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We build a Susceptible-Infected-Vaccinated Economic two-sector growth model to study 

the evolution of inequality in an economy with two groups of workers, who are differently 

exposed to a transmissible disease. We show that the economy can lead to various 

scenarios in the long run, which range from a disease-free economy to a scenario in which 

only the most exposed group suffers from the virus. Our numerical exercises show that 

the question of how a transmissible disease affects long-run inequality depends on the 

economic variable we use to build our inequality measure, on the infectiousness of the 

disease, and on whether we address individual or group measures of inequality. Under our 

calibration, if the share of vaccinated trespasses the 24%, then the effect of the disease on 

inequality in capital assets is not monotone in the exposure rate.
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1 Introduction

On 11 March 2020, the World Health Organization declared the Coronavirus Disease 2019

(COVID-19) to be a pandemic. The impact of the pandemic is still ongoing in 2023. As of 4

September 2023, there have been a total of 694,893,289 confirmed cases, and 6,912,384 deaths

reported worldwide.1 Governments and policymakers around the world have imposed several

restrictions to manage the COVID-19 pandemic, that have temporarily succeeded in slowing

it down (Chinazzi et al., 2020; Ferguson et. al., 2020; Hsiang et al., 2020), but have harmed

both the society and the economy as any other epidemic (see Atkeson, 2020; Boucekkine et al.,

2009; Coibion et al., 2020; Craighead et al., 2020). Vaccination emerged as the most e�cient

tool to fight the COVID-19 pandemic and a number of vaccines were developed in a short

period to diminish the damages and save lives. We investigate how a pandemic can generate

and magnify economic inequality when the economy is made of two groups of individuals who

are di↵erently exposed to a transmissible disease.

In this paper, we construct a two-sector growth model to describe an economy where one of

the production sectors requires only labor and the other utilizes both physical capital and labor.

The labor market will divide the population into two groups by, di↵erentiating individuals by

the sector they work in. This economy su↵ers from an epidemic, and the two groups di↵er

in their exposition of the disease, which can generate di↵erent paths for the evolution of the

disease and can result in magnified economic inequality among workers. The model is made of

two connected blocs: the population bloc and the economic bloc. In the population bloc, the

evolution of the disease is modeled as a two-group susceptible-infected-vaccinated (SIV) model,

similar to the well-known Susceptible-Infected model with two novelties. First, individuals

can get vaccinated and obtain protection against the disease. We solve this SIV model and

use the result as an input to the economic bloc. The second novelty is that population is

made of two groups, whose unique di↵erence is their exposure to the disease. Obviously, the

group that is most exposed will su↵er more from the disease, and will work fewer hours as a

consequence. It is assumed that the vaccination rate is identical for both groups, to avoid any

unjustified judgement regarding vaccination. After obtaining the optimal equilibrium paths

for the population and the economy, our analysis focuses on long-term inequality, which can

be magnified by the disease.

To underline the harmful e↵ects of a persistent pandemic, no insurance mechanism has

been introduced in the model to protect the diseased. Depending on the reproduction number

of the disease, we prove that the disease can a↵ect di↵erently both groups in the long term,

generating sustained economic inequality among the two groups of workers. If the reproduction

number of the disease is smaller than one, then the disease disappears in the long run. Indeed,

1
https://www.worldometers.info/coronavirus/countries
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we prove that when the disease does not spread very rapidly, then the unique steady state is

the disease-free economy, and that this steady state is stable. In this case, the unique long-term

di↵erence across groups may stem from productivity di↵erences, if any.

Then, we obtain a series of results in the long term depending on the reproduction numbers

of the overall economy and that of the two groups. We find that if one of the groups is

(partially) infected in the long run, so will the other group. If the overall society reproduction

number is above one, then we also prove that both groups can end up in an endemic steady state

and su↵er from the disease forever. Worth noting, under certain conditions, the most exposed

group could even face long term indeterminacy complicating the task of any policymaker

aiming at controlling the epidemic.

We introduce several measures of inequality between the two groups of individuals and

between any two individuals, each in one group. We focus on inequality in revenue, and then

on capital assets, consumption, shares of infected labour, and overall welfare. Regarding our

results on inequality, we find that if we are looking at a technologically advanced economy

whose production is intense in capital, then turning towards an even more capital-intensive

economy reduces inequality. Otherwise, capital intensifying the economy will always increase

inequality between the two groups of individuals.

Our model does not count with a government or a policy maker aiming at maximizing the

welfare of an entire economy. To explore the e↵ects of inequality on the rate of vaccination

and exposure to inequality at the steady state, we resort to numerical exercises. One could

expect that the more aggressive the disease, the higher inequality. The latter a�rmation

might not be entirely true and as we show, it depends on how we measure inequality. Besides,

the role of the vaccination rate is crucial. For instance, under our calibration, if the share of

vaccinated trespasses the 24%, then the e↵ect of the disease on inequality in capital assets is

not monotone in the exposure rate. Inequality is lowest when the disease is least aggressive

and highest for the second (not the first) most aggressive rate under consideration. Indeed,

an extremely virulent disease will harm all individuals so strongly that it will bring (some)

equality.

This article is structured as follows. Section 2 presents the most relevant literature related

to epidemics, vaccination, and inequality. Then, Section 3 presents our model developing

in detail both its epidemic and economic bloc, focusing on the di↵erent long-run outcomes

and their implications for inequality. Section 4 illustrates numerically the case in which both

groups of workers reach an endemic steady state. Finally, Section 5 presents our conclusions.
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2 Literature

Our paper contributes to three di↵erent strands of the literature, namely the relationship

between inequality and epidemics, vaccination and the dynamics of the COVID-19 epidemic.

We present in this section the most relevant and recent works in each of these three strands.

2.1 Inequality and epidemics

The impact of pandemics on income inequality is a relatively understudied area. However,

there are some notable studies that have explored this relationship, primarily focusing on

historical pandemics and more recent outbreaks. Alfani (2015) and Alfani and Ammannati

(2017) investigates the impact of pandemics in Italian cities during the pre-industrial era,

particularly focusing on the Black Death. They find that the Black Death played a significant

role in reducing income inequality in Italy during that time.

Galletta and Giommoni (2020) examine the impact of the Great Influenza on income

inequality in Italian towns. Contrary to the findings of the historical studies, Galletta and

Giommoni conclude that in both the short and medium term, income inequality increased in

the towns most a↵ected by the pandemic. They attributed this increase to a decline in the

income share held by the poor. Moreover, Furceri et al. (2020) look at the impact of more

recent epidemics that occurred between 2000 and 2020, including SARS 2003, H1N1 2009,

MERS 2012, Ebola 2014, and Zika 2016. Unlike historical pandemics, these events had a

relatively weak impact on the economy and society. Furceri et al. (2020) found that these

recent epidemics led to a rise in income inequality in the countries they studied.

It’s important to note that the impact of pandemics on income inequality can vary sig-

nificantly depending on various factors, including the severity of the pandemic, government

responses, and the economic and social context of the a↵ected regions. Additionally, di↵erent

methodologies and data sources can lead to varying conclusions in empirical studies.

