations 3d6 and 3s13d6. This agrees with the fact that singlet states cannot be mod-
ified by an interaction with a 3s spin, given by 〈Ŝd · Ŝs〉, which is zero for Sd = 0. The minor
changes between the two groups (. 10% of the energy splittings) is due to the different values
of the Slater integrals F 2

3d−3d and F 4
3d−3d between the two configurations. The sets of triplets

(green lines) and quintets (orange) of the 3s13d6 configuration, instead, are further divided in
two subgroups depending on the relative alignment of Sd and Ss. The states having the two
spins parallel are represented with thick lines, while the thin dashed lines represent the states
with opposite Sd and Ss. These subgroups are each a replica of the corresponding 3d6 triplet or
quintet set, rigidly shifted in energy due to the spin interaction.

To understand and predict these energy shifts due to the Coulomb interaction between the d
electrons and the electron of the open 3s shell one can relate the Coulomb operator to the spin
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Stot = Sd + Ss Stot = Sd − Ss
Sd 2Sd + 1 〈Ŝd · Ŝs〉 ∆E [G2

3s−3d] 〈Ŝd · Ŝs〉 ∆E [G2
3s−3d]

0 1 0 0 0 0

1
2

2 1
4

− 1
10

−3
4

3
10

1 3 2
4

− 2
10

−4
4

4
10

3
2

4 3
4

− 3
10

−5
4

5
10

2 5 4
4

− 4
10

−6
4

6
10

5
2

6 5
4

− 5
10

−7
4

7
10

Table 1: Eigenvalues of Ŝd ·Ŝs, related to the energy splitting due to the Coulomb interaction of
pure spin multiplets (i.e., neglecting spin-orbit interaction) in the d shell with the open 3s1 core
shell for states with the d spin either parallel (S tot = Sd+Ss) or anti-parallel (S tot = Sd−Ss)
to the core s spin. Reproduced from [3].

operators of the d shell and s shell. We have

HCoulomb
3s−3d = −2

5
Ŝd · ŜsG2

3s−3d + nd
(
F 0
3s−3d −

1

10
G2

3s−3d
)
. (6)

The last term in the equation is constant for all multiplets within a 3s1 3dn configuration and as
such does not lead to a splitting between the different states. The eigenvalues of Ŝd · Ŝs can be
obtained simply by inverting the formula [26] (Ŝtot)

2 = (Ŝd)
2 + (Ŝs)

2 + 2Ŝd · Ŝs, where Stot

can be Sd+Ss = Sd+
1
2

or |Sd−Ss| = |Sd−1
2
|, and remembering that the eigenvalue of (Ŝ)2

is S(S+1). The resulting eigenvalues are listed in Table 1 for each possible value of Sd.
Typical values ofG2

3s−3d for the 3d series, after a reduction to 80 % of their Hartree-Fock values,
range from 8.5 to 10.2 eV. In general, ∆E is larger for larger spin multiplicities. With these
ingredients, one can easily build the Sugano-Tanabe-Kamimura diagrams of the NIXS final
configuration from the ones without the 3s core hole, listed, for example, in Figs. 5.1–5.7 of the
famous book of S. Sugano, Y. Tanabe and H. Kamimura [23]. This allows the diagram of the
possible s-NIXS final states to be reproduced without the need for performing new calculations
and, by comparing the diagrams to the spectra, quantitatively determine the value 10Dq.

10 Spectral lineshape

The next step towards a complete understanding of the s-NIXS spectra is to realize that not all
states depicted in Fig. 9 (b) can be reached starting from the ground state of Mn2+ in α-MnS.
In our case, the addition of one extra 3d electron (s = 1/2) to the high-spin 6A1 (Sd = 5/2)
ground state can only lead to quintet final states (Sd = 2), with the 3s1 spin parallel to the
majority spin of the 3d. Therefore, −2

5
G2

3s−3d 〈Ŝd · Ŝs〉 < 0, and the low energy replica of
the quintet set is reached. The possible s-NIXS final states for different values of 10Dq are
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indicated with stars in Fig. 9 (b), where the values of 10Dq corresponding to the initial 3d5

high-spin configuration 6A1 are to the left of the gray vertical line, and low-spin on the right.
The size of each star is proportional to the intensity of the corresponding peak on the s-NIXS
spectra, averaged over the two sets of directions presented here (i.e., q ‖ [100] – [111] – [011]
and q ‖ [100] – [110] – [010]). There are only two states in the diagrams that can be reached
with a s-NIXS excitation, namely the 5T2 (the extra 3d electron occupying t2g orbitals) and 5E

(the extra electron in the eg). From the shape of the final state orbitals as imaged in Fig. 8,
we can identify immediately that the lower energy peak belongs to the 5T2 state and the higher
to the 5E. It is then straightforward to understand, as predicted above, that in our case the
experimental peak energy separation of 0.78 eV corresponds one-to-one to the 10Dq value.
It is worth looking into Fig. 9 (b) in more detail. For 10Dq values on the right of the gray vertical
line, the ground state will no longer be the high-spin but the low-spin 3d5. The consequence for
the s-NIXS spectrum is dramatic. It switches from a two-peak structure (two stars) into a five-
peak features (three small stars, two large stars). This demonstrates that the line shape of the
s-NIXS spectrum is an extremely sensitive indicator of the ground state symmetry. The value
of 10Dq can be determined directly from the spread of the five peaks. Consequently, the ground
state hole density will also change in going from high to low-spin, i.e., from spherical (t32ge

2
g-

like) to highly non-spherical (t52g-like), which can be revealed directly by the image obtained
from the directional dependence of the integrated s-NIXS intensity.

11 Covalency

We now investigate the influence of covalency on the s-NIXS image of the local d hole den-
sity and the spectra. To this end, we have carried out configuration-interaction calculations
[16, 17, 24] using an octahedral MnS6 cluster which includes explicitly the hybridization be-
tween the Mn 3d and the S 3p orbitals. We have set the hopping integrals for the eg orbital
at 1.92 eV and for the t2g at 1.15 eV [24] and varied the energy difference between the d5 and
d6L configurations (charge transfer energy ∆). Here L denotes the S 3p ligand hole states. The
results are shown in Fig. 10.
Starting with the ionic calculation, we have in the ground state an electron occupation of 3.000
for the t2g orbital and 2.000 for the eg (values listed in the central panel). The corresponding
ground state hole density is spherical (Fig. 10, left panel, red line), and the directional depen-
dence of the low and high energy peaks in the calculated s-NIXS spectra follow (Fig. 10, two
right panels) the t2g (blue) and eg (orange) orbital shapes, respectively, as we have seen already
in Fig. 8. Switching on the hybridization between the d5 and d6L configurations, we can see that
the electron occupation in the ground state increases with lowering the ∆ values. It increases
faster for the eg than for the t2g (values listed in the central panel), consistent with the fact that
the hopping integral with the ligand is larger for the eg than for the t2g. In the strongly cova-
lent case of ∆ = 1 eV we have 3.136 in the t2g and 2.287 for the eg. Accordingly, the ground
state hole density, proportional to the NIXS signal, decreases for lower ∆ values and becomes
strongly non-spherical (left panel). This also means that the amount of hybridization can be
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Integrated 
M1 intensity

Final state resolved
M1 intensities

Fig. 10: Mn M1 simulations using a MnS6 cluster calculated for various degrees of covalency.
Left panel: Polar plot of the integrated intensity of the Mn M1 in the [100] – [110] – [010]
plane: from ionic (most outer circle) to strongly covalent (most inner distorted circle, ∆ =
1 eV) case. Middle panel: Mn M1 spectra along the ~q ‖ [100] (orange) and ~q ‖ [111] (blue)
directions: from ionic (bottom curves) to strongly covalent (top curve, ∆ = 1 eV). The ∆ and
corresponding ionic 10Dq values are indicated, together with the resulting eg and t2g occupa-
tion numbers. The energy splitting between the ~q ‖ [100] (orange) and ~q ‖ [111] (blue) peaks is
fixed at 0.78 eV. Right panel: polar plot of the final state resolved Mn M1 intensities (high en-
ergy peak in orange and low energy peak in blue), for the ionic (bottom) and strongly covalent
(top, ∆ = 1 eV) cases. Adapted from [3].

extracted from the precise shape of the hole density as measured by s-NIXS.
Perhaps a surprising result is that the presence of hybridization does not have much influence
on the s-NIXS spectrum, even for the ∆ = 1 eV case. It shows the same two peak structure,
and the directional dependence of the low and high energy peaks still follows the t2g (blue) and
eg (orange) orbital shapes, respectively. It may seem surprising that hybridization or covalency
does little to the spectrum, but we can draw a parallel to x-ray absorption spectroscopy (XAS),
which is also a core-level spectroscopy in which a core electron is excited into the valence
shell. It is known that the M4,5 edges of Ce and the L2,3 of the 3d transition metal ions can
be well reproduced using ionic calculations despite the fact that there is covalency. The reason
is that the energy orderings of the electron configurations are identical in the initial state and
in the XAS final state. Thus the spectral weights of the other local configurations are strongly
suppressed due to quantum mechanical interference effects [16, 27]. Therefore, both XAS and
NIXS, generally produce a spectrum that is very similar to the one that belongs to the main local
configuration, e.g., the ionic configuration. Despite the fact that the overall s-NIXS spectrum is
rather insensitive to hybridization, a closer look at the line shape and the intensities does reveal
details that contain information about the hybridization strength. The middle panel of Fig. 10
show that the intensity of the high energy peak (eg, orange) becomes smaller relative to that
of the low energy peak (t2g, blue) with decreasing ∆ values. The s-NIXS spectrum can there-
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fore be used to help determine quantitatively the parameter values describing the hybridization
process.

In the ionic calculations, we have used a 10Dq value of 0.78 eV in order to get a separation of
0.78 eV between the two peaks in the MnM1 NIXS spectrum. We will name this the ionic-10Dq
parameter. Upon switching-on the hybridization, we must decrease the value of the ionic-10Dq
parameter in our calculations to maintain the 0.78 eV separation between the two peaks in the
NIXS spectrum. A larger decrease is required when ∆ gets smaller, i.e., when the hybridization
gets stronger (see the values in the cental panel). This can be understood if one considers the
fact that the hopping integral with the ligand is larger for eg than for t2g, and that the resulting
difference in hybridization energy contributes to the energy splitting between the eg bonding
state and the t2g equivalent. It is the combined effect of hybridization and the ionic-10Dq that
produces the 0.78 eV splitting in the NIXS spectrum, which we can define as the effective-
10Dq. NIXS, like XAS, can thus provide direct access to the effective crystal field energy [16,
17, 28, 29]. The horizontal axis of the Sugano-Tanabe-Kamimura diagram presented in Fig. 5
can therefore be understood as the energy scale for the effective-10Dq in covalent materials.

12 Metallic systems: ground state properties

The s-NIXS data presented so far concern insulating materials. We now will investigate the
capabilities of this method for highly metallic systems. To this end, we have carried out mea-
surements on elemental metals such as Cr, Fe, and Ni. For each metal we have used two single
crystals, one having a surface with the (100) normal and the other the (111), in order to cover a
sufficiently wide range of angles. All surfaces were epi-polished to mirror quality.

The results are shown in Fig. 11. The top panel displays the polar plot of the integrated M1

intensities from scans collected from the (100) surface, and the middle panel from the (111)
surface. The bottom panel summarizes the data in a 3-dimensional (3D) representation. Making
use of the sum-rule argument explained above (since the quantities of concern are integrated
intensities), we can assert that the images show the shape of the local 3d hole density of the
metals in the ground state. We can clearly observe that there are significant differences between
Cr, Fe, and Ni. These data can then be compared with ab-initio theoretical calculations in order
to unveil to what extent electron correlation effects beyond mean field affect the ground state
3d charge density.

We would like to remark that information about the 3d charge density in highly metallic systems
is in general very difficult to extract from spectroscopic data. In the presence of correlations, a
quantitative analysis of the spectra is severely hampered by the large number of configurations
that need to be included associated with the strong inter-site charge fluctuations. The use of
integrated intensities in s-NIXS circumvents all these difficulties.
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Fig. 11: Shape of the hole density in the 3d shell of elemental Cr, Fe, and Ni metal. Top and mid-
dle panels: polar plots of the integrated intensity of theM1 edge from the single crystal samples
with the (100) and (111) surfaces, respectively. Bottom panel: a 3-dimensional representation
of the measurement results.

13 Concluding remarks

In conclusion, we have shown that s-NIXS has the unique ability to directly provide a spatial
image of the local orbitals that are active in the formation of the ground state as well as of the
excited states. This purely experimental method is especially valuable for tackling problems
in complex systems where band formation and electron correlation effects are both important.
s-NIXS can even provide direct information about the ground state properties of highly metallic
systems, where spectroscopic techniques hit their limitations. The prospects of s-NIXS as a new
experimental method need to be further explored. It is has, for example, the advantage that it is
element-specific, and also allows for sophisticated sample environments, e.g., involving small
samples, high pressures, and high/low temperatures.
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1 Introduction

The properties of quantum materials, such as 3d transition-metal oxides, are largely governed
by the collective behavior of their strongly interacting electrons and the material’s response is
subject to a complex interplay of the local spin, charge, and orbital quantum degrees of free-
doms [1]. This manifests itself in various properties such as Mott metal-to-insulator transitions,
different types of magnetic order (ferro-, ferri-, and anti-ferromagnetic), orbital order, and un-
conventional superconductivity [2, 3]. These diverse properties have been extensively studied
in bulk materials over the past decades and are of great importance for both, fundamental and
applied solid state research.
In recent years, technological advances have enabled the synthesis of heterostructures of quan-
tum material oxides with ultra-thin layers and atomic layer precision, thereby providing differ-
ent opportunities to manipulate correlated electron systems [4, 5]. Research is primarily aimed
at rational materials design through the targeted realization of interfacial reconstructions. The
investigation of model systems with specific reconstructions, the generation and understanding
of new materials properties, in particular the stabilization of technologically interesting phases
under ambient conditions are central motivations of the research area [6–8].
In heterostructures, electronic and magnetic phases that are inaccessible in the bulk can be sta-
bilized and controlled by biaxial strain induced by epitaxy with a single-crystalline substrate,
electronic confinement, interfacial doping, or magnetic interactions [9]. The success of these
efforts depends on a detailed understanding of the interfacial interactions and reconstructions in
these artificially layered materials, which often span only a few atomic layers. The presence of
only a very small volume of the material of interest poses a problem for many solid-state spec-
troscopy methods, such as neutron scattering, muon spin relaxation, or optical spectroscopy,
which are normally used to study bulk materials.
In this lecture I like to introduce soft X-ray spectroscopy, with special focus on X-ray absorption
and resonant elastic X-ray scattering and reflectivity, as a non-destructive spectroscopic method,
which provides important insights into the physics and chemistry of transition-metal oxide het-
erostructures. As these methods require soft X-rays with variable energy and polarization, it is a
synchrotron technique. The rather shallow probing depth of soft X-ray spectroscopy compared
to, e.g., neutron scattering, which is sometimes considered a disadvantage in the study of bulk
materials, proves to be extremely advantageous for the study of epitaxial heterostructures that
are typically not much thicker than 100 nm.

2 Spin, charge, orbital, and lattice degrees of freedom in
epitaxial multilayers

A large number of 3d transition-metal oxides with strongly-correlated spin, charge, and orbital
degrees of freedom crystallize in the perovskite structure with composition ABO3, where B is
a transition-metal ion, i.e., Sc – Zn, and A either an alkaline-earth (Mg – Ba), or a rare-earth ion
(La – Lu) (Fig. 1(a)). This relatively simple, pseudo-cubic structure allows to combine different
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Fig. 1: When combining different transition-metal oxide perovskites, ABO3 (a), in an epitax-
ially strained heterostructure (b), different lattice (c), charge (d), orbital (e), and magnetic (f)
reconstructions can occur at their interfaces.

compounds in a cube-on-cube fashion in an epitaxial heterostructure (Fig. 1(b)). In this way, an
artificially layered material can be created with emergent phases that are not present in the bulk
phase diagrams of the individual components.

In fully strained heterostructures, the different B cation positions have a defined in-plane re-
lationship resulting from the adaptation of the lattices at growth temperature. For cube-on-
cube growth of the perovskite structure on a cubic substrate, exerting isotropic, biaxial strain
(Fig. 1(b)), the simplest modification of the unit cell is a tetragonal distortion. This then leads to
elongation (green material) or compression (blue material) of atomic distances along the growth
direction, depending on the elastic properties of the material. However, the structural degrees
of freedom in transition-metal oxide perovskites allow far more complex distortions, which can
be understood in good approximation as tilts and rotations of rigid octahedra around the three
cubic axes [10], as indicated in Fig. 1(c). These are determined by the lattice mismatch with the
substrate, its crystal symmetry, the choice of the facet, and the connectivity conditions at the
interfaces, and thus affect the lengths and angles of the B-O bonds. Therefore, it is important
to consider structural distortions in the design, and to study them in detail in the grown het-
erostructures. Ab-initio theories such as density functional theory (DFT) have been shown to
provide good predictions for structural modifications (see, e.g., Ref. [11]). Lower-energy scale
electronic reconstructions, such as interfacial charge transfer or charge order can occur between
multi-valence B ions (Fig. 1(d)). In addition, orbital polarization due to electronic confinement
or reduced hopping across the interface due to a change in chemical bonding (Fig. 1(e)), as well
as magnetic reconstruction, e.g., due to interfacial exchange coupling, can occur (Fig. 1(f)).
The examples in Fig. 1 sketchily show different possible reconstructions, but in section 4 I will
give concrete examples for different spin, charge, and orbital reconstruction mechanisms in
heterostructures that our group has synthesized and studied in the past years.

The combination of theory, either by considering minimal models that capture the essential
properties and ab-initio calculations that can investigate small, but relevant material differences,
together with different experimental spectroscopy methods has proven to be a very powerful ap-
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Al Y La V

Fig. 2: Scanning transmission electron microscopy (STEM) images of YVO3-LaAlO3 super-
lattices. (a) Low magnification image, (b,c) High-resolution images for two different crystal-
lographic projections, revealing small structural distortions. (e) STEM-EELS maps show the
elemental order in the layers. Reproduced from Refs. [19, 18].

proach to predict and describe the properties of new material combinations. In addition, tremen-
dous progress in the growth of epitaxial complex oxide heterostructures with atomic-layer pre-
cision by pulsed-laser deposition [4, 12, 9], magnetron sputtering [13, 14], and molecular-beam
epitaxy [15–17] has been made. Nowadays it is possible to grow superlattices with altering
layers of only a few unit cells (about 1 nm) of two materials with very high structural and
chemical precision. As an example the scanning transmission electron microscopy (STEM) im-
ages of a YVO3-LaAlO3 superlattice, grown by pulsed-laser deposition on a NdGaO3 substrate
is shown in Fig. 2. The low-magnification annular dark-field STEM image, shown in Fig. 2(a)
covers a lateral range of more than half a µm and the superlattice structure, i.e., the six-times
repeated stacking of four unit cells of YVO3 and eight unit cells of LaAlO3, is highly ordered.
The images with atomic resolution Fig. 2(b,c), which were taken in different projections with
reference to the orthorhombic NdGaO3 substrate structure, reveal structural distortions in form
of tilts and rotations also in the superlattice layers. These structural modifications were repro-
duced by DFT+U calculations [18]. Based on the DFT-relaxed structures, the layer-resolved
band structures were then calculated and brought into agreement with the orbital occupations
determined in the experiment [19] (see section 4). In general, STEM is an important experimen-
tal method to study the structural distortions in heterostructures. In addition, electron energy
loss spectroscopy (STEM-EELS) allows to study the element specific electronic structure with
atomic resolution. However, typically only small spatial volumes are studied (often only a
cross-section of 50 nm × 50 nm of a sample of 20 nm thickness is analyzed). Furthermore,
the preparation of the electron-transparent TEM-lamella and high-energy electron beam dam-
age can be critical issues for oxides, where the oxygen content is variable and often crucial for
physical properties such as conductivity and magnetism.

Non-destructive X-ray spectroscopy, which includes X-ray absorption, resonant elastic and in-
elastic scattering, provides important additional and complementary experimental information,
which I will discuss in detail in the following.
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Fig. 3: Schematic of X-ray absorption (XAS; left) and resonant elastic X-ray scattering pro-
cesses (REXS; right).

3 Soft X-ray spectroscopy

This lecture deals with the study of the spin, charge and orbital degrees of freedom of 3d

transition-metal oxides. Therefore, we focus on the soft X-ray range as the relevant transition-
metal L3,2, oxygen K, and the rare-earth M5,4 absorption edges fall into this energy window.
The latter often occupy the A-cation sides in the ABO3 perovskites and can lead to interesting
exchange interactions between the localized Lanthanoide 4f and the transition-metal 3d mo-
ments (see section 4 and [20]). The soft X-ray range typically covers X-ray energies in the
range from 50 to 1500 eV, corresponding to a wavelength range of 413–8.3 Å. We are inter-
ested in the spectroscopic information contained in the absorption fine structure that arises from
dipole transitions of photo-exited core electrons to empty final states (Fig. 3). Fermi’s golden
rule provides the transition rate up to second order perturbation theory [21]

W =
2π

~

∣∣∣∣∣〈f | Hint | i〉+
∑
n

〈f | Hint | n〉〈n | Hint | i〉
Ei − En

∣∣∣∣∣
2

δ(Ei−Ef ), (1)

where | n〉 denotes the intermediate (virtual) state and the sum runs over all possible intermedi-
ate states with energy En. The delta function reflects energy conservation and only depends on
the energy of the initial and final state, and not on the energy of the virtual, intermediate states.
The interaction Hamiltonian of X-rays with matter can be approximated by [22, 23]

Hint =
e

mc
p · Â +

e2

2mc2
Â · Â, (2)

where m denotes the electron mass, p the electron momentum, and Â is the vector potential
which characterizes the radiation field

Â(rk, t) ∝
∑
i,k

1√
k
εi

(
ak,i(t)e

ikr + a†k,i(t)e
−ikr
)
. (3)

The first term in (2) is linear in creation ak,i (emission) and annihilation a†k,i (absorption) of a
photon (with polarization vector ε), i.e., it describes processes with changes of ±1 photons and
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Fig. 4: Schematic of the scattering geometry in a REXS experiment. θ is the scattering angle
and kin and kout are the momentum vectors of incident and scattered waves, respectively. The
scattering vector is defined by q = kin−kout. The components of the polarization vectors
are defined parallel π (π′) and perpendicular σ (σ′) to the scattering plane for the incident
(scattered) beam. Absorption can be measured in fluorescence yield (FY) by a photodiode, or in
total electron yield (TEY) by the drain current. REXS intensities are detected by a photodiode
moving with the 2θ angle.

therefore is relevant for the description of X-ray absorption spectroscopy (XAS). In the second
term in (2) the vector potential is applied twice, i.e., it describes processes that change the
number of photons by ± 2, or 0. That is the case in the scattering process (photon-in-photon-
out). Resonant X-ray scattering thus is sensitive to the intermediate state (or the final state of
the absorption). When the energy is conserved in the scattering process, i.e., ~ωin = ~ωout,
we refer to it as being elastic and call it resonant elastic X-ray scattering (REXS) or in the
case of ~ωin 6= ~ωout to resonant inelastic X-ray scattering (RIXS). In the following we only
consider elastic scattering. Restricting our self to electric dipole transitions (E1-E1 transitions
in Ref. [24]) the interaction Hamiltonian simplifies toHint ∝ ε̂′rε̂, where r is the dipole operator
and ε̂ and ε̂′ are again the polarization vectors of the incident and scattered light, respectively.
They can be expressed by the orthogonal basis vectors perpendicular ε̂σ and parallel ε̂π to the
scattering plane, ε̂ = σε̂σ + πε̂π, and accordingly for the one of the scattered photon (see sketch
in Fig. 4).
In a crystal, each lattice site acts as a scattering center for the incident X-rays and is described
by the atomic scattering amplitude

F (E,q) = f0(q) + f non-res
mag + f ′(E) + if ′′(E). (4)

Here q = kin−kout is the scattering vector. The first term in (4), f0(q) ∝ Zr0, is the so-called
Thomson scattering, which is due to elastic scattering by a free charged particle. It arises from
the scalar, isotropic polarizability of the scatterer, f0(q) = f(q) ε̂′ · ε̂, where f(q) is the form
factor, i.e., the Fourier transform of the particle’s charge distribution. The second term is the
non-resonant magnetic scattering amplitude f non-res

mag that contains the interaction between the
magnetic field of the incoming wave with the spin of the electrons. As this term is usually
small compared to the resonant terms, we will neglect it in the following. The last two terms
in (4) are the so-called energy-dependent anomalous dispersion corrections f ′(E) and f ′′(E).
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The imaginary part f ′′(E) is proportional to the XAS cross section, as we will see in the next
section, and both terms, f ′(E) and f ′′(E), determine the energy-dependent scattering studied in
REXS. In a single-crystal diffraction experiment, photons are scattered with individual atomic
scattering amplitudes Fi(E,q) at different lattice sites i at position ri in the lattice and interfere.
The scattering cross-section then is proportional to

∣∣∑
i e
iq·riFi(E,q)

∣∣2 and in the most general
form F (E,q) is a 3×3 tensor with complex entries

F̂ =

 F xx F xy F xz

F yx F yy F yz

F zx F zy F zz

 . (5)

3.1 X-ray absorption and dichroism

The X-ray mass absorption coefficient µ(E) is defined by the Lambert-Beer law that describes
the transmitted intensity through a material of density ρ and thickness d

I = I0e
−µ(E)ρd. (6)

The atomic absorption coefficient is energy dependent and in the region between the absorption
edges a continuous function, µ(E) ∝ Z4/E3, where Z is the atomic number. This means
that X-rays with higher energy penetrate deeper. The inverse 1/µ(E) is called the attenuation
length as it describes the X-ray penetration depth into the material measured along the surface
normal, where the intensity of the X-rays falls to 1/e of the value at the surface. Soft X-rays
are strongly absorbed by matter, and typically the attenuation lengths in materials are less than
0.5 µm.1 This means that the experiments have to be carried out in ultra-high vacuum and
transmission measurements are not possible for most samples, except for powders or ultra-thin
films on transparent membranes such as SiN. However, the decay products of the absorption
process can be used to estimate the absorption. There are two principle decay processes of
the created core hole: (i) emission of a fluorescence photon, and (ii) Auger decay, followed by
secondary processes that emit electrons. The absorption cross section is then proportional to
the (total) fluorescence yield (FY) that can be measured by using a photodiode that is placed
at a position where elastic scattering is minimal (see Fig. 4). Alternatively, and optimally in
addition to FY, the so-called total electron yield (TEY) can be measuring, e.g., by the drain
current. When the photoelectrons leave the sample surface, a (small) current is generated by
grounding the sample (Fig. 4). Both methods have advantages and disadvantages. Total FY
measurements are bulk sensitive, but saturation effects in the vicinity of strong absorption lines
can falsify the relative intensities in the fine structure. There are very interesting alternative
measurement methods, which are, however, experimentally more complex [25]. The problem
of saturation is less relevant in TEY measurements [26], but this type of detection is rather
surface sensitive, because it depends on the effective escape depth of the photoelectrons, which
is often less than 5 nm, and can vary strongly [27]. Since we focus on thin-film structures,
which are usually thinner or about 5 nm thick, surface sensitivity is not a critical issue.

1The X-ray attenuation length for different solids can be looked up, for example, at https://henke.lbl.gov.
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Fig. 5: L-edge XAS spectra of a series of 3d transition-metal oxides. Taken from Ref. [29]

By varying the energy, which can be done with high resolution (a typical energy band width is
∼100 meV) and over a wide energy range at a synchrotron beamline, one can observe the above
discussed absorption edges, when the energy of the incoming X-rays match the intra-atomic
transition energies (see the X-ray data booklet [28]). These transitions have well separated
energies, which is the reason for the element sensitivity of the method. As mentioned above,
we will focus on electric-dipole transitions, since they have the largest cross section. In forward
direction q ≈ 0, the imaginary part of the scattering amplitude is related to the absorption cross
section

IXAS ∝ −
1

E
Im
[
ε̂ · F (E)

]
∝
∣∣〈f | ε̂ · r | i〉∣∣2 δ(Ei−Ef−~ω). (7)

Only transitions are allowed, which fulfill the dipole selection rules: ∆L = 1, ∆m = ±1. It
is common to use spectroscopic notation to label specific transitions depending on the involved
core level, i.e., the K-edge corresponds to 1s to, e.g., 2p or 4p, the L3,2 to 2p → 3d, 4d, ...,
and the M5,4 edge to 3d → 4f, 5f orbital transitions, where the indices refer to the spin-orbit
split core levels p1/2, p3/2, and d5/2, d3/2, respectively. For the energy of K-edges EK ≈
Z(Z−1)×13.6 eV provides a good approximation. Here Z is the atomic number of the element
and the Z−1 term accounts for the screening of the nuclear charge by the second 1s electron.
The L- and M -edges have a more pronounced fine structure. Here separated absorption lines
are observed due to the spin-orbit splitting of the core levels, e.g., the two L3,2 lines arise
from the spin-orbit splitting of the 2p3/2 and 2p1/2 core levels (see Fig. 3). Their separation
accordingly increases in the 3d transition-metal row from Sc to Zn as Z increases (Fig. 5). The
XAS fine structure measured with higher energy resolution then provides detailed information
about the valence state of a particular ion, its spin state, orbital occupation, as well as spin and
orbital contribution to the magnetic moment and possible antiferromagnetism. For this purpose,



Probing Spin, Charge, and Orbital Degrees of Freedom 8.9

however, the fine structure must be examined closely, as its interpretation depends on whether
the final states are more localized (like f -states) or delocalized (like p-states). The d-states,
which are of particular interest to us here, lie somewhere in between, i.e., they are neither fully
localized nor fully itinerant [1], which is precisely the cause of the strong correlation of local
degrees of freedom that gives rise to their interesting physics.
While K-edge spectra corresponding to transitions from the single 1s core level to rather de-
localized, empty p states, reflect the site- and symmetry projected unoccupied density of states
and are often sufficiently described by mean-field approaches, e.g., local density approximation
(LDA) or DFT, the M edges of the rare-earth ions have strong, sharp peaks near the edges that
show strong atomic multiplet effects. These multiplet effects show when a core other than a
1s is present in the initial state and because of the strong 4f localization, since then there is
significant overlap of core and valence wave functions in the ground state. This also applies for
transition-metal L edges, where the multiplet structure, which is hardly screened in the solid as
compared to the core potential, determines the spectral shape and influences the L3,2 or M5,4

branching ratio [30]. Different valence states show in a shift of spectral weight of the absorp-
tion lines. For anions (cations) with different valence state the absorption edge is shifted to
lower (higher) photon energies, because of the lower (higher) ionization potential. Information
on orbital occupations and magnetic moments can be obtained from the polarization-dependent
fine structure. To describe the fine structure of L or M edges, many-body ligand-field cluster
calculations have been shown to be particularly successful to determine important parameters,
such as the crystal field splittings in NiO and spin states in cobaltates from the comparison with
the experimental data [29]. When deriving a minimal tight-binding model from downfolding
the DFT band structure to localized Wannier orbitals, important hopping parameters to the lig-
and ions can be derived in an ab-initio fashion from DFT(+U ) [31]. X-ray dichroism, that is
the dependence of X-ray absorption on the polarization of the incident photons, occurs when
the spherical symmetry at the site of the atom is broken by a magnetic or (crystalline) electric
field [35]. Then the charge density around an atom becomes anisotropic. Depending on its ori-
gin and the light polarization used to detect it, one distinguishes X-ray natural linear dichroism
(charge anisotropy due to crystal field), X-ray magnetic linear dichroism (charge anisotropy
parallel and perpendicular to the magnetization axis) [36], and X-ray magnetic circular dichro-
ism [35]. In the first case, for example, the scattering tensor of an atom whose 3d states are split
by a tetragonal crystal field has unequal diagonal elements along the x and z direction

F̂ =

 F xx 0 0

0 F xx 0

0 0 F zz

 . (8)

Therefore, the linear polarization dependence of transition-metal L edge XAS provides infor-
mation on the 3d orbital occupation of the system. The intensity of polarized XAS along x, y
and z direction is proportional to the number of holes (h) in xz, yz, xy, x2−y2, and 3z2−r2

orbitals that have lobes along that direction. Sum rules allow to relate the d-orbital occupations
(h to the total, integrated intensities Ii measured with i = x, y and z linear polarized X-rays
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Fig. 6: (a) Example for natural XLD in a La2−xSrxCuO4 thin film measured in FY (taken with
permission from Ref. [32]), where the data were reproduced from Ref. [33]). (b-d) Exam-
ple for circular magnetic dichroisms measured in a iron thin film (taken with permission from
Ref. [34]).

over the entire L3,2 edge [32]

Ix =
1

2
hxy +

1

2
hxz +

2

3
hx2

Iy =
1

2
hxy +

1

2
hyz +

2

3
hy2

Iz =
1

2
hxz +

1

2
hyz +

2

3
hz2 .

(9)

For clarity, we write these for symmetric eg-orbitals x2, y2, z2, which are related to the real
wave functions as given in Ref. [29]. For 3d electron systems with fully filled t2g and partially
filled eg orbitals, the sum rules simplify, and we can directly relate the ratio of eg holes to the
integrated XAS intensities for in-plane (Ix,y) and out-of-plane (Iz) polarization

X =
h3z2−r2

hx2−y2
=

3Iz
4Ix,y − Iz

, (10)

where hx2−z2 and h3z2−r2 denote the number of holes in the dx2−z2 and d3z2−r2 orbitals, respec-
tively. Since for t2g-systems the eg-orbitals have finite hole occupations, the orbital occupations
cannot be determined directly from the measured spectra, but cluster calculations can be used,
as we will see in section 4.
The Cu-L3,2 XAS data measured by Chen et al. [33], which are reproduced in Fig. 6(a), pro-
vide a very clear example for X-ray natural linear dichroism that originates from differences in
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orbital occupation. In the parent compound (x = 0) of the high-temperature superconductor
La2−xSrxCuO4 the valence configuration of Cu is 3d9. The Cu ions are square-planar coor-
dinated by four oxygen ions, and the D4h crystal field splitting results in one hole occupying
the highest-energy dx2−y2 orbital in the ground state. The 2p core electrons can be excited to
this empty state with in-plane x or y polarization (E ⊥ c in Fig. 6(a)), but no empty states are
available for excitation with z polarization (E ‖ c in Fig. 6(a)).

X-ray magnetic circular dichroism (XMCD) is the difference in absorption spectra measured
with circular positive (σ+) and negative (σ−) polarization, and allows to study magnetism.
Again, we consider the 3d transition metal L edges, since the magnetic properties are mainly
determined by their d-valence electrons. In the absorption process, σ+ and σ− polarized pho-
tons transfer their angular momentum, ±~, respectively, to the excited photoelectron. Due to
spin-orbit coupling in the core level, which is l+s for 2p3/2 and l−s for 2p1/2, i.e., opposite in
sign, the angular momentum is in part transferred to spin momentum, and the different polar-
izations create photoelectrons with opposite spins at L3 and L2. The spin-split 3d final states
can then only be reached by excited photoelectrons with the appropriate spin. The quantization
axis is given by the magnetization direction, i.e., the maximum dichroism is measured, when
magnetization axis and photon momentum are parallel.

Considering the scattering tensor for cubic, ferromagnetic materials with in-plane aligned mag-
netization in the scattering plane, the diagonal elements are equal, but two off-diagonal elements
are non-zero and proportional to the XMCD signal measured in an absorption experiment [37]

F̂ =

 F xx iF xy 0

−iF xy F xx 0

0 0 F xx

 . (11)

Important sum rules can also be derived for circular dichroism. The sum of the integrated
intensities IL3 and IL2 of the polarization-averaged spectrum is again proportional to the total
number of d-holes (charge sum rule). Following the notation in Ref. [35], we label energy
integrals over the XMCD difference spectrum as A for the energy range of the L3 edge and
B for the L2 edge, respectively. Then the sum rules allows to quantitatively determine the
spin moment from the measured intensity A−2B, and the orbital moment is obtained from the
dichroic intensity A+B [35].

An example for X-ray magnetic circular dichroism in ferromagnetic iron is given in Ref. [34].
The spectra are shown Fig. 6(b), where intensities measured with right and left circular polarized
light (labelled with µ+ and µ−, respectively) show a clear difference. In the XMCD spectrum
(Fig. 6(c)) it can clearly be seen that this difference has an opposite sign for L3 and L2 edges.
By integrating the spectrum over the respective energy ranges and integrating the polarization-
averaged spectrum over the whole energy range (Fig. 6(d)), spin and orbital moments ofmspin =

1.98 and morb = 0.085 µB/Fe were determined from the sum rules [34].
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3.2 Resonant X-ray scattering

Resonant scattering combines information on spatial modulation from diffraction with the spec-
troscopic information provided by X-ray absorption in a single experiment [38, 23]. Resonant
scattering is element sensitive due to the strong enhancement of the cross section. Furthermore,
the strong dependence of the intermediate state on the spin, orbital, and charge configuration of
the resonant scattering centers provides access to local properties that I have already discussed
in the context of XAS. This information is contained in the energy-dependent f ′(E) and f ′′(E)

terms, which are connected via the Kramers-Kronig relation. Both, real and imaginary part are
required for the description of resonant elastic X-ray scattering (REXS). If the incident photon
energy ~ωi is very different from the resonance energy Ei−Ef of the system, we say that we
are in the non-resonant regime and assume that the scattering is largely independent of energy.
Here, however, one must be careful when analyzing scattering intensities as a function of en-
ergy, since strong, sharp intensity variation across the resonances in the imaginary part f ′′(E),
(which is proportional to the absorption cross section as discussed above) lead to broader struc-
tures in the real part. Depending on how the real and imaginary part mix for a given momentum
transfer, anomalous scattering signals can already occur for incident photon energies smaller
than those in f ′′(E). To make this point a little clearer we can look at the example in Fig. 7.
Since the fine structure is not captured by tabulated theoretical values [39, 40], the real part is
usually obtained via the Kramers-Kronig relation from the imaginary part by including mea-
sured or calculated resonance lines. The example shows the procedure for La-M5,4. These
correspond to transitions from the La 3d core electron to completely empty 4f states. There-
fore, the f ′′(E) fine structure consists essentially of two sharp Lorentzian lines (middle panel in
Fig. 7). When using the Kramers-Kronig relation, sufficient extrapolation of the data outside the
measurement range is important, since the integral runs over frequencies from zero to infinity.
Therefore, the measured or calculated absorption fine structure data are scaled to tabulated data
that are available over a wide energy range (up to 400 keV [40]). From the example in Fig. 7
it can be seen that if we choose an energy well before or in between the resonances in f ′′(E),
intensity variations in f ′ are still clearly visible, i.e., scattering signals measured even more than
100 eV away from the absorption resonance lines measured in XAS cannot generally be called
“non-resonant”. Since the REXS cross section

IREXS ∝
∑
n

∣∣∣∣〈f | ε̂ · r | n〉〈n | ε̂′ · r | i〉Ei − En

∣∣∣∣2 δ(Ei−Ef−~ω), (12)

is sensitive to the intermediate state |n〉, which is the final state in XAS, all spectral infor-
mation that can be gained from XAS, and was discussed above, is contained in the scattered
intensity. Moreover, in the REXS experiment, one sees the spatial modulation of the respective
properties due to the q dependence. To exploit this, different scan types are used to measure
the moment-, energy- and polarization-dependent scattering intensity, which then need to be
carefully analyzed, and simulations are often required to obtain quantitative information about
modulations of the orbital occupation, charge order, or direction and magnitude of the mag-
netic moments [23]. However, element-specific electronic and magnetic properties can then be
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Fig. 7: Real and imaginary part of the energy-dependent scattering factor for the compound
LaAlO3 in the energy range of the La-M5,4 absorption edge. The real f ′(E) with resonance (red
curve in the top panel) was obtained by Kramers-Kronig transformation of the experimentally
determined XAS scaled and extrapolated with the tabulated data of f ′′(E) (middle panel). The
bottom panel shows the normalized X-ray reflectivity of a 30 nm thick film of LaAlO3 on SrTiO3

substrate at two different, fixed qz values over the same energy range.

determined, especially in transition-metal heterostructures, which are not accessible with other
experimental techniques, as I will show in the examples in section 4. A disadvantage of REXS
in the soft X-ray range is the relatively limited, accessible Ewald sphere, i.e., the limitation
of momentum transfer by the wavelength of the incoming X-rays. For soft X-rays, the Ewald
sphere is in the order of 0.1 Å−1, which is sufficient to probe Bragg planes with separation of at
least 10 Å.

3.3 X-ray resonant reflectometry

X-ray reflectometry, usually measured in the hard X-ray range far away from strong resonances,
is an established method for the structural characterization of thin films and multilayers (see
sketch in Fig. 8). It is based on the simple concept of multiple reflection and refraction of ra-
diation at a surface and interfaces. In a typical experiment, the intensity of a scattered beam
R(θ), normalized to the incoming intensity I0, is measured as a function of the incident angle θ.
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𝛿2, 𝛽2, 𝑑𝑐𝑎𝑝,

𝜎𝑐𝑎𝑝
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𝑞𝑧 =
4𝜋

𝜆
sin(𝜃)

Substrate 𝛿𝑠𝑢𝑏, 𝛽𝑠𝑢𝑏 , 𝑑 = ∞, 𝜎𝑠𝑢𝑏

Vacuum

Fig. 8: Specular scattering geometry (θin = θout, qz parallel to the surface normal) and typical
set of structural parameters used to simulated XRR data. The sketch shows an example of an
ABO3-A′B′O3 superlattice with two repetitions of the bilayer, and with energy-dependent op-
tical constants δ1,2(E) and β1,2(E). The layer thicknesses d and root-mean-square roughnesses
σ of different layers are usually fitting parameters.

In such a scattering process, a momentum q = 4π sin(θ)/λ is transferred.2 The term reflec-
tometry refers to specular scattering with θin = θout, i.e., qz points along the surface normal z
(Fig. 8). As is known from optics, when light emerges from an optically denser medium into
an optically thinner one, there is a critical angle θc (depending on the wavelength λ), below
which all incoming intensity is reflected on the surface (total internal reflection). Above θc, part
of the radiation penetrates the material, interacts and parallel beams obtain a phase difference
and interfere [41]. This results in characteristic features in the X-ray reflectivity of multilayers,
such as Kiessig fringes, superlattice peaks, and changes in slope due to surface and interface
roughness. By fitting the structures using calculated scattering factors (see Refs. [40,39]) struc-
tural parameters, such as the individual layer thicknesses and roughnesses (di and σi in Fig. 8),
can be determined with high precision. When analyzing X-ray resonant reflectivity (XRR) data
measured at energies near or at the resonances, and where one aims to determine layer-resolved
changes in the energy-dependent scattering factors, the structural parameters are kept fixed.
Since only an out-of-plane momentum transfer is considered, the layers can be treated as a ho-
mogeneous medium and the reflectivity can be described in the so-called optical approach. To
do this, we introduce the complex refractive index in the X-ray range3

2It is practical to note the conversion between wavelength λ and energy E: λ[Å] = 12398.4244/E[eV]
3In some references the refractive index is defined by n = 1−δ−iβ, consistent with an opposite sign in the

wave equation.
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Fig. 9: Example for the momentum-dependent XRR from a superlattice composed of ten rep-
etitions of a [SrVO3 (30 nm) / SrCrO3 (30 nm)] bilayer on a SrTiO3 substrate. The labels
indicate characteristic features in the reflectivity curve, such as the total thickness D, the bi-
layer thickness dSL, and possible surface roughness σ. The simulated XRR curves are shown for
X-ray energies at 8 keV, i.e., far from resonances, and close to the V-L2-resonance at 523 eV to
demonstrate the effect of the energy-dependent change of contrast from the scattering factors.
Since both materials have very similar electron densities the superlattice reflections (00l)SL
are invisible in the non-resonant data, but clearly show in the V-L2 data (see Fig. 12(a)). Note
that the (002)SL reflection is not allowed in this specific superlattice structure with identical
thicknesses of SrCrO3 and SrVO3 and no interface roughness.

n = 1− δ + iβ. (13)

At energies (E) close to the resonance edges in a material, the atomic scattering factor (Eq. 4)
shows strong variations in the energy-dependent real f ′(E) and imaginary f ′′(E) part of the
dispersion corrections. In case of forward scattering (Q ≈ 0) and negligible non-resonant
magnetic scattering fmag

non-res [42], equation (4) reduces to

F (q ≈ 0, E) = Z∗ + f ′(E) + if ′′(E), (14)

where Z∗ = Z − (Z/82.5)2.37 is the atomic number Z with a small relativistic correction [28].
The optical theorem connects the imaginary part of the scattering factor to the dielectric function
ε(E) by

f ′′(E) = − E2

2π(c~)2Np

Im
√
ε(E), (15)

where c is the speed of light, ~ the Planck constant,Np the number of photons, andE the energy
of the X-rays. Just like the F (E) (Eq. 5), ε(E) has the form of a 3×3 tensor

ε̂ =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 , (16)
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with complex entries εij = (ε1)
ij + i(ε2)

ij (i, j = x, y, z) that are related to δij and βij by
εij1 = (1−δij)2− (βij)2 and εij2 = 2(1−δij)βij . In a compound consisting of N different atoms,
δ and β are then given by the sums of atomic scattering factors weighted by the density ρ of the
material

δ(E) =
2πρr0(c~)2

ME2

N∑
j=1

Cj
(
Z∗j + f ′j(E)

)
(17)

β(E) =
2πρr0(c~)2

ME2

N∑
j=1

Cjf
′′
j (E). (18)

Here C denotes the number of atoms of type j per formula unit, M is the molar weight of
the compound, and r0 is the Thompson scattering amplitude (classical electron radius). Fur-
thermore, we know from equation (7) that f ′′(E) is proportional to the X-ray absorption cross
section IXAS. Therefore, we can combine both relations to obtain reliable resonant tensor entries
δ and β, for the different layer stacks, as shown in Fig. 7 for LaAlO3. These can then be further
modeled to obtain layer-specific optical constants, corresponding to the different reconstruction
scenarios in a given material system. These can be, for example, different, layer-dependent
orbital polarizations, as we have studied in the examples I will show in the next section 4.

Depending on the symmetry of the material, the dielectric tensor (Eq. 16), just like the scatter-
ing tensor takes on a simplified form [43]. For example, for materials with cubic, tetragonal
and orthorhombic symmetries, all non-diagonal elements are zero. Going from orthorhombic
to tetragonal and cubic symmetry, the tensor further simplifies with εxx = εyy for tetragonal
and εxx = εyy = εzz for cubic symmetries. Just as for F (E), the dielectric tensor of ferromag-
netic materials has specific, non-zero off-diagonal elements that are proportional to the X-ray
magnetic circular dichroism (XMCD). Therefore, X-ray resonant magnetic reflectivity allows
to measure magnetic moments of deeply buried atomic, magnetic layers in a multilayer [44].

4 Case studies

In the following, I will present some of our studies on complex oxide heterostructures, each with
a different type of interface reconstruction as outlined in the introductory Fig. 1, and which
we investigated using the different X-ray spectroscopy techniques presented in the previous
section. In the first example, we show how the element sensitivity of XAS can be used to
investigate an interfacial doping mechanism in a cuprate-nickelate hybrid structure. The second
example shows how linearly polarized resonant X-ray reflectometry can be used to determine
depth-resolved orbital polarization profiles in a quantitative manner. The last example shows
how resonant elastic X-ray scattering provides unique information about noncollinear magnetic
orderings and how such ordered moments can interact with other moments across interfaces.
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2 nm

(La2CuO4)m=3 /LaO/(LaNiO3)n=4

Fig. 10: Left panel: High-angle annular dark field (HAADF) STEM image of the m = 3,
n = 4 cuprate-nickelate hybrid structure grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) substrate.
Middle panel: Sketch of the bilayer structure with the composition indicated in the above label.
Right panel: Spatially-resolved elemental distribution extracted from the electron energy loss
spectra (EELS) with color code: La–green, Cu–blue, and Ni–red, respectively. Reproduced
with permission from Ref. [45].

4.1 Interfacial doping in La2CuO4-LaNiO3 hybrid structures

Layer-by-layer oxide molecular-beam epitaxy allows to grow complex oxides with atomic layer
precision. We used this technique to synthesize a cuprate-nickelate multilayer structure (Fig. 10)
and showed that these structures allow a clean separation of dopant and doped layers. The mul-
tilayer growth of La2CuO4 and LaNiO3 can only be achieved with two LaO layers separating
cuprate and nickelate blocks. This translates to an extra La3+O2− atomic layer in the bilayer
formula (La2CuO4)m/LaO/(LaNiO3)n (m,n integers), resulting in an additional charge of +1

at each interface, which we suspected to lead to a change in the nickel or copper electronic
structure. We investigated this in detail using XAS and explicitly exploited element sensitiv-
ity. The spectra measured with soft X-rays across the Cu-L3,2 and Ni-L3,2 absorption edges
are shown in Fig. 11(a,b). The measurements were performed with linearly polarized X-rays
parallel (Ix) and perpendicular (Iz) to the interfaces. While the Cu-L spectra are characteristic
of Cu2+ [46], the Ni-L edge spectrum shows signs of a mixture of Ni2+ and Ni3+. The oc-
tahedral crystal field splits the Cu and Ni 3d levels into energetically lower t2g and higher eg
orbitals. An additional elongation of the CuO6 and NiO6 octahedra along the [001] direction,
observed by STEM [45], leads to a further splitting of the eg orbitals. This is reflected in the
polarization dependence, where Ix (Iz) probes holes in the dx2−y2 (d3z2−r2) orbital. The result-
ing normalized linear dichroic difference spectrum (Ix−Iz)/(2Ix+Iz) at the Cu-L edge is very
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(c)

(b)

(a)

Fig. 11: XAS spectra measured with the polarized X-rays parallel (orange curves) and per-
pendicular (black curves) to the sample surface across (a) the Cu-L3,2 (b) the Ni-L3,2 edges
for the m=3, n=4 cuprate-nickelate hybrid structure shown in Fig. 10. In the bottom pan-
els the normalized dichroic signals (grey curves) are shown. (c) Temperature-dependent
resistivity of [(La2CuO4)m/LaO/(LaNiO3)n]l (m=1 n= 2, 3, 4, and l= 7, 10, 9) with average
formal Ni valences of 2.5+, 2.67+, and 2.75+ for n= 2, 3, 4, respectively, compared to
[(LaNiO3)n(LaAlO3)n]k superlattices with n= 2, 4 and k= 6, 3 with 3.0+ Ni valence. Taken
with permission from Ref. [45].

pronounced (Fig. 11(a) to be compared with Fig. 6(a)) and arises from a Jahn-Teller distortion
that lowers the energy of the d3z2−r2 orbital [32], leaving a hole in the dx2−y2 orbital for the
XAS final state. The Ni-L edge spectra also show linear dichroism, although less pronounced.
To quantify this effect, we used the sum rules for eg linear dichroism (Eq. 10). While DFT+U

results show X = 1 for bulk LaNiO3 with rhombohedral structure (space group R3̄c, where all
Ni-O distances are equal), we find a smaller Xav = 0.94 from XAS, corresponding to a higher
d3z2−r2 occupation on average in the LaNiO3 stacks in the hybrid structures [45]. The layer-
resolved DFT+U calculations show that the effect is most pronounced in the interface layers
(XIF = 0.84), which correlates with the stronger elongation of the interfacial NiO6 octahedra
in the [001] direction as seen by STEM [45]. The corresponding value in the central layers is
XC = 0.91.

In addition, DFT+U predicts a charge disproportionation between neighboring in-plane Ni
sites that occurs predominantly in the interface layers and causes a band gap in the density of
states of the interface layers. To test this prediction we preformed in-plane electronic transport
measurements on different hybrid structures with m=1 and decreasing LaNiO3 layer thickness
n= 4, 3, 2 (Fig. 11 (c). The temperature-dependent resistivity shows metallic behavior for n=4,
which we attribute to currents running through the inner, at most weakly disproportionated,
metallic LaNiO3 layers. When decreasing LaNiO3 from four to three monolayers, we observe a
metal-to-semiconductor transition, and finally, for n=2, a semiconducting behavior. Consistent
with this observation, DFT+U results for n=2 indicate a band gap of 0.28 eV [45]. To dis-
tinguish confinement and doping effects, we compare the (La2CuO4)m/LaO/(LaNiO3)n hybrid
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structures with [(LaNiO3)n(LaAlO3)n]k (n=2, 4 and k=6, 3) superlattices, where the nickelate
layers are confined to the same thickness, while remaining undoped (Ni3+). The latter superlat-
tices will be discussed in detail in the next section. Leaving differences in the lattice parameters
of the two systems aside, it is interesting to note that the resistivity of the LaNiO3-LaAlO3 su-
perlattice with two nickelate layers is comparable to the nickelate-cuprate hybrid structure with
four nickelate layers. This implies that only the inner two layers are conducting, as predicted
by the DFT calculations. In conclusion, our study on the cuprate-nickelate hybrid structures
showed that doped electrons are accommodated primarily in the interfacial nickelate layers,
where they induce a digital modulation of the Ni valence state and a rearrangement of the Ni-3d
orbital occupation.

4.2 Orbital reflectometry of nickelate and vanadate superlattices

The d orbital occupations and the strength of hybridization with the oxygen ligands determine
the electronic transport properties and the magnetic exchange interactions and their anisotropy,
via the Goodenough-Kanamori-Anderson (GKA) rules for superexchange [47, 48]. As pointed
out in the introductory section a common effect created at interfaces is the confinement of elec-
trons. We have studied heterostructures of two prototypical correlated oxides, Mott-Hubbard
insulting YVO3 and the negative charge-transfer systemRNiO3 (R = rare-earth ion) [49]. While
the vanadates are a 3d-t2g electron system, in the nickelate the higher-lying eg states are partially
occupied. If we consider an interface of LaNiO3 (YVO3) with a wide band-gap insulator, such
as LaAlO3, the (virtual) hopping of electrons along the Ni(V)-O-Al bond is largely suppressed,
due to the band-gap of LaAlO3, which leads to the preferential occupation of the orbitals with
lobes in the plane of the interface. In addition, the character of the Ni-O-Al or V-O-Al chemical
bond changes, which is accompanied by a change in the oxygen hybridization of the d states.
Last but not least, the modification of the local crystal fields impacts orbital polarization, as
at the interface it is expected to be different from both, the bulk as well as in layers deeper in
the stack that are further away from the interfaces. In superlattices of LaNiO3 or YVO3 with
LaAlO3, this interface is repeated several times periodically (see Fig. 2), which facilitates the
investigation by means of XRR. The modulation in the electronic structure of interface and
central layer in stacks of LaNiO3 or YVO3 is seen in so-called orbital reflectometry, where one
measures the XRR with linear polarized light. A simple calculation of the structural factors
shows this sensitivity (Fig. 12). If we consider a symmetric superlattice with the same thick-
ness of stacks of two compounds ABO3 and AB′O3 (the example in Fig. 12(a) show a (6/6)

superlattice, with six pseudo-cubic unit cell of each material), without any symmetry breaking
the even-order, (00l), l= 2, 4, . . . superlattice peak intensities vanish. If, however the electronic
structure of interface (IF) and central (C) layers are different, resulting in different scattering
factors f IF and fC due to interface reconstructions, this selection rule is broken and the intensity
becomes proportional to the difference in the scattering factors (Fig. 12(b)). The same sensi-
tivity for interface reconstructions arises in asymmetric (8/4) and (4/8) at the (003) reflection
(Fig 12(c)). We take advantage of this in orbital reflectometry and simulate the polarization-
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Fig. 12: Scattering factors for different stacking of two materials ABO3 (green) and AB′O3

(blue) in a superlattice (the shown bilayer is repeated several times). (a) In case of a symmetric
SL (dABO3=dAB′O3) the (002) reflection of the SL structure vanishes. (b) When the ABO3 in-
terface layers reconstruct, resulting in different scattering factors in interface (f IF) and central
layers (fC), the (002) reflection becomes allowed. (c) In the case of an asymmetric stacking se-
quence with (2dABO3=dAB′O3 (left) or dABO3=2dAB′O3 (right)), the (003) superlattice reflection
is most sensitive to a difference of f IF and fC .

dependent spectra, measured at fixed momentum transfer at (002) or (003) as a function of
energy over the corresponding L edges of Ni or V. To ensure a unique fitting result, we only
allow a redistribution of the dichroism in f IF and fC , so that the layer-weighted average, mea-
sured in XAS is fixed, i.e., IXAS ∝ n Im(f IF) +m Im(fC) with n, m the number of unit cells of
IF and C layers, respectively. The results of the simulations that best match the experimentally
measured XRR then provide layer-specific linear dichroism spectra that can be quantitatively
evaluated using the sum rules or cluster calculations to obtain orbital occupancies.
Since the t2g orbital lobes point between the B-O bonds, while for eg orbitals they point along
the bonds, it is interesting to systematically compare reconstructions at YVO3-LaAlO3 and
RNiO3-LaAlO3 interfaces. as I will discuss in the following. Our studies on LaNiO3/LaAlO3

superlattices showed that both, epitaxial strain and confinement effects at the interface lead to
changes in the Ni-eg orbital polarization depth profiles [50, 51]. In YVO3-LaAlO3 superlat-
tices the interface effects produce an inverted orbital polarization in the layers next to LaAlO3,
compared to the central part of the YVO3 layer stack [19].

4.2.1 Orbital polarization profiles in nickelate superlattices

The Ni3+ ion in RNiO3 with R = rare-earth ion has nominally a 3d7 electron configuration and
the octahedral crystal-field of the perovskite structure splits the atomic 3d orbital manifold into
a lower-lying triply degenerate t2g level that is fully occupied by six electrons, and a higher-
lying doubly degenerate eg level with a single electron. In bulk RNiO3 the two Ni-eg orbitals
with dx2−y2 and d3z3−r2 symmetry are equally occupied. Model calculations have shown that
the in-plane dx2−y2 orbital occupation can be stabilized by epitaxial strain and confinement in
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Fig. 13: Experimental data and simulations of XRR data of a LaNiO3-DyScO3 (4/4) superlat-
tice. (a) qz-dependent reflectivity at fixed energy: non-resonant (Cu-Kα) and resonant to Ni-L2.
(b) Linear dichroism measured in XAS. (c,d) Energy-dependent linear-polarized reflectivity at
(002) and the dichroic difference spectrum. Data reproduced from Ref. [50].

a superlattice geometry, resulting in an electronic structure similar to that of the cuprate high-
temperature superconductors [52–54]. In order to gain experimental insight on the relative
effects of strain and confinement, we have grown superlattices with four-unit-cell-thick layers
of metallic LaNiO3 and layers of different band-insulating RXO3 (R = La, Gd, Dy and X =
Al, Ga, Sc) by pulsed-laser deposition on substrates that impose either compressive or tensile
strain. Using such a symmetric superlattice geometry allows to determine depth-resolved orbital
polarization profiles in a quantitative manner by exploiting the depth-dependence of reflectivity
at momentum transfer qz close to the (002) reflection. As introduced in section 3, the XRR
analysis relies on optical constants and a structural model. For the analysis we used the software
package ReMagX [55]. The structural parameters are obtained by fitting non-resonant, qz-
dependent hard X-ray reflectivity data (Fig. 13(a)), which are then fixed in the following analysis
steps. To implement the energy-dependent fine structure across the relevant La-M and Ni-L
absorption edges, we used the measured linear polarized XAS (Fig. 13(b)) to build the optical
constants of LaNiO3 in the way shown in Fig. 7.4 Then we simulated the reflected intensity
measured with fixed qz as a function of energy (E) (Fig. 13 (c)) and its normalized dichroic
difference spectrum (Fig. 13 (d)). To this end, we considered models with different tetragonal
scattering tensors (Eq. 8) for f IF in interface layers (B), and fC in central layers (A) of the
LaNiO3 stacks, keeping the averaged value from XAS fixed. In this way, we were able to
determine the redistribution of dichroism between the IF and C layers and the layer-dependent
spectra [51]. Then we evaluated them using the sum rule for linear dichroism (Eq. 10), and
defined the orbital polarization as

P =

(
4

neg
− 1

)
X−1

X+1
,

4For superlattices with the band insulator LaAlO3 it is important to include the La-M resonances in their optical
constants (see Fig. 7), as they are very close to the Ni-L3 resonance.
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Fig. 14: Layer-resolved orbital polarization, PC and PIF , as a function of in-plane lattice
parameter aSL for LaNiO3-RXO3 superlattices, grown on different strain-inducing substrates
and with different composition of the buffer layers as indicated in the labels. The open symbols
show the orbital polarization PXAS obtained from the linear dichroism measured in XAS. Data
reproduced from Refs. [50, 51].

where neg = 4−heg is the sum of eg electrons. The nickelates are negative charge-transfer insu-
lators with a dominant 3d8L contribution in the ground state [56,49], whereL denotes an oxygen
ligand hole. Therefore the local, atomic Ni-eg orbitals have rather neg∼ 2. However, to compare
superlattices with possibly different hybridization, i.e., possibly different neg , we calculated or-
bital polarization with neg= 1 for all different compositions. This means that the orbital polar-
izations we compare in Fig. 14 can be understood as those of the extended Wannier orbitals,
which also have d-orbital symmetry. An illustration of the wave functions, obtained from DFT
calculations, and further discussion can be found in Ref. [50]. The layer-resolved orbital po-
larizations PC and PIF , together with the layer-averaged values obtained from XAS,PXAS, are
shown in Fig. 14 as a function of their in-plane lattice parameters aSL. The lattice parame-
ters have been determined by X-ray diffraction for various (4/4) LaNiO3-RXO3 superlattices
grown on substrates with different lattice mismatch. We observed a tendency in all superlattices
for the IF layers to have higher orbital polarization than the C layers with values up to 25%,
which can be attributed to the confinement effect. However, it can be seen that the strain is the
more effective control parameter (yellow line in Fig. 14), while the polarization attributed to
the confinement effect from the band insulator layers falls into a comparatively narrow band of
∼ 5% width (grey shaded area in Fig. 14).
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Fig. 15: (a) YVO3-LaAlO3 superlattices with three different stacking sequences, with (8/4),
(6/6) and (4/8) consecutive unit cells, were investigated to be as sensitive as possible to orbital
reconstructions in interface layers (modelled with scattering factors f IF) and central layers
(fC). (b) Representative qz-dependent and (c) E-dependent scans at momenta fixed to the
superlattice reflections (00l) with l = 1, 2, 3 for the (4/8) superlattice at room temperature.
Reproduced from Ref. [19].

4.2.2 Vanadates - A t2g system

To extend the methodology of orbital reflectometry to a t2g system we have studied YVO3-
LaAlO3 superlattices [19]. The compound YVO3 is a strongly-correlated Mott-Hubbard in-
sulator that shows no metal-insulator transition up to its melting point. The bulk crystallizes
in an orthorhombic crystal structure (space group Pbnm with lattice parameters ao, bo, and
co) at room temperature with a V3+ electronic configurations shown in the left of Fig. 16(b).
The low-temperature properties are governed by different orbital (OO) and spin (SO) ordered
phases, which arise from competing crystal-field and superexchange interactions. Below 200 K
C-type OO is observed, i.e., there is antiferro-orbital order in the orthorhombic abo plane, while
along co there is ferro-orbital coupling. At 115 K the onset of corresponding G-type SO, and
at 77 K a change to G-type OO and C-type SO phase was found [57]. In Ref. [19] we ex-
plored possible changes in the orbital occupations in YVO3-LaAlO3 superlattices. While the
STEM(-EELS) images shown in Fig. 2 confirmed the high quality of the superlattice structure
and the V3+ valence state, detailed X-ray diffraction characterization showed that Pbnm-type
distortions are also present in the superlattice and that its structure follows the orientation of
the substrate, i.e., the orthorhombic co axis lies in the interface planes. Accordingly, we ro-
tate the coordinate system for the t2g orbitals for better comparison with the bulk configuration
(Fig. 16(b)). To obtain the depth-resolved information, we choose three superlattice struc-
tures, with (YVO3)n/(LaAlO3)m bilayers with varying thicknesses of n= 4, 6, 8 and m= 8, 6, 4
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(IF) layers of the (8/4), (6/6), and (4/8) superlattices. (b) Schematic representation of the
orbital polarization for the bulk, C and IF layers of the superlattices. Taken from [19].

pseudo-cubic unit cells (Fig. 15(a)) to be maximally sensitive to interface reconstructions in the
XRR measurements (Fig. 12). We simulated the linear dichroic reflectivity (qz and E depen-
dent, Fig. 15(b,c)) for different models of the heterostructure, again with f IF and fC , but now
of orthorhombic symmetry, i.e., non-zero Fxx 6= Fyy 6= Fzz in the scattering tensor (5). This is
necessary because the t2g, dxy, dxz and dyz orbitals have pairwise lobes in the same spatial di-
rections. In comparison, in the eg system the dx2−y2 orbital with z polarization is not accessible.
By comparing the results, and then iteratively refining the model we obtained layer-resolved
X-ray linear dichroism profiles (Fig. 16(a)) that were then compared with ligand-field cluster
calculations to obtain the layer-dependent t2g-orbital polarizations (P1 and P2 in Fig. 16(b)).
As explained in section 3, the sum rules are not applicable to determine t2g occupations. The
results show that dxz and dyz orbital degeneracy is lifted in the superlattices unlike in bulk at
room temperature, the dxz-dyz polarization is inverted between the C and IF layers, and the
dxy occupation in the IF layers depends on the number of YVO3 layers (Fig. 16(b)). We also
measured the temperature dependence of the spectra shown in Fig. 15(c) and found that the
reconstructed orbital occupations are preserved down to 30 K [19].

4.3 Noncollinear magnetic order in nickel oxide heterostructures

As mentioned in the introduction, the accessible Ewald sphere in the soft X-ray region is of-
ten limiting for the study of perovskites with comparatively small lattice constants around 4 Å.
For example, the ordering vector q = (1/2 1/2 1/2) for the G-type antiferromagnetic order in
YVO3 is not accessible at energies near the V-L edge. The unusual magnetic order observed
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Fig. 17: (a) Sketch of the magnetic order and REXS scattering geometry to study the magnetic
order in LaNiO3 superlattices. The sketch shows the wave vectors of the incoming and out-
going photons (light arrows), the corresponding momentum transfer q, the incoming photon
polarization vectors εσ and επ, and the azimuthal angle ψ. (b) Scans around qmag at T = 10 K
andE= 853.4 eV for LaNiO3-LaAlO3 superlattices with (2/2) and (4/4) consecutive unit cells.
(c) Comparison between XAS and energy dependence of the magnetic Bragg intensity around
the Ni-L3 edge at ψ= 0◦. (d) Sketch of the Ni-Dy exchange interaction at the interface of a
LaNiO3-DyScO3 superlattice derived from the azimuthal dependence (e) of the scattering at
qmag, measured resonant to the Dy-M5 and Ni-L3 edge at T = 4 K. The azimuthal dependence
measured at Ni-L3 at T = 25 K corresponds to that of LaNiO3-LaAlO3 (2/2). Figures (a-c) and
(d,e) were reproduced from data published in Ref. [58] and Ref. [20], respectively.

in bulk rare-earth nickelates (R 6= La) with an ordering vector qmag = (1/4 1/4 1/4) in cubic
notation is a fortunate exception. It was first studied in NdNiO3 by REXS at the Ni-L edge
in Ref. [59]. We used REXS at the Ni-L edge to study the LaNiO3-RXO3 superlattices that
I already introduced in the previous section. LaNiO3 is the only bulk rare-earth nickelate that
is paramagnetic and metallic down to the lowest temperatures [60]. We have shown that when
this compound is grown epitaxially between RXO3 layers in a superlattice, and the thickness is
reduced to two unit cells, a magnetic order with qmag is observed [58]. Figure 17(a) shows the
scattering geometry used to access the magnetic Bragg peak at energies resonant to the Ni-L3

edge. While a magnetic Bragg reflection is observed for the (2/2) with two consecutive unit
cells each of LaNiO3 and LaAlO3, this is not the case in (4/4) superlattices with thicker layer
stacks (Fig. 17(b)). The scattered intensity is strongly enhanced at the Ni-L3 energy (Fig. 17(c))
and shows an azimuthal dependence (Fig. 17(e)) that is characteristic for a commensurate, non-
collinear magnetic order with a (↑→↓←↓)-type order of moments along the cubic perovskite
[111] direction (see sketch in Fig. 17(a)). In such an azimuthal scan, the Bragg condition is
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preserved and the scattered intensity is measured, while the sample rotates around qmag. During
this, the projection of the polarization vectors εσ and επ onto the magnetization axis is changed.
In the case of the noncollinear order in bulk nickelates, one therefore observes a π-periodic
intensity modulation as a function of ψ [59]. For superlattices that are under biaxial strain from
the substrate, the direction of the sublattice moments changes due to the changes in d-orbital oc-
cupation that controls the magneto-crystalline anisotropy via the spin-orbit coupling [58]. The
precise direction of the sublattice magnetization can be determined by simulating the azimuthal
dependence (solid lines in Fig. 17(e)). From this and the fact that we observed considerable
conductivity in the magnetically ordered state, we conclude that a spin-density wave phase is
stabilized in the epitaxial LaNiO3 superlattice, which has no bulk analogue.
In a second REXS study we examined more closely the (2/2) LaNiO3-DyScO3 superlattice,
which, as pointed out above, shows noncollinear qmag order in the Ni spin system below 100 K
[20]. Taking advantage of the element sensitivity of REXS by measuring the azimuthal depen-
dence of the scattered intensity at qmag and at energies resonant to Ni-L and Dy-M (Fig. 17(e)),
we derived the following scenario. Upon cooling below 18 K, Dy-Ni exchange interactions at
the LaNiO3-DyScO3 interfaces lead to a collinear magnetic ordering of the interface Dy mo-
ments (note the 2π-periodicity in intensity in the ψ scan) as well as a reorientation of the Ni
spins in a direction dictated by the strong magnetocrystalline anisotropy of Dy (Fig. 17(d)).
Such exchange interactions between local, paramagnetic rare-earth moments with the magnetic
order of transition-metal ions is potentially interesting for manipulating spin structures in de-
vices, as the large Dy moments provide anchoring points to external magnetic fields.
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[50] M. Wu, E. Benckiser, M.W. Haverkort, A. Frano, Y. Lu, U. Nwankwo, S. Brück,
P. Audehm, E. Goering, S. Macke, V. Hinkov, P. Wochner, G. Christiani, S. Heinze,
G. Logvenov, H.-U. Habermeier, and B. Keimer, Phys. Rev. B 88, 125124 (2013)

[51] E. Benckiser, M.W. Haverkort, S. Brück, E. Goering, S. Macke, A. Frañó, X. Yang,
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Forschungszentrum Jülich, 2023, ISBN 978-3-95806-689-2
http://www.cond-mat.de/events/correl23

http://www.cond-mat.de/events/correl23


9.2 Jak Chakhalian

A prime goal for this lecture is to provide you with a reasonably self-sufficient answer to the
question of what interesting effects can happen if you join two dissimilar materials with cor-
related carriers to construct a ‘sandwich’ with the interface across those layers. Through the
lens of physical phenomena, we will delve into the design ideas that lead to the creation of new
synthetic quantum materials with properties primarily governed by the interface.
About the structure of the lecture: After introducing key concepts from the physics of correlated
electrons, I switch to the guiding notions for building new synthetic materials with properties
unattainable in bulk. Next, I briefly discuss the nucleation and growth of thin films based on
the pulsed laser deposition method (PLD) or laser molecular beam epitaxy (MBE). After that, I
illustrate those design ideas by several recent examples, ranging from a correlated polar metal
to a quantum spin liquid. The lecture concludes with a list of ten currently unsolved problems
that are worth further exploration.

1 Primer on the physics of correlated oxides.

Why transition metal oxides? Transition metal ions (TM) are commonly found in complex
oxides, which make up the largest group of crystals on Earth. Besides oxygen, these compounds
contain an element from the d-series in the periodic table, specifically 3d, 4d, or 5d TM oxides.
In contemporary notation, many complex oxides with TM ions belong to the family of quantum
materials with correlated electrons [1]. In general, it is the variation in the outermost d-shell
configuration of these elements that gives rise to the great complexity in the crystal structures,
electronic properties, and magnetic interactions in TMOs. There are many informative reviews
on this topic, but as a one-stop source I recommend [2] as a comprehensive resource.
What crystal structures exist, and why are they formed? TMOs have numerous types of
crystal structures, spanning all seven crystal systems! Although the most rigorous language
of determining a crystal structure is to identify a conventional unit cell and the corresponding
space group, going through all 230 space groups is certainly not the purpose of this lecture.
Instead, as TMOs are predominately regarded as ionic crystals, the driving force of stabilizing
a specific structure is the lattice energy: namely, for an ion located in a lattice, it experiences
an overall electrostatic potential from the other ions (both cations and anions), which is the so-
called Madelung potential VI . The associated electrostatic energy of the ion is the product of
its net charges with the Madelung potential. By summing over all ionic sites, we calculate the
lattice energy. Broadly speaking, to determine the minimal value of the lattice energy we need
to know the specific details of the crystal structure. However, since the Coulomb interaction
between cation and anion is attractive, it is natural to assume that the lattice energy dramatically
decreases as more anions surround a cation. On the other hand, as we place more and more
anions near the cation, the repulsive interaction between anions increases the lattice energy.
Moreover, if the anions are packed in such a way that the cation is rattling inside a void formed
by the anions, this effect also increases the lattice energy. Collectively, to reach a balance among
these competing effects and rationalize the ionic crystal structure, Linus Pauling proposed his
famous five principles, also known as the ‘Pauling rules’ [3, 4].
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Radius Ratio (rC/rA) Coordination number Type of geometry

< 0.155 2 Linear

0.155 - 0.225 3 Triangular

0.225 - 0.414 4 Tetrahedral

0.414 - 0.732 6 Octahedral

0.732 - 1.000 8 Cubic

1.000 12 Cuboctahedral

Figure 1.2: Coordination number and type of polyhedral geometry determined by the
cation-anion radius ratio in TMOs. The central cation is displayed with small blue cycle
while oxygen ions are with big red cycle. The black rod between each cation and oxygen
represents the ionic bonding.

nus Pauling summarized five famous principles, known as the “Pauling’s rules” [21, 22].

According to these rules, the structure of a complex ionic compound is mainly associated
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CN and its polyhedral geometry is determined by first Pauling’s rule: the cation-anion
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still remain. Firstly, one coordination number may have di↵erent geometries of polyhe-
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vironment as shown in Fig. 1.2, a square cubic geometry is also possible. Secondly, some
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Fig. 1: Coordination number and type of polyhedral geometry determined by the cation-anion
radius ratio in TMOs. The central cation is displayed with a small blue cycle, the oxygen ions
with a big red cycle. The black rod between each cation and oxygen represents ionic bonding.

Can we predict a crystal structure? According to the Pauling rules, the structure of a complex
ionic crystal is mainly controlled by two factors: the local coordination number (CN) together
with the polyhedral geometry of a cation and the network of the polyhedra spanning the crystal.
First, Pauling’s rule determines CN and its polyhedral geometry: this is the cation-anion radius
ratio rule. Figure 1 summarizes the typical CN values and the corresponding polyhedrons.

Why is coordination so important? After you learned about the local polyhedra of cations,
the next step is to understand how these polyhedra are interconnected. In real TMO solids, three
common polyhedral networks can exist: corner-sharing polyhedra, edge-sharing polyhedra, and
face-sharing polyhedra. An important principle pointed out by Pauling is that sharing of edges
and especially faces by two polyhedra cost more energy than sharing corners. This is because
in edge-sharing and face-sharing cases, the cations are located in closer proximity, increasing
the electrostatic repulsion among them. In addition, for TMOs with multiple cations, those of
high chemical valency and small coordination numbers tend not to share polyhedron elements,
increasing their distance and thus reducing the repulsive interaction between them.

At this point, let me introduce two popular TM compounds to make the discussion more con-
crete. Perovskites ABO3. The perovskite structure is relatively simple and common for com-
pounds with the chemical formula ABO3. Here we find two alternative combinations of A and
B cations. If the A site is a rare-earth ion and the B site is a transition metal ion (e.g., RENiO3

with RE = La to Yb), the charge state of each ion is A3+B3+O2−
3 . Alternatively, if the A site

is an alkaline-earth ion (e.g., ATiO3 with A = Mg to Ba) and the B site is a transition metal
ion, the charge state is given by A2+B4+O2−

3 . No matter what combination, the A ion must be
larger than the transition metal B ion, and it should be coordinated by twelve oxygens. At the
same time, the B transition-metal ion is surrounded by six oxygens forming the octahedral co-
ordination, and the network of corner-sharing B octahedra is the hallmark motif for perovskites
(see Fig. 2c). Thus, a perovskite’s ideal conventional unit cell is cubic with a B–O–B bond
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angle of 90o. Of course, depending on the relative size of different ions, an actual unit cell can
deviate from the cubic structure and it usually stabilizes in a lower-symmetry lattice. To predict
if the structure deviates from the ideal cubic, in 1926, Goldschmidt introduced an index called
the tolerance factor tG, to quantify distortions in a perovskite crystal and predict the possible
structure tG = (rA+rO)/

√
2(rB+rO), where r is an ionic radius.

Spinels AB2O4. Compared to perovskite, the spinel structure is more complicated (see Figs. 2c
and 8b). The general chemical formula for the spinel structure is A1−δBδ[AδB2−δ]O4. When
δ is 0, it is known as the normal spinel AB2O4, in which all A cations are tetrahedrally coor-
dinated, while all B cations are octahedrally coordinated. When δ equals to 1, the chemical
formula is B[AB]O4, and known as the inverse spinel. In this case, the tetrahedral sites are
occupied by half of the B cations, while the other half of the B cations and all the A cations
occupy the octahedral sites. Finally, when 0 ≤ δ ≤ 1, A and B cations mix up in both the
tetrahedral and the octahedral sites. Unlike perovskite which assume many lattice structures
and space groups, spinels usually stabilize into a cubic structure (with space group Fd3m). As
for the charge state, assuming O2− as is predominantly true in TMOs, there are two allowed
ionic charge patterns for A and B ions: A2+/B3+ (common in almost all cases) or A4+/B4+ (rare
but does exist, e.g., in GeZn2O4).
How do electrons behave inside TMOs? TMOs have a vast range of electronic behaviors,
including those found in conventional metals and insulators, which are classified according to
band theory. In addition, you can find various exotic phases such as high-temperature super-
conductivity, correlations-driven metal-insulator or Mott transitions, and topological states of
quantum matter. The very diversity of TMOs makes them almost impossible to fit into a uni-
versal theory of their electronic properties. The usual approach in physics is to focus on the
dominant term in the Hamiltonian while treating other terms as corrections or perturbations.
Following this logic, in practice, the challenge of describing the electronic properties lies in
selecting a starting point: whether the electrons are localized about corresponding ions or itin-
erant over the whole solid. Starting from those two extremes, several theoretical models have
been developed, which I briefly introduced below (also see [5]).
Ionic Model. This simple but powerful model treats electrons from a local point of view. When
we place a transition metal cation inside a solid, besides the Madelung potential, valence elec-
trons of this cation experience additional Coulomb interactions stemming from surrounding
oxygens, which we call the crystal field. Serving as a perturbation source, the degenerate en-
ergy levels obtained for isolated atoms are now split. Since the d sub-shell is the outmost shell
of a transition metal ion, the crystal field can significantly affect its energy. As a result, the five
spherical harmonics labeled by their quantum numbers (n, l,m) are no longer the eigenfunc-
tions in the presence of a crystal field. Instead, we introduce new eigenfunctions that are linear
combinations of those spherical harmonics.
These eigenfunctions’ shapes (or electron density distributions) are plotted in Fig. 2a. Figure 2b
displays a few distinct d orbital energy splitting patterns under different crystal field symmetry.
Depending on the crystal field’s local symmetry or the polyhedral coordination’s geometry, the
splitting sequences can be quite different. In this lecture, I will mainly discuss two types of
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this state the electrons are localized at sites, and correspond-
ingly, there exist local magnetic momentsjust with spin S =
1/2 in this case but with larger spins for a general situation with
more localized electrons per ion. Because of different types of
exchange interactions, such localized spins finally give rise to all
the plethora of different magnetic states in TM compounds
(itinerant electrons can also produce some magnetic states, but
usually with much smaller magnetic moments). If we were to
change the electron occupation number n or make the electron
hopping parameter t or the corresponding band width W = 2zt
(where z is the number of nearest neighbors) larger than the
repulsive interaction (i.e.,W > U), the electrons would become
itinerant, and the system would be metallicthe insulator−
metal transition (Mott transition) would occur.
The electronic structure of materials in which electron

motion becomes correlated, e.g., due to on-site Coulomb
repulsion, is very different from what we have in conventional
band metals or insulators. It is easy to demonstrate what would
happen in this case for the example of quasi-isolated atoms,
where electrons interact with repulsive energy U. If we have a
single electron on a level with energy ε0, then when another
electron is added we obtain the state with energy ε0 + U, as
shown in Figure 2a. In real solids, these atomic levels become

bands, and in the limit of U ≫ W we have, instead of these
atomic levels, what is called the lower and upper Hubbard
bands (see the lower panel of Figure 2b). In the opposite limit
of small U, the band metal picture is restored (see the upper
part of Figure 2b). The intermediate regime is of course the
most interesting one. According to calculations performed
within dynamical mean-field theory (DMFT), in this situation
we have both Hubbard bands because of localized electrons
and also a quasi-particle peak at the Fermi energy (zero energy

in Figure 2b), leading to heavy (theorists say “dressed by the
interaction”) metallic electrons at the Fermi level.14 A full
many-particle theory describing the transition from a Mott-
insulating regime to a metallic regime that takes into account
various nonlocal contributions is still to be developed, but
some very interesting ideas concerning a possible topological
nature of this transition have recently been formulated.15

3. SINGLE-SITE EFFECTS

3.1. Crystal Field Splitting
When we consider real TM systems, we also have to include
orbital degrees of freedom. In isolated TM atoms or ions with
full spherical symmetry, five d levels with l = 2 are degenerate.
When a TM ion is put in a solid, this degeneracy is lifted
because of interactions with the surroundingsmainly with
nearest-neighbor ligands, e.g., oxygen, sulfur, chlorine, etc. (for
simplicity, below we will often speak about oxides, although
the main conclusions are mostly equally valid for other
anions). The most typical situation is sixfold coordination: a
TM ion in a ligand octahedron. In this case the fivefold-
degenerate d levels are split into a lower-lying t2g triplet and a
higher-lying eg doublet (Figure 3), with the wave functions16lmooooonooooo
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It should be noted that “xy”, “3z2 − r2”, etc. are not just labels
but real mathematical expressions for the angular parts of the
corresponding wave functions (in what follows, we will often
denote |3z2 − r2⟩ as |z2⟩ for shortness).
These orbitals are illustrated in Figure 4. We see first that a

particular orbital has a very specific direction in space, and this
will be very important for many effects discussed in this review.
The occupation of a particular orbital makes the original

Figure 2. Sketch illustrating the formation of Hubbard bands. (a)
Energy levels of a quasi-isolated ion with one or two electrons
(experiencing repulsion U). (b) Change in the spectral function as the
ratio of the on-site electron−electron repulsion U and the band width
W increases. For small U/W, we have a metal described by the Fermi
liquid theory. For large U/W, the lower and upper Hubbard bands are
formed, and for one electron per site the lower Hubbard band would
be filled and the upper one empty, so that the system turns out to be a
(Mott−Hubbard) insulator. In (b) U increases from top to bottom. Figure 3. Diagram of the crystal field splittings of the d levels for

different surroundings of the transition metal ion.
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Figure 1.6: (a) - (e) Evolution of the electronic energy levels of TMOs in ionic model.
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Ref. [1].

diagram, the Jahn-Teller distortion can be inserted between step (d) and (e) as it is an-

other e↵ect to split the levels. But the occurrence of this e↵ect is related to the specific

electronic configuration and sometimes is suppressed by other factors.

