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Abstract 

In markets for credence goods – such as health care or repair services – fraudulent behavior by 

better informed experts is a common problem. Our model studies how four common features 

shape experts’ provision behavior in credence goods markets: (i) diagnostic uncertainty of 

experts; (ii) insurance coverage of consumers; (iii) malpractice payments for treatment failure; 

and (vi) consumer-regarding preferences of experts. Diagnostic imprecision unambiguously 

leads to less efficient provision. Insurance coverage and malpractice payments have an 

ambiguous effect on efficient provision. The impact of consumer-regarding preferences on 

efficiency is positive without insurance but ambiguous in the presence of insurance.  
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1. Introduction 

The inefficiencies arising from asymmetrically informed market participants have long 

been explored in economic analysis in order to understand the implications of such asymmetries 

and to identify potential remedies (Stiegler, 1961, Nelson, 1970, Hurwicz, 1973, Harris and 

Townsend, 1981). Informational asymmetries are a defining feature of markets for credence 

goods, in which (expert) sellers can perform a diagnosis, allowing them to acquire superior 

information about a consumer’s needs and the corresponding good or service that suits these 

needs (Darby and Karni, 1973; Dulleck and Kerschbamer, 2006). Examples of such goods and 

services abound, ranging from repair services to services provided by medical, legal or financial 

professionals (Balafoutas and Kerschbamer, 2020). A solid understanding of the way that these 

markets work, the inefficiencies that are endemic to them (e.g. when sellers provide too much 

or too little of a given service), and the market and institutional forces that shape these outcomes 

is crucial for economists and policy-makers seeking to increase efficiency and consumer 

welfare. 

In this paper, we present a model on the provision of credence goods. We build on the 

seminal model by Dulleck and Kerschbamer (2006) and extend it in four important directions. 

First, while most of the existing work assumes that experts can identify their consumers’ needs 

perfectly (e.g., Wolinsky, 1993; Dulleck and Kerschbamer, 2006; Dulleck et al., 2011; 

Hyndman and Ozerturk, 2011; Mimra et al., 2016), in reality this is typically not the case. In 

almost all relevant markets, diagnosis may fail to identify a consumer’s problem perfectly 

(Schneider, 2012). To allow for this we allow the signal that the expert receives about the 

consumer’s problem to be imperfect.  

A second very common assumption in the literature is that consumers bear the full cost 

of service (Wolinsky, 1993; Dulleck and Kerschbamer, 2006; Fong et al., 2014). In reality, 

however, the cost of service is often covered by an insurance company. In our model we allow 

for this by comparing the solution of a model variant without insurance to the solution of a 

variant where the service costs are covered by an insurance institution. 

Third, we allow for malpractice payments for cases where the service fails, which is an 

important feature of many real-world credence goods markets and which has been discussed as 

an important factor for cost inflation, in particular in the health care sector (Lyu et al., 2017). 

Fourth, while the majority of theoretical papers on credence goods assume that experts 

are rational profit maximizers, there is evidence both from the lab and the field that (at least 

some) experts have other-regarding preferences (Liu and Ma, 2013; Brosig-Koch et al., 2016, 
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2017; Kerschbamer et al., 2017). In our model we allow for this by assuming that experts care 

not only about their own profit, but also about the consumer’s material payoff. Including all of 

those aspects into a single model allows for a comprehensive analysis of factors that are 

important for the performance of real-world credence goods markets. 

Our model leads to a series of novel results. For the case where the signal that the expert 

receives about the consumer’s problem is precise enough such that efficiency requires to follow 

it, they can be summarized as follows: First, equal markup prices – that are predicted to yield 

full efficiency in the simpler framework of Dulleck and Kerschbamer (2006) – only lead to 

efficient service provision for all expert types if the signal is fully precise. In the presence of 

diagnostic uncertainty, equal markup prices induce selfish experts to always provide a high-

quality service, because following the imprecise signal carries the risk of paying the 

compensation payment, while always selling high quality does not. Price vectors that carry a 

higher markup for low-quality service combined with malpractice payments are more robust, 

and – if well designed – they yield efficient provision for all precision levels and expert types. 

Second, for given prices, diagnostic imprecision unambiguously leads to less efficient 

provision: Depending on the prices, the expert is inclined to either always provide the high or 

always provide the low quality. Third, introducing insurance coverage has an ambiguous effect 

on efficient service provision. Thus, while insurance is intended to protect consumers, it can 

also reduce consumer welfare. We characterize the conditions under which this is the case. 

Fourth, the effect of altruism on efficient provision is positive without insurance coverage, but 

ambiguous in the presence of insurance. Without insurance, more altruistic experts tend to 

follow the signal they receive. Without diagnostic uncertainty they do so because following the 

signal is unambiguously in the interest of the consumer, and with diagnostic uncertainty they 

do so because the additional benefit of always providing the high-quality service is not enough 

to justify the additional cost. In the presence of insurance, more altruistic experts tend to always 

provide the high-quality service, because this strategy provides more benefits to the consumer 

and the additional cost is covered by the insurance company. In this case less altruistic experts 

might behave more efficiently than more altruistic ones. We characterize the conditions under 

which this is the case.  

 Our paper is related to several strands of previous literature. First, there is a small 

literature that allows for diagnostic uncertainty in expert markets. Inderst and Ottaviani (2012) 

allow for imperfect diagnostic abilities in markets for financial advice. They investigate how 

competition through commissions and hidden kickbacks affects the quality of advice received 
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by customers and the resulting allocation of products. Liu et al. (2020) consider exogenous 

heterogeneity in experts’ diagnostic abilities. They characterize the equilibria that can arise 

when abilities are unobservable and show that, in some cases, a higher share of high-ability 

experts can harm efficiency. In Fong et al. (2022) doctors with imperfect diagnostic abilities 

can refer patients to labs for (further) testing. Kickbacks distort the doctor’s incentive to 

prescribe tests. Patients who are unaware of kickbacks can be hurt by both over-provision and 

under-provision of lab tests. Baumann and Rasch (2023) study the effect of diagnostic 

uncertainty in the second opinion model of Wolinsky (1993). The authors consider two main 

scenarios – imperfect diagnosis for the minor problem, but perfect diagnosis for the major 

problem; and the opposite constellation. For the former case they find that an improvement in 

diagnostic precision affects welfare and customer surplus only in a pure-strategy equilibrium in 

which customers always search for a second opinion when confronted with a major 

recommendation and experts never defraud customers.  For the opposite case in which major 

problems are correctly diagnosed only with some probability while minor problems are always 

diagnosed correctly the results are less clear-cut. Compared to our paper, none of these papers 

embeds the question of how diagnostic uncertainty affects market outcomes in a framework 

that considers insurance coverage of consumers. In fact, the literature on credence goods 

markets has, so far, dealt with the effects of diagnostic uncertainty and insurance coverage in 

completely separate lines of research, thus ignoring how these two prominent factors on 

credence goods markets might interact with each other. Moreover, none of the above papers 

derives results that are contingent on the seller’s level of pro-sociality towards the consumer. 

The literature addressing the effect of insurance coverage on provision behavior in 

markets for credence goods is much smaller – indeed, we are aware of a single theoretical paper 

addressing this issue.1 Sülzle and Wambach (2005) study in a second-opinion model that admits 

two mixed strategy equilibria whether different proportional degrees of coinsurance on the 

consumer side can have an impact on the likelihood of fraudulent behavior in the form of 

overcharging on the seller side (but without considering the provision decision of the seller). 

They show that the impact of an increase in the coinsurance rate on the equilibrium level of 

fraud is ambiguous: Either there is less fraud and lower probability of searching for second 

opinions, or more fraud and more search (depending on the equilibrium considered). Compared 

to this paper focusing on the overcharging dimension of fraud in a model where diagnosis yields 

 
1 There are several experimental studies on how insurance coverage affects behavior on credence goods markets 
– see Lu (2014), Kerschbamer et al. (2016), Huck et al. (2016) and Balafoutas et al. (2017). 
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a perfect signal and where experts are fully selfish, we investigate the effect of insurance 

coverage on under- and overprovision in a model where diagnosis might yield an imperfect 

signal and where the expert might care for the welfare of the consumer.  

Related to our model with malpractice payments are the models by Dulleck and 

Kerschbamer (2009), Bester and Dahm (2018) and Chen et al. (2022). In Dulleck and 

Kerschbamer’s (2009) model experts compete against discounters, where the former can exert 

costly effort to get precise signals about a consumer’s needs, while the latter provide no 

diagnosis, but only sell services. They find that experts are vulnerable to such competition from 

discounters and may have incentives to undertreat their customers. Bester and Dahm (2018) 

add subjective evaluation of consumers regarding the success of a service and show in their 

theoretical model that first-best outcomes can be achieved by separating diagnosis and 

treatment. Chen et al. (2022) study the design of efficient liability rules in a setting where the 

expert needs to be provided with proper incentives both in exerting diagnostic effort and in 

recommending the appropriate treatment. They show that a well-designed liability rule that 

imposes a penalty on the expert contingent on whether her misbehavior involves over- or 

undertreatment can achieve the efficient outcome. Compared to our paper, these contributions 

do neither discuss the effects of insurance coverage nor of other-regarding preferences. 

There is a small theoretical literature on how other-regarding preferences of sellers 

might influence their provision behavior on credence goods markets. Liu and Ma (2013) 

consider altruistic physicians who can provide services for patients. If physicians can credibly 

commit to specific services even before learning the patient’s illness, first-best solutions for 

patients can be achieved. If commitment is impossible, however, even altruistic physicians will 

provide incorrect services. Kerschbamer et al. (2017) show that other-regarding preferences of 

sellers can improve or decrease market efficiency depending on the price vector and on the 

preferences of the seller.2 None of these studies is linked to diagnostic uncertainty or to 

insurance coverage, which distinguishes them clearly from our paper that provides a novel and 

unified framework to study how diagnostic uncertainty, insurance coverage, malpractice 

payments, and other-regarding preferences of sellers interact on credence goods markets. 

The rest of the paper is organized as follows: The next section introduces the model. 

Section 3 derives the first best solution. Section 4 studies profit-maximizing provision behavior 

 
2 There is also some experimental work on the impact of other-regarding preferences on the working of credence 
goods markets. For instance, Hennig-Schmidt and Wiesen (2014) study in a lab experiment whether medical 
students are more other-regarding than non-medical students, and provide an affirmative answer, similar to 
findings in Brosig-Koch et al. (2017). 
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in the absence of insurance and Section 5 explores the impact of introducing insurance 

coverage. Section 5 concludes. 

 

2. The Model 

We consider an economy populated by ex ante homogeneous consumers and a single expert. 

Each consumer (he) has either a major problem cത requiring a high-quality service (HQS) at cost 

𝑐, or a minor problem 𝑐 requiring a low-quality service (LQS) at cost 𝑐, with 𝑐 > 𝑐. For future 

reference we define �̃� = 𝑐 – 𝑐. The consumer knows that he has an ex ante probability ℎ of 

having the major problem and a probability of 1 െ ℎ of having the minor one. The consumer 

derives utility 𝑣 ൐ 0 when his problem is solved through a service provided by the expert, and 

derives zero utility otherwise. While the HQS solves both problems, the LQS solves only the 

minor problem. The consumer can observe and verify the kind of service he receives3, but he 

only finds out whether the received quality was the needed one when the expert provides LQS 

for 𝑐̅ (since in that case his problem remains unsolved).  

