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1 Introduction

Over 40% of the students entering four-year college in the United States do not earn a
bachelor’s degree within six years (National Center for Education Statistics, 2021b). To the
extent that there is a large wage premium to receiving a four-year college degree (Heckman,
Layne-Farrar, and Todd, 1996; Heckman, Lochner, and Todd, 2006; Goldin and Katz, 2008;
Bound and Turner, 2011; Ashworth et al., 2021), this suggests that imperfect information
and learning may be important to the decision to leave college. The aim of this study is
to quantify the role of information frictions associated with one’s own academic ability and
labor market productivity in determining college outcomes and sorting in the workforce.

To this end, we characterize the impact of imperfect information on college enrollment,
attrition, and re-entry by estimating a dynamic model of schooling and work decisions in
the spirit of Keane and Wolpin (1997, 2000) with the crucial distinction that such decisions
are allowed to depend on the arrival of new information about the abilities of individuals
both in school and in the workplace. After graduating from high school, individuals decide
in each period whether to attend college and/or work part-time, full-time or engage in home
production. Should the individual attend college, he must also choose between attending a
two-year college, a four-year college in a science major, or a four-year college in a non-science
major. Moreover, he can decide to work in the blue-collar or, if he receives an offer, in the
white-collar sector. Incorporating search frictions in the white-collar sector—frictions that
depend in part on education—is important in order to match the age and education profiles
of blue- and white-collar work. Upon college graduation, which is probabilistic from the
individual’s standpoint, the options available are reduced to working part-time or full-time
in one of the two sectors or engaging in home production.

Importantly, individuals are allowed to have imperfect information about their abilities
and enter each year with beliefs regarding their different kinds of schooling abilities as well as
their skills in the workplace. At the end of each year, individuals update their beliefs given
their grades for their particular schooling option (if they attended school) or their wages (if
they worked). We account for the multidimensional nature of ability and allow the different
kinds of schooling and workplace abilities to be arbitrarily correlated, implying that signals
in one sector may be informative about abilities in another sector. As they accumulate ability
signals, agents update their beliefs about their future potential wages in each sector, their
flow utility payoffs from attending school, as well as their college graduation probabilities.

We estimate a richer model than previously possible by making use of innovations in the
computation of dynamic models of correlated learning. Following James (2011), we (i) inte-

2



grate out over actual abilities as opposed to the signals, and (ii) use the EM algorithm where
at the maximization step ability is treated as known, resulting in a correlated learning model
that is computationally feasible. Using results from Arcidiacono and Miller (2011, 2019),
estimation continues to be computationally simple even in the presence of unobserved het-
erogeneity that is known to the individual. Leveraging this approach in our current context
makes the estimation of our correlated learning model both feasible and fast. Importantly,
it also allows us to easily take into account heterogeneity in schooling investments by distin-
guishing between two- and four-year colleges, as well as science and non-science majors for
four-year colleges.1

We use the estimates of our model to quantify the importance of informational frictions
in explaining college enrollment decisions, the observed transitions between college and work,
and to evaluate the impact of imperfect information on ability sorting. We find that a sizable
share of the dispersion in college grades and wages is accounted for by the ability components
initially unknown to the individuals. Focusing on the ability components unknown to the
individuals at the time of high school graduation, we find that schooling abilities are highly
correlated across college types and majors (namely, 2-year college, 4-year college science
major, 4-year college non-science major). We also show that the correlation in productivity
in the blue-collar and white-collar sectors is positive and sizeable, highlighting the importance
of allowing for correlated learning in this context. On the other hand, our estimation results
point to positive but weaker correlations between the different types of schooling abilities
and productivity in both sectors. This indicates that grades earned in college actually reveal
relatively little new information about future labor market performance, once we account for
background characteristics and college readiness. As a result, college graduates are somewhat
well sorted on the basis of college abilities but less so in terms of work abilities.

We then simulate our model under a counterfactual scenario where all individuals have
full information on their abilities by the end of high school. The goal of the simulation is
to understand how information affects schooling choices, ability sorting patterns, and the
earnings gap between college and non-college graduates in the different work sectors. We find
that removing informational frictions would increase the four-year college graduation rate by
4.4 percentage points. This increase in graduation rate relative to the baseline is driven by
efficiency gains that lead to a substantial decrease in the share of students dropping out of
college despite a significant increase in the share who never attended college. Providing full
information to the students also results in a smaller graduation-parental income gradient.

1See the surveys by Altonji, Arcidiacono, and Maurel (2016) and Altonji, Blom, and Meghir (2012), who
discuss the importance of heterogeneity in human capital investments.
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The mechanism for this convergence lies in differences in beliefs about the suitability of college
between low- and high-income individuals. Many low-income individuals have priors that
college is not a good match. Providing information reveals that some of them are indeed a
good match, increasing their college graduation rates. The reverse holds true for high-income
individuals; many high-income individuals have priors that college is a good match, with
full information revealing that, for some, it is not. The slow revelation of information in the
baseline leads to higher graduation rates for individuals from high-income families because of
switching costs combined with the accumulation of some years of college experience. Results
from an additional simulation exercise that removes occupational search frictions indicate
that four-year college graduation rates would increase further by 2 percentage points if
individuals always had the option to work in the white-collar sector.

Simulations also reveal that ability sorting would be much stronger in the perfect infor-
mation scenario. While there is significant sorting on college abilities for college graduates,
this sorting becomes even stronger in the counterfactual. But a new source of sorting also
emerges. Namely, because the premium for being a college graduate—and, in particular, a
science graduate—is especially high in the white-collar sector, those with high white-collar
abilities are more likely to obtain college degrees, especially in the sciences. With individuals
in the counterfactual now sorting into college based in part on white-collar abilities, the wage
gap between college graduates and non-college graduates at age 28 increases by about 15
percentage points, and the wage gap between white-collar and blue-collar workers increases
by as much as 43 percentage points.

Our analysis relates to early research by Manski and Wise (1983) and Manski (1989),
which argues that college entry can be seen as an experiment that may not lead to a college
degree. According to these papers, an important determinant of college attrition lies in the
fact that, after entering college, students get new information and thus learn about their
abilities. More recently, several other papers in the literature on college completion stress
the importance of learning about schooling ability to account for college attrition (see, e.g.,
Altonji, 1993; Arcidiacono, 2004; Heckman and Urzúa, 2009; Hendricks and Leukhina, 2017;
Larroucau and Rios, 2022). Of particular relevance to us are the articles by Stinebrickner and
Stinebrickner (2012, 2014), who provide direct evidence, using subjective expectations data
from Berea College (Kentucky), that learning about schooling ability is a major determinant
of the college dropout decision.2

2See also Hastings et al. (2016) who provide evidence using a large-scale survey conducted in Chile that
individual beliefs about earnings and costs of higher education at the time of college entry are associated
with dropout outcomes.
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Much of the learning literature assumes that the labor market is an absorbing state,
implying that the decision to leave college is irreversible (Stange, 2012; Stinebrickner and
Stinebrickner, 2012, 2014; Trachter, 2015).3 In this paper, we relax this assumption, which
is important to predict the substantial college re-entry rates of 40% among those who left
college for at least a short period of time in our data. By quantifying the importance of
learning on schooling abilities as well as labor market productivities, and evaluating the
joint informational value of schooling and labor market outcomes, our paper brings together
the literature on schooling choices and occupational choices under imperfect information (see,
e.g., Miller, 1984; James, 2011; Antonovics and Golan, 2012; Papageorgiou, 2014; Sanders,
2014).4 Beyond the context of educational choice and labor market sorting, our paper also
fits within the rich empirical literature on dynamic learning models, which have often been
estimated in marketing in particular since the seminal work of Erdem and Keane (1996) (see
Ching, Erdem, and Keane, 2013 for a survey). A key additional challenge that arises in our
context is that we do not observe individuals making the same choice multiple times, making
it more difficult to identify the role of learning.

The remainder of the paper is organized as follows. Section 2 presents the data and
provides descriptive evidence suggestive of learning. Section 3 describes a dynamic model
of schooling and work decisions, where individuals have imperfect information about their
schooling ability and labor market productivity, and update their beliefs through the obser-
vation of grades and wages. Section 4 discusses the identification of the model, with Section
5 detailing the estimation procedure. Section 6 presents our estimation results. Section 7
studies the role of informational frictions on educational and labor market outcomes. Finally,
Section 8 concludes. All tables are collected at the end of the paper.

2 Data

We use data from the National Longitudinal Survey of Youth 1997 (NLSY97). The NLSY97
is a longitudinal, nationally representative survey of 8,984 American youth who were born
between January 1, 1980 and December 31, 1984. Respondents were first interviewed in
1997 and have continued to be interviewed regularly on topics such as family background

3In a different context, Pugatch (2018) provides evidence that the option to re-enroll in high school in
South Africa is an important determinant of the decision to leave school and enter the labor market.

4See also recent work by Proctor (2022), who builds on the framework developed in this paper to examine
the extent to which family-driven prior ability beliefs contribute to intergenerational persistence in schooling
and labor market outcomes.
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characteristics (e.g., parental education, family income, race), labor market information (e.g.,
compensation, labor supply, occupation), as well as education (e.g., educational experiences,
high school and college GPAs, SAT scores, field of study). Our estimation sample relies on
the first 17 rounds of the survey, where we restrict the analysis to men who have graduated
high school.5 After imposing some additional data restrictions, the final sample includes
22,398 person-year observations for 2,300 men.6

2.1 Descriptive Statistics

Table 1 presents background characteristics conditional on the first college option chosen,
where we distinguish four-year college options by entering as a science major, entering as
non-science major, or not reporting a major. Individuals who attend college at some point
and start at a four-year institution have, on average, higher SAT test scores, with science
majors having higher scores than non-science majors, even for the verbal section. The same
pattern holds for high school grades. Those who begin in a two-year college have worse
academic credentials than those who start in a four-year college, but significantly stronger
academic backgrounds than those who do not attend college at all. Those who begin in a
four-year institution have higher parental income and parental education, with those who
begin in a two-year college being stronger on these measures than those who never choose a
college option.

Descriptive statistics by employment sector (blue or white collar) and by college grad-
uation status are presented in Table 2.7 The sample corresponds to individual-year obser-
vations. Using data from the March Current Population Survey (CPS), we classify each
three-digit 2010 Census occupation code as white collar if 50% or more of male workers
aged 18–64 in that occupation hold at least a bachelor’s degree. The other occupations are
classified as blue collar.8 For both college graduates and non-college graduates older ages are
associated with a higher frequency of white collar work. There are a number of explanations
for this phenomenon. First is differential learning; for example, learning about abilities in
both sectors may be faster in the blue collar sector. Second is that blue collar experience
may have a higher return in the white collar sector than in the blue collar sector. Finally

5We restrict the analysis to males to avoid having to model fertility decisions that would considerably
add to the complexity and computational burden of our model. Interviews for rounds 1–15 were conducted
annually with biennial interviews in rounds 16 and 17. The last calendar year in our sample is 2015.

6Appendix A provides details on how we construct our key variables and final estimation sample.
7Appendix Table A2 reports the most common occupations by sector.
8See, among others, Clark, Joubert, and Maurel (2017) for a similar approach.
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(and consistent with what we find), search frictions restrict access to white collar jobs early
in the life cycle. The other patterns are as expected; conditional on graduation outcomes,
individuals in the white-collar sector have higher SAT scores, high school GPA, and family
income (when a teenager) than those in the blue-collar sector.

We next examine rates of college completion by initial college type. Table 3 provides
frequencies related to three measures of interest: (i) continuous enrollment (in either two-
or four-year college) until graduation from a four-year college; (ii) stopping out (i.e., leaving
college before graduating from a four-year college and returning to school at some point);
and (iii) dropping out (i.e., permanently leaving college before four-year graduation). These
summary statistics show that stopping out is quite prevalent in our sample: approximately
25% left and returned to college at some later point. Similarly, dropout rates are large with
almost 36% of students never earning a bachelor’s degree.9 Another empirical regularity
that emerges from this table is that student behavior varies substantially depending on
initial college and major. For example, dropping out and stopping out are more common
in two-year colleges than in four-year colleges, with four-year science majors having the
lowest proportions of dropping out and stopping out. Overall, the frequencies in Table 3
provide two main takeaways regarding modeling considerations. First, dropping out is not
an absorbing state: more than 40% of the students who left college at some point returned in
a later period.10 Therefore, college re-entry might matter for understanding how information
frictions affect completion. Second, there is important heterogeneity in completion outcomes
depending on the type of college (i.e., two-year vs. four-year) and major.

2.2 Descriptive Investigation of Learning

The large dropout and stopout rates suggest that students are learning about their abilities
while in college. To assess the relevance of this possible mechanism, we provide descrip-
tive evidence consistent with the idea that students are discovering something new about
themselves, as opposed to merely reflecting something they already knew at the time of
enrollment.

9These figures match the national ones, but official statistics do not track stopout because it requires
longitudinal data on enrollment gaps. Official statistics track degree completion within a set time (six
years), which in our sample equals 45% (62% for those starting in four-year college; not reported in the
table). This 62% figure exceeds the graduation rate for men starting four-year college in the early 2000s
(57%) reported by National Center for Education Statistics (2021a). This difference stems from Table 3
having a longer time horizon than six years.

10This number is computed from the final column of Table 3. The stopout rate is divided by the sum of
the stopout and dropout rates, i.e., 24.84%/(24.84% + 35.98%) = 40.84%.
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The first two panels of Table 4 show how student decisions to stay in college vary by
their college grades. To the extent that college GPA works as a signal for students about
their abilities, then we should expect that those receiving lower grades (i.e., negative signals)
would be more likely to leave college. Panels A and B of Table 4 show that students who stay
in college (either four-year or two-year college) at period t+ 1 do, in fact, have significantly
higher grades in period t than those who were in school in t but not in t + 1. While these
differences may not necessarily reflect learning (lower grades may result from worse family
backgrounds and/or lower ability), they are consistent with the idea that some of the students
who leave college do so as a result of new information about their ability.

In order to make further progress on the importance of learning, we next run a linear
regression of college grades on a set of academic and family background characteristics (in-
cluding race dummies, SAT scores, high school grades, parental education, age dummies,
birth year, and whether the individual was working part- or full-time), and compute the
residuals. Given that our goal is to further isolate learning from student background char-
acteristics, we compare the mean residual at t for different educational choices at t + 1 in
panels C and D of Table 4. Despite the large set of controls included in the regression, we
still find that those with higher grade residuals are more likely to stay in school. Again,
while these patterns could still be partly driven by attriters having lower ability, of which
they are aware all along but are not measured in the data, they are also consistent with
learning about one’s ability once in college.

Finally, to illustrate learning in the labor market as a reason for stopouts to return to
college, we perform a similar analysis as in Table 4 but now using information on wages.
The first panel of Table 5 presents mean log wages for those who have left college, broken
out by next-period re-enrollment decision, while the second panel uses the mean difference
between actual and expected log wages (i.e., residual) instead of the mean log wage. Overall,
this table shows that those who decide to return to school earn lower wages than those who
decide to stay in the labor market. For example, those who leave college for the labor
force and then choose to return to school show a mean log wage of 2.19, while those who
leave but do not return later show a mean log wage of 2.36. This pattern persists even
after controlling for a rich set of individual, family background, schooling, and labor market
experience variables (see Panel B). While these empirical regularities can be consistent with
multiple explanations, the role of learning about labor market productivity in contributing
to the decision to return to college is potentially an important one.

In summary, our descriptive analysis is consistent with individuals learning about their
own abilities when participating in different sectors. In order to isolate and quantify the
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empirical relevance of learning, we next present a dynamic structural model of college and
labor market decisions where individuals face uncertainty and learn about their academic
ability and labor market productivity.

3 Model

3.1 Overview

Motivated by the descriptive patterns in the data, we now turn to our model of education
and work decisions. After graduating from high school, individuals in each period from
1 to T ∗ make a joint schooling and work decision; from periods T ∗ to T individuals only
make work decisions.11 For those who have not graduated from a four-year college, their
schooling options include whether to attend a two-year institution, a four-year institution
as a science major, or a four-year institution as a non-science major.12 Regardless of the
schooling choice, individuals can also choose whether to work either full-time or part-time
in the blue-collar or white-collar sector.13 Individuals may always choose blue-collar work
but face frictions in obtaining white-collar work. Finally, individuals may choose home
production (i.e., neither work nor attending college), implying twenty possible choices for
non-graduates. After graduation, schooling options are no longer part of the choice set.
Thereafter, agents can only decide between home production and work in the blue-collar or
white-collar sectors with different levels of intensity (i.e., full-time or part-time).

Individuals only have imperfect information about their abilities which are characterized
by a multidimensional vector of five components. Namely, agents have different abilities for
each of the three schooling options (two-year, four-year science, and four-year non-science),
and two additional ones corresponding to the different types of labor markets (i.e., blue-
collar and white-collar sectors). Throughout the paper, we denote Ai as the five-dimensional
ability vector, Ai ≡ (Ai2, Ai4S, Ai4N , AiW , AiB)′ (simply referred to as ability in the follow-
ing), the elements of which correspond to the ability in two-year college, four-year college
science major, four-year college non-science major, white-collar sector and blue-collar sector,
respectively.

11For estimation, we do not need to take a stand on the values of T ∗ and T , provided that both are two
periods beyond our sample period. See Subsection 3.7 for a detailed explanation of why this is the case.

12Recall that a substantial number of individuals entered 4-year colleges having not indicated a major.
We treat this as the individual having made a choice of major, but this choice was not revealed in the data.

13See, e.g., Keane and Wolpin (2001) and Joensen (2009) who estimate dynamic structural models of
schooling and work decisions and also allow for work while in college.
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Individuals update their beliefs by receiving signals that depend on their choices: enrolling
in school provides signals through grades, and working provides signals through wages. These
signals then reveal different information regarding their abilities. Signals in one schooling
option may be informative about the individual’s abilities in the other schooling options, as
well as their productivity in the labor market. Similarly, wages in the blue-collar sector may
be informative not only with regard to productivity in this sector but also with regard to
the individual’s schooling abilities and productivity in the white-collar sector.

Agents are assumed to be forward-looking and choose the sequence of actions yielding
the highest value of expected lifetime utility. Hence, when making their schooling and labor
market decisions, individuals consider the option value associated with the new information
acquired on different choice paths. Individuals who choose to work while in college will get
two signals on their abilities and productivities: one through their grades, and one through
their wages.

We now detail the main elements of the model. We first discuss the grade and wage
equations as grades and wages provide the ability signals. We then describe how individuals
update their beliefs, both about their abilities but also about their graduation status, white
collar arrival rate, and the state of the labor market. Finally, we model the flow payoffs
and the optimization problem the individuals face. Discussions of model identification and
estimation are deferred to Sections 4 and 5, respectively.

3.2 Grades

In the following, we denote by j ∈ {2, 4S, 4N} the type of college and major, where 2
denotes a two-year college, 4S a four-year college science major, and 4N a four-year college
non-science major. Individuals are indexed by i.

We assume that grades in the college sector j depend on schooling ability Aij, which is
not directly observed by the agents. However, they form some initial beliefs about Aij that
are given by the prior distribution N (0, σ2

Aj). Grades also depend on a set of covariates for
college sector j and period of college enrollment τ ,14 Xijτ , that is known to the individual
and includes skill measures such as high school grades, indicators denoting participation in
the labor market (i.e., working part-time or full-time), and background characteristics (i.e.,
age, race, and parental education).15 In the following and throughout the paper, we assume

14τ is defined as the period of college enrollment irrespective of the type of college and major. For instance,
someone who completes two years of a community college and then transfers to a four-year college will have
τ = 3.

15The specification for grades in two-year college also includes an indicator for whether an individual has
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that unobserved ability Ai is independent of period-1 characteristics, Xij1.
Grades in two-year colleges and in the first two years of four-year colleges are given by:

Gijτ = γ0j +Xijτγ1j + Aij + εijτ (1)

The idiosyncratic shocks, εijτ , are mutually independent and distributed N (0, σ2
jτ ), and are

also independent from the other state variables. Define the type-j (college, major) academic
index of i in period τ , AIijτ , as:

AIijτ ≡ γ0j +Xijτγ1j + Aij (2)

The academic index AIijτ is given by the expected grades conditional on knowing Aij but not
the idiosyncratic shock εijτ (see Arcidiacono, 2004, for a similar ability index specification).

Finally, for four-year colleges and periods τ > 2, we express grades relative to AIijτ as
follows:

Gijτ = λ0j + λ1jAIijτ + εijτ (3)

Hence, the return to the academic index is allowed to vary over the periods of college enroll-
ment and across majors. As such, while remaining parsimonious, this specification allows for
different effects of ability on grades for lower- and upper-classmen.16 Grade dynamics may
also be different for science and non-science majors.

3.3 A Two-Sector Labor Market

Individuals who choose one of the work options (either full-time or part-time) receive an
hourly wage that depends on their graduation status.17 We assume that there are two
sectors in the labor market, which are indexed by l and referred to as white collar (l = W )
and blue collar (l = B). Workers face search frictions in obtaining employment in the
white-collar sector. Each period, with some probability λ̃(dt−1)

it (which depends on individual
characteristics and previous decision), the individual’s choice set contains both white-collar

spent more than one year in this type of college.
16Arcidiacono, Aucejo, and Spenner (2012) shows, using data from Duke students, that grade distributions

are more compressed for upper-year classes. A similar specification is also used in Arcidiacono (2004).
17Note that one can think of wages as a measure of performance on the job. As such, we do not need to

assume that employers have perfect information about workers’ abilities. Instead, we make a spot market
assumption implying that workers are paid according to their realized productivity.
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and blue-collar work options. With probability 1 − λ̃
(dt−1)
it , the white collar options are not

in the individual’s choice set.
Log wages in sector l are allowed to differ based on whether the individual is currently

attending college or not. For those who are not enrolled in school while working, log wages
in sector l and calendar year t are assumed to depend linearly on sector-specific productivity
Ail, a set of observed characteristics Xilt,18 labor market conditions δt, and idiosyncratic
shocks εilt:

wilt = δt + γ0l +Xiltγ1l + Ail + εilt (4)

The returns to the various components in Xilt are sector-specific. Note that this specification
allows for human capital accumulation through schooling as well as on the job. The idiosyn-
cratic shocks, εilt, are assumed to be distributed N (0, σ2

l ) and are independent over time as
well as across individuals and both sectors, and independent of the other state variables.

Like the model for grades, we define the sector-l productivity index of i in period t as

PIilt = γ0l +Xiltγ1l + Ail (5)

Then, for individuals working while in school, we express log wages relative to PIilt as

ws
ilt = δt + λ0l + λ1lPIilt + εs

ilt (6)

where the idiosyncratic shocks, εs
ilt, are assumed to be distributed N (0, σ2

sl). Hence, the
return to the productivity index is allowed to vary over in-school work status and occupa-
tional sector. Importantly, such a specification allows for different signal-to-noise ratios for
the wages received in and out of college.

Finally, we account for aggregate changes in wages over time through calendar year
indicators, δt. If we did not control for these nonstationarities, we might falsely conclude
that learning about ability is important when, in reality, workers are simply responding to
aggregate shocks. The time dummies at t are observed in period t, but individuals must
form expectations over this variable for periods t+ 1 and beyond. We formalize this feature
of the model in detail in Section 3.4.2.

18These include years of education, graduation, college major if graduated, an indicator for working part-
time, labor market experiences, age, demographics, high school grades, and parental education. We assume
that individuals who work part-time in a given year and sector accumulate half a year only of work experience
in that sector.
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3.4 Beliefs

Individuals are uncertain about (i) their future preference shocks, (ii) their schooling ability
and labor market productivity, (iii) the evolution of the market shocks (the δt’s), (iv) (four-
year) college graduation, and (v) whether they can participate in the white-collar sector. The
first component, future preference shocks, will be discussed in Section 3.5 when we describe
preferences. We discuss the other components below.

3.4.1 Beliefs over schooling ability and labor market productivity

We assume that individuals are rational and update their beliefs in a Bayesian fashion.
Their initial ability beliefs are given by the population distribution of A, which is supposed
to be multivariate normal with mean zero and covariance matrix ∆. Importantly, we do
not restrict ∆ to be diagonal, thus allowing for correlated learning across the five different
ability components.

At each period τ of college attendance, individuals use their realizations of grades and
wages (if they work while in college) to update their beliefs about their schooling abilities in
all college options (Ai2, Ai4S, Ai4N), as well as their labor market productivity in both sectors
(AiW , AiB). Grade realizations provide noisy signals regarding abilities, with Sijτ denoting
the signal for individual i from a type-j college option at enrollment period τ . Specifically,
for two-year colleges and the first two years of four-year colleges, the signal is given by:

Sijτ = Gijτ − γ0j −Xijτγ1j (7)

For four-year colleges in subsequent enrollment periods (τ > 2), the index specification
yields:

Sijτ = Gijτ − λ0j − λ1j(γ0j +Xijτγ1j)
λ1j

(8)

Similarly, individuals who participate in the labor market update their ability beliefs
after receiving their wages. The signal for those not in school and working in sector l and
period t is given by:

Silt = wilt − δt − γ0l −Xiltγ1l (9)
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For those enrolled in school while working in sector l in period t, the signal is

Silt = wilt − δt − λ0l − λ1l(γ0l +Xiltγ1l)
λ1l

(10)

Finally, individuals may choose to work while in college, in which case they will receive two
ability signals instead of one, (Sijτ , Silt).19

To describe the updating rules, we first introduce some notation. Let Ωit be a 5×5 matrix
with zeros everywhere except for the diagonal terms corresponding to the choices made by
individual i in period t (namely two-year college, four-year college science major, four-year
college non-science major, white- or blue-collar work). The diagonal elements corresponding
to the choices made are given by the inverse of the variances of the idiosyncratic shocks.20

The maximum number of positive diagonal elements is two, which corresponds to receiving
two signals: one from grades in a particular schooling option and one from wages. Similarly,
denote by S̃it a 5 × 1 vector with zeros everywhere except for the elements corresponding to
the choices in period t. Here, the non-zero elements are the ability signals received in this
period.21

It follows from the normality assumptions on the initial prior ability distribution and on
the idiosyncratic shocks that the posterior ability distributions are also normally distributed.
Specifically, denoting by Et(Ai) and Λt(Ai) the posterior ability mean and covariance at the
end of period t, we have (see DeGroot, 1970):

Et(Ai) = (Λ−1
t−1(Ai) + Ωit)−1(Λ−1

t−1(Ai)Et−1(Ai) + ΩitS̃it) (11)

Λt(Ai) = (Λ−1
t−1(Ai) + Ωit)−1 (12)

As in canonical one-dimensional learning models, prior variances at the beginning of a given
period decrease towards zero as individuals receive additional ability signals in the previous

19Once an individual graduates from college, learning in our model occurs through wage signals only.
20Note that, for the college options, the idiosyncratic variances will depend on the year of enrollment. For

the work options, these variances will depend on school enrollment status.
21As an example, someone who chooses to work in the blue-collar sector while pursuing a 4-year non-science

degree in τ ≤ 2 would have the following values for Ωit and S̃it:

Ωit =


0 0 0 0 0
0 0 0 0 0
0 0 1

σ2
4Nt

0 0
0 0 0 0 0
0 0 0 0 1

σ2
sB

 , S̃it =
[

0 0 Ai4N + εi4Nt 0 AiB + εs
iBt

]′
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periods, thus giving more weight to the prior ability and less to the current-period signal.

3.4.2 Beliefs over market shocks

We now specify how individuals form their beliefs about the aggregate labor market. Indi-
viduals observe the current value of δt. We assume that δt is the same for both employment
sectors. We also assume that the aggregate shock follows an AR(1) process:

δt = ϕδt−1 + ζt (13)

where ζt is i.i.d. N (0, σ2
ζ ). The assumption that the aggregate shock follows an AR(1)

process, or a discretized version of it (i.e., a Markov process of order 1) is common in
the literature (see, e.g., Adda et al., 2010; Robin, 2011). Given the realizations of the
δt−1’s, individuals then integrate over possible realizations of the ζt’s when forming their
expectations over the future.

3.4.3 Beliefs over graduation

We treat graduation as probabilistic. Individuals are only at risk of graduating if they
have completed at least two years of college and if they are currently attending a four-year
institution. Individuals in this risk set face a probability of graduation at the end of their
τ -th period of college enrollment that depends on a set of characteristics Xigτ . This set of
characteristics includes time-invariant measures like high school grades and demographics.
It also includes time-varying components like years in each type of school (two-year or four-
year), current college major, current work decisions, and the individual’s prior beliefs about
his four-year college abilities in science and non-science majors.22 We then assume that the
probability of graduating conditional on Xigτ takes a logit form:

Pr(gradiτ = 1|Xigτ ) = exp(Xigτψ)
1 + exp(Xigτψ) (14)

Individuals are assumed to know the parameters ψ and form expectations over their proba-
bilities of graduating using (14).