In the framework of crystal field theory, the transition metal electrons are assumed to be

localized at each site. However, in solid, electrons can hop onto neighboring sites as their

orbitals overlap. Taking this delocalization process into account, calculations need to be

expanded from a single atom to a molecular cluster which contains a central transition

metal ion with its surrounding oxygens. The most common approach to deal with this

problem is the tight-binding model [1, 2, 25, 26], in which any new set of molecular or-

bitals is written as a linear combination of the atomic orbitals:

 =
X

i

ci�i (1.4)

The resultant orbitals are hybridized with both transition metal and oxygen characters.

The corresponding energy eigenvalues and eigenstates are extracted by solving the new
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of electron-electron correlations.

Even more interesting but complicated phenomena can be deduced from Fig. 1.8. If start-

ing from the noninteracting side (U = 0) and gradually increasing U , we should sooner or

later reach a critical point ((U/t)critical as shown in the figure), where a metal-to-insulator

transition takes place. Similarly, this transition is called Mott transition. Among TMOs,

there exits a great number of compounds which undergo such a transition. It has been

observed that Mott transition can be triggered by factors such as temperature, pressure,

and electronic and magnetic field. And this transition is usually coupled by variations in

crystal structures and/or magnetic orderings. Because of this coupling, what is indeed the

driving force of the Mott transition and what is the role of electronic correlations in this

process, is still not clear.

Up to now, the e↵ect of strongly correlated electrons is only considered on the transition
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Fig. 2: a: Shapes of the d orbitals. The notion of x, y, and z refer to the wave-function
variables written in the Cartesian coordinate system. b: Energy splitting of the d orbitals under
different crystal field symmetry. The notation for eg, t2g are defined according to group theory.
c: Perovskite ABO3 lattice and AB2O4 spinel unit cell. d: (a)–(e) Evolution of the electronic
energy levels of TMOs in the ionic model. O and M refer to oxygen and transition metal ion,
respectively. e: A schematic of the d band in the Hubbard model. For a half-filled band,
the electron correlations (Hubbard U ) are able to open a gap when its strength reaches the
critical value, resulting in the lower (UHB) and upper Hubbard (LHB) bands separated by the
correlated gap of U. f: (left top) Energy level diagram of a standard Mott-Hubbard insulator
(MHI). In this case, the gap Eg is defined byU. (left bottom) Energy level diagram of the charge-
transfer insulator (CTI). In this case, the gap Eg is defined by the charge-transfer ∆ energy and
intimately involves states on oxygen or anion in general. (right) Zaanen-Sawatzky-Allen phase
diagram. Note, U and∆ represent the electron-electron correlation and charge-transfer energy,
respectively. t is the electron hopping strength, a measure of the electronic bandwidth.

crystal fields: octahedral and tetrahedral. In the octahedral field, the orbitals are split into an
upper doublet eg group including dx2−y2 and d3z2−r2 orbital states and a lower triplet t2g group
with dxy, dyz, and dxz states.
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How can we intuitively understand the origin of the energy splitting without relying on a group
theory analysis? Recall that oxygen p orbitals are dumbbell-shaped and point along the Carte-
sian axes. In an octahedral environment, the lobes of eg orbitals always point towards those of
p orbitals, effectively increasing the Coulomb repulsions between eg and p electrons and thus
lifting up the energy levels. In contrast, t2g orbitals have lobes pointing away from those of oxy-
gen. Therefore, all t2g levels are shifted downward. The energy gap between these two groups
is denoted as ∆CF (or 10Dq in chemistry). A similar analysis can be applied in the case of a
tetrahedral environment, where the splitting pattern is reversed compared to that of octahedral
coordination.
Hubbard model. The combination of the ionic model with the traditional band theory can suc-
cessfully describe the electronic structure of many TMOs reasonably well. However, as early as
1937, it has been recognized that several transition metal compounds (e.g., CoO, NiO, Fe2O3),
which are expected to be metallic, instead are wide-gap insulators. This failure in predicting the
ground state in these materials signals that some critical factors are missing. The main reason
is that in the ionic model, the electrons are considered independent and Coulomb repulsion is
therefore omitted. This interaction, also known as electron correlation, is weak when electrons
move in broad bands. However, in TMOs, the partially filled bands derived from d-electrons
are usually very narrow, and the electrons appear more localized. Under this circumstance, the
electron-electron correlations are inevitably amplified, exerting significant influence on the band
structures and the overall physical properties of the materials. To quantitatively account for this
observation, in 1963 Martin Gutzwiller, Junjiro Kanamori and John Hubbard independently
proposed a new model Hamiltonian Ĥ = −t

∑
〈I,j〉,σ(c

†
i,σcj,σ+c

†
j,σci,σ) + U

∑
i ni,↑ni,↓ [6–8].

In this Hubbard Hamiltonian, the first term describes the usual hopping effect of electrons from
a site to its nearest-neighbors without spin-flip (so called kinetic term), whereas the second term
accounts for the extra repulsive energy cost due to double occupation of the same lattice site.
In this sense, the Hubbard model includes two competing processes (localization vs. delocal-
ization), and the true ground state is determined by the relative strength between Hubbard U
and hopping integral t, which is proportional to the electronic bandwidth W. The influence of
Hubbard U on the electronic band structure is shown in Fig. 2e.
Mott insulators and Mott transitions. Now let us recap that in accordance with the original band
theory, if a valence band with 2N capacity is half filled, the system is a metal. Nevertheless,
now electron-electron correlations act to open a correlated or Coulomb gap in the valence band.
If the correlation effect is weak compared to the bandwidth (U/t�1), the band will not be
split, and the material remains metallic. However, if the correlations are strong or U/t�1,
a correlated band-gap emerges and separates the 2N valence band into two new bands, called
upper Hubbard band (UHB) and lower Hubbard band (LHB), each withN electron capacity [9].
For this reason, the material turned into an insulator, is collectively known as a Mott insulator
or Mott-Hubbard insulator. I must stress that the Mott insulator is a highly non-trivial state, and
many of the transition metal insulating compounds, which are predicted to be metallic, belong
to this new class of quantum materials. It is also helpful to remember that for trivial band
insulators or semiconductors, the energy gap is defined by the periodic potential of the crystal
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lattice. In sharp contrast, in Mott crystals, the energy gap arises solely from electron-electron
correlations.
Let me dig deeper into the excitation spectrum of Mott compounds. Naturally, starting from
the noninteracting side (U=0) and gradually increasing U, we should sooner or later reach
a critical point Ucr where a metal-to-insulator transition takes place. This transition is called
the Mott transition. Among TMOs, a significant number of compounds undergo such a transi-
tion. It has been observed that several factors, such as temperature, pressure, and electric and
magnetic field, can trigger the Mott transition. Another important fact is that even though the
Hubbard Hamiltonian is not explicit about the underlying crystal structure, this Mott transition
is usually accompanied by structural distortions and long-range spin orderings. Because of the
entwined couplings, the question of a driving force behind the Mott transition, including the
role of electronic correlations, is still not entirely understood.
Charge transfer insulators. Up to this point, I have considered only the effects of transition
metal d bands. You should remember that anions and, specifically, oxygens are also very im-
portant. In fact, in many TMOs, the oxygen 2p bands are slightly lower in energy than the
d bands. Here we can also ask, once the UHB and LHB are formed, what are their relative po-
sitions with respect to the oxygen p bands? As illustrated in Fig. 2f, there are mainly two cases
of energy level diagrams expressing their relative positions. The oxygen p-band can either be
lower than both of the Hubbard bands or in between these two bands. TMOs in the former
case are a standard Mott insulator, whereas those in the latter case are given a new name, a
change-transfer insulator (for an excellent discussion see [10, 11]).
To explain the difference, it is necessary to introduce a new energy scale, the so-called charge-
transfer energy ∆CT . As there are n electrons in the d levels, dn configuration, two types of
excitations exist. First, the electron can either hop onto another already occupied site in the
same d level, say dndn ↔ dn−1dn+1, or an electron from oxygen 2p band can hop onto the
empty d-state, dnp6 ↔ dn+1p5. The first process costs us the energy U, while the second one
cost a certain amount of charge-transfer energy, which is ∆CT = Ed−Ep.
The lowest charge excited state can be different depending on the ratio of U to ∆CT . When
∆CT ≥ U [see Fig. 2f(left)], the oxygen p band lies lower than the LHB. The band gap
is now determined by U. dndn ↔ dn−1dn+1 costs less energy, as is typically the case for a
conventional Mott insulator. However, when ∆CT ≤ U, the electron hopping between oxygen
and TM ion dnp6 ↔ dn+1p5 costs less energy and results in the lowest excited state. Here, the
band gap is defined by the charge-transfer energy ∆CT and not by U. The related materials
are called charge-transfer insulators; in this case, the excited electrons are from the oxygen
p levels. Moreover, it turns out that many of the physically interesting TMOs belong not to
the Mott but to the charge-transfer family; the prototypical examples are the high-temperature
superconducting cuprates, e.g., La2CuO4 or YBa2Cu3O7−δ.
Even more complicated situations occur if you consider the bandwidth, which is proportional
to the electron hopping strength t. Specifically, what I considered so far was based on the
assumption that ∆CT � t and also U � t so that one can expect the insulating ground state
to emerge. However, you can imagine that if the bandwidth is large enough, the correlated
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gap may fail to open, resulting in a metallic ground state. These ideas are rationalized in the
so-called Zaanen-Sawatzky-Allen (ZSA) phase diagram, which is shown in Fig. 2f(right). For
most transition metal compounds, their electronic structure can be qualitatively explained by
this phase diagram. One significant effect is still missing from my discussion – the spin-orbit
effect. The subject is so vast and important that instead, I refer the reader to the reviews [9,12].

2 What are correlated oxide interfaces?

One of the prime goals of basic condensed matter physics is to seek out and explore new col-
lective quantum states. Towards this goal, ultra-thin heterostructures composed of two or more
structurally, chemically, and electronically dissimilar constituent oxides have been developed
into a powerful approach over the past few decades [13–18].
Here, the main idea is that at the interface where the dissimilarities meet, the frustration caused
by mismatches between the arrangement of atoms, charges, orbitals, or spins can trigger the
emergence of phenomena with electronic and magnetic properties which non-trivially differ
from the bulk compositions. For many research groups, the correlated interface engineering has
opened a route to new materials behaviors using those mismatches as the control parameters.
Paraphrasing the Nobel Prize winner Herbert Kroemer, ‘The interface is a new material.’
A summary of the potential mismatches at oxide interfaces is shown in Fig. 3(left). As seen, at
the oxide interfaces, the following degrees of freedom, can be rationally designed:
(1) Epitaxial strain. Strain results from lattice mismatches between the atomic arrangement of
two different TMOs. By delicately applying strain, the M-O-M bond length and bond angle can
be effectively tuned, which in turn may trigger electronic and magnetic phase transitions. For
instance, using epitaxial strain as the control parameter, ultra-thin NdNiO3 films have supported
a remarkably enlarged phase diagram with several new states not observed in bulk [19];
(2) Local symmetry. As discussed in the previous section, TMOs have a variety of local sym-
metry or coordinate polyhedrons. Suppose we want two components with different local sym-
metries to grow as a heterostructure. To achieve growth, each subsystem needs to compromise,
and the interfacial structure will deviate dramatically from their bulk counterparts. A robust
example is the γ-Al2O3/SrTiO3 interface: γ-Al2O3 has a spinel structure with tetrahedral and
octahedral local symmetries, whereas SrTiO3 is a perovskite with only octahedral symmetry.
However, at the interface, an anomalous square pyramid local symmetry emerges for Ti ions,
which strongly alters the electronic band structures;
(3) Polar mismatch. Even with the same lattice structure, the net charge of each atomic layer
can be distinct from the naive ionic pictures. If a heterointerface consists of entities with dif-
ferent net charges per atomic plane, in this case the so-called ‘polar mismatch’ may occur, and
the charges near the interface must rearrange to satisfy a condition of charge neutrality. This
phenomenon has been found in many complex oxide heterostructures and for example was con-
jectured to be the source of the two-dimensional electron gases (2DEG) emerging between two
insulating TMOs [14];
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Figure 1.11: Mismatches at complex oxide interfaces, reproduced from Ref. [3].
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or spins can trigger the emergence of phenomena with electronic and magnetic structures

markedly di↵erent from the corresponding bulk compositions [3]. As a result, the interface

engineering has opened a route to novel material behaviors by means of those mismatches

as the control parameters. Especially this method is intimately connected to another pop-

ular approach to tailor the properties of materials with epitaxial strain, by e↵ectively al-

tering the bond-length and bond-angle of structural units through the deliberate choice of

substrates. The exploration of epitaxial strain due to the lattice mismatch has been thus

far successfully used to manipulate the electronic bandwidth, band filling, ferroelectric,

and magnetic interactions of many ultrathin films [33, 34, 35].

A good summary about the possible mismatches at oxide interfaces is shown in Fig. 1.11

[3]. Generally speaking, at the oxide interfaces, the following degrees of freedom, which

may give rise to intriguing emergent phenomena are capable of being designed: (1) Epi-

taxial strain. Strain is a result of lattice mismatches between the atomic arrangement of

two di↵erent TMOs. By delicately applying strain, the M-O-M’ bond length and bond an-

20

A. B. C.

(111)

Geometrical 
Lattice 
Engineering 
(GLE)

orientation stacking superlattice

(110)

(001)

Figure 1.12: Schematic illustration of the idea about geometrical lattice engineering,
which has three control parameters named as orientation, stacking, and superlattice
throughout its entire process.

fulfill the requirement of translational symmetry as well as the relative atomic positions in

neighboring lattice planes vary dramatically with the specific choice of the crystallographic

direction. For instance, the stacking of the adjacent layers can be either right on top of

each other [the (001) stacking in Fig. 1.12], or shifted [the (110) stacking], or even entirely

reversed [the (111) stacking]. This observation is of paramount importance for the design

of artificial heterostructures since by controlling the number of stacking layers within that

period one can devise unique quasi-2D lattices that cannot be obtained in the naturally

formed crystals. Among the prominent example of GLE we cite the generalized graphene

lattice, which can be obtained by digitally tuning the number of atomic layers of (111)-

oriented ABO3 perovskite-type structures for searching potential topological phases with

and without spin-orbit active ions [54].

Isostructural superlattices approach: Combining isostructural materials together to estab-

lish superlattice structures via digital control over the individual number of layers adds an-
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Fig. 3: a: Mismatches at the correlated interface. b: Schematic illustration of the idea about ge-
ometrical lattice engineering, which has three control parameters named as orientation, stack-
ing, and superlattice throughout its entire process.

(4) Orbital reconstruction. Quite often, we find a variation of the orbital occupation at ox-
ide interfaces that stems from the modulations of the atomic structure or charges due to the
mismatches. As a result, unusual orbital configurations can be realized at the interface. To
illustrate, in ultra-thin LaNiO3/LaAlO3 superlattices, it was found that unlike the bulk LaNiO3

(Ni3+, 3d7), where valence electron equally occupies the dx2−y2 and dz2 orbitals, at the super-
lattices interfaces dx2−y2 is preferentially occupied [20];
(5) Magnetic coupling. Oxide interfaces can be an effective tool to tune or even design mag-
netic interactions. You can imagine that if materials with a different kind of exchange coupling
(for instance, FM vs. AFM) are attached in atomic proximity, their incompatible order param-
eters may eventually drive them to form a new magnetically balanced state (e.g., helical or
canted spin arrangements). For example, an interesting phenomenon has been discovered at
the interface of a high-Tc superconducting cuprate with a colossal magnetoresistance mangan-
ite, YBa2Cu3O7/La2/3Ca1/3MnO3, where surprisingly superconductivity and ferromagnetism
coexist [21].

3 New quantum materials by geometrical lattice engineering

Inspired by the success of those interface engineering methods, recently another promising
method, collectively known as “geometrical lattice engineering” (GLE), has been presented as
a powerful tool to forge new topological and quantum many-body states. In close synergy with
interface and strain engineering, where mismatches between layers induce unusual interactions,
the key idea behind the GLE is to design fully epitaxial ultra-thin films and heterostructures
with an artificial lattice geometry generated by stacking of a precise number of atomic planes
along a specific orientation [22].
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This concept can be illustrated by recognizing that the properties of a three-dimensional (3D)
material can be drastically altered by changing parameters such as: the stacking of two-dimen-
sional (2D) atomic planes, the specific arrangement of ions in those planes, their sequence,
and the periodicity of layers fulfilling the charge neutrality condition. Conventionally, for thick
bulk-like films, the effect of those variations is often negligible (maybe apart from anisotropy).
In sharp contrast, for ultra-thin films, the directional stacking of atomic planes becomes domi-
nant in defining the electronic and magnetic properties. Following this idea, many exciting ma-
terials systems have been theoretically proposed in pursuing exotic quantum states. At the same
time, the experimental work on GLE has been primarily focused on the growth of cubic or pseu-
docubic (111)-oriented artificial lattices. In general, throughout the process of heteroepitaxial
fabrication, to be able to design a new material by the GLE, you can follow three controllable
routes. To explain this further, I will use a 3D simple cubic unit cell model to illustrate those
control parameters (see Fig. 3b).

Growth orientation. Starting with the same bulk compound, its 3D crystal structure can be
viewed as atomic layers stacking with different in-plane lattice geometries along different crys-
tallographic directions. For example, as illustrated in Fig. 3 (right), while the (001) planes have
square symmetry, the (110) and (111) planes have rectangular and triangular geometries, re-
spectively. The required in-plane lattice geometry by design can be determined by selecting a
proper structure and orientation of the substrate surface, which acts as a guiding template during
the initial nucleation and growth stages. A typical example is the realization of a 2D magnetic
lattice with extreme frustration derived from the ultra-thin (111)-oriented spinel-type structure
AB2O4. This example I will describe in detail in Sec. 5.5.

Out-of-plane stacking sequence. In bulk crystals, the periodicity of the atomic planes can vary
dramatically based on the choice of crystallographic direction to fulfill the requirement of trans-
lational symmetry and the relative atomic positions of neighboring lattice planes . For instance,
the stacking of the adjacent layers can be either right on top of each other [the (001) stacking
in Fig. 3], or shifted [the (110) stacking], or even entirely reversed [the (111) stacking]. This
observation is at the heart of the design of artificial heterostructures since by controlling the
number of stacking planes within that period you can forge unique quasi-2D lattices that do not
exist in the naturally formed crystals. Among the prominent examples of GLE, I want to men-
tion the generalized graphene lattice, which can be obtained by digitally tuning the number of
atomic layers of (111)-oriented ABO3 perovskite-type structures. I will present this case later
in Sections 5.3 and 5.4.

Isostructural superlattices approach. Combining isostructural materials to establish superlat-
tice structures with digital control over the individual number of layers adds another practical
dimension to applying GLE. This approach can be very useful for achieving materials with
complex chemical compositions or even thermodynamically unstable phases in the bulk form. A
representative test case is the fabrication of (111)-oriented 1ABO3/1AB’O3 superlattices [here
“1” refers to a single cubic (or pseudocubic) unit cell] that gives rise to an A2 BB’O6 double
perovskite [23].
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4 How can we grow perfect interfaces?

In Section 1 we briefly discussed many theoretical concepts; now it is time to turn to something
more applied. In this section, I want to focus on the question: ‘How can we grow multi-layer
structures with high-quality interfaces to match existing theoretical proposals?’ Here, I describe
one of the most popular methods for synthesizing such artificial complex oxide structures, called
pulsed laser deposition or PLD. Despite its relatively young age, PLD has proven a versatile
method for fabricating exceptionally high-quality epitaxial thin films and heterostructures dur-
ing the last two decades (see [24] and the comprehensive references [25, 26]).

Compared with other popular physical vapor deposition (PDV) techniques, such as magnetron
sputtering or all-oxide molecular beam epitaxy, several advantages make PLD particularly suc-
cessful in growing complex oxide films. These include modestly priced instrumentation, stoi-
chiometric transfer of ions from targets onto a substrate, an energetic forward-directed plume,
and hyper-thermal interaction of the ablated species with the background gas (e.g., oxygen, ni-
trogen, argon). In other words, it is a PVD process performed in a high vacuum or low-pressure
system using a pulsed laser as the heating source of ionic and molecular species.

What does a typical growth cycle look like? During the deposition, a pulsed laser with a pulse
duration of ∼ 20 ns operating in the UV spectrum (λ=248 nm) is focused on a small portion
of a ceramic/polycrystalline target, which usually contains a stoichiometrically correct mixture
of atoms to be synthesized on the substrate as the desired film. With a sufficiently high energy
fluence of 1–2 J/cm2, the ejected ions/molecules from the target vaporized by each laser pulse
produce a directional plasma plume. Next, this highly forward-directed plume moves towards
the substrate in a background gas atmosphere ranging from the ultra-high vacuum of 10−8 Torr
and up to 1 Torr. This flux of oxidized and cooled to thermal energies ionic/molecular species
rapidly propagate, reach the substrate, and eventually nucleate and crystallize into atomic layers
of epitaxial solid films. To make a high-quality structure, you need to optimize several control
parameters. Let me start with the targets. Since a complex oxide compound typically contains
two or more kinds of atoms, a solid target suitable for PLD should be uniform and highly
dense, possessing identical cation stoichiometry to the desired film. If the laser ablates a loose
target, the resultant film will have a rough surface with microscopic molten droplets ejected
from the target. The substrate crystal should closely match the lattice parameter and symmetry
of the desired film. Finally, the crystallographic orientation of the substrate surface is critical
as it determines the epitaxial orientation of the film; the substrate serves as the atomic template
during the nucleation and the initial stage of film growth.

Once you select a substrate and the target, the remaining factors affecting the deposition process
are laser energy and fluency, the distance between the target to the substrate, background gas
pressure, and substrate temperature. As for the laser fluency, if we set it too low, the result of
each laser pulse would be similar to thermal heating. In this case, the ejected flux of ionized
species may deviate from the desired stoichiometry of the target due to the differences in vapor
pressure among each constituent chemical element. To avoid this issue, we need to increase the
laser fluence high enough to overcome the ablation threshold for a specific target, above which
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the evaporation is independent of the vapor pressure, and the plume can maintain its proper
stoichiometry. At the other extreme, running deposition with too high fluence would render
the formation of macroscopic droplets or even damage the target. As a result, the typical laser
fluence range is set around 1–4 J/cm2. Next, to grow complex oxide films, molecular oxygen is
often introduced into the chamber as the background gas for two reasons. First, the ejected low-
mass molecular species needs to interact with O2 to get the desired phase (remember, there is
no solid oxygen!). Secondly, the background gas is required to reduce the high kinetic energies
of the plume from several tens of eV down to meV; without a reduction of the kinetic energy,
the complex ions of the plume would collide with the substrate’s surface, potentially sputtering
off the newly created island of crystalline phase and/or creating defects.

The substrate temperature is another critical factor in determining the quality of the films. How-
ever, temperature’s role during the deposition process is rather complicated. On the one hand, a
high substrate temperature is usually favored since it enhances the mobility of adatoms so that
they can rearrange, forming a flat surface morphology. On the other hand, high temperatures
can evaporate constituents with high vapor pressures out of the film, resulting in oxygen va-
cancy defects or missing cations. Another issue occurs when growing a superlattice structure
composed of various oxide components. The thermally active atoms of each constituent layer
can diffuse across the interface, destroying the atomic sharpness of the interface. In addition,
for many complex oxides with low crystal symmetry, the epitaxial orientation of the film is very
sensitive to the substrate temperature, often leaving a relatively narrow window for each phase.

Finally, under typical growth conditions, the deposition rate varies from a few tenths to one
angstrom per laser pulse. This feature ensures precise control of growth on the sub-monolayer
level and makes PLD a good choice for fabricating multilayers and superlattices of complex
multi-element materials.

I only have discussed the most general trends for each essential control parameter. The specific
values of those parameters are truly material- and growth chamber-dependent. This means that
for every new material of interest and for each specific growth machine, finding and optimizing
a comprehensive phase diagram for the best growth condition is necessary.

5 Examples of correlated oxide interfaces

In what follows there are some interesting examples of recent correlated oxide interfaces. The
prime criterion for such a selection is to present the reader with the synthetic quantum materials
that harbor emergent states or phases not seen in the bulk constituent layers. Also, unlike the
previous sections, this section is more technical because it necessarily relies on the application
of multiple state-of-the-art probes and advanced computational methods; as such, I suggest to
treat those examples as a show-and-tell.
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Fig. 4: a: Diagram of a BTO/STO/LTO superlattice, where the yellow layer indicates the for-
mation of a 2DEG. In-situ RHEED images confirm high crystallinity. b: STEM/EELS image
reveals high-quality interfaces. Inset: extracted out-of-plane lattice parameters for each indi-
vidual layer. c: High-resolution STEM imaging reveals significant Ti-O polar displacements,
resulting in 8% enlargement of the lattice parameters. d: Summary of strength and direction of
polarization.

5.1 Artificial ferroelectric metal

Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are
thought to be scarce [27,28], because long-range electrostatic fields favoring the polar structure
are expected to be fully screened by the conduction electrons of a metal. Generally, based
on the type of atomic displacements, polar metals with perovskite structure fall into two main
categories: A-site driven (e.g., positional shifts of Li, Nd, and Ca ions in LiOsO3 [29], NdNiO3

[30], and CaTiO3−δ [28], respectively) or B-site driven (e.g., a shift of Ti ions in BaTiO3−δ

[31,32]) kinds. For the former category, recent theoretical work [28] has suggested the absence
of a fundamental incompatibility between the polarity and metallicity, whereas, for the latter,
polar displacements show a rapid decrease with increasing carrier concentration [32].
Moreover, in reducing from three to two dimensions, it remains an open question whether a po-
lar metal can exist at all. Here, I describe the realization of a room temperature two-dimensional
(2D) polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO3/SrTiO3/LaTiO3.
Such an explicitly non-centrosymmetric 2D metal provides a template to engineer an interesting
quantum many-body state with three coexisting phases – ferroelectricity, ferromagnetism, and
superconductivity.
Let us start with the design idea. First, we use tri-color rare-earth titanate heterostructures (see
Fig. 4a) made of a layered arrangement of the ferroelectric alkaline-earth titanate BaTiO3 (BTO,
green), the paraelectric alkaline-earth titanate SrTiO3 (STO, gray), and the Mott insulator rare-
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earth titanate LaTiO3 (LTO, red). Bulk BaTi4+O3 with 3d0 electron configuration is a well-
known ferroelectric material, which can undergo complex structural and ferroelectric phase
transitions on cooling, e.g., from cubic to tetragonal near 400 K, tetragonal to orthorhombic
near 280 K, and orthorhombic to rhombohedral near 210 K [33] (ferroelectric properties are
present in the latter three phases). Bulk SrTi4+O3 with 3d0 electron configuration is a band
insulator with a charge gap size of ∼ 3.3 eV. In contrast, bulk LaTi3+O3 with 3d1 electron
configuration is a Mott insulator and undergoes a G-type antiferromagnetic transition below
146 K [34]. In bulk, the lattice parameters are a = 3.905 Å for cubic SrTiO3; 4.00 Å for cubic
BaTiO3; 3.958 Å for pseudocubic TbScO3; and 3.956 Å for pseudocubic LaTiO3. Based on
these lattice parameters, the SrTiO3 layers of BTO/STO/LTO superlattices grown on a TSO
substrate are under tensile strain, whereas the BaTiO3 layers are under compressive strain.
Another interesting feature of these designer superlattices is in the transfer of electrons from
LTO (3d1) into the STO (3d0) layers leading to the formation of a two-dimensional electron
gas (2DEG) [35] at the interfaces (yellow layer in Fig. 4a), which have a shared polar structure
due to the presence of ferroelectric BTO. As clearly seen, this design has two inequivalent
interfaces, BTO/STO and STO/LTO. What is interesting is the fact that both bi-color BTO/STO
and BTO/LTO interfaces are insulating. Therefore, the metallicity in the 3-color BTO/STO/LTO
structure comes from the 2DEG formed at the vicinity of the STO/LTO interface alone. Also,
in contrast to itinerant electrons of the STO/LTO interface, the electrons at BTO/LTO interfaces
are still localized, forming no 2DEG.
To monitor the crystal structures of the BTO/STO/LTO superlattice during growth, the mea-
surements of in-situ reflection high-energy electron diffraction (RHEED) were performed. As
seen in Fig.4a ultra-thin tri-color superlattices consisting of (BTO)10/(STO)3/(LTO)3 (here the
subscript refers to the number of unit cells) as well as reference samples of (BTO)10/(LTO)3
superlattice and BTO thin film were synthesized on TbScO3 (110) single-crystal substrates by
pulsed layer deposition in a layer-by-layer mode. During growth, the RHEED diffraction pat-
terns for substrates, BTO, STO, and LTO layers stayed sharp, confirming the high crystallinity
and epitaxy of BTO/STO/LTO superlattices.
Further, to determine the atomic-scale structures of the superlattices, their interfacial structure,
and their chemical composition, the authors applied cross-sectional scanning transmission elec-
tron microscopy (STEM) with electron energy-loss spectroscopy (EELS). Figure 4b shows the
tri-color superlattice’s high-angle annular dark-field (HAADF) STEM image, revealing high-
quality continuous and coherent interfaces without phase separation. In the Z-contrast HAADF
image, the expected layer thickness and designed sequence of three layers are clearly distin-
guishable from the different intensities due to the difference in the scattering power of the
layers. Additionally, as seen in the inset (red dots) in Fig. 4b, the periodicity of the growth
sequence was determined from the periodic variation of the extracted out-of-plane lattice pa-
rameters for individual BTO, STO, and LTO layers. As engineered for the interfacial charge
transfer, low-temperature electrical transport measurements of BTO/STO/LTO revealed the ex-
pected metallicity and large carrier density of conduction electrons, nc in all tri-color samples
(nc ∼ 1014 cm−2).
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Next, I want to discuss the microscopic details of the centro-symmetric breaking of TiO6 octahe-
dra leading to the formation of a 2D polar metal in this structure. To address this, high-resolution
HAADF- and ABF-STEM imaging were carried out, which allowed for the direct observation
and extraction of precise atomic positions of all constituent atoms, including oxygen, across
the interfaces. As shown in Fig. 4c, significant Ti-O polar displacements, i.e., relative shifts of
Ti and O along the out-of-plane direction, are found in the BTO/STO/LTO tri-color structure.
Additionally, a detailed quantitative analysis of the ABF-STEM image was performed to deter-
mine the amplitudes and directions of the polar displacements. The Ti-O polar displacements
are found to be as large as 0.3 Å (!), which is an almost 8% enlargement of the lattice param-
eters. Moreover, these large Ti-O polar displacements not only exist in BTO but also extend
deep into the STO and LTO layers, where the 2D metallic layer resides, thus inducing polar
displacements into the metallic interface.
What about microscopic polarization and the connection to orbitals? Figure 4d summarizes the
strength and direction of polarization labeled by the color map from blue to yellow. A striking
feature is the periodic reversal of polar directions across the Mott LTO layers. It can be attributed
to atomic displacements driven by local up-down symmetry breaking, typical of perovskite sur-
faces, at the STO/LTO interface [36]. More specifically, as seen in Fig. 4d, the authors find that
around the LTO region, dxy states are predominantly occupied. This orbital polarization decays
exponentially. However, in the BTO region, dxz/dyz states are mainly occupied with the density
shifted towards the left BTO/STO interface. The spatial separation of dxy and dxz/dyz states is
the combined effect of the electrostatic energy and the crystal field splitting [37]; namely, in
the LTO region, the electrostatic potential from positively charged (LaO)1+ layers dominates
and is screened by dxy electrons having in-plane dispersion. However, in the BTO region, the
out-of-plane (or apical) Ti-O distances become substantially larger compared to the in-plane
Ti-O distances due to the elongated c-lattice constant. This, in turn, lowers the on-site energy
of dxz/dyz orbitals and results in the large increase in the dxz/dyz orbital occupancy compared to
STO/LTO heterostructures.

5.2 Orbital assisted Kondo lattice and spin-polarized 2D electron gas

Magnetic interactions between the localized spins and conduction electrons are fundamental
in many quantum many-body effects. Phenomenologically, in materials with localized spins
coupled to conduction electrons, the Kondo interaction [38–40] competes with the magnetic
Rudderman-Kittel-Katsuya-Yosida (RKKY) interaction [41], conceptualized in the so-called
Doniach phase diagram [42] and Kondo lattice models [41]. In real transition metal crystals,
however, the ground state depends on the strength of exchange interaction J, the electronic
density ratio nm/nc of the localized magnetic moments nm to conduction electrons nc, and the
orbital character of magnetically active electrons [43]. In the strong-coupling regime with large
|J |, the Kondo interaction prevails and results in a Kondo singlet state [1], whereas on the weak-
coupling side (small |J |), depending on the ratio nm/nc [44], the RKKY interaction may give
rise to either a ferromagnetic (FM) or antiferromagnetic (AFM) order between the localized
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spins. Notably, in the limiting case of nm/nc � 1, the localized spins tend to form ferromag-
netic order by polarizing the conduction electrons [45]. In short, if we devise such a Kondo
active structure with the specific set of control parameters described above, we should realize a
highly desired artificial quantum material for spintronics with spin-polarized 2D metallicity.
In correlated d-electron heterointerfaces, the density ratio of nm/nc, the dimensionality, and
the orbital polarization of the magnetic interactions are all vital components for the formation
of a ground state [2]. Considering the splitting of the Ti t2g band between dxy and dxz/dyz
subbands is a prime cause for the interesting emergent phenomena in the SrTiO3-based het-
erostructures [46]. This raises an important question: What is an experimental phase diagram
for the emerging magnetic interactions at the nanoscale in the tri-color system?
To answer this question, a set of tri-layer (tri-color) superlattices composed of [3 u.c. LaTiO3/
nSrTiO3/3 u.c. YTiO3] (n = 2, 3, 6 unit cells or u.c.) and reference bi-layer samples [mLaTiO3/
nSrTiO3] (here m = 3, 20 u.c. and n = 2, 3, 6 u.c.) and [3 u.c. YTiO3/nSrTiO3] (n = 2 and 6

u.c.) were epitaxially synthesized by PLD on TbScO3 (110) substrates. Again, in this designer
system, the interfacial charge transfer is used to create a two-dimensional electron gas at the
interface between LaTiO3 and SrTiO3 (LTO/STO) connected to a spatially separated interface
with localized magnetic moments at the YTiO3/SrTiO3 interface (YTO/STO) (see Fig. 5b).
Before I discuss the ground state of such a tri-color structure, let us investigate each component
of the superlattice. Figure 5a shows the magnetic phase diagram of RTiO3 (R=La, Pr, Nd, Sm),
which exhibits an antiferromagnetic (AFM)-to-ferromagnetic (FM) phase transition across the
series of rare-earth titanates [47]. For our tri-color design, we select LaTiO3 (∼0.2 eV gap,
Ti 3d1) with the smallest distortion, which undergoes a G-type AFM phase transition below
146 K [34]. SrTiO3 is a 3d0 system with no magnetism. And finally, for the third layer, the
authors selected a significantly distorted YTiO3 (∼1.2 eV gap, Ti 3d1), where the FM order
forms below 30 K [48].
To summarize the design idea: In this structure, the action is supposed to happen at the LTO/STO
and STO/YTO interfaces. The STO layer acts as an active spacer which depending on its thick-
ness, brings the 2DEG from LTO/STO closer or further away from the magnetic moments of
the STO/YTO interface. That is why I name this unique tri-color design the structure to explore
interacting in space order parameters.
Now, what about the tri-color system? Figure 5b shows a high-angle annular dark-field (HAADF)
STEM image of the tricolor superlattice, revealing high-quality coherent interfaces without
phase separation. The atomic positions of the elements La (large yellow dots), Sr (large white
dots), Y (large blue dots), and Ti (small green dots) are labeled schematically. To check for
the presence of the interfacial charge transfer across the two LTO/STO and STO/YTO inter-
faces, the layer-resolved electronic structure of 3LTO/6STO/3YTO was investigated by atomic
scale STEM-EELS line scanning across the interfaces. As shown in Fig. 5b, by scanning atomic
layer-resolved Ti L2,3-edge spectra across LTO/STO and STO/YTO interfaces [along the white-
dashed line in Fig. 5b] with a high energy resolution of 0.4 eV and a high spatial resolution of
0.8 Å, the evolution of the Ti electronic structure across the interfaces was mapped out. The
bottom panel of Fig. 5b shows the reference spectra for Ti4+ and Ti3+ acquired from bulk-like
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FIG. 3. (Color online) (a) Normalized sheet resistances
R(T )/R(300K) of 3LTO/nSTO/3YTO. (b) Experimentally
and theoretically [red solid line, numerical renormalization
group (NRG)] scaled Kondo resistances [RK(T/TK)/RK,0]
(see Eq. S4 for details). Inset, extracted n-dependent
Kondo temperature TK by fitting the experimental data of
mLTO/nSTO and 3LTO/nSTO/3YTO (see Fig. S3). (c) and
(d) XLD [I(c)� I(ab)] of 3LTO/10STO and 3YTO/2STO in-
terfaces with surface-sensitive TEY mode, where I(c) [E k c,
E is the polarization vector of the photon] is for out-of-plane
and I(ab) [E k ab] is for in-plane detecting. It is noted most
contribution of the signal is from top few layers (STO).

interfaces, the layer-resolved electronic structure of
3LTO/6STO/3YTO was investigated by atomic scale
STEM-EELS line scanning across the interfaces. As
seen in Fig. 2, by scanning atomic layer-resolved Ti
L2,3-edge spectra across LTO/STO and STO/YTO in-
terfaces (along the white-dashed line in Fig. 2(a)) with
high energy (0.4 eV) and spatial (0.8 Å) resolutions, the
evolution of the Ti electronic structure through the in-
terfaces was clearly observed (Fig. 2(b)). Additionally,
atomic layer-dependent lineshape and peak positions of
the EELS spectra carry important information regard-
ing the interfacial charge-transfer. Since each curve of
the Ti L2,3-edge spectra is a convolution of both Ti3+

and Ti4+ spectra, the spectral weight of Ti3+ in each
spectral line of Ti3+/(Ti3++Ti4+) can track and quan-
tify the process of interfacial charge-transfer. The direct
inspection of the EELS data revealed that in addition
to the the previously reported charge-transfer from LTO
into STO [31, 50] there is an unexpectedly large charge-
transfer from YTO into STO (see Fig. 2(c)) which leads
to a localized electron layer formation at the YTO/STO
interface [47, 51].

Next we investigated the properties of interfacial elec-
trons (arising from the interfacial charge-transfer) by
measuring the temperature-dependent electrical trans-

port. As seen in Fig. 3(a) and Fig. S2 [52], all three
samples 3LTO/nSTO/3YTO (n = 2, 3, 6) show charac-
teristic metallic behavior with a weak upturn at lower
temperature. To investigate the conducting properties of
the two interfaces (LTO/STO and STO/YTO) in the tri-
layer SLs and rule out possible contributions from defects
and oxygen vacancies, bilayer YTO/STO and LTO/STO
samples were synthesized and their transport properties
were used as references (see Fig. S2 [52]); In sharp con-
trast to highly insulating YTO/STO [47, 51], the sheet
resistances of all the LTO/STO samples (Fig. S2(a) [52])
show a 2D electron liquid (2DEL) behavior [50, 51, 60–
62].

With the creation of 2D conduction electrons at
LTO/STO interface, the other ingredient, that needs
to be considered towards the realization of controlled
magnetic interactions between two separately active het-
erointerfaces, is the formation of localized spins at the
STO/YTO junction. As highlighted by the normalized
sheet resistances in Fig. S2(d) [52] (cyan shadow area,
marked as Tm) and Fig. 3(a), the other dominant fea-
ture in transport is the pronounced upturn of the sheet
resistances at lower temperature. Previous work on ti-
tanate heterojunctions has attributed such an upturn to
the Kondo e↵ect [12, 63–66], after carefully ruling out the
contributions from weak-localization [67] and electron-
electron interactions [68]. One of the key features of
the Kondo e↵ect that immediately di↵erentiates it from
weak-localization and electron-electron interactions is the
universal scaling behavior [see Fig. S3-S4 and Eq. (S1)-
(S4) [52]]. As shown in Fig. 3(b), all the trilayer SLs
obey the Kondo scaling behavior which further a�rms
the dominant contribution of Kondo screening to the ob-
served upturn feature. Based on the observation that
YTO/STO interface shows massive charge-transfer and
yet is highly insulating, the observed Kondo behavior
lends strong evidence for the formation of interfacial lo-
calized magnetic moments located on the STO side prox-
imal to the YTO/STO interface of LTO/STO/YTO. The
combined STEM/EELS and electrical transport data
thus established that a 2D conduction electron layer is
formed at the LTO/STO interface whereas a high-density
2D localized magnetic layer is formed in the vicinity of
the STO/YTO interface (see Fig. 2 and Fig. S5 [52]).

To elucidate the link between magnetism and the d-
orbital occupancy of Ti ions in the STO layer, we carried
out XLD measurements to probe the orbital character
of both itinerant (nc) and localized (nm) electrons, as
shown in Fig. 3(c)-(d) and Fig. S6 [52]. Notice, to date
the study of orbital polarization and subband splitting
of interfacial Ti 3d band by XLD were mostly carried
out on LaAlO3/SrTiO3 (LAO/STO) [69–73] and very lit-
tle is known experimentally about orbital physics at the
LTO/STO and, in particular, the YTO/STO interface.
As shown in Fig. 3(c)-(d) and Fig. S6 [52], the orbital
occupancy at both LTO/STO and YTO/STO heteroin-
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FIG. 1. (Color online) (a) Schematic view
of 3LTO/6STO/3YTO with two active heterointerfaces:
LTO/STO and YTO/STO. Here i denotes the ith TiO2

atomic plane of the STO layer with n unit cells. (b) HAADF-
STEM image of 3LTO/6STO/3YTO. The inset is EELS spec-
tra at La M4,5-edge, the three main peaks of which demon-
strate the atomic sharpness of interfaces.

transfer across the layers was evidenced by combined
scanning transmission electron microscopy (STEM) with
electron energy loss spectroscopy (EELS) and electrical
transport. Resonant soft X-ray linear dichroism (XLD)
measurements were used to probe the orbital polariza-
tion of nm and nc electrons. The results have allowed
to map out the phase diagram of competing and altered
magnetic interactions at the nanoscale by changing the
distance between the two electronically active interfaces
via the STO layer thickness n.

Trilayer SLs [3LTO/nSTO/3YTO] ⇥ 4 (n = 2, 3, 6)
and reference samples mLTO/nSTO (m = 3, 20 and
n = 2, 3, 6) and 3YTO/nSTO (n = 2 and 6) were epitax-
ially synthesized on TbScO3 (110) substrates by pulsed
laser deposition (PLD) with a layer-by-layer mode (see
details for the growth of single layer LTO, STO, and
YTO films in our previous reports) [47, 48]. A JEM-
ARM200F STEM, operated at 200 kV and equipped with
double aberration-correctors for both probe-forming and
imaging lenses, was used to perform high-angle annular-
dark-field (HAADF) imaging and EELS spectroscopy.
The sheet-resistances of the films were measured in van-
der-Pauw geometry by Physical Properties Measurement
System (PPMS, Quantum Design). XLD at Ti L2,3-edge
with total electron yield (TEY) mode was carried out
at beamline 4.0.2 (using the vector magnet) of the Ad-
vanced Light Source (ALS, Lawrence Berkeley National
Laboratory).

As shown in Fig. 1(a), in the trilayer heterostruc-
ture LTO/STO/YTO there are two inequivalent inter-
faces composed of two rare- and one alkaline-earth ti-
tanate compounds (LTO, YTO and STO) with a rich
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FIG. 2. (Color online) (a) HAADF image of
3LTO/6STO/3YTO. The atomic positions of the elements La
(large yellow dots), Sr (large white dots), Y (large blue dots),
Ti (small green dots) are labeled schematically. (b) Layer-
resolved EELS spectra (scanning along the dashed white lines
in (a)) with the left side of the spectra aligned to the HAADF
image in (a). Reference spectra for Ti4+ and Ti3+ (acquired
on bulk-like SrTiO3 and LaTiO3 films, respectively) at the
bottom were adapted from Ref. 50. The colored solid lines
are the fitting curves of layer-resolved EELS spectra to a lin-
ear combination of Ti4+ and Ti3+ spectra, whereas the ex-
perimental data are marked by small gray dots. (c) Spatial
decay of the Ti3+ signal across the two heterointerfaces. The
Ti3+ spectra weight is estimated from the fitting parameters
of solid curves in (b).

phase diagram [49]. In the bulk form, the Mott-insulator
LaTi3+O3 (⇠ 0.2 eV gap, Ti 3d1) undergoes a G-type
AFM phase transition below 146 K, while the Mott-
insulator YTi3+O3 (⇠ 1.2 eV gap, Ti 3d1) is FM below
30 K [48, 49], and, finally, SrTi4+O3 remains a band-
insulator (⇠ 3.2 eV gap, Ti 3d0) over the whole tem-
perature range. The 2D conduction electrons at the
LTO/STO interface [47, 50], resulting from the charge-
transfer from the LTO into STO layers (red arrow in
Fig. 1(a)), serve as the Fermi sea whereas the “spin”-
transfer from YTO into STO (blue arrow in Fig. 1(a))
at the other interface (YTO/STO) produces the 2D lo-
calized magnetic moments and induces spin polarization
in the interface [51]. To assure that the magnetic in-
teractions can be investigated at the unit cell scale, the
interface roughness was investigated by (HAADF) STEM
imaging with atomic resolution which gives the structural
projection of the SLs. Taking 3LTO/6STO/3YTO as a
representative example, the geometries and sequences of
the trilayer layers LTO, STO and YTO in these SLs are
clearly seen with atomically sharp interfaces as displayed
in Fig. 1(b) and Fig. S1 [52].

To check for the presence of the interfacial charge-
transfer across the two LTO/STO and STO/YTO

4

terfaces exhibits a similar configuration, where the dxy
subband is the lowest occupied state compared to the
energy position of the dxz/dyz subband. This orbital
configuration is in a good agreement with the reported
orbital physics at the LAO/STO interface [69–73].

To fully understand the magnetic interactions in
LTO/STO/YTO, which strongly depend on J , nm/nc
and orbital polarization, the STO layer thickness (n)-
dependent electronic density distribution and d -orbital
occupancy were investigated. As shown in Fig. S3-S5
[52], from the combined EELS and transport data for
both LTO/STO and YTO/STO interfaces, the presence
of high-density of 2D conduction electrons (nc⇠1014-1015
cm�2/interface) and localized moments (nm⇠1014-1015
cm�2/interface) was deduced. To demonstrate the de-
pendence of magnetic interactions on nm/nc and orbital
polarization we define the i-dependent carrier densities
nc(i) and nm(i), where i denotes the ith TiO2 atomic
plane inside the STO layer counted from the YTO/STO
interface (Fig. 1(a)). As seen in Fig. 2(c) and Fig. S5,
based on the evolution of Ti3+/(Ti3++Ti4+) ratio, both
nc(i) and nm(i) show rapid decay behavior into the STO
layer.

Next we turn our attention to the orbital character
of nc(i) and nm(i). Previous extensive work on STO-
based heterostructures with 2DEL revealed the presence
of two kinds of mobile carriers with distinct orbital dis-
persion, namely light dxy and heavy dxz/dyz electrons
[13, 60, 74, 75]. For the LTO/STO interface recent
angle-resolved photoemission spectroscopy (ARPES) re-
sults [60] confirmed that light dxy conduction electrons
with large carrier density nc(i, dxy) are bound to the
LTO/STO interface while away and deeper into the STO
layer the mobile carriers are heavy electrons with dxz/dyz
dispersion (see Fig. 4 top panel). On the other hand, for
YTO/STO no experimental ARPES data are available.
First principle calculations predict that the YTO/STO
interface is ferromagnetic and insulating [51]. A direct
comparison of the XLD lineshapes taken on Ti L2,3-edge
for YTO/STO, LTO/STO, and LAO/STO [69–73] lends
strong support to the notion that the dxy band is indeed
the lowest occupied state of magnetic d -electrons at the
YTO/STO interface.

With the observation of nm(i)/nc(i) and the presence
of orbital polarization, it is interesting to speculate how
the magnetic interactions are modulated by the STO
thickness (n). We start by considering the case of a
thick n = 6 STO layer. With a thicker STO layer,
near the LTO/STO interface nc (dxy) � nm resulting
in the formation of a Kondo singlet state, as illustrated
in Fig. 4 (bottom). On the other hand, a low concen-
tration of heavy electrons with dxz/dyz character dis-
perses away from the LTO/STO interface and appears
near the magnetic STO/YTO interface; upon reaching
the STO/YTO interface the heavy electrons interact
with the localized magnetic moments with dxy charac-
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FIG. 4. (Color online) Top panel, a sketch of the TiO2 plane
(i)-dependent electronic density [nc(i) for itinerant electrons
and nm(i) for localized spins, i  n (see Fig. 1(a))] and or-
bital occupancy with a charge decay away from the interfaces
(see also Fig. 2(c) and Fig. S5 [52]). Bottom panel, schematic
phase diagram adapted from the theory [3, 10]. Near the
LTO/STO interface the Kondo e↵ect is dominant whereas
ferromagnetic exchange is favored near the YTO/STO inter-
face forming 2D d-electron Kondo lattice-like structure. Note,
the phase diagram is e↵ective for both periodic and random
localized magnetic moments [3, 10]. Here, t is the electron
hopping energy.

ter. The orbital-dependent ferromagnetic interactions
then can proceed through two possible mechanisms: (i)
based on the Hund’s rule, the interaction between the
dxy and dxz/dyz electrons results in FM ground state
[13, 15] and (ii) the Zener kinetic exchange, which may
win the competition with the Kondo and RKKY inter-
actions, again leads to the formation of a localized fer-
romagnetic ground state with spin-polarized conduction
electrons [3, 10]. Based on this consideration, both the
Hund’s rule and Zener kinetic exchange favor the forma-
tion of localized ferromagnetism and spin-polarized con-
duction carriers. At the other limit when the STO layer is
ultra-thin (e.g., n = 2), nc ⇠ nm the conduction carriers
lose their distinct orbital character resulting in the mixed
orbital state dxz/dyz/dxy. In this case the ground state
is the result of a direct competition between the Kondo
screening, RKKY coupling, and Hund’s energy. Based
on this picture, the control of STO thickness n enables
the remarkable ability to modulate the critical ratio of
nc/nm and orbital polarization to exert definitive control
over the magnetic interactions.

ca

b d

b

Fig. 5: a: Magnetic phase diagram of RTiO3. b: HAADF-STEM image of the tricolor super-
lattice reveals high-quality interfaces. STEM-EELS shows the layer-resolved chemical compo-
sition. c: All three samples display metallic behavior which agrees with theoretical fits. d: A
view of the electron density distribution across the STO layer as dependent on layer thickness n
and atomic plane i.

SrTiO3 and LaTiO3 films. As seen in Fig. 5c, the Ti3+ spectra weight estimated from the fit-
ting parameters of solid curves in Fig. 5b immediately reveal that in addition to the previously
reported charge transfer from LTO into STO [49], there is an unexpected large charge transfer
from YTO into STO which leads to a localized electron layer at the YTO/STO interface [50].

Next, the authors investigated the properties of interfacial electrons arising from the interfa-
cial charge transfer by measuring temperature-dependent electrical transport. As clearly seen
in Fig. 5c all three samples 3LTO/nSTO/3YTO (n=2,3,6) show characteristic metallic behav-
ior with a weak upturn at a lower temperature. To rule out possible contributions from cation
defects and oxygen vacancies, bilayer YTO/STO and LTO/STO samples were synthesized, and
their transport properties were used as references [50, 51]. In sharp contrast to the highly insu-
lating YTO/STO the sheet resistances of all the LTO/STO samples [51] show a 2D electron gas
behavior.
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The other interesting feature seen in transport is the pronounced upturn in the sheet resis-
tance at the lower temperature. Previous work on rare-earth titanate heterojunctions has at-
tributed such an upturn to the Kondo lattice effect after carefully ruling out the contributions
from weak localization [52] and electron-electron interactions [53]. One of the key features
of the Kondo effect that immediately differentiates it from weak localization and electron-
electron interactions is the universal scaling behavior. As shown in Fig. 5c, all tri-layer sam-
ples agree well with theoretical fits [solid red line, numerical renormalization group (NRG)]
scaled Kondo resistances [RK(T/TK)/RK,0]. The inset in Fig. 5c shows the extracted n-unit-
cell dependent Kondo temperature TK by fitting the experimental data of [mLTO/nSTO] and
[3 u.c. LTO/nSTO/3 u.c. YTO] superlattice. Based on the fact that the YTO/STO interface is
highly insulating [50], the observed Kondo scaling behavior lends support to the formation
of the interfacial lattice of localized magnetic moments located at the YTO/STO interface of
LTO/STO/YTO. So overall, in the tri-color LTO/STO/YTO structures, the authors created
metallic carriers at the LTO/STO interface facing the lattice of magnetic moments formed at
the YTO/STO interface.
To better understand the magnetic interactions in the tri-color LTO/STO/YTO, we can look
at the STO layer thickness (n-dependent) and atomic plane (i-dependent) electronic density
distribution plus d-orbital occupancy across the STO layer. In other words the question is what
happens when we move the 2DEG closer towards the magnetic lattice. The conceptual picture
is given in the top panel of Fig. 5d.
First, because we deal with a two-dimensional electron gas, the carriers have very specific
orbital types to let ‘light’ electrons rapidly move along the interface in the x-y-plane. In other
words, for a thicker STO layer, we got nc(dxy) � nm near the LTO/STO interface, resulting
in the formation of a Kondo singlet state (fully screened magnetic moments) since light dxy
conduction electrons (dashed yellow line) with large carrier density are bound to the LTO/STO
interface.
On the other hand, there is a low concentration of ‘heavy’ electrons (red arrows) with dxz/dyz
character (here z is perpendicular to the interface), which slowly disperse away from the LTO/
STO interface and appear near the magnetic STO/YTO interface (solid red line). Upon reaching
the STO/YTO interface, these mobile heavy electrons interact with the localized magnetic mo-
ments nm(dxy). What is remarkable is that this orbital-dependent ferromagnetic interaction can
proceed via two possible channels: (1) based on the Hund’s rule, the interaction between the
dxy and dxz/dyz electrons results in the FM ground state [20] and (2) the Zener kinetic exchange,
which can win the competition against the Kondo and RKKY interactions, again leading to the
formation of a localized ferromagnetic ground state with spin-polarized conduction electrons.
Finally, when the STO layer becomes ultra-thin, e.g., n=2, we have nc ∼ nm and the conduc-
tion carriers lose their distinct orbital character resulting in the mixed orbital state dxz/dyz/dxy.
In this case, in the ground state we have a direct competition between the Kondo screening,
RKKY coupling, and Hund’s energy. Based on this picture, the control of the STO thickness n
indeed modulates the critical ratio between magnetic sites and mobile carriers nm/nc and their
orbital character or orbital polarization to exert decisive control over the magnetic interactions.
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5.3 New orbital order in graphene-like nickelates

In bulk, perovskite oxides have many exciting properties, including metal-insulator transitions,
magnetism, superconductivity, charge and orbital orderings, and multi-ferroicity, to name a few.
These infinite layer ABO3 perovskite compounds consist of alternating AO/BO2, ABO/O2, and
AO3/B atomic planes along the pseudo-cubic [001], [110], and [111] directions, respectively.
Thus, the precise control during the growth of two or three pseudo-cubic (pc) unit cells of
ABO3 along the (111) direction leads to new lattice geometries with vertically shifted triangular
planes of B sites and results in buckled honeycomb lattice as shown in Fig. 6a. The emergence
of striking topological phases, including a quantum anomalous Hall state, was initially predicted
for a honeycomb lattice by Haldane [54]. Recently, there was a spark of interest in the search
for an artificially stabilized graphene-like quasi-2D lattice that can provide an ideal playground
for interacting topological phases in complex oxides (for details, see [55]). Here I describe the
case of rare-earth nickelates that illustrates the opportunities for designer topological phases by
geometrical lattice engineering (GLE).

The first member of the rare earth nickelates series, LaNiO3 (LN), is a paramagnetic metal. The
other members of the family of nickelates (RENiO3, RE=Pr, Nd,. . . , Lu, and Y) in bulk form
exhibit metal-insulator transitions, E’-type antiferromagnetic ordering, charge ordering, and
structural transitions with a strong dependence of the transition temperature on the size of the
RE ion. Several theoretical works (see Refs. [57–60] for review) further emphasized the possi-
bility of realizing interaction-driven topological phases without spin-orbit ions (e.g., Dirac half
semimetal phase, anomalous quantum Hall insulator phase, or ferromagnetic nematic phase) in
the weakly correlated limit on the buckled honeycomb lattice of RENiO3 as shown in Fig. 6b-c.
Moreover, in sharp contrast to bulk LaNiO3, where orbital ordering is absent, theoretical mod-
eling in the strongly correlated limit predicted the presence of an orbitally ordered magnetic
phase as the novel ground state for the buckled honeycomb lattice of LaNiO3.

How hard is it to grow (111) oriented films? Despite the conceptual simplicity, the growth
of perovskites along the [111]-direction presents a formidable challenge. Contrary to the con-
ventional [001]-direction, the epitaxial stabilization along the [111] direction is far less under-
stood due to unavoidable surface/chemical reconstruction effects. This can be seen as all per-
ovskite substrates are strongly polar along this direction, e.g., SrTiO3: [SrO3]4−, Ti4+; LaAlO3:
[LaO3]3−, Al3+, and so on. A possible solution to this polar catastrophe problem is to grow a
thin metallic buffer layer at the beginning of the growth sequence to effectively screen the charge
dipoles. However, one should pay particular attention as unwanted interfacial effects (between
buffer layer and desired material) can significantly influence the buffered heterostructure.

As the reconstruction effect often appears only at the substrate and vacuum interfaces, choosing
a substrate with the same sequence of charges per atomic plane as the desired material is another
solution that does not require growing a metallic buffer layer. To investigate this, Middey et al.
have grown LaNiO3 films on (111) SrTiO3 (with a polar jump at the film/substrate interface) and
compared it to the growth of LaNiO3 on (111) oriented LaAlO3 (without any polar jump at the
film/substrate interface) [56]. It was clearly demonstrated that while a thick bulk-like LaNiO3
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film is metallic and effectively screens charge dipoles, a thinner film becomes insulating. Using
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS), the authors uncovered mas-
sive amounts of oxygen vacancies within the thinner films. With the increased LNO thickness,
the increased metallicity screens the polar jump, and the relative amount of proper Ni3+ ions
rapidly increases. Finally, good stoichiometric LaNiO3 along [111] can be only obtained when
the film thickness reaches 15 unit cells. In sharp contrast, Ni3+ was stabilized from the very ini-
tial stage of growth of LNO on the LAO (111) substrate and thus confirmed that the absence of
a polar jump at the film-substrate interface is critically important for the epitaxial stabilization
along [111]. As a result, the desired generalized graphene-like crystal of RENiO3 with RE=La
to Nd has been successfully achieved for the first time on the LAO (111) substrate [60].
What about the ground state? According to theoretical calculations, the QAH topological
phase should be accompanied by spontaneous ferromagnetism. However, X-ray resonant mag-
netic scattering measurements on (111) oriented [2u.c. NdNiO3/4u.c. LaAlO3] (2NNO/4LAO
after that) superlattice ruled out the possibility of a long-range ferromagnetic ground state and
instead established the presence of antiferromagnetic correlations (see Fig. 6d). In addition to
magnetism, the orbital structure was investigated by the X-ray linear dichroism (XLD) tech-
nique. The XLD spectroscopy allows for uncovering different kinds of orbital ordering and
the symmetry of a specific orbital state per chemical element of the film. In this resonant X-
ray spectroscopy, one measures the difference in absorption with vertical polarization IH vs.
horizontal one IV . If orbitals are preferentially aligned along one of the X-ray polarizations,
the XLD signal becomes strongly enhanced. Conversely, for the orbitally disordered state, the
X-ray linear dichroism is zero.
Despite its conceptual simplicity, the geometrical arrangement between the sample and X-ray
polarization vector requires careful consideration for detecting orbital ordering. Specifically, as
illustrated in Fig. 6e, all the eg orbitals (3dz2−r2, 3dx2−r2, and 3dy2−r2 ) are oriented at φ =54.7o

with respect to the [111] growth axis of a NiO6 octahedron. Because of this specific geometrical
arrangement, the XLD signal is expected to be very small even for a ferro-orbital ordered (FOO)
state with 100% orbital polarization.
To maximize the XLD signal, the samples can be mounted on a copper wedge (Fig. 6f), which
‘mechanically’ reorients the Ni-O bonds along the vertical polarization V and the in-plane hori-
zontal polarization H. This specific sample orientation on the wedge aligns the 3dz2−r2 orbitals
almost along V polarization, giving a finite dichroic signal. On the other hand, 3dx2−r2 or-
bitals are almost in the plane of H polarization with a small but finite angle with respect to the
polarization vector H, resulting in an opposite and strongly reduced XLD signal. As a result,
instead of perfect cancellation of linear dichroism, a finite XLD is expected to be present for
the antiferro-orbital ordered (AFO) state. Fig. 6e-f shows resonant Ni L-edge X-ray absorption
spectra (XAS) (IV and IH) and the XLD spectra (difference between IV and IH) obtained in the
flat (φ = 0o) and the wedge (φ = 45o) geometries.
As anticipated from the discussion above, the XLD signal indeed strongly increased when the
measurement was conducted for the φ = 45o geometry. As a control experiment, for the thick
bulk-like (111) NNO film, the XLD measurement shows no significant orbital polarization.
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FIG. 1. (Color online). (a) The crystal structure of bulk
LaCoO3 with R3̄c (No. 167) space group and the correspond-
ing Brillouin zone. (b) is the band structures obtained from
the LDA calculation. (c) and (d) are the band structure ob-
tained from the LDA+G calculations with Coulomb interac-
tion U = 7.0 eV, Hund’s rule coupling J = 0.6 eV and J = 1.2
eV, respectively. (e) and (f) are the corresponding probabil-
ity of the atomic configurations |Ii in the Gutzwiller wave
function |Gi, PI = hG | Ii hI |Gi, it indicates a LS state for
J = 0.6 eV and a HS state for J = 1.2 eV.

be treated by the rotationally invariant Gutzwiller vari-
ational method introduced in detail in Ref. [16–19]. The
Gutzwiller variational wave function |Gi is constructed
by applying a projector operator P̂ to the noninteract-
ing wave function |0i derived from the LDA calcula-
tion, |Gi = P̂ |0i. The projector operator is chosen as
P̂ =

Q
i(
P

↵ �i
↵

���i
↵

↵ ⌦
�i
↵

��), where i is the site index, |�i
is the atomic eigenstates and �↵ are the Gutzwiller varia-
tional parameters. Please refer to the references [17, 18]
for the detail description of the method.

The bulk material of LaCoO3 has very complicated
electronic and spin state transitions [28–43]. At low
enough temperature (T < 50 K), it is a semiconductor
with low spin (LS) state. With the increasing of tempera-
ture, it undergoes a spin state transition to intermediate
spin (IS) state around T = 100 K. When temperature
T > 500 K, another transition from IS semiconductor
to high spin (HS) metal will occur. As shown in Fig. 1
(a), the bulk LaCoO3 has a distorted perovskite struc-
ture with R3̄c (No. 167) space group [33, 43], which
contains two equivalent Co atoms in a unit cell. In our
calculations, we take the lattice parameters for temper-
ature T = 5 K from Ref. [33]. The LDA band struc-

FIG. 2. (Color online). (a) The heterostructure of LaCoO3,
two layers of Co and three layers of LaO3 are grown along the
(111) direction on SrTiO3. (b, c, d) illustrate the formation of
a buckled honeycomb lattice by two layers of TM ions along
the (111) direction of an ideal perovskite lattice. (e) is the
Brillouin zone of the honeycomb lattice. (f) is the fat bands
derived from the LDA+SOC calculation and (g) is the fitted
band structure by adding an atomic SOC term to the Wannier
TB Hamiltonian, the SOC strength is so small that we can
hardly see the very small SOC splitting at � and K points in
the eg bands.

ture is shown in Fig. 1 (b). The eg (blue) and t2g
(red) bands of Co atoms overlap and give a metallic
ground state contradicting with the experimental results
which show semiconductor behavior. After considering
the Coulomb interaction and the Hund’s rule coupling in
our LDA+G calculations, we get a semiconductor ground
state when U = 7.0 eV and J = 0.6 eV, as shown in Fig. 1
(c), which is in good agreement with both the experi-
mental result [32] and the numerical result obtained by
LDA+DMFT [43]. The corresponding probability of the
atomic configurations |Ii in the Gutzwiller ground state
|Gi can be calculated using the Gutzwiller wave func-
tion as PI = hG | Ii hI |Gi, which are plotted in Fig. 1
(e) indicating a LS state. When the Hund’s rule cou-
pling J is increased to 1.2 eV, we then get a metallic
electronic structure with HS state, as shown in Figs. 1
(d, f). Locking between the metal-semi-conductor tran-
sition with the spin state transition can be explained by
the competition between the cubic crystal splitting and
Hund’s rule coupling. As a consequence, the increasing
of Hund’s rule coupling will strongly suppress the e↵ec-
tive crystal splitting between t2g and eg orbitals leading
to the vanish of the semiconductor gap between them.

We now turn to the heterostructure of LaCoO3. The
heterostructure of LaCoO3 proposed in this paper is
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FIG. 3. Orbital ordering probed by XLD. Experimental arrangement for recording XLD spectrum and the corresponding orientation of the
underlying crystal for (a) flat (✓ = 0�) and (b) wedge (✓ = 45�) configuration. ✓ is the angle between the vertical sample holder and (111) plane
of the film. The orbital arrangements for AFO state with the polarization direction for the two experimental configuration have been shown in
(c), (d). The Ni L2 XAS recorded with vertically (V) and horizontally (H) polarized light and their differences are shown in (e) for both ✓ = 0�,
45�. Note, due to strong overlap of the Ni L3-edge with the La M4 edge, only Ni L2 edge spectra are shown. Because of the experimental
limitation all the measurements were acquired at 45� inclination (instead of ideal 54.7�) relative to the X-ray beam.
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Fig. 6: a: Growth of ABO3 along [111] leads to new lattice geometries. b-c: The weakly-
correlated limit of RENiO3 has been theorized to host interaction-driven topological phases
such as a ferromagnetic nematic phase, Dirac half semimetal, and anomalous quantum Hall
insulator. d: XRMS measurements on 2NNO/4LAO establish the presence of antiferromagnetic
correlations. e-f: XLD spectra for φ = 0◦ (flat) and φ = 45◦ (wedge) geometries. The XLD sig-
nal was greatly increased for the wedge geometry, a sign of orbital polarization in 2NNO/4LAO.

This control experiment emphasizes that the observed orbital polarization in the 2NNO/4LAO
(111) superlattice is not a measurement artifact, and this buckled honeycomb lattice geome-
try engineered the orbitally polarized ground state. The obtained value of XLD around 9% is
large as the finite bandwidth of the eg bands and strong covalency strongly reduce the orbital
polarization from the atomic limit. I need to mention, however, that by the nature of the spec-
troscopic probe, XLD can only establish the presence of orbital ordering or orbital polarization
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but cannot resolve a specific type of orbital pattern present in the system. This can be done by
using synchrotron-based resonant X-ray scattering on the Ni L-edge and by using density func-
tional theory (DFT). Combined with the DFT prediction the experimental data revealed a novel
kind of anti-ferro-orbital ordering with staggered 3dz2−r2 orbitals rotated by 90o in subsequent
layers. This new quantum state is absent in the bulk nickelates.

5.4 Electronic structure of graphene-like nickelates

Probing buried graphene-like [111] perovskite layers using soft and hard X-ray photoemission.
As we have seen in the previous section, artificial heterostructures comprised of ultra-thin
complex-oxide layers grown in the pseudo-cubic [111] direction have been predicted to har-
bor a wide range of extraordinary quantum states stemming from the unique lattice geometry
resembling graphene and the interplay between strong electronic correlations and band topol-
ogy [60]. However, studying such atomic layers’ electronic and structural properties remains a
formidable challenge due to the limitations of conventional surface-sensitive techniques, which
typically probe depths of only a few Angstroms.
In this section, I want to discuss a new experimental methodology that combines bulk-sensitive
soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron
spectroscopy (HAXPES), and first-principles DFT+U calculations. This powerful set is used to
establish a direct and reliable method for extracting momentum-resolved and angle-integrated
valence-band electronic structures of an ultra-thin buckled graphene-like layer of NdNiO3-
(111) sandwiched between two 4-unit-cell thick layers of insulating LaAlO3-(111) (see Fig. 6a).
Clearly, this is a challenging system for measurements as the active monolayer of NdNiO3-(111)
is buried under the capping layer of LaAlO3-(111) [61].
First, soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) measurements shown
in Figure 7b were performed using the high-resolution ADRESS beamline at the Swiss Light
Source. To enhance the information depth and enable a momentum-resolved analysis of the
hexagonal NdNiO3, the measurements were conducted at high incoming photon energies rang-
ing from 642 to 874 eV, far beyond conventional UV ARPES. Using such high photon energies
effectively increases the inelastic mean-free paths of the photoelectrons within the superlattice
by a factor of 3–5 compared to typical home ARPES investigations, substantially improving
the probing depth. Theoretical calculations suggest the existence of two possible orbital ar-
rangements in this material: one characterized by P1 symmetry in a 1×1 unit cell (P1 1×1)
and another featuring P3 symmetry in a larger

√
3×
√
3R30o lateral unit cell. Bulk-sensitive

momentum-resolved measurements reveal excellent agreement with the band structure calcu-
lated using DFT+U for the Ni sites’ antiferromagnetic (AFM) ordering with P1 1×1 symmetry
shown in Figure 7c. These measurements provide direct evidence supporting the P1 1×1 sym-
metry, which perfectly aligns with the findings previously suggested by X-ray linear dichroism
data (see Sec. 5.3) [61–63].
To investigate the entire sample depth, angle-integrated hard X-ray photoemission spectroscopy
(HAXPES) measurements of the valence bands were carried out at a photon energy of 6.45 keV.
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a b
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d

Fig. 7: a: Schematic diagram of the sample and the SX-ARPES and HAXPES experimental
geometries. b: Momentum-resolved SX-ARPES map of the Ni 3d states near the Fermi level.
c: Isoenergetic cuts through the band structure in reciprocal space for the majority and mi-
nority bands. d: Bulk-sensitive HAXPES spectrum of the valence-band DOS. Inset shows a
high-statistics spectrum of the valence-band maximum (at ∼ 265 meV), referenced to the Au
Fermi edge. e: Cross-section-weighted element-projected and total DOS of the superlattice,
calculated in the GGA+U framework of DFT and broadened to account for both experimental
and hole lifetime broadening.

At this hard X-ray energy, the estimated inelastic mean-free path is approximately 9 nanome-
ters, enabling direct probing of the density of states across the entire sample. This approach
facilitates a straightforward comparison between experimental data (Fig. 7d) and theoretical
predictions (Fig. 7e). The experimental HAXPES valence-band spectrum shows remarkable
agreement with the first-principles calculations regarding relative intensities and the positions
of key features. Moreover, the experimental valence-band maximum is observed at a binding
energy of ∼265 meV below the Fermi level. This value corresponds to the magnitude of the
valence-band bandgap, indicating that the full bandgap of NdNiO3-(111) is at least of this size.
I remind the reader that in bulk (above 150 K), NdNiO3 is a paramagnetic metal [61–63].
In conclusion, a combination of bulk-sensitive soft and hard X-ray photoemission techniques
can be utilized to investigate the momentum-resolved electronic band dispersion of a buried
two-dimensional NdNiO3-(111) layer within a designed superlattice below a cap layer. Ad-
ditionally, the density of states of this structure can be directly measured using HAXPES.
Combined with first-principles DFT+U calculations, this new methodology provides direct and
definitive evidence for an antiferro-orbital (AFO) order characterized by P1 symmetry within a
1×1 unit cell [64].
We learn from this example that we finally have a practical experimental approach to investigate
the momentum resolved electronic structure of new quantum metals and semimetals as thin as a
single atomic plane.
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5.5 Artificial quantum spin liquid on lattices with extreme frustration

Can we make a new exotic state of matter? In what follows, I will discuss the, in my view,
most enigmatic yet least experimentally understood state of matter called a spin liquid. To
make things even more intriguing, we should look at its quantum version, a quantum spin liquid
or QSL. If there is something that we do not fully understand microscopically, it would be
the concept of liquid (e.g., water). These days, experimentalists are very good at finding and
describing long-range order (LRO) by sharp Bragg intensities in reciprocal space. Conversely,
a disordered spin gas phase (paramagnet) can be reliably detected. But the precise nanoscopic
description of something which fluctuates in space and time with numerous short-range ordered
(SRO) configurations of spins is still beyond our current computational capabilities.
Nevertheless, one can bravely embrace the idea and think, at least theoretically, if such a liquid
of quantum spins is thermodynamically stable, what would be a Landau-kind order parameter
if at all, and most importantly, how could we detect such a state experimentally (for a theory
discussion see [65–70]).
As for the question of stability, we have one example of a true quantum spin liquid, 3He, which
exists only outside of the solid-state setting. Even theoretically, we still do not have complete
answers to those questions. For example, we do know that a QSL cannot be described by the
conventional Landau theory of phase transitions relying on spontaneously broken symmetry.
Instead, one can introduce the idea of ‘entanglement entropy’ as a topological order parameter.
Despite its novelty and usefulness for theory, experimentally, we do not have probes that couple
to such a ’topological order parameter.’ Thus, we mostly rely on negative statements about a
quantum material in question for practical reasons. At best, we can verify in a magnetometer or
via some sort of magnetic scattering that our magnetic crystal has no long-range spin order down
to the lowest experimentally accessible temperature. This is hardly a satisfactory situation, but
we need to say what would constitute a set of positive statements as an alternative. Here I list a
few popular ones:

• Definition 1: a QSL is a state in which the spin-spin correlations decay to zero at large dis-
tances or 〈Sαi S

β
j 〉 → 0 when |ri−rj| → ∞. Objection: A classical liquid, spin nematic,

or valence bond crystal also satisfies this definition.

• Definition 2: a QSL is a state without any spontaneously broken symmetry, but so is a
valence-bond solid.

• Definition 3: a QSL is a Mott insulator that possesses no long-range magnetic order, lacks
any spontaneously broken symmetry, and carries a spectrum of fractional excitations. At
present, this is the definition most amicable for experimental verification. I recap that
fractional excitations are quasi-particles, e.g., spinons, carrying a half-odd-integer spin,
and fractionalized fermions are coupled to an emergent gauge field.

Why do we care about such exotics? Here is a short list of reasons: (1) Most SQLs are ‘flat-
band’ systems; if doped, they may harbor high or potentially even room-temperature supercon-
ductivity, (2) for dimensionality greater than one, fractional excitations interact with each other
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through emerging gauge fields, giving rise to string- and loop-like excitations akin to physics
of quark-gluon plasma and (3) QSLs sustain a new type of topological non-local order and
new spin excitations (anyons) which can be useful as an unconventional platform for quantum
computing with topological qubits beyond silicon, aluminum, or ion traps.
How to make a QSL? As for the experimental realization of a QSL, the currently existing
“recipes” are illuminating but very limited. On the one hand, a general guiding principle is that
to reach a QSL, significant frustration resulting from the lattice geometry, multiple exchange
terms, or bond conflict are the most essential prerequisites. After tremendous, decades-long
efforts, promising candidate materials have been proposed and synthesized [71]. Interestingly,
the underlying lattices of almost all known QSL candidates are bound to five types of geome-
tries: triangular, pyrochlore, kagome, hyperkagome, and honeycomb lattices. This, in turn,
limits the pursuit of new QSL materials and brings to the focus an open question of whether any
additional lattice motifs can host a QSL and how it can be achieved experimentally?
Figure 8a illustrates the new approach for making such exotic phases called geometrical lattice
engineering (GLE) (see Sec. 3 and Ref. [22]). GLE principally aims to design and fabricate
lattices of artificial geometry by stacking on demand a specific number of atomic planes along
unconventional crystallographic directions to facilitate unattainable in the bulk configuration of
charges, orbitals, and spins. You had already seen this concept in action in subsection 5.3 where
I described how to create graphene-like NdNiO3 with a new anti-ferro orbital order.
Is there a real QSL based on the GLE? Here, I introduce a generic design of a new (quasi-2D)
lattice derived from the spinel structure (chemical formula AB2O4) and demonstrate its feasibil-
ity for a QSL phase [72]. Concretely, I will use CoCr2O4 as a prototype; we fabricated a series
of (111)-oriented ultra-thin films confined by non-magnetic Al2O3 layers into a quantum well
geometry. Compared to its bulk counterpart, the onset of the ferrimagnetic transition decreases
monotonically with reduced thickness and eventually shuts off in a single-unit slab of (111)
CoCr2O4. In this quasi-2D limit, the degree of magnetic frustration becomes enhanced by al-
most 3 orders of magnitude with persisting spin fluctuations down to 30 mK. CoCr2O4 belongs
to the normal spinel chromite family, MCr2O4 (M=Mn, Fe, Co, and Ni) where the magneti-
cally activeM2+ ions occupy the tetrahedral A sites of the diamond sublattice and the Cr3+ ions
occupy the octahedral B sites of the pyrochlore sublattice, possessing complex spin configura-
tion of the ground state. Note, in bulk, CoCr2O4 has a collinear ferrimagnetic state first formed
with the Curie temperature of∼93 K, it transforms into an incommensurate spiral ferrimagnetic
state at ∼26 K, and finally, an incommensurate to commensurate lock-in transition takes place
at ∼14 K.
Now on to the GLE. As seen in Fig. 8a/b, when viewed along the [111] direction, the structure
is an intrinsic stacking of triangle (T) and Kagome (K) cation planes from Co and Cr ions em-
bedded in the oxygen cubic close-packed frame. This leads to a sequence ‘-O-Cr(K)-O-Co(T)-
Cr(T’)-Co(T)-’ in a single unit with four cation layers, which we denote as one quadruplet layer
(1 QL). Based on this design idea, [n QL CoCr2O4/1.3 nm Al2O3] (n=1, 2, 4; 1 QL∼ 0.48 nm)
superlattices were fabricated by pulsed laser deposition on (0001)-oriented single crystal Al2O3

substrates.
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What is the ground state of this new synthetic magnet? The investigation of the magnetic
behavior of each sublattice was done by recording the resonant X-ray absorption spectroscopy
(XAS) taken with left- and right-circularly polarized beams. The difference between those two
spectra, called X-ray magnetic circular dichroism (XMCD), reflects the net magnetization of
a specifically probed element. To make the statement even more contrasty, I will l compare
the 4QL sample (bulk-like) to the most intriguing 1QL sample. As seen in Fig. 8c, the sat-
urated magnetic signal is indeed observed in the thicker 4 QL CoCr2O4 and also it exhibits
clear hysteresis loops at both Co and Cr L3 edges. These findings signal for the long-range
magnetic order even in 4QL thin samples. However, in sharp contrast, no hysteresis loop but a
linear XMCD versus H relationship is found on both Co and Cr in 1 QL CoCr2O4, typical of a
paramagnetic behavior!
To further examine if any long-range spin ordering emerges at extremely low temperatures,
we performed the torque magnetometry measurements on 1 QL CoCr2O4 from 30 K down to
30 mK. This technique quantifies the magnetic torque response of a sample with respect to the
applied magnetic field (τ ∝ M ×H). It is an exquisitely sensitive utility to probe vanishingly
small magnetic signals from ultra-thin samples and interfaces. The result confirms that within
the resolution of measurement and the entire temperature range, no hysteresis but a reversible
parabolic τ ∝ (µ0H)2 relationship is observed for 1 QL, which implies a quantum paramagnetic
behavior persisting down to 30 mK. Moreover, if we plot torque vs. T (see Fig. 8c (right)),
we can immediately see that even at 30 mK, the ground state has large spin entropy, and its
spectrum of excitations is gapless or spin-metal like. To make this story even more compelling,
an extensive set of neutron reflectivity and mount spin resonance data affirms these conclusions.
Why does this quasi-2D artificial magnet enter a gapless QSL state? To obtain a micro-
scopic insight into how the designer lattice topology and quantum confinement alter the ex-
change interactions and, consequently, the magnetic ground state, a set of DFT calculations
and Monte-Carlo simulations were performed on bulk, 2, and 1 QL of (111) CoCr2O4. As seen
in Fig. 8d (left), the theory revealed that the new emergent QSL ground state is a consequence of
the markedly smaller exchange interaction along (111) because it is blocked by the vacuum-like
spacer of Al2O3 with a gap of 4 eV in the ultrathin films compared to bulk. In fact, for 1 QL,
this interaction is completely suppressed (!), while the in-plane interactions remain essentially
bulk-like, all in contrast to the behavior in bulk. And now we understand that due to the entire
blocked exchange along (111), our 1QL magnet turned into a 2D system with a pure Kagome-
triangular motive of extremely large magnetic frustration. Fig. 8d (right) shows that the system
reaches the frustration factor f = TCW/TN of about 1000 (!) compared to the value in the bulk
of 4–6.
Here is what we learned from GLE. The ground state is a well-defined long-range magnetically
ordered state in bulk (QL→∞). As the number of QLs is reduced, it becomes more and more
difficult to stabilize a conventional ordered state due to the enhancement of magnetic frustration.
Eventually, the ground state becomes highly degenerate in 1 QL, unleashing dynamical spin
fluctuations. I remind you that this is the regime where quantum effects play a pivotal role in
bringing the system into a QSL (quantum paramagnet) state without a spin gap.
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Fig. 8: a: The spinel lattice is made of a stack of triangle and kagome planes when viewed along
the [111] direction. b: View of cation triangle and kagome planes. c: XMCD measurements
show long-range magnetic ordering even in 4QL CCO films, but paramagnetic behavior in 1QL
CCO. Torque measurements reveal that even at 30 mK, the 1QL sample is gapless. d: Theory
reveals the emergent QSL ground state is a consequence of the suppression of out-of-plane
exchange interaction.
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6 Problems to solve, ideas to try

In this section, I want to point in ten directions, which is my challenge to you. Frankly, I do not
have answers to any of those questions, so I leave it to you to seek possible solutions.