Ex ante the expert (she) has the same information as the consumer on the severity of the 

consumer’s problem. In contrast to the consumer, the expert is able to acquire additional 

information by performing a diagnosis. Following large parts of the literature we assume that 

the diagnosis comes for free and is always performed. We depart from large parts of the 

literature by assuming that the diagnosis does not yield a perfect but only an imperfect signal. 

Specifically, we assume that the expert receives a signal 𝑠 ∈  ൛𝑐, 𝑐̅ൟ about the severity of the 

consumer’s problem 𝛾 ∈  ൛𝑐, 𝑐̅ൟ that is correct with probability 𝜎. We call 𝜎 the precision level 

and define it as 𝜎 ൌ Pr൫𝑠 ൌ 𝑐ห𝛾 ൌ 𝑐൯ ൌ Prሺ𝑠 ൌ 𝑐|𝛾 ൌ 𝑐ሻ, where 𝜎 ∈ ሾ0.5, 1ሿ, such that 𝜎 ൌ

0.5 corresponds to a completely uninformative signal and 𝜎 ൌ 1 to a fully precise signal. The 

consumer knows that the expert observes a signal but does not know which signal she has 

observed. 

In line with Inderst and Ottaviani (2009, 2012) we assume that the expert faces a penalty 

𝑡 ∈ ሺ0, 𝑣ሻ whenever she prescribes the LQS to a consumer having the major problem. This 

payment is a compensation for service failure from the expert to the consumer. We assume that 

an external institution (e.g., a court) verifies that the service failed and then enforces the 

 
3 In the jargon of the literature, this means that verifiability applies. This condition rules out fraud in the 
(over)charging dimension. 
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payment of t. This eliminates the possibility of fraudulent behavior of consumers by falsely 

claiming a failed treatment.  

We denote the exogenously given prices for LQS and HQS by 𝑝 and  𝑝, and assume 

𝑝 ൐ 𝑐,  𝑝 ൐  𝑐 , and 𝑝 ൏ 𝑝 ൑ 𝑣. For future reference, we define the price difference between 

LQS and HQS as 𝑝෤ = 𝑝 – 𝑝 and the price markups for LQS and HQS as ∆ ൌ 𝑝 െ 𝑐 and ∆ ൌ 𝑝 െ

𝑐, respectively. Moreover, we distinguish between three types of price vectors: (i) overtreatment 

(OT) price vectors, where the markup for HQS exceeds the LQS markup ൫∆ ൐ ∆൯, leading to 

monetary incentives for the expert to provide HQS; (ii) undertreatment (UT) price vectors, with 

the LQS markup being higher than the HQS one ൫∆ ൏ ∆൯ and monetary incentives for providing 

LQS; and (iii) equal markup (EM) price vectors, with ∆ ൌ ∆. 

Following Liu (2011), Inderst and Ottaviani (2012) and Fong et al. (2014) we allow for 

the possibility that the expert cares positively about the consumer’s well-being. To model this 

motivation, we introduce the parameter 𝜆 ∈ ሾ0,1ሿ and assume that the expert maximizes his 

own material payoff (weighted by one) plus 𝜆 times the consumer’s surplus. A positive value 

of 𝜆 characterizes a pro-social expert, while 𝜆 ൌ 0 implies that the expert is completely selfish.4 

The expert knows her 𝜆, while the consumer knows only the distribution of this parameter in 

the population of experts. 

With respect to insurance, we first consider a baseline scenario with no insurance 

(abbreviated NI), which means that the entire price for the service is paid by the consumer. We 

then compare this baseline scenario with one where an insurance company covers the entire 

cost of the service (henceforth FI for ‘full insurance’). 

 

3. First-Best Provision Behavior 

Before turning to the actual behavior in the market under consideration we first characterize the 

welfare maximizing provision policy. To do so we make the following thought experiment: 

Suppose the consumer is able to observe the diagnosis signal and to implement the service at 

the same cost as the expert. Which provision strategy would he follow? There are three 

candidates for the efficient solution of the consumer’s problem.  

Strategy A: Implement the HQS independently of the outcome of the diagnosis.  

 
4 For simplicity we do not allow for negative values of λ (spiteful experts). Empirically, spiteful preferences are 
rare (see Kerschbamer 2015, for instance). 
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Strategy B: Implement the LQS independently of the outcome of the diagnosis. 

Strategy C: Implement the LQS if the signal suggests that the problem is minor and 

implement the HQS if the signal suggests that the problem is major.  

The efficient strategy is the strategy that minimizes generalized costs defined as the direct costs 

plus the implied utility loss for the case where the service fails. The generalized cost of Strategy 

A is 𝑐̅, the generalized cost of Strategy B is 𝑐 ൅ ℎ𝑣, and the generalized cost of Strategy C is 

ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ𝑐 ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ𝑐 ൅ ℎሺ1 െ 𝜎ሻ𝑣. For the characterization of the efficient 

provision policy we need to compare those costs. Along the hyperbola 

 𝜎஺஼
ி஻ ൌ

ℎሺ𝑣 െ �̃�ሻ
ሺ1 െ 2ℎሻ�̃� ൅ ℎ𝑣

 (1) 

strategies A and C have the same cost, and along the hyperbola  

 𝜎஻஼
ி஻ ൌ

ሺ1 െ ℎሻ�̃�
ሺ1 െ 2ℎሻ�̃� ൅ ℎ𝑣

 (2) 

strategies B and C have the same cost. Using these hyperbolas, we characterize (in Proposition 

1) the first-best (FB) provision strategy (see Appendix A for the proof):  
 

Proposition 1 (first-best provision strategy): The first-best provision strategy is fully 

characterized in Figure 1. In Area A, efficiency requires to provide the HQS independently of 

the outcome of the diagnosis (Strategy A); in Area B, efficiency requires to provide the LQS 

independently of the outcome of the diagnosis (Strategy B); and in Area C, efficiency requires 

to provide the HQS if the outcome of the diagnosis is 𝑐 and the LQS if the outcome is 𝑐 (Strategy 

C). 

 

Figure 1. First-best provision strategy  

  
Note: The functions delineating the areas are those defined in equations (1) and (2).  
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The intuition for the result illustrated in Figure 1 is simple: Strategy C is optimal if the diagnosis 

is sufficiently precise and if the likelihood of needing the HQS is neither close to zero nor close 

to one. If the precision is low, then Strategy A is optimal if the likelihood of needing the HQS 

is relatively high and Strategy B is optimal if this likelihood is relatively low.  

To simplify the exposition, we will from now on focus on the case where the following 

condition (α) holds: 

௖̃

௩
൏ ℎ                                                                                ሺ𝛼ሻ    

As can be seen in Figure 1, under this condition Strategy A is more efficient than Strategy B. 

 

4 Profit-Maximizing Provision Behavior in the Absence of Insurance (NI) 

4.1 Characterization of Provision Behavior in the Absence of Insurance 

The profit-maximizing expert has the choice between four pure strategies – strategies A, B and 

C as defined in the previous section and Strategy D prescribing to provide the HQS when the 

signal indicates the minor problem and the LQS when the signal indicates the major problem. 

In Appendix B we show that Strategy D is dominated by one of the other three strategies for 

any given parameter constellation. The other three strategies are associated with the following 

utilities for the expert: 
 

Strategy A: Π஺ ൌ 𝑝 െ 𝑐 ൅ 𝜆ሾ𝑣 െ 𝑝ሿ; 

Strategy B: Π஻ ൌ 𝑝 െ 𝑐 െ ℎ𝑡 ൅ 𝜆 ቂሺ1 െ ℎሻ𝑣 െ 𝑝 ൅ ℎ𝑡ቃ ;  

Strategy C: Π஼ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝 െ 𝑐ሻ ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ቀ𝑝 െ 𝑐ቁ െ ℎሺ1 െ

𝜎ሻ𝑡 ൅ 𝜆 ቂሺ1 െ ℎ ൅ ℎ𝜎ሻ𝑣 െ 𝑝ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ െ 𝑝ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ ൅

ℎሺ1 െ 𝜎ሻ𝑡ቃ.  

For the characterization of the expert’s provision policy we need to compare those payoffs. 

Along the hyperbola  

 𝜎஺஼
ேூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

௛൫ሺଵିఒሻ௣෤ି௖̃൯ା௛ఒሺ௩ି௧ሻା௛௧

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
  (3) 

 

strategies A and C yield the same payoff, and along the hyperbola 
 

 𝜎஻஼
ேூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺଵି௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻ

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
  (4) 

 

strategies B and C yield the same payoff. With the help of those hyperbolas we can fully 

characterize the expert’s provision strategy for any constellation of the parameters 𝑣,ℎ and �̃� 
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satisfying condition (α), any value of the pro-sociality parameter 𝜆, with 𝜆 ∈ ሾ0, 1ሿ, any 

diagnostic precision 𝜎, with 𝜎 ∈ ሾ0.5,1ሿ, any price vector (𝑝,𝑝), with 𝑝෤ ∈ ሾ0, 𝑣ሿ, and any 

transfer 𝑡, with 𝑡 ൒ 0. This is done in Proposition 2 (see Appendix B for proofs): 
 

Proposition 2 (provision strategy in the absence of insurance): For parameter constellations 

satisfying condition (α), the expert’s actual provision behaviour in NI (for ‘no insurance’) is 

fully characterized in Figure 2. In Area A, the expert provides the HQS independently of the 

outcome of the diagnosis (Strategy A); in Area B, the expert provides the LQS independently of 

the outcome of the diagnosis (Strategy B); and in Area C, the expert provides the HQS if the 

outcome of the diagnosis is 𝑐 and the LQS if the outcome is 𝑐 (Strategy C). The blue curve in 

each panel is the hyperbola defined in equation (3), and the red curve in panels (a) and (b) is 

the hyperbola defined in equation (4). Within each panel the solid curves are the curves for 

interior values of 𝑝෤ within the boundaries defining the respective panel. The dashed curves 

represent the lower and the upper boundary of 𝑝෤ in the respective panel. The effect of increasing 

𝑝෤ from the lower to the upper boundary of the respective panel can be seen by following the 

corresponding arrow. 
 

A few comments about Figure 2 are in order. Depending on the magnitude of the transfer 𝑡, one 

of the following four cases is relevant for the constellation under consideration: 

 𝑡 ൌ 0: For this value of t, panels (b) and (c) disappear from Figure 2 and the terms 𝜆ଵ
ேூ and 

𝜆ଶ
ேூ in panel (a) converge to 0 if 𝑝෤ converges to �̃�. If we increase 𝑝෤ gradually starting from 

𝑝෤ ൌ 0, then we are first (for UT price vectors) in panel (a); if 𝑝෤ reaches the critical value �̃� 

(EM price vector) then we are on the boundary between panel (a) and panel (d); and for 𝑝෤ > 

�̃� (OT price vector) we are in the interior of panel (d). 

 𝑡 ∈ ሺ0, �̃�ሻ: For t in this range, all panels are relevant: If we increase 𝑝෤ gradually starting from 

𝑝෤ ൌ 0, then we are first in panel (a); if 𝑝෤ passes the critical value �̃� െ 𝑡 then we reach panel 

(b); and so on.  