22While we do allow the prior ability beliefs, and thus prior college grades, to enter the graduation proba-
bility, we do not allow unobserved ability Ai itself to affect graduation. If we did so, then individuals could
learn about their abilities through graduation realizations. This would substantially complicate our model
by requiring, in particular, us to allow for correlated Bayesian learning based on a mixed continuous-discrete
distribution of signals.

15



3.4.4 Beliefs over white-collar job offer arrival

While individuals can always choose to work in the blue-collar sector, they face search
frictions associated with participation in the white-collar sector. In particular, white-collar
job offers arrive at time t with probability λ̃dt−1

it which is specified as follows:

λ̃
dt−1
it =


exp(X̃′

itδλ)
1+exp(X̃′

itδλ)
if i did not work in the white-collar sector at time t− 1

1 if i worked in the white-collar sector at time t− 1
(15)

where X̃it denotes a vector of state variables in period t (i.e., age and an indicator for college
graduation in either major), and the superscript dt−1 emphasizes the dependence on the
prior decision as outlined in (15). Similar to graduation, individuals are assumed to know
the parameters δλ.

3.5 Flow utilities

We now define the flow payoffs for each of the schooling and work combinations. We denote
in what follows the various schooling options by j, where j ∈ {2, 4S, 4N, 0}. Turning to the
work options, we denote by k ∈ {p, f, 0} part-time and full-time work, respectively, and by
l ∈ {B,W} the blue-collar (l = B) and white-collar (l = W ) sector. The baseline alternative
corresponds to the home production option, i.e., no work (k = 0) and no school (j = 0),
which we denote with a slight abuse of notation by dit = (0, 0, 0).

We denote by Z1it the variables that affect the utility of school, Z2it the variables that
affect the utility of work, Cijklt the level of consumption associated with the school and work
alternative (j, k, l) in period t, and by Z0it the individual characteristics that affect flow
payoffs through consumption only. The flow payoff for choice dit = (j, k, l) is assumed to be
given by, letting Zit = (Z0it, Z1it, Z2it):

Ujkl(Zit, εijklt) = αjkl + αCE(U(Cijklt)) + Z1itαj + Z2it(αk + αl) + εijklt (16)

= ujkl(Zit) + εijklt (17)

where the idiosyncratic preference shocks εijklt are i.i.d. following a Type 1 extreme value
distribution.

This specification allows for level shifts of utility based on combinations of activities
through αjkl. The associated restriction on preferences here is that the characteristics of
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the individual do not affect the cost of pursuing two activities simultaneously. For example,
certain characteristics may make part-time work more attractive but will affect the latent
utility of part-time work in the same way regardless of sector and regardless of whether the
individual is also choosing one of the educational options. We discuss below the remaining
components of the flow utility payoffs, starting with the utility of consumption.

3.5.1 Consumption

Individuals make decisions in part based on their expected utility of consumption, which is
supported by some combination of labor income, parental transfers, educational grants or
loans, and the social safety net.

We follow a modified version of Johnson (2013) by assuming that the budget constraint
binds in each period (we do not have savings or assets in our model, so we omit these
components from Johnson’s equation; however, students can take out loans to pay for their
education). How consumption at time t for individual i choosing alternative (j, k, l), Cijklt,
is determined depends on whether the time period is before or after T ∗. Prior to T ∗, con-
sumption depends on labor income, Wijklt, and, if the individual chooses one of the college
options, parental transfers, PTijt, educational grants (both need- and merit-based), GRijt,
and educational loans, Lijt, and tuition and fees, TFj.23 How parental transfers, grants, and
loans are determined is given in Appendix D, with Appendix G detailing loan accumulation.

After T ∗, no more educational decisions are made, and the loan repayment process be-
gins. Consumption then depends only on Wijklt and loan repayments, SLRit.24 Latent
consumption is then defined as:

C∗
ijklt =



Wijklt if j = 0, k ̸= 0, t < T ∗

Wijklt + PTijt +GRijt + Lijt − TFj if j ̸= 0, k ̸= 0, t < T ∗

PTijt +GRijt + Lijt − TFj if j ̸= 0, k = 0, t < T ∗

Wijklt − SLRit if j = 0, k ̸= 0, t ≥ T ∗

0 if j = 0, k = 0

(18)

To reflect the social safety net, realized consumption is then given by the maximum of
23Because our model has no notion of college choice or geographic space, tuition TFj is the same for every

individual and differs only by college sector (2-year vs. 4-year).
24In practice, as long as the loan repayment period starts after the estimation window, we do not need to

take a stand on how repayments impact estimation. The loan repayment details are only relevant for our
counterfactuals and are discussed in Appendix J.
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C∗
ijklt and the consumption floor C:

Cijklt = max(C∗
ijklt, C) (19)

Consumption is evaluated in terms of yearly consumption flow in 1996 dollars. We
calibrate a consumption floor for individuals not working and not in school. Namely, we
follow Hai and Heckman (2017) and set this value to C = $2, 800.

We assume that individuals have CRRA preferences over their consumption, with a risk
aversion parameter which we set equal to θ = 0.4. We discuss in detail in Appendix D.4 how
we compute the expected utility of consumption taking into account the different sources of
uncertainty, with Appendix D.5 discussing how we choose the value of θ.

3.5.2 Controls

We now turn to the variables Z1it and Z2it:

• Z1it and Z2it include demographics, family background characteristics, year of birth,
measures of academic performance, and controls for the previous choice (to allow for
switching costs similar in spirit to Keane and Wolpin, 1997). Our approach is consistent
with students accumulating human capital while in college, while also allowing for non-
pecuniary payoffs associated with it. In particular, heterogeneity in the consumption
value of attending two- and four-year colleges, is captured with the observed individual
characteristics.25

• Specific to Z1it is the expected ability in schooling option j (which is computed with
respect to individual i’s prior ability distribution at the beginning of period t), ex-
pected graduation probability in the next period, years of college completed, and work
intensity (whose effects are allowed to vary by labor market sector).26 Expected ability
is included in Z1it, which can be interpreted either as individuals valuing grades for
non-pecuniary reasons or as an inverse proxy for the cost of effort.27 In our model,
students learn passively about their college abilities. We show in Appendix E that it

25See Heckman, Humphries, and Veramendi (2018) for an empirical analysis of the non-market returns to
education.

26Given that the individual’s baseline choice is home and its normalized value remains the same before
and after college graduation, one needs to include expected graduation probability at t + 1 in the flow utility
to account for any differences in the value of home before and after graduation.

27This reduced-form specification has been used in various prior studies in the empirical schooling choice
literature. See, for instance, Arcidiacono (2004) and Stinebrickner and Stinebrickner (2012).
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is possible to frame our model instead around learning about per-unit study cost.28

• Finally, specific to Z2it are indicators for four-year college graduation and for partici-
pation in the white-collar sector (when working part-time). Note that although we do
not directly measure non-pecuniary returns to schooling, we allow for such returns by
including four-year college graduation as a preference shifter for the work alternatives.

The home production sector is chosen as a reference alternative, and we normalize ac-
cordingly the corresponding flow utility to zero. The flow utility parameters, therefore, need
to be interpreted relative to this alternative.

3.6 The optimization problem

Individuals are forward-looking and choose the sequence of college enrollment and labor mar-
ket participation decisions yielding the highest present value of expected lifetime utility. The
individual chooses (dit)t=1...T , a combination of schooling and work decisions, to sequentially
maximize the discounted sum of payoffs:

E

 T∑
t=1

βt−1∑
j

∑
k

∑
l

(ujkl(Zit) + εijklt)1{dit = (j, k, l)}1{Offerilt = 1}

 (20)

where β ∈ (0, 1) is the discount factor. The expectation is taken with respect to the distri-
bution of the future idiosyncratic preference shocks, the signals associated with the different
choice paths, the beliefs over the aggregate shock to wages, the probability of receiving an
offer in sector l (1{Offerilt = 1} above), and the probability of graduating.

Let Vt(Zit) denote the ex-ante value function at the beginning of period t, that is, the
expected discounted sum of current and future payoffs just before the current period idiosyn-
cratic shock is revealed. The conditional value function vjkl(Zit) is given by:

vjkl(Zit) = ujkl(Zit) + βEt [Vt+1(Zit+1)|Zit, dit = (j, k, l)] (21)

where the term Et[·|·] is indexed by t to highlight the fact that this expectation is conditional
on the information set of the individual at the beginning of period t, which includes, in
particular, the sequence of ability signals received from periods 1 up until t − 1. Denoting
by λ̃

(dt−1)
it the probability of receiving an offer in the white-collar sector in period t given

28Absent information on effort itself, we conjecture that a model having students learn about both their
schooling abilities and their study costs would not be identified.
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previous decision dt−1, and assuming that the ε’s are i.i.d. Type 1 extreme value yields the
following weighted log-sum formula:

vjkl(Zit) = ujkl(Zit) + βλ̃
(jkl)
i,t+1Et

 ln
∑

j

∑
k

∑
l

exp(vjkl(Zit+1))
∣∣∣∣∣∣Zit, dit = (j, k, l),Offerilt+1 = 1


+ β

(
1 − λ̃

(jkl)
i,t+1

)
Et

 ln
∑

j

∑
k

exp(vjkB(Zit+1))
∣∣∣∣∣∣Zit, dit = (j, k, l),Offerilt+1 = 0

+ βγ

(22)

where γ denotes Euler’s constant.

3.7 Finite dependence

Following Arcidiacono and Miller (2011, 2019), we re-express the future payoffs so we can
avoid solving the full backward recursion problem. Note that the expected value function at
time t+ 1 can be expressed relative to the conditional value function for one of the choices,
plus a (known) function of the choice probabilities. This feature, coupled with the fact that
it is the differences in the conditional value functions that are relevant in estimation, makes
it possible in some cases to express the estimation problem such that the differenced future
utility term only depends on a-few-period-ahead choice probabilities and flow utilities. The
key is to choose choice sequences—given two different initial choices—such that the same
distribution of states results from both paths.

We now discuss how this concept can be applied in our setup, and defer the formal
derivation of the finite dependence property to Appendix F. Denote first by h the triplet
of home production choices (0, 0, 0). Our goal is to find an expression for the difference
in the conditional value functions, vjkl − vh, where only a few period ahead flow utilities
and conditional choice probabilities are needed to characterize the differenced future value
term.29 This is simple to do for alternatives that do not include working in the white collar
sector. To see this, consider the conditional value function at time t for {4S, p,B}, so that
the individual is attending school in the sciences while working part-time in the blue collar
sector. Regardless of the transitions of the other state variables, we express the future utility
terms at t+1 and t+2 relative to the conditional value function for the home option, h. Now
consider conditional value function at time t associated with h. Expressing the future utility

29As a reminder, j denotes the schooling option, k refers to the work options, l determines the sector, and
t the period. v000t ≡ vht refers to home production, which is the baseline alternative.
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term at t + 1 relative to {4S, p, B} and at t + 2 relative to h yields the same distribution
of states as the sequence that began with {4S, p,B}, and hence the same expected future
utility at t+ 3:

Et [Vt+3(Zt+3)|dt = {4S, p, B}, dt+1 = {0, 0, 0}, dt+2 = {0, 0, 0}, Zt] =

Et [Vt+3(Zt+3)|dt = {0, 0, 0}, dt+1 = {4S, p, B}, dt+2 = {0, 0, 0}, Zt] (23)

In both cases, the lagged choice (dt+2) is home, the individual will have an additional half-year
of work experience and an additional year of science education, and with the choice ordering
also not affecting the ability signal distributions, graduation probabilities, and market state.

The problem becomes more complicated for choices involving the white collar sector as
there is no guarantee that an individual choosing home will receive a white collar offer in the
next period. Consider the same conditional value function as before, but replacing the blue
collar sector with the white collar sector: {4S, p,W}. We again normalize the future utility
at time t + 1 and t + 2 relative to h for the path that begins with {4S, p,W}. To ensure
that the future value at time t + 3 from this path will cancel with the corresponding term
in the conditional value function for h, note that the future value term along the path that
begins with h can be expressed relative to any linear combination of future decisions as long
as the weights on those decisions sum to one (Arcidiacono and Miller, 2019). Specifically,
given that white-collar job offers arrive with probability λ̃(h)

t+1 after making decision h at time
t, along the path where the individual receives a white collar offer we place a weight 1/λ̃(h)

t+1

on the alternative {4S, p,W} and a weight 1 − (1/λ̃(h)
t+1) on the home alternative. Along the

path where the individual does not receive an offer at t + 1, we express the future value
term relative to the home alternative h. In Appendix F, we show that this weighting scheme
results in the same distribution of states at t+3 that would result from making the sequence
of choices {4S, p,W} and then expressing the future value term relative to home at t+2 and
t+3. It follows that two-period finite dependence can be achieved, even though whether the
individual receives a white collar offer is uncertain.

4 Identification

We first discuss in Subsection 4.1 how our model accommodates permanent unobserved
heterogeneity before turning in Subsection 4.2 to the identification of the model parameters.
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4.1 Unobserved heterogeneity and measurement system

The presence of unobserved preferences and skills (to the econometrician, but known by the
agents) that could be correlated over time constitute a threat to identifying the coefficients
of interest. We address this issue by allowing for unobserved heterogeneity types in the
spirit of Heckman and Singer (1984) and Keane and Wolpin (1997). Namely, we include
type-specific components, capturing permanent characteristics of the individual, which enter
the model in the form of location shifters. These type-specific shifters are allowed to affect
the outcomes (college grades and log-wages), college graduation probability, white-collar
job offer arrival rate and flow utilities associated with the different choice alternatives. We
allow for three unobserved binary heterogeneity factors, namely one for schooling ability,
one for schooling preferences, and one for work motivation. It follows that the agents in our
model are supposed to belong to one of eight unobserved heterogeneity types, where each
of the three latent factors can take on one of two possible values, low (L) or high (H).30 We
assume that (initially unknown) unobserved ability and unobserved heterogeneity types are
mutually independent, and that they are also independent from the observed covariates at
period t = 1. In practice we rely on an auxiliary measurement system, which is primarily used
to identify the distribution of permanent unobserved heterogeneity. Beyond identification,
another advantage of using these measurements is that they render greater interpretability
to the heterogeneity types (Carneiro, Hansen, and Heckman, 2003). Appendix C describes
the measurements we use and how each one of them relates to the unobserved heterogeneity
types.

4.2 Model identification

We now discuss how the model parameters are identified. Identification proceeds sequen-
tially. We identify in a first step the unobserved heterogeneity distribution, the conditional
choice probabilities, the outcome equations and the distribution of the agents’ beliefs. The
structural utility parameters are then identified in a second step. We end this subsection by
explaining how white-collar job offers are separately identified from preferences for white-
collar work.

30The possible combinations for schooling ability, schooling preferences, and work motivation that lead to
eight types are as follows: (H,H,H), (H,H,L), (H,L,H), (H,L,L), (L,H,H), (L,H,L), (L,L,H), and (L,L,L).
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4.2.1 Unobserved heterogeneity distributions, conditional choice probabilities, continuous
outcome equations and agents’ beliefs

Distribution of unobserved permanent heterogeneity that is known to the agent
Grades and log wages are linear functions of (i) observed covariates, (ii) type-specific unob-
served heterogeneity (known to the agents), (iii) unobserved heterogeneity initially unknown
to the agents, and (iv) idiosyncratic shocks. Although we assume that the random factors
(ii) and (iii) are mutually independent, these factors are generally correlated once we condi-
tion on the outcome being observed by the analyst. For instance, grades in four-year college
science major are only observed for students who enrolled in this specific type of college and
major, a decision which likely depends on their (known) unobserved heterogeneity as well
as their beliefs about their initially unknown unobserved heterogeneity. It follows that one
cannot directly apply the identification arguments from, e.g., Carneiro, Hansen, and Heck-
man (2003) or Heckman and Navarro (2007), to identify the distribution of the factors from
the realized grades and log wages.

Instead, we use the auxiliary measurement system discussed in Subsection 4.1 for identifi-
cation. Namely, we rely on the fact that we have access to a set of selection-free measurements
for the three unobserved discrete heterogeneity factors. This then allows us to use existing
identification results for finite mixture models with multiple measurements. Specifically,
one can apply Theorem 8 of Allman, Matias, and Rhodes (2009) to our context to identify
the distribution of the unobserved heterogeneity types, along with the distributions of the
measurements conditional on the heterogeneity types.

Type-specific conditional choice probabilities The choice probabilities conditional on
the observed state variables and the measurements, which are directly identified from the
data, can be expressed as a finite mixture over the heterogeneity types of the type-specific
conditional choice probabilities. The mixture weights are identified from the previous step.
Key to the identification of the type-specific conditional choice probabilities is then the
assumption that measurements are independent from choices once we condition on hetero-
geneity types.31 Conditional on the vector of observed state variables, the finite mixture
model can then trivially be expressed as a linear system with NM (number of distinct values
taken by the vector of measurements) equations and NT (number of points of support of the
vector of types) unknowns. Provided that the measurements are relevant measurements of

31It follows that measurements only affect the choice probabilities through the mixture weights. See Henry,
Kitamura, and Salanie (2014), who use similar exclusion restrictions to (partially) identify finite mixture
models in a more general context with unknown mixture weights.
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types (i.e., the type distribution conditional on measurements is a non-trivial function of at
least a subset of the measurements), the type-specific choice probabilities will generally be
over-identified in our context.

To fix ideas, consider the case of the type-specific conditional choice probabilities in the
first period, assuming one unobserved heterogeneity factor with two points of support (i.e.,
two types), R ∈ {1, 2}. While simpler than our specification, this setup remains rich enough
to convey the main identification arguments. Under the previous assumptions, the choice
probabilities conditional on the measurements M = m, Pr(D|M = m), can be written as a
finite mixture of the type-specific conditional choice probabilities, where the mixture weights,
πM=m

1 and πM=m
2 = 1 − πM=m

1 , are identified from the earlier step (we omit the conditioning
on the observed covariates for simplicity here). Namely:

Pr(D|M = m) = Pr(D|M = m,R = 1)πM=m
1 + Pr(D|M = m,R = 2)(1 − πM=m

1 ) (24)

Evaluating the choice probabilities conditional on measurements at two different points
m1 and m2 in the support of the measurements M yields the following linear system:

Pr(D|M = m1)
Pr(D|M = m2)

 =
πM=m1

1 1 − πM=m1
1

πM=m2
1 1 − πM=m2

1

Pr(D|R = 1)
Pr(D|R = 2)

 (25)

This identifies the vector of type-specific conditional choice probabilities
Pr(D|R = 1)

Pr(D|R = 2)


provided that the rank condition πM=m1

1 ̸= πM=m2
1 holds.

Similar arguments can be used to establish identification of the type-specific conditional
choice probabilities in the more general case of a vector of unobserved discrete heterogeneity
factors.32

Outcome equation parameters (grades and log wages) An important feature of our
model is that grades and wages are all subject to sample selection. For instance, grades in
four-year science are, by definition, only observed for those who chose to enroll in a four-
year college, science major. The same holds true for wages in blue- and white-collar sectors.
Importantly though, conditional on the heterogeneity type, grades and wages are subject to

32For periods t > 1, the mixture weights are given by the type probabilities conditional on the measure-
ments and the state variables, which, unlike for the first period, include prior choices and ability beliefs.
Identification of these weights exploits the normality assumption on the outcome equations (grades and log
wages).
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selection on observables only. It follows that identification of the outcome equation param-
eters can be established using a control function approach. Identification of the outcome
equation parameters proceeds along these two steps:

Step 1: Identification of the distribution of the outcome Y j
τ conditional on heterogeneity type

(R), past schooling/work choices (Dτ−1 = j,Dτ−2...), past ability signals (Sτ−1, Sτ−2...),
and other state variables Xj

τ−1

This follows from a similar reasoning as for the type-specific conditional choice prob-
abilities, after replacing the conditional choice probabilities by the densities of the
outcomes Y j

τ conditional on past choices, past outcomes, and other state variables.

Step 2: Identification of the outcome equation parameters

These parameters are identified from the theoretical regression of E(Y j
τ |R,Dτ−1 =

j,Dτ−2, ..., Sτ−1, Sτ−2, ..., X
j
τ−1), which is identified from the previous step, on R, Xj

τ−1,
the interaction terms Dτ−2Sτ−1, Dτ−2Dτ−3Sτ−2, ..., and an intercept. Identification of
the ability signals Sτ follows.

Distribution of unobserved ability factors A = (A2, A4S, A4N , AW , AB)′ that are ini-
tially unknown to the agent The joint distribution of the unobserved factors A is iden-
tified primarily from the covariances between the outcomes (namely, grades and log wages)
and past ability signals.

In our model, conditional on observed covariates, both type-specific unobserved het-
erogeneity and unobserved factors A generate persistence in the outcomes. The assump-
tion that the distribution of unobserved heterogeneity known by the agent is discrete helps
identifying the distribution of A. In particular, denoting by Y the outcomes, S the past
ability signals, X the observed covariates, R the heterogeneity type dummy which fol-
lows a Bernoulli distribution (e.g. schooling ability type for grades, where we assume here
to simplify the exposition that there are only two types), and D the selection dummy,
Cov(Y, S|X,D = 1) as well as Cov(Y 2, S|X,D = 1) are both functions of the same co-
variance term Cov(R, S|X,D = 1) = Cov(R2, S|X,D = 1). The share of the covariance
Cov(Y, S|X = x,D = 1) that is attributable to the unobserved ability A is then identified
from the covariances Cov(Y, S|X = x,D = 1) and Cov(Y 2, S|X = x,D = 1), letting x vary
on the support of X. This, in turn, identifies the signal-to-noise ratios associated with the
different ability signals, along with the variance-covariance matrix of A.

25



Individual beliefs about unobserved abilities Individual prior beliefs about abilities
A, at the beginning of any given period, are identified as a byproduct of the previous steps,
combined with the maintained normality assumption for the distribution of the ability sig-
nals.

4.2.2 Offer arrival rates and utility function parameters

We now discuss the identification of the conditional value functions before turning to the flow
payoffs. As these arguments take as given the conditional choice probabilities, we start by
discussing the identification of the white-collar job arrival rates and probabilities of choosing
to work in a white-collar job.

White-collar job arrival rates and choices First, note that individuals with arbitrarily
large prior abilities in the white-collar sector are predicted to choose to work in the white-
collar sector—conditional on receiving an offer in that sector—with a probability approaching
one.33 In other words, it follows from the specification of our choice model that:

lim
y→∞

Pr(Dt = W |Offert = 1, Zt, Et−1(A−W ), Et−1(AW ) = y,R) = 1 (26)

where we denote by Et−1(A−W ) the vector of prior abilities for all three college options
and the blue-collar sector, and we suppress the individual subscripts to ease the notational
burden.

It follows that, for this subset of individuals, the offer arrival rates are equal to the
probabilities of working in the white-collar sector unconditional on receiving an offer in that
sector, namely Pr(Dt = W |Zt, Et−1(A−W ), Et−1(AW ), R). These probabilities are identi-
fied for this subset of individuals in a similar fashion to the type-specific conditional choice
probabilities discussed in the previous subsection. Under the maintained assumption that
the offer arrival rates do not depend on prior ability, this, in turn, identifies the arrival
rates, which we denote here by λ̃R

t to make the dependence on R explicit. Finally, it fol-
lows that the probabilities of working in the white-collar sector conditional on receiving an
offer, which are given by Pr(Dt = W |Offert = 1, Zt, Et−1(A−W ), Et−1(AW ), R) = Pr(Dt =
W |Zt, Et−1(A−W ), Et−1(AW ), R)/λ̃R

t , are identified for the whole population. In practice,
separate identification of the white-collar job offer arrival rates and the probabilities of
choosing to work in the white-collar sector conditional on receiving an offer in that sector

33Implicit here is the assumption that prior ability, and thus expected wages in the white-collar sector are
positively associated with the flow utility for holding a white-collar job.
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is further facilitated by our parametric and distributional assumptions, combined with ad-
ditional exclusion restrictions between the offer arrival rates and the flow utility of working
in the white-collar sector (see Table B2 in Appendix B).

Conditional value functions Having identified the type-specific conditional choice prob-
abilities, one can then identify the conditional value functions associated with each alterna-
tive using standard identification arguments from the dynamic discrete choice literature.34

In particular, it follows from the assumption that the idiosyncratic preference shocks are
drawn from a Type 1 extreme value distribution that the conditional value functions—up
to a reference alternative (home production)—are identified by inverting the type-specific
conditional choice probabilities as in Hotz and Miller (1993). This identification result does
require knowledge of the distribution of the preference shocks. However, similar inversion
results can be obtained for a more general class of error distributions, including generalized
extreme value distributions (see, e.g., Arcidiacono and Miller, 2011, Chiong, Galichon, and
Shum, 2013).

Flow utilities Finally, having identified the type-specific conditional choice probabilities
and conditional value functions from the earlier steps, the flow utilities associated with the
different alternatives are identified by applying to our context the results of Arcidiacono and
Miller (2015)35 on utility functions that do not depend on time itself (see Subsection 4.2 in
Arcidiacono and Miller, 2015).36

5 Estimation

For expositional reasons, we first present the estimation procedure for a specification with-
out type-specific unobserved heterogeneity (Subsections 5.1-5.4). We then discuss how the

34Note that it follows from the final paragraph of Section 4.2.1 that the posterior ability vector can be
treated at this stage as an observed continuous state variable.

35This is a working paper version of Arcidiacono and Miller (2020) available at http://comlabgames.
com/ramiller/working_papers/identification-manuscriptJune2015pa.pdf.

36This identification result relies on a rank condition on the choice-specific transition matrices. An al-
ternative approach to showing identification of the flow utilities is to note that, with our finite dependence
representation, the expressions for the differenced conditional value functions have, at this stage of identifi-
cation, only the non-home utilities for one choice as the unknowns and where the the equation is linear in
the unknowns. Using the differences in log odds between the choice and home coupled with coverage of the
log odds for every state yields a linear system.
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procedure can be extended to allow for unobserved heterogeneity types (Subsection 5.5).37

5.1 Additive separability

Assuming that the idiosyncratic shocks are mutually and serially uncorrelated and in the
absence of type-specific unobserved heterogeneity, the model can be estimated sequentially.
Broadly speaking, the estimation, in this case, proceeds in two key stages. In the first
stage, one can estimate the parameters from the grade and wage processes in addition to
the choice probabilities associated with all schooling and work alternatives, while the second
stage is devoted to estimating the flow utility parameters, taking as given the first-stage
estimates.38 The validity of this sequential approach rests on the likelihood being separable
in the contributions of the choices and outcomes.

Namely, consider the case of an individual i attending college for Tc periods, who par-
ticipates in the blue-collar (white-collar) labor market for TB (TW ) periods, and for whom
we observe a sequence of Td decisions. We write the individual contributions to the likeli-
hood of the grades, log wages and choices by integrating out the unobserved ability terms
A = (A2, A4S, A4N , AW , AB)′. This breaks down the dependence across the grades, log wages,
choices, and between these variables. The contribution to the likelihood then writes, denot-
ing by (Giτ )τ (τ ∈ {1, . . . , Tc}) the grades, (wiBτ )τ (τ ∈ {1, . . . , TB}) the log wages in the
blue-collar sector, (wiW τ )τ (τ ∈ {1, . . . , TW }) the log wages in the white-collar sector, and
(diτ )τ the decisions (τ ∈ {1, . . . , Td}), as a five-dimensional integral:

L(di1, . . . , diTd
, Gi1, . . . , GiTc , wiB1, . . . , wiBTB

, wiW 1, . . . , wiW TW
)

=
∫
L(di1, . . . , diTd

, Gi1, . . . , GiTc , wiB1, . . . , wiBTB
, wiW 1, . . . , wiW TW

|A)φ(A)dA
(27)

where φ(·) denotes the pdf of the unobserved ability distribution, which is N (0,∆).
From the law of successive conditioning, and using the fact that schooling and work

choices depend on ability A only through the observed sequence of signals, we obtain the
following partially separable expression (using y as a shorthand for the vector of grades and

37Note that throughout this section, we keep the conditioning on the observed covariates implicit to save
on notation.

38We refer to the first stage as the estimation steps that are necessary to complete before estimating
the structural parameters. Note that this stage also includes estimating the graduation and search friction
parameters, consumption-related inputs (i.e., loans, grants, and transfers), flexible conditional choice prob-
abilities (CCPs), and a measurement system to account for unobserved heterogeneity. We will discuss these
remaining elements later to ease the exposition. See Appendix Table B1 for a full summary of the estimation
steps.
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log wages):

L(di1, . . . , diTd
, Gi1, . . . , GiTc , wiB1, . . . , wiBTB

, wiW 1, . . . , wiW TW
) = Lid × Liy (28)

where the contribution of the sequence of schooling and work decisions is given by:

Lid = L(di1)L(di2|di1, Gi1) · · ·

× L(diTd
|di1, di2, . . . , diTd−1, Gi1, Gi2, . . . wiB1, wiB2, . . . , wiW 1, wiW 2, . . .)

(29)

This corresponds to the product over Td periods of the Type 1 extreme value choice proba-
bilities obtained from the dynamic discrete choice model.