1. If you replace a conventional nano-second UV laser with a femtosecond one, what new
synthesis regime can you reach? The intrigue here is that in the femtosecond regime, there
is no time for laser heat dissipation as phonons are too slow (pico-second timescale).

2. How can we grow uniaxially strained structures?

3. Apart from GLE, how do we design structures with extreme frustration from interactions?

4. Can you think of a way to combine different classes of interesting quantum materials,
such as TMO with TM dichalcogenides, TM oxyfluoride, and TM nitrites?

5. What happens if you combine different topological classes and antagonistic orders such
as Dirac electrons-Cooper pairs or Cooper pairs and magnetic monopoles of a spin-ice?

6. Can you think of a design approach for structures that can ‘zoom in’ on a specific term of
a Hamiltonian?

7. Can you create structures holding quantum chaos?

8. What about structures that reach a regime of quantum hydrodynamics?

9. How can you measure a spectrum of excitations (e.g., magnons, phonons, plasmons, or-
bitons) right at the interface?

10. What designer structures can directly reveal the quantum entanglement of fermions?
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10.2 Matthias Vojta

1 Introduction

This chapter is devoted to phase transitions at zero temperature, usually called quantum phase
transitions (QPT), their critical behavior, and its changes arising from frustration and the pres-
ence of orbital degrees of freedom [1].
QPT and quantum criticality define an active field of research which goes back to the work
of Hertz in 1976 [2] who considered magnetic ordering transitions in metals. Much progress
was made in the 1990s and 2000s [3], such that many classes of symmetry-breaking QPT in
insulators are reasonably well understood by now, with agreement between experiment and
theory. In contrast, transitions in metals remain only partially understood [3, 4]. Moreover,
and most relevant to this chapter, recent developments in the field of frustrated and topological
systems have brought into focus entirely new forms of quantum criticality which are under
intense investigation today [5]. For some of them, microscopic ingredients beyond the simplest
non-relativistic single-orbital picture are crucial, defining an extremely fruitful and rich avenue
of research.
In the following, we will focus on interacting electrons in solids and thus on collective phe-
nomena. In contrast, we will not cover transitions driven by the topology of band electrons;
similarly, we will not be concerned with transitions driven by quenched disorder. Our primary
interest is on thermodynamic and linear-response spectral properties of systems in the vicinity of
a QPT. The non-equilibrium quantum dynamics near QPTs as well as genuine non-equilibrium
phase transitions have become an intense research field on its own, but are beyond the scope of
this chapter.
Given the complexity of material, we will mainly discuss conceptual ideas and qualitative as-
pects of theory; for concrete computations we refer the reader to the literature. Experimental
results will be mentioned when appropriate.

2 Quantum phase transitions

Before turning to frustration, orbitals, and the like, we will summarize the main aspects of
“conventional” quantum criticality. For reasons of space, this review can be nowhere close to
complete. However, many extensive texts on this subject are available [3, 4, 6] which we refer
the reader to for a more detailed exposure.

2.1 Phenomenology and Landau-Ginzburg-Wilson theory

A quantum phase transition (QPT) is a phase transition taking place at temperature T = 0 upon
tuning a non-thermal control parameter like pressure or magnetic field. The finite-temperature
properties near a continuous QPT are highly unusual: Due to the peculiar properties of the
quantum ground state at the transition point, dubbed quantum critical point (QCP), the so-called
quantum critical regime located at finite T above the QCP, Fig. 1, displays properties distinct
from that of any stable phase of matter. These properties include power-law behavior with
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quantum
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Fig. 1: Generic phase diagram in the vicinity of a quantum critical point as function of a non-
thermal control parameter r and temperature T. An ordered phase exists for r < 0 and low T,
bounded by a line of classical phase transitions which terminates at the QCP at r = 0, T = 0.
The quantum critical regime is defined by kBT � |r|νz, where ν and z are the correlation
length and dynamical exponents.

unconventional exponents of thermodynamic and transport quantities as function of absolute
temperature as well as scaling behavior, where suitably rescaled observables depend only on
dimensionless ratios of external parameters.

From a theoretical perspective, the universal properties of QPTs can often be described using
a continuum quantum field theory for the transition’s order parameter. The choice of the latter
is dictated by the way in which symmetries of the Hamiltonian are spontaneously broken at
the transition. This goes back to Landau who pioneered the ideas of symmetry breaking and
local order parameters in the context of phase transitions. This concept was later extended to
quantum phase transitions by taking into account temporal order-parameter fluctuations, i.e.,
quantum fluctuations – this leads to the so-called Landau-Ginzburg-Wilson (LGW) approach.

For Mott-insulating quantum magnets the LGW theory for a zero-temperature transition be-
tween a featureless paramagnet and, e.g., a collinear ordered antiferromagnet takes the form of
a quantum ϕ4 model with the action

S =

∫
ddx

∫ β

0

dτ

(
c20
2
(∂i~ϕ)

2 +
1

2
(∂τ ~ϕ)

2 +
δ0
2
~ϕ 2 +

u0
4!
(~ϕ 2)2

)
(1)

where ∂i = ∂/∂xi, and ~ϕ(~x, τ) is a local N -component order-parameter field which is as-
sumed to vary slowly in space and time and encodes the ordering tendency at a microscopic
wavevector ~Q. Further, τ is imaginary time, and c0, δ0, and u0 are parameters. Decreasing the
non-thermal control parameter δ0 at low temperature tunes a transition between a disordered
and an ordered phase, with the O(N ) symmetry spontaneously broken in the latter; N = 3 for
collinear Néel order in the presence of SU(2) spin symmetry. More precisely, δ0 acquires a
temperature-dependent renormalization, and the transition occurs at δ0 = δc where the renor-
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malized δ vanishes. The distance to the QCP can be expressed as

r = δ0 − δc(T=0) (2)

and may be tuned by pressure or chemical composition. Eq. (1) can also describe non-magnetic
ordering transitions, such as the onset of charge order accompanied by the breaking of lattice
translation symmetry.
The thermodynamic properties of Eq. (1) are essentially understood, as they can be computed
analytically using renormalization-group techniques as well as numerically. The critical expo-
nents of the QPT are known to a good accuracy in all space dimensions. Similarly, dynamical
and spectral properties have been considered, and a detailed exposition is given in Ref. [3].
In Eq. (1) space and time enter symmetrically, corresponding to a dynamical exponent z = 1.
The time direction in the integral may be interpreted as an additional space direction, such that
the quantum theory in d dimensions at T = 0 is equivalent to a classical theory in D = d + z

dimensions. While the local order-parameter description with z = 1 applies to many QPT
in insulators, the situation in metals is more complicated due to the presence of low-energy
fermionic excitations. Two additional remarks are in order: (i) QPTs into ferromagnetic or
polarized phases in the presence of SU(2) spin symmetry follow a quantum dynamics different
from that of the ϕ4 model because a conserved density changes across the transition. (ii) Berry-
phase terms, which are generically present in a field-theory description of spin systems, do not
appear in Eq. (1) because they are irrelevant for the transition between featureless paramagnet
and antiferromagnet. They are, however, responsible for much of the physics beyond LGW
which will be described in Sec. 6.
For finite-temperature (i.e. classical) transitions, the upper critical dimension above which mean-
field critical behavior is realized is D+

c = 4 for a standard ϕ4 theory. In the quantum case, the
presence of temporal fluctuations implies that the upper critical dimension for QPTs is given by
d+c = 4−z. For instance, continuous QPTs in d=3 with z=1 display mean-field behavior with
logarithmic corrections. For phase transitions involving fermions the situation may be more
complicated, though.
A last parenthetical remark here: Zero-temperature phase transitions, both continuous and dis-
continuous, can also occur in purely classical models. Obvious examples occur classical models
of vector spins: For instance, the field-driven transition to saturation in a classical Heisenberg
model is typically continuous.

2.2 An example: Coupled dimers and TlCuCl3
A class of simple microscopic models displaying magnetic QPTs is given by coupled dimers,
i.e., lattice systems with a crystallographic unit cell containing two spins 1/2. Consider the
Heisenberg Hamiltonian

H = J
∑
〈ij〉

~Si · ~Sj + λJ
∑
〈ij〉′

~Si · ~Sj (3)

where the first sum runs over all dimers, whereas the second sum covers all inter-dimer bonds.
A square-lattice realization is shown in Fig. 2. The limit λ = 0 corresponds to disconnected
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Fig. 2: Square-lattice coupled-dimer model (3) with phase diagram: The two Heisenberg cou-
pling J and λJ are shown as thick and thin lines, respectively. The ellipsoids represent singlet
pairs of spins 1/2. At a critical value λc the system transits from a gapped singlet paramagnet
(left) to a Néel antiferromagnet (right).

spin pairs, each of them having a singlet S = 0 ground state and a triplet S = 1 excited state,
separated by an excitation energy J . The full lattice model has two distinct phases, which can
be easily discussed:

Limit λ � 1: This implies weakly coupled dimers, leading to a disordered (i.e. quantum
paramagnetic) phase with no broken symmetries and exponentially decaying spin corre-
lations.

Limit λ ∼ 1: Here the dimers are strongly coupled, and long-range antiferromagnetic order
with broken SU(2) symmetry emerges. For the lattice shown in Fig. 2, λ = 1 represents
a square lattice which is known to display long-range order.1

A quantum phase transition must occur at an intermediate value of λ, Fig. 2. As the order
parameter is the staggered magnetization, the QPT is described by the LGW theory (1) with
N = 3 components. The excitation gap of the quantum paramagnet closes upon approaching
the QCP. The ordered phase displays two gapless Goldstone modes corresponding to the broken
spin rotation symmetry as well as a gapped Higgs mode corresponding to amplitude fluctuations
of the order parameter.
A paradigmatic experimental realization of coupled dimers, here in three space dimensions, is
found in the Mott-insulating material TlCuCl3 [7]. The magnetic Cu ions form dimers, and at
ambient pressure and low temperature the material is in the quantum paramagnetic phase. Upon
applying hydrostatic pressure, the inter-dimer interactions increase (i.e. λ in Eq. (3) increases)
such that the system eventually reaches a state with antiferromagnetic long-range order. Ignor-
ing the (weak) spin-orbit coupling, the QPT between the two states is described by the LGW
theory (1) as above. Given that D = d+ z = 4, the QPT is of mean-field character.

1The system in Fig. 2 becomes disordered again for λ� 1, as this limit corresponds to decoupled spin ladders.
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Fig. 3: Experimental results for the coupled-dimer system TlCuCl3, showing the magnetic ex-
citation gap ∆ and the Néel temperature TN as function of applied pressure p. The magnetic
QPT is located at pc = 1.07 kbar. (Figure taken from Ref. [7])

2.3 Frustrated systems: What is different?

The considerations so far cover “simple” symmetry-breaking transitions, i.e., transitions be-
tween a symmetric – and also otherwise featureless – state and a state which can be character-
ized by a local order parameter and spontaneously breaks one or more symmetries of the Hamil-
tonian. While such transitions can of course also occur in frustrated systems, more complicated
situations frequently arise which cannot be captured by a simple LGW theory. Important cases
are:

1. If a quantum paramagnetic phase is a fractionalized spin liquid, it is not featureless, be-
cause it is characterized by topological order.

2. The ordered-state manifold may be unconventional, i.e., not be characterized by a local
order parameter or by a unique ordering wavevector. Long-range order may arise exclu-
sively from fluctuation effects.

3. A transition might occur between states without spontaneous symmetry breaking.

4. The active quantum degrees of freedom can be different from the fluctuations of the order
parameter, i.e., if a local order parameter exists, it might be a composite when expressed
in the elementary degrees of freedom.

5. Frustration may enhance fluctuations such that the transition is rendered first order.

In Sec. 5 and 6 we will cover some of these cases in more detail.
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3 Frustration and novel states

Frustration refers to the presence of multiple constraints which cannot be simultaneously sat-
isfied. An important arena is frustrated magnetism where the constraints arise from the mini-
mization of (pairwise) interaction energies: In a frustrated magnet, not all interactions can be
simultaneously minimized. The perhaps simplest example is given by antiferromagnetically
coupled Ising spins on a triangle. Frustration can arise from the geometry of the underlying
lattice and/or from the nature of the interactions. The most obvious effect of frustration is to
counteract the usual tendency towards symmetry-breaking order at low temperatures. As a re-
sult, a frustrated system may either have a strongly reduced ordering temperature or show no
order at all, the latter often leading to exotic liquid-like phases. In addition, the suppression
of conventional ordering phenomena can induce a competition of multiple less conventional
phases, resulting in complex phase diagrams, non-trivial crossover phenomena, an accumula-
tion of entropy at low temperature, and a large sensitivity to tuning parameters.
The past decade has seen a flurry of interest in frustrated systems [8–13], primarily driven
by the search for novel states of matter. Prime examples are spin liquids with fractionalized
degrees of freedom, skyrmion lattices with emergent artificial electrodynamics, fractionalized
Fermi liquids, and their descendants. Many of these phases are characterized by non-trivial
topological properties.
In this section, we introduce important concepts for frustrated magnets. The discussion here
will focus on Mott insulators with local moments; frustrated metals define a large separate topic
on its own, and we will only touch upon this in Sec. 7. We will consider lattice systems of local
moments, i.e., quantum-mechanical spins transforming as SU(2) vectors, with a Hamiltonian
containing two-spin interactions plus, perhaps, multi-spin exchange terms. The most generic
model Hamiltonian is an antiferromagnetic Heisenberg model of spins S with nearest-neighbor
interactions J ,

H = J
∑
〈ij〉

~Si · ~Sj . (4)

The Heisenberg interaction in Eq. (4) favors antiparallel moments on neighboring lattice sites.
Consequently, this interaction is non-frustrated on lattices where all closed loops of interac-
tion paths have even length, such that an alternating up–down arrangement, corresponding to
collinear magnetic order, can cover the lattice. This applies to the square and cubic lattices as
well as, e.g., the honeycomb lattice. In contrast, frustration is induced on lattices with odd-
length loops, e.g., the triangular, kagome, bcc, fcc, and pyrochlore lattices. On some of these
lattices, a magnetically ordered ground state – often non-collinear – is realized for any S de-
spite the existence of frustration, the triangular lattice with its 120◦ order being an established
example, while in other cases order may be entirely absent.
In addition to the described geometric frustration, rooted in the geometry of the underlying lat-
tice, incompatible constraints may be caused by the nature of the exchange interactions, leading
to exchange frustration. A prominent case are so-called Kitaev interactions [14], to be described
in Sec. 4 below.
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Fig. 4: Two-dimensional lattices with geometric frustration: triangular (left), kagome (right).

Given that frustration tends to suppress magnetic order, a popular experimental way to quantify
frustration in a given system is the so-called frustration ratio, f = |ΘCW|/TN, where TN is the
ordering temperature and ΘCW the Curie-Weiss temperature, the latter being a measure for the
strength of exchange interactions [8]. Materials with f > 5 are commonly called “frustrated”.
The extreme case of no long-range order (LRO) down to T = 0, formally f = ∞, then corre-
sponds to a ground state with only short-range correlations. A regime with highly correlated
but fluctuating spins and no LRO at temperatures T � |ΘCW| is often dubbed “spin liquid”
(although more precise definitions are available, see below).

3.1 Classical spin liquids

In the classical limit, formally obtained for spin size S → ∞, spins can be viewed as unit
vectors, and non-trivial commutators vanish. Frustration may lead to a classical ground state
which is either unique up to global symmetry transformations – in this case the system is called
“weakly frustrated” – or which has degeneracies scaling with the system size, rendering the
system “strongly frustrated”.2 In the latter case, the resulting manifold of lowest-energy states
defines a classical spin liquid. A celebrated example is spin ice, referring to moments with
local Ising anisotropy and ferromagnetic interactions on a pyrochlore lattice, viz. a lattice of
corner-sharing tetrahedra [15].
Often, a classical spin liquid can be characterized by a set of local conditions which define
the ground-state manifold (but not a unique state up to global symmetry transformations, as
explained above). Examples are the conditions “two in, two out” for the Ising configurations
of individual tetrahedra of spin ice or the condition

∑
4
~Si = 0 for the spin configurations

of a kagome-lattice Heisenberg model. Hence, these conditions underconstrain the manifold
of states; recall that the original problem of minimizing all Hamiltonian terms simultaneously
overconstrains the manifold of states if frustration is present. Local constraints can often be
formulated as an emergent lattice gauge theory. For instance, the “two in, two out” condition
can be translated into div b = 0 where b is an artificial magnetic field and div a suitably defined
lattice divergence.
For Ising spins (i.e. with countable number of states) a classical spin liquid can be characterized
by an extensive ground-state entropy S0/N where N is the number of lattice sites. Typical

2Intermediate cases with sub-extensive degeneracies exist as well.



Orbitals, Frustration & Quantum Criticality 10.9

examples are the Ising model on a triangular lattice, with S0/(NkB) ≈ 0.323 [16], and classical
spin ice, with S0/(NkB) ≈ 1/2 ln(3/2) ≈ 0.203 [17]. For classical spin liquids made from XY
or Heisenberg spins a residual entropy cannot be defined, but the degeneracy may be quantified
via the difference between the number of continuous degrees of freedom and the number of
local constraints.
Elementary excitations of classical spin liquids correspond to configurations which violate one
(or more) of the local ground-state conditions; in the gauge-theory language these become ele-
mentary charges. For spin ice, the excitations are tetrahedra with “three-in, one-out” or “one-in,
three-out” configurations; these have been shown to behave like magnetic monopoles upon in-
cluding dipolar interactions [18].

3.2 Quantum spin liquids

With quantum fluctuations included, frustrated systems may realize local-moment states with-
out symmetry breaking and only short-range order down to lowest temperatures. Such quantum
spin liquids (QSLs) [9,11,12] display some differences compared to their classical counterparts:
(i) Quantum fluctuations typically remove the extensive ground-state degeneracy of strongly
frustrated systems by quantum tunnelling, resulting in unique ground states (up to global sym-
metry transformations or topological degeneracies). (ii) QSLs are thermodynamically stable
phases of matter, characterized by emergent dynamic gauge fields and topological order. This
implies the existence of fractionalized excitations which are coupled to the gauge field. Despite
this coupling, the fractionalized excitations are asymptotically free, i.e., deconfined. (iii) The
wavefunctions of QSLs can be characterized by long-range entanglement [19,20]. Importantly,
QSLs need to be distinguished from “trivial” quantum paramagnets without topological order
and fractionalization, like the coupled-dimer magnets of Sec. 2.2.
Different types of QSLs can be distinguished depending on the spectrum and statistics of the
emergent excitations and on the gauge structure. Prominent examples are fully gapped Z2 spin
liquids, for which topological order can be sharply defined, and algebraic U(1) spin liquids with
gapless excitations. For an in-depth discussion of topological order and attempts of classifica-
tions we refer the reader to the literature [9, 11, 21]. Relevant to the existence of non-trivial
many-body states is a theorem due to Lieb-Schulz-Mattis [22] and its higher-dimensional gen-
eralization by Hastings [23]. It states that in a system with half-odd-integer spin per unit cell
and global U(1) symmetry, the excitation spectrum in the thermodynamic limit cannot simulta-
neously fulfill the two conditions: (a) the ground state is unique and (b) there is a finite gap to
all excitations. This implies that a gapped symmetry-unbroken state must have a ground-state
degeneracy which is topological in nature. We finally note that, conceptually, topological order
and fractionalization may co-exist with spontaneous symmetry breaking: For instance, broken
time-reversal symmetry on top of a spin liquid leads to a chiral spin liquid, while magnetic
long-range order leads to a fractionalized ordered magnet.
An intuitive picture of a QSL with underlying SU(2) symmetry is provided by the resonating
valence-bond (RVB) idea, Fig. 5, originally proposed by Anderson for the triangular-lattice
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(a) (b)

Fig. 5: Illustration of an RVB state, here on the kagome lattice. (a) Nearest-neighbor dimer
covering, with the ellipsoids representing singlet pairs of spins 1/2. The RVB state is given
by an equal-weighted superposition of different such coverings. (b) Pair of spinon excitations,
each carrying spin 1/2.

Heisenberg model [24]. RVB refers to pairing spins on a lattice into singlets and then forming a
quantum superposition of many different pairings, i.e., different dimer coverings of the lattice,
such that the symmetries of the Hamiltonian are preserved.3 This picture captures the aspect
of fractionalized excitations, as the breaking of a dimer leads to two monomer excitations with
independent dynamics: These monomers are objects carrying charge 0 and spin 1/2, typically
called spinons. In a Z2 spin liquid, they are coupled to an emergent Z2 gauge field, whose
excitations are Z2 vortices (or fluxes) called visons.
A well-studied spin model with geometric frustration is the Heisenberg model on the kagome
lattice. For quantum spins 1/2, with antiferromagnetic interactions as in Eq. (4), there is strong
numerical evidence that this realizes a fractionalized QSL. However, the nature of this QSL has
not been conclusively clarified to date, as numerical results have been interpreted in favor of
either a gapped Z2 spin liquid [26] or a U(1) spin liquid with a Dirac-cone spectrum [27,28]. A
candidate material realizing the kagome-lattice spin-1/2 Heisenberg model is Herbertsmithite,
ZnCu3(OH)6Cl2, which indeed displays spin-liquid-like behavior [29,30]. However, the role of
quenched disorder is debated [30]. Numerical evidence for QSL phases in Heisenberg models
of spins 1/2 has also been found for square [31] and triangular-lattice models [32] with first and
second-neighbor interaction, so-called J1-J2 models. Close experimental realizations of the
triangular-lattice J1-J2 model appear in the delafossite family NaYbX2 (X=S, Se, O) which
show spin-liquid behavior at low T [33, 34].

3.3 Valence-bond solids

An alternative quantum paramagnetic state of spins 1/2 that can be constructed from dimer
coverings of the underlying lattice is a so-called valence-bond solid (VBS). In this state, the
wavefunction is dominated by a single covering with a periodic arrangement of dimers. As a

3The first existence proof of a Z2 spin liquid was given for a triangular-lattice quantum dimer model which
realizes an RVB phase [25].
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result, the state spontaneously breaks translation and rotation symmetry of the lattice, hence the
label solid. Excitations of VBS states carry integer spin, i.e., spinons are confined.
VBS variants can be constructed for larger constituent spins and/or from larger units, the com-
mon theme being that the state in the resulting magnetic unit cell represents a spin singlet. For
instance, plaquette VBS with unit cells of four spins 1/2 have been discussed for the square-
lattice checkerboard and J1-J2 models.

3.4 Order by disorder and unconventional types of order

In addition to phases with unbroken spin symmetry, like spin liquids and valence-bond solids,
frustrated spin systems can of course display phases with broken spin symmetry, both conven-
tional and unconventional [13].
First, conventional magnetic order can emerge in an unconventional way. Most prominent is so-
called “order by disorder” which refers to a situation where a frustration-induced degeneracy
of the classical ground-state manifold is lifted by fluctuations, either thermal or quantum [35].
A well-studied example is the easy-plane pyrochlore antiferromagnet, where long-range order
emerges due to fluctuations from a one-parameter manifold of classically degenerate states [36].
Second, less conventional magnetic order can appear as a result of large crystallographic unit
cells or non-Heisenberg interactions. Among the possibilities are so-called multi-Q states where
the ordering pattern results from the superposition of modulations with multiple inequivalent
wavevectors, among which skyrmion lattices have attracted particular attention [37].
Third, ordered states may spontaneously break spin symmetry not by dipolar order, but by order
in higher multipole channels. The simplest form is quadrupolar or spin-nematic order which
breaks SU(2) symmetry and is described by a local rank-2 tensor order parameter [38,39]. Such
order is known to be realized in certain spin-1 Heisenberg models with additional biquadratic
interactions [40].

4 More ingredients: Orbitals and spin-orbit coupling

While the Heisenberg model provides a useful and rich arena for quantum magnetism, the de-
scription of real materials often requires to include physics beyond. Two important ingredients
are spin-orbit coupling (SOC) and orbital degrees of freedom, which we discuss in turn.

4.1 Magnetic anisotropies and novel forms of frustration

In the non-relativistic limit, SOC is not present, implying that real space and spin space are
entirely separate, with SU(2) spin rotation symmetry in the absence of a magnetic field. In
contrast, non-vanishing SOC couples real space and spin space, such that symmetry transfor-
mations in general act on both position and spin. Consequently, the symmetry of spin–spin
interactions in a solid is lowered (compared to Heisenberg) and is dictated by the lattice struc-
ture. The simplest forms of anisotropic interactions are (i) Ising, Szi S

z
j , (ii) XY, Sxi S

x
j + Syi S

y
j ,
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and (iii) Dzyaloshinskii-Moriya ~Dij · (~Si × ~Sj). The latter is antisymmetric under exchange
i� j and hence requires broken inversion symmetry to exist; this does not apply to the former.
In addition to anisotropic interactions, magnetic anisotropies may also arise at the single-ion
level. Such single-ion anisotropies are rooted in the orbital character of the magnetic state,
combined with SOC. A common single-ion term in the Hamiltonian is DSzi

2, where D > 0

(D < 0) corresponds to an easy-plane (easy-axis) anisotropy, respectively. On a non-Bravais
lattice, different sites can have distinct local anisotropy axes.
Importantly, magnetic anisotropies enable forms of frustration different from that of Heisenberg
models. Some of those have already been mentioned above: An easy-axis anisotropy on the
pyrochlore lattice, combined with ferromagnetic interactions, leads to spin-ice behavior. The
corresponding easy-plane situation results in a U(1) classical degeneracy and order by disorder.
Anisotropic interactions may even induce frustration on lattices whose geometry is unfrustrated.
Such exchange frustration is the key ingredient for the route to QSLs proposed by Kitaev [14].
The Kitaev honeycomb model features bond-dependent Ising interactions,

H = −Jx
∑
〈ij〉x

Sxi S
x
j − Jy

∑
〈ij〉y

Syi S
y
j − Jz

∑
〈ij〉z

Szi S
z
j (5)

where the bonds of the underlying honeycomb lattice have been divided into three sets of mu-
tually parallel bonds, labeled α = x, y, z, and 〈ij〉α refers to a summation over the bonds of
α type. The Kitaev model has attracted tremendous attention, as it realizes an exactly solvable
Z2 spin liquid whose emergent excitations are Majorana fermions and static Z2 gauge fluxes.
It has been subsequently generalized to other lattices and space dimensions [41]. Experimen-
tally, strong Kitaev interactions on the honeycomb lattice have been deduced for the materials
α-RuCl3 [42, 43], Na2IrO3 [44, 45], and various polytypes of Li2IrO3 [46–48]; however, all of
these materials display magnetic LRO at low temperatures due to the presence of additional
interactions.

4.2 Orbitals and spin-orbital liquids

The ground state of ions with partially filled shells may contain, in addition to spin degrees
of freedom, also orbital degrees of freedom. The latter arise from orbital degeneracies which
themselves depend on the crystalline electric field arising from the potential of the surrounding
ions. For example, Cu in octahedral coordination may realize a 3d9 configuration, with one
hole in doubly degenerate eg orbitals, leading to S = 1/2 spin and τ = 1/2 orbital degrees
of freedom. More complicated is V in a cubic environment with a 3d2 configuration in triply
degenerate t2g orbitals, resulting in S = 1 (by Hund’s rule) and τ = 1.
Insulators with orbital degrees of freedom require to write down spin-orbital exchange models
[49]. While these are typically complicated and have low symmetry, reflecting the influence of
both lattice and orbital structure on exchange processes, a qualitative understanding can often
be gained by simpler more symmetric models. An example is the SU(4)-symmetric Kugel-
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Khomskii model,

H = J
∑
〈ij〉

(~Si · ~Sj +
1

4
)(~τi · ~τj +

1

4
), (6)

with ~τi representing the orbital degrees of freedom. While such spin-orbital models often ex-
hibit phases with coexisting orbital and magnetic order, it has been suggested early on that,
if combined with either geometric frustration or exchange frustration, they may also produce
low-temperature states devoid of symmetry breaking in both the spin and orbital sector. Such
states have consequently been dubbed spin-orbital liquids [50]. Indeed, the bond-dependent
interactions of the Kitaev honeycomb model can be used to construct an exactly solvable model
for a spin-orbital liquid [51].

5 Conventional quantum criticality in frustrated systems

Quantum phase transitions in frustrated magnetic insulators may be conventional in the sense
that they involve symmetry breaking and local order parameters. Less conventional cases in-
volving fractionalization and topology will be postponed to the next section.

5.1 Magnetic ordering transitions

The simplest case, a quantum transition from a featureless paramagnet to a symmetry-broken
phase with antiferromagnetic or VBS order, is expected to be described by an LGW theory
of ϕ4 type, Eq. (1), with dynamical exponent z = 1. Symmetry and wavevector of the order
parameter determine the effective number of order-parameter components and the structure of
the interaction terms in the field theory.
Frustration enters in a non-trivial way, because the order-parameter structure of non-collinear
or non-coplanar states is much richer than that of simple collinear magnets. Most straightfor-
wardly, this translates into a larger number of components N in the corresponding ϕ4 theory.
This is not all: For instance, a non-collinear ordered state often breaks both SU(2) spin rotation
symmetry and a Z2 chiral symmetry, and both symmetries can be broken either in a single or
in two separate transitions. For the classical case, this has been studied for stacked triangular-
lattice Heisenberg antiferromagnets: Monte Carlo simulations have observed a single transition
with non-trivial critical exponents, different from that of standard O(N ) universality, consis-
tent with a proposal by Kawamura [52].4 Numerical results for the quantum case are, to our
knowledge, not available due to the notorious sign problem.
More seriously, frustration can render invalid the concept of discrete well-defined wavevector
for critical fluctuations: Upon approaching an ordered state, fluctuations may become soft on
a manifold of wavevectors, e.g., owing to frustration-induced degeneracies. Strong fluctuation
effects may then cause the transition to be first order. Alternatively, exotic novel intermediate

4More recent theory works predict the transition in stacked triangular-lattice Heisenberg antiferromagnets to be
weakly first order [53].
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phases might emerge. An interesting open problem in this context constitutes the quantum melt-
ing of a skyrmion crystal [37]. Such a phase has been observed in a number of helical magnets.
One prominent material is MnSi where the lack of inversion symmetry enables Dzyaloshinskii-
Moriya interactions to produce long-wavelength helical order which in turn yields a skyrmion
crystal in a small window of magnetic field and temperature [54]. In MnSi, long-range magnetic
order can be suppressed by the application of pressure, giving way to an extended non-Fermi
liquid phase at low temperature [55]. It has been speculated that this behavior is related to
partial order, e.g., a skyrmion liquid, but a concise theory is not known.
A further complication, frequently present in strongly frustrated systems, arises due to order-
by-disorder physics (Sec. 3.4): If the actual ordered state is selected by fluctuation effects from
a larger (e.g. classically degenerate) manifold, then some or all properties of the transition
may be determined by the larger symmetry of this manifold. This type of physics is known
from Zn clock models, or alternatively XY models with Zn anisotropy. Here, anisotropies with
n ≥ nc are irrelevant at criticality, such that the critical behavior is that of the XY model. For
d = 2 (or D = 1 + 1) this even changes the phase diagram, as an intermediate critical phase
intervenes between the disordered and the Zn-ordered phases for n ≥ 5 [56]. An example
of recent interest are the finite-temperature intermediate phases present in the two-dimensional
(2D) Heisenberg-Kitaev model [57] where the relevant ordered phases are sixfold degenerate
as a result of Kitaev interactions reflecting spin-orbit coupling [58]. Theoretical results for the
quantum phase transitions in this model indicate first-order behavior both on analytical [59] and
numerical [60, 61] grounds, but the numerics has not reached conclusive accuracy yet.
Strong frustration may, in addition, lead to dimensional reduction: This refers to a situation
where the effective spatial dimension of the order-parameter fluctuations is smaller than that ex-
pected from the microscopic model. For instance, a three-dimensional (3D) layered system with
inter-layer frustration may display 2D critical behavior. Such dimensional reduction typically
does not reach down to lowest energies and temperatures, due to residual higher-dimensional
couplings, such that a dimensional crossover to fully 3D critical behavior at lowest temperatures
occurs [62].

5.2 Field-driven transitions and BEC phenomena

Local-moment magnets can display a variety of QPTs as function of applied magnetic field.
The simplest case is the transition at the saturation field of an SU(2)-symmetric Heisenberg
magnet: Upon lowering the field, a high-field magnon becomes soft at a particular wavevector,
and the transition can be understood as magnon Bose-Einstein condensation (BEC) which turns
the fully polarized state into a canted antiferromagnet. The latter breaks the U(1) spin rotation
symmetry about the field axis and is therefore also understood as a spin superfluid. The boson
condensation nature of the QPT implies that this is in the universality class of the dilute Bose
gas, with z = 2 [3]. A similar field-driven transition occurs between the low-field singlet and
intermediate-field canted phases of the coupled-dimer magnets of Sec. 2.2 [63].
While these transitions involve only trivial magnetization plateaus at M/Msat = 0 and 1, frus-
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trated magnets often display intermediate magnetization plateaus. The QPTs in and out of such
a magnetization plateau may be of BEC type, but are more complicated if the plateau phase
spontaneously breaks lattice translation symmetry. Then, the plateau phase and the adjacent
canted phase break different symmetries, possibly resulting in two continuous transitions with
an intermediate coexistence (i.e. supersolid) phase or a first-order transition [64]. Experimen-
tally, such field-induced supersolidity has been discussed for the Shastry-Sutherland compound
SrCu2(BO3)2 [65] and for the spinel MnCr2S4 [66].
Strong frustration often renders the magnon bandwidth small, paving the way for more exotic
field-driven transitions. As has been discussed for a variety of frustrated Heisenberg models, it
is possible that the high-field phase displays multi-magnon bound states whose minimal energy
lies below that of the single-magnon branch. Then, upon lowering the field, the first instability is
in this multi-magnon sector, and the resulting ordered state can be understood as a condensate of
magnon bound states [67]. The most important case is that of two-magnon bound states whose
condensation induces a spin-nematic state: This is a state with quadrupolar order whose order
parameter is a traceless rank-2 tensor. The QPT from the high-field state is either continuous of
BEC type, with z = 2, or is of first order due to large fluctuations.
Last not least, we note that spin-orbit coupling drastically modifies the physics described above.
First, magnetization is no longer conserved, such that the fully polarized state is not an eigen-
state of the Hamiltonian. As a result, the magnetization in the high-field phase is not saturated
even as T → 0. Second, the lower symmetry typically implies that field-driven transitions break
discrete symmetries only. The corresponding QPT are then of Zn type, with dynamic exponent
z = 1. For instance, this applies to the Kitaev material α-RuCl3: Although its field-induced
phases are not fully understood to date, it is clear that the magnetization in the asymptotic high-
field phase receives substantial quantum corrections [68], and it can be expected that the QPT
to the asymptotic high-field phase is either of Ising type or of first order.

6 Transitions involving topological states

Phase transitions in and out of topologically non-trivial states (more precisely, states with intrin-
sic topological order) can in general not be captured by LGW theory, as topology is associated
with global instead of local properties. Nevertheless, topological states and their transitions can
often be described by local quantum field theories which then involve novel emergent degrees
of freedom coupled to gauge fields. We will discuss a few of such transitions in turn.

6.1 Confinement transitions and fractionalized criticality

QPTs in and out of topological liquid states are fundamentally different from the conventional
transitions, as they necessarily involve the fractionalized degrees of freedom of the (spin) liquid.
In many cases, these are spinons (i.e. fractionalized constituents of the microscopic spins) and
excitations of the emergent gauge field in its deconfined phase. Continuous transitions out of
a spin liquid can often be understood as a condensation transition of one of these particles (or
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bound states thereof) [11, 69]. Physical spins are then composite objects in terms of the critical
degrees of freedom. As a result, spin correlation functions display critical power laws with large
anomalous exponents: While standard O(N ) universality yields numerically small anomalous
exponents, e.g. η = 0.06 for the 3D Heisenberg model, many of the exotic transitions discussed
below have η values for physical correlators of order unity.
Starting from a fractionalized spin liquid, one can envision the following options for QPTs: (i) a
confinement transition to a featureless paramagnet, (ii) a confinement transition with concomi-
tant symmetry breaking, leading to e.g. magnetic or VBS order – typically these are Higgs-type
transitions driven by the condensation of a particle with gauge charge, (iii) a condensation tran-
sition which leaves the deconfinement intact, which then leads to exotic fractionalized magnetic
(AF∗) or VBS states (VBS∗), (iv) a transition to a different fractionalized spin liquid.
In the following, we list a few examples from the theory literature. The field theories are typi-
cally written down in terms of fractionalized particles coupled to gauge fields (a simple exam-
ple being the CP1 model (7) specified below); in some cases topological quantum field theories
(most importantly, Chern-Simons theories) have also proven useful. Most considerations apply
to two space dimensions; less work has been done for d = 3.
Transitions in group (i) require the presence of a featureless paramagnetic phase in addition
to a topological spin liquid: The former can be realized, e.g., by application of a magnetic
field or by the formation of singlet dimers as in bilayer models. A concrete example is the 2D
toric-code model [70] in a longitudinal field [71]: It displays a continuous transition from a Z2

topological spin liquid to a featureless high-field phase. The transition has been shown to be
in the Ising∗ universality class in D = 2 + 1 dimensions [72]. Here, Ising∗ refers the fact that
the critical degrees of freedom have Ising symmetry, but are very different from a conventional
order parameter, as they derive from the fractionalized excitations of the spin liquid. Hence,
thermodynamic properties are that of Ising criticality in D = 2 + 1, but correlation functions
of physical spins strongly differ from the conventional case as spins are composite objects
here. This can be expected to generically apply to confinement transitions of Z2 spin liquids.
A second example is the ferromagnetic honeycomb-lattice Kitaev model in a magnetic field
[73, 74]: This displays a single transition between a Z2 spin liquid and a featureless high-
field phase as well, Fig. 6. However, it is open whether this transition is weakly first order or
continuous.
Transitions in group (ii) have been mainly discussed within effective field theories, and candi-
date models are known in many cases. A typical situation is that of vison condensation in a 2D
Z2 spin liquid; if the vison has non-trivial transformation properties under lattice symmetries, its
condensation generically breaks translation symmetry and induces VBS order. Such transitions
have been argued to be of O(N )∗ type (where ∗ again refers to the fact that the primary fields
are fractionalized) – supplemented by lattice anisotropy terms which are irrelevant at criticality
– where the number of components N of the vison-derived field depends on the lattice and the
resulting VBS state. For example, the transition to a columnar VBS on both the square and hon-
eycomb lattices is of 3D XY∗ type [25, 75, 76], while on the triangular lattice the transition to a
columnar VBS is proposed to be of 3D O(6)∗ type [77]. In contrast, transitions to staggered VBS



Orbitals, Frustration & Quantum Criticality 10.17

h/J0

Gapless Z2 QSL

Gapped Z2 QSL

Gapless U(1) QSL
(?)

polarized

0.4 0.6

h/J0 0.03

Antiferromagnetic J

Ferromagnetic J

Fig. 6: Schematic phase diagram of the isotropic Kitaev honeycomb model in a magnetic field
along [111], i.e., with hx = hy = hz. For antiferromagnetic coupling (top) the Z2 spin liquid is
rather robust, and an intermediate second QSL emerges which is possibly of U(1) character. In
contrast, for ferromagnetic coupling (bottom) a small field destroys the Z2 spin liquid in favor
of a polarized phase [74].

phases have been argued to be of first order [76]. Generally, liquid–VBS transitions may be real-
ized in Heisenberg models with further-neighbor (e.g. J1-J2-J3) exchange interactions. Instead
of condensing visons one can consider condensing spinons in SU(2)-symmetric Z2 spin liquids.
This produces a confined antiferromagnet with spiral order via an O(4)∗ transition [75, 78, 79]
where the symmetry arises from a doublet of complex spinon fields. A resulting “global” phase
diagram is shown in Fig. 7. Finally, condensing bound states of spinons and visons may induce
conventional two-sublattice Néel order. At the latter transition, which is of more exotic type,
both magnetic and VBS correlation functions acquire critical power laws [79]. In the absence
of SU(2) symmetry, quantum numbers need to be reconsidered, but the general picture remains
valid. One example here is the 2D toric-code model perturbed by an Ising interaction which has
been shown to display a continuous transition of Ising∗ type from a Z2 liquid to a ferromagnetic
phase driven by defect condensation [80]. A second example is the transition between a Z2

spin liquid and a superfluid phase in a Kagome-lattice XY model. This transition is in the XY∗

universality class and has been studied numerically in some detail in Ref. [81].

A transition in group (iii) is realized upon condensing objects which do not carry gauge charge,
then leading to the coexistence of symmetry-breaking order and fractionalization. Hence, the
transition involves the onset of symmetry breaking on the background of a fractionalized topo-
logical state – this has also been dubbed fractionalized quantum criticality. For instance, con-
densing a gauge-neutral Néel vector in a spin liquid yields an AF∗ phase, and a spin-Peierls
instability of a spin liquid can result in a VBS∗ state. A nice example of the former has been
proposed to occur in certain Kitaev-based spin-orbital liquids [82], while an example of the
latter is the instability of Majorana Fermi surfaces in 3D Kitaev-based spin liquids [83].

Transitions between different spin-liquid phases, group (iv), have also been considered on the
level of effective field theories. Ref. [84] has developed a theory for transitions between chiral
and Z2 spin liquids in two space dimensions; such transitions have been argued to be equivalent
to the condensation of an XY field coupled to a U(1) gauge field, where the critical XY field
represents a singlet combination of spinons. A second case is the transition from a U(1) to a
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Fig. 7: Global phase diagram for a 2D model of spinons with emergent Z2 gauge field, here
shown for an anisotropic triangular lattice. The two parameters sv and sz represent masses of
visons and spinons, respectively, in the doubled Chern-Simons theory considered in Ref. [75].
The spiral–Z2 spin liquid transition is described by a three-dimensional O(4)∗ theory, while the
transition from VBS to Z2 spin liquid is of XY∗ type, see text. Further, the Néel–VBS transition is
captured by a CP1 theory (see Sec. 6.2 below), and the Néel–spiral transition is mean-field-like.
(Figure taken from Ref. [75])

Z2 spin liquid which is driven by the condensation of pairs of gauge-charged particles, akin to
superconducting pairing. Such a transition has in fact been suggested to occur in the antiferro-
magnetic honeycomb Kitaev model in an applied magnetic field, Fig. 6: The small-field gapped
Z2 spin liquid transits into a different spin liquid, suggested to be gapless and of U(1) type,
before reaching the high-field phase [74, 85].
Among the few experimental examples of spin-liquid-related QPTs are field-driven transitions
in suitable candidate materials, most notably in α-RuCl3 and NaYbX2 (X = S, Se, O). In α-
RuCl3 an intermediate-field spin liquid has been suggested to transit into the asymptotic high-
field phase, with the transition being of first order [86]. In NaYbX2, the zero-field spin liquid
gives way to field-induced ordered states, but the nature of the quantum transition has not been
probed in detail [34].

6.2 Deconfined quantum criticality

An interesting scenario for unconventional transitions between symmetry-broken states is that
of deconfined quantum criticality [87]. It describes the possibility of a direct generic continuous
QPT between two ordered states which break different symmetries. According to Landau theory
and without fine-tuning, such a transition is forbidden, as it would be either of first order or split
into two continuous transitions. At a deconfined quantum critical point, the critical degrees of
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Fig. 8: Schematic renormalization group flow proposed for the transition between a Néel an-
tiferromagnet and a VBS in an SU(2)-symmetric magnet, as realized e.g., by the square-lattice
spin-1/2 J-Q model. Increasing g destabilizes magnetic order; the parameter λ4 represents the
fugacity of monopoles in the U(1) gauge field. The horizontal axis λ4 = 0 corresponds to the
non-compact CP1 theory of Eq. (7), with g to be identified with the spinon mass s. (Figure taken
from Ref. [89])

freedom are fractionalized particles, and the order parameters of both phases are composites
of these particles. This automatically leads to large anomalous exponents for order-parameter
correlations.
The most thoroughly studied instance of deconfined quantum criticality is the transition between
a Néel-ordered antiferromagnet and a valence-bond solid on the square lattice. The proposed
field theory employs a CP1 representation of spins, with deconfined bosonic spinons zα and a
U(1) gauge field Aµ, resulting in the action

S =

∫
ddxdτ

[∣∣(∂µ−iAµ)zα∣∣2 + s|zα|2 +
u

2

(
|zα|2

)2
+

1

2e2
(
εµνλ∂νAλ

)2] (7)

with the last term encoding the gauge-field dynamics. The primary transition, accessed by the
variation of the mass parameter s, is that between a U(1) spin liquid and a Néel antiferromagnet.
It is driven by the condensation of the z spinons which induces confinement via a Higgs mech-
anism; at this transition the gauge field can be assumed to be non-compact, as in the continuum
limit of Eq. (7). However, the U(1) gauge field microscopically emerges from a complex-
phase degree of freedom of the spinons and is therefore compact. This implies the existence of
monopoles, and their condensation renders the U(1) spin liquid unstable towards a dimerized
confined VBS phase, Fig. 8. Hence, deconfined spinons exist only at criticality [87–89].
The above proposal has been tested in detailed numerical simulations of the so-called J-Q
model on the square lattice, where Q denotes the strength of a ring-exchange term [90]. While
these simulations have verified a large part of the phenomenology of deconfined quantum criti-
cality [90,91], they have also found evidence for large logarithmic corrections to scaling which
are not predicted by the field-theoretical framework [92]. We also note that direct numerical
simulations of the proposed CP1 field theory have found indications for the transition being
weakly first order [93], a tendency which could not be confirmed in the J-Q model simulations.
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The reasons for these discrepancies in numerical results are open, see Ref. [94] for a discussion.

Recent developments in the context of field-theoretical dualities have led to additional insights
[95]. It has been conjectured that the non-compact CP1 model is dual to a so-called QED3

Gross-Neveu model at criticality, the latter describing Dirac fermions coupled to both a U(1)
gauge field and local Ising degrees of freedom. This duality suggests that the deconfined QCP
between a Néel antiferromagnet and a VBS displays an emergent SO(5) symmetry, which is
supported by numerical results [94]. A weak first-order transition with quasi-universal behavior
in its vicinity appears as a plausible scenario [96].

In addition to the Néel-VBS transition, various other Landau-forbidden transitions between two
differently ordered phases have been discussed in the context of deconfined criticality. For
instance, the transitions between a Z2 spin liquid and a VBS discussed in Sec. 6.1, as well as a
transition between a Z2 spin liquid and a Néel state, also belong to this class, as a Z2 spin liquid
displays topological order. Emergent higher symmetries, which can be rationalized via suitable
dualities, appear to be common to many of the deconfined critical points [95].

Although a clear-cut experimental example realizing deconfined quantum criticality is lacking,
a recently identified candidate is the frustrated Shastry-Sutherland magnet SrCu2(BO3)2. Under
applied pressure, it displays a transition from a plaquette VBS to an antiferromagnetic phase
[97] which has been argued to be a deconfined QPT [98].

7 Mott and Kondo transitions

While all material presented so far was devoted to Mott insulators with local moments, we now
turn to QPTs involving metallic phases [4]. For metals, the concepts of symmetry breaking
and local order parameters apply equally, hence symmetry-breaking QPTs can be defined and
characterized in analogy to insulators. However, the presence of low-energy particle–hole exci-
tations and their coupling to order-parameter fluctuations complicates the theoretical analysis:
Following the spirit of LGW theory requires to integrate out the particle–hole excitations to
arrive at a theory for the order parameter alone; this approach has been developed in detail in
the works of Hertz [2], Millis [99], and Moriya [100]. However, it was later realized that such
an LGW theory is plagued with singularities. Consequently, more refined approaches keep-
ing both order-parameter and fermionic fluctuations are required, and some progress has been
made [101–104].

In this section, we will exclusively deal with even more intricate types of QPT, namely those
involving the onset or loss of metallicity. Historically, the interaction-driven Mott transition has
been discussed extensively. A younger topic is that of partial Mott transitions in multi-band or
multi-orbital systems, with a subclass being transition where the Kondo effect breaks down. We
will discuss these transitions – together with their relation to frustration – below.
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7.1 Fermi liquids and non-Fermi liquids

Before diving into the physics of Mott transitions, we need to review some aspects of the low-
energy physics of metals. The key concept is that of a Fermi liquid, which asserts a one-to-
one correspondence of the low-energy many-body states between the interacting system under
consideration and a hypothetical system of non-interacting electrons. This implies in particular
the existence of quasiparticle excitations with charge±e and spin 1/2 (and forbids the existence
of other low-energy excitations!). It also implies the existence of a Fermi surface, defined by
the location of jumps in the momentum distribution 〈nkσ〉 (or, equivalently, poles of the single-
particle spectral function at ω = 0). This Fermi surface then obeys Luttinger’s theorem, i.e., has
a momentum-space volume given by the total density of electrons ntot (modulo filled bands):

VFL = Kd(ntot mod 2) (8)

where factors of 2 account for spin degeneracy, i.e., a full band corresponds to n = 2, and
Kd = (2π)d/(2V0) where V0 is the unit-cell volume [105]. Under these conditions, the standard
low-temperature Fermi-liquid properties C(T ) = γT, ρ(T ) = ρ0 + AT 2 etc., with γ, A being
constants, follow immediately.5

Violations of Fermi-liquid behavior at low temperature, generically dubbed non-Fermi liquid,
can have various sources. In clean systems, interaction effects can produce stable non-Fermi-
liquid phases. One scenario is that the low-energy excitations display quantum numbers differ-
ent that of from electron or holes, leading to distinct low-temperature properties. While such
behavior is generic and well understood in d = 1, resulting in Luttinger liquids with spin-charge
separation, similarly controlled descriptions in higher dimensions are scarce. A viable route to
spin-charge-fractionalized metals is the doping of spin liquids [106].
Another scenario for stable non-Fermi liquids in d ≥ 2 has been termed fractionalized Fermi
liquid [107, 108]. In such a phase, charged excitations have conventional quantum numbers
(charge±e and spin 1/2), but these coexist with additional deconfined fractionalized degrees of
freedom. A generic construction starts from a fractionalized spin liquid and adds conventional
carriers in a second band. If these subsystems remain weakly coupled, they realize a FL∗ phase
(which has also been characterized as metallic spin liquid in the literature). Importantly, such a
phase displays a Fermi surface with a volume violating Luttinger’s theorem (8) in a quantized
fashion, often [107]

VFL∗ = Kd((ntot−1)mod 2) (9)

where the −1 accounts for the electrons forming the spin-liquid component. Low-temperature
properties may or may not be Fermi-liquid-like, depending on whether the emergent excitations
of the spin-liquid component are gapped or gapless. Fractionalized Fermi liquids may display
a variety of instabilities driven by the strong correlations in the local-moment sector, including
unconventional superconductivity [107, 109].

5A T 2 behavior of the resistivity requires the existence of Umklapp scattering processes, i.e., a sufficiently
large Fermi surface.
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Importantly, fractionalized Fermi liquids as well as other doped spin liquids are symmetric
states (i.e. without spontaneously broken symmetries) with fractionalized excitations, much like
insulating spin liquids. Given the insights into topological properties of fractionalized insulating
phases, one may wonder about the topological characterization of non-Fermi-liquid metals.
To our knowledge, relatively little work has been done in this direction. A sharp distinction
between FL and FL∗ is the Fermi volume, and this can be considered a topological distinction.
In contrast, some of the indicators established for insulators, like ground-state degeneracies and
entanglement, cannot be easily applied because of the absence of an excitation gap [109], and
more work is needed to clarify the topological nature of non-Fermi liquid metals.

7.2 Mott transitions

A Mott transition is an interaction-driven metal-to-insulator transition: It transforms a half-
filled metallic band into an insulator of local moments. The most generic Hamiltonian for this
physics is the Hubbard model of spinful electrons

H = −t
∑
〈ij〉σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (10)

where the Mott insulator occurs for U � t. The Mott-insulating state is often accompanied
by antiferromagnetic long-range order, and the quantum transition from a paramagnetic metal
to an antiferromagnetic Mott insulator is generically of first order (or involves an intermediate
antiferromagnetic metallic phase). This is different in the case of a spin-liquid Mott insulator:
A “genuine” zero-temperature Mott transition from a paramagnetic metal to an insulating spin
liquid can be continuous. As the existence of the spin liquid requires frustration, such transi-
tions are expected to occur in half-filled Hubbard models on frustrated lattices upon varying
U/t. In fact, a metal-to-spin liquid transition has been found in numerical simulations of the
triangular-lattice Hubbard model which, however, appears to be first order [110, 111], Fig. 9,
with superconductivity possibly appearing on the metallic side before the Mott transition [111].
A candidate experimental realization is in the organic compound κ-(ET)2Cu2(CN)3 under pres-
sure [112].
A defining criterion for a Mott transition is a quantized change in the Fermi volume: In a Fermi
liquid, the momentum-space volume enclosed by the Fermi surface is given by the total number
of electrons according to Luttinger’s theorem (8). In a Mott insulator, there is no Fermi sur-
face6, and hence the Fermi volume changes at a single-band Mott transition by Kd× 1. Such an
abrupt change is nevertheless compatible with the QPT being continuous: Upon approaching a
continuous Mott transition from the metallic side, the quasiparticle weight on the Fermi surface
will vanish continuously, while the charge gap opens continuously on the insulating side. At
criticality, one expects a critical Fermi surface, i.e., a well-defined (d−1)-dimensional mani-

6We do not consider the so-called Luttinger volume, Vlutt =
∫
G(k)>0

dk, which accounts for both poles and
zeroes of the Green’s function. For an in-depth discussion on aspects of the Luttinger volume in Mott insulators
see Ref. [113].
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Fig. 9: Cluster-DMFT phase diagram of the Hubbard model on an anisotropic triangular lat-
tice as function of Hubbard interaction U and hopping ratio t′/t, where t′ = 0 and t′ = t
correspond to the square and triangular lattices, respectively. M, SC, AF, SL denote metal, su-
perconductor, antiferromagnetic insulator, and spin-liquid phases, respectively. Solid (dashed)
lines correspond to first-order (continuous) transitions. (Figure taken from Ref. [111])

fold in momentum space where the electronic spectral function displays (possibly momentum
dependent) power-law singularities [114].

A concise theoretical understanding of continuous zero-temperature Mott transitions is lacking
to date. Most theoretical descriptions are based on slave-particle theories which involve separate
degrees of freedom representing spin and charge of the electrons. Often, the charge degrees of
freedom are encoded by bosons which are gapless and condensed in the metal, but gapped and
disordered in the insulator. Hence, the insulator-to-metal transition becomes a BEC transition
of charged bosons coupled to a gauge field [115]. However, such a description (at least in its
simplest version) does not account for possible non-trivial momentum dependencies along the
Fermi surface. Moreover, the fermionic character of the Mott phenomenon might require a
formulation using non-bosonic critical degrees of freedom, but to our knowledge a successful
theory of this type has not been formulated.

It is worth noting that apparent quantum critical behavior at elevated temperatures has been
detected above the finite-temperature endpoint of a first-order Mott transition line. This re-
markable observation, manifest, e.g., in scaling behavior of the resistivity, was first made in
DMFT simulations of the single-band Hubbard model on a Bethe lattice [116], and later ver-
ified experimentally in three pressure-tuned organic compounds [117]. Subsequent work has
linked this behavior to a T = 0 scale-invariant quantum critical insulator at the boundary of the
metal–insulator phase coexistence regime [118].
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7.3 Kondo and orbital-selective Mott transitions

In a multi-band or multi-orbital system, there is the possibility for a partial Mott transition.
This is a transition between two metallic phases where the Fermi surface undergoes a quan-
tized change. In the simplest case, one band (or orbital) changes its character from metallic
to Mott-insulating while other bands remain metallic. Consequently, such a transition has also
been dubbed orbital-selective Mott transition [119–121]. If stable in the low-temperature limit,
the partial Mott phase violates Luttinger’s theorem (8) and, hence, is a non-Fermi liquid metal.
This is precisely the fractionalized Fermi-liquid phase (FL∗) introduced in Sec. 7.1 above, and a
transition between FL and FL∗ is an orbital-selective Mott transition (or a deconfinement tran-
sition in the language of the underlying gauge theory). Phenomenologically, such a transition
can be expected to be accompanied by a jump in the Hall constant [122].
A natural territory for orbital-selective Mott physics are heavy-fermion metals [4, 123], as de-
scribed by the Kondo-lattice Hamiltonian

H = −t
∑
〈ij〉σ

(
c†iσcjσ + h.c.

)
+ J

∑
i

~Si · ~si, (11)

with J the Kondo coupling and ~si =
∑

σσ′ c
†
iσ~τσσ′ciσ′/2 the conduction-electron spin density on

site i. As pointed out early on by Doniach [124], the heavy-fermion phase diagram is governed
by the competition between Kondo screening and RKKY interactions between local moments,
leading to heavy Fermi liquids and ordered magnetic states, respectively. Later on, it has been
suggested [108, 125–127] to consider, in addition to the ratio between Kondo temperature and
RKKY interaction, a second tuning parameter which acts to suppress magnetic order in the
local-moment subsystem – this is loosely labelled as “frustration” (alternatively: “quantum
fluctuations”). This tuning parameter naturally enables access to fractionalized states. If RKKY
interactions are sufficiently frustrated, then increasing them w.r.t. the Kondo scale leads to a
breakdown of the Kondo effect without concomitant magnetic order, generically resulting in an
FL∗ phase.
The resulting “global” phase diagram of heavy fermions is shown in Fig. 10. It features two
transition lines, one involving the onset of antiferromagnetism and one involving the onset of de-
confinement. Importantly, the onset of deconfinement in the paramagnetic metallic phase corre-
sponds to an orbital-selective Mott transition into an FL∗ phase as advocated above, as FL∗ fea-
tures deconfined fractionalized excitations in the local-moment sector. Such an orbital-selective
Mott transition is easily driven by the reduction of Kondo screening in a frustrated regime,
because it is Kondo screening which renders the local-moment electrons metallic. Hence, the
onset of deconfinement also corresponds to a breakdown of the Kondo effect. The two transi-
tion lines define four phases: In addition to the paramagnetic phases FL and FL∗, there are a
conventional (AF) and a fractionalized (AF∗) antiferromagnet. The Fermi volume is “large” in
the FL phase, i.e., encloses both conduction and local-moment electrons, while it is “small” in
FL∗ because it is determined by conduction electrons alone, hence violating Luttinger’s theo-
rem. In the metallic AF and AF∗ phase, translation symmetry breaking enlarges the unit cell,
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Fig. 10: “Global” phase diagram for heavy-fermion metals (with one f electron per crystallo-
graphic unit cell), with two transitions for the onset of antiferromagnetism and for the break-
down of the Kondo effect (equivalently the onset of deconfinement). FL∗ is the fractionalized
Fermi-liquid phase described in Sec. 7.1. Inside the AF phase, a crossover from more itiner-
ant to more localized behavior occurs, which may be accompanied by one or more transitions
where the Fermi-surface topology changes. Lastly, AF∗ refers to a fractionalized magnet, with
magnetic LRO and fractionalized excitations coexisting. (Figure taken from Ref. [127])

such that Luttinger’s theorem is generically fulfilled. The transition from FL to AF is hence a
conventional ordering transition, accompanied by the backfolding of bands.
A slightly different version of the global phase diagram has been put forward in Ref. [125], the
main difference being that the coincidence of the Kondo-breakdown and magnetic transition
lines is not considered accidental, but systematic. Ref. [128] has developed a corresponding ex-
tended DMFT description of a Kondo breakdown driven by magnetic criticality. Alternatively,
this might be viewed as a case of deconfined criticality [129].

8 Summary

Frustrated magnetism and quantum criticality both constitute highly active fields of research in
condensed matter physics, and both have received additional fuel in the last two decades by the
improved understanding of topological phenomena in solids. This chapter aimed at an overview
of the interplay of both, frustration and quantum criticality, with focus on theoretical ideas and
concepts as well as links to current experiments in correlated-electron materials. While quantum
criticality in clean insulators is mainly well understood, frustration brings in new ingredients –
large degeneracies, order by disorder, and fractionalization – which often change the rules of the
game, and we have discussed a few particularly fascinating outcomes. In metallic systems, the
physics of quantum phase transitions is more complicated in general, due to the presence of low-
energy fermions, with many open questions even without frustration. Clearly, this fascinating
field invites more work, both theoretical and experimental.
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[54] S. Mühlbauer et al., Science 323, 915 (2009)
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1 Introduction to compass models

Compass models are theories of matter in which the couplings between the internal spin (or other
relevant field) components are inherently spatially (typically, direction) dependent. A simple
illustrative example is furnished by the 90° compass model on a square lattice in which only
couplings of the form τxi τ

x
j (where {τai }a denote Pauli operators at site i) are associated with

nearest neighbor sites i and j separated along the x axis of the lattice while τ yi τ
y
j couplings

appear for sites separated by a lattice constant along the y axis. A very well-known compass
model is the honeycomb Kitaev Hamiltonian. Such compass-type interactions can appear in
diverse physical systems. This includes Mott insulators with orbital degrees of freedom where
interactions sensitively depend on the spatial orientation of the orbitals involved, the low energy
effective theories of frustrated quantum magnets, vacancy centers and cold atomic gases. Kitaev
models, in particular the compass variant on the honeycomb lattice, realize basic notions of
topological quantum computing. The fundamental inter-dependence between internal (spin,
orbital, or other) and external (i.e. spatial) degrees of freedom which underlies compass models
generally leads to very rich behaviors including the frustration of (semi-)classical ordered
states on non-frustrated lattices and to enhanced quantum effects prompting, in certain cases, the
appearance of zero temperature quantum spin liquids. As a consequence of these frustrations, new
types of symmetries and their associated degeneracies may appear. In particular, these systems
feature intermediate (more recently also referred to (especially in the high-energy and quantum
information communities) and further classified as “higher form” or “subsystem”) symmetries
that lie midway between the extremes of global symmetries and local gauge symmetries and lead
to effective dimensional reductions. We consider compass models in a unified manner, paying
close attention to consequences of these symmetries, and to thermal and quantum fluctuations
that stabilize orders via order out of disorder effects. We review non-trivial statistics and the
appearance of topological quantum orders in compass systems in which, by virtue of their
intermediate symmetry, standard orders do not arise.

Different physical contexts motivate compass models and they can emerge as low-energy effective
models of systems with strongly interacting electrons. There are quite a few classes of materials
where the microscopic interactions between electrons are described by an extended Hubbard
model. Typically such materials contain transition-metal ions. Hubbard-type models incorporate
both the hopping of electrons from lattice-site to lattice-site and the Coulomb interaction U
between electrons that meet on the same site, typically the transition-metal ion. Particularly in
the situation that electron-electron interactions are strong, effective low-energy models can be
derived by expanding the Hubbard Hamiltonian in 1/U, the inverse interaction strength. In such
a low-energy model the interactions are only between the remaining spin and orbital degrees of
freedom of the electrons. Compass model Hamiltonians arise when orbital degrees of freedom
interact with each other.

In the situation that both orbital and spin degrees of freedom are present and their interactions
are intertwined, the Kugel-Khomskii models arise [1]. Such models are relevant for strongly
correlated electron systems such as transition metal (TM) oxides, when the low-energy electronic
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behavior is dominated by the presence of very strong electron-electron interactions. The orbital
degrees of freedom can be represented via pseudo-spins.
So-called eg and t2g orbital degrees of freedom that can emerge in transition metal compounds
with electrons in partially filled TM d-shells, give rise to two-flavor compass models (for eg)
and to three-flavor compass models (for t2g) [2–5]. Precisely these type of compass models also
emerge in the study of systems of cold atoms in optical traps.

1.1 Definition of compass models

In order to define quantum compass models, we start by considering a lattice with sites on
which quantum degrees of freedom live. Throughout this chapter the total number of lattice
sites is denoted by N . Each lattice site has a vector pointing to it that is denoted by r. When
square (or cubic) lattices will be involved, these will be considered of dimension N = L×L
(or N = L×L×L). On more general lattices, L denotes the typical linear dimension (i.e.,
linear extent along one of the crystal axis). We set the lattice constant to unity. The spatial
dimensionality of the lattice is denoted by D (e.g., D = 2 for the square and honeycomb lattices,
D = 3 in cubic and pyrochlore lattices etc.).
Depending on the problem at hand, we will refer to these degrees of freedom at the lattice sites
as spins, pseudospins or orbitals. We denote these degrees of freedom by τi, where i labels the
lattice sites and τ ≡ 1

2
(σx, σy, σz), where σx, σy and σz are the Pauli matrices. In terms of the

creation (c†α) and annihilation (cα) operator for an electron in state α, the pseudospin operator τ
can be expressed as τ = 1

2

∑
αβ c

†
ασαβcβ , where the sum is over the two different possibilities for

each α and β. Here τ is the fundamental T = 1/2 representation of SU(2), for T > 1/2 we use
T. A representation in terms of Pauli matrices is particularly useful for degrees of freedom that
have two flavors, for instance two possible orientations of a spin (up or down) or two possible
orbitals that an electron can occupy, as the Pauli matrices are generators of SU(2), the group of
2×2 matrices with determinant one. In most works in the field, it is common to explicitly label
components of T = 1/2 degrees of freedom at different sites by σγr . Following suite, we will at
times (especially when discussing excitations in Kitaev’s honeycomb model and its non-Abelian
phase), interchangeably also use this more conventional notation. For degrees of freedom with n
flavors, it makes sense to use a representation in terms of the generators of SU(n), which for the
particular case of n = 3 are the eight Gell-Mann matrices λi, with i = 1, 8.
The name that one chooses to bestow upon the degree of freedom (whether spin, pseudospin,
color, flavor or orbital) is of course mathematically irrelevant. For SU(2) quantum compass
models it is important that the components of τ obey the well-known commutation relation
[τx, τ y]=iτ z and its cyclic permutations, and that (τ γ)2=1/4 for any component γ=x, y or
z. In the case of SU(3), in the fundamental representation T is the eight component vector
T=1

2

∑
αβ c

†
αλαβcβ , with commutation relations governed by those of the Gell-Mann matrices.

Compass models are characterized by the specific form that the interaction between the degrees
of freedom assumes: (i) there is only an interaction between certain vector components of τ and
(ii) on different bonds in the lattice, different vector components interact. When, for instance,
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Fig. 1: Left: The planar 90° compass model on a square lattice: the interaction of (pseudo-)spin
degrees of freedom τ = (τx, τ y) along horizontal bonds that are connected by the unit vector ex
is τxr τ

x
r+ex . Along vertical bonds ey it is τ yr τ

y
r+ey . Middle: The 90° compass model on a cubic

lattice: the interaction of (pseudo-)spin degrees of freedom τ = (τx, τ y, τ z) along horizontal
bonds that are connected by the unit vector ex is Jτxi τ

x
i+ex . On bonds connected by ey it is

Jτ yi τ
y
i+ey

and along the vertical bonds it is Jτ zi τ
z
i+ez . Right: Frustration in the 90° compass

model on a cubic lattice. The interactions between pseudospins τ are such that they tend to align
their components τx, τ y and τ z along the x, y and z-axis, respectively. This causes mutually
exclusive ordering patterns.

a site i is linked to nearest neighbor sites j and k, the interaction along the lattice link 〈ij〉
can be of the type τxi τ

x
j , whereas on the link 〈ik〉 it is τ yi τ

y
k . In the following sections specific

Hamiltonians corresponding to various quantum compass models are introduced, in particular
the 90° compass models, Kitaev’s honeycomb model, 120° compass models and a number of
generalizations thereof.

1.2 90° compass models

A basic realization of a quantum compass model can be set up on a two-dimensional square
lattice, where every site has two horizontal and two vertical bonds. If one defines the interaction
along horizontal lattice links 〈ij〉H to be J τxi τ

x
j and along the vertical links 〈ij〉V to be J τ yi τ

y
j,

we have constructed the so-called two-dimensional 90° quantum compass model also known as
the planar 90° orbital compass model, see Fig. 1. Its Hamiltonian is

H90◦

� = −Jx
∑
〈ij〉H

τxi τ
x
j − Jy

∑
〈ij〉V

τ yi τ
y
j . (1)

The isotropic variant of this system has equal couplings along the vertical and horizontal
directions (Jx = Jy = J). The minus signs that appear in this Hamiltonian were chosen such that
the interactions between the pseudospins τ tend to stabilize uniform ground states with “ferro”
pseudospin order. (InD = 2 the 90° compass models with “ferro” and “antiferro” interactions are
directly related by symmetry). For clarity, we note that the isotropic two-dimensional compass
model is very different from the two-dimensional Ising model

H Ising
� = −J

∑
〈ij〉H

τxi τ
x
j − J

∑
〈ij〉V

τxi τ
x
j = −J

∑
〈ij〉

τxi τ
x
j ,
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where on each horizontal and vertical vertex of the square lattice the interaction is the same and
of the form τxi τ

x
j . It is also very different from the two-dimensional XY model

HXY
� = −J

∑
〈ij〉H ,〈ij〉V

(τxi τ
x
j + τ yi τ

y
j ),

because also in this case the interaction terms in the Hamiltonian are the same on all bonds.
One can rewrite the 90° compass Hamiltonian in a more compact form by introducing the unit
vectors ex and ey that denote the bonds along the x- and y-direction in the 2D lattice, so that

H90◦

� = −J
∑
r

(τxr τ
x
r+ex + τ yr τ

y
r+ey), (2)

where the sum over r represents the sum over lattice sites and every is bond counted only once.
With this notation the compass model Hamiltonian can be cast in the more general form

H90◦

� = −J
∑
r,γ

τ γr τ
γ
r+eγ , (3)

where for the 90° square lattice compass model, H90◦
� , we have γ = 1, 2, {τ γ} = {τ 1, τ 2} =

{τx, τ y} and {eγ} = {e1, e2} = {ex, ey}.
This generalized notation allows for different compass models and the more well-known models
such as the Ising or Heisenberg model to be cast in the same form, see Table 1. For instance the
two-dimensional square-lattice Ising model H Ising

� corresponds to γ = 1, 2 with {τ γ} = {τx, τx}
and {eγ} = {ex, ey}. The Ising model on a three dimensional cubic lattice is then given
by γ = 1...3, {τ γ} = {τx, τx, τx} and {eγ} = {ex, ey, ez}. The XY model on a square
lattice HXY

� corresponds to γ = 1...4, {τ γ} = {τx, τ y, τx, τ y} and {eγ} = {ex, ex, ey, ey}.
Another example is the square lattice Heisenberg model, where we have γ = 1...6, {τ γ} =

{τx, τ y, τ z, τx, τ y, τ z} and {eγ} = {ex, ex, ex, ey, ey, ey}, so that in this case
∑

γ τ
γ
r τ

γ
r+eγ is

equal to
∑

γ τr· τr+eγ .
This class of compass models can be further generalized in a straightforward manner by allowing
for a coupling strength Jγ between the pseudospins τ γ that depends on the direction of the bond
γ (anisotropic compass models [6]) and by adding a field hγ that couples to τ γ linearly [7, 8].
This generalized class of compass models is then defined by the Hamiltonian

Hcompass = −
∑
r,γ

(
Jγτ

γ
r τ

γ
r+eγ + hγτ

γ
r

)
. (4)

From a historical (as well as somewhat practical) viewpoint the three dimensional 90° compass
model is particularly interesting. Denoted by H90◦

3� , it is customarily defined on a cubic lattice
and given by Hcompass, Eq. (4), where γ spans three Cartesian directions: γ = 1, 2, 3 with
{τ γ} = {τx, τ y, τ y}, Jγ = J = 1, hγ = 0 and {eγ} = {ex, ey, ez}, so that

H90◦

3� = −J
∑
r

(
τxr τ

x
r+ex + τ yr τ

y
r+ey + τ zr τ

z
r+ez

)
. (5)

Thus, by allowing γ to assume values γ = 1, 2, 3, the square lattice 90 degree compass model of
Eq. (3) is trivially extended to three spatial dimensions. Similarly, by allowing γ = 1, 2, ..., D,
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Model Hamiltonian: H = −
∑

r,γ τ
γ
r τ

γ
r+eγ

{τ γ} {eγ} model name symbol dim

{τx} {ex} Ising chain H Ising
1 1

{τx, τ y} {ex, ex} XY chain HXY
1 1

{τx, τ y, τ z} {ex, ex, ex} Heisenberg chain HHeis
1 1

{τx, τx} {ex, ey} square Ising H Ising
� 2

{τx, τx, τx} {ex, ey, ez} cubic Ising H Ising
3� 3

{τx, τ y, τx, τ y} {ex, ex, ey, ey} square XY HXY
� 2

{τx, τ y, τ z, τx, τ y, τ z} {ex, ex, ex, ey, ey, ey} square Heisenberg HHeis
� 2

{τx, τ y} {ex, ey} square 90° compass H90◦
� 2

{τx, τ y, τ z} {ex, ey, ez} cubic 90° compass H90◦
3� 3

{ τx+
√
3τy

2
, τ

x−
√
3τy

2
} {ex, ey} square 120° compass H120◦

� 2

With {θγ} = {0, 2π/3, 4π/3}:

{τx, τx, τx} ex cos θγ + ey sin θγ honeycomb Ising H Ising
9 2

{τx, τ y, τ z} ex cos θγ + ey sin θγ honeycomb Kitaev HKitaev
9 2

{τx, τx, τ z} ex cos θγ + ey sin θγ honeycomb XXZ HXXZ
9 2

πγ = τxcos θγ + τ ysin θγ {ex, ey, ez} cubic 120° H120◦
3� 3

πγ ex cos θγ + ey sin θγ honeycomb 120° H120◦

9 2

With {θγ} = {0, 2π/3, 4π/3} and η = ±1:

{τx, τ y, τ z} ηex cos
θγ
2
+ ηey sin

θγ
2

triangular Kitaev HKitaev
M 2

πγ ηex cos
θγ
2
+ ηey sin

θγ
2

triangular 120° H120
M 2

Table 1: Generalized notation that casts compass models and the more well-known model
Hamiltonians such as the Ising, XY or Heisenberg models in the same form. Additional spatial
anisotropies can be introduced, for instance by coupling constants Jγ that depend on the bond
direction eγ . Doing so would change the strengths of the interaction on different links, but not
the form of those interactions: these are determined by how different vector components of τr
and τr+eγ couple.

it can be extended to arbitrary spatial dimension D (which we will return to in later sections).
The structure of H90◦

3� is schematically indicated in Fig. 1. This compass model is actually the
one that was originally proposed by [1] in the context of orbital ordering. At that time it was
noted that even if the interaction on each individual bond is Ising-like, the overall symmetry of
the model is considerably more complicated.

It is typical for compass models that even the ground state structure is non-trivial. For a system
governed by H90◦

3� , pairs of pseudospins on lattice links parallel to the x-axis, for instance, favor
pointing their pseudospins τ along x so that the expectation value 〈τx〉 6= 0, see Fig. 1. Similarly,
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on bonds parallel to the y-direction, it is advantageous for the pseudospins to align along the y
direction, so that 〈τ y〉 6= 0. It is clear that at any given site the bonds along x, y and z cannot be
satisfied at the same time. Therefore the interactions are strongly frustrated. This situation bears
resemblance with the dipole-dipole interactions between magnetic needles that are positioned on
a lattice, hence the name compass models.
Such a frustration of interactions is typical of compass models, but of course also appears in
numerous other systems. Indeed, on a conceptual level, many of the ideas and results that will be
discussed, such as renditions of thermal and quantum fluctuation-driven ordering effects, unusual
symmetries and ground state sectors labeled by topological invariants, have similar incarnations
in frustrated spin, charge, cold atom and Josephson junction array systems. Although these
similarities are mostly conceptual there are also instances where there are exact correspondences.
For instance, the two dimensional 90° compass model is, in fact, dual to the Xu-Moore model
describing Josephson coupling between superconducting grains in a square lattice [9–11, 6, 12].

2 Global, topological, and intermediate symmetries and
invariances

In terms of symmetries, compass systems are particularly rich. In what follows, we will discuss
the invariances that these systems exhibit, but first recall the classification of orders and their
relation to symmetry:
(i) Global symmetry. In many condensed matter systems (e.g. ferromagnets, liquids), there is an
invariance of the basic interactions with respect to global symmetry operations (e.g., continuous
rotations in the case of ferromagnets, uniform translations and rotations in liquids) that are
to be simultaneously performed on all of the constituents of the system. At sufficiently low
temperatures (or strong enough interactions), such symmetries might be spontaneously broken.
(ii) Topological invariants and orders. Topological orders have been the object of some fasci-
nation in more recent years [13]. In the condensed matter community, part of the activity in
analyzing these types of order is stimulated by the prospects of fault-tolerant quantum computa-
tion. What lies at the crux of topological order is the observation is that even if, in some cases,
global symmetry breaking cannot occur, systems may nevertheless still exhibit a robust order of
a non-local, topological, type.
The most prominent examples of topological order – long studied by high energy theorists – are
afforded by gauge theories [14,15,13]. Some of the current heavily studied quintessential models
of topological quantum order in condensed matter and quantum information lattice theories,
e.g., [16,13] share much in common with the early pioneering lattice gauge theory concept along
with the explicit simplest lattice gauge model first introduced by Franz Wegner [14].
Gauge theories display local gauge symmetries and indeed, in pure gauge theories – theories
that have only gauge bosons yet no matter sources – the only measurable quantities pertain
to correlators defined on loops, the so-called Wilson loops. Related products pertain to open
contours in some cases when matter sources are present [15, 17, 18].
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(iii) Intermediate symmetry. The crucial point is that many compass systems display symmetries
which, generally, lie midway between the above two extremes of global symmetries and local
gauge symmetries. These symmetries are sometimes known as “sliding” symmetries and aside
from compass models are also present in numerous other systems. These include, amongst
many others, arrays of Luttinger liquids [19, 20], quantum Hall smectic phases [21, 22], ring
exchange models of frustrated models [23], and Kondo lattice systems [24]. In the past few
years, there been an extremely intense resurgence of interest in such (in particular, “higher-form”
type) symmetries that has been triggered anew by their study in the high energy community [25].
To clarify the distinction between these different symmetries, we can rephrase it in a formal way
as it applies to general systems [26, 27]. Consider a theory with fields {φi} that is characterized
by a Hamiltonian H (or action S).
Definition: A d-dimensional gauge-like symmetry of a theory is a group of symmetry transfor-
mations such that the minimal non-empty set of fields {φi} changed by the group operations
occupies a d-dimensional subset (C) of the full D-dimensional region on which the theory is
defined. In the following we will refer to such symmetries as d-dimensional symmetries.
To exercise this notion it is useful to make contact with known cases. Clearly local gauge
symmetries correspond to symmetries of dimension d = 0. That is, gauge transformations can
be applied locally at any point in space – a region of dimension d = 0. At the opposite extreme,
e.g., in a nearest neighbor ferromagnet on a D-dimensional lattice, described by the Heisenberg
Hamiltonian H = −J

∑
〈ij〉 Si · Sj , the system is invariant under a global rotation of all spins.

As the volume influenced by the symmetry operation occupies a D-dimensional region and in
this case d = D.
In their simplest form, one which typically appears in compass models, d-dimensional symmetries
are of the form ∏

j∈P

gj (6)

where gj are group elements associated with a site j and P is a d-dimensional spatial region. In
many cases, depending on the boundary conditions of the system, P correspond to entire open
d-dimensional planes (as in 90° compass models; see, e.g., Fig. 2) or closed contours (when
compass models are endowed with periodic boundary conditions). Defect creation operators
(those that restore symmetries) and translations of defects are typically products of local group
elements that do not span such an entire region P but rather a fragment of it (see, e.g., the open
finite string in Fig. 2 with domain wall boundaries) generally leading to defects at the boundaries
where the group element operations are applied [28].