 𝑡 ∈ ቂ�̃�, ௖
̃

௛
ቁ: For t in this range, panel (a) disappears from Figure 2: If we increase 𝑝෤ gradually 

starting from 𝑝෤ ൌ 0, then we are first in panel (b); if 𝑝෤ passes the critical value �̃� െ ℎ𝑡 then 

we reach panel (c); and so on. 

 𝑡 ൒ ௖̃

௛
: For t in this range, panels (a) and (b) disappear from Figure 2: If we increase 𝑝෤ 

gradually starting from 𝑝෤ ൌ 0, then we are first in panel (c); and if 𝑝෤ passes the critical value 

�̃� then we are in panel (d). 



11 

 

For all values of 𝑡, and for each panel that is relevant for the 𝑡 under consideration, we see the 

effect of increasing 𝑝෤ from the lower to the upper boundary of the respective panel by following 

the respective arrow. 

 

Figure 2. Profit-maximizing provision behavior with no insurance (NI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ �̃� ൑ 𝑝෤ ൑ 𝑣 

Note: The intercept points 𝜆ଵேூ , 𝜆ଶ
ேூ , 𝜆ଷ

ேூ and 𝜎ଵேூ,𝜎ଶ
ேூ ,𝜎ଷ

ேூare defined as: 𝜆ଵேூ ൌ
௖̃ି௧ି௣෤

௩ି௧ି௣෤
; 𝜆ଶ

ேூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
; 𝜆ଷ

ேூ ൌ 1 െ

௖̃

௣෤
;  𝜎ଵேூ ൌ

ଵ

ଶ
൅

௛ሺ௩ି௖̃ሻିሺଵି௛ሻ௖̃

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
; 𝜎ଶ

ேூ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻሺ௖̃ି௣෤ሻି௛ሺ௣෤ି௖̃ା௧ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
;  𝜎ଷ

ேூ ൌ
ଵ

ଶ
൅

௛ሺ௣෤ି௖̃ା௧ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 

 

Within each panel, the diagnostic precision 𝜎 of the constellation gives us a horizontal 

line (not shown in the figure). If we go to the point 𝜆 ൌ 1 on this line, then we see the efficient 

provision strategy. This is due to the fact that an expert with 𝜆 ൌ 1 is maximizing the sum of the 

monetary payoffs of the two agents. The efficient solution depends on 𝑣, �̃�, ℎ, and σ, but not on 
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the prices prevalent on the market or the transfer 𝑡 – that is, the point 𝜎ଵ
ேூ is exactly the same in 

each of the four panels of Figure 2 and within each panel it changes neither in 𝑝෤ nor in 𝑡.  

Under our condition (α), always providing the HQS is more efficient than always providing the 

LQS. Thus, efficiency requires to follow the signal (Strategy C) if the signal is precise enough 

(𝜎 ൐ 𝜎ଵ
ேூ) and to blindly provide HQS (Strategy A) otherwise.5 For values of the pro-sociality 

parameter 𝜆 in ሾ0, 1ሿ we see which provision strategy the expert of type 𝜆 actually chooses. As 

we can see from the figure, there are constellations where efficiency would require to follow 

the signal, but egoistic and modestly pro-social experts choose Strategy B (panel (a) for 𝜎 ൐

𝜎ଵ
ேூ and panel (b) for 𝜎ଶ

ேூ ൐ 𝜎 ൐ 𝜎ଵ
ேூ ) or Strategy A (panel (c) for 𝜎ଷ

ேூ ൐ 𝜎 ൐ 𝜎ଵ
ேூand panel 

(d) for 𝜎 ൐ 𝜎ଵ
ேூ). However, there are also constellations where efficiency would require to 

implement Strategy A, but egoistic and moderately pro-social experts choose Strategy B while 

modestly pro-social experts choose Strategy C (panel (a) for 𝜎 ൏ 𝜎ଵ
ேூ and panel (b) for 𝜎 ൏

minሺ𝜎ଶ
ேூ ,𝜎ଵ

ேூ )), or where egoistic and scarcely pro-social experts choose Strategy C (panel (b) 

for 𝜎ଶ
ேூ ൏ 𝜎 ൏ 𝜎ଵ

ேூ  and panel (c) for 𝜎ଷ
ேூ   ൏ 𝜎 ൏ 𝜎ଵ

ேூ ሻ. 
 

4.2 The impact of prices, transfer, diagnostic uncertainty and altruism on provision 

behaviour in the absence of insurance 

In our discussion in this subsection we will concentrate on constellations where the signal is 

precise enough such that following the signal (Strategy C) is the efficient provision strategy. In 

terms of Figure 2 this means that we are restricting attention to precision levels that are above 

𝜎ଵ
ேூ. We call this restriction condition (β): 

 

𝜎 ൐ 𝜎ଵேூ ൌ
1
2
൅

ℎሺ𝑣 െ �̃�ሻ െ ሺ1 െ ℎሻ�̃�
2ሾℎሺ𝑣 െ �̃�ሻ ൅ ሺ1 െ ℎሻ�̃�ሿ

.                                                                 ሺ𝛽ሻ 

 

In Section 2 we have defined three types of price vectors: (i) overtreatment (OT) price vectors, 

where the markup for HQS exceeds the LQS markup; (ii) undertreatment (UT) price vectors, 

with the LQS markup being higher than the HQS one; and (iii) equal markup (EM) price 

vectors. In the following discussion we refer to these three types of price vectors:  

 OT: For perfect precision, selfish and moderately altruistic experts will always decide 

for Strategy A, as there are direct material incentives for doing so; more altruistic 

 
5 Referring to the ሺ𝜎, 𝜆ሻ space, we use the convention that a 𝜎 with a letter in the subscript denotes a function (of 
𝜆) while a σ with a number in the subscript denotes a point.   



13 

 

experts decide for Strategy C because they care for the customer (who would have to 

pay the higher cost of always providing HQS). For lower precision levels the tendency 

of selfish and moderately altruistic experts to decide for Strategy A is even more 

pronounced as for any t > 0 following the imprecise signal carries the risk of paying the 

compensation payment (in case of failure) while Strategy A is safe in this respect. 

Within the range of OT price-vectors increasing 𝑝 while keeping 𝑝 constant leads to less 

efficient provision – as more altruism is required in this case to decide for Strategy C 

(simply because the material incentive to always provide the HQS is increasing in 𝑝 – 

for a given  𝑝). 

 EM: For perfect precision, the selfish expert is indifferent between Strategy A and 

Strategy C, while more altruistic experts have a strict incentive to choose Strategy C. 

For lower precision levels selfish and moderately altruistic experts will always decide 

for Strategy A for any t > 0 because following the imprecise signal carries the risk of 

paying the compensation payment (in case of failure) while Strategy A is safe in this 

respect. 

 UT: If the material incentives for always providing the LQS are large (as in panel (a) of 

Figure 2) selfish and moderately altruistic experts will decide for Strategy B for any 

precision level simply because they have material incentives for doing so. This incentive 

is ‘muted’ when t > 0. When t is large enough then the UT price vector induces efficient 

provision (that is Strategy C) for all expert types  and all precision levels – see panel (b) 

for 𝜎ଶ
ேூ ൑ 𝜎ଵ

ேூ and panel (c) for 𝜎ଷ
ேூ ൑ 𝜎ଵ

ேூ.6 When t is large and material incentives for 

always providing the LQS are small then the UT price vector leads to overtreatment for 

selfish and moderately altruistic experts for imprecise signals – see panel (c) for 𝜎ଷ
ேூ ൐

𝜎ଵ
ேூ . The reason here is the fear of paying the compensation transfer t under Strategy C 

which is avoided by implementing Strategy A. Within the range of UT price vectors 

increasing 𝑝 while keeping 𝑝 constant leads first to more efficient provision (in panels 

(a) and (b) selfish and moderately altruistic experts switch from Strategy B to Strategy 

C if the high price is increased) but later it leads to less efficient provision (in panel (c) 

selfish and moderately altruistic experts switch from C to A if 𝑝 is increased while 

keeping 𝑝 constant). This latter effect is interesting as we are moving in the direction of 

 
6 Efficient provision for all expert types and precision levels requires that if we draw a horizontal line at 𝜎ଵேூthen 
the area above that line is in the interior of area C. 
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an EM price-vector in this case and since EM is predicted to yield efficient provision 

under verifiability in a simpler context (see Dulleck and Kerschbamer, 2006, for 

instance). 

The above discussion implies that for t > 0 holding the price of the LQS constant and increasing 

the price for the HQS yields a non-monotonic effect on efficiency of provision: for a low price-

difference selfish and moderately altruistic experts decide for Strategy B while more altruistic 

experts efficiently decide for Strategy C. If starting from here the price of the HQS is increased 

(keeping the price of the LQS constant) then we get to a more efficient solution as more and 

more (and at some point, all) expert types decide for Strategy C. However, when we now 

increase  p  further, then the less altruistic experts decide for Strategy A (while the more 

altruistic ones still decide for Strategy C). So, in this range (covered by panels (a) and (b)) 

efficiency decreases in the price of the HQS. While a non-monotonic relationship between p  

and efficiency of provision is also predicted by the standard model (with selfish experts, perfect 

diagnosis and no transfer in case of failure), the standard model yields full efficiency only for 

a single point (the EM point) while our model predicts efficiency for a whole range of prices – 

but not for the EM vector (which is predicted to yield efficient provision only for the perfectly 

precise signal – but not for an imprecise diagnosis). More generally, our model predicts that 

EM is not a robust institution. More robust is a UT price vector combined with t > 0. The latter 

combination leads to efficient provision for all types of experts and degrees of diagnostic 

imprecision. We summarize this discussion as follows: 

Corollary 1: Under conditions α, β and NI (for ‘no insurance’) the impact of markups on 

efficient provision is ambiguous. Equal markups only lead to efficient provision if the signal is 

fully precise or the expert is altruistic enough. An UT price-vector in combination with a well-

designed positive transfer yields efficient provision for all precision levels and expert types. 

In general, the impact of the transfer payment t on efficient provision is ambiguous: In the 

presence of an imprecise signal the impact of t on efficiency is positive when combined with a 

pronounced UT price vector but negative when combined with mild UT, EM or OT: In the case 

of a pronounced UT price vector a larger t induces selfish and moderately altruistic experts to 

choose Strategy C instead of Strategy B (panels (a) and (b)), but for mild UT, EM and OT a 

larger t leads to more overtreatment (because the compensation can be avoided by providing 

Strategy A instead of Strategy C). We record this as: 
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Corollary 2: Under conditions α, β and NI (for ‘no insurance’) the impact of the compensation 

payment t on efficient provision is ambiguous: If the signal is imprecise, the impact of an 

increase in t on efficiency is positive when combined with a pronounced UT price-vector but 

negative when combined with mild UT, EM or OT. 