Our paper fits in the theoretical literature related to epidemics and inequality. The closest

paper to ours is Boucekkine and La↵argue (2010). Using a three-period overlapping gener-

ations model with skilled and unskilled workers, they prove that while all epidemics under

consideration have significantly di↵erent demographic implications in the medium run, they

all imply a worsening in the short and medium run of economic performance and income

distribution.

Extending the model of Boucekkine and La↵argue (2010), Vasilakis (2012) investigates

the economic and demographic impacts of the HIV-AIDS epidemic in developing countries.

The author allows di↵erent e↵ects to act either separately or together, and he investigates

the marginal e�ciency of health expenditures on the survival probability of individuals and
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demographics. He finds that first, the HIV epidemic leads adults to increase their own health

expenditure and to decrease that of their children. Second, the transmissibility of the HIV

virus leads parents to spend more on their children’s health than on their own. The HIV

epidemic reduces the productivity of young adults, and this e↵ect dominates the other two

leading adults to have fewer children. Also as a consequence, the number of unskilled workers

increases and it impoverishes the economy in the short and medium run.

Sayed and Peng (2021) examines empirically the e↵ects of pandemics on income inequality.

This study includes four countries in a period of 100 years (1915-2017), and it finds a significant

e↵ect of pandemics on the reduction of income inequality. The authors discuss whether their

results are in line with the pandemic of COVID-19 and they conclude that the e↵ects of

COVID-19, on inequality remain unclear so far.

Overall, while there isn’t an extensive body of research on this topic, the available studies

suggest that the relationship between pandemics and income inequality is complex and can

yield di↵erent outcomes depending on the specific circumstances of each pandemic.

2.2 Vaccination literature

Although there is a rapid development on the economic literature regarding vaccination, the

literature is still thin to date. Let us describe some of the most salient works in this domain.

Bargues and Dimitrova (2021) investigate the e↵ect of COVID-19 vaccination on psychological

well-being using information from a large-scale panel survey representative of the UK popu-

lation. They find that vaccination increases psychological well-being. Auld and Toxvaerd et

al. (2020) support that an increase in the vaccination rate tends to be followed by a reduc-

tion in protective behaviors. Atkeson (2021) builds a model of private and public behavior

to mitigate the transmission of the COVID in the United States. He finds that both private

and public behaviors are key to explaining the prevalence of COVID-19 and its persistence.

Absent the development of technological solutions such as vaccines or life-saving therapeutics,

additional public health interventions su↵er from rapidly diminishing returns in improving

long-run outcomes. In contrast, Atkeson (2021) shows that the rapid implementation of non-

pharmaceutical interventions, in combination with the rapid development of technological

solutions, could have saved nearly 300,000 lives. Finally, there are theoretical studies like

Nganmeni et al. (2022), which focuses on vaccine allocation and identify a key point: achiev-

ing inclusivity alongside popularity often requires more vaccine doses compared to merely a

popular allocation. Additionally, research shows that it is feasible to design decision-making

rules that ensure an inclusive and popular vaccine allocation. In this scenario, any group with

veto power must represent societal diversity, promoting fairness in vaccine distribution.
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2.3 COVID-19 Pandemic

Finally, let us close this review of the literature with some recent works on the COVID-19

pandemic. Toxvaerd (2020) builds an epidemiological economic model in which susceptible

individuals may engage in costly social distancing in order to avoid becoming infected. He

shows that social distancing stops once herd immunity sets in, and that it actually extends

the duration of the epidemic. Besides, once the epidemic curve becomes flatter the disease

becomes more infectious, entailing worse health consequences.

In the same vein, Alvarez et al. (2021) investigate the role of a lockdown in controlling

epidemics and examines the link between the economy and an epidemic. They show that in

order to control the COVID-19 fatalities while minimizing the lockdown cost, a severe lockdown

should be imposed a few weeks after the outbreak, cover at least 50% of the population and last

less than 4 months. In a similar epidemiological setting, Acemoglu et al. (2020) consider that

only older individuals should be in a lockdown. In like manner, Bosi et al. (2021) compute

the optimal lockdown policy in a dynamic general equilibrium model where households are

altruistic and care about the share of infected individuals. They find that a positive lockdown

is always recommended beyond a critical level of altruism. In particular, their numerical

simulations show that the optimal lockdown never trespasses 60% and that eradication is not

always optimal. La Torre et al. (2021) focus on the determination of the optimal intensity

and duration of the social distancing policy aiming to control the spread of an infectious

disease in a simple macroeconomic epidemiological model. They find that social distancing

decreases the spread of the disease while preserving economic activity. They also show that

the characteristics of an epidemic can determine the optimal social distance, its duration, and

its economic e↵ects. Schmitt-Grohé et al. (2020) find that the relative impact of the COVID-

19 virus was considerably greater on poorer communities compared to wealthier ones during

the early stages of the pandemic in the United States. This underscores how pandemics can

disproportionately a↵ect low-income populations.

Moreover Gori et al. (2021) examine how a deadly epidemic and its control measures,

such as social distancing and testing-tracing-isolation (TTI), impact capital accumulation and

economic development across di↵erent time frames. It combines epidemiological with economic

growth models, emphasizing the trade-o↵ between safeguarding lives and the economy. Key

findings include insights into long-term interactions between infection, demographics, and

capital, the limited sustainability of extended social distancing, and the value of investing in

TTI to prevent future lockdowns and economic disruptions.

The theoretical work of La Torre et al. (2022) discusses the implications of geographical

heterogeneities on health and macroeconomic outcomes by using an epidemiological spatial

economic model. They show that the existence of cross-regional e↵ects actually determines
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the long-run outcome of the economy and the disease.

Let us close this section with Davine et al. (2022), which explores whether fiscal policies,

particularly public debt, can mitigate the economic and health impacts of epidemics. They

use a model that considers three key factors: the vulnerability of older individuals to diseases,

increased infection rates in high pollution, and the role of public health spending and debt.

Their findings suggest that well-designed fiscal policies can lead to a stable, disease-free state.

Even when epidemics can’t be fully eliminated, public debt and income transfers can reduce

infections, boost capital, and raise GDP per capita, provided pollution levels are not too

high. Additionally, they propose a household subsidy policy to address income and welfare

disparities between healthy and infected individuals.

3 A theoretical setup to study economic inequality

In this section, we develop a theoretical setup to study how epidemics can generate and/or

magnify inequality. First, we present a two-group vaccination variant of a Susceptible-Infected-

Vaccinated model. Second, we introduce a two-sector growth model where one of the produc-

tion sectors requires only labor and the other, physical capital and labor. Then, we will merge

both epidemics and economics and focus on the long-term of this economy using the long-run

results for the population previously obtained.