2.1 Exact and emergent symmetries

A Hamiltonian H , and by extension the system it describes, can have two principal kinds of
symmetries: exact and emergent ones. These are defined as follows.
(i) Exact symmetries. By this, one refers to the existence operators Ô that commute with the
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(A)

(B)

(C)

Fig. 2: (A) The 90° square lattice compass model. The action of the d = 1 symmetry operation
of Eq. (16) when the “plane” P is chosen to lie along the vertical axis. (B) A d = 0 (local)
gauge symmetry. Defects within a gauge theory cost a finite amount of energy. Local symmetries
such as the one depicted above for an Ising lattice gauge theory cannot be broken. (C) A defect
in a semi-classical ground state of the two dimensional orbital compass model. Defects such as
this do not allow for a finite on-site magnetization. The energy penalty for this defect is finite
(there is only one bad bond – the dashed line) whereas, precisely as in d = 1 Ising systems, the
entropy associated with such defects is monotonically increasing in system size [28].

Hamiltonian [
H, Ô

]
= 0. (7)

Such operators, indicated by a hat, ˆ, reflect symmetries of the Hamiltonian.
(ii) Emergent symmetries. In many compass (and numerous other) systems, there are operators
Õ that do not commute with the Hamiltonian,[

H, Õ
]
6= 0 (8)

i.e., do not satisfy Eq. (7) and are therefore indicated by a tilde, ˜. Yet these operators do become
symmetries when projected to a particular sector – a particular subset of states on which the
Hamiltonian acts. That is,

[H,PÕP ] = 0, (9)

where P is the relevant projection operator to that sector. In this case, if one defines PÕP = Ô

then Ô will be an exact symmetry satisfying Eq. (7).
The most prominent cases in condensed matter systems, including compass models in particular
(yet also many others, e.g., [24, 29, 30]) relate to symmetries that appear in the ground state
sector alone. In such instances, the symmetries are sometimes said to emerge in the low energy
sector of the theory.
Although the formulation above is for quantum Hamiltonians, the same can, of course, be said for
classical systems. There are numerous classical systems in which the application of a particular
operation on an initial configuration will yield, in general, a new configuration with a differing
energy. However, when such an operation is performed on a particular subset of configurations,
such as the classical ground states, it will lead to other configurations that have precisely the same
energy as the initial state. Similarly, certain quantum systems exhibit such particular symmetries
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only in their large pseudo-spin (or classical) limit. In such cases, symmetries may be said to
emerge in the large pseudo-spin (or classical) limit.
One should note that emergent low-energy symmetries are notably different from the far more
standard situation of spontaneous symmetry breaking, wherein an invariance of the Hamiltonian
(or action) is spontaneously broken in individual low energy states (which are related to one
another by the symmetry operation at hand). In the condensed matter arena, the canonical
example is rotationally symmetric ferromagnets in a spatial dimension larger than two, in which at
sufficiently low temperature a finite magnetization points along a certain direction – thus breaking
the rotational symmetry. Another canonical example is the discrete (up↔ down or) time reversal
symmetry which is broken in Ising ferromagnets in dimensions large than one. Spontaneous
symmetry breaking appears in systems that exhibit long-range order of some sort such as
crystallization (breaking translational and rotational symmetries), superconductors (local gauge
invariance and a Anderson-Higgs mechanism), or superfluid Helium. Other examples include the
Higgs mechanism of particle physics, chiral symmetry breaking in quantum chromodynamics,
nucleon pairing in nuclei, electro-weak symmetry breaking at low energies, and related mass
generation.
In all of these textbook examples, the system is symmetric at high energies and exhibits low-
energy states that do not have that symmetry. However, in low energy emergent symmetries, the
situation is reversed: the system may become more symmetric in the low-energy sector. We will
discuss explicit examples of exact and emergent symmetries in compass models in the following
sections.

2.2 Consequences of intermediate symmetry
2.2.1 Degeneracy of spectrum

We now briefly discuss how the presence of a d-dimensional intermediate symmetry, either
classical or quantum, implies an exponential degeneracy of the energy spectrum that corresponds
to the Hamiltonian. The application of intermediate symmetries on disparate d-dimensional
planes leads to inequivalent states that all share the same energy. If a symmetry transformation
ÕP has its support on a d-dimensional plane P , then one can define the composite symmetry
operators

Õcomposite = ÕP1ÕP2 ..ÕPR . (10)

For a hypercubic lattice in D dimensions which is of size L×L×L · · · ×L, the number of
independent planes (R) in Eq. (10) scales as R = O(Ld′) where

d′ = D − d. (11)

If each individual d-dimensional symmetry operation (exact or emergent) UPi leads to a degener-
acy factor of m then the composite operation of Eq. (10) can lead to a degeneracy (of any state
(for exact symmetries) or of the ground state (for emergent symmetries)) whose logarithm is of
magnitude

logm degeneracy = O(LD−d ). (12)
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That this is indeed the case is clearer for classical systems with discrete symmetries than for
quantum systems. Nevertheless, in the thermodynamic limit and/or on lattices whose boundaries
are tilted the degeneracy factor of Eq. (12) associated with the intermediate d-dimensional
symmetries becomes exact [31]. On hypercubic lattices, such as the square lattice of the planar
90° compass model discussed in subsection 2.3, whose boundaries are the same along the d′

directions orthogonal to the planes P , the application of the operators of Eq. (10) does not lead to
independent states for finite size systems. However, in the thermodynamic limit, the application
of disparate operators of the form of Eq. (10) on a given initial state may lead to orthogonal
states.

2.2.2 Dimensional reduction

The existence of intermediate symmetries has important consequences: it implies a dimensional
reduction. The corresponding dimensional reduction is only with respect to expectation values
of local quantities: the free energies of these systems and the transitions that they exhibit are
generally those of systems in high dimensions [26, 27].

Theorem on Dimensional Reduction More precisely, the expectation value of any such
quantity 〈f〉 in the original system (of dimension D) is bounded from above by the expectation
value of the same quantity evaluated on a d dimensional region:

|〈f〉| ≤ |〈f〉|Hd . (13)

The expectation value 〈f〉 refers to that done in the original system (or lattice) that resides in D
spatial dimensions. The Hamiltonian Hd on the right-hand side is defined on a d dimensional
subregion of the full lattice (system). The dimensionality d ≤ D. The Hamiltonian Hd preserves
the range of the interactions of the original systems. It is formed by pulling out of the full
Hamiltonian on the complete (D dimensional) lattice, the parts of the Hamiltonian that appear
within the d dimensional sub-region (C) on which the symmetry operates. Fields (spins) external
to C act as non-symmetry breaking external fields in Hd. The bound of Eq. (13) becomes most
powerful for quantities that are not symmetry invariant as then the expectation values 〈f〉Hd need
to vanish for low spatial dimensions d (as no spontaneous symmetry breaking can occur). This,
together with Eq. (13), then implies that the expectation value of 〈f〉 on the full D dimensional
spatial lattice must vanish. By “non invariant” we mean that f(φi) vanishes when summed over
all arguments related to each other a d dimensional symmetry operation,

∑
k f [gik(φi)] = 0.

For continuous symmetries, non-invariance explicitly translates into an integral over the group
elements

∫
f [gi(φi)] dg = 0.

We will now summarize general corollaries of such symmetry based analysis for general systems.

Corollaries By choosing f to be the order parameter or a two-particle correlator, one arrives
at the following general corollaries [26, 32, 27]:
Corollary I: Any local quantity that is not invariant under local symmetries (d = 0) or symmetries
that act on one dimensional regions (d = 1) has a vanishing expectation value 〈f〉Hd at any finite
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temperature. This follows as both zero- and one-dimensional systems cannot exhibit symmetry
breaking: in one and two dimensional systems, the expectation value of any local quantities not
invariant under global symmetries: 〈f〉 = 0.
Physically, entropy overwhelms energetic penalties and forbids a symmetry breaking. Just as in
zero- and one-dimensional systems, much more entropy is gained by introducing defects (e.g.,
domain walls in discrete systems), the same energy-entropy calculus is replicated when these
symmetries are embedded in higher dimensions. An example with d = 1 domain walls in a
two-dimensional systems is afforded by the planar 90° compass model (see Fig. 2); even though
the planar compass model is two-dimensional, the energy cost of these domain walls is identical
to that in a d = 1 system. The particular case of local (d = 0) symmetry is that of Elitzur’s
theorem [33] so well known in gauge theories. We may see it more generally as a consequence
of dimensional reduction.
A discussion of how, by virtue of this consequence, such symmetries may protect and lead to
topological quantum orders in systems at both finite and zero temperature appears in [34, 28].
Corollary II: One can push the consequences further by recalling that no symmetry breaking
occurs for continuous symmetries in two spatial dimensions. Here again, free energy penalties are
not sufficiently strong to induce order. When embedding continuous two dimensional symmetries
in higher dimensions, the energy entropy balance is the same and the same result is attained
〈f〉 = 0 at all finite temperatures for any quantity f that is not invariant under continuous d ≤ 2

symmetries.
Further noting that order does not exist in continuous two dimensional systems also at zero
temperature in the presence of a gap between ground and the next excited state, one similarly
finds that for a d ≤ 2 dimensional continuous symmetry the expectation value of any local
quantity not invariant under this symmetry, strictly vanishes at zero temperature. Though local
order cannot appear, multi-particle (including topological) order can exist. In standard gauge
(d = 0) theories, the product of gauge degrees of freedom along a closed loop (the Wilson loop)
can attain a non-zero value as it may be invariant under all d = 0 symmetries. In more general
theories with higher d dimensional symmetries, similar considerations may lead to loop (or
“brane”) type correlators that involve multiple fields and are invariant under all low dimensional
symmetries. Precisely such non-local correlation functions appear in Kitaev’s honeycomb model
and many other systems with topological orders [35, 28, 34, 36]. Symmetry breaking in the
highly degenerate compass models often transpires by a fluctuation driven mechanism (“order by
disorder”) [37–39]. In this mechanism, entropic contributions to the free energy play a key role.
Corollary III: Not only can one make statements about the absence of symmetry breaking, we
can also adduce fractionalization of non-symmetry invariant quantities in high dimensional
system. That occurs if no (quasi-particle type) resonant terms appear in the lower dimensional
spectral functions [32].
This corollary allows for fractionalization in quantum systems, where d = 1, 2. It enables sym-
metry invariant quasi-particles excitations to coexist with non-symmetry invariant fractionalized
excitations. Fractionalized excitations may propagate in D−d dimensional regions. Examples
afforded by several frustrated spin models where spinons may drift along lines on the square
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lattice [29] and in D dimensional regions on the pyrochlore lattice [30].
In what follows, we explicitly enumerate the symmetries that appear in various compass models.
The physical origin of dimensional reduction in these systems can be seen examining intermediate
symmetry restoring defects.

2.3 Symmetries of the 90° compass model

We now classify symmetries of the 90° compass model in various spatial dimensions, considering
both quantum and classical versions. To highlight some aspects of the symmetries of this system,
it is profitable to discuss the general anisotropic compass model, as given for D = 2 in Eq. (1)
with general couplings Jx and Jy and in general spatial dimension D given by Eq. (4), without
field

H90◦

D� = −
∑
r,γ

Jγ τ
γ
r τ

γ
r+eγ . (14)

The equivalent classical Hamiltonian on a D-dimensional hyper cubic lattice is

H90◦, class
D� = −

∑
r,γ

Jγ T
γ
r T

γ
r+eγ . (15)

In the quantum systems, T γ are generators of the representations of SU(2) of size (2T+1). For a
pseudo-spin 1/2 system, T γ = τ γ/2. In the classical arena, T γ are the Cartesian components of
normalized vector T . These classical and quantum Hamiltonian systems exhibit both exact and
emergent symmetries.

2.3.1 Exact discrete intermediate symmetries

Exact symmetries of both the square lattice and cubic lattice 90° compass model in any pseudo-
spin representation are given by [26, 40–42, 6, 43]

Ô(γ) =
∏
r∈Pγ

eiπT
γ
r (16)

where Pγ is any line (in the case of the two-dimensional model) or plane (in the case of the cubic
lattice model) which is orthogonal to the external eγ axis of the lattice. A schematic for the
D = 2 dimensional case is provided in panel (a) of Fig. 2.
The exact nature of the symmetries of Eq. (16) is readily seen: the operators of Eq. (16) commute
with the general Hamiltonian of Eq. (15): [O(γ), H] = 0. Thus, rotations of individual planes
about an orthogonal axis leave the system invariant. Written generally, for a 90° compass model
in D dimensions, the planes Pγ are objects of spatial dimensionality d = D−1. In the D = 3

dimensional system, the symmetries of Eq. (16) are of dimension d = 2 as the planes Pγ are
two-dimensional objects. On the square lattice, the symmetries are of dimension d = 1 as Pγ are
lines. These symmetries hold for both the quantum system with arbitrary size pseudo-spin as well
as the classical system in a high number of dimensions D. A consequence of these symmetries
is an exponential in LD−1 degeneracy of each eigenstate of the Hamiltonian (including but
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not limited to ground states) in systems with “tilted” boundary conditions that emulate the
thermodynamic limit [31]. In pseudo-spin one-half realizations of this system, Eq. (14), on an
L×L square lattice, a 2L degeneracy was numerically adduced for anisotropic systems (Jx 6= Jy)
in the thermodynamic limit [43]. Correlation functions involving the symmetry operators were
examined in [44].
Now, here is an important point to which we wish to reiterate – that of the physical origin of the
dimensional reduction in this system. In a D = 2 dimensional 90° compass model system, the
energy cost for creating defects (domain walls) is identical to that in a d = 1 dimensional system
(see Fig. 2). With the aid of the bound of Eq. (13), we then see the finite temperature expectation
value 〈σzi 〉 = 0 within the D = 2 orbital compass model. The physical engine behind the loss
of on-site order of 〈σzi 〉 is the proliferation of solitons, see Fig. 2. Just as in d = 1 dimensional
systems, domain walls (solitons) cost only a finite amount of energy while their entropy increases
with system size. A schematic is provided in panel (c) of Fig. 2. The Hamiltonian Hd=1 defined
on the vertical chain of Fig. 2 where these operations appear is none other than a one dimensional
Ising Hamiltonian augmented by transverse fields generated by spins outside the vertical chain.
Any fixed values of the spins outside the d = 1 dimensional chain lead to transverse fields that
act on the chain. These along the Ising exchange interactions between neighboring spins along
the chain lead in this case to the pertinent Hd=1 in Eq. (13): that of a transverse field Ising model
Hamiltonian. By virtue of their location outside the region where the symmetry of Eq. (16)
operates, the spins σxi 6∈Px do not break the discrete d = 1 symmetry associated with the plane Px.
These defects do not enable a finite temperature symmetry breaking.

2.3.2 Exact discrete global symmetries

When the couplings are not completely anisotropic (e.g., Jx = Jy 6= Jz or Jx = Jy = Jz
on the cubic lattice or Jx = Jy on the square lattice) there are additional discrete symmetries
augmenting the d = D−1 Ising symmetries detailed above. For instance, when Jx = Jy 6= Jz a
global discrete rotation of all pseudo-spins on the lattice by an angle of 90° about the T z direction
leaves the Hamiltonian of Eq. (15) invariant. Such a discrete rotation essentially permutes the x
and y oriented bonds which are all of equal weight in the isotropic case when these are summed
over the entire square lattice. The same, of course, also applies for the square lattice model when
Jx = Jy.
Yet another possible representation of essentially the same symmetry as it is pertinent to the
exchange of couplings in the compass model is that of a uniform global rotation by 180° about
the (1, 1)/

√
2 direction of the pseudo-spins. Similarly, when Jx = Jy = Jz, a uniform global

rotation by 120° of all pseudo-spins about the internal (1, 1, 1)/
√
3 pseudo-spin direction is also

a discrete symmetry; this latter symmetry is of the Z3 type – if performed three times in a row,
this will give back the identity operation.
These additional discrete symmetries endow the system with a higher degeneracy. For isotropic
systems (Jx = Jy), numerically a 2L+1 fold degeneracy is seen in the pseudo-spin T = 1/2

system [43]; this additional doubling of the degeneracy is related to a global Ising operation of a
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rotation by 180° about a chosen pseudo-spin direction that leaves the system invariant. These
additional symmetries are global symmetries and thus of a dimension d = D which is higher
than that of the discrete lower dimensional that are present in both the anisotropic and isotropic
systems (d = D−1). As a result, in, e.g., the isotropic D = 2 dimensional 90° compass model
may exhibit a finite temperature breaking of such a discrete global symmetry associated with
such a discrete rotation. By contrast, the d = 1 symmetries of the two-dimensional 90° compass
model cannot be broken as discussed in section 2.2.2.
We note that in the classical anisotropic rendition of this system the degeneracy is exactly the
same – i.e., 2L, aside from continuous emergent symmetries that will be discussed in the next
section. The classical isotropic case is somewhat richer. There, each uniform pseudo-spin state
has an additional degeneracy factor of 22L associated with the 2L independent classical d = 1

Ising symmetries.

2.3.3 Emergent intermediate discrete symmetries: cubic 90° model

We now turn to intermediate symmetries that appear in the large pseudo-spin (or classical) limit
of the 90° compass model in three dimensions. In its classical limit, the 90° compass model on
the cubic lattice has d = 1 inversion (or reflection) symmetries along lines parallel to each of
the three Cartesian axes xa. Along these lines, we may set τai → −τai and not touch the other
components. This corresponds to, e.g, a reflection in the internal xy pseudo-spin plane when we
invert τ z and not alter the x or y components.
We explicitly note that this transformation is not canonical and does not satisfy the commutation
relation and is thus disallowed quantum mechanically; indeed, this appears only as an emergent
symmetry in the classical limit of large pseudo-spin. Instead in the 90° compass model on the
cubic lattice, quantum mechanically we have the d = 2 symmetries which we wrote earlier
(which of course trivially also hold for the classical system). Thus, the quantum system is less
symmetric than its classical counterpart.
By contrast to the cubic lattice case, for the square lattice 90° compass model, the intermediate
d = 1 symmetries of Eq. (16) are are not emergent symmetries but rather exact quantum (as well
as classical) symmetries.

2.3.4 Emergent continuous global symmetries

In addition to its exact symmetries, the 90° model also exhibits emergent symmetries in its
isotropic version. As mentioned earlier, globally uniform pseudo-vector configurations are
ground states of any classical isotropic ferromagnetic compass model. Thus any global rotation
of all pseudo-spins is an emergent symmetry of the 90° models. In the D = 2 system, this
corresponds to a global U(1) rotation of all angles of the planar pseudo-spins. In the D = 3

cubic lattice system, any SO(3) rotation of the three-dimensional pseudo-spins is an emergent
symmetry. That a rotation does not change the energy of any uniform configuration is clear
in the 90° model. Imagine that all pseudo-spins in the planar 90° model are oriented at an
angle θ relative to the T x axis. In such a case, the energy associated with the horizontal bonds,
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T xr T
x
r+ex will vary as cos2 θ whereas that associated with the vertical bonds varies as sin2 θ. As

Jx = Jy = J in the isotropic system and as sin2 θ + cos2 θ = 1, any uniform pseudo-spin state
will have the same energy and global rotations will not alter this energy.

3 Kitaev’s honeycomb model

In 2006, Alexei Kitaev introduced a type of compass model that has interesting topological
properties and excitations, which are relevant and much studied in the context of topological
quantum computing [45]. The model is defined on a honeycomb lattice and is referred to either
as Kitaev’s honeycomb model or the XYZ honeycomb compass model. The lattice links on a
honeycomb lattice may point along three different directions, see Fig. 3. One can label the bonds
along these directions by e1, e2 and e3, where the angle between the three unit lattice vectors is
120°. With these preliminaries, the Kitaev’s honeycomb model Hamiltonian HKitaev

9 reads

HKitaev
9 = −Jx

∑
e1−bonds

τxi τ
x
j − Jy

∑
e2−bonds

τ yi τ
y
j − Jz

∑
e3−bonds

τ zi τ
z
j

One can re-express this model in the form of Hcompass introduced above, where

HKitaev
9 = −

∑
r,γ

Jγτ
γ
r τ

γ
r+eγ with


{τ γ} = {τx, τ y, τ z}
{Jγ} = {Jx, Jy, Jz}
eγ = ex cos θγ+ey sin θγ
{θγ} = {0, 2π/3, 4π/3}

(17)

It was proven that for large Jz, the model Hamiltonian HKitaev
9 maps onto a square lattice model

known as Kitaev’s toric code model [16].

3.1 Features of Kitaev’s honeycomb model

By its very nature, Kitaev’s honeycomb model is very similar to the 90° compass models and
other 120° models [4]. However, the Kitaev-model system has a number of very remarkable
properties. These can be assessed in a crisp manner because the model is exactly solvable: it
can be mapped exactly onto a system of non-interacting Majorana (as well as Dirac) fermions,
as will be detailed in Sec. 3.2.2. This allows the derivation of all of the beautiful topological
characteristics – its gapped bulk states, computable Chern numbers and Majorana excitations.
Moreover, it will make evident that these Majorana excitations are coupled to a gauge field which
embodies the topological charges, i.e., magnetic and electric like charges.
For future purposes it is useful to define an extension to this Hamiltonian Hh

9, which actually
becomes relevant if the model is studied in an external field h. This term involves three pseudo-
spins on sites i, j and k, and is the of form

Hh
9 = −κ

∑
ijk

τxi τ
y
j τ

z
k (18)
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Fig. 3: Left: Kitaev’s compass model on a honeycomb lattice: the interaction of (pseudo-)spin
degrees of freedom τ = (τx, τ y, τ z) along the three bonds that each site is connected to are
τxr τ

x
r+e1

, τ yr τ
y
r+e2 and τ zr τ

z
r+e3

, where the bond-vectors of the honeycomb lattice {e1, e2, e3}
are {ex, (−ex+

√
3ey)/2, (−ex−

√
3ey)/2}, respectively. Right: The 120° compass model on

a cubic lattice: the interaction of (pseudo-)spin degrees of freedom τ = (τx, τ y, τ z) along
the three bonds that each site is connected to are π̂1

rπ̂
1
r+ex , π̂2

rπ̂
2
r+ey and π̂3

rπ̂
3
r+ez , where the

different components {π̂1, π̂2, π̂3} of the vector π̂ = (τx, (−τx+
√
3τ y)/2, (−τx−

√
3τ y)/2)

interact along the different bonds {ex, ey, ez}.

where the sum over ijk is a sum over all sites connected by the two links 〈ij〉 and 〈jk〉. So
here the link 〈ij〉 connects neighboring sites i and j, similarly for 〈jk〉, but sites i and k are next
nearest neighbors. This form of the Hamiltonian might seem rather particular at this point, but
when adding it, the model will stay exactly solvable. This term is essential in order to endow the
non-Abelian excitations of Kitaev’s honeycomb model with a gap. The Kitaev model reduces to
the toric code model in the limit in which one coupling constant is far larger than all of the rest,
e.g., |Jz| � |Jx,y|. The excitations in the toric code model, precisely have magnetic and electric
charges.

3.1.1 Majorana excitations

The existence of edge-states in the Kitaev model constitutes an analogue to quantum Hall systems
and other topological insulators. However, in integer quantum Hall systems, the edge-modes are
bona fide fermions and not Majorana fermions. It is the Majorana character of the excitations that
in principle enables the aforementioned fault tolerance relative to all local fluctuations – “errors”
in the setting of quantum computing. The excitations of the Kitaev model flesh out the notions
of anyonic statistics and afford very crisp realizations of non-trivial topology. The system also
realizes one of the simplest examples of exotic ideas concerning fractionalization in strongly
correlated electronic and spin systems. In its Abelian phase, the magnetic and electric excitations
in the model may, respectively, be viewed [47] as counterparts of vison and spinon excitations
in theories of doped quantum antiferromagnets [48] with relative “semionic” statistics which
requires that when an excitation of one type is moved around another it picks up a phase factor
of −1.
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It should be stressed that while the existence of excitations of Majorana-type is a special feature
of the Kitaev model, it is not necessarily a unique feature. In special situations three dimensional
topological insulators may also exhibit Majorana fermion type of excitations, for instance on their
surface when placed at an interface with a superconductor [49]. Majorana fermions may also
manifest in some of the systems that we earlier referred to in the context of non-trivial statistics:
the fractional quantum Hall systems such that of the state of filling fraction ν = 5/2 [50],
at cores of half-vortices in p-wave superconductors [51] and in semi-conductor [52, 53] and
semi-conductor/(s-wave) superconductor systems [54].

3.2 Majorana representation – Abelian phases

As was emphasized earlier, the Kitaev model is exactly solvable in its ground state sector,
for any set of coupling constants Jx, Jy and Jz. The original solution in [45] hinged on
introducing several Majorana fermion degrees of freedom per site and making a projection on
to a physical Hilbert space and symmetrization. Later approaches invoked a Jordan-Wigner
(JW) transformation in two dimensions [55, 35, 56, 57], perturbative methods, e.g., [58] and
slave fermion methods [59, 60]. Another approach, which will be followed here, is based on
the direct use of a bond algebra [61]. It is rather straightforward and keeps directly track of
the local symmetries that the Hamiltonian harbors, which are crucial to the solutions of HK

9
(and the same model augmented by Hh

9). The explicit solution via the JW transformation [35]
largely inspired the bond algebraic approach, but it is not as direct. The advantage of the bond
algebraic method is that it enables the solution without enlarging the Hilbert space and making
subsequent projections. Nor does it use at intermediate steps non-local string operators as in the
Jordan-Wigner transformation.

3.2.1 Bond algebra, symmetries, and anyonic charge

In the Kitaev Hamiltonian HK
9 three types of bonds {bjk} appear

τxj τ
x
j+e1

, τ yj τ
y
j+e2

and τ zj τ
z
j+e3

, (19)

where {e1, e2, e3} are unit vectors along the three directions of the hexagonal lattice. In terms
of bond operators the Hamiltonian is

HK
9 =

∑
〈jk〉

Jjkbjk, (20)

with Jjk = Jx, Jy or Jz depending on the orientation of bond 〈jk〉 along one of the three
directions. One usually supplements this definition of the bond-Hamiltonian with an ordering
convention of the bonds, the simplest one being that site j always lies below site k in the
honeycomb lattice as for instance shown in Fig. 4. The pseudo-spin operators anticommute at
any given site j, e.g., {τxj , τ zj } = 0, and commute at different sites, e.g., [τxj , τ

z
p ] = 0 for any two

sites j 6= p. The bonds therefore satisfy an extraordinarily simple algebra [61]:
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C

!σj

(A) (B)

Fig. 4: (A) Kitaev’s model on a honeycomb lattice and three types of bonds. On each vertex
there is an S = 1/2 degree of freedom indicated by a Pauli matrix ~σj (see text). (B) Elementary
plaquette Bp and star As interaction terms in Kitaev’s Toric code model. Hollow circles in
the bonds (links) represent an S = 1/2 degree of freedom, while thick (dashed or solid) lines
represent topological (d = 1) symmetry operators (see text). [46]

(i) The square of each bond is one.

(ii) Two bonds that do not share any common site commute.

(iii) Two bonds that share one common site anti-commute.

There are no additional algebraic relations that the bonds that appear in the Hamiltonian HK
9

need to satisfy. This set of all algebraic relations between the bonds in a general Hamiltonian is
termed the bond algebra [12, 62, 7]. If we can write down another representation of the bonds
in Eq. (19) for which all of the above algebraic relations are the same, then the Hamiltonian in
the new representation and the original one will share the same spectrum and are thus related
by a unitary transformation (and are thus dual to one another). Precisely such a change of
representation underlies the exact solution of HK

9 (as further elaborated on in subsections 3.2.2
and 3.2.3). Similar dualities (including those that lead to an effective dimensional reduction) can
be established in numerous other compass models, e.g., [63, 64, 12, 62, 7, 65, 66, 34, 27].
We now pause to examine the symmetries of the Hamiltonian HK

9 . Exact local (d = 0) gauge
symmetries are given by products of pseudo-spins around each hexagon [45]. For each hexagon
i labeled by 9i as in Fig. 5, such a symmetry is given by

Ô9i = τ z1 τ
x
2 τ

y
3 τ

z
4 τ

x
5 τ

y
6 . (21)

These local symmetries are Ising gauge symmetries (the square of these symmetry operators is
identically equal to one and all of the symmetry operators for different hexagons commute with
one another).
Each of the six sites of the hexagon contributes only one component τ γ of its pseudo-spin
operator to the product Ô9i, where γ is either x, y or z. Precisely which component of these
three depends on the type of link that is not part of the hexagon – if on site j the bond operator
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on the “non-hexagon link” is of type τ γj τ
γ
j+e (thus with j ∈ 9i and j+e 6∈ 9i), the pseudo-spin

component appearing in Ô9i is τ γj .
It can readily be verified that Ô9i commutes with any bond-operator bjk of Eq. (19) and
consequently [HK

9 , Ô9i] = 0. These operators also mutually commute with one another:
[Ô9i, Ô9j] = 0. Moreover the square of each such symmetry operator is one: Ô2

9i = 1. When
it attains a non-trivial eigenvalue, i.e., Ô9i = −1, the operator Ô9i is said to depict an anyonic
charge or vorticity on hexagon i, for reasons which will become clear later.
From the above follows that the system is composed of 2Nh sectors with Nh = N/2 being the
number of hexagons. Each sector is specified by the set of eigenvalues of the operators {Ô9i},
where i = 1, ..., Nh: |O91 = ±1, O92 = ±1, ..., O9Nh ± 1〉.
The model has more symmetries. When the system is placed on a torus, HK

9 also has d = 1

symmetries, using the classification of symmetries of Section 2. For any loop C that spans
the entire system the symmetry given by

∏
j∈C τ

γ
j , where on each site j the component γ is

determined by the character of one bond of site j that is not on C (i.e., the bond τ γj τ
γ
j+e with

j ∈ C and j+e 6∈ C). When C is for instance taken to be the zig-zag contour shown in Fig. 4
this symmetry is

∏
j∈C τ

z
j , but actually any closed loop C represents a symmetry.

3.2.2 Majorana representation and fermionization

The relations (i)-(iii) of the previous section define the bond algebra of HK
9 and it can readily be

checked that they are also satisfied by the following substitution for the bonds in Eq. (19):

bjk = 2iηjkcjck, (22)

where the operators cj represent Majorana fermions, obeying the Majorana algebra and ηjk are
Ising-type gauge links: a number that is either +1 or −1 on any given link 〈jk〉. Since the
Majorana fermions anticommute, we will choose the ordering convention such that the site j
always lies below k. The set {ηjk} encompassing all bonds constitutes a sector of gauge links. In
any given sector {ηjk}, the Hamiltonian of Eq. (20) is quadratic in the Majorana fermions {ci}
and thus exactly solvable [45, 61]. The local (d = 0) symmetries of Eq. (21) can be expressed in
terms of the bonds as

Ô9i =
∏
jk∈9i

ηjk. (23)

That is, each sector of fixed {ηjk} is an eigenstate of the symmetry operators of Eq. (21) with
an eigenvalue that is determined only by {ηjk}. In Ô9i, as one multiplies ηjk for all links 〈jk〉
that are in the hexagon i, one keeps the bond indices j and k ordered with the previously chosen
convention of j being below k.
The expression for Ô9i above highlights the similarity between the local gauge symmetries in
this system and such general symmetry (and fluxes) elsewhere. For instance, in a lattice version
of electromagnetism, Eq. (23) relates to an Aharonov Bohm like phase. In the current context,
Eq. (23) relates to the Ising version of such a phase (O9i = ±1).
As each site belongs to three hexagons and each hexagon contains six sites, the number of
hexagons is half the number of lattice sites (Nh = N/2). Thus to account for all eigenvalues of
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Fig. 5: Left: Pictorial rendition of the local symmetry of Eq. (21) associated with every hexagon.
Right: Phase diagram of the honeycomb Kitaev model. The triangle is the section of the positive
octant (Jx, Jy, Jz) ≥ 0 by the plane Jx+Jy+Jz = 1. The diagrams for the other octants are
similar [45].

the operators {O9i}, it suffices to allow the N/2 degrees of freedom ηjk on, for instance, all
vertical bonds along e3 to attain a value of ±1 and to pin ηjk on all other bonds (those along
the e1 or e2 axis) to be 1. With this particular choice of the local gauge fields η, Ô9i in Eq. (23)
reduces to the product of ηjk on the two vertical links that belong to each hexagon i.
The dimensionality of the original Hilbert space of N pseudo-spins is 2N. Thus in each of
the 2N/2 sectors of ηjk, there is a remaining Hilbert space of size 2N/2 on which the Majorana
fermions are defined. One representation for the N Majorana fermions is in terms of N/2
spinless Dirac fermions. This may be explicitly done here by setting

cj = djk+d
†
jk and ck = −i

(
djk−d

†
jk

)
, (24)

with djk a spinless Dirac Fermi operator on the vertical link 〈jk〉 (that is, k = j+e3) [35].
The centers of the vertical links of the honeycomb lattice form a square lattice. It is therefore
convenient to place the Fermi operators djk and d†jk) at the centers of the vertical links 〈jk〉)
and henceforth denote these by r, leaving us with the operators d†r, dr and the Ising degrees of
freedom ηr. Denoting the unit vectors of the resulting square lattice by ex and ey, the Kitaev
Hamiltonian reduces to

HK
9 = Jx

∑
r

(
d†r+dr

)(
d†r+ex−dr+êx

)
+Jy

∑
r

(
d†r+dr

)(
d†r+êy−dr+êy

)
+Jz

∑
r

ηr
(
2d†rdr−1

)
. (25)

The last term constitutes an analogue of a “minimal coupling” term between gauge (i.e., the
fields ηr on vertical links emanating from sites r) and matter (fermionic) degrees of freedom that
is familiar from electromagnetism – in this specific case, an analogue of a coupling between the
charge (or matter) density and an electrostatic-type potential.
An advantage of the fermionization procedure employed above is that it does not require the use
of elaborate non-local JW transformations. That the representation in terms of spinless fermions
is 2N/2 dimensional can be checked by realizing that there are N/2 vertical links 〈jk〉 and the
dimensionality of each spinless Fermion operator is two: the bond 〈jk〉 can be either occupied or
un-occupied by a fermion. Putting all of the pieces together, one sees that the problem of solving
HK

9 has now been reduced to a problem involving solely fermions and Ising gauge degrees of
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freedom ηr, which at each site r can only attain the value ±1. All excitations that appear in this
system can be expressed in terms of the original spin variables τj or, equivalently, in terms of
fermions and Ising gauge fields. The fusion rules that will appear both in this system and its
non-Abelian extension that we will review in Sec. 3.4.2 must relate to fermionic and Ising gauge
type basic degrees of freedom.

3.2.3 Ground state of fermionized model

Within the ground state sector, for all hexagons all Ô9i = 1, or equivalently on the square lattice
ηr = 1 for all sites r. That the ground state must be vortex free is ensured by a corollary of a
theorem due to Lieb [67] and has also been established numerically [45]. In momentum space,
the fermionized Hamiltonian of Eq. (25) assumes the form

HK
9 =

∑
q

εq d
†
qdq + i

∆q

2

(
d†qd

†
−q + dqd−q

)
, (26)

where q = (qx, qy) and

εq = 2Jz − 2Jx cos qx − 2Jy cos qy, ∆q = 2Jx sin qx + 2Jy sin qy. (27)

Interestingly, this Hamiltonian has the form of a p-wave BCS type Hamiltonian on the square
lattice [35], which becomes explicit when the Hamiltonian is cast in the form of a Bogoliubov-de
Gennes (BdG) Hamiltonian

HK
9 =

(
d†q d−q

)
HK
BdG(q)

(
dq
d†−q

)
, (28)

where HK
BdG(q) is a 2×2 matrix. It can be cast in the slightly more general form

HBdG(q) = hqσx +∆qσy + εqσz = d(q) · σ, (29)

where σ = (σx, σy, σz) with Pauli matrices σx,y,z and the last line defines the three-component
vector d(q). Here an extra coupling hq has been introduced for future reference. This coupling
is not present within the pure honeycomb Kitaev model. Thus, HK

BdG = limhq→0HBdG(q).
In the Hamiltonian HBdG, the vector d(q) acts as a “Zeeman field” applied to the “spin” σ of a
two-level system. All of its eigenvalues come in pairs, at energies

Eq = ±d(q) = ±|d(q)| = ±
√
d(q) · d(q). (30)

Diagonalizing the Hamiltonian by a Bogoliubov transformation,

γq = uqdq + vqd
†
−q, (31)

with |uq|2 + |vq|2 = 1 and |uq|2 = 1
2

√
1+εq/E2

q, yields the energy spectrum

Eq = ±
√
ε2q + |∆̃q|2. (32)
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Note that no effective chemical potential appears here (i.e., µ = 0). Thus, within the ground
state, all fermionic states of negative energy (Eq < 0) are occupied while all states of positive
energies are empty. The general ground state wavefunction corresponding to Eq. (32) is given by

|g〉 =
∏
q

(
uq+vqd

†
qd
†
−q
)
|0〉. (33)

As mandated by particle-hole symmetry, non-zero eigenvalues of the BdG Hamiltonian of
Eqs. (28) and (29) appear in pairs, at energies ±ε with γ†−ε = γε. Thus, generally, a fermion
excitation eigenstate corresponds to two solutions of the BdG equations. At the energy ε = 0,
the system is invariant under particle-hole symmetry, and a Majorana fermion appears (here
γ†0 = γ0).
Whenever both εq and ∆̃q vanish then a Dirac node may appear (i.e., the energy Eq will disperse
linearly about its vanishing value at that point). Conversely, if for given Jx, Jy and Jz values
there are no simultaneous solutions to the two conditions εq = ∆̃q = 0 then the spectrum will
be gapped. In the vicinity of band extrema, the dispersions of Eq. (33) is parabolic when a gap
appears between the two bands in the problem (i.e., min{|Eq|} > 0) and, as just noted, is linear
near the zeros of Eq when the system is gapless. Elementary calculations illustrate that when the
moduli of the couplings |Jx|, |Jy| and |Jz| are such that they satisfy the triangle inequalities then
the spectrum of Eq. (32) will be gapless. When the couplings violate the triangle inequalities, a
gap emerges. The ground state of Eq. (33) corresponds to a BCS condensate. In [35], real space
ground state wave-functions |Ψ0〉 were explicitly constructed in the original spin representation
in closed forms that do not require any implicit projections.

3.2.4 Gapless and gapped phases

To provide a better understanding of the spectrum, we focus on a particular set of couplings. At
the symmetric system (Jx = Jy = Jz), the dispersion of Eq. (33) is, within the first Brillouin
zone, zero at q(+) ≡K1/3 + 2K2/3, q

(−) = 2K1/3 +K2/3 whereK1,2 denote the reciprocal
lattice vectors along 1 and 2 directions [45] (and the equality holds modulo the addition of any
reciprocal vectors). As the anisotropy of the coupling constants is increased (e.g., setting |Jz|
fixed and decreasing |Jx,y|), the two points q(±) veer towards one another until they merge at
the boundary between the gapped and gapless phases [45]. Beyond this point, as the |Jx,y| are
further decreased, and the system is in its gapped phase there are no real vectors q for which Eq
is zero.
Similarly to the calculations above, the spectrum may be computed in other sectors of the Ising
vortices. By looking at the algebra of the bonds appearing in the Hamiltonian, it is immediately
clear that the spectrum is invariant under a change of sign of any of the exchange constants
Jα → −Jα. This, along with an overall global scale invariance of the gapless/gapped parameter
regions under a uniform scaling of all coupling parameters Jx,y,z → cJx,y,z with c a constant
enables us to delineate the boundaries of the gapless and gapped regions of the model. Such a
phase diagram of the system is provided in Fig. 5 [45]. The existence of transitions between these
phases are “topological” and as such cannot be discerned by any standard local measurements.
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The inability of local measurements to discern between different phases underlies systems with
topological order [16, 28, 34]. When expressed in terms of the basic spin degrees of freedom,
anyons involve extended non-local lines. Amongst other probes, an interesting signature of the
topological transitions between the Abelian phases in Kitaev’s honeycomb model is afforded by
quantum information theory measures, in particular the mutual information [68].
The condition for a gapless phase is tantamount to the triangle inequality via Eq. (27). This is
so since (as alluded to in Section 3.2.3) the gapless phase implies εq = ∆q = 0 which in turn
implies from Eq. (27) (via the law of cosines) that one can view qx and qy as angles in the triangle
formed by the sides {Jx, Jy, Jz} [35]. The relation between Kitaev’s honeycomb model and
the p-wave type pairing in Eqs. (25), (26) and (27) was further elucidated in several insightful
works, [69, 70].

3.3 Braiding statistics

The Majorana fermion representation of Eq. (20) highlights another important property of this
system – the braiding statistics formed by displacing one string of bonds around a closed loop.
The product of bonds along any contour (open or closed) commutes with all other string products
of the same form, including the symmetries Oh of Eqs. (21,23). That is, for any closed contour
C drawn on the lattice, the operators

OC =
∏
ij∈C

bij (34)

commute amongst themselves. For finite sized contours C, one has a sort of Stokes’ theorem.
That is, the symmetries of Eq. (34) can be written as [35]

OC =
∏
h∈C

Oh, (35)

with the product taken over all hexagons h that are enclosed by the loop C. The right-hand side
of Eq. (35) corresponds to the total anyonic charge enclosed by C. If an odd number of anyons
(hexagons h for which Oh = −1) is circumscribed by C then OC = −1. This minus sign is the
origin of the anyonic nature of the braiding operations in Kitaev’s model, e.g., [35, 71], in its
gapped phase (known as the “A phase”). In the gapless phase of couplings of Kitaev’s model
(“B phase”) the statistics of the vortices is ill defined. However, as will be elaborated on later,
augmenting an additional external magnetic field term leads to the opening of a gap in the B
phase. Within this gapped regime, the vortices exhibit well defined non-Abelian statistics.
An immediate corollary of the local (d = 0) symmetries Oh of Eqs. (21) and (23), is that, by
Elitzur’s theorem, only correlation functions that are invariant under all of these symmetries may
attain a non-zero expectation value at finite temperatures [35]. Thus, all non-zero correlation
functions are composed of products of bonds (along closed or open contours) as in Eqs. (34) and
(36). Similar considerations also apply at zero-temperature. These considerations generally lead
to string and “brane” type correlation functions. While the above considerations revolve around
symmetries of the spins alone, an earlier work illustrated, by the use of Majorana fermions, that
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all two-point correlation functions apart from those that form bonds vanish within the ground
state and further related interesting consequences [72].
In the gapped phase, these string correlation functions are exponentially damped in spatial
distance between the endpoints of the string (with a similar behavior concerning dynamic
correlations). In the gapless phase, the string correlation functions decay algebraically in the
distance. The striking difference between the slow algebraic vis-à-vis the rapid exponential decay
of correlations is not limited only to the non-local string (or brane) correlation functions [35].

3.3.1 Fermion excitation and translation

The fermionization procedure discussed above enables the construction of anyons out of string
operators [35]. A feature directly related to the symmetries of Eqs. (34) and (35) is that it is
possible to create “fermionic” excitations alone sans anyons. One way to see this is by invoking
symmetry and bond algebra arguments once again. Towards this end, one may consider the
string product of bonds of the form of Eq. (34) yet now for an open contour Γ (as opposed to the
closed contour C). That is, we may define the operator

OΓ =
∏
ij∈Γ

bij (36)

along an open contour Γ . For the purposes of what follows, let us label the end points of Γ by U
and V. Unlike Oc of Eq. (34), the operator of Eq. (36) is not a symmetry. That is, the operator
OΓ serves as a trivial symmetry for all bonds bkl for which (1) k, l 6= U or V and/or (2) lie along
Γ : k, l ∈ Γ . For all such bonds, [bkl, OΓ ] = 0. The above includes all bonds bkl that have any
number of sites along Γ (i.e., 0,1, or 2) such that the bonds do not touch Γ only at one point with
that point being one of the endpoints U or V. However, if k = U or V and l 6∈ Γ or vice versa
(i.e., l = U or V and k 6∈ Γ ) then bkl will anti-commute with OΓ :{

OΓ , bkl
}
= 0. (37)

There are four such bonds bkl. All other bonds commute with the operator of Eq. (36),
[OΓ , bmn] = 0. As the exact solution that was outlined earlier [Eqs. (27), (33)] shows, the
ground state sector of Kitaev’s model is not highly degenerate. As OΓ flips the energetic con-
tributions of the four bonds bkU and bV l that touch the endpoints U and V, all of this suggests
that the application of general OΓ (there is an exponentially large number of contours Γ ) on
a ground state cannot give back a ground state but rather must excite the system. The bonds
at the end points of the contour Γ have been modified (by a change of sign) as a result of the
anticommutation relation of Eq. (37) and together the four disrupted bonds at the two endpoints
U and V that do not lie along Γ sum to yield a higher energy state. Thus, it is natural to associate
defects created by the string operator of Eq. (36) at the endpoints U and V of the contour Γ. As
seen from Eqs. (20) and (36), the string operator OΓ involves only the Majorana fermions and not
the anyons of Eqs. (21), (23) and their composites Eq. (35). Indeed, it is possible to verify that
as each of the bonds of the lattice, bij of Eqs. (19) and (20) commutes with all anyonic charges
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Oh of Eqs. (21) and (23), the operator of Eq. (36) does not create (nor, in general, remove or
displace) any anyons: [OΓ , Oh] = 1. For a closed loop however, the closed string operator of
Eqs. (34) and (35) is a symmetry. The existence of general d = 1 symmetry operators that are
products of defect creation operators along loops [28] has similar incarnations elsewhere (e.g.,
in quantum Hall systems with the creation of quasi-particle/quasi-particle pairs). By creating
defects and moving these defects along entire closed cycles, the defects annihilate and the system
returns to its low energy (ground state) sector. Putting all of the pieces together, one sees that it
is possible to have fermionic excitations (generated by Eq. (36)) alone. It is possible to express
all of these results in terms of the fermions directly similar to [35].
When a fermion is transported around a closed loop that encircles a single Ising vortex (for which
Oh = −1), we see that Eqs. (34) and (35) reduce to an overall phase factor of −1. Thus, in such
an instance the quantum state is multiplied by this overall phase factor [45].

3.3.2 Vortex pair creation and translation

It is common to think about excitations formed by the application of single spin operators (i.e.,
by a rotation of a single spin) or by a product of two on the ground state. As pointed out by [73],
there are subtleties associated with a simple interpretation of the action of these operations within
the low energy sector. In what follows, we will focus on such an excitation via general symmetry
and bond algebraic considerations. Towards this end, we consider a single vertical link (ij). We
define, similarly to [45, 74, 75], the three operators X = σxi σ

x
j , Y = σxi σ

y
j , and Z = σzj . These

operators are different from those of Eq. (36) (including the case of a single two site bond). Each
of these three operators anti-commutes with two bond operators. For instance, Z anticommutes
with the two bonds (other than bij) that have j as one of their endpoints. Similarly, the operators
X and Y each anti-commute with exactly two bonds. When acting on the ground state, the
flipping operations incurred by any of the operators X, Y or Z may increase the system energy.
It is furthermore readily verified that Y and Z may each flip the anyonic charges Oh of two
hexagonal plaquettes while X flips the anyonic charges of all four hexagonal plaquettes that
contain either the site i or j (or both). The flipping of any of the bonds generated by each of these
three operators can be accounted for by inverting the sign of the η field along the corresponding
link following Eq. (20). The three operators satisfy the S = 1/2 spin algebra:

{X, Y }={X,Z}={Y, Z} = 0, X2=Y 2=Z2 = 1, and XY=iZ, Y Z=iX, ZX=iY. (38)

It is natural to associate “particles” with states X|ψ〉, Y |ψ〉, Z|ψ〉 created by the application of
the operators X, Y or Z on the ground state wavefunction. The identities of Eq. (38) generally
suggests that a fusion of two particles into a third might be possible. This is indeed the case as
has been worked out in some detail in various approaches and limits (especially that of Jz � Jx,y
lying within the A phases of the system, see Fig. 5 [45, 75]. In that limit, the energy of the
excitation X|ψ〉 is nearly equal to the sum of energies corresponding to Y |ψ〉 and Z|ψ〉.
As the anyonic charges of Eq. (21) are symmetries, anyonic excitations are massive. That is, an
anyonic excitation is stationary as it is an eigenstate of the Hamiltonian. As discussed in [73],
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it is possible to create anyons without fermions by the combined use of one and three spin
operations on the ground state. We now extend the discussion of the single bond operators above
and present the general vortex translation (or anyon) operator. An approach related to ours, along
with a detailed analysis of energies, is given in [71]. An insightful analysis is also provided
in [73]. In order to analyze the Ising vortex translation operators, we introduce an operator that
is identical to that of Eq. (36) apart from all important end point corrections that allow it to be
expressed as OΓ multiplied by two operators corresponding to the two endpoints. Specifically,
we consider an open contour Γ. For each non endpoint vertex i ∈ Γ, there is only a single
neighbor l that is not on Γ. For the two end points of Γ (i1 = U and i2 = V ), there are two
neighbors l that do not lie on Γ . One may choose any of these neighbors for the two endpoints
in what follows. (We will mark the chosen neighbors for the endpoints by l1 and l2 respectively.)
We denote the direction of a ray parallel to the nearest neighbor link 〈il〉 by γ (that may be either
x, y, or z). We then construct the open contour operator

TΓ =
∏
i∈Γ

σγi . (39)

Eq. (39) is of nearly identical form to (36) for all non-boundary points i. However, in Eq. (36),
the component of the boundary spin operators that appear in the string operator are set equal
to the two directions γ1,2 = 〈i1,2j1,2〉 with j1,2 being the nearest neighbors of i1,2 that lie on Γ
(i.e., “going backwards” away from the endpoints i1,2). By contrast, in Eq. (39), the components
of the spins at the two endpoints that appear in the string product are set by the two directions
γ = 〈i1,2l1,2〉 (with l1,2 not on Γ ).
For the two hexagonal plaquettes h∗ = h1,2 that have a single vertex at one of the endpoints of i1
or i2 of Γ and that furthermore include one of the vertices l1 or l2, we have that

TΓOh∗T = −Oh∗ . (40)

In Eq. (40), Oh∗ denotes the vortex charge of a plaquette h∗ that lies at an endpoint of Γ . Similar
to the operator of Eq. (36), for all other plaquettes h 6= h∗, we have that TΓOhTΓ = Oh (with no
change in the vortex charge).
It is readily verified that the operator TΓ , albeit flipping the sign of two bonds attached to the
endpoints of Γ, does not alter the bond algebra of all bonds (all non-neighboring bonds commute,
neighboring bonds anticommute, and the square of any bond is 1). The sole change triggered
by the application of TΓ is that two bond pre-factors η are multiplied by a factor of −1, and
correspondingly two vortex charges are flipped. Thus, the effect of TΓ is to flip the sign of the
two vortices at its endpoints.
If the system has a single vortex Oh1 = −1 at plaquette h1 that has only one (endpoint) on Γ
and furthermore contains one of the two points l1.2, then the application of TΓ with the contour
Γ having a single point in the plaquette h1 (the latter plaquette also containing the point l1) as
one of its endpoints will move the vortex to another plaquette h2 that lies at the other end of the
contour Γ (and contains the point l2). That is, TΓ is a vortex translation operator. If Γ forms a
complete closed contour C along a toric cycle (when h1 and h2 are identified as the same point
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on the torus) then, similarly toOΓ of Eq. (36), TΓ veers towards the d = 1 dimensional symmetry
of Eq. (34). In the above, we established that the sole effect of TΓ is to displace a vortex without
influencing the system energy from any of the bonds that do not touch the endpoints of the
contour Γ.

3.4 Broken time reversal symmetry – the non-Abelian phase

Kitaev’s model for a wide range of couplings corresponds, as discussed earlier to a gapless phase,
the so-called “B” phase. It is only in the “corners” of the phase diagram of Fig. 5 (the so-called
“A” phase where the {Jx, Jy, Jz} differ substantially from one another and cannot form the sides
of a triangle) that a gap opens up. In the A phase, gapped Abelian anyons are present. Our focus
in this section will be on the B phase where gapless excitations of Eq. (33) were found. By a
modification of Kitaev’s honeycomb model, gapped non-Abelian excitations can arise. There are
various ways in which such excitations can arise. For instance, these may be triggered by the
geometry of the lattice (via, e.g., a decoration of the lattice wherein each vertex of the hexagonal
lattice is replaced by a triangle [76]). In what follows, we consider the original investigation
of [45] in which a gapped phase with non-Abelian excitations originates from the application of
an external magnetic field to a point (Jx, Jy, Jz) in the space of coupling constants for which the
system would have been gapless if no field were applied.
In the context of the broad link to topological insulator physics and, in particular, to the symmetry
classification of topological insulators [77–79, 5], in the absence of any additional perturbations,
the free fermion Kitaev honeycomb model lies in the “BDI” symmetry class. In the presence of
an external field time reversal breaking field, however, the symmetry becomes that of the “D”
class raising the specter of a non-trivial insulator as indeed occurs in the nontrivial B phase of the
extended Kitaev model. As we now review, such a time reversal symmetry breaking field gives
rise to an effective next nearest neighbor coupling between Majorana fermions. This additional
hopping leads to a gapped spectrum with non-Abelian chiral modes. When a magnetic field h is
applied along the [111] direction, i..e., when Eq. (17) is augmented by a Zeeman coupling

H ′ = H −
∑
i

h · τi, (41)

a gap opens up in the core region (B phase) of the phase diagram of Fig. 5. The (time reversal
broken) phase that arises from the application of this field is very interesting.
In particular, non-Abelian anyons appear in the former gapless phase (which includes the
symmetric point Jx = Jy = Jz). The Hamiltonian of Eq. (41) is not exactly solvable. It can,
however, be treated perturbatively and (ignoring unimportant corrections) reduced to an exactly
solvable system [45]. That is, the magnetic field term in Eq. (41) gives rise (with κ ∼ hxhyhz/J

2

in the symmetric point Jx= Jy= Jz= J) to a (time reversal symmetry breaking) term of the form
of Eq. (18) which we write here anew,

Hh = −κ
∑
ijk

σxi σ
y
jσ

z
k, (42)
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for all triplets of sites (i, j, k) formed by the union of the two bonds, (ij) and (jk), that impinge
on site j. The product of the three spin operators of Eq. (42) can be expressed as a product
of two neighboring bonds of Eqs. (19) and (22) by use of the relation c2j = 1/2. For instance,
for (oriented) links (ij) and (jk) along the x and z directions respectively (with iz < jz and
jz < kz), the product of the bonds of Eq. (22) reads bijbjk = −2ηijηjkcick. Eq. (42) is seen to
reduce to a Majorana fermion bi-linear linking (all) next nearest neighbor sites. The Majorana
fermion bi-linear (cick) resulting from the product of two bonds has a real prefactor (−2ηijηjk)
as opposed to the imaginary prefactors that are associated with single nearest neighbor bonds
in Eq. (22). This relative phase factor of i reflects the time reversal symmetry breaking of the
perturbation. Time reversal symmetry breaking also allows for the existence of chiral modes
wherein fermionic modes may preferentially propagate in one (clockwise or anti-clockwise)
direction. For any pair of next nearest neighbor sites (ik) on the honeycomb lattice, there is a
unique three site path (and two bond product) that leads to the bi-linear form cick. The quadratic
character of these three-spin perturbations of Eq. (42) in the Majorana fermions (and similarly
also in the fermions following, e.g., Eq. (24)) ensures that even when the system is augmented
by these perturbations, the final Hamiltonian

HKh;h ≡ HKh +Hh (43)

formed by the sum of Eqs. (17) and (42) is still exactly solvable.

3.4.1 Solution of extended model with broken time reversal symmetry

The solution to the problem is of a similar character to the one that earlier led to Eqs. (27)
and (33). As each spin product of the type σxi σ

y
jσ

z
k is given by a product of two bonds (each

of which commutes with all of the symmetries of Eq. (21), it follows that the perturbation of
Eq. (42) commutes with the operators Oh. As before, in any given sector one can employ the
representation of Eqs. (19) with η related to the flux via the condition of Eq. (23). All of the
earlier steps taken in Eqs. (27) and (26) can thus be exactly reproduced. However, unlike the
nearest neighbor Hamiltonian that we studied earlier in the absence of an applied external field h
(or an effective), the next-nearest neighbor Fermi interactions lead to new non-trivial results. In
particular, the perturbation set non-zero h allows the earlier gapless phase in the absence of a
field to become gapped and thus to support anyons which within this phase are non-Abelian [45].
The spectrum of HKh;h, in the vortex free sector (Oh = 1 for all h) is then seen to be given by
Eq. (32) where the real p-wave type gap ∆q [35] of Eq. (27) is now replaced by the complex

∆̃q = ∆q + 4iκ
(
sin q1 − sin q2 + sin(q2−q1)

)
. (44)

As can be seen by some simple analysis, the former gapless points q(±) of Eq. (33) now acquire
a gap when κ 6= 0. The p-wave type gap function ∆̃ now becomes complex [35]. This suggests
that the physics will essentially be the same as that for (p+ip)′ superconductors [51] which is
indeed the case. It is noteworthy that even when the Hamiltonian is time reversal invariant the
ground states may spontaneously break time reversal. Indeed, by Kramers’ theorem, this must
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occur whenever the system is defined on a hexagonal lattice with an odd number of spins [35].
In the B phase of Kitaev’s model wherein the gap was borne by the perturbation, the associated
Chern number ν = ±1 and the aforementioned non-trivial statistics [45] with non-Abelian
topological anyons. We elaborate on these anyons and their features next.

3.4.2 Non-Abelian anyons in Kitaev’s model and their properties

To conform with standard practice, we use σ to denote a vortex (defined, similarly to the Abelian
phase, by having the plaquette product Oh of Eqs. (21) and (23) be −1, Oh = −1), ε to mark a
fermionic mode, and I to denote the vacuum (having no anyons). The fusion rules are then of
the form

ε×ε = I, σ×ε = σ, and σ×σ = I + ε, (45)

augmented by the trivial statement that the fusion of any particle with the identity operator leads
back to that particle. As in the case of the Abelian anyons each particle is its own anti-particle.
The non-trivial character of the non-Abelian anyons rears its head in the last line of Eq. (45).
Two vortices (σ) may fuse in two different channels to either annihilate (I) each other or to form
a fermion (ε). The vortex operators of Eq. (21) have, as always, Ising eigenvalues Oh = ±1.
Anyons that satisfy the relations of Eq. (45) are called “Ising anyons”. Unlike the case of Abelian
anyons, fusing two anyons may lead to non-unique outcomes. In particular, if particles a and b
are fused when a = b = σ then this may yield an ε particle or the vacuum (I). In the limit of
spatially infinitely distant vortices, the fermionic spectrum as adduced from the square lattice
Hamiltonian with ηr on the vertical links of original the honeycomb lattice set by the vortices
Oh of Eq. (23), exhibits a multitude of fermionic zero modes [80]. Thus the hybrid of two well
separated vortices (σ) may lead to a state in which the vortices annihilate to form the vacuum (I)
or a “zero energy” fermionic state (ε). This degeneracy is lifted once the vortices become close
to one another wherein the fermionic modes ε attain a finite energy cost (or “mass”). Repeated
applications of the last of Eqs. (45) rationalizes the 2nσ/2−1-fold degeneracy that is present in a
system of nσ (with this number being an even integer) well separated vortices [81]. In formal
terms, the quantum dimension of the vortices σ is dσ =

√
2; the system degeneracy for nσ

vortices scales as dnσσ . Due to the unique outcome of all of the other fusion rules in Eq. (45), the
quantum dimensions of ε and I are dε = dI = 1.
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1 Introduction

Kitaev materials – spin-orbit entangled Mott insulators with strong bond-directional Ising-like
interactions – have attracted considerable interest over the past 15 years as candidate com-
pounds to realize quantum spin liquid physics in experiment. This chapter will guide you on a
journey through this field, which many expect to be fertile ground for many future discoveries,
both experimentally and theoretically. We will start from building a conceptual perspective on
the broader context by first providing a gentle introduction to spin liquids in frustrated magnets,
both in the classical and quantum realm. A key player in this field is the Kitaev honeycomb
model, to which we will devote a separate section. We will then move the conceptual underpin-
ning to the materials side and introduce the broad class of spin-orbit entangled Mott insulators
that are found in 4d and 5d materials and see how they distinguish themselves from more con-
ventional Mott insulators, which have long been discussed in the context of cuprates and other
3d materials. Having set the stage as such, we will then turn to the family of Kitaev materials
and discuss some prominent members such as RuCl3 and the iridates Na2IrO3 and Li2IrO3. The
chapter will close with an overview of more recent advances and an outlook what to expect in
the near future.
This chapter is based on lecture notes [1], which I have prepared for a 2017 Jülich spring school
under the heading “Topological Matter – Topological Insulators, Skyrmions and Majoranas”
(48th IFF Spring School). Together with Ciarán Hickey these lecture notes were later turned
into a substantially expanded 2022 review article [2] that gives a more in-depth introduction to
this field. We should mention that a few other closely related reviews might be good pointers for
the interested reader, such as two early reviews on spin-orbit entangled materials [3, 4], along
with review-style articles directed towards Kitaev materials [5, 6]. We will mention additional,
topical reviews in the subsequent sections that guide to pedagogical introductions or in-depth
discussions of the broader context of Kitaev materials.

2 Spin liquids

Let us start our exploration of the conceptual background of (quantum) magnets by reminding
ourselves of a paradigm that was first established in the context of the Ising model – spontaneous
symmetry breaking. Cast in most general terms, the idea here is that the low-temperature ground
state of a system has less symmetry than the high-temperature phase which still reflects all
symmetries of the underlying Hamiltonian. Case in point of the Ising model is the magnetic
ordering of the ground state which breaks the Z2 symmetry of the original Ising Hamiltonian.
This happens at a finite-temperature phase transition, at which it is precisely this Z2 symmetry,
still present in the high-temperature paramagnetic phase, which is spontaneously broken as one
traverses the transition towards the low-temperature magnetically ordered phase. This is all very
well understood – the finite-temperature transition itself arises from the competition of energy
and entropy, while the formation of magnetic order accompanying the spontaneous symmetry
breaking can be elegantly captured in terms of Landau-Ginzburg-Wilson theory.
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Fig. 1: Frustrated magnetism. While conventional magnets are expected to show a magnetic
ordering transition around the temperature scale associated with the Curie-Weiss scale ΘCW,
frustrated magnets instead exhibit an expanded temperature regime (below ΘCW) in which the
magnetic susceptibility χ continues to follow a Curie-Weiss law – as if it were still a paramag-
net. This regime is often referred to as “cooperative paramagnet”. Eventually, the system might
order at some very low temperature scale Tc.

But, quite intriguingly, the exact opposite can also happen – a magnetic system’s ground state(s)
can have more symmetry than the original Hamiltonian and associated high-temperature phase.
This is, in fact, what one might define as one of the trademarks of frustrated magnets and the
emergence of spin liquid physics.

2.1 Frustrated magnets

A frustrated magnet distinguishes itself from a conventional magnet by the absence or strong
suppression of the finite-temperature phase transition to a magnetically ordered state. For any
conventional magnet, we expect that this phase transition occurs roughly at the Curie-Weiss
temperature ΘCW (set by the various magnetic couplings of a given system). For a frustrated
magnet, in contrast, the magnetic susceptibility χ continues to follow a Curie-Weiss law, i.e.

χ ∝ 1

T −ΘCW

,

even way below the Curie-Weiss temperature. That is, the system keeps behaving as if it were
in a paramagnetic phase. But since the system keeps loosing entropy as one goes to lower and
lower temperature, there must be a distinction from the high-temperature paramagnet after all.
In fact, the system might build up local correlations, which however do not reach correlation
lengths of the order of the system size and the system therefore eludes the formation of long-
range magnetic order. One often refers to this regime as “cooperative paramagnet” – a precursor
of the spin liquid physics we might see at the very lowest temperatures (and which we will
discuss in the next section) if that physics is not preempted by a magnetic ordering transition.
The latter might occur also in a frustrated magnet, albeit at a much lower temperature than in a
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conventional magnet as depicted in Fig. 1. In fact, the ratio of the Curie-Weiss temperature and
the suppressed transition temperature Tc

f =
ΘCW

Tc

is a good quantifier of how frustrated a certain system really is and to distinguish a conventional
magnet from a “highly-frustrated” magnet. For a conventional magnet f ≈ 1, while one speaks
of a highly-frustrated magnet if f & 10. In the most extreme case of a system that exhibits no
magnetic order transition whatsoever f goes to infinity.
So you might ask what is the microscopic origin of such frustration effects and the ultimate
suppression of any magnetic order? The source here are competing interactions that cannot be
simultaneously satisfied, e.g., by a single state (such as a magnetically ordered one). Instead
it is a multitude of states that are all found to be equally well suited to satisfy most of the
interactions, that is one finds a manifold of states that all exhibit the same (minimal) energy,
though they might differ in their microscopic details. Such an emergence of a low-temperature
residual entropy really is the defining signature of a frustrated magnet.
One of the most cited and earliest examples here is the triangular lattice Ising antiferromagnet,
depicted on the left in Fig. 2. If all couplings are antiferromagnetic, each triangle will exhibit
one bond that is left unsatisfied by the choice of the spin alignment around it. Going to a
finite lattice with many such triangles this will lead to a ground-state degeneracy that will grow
extensively with the number of spins (triangles). This emergence of a residual entropy was
first discovered and quantitatively described by Wannier in a seminal 1950 work [7, 8]. Today,
we refer to the underlying mechanism as geometric frustration to indicate that the source of
residual entropy formation really arises from the underlying (non-bipartite) lattice geometry,
which is simply non-commensurable with the formation of an antiferromagnetic Néel state.1

Famous other examples of such non-bipartite lattice geometries are the kagome lattice in two
spatial dimensions and the pyrochlore lattice in three spatial dimensions.
Another source of frustration, which will be more relevant in the context of the current chapter,
is so-called exchange frustration. Consider the arrangement on the right-hand side of Figure 2
where a classical, three component Heisenberg spin is subject to three competing interactions
that want to align this spin along one of the three principal spin axes via a pairwise interaction

blue bond: Sxi S
x
j green bond: Syi S

y
j brown bond: Szi S

z
j

to match a correspondingly {x, y, z}-aligned spin on the other side of the bond. Due to the
orthogonality of the three principal spin axes, it is impossible to simultaneously satisfy all three
exchange terms. Instead, if one picks one of the three principal spin axes (which energetically
is more favorable than pointing, e.g., along the [111] direction) one has three equally good
(or bad) choices, which again points to the formation of a residual entropy if one continues the

1One has to be rather careful, though, in designating geometric frustration to certain spin model. Note, for in-
stance, that the antiferromagnetic Heisenberg model on the triangular lattice is not subject to geometric frustration.
Here the spins will, at low temperatures, simply align in one of two 120 degree ordered states and as such there is
no residual entropy.
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Fig. 2: Sources of Frustration. (left) Geometric frustration arises from non-bipartite lattice
geometries which are incompatible with the formation of a Néel state in antiferromagnetic sys-
tems, such as an Ising antiferromagnet on the triangular lattice. (right) Exchange frustration
arises from competing interactions that cannot be simultaneously satisfied, even for a single
site. An example of this are the three bond-directional interactions favoring alignment of the
spins in orthogonal directions.

tricolored bond assignment for all bonds of, say, a honeycomb lattice. Such exchange frustration
is equally capable of suppressing magnetic order as the geometric frustration introduced above.
Notably, exchange frustration can also occur for ferromagnetic interactions on a bipartite lattice
geometry (as in the example above) – that is, in systems, which typically are considered to give
rise to simple ferromagnets.

2.2 Classical spin liquids

We now want to consider a frustrated magnet, which indeed shows no magnetic order down to
zero temperature. Examples in the realm of classical spins are the triangular lattice Ising anti-
ferromagnet – the principal example of geometric frustration in Figure 2, and the Heisenberg
model with bond-directional (ferromagnetic) Ising-like interactions on the honeycomb lattice –
the principal example of exchange frustration in Figure 2. The latter example, which in fact is
the Kitaev model of the subsequent section, will stay with us throughout the chapter, but for
now we might think of it as simply a classical, spin-anisotropic Heisenberg model with no mag-
netic ordering. For both systems we know that as a result of frustration there will be no single,
magnetically ordered ground state but instead there will be a significant residual entropy at zero
temperature – in these cases extensive manifolds of states that all equally well satisfy the ener-
getics of the underlying Hamiltonians. But what is the difference between these state manifolds
and the high-temperature paramagnet? And can we identify, as alluded to in the introduction of
this section, a higher symmetry in these ground states than what the Hamiltonians suggest?
The answers to these questions will introduce us to the concept of classical spin liquids. Let
us approach such a classical spin liquid by considering the ground state manifold of the bond-
directional Heisenberg model on the honeycomb lattice, i.e. the classical Kitaev model with
ferromagnetic interactions. The aforementioned exchange frustration in this model results in



12.6 Simon Trebst

Fig. 3: Coulomb phase. (left) Ground-state configuration of the classical Kitaev model where
the bond-directional Ising-like interactions pair up spins in “dimers” (middle) Dimer covering
of the honeycomb lattice, corresponding to the spin configuration on the left. (right) Mapping to
a divergence-free magnetic field configuration where each site has an equal number of incoming
and outgoing field lines if the orange arrows carry twice the field strengths of the blue arrows.

a large number of ground states, which can be characterized as illustrated in the left panel of
Figure 3: every spin pairs up with one of its three neighboring spins to form a “dimer” of spins
pointing along one of the three principal spin axes (such that exactly one of three interaction
terms per spin is fully satisfied while two remain completely unsatisfied). In more abstract
terms, any such spin configuration can be conceptualized as a dimer covering of the honeycomb
lattice2 as illustrated in the middle panel of Fig. 3 for the exact same spin configuration. This
simplifies the description, as a whole lot is known about dimer coverings such as, for instance,
how many there are for a given lattice geometry and system size – that is, a direct measure
of the residual entropy of our spin model at hand. Even more enticing is the fact that we can
rewrite the local condition of “every spin is part of exactly one dimer” into a configuration of an
artificial magnetic field that is divergence-free at every site, see the right panel in Fig. 3. This is
a powerful correspondence, which tells us that the ground state of the classical Kitaev model (or
the triangular lattice Ising antiferromagnet) is described by a Coulomb phase [9]. It readily lets
us conclude that there are longer range, power-law decaying correlations in these ground states
and that the elementary excitations are violations of the divergence-free conditions – magnetic
monopoles. In other words, the ground state manifold of our classical magnets are described by
emergent magnetostatics, a much more elegant description than what we might have anticipated
when considering the quite ordinary nature of their underlying Hamiltonians.
It is precisely this theme of an emergent description of the low-energy states that sets apart the
low-temperature phase of a highly frustrated magnet from both the high-temperature paramag-
netic phase, which does not allow for an equally elegant description, or the symmetry-broken
ground state of a conventional magnet. This naturally brings us to the question what additional
effects zero-temperature quantum fluctuations might entail. On a pessimistic note one might ar-
gue that they will simply split the accidental degeneracy of the aforementioned classical ground

2Notably, Wannier showed that every ground state configuration of the triangular lattice Ising antiferromagnet
can also be mapped to a dimer covering of the honeycomb lattice by marking the unsatisfied bonds of the triangular
lattice to its dual honeycomb lattice. As such, all arguments applied to the ground state manifold of the classical
Kitaev model also apply to the Ising case.
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states in a mechanism referred to as order-by-disorder and thereby destroy all beauty. But this
is, fortunately, not true after all and there will be even more to discover when going deep into
the quantum realm of strongly fluctuating magnetic moments.

2.3 Quantum spin liquids

Like their classical counterparts, quantum spin liquids are not defined by the absence of mag-
netic order, but instead by the emergence of additional structures. As one might expect for a
proper quantum system, this additional structure comes in the form of entanglement, or more
precisely, long-range entanglement of the underlying quantum mechanical degrees of freedom.
To discuss this, we need to recall some basic notions of quantum many-body entanglement.
The latter is often quantified by an entanglement entropy defined via the reduced density matrix
for a bipartition of the system into two subsystems (say, A and B). This entanglement entropy
is quite distinct from a conventional thermal entropy (familiar from any statistical mechanics
course) in that it is not extensive, but instead obeys a boundary law, i.e., it scales with the length
of the boundary ∂A separating the two subsystems

S = a · ∂A− γ + . . . ,

where a is some non-universal prefactor in the boundary law, γ refers to an important O(1)
correction, and the dots indicate further subleading terms. Our focus here should, in fact, be
on the O(1) correction γ that indicates an emergent topological quantum field theory (TQFT)
description of the quantum state at hand – that is, an emergent structure that was not present in
the Hamiltonian giving rise to the ground state in front of us, somewhat akin to what we had
encountered in the classical context but on a whole new level. A TQFT is a complex theory
whose constituents are, in general, different types of anyonic particles. An elementary example
is the Ising TQFT with its ground state, denoted as 1, and two additional σ and ψ particles which
have quantum dimensions3 1,

√
2, 1, respectively. What is relevant here is that these quantum

dimensions define the topological correction of the entanglement entropy [10,11] in a universal
manner as

γ = ln

(√∑
d 2
i

)
,

which in the case of the Ising TQFT reveals a correction of γ = ln 2. Importantly, the topo-
logical correction to the boundary law always results in a negative correction to the leading
boundary-law. This is important as it indicates that we cannot deform the ground-state wave-
function into a simple product state, in which the boundary-law contribution would vanish and
thereby turn the entanglement entropy negative – a scenario that is as forbidden as a negative
thermal entropy. As such the emergence of such a topological correction instead signals the
formation of long-range entanglement that can only be destroyed by driving the system through
a quantum phase transition.

3The quantum dimension is a measure of how fast a Hilbert space spanned by N such particles grows with the
number N . For conventional quantum spin-1/2 we are used to the idea that their quantum dimension is 2, while
for the σ particle in the Ising TQFT it is apparently

√
2.
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If the ground state of a quantum spin model exhibits such a form of long-range entanglement
we have discovered a topological quantum spin liquid – a spin analogue of a fractional quantum
Hall state as first envisioned by Kalmeyer and Laughlin [12] back in 1987. We will shortly
see such a topological quantum spin liquid as the ground state of the Kitaev model in a mag-
netic field, and its relevance in the context of half-integer thermal quantum Hall states in the
discussion of RuCl3 in the last section.

The above description of quantum spin liquids is a pretty high-brow introduction using the
abstract measures of entanglement, which theorists might love as a distinct measure but experi-
mentalists will have a hard time to measure in the foreseeable future. Let us therefore introduce
an alternate approach to describe the emergent phenomena of a quantum spin liquid, which
might also be closer to experimental reality.

This alternative description of a spin liquid uses the concepts of fractionalization and emergent
gauge theories – concepts that will come to life in the next section when we discuss the ex-
act analytical solution of the quantum Kitaev model. Here we will simply introduce the main
ideas and point the interested readers to the excellent review by Lucile Savary and Leon Balents
on the subject [13]. In this framework, quantum spin liquids are emergent descriptions of the
ground states of quantum magnets in which the elementary degrees of freedom, typically mag-
netic moments with spin-1/2 or spin-1, decompose into novel, fractionalized quantum particles
– a parton (such as a Majorana or complex fermion) coupled to a gauge field. One then distin-
guishes the different types of possible quantum spin liquids by their different gauge structure
into (i) Z2 quantum spin liquids, (ii) U(1) quantum spin liquids, and (iii) chiral spin liquids
(with an emergent Chern-Simons theory). The aforementioned topological quantum spin liquid
is an example of the latter, while the Kitaev model (without a magnetic field) is often considered
as the quintessential model harboring a Z2 quantum spin liquid ground state.

3 Kitaev honeycomb model

Let us now turn to the main motivation that has set off the search for Kitaev materials – the
original Kitaev honeycomb model [14] and its rich physics [15]. The model itself is a variant
of a quantum compass model [16], as discussed in much broader context in the accompanying
chapter of Jeroen van den Brink. As such it has a deceivingly simple looking Hamiltonian of
bond-directional, Ising-like interactions that couple elementary quantum spin-1/2 degrees of
freedom on a honeycomb lattice

HKitaev =
∑
i,γ

Kγ S
γ
i S

γ
j ,

where γ = x, y, z denotes the three principal directions of the honeycomb lattice (depicted in
blue/green/brown in Figure 4) and, at the same time, the three principal spin orientations.
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gapped spin liquid

gapless spin liquid
Majorana metal

Kz
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Kx + Kz + Ky =  const.
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Kx

Fig. 4: Kitaev model. (left) Bond-directional Ising-like interactions between spin-1/2 mo-
ments make the Kitaev model an example of a quantum compass model. Its analytical solution
is sketched as the decomposition of the original spin degrees of freedom into four Majorana
fermions (circles), which are then recombined in a pairwise fashion to result in a Z2 gauge field
on the bonds (ellipses) and a free, itinerant Majorana fermion (yellow circle) hopping on the
lattice in the background of a static Z2 gauge field. (right) The phase diagram of the Kitaev
model in the plane Kx+Ky+Kz = 1, which exhibits three gapped spin liquid phases and an
extended gapless spin liquid phase around the point of isotropic coupling.

3.1 Fractionalization and spin liquid ground states

What sets this spin model apart from basically every other interacting quantum spin system is
that Alexei Kitaev could solve this model exactly at zero temperature, i.e., he could analytically
derive its entire ground-state phase diagram [14]. The latter is depicted in the right panel of
Figure 4 and shows four highly non-trivial ground states as a function of the coupling parameters
Kx, Ky, and Kz plotted in the plane defined by Kx+Ky+Kz = 1. If one of the three couplings
dominates, corresponding to the light blue triangles, one finds a topological spin liquid ground
state, i.e., a gapped spin liquid that is characterized by a non-trivial γ = ln 2 correction to the
boundary-law entanglement scaling and which corresponds to a toric code [17] phase. The
phase around the point of isotropic coupling Kx = Ky = Kz is, in contrast, a gapless spin
liquid. The nature of this gapless phase becomes apparent when briefly describing how Kitaev
solved the underlying spin model.

The analytical approach is quite ingenious in that it directly employs the fractionalization of
the elementary spin degrees of freedom. Every spin-1/2 is rewritten in terms of four Majo-
rana fermions (as depicted schematically by the four circles on the left in Figure 4), which
are subsequently recombined by fusing two such Majorana fermions adjacent to a given bond
into a single Z2 variable on every bond (depicted by the ellipses in Figure 4). The latter is the
Z2 gauge field, while the “left-over” fourth Majorana fermion per spin is the complementary
parton degree of freedom. Kitaev’s solution thus explicitly introduces the emergent fractional-
ized degrees of freedom via an exact operator decomposition. Importantly, these two degrees
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of freedom have very different dynamics. While the Majorana fermion is free to traverse the
lattice (as a free fermion), the Z2 gauge field turns out to be completely static, i.e., it does not
fluctuate and any gauge excitations (so-called visons) are static as well and cannot move at all.
This makes the emergent lattice gauge theory description of the Kitaev model particularly sim-
ple4 and amenable to an exact solution. The problem factorizes, in that one can first identify the
ground state of the gauge field – which due to another ingenious contribution of Elliott Lieb [18]
we can readily identify with the flux-free configuration – and then solve for the free Majorana
fermion problem with this fixed gauge configuration. But the latter is also trivial, since we
know very well what the spectrum of free fermions on a honeycomb lattice is from the study
of non-interacting electrons in graphene – a band structure with a Dirac cone dispersion, where
due to the particle-hole symmetry of Majorana fermions the ground state of the spin model sits
exactly at the tip of this Dirac cone. Returning to the phase diagram of the Kitaev model, this
picture of Majorana fermions hopping in the background of a Z2 lattice gauge structure, lets
us readily understand the gapless quantum spin liquid in the center of the phase diagram as a
Majorana metal (or, more precisely, a semi-metal with a point-singular Fermi surface due to the
Dirac cone in the Majorana band structure).
Going away from the pure Kitaev model, its analytical solution still allows to understand the ef-
fect of certain perturbations. For instance, if one applies a magnetic field in the (111)-direction,
i.e., a field that couples to all three spin components, one introduces a mass term in the Dirac
equation. As a consequence the gapless spin liquid gaps out and turns into a chiral spin liquid
(with non-Abelian topological order and gapless edge modes). When rephrased in terms of
complex fermions this gapped state corresponds to a p-wave superconductor [19], which one
can conceptualize to undergo a Higgs transition to a gapless metal that, recast into the language
of the quantum spin model, would correspond to a gapless U(1) spin liquid (with a spinon
Fermi surface). It has been argued that this indeed what happens for the antiferromagnetic
Kitaev model for an intermediate-strength magnetic field [20–23]. Another important perturba-
tion of the pure Kitaev model is the inclusion of an isotropic Heisenberg interaction [24, 25],
which endows the vison excitations of the Z2 gauge field with their own dynamics [26], i.e.,
they can start to disperse, become soft, condense and thereby drive the system into a magneti-
cally ordered state. Of course, one could consider many other perturbations to the Kitaev model
– a topos which we will return to when discussing the miscroscopics of the actual materials
considered to realize some of this Kitaev physics.

3.2 Thermal signatures of fractionalization

Staying on the conceptual level, let us instead turn to the finite-temperature characteristics of
the Kitaev model. While such features are not amenable to a direct analytical treatment, they
can be captured by numerically exact quantum Monte Carlo (QMC) simulations. At first sight,
this might sound counter-intuitive as the spin Hamiltonian seems to exhibit a strong sign prob-

4Typically one would expect to find a fluctuating gauge field, which then would have required further steps
such as a mean-field decoupling, i.e., the application of some approximative approach.
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Fig. 5: Thermal signatures of fractionalization. (top) The specific heat exhibits a character-
istic two-peak structure. The feature at the higher temperature scale T ∗ is a thermal crossover
associated with the fractionalization of the elementary spin degrees of freedom, while the lower
temperature scale Tc is associated with the onset of order in the Z2 gauge sector (for finite sys-
tem sizes). (bottom) The nearest-neighbor spin-spin correlations are found to saturate already
at T ∗, the higher temperature scale. This is in very good agreement with resonant inelas-
tic X-ray spectroscopy (RIXS) measurements discussed in Section 5. Figure reproduced from
Ref. [27].

lem [28] – at least when looking at it from the perspective of traditional QMC techniques such
as the stochastic series expansion (SSE) [29], which is typically the first choice of QMC for
quantum spin models. But at second sight and inspired by the exact solution, one should in-
stead set up a QMC approach that samples in the fractionalized basis of Majorana fermions and
the Z2 gauge field. That is, an approach that samples the many different Z2 gauge field config-
urations which become relevant at finite temperature as one allows for the thermal excitation
of visons, while solving for the respective free Majorana fermion models for such modified Z2

gauge configurations. This is precisely what Yuki Motome’s group has spearheaded to arrive at
a quasi-exact solution of the finite-temperature physics of the Kitaev model [30].