Turning to the impact of diagnostic imprecision on provision behavior we see that in panels (c) 

and (d) of Figure 2 a less precise signal induces selfish and moderately altruistic experts to 

provide Strategy A instead of Strategy C as A avoids the transfer t in case of failure while C 

does not. In panels (a) and (b) it induces selfish and moderately altruistic experts to choose B 

instead of C. With a more precise signal those experts decide for Strategy C because of the fear 

to pay the transfer t if the treatment fails; if the signal becomes less precise they provide the 

LQS even if the signal indicates that the problem is serious as they hope that the LQS solves 

the problem such that they avoid the punishment. Summing up the discussion we conclude: 

Corollary 3: Under conditions α, β and NI (for ‘no insurance’) the impact of diagnostic 

imprecision on efficient provision is negative: More diagnostic imprecision unambiguously 

leads to less efficient provision. 

Turning to the impact of altruism on provision behavior we see that more altruism 

unambiguously leads to more frequent use of Strategy C and therefore to more efficient 

provision: 

Corollary 4: Under conditions α, β and NI (for ‘no insurance’) the impact of altruism on 

efficient provision is positive: More pro-sociality unambiguously leads to more efficient 

provision. 

Before proceeding, let us shortly discuss how our results compare to related findings in the 

literature. Most of the literature assumes 𝑡 ൌ 0 (no transfer), 𝜎 ൌ 1 (perfect diagnostic 

precision) and 𝜆 ൌ 0 (completely selfish experts).7 For this special case, our figure displays the 

discontinuity in the expert’s provision behavior found in large parts of the literature (see 

Dulleck and Kerschbamer, 2006): For 𝑝෤ ൏ �̃� the expert always provides LQS; for 𝑝෤ ൐ �̃� she 

always provides HQS; and at 𝑝෤ ൌ �̃� the expert is indifferent between providing LQS and HQS 

and is therefore assumed to follow the signal. In Figure 2 we see that this insight extends to the 

 
7 Previous literature has also considered the case 𝑡 ൌ ∞ – imposed via assuming liability (Dulleck and 
Kerschbamer, 2006; Dulleck at al. 2011; Chen et al. 2018), which directly rules out undertreatment. 
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case where the diagnosis produces a noisy signal, but only for the special case where 𝑡 ൌ  0. 

With 𝜎 ൏ 1 and 𝑡 ൐  0 the equal markup vector (represented by the dashed curve in panel (d)) 

gives the egoistic expert a strict incentive to provide the HQS independently of the outcome of 

the diagnosis. This is quite intuitive: With an equal markup vector the expert earns exactly the 

same immediate profit from selling the LQS and selling the HQS. However, if she sells the 

LQS in a world where the signal is noisy, then she runs the risk of getting punished (by having 

to pay t) while selling the HQS is safe in this regard.  

Still staying with the constellation 𝑡 ൌ 0 and 𝜎 ൌ 1, but allowing now for 𝜆 ൐ 0, Figure 

2 replicates some of the results in Kerschbamer et al. (2017): If the expert is sufficiently 

altruistic then she follows the signal even under an UT price vector (panel (a)) or an OT price 

vector (panel (d)). Our Figure 2 extends the findings from Kerschbamer et al. (2017) by 

allowing, first, for a compensation for treatment failure (𝑡 ൐ 0) and, second, for a noisy 

diagnosis (𝜎 ൑ 1ሻ. As we can see in Figure 2, with 𝜎 ൏ 1 the equal markup vector induces 

experts with a low 𝜆 to always provide the HQS. We also see that the range of 𝜆 values for 

which this is the case becomes larger as the signal becomes less informative. 

The case where an expert has to pay a transfer 𝑡 ൐ 0 as a compensation for service 

failure has previously been considered by Dulleck and Kerschbamer (2009) for the special case 

where 𝜎 ൌ 1 and 𝜆 ൌ 0. The authors show that an expert can be induced to invest in costly 

diagnosis by a price structure that has 𝑝෤ ൏ �̃� and 𝑡 ൐ 0 – but not by constellations that have 

either 𝑝෤ ൒ �̃� or 𝑡 ൌ 0. We can see this in panels (b) and (c) of Figure 2 where the point 𝜎 ൌ 1 

and 𝜆 ൌ 0 lies in the interior of Area C – which is a necessary condition for an incentive to 

acquire a costly signal. Our analysis extends that by Dulleck and Kerschbamer (2009) by 

allowing for arbitrary values of 𝜆 in ሾ0, 1ሿ and arbitrary values of 𝜎 in ሾ0.5, 1ሿ. 

 

5 Profit-Maximizing Provision Behavior in the Presence of Insurance (FI) 

5.1 Characterization of provision behavior in the presence of insurance 
 

We next study the effect of introducing full insurance on the expert’s provision behavior. Full 

insurance means that the payment from the consumer to the expert is covered by an insurance 

company, in exchange for the insurance premium. The latter is paid before the expert-consumer 

interaction takes place. As a result, the payoff of the consumer is not affected by the price 

charged by the expert. This changes the expert’s payoffs for strategies A, B and C to: 

Strategy A: Π஺ ൌ 𝑝 െ 𝑐 ൅ 𝜆𝑣.  
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Strategy B: Π஻ ൌ 𝑝 െ 𝑐 െ ℎ𝑡 ൅ 𝜆ሾሺ1 െ ℎሻ𝑣 ൅ ℎ𝑡ሿ.  

Strategy C: Π஼ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝 െ 𝑐ሻ ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ቀ𝑝 െ 𝑐ቁ െ ℎሺ1 െ

𝜎ሻ𝑡 ൅ 𝜆ሾሺ1 െ ℎ ൅ ℎ𝜎ሻ𝑣 ൅ ℎሺ1 െ 𝜎ሻ𝑡ሿ.  

Given those payoffs, indifference between strategies A and C is reached along the hyperbola  

 𝜎஺஼
ிூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ ௛ሺ௖̃ି௣෤ሻି௛ఒሺ௩ି௧ሻି௛௧

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
  (5) 

and indifference between strategies B and C is reached along the hyperbola  

 𝜎஻஼
ிூ ൌ 𝑓ሺ𝜆,ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺଵି௛ሻሺ௣෤ି௖̃ሻ

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
 . (6) 

With the help of those hyperbolas we can fully characterize the expert’s provision strategy for 

the full insurance case. This is done in Proposition 3 (see Appendix C for proofs): 
 

Proposition 3 (profit-maximizing provision strategy in the presence of insurance): For 

parameter constellations satisfying condition (α), the expert’s actual provision behavior in FI 

(for ‘full insurance’) is characterized in Figure 3. For 𝑝෤ ൒ �̃� (panel (d) of Figure 3) all experts 

opt for Strategy A. For 𝑝෤ ൏ �̃�, panels (a), (b) and (c) of Figure 3 show the effect of introducing 

full insurance on the expert’s provision behavior. The solid red and the solid blue line as well 

as the areas A, B and C are defined as in Proposition 2 and characterize the provision areas in 

NI. The dashed blue line in panels (a), (b) and (c) is the hyperbola defined in equation (5), and 

the dashed red line in panels (a) and (b) is the hyperbola defined in equation (6). Those curves 

define the provision areas in the FI case.  
 

The effect of introducing full insurance coverage depends on the expert’s type 𝜆 and on 

the prevailing price vector. Selfish experts (𝜆 ൌ 0) are not affected by the introduction of 

insurance, since insurance affects only the consumer’s payoff and since the consumer’s payoff 

is relevant for the expert’s behaviour only if 𝜆 ൐ 0. For pro-social experts (𝜆 ൐ 0ሻ the incentive 

to provide the HQS instead of the LQS is increased by introducing insurance, since the 

consumer does not directly bear the additional cost of the more expensive service. Which 

implications does this have for the expert’s provision policy? The answer to this question 

depends on the characteristic of the price vector. 

Under EM and OT price-vectors (covered by panel (d) of Figure 3) insurance 

unambiguously leads to less efficient provision: without insurance altruistic experts follow the 

signal, with insurance they always provide the HQS (Strategy A). This is so because they have 

direct material incentives for selling the HQS and because consumers also profit from the HQS 
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as the problem is then solved for sure while with Strategy C this is only the case for perfect 

precision. 

 

Figure 3. Profit-maximizing provision behavior with no insurance (NI) and full 

insurance (FI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ �̃� ൑ 𝑝෤ ൑ 𝑣 
 

Note: This figure shows the effect of introducing insurance. The solid red and the solid blue line as well as the 
areas A, B and C are as defined in Proposition 2 and they characterize the provision areas in the NI case. The 
dashed red and the dashed blue line are the hyperbolas defined in equations (5) and (6) and they define the provision 
areas in the FI case. The intercept points 𝜆ଵேூ , 𝜆ଶ

ேூ , 𝜆ଷ
ேூ and 𝜎ଵேூ,𝜎ଶ

ேூ ,𝜎ଷ
ேூare as defined in the note to Figure 2. The 

other intercept points are defined as: 𝜆ଵிூ ൌ
௖̃ି௧ି௣෤

௩ି௧
;  𝜆ଶ

ிூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
;  𝜎ଵிூ ൌ

ଵ

ଶ
൅

௛ሺ௩ି௖̃ା௣෤ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௩ି௖̃ା௣෤ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 

 

Under UT price vectors – covered by panels (a), (b) and (c) of Figure 3 – there is a clear 

monetary incentive for the expert to provide the LQS, while the consumer’s payoff is still 

maximized with the HQS. As a consequence, a pro-social expert faces a trade-off. If the material 
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incentive to provide the LQS is rather low – as in panel (c) of the figure – the region in which 

the expert implements Strategy C unambiguously shrinks in favor of the area in which he 

implements Strategy A.8 If the material incentive to provide the LQS is higher – as in panels 

(a) and (b) of the figure – the effect of introducing insurance on provision behavior depends on 

the altruism of the expert. More altruistic experts, who would chose Strategy C without 

insurance, are inclined to implement Strategy A when the signal is imprecise and the customer 

is insured. The reason is again that the customer profits from always receiving the HQS as the 

signal is imprecise and the additional cost of the HQS is paid by the insurance. By contrast, 

moderately altruistic experts who would choose Strategy B under NI when the signal is 

imprecise might choose Strategy C under the same precision level if the customer is insured. 

This is due to the fact that for a somewhat altruistic expert the incentive for choosing B is 

decreased by introducing full insurance since the expert partially internalizes the benefit of the 

consumer but does not internalize the associated additional cost.9  

To sum up, introducing full insurance expands Area A (where the HQS is always 

provided) at the cost of Area C (where the expert follows the signal) independently of the 

prevailing price vector. If the price vector induces strong material incentives to always provide 

the LQS (as is the case in panels (a) and (b) of Figure 3), then introducing full insurance in 

addition expands Area C at the cost of Area B. We summarize this discussion to: 

Corollary 5: Under conditions α and β the impact of introducing insurance on efficient 

provision is ambiguous: Under OT, EM and mild UT price-vectors insurance unambiguously 

leads to less efficient provision. Under pronounced UT price-vectors the effect of introducing 

insurance on provision behavior is negative for more altruistic experts but positive for less 

altruistic ones. 