3.1 Epidemics. A two group SIV model

Let us assume an economy with a constant population, divided into two groups. Groups di↵er

in their exposition to contagion. Since population is constant, we have that Ṅ1(t) + Ṅ2(t) =

n1(t) + n2(t) = 0. n1(t) and n2(t) are exogeneously given. Within each group, individuals are

either infected (I), vaccinated (V ) or susceptible (S). Then at every moment in time t � 0

N1(t) = S1(t) + I1(t) + V1(t), (1)

N2(t) = S2(t) + I2(t) + V2(t). (2)

Our economy is exposed to a Susceptible-Infected-Susceptible disease in the sense that

going through the disease does not confer immunity. At every moment in time, there are

�1S1
I1+I2
N and �2S2

I1+I2
N new infections in Group 1 and 2, respectively, where �1 and �2

measure the exposure of the groups to the disease. We can assume without loss of generality

that �1 > �2. For simplicity, we assume that apart from exposure, the disease a↵ects equally

both groups. The two population groups have access to the same vaccine and have identical

vaccination rates. As already mentioned, their only di↵erence stems from their exposition to

the disease, inherent to their labor occupation.
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Individuals recover from the disease at a rate c � 0. Regarding the vaccine, we assume

that it reduces the infection by a rate � 2 [0, 1], so that � = 1 means that the vaccine has no

e↵ect at all, and � = 0 that the vaccine fully protects against the disease.2

Susceptible individuals are vaccinated at a rate �, and the vaccine wears o↵ at a rate ✓ � 0.

Gathering all these elements our model writes

Ṡi = ni � �iSi
Ii + Ij
N

� �Si + cIi + ✓Vi, (3)

İi = �i(Si + �Vi)
Ii + Ij
N

� cIi, (4)

V̇i = �Si � ��iVi
Ii + Ij
N

� ✓Vi. (5)

for i, j = 1, 2, i 6= j.

Assume that the size of each group reaches a constant size, that is, ni = 0. Since Ni =

Si + Ii + Vi, we can reduce the dimension of the system above, by writing Si = Ni � Ii � Vi.

Then the evolution of the disease within group i is described by

İi = �i [Ni � Ii � (1� �)Vi]
Ii + Ij
N

� cIi, (6)

V̇i = � (Ni � Ii � Vi)� ��iVi
Ii + Ij
N

� ✓Vi, (7)

where i, j = 1, 2, i 6= j.

• Long term epidemic equilibria under constant group size

In this section, we study the long-term behavior of the disease. In particular, we will

obtain the exact description of a disease-free economy, of an economy in which one group

of the population is partially infected and the other free of disease; and finally, we obtain

conditions for the existence of fully endemic steady states.

At a steady state (Ī1, Ī2, V̄1, V̄2), İi = 0 and V̇i = 0, for i = 1, 2. From (7), imposing V̇i = 0:

�
�
Ni � Īi

�
=


�+ ✓ + ��i

Īi + Īj
N

�
V̄i,

and

V̄i =
�
�
Ni � Īi

�

�+ ✓ + ��i
Īi+Īj
N

. (8)

Then, plugging (8) into the equation resulting from İi = 0 using (6), we obtain

cĪi = �i(Ni � Īi)
��+ ✓ + ��i

Īi+Īj
N

�+ ✓ + ��i
Īi+Īj
N

Īi + Īj
N

(9)

2
For simplicity reasons we will not write the time index of the variables from now onwards.
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and

cĪj = �j(Nj � Īj)
��+ ✓ + ��j

Īi+Īj
N

�+ ✓ + ��j
Īi+Īj
N

Īi + Īj
N

. (10)

Note that the zero-infection steady state always exists:

Īi = Īj = 0, (11)

V̄i =
�

�+ ✓
Ni, (12)

V̄j =
�

�+ ✓
Nj . (13)

We prove next that the disease-free equilibrium can be asymptotically stable

Proposition 1 (Disease-free Steady State). Let R0 =
�iNi+�jNj

cN . If R0 < 1, then

lim sup
t!1

[Ii(t) + Ij(t)] = 0,

implying that the disease free steady state (Ī1, Ī2) = (0, 0) is asymptotically stable.

Proof. See Appendix A.

R0 is an economy-wide measure of the pandemic reproduction, and it divides the number

of total exposed individuals over the total number of recovered. If R0 < 1, then the number

of exposed individuals over cured individuals is small, and the disease does not advance fast

enough. In this case, the disease disappears with time. Note that when the disease is not too

aggressive, the vaccination rate � is not decisive, the disease disappears by itself. However, as

we will see next, when the disease is more aggressive or it spreads faster, vaccination becomes

a key to understanding the long term of the disease and its stability.

Let us define the group equivalent of the pandemic reproduction number Ri
0. Let Ri

0 be

Ri
0 = �iNi

cN for i = 1, 2. Note that R0 = R1
0 + R2

0. Although Group 1 is the most exposed to

the disease, its reproduction number could be lower than that of Group 2 if its population was

much smaller.

In what follows we explore di↵erent situations in which R0 > 1, where Proposition 1

does not hold. We prove that there exist long-term situations in which the two groups su↵er

di↵erently from the disease. First, Proposition 2 shows that a steady state in which Group 2 is

free of the disease while Group 1 su↵ers from the disease in the long run is not feasible. Then,

Propositions 3 and 4 provide conditions under which the two groups su↵er from the disease in

the long run.
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Let us begin by proving that the steady state (Ī1, Ī2) = (x̄, 0) cannot exist. Substituting

Ī2 = 0 into (9) for i = 2, and knowing that Ī1 6= 0:

�2 [N2 � (1� �)V2]
Ī1
N

= 0.

which can only be true if and only if � < 1 and

V2 =
1

1� �
N2.

However, this cannot be true because it would mean that V2 > N2. We conclude with the

following proposition:

Proposition 2. If one of the groups is infected in the long run, so will be the other.

We close this section by providing conditions for the existence of an endemic steady state:

Proposition 3. If Ri
0 < (1��)�

c� for both i = 1, 2 and R0 > 1, then there exists exactly one

endemic steady state.

Proof. See Appendix B.

We can break down Proposition 3’s hypothesis to better understand the society it describes.

Here, we can understand ��iNi as the share of individuals in group i that is exposed to

the disease and who are protected by the vaccine, which protects them at a rate �. Then,

if Ri
0 < (1��)�

c� , it means that for each group, the number of these protected but exposed

individuals is smaller than (1 � �)�N , the number of individuals in the economy who are

actually vaccinated but for who the vaccine did not work. Since R0 > 1, the disease is virulent

enough and we know that this situation arises when the share of vaccinated but unprotected

individuals is su�ciently large, in particular when (1� �)� > c�
2 .

Obviously, under other conditions, we could seek the existence of multiple steady states,

at least for one of the groups. For example,

Proposition 4. If R1
0 > 2

�R
2
0 + c�+�+✓+(1��)�

�c and R2
0 > 1

c�

h
(1� �)�� N2

N1
(�+ ✓)

i
, with

R0 > 1, then group 1 has two endemic steady states and group 2 only 1. Hence, there is

indeterminacy regarding the final state of group 1.

Proof. See Appendix C.

In this scenario the disease is highly infectious, R0 > 1, and both groups’ reproduction

numbers are su�ciently large. Here, Group 1 faces indeterminacy, its long-term situation is

not determined. This situation could be undesirable and di�cult to tackle for a policymaker

who wishes to control the disease to improve overall welfare in society.
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3.2 An economic growth model

This section presents an economy made of two sectors that produce di↵erent goods using two

distinct production technologies. Let us start by describing the firms, followed by the lifetime

welfare problem of individuals in each group of workers. Then we present the equilibrium of

the overall economy and its long run. Finally, we conclude the section with an analysis of

inequality putting together the dynamics of the epidemics and of the economy.