The key features of the thermodynamic behavior of the Kitaev model are summarized in Fig-
ure 5. The specific heat shows a distinct two-peak structure that is intimately linked to the
physics of the Kitaev model. The higher-temperature feature appears at the scale of the ex-
change couplings and indicates the fractionalization of the elementary spin degrees of freedom
and the formation of a Majorana fermion band structure. This fractionalization is a purely local
phenomenon and as such the higher-peak is in fact a crossover phenomenon (as opposed to a
phase transition, which due to its diverging length scales is rather sensitive to finite system sizes
and therefore exhibits strong finite-size scaling effects whereas a crossover peak is completely
insensitive to system sizes as found here). The second, lower-temperature feature is hugely
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suppressed and occurs at a temperature scale of order Tc ≈ K/100, i.e., two orders of magni-
tude lower than the high-temperature feature (note the logarithmic scale of the horizontal axis
in Figure 5). This second feature is found to be associated with the ordering of the Z2 gauge
field, i.e., it is at this temperature scale that the system enters the flux-free ground state of the
Z2 lattice gauge theory. Above this temperature scale one finds thermally excited vison exci-
tations and as such one might not be surprised to hear that the magnitude of this temperature
scale is linked to the size of the vison gap [31]. Now, in two spatial dimensions (as it is the
case for a honeycomb lattice geometry) such a vison excitation is a point-like excitation, e.g., a
Z2 flux threaded through a single plaquette, which can easily proliferate. This is an important
observation which points us to the fact that in the thermodynamic limit of very large system
sizes, this lower-temperature ordering transition scales to zero temperature, i.e., ceases to exist.
This is a well known statement about two-dimensional Z2 lattice gauge theories [32,33], which
in the context of the Kitaev model, tells us that the zero-temperature quantum spin liquids of
the ground-state phase diagram are all unstable to finite-temperature fluctuations.5 This puts
the higher-temperature crossover feature back into the focus of a potential experimental signa-
ture of Kitaev materials. Indeed it should be noted that this crossover goes hand-in-hand with
a build-up of nearest-neighbor spin-spin correlations as shown in the lower panel of Figure 5.
Such strong correlations between neighboring spins (but not beyond) are indeed another hall-
mark of the Kitaev spin liquid states [35], which is also reflected in their dynamical structure
factor [36, 37] and response in resonant inelastic X-ray spectroscopy (RIXS) [38, 27].

4 Spin-orbit entangled Mott insulators

Let us now enter the realm of materials physics and ask where we might look for microscopic
situations that enable the emergence of Kitaev physics. At this stage, probably the most dis-
tinct feature of the Kitaev Hamiltonian is its lack of an SU(2) spin symmetry and the bond-
directionality of its interactions – both of which features that do not come naturally in con-
ventional electronic Mott insulators, which typically exhibit spin-isotropic Heisenberg interac-
tions and bond-by-bond variations are often limited to differences of the respective coupling
strengths. So, we need to look further and this is where models of orbital moments might come
to mind – for these it is quite natural to expect a strong bond-directionality and anisotropic
interactions. Think, for instance, of a p-orbital model with px, py, and pz orbital degrees of free-
dom where, simply due to the different spatial shapes and alignments of these three orbitals, the
interactions in x, y, and z direction will take an Ising-like form, i.e., px orbitals couple strongly
with one another along the x-direction but not at all along the y or z-directions and similarly
for the other orbital components. So orbital physics seems to be the right ingredient to realize
Kitaev-like interactions, but then orbital-only models are rare to find.

5As a side remark we note that this situation is very different for Kitaev models in three spatial dimensions [34],
where the elementary vison excitations are extended flux loops and thereby allow for a different competition
between energy and entropy leading to the existence of a true finite-temperature gauge ordering transitions, albeit
ones that are still suppressed by two orders of magnitude with regard to the coupling strength [31].
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diagram exhibit distinct behavior. For smallU and λwe are in the realm of non-interacting elec-
tronic band structures, which allow for the formation of metals and band insulators. Cranking
up the spin-orbit coupling one can induce a band inversion to create a topological band insu-
lator (or, similarly, a topological semi-metal). For strong correlations we expect to see Mott
insulators, which in the presence of strong spin-orbit coupling can turn into a distinct class of
Mott insulators with local, spin-orbit entangled moments. The Kitaev materials of interest in
this chapter form a subclass of these spin-orbit entangled Mott insulators as discussed in the
text. Figure adapted from Reference [3].

This is where the new class of spin-orbit entangled Mott insulators enter the game. To concep-
tually understand what these new types of Mott insulators are, it is quite instructive to consider
a general phase diagram in the presence of electronic correlations, i.e., a Hubbard U, and spin-
orbit coupling λ as it is mapped out in Figure 6. Let us start in the lower left corner of this
phase diagram, i.e., in the limit of small correlations and small spin-orbit coupling. This is the
realm of non-interacting band theory which tells us that there are two principal states of matter
– metals and band insulators. If one now adds substantial spin-orbit coupling, i.e., one moves
to the right in the phase diagram, we have learned that, for a band insulator, this can lead to a
band inversion and the formation of a topological band insulator [39,40] with protected gapless
surface modes. Similarly, we can also create a topological metal via strong spin-orbit coupling,
such as a Weyl semi-metal [41]. Now, let us add electronic correlations to the mix. In the regime
of small spin-orbit coupling we know that electronic correlations can induce an insulating state
of matter that is distinct from a band insulator – a so-called Mott insulator (which, in contrast
to band insulators, can occur even at half filling). The local moments in such an electronic Mott
insulator are typically SU(2) spin-1/2 (or higher-spin) degrees of freedom – a good place to im-
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Fig. 7: Spin-orbit entanglement. Schematic illustration of the formation of spin-orbit entan-
gled j=1/2 moments in 5d5 or 4d5 materials with five electrons in the d orbital. Placing such
d-orbitals within an octahedral crystal field such as an IrO6 cage will split the five orbitals
into three low-energy t2g orbitals and two high-lying eg orbitals. The five electrons with a total
spin s=1/2 in the low-lying t2g orbital with an effective orbital moment l=1 will experience
further level splitting upon the introduction of strong spin-orbit coupling. This will result in a
low-lying, completely filled j=3/2 and high-lying, half-filled j=1/2 state. This j=1/2 multiplet
can now be turned into a Mott insulating states with an effective j=1/2 moment with relative
small electronic correlations (Hubbard U ).

plement a Heisenberg model. If, however, we crank up the spin-orbit coupling in this strongly
correlated regime we might end up in a different type of Mott insulator – so-called spin-orbit
entangled Mott insulators, in which the local degrees of freedom have both spin and orbital
components that are intimately linked to one another.

This scenario plays out in a class of 5d and 4d materials, which we will now zoom in on.
Specifically, we will be interested in 5d5 and 4d5 materials, that is d-orbitals which are occu-
pied with 5 electrons. This is, for instance, the case for the Iridates, in which the 5d iridium ions
typically have an electronic Ir4+ configuration, and also for RuCl3 with its 4d Ru3+ ions. As
schematically illustrated in Figure 7, a conspiracy of crystal-field splitting, spin-orbit coupling
and relatively weak electronic correlations can turn such materials into Mott insulators with lo-
cal, spin-orbit entangled moments. Historically, this was somewhat unexpected to happen since
one might expect 4d and particularly 5d materials to generically form metallic states, which –
compared to the standard class of 3d Mott insulators such as the cuprates – exhibit much larger
atoms resulting in relatively large electronic overlap in their crystalline structures, which would
have to be compensated by strong electronic correlations. But the increased atomic size also
gives rise to a much enhanced spin-orbit coupling, which in a crude estimation scales with the
fourth power of the atomic number, λ ∝ Z4. It is through this spin-orbit coupling that the
Mott lobes of the j=1/2 (and j=3/2) states exhibit a much smaller bandwidth and a relatively
small amount of electronic correlations can split them to form Mott insulating states. As such
these Mott insulators are also called “spin-orbit assisted” Mott insulators [3]. Their physical
reality was first observed, some fifteen years ago, in 2008 in experiments on the perovskite iri-
date SrIr2O4 [42, 43]. The latter is an isostructural analogue of La2CuO4, the parent compound
of the cuprate superconductors, which, at the time, set off a flurry of activities searching for
(topological) superconductivity in the presence of strong spin-orbit coupling [4].
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Fig. 8: Exchange path geometries. The lattice geometries of perovskite and honeycomb iri-
dates (and related materials) distinguish themselves by the way the elementary octahedral oxy-
gen cages are connected – either in a corner-sharing fashion for the perovskite iridates such as
SrIr2O4, while the honeycomb iridates such as Na2IrO3 exhibit edge-sharing geometries. The
effect on the exchange of the j=1/2 moments (at the center of the octahedral cages) is profound:
while the corner-sharing geometry gives rise to Heisenberg interactions, the edge-sharing ge-
ometry exhibits a dominant bond-directional Kitaev-type exchange.

Prior to these experimental developments, Giniyat Khaliullin had already worked out a j=1/2

moments theory [44], which would consider the effect of different lattice geometries on the ex-
change paths of such spin-orbit entangled moments and their resulting effective interactions. In
particular, two scenarios have turned out to make a crucial distinction as depicted schematically
in Figure 8. Whereas the perovskite iridates exhibit a corner-sharing, square lattice geometry
of the octahedral oxygen cages, other iridates with an underlying honeycomb lattice geometry
would have edge-sharing oxygen cages. This difference in corner- versus edge-sharing ge-
ometries turns out to heavily influence the microscopic exchange of the spin-orbit entangled
j=1/2 moments at the center of the octahedral cages. While in the corner-sharing scenario
one finds an isotropic Heisenberg exchange, the edge-sharing scenario induces a suppression of
this isotropic Heisenberg exchange (via destructive interference of two Ir-O-Ir exchange paths)
turning the next-order bond-directional exchange into the dominant coupling. This turns out to
be the sought-after Kitaev-type interaction which we have been looking for.

5 Kitaev materials

In 2009 Jackeli and Khaliullin turned this thinking about spin-orbit entangled j=1/2 Mott in-
sulators with edge-sharing geometries into a concrete proposal – they went out and postulated
that honeycomb iridates such as Na2IrO3 and Li2IrO3 should be an ideal place to look for Ki-
taev physics [45]. The boldness of this proposal should be appreciated – while we might have
become accustomed to the idea that we can theoretically predict materials properties of weakly-
coupled materials and then await experimental verification in a newly synthesized compound
(this has been a recurring motif in the synthesis of topological insulators), such a conceptual
prediction for strongly-correlated Mott materials has been without much precedent. Neverthe-
less, this proposal turned out to be extremely influential and opened the field of Kitaev spin
liquid physics to experimental exploration of actual materials which rapidly happened.
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5.1 Honeycomb iridates Na2IrO3 and Li2IrO3

The first samples of Na2IrO3 were synthesized basically within a year of the theoretical proposal
by the groups of Takagi [46] and Gegenwart [47]. Many other groups would follow and today
single crystals of Na2IrO3 are readily available in labs around the world. But there was an ele-
ment of initial disillusion too – Na2IrO3 exhibits an ordering transition [48] around TN ≈ 15 K,
i.e., it is clearly not showing a quantum disordered spin liquid ground state. Resonant X-ray
magnetic scattering [49] and neutron scattering experiments [50, 51] would later reveal that the
local moments form a zig-zag order. But on the positive side, the local moments themselves
would turn out to be indeed the sought-after spin-orbit entangled j=1/2 moments, as seen from
magnetic susceptibility measurements [47, 48]. Another uplift came when a direct experimen-
tal observation of bond-directional exchange was reported in diffuse magnetic X-ray scattering
experiments [52], which later would be substantiated as Kitaev-type interactions in resonant
inelastic X-ray spectroscopy (RIXS) [53]. It also posed new puzzles such as the observation of
short-range spin-spin correlations in RIXS experiments [54,27] on temperature scales far above
the ordering temperature, see Figure 5. Such a high-temperature formation of spin-spin cor-
relations would be a signature of a low-temperature Kitaev spin liquid as argued in the earlier
section on thermal signatures of fractionalization. So maybe Na2IrO3 is, after all, not that far
away from spin liquid physics?
Such puzzles coming out of the experimental exploration of the first Kitaev candidate material,
Na2IrO3, have spurred more theoretical activity. Starting with the addition of a Heisenberg
interaction to the pure Kitaev model [24, 25, 55–58], the effect of more and more perturbations
of the Kitaev model have been explored leading to a refined microscopic model [59]

H =
∑

γ−bonds

J SiSj +K Sγi S
γ
j + Γ

(
Sαi S

β
j + Sβi S

α
j

)
,

which also includes a bond-directional, off-diagonal Γ -exchange. Complementing this more
and more detailed microscopic understanding, the general concept of a “proximate spin liq-
uid” [60, 61] was developed whose central idea is sketched in Figure 9. While additional
“non-Kitaev” interactions (as in the Hamiltonian above) might induce magnetic ordering (as
observed, for instance, in Na2IrO3), there might be a window of opportunity (indicated by the
red arrow in the figure) to observe some of the thermal signatures of a nearby/proximate spin
liquid ground state. Physically this finite-temperature proximate spin liquid regime opens up,
as the free energy of a thermal spin liquid state (with all its fluctuations) is generically expected
to be lower than the free energy of a thermally excited magnetically ordered state (which shows
little fluctuations). It might be in this regime that we indeed see remnants of spin liquid physics
above magnetically ordered states, such as signatures of fractionalization and the unexpected
build-up of local spin-spin correlations [27].
The synthesis of the sister compound Li2IrO3 has led to yet another surprising discovery – this
material exists in several polymorphs [48,62,63] which have been dubbed α-Li2IrO3, β-Li2IrO3,
and γ-Li2IrO3 in the sequence of their discovery. The first one, α-Li2IrO3, is a honeycomb ma-
terial akin to Na2IrO3, which shares most of its experimental signatures: local j=1/2 moments
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Fig. 9: Proximate spin liquid. Conceptual phase diagram of the Kitaev model perturbed
by some additional interactions parametrized by a coupling strength g, such as a Heisenberg
and/or off-diagonal Γ -exchange, that will induce some type of magnetic ordering if sufficiently
strong, g > gc. At finite temperatures we would expect the spin liquid state, stabilized as a
ground state for g < gc, to dominate over the magnetically ordered state, since its fluctuations
will lower its effective free energy more strongly than those of the ordered state. As such the
magnetic ordering transition will bend to the right as indicated. This, however, opens a tem-
perature window, indicated by the red arrow, in which one might see the thermal signatures
of the proximate spin liquid such as the thermal fractionalization crossover and accompanying
build-up of local spin-spin correlations shown in Figure 5.

form, but undergo a magnetic ordering transition at TN ≈ 15 K to what is a somewhat unusual
magnetic ordering pattern with counter-rotating spin spirals [64–66]. The other two polymorphs
are materials in which the local j=1/2 moments are arranged in three-dimensional lattice ge-
ometries. These lattice structures, however, retain an important ingredient of the honeycomb
lattice – they are still tri-coordinated, i.e., every site is connected to only three other sites (which
is a highly unusual setting in a three-dimensional geometry), just as in the honeycomb case and
the two polymorphs, β-Li2IrO3, and γ-Li2IrO3 have been dubbed hyperhoneycomb and stripy
honeycomb to convey this point. Experimentally, these two 3D polymorphs turn out to be
relatively close to their 2D counterpart in that they exhibit an ordering transition to a counter-
rotating spin spiral state.

But again experimental discovery has spurred theoretical advances, here in the form of an in-
vestigation of three-dimensional generalizations of the Kitaev model [67,68]. The key observa-
tion is that the tri-coordination of the 3D lattice geometries still allows for the same analytical
approach devised by Kitaev for the 2D honeycomb geometry (via a four Majorana fermion de-
composition and subsequent bond-wise recombination, as illustrated in Figure 4). This has led
to an extensive classification of three-dimensional Kitaev models, both in terms of their spin
liquid ground states which can be recast as different types of Majorana metals [34] as well as
their thermodynamic signatures [31].
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Hall conductance for the 2D pure Kitaev model calculated with the 
quantum Monte Carlo method show that quantization occurs slightly 
below ∆F/kB. Experimentally, ∆F/kB is estimated25 to be 10 K, which 
is consistent with the persistence of the thermal Hall quantization up 
to around 5 K.

In the plateau regime of κxy, no anomaly is observed in κxx, probably 
because phonon contributions largely dominate over fermionic excita-
tions arising from spins in κxx in the whole temperature range28,29. 
Moreover, owing to the strong spin–phonon coupling in α-RuCl311, the 
phonon conductivity is expected to show complicated H and T depend-
ences. The observed behaviour of the plateau as a function of H and T 
therefore demonstrates that κxy/T is not affected by spin–phonon scat-
tering in the plateau regime, providing strong support for topological 
protection. The fact that κxy vanishes at the highest fields, as shown 
in Fig. 3a–c, e–g, provides direct evidence that the thermal Hall effect 
is not influenced by phonons, demonstrating that κxy is a unique and 
powerful probe in the search for Majorana quantization.

We stress that a half-integer thermal Hall conductance in a bulk 
material is a direct consequence of the chiral Majorana edge current. 
Recent experiments based on the proximity effect between a quantum 
anomalous Hall insulator and a conventional superconductor have 
reported a signature of chiral Majorana edge modes20. However, this is 
based on the observation of half-integer quantization of the longitudi-
nal electrical conductance via the scattering matrix effect between the 
edge states of the insulator and superconductor. Moreover, Majorana 
fermions in Kitaev magnets and topological superconductors have 
essentially different features. In the former, strong correlations give 
rise to Majorana fermions, whereas in the latter they do not play a role. 
In addition, Majorana fermions exist inside the bulk of a sample in the 
Kitaev QSL state, in sharp contrast to topological superconductors, 
where they appear only at the edges. This distinct nature of Majorana 
fermions is supported by the fact that the quantum plateau disappears 
below about 400 mK in a topological superconductor device20, whereas 
it is preserved up to around 5 K in α-RuCl3.

At θ = 60°, κ /H T( )xy
2D  increases slightly from the quantized value 

before going to zero at a high field at 4.3 K and 4.9 K, which is repro-
duced in a different crystal (Extended Data Fig. 5a). However, such a 
behaviour is not observed at θ = 45°. On the other hand, an overshoot 
is also observed in the temperature dependence of κxy2D, irrespective of 
the angle (Fig. 4) and crystal (Extended Data Fig. 5b); therefore, there 
seem to be certain high-energy corrections that are responsible for the 
excess conductivity at high fields and high temperatures. These over-
shoots are in contrast to the numerical results of the thermal Hall effect 
for the 2D pure Kitaev model with a weak magnetic field16. Meanwhile, 
it has been pointed out that non-Kitaev interactions, such as Heisenberg 
and off-diagonal ones, are important for α-RuCl3

30,31. Hence, the 

discrepancy may be attributed to high-field effects or non-Kitaev inter-
actions, which deserves further study.

The near vanishing of κ /Txy
2D  after its rapid suppression in the high-

field regime (Fig. 3a–c, e–g) demonstrates the disappearance of chiral 
Majorana edge currents. As shown by the open blue square in Fig. 1c, 
the temperature at which κ /Txy

2D  vanishes decreases rapidly with 
decreasing H∥. This suggests a topological quantum phase transition 
from the non-trivial QSL to a trivial high-field state, where the thermal 
Hall effect is absent, at µ0H∥ ≈ 9 T, as shown by the red circle in 
Fig. 1c32. The specific heat at 0.47 K for θ = 60° exhibits a dip-like 
anomaly in the vicinity of 9 T, which can be associated with an abrupt 
change of the spin gap at the topological transition, strongly supporting 
the presence of a characteristic field revealed by κxy/T (Extended Data 
Fig. 7a–c). The vanishing of κxy/T at the highest fields is unlikely to be 
due to the crossover to a simple forced ferromagnetic state because the 
magnetization at 9 T is less than 1/3 of the fully polarized value, indi-
cating that paramagnetic spins still remain. The observation of half- 
integer thermal Hall conductance reveals that topologically protected 
chiral Majorana edge currents persist in α-RuCl3, even in the presence 
of non-Kitaev interactions and a parallel field. This observation opens 
a possibility of using Majorana fermions and their link to non-Abelian 
anyons, which are important for topological quantum computing, 
revealing novel aspects of strongly correlated topological quantum 
matters.
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Fig. 10: Quantized Thermal Hall Effect. Thermal Hall conductivity of α-RuCl3 in a tilted
magnetic field. (left) The thermal Hall conductivity κxy/T appears to saturate at a 1/2-
quantized value within a temperature range of 4–6 K (for two tilted magnetic field configu-
rations). The inset shows the higher-temperature behavior of κxy/T, overshooting the half-
quantized value with increasing temperature and reaching a maximum at∼ 14K before decreas-
ing again for even higher temperatures. (right) The thermal Hall conductivity as a function of
increasing magnetic field, at a fixed angle of 60◦ away from the c-axis for the three different
temperatures. The plateau appears to be stable over an extended field and temperature range.
Figure adapted from Ref. [75].

5.2 α-RuCl3

The biggest impact on the field of Kitaev materials has come in the form of the 4d compound
α-RuCl3, which had long existed but has been appreciated as another candidate material for
honeycomb Kitaev physics only in 2014 [69]. By then a well-oiled sequence of initial exper-
iments set in which quickly established the j=1/2 nature of the local moments [70, 71] and
again the onset of zig-zag order [61], though at a slightly lower temperature of TN ≈ 7 K. But
what sets α-RuCl3 apart from the two honeycomb iridates discussed above has been a second
round of spectacular experiments that have solidified its status as a front runner to indeed ex-
hibit telltale signatures of Kitaev spin liquid physics. The first came in the interpretation of
Raman scattering data as having fermionic excitations across a broad energy and temperature
range [72–74], indicating the absence of a conventional magnetic state which only has bosonic
excitations (magnons and phonons), but allowing for a more speculative state such as the Kitaev
spin liquid which would indeed exhibit (Majorana) fermion excitations. The second in the form
of the observation of a diffuse scattering continuum [60,61] in the inelastic neutron scattering of
α-RuCl3, reminiscent of what one would expect for fractional excitations such as spinons or, in
the context of Kitaev models – spinless Majorana fermions. This observation at finite excitation
energies above a magnetically ordered ground state is what triggered the conceptual idea of a
proximate spin liquid, introduced in the previous section.



Kitaev Magnets 12.19

The most spectacular experimental result, reported by the Matsuda group in Kyoto [75], has
come in the form of a field-induced state that appears to exhibit a half-quantized thermal Hall
effect over a temperature range of 4–6 K, different orientations of the tilted magnetic field,
and an extended plateau forming as a function of the magnetic field strength, as reproduced in
Figure 10. It is precisely such a 1/2-quantized thermal Hall effect that one would theoretically
expect for the field-induced, chiral spin liquid mentioned in the theory introduction. While
gapped in the bulk, this chiral spin liquid would have gapless Majorana edge modes that would
carry precisely a 1/2 (thermal) charge quantum. While similar to electronic fractional quantum
Hall states (such as the one introduced [76] for filling fraction ν=5/2, which gained exper-
imental support through careful thermal Hall measurements [77]), an important difference is
that the electronic Hall state arises due to the formation of Landau levels (and Coulomb in-
teractions). In contrast, the chiral spin liquid state at hand is a non-trivial Chern insulator of
Majorana fermions. One important distinction between the two scenarios is that the latter can
also form in a planar field configuration, while the formation of Landau levels always requires
an out-of-plane field component. As such, it has been quite reassuring to see that the Matsuda
group could indeed reproduce their observation of a thermal Hall plateau for such an in-plane
field configuration only [78]. There is grain of salt, however, in that these results have only been
partially reproduced by the Takagi group [79], while others have openly questioned the quality
of the quantization and have instead argued that the observation of quantum oscillations in fact
points to the formation of a field-induced gapless spin liquid [80].
We are left to state that the observation of a field-induced Kitaev spin liquid remains a much-
discussed topic in the community of Kitaev material aficionados that will come to a final con-
clusion only by further experimental evidence or all-encompassing theoretical models. Or to
put it with a more positive spin – there is still much to be done here.

5.3 Other materials

Following the initial proposal [45] of the honeycomb iridates Na2IrO3 and Li2IrO3, a plethora
of alternative compositions of honeycomb iridates have been put forward and synthesized, in-
cluding H3LiIr2O6 [81], Ag3LiIr2O6 [82] and Cu3LiIr2O6 [83], in which the interlayer alkali Li
ions of Li2IrO3 have been replaced by H, Ag or Cu, respectively. In a similar vain, but starting
from Na2IrO3, we have seen the synthesis of Cu3NaIr2O6 [83] and Cu2IrO3 [84]. For readers
interested in learning more about this “second generation” of honeycomb Kitaev materials we
point to our recent review of Kitaev materials [2].
Going beyond the Jackeli-Khaliullin mechanism, much recent attention has gone into the ques-
tion whether 3d7 materials such as cobaltates can also exhibit Kitaev physics [85,86], despite the
reservation one might have that these systems will exhibit considerably smaller spin-orbit cou-
pling than the 4d and 5d compounds discussed so far. Initial experimental efforts have focused
on Na2Co2TeO6 [87, 88] and Na3Co2SbO6 [87] as potentially interesting materials, which like
their d5 counterparts both exhibit zigzag magnetic order at low temperatures [89–91]. Inelas-
tic neutron scattering measurements have been argued to show evidence for dominant Kitaev
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exchange interactions [92, 93], though this interpretation still remains under debate. Applica-
tion of a magnetic field to Na2Co2TeO6 points to a field-induced disordered state that could
potentially harbor spin liquid physics [94, 95]. For another set of cobaltates, BaCo2(AsO4)2
and BaCo2(PO4)2, which have also been considered to be potential Kitaev materials, it by now
seems increasingly likely that their original theoretical description, in terms of an XXZ J1-J2-J3
model, better captures their essential physics [96–99].

In further broadening the search for Kitaev materials, it may be worthwhile to look beyond 4d
and 5d transition metals and consider rare-earth magnets [100] whose 4f electrons are much
more localized than the 5d or 4d electrons in iridates and ruthenates and at the same time expe-
rience a considerably stronger spin-orbit coupling – thus potentially providing another path to
Kitaev materials in the future. New materials that realize antiferromagnetic Kitaev interactions,
in contrast to the ferromagnetic interactions believed to occur in the current set of known Kitaev
materials, will be particularly welcome both as a means to explore a new area of the extended
phase diagrams and for their distinct in-field properties. At the level of materials synthesis, the
search for Kitaev materials continues unabated.

If we adopt an even broader definition of what a Kitaev material (or Kitaev magnet) is by re-
quiring that a given material is (i) a spin-orbit entangled Mott insulators with local j=1/2 mo-
ments, which (ii) interact via bond-directional Kitaev-type interactions, a much broader class
of materials comes into view. In particular, these might realize lattice geometries well beyond
the honeycomb structure of the original Kitaev model. This includes, for instance, the dou-
ble perovskite Ba2CeIrO6, which turns out to be a pristine j=1/2 Mott insulator where the
moments are subject to frustrated magnetism on the face-centered cubic lattice with Kitaev
interactions [101].

6 Outlook

The field of Kitaev materials has come a long way since its inception by the introduction of the
Kitaev honeycomb model [14] in 2006 and the bold proposal in 2009 to look for its physics in
transition-metal oxides [45]. Along the way, we have seen one compound after the other be-
ing synthesized in unprecedented speed – broadening the search well beyond the initial trio of
Na2IrO3, Li2IrO3, and α-RuCl3 to other iridates, ruthenates, and even cobaltates. Experimental
exploration has kept the pace and showered us with results, some of which reporting highly
unusual observations that point to quantum spin liquid physics, such as Raman scattering data
pointing to fermionic excitations, inelastic neutron scattering data showing a broad diffusive
spectrum indicating fractionalized excitations, and a half-integer quantized thermal Hall effect.
Further experimental efforts will need to go in the validation and verification of these results
on different samples and by complementary approaches. On the theory side, the experimen-
tal discoveries have spurred lots of activities in refining the microscopic description of Kitaev
materials beyond the pure Kitaev model, devising new concepts such as proximate spin liquid
physics, and classifying Kitaev physics also in three-dimensional lattice geometries.
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Looking into the future is impossible in a field with so much activity. But one might wish for
some developments that seem promising today. On a materials synthesis side, this will include
ideas to engineer novel Kitaev materials in hybrid devices such as heterostructures of α-RuCl3
and graphene [102–104]. On the experimental side, novel probes such as two-dimensional co-
herent spectroscopy (2DCS) [105] to pick up the non-linear response of, for instance, fractional
excitations might turn out to be rather insightful. Such novel spectroscopic methods should, of
course, be complemented by theoretical activities predicting such non-linear response for the
various Kitaev magnets of interest [106].
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3.2 Complex Fermi-orbital descriptors and complex Fermi-Löwdin orbitals . . . . 19
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1 Motivation

Since the earliest days of quantum mechanics researchers have philosophized about the physical
meaning of electronic wavefunctions and have often sought to find rigorous means for interpret-
ing both localized and canonical representations of the electronic degrees of freedom and for
building more effective or efficient theories based upon localized orbitals [1–27]. Two of the
earliest papers by Pauling and Koopmans highlight the dichotomy of viewpoints. Pauling [1]
pointed out that localized sp3 orbitals helped to explain energy differences between separated
and condensed phases while Koopmans [2] showed that it was in fact canonical orbitals that
best explained energy differences involving removal or addition of electrons. The discussion
continues today with reasons, both conceptual and rigorous, for thinking in terms of both pic-
tures. And the overlapping discussion spans all fields of quantum-mechanical inquiry especially
in cases where computational constraints require consideration of quantum-mechanical formu-
lations that are not unitarily invariant within their representation. Here these problems are dis-
cussed within the self-interaction correction to density functional theory and one aspect of this
discussion partially unifies early work of Pauling [1], Wannier [3], Löwdin [4] and Edmiston,
and Ruedenberg [5].
Before introducing the Fermi-Löwdin-Orbital formulation and discussing it within the frame-
work of the self-interaction correction (SIC) to density-functional approximations (DFA), we
motivate the use of the Fermi orbital with five questions, all of which have the same answer:

1. Can the concept of Wannier functions in condensed-matter physics [3], spn hybridized
orbitals in atomic physics, localized molecular orbitals in molecular physics [4, 5] be
formulated within a universal formulation?

2. Is there a means to generalize the concept of Wannier functions, which are currently only
defined in insulating systems, to metallic systems?

3. Is there a way to create a unitary transformation, generally thought of as a discrete op-
erator represented as an N×N matrix, that explicitly depends continuously on the one-
particle density matrix?

4. Is there a way to start with a set of Kohn-Sham orbitals and define a quasi-classical “elec-
tronic geometry” that is, in some way, the reciprocal lattice of the Kohn-Sham orbitals?

5. How does one re-formulate the self-interaction correction [8] to the density-functional
approximation in a manner that assures the resulting energy is both size consistent and
unitarily invariant?

The answer to all of the above questions is that there is indeed a common construction, now
commonly referred to as Fermi-Löwdin orbitals [19, 20] that are indeed the answer to all of
the above questions. In the early 1980’s Luken and coworkers [10], due to their interest in
electron diffusion, considered the use of the so-called Fermi-exchange hole, ρ(r, r′)/

√
ρ(r), to

define a set of orthonormal orbitals that sum to the total density of an electronic system. In
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Fig. 1: Qualitative comparison of electronic structures and excitations as approximated by the
local-spin-density approximation and the self-interaction-corrected approximations to density
functional theory: The HOMO/LUMO/Band gaps (Γ ) increase. The location of the defect levels
(δ) are moved away from the conduction band. The spin excitation spectrum narrows.

the following, we discuss how such orbitals address one of the greatest challenges to the field
of density-functional theory. In this chapter I try to compare and contrast the earliest versions
of the self-interaction corrected density functional [8] with a new formalism referred to as the
Fermi-Löwdin Self-Interaction Correction. The work discussed here was originally discussed
as parts of Ref. [9,11,19–21,25,27] and involved collaborations with many authors who I thank
and refer to here and in the acknowledgments. I have attempted to discuss the work in the most
sensible way based on today’s knowledge rather than on the chronological development.

SIC-induced improvements of spectroscopies

The qualitative differences between DFA and SIC-DFA are depicted in Fig. 1. The SIC pulls
down the occupied states relative to the unoccupied states which generally leads to a gap (Γ )
that is improved in comparison to experiment. Localized excitations in a vacuum or excitons
in a wide-gap insulator (depicted as E) can be difficult to identify within LSDA calculations
as they often appear above the conduction band. In DFA-SIC, with an approximation to the
particle-hole interaction (δ), the description of such excitations can be improved. For defects
in solids, where localized levels occupy the gap, LSDA and GGA calculations tend to place
the defect levels (labeled by ∆) too close to, or overlapping, with the unoccupied conduction
band. However, SIC-LSDA pulls the defect levels down and generally predicts shallow lev-
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els in a qualitatively correct location relative to the conduction level. With inclusion of SIC
and a particle-hole interaction, an unoccupied continuum of defect levels, expected from the
Mott-Gurney theorem, begins to emerge. Consensus is emerging in regard to the differences
between SIC and DFA charge-transfer excitations. Examples suggest that DFA can dramat-
ically underestimate these energies and that an approximate self-interaction-corrected energy
with a particle-hole interaction restores the correct asymptotic form for donor-acceptor and
other charge-transfer excitations. For example, in a vacuum, these energies are found to be
close to I−A−1/R, where I is the donor ionization energy, A is the acceptor electron affinity
and R is the separation between the particle and hole. For spin excitations, determined from
DFA-based derivations of Heisenberg Hamiltonians, a large number of calculations show that
the spin-excitation energies are overestimated due to DFA’s tendency to slightly delocalize the
d-electrons, since the kinetic exchange interactions increase exponentially as the d-electrons
delocalize. Therefore inclusion or partial inclusion of self-interaction corrections lowers the
spin-excitation energies and improves agreement with experiment. While not depicted in the
picture, vibrational spectra seem to be relatively well accounted for within DFA. However,
since polarizabilities are dependent on SIC, the Raman intensities are also expected to show
some dependence on the inclusion of self-interaction corrections. Original efforts and motiva-
tions within SIC sought to improve gaps and excitations through the use of eigenvalues. As
alluded to at the very beginning of this chapter, there are conditions for which eigenvalues
provide rigorous estimates for electronic processes but not for all possible changes in orbital
rearrangements. While a generalized Koopmans’ theorem is a good goal, changes in computa-
tional speed and the need for unambiguous accuracy will definitely favor total energy difference
calculations rather than uses of Koopmans-like pictures for all possible excitations. One of the
ways that the dialogue and interpretations about self-interaction-corrected and standard DFA
eigenvalue differences needs to change is that when there are qualitative differences it often
means that delta-SCF calculations are not possible within DFA but are within SIC. That is,
a qualitatively correct electronic structure within SIC allows for total energy differences but a
qualitatively incorrect DFT electronic structure does not.
In 1981 Perdew and Zunger formulated the self-interaction correction to ensure that any approx-
imation to the density-functional would be correct in the one-electron limit. This was accom-
plished by modifying any approximation to the universal density-functional, EDFA

xc ≡ [n↑, n↓],
according to

EDFA
xc → ESIC-DFA

xc = EDFA
xc −

∑
i,σ

(
U [ρi,σ] + Eapprox

xc [ρi,σ, 0]
)
. (1)

In the above equation, the SIC (localized) orbitals {ϕiσ} are used to define orbital densities ac-
cording to: ρiσ(r) = |ϕiσ(r)|2. The terms U [ρi,σ] andEapprox

xc [ρi,σ, 0] are the exact self-Coulomb
and approximate self-exchange-correlation energies, respectively. In the original formulation by
Perdew and Zunger, the density-functional was approximated in terms of spin densities only but
the formulation is not constrained by such an assumption. Modern-day approximations to the
exchange-correlation energy generally include gradients of the spin densities which would then
require corresponding gradients of orbital densities.
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In reference to the work discussed in this section, the original PZ formulation led to a definition
for the energy functional that did not transform like the density and posited that atomic-like
orbitals might be the most appropriate set of orbitals for defining the SIC. This idea was for-
malized between 1981–1986 through the concept of localized and canonical orbitals in orbital-
dependent density functional theory. It was demonstrated that, within the constraint that the
orbitals used for constructing the SIC were orthonormal and constructed from a unitary trans-
formation on the occupied orbital space, that the orbitals which minimize the self-interaction
corrected functional satisfy the following equations [9](

Ho + V SIC
i

)
|ϕi〉 =

∑
j

λji |ϕj〉 and
〈
ϕiσ
∣∣V SIC

iσ −V SIC
jσ

∣∣ϕjσ〉 = 0, (2)

with V SIC
iσ the partial functional derivative of Eq. (1) with respect to the orbital density niσ. A

Jacobi-like approach for solution of the “localization equations” was shown to work well [9,11]
and it was determined that in analogy to Koopmans’ theorem in Hartree Fock, the eigenvalues
of the Hermitian Lagrange multiplier matrix were expected to be in good agreement with ex-
perimental electron removal energies [11]. The localized orbitals obtained from these equations
were found to be topologically similar to sp3 hybrids in atoms, alternative energy-localized or-
bitals in molecules, and Wannier functions in insulating solids. While this formulation offered
some advantages over density-functional approximations it was still not explicitly formulated
as an energy that was dependent only on the density matrix. As a result this version of the
self-interaction correction was neither unitarily invariant nor size consistent.

2 Introduction to Fermi-Löwdin orbitals and
preliminary applications

The orbitals introduced here, for the purpose of implementation of the self-interaction correc-
tion, have been proposed by Luken et al. in the early 1980s and more recently (since 2014)
considered for improving density-functional approximations. Within the group of scientists
interested in the self-interaction error to density-functional theory they are now commonly re-
ferred to as Fermi-Löwdin orbitals because they are based on the concept of the exchange hole
in Hartree-Fock, often referred to as the Fermi-exchange hole, and because their construction
relies upon a technique known as Löwdin’s method of symmetric orthormalization. To fur-
ther motivate the derivation of the Fermi-Löwdin orbitals let us algebraically manipulate the
expression for the exact exchange energy for spin σ as

Ex
σ = −1

2

∫
d~a

∫
d~r

∣∣∑
α ψ
∗
ασ(~r)ψασ(~a)

∣∣2
|~r−~a|

= −1

2

∫
d~a ρσ(~a)

∫
d~r

∣∣∑
α ψ
∗
ασ(~r)ψασ(~a)

∣∣2
ρσ(~a) |~r−~a|

(3)

= −1

2

∫
d~a ρσ(~a)

∫
d~r

[
ρσ(~r,~a)√
ρσ(~a)

][
ρσ(~a, ~r)√
ρσ(~a)

]
1

|~r−~a|

= −1

2

∫
d~a ρσ(~a)

∫
d~r

∣∣F~aσ(~r)∣∣2
|~r−~a|
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with the Fermi-orbital, defined as F~aσ(~r) ≡ ρσ(~r,~a)/
√
ρσ(~a). In the above equation, the ex-

act exchange energy has first been expressed in terms of the single-particle density matrix,
ρσ(~r,~a) =

∑
αψ
∗
ασ(~r)ψασ(~a) and then the expression within the double integral has been mul-

tiplied and divided density ρσ(~a) = ρσ(~a,~a). Examination of the expression shows that the
Fermi-Exchange hole, evaluated at any point in space, ~a, integrates to unity and that one can
think about the exchange energy density as the interaction of the total density ρσ(~a) interacting
with the Fermi-Exchange-hole density F~aσ(~r) that is redefined at each point, ~a.
Because the Fermi-Exchange-Hole transforms like the density under unitary transformations
any quantity that depends on the Fermi-Exchange-Hole is also unitarily invariant. As such, the
following reformulation of the Perdew-Zunger self-interaction was developed in terms of the
spin-density-matrix and N electronic positions according to the following prescription:

1. For a trial set of Kohn-Sham (KS) orbitals {ψασ} find a special set of Nσ positions in
space {a1σ,a2σ, . . . ,aNσσ} which provide a set of Nσ normalized linearly independent,
but not orthogonal Fermi-orbitals {F1σ, F2σ, . . . , FNσσ}. By their construction from the
density matrix, these Fermi-orbitals will always lie in the space spanned by the KS or-
bitals but are not guaranteed to span that space (For example if one defines each Fermi-
orbital in terms of the same position the N Fermi-orbitals would be identical. These
positions are now called Fermi-Orbital Descriptors (FODs).

2. When a set of N FODs, that provide a set of Fermi-orbitals that span the space of the
Kohn-Sham orbitals is found, use Löwdin’s method of symmetric orthonormalization to
transform the set of FOs to a set of localized orthonormal orbitals {ϕ1σ, ϕ2σ, . . . , ϕNσσ}
that are a unitary transformation on the KS orbitals. The resulting Fermi-Löwdin orbitals
(FLOs) depend upon the set of FODs which means that the self-interaction energy also
depends on the FODs.

3. Minimize the energy as a function of the KS orbitals and the set of FODs. The minimiza-
tion with respect to the FODs can be performed using methods that are commonly used
to optimize molecular geometries.

In this section some simple applications of this FLOSIC methodology are presented. The goal is
to introduce both real and (briefly) complex SIC orbitals and compare them within the context of
the original version of self-interaction corrections and the FLOSIC version of self-interaction
corrections. By considering simple atoms, the N2 molecule, and a cubic Brillouin zone with
uniform density the reader should gain an understanding that complex Kohn-Sham orbitals do
not require complex FODs or complex local orbitals, that there are times when symmetry con-
siderations or energy considerations argue for the use of complex orbitals, and there are times
when bond-breaking-considerations argue for FLOs that break spin symmetry. Appreciating
these issues early on will help prepare practitioners for future improvements in the theory and
implementation of the FLOSIC formulation. However the reader will also be prepared for the
discussions about complex FLOs that appears later in this chapter.
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2.1 Closed shell atoms

As a way of introducing Fermi-Löwdin orbitals and the Fermi-orbital-descriptors that define
them and as a way of attempting to encourage universality across disciplines we can start by
thinking about the 2sp3-hybrids. This also provides a simple analytical example that can be
based upon the hydrogenic orbitals. For principal quantum numbers n = 2, the hydrogenic
orbitals are given by

ψ2s(~r )=
exp−r/2 (2−r)√

32π
ψ2px(~r )=

x exp−r/2√
32π

ψ2py(~r )=
y exp−r/2√

32π
ψ2pz(~r )=

z exp−r/2√
32π

Let us then guess that the set of FODs, that minimize the energy are determined by a tetrahedron
with vertices chosen such that ψ2s(~a ) = ψ2px(~a ) = ψ2py(~a ) = ψ2pz(~a ). The condition that
allows for this equality is to choose FODS which satisfy

|ax| = |ay| = |az| = 2− |a| with |a| =
√
3|ax|

Under these conditions, it then follows that a choice for the FLOs is given by

|F1〉 =
1

2

(
|ψ2s〉+ |ψ2px〉+ |ψ2py〉+ |ψ2pz〉

)
=
∣∣ϕFLO1

〉
!

|F2〉 =
1

2

(
|ψ2s〉 − |ψ2px〉 − |ψ2py〉+ |ψ2pz〉

)
=
∣∣ϕFLO2

〉
!

|F3〉 =
1

2

(
|ψ2s〉 − |ψ2px〉+ |ψ2py〉 − |ψ2pz〉

)
=
∣∣ϕFLO3

〉
!

|F4〉 =
1

2

(
|ψ2s〉+ |ψ2px〉 − |ψ2py〉 − |ψ2pz〉

)
=
∣∣ϕFLO4

〉
!

In the above, the exclamation mark has been added because this choice of FODs leads to the
rare, but sought-after, condition that the Fermi-orbital and Fermi-Löwdin orbital are in fact
identical. A second rarity is that for this special case, the FLOs also satisfy the localization
equations within their subspace. A third rarity, and curiosity, is that if the set of four FODs is
broken up into two pairs of FODs, the Fermi-Löwdin orbitals are invariant as the vertices are
pinched toward one another. As a first illustration, calculations on some closed shell atoms will
be discussed. The appearance of hybridization is common within the FLO formalism and not
limited to sp-hybridization. In Fig. 2, the sp3d5 and sp3d5f 7 hybrids that are found for systems
like Kr and Rn are illustrated.
In columns 1–4 of Table 1, the total energies for rare-gas atoms and a few lighter atoms with
closed spin shells are presented. For completeness we also include the Hartree-Fock value of
the energy that is calculated with the self-consistent FLOSIC orbitals. In a later section, the
possibility of complex FLOs is introduced and the fifth column of this table will be discussed in
that section. In preparation for that discussion it is a useful exercise to consider the possibility
of multiplying any of the 2s/2p orbitals by

√
−1 = i. The reader can convince themselves that

the resulting FLOs would still be orthonormal and therefore a viable local orbital set within the
original formulation of the self-interaction correction.
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A (sp3d5f7)

C (sp3d5) D (sp3d5)

B (sp3d5f7)

Fig. 2: Relatively regularly polyhedra, referred to here as “flotonic solids”, can be used for
initializing FOD geometries that form a reciprocal lattice from closed shell atomic Kohn-Sham
orbital sets. In this picture, isosurface plots of the orbital densities of inequivalent FLOs for the
Radon n = 4 shells (4s4p34d54f 7, top) and n = 3 (3s3p33d5, bottom) shells. For the n = 4
shell, there are four FLOs that resemble FLO A and 12 FLOs that resemble FLO B. For the
n = 3 shell, there are six FLOs that resemble FLO C and three FLOs that resemble FLO D.
The flotonic solid for the n = 2 shell is a tetrahedron and it leads to standard sp3 hybrids.

Atom HF (Ha) Exp. (Ha) LSDA (Ha) rFLOSIC (Ha) cFLOSIC (Ha) ∆E (eV)
H -0.5000 -0.500 -0.4786 -0.4999 -0.4999 0.00
He -2.8615 -2.903 -2.8344 -2.9197 -2.9197 0.00
Li -7.4320 -7.478 -7.3432 -7.5091 -7.5091 0.00
Be -14.5715 -14.668 -14.4461 -14.7066 -14.7066 0.00
N -54.3997 -54.612 -54.1342 -54.7407 -54.7578 -0.47
Ne -128.5392 -129.053 -128.2297 -129.2805 -129.3339 -1.45
Ar -526.7984 -528.223 -525.9395 -528.5365 -528.6767 -3.82
Kr -2752.0206 -2750.1330 -2757.6071 -2758.0253 -11.39

Table 1: Total energies (in Ha) of atoms from experiment, LSDA, rFLOSIC, cFLOSIC, and the
total energy difference between the complex and real methods, ∆E = cFLOSICrFLOSIC (in
eV). The cFLOSIC energies are evaluated using the self-consistent rFLOSIC electron density.
Structures based upon the flotonic solids, described in the last section of this paper, appear
to lead to the lowest energy solutions. It is only here that the Hartree-Fock energy has been
systematically tracked as a function of the FLOSIC energy. So far it appears that the Hartree-
Fock energy decreases as the FLOSIC energy decreases. (Calculations performed by Pederson
and Withanage)

2.2 The closed-shell N2 molecule

The N2 molecule, with a triple bond, is the second strongest diatomic molecule. Its isoelec-
tronic cousin, carbon-monoxide, is slightly stronger due to similar covalent bonding and some
degree of ionic enhancement. The molecule has cylindrical symmetry. Within the FLOSIC
formulation, there are three inequivalent FODs given by ~a1s = (0.628, 0.628, 0.628), ~alone-pair =

(1.311, 1.311, 1.311) and~abanana = (0.702,−0.702, 0.000). To make contact with the discussion
of sp3 hybrids in the previous section, note that relative to the nitrogen atom, the lone-pair FOD



SIC-DFT 13.9

Mol. LSD GGA FLOSIC-LSD Hartree-Fock Expt
(PW92) (PBE) (PW92)

N2 11.58 10.49 10.24 4.87 9.84

Table 2: Atomization energies (eV) of N2 as determined from LDA(PW92), GGA(PBE),
FLOSIC-LSD(PW92), Hartree-Fock, and experiment. The same basis set is used for all calcula-
tions. For these calculations the nitrogen atoms were placed at the LDA equilibrium separation,
at R± = ±(0.598, 0.598, 0.598).

and the three-equivalent banana-bond FODs form an almost perfect tetrahedron and thereby
allow the nitrogen molecule to seamlessly dissociate into two atoms with anti-parallel spin po-
larization. The complete set of 14-FODs can be generated from the D3h symmetry operations.
Pictures of the resulting localized orbitals are shown in Fig. 3. The strongly covalent singlet N2

molecule, 1σ2
g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g , dissociates into an open-shell singlet with three unpaired 2p

electrons per atom. For comparison, the LSD(PW92) energy functional gives an atomization
energy of 11.54 eV at this bondlength and the GGA(PBE) energy functional gives an atomiza-
tion energy of 10.54 eV. In Fig. 3, the valence FODs are shown pictorially. Complex FODs
will be discussed in a later section. The real FODs 1sA± = (1σ′g±1σ′u)/

√
2, lone-pair states

on the exterior of the molecule, 2spA± = (3σ′g±2σ′u)/
√
2, and three bond-centered banana or-

bitals (e.g., ϕn =
(
2σ′g −

√
2[cos(2nπ

3
)πux + sin(2nπ

3
)πuy]

)
/
√
3, with n = −1, 0,+1 ). The

primes indicate that KS molecular orbitals of the same symmetry are mixed together by a uni-
tary transformation within each irreducible representation to minimize Eq. (1). For example the
{2σ′g, 3σ′g} are not perfect eigenstates. Instead they are determined by a nearly diagonal unitary
mixture of the {2σg, 3σg} KS eigenstates.

In the earliest implementation of self-interaction corrections to molecules a similar construction
of localized orbitals for the σ states was envisioned. However for the π-states, a symmetry
argument was made that the energy density should have the same symmetry as the total density.
This mandates using localized SIC orbitals for the π-states as |ϕ±〉 =

(
|ψπux〉+ i |ψπuy 〉

)
/
√
2.

Comments on Symmetry Breaking: Beginning with the earliest origins of the use of SIC
there have been assertions that the use of SIC breaks symmetry. Here we should mention that
there is spin-symmetry breaking, often needed in ordinary density-functional approximations,
for the description of bond breaking, which is needed for most approximations to the univer-
sal functional. It is further quite common to hear assertions that there is unphysical symmetry
breaking within the FLOSIC method. The experience of this author is that, while the inclusion
of self-interactions leads to slightly less numerical stability than is available in standard DFT
calculations, it is generally possible to find a lower energy solution that exhibits higher sym-
metry. A caution to readers is that when minor symmetry breaking is observed, it will always
be the case that a nearby symmetrical solution will be a critical point and the goal should be
to determine whether such solutions are lower in energy. Further it should be noted that when
broken symmetry solutions exist, especially for spin-ordered systems, the solutions generally
contain information about low-lying excited states.
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Centroids of real FLOs

Side view

Centroids of complex FLOs

Side view

cFLOrF
LO

-0.34     -0.27

-0.34     -0.68

-0.34      -0.68

-0.68      -0.71

-0.68      -0.71

+0.97

+0.28

+0.28

+0.83

-0.72

Unitary
transformation

Fig. 3: Valence orbital densities of N2 for several different forms of density functional imple-
mentations. In the upper panel the standard canonical orbitals are shown. The shape of these
orbitals have minimal variation regardless of functional choice (Exchange-Only, Perdew-Wang
92, PBE-GGA, Hartree-Fock, etc). When self-interaction corrections are included and orbitals
are constrained to be real, the three bonding orbitals form banana bonds. These orbitals may
be thought of as bonding combinations of sp2 atomic orbitals) and this choice is, again, weakly
dependent on the functional. However, if the constraint of reality is dropped and complex FODs
are adopted, (cFLO) the orbitals soften their variability as shown on the far right. The SIC
energy ESIC[niσ] (in eV) is indicated next to each orbital. The expansion of each rFLO and
cFLO orbital in terms of the canonical orbitals is shown. The centroids of the rFLOs (left) and
cFLOs (right) are indicated in the gray boxes. For the rFLOs, these correspond closely to the
FOD positions. However, it is not generally true that the FOD position will correspond to the
orbital centroid.

2.3 A closed shell electron gas: Wannier functions, FLOs and FOs

Very early on, Wannier discovered a set of orthonormal functions, constructed from Bloch func-
tions, that now bear his name. This work was accomplished prior to the computer age. There-
fore, to make progress Wannier considered a uniform density gas. Rather that consider filling
a Fermi-Sphere with plane waves, Wannier imagined approximating an insulating crystal by a
cubic Brillouin zone. States on the inside of the “Wannier Cube” were occupied and states on
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the outside were unoccupied. The title of his land-mark paper [3] is: Structure of Electronic
Excitation Levels in Insulating Crystals. In it he wrote down Wannier functions of the form

ω(r−Rµ) =
1√
π3

∏
i

sin
(
qF (x

i−X i
µ)
)

√
qF (xi−X i

µ)
, (4)

with Rµ = (mx,my,mz)(π/qF ) and qF is half the width of the cubic Brillouin zone. By in-
scribing the largest possible “Wannier cube” (qF = kF/

√
3) within the Fermi sphere, a specific

set of Wannier functions may be derived. It has been shown early on by this author that this
set of functions leads to a negative self-interaction correction for of the plane-wave states en-
closed within the Wannier cube. So in the exchange-only limit, a limit that was perhaps the only
tractable problem in 1937, it is highly probable that either exact exchange or the self-interaction
correction would open up a HOMO-LUMO gap. By inspection, and related to the uncertainty
principle, it is clear that the original Wannier functions get more localized as the magnitude of
the qF -vector gets larger. It is easy to verify that Wannier functions are a sub-class of the Fermi
orbitals! The exclamation mark is included here because the original set of Wannier functions
join the sp3 hybrids as being an example where the Fermi orbitals are already orthogonal to one
another. The possibility that, for any system, there is a set of FODs that leads to orthonormal
FOs has been discussed and these orbitals were crowned “the most loved localized orbitals”. To
date there are very few exact cases, possibly only two, that satisfy this criterion. A few more
comments illustrate their physical and chemical nature. At r = ~aiσ, the value of the absolute
square of the FO is identically equal to the total spin density at ~r = ~aiσ. Further, the FO as-
sociated with any position, ~aiσ, in space is normalized to unity. Second, the absolute square
of the FO is minus the exchange-hole density at r around an electron at ~aiσ. There have been
several different attempts to find localized orbitals for the free-electron gas. Most of the work
discussed in these references was in regard to the standard free-electron gas which leads to a set
of occupied plane-wave states inside a Fermi sphere.

It is hypothesized that at low enough density, the limit of Wigner crystallization, despite the
large increase in kinetic energy associated with the deformation of a spherical Fermi surface to
a non-spherical Fermi surface, the derivative of the energy with respect to n1/3 is more negative
in the limit of n→ 0 (if the SIC-energy is indeed negative as is the case for the LSDA exchange-
only functional). It was shown analytically that, in the low-uniform-density limit, a state that is
based on a full band of plane waves/Wannier functions confined within a simple-cubic “Wannier
cube” is lower in energy than the standard state composed of plane waves confined to the Fermi
sphere. The author estimates that the crossover occurs at values of rs > 35 and that the uniform
density “insulating state” (plane waves within a “Wannier cube”) is lower than the metallic state.
However with a new theorem that guarantees that one can find solutions of the N−1 electron
problem when the N electron-problem is solved, it seems that some analytical progress toward
defining FLOs for the metallic free-electron gas is now possible. Knowing this may very well
determine if the sign of the SIC-energy of a localized orbital in the low-density limit must be
negative.
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3 Fermi-Löwdin orbitals:
An existence proof and their construction

Given the infinite number of points, one expects that it would be rather easy to find a set of
Fermi-orbital descriptors for construction of the Fermi-Löwdin orbitals. Further in the previ-
ous section, two simple examples requiring no computation have been shown to immediately
provide FLOs – in fact the most loved ones.
In practice it is much more difficult to do than expected. Here we provide a proof that a solution
always exists and that every time one initial solution is determined that an avalanche of solutions
for smaller systems follows. To determine the Fermi-Löwdin orbitals one first constructs the
overlap matrix

Sij = 〈Fi|Fj〉 =
∑

α ψα(ai)ψα(aj)√
ρ(ai)ρ(aj)

=

∑
αWαiWαj√
ρ(ai)ρ(aj)

. (5)

Give the overlap matrix, an intermediate set of its eigenvectors is derived according to

S ~Tα = Qα
~Tα. (6)

The eigenvectors Qα must be greater than zero and
∑

αQα = N , the number of Kohn-Sham
orbitals. The eigenvectors, |Tα〉 are defined in terms of the Fermi orbitals according to |Tα〉 =∑

i |F~a〉, with
∑

α TαiTαj = δij and
∑

i TαiTβi = δαβ . To obtain Fermi-Löwdin orbitals
from these intermediate orbitals we first normalize them, |T ′α〉 → |Tα〉/

√
Qα, and then back-

transform them according to

|ΦFLO
i 〉 =

∑
α

1√
Qα

Tαi |Tα〉. (7)

Because the T -matrix is unitary, it is clear that in the limit of small overlap the eigenvalues
(Qα) tend to unity and that |ΦFLO

i 〉 → |F~ai〉. In the following section, several well-known cases
in physics and chemistry are discussed. However, it is more common to find that some of
the overlaps vanish and here the discussion focuses first on demonstrating that it is formally
possible to find the Fermi-orbital overlaps. Subsequent to this discussion, ideas on how to find
them for hard cases are included. To see that there is always a solution, let us start with Eq. (5)
which relates the Fermi-orbital overlap matrix to the Kohn-Sham orbitals, and multiply both
sides of the equation by

√
ρ(~ai)ρ(~aj). We find∑

α

WαiWαj =
√
ρ(ai)Sij

√
ρ(aj) =

∑
pq

√
ρ(ap) δip Spq δqj

√
ρ(aj). (8)

In the above equationWαi = ψα(ai), which reminds us that we can think of the left-hand side of
the equation as a product of two matrices. The Kronecker delta function δip is a convenient way
to write the right-hand side as the product of three matrices. Since each element of the diagonal
matrix,

√
ρ(~ap) is now expressed as a manifestly positive definite matrix Pip ≡

√
ρ(ap) δip,

Eq. (8) becomes, in matrix form,

W×WT = P× S× PT , (9)



SIC-DFT 13.13

and we can take the determinant of both sides which yields

det(W)2 = det(P)2 det(S). (10)

Inspection of the left-hand side of the equation shows that det(W) is identically equal to the
value of the many-electron Slater determinant, composed of the Kohn-Sham orbitals, evaluated
at the geometry of the Fermi-orbital descriptors (multiplied by

√
N !). The det(P) never van-

ishes except for the non-physical case that every Kohn-Sham orbital is zero at one or more FOD
positions. Therefore the determinant of the FO-overlap matrix is not zero if det(W ) is. Since
the det(W ) is the value of a Slater determinant constructed from the Kohn-Sham orbitals, a
sufficient condition for obtaining a positive definite Fermi-orbital overlap matrix is that W is
invertible. Alternatively, a sufficient condition is that a many-electron wavefunction exists for
the system. If a many-electron wavefunction exists, there must be at least one Slater deter-
minant that is non-zero somewhere. Since the product of the eigenvalues of the FO-overlap
matrix is identically equal to det(S), it follows that a set of Fermi-Löwdin orbitals must exist if
det(W )6=0. Let us now rewrite the Slater-Determinant in terms of an alternative set of orbitals
ϕi =

∑
Uiαψα. Since det(Uψ) = det(U) det(ψ), the many electron Slater determinant can, at

most, change by a phase factor

detW =

∣∣∣∣∣∣∣∣∣∣
ψ1(a1) ψ2(a1) · · · ψN(a1)

ψ1(a2) ψ2(a2) · · · ψN(a2)
...

... . . . ...
ψ1(aN) ψ2(aN) · · · ψN(aN)

∣∣∣∣∣∣∣∣∣∣
= eiθ

∣∣∣∣∣∣∣∣∣∣
ϕ1(a1) ϕ2(a1) · · · ϕN(a1)

ϕ1(a2) ϕ2(a2) · · · ϕN(a2)
...

... . . . ...
ϕ1(aN) ϕ2(aN) · · · ϕN(aN)

∣∣∣∣∣∣∣∣∣∣
. (11)

The orbitals (ϕ1, ϕ2, ...) can be any set of orbitals that are related to the Kohn-Sham orbitals
(ψα) by a unitary transformation, including the FLOs, if the determinant of W is non-zero. In
the above equation eiθ would be the determinant of the unitary transformation. It follows that, if
an N -electron wavefunction is not zero everywhere, there is at least one set of KS orbitals and
one set of FODs for any non-zero N -electron wavefunction. Therefore it is guaranteed that it is
always possible to find an initial set of KS orbitals and FODs. Once accomplished the gradient
techniques discussed in Sec. 3.1 may be used reach a stationary point. It will be important
for FLOSIC practitioners to learn when such stationary points are ground states and when they
represent excitations.

An avalanche of solutions

Because it is in fact difficult to find a starting solution, it is then worthwhile to make the most
out of every human-determined starting solution found. Here we consider the manifestations
of finding one viable solution. Since an N×N determinant can be analytically represented in
turns of a sum of N cofactors, it means that if an N×N determinant is non zero, that at least
one of its co-factors (N−1×N−1 determinants) is non zero. This means that once one initial
solution is found, a minimum of N−1 and a maximum of 2N−2 new starting solutions are
found for systems with fewer electrons. This provides a big advantage from the standpoint



13.14 Mark R. Pederson

of finding solutions. Further, once a non-positive-definite overlap matrix is found for a set of
N -orthonormal orbitals, the resulting set of FLOs almost satisfy the following expression

ϕFLO
i (aj) ≈

√
ρ(ai) δij. (12)

In terms of the ultimate goal of using quasi-classical electronic positions to better inform
density-functional development, this proof suggests an alternative criterion for choosing FODs
for defining the self-interaction correction (SIC). One could maximize the determinant of the
FO-overlap matrix and then assert that the SIC energy is being defined by a region where the
amplitude of the many-electron KS Slater determinant was large. However, for now, we stick
to the necessity of subsequent optimization of the FODs based on energy minimization.
Existence proofs provide guarantees that solutions can be found but do not necessarily provide
a set of directions on how to find them. We will return to strategies for finding initial starting
points in a later section but first turn to the equations that are needed to find the optimal set of
Fermi-orbital descriptors once an initial starting set has been found.

3.1 Optimizing Fermi orbital descriptors and Fermi-Löwdin orbitals
using derivatives

Before embarking upon this section it is important to distinguish between Fermi-orbital de-
scriptors (FODs) and Fermi-Löwdin-orbital centroids. FODs are the variational parameters.
Fermi-Löwdin-orbital centroids correspond to the center of gravity 〈ϕFLO

i |~r |ϕFLO
i 〉. The cen-

troids are determined by the full set of descriptors. Sometimes, for example for sigma bonds,
the FOD and FLOC are similar but generally this is not the case.
To efficiently use a Fermi-orbital based construction of localized orbitals in large systems it
is necessary to have an analytic expression for the derivatives of the orbital-dependent energy
terms with respect to these classical electronic positions. An additional goal for the next pe-
riod of time should be to determine second derivatives of energy with respect to the Fermi-
orbital descriptors (FODs). In the following the details that go into determining FOD gradients
are discussed. The resulting equations depend on the evaluation of N sparse N×N matri-
ces and one full N×N matrix. As such the evaluations of the FOD gradients and subsequent
optimization of the SIC-DFT Hamiltonian is not necessarily more complicated than standard
density-functional-based methods. For simplicity, spin indices on the orbitals and the spin-
density matrices are suppressed. Since the goal of this section is to develop analytic expres-
sions for transformations between various orbital sets, there are four different sets of orbitals
that need to be considered. These four sets will were initially referred to as the Kohn-Sham
orbitals (KS), the Fermi Orbitals (FO), the Intermediate Löwdin Orbitals (ILO), and the Local-
ized Löwdin Orbitals (LLO), respectively [20,21]. However, the nomenclature for the latter set
is now Fermi-Löwdin Orbitals (FLOs). Also, in the original discussions of gradients [20, 21],
the positions were imprecisely referred to as Fermi-orbital centroids rather than Fermi-orbital
derivatives. The gradient of the FLO with respect to the FOD is needed to determine the optimal
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Fermi-orbital descriptors for constructing the SIC energy. It is given by

∇aiσFiσ(r) =

∑
α ψ
∗
ασ(r)∇aiσψασ(aiσ)√

ρ(aiσ)
− Fiσ(r)∇aiσρ(aiσ)

2ρ(aiσ)
(13)

=
∑
α

Fα
iσ

(
∇aiσψασ(aiσ)

ψασ(aiσ)
− ∇aiσρ(aiσ)

2ρ(aiσ)

)
with Fα

iσ ≡
ψ∗ασ(r)ψασ(aiσ)√

ρ(aiσ)
. (14)

By construction, each of the FOs is normalized to unity and the set of Fermi orbitals spans the
same space as the KS and FLO orbitals as long as the set of FODs, aiσ, are far enough from
one another. The ILO also span the space of the KS and FLO but they are neither orthogonal
in orbital space nor normalized. The ILO are referred to as |Tα〉 in the forthcoming equations.
Their normalization, Qα, is determined by the standard (i.e. non-general) diagonalization of the
FO-overlap matrix according to

∑
j

SijTαj = QαTαi where |Tα〉 =
∑
j

Tαj |Fj〉 and Sij = 〈Fi|Fj〉 (15)

The FLO, designated by ϕk, are then constructed from the ILO and their associated eigenvalues
according to

|ϕk〉 =
∑
αj

1√
Qα

TαkTαj |Fj〉 ≡
∑
j

ϕFkj|Fj〉. (16)

Because the FO overlap matrix is real and symmetric, the inverse transformation between Fermi
orbitals and the FLO is also determined from

|Fl〉 =
∑
βn

Tβl
√
QβTβn |ϕn〉. (17)

Although no analytical use for the following equation has been identified, it is formally inter-
esting and computationally useful to note that, since the FLO are unitarily equivalent to the KS
orbitals, the Fermi orbitals may also be constructed from the FLO according to

Flσ(r) =

∑
n ϕ
∗
nσ(r)ϕnσ(alσ)√∑
n |ϕnσ(alσ)|2

≡
∑
α

Cσ
ln ϕnσ(r). (18)

In other words, the inverse transformation coefficients determined by Eq. (17) are also deter-
mined by knowing the values of the FLO at the FODs. Possibly this equality could be used to
derive something useful. Even if it is not found to be useful for analytic purposes, it is compu-
tationally useful since it shows that one can use a previous guess of FLOs to construct a new set
of FO and that the resulting matrices will be sparse. Assuming an initial set of FODs, {am},
have been determined the derivative of the total SIC energy with respect to a specific FOD is
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given by

dESIC

dam
=
∑
k

(〈 dϕk
dam

∣∣V k
SIC

∣∣ϕk〉+ 〈ϕk∣∣V k
SIC

∣∣ dϕk
dam

〉)
(19)

=
∑
kl

(〈 dϕk
dam

∣∣ϕl〉〈ϕl|V k
SIC|ϕk〉+ 〈ϕk|V k

SIC|ϕl〉
〈
ϕl
∣∣ dϕk
dam

〉)
(20)

=
∑
kl

λkkl

(〈 dϕk
dam

∣∣ϕl〉+ 〈ϕl∣∣ dϕk
dam

〉
+
〈 dϕl
dam

∣∣ϕk〉︸ ︷︷ ︸
=d〈ϕl|ϕk〉/dam

−
〈 dϕl
dam

∣∣ϕk〉) (21)

=
∑
kl

λkkl

(〈 dϕk
dam

∣∣ϕl〉− 〈 dϕl
dam

∣∣ϕk〉) ≡∑
kl

′ λkkl∆lk,m, (22)

with λkkl ≡ 〈ϕl|Ho+V
SIC
k |ϕk〉. This is a general formula that does not depend on the Kohn-Sham

orbitals being eigenstates of any Hamiltonian. Eq. (22) follows from Eq. (19) because the FO
construction does not allow a FO to escape the space of the KS or FLO. In cases where one
is determining analytic derivatives (such as Hellmann-Feynman forces), the orthonormality of
the KS orbitals and the symmetry of the Lagrange-multiplier matrix leads to a simplification of
the derivatives. In this more complicated case, the derivative of a FLO with respect to a FOD is
determined by differentiating Eq. (16) and remembering that Qα and Tαk depend on the entire
set of FODs, {~am}, for any value of k but that the FO is only dependent on its own FOD. Since
|ϕk〉 = Σαj

1√
Qα
TαkTαj|Fj〉 and remembering that only Fm depends on am, it follows that

∣∣∣ dϕk
dam

〉
= |D1,km〉+ |D2,km〉+ |D3,km〉 ≡

∑
l

∆m
kl |ϕl〉 (23)

|D1,km〉 =
∑
αj

1√
Qα

TαkTαj

∣∣∣ dFj
dam

〉
=
∑
α

1√
Qα

TαkTαm

∣∣∣dFm
dam

〉
(24)

|D2,km〉 = −
1

2

∑
αj

1

Q
3/2
α

dQα

dam
TαkTαj|Fj〉 (25)

|D3,km〉 =
∑
αj

1√
Qα

(dTαk
dam

Tαj + Tαk
dTαj
dam

)
|Fj〉 (26)

Each term |Dn,km〉 for n = 1, 2, 3 in the above equation is discussed separately:

Term 1

To determine the direct part of the FOD derivative, according to Eq. (22), the interest is in
determining the difference of the matrix elements 〈ϕl|D1,km〉 − 〈ϕk|D1,lm〉 which, using the
expansion for the FLO in terms of the FO, Eq. (16), (|ϕl〉 =

∑
βn

1√
Qβ
TβlTβn|Fn〉), can be

rewritten as

〈ϕl|D1,km〉 =
∑
α

TαkTαm√
Qα

〈
ϕl
∣∣dFm
dam

〉
=
∑
αβn

TαkTαm√
Qα

TβlTβn√
Qβ

〈
Fn
∣∣dFm
dam

〉
(27)
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The difference of these two terms is then given by

∆1
lk,m ≡ 〈ϕl|D1,km〉−〈ϕk|D1,lm〉 =

∑
αβn

TαkTαmTβlTβn − TαlTαmTβkTβn√
QαQβ

〈
Fn
∣∣dFm
dam

〉
(28)

=
∑
αβn

(
TαkTβl − TαlTβk

)
TαmTβn√

QαQβ

〈
Fn
∣∣dFm
dam

〉
. (29)

Using ϕFkj = TαkTαj/
√
Qα defined in Eq. (16), it can be rewritten in the manifestly sparse form

∆1
lk,m =

∑
n

(
ϕFkmϕ

F
ln − ϕFlmϕFkn

)〈
Fn
∣∣dFm
dam

〉
= ϕFkm

〈
ϕl
∣∣dFm
dam

〉
− ϕFlm

〈
ϕk
∣∣dFm
dam

〉
. (30)

Term 2

Term 2 always vanishes: The term that is due to the gradient of the ILO eigenvalue with respect
to a Fermi-orbital position becomes, inserting the expression for |Fj〉 given in Eq. (17)

|D2,km〉=−
1

2

∑
αj

1

Q
3/2
α

dQα

dam
TαkTαj|Fj〉=−

1

2

∑
αjβn

1

Q
3/2
α

dQα

dam
TαkTαj Tβj

√
QβTβn|ϕn〉. (31)

It may be further simplified using the orthonormality of the ILOs,
∑

j TβjTαj = δαβ ,

|D2,km〉 = −
1

2

∑
αn

1

Q
3/2
α

dQα

dam
Tαk
√
QαTαn|ϕn〉 = −

1

2

∑
αn

1

Qα

dQα

dam
TαkTαn|ϕn〉 (32)

so that, from the orthonormality, 〈ϕl|ϕn〉 = δln, it follows that

〈ϕl|D2,km〉−〈ϕk|D2,lm〉 −
1

2

∑
α

1

Qα

dQα

dam

(
TαkTαl − TαlTαk

)
= 0. (33)

Term 3

In Ref. [20, 21] it was demonstrated that the analytical expression for the vector ∆kl,m can be
determined from sparse matrix manipulations and that the memory requirements scale better
than N2. In the above equations, the contributions from the direct |D1,km〉 are analogous to the
standard Hellmann-Feynman derivative since it arises from the explicit dependence of the FLO
on the FOD. The terms involving |D3,km〉 are more complicated. Qualitatively, these terms
would be zero if there was a Hellmann-Feynman theorem or alternatively if the FLO actually
satisfied the localization equations. However, because the FO-based formulation of the PZ-SIC
already leads to unitary invariance there is neither required nor correct to force the localization
equations [9, 11] need to be satisfied. The sum of the eigenvalues Qα is always equal to the
dimension of the KS space. The eigenvalues are bounded from below by zero and above by the
dimension of the KS space. For reasonable guesses of the FODs, the eigenvalues are close to
unity. For now, to make analytical progress, it is a assumed that FODs have been chosen that
break all degeneracies of the FO-overlap derivatives, or that a small perturbation that breaks all
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degeneracies has been added to Eq. (15). Then, a first-order perturbation analysis of Eq. (15)
can be used

dTαk
dam

=
∑
β 6=α

Tβk
〈Tβ| dSdam |Tα〉
Qα−Qβ

(34)

to determine that

|D3,km〉 =
∑
j

|Fj〉
∑
α,β 6=α

〈Tβ| dSdam |Tα〉

Q
1/2
α (Qα−Qβ)

(
TβkTαj + TαkTβj

)
(35)

=
∑
j

|Fj〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(Qα−Qβ)

(
TβkTαj + TαkTβj

)( 1

Q
1/2
α

− 1

Q
1/2
β

)
(36)

=
∑
j

|Fj〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(
TβkTαj+TαkTβj

)
(Q

1/2
β −Q

1/2
α )

(Qα−Qβ)(QαQβ)1/2
(37)

= −
∑
j

|Fj〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(
TβkTαj+TαkTβj

)
(Q

1/2
α +Q

1/2
β )(QαQβ)1/2

(38)

= −
∑
n

|ϕn〉
∑
α,β>α

〈Tβ| dSdam |Tα〉
(
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

)
(Q

1/2
α +Q

1/2
β )(QαQβ)1/2

(39)

where in the last step we have used Eq. (17) and the orthonormality
∑

j TβjTαj = δαβ∑
j

(
TβkTαj+TαkTβj

)
|Fj〉 =

∑
γnj

(
TβkTαj+TαkTβj

)
TγjQ

1/2
γ Tγn|ϕn〉 (40)

=
∑
n

(
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

)
|ϕn〉. (41)

It is noted that at the end of the analysis there is no division by zero in the first-order perturbative
expressions even when the energy denominator vanishes! Now, to circle back to Eq. (22), it is
possible to evaluate the difference

∆3
lk,m ≡ 〈ϕl|D3,lm〉 − 〈ϕk|D3,lm〉 (42)

=−1

2

∑
αβ

′
〈Tβ| dSdam |Tα〉

((
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

)
−
(
TβkTαnQ

1/2
α +TαkTβnQ

1/2
β

))
(Q

1/2
α +Q

1/2
β )(QαQβ)1/2

= −1

2

∑
αβ

′ 〈Tβ| dSdam |Tα〉

(Q
1/2
α +Q

1/2
β )(QαQβ)1/2

(
TαkTβl − TαlTβk

)(
Q

1/2
β −Q

1/2
α

)
. (43)

Expanding〈
Tβ
∣∣ dS
dam

∣∣Tα〉 =∑
i

(
Tβi

dSim
dam

Tαm + Tβm
dSmi
dam

Tαi

)
=
∑
i

dSim
dam

(
TβiTαm + TβmTαi

)
(44)

and combining the above two equations together a computationally useful expression is found:

∆3
lk,m =

1

2

∑
αβi

dSim
dam

(
TβiTαm+TβmTαi

)(
TαkTβl−TαlTβk

) Q
1/2
α −Q1/2

β

(Q
1/2
α +Q

1/2
β )(QαQβ)1/2

. (45)
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The above forms reduce the expression to the calculation of quantities that are symmetric under
interchange of α and β and in terms of quantities that exhibit the sparsity. It shows that, if the
calculation is performed in terms of Kohn-Sham eigenstates, the calculation of the derivatives
may scale as poorly as N4 in the small N limit. However, if one constructs the FOs in terms
of the FLOs, the T matrix then becomes sparse and each bracketed quantity scales as N2. The
sparsity of the FLO SIC matrix elements (〈ϕk|Ho+V

SIC
k |ϕl〉 already shows that one never needs

to calculate all possible products of TαkTβl. It is also noted that one does not need to calculate
the contributions due to Ho since that contribution to the λiij matrices is always symmetric. To
determine the final derivatives one simply evalutates ∆lk,m in Eq. (22) according to

∆lk,m = ∆1
lk,m +∆3

lk,m. (46)

Once the gradients are calculated, the great expectation was that it would be as easy to step
to the local minimum as it is for gradient-based optimizations of molecular, cluster, and solid-
state geometries. While it is probably the case that the best possible optimization method has
not been found, some lessons from optimization of molecular geometries still hold. First, as is
the case for molecular geometries, the LBFGS method (implemented in FLOSIC by Jackson
and Withanage) is generally more efficient than conjugate-gradient when one is reasonably
close to a solution. Second, the use of approximations of second derivatives, determined by
atomic calculations but then used for all systems, also provides for more efficient stepping to the
minimum. Finally, the use of conjugate-gradient methods is more stable when one is far from
solution as is the case for the optimization of molecular geometries. Additional efforts are being
made to more efficiently use force information. A final comment is that since dm〈ϕk|ϕl〉

damp
= 0 for

any values ofm, k, l, and p, it is possible that higher order analytic derivatives can be determined
in the frozen density regime.

3.2 Complex Fermi-orbital descriptors and
complex Fermi-Löwdin orbitals

In one of the earliest applications of SIC to molecules, Pederson [9] suggested that the bonding
πu states should be complex to ensure that the symmetry was not broken. Early consideration
of complex orbitals by Klüpfel et al. [18] were based on an energy minimization. The Fermi or-
bital is explicitly real if it is possible to represent the Kohn-Sham orbitals as real orbitals and if
the FODs are constrained to be real. So in this sense the 2014 version of FLOSIC represented a
self-consistent real theory. This section introduces the use of complex Fermi-orbital descriptors
(FODs) in the Fermi-Löwdin self-interaction-corrected density functional theory (FLOSIC).
With complex FODs, the Fermi-Löwdin orbitals (FLOs) used to evaluate the SIC correction
to the total energy become complex. Complex FLO-SIC (cFLOSIC) calculations based on the
local spin density approximation generally produce lower total energies than those found with
FLOSIC restricted to real orbitals (rFLOSIC). The cFLOSIC results are qualitatively similar to
earlier energy-localized Perdew-Zunger SIC (PZ-SIC) calculations using complex orbitals [18].
The energy lowering stems from the exchange-correlation part of the self-interaction correction.
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The Hartree part of the correction is more negative in rFLOSIC. The energy difference between
real and complex solutions is greater for more strongly hybridized FLOs in atoms and for FLOs
corresponding to double- and triple-bonds in molecules. The case of N2 is examined in de-
tail to show the differences between the real and complex FLOs. We show that the complex
triple-bond orbitals are simple and physically appealing combinations of π and σg orbitals that
have been discussed only recently [25]. Consideration of complex FODs, and resulting unitary
transformations, underscores the fact that FLO centroids are not necessarily good guesses for
FOD positions in a FLOSIC calculation (It is for this reason that we pointed out earlier that
the use of the term Fermi-orbital centroids was imprecise). Another reason to introduce com-
plex FODs into FLOSIC is more practical. Gradient searches for optimal FOD positions fail
when the FODs obtained at a given step in the search produce Fermi orbitals that are not lin-
early independent. Transition metal systems are particularly prone to this problem because the
n = 3 orbitals have considerable spatial overlap. Complex FODs provide a larger parameter
space and lead to smoother, numerically more tractable, orbitals. Using complex FODs as start-
ing points helps avoid non-positive-definite FO-overlap matrices and makes the search process
more efficient. The complex Fermi orbitals are defined by

Fi(r) =

∑
α ψ
∗
α(ai+ibi)ψα(r)√∑

α ψ
∗
α(ai+ibi)ψα(ai+ibi)

. (47)

In the above, the FODs are allowed to be complex, ai+ibi. Evaluating the ψα at complex
positions leads to complex Fermi orbitals, Fi. The complex FOs have the same, and orthonor-
mal complex FLOs (cFLOs) have similar characteristics. In calculations using Gaussian-type
basis functions, evaluating ψα(ai+ibi) gives rise to positive exponential terms that can cause
numerical difficulties. Because the terms appear in the numerator and denominator, they can be
managed if handled carefully. Within a Gaussian-orbital construction, the wave function is ulti-
mately decomposed in terms of polynomials (which become complex in cFLOSIC) and Gaus-
sian envelope functions of the form exp(−β(ai+ibi−A)2), where A usually coincides with the
position of an atom. The real part of the exponent becomes −β(|ai−A|2−|bi|2). In general,
the values of β span many orders of magnitude ranging from 0.02 to approximately 50Z10/3 for
atomic number Z. There is a combination of the quantities {β,A,ai+ibi} that leads to the most
positive exponent Γmax that can be determined by sweeping through all combinations of Gaus-
sian decay parameters, atomic positions, and FOD parameters. Γmax can then be subtracted from
all the exponents in the Gaussians prior to evaluating the exponential. This effectively multi-
plies the numerator and denominator of Eq. (47) by the same number and ensures that none of
the terms diverge prior to division. This has no effect on the computer time. A similar approach
will be needed for plane-wave basis functions (which as noted elsewhere will be interesting for
finding FLOs for metallic model systems). In such cases, the envelope functions would have the
form exp(kbi). Again, multiplying and dividing each plane wave by the appropriate largest ex-
ponential will ensure that there are no numerical problems associated with exponentiation. For
starting guesses, it is possible to choose the imaginary part of the FOD such that:|bi| < |ai−A|,
where A is the nuclear position closest to ai, to ensure decaying functions. One way to do this
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is to choose bi = cos(α)|A−ai|u with u =
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
. For the

cFLOSIC results shown below, the FOD positions, ai+bi, are updated using a gradient opti-
mization scheme. To optimize the complex FOD positions, we began by adding small random
imaginary parts to the optimized (real) FODs from the corresponding rFLOSIC calculation.
For each atom or molecule studied, 100 random complex FOD sets were generated. For each,
the cFLOs were created and the corresponding SIC energies were calculated. The set with
the lowest SIC energy was chosen as the starting point for a gradient optimization using en-
ergy gradients corresponding to both the real and imaginary parts of the FODs. The gradients
corresponding to the imaginary parts required computing a numerical derivative of the orbital
with respect to the component. The basis sets and integration grids used in the rFLOSIC and
cFLOSIC calculations reported here were identical.