  

 
8 More precisely, for all experts with 𝜆 ൐ 0 a higher precision level is needed to choose Strategy C instead of 
Strategy A, compared to the NI case. 
9In panels (a) and (b) of Figure 3 the ambiguous effect of introducing insurance is a consequence of the fact that 
the curve separating areas A and C in the FI case is above and to the left of the corresponding line in the NI case, 
while the curve separating areas B and C in the FI case is below and to the left of the corresponding line in the NI 
case. This implies that introducing FI expands the range of λ-types choosing Strategy A for low precision levels 
as compared to the NI case (where no expert will choose strategy A for precision levels for which choosing C is 
efficient). At the same time, introducing FI narrows the range of λ-types choosing Strategy B for lower precision 
levels as compared to the NI case. 
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5.2 The impact of prices, transfer, diagnostic uncertainty and altruism on provision 

behaviour in the presence of insurance 
 

We start again with the impact of prices on provision behavior. For t > 0 holding the price of 

the LQS constant and increasing the price for the HQS yields a non-monotonic effect on 

efficiency of provision. The effect is very similar to the one in the absence of insurance – the 

main difference being that EM and OT price-vectors induce the expert now to implement 

Strategy A independently of her pro-sociality and independently of the precision of the signal 

(see panel (d) of Figure 4). Another difference is that for t > 0 efficient provision (that is, 

Strategy C) for all expert types can only be induced if the signal is sufficiently precise. If the 

signal is not precise enough then altruistic experts will opt for Strategy A to prevent the 

customer from harm (see panels (a), (b) and (c) of Figure 4). 

As in the no insurance case, the impact of the compensation transfer on efficiency is ambiguous: 

In the presence of an imprecise signal the impact is positive when combined with a pronounced 

UT price vector, negative when combined with a mild UT, and nonexistent with an EM or an 

OT price vector: In the case of a pronounced UT price vector a larger t induces selfish and 

moderately altruistic experts to choose Strategy C instead of Strategy B (panels (a) and (b)), but 

for mild UT a larger t leads to more overtreatment (panel (c)). For EM and OT (panel (d)) there 

is no impact as all expert types opt for Strategy A for all values of t. 

The impact of diagnostic imprecision on efficient provision is negative – as in the setting 

without insurance: In panel (d) diagnostic imprecision has no impact as Strategy A is 

implemented for all precision levels and independently of how altruistic the expert is. In panel 

(c) a less precise signal induces some experts to provide Strategy A instead of Strategy C as A 

always solves the problem while C does not (thus, A provides greater utility to the customer 

and also avoids the transfer). In panels (a) and (b) a less precise signal induces selfish and 

moderately altruistic experts to choose B instead of C and more altruistic experts to choose A 

instead of C.  
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Figure 4. The impact of prices on profit-maximizing provision behaviour in the presence of 

full insurance (FI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ �̃� ൑ 𝑝෤ ൑ 𝑣 

 
 

Note: This figure shows the effect of increasing 𝑝෤ on the expert’s provision behavior in the presence of insurance 
(FI). The (solid and dashed) red and blue lines are the hyperbolas defined in equations (5) and (6) and they 
characterize the provision areas in the FI case. The point 𝜎ଵேூ  is as defined in the note to Figure 2. The other points 

are defined as: 𝜆ଵிூ ൌ
௖̃ି௧ି௣෤

௩ି௧
;  𝜆ଶ

ிூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
; ;  𝜎ଵிூ ൌ

ଵ

ଶ
൅

௛ሺ௩ି௖̃ା௣෤ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௩ି௖̃ା௣෤ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 

 

More interesting is the impact of altruism on efficient provision: While it was unambiguously 

positive without insurance, with insurance it becomes ambiguous: Under EM and OT (covered 

by panel (d) of Figure 4) altruism has no impact on provision as all expert types will choose 

Strategy A under every precision level. For mild UT price-vectors (panel (c) of the figure) the 

impact of altruism on efficient provision is negative: egoistic and moderately altruistic experts 
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tend to decide for Strategy C (to avoid the punishment in case of failure) while more altruistic 

experts choose Strategy A if the signal is imprecise (as they care for the welfare of the customer 

but do not take into account the additional cost of implementing Strategy A instead of Strategy 

C). For pronounced UT vectors (panels (a) and (b) of the figure) the impact of altruism on 

efficient provision is ambiguous: If the signal is imprecise, egoistic and moderately altruistic 

experts decide for Strategy B, more altruistic experts decide for Strategy C and even more 

altruistic experts decide for Strategy A. That is, here only moderately altruistic experts decide 

for the efficient provision policy while less and more altruistic experts behave inefficiently.  

We summarize this discussion as follows: 

Corollary 6: Under conditions α, β and FI (for ‘full insurance’) the impact of prices, transfer 

and diagnostic precision is as in the setting without insurance. However, the impact of altruism 

is now ambiguous while it was unambiguously positive without insurance. 

 

4 Concluding Remarks 

Our paper has offered a unified theoretical framework that accommodates four important and 

common features of credence goods markets: (i) Diagnostic uncertainty of experts when trying 

to identify a consumer’s problem, which is a common but hitherto largely neglected feature of 

credence goods markets (e.g. in health care or repair services); (ii) insurance coverage of 

consumers, which is frequently in place in credence goods markets, and sometimes even 

compulsory (as in many countries for health care services); (iii) malpractice payments for cases 

where the service fails, which is an important feature of many real world credence goods 

markets and has been discussed as an important factor for cost inflation, in particular in the 

health care sector; and (iv) consumer-regarding preferences of experts, reflecting the fact that 

despite their informational advantage many experts do not only care about their own profits, 

but also consider consumer’s welfare. The combination of these factors and their analysis in a 

unified theoretical framework is a novel contribution to the literature on credence goods 

markets.  

The analysis of our model reveals how service provision in markets for credence goods 

is affected by these key factors. Diagnostic imprecision unambiguously leads to less efficient 

provision, while the effects of insurance coverage, price markups and malpractice 

compensation payments are ambiguous and can increase or reduce consumer welfare, 

depending on conditions that we characterize in the paper.  The effect of pro-sociality by sellers 
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towards consumers on efficient provision is positive without, and ambiguous with insurance 

coverage for consumers.  

 Besides advancing the economics literature on credence goods in novel directions, we 

believe that our findings can serve as a kind of manual for policy-makers who are interested in 

knowing how service provision, efficiency and consumer welfare in this kind of markets depend 

on key elements of the environment that policy can influence to varying extents, such as price 

markups, diagnostic precision, insurance, and malpractice payments. Including all these 

elements in one unified model makes the analysis complicated, but it is important because – as 

our analysis reveals – there are several ways in which these elements interact with each other, 

and knowing how all these moving parts come together can improve the quality of policy 

decisions and their fit to particular markets and contexts. One aspect of the analysis that is 

particularly relevant for policy, especially in markets for health care, relates to our findings on 

insurance. While it is an established fact that insurance coverage can have adverse effects due 

to moral hazard (e.g., Einav et al., 2013; Einav and Finkelstein, 2018), we have shown that an 

additional unintended consequence on the supply side is the possibility of a drop in the rate of 

efficient service provision. We believe that this should be taken into account, along with the 

derived conditions that give rise to positive and negative welfare effects. 
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APPENDIX 

 

Appendix A. Proof of Proposition 1: first-best provision strategy  

We start by defining the generalized costs associated with each of the three provision strategies:  

 Strategy A: 𝐶𝐴 ൌ 𝑐  

 Strategy B: 𝐶𝐵 ൌ 𝑐 ൅ ℎ𝑣 

 Strategy C: 𝐶𝐶 ൌ 𝑐ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ ൅ 𝑐ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ൅ ℎሺ1 െ 𝜎ሻ𝑣. 

 

The efficient provision strategy is the one that minimizes generalize costs. Equating 𝐶஺ and 𝐶஼  results 

in the hyperbola 𝜎஺஼
ி஻ , as defined in equation (1) in the body of the paper. For 𝜎 ൏ 𝜎஺஼

ி஻ Strategy A is 

more efficient than Strategy C and vice versa for 𝜎 ൐ 𝜎஺஼
ி஻ . Equations 𝐶஻ and 𝐶஼  yield the hyperbola 

𝜎஻஼
ி஻ defined in equation (2) in the paper. For 𝜎 ൏ 𝜎஻஼

ா௑ைିி஻ Strategy B is more efficient than Strategy C 

and vice versa for 𝜎 ൐ 𝜎஻஼
ி஻ . Equating 𝐶஺ and 𝐶஻ yields the line ℎ ൌ

௖̃

௩
 . For ℎ ൏

௖̃

௩
 Strategy B is more 

efficient than Strategy A and vice versa for ℎ ൐
௖̃

௩
.  

Figure 1 depicts the hyperbolas 𝜎஺஼
ி஻ and 𝜎஻஼

ி஻ in the ሺℎ,𝜎ሻ space, for ℎ ∈ ሾ0,1ሿ and 𝜎 ∈ ሾ0.5,1ሿ. The 

intercept of the two hyperbolas is found by equating 𝜎஺஼
ி஻ and 𝜎஻஼

ி஻ and the crossing point corresponds to 

ℎ ൌ
௖̃

௩
 and 𝜎 ൌ 0.5. From our assumption that �̃� ൏ ℎ𝑣 (and given that ℎ ∈ ሾ0,1ሿሻ it directly follows that 

�̃� ൏ 𝑣. Thus, 
௖̃

௩
∈ ሺ0,1ሻ under any constellation of the parameters ሼ�̃�, 𝑣ሽ. 

As a result, the efficient provision strategy has the following properties:  

(a) for 𝜎 ൏ 𝜎஺஼
ி஻ ൌ

௛ሺ௩ି௖̃ሻ

ሺଵିଶ௛ሻ௖̃ା௛௩
 and ℎ ∈ ቂ

௖̃

௩
, 1ቃ efficiency requires to choose Strategy A; 

(b) for 𝜎 ൏ 𝜎஻஼
ி஻ ൌ

ሺଵି௛ሻ௖̃

ሺଵିଶ௛ሻ௖̃ା௛௩
 and ℎ ∈ ቂ0,

௖̃

௩
ቁ efficiency requires to choose Strategy B; and 

(c) for ሼ𝜎 ൐ 𝜎஻஼
ி஻ ൌ ሺሺ1 െ ℎሻ𝑐 ̃ሻ/ሺሺ1 െ 2ℎሻ 𝑐 ̃ ൅ ℎ𝑣ሻ ∧ ℎ ∈ ሾ0, 𝑐 ̃/𝑣ሻሽ and ሼ𝜎 ൐ 𝜎஺஼

ி஻ ൌ ሺℎሺ𝑣 െ
𝑐 ̃ሻሻ/ሺሺ1 െ 2ℎሻ 𝑐 ̃ ൅ ℎ𝑣ሻ   ∧ ℎ ∈ ሾ𝑐 ̃/𝑣, 1ሿሽ efficiency requires to choose Strategy C. 
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Figure 1. First-best provision strategy  

  

 
Note: The blue curve is the hyperbola defined in equation (1) in the paper, and the red curve is the 
hyperbola defined in equation (2) in the paper. In Area A, efficiency requires to implement Strategy A 
(blindly providing HQS without considering the diagnosis outcome); in Area B, efficiency requires to 
implement Strategy B (blindly providing LQS without considering the diagnosis outcome); and in Area 
C, efficiency requires to implement Strategy C (following the signal). 
 