Finally, the contribution of the sequence of grades, blue-collar and white-collar log wages
is given by:

Liy =
∫
L(Gi1|di1, A) · · ·L(GiTc|di1, di2, . . . , A)L(wiB1|di1, A) · · ·L(wiBTB

|di1, di2, . . . , A)

×L(wiW 1|di1, A) · · ·L(wiW TW
|di1, di2, . . . , A)φ(A)dA (30)

where (L(wiBτ |di1, . . . , A))τ , (L(wiW τ |di1, . . . , A))τ , and (L(Giτ |di1, . . . , A))τ respectively de-
note the normal pdf’s of the blue- and white-collar log wages as well as the college grade
distributions, all conditional on the ability A and the sequence of choices. Taking logs of (28)
results in the choice part of the log-likelihood being additively separable from the outcome
part of the log-likelihood.39

5.2 Estimation of grade and wage parameters

Estimation of the parameters of the grade and wage equations proceeds as follows. Instead
of directly maximizing the likelihood of the outcomes, which would be computationally
costly because of the ability integration, we compute the parameter estimates using the EM
algorithm (Dempster, Laird, and Rubin, 1977). The estimation procedure iterates over the
following two steps until convergence:40

• E-step: update the posterior ability distribution from all the observed outcome data
(log wages and grades), using the outcome equation parameters obtained from the

39With type-specific unobserved heterogeneity, the log-likelihood is no longer additively separable. How-
ever, applying the EM algorithm restores the additive separability at the maximization step (Arcidiacono
and Jones, 2003). See Section 5.5 for more discussion.

40In this context, the EM algorithm is guaranteed to converge to a local optimum.
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previous iteration. This follows from the Bayesian updating formulas for the posterior
ability mean and covariance given in Section 3.4.1 (Equation 11). The (population)
covariance matrix of the ability distribution is then updated as follows for each iteration
n of the EM estimation:

∆(n) = 1
N

N∑
i=1

(
Λ(n)

i (A) + E
(n)
i (A)E(n)

i (A)′
)

(31)

where N denotes the number of individuals in the sample, E(n)
i (A) the posterior ability

mean (E(n)
i (A)′ its transpose) and Λ(n)

i (A) the posterior ability covariance computed
at the beginning of the E-step.

• M-step: given the posterior ability distribution obtained at the E-step, maximize the
expected complete log-likelihood of the outcome data, which is separable across sectors
(two-year college, four-year college science major, four-year college non-science major,
blue-collar and white-collar labor).

Namely, at the M-step of each iteration n of the EM estimation, denoting by φ(n)
i (·) the

pdf of the posterior ability distribution computed at the E-step, we maximize the expected
complete log-likelihood Eℓ

(n)
i :

Eℓ
(n)
i =

∫
ln [L(Gi1|di1, A) · · ·L(GiTc |di1, di2, . . . , A)L(wiB1|di1, A) · · ·

× L(wiBTB
|di1, di2, . . . , A)]φ(n)

i (A)dA

= Eℓ
(n)
i,2 + Eℓ

(n)
i,4S + Eℓ

(n)
i,4N + Eℓ

(n)
i,W + Eℓ

(n)
i,B

(32)

For instance, the parameters of the grade equation for four-year college sector j are
updated by maximizing the contribution Eℓ

(n)
i,j , j ∈ {4S, 4N}, which writes, denoting by

φ
(n)
ij (·) the pdf of the posterior distribution of Aj:

Eℓ
(n)
i,j =

∫ {
ln [L(Gi,j,1|di1, Aj)] + · · · + ln

[
L(Gi,j,Tj

|di1, di2, . . . , Aj)
]}
φ

(n)
ij (Aj)dAj (33)

Note that this term is additively separable over time. For any given period τ of participation
in college sector j, it follows from the normality assumptions on the idiosyncratic grade shocks
and the unobserved ability that:
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∫
ln(L(Gijτ |di1, di2, . . . , Aj))φ(n)

ij (Aj)dAj =

−1
2 ln(2πσ2

jτ ) − 1
2σ2

jτ

(
λ2

1jΛ
(n)
ijj (A) + (Gijτ − λ0j − λ1jAI

(n)
ijτ )2

) (34)

where j ∈ {4S, 4N}, Λ(n)
ijj (A) denotes the posterior variance of the college-j ability (computed

at the E-step), AI(n)
ijτ = γ0j + Xijτγ1j + E

(n)
ij (A) is the posterior mean of the ability index

in college and major j, and φ
(n)
ij (·) denotes the pdf of the posterior distribution of Aj. It

follows that the parameters (γ0j, γ1j, λ0j, λ1j, (σ2
jτ )τ ) are updated by solving the following

minimization problem:

min
∑
i,τ

(
ln(σ2

jτ ) + 1
σ2

jτ

(
λ2

1jτ Λ(n)
ijj (A) + (Gijτ − λ0jτ − λ1jτAI

(n)
ijτ )2

))
(35)

where (λ0jτ , λ1jτ ) = (0, 1) for τ ≤ 2 and j ∈ {4S, 4N}, and (λ0jτ , λ1jτ ) = (λ0j, λ1j) other-
wise. The estimation of the two-year college parameters proceeds in a similar fashion, with
(λ02τ , λ12τ ) = (0, 1) for all τ .

The estimation of the wage parameters in (6) proceeds in a similar manner, with two
main differences: (i) the idiosyncratic wage shock variances σ2

sl do not differ across time
periods τ , but instead differ across in-school work status s; and (ii) the aggregate labor
market shocks δt are common across both l sectors. As a result of (ii), we estimate the wage
equation parameters jointly across sectors, adapting the loss function in (35) by taking the
sum across sectors, too.

5.3 Estimation of the graduation, search friction parameters and aggregate
shock process

Under the assumption that the graduation probabilities take a logit form, we use individual
data pooled over time on college graduation and on the set of characteristics Xigτ and
estimate via maximum likelihood the parameters ψ governing the graduation probabilities
(see Equation 14, Section 3.4.3).

Turning to the search friction parameters, we treat the arrival of a job offer in the white-
collar sector in any given period as a latent variable, and estimate the parameters governing
the logit probabilities of receiving an offer (see Equation 15, Section 3.4.4) as discussed in
detail in Appendix H.
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Finally, under the Normal AR(1) specification discussed in Subsection 3.4.2 for the labor
market shocks, we estimate the parameters ϕ and σ2

ζ in (13) by maximum likelihood, using
the estimated values of δt as data.41

In the absence of type-specific unobserved heterogeneity, each of these sets of parameters
can be consistently estimated separately from all of the other parameters of the model.
We discuss in Subsection 5.5 below how the estimation procedure needs to be adjusted to
accommodate type-specific unobserved heterogeneity.

5.4 Estimation of the flow payoffs

With the estimates of the grade, wage, search friction, and graduation parameters taken
as given, we estimate the flow payoffs in a second stage. Estimation relies on the finite
dependence property of our model (see Subsection 3.7).

Specifically, estimation of the flow utility parameters involves the following steps:

1. Estimate the CCPs via a flexible multinomial logit model in a first stage.

2. Calculate the expected differenced future value terms along the finite dependence paths.

3. Estimate the flow utility parameters after expressing the future value function as a
function of the CCPs. Having estimated the CCPs in a first step, this simply amounts
to estimating a multinomial logit with an offset term.

Applying CCP methods to our model is key to making our model computationally feasi-
ble. With five-dimensional unobserved ability, plus the integration over the aggregate labor
market shocks, graduation, and job offer arrival events, solving this type of multi-armed
bandit model by backward recursion would be computationally prohibitive.42 By using the
finite dependence property of our model, we only need to integrate out over the future shocks
for two periods.43

41Because of the finite dependence property of the model we only need to use the AR(1) assumption three
periods ahead when computing the future value terms.

42Additionally, estimation requires integration over the stochastic components of the CRRA utility of
consumption. We provide complete details in Appendix D.4.

43Another advantage of applying this approach is that we do not have to make assumptions about beliefs
far out into the future: everything about the future is captured in the conditional choice probabilities.
Note, however, that conducting counterfactuals requires more assumptions as in this case we do not have
counterfactual data and hence do not observe the conditional choice probabilities.
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5.5 Estimation with type-specific unobserved heterogeneity

We account for permanent heterogeneity, unobserved to the econometrician but known to
the individuals, by assuming that individuals belong to one of R heterogeneity types, where
the heterogeneity type is orthogonal to the covariates at t = 1. To this end, we augment
our model with a measurement system that is used to define and identify three unobserved
binary heterogeneity factors—one for schooling ability, one for schooling preferences, and one
for work motivation—resulting in R = 8 heterogeneity types. Accounting for type-specific
unobserved heterogeneity breaks down the separability between the choice and outcome com-
ponents of the likelihood described above. The full log-likelihood function when accounting
for unobserved heterogeneity is:

ℓ =
∑

i

ln
[

R∑
r=1

πrLimrLidrLibrLiyr

]
(36)

where πr denotes the population probability of being of type r, and Limr, Lidr, Libr, and
Liyr respectively denote individual i’s contribution to the likelihood of (i) the measurement
system, (ii) the choices, aggregate market shocks, and white-collar offer arrival, (iii) four-
year college graduation outcomes, and (iv) grade and wage outcomes y = (G,wB, wW )′, all
conditional on the unobserved heterogeneity type r.44

Estimation in the presence of unobserved heterogeneity proceeds as follows. We estimate
in a first step the measurement system that we combine with a flexible parametric specifi-
cation for the outcomes that enter the structural model, namely choices, log-wages, grades,
and four-year college graduation (see Appendix C for a detailed discussion). This first esti-
mation stage yields estimates of the posterior probabilities of being of each type (qir) as well
as estimates of the πr’s.

After recovering the posterior probabilities of being of each type, we then use them as
weights when estimating the learning parameters, graduation probabilities, the aggregate
labor market time series process, CCPs (including white collar job offer arrival parameters),
and the structural flow utility parameters. Note that this part is identical to the case without
unobserved heterogeneity discussed above, except that, instead of a simple log-likelihood,

44In practice, in our data, grades and majors are each missing at a non-trivial rate. We address this issue
by treating the first instance of missing grades or major as another discrete latent variable, effectively approx-
imating the distribution of missing grades with a distribution with four support points (see Appendix C.1 for
more details). The distribution of unobserved grades and majors (conditional on each heterogeneity type) are
also estimated in the first stage of our procedure. This results in a finite mixture model with R × 2 × 4 = 64
points of support.
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we are now maximizing the expectation (over the posterior distribution of heterogeneity
types) of the type-specific log-likelihood. This two-step estimation procedure follows in
spirit Arcidiacono and Miller (2011), with the use of an EM algorithm allowing us to restore
the additive separability of the log-likelihood function despite the presence of unobserved
heterogeneity. We summarize our complete estimation procedure in Table B1.

Finally, standard errors are estimated using a parametric bootstrap procedure with 150
replications.45 We discuss this procedure in detail in Appendix I.

6 Results

In this section, we present our estimation results, show how our model fits the data, and
discuss the model-implied sorting patterns on unobserved ability. We focus our attention
on the parameters of the grade and wage equations as well as the parameters of the flow
payoffs. We estimate the model allowing for eight unobserved types. Estimation results of
the measurement system for the unobserved types are given in Tables B5–B7 of Appendix
B. Table B3 shows the sign and significance of all unobserved type coefficients across all
equations of the model. The parameters governing the probability of graduating college and
the probability of receiving a white collar offer are also reported in Appendix B, respectively
in Tables B9 and B10.

6.1 Grade parameters

The parameter estimates for the grade equations are presented in Table 6. High school grades
are positively associated with college grades for each of the schooling options—strongest for
2-year college, less so for non-science majors, and least so for science majors. Working
full-time hinders performance, and this is especially true for the four-year options.

Turning to the type-specific unobserved ability (known to the agent), those with a high
schooling preference have significantly higher grades for both 4-year options. Those with a
high schooling ability also see higher grades in the 4-year options but the effects are smaller.
The fact that unobserved ability (of which test scores are a noisy measure) loads less on
college grades in non-science fields (where high school grades load more) is consistent with

45For finite mixture models like the one estimated in this paper, the asymptotic variance tends to be a
particularly poor approximation with typical sample sizes. See McLachlan and Peel (2004, Section 2.16)
who recommend the use of parametric bootstrap in this context.
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Ahn et al. (2023).

6.2 Wage parameters

Estimates of the wage equations are given in Table 7.46 Each year of work experience in
the blue-collar sector corresponds to roughly a three-and-a-half-percent increase in earnings
in both the blue-collar and white-collar sectors. Returns to white-collar experience are
higher—1 percentage point higher in the blue-collar sector and 2 percentage points higher
in the white-collar sector.

Returns to schooling are also higher in the white-collar sector. For each year of schooling
(up to a maximum of four), workers see 3.8 (6.3) percent higher earnings in the blue (white)
collar sector. On top of that, workers who graduate college in the non-sciences see an
earnings premium of 6.1 (11.3) percent in the blue (white) collar sector. Graduating in
the sciences is even more lucrative with a wage increase of 9.1 (13.2) percent in the blue
(white) collar sector. All else equal, the total premium for a non-science graduate relative to
someone with no college, given the same experience, is then respectively 21 and 37 percent
in the blue- and white-collar sectors; the equivalent premia for science graduates are 30
and 50 percent. A first takeaway from these estimates is the existence of sizable returns
to graduating from a science relative to non-science major, consistent with recent empirical
evidence on this question (see, e.g., Mountjoy and Hickman, 2021, and Altonji, Arcidiacono,
and Maurel, 2016 for a survey). Another takeaway is the existence of a large penalty for
college graduates working in the blue- rather than in the white-collar sector, a finding in line
with the overeducation literature (see, e.g., Clark, Joubert, and Maurel, 2017; Shephard and
Sidibe, 2019). Our results further point to a noticeable interaction between college major and
labor market sector, with the earnings advantage of science relative to non-science majors
being higher in the white-collar sector (13 vs. 9 percent).

Our estimation results also indicate that Black workers see lower earnings in both sec-
tors, though the penalty is lower in the white collar sector, consistent with Bjerk (2007).
The effects of other background measures (HS grades, parent graduated from college, and
Hispanic) are smaller and insignificant in both sectors.

Turning next to the portion of the unobserved heterogeneity that is known by the indi-
viduals, type-specific heterogeneity parameters suggest that the low-work-motivation as well
as low-schooling-ability types earn less in both sectors. More unexpected perhaps, those
with a high schooling preference also tend to earn less.

46Estimates of the AR(1) process governing the aggregate shocks are reported in Table B8.
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Finally, the returns we have described apply when the individual is not in school. Returns
to all characteristics are dampened when the individual is also a student. Note that this
implies that the information content of wage signals will be lower, all else equal. The
magnitude of the estimated coefficients is around 0.67 in both sectors, implying that in-school
work is associated with about a substantial 33% reduction in skill returns and informativeness
of the signal.

6.3 Learning

Table 8 presents the estimated correlation matrix for the unobserved abilities (initially un-
known to the individual) in each sector, along with their variances. The first key takeaway
from the correlation matrix is that it clearly supports the idea that skills are multidimen-
sional: all the correlation coefficients are significantly different from one at the 1% level.
The data unambiguously rejects a unidimensional model, or even a model with two imper-
fectly correlated skills (schooling ability and labor market productivity). As such, these
results add to a large and growing empirical literature providing evidence that skills are
multidimensional in nature (see Heckman and Mosso, 2014, and multiple references therein).

Four-year schooling ability is highly correlated across majors, with a correlation coefficient
of 0.83. Positive, though weaker, correlations are also seen with 2-year college ability, ranging
from 0.47 with 4-year science ability to 0.67 with 4-year non-science ability. Work abilities
are also strongly correlated, with an estimated correlation coefficient of 0.62.

The correlations between schooling abilities and labor market productivity are positive
but markedly lower than the correlations across college types and majors. Among the school-
ing abilities, science ability has the highest correlation with both blue- and white-collar abil-
ity, with correlation coefficients between 0.29 and 0.23. The other schooling abilities have
correlation coefficients of less than 0.2 with each of the work abilities, with the correlation
coefficient between non-science ability and blue collar ability being especially low.

The variances of each of the unobserved ability measures, and of the corresponding out-
comes, are given in the bottom two rows of Table 8. Individuals have a significant and sub-
stantial amount of uncertainty about their own abilities by the end of high school. Namely,
a one-standard-deviation increase in ability in the white-collar (blue-collar) sector translates
into a 36% (27%) increase in wages. On the schooling front, a one-standard-deviation in-
crease in ability accounts for around a half of a grade point for each of the schooling options.

While the unknown ability component is large, learning may still take time due to the
noise of the signals. Table 9 gives the estimated variances of the idiosyncratic components
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of wages and grades, respectively. It shows that, even though we account for both types
of unobserved ability (known and unknown to the individuals), residual variation in log
wages and grades remains sizable. For instance, in the first year of college the signal-to-noise
ratios range from 0.33 to 0.37 depending on the schooling option.47 Turning to the white- and
blue-collar abilities, in-school employment yields substantially less informative ability signals
than working out of school. This difference is especially salient in the white-collar sector,
where the signal-to-noise ratios are 0.20 and 0.49 for in-school and out-of-school employment,
respectively. Besides, conditional on being out of college, working in the blue-collar sector is
less informative than in the white-collar sector, with a signal-to-noise ratio of 0.34. However,
wages earned while in college have similar informational content in both sectors.

6.4 Flow payoffs

Table 10 reports the structural parameter estimates of the flow utility parameters. Recall
that we specified the utility of consumption as CRRA and calibrated the risk aversion pa-
rameter to 0.4 (see Appendix D.5). The marginal utility of consumption given this risk
aversion parameter is positive and significant. Work abilities do not enter the utility directly
except through wages, which in turn affect consumption.

The coefficients on prior academic ability—with the variables here referring to two-year,
four-year science, and four-year non-science, respectively—indicate that academic ability is
particularly important to the utility of the four-year college options. Similarly, the coefficient
on high school grades in four-year college options is also large and positive. These positive
effects suggest lower costs of effort when prior abilities and, in the case of the four-year
options, high school grades are high.

The estimated coefficients on previous activities point to the existence of large switching
costs across types of colleges and majors, as well as large costs to changing one’s work status.
The parameters on working full-time in the college options indicate negative complementar-
ities between school and full-time work. The coefficients on the unobserved types indicate
that those that have a high schooling preference value the schooling options more, with those
with high schooling ability placing a greater value on the four-year options.

47Signal-to-noise ratios are defined and computed as the share of the variance of the signal that is at-
tributable to the latent ability (as opposed to the noise).
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6.5 Model fit and ability sorting

We now discuss the fit of the model as well as the (predicted) sorting patterns by forward
simulating the model. Model comparisons are computed through forward simulation, using
the structural parameter estimates discussed above along with the reduced-form CCPs for
the formation of the future value terms. Specifically, we begin by drawing an ability vec-
tor for each individual from the population distribution (a multivariate normal with mean
zero and covariance ∆̂).48 We then draw an unobserved type for each individual from a
categorical distribution with parameter π̂ (estimated vector of unobserved type probabilities
reported in Table B4). Next, we draw white-collar job offers, preference shocks, and com-
pute choice probabilities using the observed states (i.e., the demographic characteristics and
heterogeneity type and ability drawn at the beginning of the simulation), the structural flow
utility estimates and the reduced-form CCPs to represent the future value term.49 We then
draw idiosyncratic shocks for the outcome equations (wages and grades) corresponding to the
choice that was made. Finally, we compute the implied ability beliefs using the idiosyncratic
shock draws and the ability draws, and then update the state space and repeat for T = 10
periods.50 We perform this forward simulation 10 times for each individual in the estimation
sample.

Tables B12 and B13 show how the model matches the choice probabilities in the data for
all individuals and college graduates, respectively. The model-predicted choice probabilities
and the data choice probabilities are pooled across the first ten periods. In each case, the
choice probabilities match well. While this is somewhat to be expected given that this is
what the estimation procedure is designed to match, the model could still fail to capture
dynamic selection.

In Figure 1, we assess how well the model captures dynamic selection by showing the fit
on aspects that were not directly targeted by the estimation algorithm. The figure shows
how well our model matches educational decisions over time, focusing in particular on college
entry rates, college attrition, and graduating in either type of major. Here, too, the model
predictions are consistent with the data, except for slightly overestimating the number of
students who drop out of college or graduate in later time periods.

48The parameter values of the correlation matrix associated with ∆̂ are listed in Table 8.
49In the forward simulation after t = 1, the choice probabilities are a function of the demographic charac-

teristics, the unobserved type, the beliefs on unobserved ability, and the endogenous state variables such as
previous decision and experience.

50Updating the state space involves updating the ability beliefs and the choice-dependent state variables.
For example, if the person worked full-time in the previous period, then his work experience in the following
period is increased by one unit and his previous decision is work full-time.
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Turning to the ability sorting patterns, Table 11 shows the posterior mean of each unob-
served ability either (i) in the period of last college enrollment (for those who ever enroll) or
(ii) in period T = 10 (for those who never do). These results are obtained by following the
same forward simulation process described in the previous subsection.

Two key patterns stand out from Table 11. First, there is substantial sorting on the
basis of college ability. Those who complete college degrees have generally received strongly
positive signals regarding their abilities. Further sorting occurs among college graduates,
with those who have had high science ability signals choosing science majors. But, reflecting
the strong correlation between abilities for science and non-science majors, science graduates
have similar non-science posteriors to those of non-science graduates.

The second key pattern from Table 11 is the limited amount of sorting there is across
educational paths on the basis of work abilities, especially for those who study in a non-
science major.51 This finding indicates that providing more information about abilities, as
we do in the next section, may substantially shift the work ability distribution of college
graduates.

7 The importance of information

We now use the structural parameter and learning estimates to investigate the importance
of information about one’s abilities in two counterfactual scenarios. Because it is compu-
tationally infeasible to conduct counterfactuals when individuals are uncertain about their
abilities, each of the counterfactuals entails giving individuals full information about their
abilities. The first counterfactual does this alone. The second adds to the first by eliminating
occupational search frictions, meaning that all individuals have the option of working in the
white-collar sector in every period.

To conduct the counterfactuals, we set a retirement date at age 65. We then give all
individuals initial draws on the five ability components—two-year, four-year science, four-
year non-science, white-collar productivity, and blue-collar productivity—which individuals
are now assumed to know when making their educational and labor supply decisions. In the
first counterfactual, individuals remain uncertain as to whether they will have the option to
work in the white-collar sector in the future. In addition, there are three other main sources of
uncertainty that remain in the counterfactuals: the probability of graduating from a four-year

51The substantial unresolved uncertainty for college graduates can be seen in Appendix Table B15 which
shows the equivalent of Table 11 except the entries are the posterior ability variances.
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college conditional on attendance, consumption (in particular through the aggregate labor
market shocks and idiosyncratic productivity shocks), and individual preference shocks.52

We then solve the model backwards to obtain the counterfactual choice probabilities and
then forward simulate to obtain the distribution of choices and the average abilities across
different choice paths. We include in Appendix J details about additional assumptions we
make in our counterfactual exercises.

7.1 Information and educational choices

We first report in Table 12 the four-year college completion status frequencies in the baseline
and in the two counterfactual scenarios. Comparing Column 2 (full information) to Column
1 (baseline) shows a 4.4 percentage point increase in the four-year college graduation rate
from providing full information about their abilities. These gains in graduation come despite
an over 5 percentage point increase in the share of individuals who never go to college. It
follows that dropout rates also fall substantially, both for those who drop out and never
return (from 32.4% to 26.1%) and for those who stop out and then eventually dropout (from
9% to 6.7%).

These findings are explained by a set of individuals who enroll in college under imperfect
information, find out they are not a good match, and then drop out. When ability is known,
these individuals do not enroll in the first place. In contrast, there are a set of students who do
not enroll under the imperfect information scenario. In the scenario where ability is known,
however, these individuals realize they are academically talented and/or have high levels of
white-collar productivity and choose to enroll in college continuously. These countervailing
forces result in a simultaneous increase in the number of individuals graduating from college
and in the number of individuals never attending college.

A second noteworthy difference between the full information counterfactual and the base-
line scenario is the shift in majors from non-science to science. This is the result of the wage
returns to science degrees being higher than non-science degrees, but especially so in the
white-collar sector. As we will show, those who find out that their abilities are high in the
white-collar sector are much more likely to pursue a science degree given the higher returns,
while those who have especially high blue-collar ability find college less attractive as the
returns to education are lower in that sector.

52Despite these additional sources of uncertainty, we refer to our counterfactuals as ‘full information’ where
it is implicit that the full information refers to abilities alone.
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Comparing the full-information counterfactual to the one where occupational search fric-
tions are also removed (Column 3), we see a further increase in college graduation rates.
This increase is, again, the product of two countervailing forces. First, when search frictions
are present, college graduates face higher probabilities of having a white-collar option than
non-graduates. When search frictions are removed, this channel makes college relatively less
attractive. Weighed against this is that the returns to college are higher in white-collar jobs.
When search frictions are removed, college graduates are better able to take advantage of
these higher returns, making college attendance more attractive. In practice this latter effect
dominates, as evidenced by the net increase in college graduation rates.

The patterns in Table 12 mask heterogeneity in the effects of information provision.
Table 13 shows counterfactual results broken down by whether the individual’s family is
above or below the median income in the data.53 Comparing full information (Column 2) to
the baseline (Column 1) shows that information increases the graduation rates of individuals
from low-income families by over 6 percentage points. The increase is less than half that for
those from high-income families. All told, full information cuts the gap in graduation rates
between low and high-income individuals by 3 percentage points, a 17% relative decrease.

The mechanism for this convergence lies in differences in beliefs about the suitability of
college between low and high-income individuals. Low-income individuals tend to expect
college not to be a good match, as can be seen from the estimated positive marginal utility
of family income for four-year colleges (see Table 10). Providing information reveals to some
of them that they actually are a good match, increasing their college graduation rates. The
reverse holds true for high-income individuals, with full information on ability revealing to
some of them that they are not as good of a match for college as what they initially thought.
The slow revelation of information in the baseline scenario leads to higher graduation rates
for high-income individuals, as a result of switching costs and having already accumulated
some years of college experience. Hence, some individuals who discover after a few years
that college is not a good match for them opt to finish their degree anyway since they have
relatively little of school remaining to do so.

We next investigate how the counterfactual scenarios change the ability compositions
across the different choice paths. Table 14 replicates Table 11, but with the abilities now
calculated based on the first counterfactual simulation.54 As in the baseline, Table 14 shows
substantial sorting on the basis of college ability. However, there are a couple of significant
changes. First, these results point to quantitatively much stronger sorting on college ability.

53We refer to those with families above and below median income as high- and low-income, respectively.
54Results for counterfactual 2 are in Table B16.
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Besides, in contrast to Table 11, there is now also evidence of substantial sorting on the basis
of white-collar and blue-collar abilities. Across all the educational paths, those who graduate
from college have a comparative advantage in the white-collar sector. Among college gradu-
ates, higher abilities in either sector are associated with being a science major. On the other
hand, those who never attend college have average blue-collar abilities, but below-average
white-collar abilities. Taken together, these results show that imperfect information about
one’s abilities is an important barrier to the pursuit of comparative advantage.

7.2 Information and labor market outcomes

In order to assess the importance of information about labor market productivity and school-
ing ability on labor market outcomes, we next study how full information affects wages in
each of the labor market sectors. Given that full information results in much more sorting
on education based on work abilities, we may expect to see significant changes in the earn-
ings gap between college- and non-college-educated workers, as well as between blue- and
white-collar workers.

To conduct this analysis, we focus on wage outcomes at age 28 and examine the sort-
ing patterns among those who are working full-time. Panel (a) of Table 15 shows differ-
ences in average earnings for different sectors and education levels for the baseline, the
full-information-only counterfactual, and the full-information counterfactual with no search
frictions. Average log wages are expressed relative to those working in the blue-collar sector
who did not graduate from college.

Comparing the full-information-only counterfactual (Column 2) with the baseline (Col-
umn 1) shows that information provision does magnify sorting. Whereas white-collar sci-
ence graduates in the baseline earned approximately 46 percent more than blue-collar non-
graduates, the gap increases to about 90 percent in the counterfactual. The main mechanism
underlying this increase is that full information results in workers with high white-collar abil-
ity choosing to get degrees in science as the returns to a science degree are especially high in
the white-collar sector. The source is not a drop in earnings for blue-collar workers without a
college degree as their earnings also increase, though only slightly so. Information provision,
therefore, results in significantly stronger matching of abilities and occupations in the labor
market. With full information, more individuals also choose a full-time work option, as seen
in the second set of columns in Panel (a) of Table 15. Full-time work is chosen by less than
68% individuals in the baseline but rises to over 76% in the counterfactual.55

55These figures are calculated as 100 minus the entries in the “Remainder” row of each column, since each
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Relative to the full information counterfactual, additionally removing occupational search
frictions (Column 3) results in declines in the gap between each of the white-collar combina-
tions and their blue-collar counterparts, coupled with shifts into white-collar jobs. This shift
into white-collar jobs is driven by those individuals who have high white-collar ability, just
not as high as those who would work in the white-collar sector when frictions are present.