3.3 Atoms

Table 1 presents the total energies of atoms from Hartree-Fock LSDA, rFLOSIC and cFLOSIC
calculations in Hartree (Ha) units. The energy difference cFLOSIC – rFLOSIC is also shown
in electron volts (eV) for each atom. For most of the atoms in Table 1 the LSDA total energy
is higher than the experimental reference energy, while the rFLOSIC and cFLOSIC total en-
ergies are lower. Thus both rFLOSIC and cFLOSIC correct the atomic total energies in the
right direction, but often over-correct. The rFLOSIC and cFLOSIC total energies are identi-
cal up to Be. After that, the cFLOSIC energies are always lower. For Ne, Ar, and Kr, for
example, the cFLOSIC energy is lower by −1.45, −3.82, and −11.39 eV, respectively. The
Jackson-Withanage analysis can be used to identify how close the FLOSIC energies are to the
SIC calculations with full variational freedom. They previously compared the FLOSIC method
against the traditional implementation of PZ-SIC with full variational freedom (where a lo-
calization condition is invoked, known as the SIC-LE method) and have shown that rFLOSIC
orbitals satisfy the LEs (symmetric Lagrange multiplier matrix) up to carbon. In real FLOSIC,
the number of constraints is 3N where N is the number of occupied orbitals while the num-
ber of constraints in real orbital SIC-LE is N(N−1)/2. We find that orbitals from cFLOSIC
(where the number of constraints is 6N ) satisfy the LEs (Hermitian Lagrange multiplier matrix)
for complex orbital SIC up to Ne with or without freezing the 1s FOD. We understand that this
is due to the added variational freedom due to the complex FODs.
Since the rFLOSIC and cFLOSIC total energies in Table 1 are evaluated based on the same total
electron density, the DFT parts of the energies are the same and any differences are entirely due
to the SIC corrections. In Ref. [25] the values of the corrections for the valence electron local
orbitals of selected first row atoms are shown. Values for n = 3 and 4s local orbitals for Zn are
also shown. The corrections are shown for both the majority and minority spin channels (for
the spin-polarized cases). For the first-row atoms, the local orbitals are hybrids of 2s and 2p

canonical orbitals. The Zn n = 3 local orbitals are hybrids of 3s, 3p, and 3d canonical orbitals.
The canonical orbitals contributing most to each FLO are listed in the table. The magnitude of
the orbital corrections increases across the first row atoms as the orbitals become more compact
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−
∑

i UC [ni] −
∑

i Uxc[ni]
Atom rFLOSIC (eV) cFLOSIC (eV) rFLOSIC (eV) cFLOSIC (eV)

Ne -296.03 -288.49 267.44 258.44
Ar -704.76 -683.55 634.10 609.07
Kr -2046.10 -1962.77 1842.74 1748.02

Table 3: The total self-Hartree and self-exchange-correlation contributions to the total SIC
energy (in eV) for the closed-shell atoms Ne, Ar, and Kr. The cFLOSIC energies were obtained
from calculations using the self-consistent rFLOSIC electron densities.

with increasing atomic number. For example, for the Be 2s orbital, the correction is −0.17 eV
in both theories. For the N 2s2p3 FLO, the correction is −0.60 and −0.71 eV for rFLOSIC and
cFLOSIC, respectively. For the Ne 2s2p3 FLO the corrections are−1.02 and−1.20 eV. For the
n = 3 Zn FLOs the corresponding corrections are −1.35 and −1.58 eV and for the n = 4 FLO,
−0.10 and −0.11 eV. The difference between the cFLOSIC and rFLOSIC corrections depends
on the nature of the FLO. For s-type FLOs, the corrections are equal in the two approaches.
The difference increases with increasing p-character in the FLO. For example, for the 2s and
2sp FLOs of Be and B, the corrections are essentially equal for the cFLO and rFLO. For the
C 2sp2 FLOs, the cFLO correction is −0.02 eV lower than for the rFLO. For the N 2s2p3

FLO, the cFLO correction is −0.11 eV lower than for the rFLO. Similarly, for the minority
spin FLOs of F the 2sp2 cFLO correction is −0.04 eV lower than for the rFLO, while for the
Ne 2s2p3, the cFLO is −0.18 eV lower than the rFLO. Finally, for the Zn 3s3p33d5 FLOs, the
cFLO corrections are −0.23 eV lower than the rFLO. Figure 2 shows iso-surface plots of the
rFLO orbital densities, n = ϕ2. (Only the density for first FLO listed for each atom is shown.)
For the cFLOs, iso-surface plots of ϕ2

R−ϕ2
I may be found in Ref. [25]. These plots highlight an

effective smoothing of the FLOs, referred to as lobedness by Perdew, that may be an important
issue for higher-level functionals. The SIC corrections include self-Hartree and self-exchange-
correlation components. The former are negative, while the latter are positive. Table 3 shows
the total self-Hartree and self-exchange-correlation parts of the SIC corrections separately for
the representative atoms Ne, Ar, and Kr. The self-Hartree contributions are more negative in
rFLOSIC in every case. This implies that the rFLOs are more localized than the cFLOs. On the
other hand, the self-exchange-correlation energies are less positive for cFLOSIC. The combined
corrections are more negative in cFLOSIC than rFLOSIC, as seen in Table 1. This implies that
the cFLOSIC – rFLOSIC difference between the self-exchange-correlation components must
be more negative that the self-Hartree difference is positive. For Ne, for example, the rFLOSIC
self-Hartree component is 7.54 eV more negative, while the cFLOSIC overall correction is
1.45 eV more negative (cf. Table 1). Thus, the magnitude of the self-exchange energy for Ne
is 8.99 eV smaller in cFLOSIC than rFLOSIC. Allowing complex degrees of freedom does
not result in more localized atomic orbitals, but instead decreases the magnitude of the self-
exchange-correlation energy of the orbitals.
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Molecule HF LSDA rFLOSIC(g) rFLOSIC cFLOSIC ∆ E (eV)
Li2 -14.8693 -14.7237 -15.0561 -15.0561 -15.0561 0.00
N2 -108.9803 -108.6923 -109.8645 -109.8581 -109.9087 -1.38
C2H2 -76.8431 -76.6250 -77.6106 -77.6077 -77.6402 -0.88
CO -112.7756 -112.4706 -113.6548 -113.6503 -113.6997 -1.34
HCN -92.9016 -92.6541 -93.7304 -93.7244 -93.7662 -1.14
CH4 -40.2103 -40.1187 -40.7021 -40.7003 -40.7014 -0.03
C2H6 -79.2537 -79.0720 -80.1912 -80.1878 -80.1900 -0.06
NH3 -56.2173 -56.1067 -56.7742 -56.7729 -56.7779 -0.14
LiF -106.9827 -106.7022 -107.7350 -107.7340 -107.7796 -1.24
HCl -460.0940 -459.3330 -461.7452 -461.7451 -461.8655 -2.61

Table 4: Total energies (in Ha) of molecules in Hartree-Fock (HF), LSDA, rFLOSIC(g),
rFLOSIC, and cFLOSIC and the total energy difference ∆E = cFLOSIC – rFLOSIC (in
eV). The cFLOSIC energies are evaluated using the self-consistent rFLOSIC electron den-
sity. rFLOSIC(g) corresponds to energies relaxed with FLOSIC while rFLOSIC corresponds to
LSDA equilibrium geometries. rFLOSIC and cFLOSIC results, at LSDA geometries, are from
Ref. [25].

3.4 Molecules

For completeness HF, LSDA, rFLOSIC, and cFLOSIC total energies calculated for selected
molecules, taken from Ref. [25], are shown in Table 4 in Ha units. The energy difference
cFLOSIC – rFLOSIC is shown in the last column in eV. The rFLOSIC total energy is consid-
erably lower than the LSDA energy for each molecule in the table and the cFLOSIC energy is
lower than rFLOSIC in all cases except Li2. The complex/real energy difference depends on the
nature of the molecule. For molecules involving only C H or N H bonds the differences are
less than 0.15 eV . The differences are much larger for molecules with multiple bonds (C C,
C N, C O, N N, O O). For example in N2, which has a triple bond, the cFLOSIC energy is
1.4 eV lower than for rFLOSIC. For O C O, with two double bonds, the energy difference is
2.8 eV. The largest energy difference is obtained for HCl, where the cFLOSIC energy is 2.61 eV
lower than the rFLOSIC energy. Cl is the heaviest atom appearing in our set of molecules and
the cFLOSIC energy of the isolated Cl atom is 3.34 eV lower than for rFLOSIC.

Atomization energies were calculated as the difference in the total energies of the molecules
(Table 4). The results (in eV) for LSDA, rFLOSIC, and cFLOSIC are shown in Table 5, along
with reference experimental values from which zero-point energies have been removed in or-
der to be directly comparable to the computed values. The cFLOSIC atomization energies are
sometimes larger and sometimes smaller than in rFLOSIC, but mostly larger than the LSDA
values. Exceptions where the cFLOSIC atomization energies are smaller than in LSDA are for
F2 and O3. Compared to the reference atomization energies, the FLOSIC methods have signifi-
cantly smaller mean errors (MEs) than LSDA. The ME for LSDA, rFLOSIC, and cFLOSIC are
1.92, 0.63, and 0.85. rFLOSIC and cFLOSIC also have smaller mean absolute errors (MAE)
than LSDA. The MAE for cFLOSIC (1.21 eV) is somewhat worse than for rFLOSIC (1.08 eV).
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Molecule Ref. LSDA (eV) rFLOSIC (eV) cFLOSIC (eV) ∆E (eV)
Li2 1.05 1.01 1.03 1.03 0.00
CH3 13.27 14.69 14.62 14.65 0.03
CH4 18.21 20.03 20.26 20.21 -0.05
C2H6 30.83 34.40 34.72 34.62 -0.10
NH3 12.88 14.60 14.49 14.16 -0.39
LiF 6.03 6.80 5.70 6.18 0.48
F2 1.65 3.42 1.70 0.92 -0.78
HCl 4.64 5.26 5.09 5.02 -0.07
C2H2 17.52 19.90 18.92 19.65 0.73
HCN 13.57 15.59 14.35 14.95 0.60
CO 11.32 12.95 11.14 11.80 0.66
CO2 17.00 20.46 16.11 17.58 1.47
N2 9.84 11.53 10.25 10.70 0.45
O3 6.42 10.47 4.73 4.71 -0.02
ME 1.92 0.63 0.85
MAE 1.92 1.08 1.21

Table 5: Atomization energy (in eV) of molecules in LSDA, rFLOSIC, and cFLOSIC, and dif-
ference ∆E = cFLOSIC – rFLOSIC. The reference atomization energies are zero-point energy
corrected experimental values. Mean error (ME) and mean absolute error (MAE) for each
method relative to the reference are also shown. The cFLOSIC values were obtained from cal-
culations using the self-consistent rFLOSIC density. Calculations performed by K. Withanage.

It is instructive to compare LiF and HCl which both have an outermost valence of 8 paired
FODs that form a distorted tetrahedron. For LiF, small energy differences (0.0025 in the case
of LiF) occur depending on whether the base or the vertex of the tetrahedron is found between
the two atoms. For LiF there are three nearest FODs to the Li atom. For HCl the tetrahedron is
inverted and there is only one FOD in close proximity to the hydrogen atom. This distinction
is due to changes in the energy splitting between the occupied s and unoccupied p states on the
column-1 element.

3.5 Returning to N2: complex vs. real FLOs

Pictured in Fig. 3 are isosurface plots of the valence orbital densities for N2. The figure in-
cludes the canonical orbitals (top), the rFLOs (left) and the cFLOs (right) from real and complex
FLOSIC calculations, respectively. The figure displays the SIC energy ESIC[niσ] for each or-
bital, as well as the expansion of the rFLOs and cFLOs in terms of the canonical orbitals. (Note
that the definition of the canonical orbitals varies slightly between the rFLOSIC and cFLOSIC
calculations. Primes are used to indicate this difference.) The centroids of the rFLOs and cFLOs
are also shown in the figure. For the rFLOs, the centroids are close to the FOD positions. The
canonical 2σu, 1πux, 1πuy and 3σg orbitals shown in Fig. 3 have positive SIC energy. The SIC
energies are all negative for the rFLOs and cFLOs. The centroids of the rFLOs associated with
the triple bond are positioned at the vertices of an equilateral triangle in a plane perpendicular
to the bond axis and passing through its midpoint. This is indicated in the gray inset on the left
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side of Fig. 3. For the rFLOSIC case, the centroids are close to the optimized FOD positions.
The topology of the triple-bond rFLOs is similar to that of the localized orbitals discussed by
Ruedenberg and Edmiston and also by Klüpfel et al. The optimal cFLOs on the right of the
figure appear very similar to the complex local orbitals shown by Klüpfel et al. The FLOs
corresponding to the lone pairs in N2 are similar in the rFLOSIC and cFLOSIC calculations,
although the cFLOs are slightly more localized.
The SIC energies shown in the figure indicate that the cFLOSIC total energy is lower than
the rFLOSIC total energy due to the SIC energies of the triple-bond orbitals. Interestingly,
one cFLO has a less negative SIC energy than any of the three equivalent rFLOs, but this is
compensated by a much larger difference for the other two orbitals that have a more negative
correction than the rFLOs. The cFLO optimization thus accepts an energy penalty for one
orbital in order to realize a larger energy reduction for the other two.
It is interesting to examine the unitary transformation connecting the rFLOs and cFLOs to the
canonical orbitals. This is shown in Fig. 3. The entries indicate that the three-triple bond
rFLOs are symmetry-related mixtures of the 2σg and πx and πy canonical orbitals, essentially
equivalent to bonding combinations of sp2 hybrids. For the cFLOs, one triple bond orbital is
a complex combination of the πx and πy orbitals yielding a cylindrical density. The other two
are σ-π hybrids resulting from a complex π orbital and a real 2σg orbital. To the best of our
knowledge, these simple expressions detailing the cFLOs have not been published previously.
The two lone pair orbitals have complex coefficients that essentially correspond to a real number
times the same complex phase factor for all three. Thus, these orbitals can effectively be taken
as real, showing that the cFLOSIC optimization may result in real orbitals, when these minimize
the energy. The centroids of the cFLOs are also shown in the panel on the right of Fig. 3. For
the triple bond orbitals, these fall on a line passing through the bond center perpendicular to the
axis. It is worth noting that the centroid of the cylindrical orbital is at the bond center where
the π orbitals have zero amplitude. The Fermi orbital corresponding to a real FOD placed at
the center of the bond would therefore contain zero contribution from the π orbitals. This is a
reminder that orbital centroids do not always coincide with FOD positions.
To summarize, a scheme to introduce complex local orbitals (cFLOs) into the Fermi-Löwdin
orbital self-interaction correction (FLOSIC) method has been derived and tested.. The scheme
rests on allowing the Fermi orbital descriptors (FODs) to be complex. FOD optimization is
accomplished via gradient optimization as in the case of FLOSIC restricted to real orbitals
(rFLOSIC) and requires only the additional calculation of energy gradients with respect to
the imaginary part of the FODs. We demonstrated the complex FLOSIC (cFLOSIC) method
through applications to an array of atoms and molecules. The results of these applications are
similar to those obtained in complex PZSIC calculations. The cFLOSIC solutions are generally
lower in energy than in rFLOSIC. We showed that the optimal cFLOs are less localized than the
analogous rFLOs, as judged by having a less negative self-Hartree energy. The lower cFLOSIC
total energies thus arise from reducing the magnitude of the self-exchange-correlation energy
of the cFLOs relative to the rFLOs. Analyzed in terms of individual orbital corrections, we
find that the cFLOs lower the energy more for strongly hybridized orbitals and, in molecules,
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for double and triple bond orbitals. The cFLOSIC calculations reported here make use of the
self-consistent occupied orbitals from corresponding rFLOSIC calculations. A next step will be
to make the cFLOSIC calculations fully self-consistent. Self-consistent cFLOSIC calculations
will result in somewhat lower total energies that those presented in this section, but we do not
expect significant changes to any of our conclusions. It is also of interest to perform cFLOSIC
calculations with more sophisticated functionals such as PBE and SCAN. Finally, the results
presented in this section indicate that SIC calculations on molecules with multiple bonds or
transition metal atoms may be particularly affected by the use of complex orbitals.

4 Downward quantum learning:
Tricks for finding starting configurations

We now discuss a search method which we refer to as downward quantum learning. As dis-
cussed above, finding initial FODs that lead to a positive definite Fermi orbital overlap matrix,
a necessity for obtaining FLOs, is difficult especially for f -electron systems and open-shell
systems regardless of whether they are isolated or in molecules or solids. For systems where
charge-transfer exists between a cation and an anion, the Kohn-Sham orbitals obtained from a
starting calculation are generally inadequate for starting a calculation. The systems just men-
tioned are of course the systems for which self-interaction corrections are most needed. In an
earlier section an existence proof was provided. Let us now think about the manifestations of
this proof.

Existence of FLOs for the free-electron metallic state

It is generally not known how to find FODs and FLOs for metals. It is however known that
Wannier functions for a metallic state do not exist and this is why Wannier functions are in fact
a subset of FLOs. While there has not yet been a demonstration for an exact set of FLOs for the
metallic Brillouin zone, or Fermi-sphere, of the free-electron gas, we argue here that one exists.
Wannier’s demonstration in 1937 showed Wannier functions exist for a cubic (insulating) Bril-
louin zone and this chapter as well as earlier works by the author showed here these functions
coincide with FLOs. Therefore, there is now hope, in fact a guarantee, for a semi-analytic so-
lution of this problem. Once can start by inscribing a Fermi Sphere inside a Wannier Cube and
then successively remove one FOD and one FLO, from outside the sphere, and inside the cube
until only the Fermi Sphere remains.

Existence of FLOs for all Atoms

With respect to atoms it is generally quite easy to find starting positions for any rare-earth atom
and more generally for any atom/ion that has closed-shell spin states and a qualitatively correct
shell filling. The theorem proved above stated that for each of these “easy” solutions, one can
determine initial FODs for lighter atoms by removing one orbital and one FOD because at least
one N−1 dimensional cofactor has to be non-zero if the N -particle determinant is non zero.
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This means that by mining the quantum information contained within the resulting FLOs for
the heaviest rare-earth atom (Z=118, Oganesson) it is possible to obtain starting configurations
for every atom in the problem. In the following we demonstrate this capability. A recent
demonstration of principle is repeated here.

The existence proof reiterated above shows that viable FOD positions and complementary
Kohn-Sham orbitals do indeed exist if the many-electron wavefunction does not vanish every-
where. This solution is especially useful for open-shell atoms and ions from the d- and f -blocks
of the periodic table.

Nomenclature for FLO issues

To improve the nomenclature used for discussing the FLOSIC results and formulation, we out-
line five technical problems that arise. Three of these inconveniences are unique to FLOSIC
while the others are also present in standard DFT calculations. However, these issues have both
positive and negative attributes. Their presence often hampers a calculation technically when
the user is only interested in the ground state. However they also provide physical insights
for cases where energy- or electron-transfer is of interest. We refer to these issues as Fermi-
Orbital-Challenges (FOCs). First, the ability to start calculations by finding an initial set of
FODs and a Kohn-Sham density matrix that leads to a positive definite FO-overlap matrix must
be fully systematized (FOC1). FOC1 arises for all cases where density-functional algorithms
give qualitatively incorrect shell fillings – a problem that is prevalent in atoms containing 3d/4s
states and 4f /5d states. FOC2 is exemplified by systems that have multiple low-lying com-
peting electronic configurations which, depending on whether one is thinking in terms of DFT
or WF, are either Janak-like multi-reference systems respectively. For such systems there are
generally non-integer occupation numbers associated with the Kohn-Sham orbitals that oscil-
late from iteration to iteration. For standard DFAs, this leads to poor convergence in systems
as simple as the Nickel atom or Carbon dimer and results that are not easy to interpret. Within
FLOSIC, rather than finding a single fractionally occupied solution, multiple low-energy sta-
ble solutions with integer occupancy are determined. This feature readily provides the correct
pictures for problems such as charge transfer. When multiple solutions exist there are gener-
ally incompatibilities between the FODs for one solution, and Kohn-Sham orbitals for other
solutions. These incompatibilities complicate the determination of starting solutions. While
FOC2 is a significant frustration to users, it also identifies systems that may have interesting
low-energy excitations which is generally relevant in energy applications. FOC3 presents the
user with multiple stable states that are sometimes incorrectly associated with incorrect ground
states but most likely contain information about collective excitations such as plasmon oscil-
lation. Other aufbau-violating solutions associated with FOC3 may provide information about
x-ray excitations. A spin-conserving example of FOC3 is charge transfer excitations between a
halide and alkali in the stretched bond limit (NaCl→ Na+1Cl−1) or the charge transfer excita-
tions in light-harvesting systems. The latter are aufbau violating solutions at the DFT-level but
may be aufbau consistent solutions within FLOSIC. FOC3 is always a clear indicator of mul-
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tiple low-energy excitations or multi-reference character. It is a frustration when the primary
interest is on the ground state but is advantageous when one is interested in studying molecular
processes especially those related to luminescence and fluorescence in, for example, rare earths.
FOC4 and FOC5 are related to symmetry breaking in the density-functional formulation. It is
generally accepted that the description of stretched bonds or dissociated atoms, within density-
functional pictures, requires spin symmetry breaking with excess spin-up density on one atom
and excess spin-down density congregating on an otherwise symmetrically equivalent atom.
Such antiferromagnetic pictures lead to total densities that do not break the overall symmetry
of the molecular system. Analogous symmetry breaking occurs within systems that are treated
with FLOSIC (FOC4). Further when a partial open-shell structure occurs (ozone is a decep-
tively simple case), FLOSIC predicts spin separation but standard functionals do not. The co-
nundrums presented by FOC4 and FOC5 are similar but one is driven by the self-interaction cor-
rection rather than the energy functional it self. As such we label FOC4 and FOC5 as separate
challenges. Issues arising from FOC3–FOC5 raise the spectre for better descriptions of low-
energy spin-conserving (FOC3) and spin-changing (FOC4–FOC5) excited states. The count-
down paradigm discussed below is based on the rigorous existence proof presented above and
provides a new tool for constructing self-consistent aufbau-violating states for systems where
occupation number constraints might fail. The procedure does not circumvent FOC2 issues.
Such issues will continue to require improvements on the iterative process and/or additional
attention to occupation-number dependent FLOSIC formulations.
Generally speaking, closed shell atoms are the simplest cases for finding viable starting FODs.
Yet even in those cases locating useful FOD starting points can be difficult. To give an indication
of the challenge, we share our experiences for finding FODs in Radon (Z=86), We used a Monte
Carlo approach to generate many sets of FOD positions for individual shells corresponding to
the various principal quantum numbers n of the occupied orbitals. Each shell had a radius equal
to the average radial expectation value of the corresponding orbitals. A total of n2 positions were
randomly placed on each shell (a spin unpolarized atom was assumed). This approach resulted
in viable FODs in fewer than 8 percent of the trials. For other heavy atoms, especially those
between La and Hg, the success rate was even lower. Using a solution for Rn, removing FODs,
and starting from default atomic density-functional potentials, allowed successful calculations
for a small number of atoms (Eu, Yb, Au–Rn). This success, while limited, highlighted the
need for the solution discussed below.
Here we present a well-defined way to determine initial FOD positions to start a calculation.
The method is based on a proof given below that a set of viable FOD positions has the property
that a Slater determinant of the KS orbitals is non-zero when evaluated at the FOD positions.
The ability to extract FLOs and FODs from clearly closed-shell systems and then systematically
investigate on-atom Kossel-like solutions in the actinides and lanthanides is an additional need
that the method described here addresses. For the calculations reported here, we used a legacy
version of the NRLMOL software package that utilizes optimized cartesian gaussian basis sets
and a highly accurate numerical integration scheme. The version employed was developed
approximately 20 years ago to assess the possibility that scalar relativity could significantly
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impact second-order anisotropy energies in 4d molecular magnets. The possibility of using
f -electrons for post-processing of anisotropy Hamiltonians was incorporated at that time and
basis sets for nuclear charges between Ba–Rn were generated using the techniques. Shortly
after the MMQT group formed at UTEP in 2019, methods for performing self-consistent-field
calculations with f -electrons were completed. These methods used integral transforms, albeit
for gaussians. The Fermi-Löwdin methodology was simultaneously inserted into the legacy f -
electron code. However in contrast to the earlier versions of the FLOSIC code, the formulation
was implemented in a manner that preserved the group-theoretical methods that are part of
the legacy NRLMOL codes. We viewed this as a necessary addition from the standpoint of
efficiently finding FODs for heavy open-shell atoms. Group-theoretical techniques simplify the
optimization of the basis sets for elements between Rn and Og (Z=86–118).

4.1 Initializing FODs for principal quantum numbers with n=2, 3, and 4

In the motivation we asked if there are lattices that are reciprocal to an arbitrary set of Kohn-
Sham orbitals. For finite systems, we refer to these lattices, or polyhedra, as flotonic solids. We
have used the Td group operations to search for a set of equi-radial FODs with Td symmetry that
lead to a set of 16 points on the unit sphere with a large determinant. Td symmetry allows for
equivalent shells of 1, 4, 6, 12, and 24 points, respectively. To find a set of 16 points we have
followed the prescription of placing 12 points on the unit sphere and found that, in addition to
the dodecahedron there are many sets of 12-site shells that are compatible with Td symmetry
for which the 12×12 matrix constructed from l=2 and l=3 spherical harmonics leads to non-
singular matrices. We listed approximately 20 of these solutions and then combined them with
the 4-site Td shells to create a family of 16-site FODs. We then re-ordered the family of 16-site
solutions according to the determinant of the 16×16 W-matrix and found that there are two
solutions with anomalously large determinants. The solution with second largest determinant
turned out to be the best solution for the radon atom, strengthening the hypothesis that one
should use spherical harmonics to find universal sets of FODs. It appears that a key figure of
merit of a point group is that it must not contain the inversion operator since the presence of
inversion prevents mixing of states with opposite parity. The octahedral point group, Oh, has
two subgroups of order 16 which might provide additional solutions for the n=4 shells, but
so far we have not found such solutions. As known from the periodic-table and represented
in Table 6, noble-gas atoms correspond to atoms that contain subsets of electronic states that
share a principal quantum number and have a similar atomic radius. For each principal quantum
number n, there are n2 hydrogenic-like orbitals with n2 =

∑n−1
l=0 (2l+1).

We then can consider the lowest n2 spherical harmonics on a unit sphere. Depending on the
value of n this yields a sequence of matrices of dimension n2 =

∑n−1
l=0 (2l+1), or 1, 4, 9, and

16 for n=1, 2, 3, and 4, respectively. For each of these cases a W-matrix can be constructed
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according to

W=


Y00(â1) Y1,−1(â1) Y1,0(â1) Y1,1(â1) · · · Yn−1,−n+1(â1) · · · Yn−1,n−1(â1)
Y00(â2) Y1,−1(â2) Y1,0(â2) Y1,1(â2) · · · Yn−1,−n+1(â2) · · · Yn−1,n−1(â2)

...
...

...
... · · · ... · · · ...

Y00(ân2) Y1,−1(ân2) Y1,0(ân2) Y1,1(â1) · · · Yn−1,−n+1(ân2) · · · Yn−1,n−1(ân2)


n2×n2

(48)

The goal then is to pick sets of n2 points on a unit sphere that, at the very minimum, guarantee
that no spherical harmonic with angular momentum less than or equal to n−1 vanishes at all
points but with the stricter and more difficult condition that the above matrix is non-singular.
A systematic and fast way to find sets of points is to generate all sets of points on a cubic grid
(nx, ny, nz) with |nx| < 7 (higher numbers do not change the outcome), and then normalize
them onto a unit sphere. One can then search over all point groups to find high-symmetry
arrangements of 4, 9, or 16 points. These can then be used to evaluate the determinant of W
in Eq. (48). The sets corresponding to the largest determinants then suggest the best sets of
FODs for electrons sharing the same principal quantum number. The effect of these sets on the
determinant of the FOD overlap matrix is shown in Table 7. The best 9-electron set located
so far, consisting of staggered triangles, gives sp3d5 hybrids and probably limits the symmetry
of the overall atomic spin density to C3v. The optimal shells obtained for element 118 (Og)
are presented and we show how these shells can be used to generate starting points for all
other noble-gas atoms. The tetrahedral (Td) shells, which describe sp3 (n=2, n2=4) systems
have been well understood for quite some time. However, the sp3d5 (n=3, n2=9) and sp3d5f 7

(n=4, n2=16) shells are significantly more difficult to determine as random guesses and are
deserving of additional discussion.
As a representative example, we describe the series of calculations beginning with the self-
consistent closed-shell calculation for Ar (Z=18) that features filled 3s and 3p sub-shells for
the outer electrons, in addition to completely filled n=1 and n=2 shells. For a shell with 4

electrons, FODs can be arranged at the vertices of a tetrahedron. The resulting FLOs are sp3

hybrid orbitals. We adopt radii of 1.73 and 0.45 Bohr for the n=2 and n=3 tetrahedrons, respec-
tively. We then computed the total energy self-consistently with the LSDA density functional,
obtaining a PZSIC total energy of −529.9441 Ha, and an orbital energy for the highest occu-
pied molecular orbital (HOMO) of −0.6141 Ha, corresponding to a predicted removal energy
(the negative of the HOMO energy) of 16.7 eV. The corresponding value in an uncorrected
LSDA calculation is 10.4 eV. The experimental ionization potential (IP) for Ar is 15.8 eV.
These results reflect the well-known effect of self-interaction in atoms that the HOMO eigen-
values are smaller than ionization energies. Calculated LSDA and FLOSIC removal energies
and corresponding experimental IPs are shown in Table 8.
From the self-consistent Ar calculation, one of the outermost FODs and one of the occupied
Kohn-Sham orbitals are removed in order to create starting FLOs for a FLOSIC calculation for
Cl. Similarly, two outer FODs and two KS orbitals are removed (of the same spin) to create
a starting point for a FLOSIC calculation for S. This process was repeated for all the atoms
of the second row. Predicted removal energies obtained from the calculations can be found in
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Config. ~A Sym. Nequiv ROg RRn RXe RKr RAr RNe RHe

s (0, 0, 0) N/A 1 0.0000 0.000 0.00 0.00 0.00 0.00 0.00

sp ~A1 Td 4 0.0356 0.074 0.12 0.19 0.44

spd ~A1
2 Td 6 0.1012 0.18 0.33

spd ~A2
2 C3V 3 0.1012 0.18 0.33

spdf(A) ~A1
3 Td 4 0.2808 0.43

spdf(B) ~A2
3 Td 12 0.2808 0.43

spdf − ~A1
3 Td 12 0.6138

spdf − ~A2
3 Td 4 0.6138

spd(C) − ~A1
2 Td 6 0.9045 1.00 0.85 0.60

spd(D) − ~A2
2 C3V 3 0.9045 1.00 0.85 0.60

sp − ~A1 Td 4 2.4656 2.47 2.28 1.92 1.68 1.07

Table 6: Reasonable starting FODs and radii for noble gas atoms. Symmetrized sets of unit-
vectors that maximize the n2×n2 determinant of spherical harmonics on a unit sphere are given
by: ~A1 = (1, 1, 1)/

√
3, ~A2

2 = (1, 0, 0) and ~A2
2 = (−1,−1, 2)/

√
6, ~A1

3 = (1, 1, 1)/
√
3 and ~A2

3 =
(−0.8789,−0, 3373,−0.3373). Based on Linnett-like structures for inverting FOD-positions
for opposite spins, the highest symmetry for the spin-densities in Ne and Ar is Td while the
symmetry of the density can be Oh. Similarly the highest symmetry for the spin-density for
Kr–Og is C3v while the symmetry for the total density can be D3d. A variety of lower point
group symmetries that would be compatible with incomplete shells of angular momenta are
possible in other ions. The flotonic solids that result from these vectors and the resulting n2

hybrids (for n=3 and 4) are illustrated in Fig. 2. While the shells for each principal quantum
number close to resolved, the relative orientation of each shell is not resolved at the time of
this writing. Standard optimization methods are not good at addressing such questions and
additional automation is required for perfecting that part of the FOD optimization.

Table 8, where it can be seen that the FLOSIC predictions are much closer to the experimental
values. Similar downward-quantum-learning calculations have been performed starting from
Og (Z=118), Rn (Z=86) and Ne (Z=10) [27].

Here, we have provided an existence proof that connects viable FOD positions to a non-zero
value for the many-electron wave function constructed from the Kohn-Sham orbitals for the
system and evaluated at the FOD positions. The proof relies only on the properties of determi-
nants and it guarantees that if one finds viable FODs for a system of N electrons, it is always
possible to find viable FODs for electronic systems with fewer electrons (in each spin channel),
using a countdown algorithm that selectively removes FODs and orbitals from the N -electron
solution. For any set of orbitals unitarily equivalent to the KS orbitals, the algorithm identi-
fies at least N solutions of lighter systems constructed by successive removal of orbital-FOD
pairs. It is very possible that successive removal of FLO-FOD pairs will generate a total of∑N−1

n=1

(
N
n

)
= 2N−2 initial solutions for atoms containing between 1 and N−1 electrons of a

specific spin. We demonstrated that the algorithm can successfully generate FODs for lighter
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Z det1/2 Z det1/2 Z det1/2 Z det1/2 Z D1/2 Z D1/2

59 0.0003 58 0.0003 57 0.0004 56 0.0004 55 0.0004 54 0.0008
53 0.0016 52 0.0033 51 0.0044 50 0.0059 49 0.0077 48 0.0101
47 0.0133 46 0.0171 45 0.0190 44 0.0210 43 0.0225 42 0.0241
41 0.0265 40 0.0284 39 0.0294 38 0.0333 37 0.0363 36 0.0377
35 0.0391 34 0.0403 33 0.0416 32 0.0426 31 0.0438 30 0.0453
29 0.0523 28 0.0600 27 0.0667 26 0.0740 25 0.0846 24 0.0967
23 0.1065 22 0.1298 21 0.1518 20 0.1606 19 0.1753 18 0.1943
17 0.2109 16 0.2289 15 0.2433 14 0.2638 13 0.3861 12 0.5644
11 0.8240 10 0.8683 9 0.9111 8 0.9456 7 0.9702 6 0.9870
5 0.9901 4 0.9943 3 0.9974 2 0.9993 1 1.0000

Table 7: Determinant (det1/2) of the Fermi-orbital overlap matrix for electronic configurations
of Og+Q. The fact that the determinant for every electronic configuration converges monotoni-
cally from the determinant of the neutral Og atom to 1 guarantees that it is possible to generate
relatively physical starting points for any charge and spin state of any atom.

atoms from a solution for the next-largest noble gas atom. This has been accomplished for all
atoms below Ne and Ar, and for select atoms beginning from solutions for Rn and Og (Z=86)
and Og (Z=118). The success of the algorithm across the periodic table demonstrates its utility
and numerically confirms the theorem repeated above and first demonstrated in Ref. [27]. For
atoms in d- and f -blocks of the periodic table, additional integration of existing and additional
techniques are progressing. These techniques include: (1) single-shot Z-dependent scaling of
the starting orbitals using a combination of the data in Table 1 and 6, and shell-by-shell virial-
like scaling, (2) optimization of FODs at the frozen density, (3) facile but more sophisticated
potential biasing of starting potentials that are discussed in Ref. [22] and [25], (4) new machine-
learning strategies that aid predicting which of the 2N solutions identified from the countdown
method are most likely to succeed, and (5) capitalizing on the ligand-induced changes in atom
coordination that ultimately define the allowable 3d and 4f valence configurations in atoms.
We expect that complete success in generating self-consistent solutions using the countdown
algorithm will require scaling the starting orbitals obtained for the heavier atoms. Because of
the larger Z, the wave functions of the closed-shell atoms are too compact for the lighter atoms.
This can cause problems during the self-consistent iteration process that cause the calculation
for the lighter atom to fail. An alternative approach will be to reduce the value of the nuclear
charge of the lighter in several steps from that of the closed-shell atoms to its correct value,
while generating self-consistent wave functions at each steps. The algorithm can be used to find
a variety of solutions for lighter atoms, corresponding to various occupations of the orbitals.
This means that the method could be used to generate a database of starting FODs for atoms
throughout the periodic table, in various charge states and oxidation states, beginning from a
solution for element Og, Z=118. With such a database automated starting points of viable FOD
positions could also be created for molecules and other condensed systems.

The method proposed here succeeded by considering sets of 4, 9, or 16 points created by sym-
metry equivalent normalized vectors and was then used for the common special cases for par-
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Atom LDA FLOSIC EXPT. Atom LDA FLOSIC EXPT.
Ar 10.38 16.71 15.76 Ne 13.54 24.35 21.56
Cl 8.30 14.16 12.97 F 10.34 20.20 17.42
S 6.24 11.91 10.36 O 7.40 16.39 13.62
P 6.34 10.95 10.49 N 8.39 15.76 14.53
Si 4.65 8.89 8.15 C 6.11 12.46 11.26
Al 3.05 6.98 5.98 B 4.10 9.36 8.30
Mg 4.78 8.49 7.65 Be 5.59 10.84 9.32
Na 3.11 6.46 5.14 Li 3.17 6.92 5.39
Rn 7.98 11.90 10.75 Og 7.44 11.20 8.9
At 6.68 10.52 9.22 Ts 5.99 9.89 7.70
Po 5.35 9.19 8.42 Lv 4.95 8.67 8.64
Bi 5.40 8.70 7.29 Mc 5.11 8.42 5.68
Pb 4.18 7.35 7.42 Fl 3.96 7.25 8.53
Tl 2.96 6.10 6.11 Nh 2.83 6.07 7.31

Table 8: Calculated (−1)HOMO energies from DFT-LDA and FLOSIC, and experimental ion-
ization energies of atoms (in eV). Ionization energies for the superheavies may be found on
the web. Some of the early experimental results are inconsistent with our FLOSIC results and
trends expected from the Rn row.

tially filled electronic shells. It points further to an improved method for rapid characterization
of other solutions. If we loop over point groups, one can then create sets of equivalent points that
are compatible with that point group. Given a set of Q points one can ask whether there are ex-
actly Q combinations of the first 16 spherical harmonics that are linearly dependent on the unit
sphere. When this condition holds FOC1 has been bypassed for a specific partially filled shell
of angular momenta sharing the same principal quantum number. A further improvement for
this case would be to hypothesize that the local coordinate system should be oriented such that
some of the Q points coincide exactly with the zeros of the missing spherical harmonics. This
point is expected to be particularly useful for molecular magnets for which local Jahn-Teller
distortions, defined by the ligand structures, mandate shell fillings with holes in the frontier d-
or f -shells.

4.2 Challenge: Simulating tetra-anionic Mn12-Acetate in water

Learning how to control solar-induced splitting of water into oxygen and hydrogen would have
immense value from the standpoint of the world energy and climate concerns. For computa-
tional materials scientists and physicists to help with this problem there are many multi-scale
problems that need to be solved and quantum-mechanical methods for understanding these
problems will require scientists to accurately simulate highly charged molecular systems in
aqueous environments. Typical problems that occur when simulating a single ion near water is
that fractionally occupied states occur at the Fermi level with the excess electron spread over
the solvent (water) and the solute (anion). In Table 9 we show energy differences, calculated
within PBE-GGA, for a chemical system containing four excess electrons. In going from S0
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State Molecular Configuration Energy (eV/H2O)
S0 Mn12O12(COOH)16(H2O)4 + 4H2O + 4e- 0.00
S1 Mn12O12(COOH)16(OH−)4 + 4H2O +2H2 0.95
S2 Mn12O12(COOH)16(H2O)4 + 4(OH−) +2H2 1.34
S3 Mn12O12(COOH)16(H2O)4−4 + 4(OH) +2H2 2.62
S4 Mn12O12(COOH)16(H2O)4 + 4H2O + 4e- 0.00

Table 9: A cyclic catalytic water-splitting reaction sequence. The energy scale for various
tetra-anion configurations are somewhat consistent with the experimental observation that four
electrons are needed to split water. Full scale simulation on this type of problem requires
corrections to the LUMO levels of solvated anions in water. Recent work suggests that FLOSIC
will correct for such issues. [23]

to S1, terminating water molecules expel neutral hydrogens which then form molecular hydro-
gen leaving behind the isoelectronic hydroxyl anions in place of the waters. In going from S1

to S2, waters of solvation replace the hydroxyl anions which returns the molecule to its initial
state. In the following two steps the electrons are transferred back to the molecule and the neu-
tral hydroxyl radicals could convert into additional molecular oxygen and hydrogen. This is a
straw-man hydrogen production cycle which may or many not hold water when put to rigorous
computational testing. But the problem with computationally testing this hypothesis is, due to
the self-interaction error, the HOMO level of the tetra-anion is predicted to be 6 eV above the
LUMO of the surrounding molecule. FLOSIC calculations performed on the fragments suggest
that inclusion of SIC for the entire system would place the tetra-anionic HOMO level very close
to the LUMO level of the surrounding water molecules. Such conditions would be ideal for
solar-induced hydrogen production. Problems such as this and other problems associated with
highly charged anions in solution are one of many fertile areas for exploration with FLOSIC
over the coming years. Additional discussion of this problem may be found in Ref. [23].

5 Summary and outlook

Including self-interaction corrections to density functional approximations (SIC-DFA) has been
a long-standing challenge especially from the standpoint of maintaining the inherent efficiency
of DFA methods in applications to molecular systems and devices. Early applications of SIC-
DFA, based upon solutions of the localization equations [9, 11], succeeded in addressing the
lack of unitary invariance in SIC-DFA and introduced a Koopmans’ theorem [11]. We have re-
viewed a new implementation of the self-interaction-correction [19], now referred to as Fermi-
Löwdin-Orbital Self-Interaction Correction (FLOSIC), that restores much of the formal struc-
ture expected from a DFA. Use of the density matrix, constructed from Kohn-Sham orbitals,
and a physically appealing classical electron geometry, determines a density-dependent N×N
unitary transformation that connects the occupied Kohn-Sham orbitals to the ideal localized or-
bitals for evaluation of the self-interaction correction. In the small N limit the FLOSIC method
is at least N times slower than DFA. However, at the time of this writing, recent progress that
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capitalizes on the intrinsic sparsity of the problem significantly reduces the cost. A downward-
counting algorithm and existence proof have demonstrated applicability to all atoms in the pe-
riodic table [27]. This paper also provided an interesting connection between the FLOs and the
amplitude of a Slater determinant composed of Kohn-Sham orbitals and raised the possibility
of stronger connections between density-functional and wave-function pictures. Together with
a sparse implementation of FLOSIC, there is now the possibility that the cost of a FLOSIC cal-
culation, relative to LDA/GGA/SCAN, will have the exact same scaling as DFT and be within
a factor of 10 of the cost. For example a soon to be reported application to a tri-anion-water
system, CrIII(C2O4)3:(H2O)117, reduced the overhead from a factor of 1300 to, at most, 30.
The discussion here on the Fermi-Löwdin formulation of the self-interaction correction has
attempted to provide the reader with the knowledge needed to embark upon their own origi-
nal investigations. While the author opines that self-interaction corrections might decrease the
need for spin-density-gradients in functionals, this has definitely not been proven here nor else-
where. Complete analysis still requires a significant focus on implementation and efficiency
but there are good reasons to expect that, as the FLOSIC community grows, new algorithms
for implementation will be invented and the number of applications amenable to inquiry within
the FLOSIC formalism will grow. The use of the FLO formalism is not limited to SIC and
one can imagine applying the formulation to other quantum theories where unitary invariance
is lacking. What is clear at this time is that basis set quality is seldom the accuracy limiting
step in electronic structure calculations and it is probably still not time for the community to
seriously invest their time in considering uncertainties due to basis sets. I have also provided
my perspective on the status of the FLOSIC formulation and have tried to avoid encumbering
the reader with too much cross comparison to other methods. The reader interested in works
by others is encouraged to perform literature searches for the researchers mentioned in the ac-
knowledgements. Finally, readers that are inspired to apply FLOSIC to problems that they are
interested in, are encouraged to visit https://www.flosic.org to download the latest
version of the publicly available FLOSIC code. Within that distribution, or via email to this
author, it will also be possible to obtain a portable version of the legacy code which has some
learning modules attached to it.
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1 Introduction

Coupled cluster theories are widely-used to study many-body systems in nuclear physics, molec-
ular quantum chemistry and solid state physics. This chapter introduces fundamental concepts
of coupled cluster (CC) theory and discusses its application to the electronic structure theory
problem. The present chapter serves as a primer to this topic. A more general overview of
coupled cluster theory and its applications in quantum chemistry can be found in Ref. [1]. For
an introduction to the theoretical formalism from the perspective of theoretical chemistry we
recommend Refs. [2–5]. During the past decades a large body of well-written scientific articles
and text books on coupled cluster theory has been published. Many of these can be found in the
bibliographies of Refs. [1–4].

Coupled cluster theory was first proposed by Fritz Coester and Hermann Kümmel in the field
of nuclear physics [6, 7]. Jiri Cizek and Josef Paldus introduced the method for electron corre-
lation [8, 9]. Since then, coupled cluster theory has successfully been applied to study many-
electron Hamiltonians for a wide range of systems, including atoms, molecules and even solids.
At the same time, many of the most popular model Hamiltonians including lattice Hamiltoni-
ans and the uniform electron gas have also been explored and used to benchmark the accuracy
of coupled cluster theories. It is therefore fair to say that CC theories are among the most
successful approaches to treat many-body problems in quantum physics.

2 Fundamental concepts of coupled cluster theory

A fundamental approach to solve the time-independent Schrödinger equation for many-electron
systems is based on finding accurate approximations to the true many-electron wavefunction
|Ψ〉. An important challenge of these so-called wavefunction based methods revolves around
finding a representation of the many-electron wavefunction that is at the same time compact
and accurate in describing electronic correlation effects. Here, compactness not only means
that the number of parameters used in the expansion of the wavefunction is within the limits
of the available computational resources and scales with a favorable power law with respect to
the system size. It also implies that the evaluation of the required matrix elements of quan-
tum mechanical operators can be carried out in a computationally efficient manner. Successful
wavefunction based methods typically optimize the balance between complexity in the ansatz
and efficiency in evaluating matrix elements or expectation values. In this regard, for example,
variational quantum Monte Carlo techniques achieve a good balance by combining stochastic
integration techniques with a sophisticated many-body correlation function referred to as Jas-
trow factor. As will be explained in the present section, coupled cluster methods employ an
Ansatz for the wavefunction that benefits significantly from an effective factorization of the
many-electron wavefunction that can be systematically improved.
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2.1 Hartree-Fock theory and Slater determinants

Hartree-Fock theory employs the simplest possible Ansatz to the many-electron wavefunction
that is antisymmetric under exchange of two coordinates or orbitals, as required for a fermionic
wave function. For an N -electron wavefunction in real space the Hartree-Fock wavefunction is
given by a Slater determinant constructed from one-electron (Bloch) orbitals with an appropriate
pre-factor to ensure normalization such that

ΦHF(x1, . . . ,xn) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕn(x1)

... . . . ...
ϕ1(xn) · · · ϕn(xn)

∣∣∣∣∣∣∣ . (1)

The HF determinant is constructed from a set of orthonormal one-electron orbitals, ϕi(x), that
are obtained by minimizing the Hartree-Fock energy, whereby all the coupling terms of the
Hamiltonian between the Hartree-Fock determinant and the corresponding single-excited Slater
determinants vanish, which is also referred to as Brillouin’s theorem. Here x is a compound
index of spatial and spin coordinate. In periodic systems the index i is a compound index of the
Bloch wave vector ki used to sample the first Brillouin zone and the band index ni. Hartree-
Fock (HF) theory can be regarded as a low rank tensor approximation to the many-electron
wavefunction, employing an antisymmetrized outer product of single electron orbitals to ap-
proximate the many-body wavefunction. Hence, by construction, HF theory neglects electronic
correlation effects that cannot be captured using products of one-electron functions only. For
brevity we will use to the following notation for the HF wavefunction |0〉 =

∣∣ΦHF
〉
.

2.2 The exponential Ansatz

The CC approximation is based on an exponential Ansatz for the electronic wavefunction [8, 1]
acting on a single Slater determinant |0〉,

|ΨCC〉 = eT̂ |0〉 , (2)

where the cluster operator consists of second-quantized neutral excitation operators

T̂ =
∑
µ

tµτ̂µ, tµ ∈ C (3)

with µ labeling excitation configurations. For instance, when considering only singles and
doubles excitations (Coupled Cluster Singles Doubles (CCSD)) the unrestricted CCSD cluster
operator is given by

T̂ =
∑
a,i

tai â
†
aâi +

1

4

∑
a,b,i,j

tabij â
†
aâ
†
bâj âi (4)

where the indices in {a, b, c, . . .} denote virtual or unoccupied spin orbitals and {i, j, k, . . .}
denote occupied spin orbitals. Orbitals are occupied or unoccupied with respect to the reference
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Slater determinant |0〉, which may come from a HF calculation. The excitation operators are
defined such that they create excited determinants when acting on |0〉 such that

â†aâi |0〉 =

∣∣∣∣∣ai
〉

â†aâ
†
bâj âi |0〉 =

∣∣∣∣∣abij
〉
. (5)

Note that the following equation is satisfied.

〈0| â†aâi = 0. (6)

We note in passing, that the nth-order CC ansatz including up to the nth-order excitation opera-
tor is exact for n-electron systems. One advantage of the different approximations to the cluster
operator is that they constitute a hierarchy, which starting from the one-particle HF approxima-
tion, allows for a systematic treatment of the quantum many-body effects that are captured with
an increasing level accuracy by employing CCSD, CCSDT and CCSDTQ theories. Calculated
ground state properties typically exhibit decreasing errors using higher levels of theory.
Here, we will restrict the discussion to the case of CCSD. Applying the Coupled Cluster (CC)
ansatz to the time-independent many-body electronic Schrödinger equation results in

H̄ |0〉 = e−T̂ ĤeT̂ |0〉 = ECC |0〉 (7)

where ECC is the coupled cluster energy, and we have implicitly defined the similarity trans-
formed Hamiltonian H̄ . The state |ΨCC〉 is parametrized by the coefficients tµ, which can be
obtained by projection. In the case of CCSD one projects the Schrödinger equation onto the
singles and doubles sectors of the Hilbert space

ECC = 〈0| H̄ |0〉 (8)

0 = 〈0| â†i âaH̄ |0〉 (9)

0 = 〈0| â†i â
†
j âbâaH̄ |0〉 . (10)

Equations (8–10) are a set of coupled non-linear equations in terms of the amplitudes tai and tabij
that are solved by iterative methods.

2.3 Hausdorff expansion

The similarity transformed Hamiltonian H̄ = e−T̂ ĤeT̂ occurring in the coupled cluster equa-
tions is an effective and non-Hermitian Hamiltonian, which can be expressed using the Haus-
dorff expansion

H̄ = Ĥ+
[
Ĥ, T̂

]
+

1

2!

[[
Ĥ, T̂

]
, T̂
]

+
1

3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂

]
+

1

4!

[[[
[Ĥ, T̂ ], T̂

]
, T̂
]
, T̂

]
+ · · ·

(11)
Recalling that Ĥ in second quantization is given by

Ĥ =
∑
pq

hpq â
†
pâq +

1

4

∑
pqrs

gpqrs â
†
pâ
†
qârâs (12)



Coupled-Cluster Theory 14.5

and [
â†pâq, â

†
aâi
]

= â†pδqaâi − â†aδipâq, (13)

it follows that Eq. (11) terminates exactly after the fourth nested commutator. We stress that the
set of indices {p, q, r, s, . . .} denotes both occupied or unoccupied orbitals.
Substituting the expression for H̄ in the equation for the coupled cluster energy yields

ECC = 〈0| H̄ |0〉 = 〈0| Ĥ |0〉+ 〈0| ĤT̂ |0〉 = EHF + 〈0| Ĥ
(
T̂2 +

1

2
T̂ 2
1

)
|0〉 . (14)

Note that this equation simplifies significantly using the Brillouin theorem (〈0| Ĥâ†aâi |0〉 = 0),
the fact that Ĥ can de-excite at most two electrons and due to 〈0| â†aâi = 0. Consequently, only
singles and doubles amplitudes contribute to the CC energy. If higher-order excitations in the
cluster operator are considered, their contribution to the energy is only indirect by the amplitude
equations. We note that the correlation energy is implicitly defined as the difference between
the exact ground state energy and the HF energy EHF. Similarly to the energy, the singles and
doubles amplitude equations defined in Equations (9–10) can be obtained.

2.4 Beyond the ground state

A common way to obtain excited states based on the CCSD theory is through diagonalizing
the similarity transformed Hamiltonian H̄ in a suitable subspace of the Hilbert space [10].
We present the neutral variant of this approach, also called electronically excited equation of
motion, for which the number of electrons is conserved. In consequence, restricting from now
on again the analysis to singles and doubles excitations, the ansatz for an excited state R̂ |ΨCC〉
is

Q̂ĤR̂ |ΨCC〉 = Q̂ĤR̂eT̂ |0〉 = ERQ̂R̂ |ΨCC〉 (15)

where
R̂ = r0 +

∑
a,i

rai â
†
aâi +

1

4

∑
a,b,i,j

rabij â
†
aâ
†
bâj âi , rµ ∈ C (16)

is a linear excitation operator, ER is its excitation energy and Q̂ is the projector onto the singles
and doubles excitations manifold of the Hilbert space, this is,

Q̂ =
∑
a,i

∣∣∣∣∣ai
〉〈

a

i

∣∣∣∣∣+
1

4

∑
a,b,i,j

∣∣∣∣∣abij
〉〈

ab

ij

∣∣∣∣∣ . (17)

Equation (15) is equivalent to a commutator equation only involving H̄ and the excitation en-
ergy difference ∆ER between ER and the correlated ground state ECC,[

Q̂H̄, R̂
]
|0〉 = ∆ER Q̂R̂ |0〉. (18)

It is worthwhile noting that the commutator on the left-hand-side means that only connected
diagrams need to be considered in the expansion. Equation (18) motivates the name equation
of motion due to its resemblance to the time-dependent Heisenberg picture differential equation
for the time evolution of an operator.
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2.5 The coupled cluster doubles equations

For computer implementations it is necessary to rewrite the above equations only in terms of
one- and two-electron integrals. Here we seek to give the final result of the corresponding ex-
pressions for CCD theory only. We note that in the case of, for instance, the uniform electron
gas (UEG) Hamiltonian, due to the symmetry, single excitations are absent. Therefore we con-
sider CCD a particularly instructive case to learn more about CC theory. The cluster amplitudes
tabij are obtained by solving the quadratic amplitude equations

〈
ab
ij

∣∣ e−T̂2ĤeT̂2||0〉 = 0 that in a
spin-orbital basis read

tabij =
1

εi+εj−εa−εb

(
〈ij||ab〉+ 〈cj||kb〉tacik + 〈ci||ka〉tbcjk + 〈cd||kl〉tdblj tacik

+
1

2
〈cd||ab〉tcdij +

1

2
〈ij||kl〉tabkl +

1

4
〈cd||kl〉tcdij tabkl

− 〈cj||ka〉tbcik − 〈ci||kb〉tacjk − 〈cd||kl〉tdalj tbcik

+
1

2
〈cd||kl〉

[
tablj t

cd
ik − tabli tcdjk + tdbij t

ac
kl − tdaij tbckl

] )
.

(19)

In the above equation repeated indices are summed over. We recall that the indices i, j, k and
l label occupied orbital indices, whereas a, b, c and d label virtual orbital indices. ε correspond
to the HF one-electron energies and the anti-symmetrized two-electron integrals are defined by
〈ij||ab〉 = 〈ij|ab〉 − 〈ij|ba〉 , where

〈ij|ab〉 =

∫
Ω

∫
Ω

dx1dx2

ϕ∗i (x1)ϕ
∗
j(x2)ϕa(x1)ϕb(x2)

|r1 − r2|
. (20)

In the above expression the spin-orbitals ϕ depend on the space-spin coordinate x = (r, σ) and
the spatial coordinates are integrated over all space. Equation (19) is solved for the amplitudes
in an iterative manner by updating the amplitudes in every iteration using the right-hand side
of Eq. (19). Convergence can be accelerated using standard techniques such as direct inversion
of the iterative subspace (DIIS) [11]. Once the amplitudes are obtained, the CCD correlation
energy can be calculated by

ECCD
c =

∑
ijab

1

4
〈ij||ab〉tabij . (21)

2.6 Size consistency and extensivity

We now discuss size extensivity and the convergence of computed ground state energies to the
thermodynamic limit (TDL). These concepts are highly relevant for the application to solids. In
contrast to molecular systems, properties of solids have to be calculated in the thermodynamic
limit to enable a direct comparison to experiment. The TDL can be approached using; for
example, (i) sampling of the Brillouin zone with increasingly dense k-point meshes and in
periodic boundary conditions, (ii) studying increasingly large supercells in periodic boundary
conditions, or employing (iii) increasingly large clusters with open boundary conditions and/or
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embedding methods. Once the thermodynamic limit is approached with respect to the number
of k-points or the number of atoms in the cluster, extensive properties such as the correlation
energy per atom are converged to a constant value.

An important advantage of truncated coupled cluster theories compared to, for instance trun-
cated configuration interaction methods is their size consistency. Size consistency is a concept
of particular importance in quantum chemistry, which judges if the calculated quantities have
the correct asymptotic size dependence or not. For extensive quantities, like the (correlation)
energy, a given size-consistent method should yield the asymptotic K1 dependence where K is
the number of wave vector sampling points in the Brillouin zone [12]. Obviously, the methods
with incorrect asymptotic Kα dependence of α < 1, like the truncated configuration-interaction
methods, lead, in the thermodynamic limit, to the total energy per unit cell equal to that of
the HF mean-field approximation. The size consistency of coupled cluster theories can also
be understood via either the diagrammatic criteria [13] or the supermolecule criterion [4]. It
was argued that approximate post-HF correlation methods cannot capture the variational and
size-consistent properties simultaneously [14].

The thermodynamic limit is approached as N → ∞, where N is the number of particles in
the simulation (super-)cell while the density is kept constant. Once the thermodynamic limit
is approached, correlation energies per atom need to be converged to a constant for periodic
systems, corresponding to α = 1. Finite size errors are defined as the difference between the
TDL and the finite simulation cell results. However, the convergence of calculated properties
to the thermodynamic limit is very slow, often exceeding the computational resources of even
modern supercomputers due to the steep scaling of the computational complexity of most post-
HF methods with respect to system size. We stress that many properties such as the binding
energy of molecules on surfaces converge slower than their counterparts calculated on the level
of mean-field theories such as density-functional theory (DFT). This originates from the fact
that correlated post-HF methods capture long-range electronic correlation effects such as van
der Waals interactions explicitly. Even though the corresponding long-ranged contribution to
the electronic correlation energy is small compared to short-ranged correlation energy contri-
butions, the accumulation of weak van der Waals interactions can become a non-negligible
contribution to the property of interest. Different strategies have been developed to correct for
finite size errors that are defined as the difference between the thermodynamic limit and the
finite simulation cell results. These strategies often involve extrapolation methods or range-
separation techniques. Local theories that employ correlation energy expressions depending
on localized electron pairs, can approximate correlation energy contributions of long-distant
pairs using computationally more efficient yet less accurate theories. Alternatively local theo-
ries can account for electron pairs that are disregarded based on a distance criterion by using
an R−6-type extrapolation [15]. Canonical implementations of periodic post-HF methods em-
ploy scaling laws for extrapolations to the thermodynamic limit that are based on an analogue
rationale [16–18]. Auxiliary field quantum Monte Carlo theory employs finite-size corrections
that are based on parametrized density functionals obtained from finite uniform electron gas
simulation cells [19].
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2.7 Caveats of coupled cluster theory

2.7.1 Basis set convergence

The many-electron wavefunctions introduced above are expanded in a basis of Slater determi-
nants constructed from (unoccupied) Hartree-Fock orbitals. The computational complexity of
canonical coupled-cluster methods scales polynomially with respect to the number of unoccu-
pied orbitals. Therefore the ability to span the relevant parts of the Hilbert space with as few
orbitals as possible is crucial for the implementation of efficient periodic correlated methods.
In practice all calculated quantities suffer from a basis-set incompleteness error that is caused
by the truncation of the employed unoccupied orbital manifold. The optimal choice of the un-
occupied orbital manifold minimizes the incompleteness error of the calculated quantity in a
controllable manner.
Some of the most widely-used basis sets for the expansion of unoccupied orbitals include plane
waves and Gaussian-type orbitals (GTOs). As an illustration of their respective characteristic
properties we consider two limiting cases, the uniform electron gas and an atom in a box. From
the perspective of the uniform electron gas, plane waves are the natural choice of basis to expand
one- and many-electron wavefunction quantities. Plane waves are eigenfunctions of the kinetic
energy operator, and exhibit the same periodicity as the simulation cell. In ab initio calculations,
these plane waves also have a number of appealing features. A single cutoff parameter that
limits the kinetic energy of the included plane waves is used to systematically expand the plane
wave basis to completeness which is free from basis-set superposition errors (BSSE) and linear
dependencies. However, there are obvious drawbacks to plane wave expansions. They lack
reference to the nature of the atomic environment, having equal basis coverage throughout the
cell. This can lead to a substantial waste of computational effort when studying an atom or
molecule in a box [20].
For atoms or molecules, GTOs form a very compact orbital basis. Their widespread use in
the field of quantum chemistry has lead to standardized tabulated basis sets of increasing size
and flexibility [21, 22]. Orbitals beyond the core and valence shells are included to account for
appropriate polarization of the atomic wavefunctions in bonding environments, and to provide
a description of correlation effects. Basis sets are commonly arranged in hierarchies so that
they can be systematically expanded to allow for consistent and extrapolatable convergence.
Gaussian-type orbitals are used in a range of periodic electronic structure codes. However,
the introduction of such local basis sets also leads to several shortcomings such as basis set
superposition errors (BSSE) and linear dependencies of diffuse atom-centered basis functions
in densely packed solids. These problems can partly be accounted for by counterpoise BSSE
corrections and removing linearly dependent basis functions. The local nature of these func-
tions is often used for reduced scaling techniques in order to approach linear scaling mean-field
treatments, and can also be extended to local treatment of correlation.
For the calculation of energy differences such as the adsorption energy of a molecule on a sur-
face it is beneficial to employ basis sets that can be truncated such that a large fraction of the
incompleteness error cancels in a controllable manner. GTOs exhibit this advantageous prop-
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erty, allowing for obtaining accurate estimates of interaction energies between weakly interact-
ing fragments such as binding energies of physisorbed molecules on surfaces, despite suffering
from large incompleteness errors in the respective absolute energies.
Another approach to obtain compact unoccupied orbital manifolds for the expansion of many-
electron wavefunctions is provided by natural orbitals [23]. Natural orbitals are obtained by
diagonalizing the unoccupied-unoccupied orbital block of the reduced density matrix and trun-
cating the obtained natural orbital manifold according to their occupation number. This pro-
cedure yields for many applications an optimal unoccupied orbital manifold. To reduce the
computational cost of this procedure it is possible to approximate the reduced density matrix at
a lower-level of theory such as low-order perturbation theory only. Natural orbitals “down-fold”
the unoccupied orbitals calculated using plane-wave basis sets for atoms and molecules in a box
to manifolds that are similarly compact as GTOs [20].
Despite all the considerations outlined above, the convergence of the many-electron wavefunc-
tion and that of calculated expectation values such as the correlation energy is frustratingly slow
with respect to the number of unoccupied orbitals [5, 24]. Therefore extrapolation techniques
that remove the remaining basis set incompleteness error are needed on top of these fairly large
basis set calculations. In the case of plane wave basis set calculations analytic and numeri-
cal results from perturbation theory suggest a 1/M decay of the basis-set incompleteness error
where M is the number of plane waves used in the calculation, allowing for straightforward
extrapolation to the complete basis set (CBS) limit [25]. Similar scaling laws are employed for
the extrapolation of correlation energies to the complete basis set limit using GTOs [5].
The slow convergence of properties calculated using wavefunction based methods with respect
to the number of orbitals originates from the difficulty to describe the many-electron wavefunc-
tion in the vicinity of the electron cusp. As the electrons coalesce, a derivative discontinuity or
‘cusp’ must arise, so that a divergence in the kinetic energy operator cancels an opposite one in
the potential. The shape of the wavefunction at the cusp is exactly defined to first-order in the
interelectronic distance by the Kato cusp conditions [26,27]. The a priori inclusion of the cusp
conditions in the wavefunction ansatz is a cornerstone of explicitly correlated or so-called F12
theories [28, 24, 29, 30]. Explicitly correlated methods augment the conventional wavefunction
expansions discussed in the previous section with additional terms that account for the cusp con-
ditions explicitly. Since electronic correlation is for the most part a short-ranged phenomenon,
the proper description of the wavefunction shape at short interelectronic distances allows for
capturing the largest fraction of the correlation energy in solids and molecules.

2.7.2 Computational cost

The scaling of the computational cost of canonical coupled cluster theory is dominated by the
contractions present in the amplitude equations. Although some terms can be contracted ef-
ficiently by finding the optimal order of contraction over the nested summations over orbital
indices, a limiting scaling remains. The scaling of CCSD and CCSDT is O(N6) and O(N8),
where N is a measure of the system size (occupied or unoccupied orbitals) and arises from the
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use of spatially delocalized canonical orbitals. Canonical orbitals are conceptually and compu-
tationally convenient. They are orthogonal and diagonalize the Fock matrix, greatly simplifying
the post-HF correlation schemes. However, these orbitals are spatially delocalized and their use
does not allow one to exploit the fact that electronic correlation is a short-ranged phenomenon.
The use of spatially localized, instead of canonical, orbitals allows to construct coupled clus-
ter algorithms that scale more favorably with system size, down to even O(N), at the price of
a significant increase in complexity of the underlying equations with respect to their canoni-
cal counterparts. Some of the most notable amongst them are (based on) the local correlation
method of Pulay and Saebø [31, 32], the so-called “Local Ansatz” of Stollhof and Fulde [33],
the method of increments of Stoll [34–36], or the use of truncated pair natural orbitals [37, 38].
The reduced scaling algorithms mentioned above require that the occupied orbitals can be lo-
calized, i.e., a unitary transformation over the manifold of occupied orbitals can be found which
optimizes the expectation value of an operator measuring the degree of localization. There exist
systems which do not allow for a sufficient degree of orbital localization. In these systems,
the character of electronic correlation is intrinsically more delocalized. A prominent example
where this is the case corresponds to the uniform electron gas.

3 Coupled cluster theory and its relation to the RPA

The random phase approximation (RPA) to the correlation energy dates back to the 1950s. It
was first introduced by Macke to predict convergent correlation energies [39] in the uniform
electron gas and was also developed by Bohm and Pines [40] for the collective description of
electron interactions. In the case of the uniform electron gas, the RPA captures the most im-
portant terms of the correlation energy expansion around the high-density limit (rs → 0). In
the field of ab initio computational materials science the exact-exchange plus correlation in
the random-phase approximation has attracted renewed and widespread interest in the last two
decades. This is due to the fact that computationally increasingly efficient implementations
have become available and that this method is capable of describing all interatomic bonding sit-
uations reasonably well: ionic, covalent, metallic, and even van der Waals bonding. The com-
putational complexity can even be lowered to O(N3) in real space formulations [41]. Thus, the
complexity of an RPA calculation does not exceed that of a canonical hybrid density functional
theory calculation, the prefactor is however considerably larger. The RPA correlation energy
can be derived from many-electron Green function theory, or using the adiabatic-connection
fluctuation-dissipation theorem (ACFDT) – or from coupled-cluster theory.
As shown in [42], it is possible to transform the RPA equations, that are usually expressed in a
general eigenvalue problem, to a quadratic Riccati equation that reads

tabij =
1

εi+εj−εa−εb

(
〈ij|ab〉+ 〈cj|kb〉tacik + 〈ci|ka〉tbcjk + 〈cd|kl〉tdblj tacik

)
. (22)

In the above equation we sum over repeated indices. We stress that in the above equation
the ε correspond to the DFT one-electron energies. Once the amplitudes are obtained, the RPA
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correlation energy can be calculated by

ERPA
c =

∑
ijab

1

2
〈ij|ab〉 tabij . (23)

Although the above formulation does not allow for an efficient computer implementation of the
RPA, it illustrates that the RPA and CCSD are closely related.
In the rings-only approximation, the second, third and fourth lines of Eq. (19) are disregarded.
Furthermore the random-phase approximation includes the direct rings only. This implies that
instead of using the (double bar) anti-symmetrized integrals, only 〈ij|ab〉 integrals are employed
in the RPA amplitude and energy equations, making it necessary to employ a different prefactor
in the correlation energy expression to stay consistent with many-body perturbation theory.
Consequently, RPA can not be viewed as a wavefunction theory although it can be obtained from
the coupled cluster amplitude equations as explained above. In a diagrammatic formulation the
close relationship between coupled cluster theory and the RPA becomes more obvious for both
ground and excited state properties as discussed in detail in Refs. [43, 42].

4 Coupled cluster theory applied to the uniform electron gas

One of the best studied systems in electronic structure theory is the uniform electron gas (UEG).
Here, we seek to illustrate important concepts of CC theory for the example of the UEG. In the
UEG, the one-electron orbitals are plane waves with wave vectors ~ki, ~kj and ~ka, ~kb. This allows
to write the two-electron repulsion integral as 〈ij|ab〉 = υabij = υ(q)δki−ka,kb−kj

. The momen-
tum transfer vector is given by q = ki−ka. The Coulomb kernel is defined as υ(q) = 4π

Ω|q|2 ,
with Ω being the volume of the simulation cell. We stress again that, due to the symmetry of
the UEG Hamiltonian, single excitations are absent. With this, the CCD correlation energy is
defined as

ECCD
c =

∑
ijab

υabij
(
2tabij−tabji

)
=
∑
q

υ(q)SCCD(q). (24)

The amplitudes tabij are obtained by solving the CCD amplitude equations. We note, however,
that this section employs a notation where the orbital indices refer to spatial orbitals, i.e., the
spin-coordinates have been integrated, which results in slightly different expressions. It is im-
portant to note that in the UEG tabij inherits the momentum conservation of the two-electron
operator in the Hamiltonian such that tij(q) = tabij δq,kb−kj

δq,ki−ka . The quantity tij(q) has
two indices that correspond to occupied orbital indices, representing plane wave vectors inside
the Fermi sphere, whereas q corresponds to a momentum transfer vector that excites electronic
states into regions outside the Fermi sphere. Likewise the transition structure factor S(q), in-
troduced in Eq. (24), depends on q, which gives access to the dependence of the correlation
energy on the interelectronic interaction distance. The transition structure factor is defined as

SCCD(q) =
∑
ijab

δυabij
δυ(q)

(
2tabij − tabji

)
. (25)



14.12 Andreas Grüneis
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Fig. 1: Twist-averaged structure factors for CCD and 246 electrons in the uniform electron gas
simulation cell at density corresponding to rs = 20.

In the above equation, the functional derivative
δυabij
δυ(q)

= δq,kb−kj
δq,ki−ka enables a concise no-

tation.

We now study the behavior of the CCD correlation energy contribution for lim|q|→∞ and short
lim|q|→0. Figure 1 depicts the computed CCD transition structure factor for 246 electrons at
a density corresponding to rs = 20 a.u., showing that S(q) decays to zero in both limits. As
already discussed by Bishop and Lührmann [44, 45] as well as Emrich and Zabolitzky [46],
lim|q|→0 S(q) ∝ |q| and lim|q|→∞ S(q) ∝ 1/|q|4. It is important to note that the functional
behavior in these limits originates from two important physical principles. The lim|q|→∞ cor-
responds to the short-range limit in real space. It is known that as the electrons coalesce, a
derivative discontinuity or ‘cusp’ must arise, so that a divergence in the kinetic energy operator
cancels an opposite one in the interelectronic potential. Without proof, we stress that a linear
behavior in the wavefunction as a function of the interelectronic distance results in a 1/|q|4 be-
havior of S(q). In fact the relatively slow convergence of S(q) for large |q| is the cause for the
slow basis set convergence of correlation energies. In other words, large numbers of unoccupied
orbitals are needed in practice to capture significant contributions to the electronic correlation
energy in the vicinity of the cusp. In practice one might perform several correlation energy
calculations for different numbers of virtual orbitals and extrapolates the computed energies to
the complete basis set (CBS) limit. The lim|q|→0 corresponds to the long-range behavior of
the electronic correlation energy. Unlike the short-range, the long-range behavior qualitatively
differs between insulators and metals. Here, we consider the metallic uniform electron gas,
which leads to a linear slope of S(q) around |q| = 0. This behavior can be understood by the
close relationship between the RPA and CCD. Without proof, we stress that in the lim|q|→0

RPA becomes identical to CCD, [46] which also explains the slow convergence of computed
correlation energies to the thermodynamic limit.
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5 Conclusion and summary

In this chapter we have discussed fundamental concepts of coupled cluster theory and its rela-
tion to other widely-used methods. CC theories offer a systematically improvable hierarchy of
wavefunction based methods for the study of many-body problems. Due to their computational
complexity, however, most coupled cluster calculations in electronic structure theory are per-
formed at the truncation levels of CCSD and CCSD(T), where the effect of T is approximated
in a perturbative manner. We have discussed for the example of the uniform electron gas, that
converging the CC correlation energies to the complete basis set limit and the thermodynamic
limit is difficult, which can partly be explained by the slow asymptotic convergence of the un-
derlying electron structure factor. Another caveat of CC theories, which was not discussed
in the present chapter, is that these approximate wavefunction theories are not well-suited to
treat systems with strong static correlation effects, for example, bond dissociation problems.
However, CCSD(T) theory is one of the most accurate ab initio methods currently available to
compute, for example, reaction energies for a wide range of systems. Recent applications to
solids have also shown that CCSD(T) can achieve a similar level of accuracy for semiconduc-
tors and insulators. More work remains to be done to expand the scope of CC theories to more
complex systems and a larger number of properties which is beyond the scope of discussion of
the present chapter.
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References

[1] R.J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007)

[2] T.D. Crawford and H.F. Schaefer: An Introduction to Coupled Cluster Theory for
Computational Chemists (Wiley-Blackwell, 2007), pp. 33–136

[3] I. Shavitt and R. J. Bartlett: Many-body methods in chemistry and physics:
MBPT and coupled-cluster theory (Cambridge university press, 2009)

[4] A. Szabo and N.S. Ostlund: Modern Quantum Chemistry (McGraw-Hill, New York, 1996)

[5] T. Helgaker, P.Jørgensen, and J. Olsen: Molecular Electronic-Structure Theory
(Wiley, 2000)

[6] F. Coester, Nucl. Phys. 1, 421 (1958)
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1 Introduction

Strongly correlated electron systems, where electron-electron interactions are non-negligible,
have captivated the condensed matter physics community due to the rich and often exotic physi-
cal phenomena they exhibit, including high-temperature superconductivity and magnetism. The
theoretical study of such systems is indispensable in uncovering the underlying physics and
holds tremendous promise for technological advancements. However, this is no small feat, as
strongly correlated systems are notoriously difficult to describe accurately due to the complexity
arising from these interactions. Advanced graduate students, Ph.D. students, and postdoctoral
researchers venturing into the electronic structure of materials must be adept with an array of
theoretical tools to effectively address these challenges.
Within the broad spectrum of techniques available for tackling strongly correlated systems,
“slave-boson methods” have emerged as a versatile and powerful class of approaches [1–20].
These methods employ auxiliary particles, including both fermions and bosons, as subsidiary
degrees of freedom to model strong electron-electron interactions, a concept shared across
various theoretical frameworks such as tensor networks [21, 22] and neural-network quantum
states [23]. In the context of slave-boson methods, the Gutzwiller Approximation (GA) theory
and its extension, the ghost Gutzwiller Approximation (gGA), employ auxiliary fermionic de-
grees of freedom [10–12], while the Rotationally Invariant Slave Boson (RISB) theory and its
extension, the ghost RISB (gRISB), utilize auxiliary bosonic degrees of freedom [19, 20].
Historically, slave-boson methods such as the GA were developed as computationally efficient
alternatives to more demanding techniques, but this efficiency was achieved with a compromise
on accuracy. However, recent advancements have shown that extensions like gGA [10–12],
which incorporates auxiliary fermionic degrees of freedom to enrich the variational space, offer
both computational efficiency and the potential for high accuracy. Notably, gGA has demon-
strated an accuracy that is comparable to the more computationally demanding Dynamical
Mean-Field Theory (DMFT) [24,25], indicating that it might serve as an advantageous alterna-
tive, especially when aiming for a combination of accuracy and computational manageability.
This set of lecture notes is designed to provide a comprehensive overview of “slave-boson meth-
ods” with a particular focus on the gGA variational perspective. Through detailed technical
expositions and unified, consistent notation, these notes aim to serve as a pedagogical resource
for readers looking to delve into this field. While scientific literature often prioritizes concise-
ness over extensive derivations, this can sometimes leave out pedagogical explanations that are
instrumental for learners and non-specialists. Our objective is to bridge this gap, furnishing the
reader with a self-contained and in-depth comprehension of the subject matter. Furthermore, in
the light of the active and burgeoning nature of this research area, we also elucidate the refor-
mulations in terms of RISB/gRISB and explore connections with Quantum Embedding (QE)
methods such as Density-Matrix Embedding Theory (DMET), while discussing their potential
for catalyzing further theoretical and algorithmic advancements.
We suggest the reader begin with the Appendix, where we recapitulate some useful general no-
tions of many-body theory. While the reader may already be familiar with these concepts, the
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Appendix employs a consistent notation with the main text, making it a valuable starting point.
Following this, in Sec. 3, we introduce the formalism from the variational perspective underly-
ing the GA/gGA frameworks. In Sec. 5, we delve into the concept of slave-boson amplitudes;
while keeping the focus on the GA/gGA formulation and the role of slave-boson amplitudes in
formulating an efficient framework from this perspective, this is the juncture where the connec-
tion with RISB emerges, and we will guide the reader to the relevant literature exploring this
connection. Sections 6 and 7 present the concept of embedding states; again, while maintaining
a focus on the GA/gGA formulation, we highlight the role of embedding states in developing an
efficient framework, and this is where the connection with Quantum Embedding theories such
as DMET becomes apparent. Finally, Sec. 8 discusses further generalizations, new research
directions, and open problems that aspiring researchers might find intriguing and rewarding to
explore in their careers.

2 The multi-orbital Hubbard Hamiltonian

In this section, we describe the multi-orbital Hubbard Hamiltonian, which plays a fundamental
role in the context of strongly correlated electron systems. We will elaborate on the terms and
the notation involved. For readers not familiar with the mathematical structure of fermionic
Fock spaces, a brief introduction is provided in Appedix B.
The multi-orbital Hubbard Hamiltonian encompasses local interactions as well as hopping
terms. We contemplate a lattice system comprised ofN fragments, each with multiple orbitals.
The total Hamiltonian Ĥ can be formulated as:

Ĥ =
N∑
i=1

Ĥ i
loc[c

†
iα, ciα] +

∑
i 6=j

T̂ij , (1)

T̂ij =

νi∑
α=1

νj∑
β=1

[tij]αβ c
†
iαcjβ , (2)

where:

• i and j represent the indices of the fragments of the lattice.

• Ĥ i
loc denotes an arbitrary local operator on fragment i, encompassing one-body and two-

body terms.

• α and β index the fermionic modes (orbitals) within each fragment.

• T̂ij symbolizes the hopping term between different fragments i and j.

• [tij]αβ are the matrix elements of the hopping term.

This Hamiltonian serves as the basis for our discussions on the ghost Gutzwiller approximation
for multi-orbital systems in the subsequent sections.
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3 Multi-orbital ghost Gutzwiller approximation
(variational formulation)

In this section, we delve into the multi-orbital ghost Gutzwiller approximation (gGA) [10, 11],
which is rooted in the variational principle and the limit of infinite dimensionality [1,2], building
upon the multi-orbital Gutzwiller Approximation (GA) [1–9]. The gGA enriches the variational
space by introducing auxiliary “ghost” fermionic degrees of freedom. This concept resonates
with various theoretical frameworks such as extensions to DMET [26], matrix-product states
and projected entangled pair states [27], ancilla qubit techniques [28], and extensions of neural
network states [29], as well as the physical notions of “hidden Fermion” [30] and “hidden Fermi
liquid” [31]. Given the close resemblance in derivation and algorithmic structure between gGA
and multi-orbital GA, and the fact that the gGA framework includes the GA itself as a special
case, we focus on the gGA framework for clarity and conciseness.