Appendix B. Proof of Proposition 2: profit-maximizing provision strategy in the absence of 

insurance (NI) 

Similarly to proposition 1, the expert has the choice between the three pure strategies outlined in the 
paper. The fourth pure strategy – Strategy D, where the expert provides a treatment opposite to the signal 
she receives – is dominated by one of the other three strategies for any given constellation of the 
parameters ሼ𝑝෤, �̃�, ℎ, 𝑣, 𝑡ሽ. We show this by first ignoring Strategy D and deriving the provision areas for 
the case where only strategies A, B and C are available. Later we show that in the area where Strategy 
𝑋 ∈  ሼ𝐴,𝐵,𝐶ሽ is preferred to the other two strategies, Strategy X is also preferred to Strategy D. 

To characterize the expert’s provision policy for the case where only strategies A, B and C are available, 
we compare the payoffs for the expert associated with each of the three strategies. By equating the 
payoffs associated with strategies A and C (as specified in the paper) we get the boundary condition 

𝜎஺஼
ேூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

௛൫ሺଵିఒሻ௣෤ି௖̃൯ା௛ఒሺ௩ି௧ሻା௛௧

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
 or 𝜆஺஼

ேூ ൌ 𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

 
ሺ௛ାఙିଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ሺଵିఙሻ௧

ሺ௛ାఙିଶ௛ఙሻ௣෤ି௛ሺଵିఙሻሺ௩ି௧ሻ
. By equating the payoffs associated with strategies B and C (as specified in the 

paper) we get the boundary condition 𝜎஻஼
ேூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺଵି௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻ

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
 or 𝜆஻஼

ேூ ൌ

𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ
ሺଵି௛ିఙାଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ఙ௧

ሺଵି௛ିఙାଶ௛ఙሻ௣෤ି௛ఙ ሺ௩ି௧ሻ
. 

Functions 𝜎஺஼
ேூ and 𝜎஻஼

ேூ are hyperbolas. To define the areas in the ሺ𝜆,𝜎ሻ space in which each of the three 
strategies is optimal for the expert, we first derive the vertices of the two hyperbolas. The vertex of 

hyperbola 𝜎஺஼
ேூ is 𝑉𝜆஺஼

ேூ ൌ
௛ሺଵି௛ሻሺ௩ሺ௣෤ି௖̃ሻା௖̃௧ሻ

ቀሺଶ௛ିଵሻ௣෤ି௛〖ሺ௩ି௧ሻ൯〗మ
, while the vertex of hyperbola 𝜎஻஼

ேூ is 𝑉𝜆஻஼
ேூ ൌ

ି௛ሺଵି௛ሻሺ௩ሺ௣෤ି௖̃ሻା௖̃௧ሻ

ቀሺଶ௛ିଵሻ௣෤ି௛〖ሺ௩ି௧ሻ൯〗మ
. 

From these expressions, it is easy to see that the two hyperbolas are geometrically similar and mirroring 
each other. Furthermore, the respective hyperbola does not exist when the associated vertex is 0. The 
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latter is true iff 𝑝෤ ൌ
௖̃ሺ௩ି௧ሻ

௩
. Consequently, when 𝑝෤ ൌ

௖̃ሺ௩ି௧ሻ

௩
, the vertex 𝑉𝜆஺஼

ேூ  changes from positive to 

negative (i.e., the curve changes from concave to convex), while the vertex 𝑉𝜆஻஼
ேூ  changes vice versa 

(i.e., the curve changes from convex to concave).  

Next, let us derive the boundary values of functions 𝜆஺஼
ேூ ,𝜎஺஼

ேூ , 𝜆஻஼
ேூ  and 𝜎஻஼

ேூ . 

 𝜆஻஼
ேூ ሺ𝜎 ൌ 1ሻ ൌ 𝜆ଵ

ேூ ൌ
௖̃ି௧ି௣෤

௩ି௧ି௣෤
 is the 𝜆-value of the function 𝜆஻஼

ேூ  when 𝜎 ൌ 1. 

 𝜆஻஼
ேூ ሺ𝜎 ൌ 0.5ሻ ൌ 𝜆஺஼

ேூ ሺ𝜎 ൌ 0.5ሻ ൌ 𝜆ଶ
ேூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
 is the 𝜆-value of the function 𝜆஻஼

ேூ  or function 

𝜆஺஼
ேூ  when 𝜎 ൌ 0.5. 

 𝜆஺஼
ேூ ሺ𝜎 ൌ 1ሻ ൌ 𝜆ଷ

ேூ ൌ 1 െ
௖̃

௣෤
 is the 𝜆-value of the function 𝜆஺஼

ேூ  when 𝜎 ൌ 1. 

 𝜎஺஼
ேூሺ𝜆 ൌ 1ሻ ൌ 𝜎ଵ

ேூ ൌ
1

2
൅

ℎሺ𝑣െ𝑐෤ሻെሺ1െℎሻ𝑐෤

2ሾℎሺ𝑣െ𝑐෤ሻ൅ሺ1െℎሻ𝑐෤ሿ
 is the 𝜎-value of the function 𝜎஺஼

ேூ when 𝜆 ൌ 1. 

 𝜎஻஼
ேூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଶ

ேூ ൌ
1

2
൅

ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻെℎሺ𝑝෤െ𝑐෤൅𝑡ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the function 𝜎஻஼

ேூ when 𝜆 ൌ 0. 

 𝜎஺஼
ேூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଷ

ா௑ைିேூ  ൌ
1

2
൅

ℎሺ𝑝෤െ𝑐෤൅𝑡ሻെሺ1െℎሻሺ𝑐෤െ𝑝෤ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the function 𝜎஺஼

ேூ when 𝜆 ൌ

0. 

 𝜎஻஼
ேூሺ𝜆 ൌ 1ሻ ൌ 𝜎ସ

ேூ ൌ
1

2
൅

ሺଵି௛ሻ௖̃ି௛ሺ௩ି௖̃ሻ

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
 is the 𝜎-value of the function 𝜎஻஼

ேூ when 𝜆 ൌ 1. 

Next, let us analyze one-by-one the locations of those boundary values on the 𝜆-axis and the 𝜎-axis. 

1. 𝜆ଵ
ேூ ൌ

௖̃ି௧ି௣෤

௩ି௧ି௣෤
: 

i. 𝜆ଵ
ேூ ൏ 0 iff �̃� െ 𝑡 ൏ 𝑝෤ ൏ 𝑣 െ 𝑡. 

ii. 𝜆ଵ
ேூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ 𝑡. 

iii. 𝜆ଵ
ேூ ൐ 1 iff 𝑝෤ ൐ 𝑣 െ 𝑡. 

2. 𝜆ଶ
ேூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
: 

i. 𝜆ଶ
ேூ ൏ 0 iff �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ ℎ𝑣. 

ii. 𝜆ଶ
ேூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ ℎ𝑡. 

iii. 𝜆ଶ
ேூ ൐ 1 iff 𝑝෤ ൐ ℎ𝑣. 

3. 𝜆ଷ
ேூ ൌ 1 െ

௖̃

௣෤
: 

i. 𝜆ଷ
ேூ ൏ 0 iff 𝑝෤ ൏ �̃�. 

ii. 𝜆ଷ
ேூ ∈ ሾ0,1ሿ if �̃� ൑ 𝑝෤ ൑ 𝑝෤ ൅ �̃�. 

iii. 𝜆ଷ
ேூ ൐ 1 iff 𝑝෤ ൐ 𝑝෤ ൅ �̃�. 

4. 𝜎ଵ
ேூ ൌ

1

2
൅

ℎሺ𝑣െ𝑐෤ሻെሺ1െℎሻ𝑐෤

2ሾℎሺ𝑣െ𝑐෤ሻ൅ሺ1െℎሻ𝑐෤ሿ
: given our assumption �̃� ൏ ℎ𝑣 we immediately get 𝜎ଵ

ேூ ∈ ሾ0.5,1ሿ. 

5. 𝜎ଶ
ேூ ൌ

1

2
൅

ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻെℎሺ𝑝෤െ𝑐෤൅𝑡ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
: 

i. 𝜎ଶ
ேூ ൏ 0.5 if �̃� െ ℎ𝑡 ൏ 𝑝෤ ൑ �̃�. 

ii. 𝜎ଶ
ேூ ∈ ሾ0.5,1ሿ iff �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. 

iii.  𝜎ଶ
ேூ ൐ 1 if 𝑝෤ ൐ �̃�. 

6. 𝜎ଷ
ேூ ൌ

1

2
൅

ℎሺ𝑝෤െ𝑐෤൅𝑡ሻെሺ1െℎሻሺ𝑐෤െ𝑝෤ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
: 

i. 𝜎ଷ
ேூ ൏ 0.5 if �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. 

ii. 𝜎ଷ
ேூ ∈ ሾ0.5,1ሿ iff �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�. 

iii.  𝜎ଷ
ேூ ൐ 1 𝑝෤ ൒ �̃�. 

7. 𝜎ସ
ேூ ൌ

1

2
൅

ሺଵି௛ሻ௖̃ି௛ሺ௩ି௖̃ሻ

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
: given our assumption �̃� ൏ ℎ𝑣 we immediately get 𝜎ସ

ேூ ൏ 0.5. 
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Let us now consider each panel of Figure 2 in detail, accounting for the underlying condition �̃� ൏ ℎ𝑣, as 

well as for the additional condition �̃� ൐ 𝑡. We derive typical locations of the curves 𝜆஺஼
ேூ  and 𝜆஻஼

ேூ  when 
𝑝෤ falls in the specific interval, as well as upper and lower boundaries of the respective functions.  

a. Panel (a) corresponds to the case where 0 ൏ 𝑝෤ ൏ �̃� െ 𝑡. Following the geometrical properties of 

hyperbolas 𝜆஺஼
ேூ  and 𝜆஻஼

ேூ , function 𝜆஺஼
ேூ  is concave and function 𝜆஻஼

ேூ  is convex, since 𝑝෤ ൏
௖̃ሺ௩ି௧ሻ

௩
. Both 

functions intersect at 𝜆ଶ
ேூ . The price difference restriction immediately yields 𝜆ଵ

ேூ ∈ ሾ0,1ሿ; since 𝑝෤ ൏
�̃� െ 𝑡 ൏ �̃� െ ℎ𝑡, 𝜆ଶ

ேூ ∈ ሾ0,1ሿ; furthermore, 𝜎ଵ
ேூ ∈ ሾ0.5,1ሿ and 𝜎ସ

ேூ ൏ 0.5. The upper and lower 

boundaries of the 𝜆஺஼
ேூ  and 𝜆஻஼

ேூ  functions are determined by the location of the intercepts 𝜆ଵ
ேூ , 𝜆ଶ

ேூ 

and 𝜎ଵ
ேூ at the upper and the lower limit of 𝑝෤, thus at 𝑝෤ ൌ 0 and at 𝑝෤ ൌ �̃� െ 𝑡: 𝜎ଵ