The first set of columns of Panel (b) of Table 15 shows the overall premium for college
degrees and for working in the white-collar sector. In the full information counterfactual,
the premium increases by about 25 percentage points for science graduates but by only 5
percentage points for non-science graduates. These changes are driven by those with high
white collar ability now being especially likely to pursue science degrees. This is also reflected
in the increased premium for working in the white-collar sector. Those who work in the white
collar sector have much higher white collar ability in the counterfactual and are now more
likely to have graduated from college with a science degree.

The second set of columns shows how much of these changes in premia are due to changes
in ability sorting. Here, we are comparing average abilities in the sector of work for the com-
parison groups in the counterfactual to those in the baseline. For example, to compute
the change in the white-collar premium due to ability, we first consider the counterfactual
average ability for white-collar workers and subtract off the average ability for blue-collar
workers. Second, we subtract off the corresponding difference in baseline abilities. Impor-
tantly, across both counterfactuals, changes in work abilities account for at least 74% of each
of the changes in premia; the remainder is due to changes in the composition of who en-
ters each sector-education combination, changes in sector-specific work experience, combined
with, for non-graduates, changes in years of college.56

To conclude, our results show that informational frictions play a major role in shaping
labor market outcomes. Providing full information to students about their own abilities by
the end of high school results in substantial changes in the average work abilities of those
who graduate from college. Moreover, beyond the college graduation margin, providing more
information to students would also result in significant changes in the average productivity
levels of workers within each sector, increasing wage gaps between college- and non-college-
educated workers, as well as between white- and blue-collar workers.

of the other rows corresponds to full-time work.
56Table B14 in Appendix B shows ability sorting for all five dimensions of ability across the baseline and

counterfactuals 1 and 2.
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8 Conclusion

In this paper, we examine the role played by imperfect information about own schooling
ability and labor market productivity in the context of college enrollment decisions, and the
transitions between school and work. Using data from the NLSY97, we estimate a dynamic
model of college attendance, major choice and work decisions, with the latter over both full-
and part-time work as well as whether to work in the blue- or white-collar sector. At the end
of each year, individuals update their ability and productivity beliefs using college grades
and wages as noisy signals. A central feature of our framework is to allow the different kinds
of schooling and workplace abilities to be arbitrarily correlated, implying that signals in one
area may be informative about abilities in another area.

Estimation results show that a sizable fraction of dispersion in college grades as well as log
wages is attributable to the ability components which are gradually revealed to individuals as
they accumulate more signals. These ability components are highly correlated across college
types and majors, and across blue- and white-collar sectors. In contrast, grades earned
in college, while positively associated with future wages, are less informative about future
labor market performance. To the extent that an important part of the mission of higher
education is to help prepare students for the labor market, this finding suggests that there
may be room for improvement in the screening mechanisms in place in college.

Counterfactual simulations indicate that the four-year college graduation rate would in-
crease by 4.4 percentage points if students perfectly knew ahead of time their own abilities,
a share that would go up by 2 more points in the absence of occupational search frictions.
Information provision amplifies sorting into college not only based on previously unknown
academic abilities, but also sorting on white collar ability. Because the college premium is
higher in the white collar sector, and especially so for science majors, those with high white-
collar ability now find graduating from college particularly attractive. As a result, providing
information significantly increases the wage gap between college and non-college graduates as
well as between those working in the white-collar sector and those working in the blue-collar
sector. Taken together, our findings indicate that imperfect information about one’s own
abilities not only plays an important role in accounting for college enrollment and attrition
decisions, but also in shaping future labor market outcomes through ability sorting.
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Table 1: Background characteristics of estimation sample by college en-
rollment status

Starting College Type
Two-year Four-year Sci Four-year Non-Sci Four-year Missing Major No college Total

Black 0.207 0.138 0.208 0.156 0.243 0.201
(0.406) (0.345) (0.406) (0.363) (0.429) (0.401)

Hispanic 0.207 0.127 0.119 0.121 0.189 0.167
(0.406) (0.334) (0.325) (0.327) (0.392) (0.373)

SAT Math 468 572 519 531 439 488
(94) (115) (104) (111) (91) (109)

SAT Verbal 431 525 482 486 408 451
(104) (146) (134) (147) (99) (126)

HS GPA -0.041 0.694 0.444 0.547 -0.355 0.121
(0.752) (0.728) (0.774) (0.748) (0.792) (0.853)

Parent Graduated College 0.267 0.587 0.531 0.475 0.101 0.327
(0.443) (0.494) (0.500) (0.500) (0.302) (0.469)

Family Income ($1996) (000’s) 49.047 69.541 69.542 71.168 39.218 55.379
(38.979) (50.279) (55.817) (56.207) (28.094) (46.146)

Observations 719 189 318 461 613 2,300
Notes: This table reports summary statistics for the subsample of the NLSY97 that is used to estimate our structural model. The sample corresponds
to the first observation in which an individual has enrolled in college. Grades are standardized to the NLSY97 male population. Standard deviations are
listed directly below the mean (in parentheses) for each entry. See Table A4 for complete details on sample selection.
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Table 2: Background characteristics of estimation sample by occupational
sector and college completion status

Non-graduates Graduates
Blue Collar White Collar Blue Collar White Collar

Age (years) 24.813 26.116 27.982 28.399
(4.434) (4.319) (3.281) (3.184)

Black 0.210 0.169 0.135 0.138
(0.407) (0.375) (0.342) (0.345)

Hispanic 0.197 0.193 0.112 0.086
(0.398) (0.395) (0.316) (0.281)

SAT Math 456 488 519 569
(95) (96) (110) (105)

SAT Verbal 422 465 474 531
(111) (114) (151) (148)

High School GPA (z-score) -0.164 0.098 0.545 0.855
(0.784) (0.785) (0.745) (0.686)

Parent Graduated College 0.188 0.378 0.589 0.619
(0.391) (0.485) (0.492) (0.486)

Family Income ($1996) (000’s) 44.446 54.656 63.502 78.175
(36.038) (40.788) (43.021) (52.497)

Observations 11,631 1,168 953 1,185
Share Conditional on Graduation Outcome 0.910 0.090 0.446 0.554

Notes: This table reports summary statistics for the subsample of the NLSY97 that is used to estimate our structural model.
The sample corresponds to all individual-year observations in a work activity (N = 14, 937). Grades are standardized to
the NLSY97 male population. Standard deviations are listed directly below the mean (in parentheses) for each entry. See
Table A4 for complete details on sample selection.
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Table 3: Completion outcomes of college enrollees (%)

Starting College Type
Two-Year Four-Year Sci Four-year Non-Sci Four-year Missing Major Total

Continuous completion (CC), grad. Sci 2.23 44.44 3.46 13.67 10.31
Continuous completion (CC), grad. Non-Sci 8.34 16.40 48.74 36.88 24.66
Stopped out (SO), grad. Sci 2.64 4.23 1.26 0.87 2.07
Stopped out (SO), grad. Non-Sci 7.23 4.76 9.75 8.24 7.71
Stopped out (SO) then dropped out 21.14 6.88 10.38 12.15 15.06
Dropped out (DO) 53.55 20.11 23.27 23.86 35.98
CC right censored 0.28 0.53 0.31 1.30 0.59
SO right censored 4.59 2.65 2.83 3.04 3.62
Total N 719 189 318 461 1,687

Notes: This table reports college completion status statistics for the subsample of the NLSY97 that is used to estimate our structural model, conditional
on ever attending college. Completion status is computed using the full available data regardless of missing outcomes. “Right censored” refers to those
who are still enrolled in college in the last period of the survey. Students who begin two-year college but never enroll in a four-year college are considered
as dropouts. See Table A4 for complete details on sample selection.
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Table 4: Period-t GPA outcomes (by t+ 1 period college decision)

(a) 4-year Students, GPA levels

Mean GPA Std Dev N |t-stat|
Leave 4-year college 2.171 1.003 179 11.561

Stay 2.911 0.793 1720

(b) 2-year Students, GPA levels

Mean GPA Std Dev N |t-stat|
Leave 2-year college 2.304 1.098 229 6.650

Stay 2.798 0.866 539

(c) 4-year Students, GPA residuals

Mean residual Std Dev N |t-stat|
Leave 4-year college -0.548 0.979 140 8.909

Stay 0.053 0.739 1444

(d) 2-year Students, GPA residuals

Mean residual Std Dev N |t-stat|
Leave 2-year college -0.310 1.057 229 6.266

Stay 0.132 0.815 539
Note: Each t-statistic tests for difference in means between the specified
activity and its complement. For residual outcomes, regression covariates
include race dummies, SAT scores, parental education, high school GPA,
age dummies, birth year, and work intensity dummies.

54



Table 5: Period t log wage outcomes for stopouts (by t+ 1 decision)

(a) Log wage levels

Mean log wage Std Dev N |t-stat|
Stay in work 2.364 0.501 1,350 3.567

Return to school 2.190 0.432 113
Total 2.350 0.498 1,463

(b) Log wage residuals

Mean residual Std Dev N |t-stat|
Stay in work 0.068 0.477 1,350 2.001

Return to school -0.025 0.413 113
Total 0.060 0.473 1,463

Note: Results are conditional on having attended at least one year of col-
lege, currently working, and not yet having graduated from college. As
a result, the residuals do not average to zero here because the relevant
population is all wage observations in the estimation subsample of the
data. Regression covariates include levels and interactions of the following
variables: race and year dummies; SAT scores; graduation outcomes, ex-
perience in different sectors; field of study; birth year; age; in-school work
dummies; and work intensity dummies.
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Table 6: Estimates of 2- and 4-year GPA Parameters

4 year Science 4 year Non-Science 2 year
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Black -0.352 (0.074) -0.469 (0.051) -0.314 (0.065)
Hispanic -0.192 (0.086) -0.151 (0.060) -0.038 (0.065)
Parent graduated college 0.087 (0.052) 0.163 (0.044) 0.032 (0.064)
HS Grades (z-score) 0.177 (0.032) 0.211 (0.025) 0.234 (0.026)
Work full-time -0.173 (0.061) -0.156 (0.041) -0.103 (0.048)
Work part-time -0.029 (0.051) 0.036 (0.029) -0.002 (0.054)
Year 2 or higher in college -0.008 (0.039)
Unobserved type
Schooling ability type H 0.151 (0.075) 0.078 (0.050) 0.021 (0.064)
Schooling preference type H 0.649 (0.122) 0.467 (0.085) -0.039 (0.111)
Work motivation type H -0.003 (0.080) 0.010 (0.059) -0.007 (0.079)
λ0 (ability index intercept) -0.261 (0.227) 0.302 (0.108) 0.000 (—)
λ1 (ability index loading) 1.044 (0.082) 0.907 (0.042) 1.000 (—)
Mean of dependent variable 2.778 2.683 2.468
Person-year obs. 867 1,653 1,272

Notes: Bootstrap standard errors in parentheses. Estimates for the constant, birth cohort dummies, and age
group dummies (18 and under, 19, 20) are suppressed. Reference categories for multinomial variables are
as follows: “White” for race/ethnicity, “Not working while in school” for work intensity, and “L” for each
unobserved type.
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Table 7: Estimates of White- and Blue-collar Wage Parameters

White Collar Blue Collar
Coeff. Std. Error Coeff. Std. Error

Black -0.059 (0.024) -0.098 (0.020)
Hispanic 0.049 (0.028) 0.018 (0.021)
Parent graduated college 0.003 (0.021) 0.004 (0.019)
HS Grades (z-score) -0.019 (0.015) -0.017 (0.009)
Work experience (any sector) 0.035 (0.003) 0.039 (0.001)
Work experience (white collar sector) 0.020 (0.003) 0.010 (0.003)
Years of college completed 0.063 (0.010) 0.038 (0.005)
College graduate 0.113 (0.024) 0.061 (0.018)
College graduate × science major 0.132 (0.035) 0.091 (0.026)
Work part-time 0.011 (0.020) -0.044 (0.009)
Unobserved type
Schooling ability type H 0.087 (0.026) 0.086 (0.024)
Schooling preference type H -0.411 (0.038) -0.255 (0.024)
Work motivation type H 0.248 (0.032) 0.189 (0.025)
λ0 (in-school work index intercept) 0.718 (0.007) 0.659 (0.009)
λ1 (in-school work index loading) 0.633 (0.009) 0.667 (0.005)
Mean of dependent variable 2.669 2.332
Person-year obs. 2,373 12,755

Notes: Bootstrap standard errors in parentheses. Estimates for the constant, birth cohort dum-
mies, age group dummies (18 and under, 19, 20), and calendar year dummies are suppressed.
Reference categories for multinomial variables are as follows: “White” for race/ethnicity, “Work
full-time” for work intensity, and “L” for each unobserved type.

The return to a college degree is equal to four times the coefficient on years of college completed,
plus the relevant coefficients on the college graduate dummies. For example, the return to a
science major in the white-collar sector is equal to 4 × 0.063 + 0.113 + 0.132 = 0.497.
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Table 8: Ability Correlation Matrix and Variances of Unobserved Abilities
and Raw Outcomes

White Collar Blue Collar Science Non-Science 2-year
White Collar 1.000

(—)
Blue Collar 0.615 1.000

(0.037) (—)
Science 0.283 0.239 1.000

(0.085) (0.096) (—)
Non-Science 0.194 0.045 0.831 1.000

(0.062) (0.062) (0.052) (—)
2-year 0.153 0.162 0.470 0.669 1.000

(0.082) (0.079) (0.106) (0.076) (—)
Variance of Unobserved Abilities 0.130 0.072 0.207 0.274 0.353

(0.010) (0.005) (0.039) (0.027) (0.034)
Variance of Raw Outcomes 0.360 0.272 0.842 0.828 1.029

Notes: Bootstrap standard errors in parentheses. “Variance of Unobserved Abilities” refers to the diagonal elements
of the covariance matrix corresponding to the correlation matrix presented here. “Variance of Raw Outcomes” refers
to the variance of the corresponding outcome variables (log wages, college GPA). Each cell of the correlation matrix
contains at least 127 unique individuals and at most 1,810 unique individuals. Our estimation sample contains
2,300 unique individuals.

Table 9: Idiosyncratic Variances

Employment Schooling
Work Type White Collar Blue Collar Schooling Period Science Non-Science 2-year
In-school 0.212 0.120 1 0.431 0.519 0.609

(0.013) (0.003) (0.041) (0.033) (0.047)
Out-of-school 0.136 0.143 2 0.364 0.322 0.495

(0.003) (0.001) (0.036) (0.021) (0.037)
3 0.414 0.385 0.624

(0.045) (0.024) (0.037)
4 0.607 0.317

(0.066) (0.023)
5+ 0.403 0.472

(0.036) (0.026)
Notes: Bootstrap standard errors in parentheses. The period-3 variance in 2-year college is the same for all periods
after period 3.
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Table 10: Flow Utility Parameter Estimates

College Work
Variable 2-year Science Non-Science Part-time Full-time White Collar
Black -0.036 -0.034 -0.013 0.025 0.014 -0.001

(0.055) (0.097) (0.109) (0.046) (0.033) (0.051)
Hispanic 0.053 -0.013 0.056 -0.070 -0.030 0.027

(0.051) (0.109) (0.116) (0.052) (0.040) (0.053)
HS Grades (z-score) 0.032 0.373 0.255 0.007 0.020 0.055

(0.028) (0.056) (0.057) (0.021) (0.015) (0.020)
Parent graduated college 0.168 0.290 0.220 0.063 -0.044 0.206

(0.057) (0.088) (0.098) (0.040) (0.031) (0.039)
Family Income ($10,000) 0.011 0.051 0.058 -0.014 -0.004 -0.002

(0.007) (0.009) (0.010) (0.004) (0.003) (0.004)
Prior academic ability 0.148 1.357 1.109

(0.074) (0.280) (0.214)
Previous high school 1.033 2.746 1.813 1.169 0.855 -0.578

(0.104) (0.174) (0.117) (0.089) (0.082) (0.194)
Previous 2-year college 2.455 1.274 0.711 0.049 0.281 0.118

(0.082) (0.190) (0.094) (0.085) (0.079) (0.140)
Previous 4-year science 1.254 4.796 2.189 0.718 0.378 -0.157

(0.172) (0.165) (0.131) (0.116) (0.094) (0.153)
Previous 4-year non-science -0.068 2.035 3.409 0.598 0.559 0.046

(0.164) (0.187) (0.091) (0.088) (0.077) (0.106)
Previous work part-time 0.030 0.577 0.376 2.186 1.357 -0.966

(0.092) (0.127) (0.101) (0.058) (0.054) (0.093)
Previous work full-time 0.105 0.261 0.557 0.963 2.270 -0.923

(0.097) (0.135) (0.098) (0.062) (0.042) (0.095)
Previous work white-collar -0.032 -0.513 -0.115 -1.284 -1.464 2.692

(0.161) (0.235) (0.159) (0.088) (0.079) (0.184)
College graduate -0.215 -0.023 0.483

(0.092) (0.103) (0.052)
Currently work white-collar -0.144

(0.115)
Currently work part-time 0.647 -0.698 -0.366

(0.099) (0.142) (0.122)
Currently work full-time -0.715 -1.434 -1.851

(0.111) (0.147) (0.123)
Unobserved type
Schooling ability type H -0.066 0.336 0.088 -0.024 -0.036 0.064

(0.048) (0.076) (0.065) (0.046) (0.039) (0.045)
Schooling preference type H 0.438 0.277 0.411 0.033 0.013 0.060

(0.103) (0.142) (0.143) (0.068) (0.091) (0.064)
Work motivation type H -0.012 -0.026 0.064 -0.273 -0.073 0.030

(0.057) (0.077) (0.071) (0.045) (0.056) (0.046)
E[u(consumption)] ÷ 1, 000 2.510 (0.467)
Pr(graduate in t+ 1) 2.116 (1.233)
Constant Relative Risk Aversion parameter (θ) 0.4
Log likelihood -26,105
Person-year obs. 22,398

Notes: Home production is the reference alternative. Bootstrap standard errors are listed below or to the side of each coefficient in parentheses.
Beliefs on labor market productivity are included in the expected utility of consumption term. Consumption is evaluated in terms of yearly
consumption flow in 1996 dollars. Missing majors are estimated to be science with probability 0.35. Missing GPAs are estimated to be ≤ 2.5
w.p. 0.48, 2.5–3.0 w.p. 0.21, 3.0–3.6 w.p. 0.19, and 3.6–4.0 w.p. 0.13.

Reference categories for multinomial variables are as follows: “White” for race/ethnicity, “Previous home production” for previous decision,
“Not working” for in-college work intensity, and “L” for each unobserved type. We omit the following coefficients: the constant (for each choice);
birth year dummies (for each choice); and the interactions between currently working full- or part-time and currently working in the white-collar
sector (for each of the schooling choices).

59



Figure 1: Model fit of untargeted moments

0
1
0

2
0

3
0

4
0

5
0

0
5

1
0

1
5

0
1

2
3

4
5

0
5

1
0

1
5

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

College Entry College Attrition

Ever Graduate in Science Ever Grad in Non−Science

Data Model

P
e

rc
e

n
ta

g
e

Time Period
 

Notes: This figure plots rates of college entry, attrition, and graduation by time period separately for the data and model. Model frequencies are
constructed using 10 simulations of the structural model for each individual included in the estimation.

60



Table 11: Average posterior abilities after last period of college for different
choice paths in baseline model

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.10 0.09 0.33 0.30 0.19 1.39
x > 0, white collar only 0.02 0.04 0.29 0.24 0.13 0.52
x > 0, blue collar only 0.12 0.12 0.34 0.30 0.20 3.63
x > 0, mixture 0.13 0.10 0.24 0.20 0.13 0.85
Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 0.05 0.01 0.22 0.28 0.20 3.03
x > 0, white collar only 0.08 0.03 0.19 0.22 0.15 1.04
x > 0, blue collar only 0.04 -0.01 0.26 0.33 0.24 8.88
x > 0, mixture 0.03 -0.03 0.26 0.32 0.24 1.90
Stop out (SO)
SO, graduate in science 0.16 0.21 0.18 0.14 0.14 0.97
SO, graduate in non-science -0.01 -0.06 0.17 0.25 0.21 3.45
SO then DO, start in 2yr -0.02 -0.01 -0.09 -0.09 -0.04 4.98
SO then DO, start in science -0.01 0.05 -0.36 -0.38 -0.26 1.37
SO then DO, start in non-science -0.07 -0.03 -0.27 -0.32 -0.25 2.67
Truncated -0.03 -0.04 0.02 0.05 0.09 5.76
Drop out (DO) after x years of school
x = 1 -0.03 -0.02 -0.11 -0.13 -0.13 16.59
x = 2 -0.05 -0.03 -0.18 -0.21 -0.19 7.85
x = 3 -0.05 -0.03 -0.19 -0.21 -0.15 4.22
x = 4 -0.04 -0.00 -0.24 -0.27 -0.19 1.93
x ≥ 5 -0.06 -0.01 -0.29 -0.29 -0.11 1.85
Never attended college
Never attend college -0.00 -0.00 -0.00 -0.00 -0.00 27.11

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the baseline model
for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table 12: College completion status frequencies: baseline and counterfac-
tual

Counterfactuals
Full info. &

Baseline Full info. no search
Status model alone frictions
Continuous completion (CC), Science 6.39 10.30 11.09
Continuous completion (CC), Non-Science 14.86 13.74 14.31
Stop out (SO) but graduated Science 0.97 1.74 1.94
Stop out (SO) but graduated Non-Science 3.45 4.33 4.72
Stop out (SO) then drop out 9.02 6.71 6.50
Truncated 5.76 4.73 5.07
Drop out (DO) 32.44 26.10 25.17
Never went to college 27.11 32.35 31.20
Graduate from 4-year college 25.67 30.11 32.07
Ever Switch Major 25.37 25.13 26.31
Time to degree 5.16 4.99 5.02

Notes: Model frequencies are constructed using 10 simulations of the structural model for each
individual included in the estimation. Counterfactual frequencies use 10 simulations of each
counterfactual model. “Full info. alone” refers to our counterfactual where individuals have
complete information about their abilities. “Full info. & no search frictions” maintains full
information and sets to 1 the white collar job offer arrival rate for everyone in every period.

We set the panel length in all columns to be 10 periods. Completion status is computed on the
first 10 periods of data (i.e. assuming that college is not an option after period 10).

“Truncated” refers to those who were enrolled in period 10.
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Table 13: College completion status in model and counterfactuals: het-
erogeneity by level of family income

Counterfactuals
Full info. &

Baseline Full info. no search
Status model alone frictions
Panel A: Above-median family income in high school

Dropout 28.83 23.73 22.34
Never went to college 20.85 27.01 25.60
Graduate from 4-year college 35.40 38.22 40.43
Ever Switch Major 27.53 26.87 28.09

Panel B: Below-median family income in high school
Dropout 36.04 28.46 27.99
Never went to college 33.37 37.69 36.81
Graduate from 4-year college 15.93 22.01 23.70
Ever Switch Major 22.19 22.75 23.87

Notes: Model frequencies are constructed using 10 simulations of the structural model
for each individual included in the estimation. Counterfactual frequencies use 10 sim-
ulations of each counterfactual model. “Full info. alone” refers to our counterfactual
where individuals have complete information about their abilities. “Full info. & no
search frictions” maintains full information and sets to 1 the white collar job offer
arrival rate for everyone in every period.

We set the panel length in all columns to be 10 periods. Completion status is com-
puted on the first 10 periods of data (i.e. assuming that college is not an option after
period 10).
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Table 14: Average abilities for different choice paths in full-information
counterfactual scenario

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.36 0.06 1.04 0.69 0.28 0.98
x > 0, white collar only 1.41 0.69 1.09 0.83 0.49 0.48
x > 0, blue collar only 0.57 0.42 1.02 0.70 0.31 7.59
x > 0, mixture 1.16 0.59 0.93 0.65 0.33 1.25
Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 0.02 -0.38 0.59 0.89 0.55 1.86
x > 0, white collar only 0.80 -0.03 0.62 0.91 0.49 0.50
x > 0, blue collar only 0.19 -0.07 0.59 0.86 0.58 10.27
x > 0, mixture 0.65 0.12 0.53 0.77 0.48 1.10
Stop out (SO)
SO, graduate in science 0.36 0.25 0.87 0.60 0.30 1.74
SO, graduate in non-science 0.06 -0.12 0.51 0.74 0.54 4.33
SO then DO, start in 2yr -0.20 -0.13 -0.33 -0.32 -0.13 3.17
SO then DO, start in science -0.19 -0.05 0.06 -0.05 -0.05 0.98
SO then DO, start in non-science -0.24 -0.18 -0.10 0.02 0.06 2.57
Truncated -0.09 -0.12 0.04 0.14 0.15 4.73
Drop out (DO) after x years of school
x = 1 -0.18 -0.03 -0.33 -0.33 -0.17 15.73
x = 2 -0.21 -0.09 -0.25 -0.24 -0.13 5.77
x = 3 -0.09 -0.03 -0.10 -0.08 -0.03 2.58
x = 4 -0.20 -0.01 -0.06 -0.05 0.06 1.26
x ≥ 5 -0.06 -0.02 0.04 -0.06 -0.11 0.76
Never attended college
Never attend college -0.13 -0.01 -0.43 -0.48 -0.30 32.35

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the counterfactual
model described in the title for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table 15: Wage Decompositions

(a) Average full-time log wage and choice share by employment sector and education
level at age 28 in baseline and counterfactual models

Average full-time log wage, relative to
blue-collar non-graduates in baseline Choice shares (%)

Sector and Education Level Baseline Counterfactual No Frictions Cfl Baseline Counterfactual No Frictions Cfl
White collar, Science graduate 0.458 0.904 0.868 3.44 5.54 6.87
White collar, Non-Science graduate 0.317 0.632 0.557 8.15 5.28 7.25
White collar, Non-graduate 0.110 0.345 0.146 5.46 0.96 4.72
Blue collar, Science graduate 0.197 0.298 0.301 2.45 5.38 4.87
Blue collar, Non-Science graduate 0.111 0.082 0.078 6.62 9.62 8.46
Blue collar, Non-graduate 0.000 0.009 0.007 41.4 49.6 43.8
Remainder — — — 32.5 23.7 24.0

Notes: “No Frictions Cfl” refers to the counterfactual where white-collar work is always an option. Columns in the “choice shares” panel sum to 100.

(b) Full-time log wage premia at age 28 in baseline and counterfactual models

Change in premium (relative to baseline)
Full-time log wage premium due to better sorting on abilities

Sector Baseline Counterfactual No Frictions Cfl Counterfactual No Frictions Cfl
College wage premium 0.247 0.400 0.421 0.137 0.140
Science college premium 0.336 0.590 0.612 0.213 0.217
Non-science college premium 0.212 0.262 0.279 0.075 0.077
White-collar wage premium 0.255 0.692 0.525 0.321 0.229

Notes: “College wage premium” is the difference in average log wages between college graduates (regardless of major) and non-graduates. “Science
college premium” is the difference in average log wages between science graduates and non-graduates. “Non-science college premium” is the
difference in average log wages between non-science graduates and non-graduates. “White collar premium” is the difference in average log wages
between white-collar and blue-collar workers.

For the panel on changes in premia, numbers represent differences in differences in average abilities (in log dollar units). The first difference is
between sector groups (e.g. college graduates vs. non-graduates) and the second difference is between counterfactual and baseline. We compress
the bivariate work ability distribution into a single ability index based on which sector each full-time worker is working in.
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A Data details

This Appendix section details our construction of three sets of key variables used in our
analysis: choices, college grades, and wages. We also detail how we select the subsample
used in estimation.

A.1 Choices

From the NLSY97 data we classify individuals based on their labor force participation,
occupational sector, and educational choices. Specifically, we classify individuals in each
period using the following rules:

1. Any individual attending a college in the month of October is classified as being in
college for this year (either in a two- or a four-year college). For four-year colleges, our
definition of “Science” majors includes majors in Science, Technology, Engineering, and
Mathematics (STEM). See Table A1 for details on the exact majors in each category.
We use “Science” and “STEM” interchangeably.

2. Any individual reporting college attendance who also reports working at least four
weeks in October and at least 10 hours per week is classified as working part-time
while in school, with full-time work requiring at least 35 hours per week and four
weeks worked in October.

3. Any individual not in college (according to the criterion above) is classified as working
part-time or full-time according to the criteria above.A1

4. Individuals who report part- or full-time employment are also classified as working
in the blue- or white-collar sector. Using data from the March Current Population
Survey (CPS) accessed from Flood et al. (2022) for years 2007–2014, we classify each
three-digit 2010 Census occupation code as being white collar if 50% or more of male
workers aged 18–64 in that occupation hold at least a bachelor’s degree. Individuals in
the NLSY97 are then classified as working in a blue- or white-collar sector if the three-
digit 2010 Census occupation code associated with their October job has a majority
of college graduates as reported in the CPS.A2 See Table A2 for the most common
occupations by sector and education level.