• Firms

There are two economic sectors, 1 and 2, which produce two di↵erent consumption goods.

Sector 1 uses a linear technology and requires only labor as input. The second sector utilizes

a constant return-to-scale technology and requires both physical capital and labor as inputs.

Hence, labor is split into two groups depending on the firm on which they work. According to

these assumptions, production in Sectors 1 and 2, Y1 and Y2, are described as

Y1(t) = B1L1(t), (14)

Y2(t) = B2K(t)↵L2(t)
1�↵, (15)

where K stands for physical capital, L1 and L2 for labor in Sectors 1 and 2, respectively. B1

and B2 are positive constants and stand for each of the sectors’ technology. Regarding Y2,

↵ 2 (0, 1), that is, production is a continuous, increasing, and concave function of both K and

L2.

Assuming that the good produced in Sector 1 is the numeraire, each firm maximizes profits

at every moment in time. We denote by p the relative price of good 2 in terms of the numeraire.

Then the optimal unit salary for a worker in sector 1 is w1(t) = B1 and for a worker of sector

2, w2(t) = B2(1�↵)K(t)↵L2(t)�↵. The optimal interest rate is R(t) = B2↵K(t)↵�1L2(t)1�↵.3

• Households

Population N is divided into two groups of sizes N1 and N2, and this division depends on

the sector they work in. For simplicity, we assume that the total population does not grow.

Apart from that, all households share the same preferences over the two consumption goods

and have one unit of labor that they devote entirely to labor. Households maximize overall

discounted welfare over an infinite time period. Households measure their utility via the same

standard utility function u, which satisfies:

Assumption 1. The utility function u(c1, c2) : R+ ⇥R+ �! R+
is a positive, increasing and

concave function of c1 and c2.

3
Again for simplicity reasons, we remove the time index in the following.

11



The representative household in Group i solves the following problem:

max
{ci1,ci2}

Z 1

0
u(ci1, c

i
2)Nie

�⇢tdt, (16)

where ⇢ � 0 is the time discount rate (also common to all households) and cij is Group

i’s consumption per capita of good j = 1, 2. Each group has an endogenous size of Ni,

and depending on the evolution of the pandemic, it will have an amount Ii(t) of infected

individuals at time t who cannot work. Note that we are assuming that all members of Group

i consume the same amounts of both consumption goods, whether they are able to work or

not. Households’ choices are subject to the law of accumulation of the household’s assets, Ai:

Ȧi = rAi + wi(Ni � Ii)�
�
ci1 + pci2

�
Ni, (17)

where the initial value of assets, Ai(0) is known.

Solving the household problem (16) subject to (17), we obtain household’s i Euler equations

with respect to both consumption goods:

�u001(c
i
1, c

i
2)ċ

i
1

u01(c
i
1, c

i
2)

= r � ⇢, (18)

�u002(c
i
1, c

i
2)ċ

i
2

u02(c
i
1, c

i
2)

= r � ⇢. (19)

These imply that
�u00

1 (c
i
1,c

i
2)ċ

i
1

u0
1(c

i
1,c

i
2)

=
�u00

2 (c
i
1,c

i
2)ċ

i
2

u0
2(c

i
1,c

i
2)

. For practical matters we will be assuming later

on that the utility function is u(c1, c2) =
c⌘1c

1�⌘
2

⌘(1�⌘) , with ⌘ 2 R. With this functional form for u,

the first order conditions also imply that

ci2 =
1� ⌘

⌘

1

p
ci1. (20)

We can define the equilibrium of the economy as follows.

Definition 1. An equilibrium is a sequence of wages and interest rates {w1(t), w2(t), R(t)}1t=0,

a sequence of labor demand, labor supply, infected individuals, optimal choices for consumption

and household assets {Li(t), Ni(t), Ii(t), ci1(t), c
i
2(t), Ai(t)}1t=0 for i = 1, 2 such that at every

time t � 0

i) The epidemics evolves according to (6) and (7);

ii) Labor market clears, that is, labor demand equals labor supply for each group of individ-

uals, that is, healthy individuals: Li(t) = Ni(t) � Ii(t), for i = 1, 2. Total population is

constant, N = N1(t) +N2(t).

iii) Physical capital market clears, so that physical capital demand equals the sum of all

household’s assets: K(t) = A1(t) +A2(t);
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iv) Goods market clear, implying that supply equals demand for each of the two goods, i.e.

c11(t) + c21(t) = B1L1 and c12(t) + c22(t) = B2K(t)↵L2(t)1�↵
.

iv) Firms behave optimally and households are paid at their marginal productivity. Accord-

ingly, each worker of group 1 receives a unit salary w1(t) = B1, and workers of group 2,

w2(t) = B2(1� ↵)K(t)↵L2(t)�↵
. Physical capital is also paid at its marginal productiv-

ity R(t) = B2↵K(t)↵�1L2(t)1�↵
and r(t) = R(t) � �, where � � 0 is physical capital’s

depreciation rate;

v) Households also behave optimally implying that consumption of each of the two goods

follows the optimal trajectory defined in (18) and (19).

vi) Individual’s capital assets evolve in time according to (17).

• Steady State

Denoting by x̄ the steady state of variable x, we define the steady state of our economy

as a set of equilibrium values (N̄1, N̄2, Ā1, Ā2, c̄11, c̄
1
2, c̄

2
1, c̄

2
2) which is solution to (17), (18), (19)

once we set Ȧi = 0, ċi1 = 0 and ċi2 = 0, for i = 1, 2.

By (18), the steady-state value of the interest rate, R̄, satisfies that R̄ = �+⇢ or equivalently

that r = ⇢. Substituting R̄ using its equilibrium value, we obtain that

B2↵K̄
↵�1L̄1�↵

2 = � + ⇢, (21)

with K̄ = Ā1 + Ā2, and

⇢Ā1 + B1
⇥
N̄1 � Ī1(N̄1)

⇤
= c11

1

�
N̄1, (22)

⇢Ā2 + (1� ↵)B2

✓
B2↵

� + ⇢

◆ ↵
1�↵ ⇥

N � N̄1 � Ī2(N̄1)
⇤
= c21

1

�
(N � N̄1). (23)

where Ī1(N̄1) and Ī2(N̄1) are given in (9) and (10), and are functions of N̄1. Working with the

equilibrium conditions, we find that there exists an interior steady state where the number of

workers in sector 1 is implicitly given by

B1
⇥
N̄1 � Ī1(N̄1)

⇤
=

⌘p

1� ⌘
B2

✓
↵B2

� + ⇢

◆ ↵
1�↵ ⇥

N � N̄1 � Ī2(N̄1)
⇤
,

and from (22) and (23), using (41) and the relationship between the household consumption

of both goods in (20), we obtain c11:

c11
N � 2N̄1

⌘
= B1(N � N̄1)

✓
N � N̄1

⌘
� 1

◆
� ⇢K̄ � (1� ↵)B2K̄

↵
⇥
N � N̄1 � I2(N̄1)

⇤1�↵
.

The number of workers in sector 1 at the disease-free steady state, N̄f
1 is:
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N̄f
1 =

1

1 + B1
B2

1�⌘
⌘p

⇣
⇢+�
↵B2

⌘ ↵
1�↵

N.