3.1 The gGA variational ansatz

Let us begin by introducing the structure of the variational ansatz used in gGA. We define a
wavefunction |ΨG〉, which is obtained by applying an operator, indicated as P̂G, to a reference
single-particle wavefunction (Slater determinant) |Ψ0〉

|ΨG〉 = P̂G|Ψ0〉, with P̂G =
N∏
i=1

P̂i , (3)

Here, |Ψ0〉 is the single-particle reference state, and P̂G is an operator composed of “local”
operators P̂i, whose precise mathematical structure will be described below.
Within our framework, the single-particle wavefunction |Ψ0〉 is conceived in an auxiliary Hilbert
space, while the operator P̂G maps states from the auxiliary space to the physical space. This is
illustrated schematically in Fig. 1. Both |Ψ0〉 and P̂i have to be optimized variationally, in order
to minimize the variational energy

E(Ψ0, P̂G) = 〈ΨG| Ĥ |ΨG〉 . (4)

Specifically, we assume that the local operators P̂i (traditionally called “projectors” for histor-
ical reasons, but here not assumed to be projectors) have the following mathematical structure

P̂i =
2νi−1∑
Γ=0

2Bνi−1∑
n=0

[Λi]Γn |Γ, i〉〈n, i|, (5)

|Γ, i〉 = [c†i1]
q1(Γ ) . . . [c†iqνi ]

qνi (Γ ) |0〉, (6)

|n, i〉 = [f †i1]
q1(n) . . . [f †iqBνi

]qBνi (n) |0〉 . (7)

In these equations we utilize the notation introduced in Sec. B.2, where qa(n) denotes the a-th
occupation number of a Fock state |n, i〉, which is the a-th digit of the integer n in binary form.
Additionally, the entries of the matrix Λi are variational parameters parametrizing P̂i.
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Fig. 1: Diagrammatic representation of the gGA variational ansatz. The wavefunction |ΨG〉 is
obtained by mapping a generic single-particle wavefunction |Ψ0〉 through an operator P̂G. Both
|Ψ0〉 and P̂G are optimized variationally.

Remark. We point out that, in the traditional Gutzwiller Approximation (GA), the reference
wavefunction |Ψ0〉 is constructed directly within the physical Hilbert space, and the “Gutzwiller
projector” P̂G in GA only operates within the physical space.
In contrast, in the gGA, the operator P̂G plays also the critical role of mapping the reference
wavefunction |Ψ0〉, which resides in the auxiliary space, onto a variational state |ΨG〉 residing
in the physical space. Thus, the operator P̂G is inherently operating across both the auxiliary
and physical spaces. It implements this mapping, while modulating the weights of the local
electronic configurations, for optimizing the variational energy.
Remark. It is important to note that if the auxiliary space is configured as a mere replica of the
physical space by setting B = 1 in Eqs. (5) and (7), gGA becomes mathematically equivalent
to the traditional GA. In this specific case the resulting variational function |ΨG〉 would be as if
P̂G and |Ψ0〉 resided exclusively within the physical space. However, by setting B as an integer
higher than 1 (generally an odd number for reasons that will be clarified later), the auxiliary
space is enlarged, and gGA introduces additional degrees of freedom, thereby systematically
enriching the variational ansatz. This gives the gGA the flexibility to explore the space of varia-
tional wavefunctions more comprehensively, establishing its primary distinction and advantage
over the traditional GA.

While the remarks above are conceptually important, the gGA and the classic multi-orbital GA
share essentially the same derivation and algorithmic structure. Consequently, for the sake of
brevity and clarity, we will present the formalism directly in the context of the gGA framework.

3.2 Restriction to the “normal” variational states

We will focus on the normal phase, i.e., we will consider variational states |ΨG〉 that are eigen-
vectors of the physical number operator

∑
iα c
†
iαciα. It is important to note that, for |ΨG〉 to

be an eigenstate of the number operator, it is not necessary that P̂i commutes with the number
operator, as is the case in classic GA. Instead, it is sufficient that

• the auxiliary state |Ψ0〉 is an eigenstate of the auxiliary-space number operator
∑

ia f
†
iafia,

• the coefficients [Λi]Γn of P̂i satisfy the condition
Bνi∑
j=1

qj(n)−
νi∑
j=1

qj(Γ ) = N(n)−N(Γ ) = mi ∀Γ, n | [Λi]Γn 6= 0 , (8)

where mi is an integer.
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This condition ensures that the P̂i operators, defined in Eqs. (5) and (7), map the auxiliary
states |n, i〉 into physical states |Γ, i〉, with the number of physical fermions being reduced by
an integer amount in each subsystem i. Consequently, the total number of physical fermions in
|ΨG〉 is well defined and differs from the number of auxiliary fermions in |Ψ0〉 by

∑N
i=1mi.

In principle, mi could be regarded as an additional variational parameters, to be optimized for
minimizing the variational energy. However, previous work such as Ref. [11] showed that we
can generally make the assumption that B is odd and

mi = (B−1)νi/2 . (9)

This particular choice for mi, which reduces to mi = 0 for B = 1 (consistent with the standard
GA ansatz), has been empirically found to be the best variational choice. Therefore, in these
notes we are going to make this assumption from now on.

3.3 Approximations for evaluating the variational energy

Our primary goal is to find the ground state of the Hamiltonian Ĥ by minimizing the variational
energy. The variational energy E is a function of the wavefunction |Ψ0〉 and the operator P̂G,
and is given by

E(Ψ0, P̂G) = 〈Ψ0|P̂†GĤP̂G|Ψ0〉 . (10)

However, evaluating the variational energy in Eq. (10) is a highly non-trivial task due to the
complexity associated with many-body interactions and the vastness of the Hilbert space. With-
out making approximations, numerical approaches such as Variational Monte Carlo could be
used, but are computationally demanding.
To simplify the problem, let us first recognize that since |Ψ0〉 is a single-particle wavefunc-
tion, Wick’s theorem can be applied. According to Wick’s theorem, the expectation value of
a product of creation and annihilation operators can be decomposed into a sum of products
of expectation values of pairs of operators (see appendix D for details). However, even with
Wick’s theorem, the number of possible contractions contributing to the expectation value of Ĥ
in 〈Ψ0|P̂†GĤP̂G|Ψ0〉 is prohibitively large.

3.3.1 The Gutzwiller approximation and the Gutzwiller constraints

In light of the above, we must employ approximations that simplify the problem while still
capturing the essential physics. Here, we introduce two main approximations:

1. The Gutzwiller Constraints: These constraints are limitations imposed on the varia-
tional wave function |ΨG〉, linking the variational parameters of P̂i and |Ψ0〉

〈Ψ0| P̂†i P̂i |Ψ0〉 = 〈Ψ0|Ψ0〉 = 1 (11)

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 〈Ψ0| f †iafib |Ψ0〉 ∀ a, b = 1, ..., Bνi . (12)

These constraints slightly reduce the variational freedom, but, as we are going to see, they
make the evaluation of the variational energy more manageable.
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2. The Gutzwiller Approximation: The approximation consists in neglecting some of the
Wick contractions arising when evaluating Eq. (10), based on the key observation that
such terms would vanish in the particular limit of infinite coordination number. This
approximation, that we are going to specify in detail below, constitutes a key connection
with Dynamical Mean-Field Theory (DMFT), which is exact in this limit.

Let us now proceed to analyze how these approximations combined help in evaluating the vari-
ational energy efficiently.

3.3.2 Key consequence of the Gutzwiller constraints

For this purpose, it is essential to consider tthe left-hand side of Eq. (12)

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 , (13)

using Theorem D.2 discussed in Sec. D.1 of the Appendix.

• In this context, we can treat the operator P̂†i P̂i , which resides entirely in the auxiliary
space and is therefore some algebraic combination of the f modes, as the operator X of
Theorem D.2. Following this theorem, we can write

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 〈Ψ0| P̂†i P̂i f

†
iafib |Ψ0〉+ 〈Ψ0| P̂†i P̂i f

†
iafib |Ψ0〉 . (14)

This identity separates the expression into a disconnected term, where f †ia is contracted
with fib and P̂†i P̂i is contracted with itself, and a connected term, where f †ia and fib are
both contracted with P̂†i P̂i .

• We can further simplify the first term on the right side of Eq. (14). Using the first
Gutzwiller constraint [Eq. (11)], where it is specified that 〈Ψ0| P̂†i P̂i |Ψ0〉 = 1, the first
term can be simplified as

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 〈Ψ0| P̂†i P̂i |Ψ0〉〈Ψ0| f †iafib |Ψ0〉

= 1 · 〈Ψ0| f †iafib |Ψ0〉 = 〈Ψ0| f †iafib |Ψ0〉 . (15)

By substituting it in Eq. (14) we obtain

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 〈Ψ0| f †iafib |Ψ0〉+ 〈Ψ0| P̂†i P̂i f

†
iafib |Ψ0〉 (16)

• Comparing Eq. (16) with the second Gutzwiller constraint in Eq. (12)

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 〈Ψ0| f †iafib |Ψ0〉 , (17)

it follows that

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 0 . (18)
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• Applying the second part of Theorem D.2 to the left side of Eq. (18), we can express the
sum of all connected terms in our expression as

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 =

∑
a′b′

ξa
′b′

i 〈Ψ0| fia′f
†
ia |Ψ0〉〈Ψ0| f †ib′fib |Ψ0〉 = 0 , (19)

where the coefficients ξa′b′i depend only on |Ψ0〉 and the operator P̂†i P̂i , but not on the
indices a and b.

• Let us analyze the implications of Eq. (19). Defining the matrix ∆i as

[∆i]ab = 〈Ψ0| f †iafib |Ψ0〉 , (20)

we can rewrite Eq (19) as (
1−∆i

)
ξi∆i = 0 , (21)

from which it follows that, as long as neither ∆i nor 1−∆i are degenerate, i.e., as long as
none of the eigenvalues of ∆i is equal to 0 or 1, we have

ξi = 0 . (22)

The significance of Eq. (22), which arises from the Gutzwiller constraints in Eqs. (11) and (12),
is pivotal for streamlining the computation of the variational energy. This is due to its bearing
on terms involving two contraction lines connecting P̂†i P̂i with an arbitrary operator X̂ built
from algebraic combinations of the f and f † modes.

Theorem 3.1. Consider evaluating the expectation value 〈Ψ0| P̂†i P̂i X̂ |Ψ0〉. In this scenario,
all terms comprising two contraction lines connecting P̂†i P̂i with X̂ do not contribute.
More formally, if we depict the two contraction lines emerging from P̂†i and P̂i , and linking
them to X̂ , we can establish that

〈Ψ0|P̂†i P̂i X̂ |Ψ0〉 =
∑
a′b′

ξa
′b′

i 〈Ψ0|fia′f
†
ia|Ψ0〉〈Ψ0|f †ib′fib|Ψ0〉xab = 0 . (23)

Proof. The proof hinges on an observation we made in Sec. D.1. There, we noted that the
coefficients ξa′b′i in Eq. (22) represent the sum of all terms stemming from self-contractions
among the operators in P̂†i P̂i after excluding a′ and b′, which are contracted with a and b
respectively. Meanwhile, the coefficients xab signify the sum of all terms that originate from
self-contractions among the operators in X̂ , excluding a and b which are contracted with a′ and
b′ respectively.
Importantly, the coefficients ξa′b′i are only dependent on |Ψ0〉, a′ and b′, and are unaffected by X̂ .
As such, they are equivalent to the ones in Eq. (19), which we have proven to be zero due to the
Gutzwiller constraints (see Eq. (22)). This completes the proof.
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3.3.3 The Gutzwiller approximation: Explicit definition

The Gutzwiller approximation is a key simplification used in conjunction with the Gutzwiller
constraints, and it plays an essential role in streamlining the computation of the expectation
value of the Hamiltonian with respect to the gGA variational states.
Specifically, the approximation involves neglecting terms in the expectation values with respect
to |Ψ0〉 that contain more than two non-local contractions. In this context, a non-local contrac-
tion refers to one that involves operators acting on different sites, such as 〈Ψ0| f †iafjb |Ψ0〉, where
i 6= j. The rationale behind this approximation is rooted in the behavior of these terms in the
limit of infinite coordination number, where each site is infinitely connected. In this limit, all
terms with more than two non-local contractions vanish. This aspect is particularly significant
as dynamical mean-field theory (DMFT) becomes exact in this limit, establishing a meaningful
link between the Gutzwiller approximation and DMFT.
In subsequent sections, we will delve into how the synergistic application of the Gutzwiller ap-
proximation and the Gutzwiller constraints considerably simplifies the evaluation of expectation
values in our gGA variational framework.

3.4 Evaluation of the local expectation values

In this section, we will focus on one of the essential steps in the ghost Gutzwiller approximation
(gGA) — the computation of the expectation value of local Hamiltonian terms with respect to
the gGA wavefunction, |ΨG〉. To this end, let us consider a local Hamiltonian term, Ĥ i

loc, acting
on fragment i as defined in Eq. (1). The expectation value of this term with respect to |ΨG〉 can
be expressed as

〈ΨG|Ĥ i
loc|ΨG〉 = 〈Ψ0|

( N∏
k=1

P̂†k
)
Ĥ i

loc

( N∏
k=1

P̂k
)
|Ψ0〉 = 〈Ψ0|

∏
k 6=i

(
P̂†kP̂k

)(
P̂†i Ĥ i

locP̂i
)
|Ψ0〉 .

(24)

At first glance, this expression appears challenging to evaluate without approximations due to
the enormous number of possible Wick contractions.
Fortunately, the Gutzwiller constraints, as outlined in Eqs. (11) and (12), and the Gutzwiller
approximation discussed previously, offer significant simplifications.
Consider a block P̂†kP̂k within the product in Eq. (24). Wick’s theorem allows us to categorize
all possible terms contributing to this expectation value as follows:

• Disconnected terms: These are terms where there are no contraction lines between P̂†kP̂k
and the other operators. Utilizing the first Gutzwiller constraint, Eq. (11), the contribution
of these terms is

〈Ψ0|P̂†kP̂k|Ψ0〉〈Ψ0|
∏
k′ 6=i,k

(
P̂†k′P̂k′

)(
P̂†i Ĥ i

locP̂i
)
|Ψ0〉 = 〈Ψ0|

∏
k′ 6=i,k

(
P̂†k′P̂k′

)(
P̂†i Ĥ i

locP̂i
)
|Ψ0〉 .

(25)
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• Terms with two contraction lines: These terms have two contraction lines between
P̂†kP̂k and the other operators. As demonstrated in previous sections, the contribution of
these terms is zero due to the Gutzwiller constraints.

• Terms with four contraction lines: These terms have four contraction lines between
P̂†kP̂k and the other operators. Due to the Gutzwiller approximation, these non-local
contractions are effectively zero.

We can now understand that the logic discussed in the itemized list above applies to each block
P̂†kP̂k independently. We can iteratively apply it to each block, effectively eliminating all of
them one by one. This iterative process simplifies the expression until we are only left with the
block corresponding to fragment i.
Combining these observations, we arrive at a significant simplification of Eq. (24)

〈ΨG|Ĥ i
loc|ΨG〉 ≈ 〈Ψ0|P̂†i Ĥ i

locP̂i|Ψ0〉 . (26)

This expression vastly reduces the complexity involved in computing the expectation values of
local Hamiltonian terms, making it feasible for practical implementations.

3.5 Evaluation of the one-body non-local expectation values

In this section, we will extend the methodology discussed in the previous section for local
operators to calculate the expectation values of one-body non-local operators within the ghost
Gutzwiller approximation (gGA). Specifically, we will consider operators of the form c†iαcjβ ,
where i and j are fragment labels and α and β are additional quantum numbers, such as spin.
We are interested in computing the expectation value of this operator with respect to the gGA
wavefunction |ΨG〉.
The expectation value of this one-body non-local operator can be written as

〈ΨG|c†iαcjβ|ΨG〉 = 〈Ψ0|
( N∏
k=1

P̂†k
)
c†iαcjβ

( N∏
k=1

P̂k
)
|Ψ0〉

= 〈Ψ0|
( ∏
k 6=i,j

P̂†kP̂k
)(
P̂†i c

†
iαP̂i

)(
P̂†j cjβP̂j

)
|Ψ0〉 . (27)

Similar to the treatment in the previous section, we have grouped the terms with k 6= i, j

together. The additional complexity here arises from the fact that the non-local operator involves
two different fragments, i and j.
We can employ the same considerations as in the previous section to simplify the expression in
Eq. (27). Just as before, the Gutzwiller constraints and approximations allow us to iteratively
eliminate all the P̂†kP̂k blocks for k 6= i, j. In a manner analogous to the local terms, discon-
nected terms, terms with two contraction lines, and terms with four contraction lines can be
handled exactly as was done for the local Hamiltonian terms, resulting in

〈ΨG|c†iαcjβ|ΨG〉 ≈ 〈Ψ0|
(
P̂†i c

†
iαP̂i

)(
P̂†j cjβP̂j

)
|Ψ0〉 . (28)
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The expression in Eq. (28) can be further simplified by making several key observations:

• Grouping terms by the number of Wick contractions: We can organize the terms in
Eq. (28) by grouping them according to the number of Wick contractions between the
blocks i and j. Specifically, we classify terms by collecting together all terms with only
one Wick contraction between the blocks i and j, then those with three, five, and so on.

• Neglecting terms with more than one Wick contraction: Due to the Gutzwiller approx-
imation, terms with three or more Wick contraction between blocks i and j are neglected.
Therefore, only the terms with a single Wick contraction need to be considered.

• Auxiliary space representation: It is important to recognize that P̂†i c
†
iαP̂i operates en-

tirely within the auxiliary space, so it can be represented as an algebraic combination of
fia and f †ia modes. This applies analogously to the j block with fjb and f †ja modes.

• Matrix representation for self-contractions: We can factor the contribution of all self-
contractions within P̂†i c

†
iαP̂i that are left after having contracted f †ia with an annihilation

operator belonging to the j subsystem, and encode it into a Bνi × νi matrix [Ri]aα as

〈Ψ0|
(
P̂†i c

†
iαP̂i

)(
P̂†j cjβP̂j

)
|Ψ0〉 =

Bνi∑
a=1

Bνj∑
b=1

〈Ψ0|
(

[Ri]aαf
†
ia

)(
[Rj]

†
βbfjb

)
|Ψ0〉 , (29)

for all i 6= j.

• Computing local expectation values using coefficient matrices: The same coefficient
matricesRi would arise from self-contractions also in the following expression

〈Ψ0|P̂†i c
†
iαP̂ifia|Ψ0〉 =

Bνi∑
b=1

[Ri]bα〈Ψ0|f †ibfia|Ψ0〉 . (30)

As we are going to see, the steps above can be used for calculatingRi, therefore facilitating the
computation of Eq. (29).

3.6 Recap: Evaluation of the variational energy

Let us take a moment to recapitulate the key developments in our evaluation of the variational
energy within the ghost Gutzwiller approximation (gGA), employing the Gutzwiller constraints
and the Gutzwiller approximation.

1. Expectation value of local operators: In Sec. 3.4 we derived the equation

〈ΨG|Ĥ i
loc|ΨG〉 ≈ 〈Ψ0|P̂†i Ĥ i

locP̂i|Ψ0〉 . (31)
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2. Expectation value of non-local one-body operators: In Sec. 3.5 we derived

〈ΨG|c†iαcjβ|ΨG〉 ≈
Bνi∑
a=1

Bνj∑
b=1

〈Ψ0|
(

[Ri]aαf
†
ia

)(
[Rj]

†
βbfjb

)
|Ψ0〉 , (32)

where we introduced theRi, characterized by

〈Ψ0|P̂†i c
†
iαP̂ifia|Ψ0〉 =

Bνi∑
b=1

[Ri]bα〈Ψ0|f †ibfia|Ψ0〉 . (33)

Summing up the above contributions, the variational energy E can be expressed as

E =
N∑

i,j=1

Bνi∑
a,b=1

[
Ri tijR

†
j

]
ab
〈Ψ0| f †iafjb |Ψ0〉+

N∑
i=1

〈Ψ0|P̂†i Ĥ i
loc[c

†
iα, ciα] P̂i |Ψ0〉 ,

where the matricesRi are determined by Eq. (33).
This energy must be minimized subject to the fulfillment of the Gutzwiller constraints

〈Ψ0| P̂†i P̂i |Ψ0〉 = 〈Ψ0|Ψ0〉 = 1 ,

〈Ψ0| P̂†i P̂i f
†
iafib |Ψ0〉 = 〈Ψ0| f †iafib |Ψ0〉 ∀ a, b = 1, ..., Bνi .

In essence, we have reduced the problem to computing expectation values with respect to |Ψ0〉 of
local operators: those appearing in the Gutzwiller constraints, the terms of the local interactions,
and the terms entering in the characterization of the system for computing theRi matrices. We
will learn how to calculate these terms systematically and efficiently in the following sections.

4 Reformulation using local reduced density-matrix

In order to compute all the expectation values of local observables with respect to |Ψ0〉, which
appear in our variational problem as summarized above in Sec. 3.6, we need to introduce the
local reduced density-matrix of the i-th auxiliary-space subsystem i. According to Theorem E.1
from the appendix (following Refs. [6, 20, 11]), the local reduced density-matrix is given by

P̂ 0
i ∝ exp

(
−

Bνi∑
a,b=1

[
ln

(
1−∆T

i

∆T
i

)]
ab

f †iafib

)
, (34)

where ∆i is the Bνi ×Bνi matrix with elements:

[∆i]ab = 〈Ψ0|f †iafib|Ψ0〉. (35)

Utilizing these definitions and the matrix representation of the Gutzwiller projector in Eq. (5),
it is straightforward to derive the relations

〈Ψ0|P̂†i P̂i |Ψ0〉 = Tr
[
P 0
i Λ
†
iΛi

]
, (36)

〈Ψ0|P̂†i P̂i f
†
iafib|Ψ0〉 = Tr

[
P 0
i Λ
†
iΛi F̃

†
iaF̃ib

]
, (37)

〈Ψ0|P̂†i Ĥ i
loc[c

†
iα, ciα] P̂i |Ψ0〉 = Tr

[
P 0
i Λ
†
i Ĥloc

i[F †iα, Fiα]Λi

]
, (38)

〈Ψ0|P̂†i c
†
iαP̂i fia|Ψ0〉 = Tr

[
P 0
i Λ
†
i F
†
iα Λi F̃ia

]
, (39)



Slave-Boson Theories 15.13

where Tr denotes the trace operator restricted within the 2Bνi-dimensional many-body Fock
space of the i-th auxiliary-space subsystem. The matrices Fiα, and F̃ia are representations of the
local reduced density-matrix, the physical annihilation operators and the auxiliary annihilation
operators in their own Fock basis, respectively, which are defined as

[Fiα]ΓΓ ′ = 〈Γ, i|ciα|Γ ′, i〉
(
Γ, Γ ′ ∈ {0, . . . , 2νi − 1}

)
, (40)

[F̃ia]nn′ = 〈n, i|fia|n′, i〉
(
n, n′ ∈ {0, . . . , 2Bνi − 1}

)
, (41)

while the matrix representation of P̂ 0
i with entries [P 0

i ]nn′ = 〈n, i|P̂ 0
i |n′, i〉 is given by

P 0
i ∝ exp

(
−

Bνi∑
a,b=1

[
ln

(
1−∆T

i

∆T
i

)]
ab

F̃ †iaF̃ib

)
. (42)

Summing up the above contributions, with the local terms expressed in terms of the reduced
density-matrix, the variational energy E can be expressed as

E =
N∑

i,j=1

Bνi∑
a,b=1

[
Ri tijR

†
j

]
ab
〈Ψ0| f †iafjb |Ψ0〉+

N∑
i=1

Tr
[
P 0
i Λ
†
i Ĥ

i
loc[F

†
iα, Fiα]Λi

]
, (43)

where the matricesRi are determined by the relation

Tr
[
P 0
i Λ
†
iF
†
iαΛiF̃ia

]
=

Bνi∑
b=1

[Ri]bα〈Ψ0|f †ibfia|Ψ0〉 =

Bνi∑
b=1

[Ri]bα[∆i]ba . (44)

This energy must be minimized subject to the fulfillment of the Gutzwiller constraints, which
in terms of the reduced density-matrix are

Tr
[
P 0
i Λ
†
iΛi

]
= 〈Ψ0|Ψ0〉 = 1 , (45)

Tr
[
P 0
i Λ
†
iΛiF̃

†
iaF̃ib

]
= 〈Ψ0|f †iafib|Ψ0〉 = [∆i]ab ∀ a, b = 1, ..., Bνi . (46)

5 Reformulation in terms of slave-boson amplitudes
(connection with RISB)

In this section, we delve into the concept of “slave-boson amplitudes” through the lens of the
gGA. Within the Rotationally-Invariant Slave-Boson (RISB) approach [15,19,20], slave-boson
amplitudes emerge from a distinct perspective, where auxiliary bosons are introduced to rep-
resent local modes within each system fragment. A remarkable aspect about this alternative
perspective is that the gGA can be viewed as the mean-field approximation of the ghost RISB
(gRISB) [32], and analogously, the Gutzwiller approximation (GA) bears a similar relationship
to RISB [33, 6, 20]. As such, the RISB/gRISB formulation opens avenues for devising prac-
tical implementations that systematically incorporate quantum-fluctuation corrections toward
obtaining the exact solution. Although we will not embark on a detailed derivation of RISB
or gRISB within this section, we encourage readers to peruse the referenced literature for a
more comprehensive understanding of this connection and the exciting possibilities it harbors
for theoretical and algorithmic advancements in the many-body problem.
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5.1 The slave-boson amplitudes

We can rewrite all the key local quantities in an alternative way in terms of the so-called ma-
trices of slave-boson amplitudes. This is not only useful for technical purposes but also for
establishing a formal connection with the rotationally-invariant slave-boson theory (RISB).
Let us introduce the matrix of slave-boson amplitudes, φi, as defined in Refs. [6, 33, 7, 11]

φi = Λi

√
P 0
i = Λi[P

0
i ]

1
2 . (47)

Substituting this into Eqs. (36)-(39) yields the following equations

Tr
[
P 0
i Λ
†
iΛi

]
= Tr

[
φ†iφi

]
, (48)

Tr
[
P 0
i Λ
†
iΛiF̃

†
iaF̃ib

]
= Tr

[
φ†iφi[P

0
i ]−

1
2 F̃ †iaF̃ib[P

0
i ]

1
2

]
, (49)

Tr
[
P 0
i Λ
†
iĤ

i
loc[F

†
iα, Fiα]Λi

]
= Tr

[
φiφ

†
iĤ

i
loc[F

†
iα, Fiα]

]
, (50)

Tr
[
P 0
i Λ
†
iF
†
iαΛiF̃ia

]
= Tr

[
φ†iF

†
iαφi[P

0
i ]−

1
2 F̃ia[P

0
i ]

1
2

]
. (51)

We note that Eqs. (49) and (51) involve a similarity transformations of the matrix representations
of the auxiliary-mode operators, such as those described in the Appendix, see Sec. B.4.2.
By applying theorems B.2 and B.3, we obtain

[P 0
i ]−

1
2 F̃ †ia[P

0
i ]

1
2 = e

1
2

∑Bνi
a,b=1

[
ln

(
1−∆Ti
∆T
i

)]
a′b′

F̃ †
ia′ F̃ib′ F̃ †ia e

− 1
2

∑Bνi
a′′,b′′=1

[
ln

(
1−∆Ti
∆T
i

)]
a′′b′′

F̃ †
ia′′ F̃ib′′

=

Bνi∑
a′=1

[
e

1
2
ln

(
1−∆Ti
∆T
i

)]
a′a

F̃ †ia′ =

Bνi∑
a′=1

[
1−∆T

i

∆T
i

] 1
2

a′a

F̃ †ia′ =

Bνi∑
a′=1

[
1−∆i

∆i

] 1
2

aa′
F̃ †ia′ ,

(52)

[P 0
i ]−

1
2 F̃ia[P

0
i ]

1
2 =

Bνi∑
a′=1

[
e
− 1

2
ln

(
1−∆Ti
∆T
i

)]
aa′

F̃ia′ =

Bνi∑
a′=1

[
∆T
i

1−∆T
i

] 1
2

aa′
F̃ia′ =

Bνi∑
a′=1

[
∆i

1−∆i

] 1
2

a′a

F̃ia′ .

(53)

• By substituting Eq. (48) in Eq. (45) and Eq. (52) in Eq. (46) we obtain

Tr
[
φ†iφi

]
= 〈Ψ0|Ψ0〉 = 1 (54)

Tr
[
φ†iφiF̃

†
iaF̃ib

]
= 〈Ψ0|f †iafib|Ψ0〉 = [∆i]ab ∀ a, b = 1, . . . , Bνi . (55)

• By substituting Eq. (53) into Eq. (44) we obtain the following equation forRi

Tr
[
φ†iF

†
iαφiF̃ia

]
=

Bνi∑
c=1

[Ri]cα [∆i(1−∆i)]
1
2
ca , (56)

which can always be inverted, as long as neither ∆i nor 1−∆i are degenerate, which we
already assumed after Eq. (21), to prove Eq. (22).



Slave-Boson Theories 15.15

5.2 Recap: the variational problem in terms of slave-boson amplitudes

Summing up the above contributions, with the local terms expressed in terms of the slave-boson
amplitudes, the variational energy E can be expressed as

E =
N∑

i,j=1

Bνi∑
a,b=1

[
Ri tijR

†
j

]
ab
〈Ψ0| f †iafjb |Ψ0〉+

N∑
i=1

Tr
[
φiφ

†
iĤ

i
loc[F

†
iα, Fiα]

]
, (57)

where the matricesRi are determined by Eq. (56). It must be minimized subject to the Gutzwiller
constraints, which in terms of the slave-boson amplitudes are given by Eqs. (54) and (55).

6 Reformulation in terms of embedding states
(connection with DMET)

In this section, building on the foundation laid in the preceding section, we take a further step
by expressing key local quantities in terms of “embedding states”. This concept was first in-
troduced in Ref. [7] within the context of the multi-orbital GA and later extended and further
developed for the gGA in Refs. [10, 11]. The mapping presented in this section is computa-
tionally advantageous, as it makes it possible to reformulate the energy-optimization problem
into a recursive computation of the ground state of an auxiliary “impurity model” with a fi-
nite bath. Furthermore, this perspective plays a critical role in bridging the gGA with quantum
embedding theories such as DMET [34, 26], enabling a more unified understanding of these
frameworks [35].

6.1 The embedding states

The embedding states are vectors belonging to an auxiliary Fock space and serve to map the
slave-boson amplitudes φi to a fermionic impurity Hamiltonian.

Definition 6.1 (Embedding States). The embedding states, denoted as |Φi〉, are defined as

|Φi〉 =
2νi−1∑
Γ=0

2Bνi−1∑
n=0

e
iπ
2
N(n)(N(n)−1)[φi]Γn|Γ ; i〉 ⊗ UPH|n; i〉 , (58)

where:

• |Γ ; i〉 and |n; i〉 are Fock states generated by auxiliary fermionic modes

|Γ ; i〉 = [c†i1]
q1(Γ ) . . . [c†iBνi ]

qνi (Γ ) |0〉 , (59)

|n; i〉 = [b†i1]
q1(n) . . . [b†iBνi ]

qBνi (n)|0〉 . (60)

• Consistently with the notation introduced in Sec. B.2 (also used above in Sec. 3), qa(n)
denotes the a-th occupation number of a Fock state |n, i〉, which is the i-th digit of the
integer n in binary form, and

N(n) =

Bνi∑
a=1

qa(n) (61)

represents the total number of Fermions in each state |n; i〉.
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• Additionally, UPH represent a particle-hole transformation acting on the |n; i〉 states, de-
fined by the following conditions

U †PHb
†
iaUPH = bia , (62)

U †PHbiaUPH = b†ia , (63)

U †PHc
†
iaUPH = c†ia , (64)

U †PHciaUPH = cia , (65)

UPH|0〉 =

Bνi∏
a=1

b†ia|0〉 = |2Bνi−1; i〉 . (66)

Remark. The basis vectors |Γ ; i〉 ⊗ UPH|n; i〉 in the expansion of Eq. (58) are orthogonal and
thus linearly independent. This orthogonality implies that the slave-boson amplitudes [φi]Γn
uniquely represent the expansion coefficients in this auxiliary Fock space. Consequently, we
have established a one-to-one correspondence between the states |Φi〉 in the Fock space and the
variational parameters encoded in the slave-boson amplitudes.
Remark. The set of all embedding states forms a Fock space, which can be interpreted as a
composite system consisting of a subsystem generated by the fermionic degrees of freedom c†iα
with α ∈ {1, . . . , νi} and a subsystem (larger than the previous for B > 1) generated by the
fermionic degrees of freedom b†ia with a ∈ {1, . . . , Bνi}.

Theorem 6.1 (Half-filled Embedding States). Under the variational assumption made in Sec. 3.2

N(n)−N(Γ ) = mi = (B−1)νi/2 (67)

(see Eq. (8)), the embedding states |Φi〉 as defined in Eq. (58) have a total of (B+1)νi/2
Fermions, signifying that they are half-filled, i.e., they contain half of the maximum possible
number of Fermions, which is the total number of modes.

Proof. Consider the action of the total number operator N̂tot on the embedding state |Φi〉

N̂tot|Φi〉 =

( Bνi∑
a=1

(b†iabia + c†iacia)

)
|Φi〉 (68)

=
2νi−1∑
Γ=0

2Bνi−1∑
n=0

e
iπ
2
N(n)(N(n)−1)[φi]Γn

(
N(Γ ) +Bνi −N(n)

)
|Γ ; i〉 ⊗ UPH|n; i〉 (69)

=
(
−mi+Bνi

)
︸ ︷︷ ︸
=(B+1)νi/2

2νi−1∑
Γ=0

2Bνi−1∑
n=0

e
iπ
2
N(n)(N(n)−1)[φi]Γn|Γ ; i〉 ⊗ UPH|n; i〉︸ ︷︷ ︸

|Φi〉

=

(
B+1

2
νi

)
|Φi〉.

(70)

This demonstrates that the embedding state |Φi〉 has a total of (B+1)νi/2 electrons, and is
therefore half-filled.

Remark. As a recap, it is worth highlighting that the significance of Theorem 6.1 is that we
can reformulate the variational assumption made initially for ensuring that the gGA variational
state has a well-defined number of fermions (see Eq. (8)) into the condition that the embedding
states are “half-filled”.
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As we are going to show in the next sections, the mapping introduced above is not only compu-
tationally advantageous, but also plays a critical role in positioning the gGA within the context
of quantum embedding frameworks such as Density-Matrix Embedding Theory and Dynamical
Mean Field Theory, thereby fostering a unified perspective.

6.2 Expectation values of local operators in terms of embedding states

Here, we aim to study the expectation values of local operators, which were initially represented
using slave-boson amplitudes, and establish equivalent representations using the embedding
states.

• Expression for Tr
[
φ†
iφi
]

in terms of embedding states:

〈Φi|Φi〉 =
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

e
iπ
2
(N(n)(N(n)−1)−N(n′)(N(n′)−1))[φi]

∗
Γn[φi]Γ ′n′

× 〈Γ ; i|Γ ′; i〉〈n; i|U †PHUPH|n′; i〉

=
2νi−1∑
Γ=0

2Bνi−1∑
n=0

[φi]
∗
Γn[φi]Γn = Tr

[
φ†iφi

]
. (71)

We expanded the expression 〈Φi|Φi〉 according to the definition of embedding states, in-
volving a summation over all Γ and n. Utilizing the orthonormality properties of the
states 〈Γ ; i|Γ ′; i〉 and 〈n; i|n′; i〉, we retained terms for which Γ = Γ ′ and n = n′. The
summation over these terms involved the product of coefficients [φi]

∗
Γn[φi]Γn. The ex-

pression was then concisely written as the trace of φ†iφi.

• Expression for Tr
[
φiφ

†
iĤ

i
loc[F

†
iα, Fiα]

]
in terms of embedding states:

〈Φi|Ĥ i
loc[c

†
iα, ciα]|Φi〉 =

2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

e
iπ
2
(N(n)(N(n)−1)−N(n′)(N(n′)−1))[φi]

∗
Γn[φi]Γ ′n′

× 〈Γ ; i|Ĥ i
loc[c

†
iα, ciα]|Γ ′; i〉〈n; i|U †PHUPH|n′; i〉

=
2νi−1∑
Γ=0

2Bνi−1∑
n=0

[φi]
∗
Γn[φi]Γn〈Γ ; i|Ĥ i

loc[c
†
iα, ciα]|Γ ; i〉

= Tr
[
φiφ

†
iĤ

i
loc[F

†
iα, Fiα]

]
. (72)

The expectation value of the local Hamiltonian was expanded using embedding states,
analogously to the initial equation. The orthonormality of the states helped to simplify
the expression into a trace of the product of φiφ

†
i with the matrix representation of the

local Hamiltonian in the |Γ ; i〉 basis. (Eq. (72))
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• Expression for Tr
[
φ†
iφiF̃

†
iaF̃ib

]
in terms of embedding states:

〈Φi|bibb†ia|Φi〉 =
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

e
iπ
2
(N(n)(N(n)−1)−N(n′)(N(n′)−1))[φi]

∗
Γn[φi]Γ ′n′ (73)

× 〈Γ ; i|Γ ′; i〉〈n; i|U †PHbibb
†
iaUPH|n′; i〉

=
2νi−1∑
Γ=0

2Bνi−1∑
n,n′=0

[φi]
∗
Γn[φi]Γn′〈n; i|b†ibbia|n

′; i〉

=
2νi−1∑
Γ=0

2Bνi−1∑
n,n′=0

[φi]
∗
Γn[φi]Γn′ [F̃

†
ibF̃ia]nn′

=
2νi−1∑
Γ=0

2Bνi−1∑
n=0

[φi]
∗
Γn[φi]Γn′ [F̃

†
iaF̃ib]n′n = Tr

[
φ†iφiF̃

†
iaF̃ib

]
. (74)

Initially, the terms were expanded and the particle-hole transformation was incorporated.
The orthonormality of 〈Γ ; i|Γ ′; i〉 allowed us to combine the summations over Γ and Γ ′.
The operators b†ib and bia were then expressed using their matrix representations. Further-
more, the real nature of the matrix elements of F̃ib and F̃ †ia (as established in Sec. B.3)
was employed to simplify the expression. Finally, a compact representation was obtained
by writing it as the trace of a product of matrices.

• Expression for Tr
[
φ†
iF

†
iαφiF̃ia

]
in terms of embedding states:

〈Φi|c†iαbia|Φi〉 =
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

e
iπ
2
(N(n)(N(n)−1)−N(n′)(N(n′)−1))[φi]

∗
Γn[φi]Γ ′n′

× 〈Γ ; i|〈n; i|U †PHc
†
iαbiaUPH|Γ ′; i〉|n′; i〉

=
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

e
iπ
2
(N(n)(N(n)−1)−N(n′)(N(n′)−1))[φi]

∗
Γn[φi]Γ ′n′

× 〈Γ ; i|〈n; i|c†iαb
†
ia|Γ ′; i〉|n′; i〉

=
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

(−1)n
′
[φi]
∗
Γn[φi]Γ ′n′〈Γ ; i|〈n; i|c†iαb

†
ia|Γ ′; i〉|n′; i〉

=
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

[φi]
∗
Γn[φi]Γ ′n′〈Γ ; i|c†iα|Γ ; i〉〈n; i|b†ia|n′; i〉

=
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

[φi]
∗
Γn[φi]Γ ′n′ [F

†
iα]ΓΓ ′ [F̃

†
ia]nn′

=
2νi−1∑
Γ,Γ ′=0

2Bνi−1∑
n,n′=0

[φi]
∗
Γn[φi]Γ ′n′ [F

†
iα]ΓΓ ′ [F̃ia]n′n = Tr

[
φ†iF

†
iαφiF̃ia

]
. (75)
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The particle-hole transformation was applied first in this derivation. The relationship
N(n′) = N(n)+1 was then used to simplify the phase factor, yielding (−1)n

′. We then
rewrote 〈Γ ; i|〈n; i|c†iαb

†
ia|Γ ′; i〉|n′; i〉 in terms of matrix representations of c†iα and b†ia. In-

terestingly, the phase factor that emerged from permutations nullified the (−1)n
′ from the

earlier step. As in previous derivations, the realness of the entries of F̃ia allowed us to
transpose it and take its Hermitian conjugate. Lastly, the summations were collected into
a single trace expression.

6.3 Recap: the variational problem in terms of embedding states

Recalling the expressions obtained above, we can now rewrite the Gutzwiller constraints [Eqs. (54)
and (55)] in terms of the embedding states |Φi〉 as

〈Φi|Φi〉 = 〈Ψ0|Ψ0〉 = 1 , (76)

〈Φi|b†ibbia|Φi〉 = 〈Ψ0|f †iafib|Ψ0〉 = [∆i]ab , ∀a, b = 1, . . . , Bνi . (77)

We can also express the matrixRi, see Eq. (56), as the solution of the equation

〈Φi|c†iαbia|Φi〉 =

Bνi∑
a=1

[Ri]aα
[
∆i(1−∆i)

] 1
2

ab
. (78)

With these expressions in terms of embedding states, the variational energy E takes the form

E =
N∑

i,j=1

Bνi∑
a,b=1

[
R†i tijRj

]
ab
f †iafjb +

N∑
i=1

〈Φi|Ĥ i
loc[c

†
iα, ciα]|Φi〉 , (79)

where Ri is given by Eq. (78). This variational energy must be minimized with respect to the
variational parameters, subject to the Gutzwiller constraints expressed in terms of the embed-
ding states |Φi〉, formulated with Eqs. (76) and (77).

7 Lagrange formulation of gGA (QE algorithmic structure)

In the previous section (Sec. 6.3), we discussed how the Gutzwiller approximation is formulated
in terms of embedding states. However, this poses a complex optimization problem since the
dimension of |Φi〉, which is exponential in νi and B, is non-linear. To tackle this, we make use
of a mathematical trick, as elaborated in Refs. [7, 20, 10], which reformulates the problem into
a linear eigenvalue problem for |Φi〉, with parameters to be computed recursively. This trick is
facilitated by the theorem based on Lagrange multipliers, derived in Appendix F.

7.1 The gGA Lagrange function

We first define the Lagrange function, which encodes the gGA variational-energy function in
Eq. (79) and the Gutzwiller constraints [Eqs. (76) and (77)] into a single function, and reduces
to the variational energy when evaluated at the saddle point:
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L [Φ,Ec;R, Λ;D, Λc;∆,Ψ0, E] =

〈Ψ0|Ĥqp[R, Λ]|Ψ0〉+ E (1−〈Ψ0|Ψ0〉)

+
N∑
i=1

[
〈Φi|Ĥemb

i [Di, Λci ]|Φi〉+ Ec
i (1−〈Φi|Φi〉)

]

−
N∑
i=1

[
Bνi∑
a,b=1

([Λi]ab + [Λci ]ab) [∆i]ab +

Bνi∑
c,a=1

νi∑
α=1

(
[Di]aα [Ri]cα [∆i(1−∆i)]

1
2
ca + c.c.

)]
,

(80)

where N is the total number of unit cells. The Lagrange function introduces several Lagrange
multipliers and variables. Specifically:

• E is a Lagrange multiplier that enforces the normalization condition 〈Ψ0|Ψ0〉 = 1, which
is the right-hand side of Eq. (76).

• Ec
i is a Lagrange multiplier that enforces the normalization condition 〈Φi|Φi〉 = 1 for

each embedding state |Φi〉, corresponding to the left-hand side of Eq. (76).

• ∆i has been promoted to a matrix of independent variables using the Lagrange multipli-
ers Λi. Both ∆i and Λi are Bνi ×Bνi Hermitian matrices.

• Λci is a Bνi × Bνi Hermitian matrix, serving as a Lagrange multiplier to enforce the
second Gutzwiller constraints presented in Eq. (77).

• Di and Ri are rectangular matrices with dimensions Bνi × νi. Di is introduced as a
Lagrange multiplier for enforcing the definition ofRi, which is given in Eq. (78).

Note that the Lagrange function has amalgamated all terms involving |Ψ0〉 and |Φi〉 into two
auxiliary Hamiltonians, Ĥqp and Ĥemb, respectively

Ĥqp[R, Λ] =
N∑

i,j=1

Bνi∑
a,b=1

[
R†i tijR

†
j

]
ab
f †iafjb +

N∑
i=1

Bνi∑
a,b=1

[Λi]ab f
†
iafib , (81)

Ĥ i
emb[Di, Λci ] = Ĥ i

loc

[
ciα, c

†
iα

]
+

Bνi∑
a=1

νi∑
α=1

(
[Di]aα c

†
iαbia + H.c.

)
+

Bνi∑
a,b=1

[Λci ]ab bibb
†
ia , (82)

where Eq. (81) is called “quasi-particle Hamiltonian” and Eq. (82), representing an impurity
model consisting of the i-th fragment of the system coupled to a bath, is called embedding
Hamiltonian (EH).
The introduction of the Lagrange function has converted the dependencies on |Ψ0〉 and |Φi〉 into
linear ones. As we are going to see, this significantly simplifies the problem.
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7.2 The gGA Lagrange equations

The saddle point conditions with respect to |Ψ0〉 and E result in a Schrödinger equation for
Ĥqp. Similarly, the saddle point conditions with respect to |Φi〉 and Ec

i result in a series of
Schrödinger equations for Ĥ i

emb.

To write all Lagrange equations, including the remaining saddle point conditions with respect
to the parameters Λi, Λci , ∆i, Di, andRi, we rewrite Eq. (81) as

Ĥ∗[R, Λ] =
N∑

i,j=1

[Πih∗Πj]ab f
†
iafjb , (83)

where we introduce the matrix

h∗ =


Λ1 R1t12R†2 . . . R1t1NR†N

R2t21R†1 Λ2 . . .
...

...
... . . . ...

RN tN1R†1 . . . . . . ΛN

 (84)

and the projectors over the degrees of freedom corresponding to each fragment

Πi =

δi1 [1]Bν1×Bν1 . . . 0
... . . . ...
0 . . . δiM [1]BνN×BνN

 , (85)

where [1]n×n is the n×n identity matrix. We also represent the matrices ∆i, Λi, and Λci as
expansions in terms of an orthonormal basis of Hermitian matrices, denoted [hi]s (with respect
to the canonical scalar product (A,B) = Tr[A†B])

∆i =

(Bνi)
2∑

s=1

[
d0i
]
s

[
hTi
]
s

(86)

Λi =

(Bνi)
2∑

s=1

[li]s [hi]s (87)

Λci =

(Bνi)
2∑

s=1

[lci ]s [hi]s , (88)

where [d0i ]s, [li]s, and [lci ]s are real-valued coefficients.
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Fig. 2: Representation of algorithmic structure for solving the gGA Lagrange equations.

The saddle-point of the gGA Lagrange function L defined in Eq. (80) is given by the equations

Ĥ∗[R, Λ]|Ψ0〉 = E0|Ψ0〉 , (89)

[∆i]ab = 〈Ψ0| f †iafib |Ψ0〉 , (90)
Bνi∑
c=1

[Di]cα [∆i (1−∆i)]
1
2
ac =

∑
j

[
tijR†jΠjf (h∗)Πi

]
αa

, (91)

[lci ]s = −[li]s −
Bνi∑
c,b=1

νi∑
α=1

∂

∂ [d0i ]s

(
[∆i (1−∆i)]

1
2
cb [Di]bα [Ri]cα + c.c.

)
, (92)

Ĥ i
emb|Φi〉 = Ec

i |Φi〉 , (93)

〈Φi|bibb
†
ia|Φi〉 = [∆i]ab , (94)

〈Φi|c†iαbia|Φi〉 =

Bνi∑
c=1

[∆i (1−∆i)]
1
2 [Ri]cα , (95)

where f is the zero-temperature Fermi function.

Numerous numerical implementations have been proposed in the literature to solve these equa-
tions [7, 36, 37]. However, they all fundamentally consist of iteratively computing the ground
state of Ĥ i

emb (see Eq. (93)), which constitutes the computational bottleneck. This algorith-
mic structure is schematically represented in Fig. 2. We will list some examples of practical
implementations in Sec. 9.

Remark. The matrix derivative in Eq. (92) is non-trivial, as [hTi ]s and ∆i do not commute. A
method for computing it is outlined in Sec. G of the Appendix. It’s important to note that the
computational cost of evaluating this derivative is primarily determined by the diagonalization
of ∆i. However, this operation is computationally inexpensive, rendering the overall cost es-
sentially negligible. Furthermore, a recent work exploring the connection between the gGA
and DMET [35] provides an equivalent expression to Eq. (92), that avoids the need for matrix
derivatives, potentially offering a more efficient approach for practical implementations.
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7.3 Gauge invariance of the gGA equations

It can be readily shown that the gGA Lagrangian is invariant with respect to the following gauge
transformation

|Ψ0〉 → U † (θ) |Ψ0〉 (96)

|Φi〉 → U †i (θi) |Φi〉 (97)

Ri → u†i (θi)Ri (98)

Di → uT (θi)Di (99)

∆i → uTi (θi)∆i u
∗
i (θi) (100)

λi → u†i (θi)λi ui (θi) (101)

λci → u†i (θi)λ
c
i ui (θi) , (102)

with

ui (θi) = eiθi (103)

Ui (θi) = ei
∑Bνi
a,b=1[θi]abb

†
iabib (104)

U (θ) = ei
∑
i

∑Bνi
a,b=1[θi]abf

†
RiafRib , (105)

where ui (θi) ∈ CBνi×Bνi , Ui (θi) ∈ C2Bνi×2Bνi and U (θ) ∈ C2Bν×2Bν (where ν =
∑N

i=1 νi),
and the θi are Hermitian matrices.
The name “gauge” here refers to the fact that modifications of the parameters generated by such
a gauge transformation do not influence any physical observable. This property of the equations
is relevant in relation to the connection with the RISB framework, which is based on an exact
reformulation of the many-electron problem in terms of an actual gauge theory, that reduces to
the Lagrange equations above at the mean-field level.

8 Generalizations, research directions and open problems

This section aims to explore further generalizations, new research directions, and open problems
in the realm of the ghost Gutzwiller approximation (gGA). The evolution of gGA has led to
several innovative adaptations and methodologies that harness its potential in various contexts.
Here, we mention three of such avenues: the connection of gGA with dynamical mean-field
theory (DMFT) through spectral functions, the extension of gGA for time-dependent dynamics,
and the reformulation of gGA within quantum-embedding theories. These avenues represent
exciting frontiers in the study of strongly correlated electron systems and may offer interesting
opportunities for future research.
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8.1 The spectral function (connection with DMFT)

Let us consider the gGA zero-temperature spectral function, defined as

Aiα,jβ(ω) = 〈ΨG| ciα δ(ω−Ĥ) c†jβ |ΨG〉+ 〈ΨG| c†jβ δ(ω+Ĥ) ciα |ΨG〉 . (106)

Following Refs. [10, 11], in the limit for N → ∞, it is possible to write an approximate rep-
resentation of excitations of Ĥ in terms of the gGA variational parameters, from which it is
possible to obtain the following approximation to the physical Green’s function

Giα,jβ(ω) =

∫ ∞
−∞

dε
Aiα,jβ(ω)

ω−ε
'
[
R†i Πi

1

ω−h∗
ΠjRj

]
αβ
, (107)

capturing both the low-energy quasi-particle excitations and the Hubbard bands.
From such a formula, it is possible to obtain a pole-expansion expression for the self-energy [10,
11,36] that closely resembles an expansion proposed in previous DMFT literature [38] and was
numerically shown to approach the DMFT solution in the limit of B →∞ on several examples
of single-band and multi-orbital systems [36].
These analytical and numerical results suggest a profound connection with DMFT, which is
subject of ongoing research.

8.2 Time-dependent dynamics

The time-dependent ghost Gutzwiller approximation (td-gGA), as introduced in Ref. [39], ex-
tends the gGA to the domain of non-equilibrium physics. Specifically, td-gGA builds upon the
standard time-dependent Gutzwiller approximation [40,41], by systematically incorporating the
auxiliary gGA degrees of freedom.
A key strength of td-gGA is its capability to capture the relaxation of local observables, which
is something the standard time-dependent Gutzwiller method falls short of. Moreover, it offers
comparable accuracy to the more computationally demanding time-dependent dynamical mean-
field theory (td-DMFT), while requiring significantly fewer computational resources. There-
fore, it can serve as a versatile tool for delving into the non-equilibrium properties of corre-
lated electron systems, ranging from energy-related materials to quantum control, and other
areas where the accurate treatment of strong correlations is required. As such, researchers and
students venturing into the field of correlated electron systems may find this method to be a
valuable addition to their toolkit.

8.3 Quantum-embedding reformulation (connection with DMET)

The formulation of gGA in terms of quantum embedding states, see Sec. 6.2, has led to the
development of a conceptual connection between gGA and density-matrix embedding theory
(DMET). In particular, within the ghost density-matrix embedding theory (gDMET) [35], the
gGA equations are recast, based on quantum-embedding principles similar to those of DMET.
Such alternative interpretation of the gGA equations may open up possibilities for new unex-
plored generalizations.
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9 Code availability

In this section, we draw attention to the available codes for the Gutzwiller approximation (GA)
and the ghost Gutzwiller approximation (gGA).

9.1 ComRISB for DFT+GA

The ComRISB package, developed by Yongxin Yao et al., is an efficient tool for integrating
density-functional theory (DFT) with the Gutzwiller approximation (GA) and the rotationally-
invariant slave-boson (RISB) method. It specifically incorporates the gGA with a single bath
site (B = 1), which is a particular case within the gGA framework. This package is valuable for
studying correlated electron systems by effectively melding the electronic structure calculations
of DFT with the Gutzwiller approximation’s correlation treatment. ComRISB is available for
download at ComRISB at BNL.
The URL is: https://www.bnl.gov/comscope/software/downloads.php
For further inquiries, you can contact Yongxin Yao at ykent@iastate.edu.

9.2 gGA code for the single band Hubbard Model

Marius Frank et al. have developed a simplified gGA code aimed at the single-band Hubbard
model, which is a valuable resource especially for students seeking to comprehend the intrica-
cies of the ghost Gutzwiller approximation (gGA) implementation. The code serves not only
as an instructive material but also as a groundwork for researchers endeavoring to build more
sophisticated multi-orbital implementations. This hands-on tool provides practical insights into
the methodologies and techniques integral to gGA, consistent with the discussions in these lec-
ture notes. The code is available for download at gGA Code at GitLab.
The URL is: https://gitlab.com/collaborations3/g-ga-hubbard
For further inquiries, you can contact Marius Frank at marius.frank@chem.au.dk.

https://www.bnl.gov/comscope/software/downloads.php
mailto:ykent@iastate.edu
https://gitlab.com/collaborations3/g-ga-hubbard
mailto:marius.frank@chem.au.dk
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Appendices

A Useful mathematical definitions

A.1 Function of an Hermitian matrix

In this section, we will introduce the notion of “function of an Hermitian matrix”, that will be
used extensively in these lecture notes.
Let H be a Hermitian matrix. It can be diagonalized by a unitary matrix U such that

H = UEU † (108)

where E is a diagonal matrix with entries En, the eigenvalues of H . The matrix U can be
written as U = [U1|U2| . . . |UN ], where each Un is an eigenvector of H corresponding to the
eigenvalue En.
Given a real-valued function f :R → R, we define the function of the Hermitian matrix H ,
denoted as f(H), by

f(H) = Uf(E)U † (109)

where f(E) is a diagonal matrix with entries f(En).
This means that the action of f(H) on the eigenvectors of H is the same as the action of H, but
with eigenvalues f(En) instead of En. Specifically, for any eigenvector Un of H,

f(H)Un = f(En)Un . (110)

A.2 Exponential of a Hermitian matrix through Taylor expansion

Another important approach to defining the function of a matrix, especially for the exponential
function, is through the Taylor expansion. For a general function f(x), its Taylor series (around
x = 0) is given by:

f(x) =
∞∑
n=0

f (n)(0)

n!
xn , (111)

where f (n)(0) is the n-th derivative of f evaluated at 0.
When we focus on the exponential function, particularly eiH or eH, where H is an Hermitian
matrix, the Taylor expansion becomes:

eiH =
∞∑
n=0

(iH)n

n!
(112)

eH =
∞∑
n=0

(H)n

n!
. (113)

This can be seen as an infinite sum of powers of H . It should be noted that the Taylor expansion
gives an equivalent expression to the one provided in the previous section, where the exponential
of an Hermitian matrix is defined through its eigenvalues and eigenvectors.
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B Preliminaries on fermionic algebra and Fock states

B.1 Recap about the fermionic algebra

As a preamble to the discussion on slave-boson theories and the Gutzwiller approximation, we
review some necessary algebraic tools. In particular, we will focus on the fermionic algebra.

Definition B.1 (Fermionic algebra). Consider a set of operators c1, . . . , cν , together with their
adjoints c†1, . . . , c

†
ν . The fermionic algebra is the algebra generated by these operators and the

complex numbers, subject to the following canonical anticommutation relations:

{cα, cβ} = 0 , (114)

{c†α, c
†
β} = 0 , (115)

{cα, c†β} = δαβ , (116)

where {A,B} = AB+BA denotes the anticommutator, and δαβ is the Kronecker delta.

The anticommutation relations are central in describing fermionic systems. The first two re-
lations reflect the exclusion principle, ensuring that states remain orthogonal under the action
of these operators. The last relation essentially states that the operators act as creation and
annihilation operators for fermions in the respective modes.

B.2 Recap about the fermionic Fock space

The next step is to construct a representation of the fermionic algebra on a linear space, which
we will refer to as the Fock space. This construction is fundamental for analyzing many-body
fermionic systems.

Definition B.2 (Fock Space). Let us postulate the existence of a vacuum state |0〉, which is
annihilated by all the annihilation operators cα,

cα|0〉 = 0, for all α .

Additionally, let there be an inner product with respect to which the conjugation operation is
represented as the Hermitian conjugate.
From these properties, it follows that the linear space realizing this representation has dimension
2ν and is spanned by a basis which we refer to as the Fock basis. In this text, we choose to
represent elements of the Fock basis as

|Γ 〉 = [c†1]
q1(Γ ) · · · [c†ν ]qν(Γ )|0〉 ,

where Γ is an integer ranging from 0 to 2ν−1, and its binary representation is Γ=q1(Γ ). . .qν(Γ ).
Here, the digits qα(Γ ) represent the occupation numbers.

With the Fock basis defined, let us introduce the occupation number operators.
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Definition B.3 (Occupation Number Operators). For each mode α, the occupation number op-
erator n̂α is defined as

n̂α = c†αcα .

The Fock states are eigenvectors of these operators with eigenvalues qα(Γ ). That is,

n̂α|Γ 〉 = qα(Γ )|Γ 〉 .

We can also define a full occupation number operator by summing over all modes.

Definition B.4 (Full Occupation Number Operator). The full occupation number operator is
given by

N̂ =
ν∑

α=1

c†αcα .

The Fock states are also eigenvectors of this operator. Specifically,

N̂ |Γ 〉 =

( ν∑
α=1

qα(Γ )

)
|Γ 〉 = N(Γ )|Γ 〉 ,

where N(Γ ) is defined as the sum of all occupation numbers, representing the total number of
fermions.

B.3 Matrix representation of creation and annihilation operators

In this section, we will focus on the matrix representation of the creation and annihilation oper-
ators in the Fock basis. These matrix representations are essential for practical calculations in
many-body fermionic systems.
By using the anticommutation rules, it can be readily verified that the elements of the matrix
representation of the creation operator c†α are given by the following equations:

[F †α]Γ,Γ ′ = 〈Γ |c†α|Γ ′〉 = δqα(Γ ),qα(Γ ′)+1

∏
s 6=α

δqs(Γ ),qs(Γ ′) (−1)
∑α−1
s=1 qs(Γ ) . (117)

The identity above means that the occupation numbers of Γ and Γ ′ are all equal except for
qα(Γ ), which is raised by 1 unit with respect to qα(Γ ′). Furthermore, an appropriate sign has to
be taken into account, due to the anticommutation rules.

Example. Let us consider the case where ν = 2, and so the Fock space has a dimension of 4.
The matrices representing the creation and annihilation operators in this case are 4×4 matrices.
Below are the matrix representations for both creation operators c†1 and c†2 and their Hermitian
conjugates:

F †1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

, F1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 F †2 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

, F2 =


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 .
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B.4 Useful single-particle transformations
B.4.1 Unitary canonical transformations

Let us first consider a unitary transformation of the creation and annihilation operators, which is
a familiar useful transformation in the context of many-body quantum systems. We will define
a unitary operator Û as

Û = exp

(
i

ν∑
α,β=1

hαβ c
†
αcβ

)
, (118)

where h is a Hermitian matrix. We can now state the following theorem:

Theorem B.1. The unitary operator Û leaves the vacuum state unchanged, i.e.,

Û |0〉 = |0〉 . (119)

Furthermore, the transformed creation operator Ûc†aÛ
† can be expressed in terms of the origi-

nal creation operators c†α as

Ûc†αÛ
† =

ν∑
β=1

[
eih
]
βα
c†β , (120)

where eih is the exponential of the Hermitian matrix h, understood as a function of an Hermitian
matrix in the sense defined in Section A.1.

Proof. Let us begin with the first part of the proof. Since, by definition, the vacuum state |0〉
satisfies Eq. (B.2), the operator at the exponents Ĥ =

∑
α,β hαβ c

†
αcβ annihilates the vacuum,

i.e., Ĥ|0〉 = 0. In the Taylor expansion of the exponential, the zeroth-order term is the identity
operator, and all other terms contain Ĥ . Therefore, Û |0〉 = |0〉.
Now, let us move on to the second part of the proof:
a) Let V be the unitary matrix such that V †hV = e, where e is diagonal.
b) Consider the transformed creation operators in the new basis:

f †a =
∑
α

Vαac
†
α , (121)

and write the reversed relation as
c†α =

∑
a

V †aαf
†
a . (122)

c) Let us now express Ûc†αÛ
† explicitly using the definition of Û:

Ûc†αÛ
† = exp

(
i

ν∑
α′,β′=1

hα′β′c
†
α′cβ′

)
c†α exp

(
−i

ν∑
α′′,β′′=1

hα′′β′′c
†
α′′cβ′′

)
(123)

= exp

(
i

ν∑
b′=1

eb′b′f
†
b′fb′

)∑
a

V †aαf
†
a exp

(
−i

ν∑
b′′=1

eb′′b′′f
†
b′′fb′′

)
(124)

=
∑
a

V †aαe
ieaaf †a =

∑
β

(V eieV †)βαc
†
β =

∑
β

[eih]βαc
†
β . (125)
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Here, we replaced the number operators in the exponents with occupation numbers, and noticed
that the left exponent has an extra mode, allowing the exponents to partially cancel out. We
are then left with the phase factor eieaa , and rewriting f †a back in terms of c†β , we observe the
coefficients are of the form V eieV †, which is equal to eih based on the definition of a function
of a matrix.

B.4.2 Similarity transformations with anti-Hermitian generators

In the derivation of the multi-orbital GA and gGA framework, presented in the main text, we
employ a similarity transformation related to the one described in the theorem above. However,
in contrast to the unitary transformation, the transformation we use is not unitary. Specifically,
the theorem can be generalized to transformations where there is no imaginary unit in the expo-
nent.

Theorem B.2. Let Û be defined as

Û = exp

( ν∑
α,β=1

hαβ c
†
αcβ

)
, and Û−1 = exp

(
−

ν∑
α,β=1

hαβ c
†
αcβ

)
.

Then, the transformed creation operator Ûc†αÛ
−1 can be expressed in terms of the original

creation operators c†α as

Ûc†αÛ
−1 =

ν∑
β=1

[
eh
]
βα
c†β , (126)

where eh is the exponential of the Hermitian matrix h.

The proof proceeds analogously to the proof of the previous theorem. The only distinction lies
in the absence of the imaginary unit in the exponents. The steps that involve the Taylor ex-
pansion of the exponential, replacement of number operators in the exponents with occupation
numbers, and manipulation of coefficients as functions of matrices still apply. The result is
obtained by simply removing the imaginary units from the exponents throughout the steps of
the proof.

Theorem B.3. From Eq. (126) and the fact that h, Û and Û−1 are both Hermitian, it also
follows that:

ÛcαÛ
−1 =

ν∑
β=1

[
e−h
]
αβ
cβ . (127)
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C One-body Hamiltonians and the Fermi-function matrix

In the study of quantum systems, particularly fermionic systems, one often encounters one-body
Hamiltonians. These Hamiltonians describe the energy of the system in terms of single-particle
states. A special case, which we will focus on, is when the one-body Hamiltonian is diagonal
in the second quantization formalism. This simplifies the description and allows us to connect
the properties of the system to the Fermi function.

C.1 Partition function and thermal distribution

Before diving into one-body Hamiltonians, let us first define the partition function Z and the
thermal distribution for a generic Hamiltonian Ĥ . The partition function is given by

Z(T ) = Tr
[
e−

1
T
Ĥ
]
, (128)

where T is the temperature of the system, and the trace is taken over the entire Fock space.
The thermal distribution at temperature T is defined as the normalized density-matrix

ρT =
e−

1
T
Ĥ

Z(T )
, (129)

which allows us to compute expectation values of operators in the system at finite temperature.
Specifically, for the expectation value of the number operator f †afb, we define

nab(T ) = Tr
[
ρTf

†
afb
]
. (130)

C.2 One-body diagonal Hamiltonian

Now, let us consider a specific one-body Hamiltonian that is diagonal,

Ĥ =
ν∑
a=1

eaa f
†
afa . (131)

We can state the following theorem regarding the calculation of Z and nab for this Hamiltonian:

Theorem C.1. For the one-body diagonal Hamiltonian Ĥ =
∑

a eaaf
†
afa, the partition function

Z(T ) and the thermal expectation values nab(T ) are given by

Z(T ) =
ν∏
a=1

(
1 + e−

eaa
T

)
, (132)

nab(T ) = δab fT (eaa) , (133)

where fT (x) is the Fermi function at temperature T defined as

fT (x) =
1

ex/T + 1
. (134)
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Proof. We begin by expressing the partition function Z(T ) as a trace over the Fock space,

Z(T ) = Tr
[
e−

1
T

∑
a eaaf

†
afa
]

=
2ν−1∑
Γ=0

〈Γ |e−
1
T

∑
a eaaf

†
afa |Γ 〉 =

2ν−1∑
Γ=0

〈Γ | exp
(
− 1

T

∑
a

eaaqa(Γ )
)
|Γ 〉 , (135)

where we have used the Fock basis representation |Γ 〉 = [c†1]
q1(Γ ) · · · [c†ν ]qν(Γ )|0〉, and the rela-

tion f †afa|Γ 〉 = qa(Γ )|Γ 〉.
We can further break down the sum over Γ into a sum over the occupation numbers qa for
each a,

Z(T ) =
1∑

q1=0

· · ·
1∑

qν=0

exp

(
− 1

T

∑
a

eaaqa

)

=
ν∏
a=1

( 1∑
qa=0

exp
(
−eaaqa

T

))
=

ν∏
a=1

(
1 + exp

(
−eaa
T

))
. (136)

Here, in the second step, we have used that the exponential of the sum is the product of the
exponentials and separated the terms corresponding to each a. The expression obtained is the
desired result for the partition function Z(T ) in terms of the eigenvalues of the one-body Hamil-
tonian.

Proof. Let us first compute Z(T )nab, which can be written as a trace:

Z(T )nab = Tr
[
e−

1
T

∑
c eccf

†
c fcf †afb

]
=

2ν−1∑
Γ=0

〈Γ |e−
1
T

∑
c eccf

†
c fcf †afb|Γ 〉 . (137)

If a 6= b, this is zero since expanding in terms of the Fock states will always have different
occupation numbers on the left and right sides.
Now, let us focus on the case a = b,

Z(T )naa =
2ν−1∑
Γ=0

〈Γ |e−
1
T

∑
c eccqc(Γ )qa(Γ )|Γ 〉

=
1∑

q1=0

· · ·
1∑

qν=0

qa exp
(
− 1

T

∑
c

eccqc

)
= exp

(
−eaa
T

)∏
c6=a

(
1 + exp

(
−ecc
T

))
= Z(T )

exp (−eaa/T )

1 + exp (−eaa/T )
. (138)

Dividing by Z(T ), we get

naa =
exp (−eaa/T )

1 + exp (−eaa/T )
=

1

eeaa/T + 1
= fT (eaa) , (139)

which is the Fermi function at temperature T.
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C.3 Fermi-function matrix for non-diagonal one-body Hamiltonians

Now we consider a general one-body Hamiltonian, Ĥ , given by

Ĥ =
ν∑

α,β=1

hαβ c
†
αcβ . (140)

We aim to generalize the results from the previous section for a diagonal Hamiltonian to this
more general case.

Theorem C.2. For an arbitrary one-body Hamiltonian Ĥ , the thermal expectation value
∆αβ(T ) = 〈c†αcβ〉 is given by

∆αβ(T ) = [fT (h)]βα , (141)

where fT is the Fermi function at temperature T.

Proof. We start by diagonalizing the matrix h. This can be done by writing h = V eV †, where
V is a unitary matrix that diagonalizes h and e is the resulting diagonal matrix. The Hamiltonian
can then be rewritten as Ĥ =

∑
a eaaf

†
afa, where

f †a =
∑
α

Vαac
†
α , (142)

c†α =
∑
a

V †aαf
†
a . (143)

Using this, we can write the thermal expectation value 〈c†αcβ〉T as

∆αβ(T ) = 〈c†αcβ〉T (144)

= Tr
[
ρT

(∑
a

V †aαf
†
a

)(∑
b

Vβbfb

)]
(145)

=
∑
a

V †aα
∑
b

Vβb nab =
∑
a

V †aα
∑
b

Vβb δab fT (eaa) =
[
V fT (e)V †

]
βα
, (146)

where fT (e) is the Fermi function at temperature T defined as

fT (e) =
1

ee/T + 1
. (147)

Finally, using the definition of the function of a Hermitian matrix, as discussed in Section A.1,
we can write

∆αβ(T ) = [fT (h)]βα , (148)

which concludes the proof.
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D Wick’s theorem for one-body thermal states

Wick’s theorem provides a powerful tool for evaluating the expectation values of products of
creation and annihilation operators with respect to thermal states of one-body Hamiltonians,
including the ground state, which is going to be essential within the formalism of the GA and
the gGA.

Theorem D.1 (Wick’s Theorem). Wick’s Theorem provides a systematic method to decompose
the expectation value of a product of creation and annihilation operators into a sum of products
of expectation values of pairs of operators.
Consider a system described by a generic one-body Hamiltonian of the form

Ĥ =
ν∑

α,β=1

hαβc
†
αcβ , (149)

and a corresponding generic thermal density-matrix ρT , as defined in Eq. (129).
Let O = o1o2 · · · on be a string of creation and annihilation operators, where each oi is either
c†α or cβ .
Wick’s theorem states that the thermal expectation value 〈O〉T can be expanded as a sum of
products of contracted pairs:

〈O〉T =
∑

all contractions

(−1)crossings
∏

contractions

〈oioj〉T . (150)

Here, each term in the sum corresponds to a distinct way of pairing the creation and annihila-
tion operators into contractions. A contraction between oi and oj is represented as 〈oioj〉T . The
number of crossings is the number of times the contraction lines cross each other, and the sign
is determined by the parity (even or odd) of the number of crossings.
The thermal expectation values for pairs of creation and annihilation operators are given by〈

c†αcβ
〉
T

= [fT (h)]βα , (151)〈
cβc
†
α

〉
T

= δαβ − [fT (h)]βα . (152)

This theorem, which is presented here without proof, is best understood through examples. The
examples below illustrate how Wick’s Theorem works in practice.

Example. Consider calculating the expectation value of c†1c1c
†
1c1. This can be written as a sum

of two terms corresponding to different contractions:

〈c†1c1c
†
1c1〉T = 〈c†1c1c

†
1c1〉T + 〈c†1c1c

†
1c1〉T

=
[
fT (h)

]2
11

+
[
fT (h)

]
11

(
1−
[
fT (h)

]
11

)
=
[
fT (h)

]
11
.

The first contribution comes from the contraction lines between the pairs of creation and an-
nihilation operators that are next to each other, while the second contribution is from the pairs
that are more distant. The sum of these contributions gives [fT (h)]11. This is consistent with
the fact that c†1c1c

†
1c1 = c†1c1 at the operator level.
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Example. Consider calculating the expectation value of c†1c
†
1c1c1. This can be written as a sum

of two terms corresponding to different contractions

〈c†1c
†
1c1c1〉T = 〈c†1c

†
1c1c1〉T + 〈c†1c

†
1c1c1〉T = −

[
fT (h)

]2
11

+
[
fT (h)

]2
11

= 0 .

The first contribution comes with a negative sign due to one crossing, while the second contri-
bution comes with a positive sign. The sum of these contributions gives 0, consistent with the
fact that c†1c

†
1c1c1 = 0 at the operator level.

Example. Consider calculating the expectation value of c†1c
†
2c2c1. This can be written as a sum

of two terms corresponding to different contractions

〈c†1c
†
2c2c1〉T = 〈c†1c

†
2c2c1〉T + 〈c†1c

†
2c2c1〉T =

[
fT (h)

]
11

[
fT (h)

]
22
−
[
fT (h)

]
12

[
fT (h)

]
21
.

The first contribution comes with no crossings, while the second contribution has one crossing
and comes with a negative sign.

D.1 A useful observation involving Wick contractions

In this subsection, we present a useful observation based on Wick’s theorem, which plays an
important role in the formal derivation of the multi-orbital GA and gGA equations. We consider
a thermal state of a one-body Hamiltonian (refer to Eq. (129)) and focus on the calculation of
〈Xc†αcβ〉T , where X represents a product of creation and annihilation operators.

Theorem D.2 (Classification of Contractions with Additional Operators). Let us consider a
thermal state of a one-body Hamiltonian as defined in Wick’s Theorem (see Theorem D.1), and
let X be a generic fermionic operator, which can be represented as a linear combination of
strings of creation and annihilation operators. Consider the expectation value 〈Xc†αcβ〉T . By
applying Wick’s theorem, we can classify the terms obtained into two types:

1. Type 1: Terms where c†αcβ are contracted with each other. The sum of all such “discon-
nected” terms yields

〈Xc†αcβ〉T = 〈X〉T 〈c†αcβ〉T . (153)

2. Type 2: The sum of all remaining “connected” terms, which can be written in the form

〈Xc†αcβ〉T =
∑
α′β′

ξα
′β′

T 〈cα′c
†
α〉T 〈c

†
β′cβ〉T . (154)

Here the coefficients ξα
′β′

T depend only on T and X , but not on α and β. In fact, these
coefficients correspond to the sum of all terms that arise from self-contractions among
the operators remaining in X once we exclude α′ and β′ (which are contracted with α
and β, respectively).

This observation is particularly helpful in simplifying calculations involving thermal expecta-
tion values with additional operators, and it is extensively employed in the derivation of equa-
tions within the multi-orbital GA and gGA formalisms.
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E Reduced density-matrix of a fermionic subsystem

In this section, we discuss the reduced many-body density-matrix of a subsystem in a one-body
fermionic system, as described in Wick’s theorem (see Theorem D.1). This concept plays an
important role in the formal derivation of the multi-orbital GA and gGA equations.
Let us recall that the Hamiltonian is given by

Ĥ =
ν∑

α,β=1

hαβ c
†
αcβ , (155)

as stated in Theorem D.1, and the corresponding thermal states are represented by Eq. (129).
We denote the modes in the full system as c1, . . . , cν and the modes in a subsystem S as
c1, . . . , cη, where η < ν.
Let us consider the so-called single-particle reduced density-matrix for the subsystem S, which
is the following η×η matrix

∆αβ = 〈c†αcβ〉T =
[
fT (h)

]
βα
∀α, β = 1, .., η , (156)

where fT is the Fermi function at temperature T, as shown in Sec. C.3.

Theorem E.1 (Reduced Many-Body Density-Matrix for a Subsystem). Let S be a subsystem
with η modes, and let ∆ be the single-particle reduced density-matrix for the subsystem. The
reduced many-body density-matrix of S with respect to a thermal state of the Hamiltonian Ĥ is
given by

ρST =
exp

(
−
∑η

α,β=1 Fαβ c
†
αcβ

)
TrS

[
exp

(
−
∑η

α,β=1 Fαβ c
†
αcβ

)] , (157)

where TrS denotes the trace over the many-body Fock space of the subsystem S, and F is an
η×η matrix that can be expressed in terms of ∆ as

F = ln

(
1−∆T

∆T

)
, (158)

where the superscript T denotes the transpose.
In other words, given any operator Ô acting on the subsystem S (i.e., any operator constructed
as algebraic combinations of fermionic modes from 1 to η), its expectation value can be calcu-
lated as

〈Ô〉T = TrS

[
ρST Ô

]
. (159)

Proof. We will split the proof into two parts.
Part 1: First, we prove that Eq. (159) holds for operators of the form Ô = c†αcβ with α, β =

1, . . . , η. Notice that ρST has the form of a thermal density-matrix with T = 1 and a Hamiltonian
parameterized by F. Therefore, we can apply the theorem proved before Sec. C.3 to express
TrS[ρST c

†
αcβ] in terms of the corresponding Fermi function as

TrS
[
ρST c

†
αcβ
]

=
[
fT=1(F )

]
βα
. (160)
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However, by the definition of F ,

fT=1(F ) =
1

1 + eF
= ∆T . (161)

This establishes the desired result for operators of the form Ô = c†αcβ .
Part 2: Now, we extend the result to arbitrary operators Ô in the subsystem S. Since both
sides of Eq. (159) resemble thermal expectation values, Wick’s theorem (Theorem D.1) ap-
plies. Wick’s theorem reduces the calculation of expectation values to algebraic combinations
of Wick contractions. Since we have already proven that Eq. (159) holds for Wick contractions,
it follows that Eq. (159) holds for arbitrary operators Ô acting on the subsystem S.

Remark. It is important to note that we have implicitly assumed that the eigenvalues of ∆T

(equivalently, the eigenvalues of ∆) lie strictly between 0 and 1, that is, in the interval (0, 1).
This assumption is crucial for the well-definedness of F, as the logarithm in the expression for
F would be ill-defined if the eigenvalues were 0 or 1.

F Promoting of functions to independent variables

In the context of formulating the ghost Gutzwiller approximation (gGA) equations, it proves
beneficial to adopt a certain mathematical trick involving Lagrange multipliers. This trick is
particularly useful for extremizing functions that have a specific structure, and it facilitates ob-
taining a QE algorithmic structure. Specifically, let us consider a real multivariable function
f(X) of the form f(X) = g

(
a1(X), . . . , an(X)

)
, where X = (X1, . . . , Xm) is a set of vari-

ables. We are interested in extremizing f with respect to X.

Theorem F.1. Let L(λ, a,X) be a function constructed as

L(λ, a,X) = g(a1, . . . , an)−
n∑
k=1

λk
(
ak−ak(X)

)
, (162)

where λ = (λ1, . . . , λn) and a = (a1, . . . , an). If X̄ is an extremum of f(X), then there exist
values λ̄ and ā such that (λ̄, ā, X̄) is an extremum of L(λ, a,X).

Proof. Let us examine the saddle point conditions for L. These conditions imply:

1. Differentiating with respect to λi yields

ai = ai(X̄) . (163)

2. Differentiating with respect to ai yields

∂g

∂ai
= λi . (164)

3. Differentiating with respect to Xl yields

n∑
k=1

λk
∂ak
∂Xl

= 0 . (165)
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Substituting Eqs. (163) and (164) into Eq. (165), we obtain

n∑
k=1

∂g

∂ak

(
a1(X̄), . . . , an(X̄)

) ∂ak
∂Xl

=
∂f

∂Xl

(X̄) = 0 , (166)

which is a necessary condition for an extremum of f . Hence, if X̄ is an extremum of f , it
follows that (λ̄, ā, X̄) is an extremum of L.

This technique is particularly useful because it provides us with different options for how to
implement the saddle-point search in practice. For example, we can first calculate the saddle-
point conditions with respect to X for L, and this may be easier than deriving f with respect
to X, especially if the functions ai(X) are relatively simple compared to g. This is the kind of
scenario that we will encounter in the main text.

G A useful matrix derivative

One of the gGA/GA equations requires to compute a matrix derivative of the form:

X =
d

dλ
[K + λH]−

1
2

∣∣∣∣
λ=0

, (167)

where K and H are Hermitian matrices that do not commute. A simple way to compute this
derivative is by reducing the calculation to a Sylvester equation [19], as follows.
Define

Y =
d

dλ
[K + λH]−1

∣∣∣∣
λ=0

= −K−1 d

dλ
[K + λH]

∣∣∣∣
λ=0

K−1 . (168)

Deriving both sides of the equation [K + λH]−1 = ([K + λH]−
1
2 )2, it follows that

XK−1 +K−1X = Y , (169)

which is a Sylvester equation that can be solved using standard methods.
Let us call U the unitary matrix that diagonalizes K, i.e., U †KU = k, where k is a diagonal
matrix. By applying this unitary transformation to Eq. (169), we get:

U †XU k−1 + k−1 U †XU = U †Y U , (170)

which can be easily inverted since k is diagonal:

[U †XU ]ab =
[U †Y U ]ab

k−1aa + k−1bb
. (171)

The desired matrix X can be obtained by applying the inverse unitary transformation to both
sides of Eq. (171).
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[11] M.S. Frank, T.-H. Lee, G. Bhattacharyya, P.K.H. Tsang, V.L. Quito, V. Dobrosavljević,
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[35] N. Lanatà, arXiv:2305.11895

[36] T.-H. Lee, C. Melnick, R. Adler, N. Lanatà, and G. Kotliar, arXiv:2305.1112823
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In these notes, after a brief introduction to strong correlations and f -orbitals in solid state
physics, I will introduce Dynamical Mean-Field Theory (DMFT) and the combination of Den-
sity Functional Theory (DFT) and DMFT (See also references [1], [2], and [3]). Then I will
discuss some applications of DFT+DMFT on some metals and oxides.

1 Introduction to strong correlation: localized (f ) orbitals

1.1 Atomic orbitals

We first focus on the spatial localization of orbitals as a function of their principal quantum
numbers: 1s, 2p, 3d and 4f orbitals are orthogonal to lower orbitals only through the angu-
lar part because for their value of l, they are the orbitals with the lowest principal quantum
number [3]. As a consequence, the radial part of the wavefunction is not constrained by orthog-
onality, and can lower its Coulomb interaction with the nucleus by being more localized. Thus,
these orbitals are more localized than others. Fig. 1 illustrates the localization of 3d and 4f

with respect to 4d, 5d and 5f orbitals. Indeed, lanthanides are notorious examples of systems
exhibiting very strong correlation effects.
Concerning the angular part, it has more and more nodal planes as l increases, thus in particular,
d and f orbitals are fairly localized in space. As a consequence, 4d, 5d and 5f orbitals exhibit
also important correlation effects.
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Fig. 1: Radial part of valence wavefunctions of some atoms (computed in DFT/LDA).
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1.2 Localization/delocalization of electrons

Two main consequences arise from the localization of orbitals:

• When a solid is formed from atoms, the overlap of localized orbitals is weaker than for
delocalized orbitals and thus the bandwidth W is smaller (see e.g [4]).