ேூ is independent of 

𝑝෤, therefore, it remains constant at any 𝑝෤; 𝜆ଵ
ேூሺ𝑝෤ ൌ 0ሻ ൌ

௖̃ି௧

௩ି௧
 and 𝜆ଵ

ேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ 0; 𝜆ଶ
ேூሺ𝑝෤ ൌ 0ሻ ൌ

௖̃ି௛௧

௛ሺ௩ି௧ሻ
 and 𝜆ଶ

ேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ
ሺଵି௛ሻ௧

௛ሺ௩ି௧ሻି௖̃ା௧
, therefore 𝜆ଶ

ேூሺ𝑝෤ ൌ 0ሻ ൐ 𝜆ଶ
ேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ always under the 

assumption 𝑡 ൏ �̃� ൏ ℎ𝑣 and both 𝜆ଵ
ேூ and 𝜆ଶ

ேூ decrease as 𝑝෤ increases from 0 to �̃� െ 𝑡. 
b. Panel (b) corresponds to the case where �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. As in panel (a), function 𝜆஺஼

ேூ  is 

concave and function 𝜆஻஼
ேூ  is convex. Since 𝑝෤ ൏ �̃� െ ℎ𝑡, 𝜆ଶ

ேூ ∈ ሾ0,1ሿ; furthermore, 𝜎ଵ
ேூ ∈ ሾ0.5,1ሿ and 

𝜎ସ
ேூ ൏ 0.5. Given the price difference restriction 𝑝෤ ൐ �̃� െ 𝑡, 𝜆ଵ

ேூ ൏ 0 and 𝜎ଶ
ேூ ∈ ሾ0.5,1ሿ. Hence, the 

major difference between panel (b) and panel (a) is caused by a change in the curvature of the 

function 𝜆஻஼
ேூ  as a result of the increase in 𝑝෤. Consequently, the intercept 𝜆ଵ

ேூ moves outside of the 

range 𝜆 ∈ ሾ0,1ሿ and the curve intersects the 𝜎-axis in 𝜎ଶ
ேூ. The upper and lower limit of the two 

functions are as follows: 𝜎ଶ
ேூ (𝑝 ̃ ൌ 𝑐 ̃ െ 𝑡ሻ ൌ 1,𝜎ଶ

ேூ ሺ𝑝 ̃ ൌ 𝑐 ̃ െ ℎ𝑡ሻ ൌ 0.5; 𝜆ଶ
ேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ

ሺଵି௛ሻ௧

௛ሺ௩ି௧ሻି௖̃ା௧
 and 𝜆ଶ

ேூሺ𝑝෤ ൌ �̃� െ ℎ𝑡ሻ ൌ 0. Therefore, both 𝜎ଶ
ேூ and 𝜆ଶ

ேூ decrease as 𝑝෤ moves from the 

lower limit to the upper limit. As in the previous sub-case 𝜎ଵ
ேூ remains constant. 

c. Panel (c) corresponds to the case where �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�. In this range of 𝑝෤, the shape of functions 

𝜆஺஼
ேூ  and 𝜆஻஼

ேூ  changes at 𝑝෤ ൌ
௖̃ሺ௩ି௧ሻ

௩
. As long as 𝑝෤ ൏

௖̃ሺ௩ି௧ሻ

௩
, 𝜆஺஼
ேூ  is concave and 𝜆஻஼

ேூ  is convex. At 

𝑝෤ ൌ
௖̃ሺ௩ି௧ሻ

௩
, both functions are straight lines. At 𝑝෤ ൐

௖̃ሺ௩ି௧ሻ

௩
, 𝜆஻஼
ேூ  is concave and 𝜆஺஼

ேூ  is convex. 

However, since 𝑝෤ ൐ �̃� െ ℎ𝑡, 𝜆ଶ
ேூ ൏ 0 and the 𝜆஻஼

ேூ  curve does not appear in the 𝜆 ∈ ሾ0,1ሿ interval. 

Since �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�, 𝜎ଷ
ேூ ∈ ሾ0.5,1ሿ; 𝜎ଵ

ேூ ∈ ሾ0.5,1ሿ always. When 𝑝෤ is at its lower limit, 

𝜎ଷ
ேூሺ𝑝෤ ൌ �̃� െ ℎ𝑡ሻ ൌ 0.5. When 𝑝෤ is at its upper limit, 𝜎ଷ

ேூሺ𝑝෤ ൌ �̃�ሻ ൌ 1. Therefore, 𝜎ଷ
ேூ  increases as 

𝑝෤ increases from the lower to the upper limit, while 𝜎ଵ
ேூ remains constant. 

d. Panel (d) corresponds to the case where 𝑝෤ ൐ �̃�. In this range of 𝑝෤, 𝜆஺஼
ேூ  remains convex and 𝜆஻஼

ேூ  

remains concave. However, since 𝜆ଶ
ேூ ൏ 0 for 𝑝෤ ൐ �̃�, the 𝜆஻஼

ேூ  curve remains outside the 𝜆 ∈ ሾ0,1ሿ 
range. Since 𝑝෤ ൐ �̃�, 𝜆ଵ

ேூ ∈ ሾ0,1ሿ; 𝜎ଵ
ேூ ∈ ሾ0.5,1ሿ always. At the lower limit of 𝑝෤ ሺ𝑝෤ ൌ �̃�ሻ, 

𝜆ଷ
ேூሺ𝑝෤ ൌ �̃�ሻ ൌ 0, and 𝜆ଷ

ேூ increases as 𝑝෤ increases. As in the previous sub-case 𝜎ଵ
ேூ remains constant. 

 

We complete the proof by showing that Strategy D, where the expert provides a treatment opposite to 
the signal she receives, is dominated by one of the other three strategies for any given parameter 

constellation. Strategy D is associated with the following utility for the expert: Π஽ ൌ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ∆ ൅

ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ∆ െ ℎ𝜎𝑡 ൅ 𝜆 ቂሺ1 െ ℎ𝜎ሻ𝑣 െ 𝑝ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ െ 𝑝ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ൅ ℎ𝜎𝑡ቃ. First 

consider panel (a) of Figure 2. In this panel Strategy A is strictly preferred over the other two strategies 

for constellations satisfying 𝜆 ൐ 𝜆ଶ
ேூand 𝜎 ൏  𝜎஺஼

ேூ. We now show that for all 𝜆 ൐ 𝜆ଶ
ேூ we have  Π஺ ൐

 Π஽. To see this note that  Π஺ െ  Π஽ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝෤ െ �̃�ሻ ൅ ሺ1 െ 𝜆ሻ𝑝෤ ൅ 𝜆ℎ𝜎ሺ𝑣 െ 𝑡ሻ ൅ ℎ𝜎𝑡, 
which is zero at (𝜆 ൌ 𝜆ଶ

ேூand 𝜎 ൌ 0.5) and strictly increasing in 𝜆 and 𝜎. Next note that Strategy B is 
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strictly preferred over the other two strategies for constellations satisfying 𝜆 ൏  𝜆ଶ
ேூand 𝜎 ൏  𝜎஻஼

ேூ. For 

𝜆 ൏  𝜆ଶ
ேூ we have  Π஻ ൐  Π஽ since  Π஻ െ  Π஽ ൌ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻሺ�̃� െ 𝑝෤ሻ ൅ 𝜆ሺ𝜎 െ 2ℎ𝜎 െ ℎሻ𝑝෤ ൅ ℎሺ1 െ

𝜎ሻሺ𝜆ሺ𝑡 െ 𝑣ሻ െ 𝑡ሻ is zero at (𝜆 ൌ  𝜆ଶ
ேூand 𝜎 ൌ  0.5) and strictly decreasing in 𝜆 and strictly increasing 

in 𝜎. Finally note that  Π஼ െ  Π஽ ൌ ሺ1 െ 𝜎ሻ൫ሺ𝑝෤ െ �̃�ሻሺ1 െ 2ℎሻ െ 𝜆ሺ1 െ 2ℎሻ𝑝෤ െ 𝜆ℎሺ𝑣 െ 𝑡ሻ െ ℎ𝑡൯ is zero 

at (𝜆 ൌ  𝜆ଶ
ேூand 𝜎 ൌ  0.5) and strictly increasing in 𝜆 and 𝜎. Thus, in panel (a) of Figure 2 Strategy D 

is dominated by at least one of the other three strategies for any parameter constellation. The proof for 
panels (b), (c) and (d) is similar and available upon request.  

 

Figure 2. Profit-maximizing provision behavior with no insurance (NI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ �̃� ൑ 𝑝෤ ൑ 𝑣 

 

Note: The blue curve is each panel is the hyperbola defined in equation (3) in the paper, and the red 
curve in panels (a) and (b) is the hyperbola defined in equation (4) in the paper. The intercept points 

𝜆ଵ
ேூ , 𝜆ଶ

ேூ , 𝜆ଷ
ேூ and 𝜎ଵ

ேூ ,𝜎ଶ
ேூ ,𝜎ଷ

ேூare defined as: 𝜆ଵ
ேூ ൌ

௖̃ି௧ି௣෤

௩ି௧ି௣෤
; 𝜆ଶ

ேூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
; 𝜆ଷ

ேூ ൌ 1 െ
௖̃

௣෤
;  𝜎ଵ

ேூ ൌ
ଵ

ଶ
൅

௛ሺ௩ି௖̃ሻିሺଵି௛ሻ௖̃

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
; 𝜎ଶ

ேூ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻሺ௖̃ି௣෤ሻି௛ሺ௣෤ି௖̃ା௧ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
;  𝜎ଷ

ேூ ൌ
ଵ

ଶ
൅

௛ሺ௣෤ି௖̃ା௧ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 
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Appendix C. Proof of Proposition 3: profit-maximizing provision strategy in the presence of full 

insurance (FI) 

To analyze expert’s provision behavior in the presence of full insurance, we proceed in a similar way as 
in Appendix B (NI case). That is, we first ignore Strategy D and derive the provision areas for the case 
where only strategies A, B and C are available. Later we show that in area X ∈ {A, B, C}, Strategy X 
strictly dominates Strategy D.10 

The boundary between strategies A and C (as specified in equation (5) in the paper) is now defined by 

𝜎஺஼
ிூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

௛ሺ௖̃ି௣෤ሻି௛ఒሺ௩ି௧ሻି௛௧

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
 or 𝜆஺஼

ிூ ൌ 𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ
ሺ௛ାఙିଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ሺଵିఙሻ௧

௛ሺଵିఙሻሺ௧ି௩ሻ
. 

The boundary between strategies B and C (as specified in equation (6) in the paper) is defined by 𝜎஻஼
ிூ ൌ

𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ
ሺଵି௛ሻሺ௣෤ି௖̃ሻ

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
 or 𝜆஻஼

ிூ ൌ 𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ
ሺଵି௛ିఙାଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ఙ௧

௛ఙ ሺ௧ି௩ሻ
. 

Next, we derive the vertices of the hyperbolas 𝜎஺஼
ேூ and 𝜎஻஼

ேூ  to define the areas in the ሺ𝜆,𝜎ሻ space in 

which each of the three strategies is optimal for the expert. The vertex of hyperbola 𝜎஺஼
ிூ  is 𝑉𝜆஺஼

ிூ ൌ
ሺଵି௛ሻሺ௣෤ି௖̃ሻ

௛ሺ௩ି௧ሻ
, while the vertex of hyperbola 𝜎஻஼

ிூ  is 𝑉𝜆஻஼
ிூ ൌ

ିሺଵି௛ሻሺ௣෤ି௖̃ሻ

௛ሺ௩ି௧ሻ
. 