Worth noting, although the long-term size of labor is obviously di↵erent in the endemic

and the disease-free steady states, the relative size of the economic sectors is identical in both

cases.

• Group and Individual measures of inequality at Equilibrium

Let us define next some simple measures of inequality, at the individual level and between

groups. First, we define two functions of revenue inequality. We denote by QG(t) revenue

inequality between groups defined as the ratio between the total revenue of Group 2 and that

of Group 1. Similarly, individual inequality, Qi(t), is defined as the ratio between the unit

wage in Sector 2 and the unit wage in Sector 1:

QG(t) =
w2(t)N2(t)

w1(t)N1(t)
, (24)

Qi(t) =
w2(t)

w1(t)
. (25)

At the steady state, the levels of inequality are given by

Q̄G =
w̄2N̄2

w̄1N̄1
= (1� ↵)

1� ⌘

⌘p

↵B2

� + ⇢
, (26)

Q̄i =
w̄2

w̄1
= (1� ↵)

B2

B1

✓
↵B2

� + ⇢

◆ 1
1�↵

. (27)

We can perform some comparative statics exercises that reveal the role of each parameter

on inequality. We summarize our results in the following lemma:

Proposition 5. Under the model assumptions, and using the long-term definitions in (26)

and (27), we can prove that

i) If B1 increases, then Q̄i increases while Q̄G remains unchanged, i.e.
@Q̄i
@B1

> 0 and

@Q̄G
@B1

> 0.

ii) If ⌘ or p increase, then Q̄G decreases although Q̄i does not change, that is
@Q̄G
@⌘ < 0 and

@Q̄i
@⌘ = 0.

iii) If ↵ increases, then the e↵ect on inequality depends on the base value of ↵ itself. Indeed,

Q̄G increases when ↵ < 1/2 and decreases otherwise. The reaction of Q̄i depends on the

relative level of technology in Sector 2. In particular:
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iii.1) If technology is relative high, i.e. B2 > max{ 1
↵e

(1�↵)3

↵ , (� + ⇢) ⌘
1�⌘

p
↵(1�↵)}, then

individual inequality decrease with ↵:

@Q̄i

@↵
= 0.

iii.2) If B2 takes an intermediate level, (�+ ⇢) ⌘
1�⌘

p
↵(1�↵) < B2  1

↵e
(1�↵)3

↵ , then
@Q̄i
@↵ < 0.

Hence, from iii) we can conclude that increasing the role of capital in production in Sector 2

can lead to a decrease in both measures of inequality if production is already intense in capital

(↵ > 1/2) and the economy is su�ciently advanced technologically speaking. Otherwise,

an increase in ↵ will always increase inequality across groups. Despite the increase across

groups, it can decrease inequality among individuals if technology in Sector 2 is not su�ciently

advanced.

We can also study inequality when the epidemics vanish in the long term. Here, inequality

is only triggered by economic factors.

Proposition 6 (The disease-free long term economy.). If R0 < 1, then we know from Propo-

sition 1 that the epidemic vanishes with time. Both long-term inequalities at the group level

and at the individual level coincide with the levels of the economy under an epidemic.

Although the result in Proposition 6 may be surprising at first, it is actually not. Note that

both measures of inequality depend on (relative) wages and that physical capital per capita

is constant in the long-run. This constant value is identical whether there is an epidemic or

not. Nevertheless, the epidemics are certainly generating inequality regarding consumption

and wealth accumulation. For this reason in the numerical exercises in Section 4 we will be

studying how epidemics a↵ect inequality in capital accumulation, consumption, the share of

infected, labor (i.e. shares of individuals able to work), group size, capital assets holdings, and

welfare.4

Our model does not count with a government or a policy maker aiming at maximizing the

welfare of an entire economy. However, we can explore the e↵ects of the vaccination rate and

exposure to epidemics on the steady state and on inequality. Since our results for the endemic

steady state are implicit, we will illustrate in the next section these mechanisms numerically.

In our exercises, we let �, the vaccination rate, take values between 0 and 1 and we show

the partition of labor between the two production sectors at the steady state, the values for

the share of infected individuals in each group, the stock of physical capital and inequality in

capital for di↵erent values of �1 when �2 = 0.15.

4
See Appendix H for the definitions.

15



4 Numerics: Labor division and inequality in the long-run

Our numerical analysis of the endemic steady state focuses on the UK.5 The UK is one of

the European countries which has su↵ered the most from COVID-19, the one with the most

casualties in Europe, and one of the highest death rates (2,356 deaths per 1M of the population

as of 1 March 2022). Indeed, by 1 March 2022 the UK had reported a total of 18,886,701 cases

and 161,361 deaths.6 One more reason to choose the UK, as already mentioned, is that it

was also the first Western country to approve both the Pfizer and the AstraZeneca vaccines,

adopting an ”aggressive” approach and o↵ering the first dose of the available vaccines to as

many people as possible.

Our calibration is built on data from the National Statistics Bureau of the UK and on

recent research on COVID-19. First note that the majority of the population got a dose of

the Astrazeneca vaccine, whose e�ciency is 74% according to (Lopez Bernal et al., 2021), and

as it was published in the media7. Accordingly, we adapt this figure to an annual basis and

we assume that � = 0.74. To bear in mind for the upcoming comparisons, the vaccination

rate in the UK is around 72%, so we could have fixed � to � = 0.72. We will take another

approach and let vary � in (0, 1) and study the evolution of labor repartition and inequality

levels. Given the depreciation of vaccine e�cacy, it is necessary to get a booster after 3 to 6

months,8 which leads us to consider that the vaccine depreciation rate is ✓ = 0.5.

Based on the UK government national statistics o�ce, we consider that the group trans-

mission rate �2 and the recovery rate, c, are 0.15, and 0.25 respectively. Similar values have

imposed by Vasilakis (2011). Then we will choose four di↵erent values for �1. First, a value

that is 10% lower than transmission in Sector 2; second, we let transmission be equally intense

in both sectors; third, �1 will be 0.1 points higher than �2, that is 66% higher. Finally, in the

fourth case, �1 takes the extreme value of 0.35, that is, 133% higher than �1.

The parameters related to the economic model are taken by Barro and Sala-i-Martin (1997),

Kazuo (1996), Ortigueira et al. (1997), and Bond et al. (1996). All values are gathered in

Table 1.

Figure 2 shows how labour and the share of infectives evolve with � for the four levels

of infectiveness in Sector 2 we will be considering. Broadly speaking, we observe that the

size of Group 1 and its relative labor share in the economy increase with infectiveness in the

sector. Given that the economy must satisfy consumers’ demand for good 1, the higher the

5
This is also the approach of Petropoulos and Makridakis (2020) and Nikolopoulos et al. (2020).

6
https://www.worldometers.info/coronavirus/countries.