A1These criteria for labor force participation resemble those of Keane and Wolpin (1997).
A2For a similar approach, see Clark, Joubert, and Maurel (2017).
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5. Finally, all other cases are classified as home production.A3

A.2 Grades and Majors

We use a four-point scale to measure college GPA (grades), which is the average GPA over
all enrollment periods in a calendar year. We use self-reported survey responses to construct
college major (see Table A1) and transcript data from the NLSY97 to construct grades.A4

Out of 8,984 individuals in the NLSY97 (men and women), 2,830 never enrolled in post-
secondary education and 1,445 did not permit collection of their transcripts. The NLSY
received transcripts for 3,818 youths (men and women).

In our male-only subsample, grades are missing for 54% and majors are missing or un-
known for 26% of college students. We deal with these missing grades and majors by inte-
grating over the first missing period (see Appendix Section C.4).

A.3 Wages

Wages are calculated as follows:

1. We compute the hourly compensation (i.e. wage plus tips and bonuses) for the self-
reported main job, converted to 1996 dollars.

2. Of the 22,631 person-year observations that report full- or part-time employment,
about one-fourth have missing wage observations. Many of these are coincident with
the NLSY97’s shift to a biennial frequency beginning in 2012. Since our data go until
2015, the years 2012 and 2014 tend to have larger numbers of missing wage observations
than the other years in our sample.

3. We take the following steps to reduce the number of missing wages and thus increase
our sample size. Table A3 contains complete details.

• If a person reports working for the same employer across a 3-year span, but
earnings are only observed in the first and third years, we linearly interpolate
their second-year earnings as the average between the first and third years. This

A3Following this criterion, any individual who is unemployed (and not enrolled in college) in October is
classified in the home production sector.

A4See https://www.nlsinfo.org/content/cohorts/nlsy97/other-documentation/
codebook-supplement/appendix-12-post-secondary-transcript for a complete discussion of the
transcript data, which we summarize in the following sentence.

A2
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is a common situation for calendar years 2012 and 2014. It is also a common
situation if someone skipped a round of the survey. This method allows us to
reduce the rate of missingness by 12 percentage points.

• If the missing wage observation comes at the end of a job spell or comprises the
entirety of a single job spell, we use the reported wage for the following year. This
is about 3% of all employment observations.

• If the missing wage observation comes at the beginning of a job spell, we use a
flexible model with individual fixed effects to fill in the missing wage observation.
This is about 6% of all employment observations.

• Finally, we impute any remaining missing earnings as annual income divided by
annual hours worked. This is about 2% of all employment observations.

4. As a final step, we top- and bottom-code the resulting earnings distribution at the 99.5
percentile and 2.5 percentile, respectively.

After following these steps, we are left with 1.6% of employment observations that are
missing. These missing observations then affect our sample in the same way as second or
later instances of missing grades or majors. In the end, our sample contains 14,937 work
observations with no missing wages.

A.4 Sample selection

To conclude, Table A4 shows all the sample restrictions that we imposed for the analysis. In
particular, we limit our analysis to men who have completed high school. We also drop all
current and future observations for any respondents missing a wage while choosing a work
activity. We integrate out over the first missing grade and/or college major (see Section C.4),
but drop current and future observations when a second missing grade or college major is
observed. Our final estimation sample includes 22,398 person-year observations for 2,300
men.

A3



Table A1: Major Definitions

Science (STEM) Majors Non-Science Majors
Agriculture and natural resource sciences All other majors
Biological sciences
Computer/Information science
Engineering
Mathematics
Physical sciences
Nutrition/Dietetics/Food Science

Table A2: Most common occupations by sector in the NLSY97

Sector Education level Occupation title Frequency (%)
Blue Collar Non-College Graduate Laborers and Freight, Stock, and Material Movers 4.55

Food Preparation Workers 4.13
Driver/Sales Workers and Truck Drivers 3.87
Retail Salespersons 3.76

College Graduate First-Line Supervisors of Sales Workers 6.51
Sheriffs, Bailiffs, Correctional Officers 5.14
Customer Service Representatives 3.46
Laborers and Freight, Stock, and Material Movers 3.36

White Collar Non-College Graduate Managers, nec (including Postmasters) 10.69
Network and Computer Systems Administrators 6.20
Sales Representatives and Services 5.57
Human Resources Managers 4.49

College Graduate Managers, nec (including Postmasters) 6.26
Software Developers 6.18
Postsecondary Teachers 4.48
Secondary School Teachers 3.98
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Table A3: Steps taken to mitigate number of missing wage observations

Description Person-years Percentage missing
Employed part- or full-time in preliminary samplea 22,631 —
Initial number with missing wages 5,384 23.79
Interpolation and imputation:

Remainder missing after interpolating
missing wages within the same job spellb

2,631 11.63

Remainder missing after using next-period
reported wage for some of the missing
wagesc

2,107 9.31

Remainder missing after imputing (via FE
regression) prior-period wage for missing
current-period waged

836 3.69

Remainder missing after imputing wages
as annual income / annual hours worked

372 1.64

Employed part- or full-time in final sample 14,937 0.00

Notes: Each row of the table lists the remaining number and percentage of employment
observations that have missing wages after cumulatively taking the corresponding action
described in the row and all rows above it.

a Preliminary sample refers to our estimation subsample prior to dropping missing
wages, college grades, or college majors.

b We linearly interpolate missing wages within the same job spell. This occurs most
frequently in waves after the survey switched to a biennial frequency (i.e. years after
2011).

c We replace missing current-period wages with the next-period wage in years 2012 and
2014 when the job spell ended in 2012 and 2014.

d We use a regression model with individual fixed effects to fill in missing wage ob-
servations within the same employment spell that cannot be interpolated due to not
having two endpoints. This occurs most frequently in years 2012 and 2014 that are
not directly covered by the survey due to being in the biennially administered phase.
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Table A4: Sample Selection

Selection criterion Resultant persons Resultant person-years
Full NLSY97 sample 8,984 170,696
Drop women 4,599 87,381
Drop other race 4,559 86,621
Drop missing AFQT and SAT test scores 3,789 71,991
Drop missing HS grades, Parental education, or Parental income 3,059 58,121
Drop HS Dropouts and GED recipients 2,411 45,809
Drop observations before HS graduation 2,331 36,003
Drop right-censored missing interview spells 2,331 35,548
Drop any who attend college at a young age or graduate college in 2 or fewer years 2,331 34,278
Drop any who are not in HS at age 15 or under or have other outlying data 2,331 34,186
Drop any who graduate HS after age 20 2,301 33,825
Drop observations after and including the first instance of missing a wage while working,
or after the first instance of a missing college major or GPA 2,300 22,398
Final structural estimation subsamplea 2,300 22,398
a Our structural estimation procedure incorporates integration of missing GPA and major observations, as discussed in Section C.4.
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Table B1: Summary of estimation steps

Estimation
Stage Description Inputs Outputs Notes

– Loans, grants,
and transfers

- NLSY97 data on demographics
and parental transfers

- NPSAS data on grants and loans
- SIPP data on family assets

- Function mappings for predicting
loans, grants, and transfers

- Use NLSY97, NPSAS, and SIPP data
- See Appendix D for complete details

1 Measurement
system and
missing data
parameters

- measurements
- outcomes (wages, GPA)
- choices
- demographics
- other state variables (experiences,

educational degrees)

- Unobserved type probabilities
- Missing outcome (major or GPA)

type probabilities

- Flexible model to approximate
nonlinear relationships

- Find global optimum
- See Appendix C for complete details

2 Learning
parameters

- outcomes (wages, GPA),
- unobserved type probabilities,
- missing outcome type probabilities,
- demographics,
- other state variables (experiences,

educational degrees)

- learning parameter estimates

3 Parameters for
offer arrival logit,
CCP logit,
Graduation logit,
Wage AR(1) process

- choices,
- wages & consumption,
- ability priors,
- unobserved type probabilities,
- missing outcome type probabilities,
- demographics
- college graduation outcome
- other state variables

- job offer arrival
parameter estimates (including
individual offer probabilities)
- CCP logit coefficients
- Graduation logit coefficients
- Wage AR(1) coefficients

- Choice model in this stage includes
CRRA consumption

- Integrate over future consumption in CCPs
- See Appendices D and H for complete details

4 Compute future
value (FV) terms

All data,
all parameter estimates

Future value terms See Appendix F for complete details

5 Structural flow
utility parameters

All data,
all parameter estimates,
FV terms

Structural flow utility
parameter estimates

Estimation is a McFadden logit model with
alternative-specific offset terms from stage 4
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Table B2: Variables Included in Each Component of the Model, by Esti-
mation Stage

Stage 2 Stage 3 Stage 5
White

Log College Parental Expected Expected Static Collar College Dynamic
Variable Wages GPAs Transfers Grants Loans Choice Offer Graduation Choice
Individual background

Race dummies ✓ ✓ ✓ ✓ ✓ ✓
Birth cohort dummies ✓ ✓ ✓ ✓ ✓
High school GPA ✓ ✓ ✓ ✓ ✓
SAT Math (dummies) ✓ ✓
SAT Verbal (dummies) ✓ ✓

Family background
Parent completed college ✓ ✓ ✓ ✓ ✓
Family income ($10,000) ✓ ✓ ✓
Family income (log) ✓
Family income (dummies) ✓ ✓
EFC (dummies) ✓ ✓

Aggregate labor market
Year dummies ✓

Individual characteristics
Age dummies (≤18, 19, 20, ≥21) ✓ ✓
Age (linear) ✓ ✓
Expected prior work ability ✓
Expected prior acad. ability ✓ ✓

Education
Bachelor’s degree ✓ ✓ ✓ ✓
Bachelor’s × Science major ✓
Expected prior acad. ability × Science major ✓ ✓ ✓

Experiences (in years)
College (either type, linear) ✓ ✓
College (dummies) ✓
Graduate school (dummies) ✓
4-year college (dummies) ✓
2-year college (dummies) ✓
4-year dummies × 2-year dummies ✓
Overall work experience ✓
White-collar work experience ✓

Work/Study characteristics
Work white-collar dummy ✓ ✓
Work full-time dummy ✓ ✓ ✓ ✓
Work part-time dummy ✓ ✓ ✓ ✓ ✓
Work in-school signal adjustment ✓
Upperclassman signal adjustment ✓
Expected utility of consumption ✓ ✓
Accumulated debt (quadratic) ✓
Previous decision (dummies) ✓ ✓
CCP adjustment terms ✓

Unobserved Types
Type dummies ✓ ✓ ✓ ✓ ✓ ✓

Notes: There are no columns in this table for Stage 1 or Stage 4. This is because Stage 1 is a flexible model that includes many more covariates and interactions than
we can display here, while Stage 4 consists of calculating the future value terms and does not involve any estimation. See Appendices C (flexible Stage 1) and F (Stage 4
formulas) for complete details.
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Table B3: Unobserved Type Coefficient Signs and Significance Across All
Equations of the Model

Unobserved Type Identity
Model Equation Sch. Abil. H Sch. Pref. H Work Motivation H
Panel A: Measurement System
ASVAB Arithmetic Reasoning +∗∗

ASVAB Coding Speed +∗∗

ASVAB Mathematical Knowledge +∗∗

ASVAB Numerical Operations +∗∗

ASVAB Paragraph Comprehension +∗∗

ASVAB Word Knowledge +∗∗

SAT Math +∗∗

SAT Verbal +∗∗

Late for Classes -∗∗

Regularly Break Rules -∗∗

Took Extra Classes/Lessons +∗∗

Ever Took Classes During School Break -
Reason Took Classes During Break +∗∗

Have High Standards at Work +∗∗

Make Every Effort to Do What is Expected +∗∗

Percent Chance Work at Age 30 +∗∗

Parental Assessment of Age-30 Work Pr. +

Panel B: Learning Outcomes
White Collar Log Wages +∗∗ -∗∗ +∗∗

Blue Collar Log Wages +∗∗ -∗∗ +∗∗

4-year Science Grades +∗∗ +∗∗ -
4-year Non-Science Grades + +∗∗ +
2-year Grades + - -

Panel C: White Collar Offer Arrival
Receive White Collar Offer +∗∗ + -

Panel D: Logit for Graduation in t+ 1
Graduate in t+ 1 - +∗∗ -

Panel E: Flow Utilities
2-year College - +∗∗ -
4-year Science +∗∗ +∗ -
4-year Non-Science + +∗∗ +
Work Part-Time - + -∗∗

Work Full-Time - + -
Work White Collar + + +
Home Production (Ref.) (Ref.) (Ref.)

Notes: ∗ indicates statistical significance at the 10% level. ∗∗ indicates statistical significance at the 5% level. “(Ref.)”
indicates that the coefficient is normalized as the reference category. See Tables B5–B7 (measurement system), 7
(log wages), 6 (grades), B10 (offer arrival), B9 (graduation), and 10 (flow utilities) for exact parameter estimates.
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Table B4: Estimates of Probability Mass for Each Unobserved Type

Type Identity Mass Probability Std. Error
(H, H, H) 0.205 (0.013)
(H, H, L) 0.215 (0.015)
(H, L, H) 0.029 (0.009)
(H, L, L) 0.135 (0.014)
(L, H, H) 0.153 (0.011)
(L, H, L) 0.041 (0.008)
(L, L, H) 0.074 (0.012)
(L, L, L) 0.147 (0.010)

Notes: Bootstrap standard errors in parentheses. Type
dummy labels are as follows: “H” signifies “high type”;
“L” signifies “low type”. Labels are ordered as { Schooling
ability, Schooling preferences, Work motivation }. e.g.
“Unobserved type (H, L, H)” corresponds to a worker
with high schooling ability, low schooling preferences, and
high work motivation. Labels are identified through the
measurement system detailed in Appendix C.

B5



Table B5: Measurement System Estimates for Schooling Ability Measure-
ments

ASVAB
Arithmetic Coding Mathematical Numerical Paragraph Word SAT

Variable Reasoning Speed Knowledge Operations Comprehension Knowledge Math Verbal
Constant -0.448 -0.556 -0.593 -0.532 -0.600 -0.343 -0.474 -0.481

(0.040) (0.056) (0.037) (0.054) (0.043) (0.044) (0.046) (0.062)
Black -0.671 -0.326 -0.519 -0.217 -0.514 -0.553 -0.671 -0.246

(0.035) (0.052) (0.032) (0.046) (0.034) (0.035) (0.045) (0.054)
Hispanic -0.355 -0.117 -0.237 -0.155 -0.223 -0.362 -0.244 0.027

(0.039) (0.050) (0.037) (0.049) (0.038) (0.035) (0.050) (0.056)
Born in 1980 -0.094 -0.048 -0.027 -0.040 -0.094 -0.018 -0.263 -0.228

(0.045) (0.055) (0.039) (0.054) (0.046) (0.046) (0.053) (0.065)
Born in 1981 -0.019 0.008 0.014 -0.008 0.011 0.010 -0.160 -0.219

(0.040) (0.052) (0.040) (0.056) (0.040) (0.039) (0.056) (0.063)
Born in 1982 -0.087 -0.138 -0.079 -0.091 -0.143 -0.040 -0.147 -0.305

(0.041) (0.058) (0.041) (0.050) (0.043) (0.040) (0.056) (0.064)
Born in 1983 -0.042 -0.010 -0.006 -0.038 -0.025 0.039 -0.068 -0.194

(0.041) (0.055) (0.039) (0.049) (0.043) (0.043) (0.050) (0.063)
Parent graduated college 0.340 0.261 0.367 0.188 0.336 0.278 0.299 0.182

(0.032) (0.039) (0.030) (0.041) (0.030) (0.031) (0.039) (0.048)
Family Income ($10,000) 0.016 0.008 0.016 0.010 0.015 0.021 0.020 0.024

(0.003) (0.004) (0.003) (0.004) (0.003) (0.004) (0.004) (0.005)
Schooling ability type H 1.349 0.966 1.315 1.100 1.263 0.974 0.930 0.719

(0.029) (0.036) (0.028) (0.034) (0.029) (0.027) (0.036) (0.038)
Std. Dev. of noise 0.621 0.847 0.595 0.769 0.647 0.657 0.810 0.954

(0.010) (0.013) (0.009) (0.012) (0.009) (0.010) (0.011) (0.015)
Observations 2,136 2,122 2,134 2,122 2,135 2,136 1,232 1,223
Notes: Bootstrap standard errors are listed below each coefficient in parentheses. Each column represents estimates of a linear regression
model with normally distributed errors, estimated by maximum likelihood.
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Table B6: Measurement System Estimates for Schooling Preferences Mea-
surements

No. times late Break rules Hours per week Ever took classes Reason took classes
Variable for school regularly extra classes during school break during school break
Constant -7.165 -3.005 -0.593

(0.646) (0.223) (0.139)
Black 0.488 -0.391 1.461 0.627 -0.603

(0.104) (0.099) (0.580) (0.172) (0.128)
Hispanic 0.607 -0.137 0.308 0.753 -0.266

(0.128) (0.100) (0.577) (0.192) (0.150)
Born in 1980 1.284 0.148 1.193 -0.788

(0.138) (0.126) (0.202) (0.159)
Born in 1981 0.908 0.092 0.739 -0.389

(0.157) (0.119) (0.212) (0.123)
Born in 1982 0.534 0.324 -1.498 0.604

(0.154) (0.125) (0.528) (0.211)
Born in 1983 0.193 -0.063 -2.263

(0.146) (0.137) (0.542)
Parent graduated college 0.029 -0.120 1.980 0.329 -0.010

(0.097) (0.088) (0.457) (0.145) (0.125)
Family Income ($10,000) 0.010 0.000 0.236 -0.011 0.028

(0.010) (0.009) (0.044) (0.018) (0.013)
Schooling preference type H -0.423 -0.644 1.310 -0.119 2.334

(0.111) (0.084) (0.540) (0.156) (0.138)
Cut point 1 1.245 -1.613

(0.146) (0.131)
Cut point 2 1.736 -0.648

(0.151) (0.124)
Cut point 3 2.160 -0.112

(0.151) (0.128)
Cut point 4 2.560 0.292

(0.152) (0.129)
Cut point 5 2.813 1.022

(0.153) (0.127)
Cut point 6 3.163 1.802

(0.160) (0.129)
Cut point 7 4.072

(0.173)
Std. Dev. of noise 7.877

(0.261)
Observations 2,303 2,088 1,386 1,141 151
Notes: Bootstrap standard errors are listed below each coefficient in parentheses. The first two columns are estimates of ordered logit
models, where “Break rules regulary” is on a Likert scale with seven levels. “Hours per week in extra classes” is a Type II Tobit model
left-censored at zero hours. “Ever took classes during school break” and “Reason took classes during school break” are binary logit
models with respective positive categories of “Yes” and “In order to accelerate, for fun, or for enrichment” and respective reference
categories “No” and “To make up classes or for other reasons.”
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Table B7: Measurement System Estimates for Work Motivation Measure-
ments

Individual’s subjective Parent’s subjective
High standards Try to do what likelihood of working likelihood of individual

Variable at work is expected at age 30 working at age 30
Black 0.776 0.151 -0.251 -0.206

(0.149) (0.129) (0.136) (0.194)
Hispanic -0.079 0.129 -0.366 0.107

(0.143) (0.134) (0.132) (0.223)
Born in 1980 0.056 0.061 -0.073 0.037

(0.167) (0.150) (0.140) (0.188)
Born in 1981 0.389 0.470

(0.174) (0.149)
Born in 1982 0.138 0.186

(0.169) (0.156)
Born in 1983 -0.073 0.098

(0.164) (0.151)
Parent graduated college 0.001 -0.284 -0.100 -0.149

(0.113) (0.104) (0.123) (0.191)
Family Income ($10,000) 0.050 0.012 0.013 0.075

(0.014) (0.011) (0.013) (0.023)
Work motivation type H 3.472 3.619 0.544 0.197

(0.187) (0.233) (0.134) (0.154)
Cut point 1 -4.500 -4.298 -2.247 -2.969

(0.416) (0.320) (0.114) (0.204)
Cut point 2 -3.738 -3.027 -1.148 -1.949

(0.280) (0.183) (0.109) (0.168)
Cut point 3 -2.586 -2.073

(0.182) (0.168)
Cut point 4 -1.693 -0.835

(0.157) (0.144)
Cut point 5 -0.080 0.879

(0.160) (0.157)
Cut point 6 2.410 3.400

(0.214) (0.234)
Observations 2,085 2,087 915 849
Notes: Bootstrap standard errors are listed below each coefficient in parentheses. Each column represents estimates of an
ordered logit model. The first two columns are Likert scales with seven levels. The latter two columns are on a scale of
0%–100% that has been discretized into three bins: 0%–75%, 76%–90%, and 91%+

Table B8: Labor market shock forecasting estimates

Parameter Estimate Std. Error
Autocorrelation 0.504 (0.115)
Std. Dev. of shock 0.020 (0.002)
Observations 16

Notes: Bootstrap standard errors in parentheses. We
estimate a single AR1 process for both labor market
sectors.
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Table B9: Estimates of Probability of Graduation

Variable Coeff. Std. Error
Constant -3.557 (0.331)
Black -0.834 (0.146)
Hispanic -0.485 (0.151)
HS Grades (z-score) 0.253 (0.056)
Parent graduated college -0.024 (0.103)
Born in 1980 0.605 (0.155)
Born in 1981 0.329 (0.137)
Born in 1982 0.353 (0.130)
Born in 1983 0.499 (0.142)
Family Income ($10,000) 0.017 (0.010)
College experience completion profiles:

0 years of 2yr 0.458 (0.216)
2+ years of 2yr 0.520 (0.190)
2 years of 4yr 1.355 (0.213)
3 years of 4yr 1.738 (0.219)
4 years of 4yr 2.728 (0.306)
5 years of 4yr 0.768 (14.847)
6+ years of 4yr 0.905 (0.395)
2 years of 4yr and 0 years of 2yr -2.805 (0.318)
4 years of 4yr and 0 years of 2yr -0.574 (0.327)
5 years of 4yr and 0 years of 2yr 2.163 (14.831)
6+ years of 4yr and 0 years of 2yr 1.360 (0.455)

Science major -0.336 (0.141)
Prior ability science × Science major 1.848 (0.298)
Prior ability non-sci. × Non-Sci. major 1.351 (0.179)
Work part-time -0.063 (0.128)
Work full-time 0.361 (0.142)
Schooling ability type H -0.096 (0.155)
Schooling preference type H 0.783 (0.322)
Work motivation type H -0.043 (0.189)
Person-year observations 1,115

Notes: Parameter estimates from a logit predicting probability of graduat-
ing in the following period. Estimated only on four-year college students
in their junior year and above. Bootstrap standard errors in parentheses.
Reference categories for multinomial variables are as follows: “White” for
race/ethnicity, “Born in 1984” for birth year, “1 year of 2yr college” and
“3 years of 4yr college and 0 years of 2yr college” for college experience,
“Not working” for work intensity, and “L” for each unobserved type.
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Table B10: Estimates of White Collar Offer Arrival Parameters

Variable Coeff. Std. Error
Constant -0.811 (0.268)
Age -0.164 (0.015)
College graduate 1.550 (0.110)
Schooling ability type H 0.753 (0.114)
Schooling preference type H 0.119 (0.099)
Work motivation type H -0.106 (0.091)
Person-year observations 22,398

Notes: Estimates of the δλ parameters in Equation (H.4).
Bootstrap standard errors in parentheses. Age is normalized
to be zero at 18 years old. Reference category is “L” for each
unobserved type. We restrict the offer arrival probability to
equal 1 for those who worked in the white-collar sector in the
previous period.
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Table B11: Parameter Estimates of Static Choice Model

Variable 2-year 4-year Sci 4-year Non-Sci Work PT Work FT White Collar

Constant -2.887 -5.653 -4.181 -1.848 -1.034 -2.280
(0.146) (0.252) (0.166) (0.103) (0.107) (0.241)

Black -0.117 0.054 0.189 -0.044 -0.106 0.027
(0.079) (0.099) (0.082) (0.057) (0.053) (0.090)

Hispanic 0.121 -0.062 -0.022 -0.086 0.022 0.114
(0.071) (0.110) (0.083) (0.065) (0.056) (0.089)

HS Grades (z-score) 0.191 0.839 0.591 -0.029 -0.052 0.099
(0.032) (0.048) (0.033) (0.027) (0.022) (0.034)

Parent graduated college 0.485 0.948 0.871 -0.033 -0.331 0.532
(0.064) (0.091) (0.068) (0.055) (0.042) (0.093)

Born in 1980 0.052 0.040 0.079 0.196 0.244 0.402
(0.090) (0.139) (0.103) (0.076) (0.062) (0.107)

Born in 1981 -0.095 -0.135 -0.015 0.190 0.190 0.299
(0.088) (0.123) (0.093) (0.065) (0.058) (0.112)

Born in 1982 -0.105 0.205 -0.166 0.181 0.125 0.282
(0.088) (0.125) (0.092) (0.066) (0.061) (0.113)

Born in 1983 -0.053 -0.029 -0.024 0.117 0.018 0.165
(0.083) (0.121) (0.087) (0.064) (0.057) (0.108)

Family Income ($10,000) 0.017 0.054 0.063 -0.029 -0.013 0.006
(0.008) (0.009) (0.008) (0.006) (0.005) (0.009)

continued
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Variable 2-year 4-year Sci 4-year Non-Sci Work PT Work FT White Collar

Age -0.180 -0.189 -0.226 -0.134 -0.147 0.181
(0.017) (0.023) (0.019) (0.013) (0.013) (0.021)

Age squared 0.005 0.002 0.001 0.001 -0.004 -0.004
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Experience 0.016 -0.116 -0.017 0.303 0.383 -0.042
(0.038) (0.060) (0.042) (0.024) (0.017) (0.029)

Experience squared -0.006 0.016 -0.002 -0.019 -0.012 0.003
(0.003) (0.004) (0.003) (0.002) (0.001) (0.002)

Years of college -0.063 0.534 0.405 0.308 0.236 0.345
(0.055) (0.075) (0.046) (0.036) (0.028) (0.040)

Years of college squared 0.021 -0.015 -0.009 -0.024 -0.004 -0.034
(0.007) (0.008) (0.005) (0.004) (0.003) (0.004)

Prior academic ability 0.846 2.429 2.020
(0.110) (0.290) (0.137)

Accumulated debt ($1,000) -0.003 -0.003 0.010 -0.006 0.006
(0.004) (0.006) (0.004) (0.003) (0.002)

Accumulated debt squared ÷100 -0.011 -0.010 -0.007 0.005 -0.005
(0.002) (0.004) (0.003) (0.002) (0.001)

Non-grad ×E[u(consumption)] ÷ 1, 000 1.183 1.183 1.183 1.183 1.183
(0.199) (0.199) (0.199) (0.199) (0.199)

Previous high school 1.009 2.803 1.845 1.157 0.873 -0.501
(0.107) (0.183) (0.120) (0.093) (0.085) (0.216)

Previous 2-year college 2.456 1.282 0.705 0.031 0.289 0.120

continued
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Variable 2-year 4-year Sci 4-year Non-Sci Work PT Work FT White Collar

(0.085) (0.196) (0.094) (0.086) (0.080) (0.142)
Previous 4-year science 1.267 4.782 2.159 0.701 0.398 -0.159

(0.172) (0.170) (0.132) (0.117) (0.093) (0.156)
Previous 4-year non-science -0.047 2.028 3.384 0.580 0.573 0.053

(0.165) (0.191) (0.092) (0.090) (0.077) (0.109)
Previous work part-time 0.041 0.592 0.391 2.177 1.349 -0.976

(0.092) (0.128) (0.102) (0.059) (0.055) (0.099)
Previous work full-time 0.129 0.279 0.573 0.951 2.241 -0.941

(0.099) (0.138) (0.100) (0.063) (0.042) (0.103)
Previous work white-collar -0.040 -0.590 -0.164 -1.278 -1.465 2.683

(0.164) (0.243) (0.161) (0.088) (0.080) (0.185)
Currently work white-collar -0.139

(0.082)
Currently work part-time 0.921 -0.266 -0.004

(0.072) (0.090) (0.073)
Currently work full-time -0.420 -1.783 -1.843

(0.070) (0.097) (0.066)
Currently work part-time in white collar -0.286 0.289 0.073

(0.188) (0.182) (0.157)
Currently work full-time in white collar -0.058 0.741 0.240

(0.165) (0.212) (0.137)
Schooling ability type H 0.209 1.274 0.750 0.004 0.013 0.002

(0.067) (0.097) (0.069) (0.046) (0.040) (0.086)

continued
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Variable 2-year 4-year Sci 4-year Non-Sci Work PT Work FT White Collar

Schooling preference type H 0.408 0.154 0.535 -0.319 -0.664 -0.192
(0.121) (0.169) (0.145) (0.077) (0.077) (0.081)

Work motivation type H 0.055 0.111 0.214 -0.231 0.212 0.228
(0.081) (0.116) (0.086) (0.054) (0.053) (0.069)

College graduate 0.485 0.953 0.667
(0.216) (0.213) (0.169)

Black × col. grad. 0.264 -0.055 0.665
(0.174) (0.166) (0.139)

Hispanic × col. grad. -0.065 -0.172 -0.060
(0.197) (0.151) (0.140)

HS Grades (z-score) × col. grad -0.203 -0.312 0.335
(0.070) (0.055) (0.061)

Parent grad. col. × col. grad. 0.363 0.429 -0.584
(0.130) (0.103) (0.105)

Born in 1980 × col. grad. 0.153 0.455 -1.102
(0.197) (0.150) (0.137)

Born in 1981 × col. grad. -0.100 0.202 -0.766
(0.200) (0.143) (0.152)

Born in 1982 × col. grad. -0.826 -0.137 -0.758
(0.213) (0.153) (0.155)

Born in 1983 × col. grad. -0.690 -0.184 -0.524
(0.193) (0.143) (0.169)

Family Income ($10,000) × col. grad. -0.024 -0.033 0.037

continued
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Variable 2-year 4-year Sci 4-year Non-Sci Work PT Work FT White Collar

(0.010) (0.010) (0.012)
Col. grad ×E[u(consumption)] ÷ 1, 000 -0.169 -0.169

(0.233) (0.233)

Constant Relative Risk Aversion parameter (θ) 0.4
Log likelihood -26,109
Person-year obs. 22,398

Notes: Home production is the reference alternative. Bootstrap standard errors are listed below each coefficient in paren-
theses. Beliefs on labor market productivity are included in the expected utility of consumption term. Consumption is
evaluated in terms of yearly consumption flow in 1996 dollars. Missing majors are estimated to be science with probability
0.35. Missing GPAs are estimated to be ≤ 2.5 w.p. 0.48, 2.5–3.0 w.p. 0.21, 3.0–3.6 w.p. 0.19, and 3.6–4.0 w.p. 0.13.