As in the NI case, the two hyperbolas are geometrically similar and mirroring each other. Furthermore, 
the respective hyperbola does not exist when the associated vertex is 0. The latter is true iff 𝑝෤ ൌ �̃�. 
Consequently, when 𝑝෤ ൌ �̃�, the vertex 𝑉𝜆஺஼

ிூ  changes from positive to negative (i.e. the curve changes 

from concave to convex), while the vertex 𝑉𝜆஻஼
ிூ  changes vice versa (i.e. the curve changes from convex 

to concave).  

Next, let us derive the boundary values of the functions 𝜆஺஼
ிூ ,𝜎஺஼

ிூ , 𝜆஻஼
ிூ  and 𝜎஻஼

ிூ . 

 𝜆஻஼
ிூ ሺ𝜎 ൌ 1ሻ ൌ 𝜆ଵ

ிூ ൌ
௖̃ି௧ି௣෤

௩ି௧
 is the 𝜆-value of the function 𝜆஻஼

ிூ  when 𝜎 ൌ 1. 

 𝜆஻஼
ிூ ሺ𝜎 ൌ 0.5ሻ ൌ 𝜆஺஼

ிூ ሺ𝜎 ൌ 0.5ሻ ൌ 𝜆ଶ
ிூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
 is the 𝜆-value of the function 𝜆஻஼

ிூ  or function 

𝜆஺஼
ிூ  when 𝜎 ൌ 0.5. 

 𝜆஺஼
ிூ ሺ𝜎 ൌ 1ሻ ൌ ∞ is the 𝜆-value of the function 𝜆஺஼

ிூ  when 𝜎 ൌ 1. 

 𝜎஺஼
ிூሺ𝜆 ൌ 1ሻ ൌ 𝜎ଵ

ிூ ൌ
1

2
൅

ℎሺ𝑐෤െ𝑝෤െ𝑣ሻെሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
 is the 𝜎-value of the function 𝜎஺஼

ிூ  when 𝜆 ൌ 1. 

 𝜎஻஼
ிூ ሺ𝜆 ൌ 0ሻ ൌ 𝜎ଶ

ிூ ൌ 𝜎ଶ
ேூ ൌ

1

2
൅

ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻെℎሺ𝑝෤െ𝑐෤൅𝑡ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the function 𝜎஻஼

ிூ  when 

𝜆 ൌ 0. 

 𝜎஺஼
ிூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଷ

ிூ  ൌ 𝜎ଷ
ேூ ൌ

1

2
൅

ℎሺ𝑝෤െ𝑐෤൅𝑡ሻെሺ1െℎሻሺ𝑐෤െ𝑝෤ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the function 𝜎஺஼

ிூ  when 

𝜆 ൌ 0. 

 𝜎஻஼
ிூ ሺ𝜆 ൌ 1ሻ ൌ 𝜎ସ

ிூ ൌ
1

2
൅

ሺ1െℎሻሺ𝑝෤െ𝑐෤ሻെℎሺ𝑐෤െ𝑝෤െ𝑣ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
 is the 𝜎-value of the function 𝜎஻஼

ிூ  when 𝜆 ൌ 1. 

Next, let us analyze one-by-one the locations of the just derived boundary values on the 𝜆-axis and the 
𝜎-axis. 

1. 𝜆ଵ
ிூ ൌ

௖̃ି௧ି௣෤

௩ି௧
: 

i. 𝜆ଵ
ிூ ൏ 0 iff 𝑝෤ ൐ �̃� െ 𝑡. 

ii. 𝜆ଵ
ிூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ 𝑡. 

 
10 This latter proof is similar to that in Appendix B and is available from the authors upon request. 
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iii. 𝜆ଵ
ிூ ൐ 1 never as long as �̃� ൏ 𝑣. 

2. 𝜆ଶ
ிூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
: 

i. 𝜆ଶ
ிூ ൏ 0 iff 𝑝෤ ൐ �̃� െ ℎ𝑡. 

ii. 𝜆ଶ
ிூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ ℎ𝑡. 

iii. 𝜆ଶ
ிூ ൐ 1 never as long as �̃� ൏ ℎ𝑣. 

3. 𝜎ଵ
ிூ ൌ

1

2
൅

ℎሺ𝑐෤െ𝑝෤െ𝑣ሻെሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
:  

i. 𝜎ଵ
ிூ ൏ 0.5 never, given our assumption �̃� ൏ ℎ𝑣. 

ii. 𝜎ଵ
ிூ ∈ ሾ0.5,1ሿ iff 𝑝෤ ൏ �̃�. 

iii. 𝜎ଵ
ிூ ൐ 1 iff 𝑝෤ ൒ �̃�. 

4. 𝜎ଶ
ிூ is identical to 𝜎ଶ

ேூ and conditions are defined in Appendix B. 

5. 𝜎ଷ
ிூ is identical to 𝜎ଷ

ேூ and conditions are defined in Appendix B. 

6. 𝜎ସ
ிூ ൌ

1

2
൅

ሺ1െℎሻሺ𝑝෤െ𝑐෤ሻെℎሺ𝑐෤െ𝑝෤െ𝑣ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
: given our assumption �̃� ൏ 𝑣 we immediately get 𝜎ସ

ிூ ൐ 1. 

Next, let us consider each sub-case of Figure 3, accounting for the underlying condition �̃� ൏ ℎ𝑣, as well 

as for the additional condition �̃� ൐ 𝑡. We derive typical locations of the curves 𝜆஺஼
ிூ  and 𝜆஻஼

ிூ  when 𝑝෤ falls 

in the specific interval and compare these with the 𝜆஺஼
ேூ  and the 𝜆஻஼

ேூ  curve. 

a. Panel (a) corresponds to the case where 0 ൏ 𝑝෤ ൏ �̃� െ 𝑡. In this case 𝜆஺஼
ிூ  is concave and 𝜆஻஼

ிூ  is 

convex, since 𝑝෤ ൏ �̃�. Both function intersect at 𝜆ଶ
ிூ . The price difference restriction immediately 

yields that 𝜆ଵ
ிூ ∈ ሾ0,1ሿ and 𝜆ଶ

ிூ ∈ ሾ0,1ሿ since 𝑝෤ ൏ �̃� െ 𝑡 ൏ �̃� െ ℎ𝑡; 𝜎ଵ
ிூ ∈ ሾ0.5,1ሿ. Compared to the 

NI case, Area C shifts to the left with 𝜆ଵ
ிூ ൏ 𝜆ଵ

ேூ, 𝜆ଶ
ிூ ൏ 𝜆ଶ

ேூ, and 𝜎ଵ
ிூ ൐ 𝜎ଵ

ேூ. The dynamics of the 

intercept points 𝜆ଵ
ிூ , 𝜆ଶ

ிூ , 𝜎ଵ
ிூ as 𝑝෤ increases from 0 to �̃� െ 𝑡 is similar to the respective intercepts of 

the NI case, namely 𝜆ଵ
ிூ and 𝜆ଶ

ிூ decrease and 𝜎ଵ
ிூ increases as 𝑝෤ increases. 

b. Panel (b) corresponds to the case where �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. Under this price difference restriction 

𝜆஺஼
ிூ  remains concave and 𝜆஻஼

ிூ  is convex, since 𝑝෤ ൏ �̃�. Since 𝑝෤ ൏ �̃� െ ℎ𝑡, 𝜆ଶ
ேூ ∈ ሾ0,1ሿ and 𝜎ଵ

ேூ ∈
ሾ0.5,1ሿ. Given the price difference restriction 𝑝෤ ൐ �̃� െ 𝑡, 𝜆ଵ

ிூ ൏ 0 and 𝜎ଶ
ிூ ∈ ሾ0.5,1ሿ. Compared to 

the location of the NI functions, 𝜆ଶ
ிூ ൏ 𝜆ଶ

ேூ and 𝜎ଵ
ிூ ൐ 𝜎ଵ

ேூ, while 𝜎ଶ
ிூ ൌ 𝜎ଶ

ேூ. As 𝑝෤ moves from the 

lower limit to the upper limit, 𝜆ଶ
ிூ decreases, 𝜎ଵ

ிூ increases and 𝜎ଶ
ிூ decreases. 

c. Panel (c) corresponds to the case where �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�. In this range of 𝑝෤, 𝜆஺஼
ிூ  remains concave 

and 𝜆஻஼
ிூ  remains convex, since 𝑝෤ ൏ �̃�. Since 𝑝෤ ൐ �̃� െ ℎ𝑡, 𝜆ଶ

ிூ ൏ 0 and the 𝜆஻஼
ிூ  curve does not appear 

in the (𝜆 ∈ ሾ0,1ሿ,𝜎 ∈ ሾ0.5,1ሿሻ range, same as 𝜆஻஼
ேூ . Since �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�, 𝜎ଵ

ிூ ∈ ሾ0.5,1ሿ; 𝜎ଷ
ிூ ∈

ሾ0.5,1ሿ always. As compared to the NI case, Area C shrinks upward, since 𝜎ଵ
ிூ ൐ 𝜎ଵ

ேூ and 𝜎ଷ
ிூ ൌ

𝜎ଷ
ேூ. As a consequence, the range of ሼ𝜆,𝜎ሽ parameter constellations under which Strategy C is 

optimal is much smaller in FI, as compared to NI.  
d. Panel (d) corresponds to the case where 𝑝෤ ൒ �̃�. In this range of 𝑝,෥  𝜆஺஼

ிூ  turns convex and 𝜆஻஼
ிூ  turns 

concave. Since 𝑝෤ ൒ �̃�, 𝜎ଵ
ிூ ൐ 1 and 𝜎ଷ

ிூ ൐ 1, which brings the 𝜆஺஼
ிூ  curve outside the 

ሺ𝜆 ∈ ሾ0,1ሿ,𝜎 ∈ ሾ0.5,1ሿሻ range, while 𝜆஺஼
ேூ  remains in the range of interest. As a result, when 𝑝෤ ൒ �̃� 

there exists no ሼ𝜆,𝜎ሽ parameter constellation under which Strategy C is optimal when there is full 
insurance. 
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Figure 3. Profit-maximizing provision behavior with no insurance (NI) and full 

insurance (FI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ �̃� ൑ 𝑝෤ ൑ 𝑣 

 

Note: This figure shows the effect of introducing insurance. The solid red and the solid blue line, as 
well as the areas A, B and C, are as defined in Proposition 2 and they characterize the optimal provision 
areas in the NI case. The dashed red and the dashed blue line are the hyperbolas defined in equations (5) 
and (6) and they define the optimal provision areas in the FI case. The intercept points 𝜆ଵ

ேூ , 𝜆ଶ
ேூ , 𝜆ଷ

ேூ 

and 𝜎ଵ
ேூ ,𝜎ଶ

ேூ ,𝜎ଷ
ேூare as defined in the note to Figure 2. The intercept points 𝜆ଵ

ிூ , 𝜆ଶ
ிூ and 𝜎ଵ

ிூare defined 

as: 𝜆ଵ
ிூ ൌ

௖̃ି௧ି௣෤

௩ି௧
;  𝜆ଶ

ிூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
; ;  𝜎ଵ

ிூ ൌ
ଵ

ଶ
൅

௛ሺ௩ି௖̃ା௣෤ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௩ି௖̃ା௣෤ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 

 