7
https://www.reuters.com/business/healthcare-pharmaceuticals/astrazeneca-covid-19-vaccine-shows-74-

e�cacy-large-us-trial-2021-09-29/

8
https://www.england.nhs.uk/2021/12/people-40-and-over-to-get-their-lifesaving-booster-jab-three-

months-on-from-second-dose/
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Table 1: Parameters values

� Vaccine coverage 0.75

✓ Vaccine depreciation 0.5

�2 Group 2 exposure 0.15

c Recovery rate 0.25

p Relative price of good 2 2

B1 Technology in Sector 1 1

B2 Technology in Sector 2 1

� Capital depreciation 0.04

⇢ Time discount 0.015

↵ Production parameter 1/3

⌘ Utility parameter 0.3

N Population size 1

impact of the disease in Sector 1’s labor, the more workers will be allocated to the sector. By

construction, the share of infected in Sector 1 increases with �1, but the share of infected in

Sector 2 increases as well. This is also natural because the more aggressive is the disease in

Sector 1, the more infected will be in the economy, see equation (4), so that in particular, the

more infected workers will be in Sector 2. This result is in line with Boucekkine and La↵argue

(2010) and Vasilakis (2012), where the productivity of workers decreases as the transmission

rate increases. As one may expect, total capital and total welfare decrease with �1 and increase

with the vaccination rate.

Figure 2 also illustrates some somewhat expected results, namely, the more infected in

Sector 1, the more infected overall so that the lower labor, production, and savings, entailing

a decrease in the formation of capital and in consumption, which drives welfare down. The

exact opposite is observed when the vaccination rate increases. That is, total capital and

welfare increase as the vaccination rate in the economy increases because it increases labor in

the overall economy and in each of the sectors.

Finally, Figure 3 shows the di↵erent individual and group measures of inequality as func-

tions of the vaccination rate, �. In particular, we focus here on four measures of inequality:

inequality in capital, labor income, the number of infected in each sector, and in welfare. As

expected, inequality in the impact of the disease on each of the groups increases with the rate

of infectiveness in Sector 1. Worth noting, that individual inequality in labor revenue remains

constant under changes in � and/or �1. That is, the economy adjusts in such a manner that in

the long-term equilibrium, individuals’ labor revenue is always identical. At the group level,

we can say that broadly speaking, inequality decreases with e↵ectiveness, because the disease

drags down labor.
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Figure 1: Shares of Infected, labor, sector size ratio and labor ratio as functions of �.
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Figure 2: Capital and Overall Welfare as functions of �.

Next, let us focus on inequality in capital assets. Generally speaking, we can say that

inequality decreases with the vaccination rate for any level of e↵ectiveness. However, our

numerical exercises reveal some unexpected features. Indeed, while one might have expected

to find that the more aggressive the disease, the higher the inequality, it is actually not true

or not entirely. It is evident that both group and individual inequality in assets are at their

minimum for the lowest value of �1, that is �1 = 0.05. Recall that at this level of infectiveness,

there is almost no e↵ect of the disease in labor. When �1 increases, then we need to distinguish

between group and individual inequality and then between high and low rates of vaccination.

Let us begin with the analysis at the individual level. Figure 3 unearths the existence of a

threshold value for �, here �̂ = 0.235. Below �̂, individual inequality in capital increases with

the e↵ectiveness of the vaccine, that is, the disease exacerbates inequality. However, beyond

that vaccination rate, if the share of vaccinated trespasses the 24% of the total, then the e↵ect

of the disease is not monotone. Inequality still increases for moderate levels of infectiveness

(from 0.15 to 0.25), but then we find out that inequality when �1 = 0.35 is lower than when

�1 = 0.25, although still larger than for 0.15. That is when the disease becomes very aggressive

and then the inequality decreases because there are more people infected, i.e. lower labor. The

di↵erences in revenue (and in investing potential) are blurred when revenue needs to be shared

among relatively many and individuals become more alike. Our results quite change at the

group level, i.e. when taking into account the number of people in each group. There exists

a threshold value for the vaccination rate, �̃ = 0.11, below which inequality in the most

aggressive disease lies between the two other intermediate levels. As we saw at the individual

level and simply put, more individuals become poorer when the disease is strong. At the group

level, the inequality ranking is even reversed when the disease is the strongest, yielding the

lowest inequality.9

9
To complete the description of how infectiveness a↵ects capital inequality, we have generated 3-dimensional
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However, our exercises show that one should not rest in a unique measure of inequality.

Indeed, when we look at inequality in welfare we find that inequality at the individual level

increases with the disease infectiveness. At the group level, we observe that there exists a

”baseline level” of inequality associated with the lowest value of �1. When the disease gains

strength from 0.05 to 0.15, inequality increases for all levels of the vaccination rate. As the

disease becomes even more aggressive, group inequality starts decreasing (recall that it was

increasing at the group level). Here, although each individual in Group 2 becomes more alike

to each individual in Group 1, di↵erences between the two groups increase because Group 2

becomes smaller with �1 (see bottom-left graph in Figure 2).

Let us conclude this section regarding at the e↵ect of a disease on the accumulation of

capital in the economy and overall welfare in the long-run as functions of the vaccination rate.

Figure 3 shows how the economy becomes richer and attains a higher welfare level as the

vaccination rate increases, for all levels of �1. Here, the conclusion is straightforward: the

more aggressive the disease, the lower total capital and welfare.

5 Conclusions

This paper has built a Susceptible-Infected-Vaccinated Economic growth model, where popu-

lation is split in two groups. Our final aim was to measure and study the evolution of inequality

in an economy with two groups of workers, who are di↵erently exposed to an epidemic. Here

one could think of one of the groups made of occupations that require direct contact with

consumers or patients, and the other group made of workers who can work remotely to some

extent.

We develop our model in Section 3 in great detail, analyzing first the epidemic bloc and

exploring various long-term outcomes. Indeed, we prove that our two-group economy can end

up in di↵erent scenarios, which range from a disease-free economy to a scenario in which only

the most exposed groups su↵er from the virus. Then, we embed the epidemiological bloc

into an economic growth model and define inequality between the groups, comparing their

incomes. We complete our theoretical analysis with some numerical exercises which show

that inequality increases with the share of vaccination, and it decreases with the exposure

rate of the most exposed group since the economy becomes poorer. For future research, it

would be interesting to develop a theoretical framework to combine the economic choices of

agents and the disease dynamics to investigate inequality. After all, when there is an epidemic

around, people typically modify their choices (e.g., change occupations; invest in health care

or vaccination), which in turn impacts the progress of the disease. Taking into account such

graphs of inequality as a function of both � and � that can be found in Appendix
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Figure 3: Individual and group measures of inequality as functions of the vaccination rate, �
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an interplay between the disease dynamics and endogenous economic decisions creates scope

for rich and complex coevolution of the disease and economic dynamics resulting in long-run

wage inequality. Finally, another extension of the current version of our model would be to

model vaccination decisions and how they a↵ect income distribution.
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Appendices

A Proof of Proposition 1

From (6) and (7), taking integrals on both sides:

Ii =

Z t

�1

✓
�i [Ni � Ii � (1� �)Vi]

Ii + Ij
N

◆
e�c(t�s)ds,

Vi =

Z t

�1

✓
� (Ni � Ii � Vi)� ��iVi

Ii + Ij
N

◆
e�c(t�s)ds.

We change the integration variable defining x = t� s:

Ii(t) =

Z t

0

✓
�i [Ni � Ii(t� x)� (1� �)Vi(t� x)]

Ii(t� x) + Ij(t� x)

N

◆
e�cxdx.