Reference categories for multinomial variables are as follows: “White” for race/ethnicity, “Born in 1984” for birth year,
“Previous home production” for previous decision, “Not working” for in-college work intensity, and “L” for each unobserved
type.
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Table B12: Model fit: Overall choice frequencies

Choice alternative Data Frequency (%) Model Frequency (%)
2-year & work FT blue collar 1.70 1.86
2-year & work FT white collar 0.15 0.16
2-year & work PT blue collar 1.82 1.95
2-year & work PT white collar 0.10 0.10
2-year only 1.92 2.01
4-year Science & work FT blue collar 0.43 0.52
4-year Science & work FT white collar 0.15 0.16
4-year Science & work PT blue collar 0.94 0.97
4-year Science & work PT white collar 0.14 0.16
4-year Science only 2.27 2.37
4-year Non-Science & work FT blue collar 0.90 1.10
4-year Non-Science & work FT white collar 0.20 0.24
4-year Non-Science & work PT blue collar 1.88 2.29
4-year Non-Science & work PT white collar 0.29 0.29
4-year Non-Science only 4.06 4.72
Work PT blue collar 6.57 6.45
Work PT white collar 0.96 0.99
Work FT blue collar 42.71 41.95
Work FT white collar 8.61 8.93
Home production 24.22 22.77

Note: Model frequencies are constructed using 10 simulations of the structural model for each individual
included in the estimation. We set the panel length in the model to be the same as the panel length in the
data. This is because the model assumes random attrition conditional on all observables and unobservables.
White collar offer probability in simulation is 0.3183 and in estimation is 0.3077.
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Table B13: Model fit: Graduate choice frequencies

Choice alternative Data Frequency (%) Model Frequency (%)
Work PT blue collar 4.09 4.07
Work PT white collar 4.38 3.72
Work FT blue collar 34.54 37.25
Work FT white collar 43.66 41.35
Home production 13.34 13.61

Note: Model frequencies are constructed using 10 simulations of the structural model
for each individual included in the estimation.
White collar offer probability in simulation is 0.6675 and in estimation is 0.7044.
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Table B14: Average abilities by employment sector and education level at
age 28 in baseline and counterfactual models

White Collar Blue Collar 4-year Science 4-year Non-Science 2-year
Sector and education level Baseline Cfl N.F. Cfl Baseline Cfl N.F. Cfl Baseline Cfl N.F. Cfl Baseline Cfl N.F. Cfl Baseline Cfl N.F. Cfl

Fu
ll-

tim
e

W
hi

te
C

ol
la

r Science 0.03 0.42 0.38 0.03 0.13 0.12 0.16 0.46 0.46 0.16 0.37 0.38 0.09 0.16 0.20
Non-Science 0.01 0.30 0.24 -0.01 0.00 -0.01 0.10 0.26 0.23 0.15 0.45 0.43 0.13 0.31 0.32

Non-graduate -0.01 0.27 0.10 -0.00 0.04 -0.01 -0.07 -0.09 -0.13 -0.10 -0.13 -0.16 -0.09 -0.09 -0.14

Bl
ue

C
ol

la
r Science 0.03 0.07 0.06 0.01 0.11 0.11 0.12 0.46 0.44 0.14 0.36 0.34 0.11 0.22 0.19

Non-Science 0.01 -0.01 -0.03 -0.02 -0.01 -0.02 0.11 0.27 0.25 0.16 0.43 0.40 0.15 0.35 0.33
Non-graduate -0.00 -0.03 -0.05 0.01 0.03 0.02 -0.03 -0.13 -0.15 -0.04 -0.18 -0.19 -0.03 -0.11 -0.12

Pa
rt

-t
im

e
W

hi
te

C
ol

la
r Science 0.06 0.31 0.28 0.06 0.04 0.08 0.16 0.49 0.48 0.18 0.44 0.34 0.13 0.18 0.18

Non-Science 0.02 0.14 0.10 -0.02 -0.12 -0.10 0.07 0.29 0.16 0.12 0.51 0.30 0.08 0.43 0.18
Non-graduate 0.00 0.10 -0.02 -0.03 -0.06 -0.05 -0.06 -0.04 -0.20 -0.06 0.10 -0.22 -0.09 0.07 -0.17

Bl
ue

C
ol

la
r Science 0.02 0.01 -0.02 0.01 0.04 0.01 0.17 0.35 0.34 0.11 0.30 0.25 0.05 0.18 0.18

Non-Science -0.06 -0.10 -0.12 -0.05 -0.08 -0.08 0.07 0.23 0.21 0.11 0.39 0.36 0.13 0.31 0.23
Non-graduate -0.02 -0.09 -0.10 -0.01 -0.05 -0.04 -0.04 -0.14 -0.15 -0.05 -0.15 -0.17 -0.01 -0.08 -0.11

H
om

e Science 0.07 -0.09 -0.01 0.06 -0.10 -0.04 0.15 0.36 0.40 0.14 0.30 0.31 0.14 0.11 0.13
Non-Science 0.00 -0.11 -0.12 -0.01 -0.16 -0.16 0.07 0.22 0.21 0.12 0.42 0.41 0.09 0.29 0.31

Non-graduate -0.02 -0.17 -0.16 -0.02 -0.15 -0.13 -0.04 -0.19 -0.19 -0.05 -0.16 -0.19 -0.06 -0.13 -0.17
Notes: “Cfl” refers to the counterfactual while “N.F. Cfl” refers to the counterfactual with no search frictions.
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Table B15: Average posterior variances after last period of college for
different choice paths in baseline model

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.12 0.07 0.07 0.13 0.27 1.39
x > 0, white collar only 0.06 0.06 0.07 0.13 0.27 0.52
x > 0, blue collar only 0.10 0.03 0.07 0.12 0.26 3.63
x > 0, mixture 0.06 0.03 0.07 0.12 0.25 0.85
Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 0.12 0.07 0.09 0.07 0.23 3.03
x > 0, white collar only 0.06 0.06 0.09 0.07 0.23 1.04
x > 0, blue collar only 0.10 0.03 0.09 0.07 0.22 8.88
x > 0, mixture 0.06 0.03 0.08 0.07 0.21 1.90
Stop out (SO)
SO, graduate in science 0.09 0.03 0.08 0.10 0.20 0.97
SO, graduate in non-science 0.09 0.03 0.09 0.08 0.19 3.45
SO then DO, start in 2yr 0.09 0.03 0.15 0.16 0.14 4.98
SO then DO, start in science 0.09 0.03 0.10 0.14 0.20 1.37
SO then DO, start in non-science 0.09 0.03 0.12 0.11 0.19 2.67
Truncated 0.08 0.02 0.11 0.12 0.17 5.76
Drop out (DO) after x years of school
x = 1 0.11 0.05 0.17 0.21 0.25 16.59
x = 2 0.11 0.04 0.15 0.17 0.20 7.85
x = 3 0.10 0.04 0.13 0.15 0.19 4.22
x = 4 0.10 0.03 0.11 0.12 0.18 1.93
x ≥ 5 0.09 0.03 0.10 0.10 0.16 1.85
Never attended college
Never attend college 0.09 0.02 0.20 0.27 0.35 27.11
Time 0 population variance 0.13 0.07 0.21 0.27 0.35

Notes: Average posterior variances of ability across individuals are reported in each cell. This table is constructed using 10
simulations of the baseline model for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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Table B16: Average abilities for different choice paths in full-information
no-search-frictions counterfactual scenario

Choice Path White Collar Blue Collar Science Non-Science 2-year Share(%)
Continuous enrollment, graduate in science with x years of in-school work experience
x = 0 0.27 -0.01 1.04 0.76 0.28 0.87
x > 0, white collar only 1.09 0.39 1.03 0.75 0.40 0.98
x > 0, blue collar only 0.50 0.39 0.98 0.67 0.32 6.33
x > 0, mixture 1.01 0.53 0.98 0.69 0.30 2.92
Continuous enrollment, graduate in non-science with x years of in-school work experience
x = 0 -0.00 -0.38 0.54 0.87 0.58 1.67
x > 0, white collar only 0.40 -0.08 0.50 0.78 0.50 1.05
x > 0, blue collar only 0.12 -0.11 0.55 0.81 0.54 8.67
x > 0, mixture 0.45 -0.02 0.44 0.74 0.56 2.93
Stop out (SO)
SO, graduate in science 0.46 0.28 0.87 0.62 0.34 1.94
SO, graduate in non-science 0.10 -0.14 0.47 0.72 0.49 4.72
SO then DO, start in 2yr -0.19 -0.05 -0.34 -0.34 -0.12 2.87
SO then DO, start in science -0.10 0.03 -0.07 -0.16 -0.10 1.03
SO then DO, start in non-science -0.28 -0.18 -0.07 -0.00 -0.02 2.60
Truncated -0.05 -0.08 0.03 0.07 0.04 5.07
Drop out (DO) after x years of school
x = 1 -0.17 -0.07 -0.37 -0.40 -0.25 14.84
x = 2 -0.21 -0.09 -0.26 -0.28 -0.14 5.80
x = 3 -0.23 -0.14 -0.25 -0.20 -0.05 2.60
x = 4 -0.20 -0.04 -0.06 -0.03 0.04 1.24
x ≥ 5 -0.11 -0.08 0.02 -0.05 -0.06 0.68
Never attended college
Never attend college -0.17 -0.02 -0.46 -0.50 -0.32 31.20

Notes: Abilities are reported in standard deviation units. This table is constructed using 10 simulations of the counterfactual
model described in the title for each individual included in the estimation.

“Truncated” refers to those who were enrolled in period 10.
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C Recovering unobserved types and missing data using an EM
algorithm

This appendix section provides an overview of how we recover the unobserved heterogeneity
types and missing data on college GPA and major using an EM algorithm. Aside from
standard unobserved heterogeneity, we treat the first missing major or GPA observation as
a permanent unobserved type, which we integrate out using a modified version of the EM
algorithm detailed in Subsection 5.5.

This first stage of our estimation incorporates a measurement system to aid in identifica-
tion of the unobserved heterogeneity types, as well as flexible specifications for all outcomes
that enter the structural model (i.e. choices, wages, grades, and college graduation). The
goal of this first stage is to obtain estimates of the posterior unobserved type probabilities
for each individual as well as the probability mass on each type. All other parameters are
treated as nuisance parameters at this stage of the estimation.

Appendix Subsection C.6 briefly describes how we use the first stage to subsequently
estimate the structural parameters.

C.1 Overview of the unobserved heterogeneity and missing data types

C.1.1 Unobserved heterogeneity

We assume that there are three different dimensions of discrete unobserved heterogeneity
types. Each of the dimensions is associated with Sr

d heterogeneity types, for a total of
Sr = ∏3

d=1 S
r
d types:

1. Schooling ability

2. Schooling preferences

3. Work motivation

In practice, for our baseline specification we set each Sr
d = 2 for a total number of Sr = 8

types.

C.1.2 Missing college GPA

We also assume that there are four latent types for the missing college GPA observations,
where the types are characterized by quartiles of the observed GPAs g:
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1. g ∈ [0, 2.5]

2. g ∈ (2.5, 3.0]

3. g ∈ (3.0, 3.6]

4. g ∈ (3.6, 4.0]

C.1.3 Missing college major

Finally, as we model college majors in a binary fashion, the latent majors that are missing
follow the same structure:

1. Science majors

2. All other majors

C.2 Dependent variables used in the first stage

C.2.1 Description of measurements used

Here we outline the measurements used for each of the dimensions of unobserved types
described in C.1.1.

Schooling ability The schooling ability type is measured from cognitive test scores (each
of which has been z-scored relative to the entire NLSY97 sample) taken from the Armed
Services Vocational Aptitude Battery (ASVAB) and the SAT I exam:

• ASVAB Arithmetic Reasoning

• ASVAB Coding Speed

• ASVAB Mathematical Knowledge

• ASVAB Numerical Operations

• ASVAB Paragraph Comprehension

• ASVAB Word Knowledge

• SAT I Math

• SAT I Verbal

Each of these cognitive test scores has a continuous distribution.
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Schooling preferences The schooling preferences type is measured from various discrete
outcomes, such as Likert-scaled questions:

• Number of times the individual reported being late for school without excuse

• How strongly the individual agrees with the following statement: “When I was in
school, I broke the rules regularly”

• How many hours per week the individual spent taking extra classes (such as music
lessons, etc.)

• If the individual ever took classes during a school break (this could either be for
remedial or accelerative reasons)

• If the individual took classes during break, the reason for doing so (e.g. “To accelerate,
for fun, for enrichment” or “To make up classes”)

Each of these measures is discrete, taking on various numbers of effective categories. For the
number of hours spent in extra classes, we treat the distribution as being censored at zero.

Work motivation We have no measures that separately inform us about the individual’s
work ability and preferences, so the final dimension of unobserved heterogeneity types is
combined into a factor we call “work motivation.” As in the case of schooling preferences,
the measurements of work motivation are discrete:

• How strongly the individual agrees with the following statement: “I have high standards
at work”

• How strongly the individual agrees with the following statement: “I make every effort
to do what is expected of me”

• The individual’s subjective likelihood of working part- or full-time at age 30 (reported
as a percent chance on a scale from 0-100)

• The parent’s subjective likelihood of the individual working part- or full-time at age
30 (reported on the same scale as above)
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C.2.2 Description of other dependent variables in the first stage

Aside from the measurement system, our first-stage estimation requires data on wages in
each occupation, college grades in each sector, college graduation outcomes, and choices
about schooling, work intensity, and occupations. We include these as follows:

• Each of the five learning outcomes (white-collar log wages, blue-collar log wages, 4-year
science grades, 4-year non-science grades, and 2-year college grades)

• Graduation in t+ 1 conditional on being eligible to graduate (i.e., at least a junior in
college).

• Binary variables for the following choices:

– Enrolling in any type of college

– Enrolling in a 4-year college, conditional on having enrolled in any type of college

– Choosing a 4-year science major, conditional on being in 4-year college

– Choosing any work option

– Working full-time, conditional on choosing any work option

– Working white-collar, conditional on choosing any work option

C.3 Overall likelihood

We now characterize the overall likelihood for the first-stage auxiliary model.

C.3.1 Measurement System

To estimate the measurement system, we use a variety of likelihood-based models. Each
of the left-hand side variables is a measurement described in the previous section, and the
right-hand side variables consist of demographic and family background variables, as well
as dummies for each unobserved type (i.e. whether the type identity is “High” in the first,
second, or third dimension). As demographic and family background variables, we use
indicators for race/ethnicity, birth year dummies, whether either of the individual’s parents is
a college graduate, and the individual’s family income when he was a teenager (in thousands
of dollars).

Indexing individuals by i, we estimate from the measurement data, (yi,b)i,b, the parame-
ters of the following equation for each measurement b and heterogeneity type r:
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yib = Xiβ̃b + ωbr + εib (C.1)

where yi,b = ∑
r yi,b,r1{Ri=r}, Xi consists of the demographic and family background variables,

ωbr is a measurement- and type-specific intercept, and εib denotes measurement errors.
Types are interpreted through normalizations on the ωbr coefficients. For example, only

the schooling ability type determines the measurements of schooling ability, while the other
type coefficients are normalized to zero.

Likelihood for continuous measurements For measurements that are continuous, we
assume that εib ∼ N (0, σ2

b ) which yields the following likelihood:

Lco
ibr (Θ; yib, Xi) = 1

σb

φ

(
yib −Xiβ̃b − ωbr

σb

)
(C.2)

where φ (·) is the density of the standard normal distribution.

Likelihood for censored measurements For measurements that are censored below at
value y, we use the Type I Tobit likelihood. We modify the likelihood to allow for a third
case where we know that the value of y is above y but do not know its exact value:

Lce
ibr

(
Θ; yib, Xi, y

)
=
{

1
σb

φ

(
yib −Xiβ̃b − ωbr

σb

)}I(yib>y, yib observed)

×

{
1 − Φ

(
Xiβ̃b + ωbr − y

σb

)}I(yib=y)

×

{
Φ
(
Xiβ̃b + ωbr − y

σb

)}I(yib>y, yib unobserved)

(C.3)

where I (·) is the indicator function and Φ (·) is the CDF of the standard normal distribution.

Likelihood for discrete ordered measurements For measurements that are discrete
but have an inherent ordering (e.g. degree to which individual agrees with various statements;
etc.), we assume that εib is consistent with the ordered logit model. This yields the following
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likelihood:

Lo
ibr (Θ; yib, Xi, ) =

Jb∏
j=1

P
1[yib=j]
o,ijbr (C.4)

where 1 [·] is the indicator function, and where

Po,ijbr = Pr (yib = j)

= Pr
(
κj−1,b < Xiβ̃b + ωbr ≤ κjb

)
= 1

1 + exp
(
Xiβ̃b + ωbr − κjb

) − 1
1 + exp

(
Xiβ̃b + ωbr − κj−1,b

) (C.5)

where κ0b = −∞ and κJb = ∞.

Likelihood for discrete unordered measurements For measurements that are discrete
but have no inherent ordering (e.g. did the individual take extra classes; what was the reason
the individual took extra classes; etc.), we assume that εib is consistent with the multinomial
logit model. This yields the following likelihood:

Lu
ibr (Θ; yib, Xi) =

Jb∏
j=1

P
1[yib=j]
u,ijbr (C.6)

where

Pu,ijbr =
exp

(
Xiβ̃jb + γjbr

)
∑

k exp (Xiβkb + γkbr)
(C.7)

Measurement system likelihood The joint likelihood function for the entire measure-
ment system (conditional on unobserved type R = r) is then

L
(1,s)
ir =

∏
b∈cont

Lco
ibr

∏
b∈censo

Lce
ibr

∏
b∈ord

Lo
ibr

∏
b∈unord

Lu
ibr (C.8)

where cont stands for “continuous”; censo stands for “censored”; ord stands for “ordered
categorical”; and unord stands for “unordered categorical.”

Summary of measurement system specification assumptions Table C1 summarizes
the assumptions we make about the measurements.
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Table C1: Summary of assumptions about measurements

Measurement Latent type Distribution Estimator Categories
ASVAB Arithmetic Reasoning school ability continuous normal MLE —
ASVAB Coding Speed school ability continuous normal MLE —
ASVAB Mathematical Knowledge school ability continuous normal MLE —
ASVAB Numerical Operations school ability continuous normal MLE —
ASVAB Paragraph Comprehension school ability continuous normal MLE —
ASVAB Word Knowledge school ability continuous normal MLE —
SAT I Math school ability continuous normal MLE —
SAT I Verbal school ability continuous normal MLE —
Number of times late for school school prefs. ordered categorical ordered logit 0, 1, 2, 3, 4, 5, 6-10, or 11+ times
Broke rules regularly school prefs. ordered categorical ordered logit 1-7 Likert scale
Hours per week took extra classes school prefs. censored (y = 0) normal MLE —
Took class during break? school prefs. binary binary logit yes or no
Reason took class during break school prefs. binary binary logit 1) for enrichment; 2) to catch up
Have high standards at work work motivation ordered categorical ordered logit 1-7 Likert scale
Make every effort to do what is expected work motivation ordered categorical ordered logit 1-7 Likert scale
Percent chance work at age 30 work motivation ordered categorical ordered logit 0-75%, 76-90%, 91-100%
Parent: percent chance i works at age 30 work motivation ordered categorical ordered logit 0-75%, 76-90%, 91-100%
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C.3.2 Other first-stage equations

Estimation of the other first-stage equations proceeds in a similar fashion as the measurement
system. The primary difference is that each of these equations uses panel data, whereas each
of the measurements in the measurement system is purely cross-sectional. As right-hand side
variables, we employ the same Xi as in the measurement system, but we add time-varying
schooling and work experiences, interactions between the two, previous decision dummies,
college graduation and graduated major dummies (in the equations for wages and work
decisions only), and calendar year dummies (in the wage equations only).

Of particular importance to this part of the first-stage estimation is our inclusion of the
(standardized) cumulative sum of lagged learning outcomes in each equation. We denote
this as a vector yit ≡ (yi1t · · · yiJt) which is formally defined as follows for each element:

yijt = 1∑t−1
τ=1 dijτ

t−1∑
τ=1

{
dijτ

[
yijτ − µj

σj

]}
(C.9)

where µj is the mean of yijt over all i and t, σj is the standard deviation of yijt over all i and
t, and dijτ indicates that yijτ is observed (i.e. the person chose to participate in sector j in
period τ)

The inclusion of yit is crucial to separately identifying the ability that is learned about—
which is unknown to both the individual and the researcher—from the permanent unobserved
heterogeneity type ωbr—which is private to the individual.

We flexibly include yit in our auxiliary equations by interacting it with work experience
variables, previous decision dummies, and unobserved type. However, to maintain estimation
precision, we only interact the yijt (corresponding to the current equation’s outcome) with
the unobserved type. For example, in the estimation of white-collar wages, we only include
the interaction between the yijt for white collar with the unobserved types. We also place
some structure on the interaction between work experiences and yit. For example, in the
grades equations, we only allow the yit associated with college grades to be interacted with
the work experiences and previous decision dummies. However, the entire set of components
of yit (not interacted with anything) always enters each equation.

For individual i in time period t, we estimate the following equation for each outcome b:

yibt = Xitβ̃1b + yitβ̃2b +Xityitβ̃3b + ω1br + yijtω2br + εibt (C.10)

where Xit consists of demographic and family background variables as well as previous deci-
sion dummies and full quadratic interactions for each of the work and schooling experiences,
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college graduation and graduated major dummies, and calendar year dummies (where ap-
plicable). yit is as defined above, and ω1br and εibt are as defined in Equation (C.1), albeit
with slightly different notation which has been adapted to the panel data setting.

Unlike in the measurement system, we allow each type to enter each of the equations in
this part of the model.

Likelihood for grades and wages The grades and wages are continuous; hence, when
we assume εibt is normally distributed, the likelihood for these equations closely mirrors that
of Equation (C.2). Let b index the college sector or job occupation:

Lco
ibr (Θ; yibt, Xit,yit) = 1

σb

φ

(
yibt −Xitβ̃1b − yitβ̃2b −Xityitβ̃3b − ω1br − yijtω2br

σb

)
(C.11)

Likelihood for choices and graduation We model each of the choices and the gradua-
tion outcome as binary and assume that εib is consistent with the logit model. This yields
the following likelihood:

Lu
ibr (Θ; yibt, Xit,yit) = P

1[yibt=1]
u,ibrt (1 − Pu,ibrt)1[yibt=0] (C.12)

where

Pu,ibrt =
exp

(
Xitβ̃1b + yitβ̃2b +Xityitβ̃3b + ω1br + yijtω2br

)
1 + exp

(
Xitβ̃1b + yitβ̃2b +Xityitβ̃3b + ω1br + yijtω2br

) (C.13)

Likelihood for all non-measurement-system first-stage equations The likelihood
for all non-measurement-system first-stage equations mimics Equation (C.8), but combines
each equation characterized by (C.11) and (C.12):

L
(1,c)
ir =

∏
b∈cont

Lco
ibr

∏
b∈binary

Lu
ibr (C.14)

where cont stands for “continuous” and binary stands for “binary.”

C.3.3 Overall first-stage likelihood

The overall first-stage likelihood—conditional on unobserved type r—is then the product of
the measurement system likelihood in Equation (C.8) and the other likelihood in Equation
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(C.14):

L
(1)
ir = L

(1,s)
ir L

(1,c)
ir (C.15)

where we superscript with (1) to emphasize that this is an auxiliary likelihood for the first-
stage and should not be confused with the structural likelihood in Equation (36).

The overall log-likelihood for the first stage is then

ℓ(1) =
∑

i

ln
[

R∑
r=1

πrL
(1,s)
ir L

(1,c)
ir

]
(C.16)

C.4 EM algorithm

We now describe how we use the EM algorithm to estimate the posterior unobserved type
probabilities, the missing major and missing GPA type probabilities, and the probability
masses on the unobserved types. The notation used throughout this subsection mirrors
that which is used in Subsection 5.5. Additionally, we introduce two time-invariant indices:
(i) m ∈ {science, non-science}, which indexes missing major; and (ii) g ∈ {1, . . . 4}, which
indexes missing GPA quartile.

C.4.1 E-step

At the E-step of our algorithm, we need to take appropriate likelihood contributions for
each individual’s observations. The key idea is that the entire string of future likelihood
contributions depends on the missing choice that is being integrated over. Below, we list the
joint probabilities of i being of a particular unobserved type r and unobserved major m or
GPA quartile g (if either or both of these outcomes are missing).

Pr(r|i) = qir = πrL
(1)
ir∑

r′ πr′L
(1)
ir′

(C.17)

Pr(r,m|i) = qirm = πrL
(1,m)
ir∑

m′
∑

r′ πr′L
(1,m′)
ir′

(C.18)

Pr(r, g|i) = qirg = πrL
(1,g)
ir∑

g′
∑

r′ πr′L
(1,g′)
ir′

(C.19)

Pr(r,m, g|i) = qirmg = πrL
(1,m,g)
ir∑

g′
∑

m′
∑

r′ πr′L
(1,m,g)
ir′

(C.20)
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where L(1,m)
ir indicates that missing majors in L(1)

ir are evaluated major m. L(1,g)
ir and L(1,m,g)

ir

are likewise defined for missing grades g and the combination of missing majors m and
grades g. Thus, equation (C.17) holds for those who have no missing data, (C.18) holds for
those who only have a missing major, (C.19) holds for those who only have a missing GPA,
and (C.20) holds for those who have both outcomes missing. Note that, for the cases with
missing grades, the contribution to the likelihood of the grades that are missing is computed
by integrating over the relevant portion of the continuous grade distribution. For instance,
if g = g1 and g = g2 denote the first and second quartiles of the grade distribution, the
contribution is given by:

Φ(g2 −X ′βr) − Φ(g1 −X ′βr)

where Φ is the cdf. of a normal distribution with mean zero and variance σ2 (variance of the
residuals of the auxiliary grade equation) and βr are the (type-specific) parameter estimates
of the auxiliary grade equation. The contribution corresponding to the first and last quartiles
are given by Φ(g1 −X ′βr) and 1 − Φ(g3 −X ′βr), respectively.

C.4.2 M-step

At the M-step of our algorithm, we treat the three different unobserved types as observed
and assign each individual a corresponding weight depending on his missing outcome status.

• all who never have a missing major or missing GPA: weight by qir

• those who have a missing major but no missing GPA: weight by qirm for all observations
of the individual

• those who have a missing GPA but no missing major: weight by qirg for all observations
of the individual

• those who have both a missing major and missing GPA: weight by qirmg for all obser-
vations of the individual

We then estimate the system of logit and regression models that make up L(1)
ir using the

qirmg, qirm, qirg, or qir as the weights—depending on which of the four cases in Equations
(C.17)–(C.20) applies.
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C.5 First-stage estimation results

We report the estimates of the type mass probabilities in Table B4. Estimates of the missing
major and GPA probabilities are included in the note to Table 10. The estimates of the
measurement system are in Tables B5–B7. We do not report the estimates of the other
first-stage equations, but these are available upon request.

C.6 Subsequent stage estimation

The estimation steps described above pertain only to the first stage of our model, in which we
estimate the measurement system and recover the distribution of unobserved types, missing
majors, missing GPAs, and individual-specific posterior type probabilities (the q’s above).

In the subsequent stages of our estimation procedure, we take as given the q’s listed
above and then estimate the learning parameters (i.e. the γj’s, γl’s, λj’s, λl’s, ∆ and σ2) by
weighted m-estimation.