• The more localized the orbitals, the stronger the local interactions “U” between electrons,
because electrons are closer to each other.

The simplest example to illustrate these two effects is the formation of the H2 molecule. In this
case, the competition between chemical bonding and interaction leads to a change of the ground
state as the interatomic distance increases. At large distances, the electrons are localized each
on its atom to avoid the Coulomb interaction with the other electrons (here U > W ). At small
distance, the two electrons delocalize in a bonding molecular orbital.
We see another consequence of this for solids on Fig. 2. It represents the evolution of the volume
of pure elements as a function of the number of electrons, for 4d, 4f and 5f elements. We now
discuss each curve:

• 4d orbitals are fairly delocalized, and form bands. Thus, as Z increases, electrons fill the
4d band. First the bonding states are filled and then antibonding states. As a consequence,
the volume decreases and then increases along the line. This experimental observation is
thus coherent with the delocalization of 4d electrons.

• For lanthanides, the 4f electrons are localized, thus there is a negligible overlap between
4f orbitals. As a consequence, adding electrons inside the f -bands has no effect on the
cohesion of the crystal. The decrease of the volume is called lanthanide contraction and
is due to the poor shielding of nuclear charge by 4f orbitals. Eu and Yp have especially
large volumes because one bonding electron is transferred to the non-bonding f -shell in
order to reach a half-filled or a full f -shell.

• For actinides, the localization appears at the middle of the 5f line. One way to understand
this is that as Z increases, the 5f orbitals are more and more localized because of the
attraction with the nucleus. Starting from americium, the system localizes electrons to
lower the energy.

This graph suggests that 4f electron systems will be closer to the atomic limit. We now discuss
the equation of states of the lanthanides as a function of pressure. Refs. [5, 6] show that at
ambient pressure and even for moderate pressure, the lanthanides exhibit compact structures.
Under pressure, their structure changes becoming more complex and distorted [5, 6]. This
suggests that under pressure, f -electrons participate in the bonding as in, e.g., uranium and
neptunium (which also have low symmetry equilibrium structures).
We now discuss cerium, which is a model system for lanthanides (see phase diagram in Fig. 3).
The α-γ transition in cerium is a first-order isostructural volume collapse transition. The tran-
sition line ends at a critical point (CP) around 1.5 GPa and 480 K [7] (see Fig. 3). The (larger
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Fig. 2: Evolution of volume (in Å3 per atom) of pure elements are a function of the number of
electrons for some rows of the periodic table (see also [5]).

volume) γ-phase exhibits a Curie-Weiss behavior for the magnetic susceptibility while it is
Pauli-like in the (smaller volume) α-phase (see Fig. 17). This is interpreted as 4f electrons,
being localized in the γ-phase, giving rise to local moments and contributing weakly to the
electronic bonding, whereas in the α-phase, the 4f electrons participate in both bonding [8]
and formation of quasi-particles as shown in photoemission spectra [9, 10]. The α 
 γ-phase
transition of Ce is hence a model system for a volume collapse phase transitions due to the
delocalization of localized electrons under an increase of pressure or decrease of temperature
(see Fig. 3 for other examples in the lanthanides). This is a difference between cerium and
other systems, such as praseodymium and plutonium [4], in which the volume collapse occurs
directly from the compact structure to lower symmetry structures.

1.3 The Hubbard model

In this section, we will study the Hubbard model, which is appropriate to model the localiza-
tion/delocalization competition. Using second quantization, one can write the Hamiltonian as

H =
∑
i

〈i|h|j〉 c†icj +
∑
i,j,k,l

〈ij|v|kl〉 c†ic
†
jckcl (1)

In this equation, i, j, k, l belong to a complete one particle basis. If the sums in this equation are
restricted to only one orbital per atoms, and if only on site interactions are kept, one recovers
the Hubbard model

H =
∑
i 6=j

tijc
†
icj +

∑
i

ε0(ni↑+ni↑) +
∑
i

Uni↑ni↓ (2)

In this equation, as we have only one orbital per site, i, j refers to atomic sites. We will now try
to understand two limits of this Hamiltonian.
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Fig. 3: Left: Phases of the lanthanides as a function of pressure (From [6]). Right: Phase
diagram of cerium.

1.3.1 Delocalization limit: U/t � 1

In this limit, we neglect the interaction term.

H =
∑
j 6=i

tijc
†
icj + ε0(ni↑+ni↓) (3)

One can easily solve this non-interacting Hamiltonian either by direct diagonalization or by
using Bloch states: We can define Bloch states |k〉 as

|k〉 = 1√
N

∑
i

|Ti〉 eikTi (4)

where |Ti〉 are atomic orbitals: 〈r|Ti〉 = ϕ(r−Ti) on site i. We also have

|Ti〉 =
1√
N

∑
k

|k〉e−ikTi (5)
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and the change of basis for creation and annihilation operators

c†i =
1√
N

∑
k

c†ke
−ikTi ci =

1√
N

∑
k

cke
ikTi . (6)

As a consequence, one can show that

H =
∑
k

εkc
†
kck with εk =

1

N

∑
ij

tije
−ik(Ti−Tj). (7)

In a simple case (one dimension and if tij is non-zero only for neighboring atoms), we have
(note that t is negative) the following dispersion relation which gives the energy of levels as a
function of the value of k.

εk = ε0 + 2tcos(ka) (8)

According to the Bloch theorem, k must belong to the first Brillouin Zone [−π
a
, π
a
], where a is

the distance between the atoms. We now suppose that we have one electron per atom, whereas
there are two states per atoms. As a consequence, the band is half filled. The system is thus
metallic and the Fermi levels is at ε0.

1.3.2 Localization limit: U/t � 1

H =
∑
i

Uni↑ni↑ +
∑
i

ε0(ni↑+ni↓) (9)

In this case, the Hamiltonian is a sum of Hamiltonians for independent atoms! We thus have
to solve the atomic problem. The size of the Hilbert space for this system is four (22) and the
states for each number of electrons per atom are

• 0 electron: |0〉 :E = 0

• 1 electron: |↑ 〉 and |↓ 〉: E = ε0

• 2 electrons: |↑↓〉: E = 2ε0 + U

Let us now suppose that the system has one electron per atom. From the above energies, one
can compute the cost associated to the hopping of one electron from one atom to another atom
(see Fig. 4). The cost is U. The order of magnitude of U in a real system is a few eV. As a
consequence, at room temperature, electrons will be localized and the system is called a Mott
insulator. The insulating character comes from interactions and not from a band structure effect.
One can also compute the photoemission spectra, i.e., the energy to add (E(| ↑↓〉)−E(| ↑ 〉) =
ε0+U ) or remove (E(| ↑ 〉)−E(|0〉) = ε0) an electron. We see that the photoemission spectra
(or spectral function) will have two peaks located at ε0 and ε0+U. The two peaks are separated
by U, which is thus the photoemission gap. These peaks correspond to the Hubbard bands.

1.3.3 The Mott transition

From these two limits, one can deduce that as U/t will increase, the systems will change from
a metal to a Mott insulator. This is the phenomenon of the Mott transition. But we need an
approximation to find the solution for intermediate U/t. This is one of the purposes of DMFT.
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Fig. 4: For U/t� 1, the cost of a hopping is E(|↑↓〉) + E(|0〉)− 2E(|↑ 〉) = U

≡

Fig. 5: In DMFT, the Hubbard model is simplified by an Anderson model. On the left, the
Hubbard model is represented schematically. On the right, one atom in red is interacting with
the effective field of the others.

2 Introduction to DMFT and DFT+DMFT

2.1 Dynamical Mean-Field Theory
2.1.1 The Anderson model

We would like to describe correctly the on-site Coulomb interactions which are essential to
describe the atomic limit. The first idea of DMFT is to mimic the Hubbard model by a correlated
atom with the exact Coulomb interaction, embedded in a bath of uncorrelated orbitals (see
Fig. 5). The effect of all the other atoms are gathered in the bath. This is an Anderson model [11]
whose Hamiltonian writes

W

H0a

ϵ0

ϵ0 + U

H0b

Vk

H1

HAnderson =
∑

ωk a
†
k,σakσ︸ ︷︷ ︸

H0a

+
∑
k,σ

Vk
(
a†k,σcσ + c†σak,σ︸ ︷︷ ︸

H1

)
+ ε0(n↑+n↓) + Un↑n↓︸ ︷︷ ︸

H0b

(10)
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The use of the Anderson model is a mean-field idea that goes beyond static mean field. Indeed,
we do not have only one electron in an effective field as in usual static mean-field theory, but
a whole many-body atom whose interactions are taken into account exactly. Moreover the
Anderson model will be defined self-consistently, but we will discuss this in the next section.
In this section we just focus on the physics of the Anderson model. Once again, we are going
to investigate several limiting cases for this Hamiltonian

The isolated atom limit: Vk = 0. This case is identical to the limit U/t� 1 of the Hubbard
model: the correlated atom is insulating.

The U = 0 limit. The hamiltonian writes

HAnderson =
∑

ωk a
†
k,σakσ +

∑
k,σ

Vk
(
a†k,σcσ + c†σak,σ

)
+ ε0(n↑+n↓).

This is again a non-interacting system which can be solved easily: The atomic level will hy-
bridize with the levels at ωk, and will acquire a width.
Let us compute the Green function of this system. We can use the equation of motion of the
(non-interacting) Green function, we thus have(

ωI−H
)
G = I. (11)

The dimension of these matrices is equal to N+1. It contains the N uncorrelated orbitals ωk
and the correlated orbital ε0. The diagonal elements of H are the energies ωk and ε0. The only
off diagonal terms are the coupling elements of the level at ε0 to the levels at ωk.

H =



ε0 V1 · · · Vk · · · VN
V1 ω1 0 0 0 0
... 0

. . . 0 0 0

Vk 0 0 ωk 0 0
... 0 0 0

. . . 0

VN 0 0 0 0 ωN


We can easily invert this matrix and compute the Green function of the correlated orbital (Using
A−1 = Com(A)T/detA to invert ωI−H). We obtain

G(ω) =
1

ω − ε0 −∆(ω)
with ∆(ω) =

∑
k

V 2
k

ω−ωk
(12)

Where ∆(ω) is called the hybridization function.
We can now compute the spectral function of this system by computing:

A(ω) = − 1

π
ImGR(ω + iδ) (13)
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Fig. 6: Two electrons levels with V=0 and V small.

We need1

∆(ω + iδ) =
∑
k

V 2
k

ω−ωk
− iπ

∑
k

|Vk|2 δ(ω−ωk) (14)

If ∆ = 0, then the spectral function has a peak at ε0. Using the last two equations, the peak
at ε0 in the spectral function will be shifted by the real part of ∆ and will be broadened by
the imaginary part of ∆. Interestingly, the imaginary part of ∆ recovers the Fermi golden rule
(width of the level coupled to the continuum is π

∑
k |Vk|2 δ(ω−ωk)).

The Anderson Molecule. We now simplify the bath by replacing it by a single level. We
reproduce here the example detailed in Ref. [12, 13].
We suppose thatU is infinite, so a double occupation of the localized level is impossible. Finally
we limit our study to the states with 2 electrons. With these constraints, we have 5 possible states
in the Hilbert space: the first is the double occupation of the bath level (this is a state with S=0)
and there are four states with one electron in the bath level and one electron in the localized
level. Among these four states, there are one triplet (S=1) and one singlet (S=0). If V=0, then
the four levels are degenerate. In Fig. 6, the singlet states are in red.
If the hybridization V is non-zero, then the two states with S=0 couple (see Fig. 6). As a conse-
quence we have a possible transition between the singlet and the triplet state at very low energy.
This phenomenon has the same physical origin as the Kondo effect. It shows that a resonance
exists even in a very strongly correlated system (U large) and this resonance will be at the Fermi
level. We can define a temperature T ∗ corresponding to the difference of energy between the
singlet and triplet state. Below this temperature, the system will exhibit the resonance, which
will fade as temperature increases. Moreover, below this temperature, the magnetic moment of
the localized level is completely cancelled by the formation of the singlet state.

2.1.2 The self consistency condition and the DMFT loop

Following the definition of the Green function in the local orbital basis (i and j)

Gij(t) = −i〈N |T (c†i (t)cj(0)|N〉 (15)

1We use limδ→0
1
π

δ
x2+δ2 = δ(x).
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one can compute the Bloch Green function

Gk(t) =
1

N

∑
ij

eik(Ti−Tj)Gij(t) (16)

thus, in frequency

Gk(ω) =
1

N

∑
ij

eik(Ti−Tj)Gij(ω) (17)

Using the equation of Motion of the Green function (ω−H−Σ)G = 1, the lattice Green func-
tion for the Hubbard model is written

Gk(ω) =
1

ω − εk −Σk(ω)
, (18)

where the self-energy is unknown. The local Green function of the lattice is

Gii(ω) =
1

N

∑
k

eik(Ti−Ti)Gk(ω) =
1

N

∑
k

Gk(ω). (19)

Besides, the Green function for the Anderson impurity model is

GAnderson(ω) =
1

ω − ε0 −∆(ω)−Σ(ω)
. (20)

The DMFT idea [1] is to identify the local Green function of the Hubbard model with the Green
function of Anderson model and the self-energy of the Hubbard model to be equal to the self-
energy of the Anderson model:2 it is the self-consistency relation of DMFT. This implies in
particular that the local one particle excitations of the Hubbard model will be the same as the
one particle excitations of the Anderson model. This writes

1

N

∑
k

1

ω − εk −Σ(ω)
=

1

ω − ε0 −∆(ω)−Σ(ω)
. (25)

2Thus we have expressed also the self-energy in the Bloch basis. We start from the expression of the self-energy
as a sum of local self-energies on different sites

Σ =
∑
Ti

|Ti〉Σ(ω)〈Ti| (21)

We use then
|Ti〉 =

1√
N

∑
k

|k〉e�ikTi (22)

Thus by replacing the last equation in Eq. (21), we have

Σ =
∑
k

|k〉Σ(ω)〈k′| (23)

Thus
〈k|Σ|k〉 = Σ(ω) (24)

Thus for a local self-energy, the self-energy in the basis of Bloch states is equal to the local self-energy.
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Fig. 7: Phase diagram of the Hubbard model in DMFT compared to that of Cerium.

This equation enables us to find ∆(ω) as a function of the self-energy: ∆ = ∆[Σ] and also
ε0 =

1
N

∑
k εk.3 Besides, the solution of the Anderson model enables us to have the self energy

from the value of ε0 and ∆.4 So this creates a system of two equations that can be solved self-
consistently. These two equations constitute the DMFT self-consistent loop that can be solved
by iteration.

2.1.3 The Hubbard model in DMFT

The main results for the Hubbard model phase diagram in DMFT (in infinite dimension, without
magnetism and for one electron per atom) are summed up on Figs. 7 and 8. First, the metal
insulator transition is a first-order phase transition. Moreover, the paramagnetic insulating phase
with a degeneracy of two can be described in contrary to the static mean-field approximation
which breaks the symmetry and creates magnetism.
We now describe the evolution of the spectral function. At large value of U, the Hubbard bands
are present but still broadened by hybridization. Then, a resonance peak appears at the Fermi
level and grows, as U/t decreases. Importantly thus, the metallic phase appears whereas the
Hubbard band are still present in the photoemission spectra. Such feature is also not described
by the static mean-field approximation. Let us finally outline that in DMFT, both the atomic
limit (U/t� 1) and the delocalization limit (U/t� 1) are exact.
We compare on Figs. 7 and 8 the physics of the Hubbard model to the physics of an f electron
system, namely pure cerium. As was discussed above, pure cerium exhibits two phases, one
with delocalized f -electrons and one with localized electrons and the transition between these
two phases can be controlled with pressure or temperature. It can be rationalized in comparison
to Hubbard model: applying pressure is equivalent to reducing t. Besides, phases of cerium
both exhibit Hubbard bands. The α-phase, exhibits less intense Hubbard band and larger quasi-
particle peak, as expected for more delocalized electrons. In the next section, we will discuss
DFT+DMFT in order to apply DMFT ideas to a real system such as cerium.

3Equivalently, one can say that the non-interacting Green function G�10 = ω− ε0−∆(ω) can be obtained from
the self-energy.

4Equivalently, one can obtain the Green function and the self energy of the Anderson model as a function of
the non-interacting Green function
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Fig. 8: Evolution of the spectral function in the Hubbard model (from Ref [1]) compared to
photoemission spectra in cerium (From Ref. [9, 10])

2.2 DFT+DMFT

The rough idea of DFT+DMFT is to use the DFT/LDA Hamiltonian to define the one body term
of the Hubbard model and then supplement it by an exact Coulomb interaction for the corre-
lated orbital subset. However, to apply DMFT ideas to a real system, one need first to define
correlated orbitals [14–16] and a corresponding value of the effective interaction U [17]. This
is important and is discussed in the next subsection. I just outline here that there is no unique
way to define correlated orbitals. So several choices have been made in the literature. They
include atomic orbitals, or Wannier orbitals. When the choice of correlated orbitals is done, the
effective interaction for these orbitals has to be computed. One formalism is the constrained
Random Phase Approximation (cRPA) method [17] which considers that the effective inter-
action between correlated electrons is the bare interaction screened by all the non-correlated
electrons. It thus requires the calculation of a non-interacting polarizability and the inverse
dielectric function. It is described in the second subsection.

Then, using correlated orbitals and related values ofU, a DFT+DMFT calculation can be carried
out. The scheme will be presented in the third subsection. Lastly, I will briefly discuss solvers
for the Anderson model in the fourth subsection.

2.2.1 Correlated orbitals: how to define them?

In this section, we briefly discuss Wannier functions, which are a flexible tool to define corre-
lated orbitals.
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Ψ2 = βφO − αφV β ≪ α

Fig. 9: Simple molecular orbital diagram for an diatomic molecule containing an electropos-
itive atom (V) and an electronegative atom (O). It can be viewed as a simple model for SrVO3

or UO2 or Ce2O3. In the text, we use this model with 3 electrons: the ε2 level is thus half-filled.

Projected Local Orbitals Wannier functions and Maximally Localized Wannier functions.
Projected Wannier functions are defined in Refs. [14,16]. We first introduce the auxiliary wave-
functions |χ̃R

km〉 as

|χ̃R
km〉 ≡

∑
ν∈W

|Ψσkν〉〈Ψσkν |χR
km〉. (26)

For a given atomic site R, we call |χR
km〉 the Bloch transform of isolated atomic orbitals with

projected angular momentum m. |Ψσkν〉 are the Kohn-Sham orbitals for k-point k, band index
ν and spin σ. |χ̃R

km〉 is thus a weighted sum of Kohn-Sham orbitals. This sum extends over a
given number of Kohn-Sham orbitals that can be defined by an index range or alternatively by
an energy window W . For a finite W , the orthonormalization of |χ̃R

km〉 leads to well defined
Wannier functions |wR

km〉, unitarily related to |Ψσkν〉 by5

|wR
km〉 =

∑
ν∈W

|Ψσkν〉〈Ψσkν |wR
km〉. (27)

It is important to notice that the localization of |wR
km〉 will decrease ifW decreases. Maximally

localized Wannier functions are Wannier functions whose extension is minimized [18]. They
have the advantage over projected local orbital Wannier functions that they are uniquely defined.

Wannier functions: a pedagogical simplified molecular model In order to illustrate the
localization of Wannier functions, we consider a simple diatomic molecule containing an elec-
tropositive atom (V) and an electronegative atom (O). In this model molecule, we consider only
one orbital per atom, and for simplification, we assume it is of s symmetry. It can be viewed as
a very simple model for SrVO3 or UO2. The bonding state at ε1 is the analogue of the O-p like
band, whereas the antibonding state at ε2 is the analogue of the V-d like bands.
We now suppose that the system contains 3 electrons. The V-like band is thus half filled. We
use Eq. (26) with χ = φV to compute Wannier functions for two energy windows:

5In the limit of a infinite number of Kohn-Sham bands, the projection in Eq. (26) becomes complete and the
Wannier functions |wR

km〉 become equivalent to atomic orbitals |χR
km〉.
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Eigenstates included in the energy windowW {ε2} {ε1, ε2}
Corresponding Wannier function wV |Ψ2〉 |φV 〉
Corresponding number of electrons nV 1 2β2+α2

Table 1: Wannier function on vanadium and corresponding numbers of electron in a simple
diatomic molecule for two different choices of the energy window.

• IfW = {ε2}, then Eq. (26) contains only one term: |χ̃〉 = |Ψ2〉〈Ψ2|φV 〉 = α|Ψ2〉. After
renormalizing χ̃, we find that the Wannier function is a molecular orbital |wV 〉 = |Ψ2〉
that contains an oxygen contribution. The number of electrons in this orbital is 1.

• If W = {ε1, ε2}, then Eq. (26) contains two terms. One shows easily that the Wannier
function is a localized atomic orbital |wV 〉 = |φV 〉 and is thus much more localized than
in the previous case. The number of electrons in 2β2+α2 6= 1.

So this simple example illustrates how the localization of the Wannier functions is modified by
the choice of the energy windows of Kohn-Sham bands. A similar illustration in the case of
SrVO3 can be seen in [15]. We will now discuss the calculation of effective interactions for
these orbitals.

2.2.2 How to compute the effective coulomb interaction?

There are several ways to compute effective interactions [19, 20, 17]. Here, we will briefly
present the constrained random phase approximation method [17, 21] (cRPA) which is particu-
larly adapted to DFT+DMFT.
The cRPA method depends on the definition of a many-body model [21]. The many-body
model is defined by a set of local orbitals together with the interactions among them. A cRPA
calculation of a model would require first the definition of a set of local orbitals, and second a
consistently calculated screened interaction: it considers that the effective interaction between
correlated electrons is the bare interaction screened by all the non-correlated electrons. Impor-
tantly, thus the value of effective interactions depends on the definition of correlated orbitals
discussed above.

The cRPA method We call here χ0 the non-interacting (Kohn-Sham) polarizability of the
system. Let’s now separate the correlated states (They could be f -states but the method is more
general and correlated orbitals could gather several orbitals from, e.g., different atoms) from the
rest (r). We thus have [17]

χ0 = χcorrel
0 + χr0. (28)

Thus, we can rewrite the inverse dielectric matrix as

ε−1 =
1

1− v(χcorrel
0 +χr0)

. (29)
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Fig. 10: Schematic density of states with the transitions that are involved in the polarizability of
correlated electrons Pd=̂χcorrel

0 and the other transitions that are involved in Pr=̂χr0 = P−χcorrel
0

(From [22]).

We now define the dielectric functions due to non-correlated electrons and the corresponding
screened interaction

ε−1r =̂
1

1− vχr0
and Wr = ε−1r v =

v

1− vχr0
. (30)

The dielectric function due to correlated electrons acting on Wr is thus

ε−1correl=̂
1

1−Wrχ
correl
0

. (31)

With these definitions, one shows that

ε−1correlε
−1
r = ... =

1

1− vχr0 − vχcorrel
0

= ε−1 and thus W =̂ε−1v = ε−1correlε
−1
r v. (32)

The fully screened RPA interaction is the combination of two screening processes. First, the
bare interaction is screened by non-correlated electrons (r), giving rise to a screened interac-
tion Wr. Secondly, the screening of this interaction by correlated electrons recovers the fully
screened interaction [17].
The main idea of cRPA is to use this separation of screening processes. The screened interaction
Wr can be computed explicitly, using the equation written above, which is valid for electrons
interacting only with the Hartree potential. Removing the screening by correlated electrons is
easy in cases where the correlated orbitals are unitarily related to an isolated set of bands (see
Fig. 10). In other cases, several schemes have been proposed.
Then the interaction in the basis of correlated orbitals is computed with

U1234(w) = 〈w1w2|Wr(w)|w3w4〉. (33)

Finally, the screening by correlated electrons is explicitly taken into account by solving exactly
the correlations with the interaction U1234 by a dedicated method (e.g. DMFT).
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Fig. 11: Band structure of UO2 in DFT/LDA [23]. Between –8 eV and –3 eV, bands are mainly
O-p like. Then, there are 14 bands of 5f character that are at the Fermi level. If Wannier
correlated orbitals are constructed only with f -like bands, then, the cRPA interactions can be
computed by removing transitions inside the 14 isolated f -bands.

Many-body models We now briefly consider different kinds of models as discussed in Ref. [21,
25] in the case of UO2. UO2 is a paramagnetic insulator above the Néel temperature of 30 K
with the fluorine structure.

• f -f model: The model is built from the U-f like bands only: Wannier functions are built
from U-f like bands and transitions among the U-f like bands define χcorrel.

• fp-fpmodel: The model is built from the U-f like and O-p like bands. Wannier functions
are build from U-f like bands and O-p like bands and transitions among these bands
define χcorrel. In this case, effective interactions Uff , Ufp and Upp can be computed and
used in a calculation using explicitly all these interactions.

We now first discuss the value of the interactions. We can first compare the bare interactions for
SrVO3 (19.1 eV), cerium (24 eV) and UO2 (16.1 eV) [23]. It highlights the large localization
of orbitals in lanthanides and the fact that interactions in actinides are lower.
We now discuss effective interactions U. The value of U depends largely on the model [23].
It is larger in the fp mode. This comes from the fact that the orbitals are more localized in
the fp model and also that screening is lower. Ref [24] discusses the appropriate choice of U
in uranium. However, it is expected to be between 4 and 6 eV in UO2 to reproduce spectral
properties [26]. In lanthanides, the values of U required to describe experiments are larger.

model v U
f -f 16.0 3.4
fp-fp 17.1 6.2

Table 2: Bare (v), and cRPA (U ) Coulomb interactions for UO2 computed for different models.
Results are from [23] (see also [24])
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2.2.3 The DFT+DMFT scheme

We now suppose that correlated orbitals and effective interactions are defined. We now discuss
the DFT+DMFT scheme. In a first step, we are going to write the expression of the lattice
Green function for the solid with a local self-energy. The self-energy will later be the DMFT
self-energy.

The lattice Green function In comparison to the case of the one-band Hubbard model,

• the number of correlated orbitals is larger (14 for f -elements),

• the number of bands in the system is large, and larger than the number of correlated
orbitals because some orbitals are not correlated. For example, in cerium, the 4f orbitals
are correlated but the 6s are not. However, 6s and 4f states are strongly mixed in the
DFT/LDA density of states.

We are going to express all quantities (G,Σ) in the Kohn-Sham wavefunctions basis because
the DFT Hamiltonian has a simple expression in this basis

HLDA =
∑
nk

|Ψkn〉 εnk 〈Ψkn| . (34)

The self-energy in DMFT is local and is computed in the local basis (of correlated orbitals),
thus the self energy operator is a sum of identical self-energies on each correlated site (m and
m′ are the quantum numbers of the projection of the angular momentum)

Σ =
∑
mm′Ti

|χTim〉Σm,m′(ω) 〈χTim′| . (35)

We can define the Bloch transform of the localized functions χTim as before as

|χTim〉 =
1√
N

∑
k

|χkm〉 e−ikTi . (36)

Thus by replacing the last equation in Eq. (35), we have

Σ =
∑
mm′k

|χkm〉Σm,m′(ω) 〈χkm′| . (37)

It can be expressed in the Kohn-Sham basis directly using the fact that 〈Ψkn|χk′m〉 is zero if k
and k′ are different,

Σnn′(k, ω) =
∑
m,m′

〈Ψkn|χkm〉Σmm′(ω) 〈χkm′|Ψkn′〉. (38)

In order to avoid a double-counting of the correlation for correlated orbitals, the self-energy has
to contain a so called “double-counting term” which should cancel the DFT/LDA Hartree and
exchange-correlation potential for the correlated electrons

Σ = ΣDMFT −ΣDC. (39)
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The Green function will obey the usual equation of motion:(
ωI−H−Σ

)
G = I. (40)

Thus the Green function is

Gnn′(k, ω) =
(
ωI−H(k)−Σ(k, ω)

)−1∣∣∣
nn′
, (41)

where H(k) is a diagonal matrix containing the Kohn-Sham eigenvalues and Σ(k, ω) is non-
diagonal (see above). The local Green function is simply

Gloc
mm′(ω) =

∑
k

〈χkm|Ψkn〉Gnn′(k, ω) 〈Ψkn′ |χkm′〉. (42)

This equation is the generalization of Eq. (19).

The Self-Consistency Condition The DMFT self-consistency relation equals the local Green
function and the Green function of the Anderson model:

Gloc
mm′(ω) = GAnderson

mm′ (ω) (43)

where
GAnderson
mm′ (ω) =

(
ωI−E0−∆(ω)−Σ(ω)

)−1∣∣∣
mm′

. (44)

E0 is a diagonal matrix with the levels of correlated orbitals in the (multiorbital) Anderson
model, Σ and ∆ are the self-energy and hybridization matrices in the correlated orbital basis.
E0 and ∆ are obtained from the self-consistency condition.

The Anderson impurity model E0, ∆ and U, J define the Anderson model. The solution
of the Anderson model gives the local self-energy, which is used again to compute the lattice
Green function, Eq. (41).

The DFT loop The density can be obtained from the full Green function using:

n(r) = −i
∑
n,k

Ψkn(r)Gnn′(k, t−t′=0−)Ψkn′(r) (45)

and is used to reconstruct the Kohn-Sham Hamiltonian (a functional of the density) and thus the
eigenvalues. The scheme is summarized in Fig. 12.

2.2.4 Solvers for the Anderson impurity model

The resolution of the Anderson impurity model, Eq. (10), can be done by several methods.
Simplifications can be done in some cases. In some localized systems (e.g. lanthanide oxides),
one can neglect the bath in the resolution of the Anderson model. In this case, the hybridization
and crystal field play a role only through the renormalization of the atomic levels. This is the
basis of the Hubbard I method.
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DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define orbitals and use ϵk

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ −Gloc

Impurity Solver (CTQMC)Compute Green’s function
Compute Self-energy

New electronic density

Fig. 12: Scheme of the DFT+DMFT loops. G0 is the non-interacting Green function of the An-
derson model and is linked to the hybridization by G−10 = ωI−E0−∆(ω). The Dyson Equation
is G−10 −G−1 = Σ.

A more drastic solution is the static mean-field solution, which is equivalent to the DFT+U
method [19]. To briefly present this approach, we suppose that density matrix of correlated
orbitals is diagonal and J =0. In this case, the self-energy for orbital i is simply U(ni−1/2).
It has the effect of opening a gap in Mott insulators by shifting occupied states downwards and
empty states upward (see also [27]). However, even the atomic physics is not recovered and e.g
paramagnetic insulators cannot be described with this approach. Some approximations can also
be made if the system is on the metallic side (e.g. the Gutzwiller approximation).

In the general case, the solution can be provided by quantum Monte Carlo methods. The main
idea is that the atomic problem can be solved exactly and the bath problem can be solved exactly.
Most continuous-time quantum Monte Carlo codes, but not all, use an expansion as a function
of H1 in Eq. (10) and sample all relevant terms in the expansion.

2.2.5 Conclusion on DFT+DMFT

In this section, I have first reminded that the Hubbard model describes localization/delocalization
transitions. Then I have presented the mapping to the Anderson model, and the DMFT equa-
tions. For real systems, I underlined that correlated orbitals and effective interactions have to be
defined. Lastly, I detailed the DFT+DMFT scheme. The next section is devoted to applications
to f -electron systems.
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Fig. 13: Theoretical spectral functions of cerium compared to photoemission spectra [9, 10].
Both the LDA and LDA+U spectra [28] are unable to differentiate the two phases of cerium.
LDA+DMFT [29] describes qualitatively the appearance of the noticeable quasiparticle peak
in the α-phase.

3 f -electron systems: pure metals

3.1 Lanthanides

As discussed in the first section, f -electrons in lanthanides are localized and do not participate
to the bonding at ambient pressure. So indeed, as DFT+DMFT correctly describes the atomic
limit and the metal insulator transition, it should be adopted to describe these systems and their
behavior under pressure. We will review in this section, photoemission, optical properties,
magnetic and structural properties as described by DFT+DMFT on lanthanides.

3.1.1 Photoemission spectra

In this section, we discuss photoemission spectra of two lanthanides: cerium and terbium. For
cerium, direct and inverse photoemission spectra were measured for both phases [9, 10] and
are reproduced in Fig. 13. Importantly, both phases exhibit high-energy structures that can
be interpreted as Hubbard bands. Only the α-phase has a sizable peak at the Fermi level,
which suggests that the 4f electron is partly delocalized. We now compare to spectral functions
obtained in DFT, DFT+U, and DFT+DMFT. We see that only DFT+DMFT is able to describe
the important differences between the spectra of the α- and γ-phases, in contrast to LDA+U
and LDA. LDA only describes the quasiparticle peak whereas LDA+U only opens a gap in the
f -bands and thus describes only Hubbard bands.
We now discuss terbium spectra. Locht et al. [30] have computed photoemission spectra of all
lanthanides using DFT+DMFT. At ambient pressure as discussed above, electrons are localized
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Fig. 14: Comparison between experimental spectra (red dots) and the spectra calculated with
DFT+DMFT (left) and with DFT+U (right). The green line is the calculated total spectral
function. The blue line is the calculated 4f contribution to the spectral function [30].

so the authors used the Hubbard I approximation. Fig. 14 shows theoretical spectra computed
in DFT+DMFT and DFT+U compared to experimental spectra in the example of terbium. The
direct photoemission spectrum contains peaks corresponding to the f 7 multiplets whereas in-
verse photoemission corresponds to f 9 states. These atomic features are correctly described by
DMFT, provided that effective interactions and double-counting is correctly adjusted. In com-
parison, static mean-field LDA+U describes the system with only one Slater determinant and
cannot reproduce the experimental data.
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[31]). (right): from top to bottom: f and d spectral functions, and hybridization function [31].
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3.1.2 Optical conductivity

In Fig. 15, the experimental optical conductivity spectra of α- and γ-cerium are compared to
DFT+DMFT calculations [31]. The DFT+DMFT calculations successfully reproduce the larger
Drude peak in the γ-phase and the 1 eV peak in the α-phase spectra. The right panel of Fig. 15
provides insight into these spectra and the origin of these features. Indeed, at low temperature,
when the quasiparticle f -peak at the Fermi level is large, the hybridization between f - and
d-electrons creates a pseudo-gap in the d density of states, explaining the 1 eV peak in the
α-phase. The large Drude peak at the Fermi level originates from the unhybridized d spectral
function. This peak is visible mainly in the γ-phase where there is no pseudo-gap and thus an
important d-weight at the Fermi level.
Two simplified models exist to describe the α-γ phase transition in cerium. They differ by
the orbitals involved in the delocalization of f -electrons under pressure. The Mott transition
assumes the f -f hoppings variation is most important, whereas in the Kondo Volume Collapse,
it is the f -c hoppings that are dominant (c stands for s, p or d orbitals). The above analysis
suggests that the main hybridization that drives the delocalization of f -electrons under pressure
is the f -d hybridization. This is compatible with the qualitative view of strongly localized
f -orbitals that have weak overlap.

3.1.3 Electronic model for the transition

To complement the above analysis, it is possible to simulate photoemission spectra with or
without f -f hoppings to check the importance of this term. Fig. 16 shows the evolution of the
4f hybridization computed in LDA (top row), and LDA+DMFT (middle row), and the spec-
tral functions computed in LDA+DMFT (bottom row) as a function of volume (in black). In
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Fig. 17: Magnetic susceptibility computed in DFT+DMFT [34] as a function of temperature
for α- and γ-phases of cerium. We can analyze these data with the help of the phase diagram
of Ce (Fig. 3). The magnetic susceptibility is constant as a function of temperature in the α-
phase (below 500 K), whereas it has a Curie-Weiss behavior in the γ-phase (above 150 K). The
γ-phase has thus a local moment. This is in qualitative agreement with experiment [33].

red the same quantity is plotted without f -f hoppings [32]. The comparison of the hybridiza-
tions shows that f -c hybridization is clearly dominant at all volumes. Nevertheless, for lower
volumes, the f -f hoppings play an increasing role in the amplitude of the hybridization. The
amplitude of the quasiparticle peak is also impacted by the f -f hopping. This highlights that
both hybridizations have to be taken into account and thus the need to go beyond models for a
quantitative description of cerium.

3.1.4 Magnetism

Fig. 17 reproduces the magnetic susceptibility of cerium calculated within DFT+DMFT [34].
It exhibits a Curie-Weiss susceptibility at high temperature and low pressure in the γ-phase.
This is in agreement with the spectral functions, that show mainly Hubbard bands and no quasi-
particle peak, and suggest that this system is localized. In the α-phase, the quasiparticle peak
is present, and a Pauli-like behavior in the α-phase (at low temperature) is observed. This is in
qualitative agreement with experiments from Ref. [33].

3.1.5 Equation of states

Regarding cerium, numerous studies have extensively investigated the thermodynamics of its
transition, highlighting the profound interplay between thermodynamic and electronic proper-
ties within the framework of density functional theory combined with dynamical mean-field
theory (DFT+DMFT). Notably, these investigations have clearly demonstrated that the pres-
ence of a quasiparticle peak in the α-phases contributes to the stabilization of the phase at low
temperatures. The inclusion of entropy and spin-orbit coupling has been found crucial for accu-
rately describing the equation of states. In Fig. 18, the internal energy, entropy, and free energy
at the transition are depicted, both with and without consideration of spin-orbit coupling. Let us
start by discussing the internal energy. In both sets of calculations conducted within the volume
range of the transition, we observe a softening of the energy’s second derivative, indicating a
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Fig. 18: Internal, free energy, entropy, and pressure as a function of volume compared to ex-
periment with spin-orbit coupling [35] and without spin-orbit coupling [29].

decrease in the bulk modulus. However, it is crucial to consider the contribution of entropy, as
its magnitude plays a significant role. It is worth noting that this magnitude is influenced by
the degeneracy of the f -levels, which in turn depends on the inclusion of spin-orbit coupling.
Finally, the resulting free energy exhibits a negative curvature, which is an indication of the
presence of a phase transition. Notably, this distinctive feature is observed solely in the calcu-
lation that incorporates spin-orbit coupling. In this particular case, one can deduce the equation
of state, which demonstrates a good agreement with the experimental equation of state.

3.2 Actinides

3.2.1 Structural properties

As discussed above, the volumes of actinides show a jump along the line. Uranium and neptu-
nium have a low volume and a low symmetry structure whereas americium and curium have a
large volume and compact phases. So plutonium is at the transition between two types of be-
havior. Depending on the temperature, it can exhibits low symmetry phase with low volume (α)
or compact phase with high volume (δ). Concerning magnetism, all phases are non-magnetic,
and there is no local moment except for curium.
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Fig. 19: Volumes of uranium, neptunium, various phases of plutonium, americium and curium
computed in non-magnetic GGA and DFT+DMFT [36].

We now discuss theoretical results [36] reproduced on Fig. 19. GGA fails to recover the vol-
ume jump in actinides, unless an artificial magnetism is taken into account [36]. On contrary,
DFT+DMFT is able to describe this transition. Interestingly spin-orbit coupling and Hund’s
exchange play a key role in this transition. In particular it is noticeable that the volume jump
happens near the complete filling of the J =5/2 shell. This can be interpreted as an enhance-
ment of correlation near the filling of this shell.

3.2.2 Branching ratio and importance of spin-orbit coupling

X-ray absorption spectroscopy (XAS) is especially useful to study f -electron systems because,
as we will see below, it gives indication on the strength of the spin-orbit coupling (SOC). We
focus here on the 4d to 5f transition. Spin-orbit coupling is very important for core states.
So 4d orbitals are largely split in 4d5/2 and 4d3/2. 5f orbitals are less split by SOC. The
absorption intensities I5/2 and I3/2, which correspond to 4d5/2 → 5f5/2,7/2 and 4d3/2 → 5f5/2
transitions, enable to define the branching ratio as B = I5/2/(I5/2 + I3/2). One can show
that it is directly linked to the average of the spin-orbit operator. We can thus compare the
experimental values of this operator to exact limits computed in the Russel-Saunders coupling
scheme or the jj coupling scheme, and to ab-initio calculations. In the LS (Russel-Saunders)
picture (see Fig. 20), we have in particular a cancellation of the spin-orbit coupling when L=0

for nf=7. Whereas in jj coupling, the value increases until the j=5/2 shell is filled, after
which it decreases.
Experimentally, the value is rather close to the jj case, except near nf=7 where the stabilization
of the half filled shell decreases the value of the spin-orbit operator. In Fig. 20, we compare
the experimental value to LDA and LDA+DMFT calculations [37]. LDA overestimates the
bandwidth, so the value of the spin-orbit coupling is underestimated. LDA+DMFT improves
the agreement with experiment. This emphasizes the fact that LDA+DMFT correctly captures
atomic physics.
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to exact limit (LS and jj coupling) and LDA (left) or LDA+DMFT (right) [37]

4 f -electron systems: oxides

Most f -electron oxides are Mott insulators, and thus DFT+DMFT is the method of choice to
describe them. DFT+U does describe also very well the structural and spectral properties, but
not the magnetic properties. We will illustrate this with two examples of Mott insulators.

4.1 Electronic structure of Ce2O3

Ce2O3 is a Mott antiferromagnetic insulator with an optical band gap of 2.4 eV [61] and a Néel
temperature of 9 K. We discuss in the following first the density of states and experiments, and
secondly, the ground state density.

4.1.1 Density of states

Ce2O3 contains only one f -electron, resulting in the absence of multiplets in this system. Both
DFT+U and DFT+DMFT methodologies successfully reproduce the energy gap of this com-
pound. Fig. 21 shows the spectral function in DFT+DMFT. The DFT+U spectrum is very
similar. These methods accurately capture the magnitude of the band gap which is between the
two Hubbard bands. However, as we will discuss below, beneath these apparent similarities lie
profound differences between the two approaches.

4.1.2 Electronic Density

To illustrate the differences between the LDA+DMFT and LDA+U electronic densities, we
have plotted in Fig. 22 the isosurfaces of the differences between the LDA+DMFT and LDA
electronic densities (on the left) and between LDA+U and LDA electronic densities (on the
right). We see that the difference between LDA+DMFT and LDA is weaker than the difference
between LDA+U and LDA. This suggests that the occupation matrices of the correlated orbitals
are different in LDA+U and LDA+DMFT.
We now explain the origin of this difference. In DFT, local interaction is not taken into account,
so the f -electron is delocalized over several f -orbitals. In DFT+U, because of the localization,
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Fig. 22: Difference between the electron densities computed using LDA+U (right) and
LDA+DMFT (left) approximations and in the LDA approximation. The density of the filled
orbital is clearly visible on the right. The blue (respectively green-red) area corresponds to a
positive (respectively negative) value of the difference. [38]

numerous low-energy one-electron nearly-degenerate states are present in these systems. Each
of these states can be calculated using a single Slater determinant method like DFT+U [39]
and corresponds to the localization of the f -electron in one f -orbital. As a consequence, the
average occupation of one orbital is either close to 0 or 1 (to reduce the Coulomb interaction).
This explains the large difference of the electron densities between DFT+U and DFT as seen in
the right plot of Fig. 22.
However, to accurately describe a paramagnetic insulator without introducing unwanted or-
bital anisotropy and magnetism, a method capable of handling multiple determinants, such as
DFT+DMFT, is required. In DFT+DMFT, the instantaneous occupation of orbitals is 0 or 1.
But the average occupations of f -orbitals are lower and closer to the DFT/LDA values. The left
plot of Fig. 22 highlights the similarity of the DFT/LDA and DFT+DMFT densities, even if it
comes from completely different physical effects.
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4.2 Magnetic ordering in UO2

As f -orbitals are particularly localized, they are less sensitive to crystal-field effects. As a
consequence, the orbital angular momentum is not quenched and plays an important role in
magnetism. In particular, multipolar degrees of freedom can play a role: their interactions can
lead to ordering of their arrangement.
This has been studied in UO2 to resolve the long standing question of the 3k magnetic order in
the antiferromagnetic phase, below 30 K. This peculiar ordering involves 4 different orienta-
tions of magnetic moments. Pourovkii et al. [40] proposed to compute nearest-neighbor inter-
actions between the states belonging to the Γ5 ground state using DFT+DMFT. DFT+DMFT
describes well the band structure and paramagnetism in UO2 [26]. Using the Hubbard I ap-
proximation, they were able to compute superexchange parameters for dipolar and quadrupolar
interactions. Using these interactions, they were able to stabilize the experimental magnetic or-
dering and the phase transition to paramagnetism at a temperature close to experiment. Another
recent work used a flavor of DFT+U to show the role of quadrupolar-quadrupolar interactions
in the formation of 3k magnetic order.

5 Conclusion

f -electron systems exhibit significant orbital localization for lanthanides and comparatively
lesser localization for actinides. As a consequence electrons are sensitive to electronic interac-
tion and somewhat less to crystal fields in comparison to the d-elements. Spin-orbit coupling
is also important for these heavy elements. These features require a good description of atomic
physics and hybridization, which is provided by DFT+DMFT.
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1 Idea of reference system

In this lecture we give an introduction the to theoretical description of interacting electron sys-
tems based on non-perturbative, strong-coupling expansions around optimal reference system.
Density Functional Theory (DFT) and its Local Density Approximation (LDA) is based on
the simplest reference system related with a homogeneous electron gas with constant external
potential with the same Coulomb electron-electron interactions (see Fig. 1). Such a reference
system can be solved via a numerically exact diffusion Monte Carlo scheme for theground state
energy as a function of electron density [1]. On other hand, the Dynamical Mean-Field Theory
(DMFT) [2] for strongly interacting fermionic systems is based on a strong coupling expansion
around an effective impurity reference system (Fig. 1). This scheme become exact in the limit
of infinite lattice dimension [3].
In the finite lattice dimension we can start from the DMFT reference system and use an analyt-
ical perturbation for non-local correlation effects. The frequency dependent effective impurity
DMFT problem nowadays can be efficiently solved within continuous time quantum Monte
Carlo (CT-QMC) schemes [4]. Therefore the perturbation theory needs to be formulated in the
action path integral formalism. We discuss here a general way to include correlations beyond
the reference system [5] which is based on the dual-fermion path-integral formalism [6].
For DMFT an effective impurity model, tailored to the problem of strong correlations, serves
as the reference system, see Fig. 1. Since in the zeroth-order of this perturbative expansion,
i.e., on the level of the DMFT problem, we already have an interacting problem and since the
perturbation is momentum and frequency dependent, one is forced to replace the Hamiltonians
by actions within the path-integral formalism. Note that the fermion path integral can also be
used to formulate the DMFT itself [2]. The dual-fermion approach is not necessarily bound to
a specific starting point.
We recently developed a strong-coupling perturbation scheme for generic Hubbard models
around a half-filled particle-hole-symmetric reference system, which is free from the fermionic
sign problem [7]. The approach is based on the lattice determinant quantum Monte Carlo
(QMC) method in continuous and discrete time for large periodic clusters in a fermionic bath.
Considering the first-order perturbation in the shift of the chemical potential and of the second-
neighbor hopping gives an accurate electronic spectral function for a parameter range corre-
sponding to the optimally doped cuprate system for temperatures of the order of T/t=0.1, the
region hardly accessible for straightforward lattice QMC calculations. We discuss the formation
of a pseudogap and the nodal-antinodal dichotomy for doped Hubbard systems in the strong-
coupling regime with interaction parameter U equal to the bandwidth and the optimal value of
the next-nearest-neighbor hopping parameter t′ for high-temperature superconducting cuprates.
Extensive investigation of the fermionic sign problem in the lattice DQMC for the t-t′-U Hub-
bard model for U/t = 6, t′/t = −0.2 and its relation with a quantum critical point [8] gives
the generic “sign” phase diagram presented in Fig. 2. The red region in the temperature-doping
(chemical potential) diagram presents an “unacceptable” sign problem, where one can not do
any accurate simulations. It is interesting that the d-wave superconducting dome lies exactly in-



Super-QMC 17.3

Fig. 1: Schematic representation of reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by a fermionic
bath, specified by the hybridization function ∆. (iii) GW+DMFT with a correlated atom in a
fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening of
long-range Coulomb (V ) interactions.

Fig. 2: Schematic representation of the sign-problem in QMC lattice-fermion calculations. The
green circle shows the approximate position of maximum d-wave superconductivity with 15%
hole doping. The blue arrow give the “direction” of the reference system approach.

side the “red-region”. The arrow gives the directions which we would like to pursuit in order to
overcome the sign problem. We will start from the sign-free half-field particle-hole symmetric
case with µ=0 and move closer to the quantum critical point related with d-wave superconduc-
tivity in the cuprates. Comparing the density of states in Fig. 3 for the undoped case with a
pseudogap, which is free from the sign-problem, and the hole doped case with µ/t=−2 with
t′/t=−0.3 with a very sharp peak at the Fermi level, one can understand that a non-trivial reason
for the sign-problem may be related with a strong anomaly in the many-body spectrum.
The search for numerically exact solutions of the t-t′-U Hubbard model in the thermodynamic
limit at arbitrary interaction strength, long-range hopping and doping δ or, equivalently, chem-
ical potential µ at low temperature T=1/β is tremendously difficult. Modern computational
approaches, based on lattice determinant quantum Monte Carlo (QMC) methods have made
tremendous progress in the half-filled case without t′ [9], but face an unacceptable fermionic
sign problem for the general doped case related to the high-temperature superconductivity
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Fig. 3: Schematic representation of a half-filled reference system for the doped square lattice.
Bellow: calculated density of states (DOS) in presented scheme for U/t = 8, Left: undoped
case µ = 0 with t′ = 0, Right: doped case µ = −2 with t′/t = −0.3

(HTSC) problem, which is the main factor restricting the accuracy of QMC calculations for
interacting fermion systems [10–12, 8]. A very important and largely unresolved problem is
related to the next-nearest-neighbor hopping t′ in the Hubbard model and its role in super-
conductivity [13–19]. There are two recent successful attempts to resolve this long-standing
problem using zero-temperature a variational QMC scheme for realistic HTSC systems [20] in
combination with DMRG for the t-t′-U Hubbard model on a large ribbon geometry [21].

On the other hand, a new class of diagrammatic Monte Carlo scheme [22] is claimed to have
a “sign blessing” property which helps to reduce the effects of high-order diagrams. The
state-of-the-art diagrammatic Monte Carlo scheme in the connected determinant mode (C-
DET) [23], based on efficient Continuous Time Quantum Monte Carlo(CT-QMC) scheme in
the weak coupling technique (CT-INT) [24], gives unprecedented accuracy for the doped Hub-
bard model [25,26]. It becomes possible to study the formation of the pseudogap already at the
beginning of the strong coupling case with U/t=6 [25]. Nevertheless, the exponential conver-
gence of the C-DET scheme for weak interactions [27, 28] turns into a divergence at large U
values due to poles in the complex U -plane [26]. This means that calculations for interactions
close to the bandwidth U/t ≈ 8 and temperature T/t ≈ 0.1 are still within a prohibited area in
the phase diagram [26].
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There is a recent interesting attempt to use a dynamical variational QMC scheme for the doped
Hubbard model [29,30], which gives a very reasonable description of the spectral function. The
existence of the pseudogap can be explained in a simple model of electron fractionalization and
the appearance of “dark” fermions which is supported by 2×2 cluster Dynamical Mean Field
Theory (C-DMFT) [31, 17]. Moreover, the experimental RIXS spectra [32] of doped cuprate
materials can be interpreted in such a theoretical model of the pseudogap formation. Larger
clusters in the C-DMFT scheme for the doped case have, however, an unacceptable fermionic
sign problem within the QMC scheme.
Here we discuss a different route to tackle the “sign problem” in the determinant lattice QMC
scheme and design a strong-coupling perturbative solution for a general Hubbard model. The
starting point is related to the “reference system” idea [33] which is basically quite simple and
straightforward. The conventional choice of the noninteracting Hamiltonian as the reference
system for the perturbation [34] is motivated by Wick’s theorem which allows to calculate ex-
actly any many-particle Green functions: they are all expressed in terms of single-particle Green
functions. The choice of a single-site approximation like dynamical mean-field theory [35] as
the reference system leads to the dual fermion technique [6,33]. Actually, the reference system
can be arbitrary, assuming that we can calculate its Green functions of arbitrary order. It is
worthwhile to mention here the very successful Peierls-Feynman-Bogoliubov variational prin-
ciple [36–38]. In this case, a good variational estimate of the system’s free energy F with the
Hamiltonian H1 is achieved on an optimal reference system with the Hamiltonian H0, namely
F1 ≤ F0 + 〈H1−H0〉0. One can hope therefore that even first-order corrections to the properly
chosen reference system will already give a rich and adequate enough physical picture.

1.1 Generic Hamiltonian

The simplest model describing interacting fermions on a lattice is the single band Hubbard
model, defined by the Hamiltonian

Ĥα = −
∑
i,j,σ

tαij c
†
iσcjσ +

∑
i

U
(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(1)

where tij are hopping matrix elements including the chemical potential µ in the diagonal part

tαij =


t if i and j are nearest neighbors,

αt′ if i and j are next-nearest neighbors,

αµ if i = j,

0 otherwise,

(2)

and niσ = c†iσciσ. We introduce a “scaling” parameter α=0, 1, which distinguishes a reference
system H0 for α=0 and corresponds to the half-filled Hubbard model (µ0=0) with only nearest
neighbors hopping (t′0=0) from the final system H1 for α=1 with given µ and t′. Note that
long-range hoping parameters can be trivially included in the present formalism similar to t′.
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The reference system now corresponds to the half-filled (µ=0) particle-hole symmetric (t′=0)
case (Fig. 3), where lattice Monte Carlo has no sign problem and the numerically exact solu-
tion for any practical value of U is possible within a broad range of temperatures [39]. Then we
apply the lattice dual fermion perturbation theory [6,5,33] to find the first-order perturbative cor-
rections in µ and t′. To this end, it is sufficient to calculate the two-particle Green function, or,
equivalently, the four-leg vertex, which can be done with sufficient accuracy within continuous
time quantum Monte Carlo. Our reference system already has the main correlation effects in the
lattice and shows the characteristic “four-peak” structure [40] with high-energy Hubbard bands
around±U/2 and antiferromagnetic Slater bands close to the insulating gap (which can be seen
in the density of states in figure 3, left panel). After the dual fermion perturbation scheme
correlated metallic states with the DMFT-like “three peak” structure appear with a pseudogap-
like feature at high temperature (the density of states in figure 3, right panel). Results for the
strong-coupling case (U=W=8t) with practically interesting values of the chemical potential
and next-nearest-neighbor hoppings corresponding to cuprate superconductors have shown the
formation of a pseudogap and a nodal-antinodal dichotomy (that is, well-defined quasiparticles
in the nodal part of the Fermi surface and strong quasiparticle damping for the antinodal part),
which gives this approximation a perspective for practical applications.

2 Numerically exact lattice QMC

We briefly introduce here the main ideas of two different lattice QMC approaches for large
periodic clusters in a bath. The first is based on the Hubbard-Stratonovich transformation of the
local interaction in Eq. (2), the other is related with the continuous-time interaction (CT-INT)
expansion scheme. Both QMC methods are used here for practical computations.

2.1 Hirsch-Fye DQMC

We use a path-integral formalism with Grassmann variables [c∗i , ci]. The space-time bare Green
function Gij describes the non-interacting part of the Hamiltonian in Eq. (2) for Nx×Ny 2D-
space (N =Nx·Ny) and L×L discretized times in an effective bath representing the external
infinite lattice with space-time index here i ≡ (r, τ). Imaginary time slicing corresponds to
the mesh τ = l ∗ ∆τ with l = 0, . . . , L−1 and ∆τ = β/L with inverse temperature β. The
interaction part of the Hamiltonian Eq. (2) is decoupled by mapping to auxiliary Ising fields si
via a discrete Hirsch-Hubbard-Stratonovich transformation [41]

exp
(
−U∆τ(ni↑ni↓ − (ni↑+ni↓)/2)

)
=

1

2

∑
si=±1

exp
(
λsi(ni↑−ni↓)

)
, (3)

where λ = arccosh(eU∆τ/2) and for the best convergence of DQMC one uses the following
“rule of thumb” U∆τ/2 . 1. Then the effective lattice action become Gaussian

S[c∗, c] = −
∑
i,j,σ

c∗iσ G
−1
ijσ cjσ with G−1ijσ(s) = G−1ijσ − δi,jλsiσ , (4)
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where s ≡ {si} with i = 1, . . . , N ·L. Note that in time space the delta function should be
anti-periodic for fermions [42, 43, 2] and Eq. (4) has a schematic form. For such a Gaussian
action we can integrate-out fermionic the degrees of freedom and get for the partition function
the following formula used in the determinant QMC scheme

Z =
1

2NL

∑
s

∏
σ

det[G−1σ (s)] , (5)

where the sum over Ising auxiliary fields si performed with an importance-sampling Monte
Carlo algorithm with probability P (s) = det[G−1↑ (s)] · det[G−1↓ (s)] which is always positive
for the half-field particle-hole symmetric Hubbard model [42]. Within the DQMC scheme the
exact single-particle Green function of the reference system can be calculated as

gσij =
1

Z

∑
s

P (s)Gσ
ij(s) . (6)

In practice of DQMC one uses a so-called fast-update formalism to calculate the lattice Green
function Eq. (4) with a single Ising spin-flip [42].

2.2 Continuous-time QMC

The interaction expansion (CT-INT) continuous-time quantum Monte Carlo algorithm for fermions
is based on a formal series expansion for the partition function in the interaction term of the ac-
tion [24]. In a schematic form with short notation ik ≡ (rk, τk) we have

Z =

∫
D[c∗, c] e−S0[c∗,c]

∞∑
k=0

(−U)k

k!

∫ β

0

dτ1···k c
∗
i1↑ci1↑ c

∗
i1↓ci1↓ . . . c

∗
ik↑cik↑ c

∗
ik↓cik↓, (7)

where S0 is the Gaussian part of the action related with Gσij . In this case we can integrate-out
the fermionic path integral in Eq. (7) to get the determinant of the k×k bare Green function Gσ

Z = Z0

∞∑
k=0

(−U)k
∫ β

0

dτ1 . . .

∫ β

τk−1

dτk
∏
σ

detGσk . (8)

In order to overcome a trivial sign problem related with factor (−U)k one uses a particle-hole
transformation related with a so-called α-shift [24]. The CT-INT scheme performes important
sampling in the space of k×k fermionic determinants. The probability to change k to k+1-order
in the Metropolis algorithm is related with ratio of the fermionic determinants [24]

P (k → k+1) = min

(
1,
βU

k+1

∏
σ

(detGσk+1

detGσk

)
. (9)

The optimal order of k-perturbation, which corresponds to the maximum of the distribution
function of the fermionic determinants [24] for a cluster of N -sites is of the order kopt ∼ βNU.
Finally, the exact reference Green function in CT-INT formalism is calculated as

gσij = Gσij −
∑
k,k′

Gσik ·Mσ
k,k′ · Gσk′j , (10)

where the M -matrix is equal to the Monte Carlo average the of inverse fermionic matrix in
Eq. (8).
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3 The DF-QMC method

We start with the strong-coupling theory of the dual fermion scheme [6, 44] for the t-t′-U Hub-
bard model on a square lattice. There are many important works on pure strong-coupling expan-
sions in the hopping t for Hubbard model [45–49]. The dual-fermion scheme [6] differs from
the pure strong-coupling expansion in the hopping t in a very important way: it is an expansion
from a reference system to the final system, or in the “difference” t̃ (Fig. 3) which converges
much better. The general strategy of the dual fermion approach as a strong coupling theory is
related to the formally exact expansion around an arbitrary reference system [33].

3.1 Real-space scheme

Let us consider a general lattice fermion model with local Hubbard-like interaction vertex U.
Using the path-integral formalism the partition function of a general fermionic lattice system
(Fig. 3) can be written as the functional integral over Grassmann variables [c∗, c]

Zα =

∫
D[c∗, c] e−Sα[c∗,c] . (11)

For the super-perturbation in the lattice Monte Carlo scheme we use a general dual-fermion
expansion around an arbitrary reference system within the path-integral formalism [6,33], sim-
ilar to a strong coupling expansion [47, 48]. In this case our N×N lattice and corresponding
reference systems represents an N×N -piece cut from the infinite lattice and periodize the bare
Green function Gα. The general lattice action for a discretized Nx×Ny×L space-time lattice
(for the CT-INT scheme imaginary time τ is continuous in the interval [0, β)) with general
interaction term reads

Sα[c
∗, c] = −

∑
1,2

c∗1 (Gα)−112 c2 +
1

4

∑
1234

U1234 c
∗
1c
∗
2 c4c3 . (12)

In order to keep the notation simple, it is useful to introduce the combined index |1〉 ≡ |i, τ, σ〉
(i being the site index).
To calculate the bare propagators (Gα)12 we start from the Nx×Ny cluster which is cut from
the infinite lattice and then force translation symmetry and periodic boundary conditions on the
finite Nx×Ny system. This procedure is easy to realize in the k-space, by doing first a double
Fourier transform of the bare Green function for a non-periodic N×N cluster Gαk,k′ , keeping
only the periodic part, Gαk δk,k′ .
The perturbation matrix related with the difference of the one-electron part of the action is

t̃ = G−10 − G−11 . (13)

In order to formulate an expansion around the reference action S0, we express a connection to
the final action S ≡ S1 with the same local interaction in the following form

S[c∗, c] = S0[c
∗, c] +

∑
12

c∗1 t̃12c2 . (14)
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The main idea of the dual fermion transformation is the change of variables from strongly cor-
related fermions (c∗, c) to weakly correlated “dual“ Grassmann fields (d∗, d) in the path integral
representation for the partition function from Eq. (14), followed by a simple perturbation treat-
ment. The new variables are introduced through a Hubbard-Stratonovich transformation with
the matrix t̃12 in real-space (assuming Einstein summation convention over repeated indices)

e−c
∗
1 t̃12 c2 = Zt

∫
D[d∗, d] ed∗1 t̃

−1
12 d2+d

∗
1c1+c

∗
1d1 (15)

with Zt = det
[
−t̃
]

and we always imply matrix inversion: t̃−112 ≡ (t̃−1)12. Using this transfor-
mation, the lattice partition function becomes

Z = Z0Zt

∫
D[c∗, c, d∗, d] ed∗1 t̃

−1
12 d2

〈
ed
∗
1c1+c

∗
1d1
〉
0

(16)

with the standard definition of average over S0

〈· · · 〉0 =
1

Z0

∫
D[c∗, c] · · · e−S0[c∗,c]. (17)

Now we can integrate-out the c∗, c fermions and show that the average over S0 can be rewritten
in the cumulant expansion [48] of connected correlators 〈· · · 〉0c

〈
ed
∗
1c1+c

∗
1d1
〉
0
= exp

[
∞∑
n=1

(−1)n

(n!)2
γ
(2n)
1···n,n′···1′d

∗
1 · · · d∗ndn′ · · · d1′

]
(18)

with cumulant of the reference system that can be calculated within QMC

γ
(2n)
1···n,n′···1′ = (−1)n 〈c1 · · · cnc∗n′ · · · c∗1′〉0c . (19)

We can write the effective action for “dual fermions” S̃[d∗, d] in the lowest-order approximation
for the dual interaction [7]. The first term in the cumulant expansion, Eq. (18), with n = 1 (γ(2)11′ ),
which is bilinear over the [d∗1, d2] Grassmann variable, corresponds to the exact Green function
of the reference system

g12 = −〈c1c∗2〉0 =
−1
Z0

∫
D[c∗, c] c1c∗2 e−S0[c∗,c] . (20)

Note, that all correlators of the reference system will be written in lowercase. Together with the
term t̃−112 in Eq. (16) it gives the bare Green function for the dual fermions

G̃0
12 =

[
t̃−1 − ĝ

]−1
12

. (21)

The second term in the cumulant expansion, Eq. (18), with n = 2 (γ(4)122′1′), which is biquadratic
over the [d∗1, d2] Grassmann variable, gives the effective two-particle interaction among the dual-
fermions. The corresponding connected four-point vertex has the form

γ1234 = 〈c1c2c∗3c∗4〉0 − 〈c1c∗4〉0〈c2c∗3〉0 + 〈c1c∗3〉0〈c2c∗4〉0 (22)
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Fig. 4: Feynman diagram for the first-order dual fermion perturbation for the self-energy
Σ̃12(ν): a line represents the non-local dual Green function G̃43(ν

′) and a box is the two-
particle vertex (cumulant) γ1234, (σ, σ′) are spin-indices.

with four-point correlator, or two-particle Green function, for the reference system

〈c1c2c∗3c∗4〉0 =
1

Z0

∫
D[c∗, c] c1c2c∗3c∗4 e−S0[c∗,c] . (23)

Finally, the dual-fermion action in the two-particle approximation has the form

S̃[d∗, d] = −
∑
12 νσ

d∗1νσ (G̃0
ν)
−1
12 d2νσ +

1

4

∑
1234

γ1234d
∗
1d
∗
2d4d3 . (24)

Note, that we change sign for the interaction terms using anti-commutation rules for Grassmann
variables in order to be consistent with the standard form for Coulomb interactions (Eq. (12)).
The first-order correction to the dual self-energy is given by the diagram shown in Fig. 4 and
can be calculated for a large system within the QMC-scheme as

Σ̃
(1)
12 =

∑
s−QMC

∑
3,4

γd1324(s) G̃
0
43 (25)

where the density vertex reads
γd1234 = γ↑↑↑↑1234 + γ↑↑↓↓1234 . (26)

The main trick for practical large system computations related to the fact that within the deter-
minant DQMC scheme using the Ising-fields {s} or within the CT-INT with stochastic sampling
of interaction order expansion {s}, for two-particle correlators we can use Wick’s theorem

γ1234(s) ≡ 〈c1c2c∗3c∗4〉s = 〈c1c∗4〉s 〈c2c∗3〉s − 〈c1c∗3〉s 〈c2c∗4〉s. (27)

In order to find exact relationship between real and dual Green function, we perform a variation
of lnZ in Eq. (17) and Eqs. (11,14) with respect to t̃ [50]

G12 =
δ lnZ

δ t̃21
= −t̃−112 + t̃−113 G̃34t̃

−1
42 . (28)
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Fig. 5: Diagrammatic series for the dual self-energy up to the 3-rd order in the G̃.
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Fig. 6: Three non-equivalent components of the Green functions for a 2×2 system as function
of imaginary time for U = 5.56, β = 5 and t′/t=−0.1, µ=0 (left), and t′/t=−0.3, µ=−1.3
(right). Note, that here we use the QMC definition with positive local Green function.

Using the definition of exact dual Green function G̃−1 = G̃−10 −Σ̃, we can get the expression
for the real Green function

G12 =
[(
g+Σ̃

)−1
− t̃
]−1
12
. (29)

The dual fermion transformation allows to use arbitrary reference systems and transforms the
strongly correlated lattice fermion problem to an effective action of weakly-coupled dual quasi-
particles. In this case even the lowest-order approximation can give reasonable results. The
exact diagrammatic series for the dual self-energy presented is in Fig. 5. The second-order di-
agram in G̃ which includes γ(6) is local within the cluster and can be calculated with a similar
QMC scheme.
For small systems of 2×2 clusters in the bath we can calculate the matrix of Green function
of Eq. (29) directly in the real space formalism. In this case we do not need any additional
periodization since the 2×2 cluster is “self-periodic”. Since there is almost no sign problem in
the DQMC method for the doped 2×2 cluster in the bath, we can compare the first-order dual-
fermion perturbation with numerically exact DQMC results. The all three non-equivalent Green
functions for 2×2 system are shown in Fig. 6, using the first-order DF-correction within the
Hirsch-Fye QMC formalism. For a small perturbation, ∆µ = −0.3 and ∆t′ = 0, a comparison
with exact DQMC results (points on Fig. 6) is perfect. For a large perturbation, ∆µ = −1.5
and ∆t′ = 0.15, one can already see small differences from the exact DQMC Green function.
Nevertheless, the results of DF-QMC with only first-order corrections for the dual self-energy
are very satisfactory.
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3.2 k-space scheme

For large system (N ≥ 4) it is much faster to calculate the dual self-energy in k-space with
within the QMC Markov chain. The dual action in k-space reads

S̃[d∗, d] = −
∑
k νσ

d∗kνσ G̃
−1
0kν dkνσ +

1

4

∑
1234

γ1234d
∗
1d
∗
2d4d3 . (30)

Using the short notation k ≡ (k, νn) with the fermionic Matsubara frequencies νn = (2n+1)π/β,
n ∈ Z, the dual Green function is equal to

G̃0
k =

(
t̃−1k − ĝk

)−1
. (31)

Since the bare dual Green function is calculated in the independent QMC run for the reference
system, it is fully translationally invariant G̃0

34 ≡ G̃0(3−4) and we use the Fourier transform
to calculate the k-space dual Green function G̃0

k. Within the QMC Markov chain the lattice
auxiliary Green function is not translationally invariant, therefore for gsσ12 = −〈c1σc∗2σ〉s we use
the double Fourier transform to calculate gsσkk′ . Note that here we have explicitly written the
fermionic spin σ and the auxiliary Ising spins si. To include the “disconnected part” of the
vertex in equation Eq. (22) we just subtract the exact Green function from the previous QMC
run of the paramagnetic reference system

g̃sσ12 = gsσ12 − g12. (32)

In the k-space this subtractions has the form

g̃sσkk′ = gsσkk′ − gk δkk′ . (33)

For the transformation of the vertex γd1234 in Eq. (26) within the QMC step in k-space we take
into account that indices (3, 4) are “diagonal” in k-space due to the multiplication by the trans-
lationally invariant dual Green function G̃0

34, which transforms as G̃0
kδkk′ , and indices (1, 2)

become translationally invariant after the QMC-summation, which finally leads us to the equa-
tion for the spin-up components of the first-order dual self-energy Σ̃k in the paramagnetic phase

Σ̃
(1)
k =

−1
(βN)2ZQMC

∑
s−QMC

∑
k′

(
g̃s↑kkg̃

s↑
k′k′ − g̃

s↑
kk′ g̃

s↑
k′k + g̃s↑kkg̃

s↓
k′k′

)
G̃0
k′ . (34)

The additional normalization factor 1
(βN)2

comes from the Fourier transform in k and from
the k′-sum with N lattice sites and summation over Matsubara frequency: 1

β

∑
ν′(...). For

paramagnetic calculations we average over the two spin projections. The corresponding lattice
Green function reads

Gk =
[(
gk+Σ̃k

)−1
− t̃k

]−1
. (35)

We note that if we neglect the dual self-energy, Σ̃k = 0, this approximation is equivalent to
cluster-perturbation theory (CPT) [51] and was recently implemented in the DQMC scheme [52].
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Fig. 7: Periodized Green function in imaginary time τ for clusters of sizeN×N withN = 2, 4, 8
for our scheme compared to the DCA approach for the reference system with U=5.56 and β=10
for t′=0 and µ=0. The local Green function (left) and first nearest-neighbor (right).

Tests for different system sizes show reasonable convergence of the first-order dual-fermion ap-
proximation for small perturbations.

For practical calculations of a bare Green function for Nx×Ny system we use a special scheme
to reduce the dependence on the cluster size. We start from the non-interacting Green function
with given t′/t and µ for a infinite lattice (in practice 50Nx×50Ny with periodic boundary
conditions). We then cut the Green function to only our small N×N system, which results in
a non-periodic Green function Gij(νn) with (i, j = 0, N−1). In order to periodize the Green
function for the small system, we average the corresponding distance, for example G0,n and
G0,N/2−n. In practice, we use the “double” Fourier transform on i and j from Gij to Gkk′ and
take the diagonal (periodic) part Gkδkk′ . In this way the local Green function does not depend on
the size of our cluster and the non-local part (Fig. 7) has much faster converge in comparison to
the standard periodic DCA cluster scheme [53]. The reason for this fast convergence of the non-
local Green function and exact local Green function is related with the real space periodization,
while DCA makes the average patches in the k-space. For the 8×8 system both periodization
schemes converge for the nearest-neighbors Green function in comparison with 16×16 ‘test’
cases (Fig.7).

We analyze the performance of the DF-QMC formalism as a function of∆µ and∆t′ for the 4×4
periodic cluster with and without fermionic bath. The DQMC sign-problem for 4×4 systems is
also mild and we can compare our DF-QMC with numerically exact tests for the same µ and t′.
We use a value of U=5.56 which corresponds to a degenerate ground state of the plaquette [19].
For all Hirsch-Fye DQMC calculations we use imaginary time discretization with L=64 slices.
Fig. 8(a) shows DF-QMC results for a small perturbation t′/t = −0.1 and β = 5 in comparison
with exact DQMC. The agreement is very good which shows the strength of dual fermion
QMC theory for a small perturbation. Next, we compare for the t′/t = −0.3 case which
corresponds to optimal next-nearest hopping in cuprate materials (Fig. 8(b)). In this case one
can see the difference from exact DQMC results on the first Matsubara frequency, but still the
overall agreement in all 6 non-equivalent k-points of the 4×4 system is quite satisfactory. The
effects of a chemical potential shift µ=−0.5 is presented in Fig. 8(c). Qualitatively, agreement
between perturbative DF-QMC and exact DQMC is similar to the case of t′/t=−0.3, but the
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(c) t′/t = 0 and µ = −0.5

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10

R
e 

G
(k

,ω
n)

ωn

QMC
DFQ

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  2  4  6  8  10

Im
 G

(k
,ω

n)

ωn

QMC
DFQ

Fig. 8: Green functions from DF-QMC (DFQ) in comparison with numerically exact DQMC
results (QMC) for the 4×4 system in Matsubara space with U=5.56, β=5 and t′/t, µ as incated
above the plots. Real part (left) imaginary part (right).

structure of all 6 non-equivalent Green functions of the 4×4 system is very different. Still, the
dual-fermion strong coupling perturbation in k-space works reasonably well.
Fig. 9 shows the combined effect of a strong chemical-potential shift µ=−1 and next-nearest
hopping t′/t=−0.3. In this case we show results of the CT-INT approach with β=10. The
agreement is very good, and only one Green function (the lowest imaginary part) which corre-
sponds to the X-point (k = (π, π)) and is located close to the Fermi level (the corresponding
real part is close to zero) the dual perturbation shows a small discrepancy. In principle, one
can reduce the error of the dual perturbation if one can choose the reference closer to the target
system. The main condition is a weak sign problem for the reference system. Since this is
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from a reference system with t′/t=−0.1 in comparison with numerically exact QMC results
(CT-QMC) for the 4×4 system in Matsubara space with U=5.56, µ=0 and β=10. Real part
(left) and imaginary part (right).

always the case for small 4×4 clusters, we can show in the Fig. 10 the CT-INT results starting
from a reference system corresponding to t′/t=−0.1 for the target system with t′/t=−0.3. In
this case, for lower temperature, T=t/10, the DF-QMC results are still in a good agreement
with the exact solution. This example shows that we can also use an “over-doped” Hubbard
model (−µ/tw 4 in Fig. 3) as a reference system in order to tackle the optimally doped case
with super-QMC scheme.

4 Results for 8×8 lattices

For large 8×8 systems at β = 10, the average sign in DQMC is of the order of 10−3 even
with a fermionic bath, and calculations of the test Green function are no longer possible. For
much larger temperatures, corresponding to β=3 and not so large U=5.56 the sign problem
is not severe and it is still possible to prepare a DQMC test. Fig. 11 shows a comparison of
the Matsubara Green functions for all 15 non-equivalent k-points in dual-fermion perturbation
with Hirsch-Fye QMC and DQMC-test. The agreement is quite good, but one should remember
the very high temperature of this test (T=t/3) which results in metallic behavior of all Green
functions.
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Fig. 12: Spectral function −=G(k, ω)/π from dual-fermion QMC (CT-INT) for a 8×8 lattice
with U/t = 8, t′/t = −0.3, µ = −2.0, and β = 10.

We have calculated the Green function for the doped two-dimensional Hubbard model for a
periodic 8×8 system with U/t=8, t′/t=−0.3 and µ/t=−2 for β=10/t using a CT-INT ver-
sion of the CT-QMC scheme [24]. Note that for the non-interacting Green function we used
the infinite-lattice limit with periodic boundary conditions for the calculated 8×8 system. This
scheme reduces the cluster-size dependence for the bare Green function: in particular, the local
one does not depend at all on the choice of the “simulation box”. On the other hand, it may un-
derestimate the effect of U -interactions, since they appears only in the calculated cluster. This
may explain a small gap in the half-filled reference system compared to a standard lattice de-
terminant QMC scheme [40]. The results for the first-order dual-fermion perturbation from the
half-filled system indicate the formation of a correlated pseudogap electronic structure. Fig. 12
shows the color map of the spectral function along the irreducible path (Γ -X-M -Γ ) in the
square Brillouin zone. For analytical continuation we used the newly developed scheme [54].
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Fig. 13: Spectral function −=G(k, ω)/π for two different k-points corresponding to the anti-
nodal (π, 0) and nodal (π/2, π/2) point in the dual fermion QMC (CT-INT) scheme for a 8×8
lattice with U/t = 8 t′/t = −0.3, µ = −2.0 and β = 10.

Several characteristic features of the correlated metallic phase in generic cuprate systems can
be detected: the formation of an extended pseudogap region around the X-point towards the
M -point, a shadow antiferromagnetic band at energy −2t near the M -point, a strongly renor-
malized metallic band near the nodal point around (Γ -M)/2. Overall, the spectral function for
U = W clearly shows strong correlation features of the electronic structure far beyond a simple
renormalized band paradigm.

In order to see the pseudogap and nodal-antinodal dichotomy more clearly we plot the energy
dependence of the two spectral functions at the X- and the (Γ -M)/2-point in the Brillouin
zone (Fig. 13). While at the X=(π, 0)-point there is a reasonably deep pseudogap formation
already at β=10, the nodal spectral function at (Γ -M)/2=(π/2, π/2) shows correlated metallic
behavior. A more unusual feature of the strong-coupling spectral function in Fig. 12 is related
with a “shark mouth” pseudogap dip starting at X in the direction to M until half way. One
can see from the energy dependence of the spectral function in the direction of X-M (Fig. 14
(middle)) that the pseudogap splitting of the sharp quasiparticle peak at zero for the (X-M)/4

point is even larger than at the X-point. The same feature was observed for a self-energy in a
diagrammatic Monte Carlo (C-DET) investigation of the doped Hubbard model atU/t = 6 [25].
We would like to point out that all these effects are not simply an artifact of the analytical
continuation with the MaxEnt scheme and can be detected by inspection of the original complex
Matsubara Green function from DF-QMC calculations (Fig. 15). If we compare the X=(π, 0)

and (X-M)/4=(π, π/4) points then both quasiparticle peaks are located almost at the Fermi
energy (the real part of G(k, ωn) is close to zero) but the pseudogap or upturn of the imaginary
part of G(k, ωn) for the first Matsubara frequencies are more pronounced at the (π, π/4)-point.
We have also checked this characteristic feature with the Hirsch-Fye QMC scheme [43] and
different MaxEnt implementations. The general structure of this spectral function is similar to
recent results of dynamical variational Monte Carlo schemes [29, 30].
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(top) Γ -X , (middle) X-M and (bottom) (Γ -M ) dual fermion QMC (CT-INT) for a 8×8 lattice
with U/t = 8 t′/t = −0.3, µ = −2.0 and β = 10.

We plot a broadened Fermi surface using the momentum-dependent spectral function for the
first Matsubara frequency (Fig. 16). Comparison with the non-interacting tight-binding Fermi
surface for the same doping shows a large region of the pseudogap around the X-point and
formation of Fermi arcs near the nodal point. Moreover, one can understand that the pseu-
dogap is more pronounced a bit away from the X-point towards the M -point, where the non-
interacting Fermi surface crosses the Brillouin zone. We also compare the Fermi surface plot for
smaller values of U/t=5.6, which was investigated with the diagrammatic Monte Carlo tech-
nique [55,56]; this value is related to a plaquette degenerate point [19]. While the Fermi surface
for small U/t=5.6 agrees well with the results of the diagrammatic Monte Carlo approach [56]
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and resembles the tight-binding one with only large broadening around the X-point, the U/t=8

results show already the formation of the pseudogap and Fermi arcs, that is, a nodal-antinodal
dichotomy.

5 Discussion

We developed, for Hubbard-like correlated lattice models, the first-order strong-coupling dual
fermion expansion in the shift of the chemical potential (doping) and in the second-neighbor
hopping (t′). The starting reference point corresponds to the half-filled particle-hole symmet-
ric system which can be calculated numerically exactly, without a fermionic sign problem.
For the physically interesting parameter range of cuprate-like systems (around 10% doping
and t′/t=−0.3 we can obtain a reasonable Green function for a periodic 8×8 lattice for the
temperature T=0.1t. The formation of the pseudogap around the antinodal X-point and the
nodal-antinodal dichotomy are clearly seen in the present approach.
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We would like to point out a few main reasons why such a “super-perturbation” scheme works:
first of all, the reference system already contains the main correlation effects which results in
the four-peak structure of the density of states for the half-filled lattice Monte Carlo calcula-
tions [40]; second, the first-order strong-coupling perturbation relies on the lattice four-point
vertex γ1234 (Eq. (23)) which is obtained numerically exactly and has all the information about
the spin and charge susceptibilities of the lattice; and third, if the dual perturbation Green func-
tion G̃0

12 (Eq. (21)) is relatively small, results will be reasonable. The complicated question of
convergence for such a dual-fermion perturbation can be checked numerically by calculating
the second-order contribution in Σ̃12. For this term one needs to calculate within lattice QMC
a six-point vertex γ(6) which will be a direction of future developments. In principle, one can
also discuss an instability towards antiferromagnetism or d-wave superconductivity, introducing
symmetry-breaking fields [15], which we also plan to investigate.
It is worthwhile to mention that for the starting reference system we can choose not only the
half-filled case, but any doped case where the sign problem is mild, so we can use a QMC
calculation to expand this numerically exact solution to “Terra Incognita” regions where the
sign problem is unacceptable for direct QMC calculations.
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