Then

lim sup
t!1

Ii(t) = lim sup
t!1

Z t

0

✓
�i [Ni � Ii(t� x)� (1� �)Vi(t� x)]

Ii(t� x) + Ij(t� x)

N

◆
e�cxdx.
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By the Fatou-Lebesgue theorem, it is true then that

lim sup
t!1

Ii(t) 
Z t

0
lim sup

t!1

✓
�i [Ni � Ii(t� x)� (1� �)Vi(t� x)]

Ii(t� x) + Ij(t� x)

N

◆
e�cxdx

Recall that we know that if one the two following sequences {sn}n or {xn}n converges, then

lim sup
t!1

snxn = lim sup
t!1

sn lim sup
t!1

xn.

Applying the above property to our limit,
Z t

0
lim sup

t!1

✓
�i [Ni � Ii(t� x)� (1� �)Vi(t� x)]

Ii(t� x) + Ij(t� x)

N

◆
e�cx

�
dx

=

Z t

0
lim sup

t!1
[Ni � Ii(t� x)� (1� �)Vi(t� x)] lim sup

t!1
�i

Ii(t� x) + Ij(t� x)

N
e�cxdx

 Ni

Z t

0
lim sup

t!1
�i

Ii(t� x) + Ij(t� x)

N
e�cxdx.

Since lim supt!1(Ii(t� x) + Ij(t� x)) = lim supt!1(Ii(t) + Ij(t)), then

lim sup
t!1

Ii(t)  �i
Ni

N
lim sup

t!1
[Ii(t) + Ij(t)]

1

c
=

�i

c

Ni

N
lim sup

t!1
(Ii(t) + Ij(t)).

Identically,

lim sup
t!1

Ij(t) 
�j

c

Nj

N
lim sup

t!1
[Ii(t) + Ij(t)] ,

so that

lim sup
t!1

(Ii(t) + Ij(t)) 
�iNi + �jNj

cN
lim sup

t!1
[Ii(t) + Ij(t)] .

B Proof of Proposition 3

The dynamics of the disease is described by (6) and (7). Imposing V̇1 = V̇2 = 0, we obtain the

expressions for V̄1 and V̄2. Indeed since

�
�
N1 � Ī1

�
= V̄1

✓
��1

Ī1 + Ī2
N

+ ✓ + �

◆
,

or

V̄1 =
�
�
N1 � Ī1

�

✓ + �+ ��1
Ī1+Ī2
N

,

V̄2 =
�
�
N2 � Ī2

�

✓ + �+ ��2
Ī1+Ī2
N

Plugging them into the steady states for I1 and I2

cI1 = �1

 
N1 � I1 � (1� �)

�(I1 + I2)

�+ ✓ + ��1
I1+I2
N

!
I1 + I2

N
, (28)

cI2 = �2

 
N2 � I2 � (1� �)

�(I1 + I2)

�+ ✓ + ��2
I1+I2
N

!
I1 + I2

N
. (29)
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Take the first one. Let us develop it

c

�1
I1

✓
�+ ✓ + ��1

I1 + I2
N

◆
=

I1 + I2
N


(N1 � I1)(�+ ✓ + ��1

I1 + I2
N

)� (1� �)�(I1 + I2)

�

Defining x = I1
N and y = I2

N , we can write

c

�1
x [�+ ✓ + ��1(x+ y)] = (x+ y)

✓
N1

N
� x

◆
[�+ ✓ + ��1(x+ y)]� (1� �)�(x+ y)

�

We can develop to obtain a third order polynomial:

h1(x, y) = ��1x
3 + x2


c� + �+ ✓ � N1

N
��1 + 2��1Y + (1� �)�

�
(30)

+x


��1y

2 + y

✓
�c+ �+ ✓ � 2��1

N1

N
+ 2(1� �)�

◆
+

c

�1
(�+ ✓)� N1

N
(�+ ✓)

�
(31)

�N1

N
(�+ ✓)y � N1

N
��1y

2 + (1� �)�y2. (32)

Similarly, developing (29) we obtain a second third order polynomial:

h2(x, y) = ��2y
3 + y2


c� + �+ ✓ � N2

N
��1 + 2��2x+ (1� �)�

�
(33)

+y


��2x

2 + x

✓
�c+ �+ ✓ � 2��2

N2

N
+ 2(1� �)�

◆
+

c

�2
(�+ ✓)� N2

N
(�+ ✓)

�
(34)

�N2

N
(�+ ✓)x� N2

N
��2x

2 + (1� �)�x2. (35)

The endemic steady states are the solutions to h1(x, y) = 0 and h2(x, y) = 0 on
⇥
0, N1

N

⇤
⇥
⇥
0, N2

N

⇤
.

We can start by studying h1 (the study of h2 is identical). We can put forward some relevant

properties. Note that

i) limx!�1 h1(x, y) = �1 and limx!1 h1(x, y) = 1, for every y 2 R.

ii) h1

�
N1
N , y

�
> 0, for every y 2 R. Indeed

h1

✓
N1

N
, y

◆
=

✓
N1

N

◆2

[c� + (1� �)�] +
N1

N
y [c� + 2(1� �)�] +

N1

N

c

�1
(�+ ✓) + (1� �)�y2 > 0.

iii) h1 is a third order polynomial in x for every y 2 R. As such, it has an inflexion point, xi. The

inflexion point xi verifies that h00
1(x

i, y) = 0. The inflexion point of h1 is below N1
N . The inflexion

point for h1 is (xi, y) for a given y, and for h2 it is (x, yi), for x fixed.

Imposing h00
1(x

i, y) = 0 we obtain that

xi =
N1
N ��1 � 2�1y � c� � �� ✓ � (1� �)�

3��1
.

Indeed, if xi was larger than N1
N

N1
N ��1 � 2�1y � c� � �� ✓ � (1� �)�

3��1
>

N1

N
,

then it should be
N1

N
��1 � 2�1y � c� � �� ✓ � (1� �)� > 3��1

N1

N
,

which is not possible. Hence, xi < N1
N .

In particular, this result implies that there is at least one root below N1
N and this for every y.
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iv) Next, let us prove that h0
1(

N1
N , y) > 0. If this is true, then all roots of h1 are below N1

N for all y.

If there are more than one endemic steady state, then we will have indeterminacy.

h0
1

✓
N1

N
, y

◆
= ��1y

2 + y


2��1

N1

N
+ �c+ �+ ✓ + 2(1� �)�

�
+ ��1

✓
N1

N

◆2

+
N1

N
[�c+ �+ ✓ + 2(1� �)�] + c�1(�+ c),

which is always positive for all y 2
⇥
0, N2

N

⇤
.

v)

h1(0, y) = y


(1� �)�y �R1

0
c

�1
(�+ ✓)�R1

0c�y

�

h1(0, y) < 0 if and only if

cR1
0

✓
�+ ✓

�i
+ �y

◆
> y�(1� �),

or

cR1
0
�+ ✓

�i
+ cR1

0�y > y�(1� �).

Hence, if cR1
0�y > y�(1� �), or cR1

0� > �(1� �), then h1(0, y) < 0.