Once we obtain estimates of the learning parameters, we take these estimates as given and
then estimate the graduation probabilities, the aggregate labor market time series process,
the CCPs (including white collar job offer arrival parameters), and the structural flow utility
parameters. In each subsequent stage, we continue to use the weights described above for
each individual, depending on his missing outcome status and first-stage auxiliary likelihood
value.
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D Details on consumption

This appendix details how we model consumption. Individuals make decisions in part based
on their expected utility of consumption, where the utility of consumption follows a constant
relative risk aversion form. Consumption is supported by some combination of labor income,
parental transfers, educational grants or loans, or the social safety net. We detail below each
of these components.

D.1 Wages

Our model includes log (hourly) wage equations for the blue- and white-collar sectors. We
also allow individuals to choose between part-time and full-time employment. Denoting by w
the log wage and by h the annual hours worked, we compute E (W ) using the work intensity
and number of weeks worked, as follows (assuming log wages are normally distributed as in
(6)):

E (W |X) = h exp
(
δt + λ0l + λ1l (γ0l +Xiltγ1l + Ail) + σ̂2

sl

2

)
(D.1)

where

h =

40 · 52 if working full-time in October

20 · 52 if working part-time in October

As we only model employment decisions in the month of October, we verify, using the
individuals in our data, that the values chosen above correspond to the median individual
choosing each work alternative in October. Specifically, the median full-time October worker
reports working 40 hours per week and 52 weeks in the year. Likewise, the median part-
time October worker reports working 20 hours per week and 52 weeks in the year. As a
reassurance, the median among those who are non-employed in October is 0 weeks worked
in the year.
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D.2 Parental transfers

For those who are enrolled in college, we impute (expected) parental transfers separately
by college sector. Our specification is in the spirit of Johnson (2013). Parental transfers
have two components: (i) a probability of receiving any transfer at all; and (ii) a transfer
amount conditional on receiving a transfer at all. Following Johnson, we assume that parental
transfers are taken as given, but that actual transfer amounts depend on the individual’s
school enrollment decision (i.e. 2-year college is less expensive than 4-year college, so the
individual would expect a lesser amount of parental transfers if enrolling in the former).

D.2.1 Logit model of receiving any transfers at all

We use a logit model to compute the probability of receiving a parental transfer while
enrolled in college, where we estimate the parameters separately by sector of college (2-year
vs. 4-year):

Pr (PT > 0 |X) =
exp

(
Xβ̃P T

)
1 + exp

(
Xβ̃P T

) (D.2)

We include the following in X:

• age

• log family income

• race/ethnicity dummies

D.2.2 Log transfers conditional on receiving any

We estimate log transfers conditional on receiving positive transfers using a log-linear regres-
sion model (again, separately estimating the parameters by sector of college). We include
the following as covariates in the regression:

• age

• log family income

• years of college completed

• race/ethnicity dummies
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D.2.3 Expected parental transfers

Using the two components of the transfer function, we then compute expected parental
transfers as follows:

E (PT |X) = Pr (PT > 0 |X) × E [exp (log (PT )) |X,PT > 0]

=
exp

(
X
̂̃
βpr

)
1 + exp

(
X
̂̃
βpr

) × exp
X ̂̃βln +

̂̃σ2
ln

2

 (D.3)

where ̂̃βpr are the estimated logit parameters, and ̂̃
βln and ̂̃σln are the estimated OLS pa-

rameters (̂̃σln is the root mean squared error of the regression model).

D.3 Tuition, Grants, Loans, and EFC

For those who are enrolled in college, we impute the out-of-pocket cost of attending college.
In order to capture realistic gradients in need- and merit-based grants, we make use of the
following three variables: Expected Family Contribution (EFC), parental income, and SAT
math and verbal scores.

Data on grants and loans are included in the NLSY97, but are missing at sufficiently high
rates as to render them unusable for our analysis. Moreover, it is difficult to separate need-
based from merit-based grants. To combat these limitations, we use an outside survey (the
National Center for Education Statistics 2008 National Postsecondary Student Aid Survey
or NPSAS) to compute the mapping between loans (or grants) and EFC, family income, and
SAT score. It is crucial to capture both family income and SAT score, as students with lower
income will tend to receive more generous grants, as also will students with greater academic
preparation (measured by SAT or ACT-equivalent score), through academic scholarships.

D.3.1 Tuition

We impute tuition as the average annual tuition among men in the 2008 NPSAS. For four-
year colleges, we look only at public institutions.D1 This value is $6,394. For two-year
colleges, the value is $1,380.

D1Many students at elite private universities receive substantial grants to offset the higher tuition sticker
price. We discuss how we handle this in the ensuing paragraphs.
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D.3.2 Grants

We impute grants using data in the 2008 NPSAS. We follow a similar procedure as with
parental transfers: we first impute the probability of having positive levels of loans or grants,
and then impute the amount conditional on having any. The only difference is that the
NPSAS interface we use does not allow us to specify log grants as the dependent variable.D2

We then obtain

E (GR |X) = Pr (GR > 0 |X) × E [GR |X,GR > 0]

=
exp

(
X
̂̃
βpr,GR

)
1 + exp

(
X
̂̃
βpr,GR

) ×
(
X
̂̃
βGR

) (D.4)

We estimate these models separately by college sector (2-year vs. 4-year). Because
there is little merit-based aid in 2-year colleges, and because 2-year colleges do not require
prospective students to take the SAT or ACT, we exclude entrance exam scores from the
2-year college specification.

As right-hand-side variables, we include deciles of the EFC distribution, deciles of the
family income distribution, and deciles of the SAT (or ACT-equivalent) math and verbal
distributions.

We include as additional controls deciles of the tuition level of the university that the
NPSAS respondent is attending. This nets out unobservable college quality (which we do
not model) from the imputed levels of grants.

D.3.3 Loans

To impute loans, we also use data from the 2008 NPSAS. However, we model loans differently
than grants because loans eventually need to be paid back. The main difference with loans is
that we treat loans as deterministic. That is, an individual has an expectation regarding the
amount of loans he will be required to take up if he decides to attend 2-year or 4-year college.
This expected loan amount has no uncertain component with regards to consumption. We
obtain expected loans in a similar way as we impute grants:

D2The NPSAS data is confidential, but the NCES allows researchers to access it through its PowerStats
interface. NCES PowerStats has limited flexibility in terms of regression specifications, but it has enough
flexibility to serve our purposes.
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E (L |X) = Pr (L > 0 |X) × E [L |X,L > 0]

=
exp

(
X
̂̃
βpr,L

)
1 + exp

(
X
̂̃
βpr,L

) ×
(
X
̂̃
βL

) (D.5)

As with grants, we estimate these models separately by college sector (2-year vs. 4-year).
The only difference is that we estimate loans on the age-18 subsample of the NPSAS, whereas
with grants, we include all enrolled students. The right-hand side variables are identical to
the model specification for grants. See Appendix G for more details on how we treat loans
in our dynamic model.

D.3.4 EFC

The EFC is an important input to our method of imputing grants and loans. Here, we
describe our procedure for computing the EFC using observable components of the NLSY97,
along with calibration of other components that are not observed in the NLS97.

The EFC takes as inputs information on parental taxable income and assets and student
taxable income and assets.D3 The goal of the EFC is to summarize a student’s eligibility for
need-based financial aid. Students with lower EFC values may be eligible for more generous
financial aid. The level of generosity is specific to the institution.

The EFC is a highly non-linear function of assets and income for both parents and stu-
dents, as well as characteristics of the family. We impute each individual’s EFC using a sim-
plified calculator available at http://www.collegegold.com/calculatecost/efcworksheets.
We briefly cover below how each component contributes to the EFC.

EFC = f
(
AP , IP , X,AC , IC

)
(D.6)

where A denotes assets, I denotes income, and P and C superscripts denote parent and
child, respectively. X represents characteristics of the parents or family. These include the
parent’s age and marital status, the size of the family, and the number of children currently
in college.

We now outline the contributions for each component of the EFC. We denote by ˜
D3The following commonly held assets are not considered in the EFC: equity of primary residence, retire-

ment funds, and life insurance.
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the EFC contribution from each component, as opposed to the amount of each component
(which is used in (D.6)). The contributions are also, of course, functions of the amounts
themselves. We suppress the amounts to conserve notation.

ÃP (X) = 0.12
{
AP −DA,P (X) − 1732

[(
age − 23

1 [single] 2.3 + 1 [married]

)]}
ĨP (X) = IP −DI,P (X)

ÃC (X) = 0.35
{
AC −DA,C (X)

}
ĨC (X) = 0.5

(
IC −DI,C (X)

)
(D.7)

where 1 [·] is the indicator function, and where

DA,P (X) = min
{
$250k, 0.5AB,P

}
1
[
AB,P > 0

]
DI,P (X) = FICAP + TaxF,P + 0.06IP + $10k + (H$3.46k −N$2.46k) +

min
{
$3.1k, 0.35IP

}
DA,C (X) = min

{
$250k, 0.5AB,C

}
1
[
AB,C > 0

]
DI,C (X) = FICAC + TaxF,C + 0.03IC + $2.55k

(D.8)

where AB,P denotes business/farm assets of the parent and AB,C for the child; FICA denotes
federal payroll tax (for either parent or child); TaxF denotes federal income tax paid (for
either parent or child); H denotes number of people in household; N denotes number of
children in college.

Combining (D.7) and (D.8), we have

EFC =


0 if IP ≤ $20k

ĨP (X) + ĨC (X) if IP ∈ ($20k, $50k)

ÃP (X) + ĨP (X) + ÃC (X) + ĨC (X) if IP ≥ $50k

(D.9)

D.3.5 EFC components observed in the NLSY97

We use the following NLSY97 variables as inputs into the EFC function:

• Household size in 1997

• Parent age

D6



• Parent marital status

• Parent income at age 17

• Parent net worth at age 17

– We use the 2004 Survey of Income and Program Participation (SIPP) to estimate
the function mapping household net worth to the subset of household assets that
enter into the EFC formula. We then use this function to impute parental EFC
assets as a function of parental net worth.D4

• Child income in every year of survey

– We assume that past income has no stochastic element, and that it does not vary
except by previous work status. This assumption is innocuous, and is invoked
in order to allow us to preserve the properties of our dynamic model for ease of
estimation. In practice, EFC varies little with income, holding fixed work intensity
and all other EFC inputs.

D.3.6 EFC components not observed in the NLSY97

While the NLSY97 collects detailed data, there are a number of EFC inputs that are not
collected. Here we briefly discuss how we handle these.

• Income taxes paid. For this, we impute income tax using the average tax rates reported
in Guner, Kaygusuz, and Ventura (2014)

• Number of children in college. We calibrate this number to 1, which is the median in
the NLSY97

• Business assets. We calibrate these to $0.

• Child assets. We calibrate these to $0.

D.4 Flow utility of consumption

We assume that individuals have CRRA preferences over their consumption, with a risk
aversion parameter set equal to θ. It follows that the flow utility of consumption is given by:

D4EFC assets are allowed to be a function of the following variables: a quadratic in net worth, log family
income, and the full set of interactions between parental education and race/ethnicity.
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u(C) = C1−θ

1 − θ
(D.10)

where the consumption level C is given by Equations 18 and 19. We distinguish three cases:

1. Not in school and not working:

E(U(C)) = C1−θ

1 − θ
(D.11)

2. Working and not in school:

E(U(C)) = E(max1−θ(W,C))
1 − θ

= 1
1 − θ

×
(
Fw(lnC)C1−θ + (1 − Fw(lnC))E(Z|Z ≤ C1−θ)

) (D.12)

where (denoting by h the annual hours worked) Z = exp((1−θ) lnW ), and Fw(·) is the
cdf. of the (normal) distribution (mw, σw) of w, where mw = log(h) + λ0 + λ1(X ′β +
E(Aw|It)) and σ2

w = σ2
ε + λ2

1Var(Aw|It), where λ0 is the intercept for the productivity
index for wages and λ1 is the loading on the productivity index for wages, with (λ0, λ1)
normalized to (0, 1) for out-of-school wages. Note that Z is log-normally distributed,
with parameters mz = (1 − θ)mw and σ2

z = (1 − θ)2σ2
w. It follows that the conditional

expectation term E(Z|Z ≤ C1−θ) is obtained using the formula (and setting a = C1−θ):

E(Z|Z ≤ a) = exp(mz + σ2
z/2)

Φ( ln(a)−mz−σ2
z

σz
)

Φ( ln(a)−mz

σz
)

(D.13)

where Φ(·) denotes the cdf. of a standard normal distribution.D5

D5For obtaining the expected utility of consumption in future periods (which is required according to our
finite dependence framework), we simply set mw,t+1 = mw + ϕδt and σ2

w,t+1 = σ2
w + σ2

ζ , where ϕ is the
autocorrelation coefficient on the year dummies δt and σ2

ζ is the variance of the residuals of the AR(1) year
dummy model.

We similarly augment the mean and variance of wages with the variances mentioned above for step (3)
discussed below.
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Note that the expression above applies to θ > 1. If θ < 1, the expression becomes:

E(U(C)) = E(max1−θ(W,C))
1 − θ

= 1
1 − θ

×
(
Fw(lnC)C1−θ + (1 − Fw(lnC))E(Z|Z ≥ C1−θ)

) (D.14)

where the conditional expectation term E(Z|Z ≥ C1−θ) is obtained using the formula
(and setting a = C1−θ):

E(Z|Z ≥ a) = exp(mz + σ2
z/2)

1 − Φ( ln(a)−mz−σ2
z

σz
)

1 − Φ( ln(a)−mz

σz
)

(D.15)

If θ = 1 we have logarithmic preferences and the expected utility of consumption is
given by:

E(U(C)) = Fw(lnC) lnC + (1 − Fw(lnC))E(w|w ≥ lnC) (D.16)

where Fw(·) is the cdf. of the normal distribution with moments (mw, σw) given above,
and the truncated mean E(w|w ≥ lnC) is given by:

E(w|w ≥ lnC) = mw + σw

(
φ(lnC)

1 − Φ(lnC)

)
(D.17)

3. In school:

E(U(C)) = E(max1−θ(C∗, C))
1 − θ

(D.18)

1. and 2. are straightforward to compute and do not require numerical integration. 3.
does require numerical integration over the (log-normal) distributions of parental transfers
PT , grants G, and (for school and work only) in-school wages W .

Specifically, the expected utility of consumption for the school and no-work alternative
is written as follows (keeping the conditioning on the observed characteristics X implicit):
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E(U(C)) = 1
1 − θ

∫∫
max1−θ(C∗, C)fP T (pt)fGR(gr)dptdgr (D.19)

where fP T (·) and fGR(·) respectively denote the pdf. of the log-normal distribution of parental
transfers and the normal distribution of grants, and C∗ is expressed as a function of parental
transfers, grants and loans as in (18). Recall that we treat expected loans as deterministic
with respect to consumption.

Similarly, the expected utility of consumption for the school and work alternatives is
written as follows:

E(U(C)) = 1
1 − θ

∫∫∫
max1−θ(C∗, C)fP T (pt)fGR(gr)fW (W )dptdgrdW (D.20)

where fP T (·), fW (·), and fGR(·) respectively denote the pdf. of the log-normal distributions
of parental transfers and in-school wages and the normal distribution of grants, and C∗ is
expressed as a function of parental transfers, loans, grants, and wages (see (18)).

In the following two subsubsections, we provide detailed examples of consumption for the
case of not working in college, as well as for the case of working while in college.

D.4.1 Example 1: Consumption in college (and not working)

Expanding out all notation and assuming that consumption in college (no work) is solely
a function of parental transfers (i.e. the individual received no grants), we would have
(combining (D.3) and (D.19))

E(U(C)|X = x) = 1
1 − θ

∫ ∞

−∞
max1−θ(ept + l − tf, C)fpt|X=x(pt)dpt

=(1 − Pr(PT > 0|X = x)) × C1−θ

1 − θ

+ Pr(PT > 0|X = x) × 1
1 − θ

∫ ∞

−∞
max1−θ(ept + l − tf, C) 1

σln

φ(pt−Xβln)dpt

(D.21)

where pt = log(PT ) refers to log-parental transfers, l refers to the individual’s deterministic
amount of expected loans, t refers to tuition, and φ(·) denotes the pdf. of a standard normal
distribution.
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The full version of (D.19) in the case where the student receives grants would then be

E(U(C)|X = x) = 1
1 − θ

∫∫ ∞

−∞
max1−θ(ept + gr + l − tf, C) 1

σln

φ(pt−Xβln) 1
σgr

φ(gr −Xβgr)dptdgr

= 1
1 − θ

∫∫ ∞

−∞
max1−θ(ept + gr + l − tf, C)dF (pt)dF (gr)

= Pr(PT = 0) Pr(GR = 0) × C1−θ

1 − θ

+ Pr(PT > 0) Pr(GR = 0) × 1
1 − θ

∫ ∞

−∞
max1−θ(ept + l − tf, C)dF (pt)

+ Pr(PT = 0) Pr(GR > 0) × 1
1 − θ

∫ ∞

−∞
max1−θ(gr + l − tf, C)dF (gr)

+ Pr(PT > 0) Pr(GR > 0) × 1
1 − θ

∫∫ ∞

−∞
max1−θ(ept + gr + l − tf, C)dF (pt)dF (gr)

(D.22)

where pt = log(PT ) refers to log-parental transfers, g refers to grants (in levels), l refers to deterministic loans (in levels),
and φ (·) each denote the pdf. of the standard normal distribution.

D.4.2 Example 2: Consumption while working in college

Expanding out all notation and considering the case of working while in college (and denoting h the annual hours worked),
we would have

D
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E(U(C)|X = x) = 1
1 − θ

∫∫∫ ∞

−∞
max1−θ(elog(h)+w + ept + gr + l − tf, C) 1

σw

φ(w − log(h) − λ0 − λ1(Xβ + A))×

1
σln

φ(pt−Xβln) 1
σgr

φ(gr −Xβgr)
1
σl

φ(l −Xβl)dwdptdgr

= 1
1 − θ

∫∫∫ ∞

−∞
max1−θ(elog(h)+w + ept + gr + l − tf, C)dF (w)dF (pt)dF (gr)

= Pr(PT = 0) Pr(GR = 0) × 1
1 − θ

∫ ∞

−∞
max1−θ(elog(h)+w + l − tf, C)dF (w)

+ Pr(PT > 0) Pr(GR = 0) × 1
1 − θ

∫∫ ∞

−∞
max1−θ(elog(h)+w + ept + l − tf, C)dF (w)dF (pt)

+ Pr(PT = 0) Pr(GR > 0) × 1
1 − θ

∫∫ ∞

−∞
max1−θ(elog(h)+w + gr + l − tf, C)dF (w)dF (gr)

+ Pr(PT > 0) Pr(GR > 0) × 1
1 − θ

∫∫∫ ∞

−∞
max1−θ(elog(h)+w + ept + gr + l − tf, C)dF (w)dF (pt)dF (gr)

(D.23)

where the notation is as on the previous page, and where A denotes the individual’s prior ability belief as of time t (i.e.
E(A|It)). Note that σw is as defined above: σw =

√
σ2

ε + λ2
1V (Aw|It) where λ1 is the productivity index loading on in-school

wages (λ1 = 1 for out-of-school wages).

D
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D.4.3 Computation of expected utility of consumption

In practice, we compute the expected utility of consumption in two different ways, depend-
ing on where it enters the model. First, for expected utility of consumption that enters the
flow utility terms in periods t and t + 1 (see Appendix F), we compute the integrals using
Monte Carlo integration, or Gaussian quadrature if the dimension of the integral is 1 and
the integral does not have a closed form as in Equation (D.15). We do this for the struc-
tural estimation as well as the backwards recursion. Second, for expected consumption that
enters the conditional choice probability terms, we approximate the integral using a flexible
polynomial evaluated at the relevant points of the state space along the finite dependence
paths. We do this in order to limit the computational burden. This polynomial is fitted
in a preliminary step from a linear regression of the actual expected utility of consumption
(computed by Monte Carlo integration), on a “naive” utility of consumption (computed as-
suming away uncertainty about wage realizations, parental transfers, or educational grants),
its square, and several interactions with and squares of parental transfers, educational grants,
and expected loans. We estimate these regressions separately for 2-year and 4-year schooling
options, where the two 4-year majors are pooled together. The R2 of this regression always
exceeds 0.9, and in many cases exceeds 0.98.

D.5 Risk aversion parameter θ

We set the risk aversion parameter θ equal to 0.4. We choose this parameter as follows.
We first implement a grid search procedure for the static choice model (stage 4 in Table
B1), using values of θ in the interval [0, 2] in increments of 0.05. We choose this interval
because it covers several different values from the literature, ranging from risk neutrality to
the value of 2 used by Hai and Heckman (2017) and including the value of 0.48 in Keane
and Wolpin (2001). This preliminary step results in a value of θ equal to 0.15. Repeating
a similar grid search procedure based on the dynamic choice model, conditional on the
static choice θ = 0.15, yields θ = 0.4. While for simplicity we set a common θ = 0.4 for
the static and dynamic choice models, our estimation results (available upon request) are
quantitatively robust to the use of θ = 0.15 and θ = 0.4 in the static and dynamic choice
models, respectively.
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E Effort and grades

In this section we show how to reframe our learning model as a setup where students are
exerting effort and receiving signals regarding their per-unit study costs. Ahn et al. (2023)
show that a particular form for the returns and costs of studying yield linear expressions
for grades and utility in Aij. Namely, one could alternatively express our grade equation,
Equation (1), as a function of study time, siτ :

Gijτ (siτ ) = γ0j +Xijτγ1j + ln(siτ ) (E.1)

where Aij +εijτ in the original equation has been replaced by ln(siτ ), the log of study time.E1

With the cost of studying in major j given by:E2

cj(siτ ) = siτ exp(δ0j + δ1Aij + εijτ ), (E.2)

and individuals valuing grades at αGGijτ (siτ ), the (interior) optimal choice of study time is
given by:

s∗
iτ = αG

exp(δ0j + δ1Aij + εijτ ) (E.3)

Substituting this expression into (E.1) yields:

Gijτ (s∗
iτ ) = γ̃0j +Xijτγ1j + Ãij + ε̃ijτ (E.4)

where:

γ̃0j = γ0j + ln(αG) − δ0j (E.5)

Ãij = −δ1Aij (E.6)

ε̃ijτ = −εijτ (E.7)

Individuals then learn about the permanent unobserved component of the per-unit study
costs, Aij, using realized grades as a noisy signal.

On the utility front, substituting in optimal study time into grades and costs of studying
yields a net utility of effort αG(Gijτ (s∗

iτ )−1), which also maps directly into our specification.

E1That there is no coefficient on ln(siτ ) is innocuous.
E2Note that the model naturally extends to one where Xijτ affects study costs as well.
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F More details on finite dependence

This appendix section details the mathematical derivation of the difference in value functions
vjkl − vh. The main goal here, which we accomplish using the finite dependence property
of our model, is to obtain an expression of vjkl − vh that is not recursive. For the vjkl

conditional value function, individuals choose home production in both t+ 1 and t+ 2. For
the vh conditional value function, individuals choose (j, k, l) in t + 1 and home production
in t + 2. Because of the exogenous white collar job offer arrival rate λ̃(h)

t+1, we respectively
weight the acceptance and rejection probabilities in t + 1 (in the event that i receives an
offer) by 1

λ̃
(h)
t+1

and 1− 1
λ̃

(h)
t+1

. This allows us to achieve the cancellation in t+3 that is required
for estimation of the model.

We make three simplifying assumptions that are crucial to the validity of finite depen-
dence: (i) the utility of rejecting a white-collar offer is same as the utility of not receiving
a white-collar offer, i.e. there is no “discouragement effect” to not receiving an offer; (ii)
there is no human capital depreciation; and (iii) loans evolve in a specific manner detailed
in Appendix G. For expositional purposes, we simplify the states to be work experience (x)
and previous decision (dt−1).

It is also helpful to keep in mind that the ex ante value function Vt contains multiple
dimensions of uncertainty: job offer arrival; aggregate labor market state; college graduation;
wage and grade signals; and preference shocks.

Throughout this appendix, we make use of the conditional choice probability mapping
of Hotz and Miller (1993) and Arcidiacono and Miller (2011):

Vt(Zit) = vjkl(Zit) − ln pjkl(Zit) + γ (F.1)

for all i, (j, k, l) and t, where pjkl(Zit) denotes the CCP of choosing alternative (j, k, l) and
γ is Euler’s constant. This holds by virtue of our assumption that the preference shocks
are distributed Type I extreme value. Note that, because we are interested in differenced
conditional value functions vjkl−vh, c drops out of the expression and we accordingly suppress
it for expositional purposes in what follows.

We abbreviate, for all (j, k, l) and t, ujkl(Zit) as ujklt and pjkl(Zit) as pjklt to conserve on
notation. We also omit dependence of vjkl on (Zit) and all Et operators. Finally, all utilities
and probabilities are conditional on unobserved type r, which we also suppress.
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F.1 Paths not involving four-year college

F.1.1 Work-home-home path with frictions

vjkl = ujklt + βEt [Vt+1 (xt + 1, dt = (j, k, l))]

= ujklt + β

 λ̃
(jkl)
t+1 Et [Vt+1 (xt + 1, dt = (j, k, l) , offert+1 = 1)] +(

1 − λ̃
(jkl)
t+1

)
Et [Vt+1 (xt + 1, dt = (j, k, l) , offert+1 = 0)]


= ujklt + β

 λ̃
(jkl)
t+1

{
uw

ht+1 − ln pw
ht+1 + βVt+2 (xt + 1, dt+1 = h)

}
+(

1 − λ̃
(jkl)
t+1

) {
un

ht+1 − ln pn
ht+1 + βVt+2 (xt + 1, dt+1 = h)

}


= ujklt + β

 λ̃
(jkl)
t+1

{
− ln pw

ht+1

}
+(

1 − λ̃
(jkl)
t+1

) {
− ln pn

ht+1

}
+ β2Vt+2 (xt + 1, dt+1 = h)

(F.2)

where superscript w signifies “received white collar offer” and superscript n signifies “no offer
received.” Because we assume that “received an offer in the previous period” is not a state
variable, the two Vt+2 terms can be combined. Continuing on through period t+ 3:

vjkl = ujklt + β

 λ̃
(jkl)
t+1

{
− ln pw

ht+1

}
+(

1 − λ̃
(jkl)
t+1

) {
− ln pn

ht+1

}


+ β2

 λ̃
(h)
t+2

{
uw

ht+2 − ln pw
ht+2 + βVt+3 (xt + 1, dt+2 = h)

}
+(

1 − λ̃
(h)
t+2

) {
un

ht+2 − ln pn
ht+2 + βVt+3 (xt + 1, dt+2 = h)

}


= ujklt + β

 λ̃
(jkl)
t+1

{
− ln pw

ht+1

}
+(

1 − λ̃
(jkl)
t+1

) {
− ln pn

ht+1

}
+ β2

 λ̃
(h)
t+2

{
− ln pw

ht+2

}
+(

1 − λ̃
(h)
t+2

) {
− ln pn

ht+2

}


+ β3Vt+3 (xt + 1, dt+2 = h)

(F.3)
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F.1.2 Home-work-home path with frictions

Using the same notation as above, we get

vh = uht + βEt [Vt+1 (xt, dt = h)]

= uht + β

 λ̃
(h)
t+1Et [Vt+1 (xt, dt = h, offert+1 = 1)] +(

1 − λ̃
(h)
t+1

)
Et [Vt+1 (xt, dt = h, offert+1 = 0)]



= uht + β



(
1

λ̃
(h)
t+1

)
λ̃

(h)
t+1Et

[
Vt+1

(
xt, dt = h, offert+1 = 1, acceptt+1 = 1

)]
+(

1 − 1
λ̃

(h)
t+1

)
λ̃

(h)
t+1Et

[
Vt+1

(
xt, dt = h, offert+1 = 1, acceptt+1 = 0

)]
+(

1 − λ̃
(h)
t+1

)
Et [Vt+1 (xt, dt = h, offert+1 = 0)]



= uht + β



(
1

λ̃
(h)
t+1

)
λ̃

(h)
t+1

{
uw

jklt+1 − ln pw
jklt+1 + βVt+2 (xt + 1, dt+1 = (j, k, l))

}
+(

1 − 1
λ̃

(h)
t+1

)
λ̃

(h)
t+1

{
uw

ht+1 − ln pw
ht+1 + βVt+2 (xt, dt+1 = h)

}
+(

1 − λ̃
(h)
t+1

) {
un

ht+1 − ln pn
ht+1 + βVt+2 (xt, dt+1 = h)

}



= uht + β


(

1
λ̃

(h)
t+1

)
λ̃

(h)
t+1

{
uw

jklt+1 − ln pw
jklt+1 + βVt+2 (xt + 1, dt+1 = (j, k, l))

}
+(

λ̃
(h)
t+1 − 1

) {
− ln pw

ht+1 + βVt+2 (xt, dt+1 = h)
}

+(
1 − λ̃

(h)
t+1

) {
− ln pn

ht+1 + βVt+2 (xt, dt+1 = h)
}


= uht + β

 {
uw

jklt+1 − ln pw
jklt+1

}
+(

1 − λ̃
(h)
t+1

) {
− ln pn

ht+1 + ln pw
ht+1

}
+ β2Vt+2 (xt + 1, dt+1 = (j, k, l))

(F.4)

An adequate choice of weighting the offer acceptance and offer rejection future value
terms in (F.4) gives us the cancellation that we were looking for. Continuing on through
period t+ 3:

vh = uht + β

 {
uw

jklt+1 − ln pw
jklt+1

}
+(

1 − λ̃
(h)
t+1

) {
− ln pn

ht+1 + ln pw
ht+1

}


+ β2

 λ̃
(jkl)
t+2

{
uht+2 − ln pw

ht+2 + βVt+3 (xt + 1, dt+2 = h)
}

+(
1 − λ̃

(jkl)
t+2

) {
uht+2 − ln pn

ht+2 + βVt+3 (xt + 1, dt+2 = h)
}


= uht + β

 {
uw

jklt+1 − ln pw
jklt+1

}
+(

1 − λ̃
(h)
t+1

) {
− ln pn

ht+1 + ln pw
ht+1

}


+ β2

 λ̃
(jkl)
t+2

{
− ln pw

ht+2

}
+(

1 − λ̃
(jkl)
t+2

) {
− ln pn

ht+2

}
+ β3Vt+3 (xt + 1, dt+2 = h)

(F.5)
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F.1.3 Putting it together

Combining (F.3) and (F.5) gives us

vjkl − vh = ujklt + β

 λ̃
(jkl)
t+1

{
− ln pw

ht+1

}
+(

1 − λ̃
(jkl)
t+1

) {
− ln pn

ht+1

}
+ β2

 λ̃
(h)
t+2

{
− ln pw

ht+2

}
+(

1 − λ̃
(h)
t+2

) {
− ln pn

ht+2

}


− β


(

1
λ̃

(h)
t+1

)
λ̃

(h)
t+1

{
uw

jklt+1 − ln pw
jklt+1

}
+{

−
(
1 − λ̃

(h)
t+1

)
ln pn

ht+1 −
(

1 − 1
λ̃

(h)
t+1

)
λ̃

(h)
t+1 ln pw

ht+1

}


− β2

 λ̃
(jkl)
t+2

{
− ln pw

ht+2

}
+(

1 − λ̃
(jkl)
t+2

) {
− ln pn

ht+2

}


(F.6)

F.2 Paths involving four-year college

Because graduation from four-year college is stochastic in our model, finite dependence paths
involving these options contain additional terms that include graduation probabilities.