We can prove using an identical procedure that the conditions in Proposition 3 ensure that

h2(x, 0) < 0, so that there is a unique SS.

C Proof of Proposition 4

In order to have endemic steady states, we need roots on [0, N1
N ]. One way to study this is though the

inflexion point. All conditions we provide are su�cient, not necessary.

With the properties of h1 and h2 that we have already proven, if the inflexion point for group 1 is

positive, xi
1 > 0, then there is at least two endemic steady states for group 1. If

R1
0 =

N1�1

cN
>

2

�
R2

0 +
c� + �+ ✓ + (1� �)�

�c
, (36)

R2
0 =

N2�2

cN
>

2

�
R1

0 +
c� + �+ ✓ + (1� �)�

�c
, (37)

then, there are at least two endemic steady states for both groups. Note that this cannot hold. Indeed,

if we use the second condition on the first:

R1
0 >

2

�
R2

0 +
c� + �+ ✓ + (1� �)�

�c
>

4

�2
R1

0 +
2

�

c� + �+ ✓ + (1� �)�

�c
+

c� + �+ ✓ + (1� �)�

�c
,

or ✓
1� 4

�2

◆
R1

0 >

✓
1 +

2

�

◆
c� + �+ ✓ + (1� �)�

�c
,

which cannot hold since � < 1, so that �2 � 4 < 0. Hence, both inflexion points cannot be larger than

zero.

Let us assume then that xi
1 > 0 and xi

2 < 0. If

R1
0 >

2

�
R2

0 +
c� + �+ ✓ + (1� �)�

�c
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then the inflexion point for Group 1 is larger than zero and there are at least two steady states. If

additionally h2(x, 0) < 0, then there is only one steady state for Group 2. Note that there could also

be several steady states for Group 2.

h2(x, 0) = �x

✓
N2

N
(�+ ✓) +

N2

N
��2x� (1� �)�x

◆
.

Then h2(x, 0) < 0 if
�
N2
N (�+ ✓) + N2

N ��2x� (1� �)�x
�
> 0:

N2

N
(�+ ✓) +

N2

N
��2x� (1� �)�x > 0,

x


(1� �)�� N2

N
��2

�
<

N2

N
(�+ ✓).

Our condition holds if

max
x

x


(1� �)�� N2

N
��2

�
<

N2

N
(�+ ✓),

that is,
N1

N


(1� �)�� N2

N
��2

�
<

N2

N
(�+ ✓),

which can be written as

(1� �)�� c�R2
0 <

N2

N1
(�+ ✓),

or

R2
0 >

1

c�


(1� �)�� N2

N1
(�+ ✓)

�
, (38)

which always holds if in particular, N2
N1

> (1��)�
�+✓ . We can check whether (36) and (38) can hold at the

same time:

R1
0 >

2

�
R2

0 +
c� + �+ ✓ + (1� �)�

�c
>

2

c


(1� �)�� N2

N1
(�+ ✓)

�
+

c� + �+ ✓ + (1� �)�

�c
,

or

R1
0 > 1 +

2

c


(1� �)�� N2

N1
(�+ ✓)

�
+

�+ ✓ + (1� �)�

�c
.

Then, if

R1
0 > 1 +

2

c


(1� �)�� N2

N1
(�+ ✓)

�
+

�+ ✓ + (1� �)�

�c
, (39)

R2
0 <

2

�
R1

0 +
c� + �+ ✓ + (1� �)�

�c
, (40)

then Group 1 has two endemic steady states, Group 2 only 1.

D Steady State

From

B2↵K̄
↵�1L̄1�↵

2 = � + ⇢

we can obtain that K̄ =
⇣

B2↵
�+⇢

⌘ 1
1�↵

L̄2.
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From (9) and (10), and knowing that at the steady state equilibrium L̄2 = N � N̄1 � Ī2(N̄1), we

can write that at the steady state, Īi = Īi(N̄1) for both i = 1, 2. Hence, we can rewrite the steady state

of total physical capital as

K̄ =

✓
B2↵

� + ⇢

◆ 1
1�↵ ⇥

N � N̄1 � Ī2(N̄1)
⇤
. (41)

Let us find next the expression that will allow us to compute the steady state value for Group 1,

and from there the steady state of all other variables. Using the goods market clearing conditions

c11(t) + c21(t) = B1L1, (42)

c12(t) + c22(t) = B2K(t)↵L2(t)
1�↵. (43)

Using the household’s first order conditions, in particular that ci2 = 1�⌘
⌘

1
pc

i
1, we can write the second

condition as
1� ⌘

⌘p

�
c11(t) + c21(t)

�
= B2K(t)↵L2(t)

1�↵.

So that
1� ⌘

⌘p
B1(N̄1 � Ī1(N̄1)) = B2

✓
B2↵

� + ⇢

◆ ↵
1�↵ ⇥

N � N̄1 � Ī2(N̄1)
⇤
, (44)

which implicitly defines N̄1.

With this value of N̄1 we can recover c11 starting by summing up the equilibrium conditions at the

steady state related to asset accumulation. From the asset accumulation dynamic equations:

⇢Ā1 + B1

⇥
N̄1 � I1(N̄1)

⇤
= c11

1

�
N̄1, (45)

⇢Ā2 + (1� ↵)B2

✓
B2↵

� + ⇢

◆ ↵
1�↵ ⇥

N � N̄1 � Ī2(N̄1)
⇤
= c21

1

�
(N � N̄1). (46)

Summing them up and using (41) and the relationship between the household consumption of both

goods in (20), we obtain c11:

c11
N � 2N̄1

⌘
= B1(N � N̄1)

✓
N � N̄1

⌘
� 1

◆
� ⇢K̄ � (1� ↵)B2K̄

↵
�
N � N̄1 � I2(N̄1)

�1�↵
.

E Disease free economy

Suppose that Ī1(N̄1) = Ī2(N̄1) = 0. Then, from (44) we have that

1� ⌘

⌘p
B1N̄1 = B2

✓
B2↵

� + ⇢

◆ ↵
1�↵ ⇥

N � N̄1

⇤1�↵
.

Gathering the terms in N̄1:

N̄1 =
1

1 + B1
B2

1�⌘
⌘p

⇣
⇢+�
↵B2

⌘ ↵
1�↵

N.
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F Comparative Statics

Results in Proposition 5 obtain simply taking partial derivatives of Q̄G and Q̄i with respect to each of

the parameters.

G Inequality in Capital as a function of �1 and �.

Figure 4: Group and Individual inequality in capital as functions of � and �1.

H Inequality Measures

The long-term inequality measures in capital, QKG and QKi, consumption, QcG and Qci, shares of

infected, labor, group size, capital assets holdings and welfare are defined as

QKG =
A2N2

A1N1
and QKi =

A2

A1
, (47)

QcG =
c2N2

c1N1
and Qci =

c2
c1

, (48)

QIG =
N2I2
N1I1

and QIi =
I2
I1

, (49)

QLG =
N2 � I2
N1 � I1

, (50)

QSG =
N2

N1
, (51)

QAG =
N2A2

N1A1
and QAi =

A2

A1
, (52)

QWG =
N2W2

N1W1
and QAi =

W2

W1
, (53)

where Wi is welfare of an individual in Group i, i = 1, 2.
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