F.2.1 College-home-home path with frictions and stochastic graduation

Now we introduce a probability of graduation that four-year college students must forecast
over. Let ρt be defined as the probability of having graduated with a bachelor’s degree before
period t, and let gt be a variable equal to 1 if one holds a bachelor’s degree at the beginning
of period t and 0 otherwise.
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vjkl = ujklt + βρt+1Et [Vt+1 (xt + 1, dt = (j, k, l) , gt+1 = 1)] +

β (1 − ρt+1)Et [Vt+1 (xt + 1, dt = (j, k, l) , gt+1 = 0)]

= ujklt + βρt+1

 λ̃
(jkl,g)
t+1 Et [Vt+1 (xt + 1, dt = (j, k, l) , gt+1 = 1, offert+1 = 1)] +(

1 − λ̃
(jkl,g)
t+1

)
Et [Vt+1 (xt + 1, dt = (j, k, l) , gt+1 = 1, offert+1 = 0)]

+

β (1 − ρt+1)
 λ̃

(jkl,ng)
t+1 Et [Vt+1 (xt + 1, dt = (j, k, l) , gt+1 = 0, offert+1 = 1)] +(

1 − λ̃
(jkl,ng)
t+1

)
Et [Vt+1 (xt + 1, dt = (j, k, l) , gt+1 = 0, offert+1 = 0)]


= ujklt + βρt+1

 λ̃
(jkl,g)
t+1

{
uw,g

ht+1 − ln pw,g
ht+1 + βVt+2 (xt + 1, dt+1 = h, gt+1 = 1)

}
+(

1 − λ̃
(jkl,g)
t+1

) {
un,g

ht+1 − ln pn,g
ht+1 + βVt+2 (xt + 1, dt+1 = h, gt+1 = 1)

}
+

β (1 − ρt+1)
 λ̃

(jkl,ng)
t+1

{
uw,ng

ht+1 − ln pw,ng
ht+1 + βVt+2 (xt + 1, dt+1 = h, gt+1 = 0)

}
+(

1 − λ̃
(jkl,ng)
t+1

) {
un,ng

ht+1 − ln pn,ng
ht+1 + βVt+2 (xt + 1, dt+1 = h, gt+1 = 0)

}


= ujklt + βρt+1

 λ̃
(jkl,g)
t+1

{
− ln pw,g

ht+1

}
+(

1 − λ̃
(jkl,g)
t+1

) {
− ln pn,g

ht+1

}
+ β (1 − ρt+1)

 λ̃
(jkl,ng)
t+1

{
− ln pw,ng

ht+1

}
+(

1 − λ̃
(jkl,ng)
t+1

) {
− ln pn,ng

ht+1

}
+

β2ρt+1Vt+2 (xt + 1, dt+1 = h, gt+1 = 1) +

β2 (1 − ρt+1)Vt+2 (xt + 1, dt+1 = h, gt+1 = 0)
(F.7)

where superscript w signifies “received offer,” superscript n signifies “no offer received,”
superscript ng signifies “not graduated,” and superscript g signifies “graduated.” Because
we assume that “received an offer in the previous period” is not a state variable, the two
sets of Vt+2 terms can be combined. Continuing on through period t+ 3:
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vjkl = ujklt + βρt+1

 λ̃
(jkl,g)
t+1

{
− ln pw,g

ht+1

}
+(

1 − λ̃
(jkl,g)
t+1

) {
− ln pn,g

ht+1

}
+ β (1 − ρt+1)

 λ̃
(jkl,ng)
t+1

{
− ln pw,ng

ht+1

}
+(

1 − λ̃
(jkl,ng)
t+1

) {
− ln pn,ng

ht+1

}
+

β2ρt+1

 λ̃
(h,g)
t+2

{
uw,g

ht+2 − ln pw,g
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+1 = 1)

}
+(

1 − λ̃
(h,g)
t+2

) {
un,g

ht+2 − ln pn,g
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+1 = 1)

}
+

β2 (1 − ρt+1)
 λ̃

(h,ng)
t+2

{
uw,ng

ht+2 − ln pw,ng
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+1 = 0)

}
+(

1 − λ̃
(h,ng)
t+2

) {
un,ng

ht+2 − ln pn,ng
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+1 = 0)

}


= ujklt + βρt+1

 λ̃
(jkl,g)
t+1

{
− ln pw,g

ht+1

}
+(

1 − λ̃
(jkl,g)
t+1

) {
− ln pn,g

ht+1

}
+ β (1 − ρt+1)

 λ̃
(jkl,ng)
t+1

{
− ln pw,ng

ht+1

}
+(

1 − λ̃
(jkl,ng)
t+1

) {
− ln pn,ng

ht+1

}
+

β2ρt+1

 λ̃
(h,g)
t+2

{
− ln pw,g

ht+2

}
+(

1 − λ̃
(h,g)
t+2

) {
− ln pn,g

ht+2

}
+ β2 (1 − ρt+1)

 λ̃
(h,ng)
t+2

{
− ln pw,ng

ht+2

}
+(

1 − λ̃
(h,ng)
t+2

) {
− ln pn,ng

ht+2

}
+

β3ρt+1Vt+3 (xt + 1, dt+2 = h, gt+1 = 1) +

β3 (1 − ρt+1)Vt+3 (xt + 1, dt+2 = h, gt+1 = 0)
(F.8)

F.2.2 Home-college-home path with frictions and stochastic graduation

Using the same notation as above, we get
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vh = uht + βEt [Vt+1 (xt, dt = h)]

= uht + β

 λ̃
(h,ng)
t+1 Et [Vt+1 (xt, dt = h, offert+1 = 1)] +(

1 − λ̃
(h,ng)
t+1

)
Et [Vt+1 (xt, dt = h, offert+1 = 0)]



= uht + β



(
1

λ̃
(h,ng)
t+1

)
λ̃

(h,ng)
t+1 Et

[
Vt+1

(
xt, dt = h, offert+1 = 1, acceptt+1 = 1

)]
+(

1 − 1
λ̃

(h,ng)
t+1

)
λ̃

(h,ng)
t+1 Et

[
Vt+1

(
xt, dt = h, offert+1 = 1, acceptt+1 = 0

)]
+(

1 − λ̃
(h,ng)
t+1

)
Et [Vt+1 (xt, dt = h, offert+1 = 0)]



= uht + β



(
1

λ̃
(h,ng)
t+1

)
λ̃

(h,ng)
t+1

{
uw

jklt+1 − ln pw
jklt+1 + βVt+2 (xt + 1, dt+1 = (j, k, l))

}
+(

1 − 1
λ̃

(h,ng)
t+1

)
λ̃

(h,ng)
t+1

{
uw

ht+1 − ln pw
ht+1 + βVt+2 (xt, dt+1 = h)

}
+(

1 − λ̃
(h,ng)
t+1

) {
un

ht+1 − ln pn
ht+1 + βVt+2 (xt, dt+1 = h)

}



= uht + β


(

1
λ̃

(h,ng)
t+1

)
λ̃

(h,ng)
t+1

{
uw

jklt+1 − ln pw
jklt+1 + βVt+2 (xt + 1, dt+1 = (j, k, l))

}
+(

λ̃
(h,ng)
t+1 − 1

) {
− ln pw

ht+1 + βVt+2 (xt, dt+1 = h)
}

+(
1 − λ̃

(h,ng)
t+1

) {
− ln pn

ht+1 + βVt+2 (xt, dt+1 = h)
}


= uht + β

 {
uw

jklt+1 − ln pw
jklt+1

}
+(

1 − λ̃
(h,ng)
t+1

) {
− ln pn

ht+1 + ln pw
ht+1

}
+

β2ρt+2Vt+2 (xt + 1, dt+1 = (j, k, l) , gt+2 = 1) +

β2 (1 − ρt+2)Vt+2 (xt + 1, dt+1 = (j, k, l) , gt+2 = 0)
(F.9)

As before, a clever choice of weighting the offer acceptance and offer rejection future
value terms in (F.9) gives us the cancellation that we are looking for. Continuing on through
period t+ 3:
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vh = uht + β

 {
uw

jklt+1 − ln pw
jklt+1

}
+(

1 − λ̃
(h,ng)
t+1

) {
− ln pn

ht+1 + ln pw
ht+1

}
+

β2ρt+2

 λ̃
(jkl,g)
t+2

{
uw,g

ht+2 − ln pw,g
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+2 = 1)

}
+(

1 − λ̃
(jkl,g)
t+2

) {
un,g

ht+2 − ln pn,g
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+2 = 1)

}
+

β2 (1 − ρt+2)
 λ̃

(jkl,ng)
t+2

{
uw,ng

ht+2 − ln pw,ng
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+2 = 0)

}
+(

1 − λ̃
(jkl,ng)
t+2

) {
un,ng

ht+2 − ln pn,ng
ht+2 + βVt+3 (xt + 1, dt+2 = h, gt+2 = 0)

}


= uht + β

 {
uw

jklt+1 − ln pw
jklt+1

}
+(

1 − λ̃
(h,ng)
t+1

) {
− ln pn

ht+1 + ln pw
ht+1

}
+

β2ρt+2

 λ̃
(jkl,g)
t+2

{
− ln pw,g

ht+2

}
+(

1 − λ̃
(jkl,g)
t+2

) {
− ln pn,g

ht+2

}
+ β2 (1 − ρt+2)

 λ̃
(jkl,ng)
t+2

{
− ln pw,ng

ht+2

}
+(

1 − λ̃
(jkl,ng)
t+2

) {
− ln pn,ng

ht+2

}
+

β3ρt+2Vt+3 (xt + 1, dt+2 = h, gt+2 = 1) +

β3 (1 − ρt+2)Vt+3 (xt + 1, dt+2 = h, gt+2 = 0)
(F.10)

F.2.3 Putting it together when there is stochastic graduation in the model

Equations (F.8) and (F.10) can be combined under the following assumptions:

1. ρt+1 = ρt+2; that is, there is no age- or calendar-time component to the college gradu-
ation probability

2. Vt+3 (·, ·, gt+2 = g) ≡ Vt+3 (·, ·, gt+1 = g) for g ∈ {0, 1}; i.e., utility does not depend on
how long one has been a college graduate.

Both of these assumptions hold according to our model, wherein the college graduation
process does not include age or calendar time, and wherein the flow utility does not depend
on duration of life as a college graduate—it depends only on current college graduation
status.
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Combining the formulas in (F.8) and (F.10), setting ρt+2 = ρt+1, and simplifying gives us:

vjkl − vh = ujklt + βρt+1

 λ̃
(jkl,g)
t+1

{
− ln pw,g

ht+1

}
+(

1 − λ̃
(jkl,g)
t+1

) {
− ln pn,g

ht+1

}
+ β (1 − ρt+1)

 λ̃
(jkl,ng)
t+1

{
− ln pw,ng

ht+1

}
+(

1 − λ̃
(jkl,ng)
t+1

) {
− ln pn,ng

ht+1

}
+

β2ρt+1

 λ̃
(h,g)
t+2

{
− ln pw,g

ht+2

}
+(

1 − λ̃
(h,g)
t+2

) {
− ln pn,g

ht+2

}
+ β2 (1 − ρt+1)

 λ̃
(h,ng)
t+2

{
− ln pw,ng

ht+2

}
+(

1 − λ̃
(h,ng)
t+2

) {
− ln pn,ng

ht+2

}
−

β


(

1
λ̃

(h,ng)
t+1

)
λ̃

(h,ng)
t+1

{
uw

jklt+1 − ln pw
jklt+1

}
+{

−
(
1 − λ̃

(h,ng)
t+1

)
ln pn

ht+1 −
(

1 − 1
λ̃

(h,ng)
t+1

)
λ̃

(h,ng)
t+1 ln pw

ht+1

}
−

β2ρt+1

 λ̃
(jkl,g)
t+2

{
− ln pw,g

ht+2

}
+(

1 − λ̃
(jkl,g)
t+2

) {
− ln pn,g

ht+2

}
− β2 (1 − ρt+1)

 λ̃
(jkl,ng)
t+2

{
− ln pw,ng

ht+2

}
+(

1 − λ̃
(jkl,ng)
t+2

) {
− ln pn,ng

ht+2

}


(F.11)
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G Details on debt accumulation

This appendix section details our treatment of accumulated debt in the model. As mentioned
in the body of the paper, we allow consumption to depend on loans borrowed during college.
As individuals will eventually need to repay these loans, accumulated debt is an important
state variable in our analysis.

G.1 Accumulated debt

We compute accumulated debt by relying on loan data from the NPSAS survey. As discussed
in Appendix D, we use the subsample of 2008 NPSAS respondents who are 18 years old
to compute expected loans at age 18 as a function of individual characteristics (EFC and
family income for 2-year colleges; EFC, family income, SAT math and SAT verbal for 4-year
colleges).

We then assume that debt accumulates according to the number of periods of school en-
rollment, where each period adds the individual-specific deterministic expected loan amount,
compounded by an interest rate ι which we calibrate. For reasons we discuss in the next
subsection, we assume that individuals take out larger loans the older they are. Specifically,
we assume that the expected loan amount for a person who has been out of high school for
t years is equal to (1 + ι)t times the deterministic loan amount calibrated from 18-year-olds
in the NPSAS, where t = 0 corresponds to the first year after high school graduation.

In our logit model that we use to compute the CCPs, we allow accumulated debt to be
an individual-alternative-specific covariate. Mathematically, it is defined as follows:

debtijt =


(experi,2E(loani,2) + experi,4E(loani,4)) (1 + ι)t + E(loani,2) (1 + ι)t if j ∈ 2yr

(experi,2E(loani,2) + experi,4E(loani,4)) (1 + ι)t + E(loani,4) (1 + ι)t if j ∈ 4yr

(experi,2E(loani,2) + experi,4E(loani,4)) (1 + ι)t if j /∈ college

(G.1)

where E(loani,c) indicates the expected loan amount of individual i when choosing college
sector c ∈ {2, 4}. experi,c indicates the number of periods in the past that the individual en-
rolled in college sector c, and t (minus 1) is the number of years since high school graduation;
i.e. t = 0 for someone in their first year after high school graduation.

Table G1 is an illustrative example of how loans and debt evolve over the lifetime of a
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fictitious individual in our sample.

Table G1: Example of loans and debt for a fictitious individual

t aget dt E(loani,t) debtit

0 18 4yr E(loani,4) E(loani,4)
1 19 2yr E(loani,2)(1 + ι) E(loani,4)(1 + ι) + E(loani,2)(1 + ι)
2 20 Home 0 E(loani,4)(1 + ι)2 + E(loani,2)(1 + ι)2

3 21 2yr E(loani,2)(1 + ι)3 E(loani,4)(1 + ι)3 + 2E(loani,2)(1 + ι)3

4 22 4yr E(loani,4)(1 + ι)4 2E(loani,4)(1 + ι)4 + 2E(loani,2)(1 + ι)4

G.2 Finite dependence with debt

With debt as a state variable, satisfying the finite dependence assumption requires some
more assumptions. As mentioned in the previous subsection, the main assumption we make
is that the expected loan amount in t + 1 for a person who was at home in t is higher by
(1 + ι) than the expected loan amount in t for a person who chose to attend college.

Mathematically, we have the following two finite dependence paths, assuming some
amount of accumulated debt in period t− 1, debtit−1. Note that this quantity is individual-
specific, not individual-alternative-specific. That is, debtit−1 = debtijt−1, j /∈ college.

G.2.1 Home-School-Home Path

• In period t the individual chooses Home, so debtit = debtit−1(1 + ι), where we have
imposed that j = h in t according to the finite dependence path.

• In period t+1 the individual attends college and, according to our assumption, borrows
a loan amount equal to E(loani,c)(1 + ι)t+1, so

debtit+1 = debtit(1 + ι) + E(loani,c)(1 + ι)t+1.

• In period t+ 2 the individual chooses home and has debtit+2 = debtit+1(1 + ι).

G.2.2 School-Home-Home Path

• In period t the individual chooses school, so debtit = debtit−1(1+ ι)+E(loani,c)(1+ ι)t,
where we have imposed that j = c in t according to the finite dependence path.

• In period t+ 1 the individual chooses home and has debtit+1 = debtit(1 + ι).
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• In period t+ 2 the individual chooses home and has debtit+2 = debtit+1(1 + ι).

G.2.3 Cancellation

It is easily verifiable that debtit+2 is the same along both paths by recursively applying the
formulas:

• Home-School-Home path:

debtit+2 = debtit+1(1 + ι)

=
{
debtit(1 + ι) + E(loani,c)(1 + ι)t+1

}
(1 + ι)

=
{
[debtit−1(1 + ι)] (1 + ι) + E(loani,c)(1 + ι)t+1

}
(1 + ι)

= debtit−1(1 + ι)3 + E(loani,c)(1 + ι)t+2

• School-Home-Home path:

debtit+2 = debtit+1(1 + ι)

= {debtit(1 + ι)} (1 + ι)

=
{[
debtit−1(1 + ι) + E(loani,c)(1 + ι)t

]
(1 + ι)

}
(1 + ι)

= debtit−1(1 + ι)3 + E(loani,c)(1 + ι)t+2
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H Estimation of CCP and offer arrival parameters with search
frictions

We make use of a flexible multinomial choice model in order to compute the log CCP terms
that enter the formulas for the conditional value functions (see Appendix F). The likelihood
function for this model can be written as

L =
∏

i

∑
r

πr

∏
t

∏
{j,k,l}

(Pijkltr)dijklt (H.1)

When there are search frictions, however, certain choice alternatives are no longer avail-
able under certain cases. Denoting by Jo the entire choice set, and by Jn the limited choice
set, the likelihood is modified like so:

L =
∏

i

∑
r

πr

∏
t

λitr

∏
{j,k,l}∈Jo

(
P o

ijkltr

)dijklt + (1 − λitr)
∏

{j,k,l}∈Jn

(
P n

ijkltr

)dijklt

 (H.2)

Conditional on the heterogeneity type R = r, the log-likelihood of occupational choice of
individual i in period t is given by:

ℓitr =


ln
(
λitr

∏
{j,k,l}∈Jo

(
P o

ijkltr

)dijklt + (1 − λitr)
∏

{j,k,l}∈Jn

(
P n

ijkltr

)dijklt
)

if dit /∈ white collar

ln
(
λitr

∏
{j,k,l}∈Jo

(
P o

ijkltr

)dijklt
)

if dit ∈ white collar

(H.3)

where

λitr = exp (Zitrδλ)
1 + exp (Zitrδλ)

P o
ijkltr =

exp
(
Xitrβ̃jkl

)
∑

{m,n,o}∈Jo exp
(
Xitrβ̃mno

)
P n

ijkltr =
exp

(
Xitrβ̃jkl

)
∑

{m,n,o}∈Jn exp
(
Xitrβ̃mno

)
(H.4)
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and where P o
ijkltr denotes the (type-specific) choice probability when an offer was received (i.e.

the full choice set was available), while P n
ijkltr denotes the (type-specific) choice probability

when an offer was not received (i.e. limited choice set).
Having estimated the distribution of heterogeneity types in a first step from the measure-

ment equations, we estimate the unknown parameters
(
δλ, β̃

)
by maximizing the following

weighted log-likelihood, where the weights are given by the posterior type probabilities qir:

ℓ̃ =
∑

i

∑
r

qir

∑
t

ℓitr (H.5)

where ℓitr is given in (H.3) above and qir is as defined in Subsection 5.5.
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I Parametric bootstrap procedure

This appendix section details our parametric bootstrap procedure used to obtain standard
errors for the model estimates. We compute the standard errors based on B = 150 bootstrap
replications. We take the following steps to create each bootstrap replication. These steps
are similar to the steps we take to simulate the data when computing the fit of our model
in Subsection 6.5. Namely:

1. Sample with replacement N individuals from the the data used in the structural esti-
mation procedure.

2. Generate initial conditions for each sampled individual. This includes the unobservable
ability vector, the unobserved type, as well as the initial calendar year and the personal
and family background characteristics observed in the data. Draw the ability vector
from the estimated population distribution N

(
0, ∆̂

)
. Similarly, draw the unobserved

type r ∈ {1, . . . , R} from the estimated population distribution of types, which is a
categorical distribution with R-length parameter vector π̂ (i.e. π̂r is the estimated
probability of being unobserved type r).

3. For each time period until period T = 19—the longest panel length in the sample—
repeat the following steps on the cross-section of individuals:

(a) Generate a white collar job offer according to the estimated δ̂λ in (H.4).

(b) Generate choices based on the job offer outcome as well as the estimated flow
utility parameters of the structural model described in Subsection 3.5.

(c) Draw the outcomes (wage and/or grade) corresponding to the choice that was
just drawn, using the parametric specifications of the grade and wage processes
(see Subsections 3.2-3.3).

(d) If at risk of graduating, draw the graduation status using the predicted graduation
probability described in Subsection 3.4.3.

(e) Compute the implied posterior ability beliefs given the outcomes and choices
generated previously as discussed in Subsection 3.4.1, and update the values of
all other deterministic state variables.

4. Finally, for each bootstrap sample generated from the previous steps, estimate the
model as discussed in Subsection 5.5.
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5. Repeat steps 1–4 B = 150 times.

Once we have obtained the vector of parameter estimates for all bootstrap replications
Θ̂b, b = 1, . . . , B, we estimate the variance of Θ̂ as follows:

V̂ ar
(
Θ̂
)

= 1
B − 1

B∑
b=1

(
Θ̂b − Θ̂

)(
Θ̂b − Θ̂

)′
(I.1)

where Θ̂ = 1
B

∑B
b=1 Θ̂b.

Note that, because we simulate the model to form the parametric bootstrap replicates,
we have no missing data and hence there is no need to integrate out over the missing majors
and grades and detailed in Appendix C.4. For each bootstrap replicate, we simply weight
each individual’s choice, graduation, and outcome likelihoods by qir, which is the probability
that i is of unobserved type r in the bootstrap sample.
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J Details on Counterfactual Simulations

This appendix section details the steps we take for the counterfactual simulations of our
model. In our counterfactual simulations, we assume that agents have full information
about their abilities. We then solve each individual’s dynamic programming problem using
backwards recursion.

J.1 Assumptions to simplify the problem

Due to the high dimensionality of the state space, we make the following assumptions to
ensure tractability of our simulations:

• Retirement age is 65, meaning T = 65 − 17 = 48

• Terminal value is set equal to zero for all individuals and choice paths.

• Time is discrete at annual frequency

• Agents are able to choose college for only the first ten periods (i.e. until age 28)

• Individuals can choose college only in the first 10 periods, meaning T ∗ = 10.J1

• Loans have a 20-year repayment horizon that begins in period T ∗ + 10

• Experience variables are capped as follows. In most cases, these caps correspond to
the 99th percentile of what we observe in the data:

– white-collar work experience for non-graduates is capped at 10 years and for
graduates is capped at 15 years

– blue-collar work experience is capped at 15 years

– total work experience is capped at 15 years

– 2-year college experience is capped at 4 years

– 4-year college experience is capped at 6 years

– total college experience is capped at 7 years
J1In estimation, we do not impose this assumption, meaning that individuals can choose college options

throughout our entire sample period. In practice this is not binding as annual college enrollment rates are
below 2% when t > T ∗, compared with above 22% when t ≤ T ∗.
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We also discretize the AR(1) process governing the aggregate labor market shocks in (13) us-
ing Tauchen’s (1986) method. We separate the continuous labor market shocks into quartiles
and approximate the transitions using a four-by-four Markov transition matrix.

J.2 Outline of steps to compute simulations

We take the following steps to produce simulated data consistent with our model parameters
and counterfactual scenario. For each individual in our cross-sectional sample, we repeat
this process 10 times:

1. Generate initial conditions (vector of abilities, unobserved type, and personal and fam-
ily background characteristics). Draw the ability vector from the estimated population
distribution N

(
0, ∆̂

)
. Similarly, draw the unobserved type r ∈ {1, . . . , R} from the

estimated population distribution of types.

2. Solve the model backwards from retirement age using the simplifications detailed in
J.1. The resulting policy functions are the individual’s probabilities of making each
choice at any given set of states.

3. Generate a sequence of observed states by simulating forward from the initial condi-
tions. This entails drawing a job offer outcome, drawing a choice, and then updating
the state space corresponding to the sequence of choices.

The process yields a panel data set of simulated choices that has a structure identical to the
data we use in estimation.
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K Mathematical symbol glossary

This section contains a glossary with descriptions of each mathematical symbol used in the
paper or appendices. See Table K1.
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Table K1: Mathematical symbol glossary

Symbol Description Main equations of reference
α Flow utility parameters (16)
β Discount factor (20)
β̃ Nuisance parameters in measurement system, in-

puts to consumption, and CCPs
(C.1), (D.3), (H.4)

γ Grade and wage parameters (1), (2), (4), (5)
dit Individual i’s choice in period t (20), (21)
δt Aggregate labor market shock to wages (4), (6), (13)
δλ White collar offer arrival parameters (15), (H.4)
ε Idiosyncratic shocks to grades, wages, preferences,

and unobserved type measurements
(1), (4), (16), (20), (C.1),
(C.7)

ζt Innovations to aggregate labor market shock (13)
θ CRRA parameter on exp. util. of consumption (16), (D.11)
ι Interest rate for loan repayment (G.1)
κ Cut points for measurement system ordered logit (C.5)
λ Grade or wage return to ability or productivity

index
(3), (6)

λ̃
dt−1
it White collar offer arrival probability (15), (22)
ℓ Log-likelihood (32), (C.16), (H.5)
πr Population probability mass of unobserved type r (36)
ρt Probability of having graduated before time t (F.8)
σ Standard deviation of various idiosyncratic shocks (1), (4), (13), (35), (C.2)
σ̃ Nuisance parameter in inputs to consumption (D.3)
τ Index of enrollment or employment time period,

distinct from calendar time t
(7)

ϕ AR(1) coefficient on aggregate labor market shock (13)
φ Normal distribution pdf (27), (30), (32), (C.2)
ψ Graduation logit parameters (14)
ω Unobserved type intercept in measurement sys-

tem
(C.1)

Ai 5-dimensional ability vector that is gradually re-
vealed to the individual

(1), (2), (4), (5)

∆ 5 × 5 population covariance matrix of abilities (27), (31)
Zit State variables for individual i in period t (16)
X̃it Covariates in job offer arrival logit (15)
Θ Collection of all measurement system parameters,

or collection of all model parameters
(C.2), (I.1)

Λt Posterior variance of ability at time t (11)
Φ Standard normal cdf (C.3), (D.13)
X Covariate matrices in various equations (1), (4), (14)
Ω Inverse of variance of idiosyncratic grade and wage

shocks
(11)
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